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Preface

Fractal geometry was invented almost single handedly by Benoit
Mandelbrot over a thirty year period from 1950. It burst onto the academic
stage 10 or so years ago through its ability to generate highly realistic com-
puter graphic scenes of the natural world, which were popularized in
Mandelbrot’s (1983) remarkable book. At the same time, it was becoming
central to the reawakening of interest in the science of form in the fields
of physics and biology. In mathematics too, the new geometry was instru-
mental in visualizing solution spaces of dynamic systems whose behavior
could no longer be regarded as smooth, but discontinuous and chaotic. The
key insight emanating from these diverse origins revolves around the idea
that the world is chaotic, discontinuous, irregular in its superficial physical
form but that beneath this first impression lies an order which is regular,
unyielding and of infinite complexity. But this is an order that has been
simplified away in terms of the continuous and the smooth in all previous
attempts at scientific understanding. In this sense, the world must now be
seen as largely fractal. Non-fractal or smooth renditions of it and the science
that accompanies this is thus the science of the special case.

It is hard to impress the importance of this insight but in the last decade,
fractal geometry has found its way into many sciences and arts. Everything
from Stephen Hawking'’s theories of the universe to George Lucas’s Star
Wars movies and popular novels such as Michael Crichton’s Jurassic Park
seem to be touched by fractals, while statements of its importance to science
and modern society abound. John A. Wheeler says that:

“No one is considered scientifically literate today who does not know what a Gaus-
sian distribution is, or the meaning and scope of the concept of entropy. It is poss-
ible to believe that no one will be considered scientifically literate tomorrow who
is not equally familiar with fractals”

while Hugh Kenner describes the field as being
“...as big a picture as this century has seen”.

James Gleick in his book Chaos says that: “. . .twentieth-century science will
be remembered for just three things: relativity, quantum mechanics and
chaos”, and this includes the geometry of chaos — fractals. The superlatives
continue and readers could be forgiven for throwing up their hands in
horror at yet more hype about fractals.

The time has come however for these ideas to be absorbed into the main-
stream of science. Recently, with the dust settling, many applications of
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fractal geometry are being developed in diverse fields and researchers are
finding that fractal ideas have been part of our consciousness, certainly
from the time of the Italian Renaissance, but probably as far back as the
Greeks, and maybe before. What fractal geometry does is to provide a
framework for tying together previously unconnected and diverse concepts,
thus enabling the assembly of a ‘bigger” picture. Cities yield some of the
best examples of fractals. For generations, architects and planners have
attempted to impose a simple, smooth, visual order on cities in the belief
that such order counters the disorder and dysfunction which cities reveal
when they develop ‘naturally’. All the great Utopias from Plato onwards
have sought to impose the geometry of Euclid on the city as an example
of man'’s triumph over nature. In this way, art has been separated from
science. But this viewpoint has always been opposed in some measure. In
the last 50 years, with the realization that social and economic order belies
the physical form of cities, the idea that the naturally or organically growing
city is optimal in countless ways which we have hitherto ignored, has
grown in strength. In short, our view now about the shape and form of
cities is that their irregularity and messiness is simply a superficial manifes-
tation of a deeper order. And as we will argue here, fractal geometry has
much to say about this.

This book presents an initial attempt to apply fractal geometry to cities.
In fact, we go beyond this and argue that cities are fractal in form, and that
much of our pre-existing urban theory is a theory of the fractal city. As
befits a beginning, this book is very much an introductory statement and,
as we argue throughout, these ideas are simply crude snapshots of a much
bigger picture which we hope others will steer their research towards. In
terms of theory, we show here that the architect’s physical determinism
concerning the city can be captured and elaborated in terms of fractals
while the geographer’s concern for the economic theory of location is
entirely consistent with the use of fractal ideas. We live in an era when
physical determinism is still disreputable as architects and city planners
seek to minimize the impact of designs which manifestly interfere with the
social and economic fabric of cities in countless unanticipated and undesir-
able ways. But physical form does determine the quality of life in cities.
We see fractal geometry as providing a new hope for understanding the
power of determinism, as well as new methods for enabling the synthesis
of urban density with central place theory, new ways of visualizing the
impact of human decision-making on cities, and perhaps most of all, new
goals for achieving the good society through manipulating and planning
city form.

One of the central themes of this book is based on the need to ‘visualize’
complex spatial phenomena, in our case cities. Visualization has come hard
on the heels of developments in computer graphics during the 1980s and
now forms a major force in advancing science whose systems are spatial
in some sense, and whose form reveals infinite complexity. Urban theory
has not advanced to the extent it might because the intrinsic complexity
and extensiveness of data has been difficult to grasp just as the results
of modeling such complexity have been difficult to absorb and evaluate.
Computer graphics as scientific visualization thus blazes a path within sci-
ence from which we can learn how to make progress through studying
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examples and applications from many diverse fields. Although our focus
is on cities, we see the examples in this book as being as relevant to biology
and astronomy, say, as to our own more limited domain just as we see the
entire field of visualization as helping us to fashion computer graphics to
our own problems. We thus consider that creative advances in visualization
are unlikely to be restricted to any particular field, metaphors and analogies
between one field and another being the way forward. In this sense, our
text is part picture book from which those interested in graphics and vis-
ualization might draw some inspiration. It is through pictures that our ideas
can be most readily and clearly articulated, and there is perhaps something
about the icons we employ that might encourage the sort of interdisciplinary
research which is central to our own field.

Our book also provides a gentle introduction to fractal geometry and it
is our hope that through this medium, the more general scientific reader
will find much of interest here. Cities, as we said earlier, are fine example
of fractals and we believe that this book could be used in courses which
teach their rudiments, especially to those whose mathematics is at the
‘beginning calculus’ level. Moreover, it is our view that fractals are as much
a part of the artificial as the natural world, that they are writ large in social
and well as physical systems. Thus we hope that our treatment might be
of use to social scientists whose concern in some way is with space, and,
of course, to geographers, urban economists, planners, engineers, designers,
mathematicians, and computer scientists.

Let us say a few words about the origins of the book. For one of us
(Batty), fractals go back a long way to the 1960s through ideas in location
theory involving power laws in rank-size and central place theory. In fact,
the first edition of Peter Haggett’s Locational Analysis in Human Geography
published in 1965 was full of references to the effect of form on location
and cities. Mandelbrot’s work in this area was known to us at that time,
and again in 1974, Michael Dacey pointed out its relevance to us. Mandel-
brot’s first edition of his book Fractals: Form, Chance, and Dimension pub-
lished in 1977 escaped us but in 1981, Lionel March mentioned it and from
then on, fractals seemed to be always with us. Of course, it was clearly
the emergence of computer graphics which fueled the fire and by the time
Mandelbrot published his second English edition The Fractal Geometry of
Nature in 1982, the movement was in full swing.

It is unlikely that we would have begun work in this area unless one us
(Batty again) had not attempted to train himself in computer graphics in
the early 1980s. Almost accidentally, an attempt at generating Mandelbrot’s
fractal planet on a very small (32K RAM) microcomputer yielded a remark-
able and startling realism (as shown in Plate 3.5). From then on we were
hooked. Paul Longley began his university career in Bristol in 1977 in the
same year Peter Haggett produced the much enlarged second edition of
his book which captured much of the synthesis forged within locational
analysis during the 1960s and 1970s. After lecturing in the Universities of
Karlsruhe and Reading, he joined Michael Batty in Cardiff in 1984 and as
part of a project to develop computers in city planning and building on
our past work in urban models, we cultivated these interests from 1986 on.

Many people have helped us with this book. Its production would not
have been possible without the skills and efforts of our technical staff. Tra-
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cey Dinnock drew some of the figures, Martin Morris and Nathan Webster
took many of the photographs, and Andrew Edwards assembled hardware
and software when we were both associated with the Department of City
and Regional Planning at the University of Wales in Cardiff. Tony Philpott
and Simon Godden have helped us more recently with the final production
of the book in the Department of Geography at the University of Bristol.
Kate Brewin, our editor at Academic Press, has been most supportive.

This work has been partly financed by two major research grants; that
awarded to Cardiff for the Wales and South West Regional Research Lab-
oratory by the Economic and Social Research Council (WA504-28-5006:
1986-1991) and that to State University of New York at Buffalo for the
National Center for Geographic Information and Analysis by the National
Science Foundation (SES-88-10917: 1988-1993). The National Center for
Supercomputing Applications at the University of Illinois in Urbana-Cham-
paign financed one of us to begin work on the fractal simulations reported
in Chapter 4 in the summer of 1986 and we thank Larry Smarr, David Boyce
and Lew Hopkins for making this visit possible. We also thank Kwang Sik
Kim of Sung Kyun Kwam University in Seoul, Korea, for help on Chapter
9, and John Shepherd of Birkbeck College in the University of London for
his cooperation on the research that led to use of the East Anglia and South
East England data sets in Chapter 10.

We have benefited immeasurably from discussions and comments with
our academic colleagues. In Cardiff, lan Bracken kept us sane and his help
is directly reflected in the two color plates (7.1 and 7.2) which he produced
for this book. Huw Williams has been a source of great inspiration and we
thank him for discussion on many topics in physics and transport such
as ‘spin glasses’ and much else besides. David Martin provided sobering
comments by reading the book in its entirety. Both in Cardiff and in Buffalo,
Stewart Fotheringham worked with us on diffusion-limited aggregation,
besides tempting one of us, in part, to leave those hallowed shores for the
New World.

In Buffalo itself, Mike Woldenberg, the source of all historical wisdom
on fractals and allometry, continues to engage us in vibrant discussion
while David Mark injected us with an equally influential skepticism. Yichun
Xie helped with C and UNIX and was responsible for the computer analysis
of the North East US cities examples in Chapter 7. Pierre Frankhauser of
the Universite de Franche-Comte, Besancon, read the complete manuscript
and gave us comments at a late stage when we met him in Buffalo and
Budapest. We thank all these colleagues and friends, and many who go
unremarked, for their help. In as controversial a set of applications as these,
they bear no responsibility other than sharpening us to the criticism.

This book has been a long time in the making. It was begun in earnest
when Paul Longley spent a semester of study leave at Buffalo in late 1991.
A lot of the earlier work was done when we in the University of Wales at
Cardiff in one of the most dynamic and turbulent environments we are
ever likely to encounter. It was in that place that this started and at times,
we wondered whether we and the research would survive it. But it is a
testament to the power of ideas, especially good ones such as fractals, that
they (and we) did do so, and nothing would be more satisfying to us than
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if just a few of these were to be picked up by others in our field and made
still more applicable.

Finally, we thank our respective families, Sue and Daniel, and Mandy,
who cheerfully tolerated the writing of this book, amidst important
domestic events such as countless houses and house moves, GCSEs, and
marriage. We dedicate it to them.

Michael Batty Paul Longley
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Introduction

Fractal geometry will make you see everything differently. (Barnsley, 1988a, p. 1.)

Our view of cities is changing. One hundred years ago, cities were under-
stood and planned as physical artifacts with predominant concern for their
architecture and their aesthetics. It was widely agreed that their physical
form was the ultimate determinant of their social and economic functioning,
and the quality of life therein. As the 20th century wore on, this view weak-
ened as attention turned to their economic structure and the efficiency of
their organization, but until the 1960s, the physical viewpoint remained
central, notwithstanding a gradual shift from aesthetic concerns to
locational efficiency.

Prevailing views and approaches then changed dramatically. During the
last 25 years, attention has been focussed upon the institutional structure
of cities, on social processes and class conflict, on urban poverty and depri-
vation, on their diverse roles in the local and global economy. After a cen-
tury of sustained effort at their understanding, our knowledge is still partial
and fragmentary, based on a kaleidoscope of viewpoints and ideologies.
What, however, is widely accepted, perhaps a little reluctantly by some, is
that cities are mirrors and microcosms of society and culture at large, with
every viewpoint contributing something to their understanding. Yet in this
quest, there have been few successes in evolving our understanding from
one approach to another. Consequently, the physicalism based on the idea
of cities as being ‘architecture-writ-large’ cannot be easily related to the
theory of cities as social or economic or institutional systems — social
processes are not easy to relate to spatial form — and thus our current
understanding is overwhelmed by their complexity and diversity.

Yet there is a curious paradox in all of this. We know instinctively that
the physical form of cities is the ultimate result of a multitude of social and
economic processes, constrained and shaped by the geometry of the natural
and man-made world. We know that urban problems are manifest in the
first instance in physical and spatial terms. We also know that many, if not
most, of the instruments we have at our disposal for designing better cities
are physical in form and intent. But there is still no widespread consensus
as to the importance of form, geometry, layout, and configuration which
characterize the physical city. Physicalism has fallen out of fashion in many
fields in the last 50 years. This now appears to be changing too, and there is
new hope that a more profound understanding of physical form in science
generally is about to emerge. In this, there are important implications for
how we might develop a new understanding of the form of cities. The
challenge we set ourselves in this book is to address these possibilities.



2 Fractal Cities

These movements are clearly a part of more fundamental secular trends
in the way we fashion knowledge and science and apply it in society. One
hundred years ago, there was great optimism, great certainty that science
and technology would lead us to the good society. Today we know differ-
ent. That certainty and optimism has dissolved and has been replaced by
a degree of uncertainty and a skepticism as to whether our science can ever
yield the answers. This change is not only a social effect of the difficulties
realized in the application of technology, but has also emerged from science
itself. The quest for comprehensiveness through systems thinking which
came to dominate science by the mid-20th century led to the profound dis-
covery that even the simplest physical systems can admit uncertainty in
their predictions. The emergence of catastrophe theory, and now chaos, first
in mathematics and then in countless applied areas, is testament to this
change. The current concern for complexity and diversity, for micro-macro
and local-global properties of systems, for treating the world simul-
taneously on many levels, is reinforcing these trends, while the gradual
realization that there is order in chaos, is taking science and mathematics
to new levels of abstraction, far away from the most elemental of human
intuitions from whence springs the original thirst for knowledge.

Fractal geometry is part of this change. For the first time, a formal frame-
work for the geometry of the real world rather than for its abstraction into
pure mathematics has been established which enables us to understand
order and regularity in what, at first sight, appears irregular and dis-
ordered. Rather than starting with function and progressing to form, fractal
geometry enables us to search out functions and processes which give rise
to the man-made and natural patterns we observe in the real world, thus
helping us not only to describe and understand reality a little better but to
progress our forecasts and predictions of how the real world might evolve.
Geometry is no longer conceived in terms of straight lines — the geometry
of Euclid - but can now admit irregularity without abandoning continuity,
thus relaxing the severity of mathematics to encompass what is natural and
essential. The application of this geometry to cities is immediate. Planned
cities are cast in the geometry of Euclid but by far the majority, those which
are unplanned or planned less, show no such simplicity of form. Moreover,
all cities contain some organic growth, even planned cities are adapted to
their context in more natural ways once the plan comes to be implemented,
and in any case, the extent to which human decision-making is ordered or
planned is always a matter of degree. In this sense then, all cities show
some irregularity in most of their parts and are thus ideal candidates for
the application of fractal geometry.

This book is but a beginning in the quest to develop a robust and relevant
geometry for the spatial organization of cities. Much of the material we
introduce here is speculative and informal, in that it is part of an ongoing
research program which we hope will develop and grow as the logic of
these arguments is appreciated. We will sketch out how fractal geometry
might be applied to cities in many ways; first in terms of visualizing urban
form through computer models and computer graphics, and then through
the measurement of patterns in real cities and their dynamic simulation.
We will illustrate these ideas with hypothetical and real cities and with
simulations or models. We will focus on physical forms such as city
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boundaries, networks, hierarchies, urban texture, and the density of popu-
lation amongst many structural concepts. We will deal with real, ideal and
hypothetical concepts, showing how these might be best applied to yield
general insights into urban form and functioning. It is not our intention to
provide a blueprint for a new theory of cities. This may come eventually
from fractal geometry, but as we continually emphasize, this is merely a
beginning,

At the very outset, we must give the reader a brief but cogent idea of
fractal geometry and its relevance to cities. Fractals, a term coined by their
originator Benoit Mandelbrot (1983), are objects of any kind whose spatial
form is nowhere smooth, hence termed ‘irregular’, and whose irregularity
repeats itself geometrically across many scales. In short, the irregularity of
form is similar from scale to scale, and the object is said to possess the
property of self-similarity or scale-invariance. It is the geometry of such
objects which is fractal, and any system which can be visualized or analyzed
geometrically, whether it be real or a product of our mathematical imagin-
ation, can be fractal if it has these characteristics. We do not wish to preempt
our discussion in Chapters 2 and 3 but when we refer to an object as being
irregular, we do not mean that it is disordered or chaotic, but that it is not
smooth in the sense in which Euclidean geometry articulates the world.

Because fractal objects are not smooth, their geometry poses certain basic
conundrums. The classic example is the coastline. Coastlines are never
straight, nor do they twist and turn in such a way that they enclose space
completely. But on an intuitive level, they are something more than the
straight line which has a Euclidean dimension of 1 and something less than
the plane in which they exist which has a dimension of 2. We could guess,
and in fact we would be correct, that their dimension was between 1 and
2, fractional rather than integral, thus opening up the possibility that the
Euclidean dimensions of 1 and 2 are simply extremes or special cases which
bound a continuum of fractional or fractal dimensions. In Chapter 2, we
will imply that this argument can be generalized to any dimension, and
that although coastlines and terrain are fractal in the familiar realm of
space-time, fractals exist in higher dimensions, in mathematical space,
where their visualization only makes sense to abstract analysis. The con-
undrums emerge for all fractals whose measurement which is usually based
upon the integral part of their fractal dimension, no longer accords to this
Euclidean logic. For coastlines, for example, this means that their length in
the linear dimension is infinite although the area that they enclose is
bounded. More, much more of this, in Chapter 2.

In this book, we will restrict our discussion to fractals which exist in the
continuum from points to lines to planes to volumes which are all geo-
metric notions useful in describing the city. Thus our geometry is a literal
one and not one abstracted from these real properties of the city. In fact,
most of our analysis of the geometry of cities, of urban form, will deal with
boundaries and areas. We will not consider the city in its third dimension
which might also be regarded as fractal — the skyline of Manhattan for
example — although in a sense, the third dimension will enter implicitly
when we deal with population densities in later chapters. Our applications
to cities also reveal the essential logic of fractal geometry. If fractals are
self-similar in that their geometry repeats itself on many levels or scales, it
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is clear that a stable process or set of processes is operating to form the
geometry. For example, coastlines and terrain are determined by geo-
morphic processes of weathering and erosion. Cities of different sizes are
associated with specialization due to economies of scale, and so on. Of
course, if we can demonstrate that an object is fractal, this gives us some
hope that we can narrow our search for those functions and processes
which give rise to different forms.

Cities have quite distinct fractal structure in that their functions are self-
similar across many orders or scales. The idea of neighborhoods, districts
and sectors inside cities, the concept of different orders of transport net,
and the ordering of cities in the central place hierarchy which mirrors the
economic dependence of the local on the global and vice versa, all provide
examples of fractal structure which form the cornerstones of urban geogra-
phy and spatial economics. Hierarchical distributions of city size in the form
of Pareto or rank-size rules have long been considered the iron laws of
spatial systems, while distributions and density profiles inside the city are
fractal in nature. We will not attempt to rewrite the entire edifice of urban
theory in fractal geometry within this book although we will touch upon
such theory at many points. This may disappoint some who feel that these
ideas are suggestive enough to demand such a reworking. But ours is a
different quest, once again a beginning, a demonstration of what is possible.
We hope to lay out some promising trails, but doubtless, we will trace some
false ones. And we are not too arrogant to confess that there are many
aspects and implications of fractal geometry which lie beyond our expertise
and must be taken up by others, with different interests and objectives in
mind. Finally there are many aspects of cities which can be interpreted as
fractal in the geometric sense, and as yet there is no coherent theory to pull
all this diversity together. Nor need there be, for if fractal geometry is to
be truly general like any geometry, its applicability to even similar systems
of interest will be likewise diverse. In so far as integrated theory exists to
which fractal geometry can be applied, this integration will be in terms of
the system itself and not its geometry.

The cities, and systems of cities, which we will consider range from the
hypothetical to the real. Those which are hypothetical exist as idealized
abstractions and are mainly introduced in the earlier chapters where we
are concerned with laying the foundations of fractal geometry. These enable
us to explore how we might develop appropriate techniques for measuring
and modeling fractal distributions. However, most examples in this book
are concerned with real cities. From Chapter 5 on, we will develop methods
for describing and measuring fractal properties of cities which exist at cross-
sections in time, in terms of boundaries to entire cities, and to the land uses
which they comprise, as well as the urban textures which reflect their spa-
tial juxtapositioning. We then launch into a study of the fractal city proper,
measuring its growth over time, its processes of growth, and ways in which
we might model this growth, connecting all these ideas up with urban econ-
omic theory in the form of population densities on the one hand, and sys-
tems of cities which compose central place theory on the other. Our expo-
sition will begin with the superficial geometry of the city but will then
expand to examine its internal functions and its positioning within the
wider hierarchy of city sizes.
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We will begin in Chapter 1 by reviewing what we know about the shape
of cities, about urban form, particularly emphasizing the distinctions
between ‘planned” or ‘regular’ cities, and ‘organic’ or ‘irregular’ cities. This
is a matter of degree, of course, but our argument will establish the case
for a fractal geometry of cities, and we will show how the concepts of hier-
archy and self-similarity particularly, comprise the structure of knowledge
in this domain. Our next three chapters lay the foundations for a fractal
theory of cities largely, but not exclusively, based on hypothetical or at least
highly abstracted city shapes. In Chapter 2, we outline the rudiments of
fractal geometry, presenting classic well-defined ‘deterministic’ fractals
such as space-filling curves, trees and hierarchies of various kinds, emphas-
izing the appropriate mathematics of shape, scale and dimension, and
methods for constructing fractals through recursion and iteration. In Chap-
ter 3, we generalize these ideas to fractals whose properties must be meas-
ured statistically, concentrating largely on methods for estimating the frac-
tal dimension of coastlines and terrain, as well as on appropriate techniques
for their generation. We then use these techniques to simulate the pat-
terning and texture of land use in a large city with an emphasis on visualiz-
ation using computer graphics. We take these ideas much further in Chap-
ter 4 where we set up a laboratory for visualizing different urban forms
which are possible using these types of model, and finally we apply these
ideas to a real example — residential housing location in London.

Chapters 24 explain the use of fractals in visualization and in simulation
rather than in measurement, but in the next two chapters we change tack
to consider much more specific methods of measurement and estimation.
In Chapter 5, we rework the classic fractal as the boundary of an urban
area — the edge of the city, while in Chapter 6, we extend these ideas to
sets of many fractal objects, in this case, those land uses which comprise
the elements of the city which exist within its urban boundary. This intro-
duces a key theme into this discussion, namely the distinction between
methods for estimating the fractal dimension of a single object, and
methods for estimating the dimension of a set of many objects, and the
ways these are related. By this point, we have introduced enough theory
and method to begin the construction of fully-fledged dynamic models of
the city and systems of cities using fractal geometry, and this we accomplish
in the rest of this book.

Chapter 7 is one of the most important for there we lay the groundwork
for a theory of the fractal city in contrast to the discussion hitherto which
has been pitched around the idea of fractal theory applied to cities. We
begin by examining the form of several cities around the world, focussing
upon their fractal properties in terms of the way their development fills
available space. The model we propose builds on the ideas already intro-
duced but is set within the context of the growing city and the way develop-
ment generates regular gradations of density associated with its space-fill-
ing. We then propose a more general model based on the idea of limited
diffusion of growth — the so-called diffusion-limited aggregation (DLA)
model which is widely used in non-equilibrium physics — and we spend
the rest of this chapter fitting it to real examples. We then extend and gen-
eralize the model in Chapter 8 to provide a new laboratory for generating
a range of different urban forms and we select one which best fits the form
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of the city of Cardiff, thus providing simple, but nevertheless suggestive,
simulations of urban growth and form. In Chapters 9 and 10, we embed
these ideas first into the theory of urban population densities and then into
central place theory. In Chapter 9, we show how fractals provide a new
and enriched view of density theory, implying functional forms different
from those used traditionally, but also providing more informed methods
for measuring and estimating density functions than those used hitherto.
In Chapter 10, we generalize these density and scaling relations to a system
of cities, to the central place hierarchy, and show how constraints on their
form influence the pattern of settlement at the regional level. In both these
chapters, we complete our theory of the fractal city by extending its scaling
relations to embrace both density theory and urban allometry.

Our conclusions are brief but directed, mainly pulling together the many
threads we have sought to weave but also charting plans for the future.
We reflect there upon the purpose of this work. Clearly fractal geometry
enables us to link form to function which is our initial motivation, and at
least, it shows us how we might approach this quest. What we do not
intend here is to suggest models which are immediately applicable in a
policy context, for our concern is much more with demonstrating an
approach. At one level, this might be adapted to specific contexts, at
another, it might simply suggest how we think about cities. Furthermore,
we can even argue that fractal methods are more applicable to the generic
city than to actual or particular cities, and in this sense, are mainly exposi-
tory rather than applicable. But we will not take this discussion any further
here for these are issues that the reader must decide.

Before we begin, we must say something briefly about the mathematical
notation we will use. Throughout the book, we will use a standard set of
definitions to refer to geometrical entities: distances, numbers of objects or
populations, lines, areas, and densities. The overall linear size of an object
will be defined by the variable R and its reference at any explicit point by
r; these are typically distances in cities whose size is measured thus. The
numbers of objects, usually associated with a system of size R is given by
N, in turn referenced in terms of its parts by n. Length of lines and areas
are denoted by L and A respectively, while density, defined as N/A, is
given as p. Each of these variables might be indexed by size or distance r
or R to which they refer, or discretely by integers in the range i, j, k, I,
m and n depending upon context. With respect to dimension, the fractal
dimension is defined as D while the Euclidean or integer dimension is E.
Note that we will use d as a measure of discrete distance, not as part of
the continuum r C R, and that the statistical measure of fit or coefficient
of determination 7% should not be confused with size or distance r. In Chapter
10, Ey is also used to define the length of the envelope of an urban area
specific to settlement k. All other variables and parameters will not be com-
pletely standardized but defined chapter by chapter, although some
attempt will be made to make their usage unique. Equations which are
numbered are always referred to explicitly in the text by their number;
those which are not do not have any lesser significance but are simply not
referred to in the text.
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The Shape of Cities: Geometry,
Morphology, Complexity and
Form

Why have cities not, long since, been identified, understood and treated as problems
of organized complexity? If the people concerned with the life sciences were able
to identify their difficult problems as problems of organized complexity, why have
people professionally concerned with cities not identified the kind of problems they
had? (Jacobs, 1961, p. 434.)

1.1 Understanding Cities

When Jane Jacobs posed her prescient question over 30 years ago, our
understanding of cities was still dominated by the search for a visual order.
As our immediate knowledge of the city is visual, it is perhaps explicable
that urban problems which manifest themselves in cities are first associated
with the destruction of visual order and harmony. The clear consequence
of this has been the quest to solve, or at least alleviate, these problems by
reimposing this order or developing it anew through city planning and
design. Indeed, modern city planning still takes its inspiration from works
such as Camillo Sitte’s (1889, 1965) City Planning, According to Artistic Prin-
ciples, which was published a little over 100 years ago. As long as man has
sought to interpret the city, this has been mainly though the visual arts and
architecture, culminating in the present century in the ideologies of the
Garden City, the City Beautiful, and the Modern Movement. This deeply
ingrained view of the city has had a profound influence on less artistic,
more humanistic and somewhat more explicitly scientific approaches which
in turn have sought to see the city through the need to assert statistical
order in terms of homogeneity of its structure and the suppression of ‘unde-
sirable’ diversity. Indeed, since Jane Jacobs elaborated her thesis, our under-
standing now augmented by the realization that the city presents a kaleido-
scope of complexity, has hardly changed; planning and design still seek to
impose a simplistic order on situations which defy our proper understanding
and which we can only perceive as disordered.

Yet throughout history, there has always been an alternative view. From
ancient times, towns and cities have been classified into those which grow
‘naturally” or ‘organically’ and those which are ‘artificial” or ‘planned’. The
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distinction between these types is manyfold and often blurred, and of
course there exists a continuum from organic to planned growth, many if
not most towns being formed from elements of both. One of the key distinc-
tions involves the speed at which cities change, while another relates to the
scale of their development. Organically growing cities develop much more
slowly than those which are planned. Cities which grow naturally are for-
med from a myriad of individual decisions at a much smaller scale than
those which lead to planned growth which invariably embody the actions
of somewhat larger agencies. Planned cities or their parts are usually more
monumental, more focussed and more regular, reflecting the will of one
upon the many or, at best, reflecting the will of the majority through their
elected representatives. Finally, organic change involves both growth and
decline, while planned change is more asymmetric, frequently embodying
growth but rarely dealing with decline. Thus in this sense, a more complete
picture of urban development is based on a backcloth of natural or organic
growth interwoven both in space and time by planned development.

These distinctions articulate themselves in clear visual ways. Organically
growing towns seem to fit their natural landscape more comfortably in that
if decisions are smaller in scale, they reflect the properties of nature more
closely as well as reflecting more intense concerns at the local level. The
degree of overall control and coordination between such individual
decisions is usually less explicit while the overall resources which govern
such development are mobilized separately in their parts without regard
to any economies of scale which might be generated centrally. The develop-
ment which occurs is much less systematic and often irregular in form, and
such irregularity of form conflicts with our intuition and predisposition to
thinking in terms of the simplistic geometrical order based on the geometry
of Euclid and the Greeks. Moreover, it is naturally growing cities which
have led to the various biological analogies so popular in describing city
growth since the work of Geddes (1915, 1949). Planned growth appears
more man-made in that the patterns produced are more regular, reflecting
more control over the natural landscape, and the mobilization and coordi-
nation of much larger quantities of resources devoted to the development
in question. In history, such planned developments are invariably centered
upon the areas of towns associated with political or religious power - pal-
ace and temple complexes, or with rapidly developing colonial towns,
while in the modern age, retail and industrial developments in contrast to
residential display some of the same regularity. However, it is impossible
to identify solely organic or planned towns, for these two classes of devel-
opment merge into one another in many different parts of the city and at
many different scales.

In terms of the doctrine of visual and statistical order, organic towns
when viewed in plan form resemble cell growth, weaving in and out of the
landscape, closely following the terrain and other natural features,
embodying the technology of movement through main transport routes,
like spider webs or tree-like forms focussed on centers which usually con-
tain the origin of growth. Their geometry seems irregular, although as we
will be at pains to emphasize throughout this book, this should not imply
‘disorder’. In contrast, planned towns display a geometry of straight lines
and smooth curves, built on a directness of movement which can only be
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imposed from above, embodying some sense of man’s direct control over
nature through technology. Until this century, such planned developments
were either parts of larger towns or very small complete towns, more at
the scale of the village; although with the institutionalization of large scale
urban planning in the last 80 years, much more grandiose plans for entire
cities such as the British New Towns or capital cities such as Chandigargh
and Brasilia have been attempted which embody a more perfect geometry.
Nevertheless, most towns and cities provide a blend of both, usually con-
taining elements of the planned within a backcloth of organic growth. One
of the clearest and perhaps surprising examples is the Athens of the fifth
century BC where the acropolis, the agora and straight streets such as the
Panathenaic way were but isolated elements in a city whose
“. .. corresponding architectural growth was . . . slow and unsystematic and
irregular” (Wycherley, 1962).

These differences between organic and planned growth strike at the very
core of the way cities are developed and manifest themselves in every way
we might conceive their study. In this context, we will concentrate on the
geometry of cities, on their spatial properties as displayed mainly in two
dimensions through their plans, and in this sense, we will emphasize their
shape. Nevertheless, we are confident that our approach does not stand
aside from the mainstream, but maps closely onto other ways of under-
standing cities through diverse disciplines within the arts, humanities, the
social and the engineering sciences. Our starting point in this chapter will
be the ways in which traditional and popular geometry has been fashioned
to extend our understanding of cities. Wherever planned development has
taken place, man has invoked the doctrine of visual order and imposed
simple, regular geometrical forms or shapes on cities using the geometry
of Euclid and drawing inspiration from such city building as far back as
the Greeks. Yet during this century, and particularly since scholars, such
as Jane Jacobs amongst others, have drawn our attention to the poverty of
city planning in this ancient tradition, the paradigm of the visual order has
come under intense scrutiny.

In parallel, the idea that naturally growing cities are in fact more work-
able, more efficient and more equitable, indeed more democratic, has
gained credence as we have begun to probe the complexity which composes
the way cities evolve and function. In the last 30 years, the gradual relax-
ation of the theoretical structures imposed on us through classical physics,
mathematics and art which assume that whatever theory we develop must
be simple, clear, workable and mechanistic, is leading to very new
approaches to knowledge which appear more promising in the study of
complex systems such as cities than anything hitherto. New approaches to
time which embody discontinuity and to space which embody irregularity
are becoming established and changing the philosophies to which we have
traditionally ascribed. In this book, we will wholeheartedly embrace these
new paradigms and demonstrate how we can begin to think of cities as
systems of organized complexity whose geometry betrays a complexity of
scale and form of which we have hitherto been largely unaware. To this
end, we will suggest how urban theorists and city planners alike might
move their world view a little closer to what we see as the ‘true reality” of
the ways cities develop and should be developed.
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We will begin by tracing the various changing conceptions of how space
and time have been abstracted across the broad sweep of human history.
Our tendency to continually abstract through simplification manifests itself
in the way we use mathematics to portray order and regularity, the way
we conceive time as a continuous flow, and the way we perceive space as
composed of simple geometries. But this is rapidly changing and we are
entering a time when many of these traditional notions are being intensely
scrutinized. In our quest to refocus the study of cities using these new ideas,
we will first trace the juxtaposition of planned and organic urban forms
and the ways these conceptions have dominated the study of urban form
throughout history. From this review will emerge a deeper sense of how
the morphology of cities should be understood in terms of their form and
process, scale and shape, their statics and dynamics; and this will enable
us to map out our approach which builds our understanding of urban form
about the new geometry of the irregular — fractal geometry.

In essence the shift engendered by this approach is fundamental in that
a theory of the fractal city breaks directly with the tradition that sees cities
as simple, ordered structures, expressible by smooth lines and shapes which
describe their overall morphology and the disposition of their elements.
The change we seek to impress moves us closer to the view that cities are
complex organisms, evolving and changing according to local rules and
conditions which manifest more global order across many scales and times.
In this, our view of cities is closer to modern biology than it is to either
the visual arts or classical economics which have both influenced the study
of cities and their planning so profoundly over the last century (Steadman,
1979). Nevertheless, our emphasis will still, in the first instance, be upon
approaching the study of cities through their geometry and form, but
always with this broader and deeper context in mind.

1.2 Ancient and Traditional Conceptions of Space

From the earliest examples of the written record, there is evidence that
man has always made sense of the world through powerful simplifying
abstractions which seek out the underlying principles and order in our
experiences and perceptions. The power to abstract is one which probably
sets man aside from the rest of the animal kingdom and it is clear that the
ability to impress order and structure on diverse phenomena though cast-
ing aside detail irrelevant to the quest in hand, is strongly correlated with
our conventional view of human progress. In short, abstraction leads to
theory and theory enables the kernel of any phenomena to be isolated,
defined and thence explained. From prehistory, such abstraction has been
associated with the power to simplify the world visually and from the earl-
iest cave paintings, man has sought to impose smooth geometry on art so
that its meaning can be communicated in the simplest and most effective
way.

Ten thousand years ago, the first towns developed when man moved
from a nomadic existence to a society and economy based on more settled
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agriculture. This was what Toffler (1981) has called ‘the first wave’, begin-
ning in the ‘fertile crescent’ centered upon the Rivers Euphrates and Tigris,
in ancient Babylon. The evidence of man’s attempts at visual abstraction
and geometrical simplification of both natural and artificial phenomena
come fast and furious from these times. Although this revolution was
marked more by the natural or ‘organic” growth of towns, there are many
examples of ‘planned’ developments where man imposed his simple
geometry on the land and upon the processes through which cities were
sustained. The first cities show evidence of straight streets, of ordered land
uses separated from one another, of vistas and monuments associated with
the visual display of political and economic power in temple and palace
complexes, of routes radiating from central places and of well-developed
hierarchies of city systems consistent with elaborate agricultural and market
economies. The earliest excavations have revealed urban agglomerations
existing around 2500 BC; the Babylonian city of Ur, Harrapan cities along
the Indus such as Mohenjo-daro and ancient Egyptian palaces as at Tel-el-
Amarna all attest to the imposition of geometrically ordered streets and
buildings following gridiron plans and focussed upon central points such
as markets and temples (Morris, 1979).

In fact, there is no sense in the written record of any time when man'’s
spatial sense of order was any less developed than in modern times,
although the association of geometrical order with science and with the
means to impose that order through technology has changed substantially
since the first urban civilizations emerged. The Egyptians considered the
world to be a flat plane yet the notion that the world might be round in
some sense has been imbedded deep in our psyche since prehistory. The
first known map of the world inscribed on a Sumerian clay tablet around
1500 BC, shows the familiar concentric and perhaps egocentric view of
society, in that case centered in a circle about Babylon. This convention of
centering or focussing social and economic activity in space around some
powerful focus such as a city repeats itself throughout history when maps
are made and plans proposed, and it has only been in the present century
that there has been any sustained effort at thinking ourselves out of this
traditional perspective.

It was the Greeks who first developed our visual senses to the point
where art and science came to be treated as one, and where the imposition
of geometry upon nature was first interpreted though the medium of sci-
ence. It was the Greeks who first conceived of the earth as a sphere, and
who first developed the requisite geometrical science to both demonstrate
and use this understanding for the process of building cities. A long line
of Greek scientists and geometers assembled a science and geometry which
ultimately provided the foundation for the modern age and which essen-
tially still dominates architecture and city planning to this day. The spheri-
cal model of the cosmos developed by Thales, Pythagoras, Herodotus
amongst others and demonstrated using devastating measurement tech-
niques by Eratosthenes, changed man’s conception of space but more in
matter of degree than kind. In fact, the notion that the earth might be a
perfect sphere further impressed the idea that the ‘true” geometry, the ‘per-
fect’ geometry, which was that which represented the highest form of art
was that based upon the point, the line, the circle, the sphere and diverse
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combinations of the regular, in contrast to the irregular which remained
beyond understanding (Berthon and Robinson, 1991).

During Greek and Roman times, the distinction between ‘regular plan-
ned’ and ‘irregular organic’ forms of urban settlement first appeared. In
fact as we noted earlier, most towns grew organically as the product of
many individual decisions made according to local rules and circumstances.
But the Greeks and Romans left a legacy of planned towns, largely through
their efforts at colonizing the known world, and it is there that the first
examples of regular town plans based on the gridiron form make their
appearance as at Miletus and Priene in present-day Asia Minor. The Roman
military camp which could be assembled in a matter of hours also imposed
geometrical order on places where none had been hitherto, and as tech-
nology developed to a larger scale, this geometry became imposed upon
the wider landscape though long straight roads, walls and other man-made
barriers as well as through large-scale agricultural cultivation. When the
Roman world collapsed and Europe descended into her dark ages, what
was left in terms of our knowledge and understanding of space was exten-
sive and widely recorded in many treatises: Ptolemy’s Geography, Vitru-
vius's De Architectura, and of course Euclid’s magnificent exposition in his
Elements of Geometry written some 300 BC, all of which rang down the ages
to be rediscovered during Europe’s Renaissance, precursor to the modern
age.

For almost a thousand years from the division of the Roman Empire until
the Crusades, the formal knowledge of geometry and science bequeathed
upon us by the Greeks lay dormant in the monasteries or in the east in
Constantinople where the crossroads with Islam gave it another twist
through the development of algebra. In fact, the geometry was so deep-
seated that it remained central to mainstream religious thought. There is a
beautiful example of man’s sense of the world and its geometry in the map
produced by Isidore, the seventh century archbishop of Seville, which
shows the world as round but formed as three continents, Asia, Europe
and Africa, divided by the Mediterranean Sea, and the Rivers Nile and Don
which we show in Figure 1.1. Isidore’s map is more abstract than many
before such as Ptolemy’s, but it does reveal the extreme abstraction which
has persisted until this present century in much map making, especially at
the local scale. In the 13th and 14th centuries, Europe began to wake from
its long sleep, trade revived, and the world view of society dominated for
so long by religion came under increasing scrutiny. With this, the geometry
and the science of the Greeks was rediscovered, literally reborn and almost
immediately new advances were made in the development of geometry
though the discovery of perspective. But it was in science that the real revol-
ution in our perceptions of space came from, this time around.

Although the idea that the earth was a sphere had been known to the
Greeks, the notion that the earth was center of the universe was central
to religious belief, particularly to Christianity. However, the model of the
universe based on interlocking spheres did not accord to observations of the
motions of the planets and modern science from the 15th century generated
increasingly precise observations of these motions. The great intuition,
however, as to how these orbits fit together was made by Newton in the
late 17th century and published in his Principia which established not only
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Figure 1.1. A seventh century world geometry (from Berthon and
Robinson, 1991).

the laws of gravitation which held for the observable solar system, but also
the physical principles for diverse physical phenomena at many scales.
Much of Newton’s science and that of his contemporaries was deeply
rooted in the notion of a perfect geometry. However, it was not the mech-
anics established by his insights, but the mathematics which he fashioned
to present his science, which reinforced Euclid’s view, still our conventional
world view of geometry. In essence, Newton’s mechanics depended upon
the principle of continuity. Both space and time had to be continuous in
the simplest possible sense for his theories to triumph. In short, the scale
of physical systems and the forces which might change their scale could not
admit any discontinuity which might change their form. Mass, for example,
should be capable of being accelerated continuously, and if the force
responsible were to cease, so would the acceleration and movement, but at
a continually decreasing rate. This was the kind of science that embodied
the principle of continuity, enshrined in the mathematics of the calculus
which Newton and his contemporary Leibnitz invented to make all this
possible. Such systems were said to change in a linear, continuous fashion
both in terms of the space and scale they occupied and by which they were
defined, and within the time frame of their existence.

During the 19th century, this type of physics based on the mechanics of
Newton and the geometry of Euclid became the cornerstone of modern
science. In other areas such as in biology, Darwin’s theories of continuous
evolution through survival of the fittest were also fashioned into the New-
tonian mould, while the emergent social sciences began their quest to
develop a science akin to physics based on reducing every phenomenon to
continuously varying structures based on simple causal relations,
embodying ideas of strong equilibrium and convergence. In short, by the
end of the 19th century, the broad structure of science and associated
knowledge was underpinned by concepts of pure geometry, the theory of
continuous variation, the notion that all systems had some underlying sim-
ple set of forces, and the idea that their understanding could be pursued
through successive reductionism. This was the ‘majestic clockwork’ as
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Bronowski (1973) amongst others has referred to it. The world, however,
was about to change, casting a doubt upon our age-old and perhaps super-
ficial abilities to simplify through immediate and intuitive abstraction.

1.3 The New Science of Space and Time

At this point, it is worth posing a series of dichotomies which are not only
useful in summarizing the changes to various world views which are rel-
evant to our quest for a better understanding of space and time but are
central to the changes in viewpoint which we will imply in the theory of
fractal cities to be developed in this book. First we must contrast the notions
of simplicity and complexity. Science stands at an edge between reality and
mind, in perpetual tension between the need to simplify in order to under-
stand and the need to provide a requisite variety in our theory to meet
the perceived complexity. In one sense, however, the emphasis is more on
simplicity, for great science, it is argued, seeks to provide the most parsi-
monious, hence the simplest and most elegant explanation, and success is
thus judged through Occam's razor. In fact, we will argue that the science
which is emerging everywhere in the late 20th century has found that pre-
vious standards of parsimony no longer admit the requisite explanation
and thus we are now being forced to move to a higher threshold. In this
sense then, our theories are becoming more complicated as well as dealing
with new orders of complexity.

A second distinction is between reductionism and holism. Reductionist
thinking has dominated physics and economics until quite recently, as
indeed it has done biology, but there is a general and growing consensus
that more holistic theory is needed which seeks to synthesize, not simply
by aggregating the fine detail but by enabling the emergence of higher level
form and function associated with new causes and forces. That ‘the whole
is more than the sum of the parts’ may be a long-worn cliche of general
systems theory, but ultimate explanations are no longer likely to be found
in the quest for knowing more and more about less and less. To some
extent, these issues smack of vitalism, and one small corner of our quest
to counter this depends upon the logic of the ideas developed here. We
have already mentioned our third distinction - the emphasis in Newtonian
science upon the idea of continuity and the polarization of the continuous
with the discontinuous. In essence, classical science has been entirely ineffec-
tive in coping with systems which display some abrupt change in behavior
and in recent times, it would appear that more and more systems in very
different domains manifest behavior patterns which cannot be treated using
any kind of continuous formalism. In one sense, the idea that space is not
continuous applies directly to cities, in that smooth change in physical form
is clearly an abstraction when it comes to measuring and observing how
the urban form evolves and shapes spatial organization. For a long time,
science has been content to derive theory for idealized situations within
the laboratory or within highly controlled situations, but increasingly, such
science has been shown to be inapplicable to the real world, and continuity
is one of the central problems inhibiting its applicability.
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A fourth distinction involves the degree of homogeneity or heterogeneity
which systems display, in essence the degree to which systems manifest
uniformity or diversity. Systems which are intrinsically diverse and hetero-
geneous have for long been treated as being beyond science in some sense,
while those systems for which the most pleasing explanations have been
found are those which are well-behaved, controllable, homogeneous and
ordered ~ that is, uniform in some sense. However, increasingly even the
simplest systems betray a degree of complexity which departs from our
traditional perceptions of uniformity and new theories are beginning to
directly address the issue of explaining rather than suppressing diversity.
A fifth dichotomy relates certainty to uncertainty. As we have begun to
explain more and more, it seems that we are certain about less and less,
that is, that our knowledge seems increasingly contingent upon time and
space, upon the unique and the ephemeral. How is it, we ask, that the
bounds of what we know seem to retreat a little faster than the rate at
which we generate new ideas and insights? Is this progress? As we will
argue throughout this book, this insight in itself is probably progress of a
kind in a world of infinite variety and complexity, one whose nature we
have only just begun to recognize.

Lastly, let us dwell briefly on the contrast between the regular and the
irregular. In this book, we will be using this distinction in a very specific
sense to draw out the differences between urban form conceived and per-
ceived using the geometry of Euclid with that using the geometry of Mand-
elbrot (1983), the founder of fractal geometry, the geometry of the irregular.
But the distinction is deeper and more far-reaching than this in that our
penchant to abstract is strongly rooted in searching out the regular and
dismissing the irregular. In short, we are predisposed to filter out that
which we cannot cast into the geometry and the science of the regular
although in doing so, we are in danger of casting out the very essence of
what we need to explain. Science is only just beginning to grasp the notion
that it is the irregular, the complex, the diverse, the uncertain, the whole
system which is the proper domain of inquiry and to which we must
reorient our quest.

In fact, at the end of the 19th century, classical physics was challenged,
not by any of these opposites that are implied in the distinctions we have
just sketched, but by the need to address basic forces in relative rather than
absolute terms. Two different sources of anomaly emerged. First physical
observations of phenomena involving the speed of light such as planetary
orbits no longer seemed to fit Newtonian theory, while the conceptual prob-
lem of reconciling the space-time frameworks of observers light years apart
loomed large. It was Einstein’s intuition to visualize such problems and
reconcile them by showing that the space-time continuum could no longer
be treated as the absolute mould within which the universe existed if
observers were to see the same thing at different positions in time and
space. This represented the first loosening of a framework which had domi-
nated scientific assumption since prehistory and as such represented the
biggest challenge to man’s intuitive grasp of the universe so far.

The second came close on its heels and involved not the very large but
the very small. The continuing reductionism of physics took a major step
forward in the late 19th century when the idea of the atom and its
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constituent parts became an intense focus of concern. As more and more
particles came to be discovered - first the electron, then the proton, neutron
and so on, a new framework for explaining the position of each was
required, and with this came the startling conclusion that the actual position
of such subatomic particles was uncertain. Because physical observations
of position in time and space could only be made with physical forces,
their actual position was fundamentally influenced by the parameters of the
measuring device, and so was born the principle of uncertainty attributed to
Heisenberg, a central postulate of the quantum theory. In fact, this notion
of uncertainty was probably easier to accept in the social world where
experience suggested that direct observation of phenomena often had an
influence on the nature of that phenomena, and thus physicists were simply
learning that the more remote the phenomena from direct observation, the
more uncertain the outcome of that observation, a simple enough concept
but one that again rocked long-held assumptions of the scientific world.

Reaction against reductionism too has been forced onto the agenda in
many fields during the present century. In physics, there has been little
success to date with the development of unified theory linking the very
small to the very large, although there are intense efforts at the present time
and there are signs of breakthrough. However, in less dramatic domains,
particularly in the social and biological sciences, the idea that the whole
system need be understood has become paramount. Aggregating micro to
macro theory has proved to be virtually impossible in economics for exam-
ple. Systems which contain many elements have required frameworks for
their reconciliation which construct the whole from the parts and from the
mid-century, the development of general systems theory has become sig-
nificant. At first such theory was static in focus, intent upon explaining the
form and function of systems at an instant of time, although in the last
two decades such systems theory has been deeply enriched with new ideas
concerning system dynamics and behavior. Moreover, the notion that sys-
tems might operate almost entirely using local forces which ultimately add
up or aggregate to global order has also gained ground as it has become
clearer that the very small and the very large can be different aspects of
the same underlying system phenomena.

These changes in world view have had quite profound effects on our
scientific approach to space. Throughout the 20th century, the idea of vis-
ualizing phenomena beyond the first three physical, and fourth, temporal,
dimensions has become important. In many disciplines, the focus has been
upon dimensions other than the four basic ones where space and time have
been seen as simply the matrix within which more interesting and signifi-
cant actions and forces exist, and this has been particularly the case in the
social sciences. In economics for example, the predominant concern has
been with the way various actors and agencies establish a competitive equi-
librium through networks of markets and monetary allocation, such the-
ories being largely independent of the space in which such systems exist
and largely suppressing the temporal dynamics of such behavior in rigid
assumptions concerning convergence and equilibrium. Anything which
threatens to destroy the elegance of the equilibrium such as the imperfec-
tions posed by space and time have been ruled out of court. It is thus no
surprise that economics has little or nothing to say about most current
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economic events which thrive upon such imperfections and although such
theory is under intense scrutiny at present, it will take at least a generation
for economics to reestablish its theoretical sights.

The same has been true for other social sciences, sociology and psy-
chology for example where the space-time matrix has been simply assumed
to be a given, neutral with respect to its effects upon the phenomena under
study. This lack of a geometrical perspective in the social domain has been
both liberating and constraining. It has meant in fact that social science has
long avoided the trap of physical determinism but at the same time it has
meant that the physical constraints of space and time have had little influ-
ence in social explanation where often such influence is important. In the
study of cities for example, it has kept the social and artistic approaches
separate except through the pragmatism of geography, and it has inhibited
the development of a theory of city systems which is a relevant synthesis
of social process and spatial form. In practice, this dichotomy can be seen
at its most extreme when commentators and researchers dealing with the
same subject using the same jargon present their ideas in diametric oppo-
sition through entirely visual or entirely verbal media. Urban theorists from
the social domain have found the visual paradigm to be empty for their
study of social process while those from the visual arts have found social
processes to be impossible to relate to the manipulation of physical space
which represents the long-standing medium for city planning and design.

Yet changes in our conceptions of space and time which see irregularity
and discontinuity as reflecting a new underlying order and system do per-
haps provide a fresh perspective as to the impact of physical determinants
on social and economic processes. The emergence during the last 20 years
of a mathematics and a geometry in which discontinuous change can be
ordered in terms of catastrophes and bifurcations and where sudden
change can be easily accounted for, has helped show the importance of
formal dynamics to many fields. More recently, the development of theories
of chaos in which deterministic systems generate behavior paths which are
unique and never repeat themselves are finding enormous applicability in
qualitative studies of system behavior and structure in the social and bio-
logical sciences. In fact, there are many physical systems such as the
weather which are subject to the same underlying complexity and the
notion of an intrinsic order based on strange attractors which can only be
envisaged in the higher geometry of their mathematical space has become
central to the study of many real systems. In biology too, the notion of
smooth change or evolution has also been informed by these theories which
explain the importance of punctuated equilibrium, sudden species develop-
ment and ecological catastrophe. And in all of this, the smooth geometry
associated with Euclid which has dominated our thinking for so long is
giving way to a geometry of the irregular which is still ordered but where
the order repeats itself across many scales and through many times and
where such irregularity is clearly consistent with observations and measure-
ments of our most interesting systems.

All of these changes in world view are tied up with the emerging science
of complexity (Lewin, 1992), in turn being different facets of the kaleido-
scope of complexity which science seeks to understand. When Jane Jacobs
(1961) wrote about the need to understand cities as problems of organized
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complexity, she was invoking ideas from general systems theory, of a more
speculative kind and associated with the writings of Warren Weaver (1967).
Weaver argued, as we have done here, that science developed from the
17th to the 19th centuries dealing with problems of simplicity, two-body
problems amenable to linear mathematics and strict determinism. The
emergence of quantum theory shifted this balance to problems of disor-
ganized complexity where the predominant characteristic method of expla-
nation was statistical. But between, there lay many problems amenable to
neither approach, “. . . problems which involve dealing simultaneously with
a sizable number of factors which are interrelated into an organic whole”
(Weaver, 1967). In short, such systems are those in which the emergence
of organization is reflected in their form or morphology. We are now in a
position to begin to develop some of these ideas in our study of cities, but
before we do so, it is worth reviewing examples and principles of the
geometry describing a range of city shapes beginning with the planned city,
the city of the ideal, the city of pure geometry.

1.4 The City of Pure Geometry

If there has been any significant change in our visual sense of the city
through history, this has been in the nature of the way it has been
abstracted and represented. From a contemporary perspective, there
appears to have been increasingly abstract representation of urban phenom-
ena in visual terms as we delve further into the past which manifests itself
in less realism and greater simplicity than is now acceptable. Currently,
with more media to record than at any time in history through photo-
graphs, digital imagery and the like, city plans and maps from the past
seem to abstract away too much while portraying some detail in almost
surrealistic ways. Mapping, now perhaps, is also considerably more single-
minded in purpose, and the sort of detail contained in historical maps relat-
ing to people and events as well as places suggest that the visual records
of the past were for somewhat different and more comprehensive purposes
than those we employ today.

An excellent example of this visual simplicity is contained in one of the
earliest town plans known which represents the shape of an Assyrian mili-
tary encampment and the segregation of its land uses some 2000 BC (Kostof,
1991). In Figure 1.2, we show this plan which depicts a circular and fortified
town, divided by two axes into four quarters where the pictures in each
symbolize the usage of these areas. The plan was embodied as a relief on
the wall of a temple in Nimrud (in present-day Iraq) and as such is one in
a long line of gridiron plans used for rapid development most obviously
associated with military camps, but also widely used for colonization. This
Assyrian example, in fact, shows all the elements which repeat themselves
throughout history in terms of imposing and developing cities based on
pure geometry: the circle which invariably encloses and bounds develop-
ment as well as focussing upon the core, the straight streets and routes
which form the structure of the grid, the blocks which represent the
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Figure 1.2. The earliest depiction of the city of pure geometry (from
Kostof, 1991).

interstices within the grid, the clear segregation of uses which is often
imposed within such planned forms, and the fortified outer wall which was
a feature of many cities until the present century when the technology of
war went beyond this need.

The first evidence we have of highly ordered geometric forms is associ-
ated with either very rapid physical development, such as in military
camps, or with more monumental, larger scale building related to the dem-
onstration of political-religious—economic power within the city, such as in
palace and temple complexes. For example, the camps used by workers to
construct the pyramids and other monuments in ancient Egypt were laid
out according to the strict principles of the grid, while colonial cities from
the earliest Greek civilizations represented a more permanent but neverthe-
less rapid application of the same principles. Miletus and Priene are the
archetypes, but there are many other examples which have been docu-
mented (Morris, 1979; Wycherley, 1962). The grid is also repeated in the
development of larger complexes associated with the display of wealth and
power throughout the ancient civilizations. All the important cities of the
ancient world, Babylon, Knossos, Mycenae, Athens and of course, Rome,
provide much evidence of a well-ordered geometry largely built around
the gridiron as a basis for the construction of temples, market places, civic
buildings and organized leisure in terms of sport and drama.

It is of interest that circular geometries are much less obvious and by
association, much less used in city building up to the middle ages. Circular
forms in a sense represent a natural bound for any city which is based on
some central focus around which the major economic and political activity
takes place. In this sense, most cities when examined in terms of their
boundaries and edges, unless heavily constrained by physical features, are
organized in some circular form, perhaps distorted along transport routes
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into a star shape, about some central point, usually the origin of growth.
In fact, it is hard to find many examples where such circularity has been
invoked as the basis of a geometrical order in towns before the medieval
era. The Greeks did introduce radiality into their grids occasionally and
there was some preoccupation with the use of the circle in theater com-
plexes and stadia. The Romans did the same with their circuses and also
in more detailed building through their invention and widespread use of
the semi-circular arch. But it was not until the late middle ages and the
Renaissance that cities really began to exploit the geometry of the pure
circle. This perhaps was due to the lesser control over the geometry through
the then available building technology although it is more likely that this
may have been a purely aesthetic difference between ancient and modern,
a difference in taste.

The best examples, of course, of the use of the grid come from the Roman
military camp or castra, which is still the basis of many towns plans in
contemporary Europe as evidenced best in England in towns ending with
the word — chester. The main axes — the decumanus and the cardo — of such
grids marked out the center of the camp where dwelt the legate, the legion-
ary commander, and as the Assyrian map suggests arrayed around this
were more specialized uses serving the legion, with the barracks banished
to the edge of the camp often with recreation (the circus, amphitheater, etc.)
beyond the wall. The Roman camp also marks the typical scale at which
town plans were visualized and depicted up to these times. Although towns
could be depicted in terms of their growth at a scale which abstracted away
from the actual building and streets, this was very rare. The norm was to
represent the town in terms of buildings and streets, and often to impose
the geometry of the straight line on forms that clearly did not meet such
geometrical purity in reality. However, the size of typical towns up until
the modern age was so small and their form so compact that the sort of
exploding metropolis reminiscent of the growth of London or the eastern
seaboard of the United States which will be examples of our concern here,
simply did not exist. This too goes some way in explaining their typical
depiction.

The descent of Europe into its dark and middle ages led to the disappear-
ance of the city of pure geometry. Towns looked inward; their form was
compact although irregular and idiosyncratic, buildings huddled around
the center which by now was church and market square. In fact, the notion
of the circular city was much in evidence during these times to be fashioned
a little later during Europe’s Renaissance in more geometric form. In some
instances, in the case of planned towns, for military purposes of control at
borders, for example, the grid was still being used as it was wherever speed
of development dictated its use, a fine example being the crusader port of
Aigues-Mortes in the Rhone delta (Kostof, 1991). But what did develop
quite distinctly during this period was a concern and fascination for elabor-
ate fortifications based on regular but discontinuous geometries which max-
imized the amount of space available for the defense of a town.

A clear example of the succession of styles from Roman to medieval and
beyond can be seen in the growth of the town of Regensburg on the sou-
thern bank of the River Danube which we illustrate in Figure 1.3 (Morris,
1979). In the year 350, the Roman settlement displays the clear grid of the
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Figure 1.3. A succession of geometries: Regensberg from Roman times (from Morris, 1979).
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original castra while by 1100, although this has collapsed into the huddle
of medieval buildings, the effect of the original grid is still apparent. The
fortifications which encircled the town by 1700 represented a tight bound
on growth, although the focus of the town is clearer in its approximately
circular expansion from the original center of settlement. The fortifications
based on regularly spaced triangular displacements from the straight wall
represent the classic style of fortifying towns to increase the wall space
available for their defense and as such represent a kind of space-filling
phenomenon which as we shall see in the next chapter, is reminiscent of
the regular fractal called the Koch or snowflake curve.

The Renaissance, however, was the time of high theory for the city of
pure geometry. The rediscovery of the architecture of Greece and Rome
through the written works of scholars such as Vitruvius (Bacon, 1967) led
to massive experimentation and speculation on ideal town forms. Com-
bined with developments in the architecture of fortification, the discovery
of perspective which generated the need for a radial focus in the plan as
well as within the three-dimensional massing of the city, and the need for
regularly laid out city blocks, ideal town plans were much more ambitious
than anything previously and such was the strength of commitment and
belief in the new order, that the ideal became real in many instances. Figure
1.4 shows two such ideals; the first in 1.4(a) is based on Vitruvius's
(republished 1521) first book which is somewhat perplexing in that it estab-
lished an ideal in the circular plan, something as we have remarked, that
did not exist in Greek or Roman city building. The second plan in Figure
1.4(b) is that which was actually built for the city of Palma Nuova outside
Venice usually accredited to the Italian architect Scamozzi (Morris, 1979).

Many similar ideal town geometries were suggested as we will note in
the next chapter although perhaps the finest which was built is Naarden
in Holland whose plan is as close to the original as any. In fact, many such
ideas were incorporated into existing cities such as we see at Regensburg
in Figure 1.3 as well as in much larger cities such as Paris, Rome and Vienna
where idealized fortifications were continually under construction.
Examples of more regular circular geometries also date from this time, one
of the best examples being Karlsruhe which we picture in Figure 1.5
(Morris, 1979; Kostof, 1991). Nevertheless the circular town form was
embodied much more thoroughly within existing towns in the form of foci
for radial streets and the strategic disposition of circles and squares. Excel-
lent examples date from the replanning of Rome under Pope Sixtus V in
the late 16th century, Hausmann’s Paris in the mid-19th century, Nash’s
Regent’s Park in London, and I'Enfant’s plan for Washington DC which
was modified by Ellicott, the last two both being implemented during the
early 19th century.

If the circle was to gain the ascendancy in Baroque Europe, it was the
grid that complete dominated the development of American cities from the
late 18th century onwards. Cities in the New World resembled those in the
old until the early 19th century when rapid expansion led to widespread
application of the gridiron as a matter largely of speed and convenience,
and perhaps through a sense of modernity — a break with the past. New
York or rather Manhattan island is the example par excellence. Town after
town which was laid out in the western expansion of settlement in North
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Figure 1.4. Ideal cities of the Renaissance: (a) from Vitruvius; (b) Palma
Nuova after Scamozzi (from Morris, 1979).
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Figure 1.5. Circular towns: Karlsruhe (from Morris, 1979).

America conformed to the grid as Reps’ (1965) The Making of Urban America
so clearly demonstrates. Yet during these years too, there are few docu-
mented examples of how geometrically ordered plan forms actually
developed; that is, concerning the extent to which such plans were modi-
fied. As we have reiterated throughout this chapter, such plans usually only
exist for a snapshot in time and as such, once implemented do in fact begin
to adapt to the physical and other constraints of settlement as well as to
the actions of individuals working with a different purpose to that of larger
agencies. Two examples of the extent to which pure geometry guided devel-
opment, however, are worth illustrating. First, the town of Savannah, Geor-
gia, was laid out in gridiron fashion in the 1730s by colonists from England
and with surprising commitment given the rapid development during these
years, the residents of Savannah grew their town according to the grid for
the next 100 years. The evolution of the town is shown in Figure 1.6 and
is one of the very few examples of urban growth clearly built on purely
geometric principles.

The second example is more prosaic and it concerns the development of
a circular town in southern Ohio named Circleville. Circular town forms
as we have indicated are almost entirely absent from the New World
although in the 1820s, such a form was adopted for this land on which had
stood circular Indian mounds which may have influenced the shape of the
plan and the naming of the town. However for diverse reasons, some cle-
arly related to the use of space, the plan was ‘redeveloped” some 20 years
after it had first been laid out so that it might conform to the more standard
grid. Remarkably, the agency responsible for carrying out this change was
called the ‘Circleville Squaring Company’ and its actions are clearly
recorded in the systematic transformation of the circular town plan into a
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Figure 1.6. Regular cellular growth: Savannah 1733-1856 (from Reps, 1965).

grid as illustrated in Figure 1.7. Aside from the somewhat idiosyncratic
example this poses, it does show the power of pure geometry in city build-
ing as well as reinforcing our popular and deeply-ingrained perception of
what constitutes ‘good design’.

During the present century, there has been a distinct shift to geometries
which combine perfect circles and squares and the like with more sinuous
although still smooth curves. There has also, in the last 50 years, been a
major shift towards conceiving cities in terms of ideal network geometries
based on communications routes, largely road systems. Architects and
urban designers have exuded more confidence too in their quest to build
the city of pure geometry, suggesting larger and larger idealizations of the
old ideas. In the late 19th century, more abstract conceptions of the ideal
city system based on social and economic ideas of utopia became important
in movements such as the Garden Cities (Howard, 1898). These are so sig-
nificant that we will deal with them in a later section for what they imply
concerning urban form is pitched at a different spatial scale from the ideas
of this and the next section. But we must point to the most significant of
the 20th century physical utopias and we will begin with Le Corbusier.

The Ville Radieuse is perhaps the most important of Corbusier’s state-
ments about the future city and in essence, it is based not on any specific
notion of grid or circle, but upon the idea that the city should exploit its
third dimension much more effectively through tall blocks, thus releasing
the ground space for recreation and leisure. In fact, Corbusier’s ideas are
best seen in his plan for the Indian capital of Chandigargh which is illus-
trated in Figure 1.8(a). The form in fact is one based on a grid, the scale of
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its conception is much greater than anything we have illustrated so far in
this chapter but its form is still rooted very firmly within conventional
Euclidean geometry. However, the plan like so many in the 20th century
is more comprehensive, emphasizing strict segregation of uses, as well as
a separate landscape — a green grid — which is the complement of the urban
transportation and neighborhood grid. Similar types of grid can be seen in
some of the British New Towns which we also illustrate in Figures 1.8(b)
and (c).

In contrast, Frank Lloyd Wright’s Broadacre City is a city of low density
which sacrifices the rigor of communal tower block living to a more indi-
vidualist, American style, although he too casts his ideas into a rigid grid.
Many other geometric schemes have been suggested since the beginning
of the industrial era based on exploiting single principles of urban develop-
ment: transport around which the linear city such as Sonia y Mata’s Cuidad
Lineal was fashioned in a proposal in 1882 and its application to existing
city forms as in the MARS plan for London in the early 1940s, integrated
service provision as in Frank Lloyd Wright's later and somewhat extreme
reaction to his own Broadacre City through the idea of mile high residential
superblocks, and in Dantzig and Saaty’s (1973) Compact City in which all
services are concentrated in a city of five or so levels, but built entirely in
purely geometric and organized fashion as a machine for living. We illus-
trate these conceptions in Figure 1.9 where it is now clear that the emphasis
has changed a little. The geometry of the ideal town has been relaxed
slightly during the 20th century; it is more curvilinear, but still linear none-
theless. It is more organized around new transportation technologies and
it is more concerned with land uses and activities than with specific build-
ing shapes. However, these ideals are still largely visual in organization
and intent, and rarely portray any sense of urban evolution which is so
important to the development of cities. We will, however, shift our focus,
still concentrating on the visual form of cities in two not three dimensions,
but now examining cities which are not dominated by pure geometry, those
for which their development is often assumed to be more ‘natural’.

1.5 The Organic City

Organic cities do not display obvious signs that their geometry has been
planned in the large, although they may well be a product of many detailed
and individual decisions which have been coordinated in the small. There-
fore it is probably more a hindrance than a help to think of organic cities
as being ‘unplanned’ in contrast to those that have been ‘planned’, as this
represents only the most superficial of reactions to urban form. Thus we
will avoid any association between ‘organic’ cities and the notions of unco-
ordinated or uncontrolled growth, although we will follow at least the spirit
if not the word of Kostof (1991) who characterizes the organic city as:

... ‘chance-grown’, ‘generated’ (as against ‘imposed’), or, to underline one of the

evident determinants of its pattern, ‘geomorphic’. It is presumed to develop without
the benefit of designers, subject to no master plan but the passage of time, the lay
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of the land, and the daily life of the citizens. The resultant form is irregular, non-
geometric, ‘organic’, with an incidence of crooked and curved streets and randomly
defined open spaces. To stress process over time in the making of such city-forms,
one speaks of ‘unplanned evolution’ or ‘instinctive growth’. (Kostof, 1991.)

The biological metaphor in city planning has been used since the 16th
century, from a time when man first began to move beyond myth to a
scientific study of the body and when analogy became one of the dominant
ways of making progress in the sciences (Steadman, 1979). In one sense,
the idea of the organic city follows this metaphor, especially reinforced in
the notion that the organic cities adapt to individual social and economic
preferences, to the constraints of the natural landscape, and to the dominant
technology of the city. The metaphor has been exploited as cities have
grown exponentially in population especially over the last 300 years, and
as activities have begun to restructure themselves more quickly through
decentralization of functions and increasing locational specialization. The
idea of the city as being composed of a ‘heart’ — the central business district
(CBD), of ‘arteries” and ‘veins’ in terms of the hierarchy of transport and
communications routes, of ‘lungs’ in terms of green space and so on, has
been writ large across the face of urban analysis and city planning over the
last 100 years.

Yet there has been a subtle and growing contradiction between this meta-
phor and the dominant practice of city planning: although the metaphor
has been widely embraced, it has been used both to argue that cities are
sometimes poorly-adapted, sometimes well-adapted — that cities should be
planned according to the metaphor or against it — that the evolution of
cities shows good fit with their requirements or not, and that cities show
stability or are pathological in their evolution, exhibiting more cancerous
than balanced growth. There is little consistency between these points of
view and the preoccupation with the design of cities in visual terms. In fact,
in this book, although we will not exploit the terminology of the biological
metaphor, much of what we will argue is entirely consistent with it in seek-
ing an understanding of the city which is deeper and less superficially vis-
ual than that associated with the traditional geometric model. It is in this
sense too, that our interpretation of the city is tilted more towards the
organic than the city of pure geometry.

Clearly, cities display a mixture of these two styles, although for over
95% of those which exist and have existed, their form would be seen as
being more organic than purely geometric. This is in stark contrast to those
cities which are illustrated as examples in the education of city planners
where the dominant model is the geometric, cities planned in the large. In
fact, examples of cities which developed organically up until the middle
ages are conspicuously absent from the historical, certainly the visual rec-
ord. This may be due to the small size of towns in ancient times, but it is
also due to the way towns were represented visually and perhaps of the
particular biases which the ancients had toward urban form. However, in
modern times, the bias has changed in that towns are now subject to very
different levels of organizational control, and building and transport tech-
nology than before. Thus there are elements of ‘conscious’ planning on at
least one level in every town, although little or no evidence of planning at
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higher scales where the focus is upon the growth of entire towns and cities
in their urban region.

As we have implied, there is a major problem of representation when
we come to examine the visual history of town form. Not only has the type
of artistic representation changed as we can clearly see when we examine
the forms shown in the figures in this chapter, but the scale at which towns
are depicted has altered as they have grown through time, with many more
scales of possible representation now than at earlier periods of history.
Moreover, the focus of representation has changed. Town plans and maps
now are clearly geared to more functional purposes than they were cen-
turies ago and there are a greater variety of possible types of urban map.
There are also differences between plans which are designed to show geo-
metric form which often embody yet-to-be-realized ideas in contrast to
existing plans which are part of the historical record and rarely designed
to show such ideal conceptions.

The biggest differences, however, between urban forms through history
are due to size and scale. Before the modern age, most cities were small
and compact, with higher densities, much smaller space standards than
now, often by orders of magnitude (witness the barracks space in a typical
Roman fort), and transport technologies which were much more limited in
terms of their ability to move people and goods as well as in their access
by ordinary citizens. By far the biggest city before the 17th century was the
Rome of the later Empire which at its peak had over one million inhabi-
tants. But Rome was an anachronism. The size of the city was a symptom
of the malaise of the Empire for the technology of the civilization was sim-
ply unable to sustain such a system. By contrast, the Greek city states rarely
grew to larger than 20,000 with only Athens and Syracuse growing to
50,000. Thus before the modern age, urban form was dramatically con-
strained in contrast to the physical urbanization of the last 200 years. In
this view then, the conception of what we might call organic is not
independent of either history or culture.

In terms of our present-day notion of organic growth, we only begin to
see such forms in the city during the middle ages, and even then the kinds
of explosive growth which characterize present-day cities only began in the
early 19th century. It has almost been as though there is now ‘too much’
to plan in contrast to the past, that economic growth and scientific change
have reached a threshold in terms of urban growth, beyond which the
organic analogy only applies. However, it is more likely that our conception
of growth has changed. In history, organic form is associated with slow
growth, akin to the gradual accretion of cells, their gradual replacement
and renewal which are much closer packed than the way similar units of
development are added to and deleted from cities today. Cities now are
clearly more dispersed, the use of land is across a much wider range of
functions and our concept of irregularity which is embodied in the differ-
ences between slow and faster cell growth, is also different. These distinc-
tions are also reflected in the range of urban forms present today in that
some cultures where social and economic norms are closer to those of the
past than in the west still generate cities which are organic in the older,
slower growing sense. For example, the cities of Islam still contain elements
of town form which are unaffected by modern technologies and social



The Shape of Cities: Geometry, Morphology, Complexity and Form 33

organization, although such elements rarely exist now in isolation from
more modern forms of town. In short, what this implies is that the theories
and models which we advocate here are restricted very much to western
cultures whose cities are still largely industrial in structure, although rap-
idly changing to the post-industrial. We do, however, consider that the
principles of fractal geometry which we will be developing here are rel-
evant to cities of any time and any culture, but the examples which we have
chosen and the scales at which these are depicted are very much rooted in
contemporary patterns of urban growth in the west at the city and
regional level.

Another important issue relates to the way the organic and geometric
principles of urban form vary with respect to scale. At one scale, the city
might appear to be ordered in terms of pure geometry while at another it
may appear to have no such planned order and be the product of a multi-
tude of local decisions. The example par excellence once again is New York.
Manhattan developed organically until the early 19th century when the
commissioners of the city laid out the island on a regular grid about which
all development then took place. But in the wider urban region, develop-
ment east through Long Island, on the Jersey shore, into Westchester and
Connecticut to the north east was not planned on any form of grid, and at
this scale of the city region, the growth looks ‘unplanned’ and explosive.
Zooming out even further to megalopolis — the eastern seaboard (Gottman,
1961) — the organic analogy holds although the region contains much pure
geometric planning at the local scale in cities such as Washington, Philadel-
phia and Baltimore. At this wider scale, there has been less contention about
the merits of geometric planning although the 20th century has witnessed
many attempts at such large scale urban planning as we demonstrated in
the last section and illustrated in Figures 1.8 and 1.9. However, notwith-
standing our focus on irregularity and organic growth at the urban scale
and above in this book, fractal geometry is still applicable at lower scales,
and in Chapters 2, 7 and 10 we will indicate how such geometry might be
used at these finer scales.

The basic organic model involves the growth of a town from some center
of initial growth or seed, the growth proceeding in compact form around
the center in waves of development like the rings of a tree. This growth,
however, is likely to be distorted by radial lines of transportation along
which growth often proceeds faster due to increased access to the center,
the ultimate form of town thus resembling some star-like shape. In fact,
this model presumes that growth is not constrained by the need for some
defensive wall, and until the middle ages and even beyond, such walls
tended to minimize distortions forced by the radial and nodal structure of
the town in its region. Although there may not have been any overall geo-
metric plan to such early towns, their small size and the intensity of use
and density of development must have led to considerable coordination
and control of development in social and economic terms which would
have had an impact physically. This model represents an abstraction from
real growth, but it has become the basis of the organic metaphor: a clear
example of the growth and form produced are illustrated in Figure 1.10,
taken from Doxiadis’s (1968) Ekistics which still represents one of the most
complete statements of the organic approach to city planning.
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Figure 1.10. The shape of the organically growing city (from Doxiadis, 1968].

The earliest examples of towns in Sumeria demonstrated such slow
organic growth in that cells of development composing the town were
added incrementally but were highly clustered and continually adapted to
the dictates of the physical site. For example, the town of Catal Huyuk
(Benevolo, 1980) dating from 6500 BC was built as an accumulation of resi-
dential houses all attached to one another but successively adapted in both
two- and three-dimensional space across different levels. Such towns are
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still characteristic of those today in the Middle East and parts of Africa;
they were inward looking, based almost entirely on pedestrian traffic, with
some sense of regularity in terms of the use of straight lines to demarcate
property, but closely hugging the landscape and with no sense of overall
visual unity in plan form. In so far as the visual quality of such organic
development can be applauded, it is in terms of its informality, its
idiosyncracies and its picturesque properties and occasionally in its exploi-
tation of dramatic natural features, but never in terms of the power of its
geometry. As we have implied, from these times there are hardly any
examples of organic growth which are faster than the century by century
adaptation characteristic of these types of town. Where organic growth was
faster and larger in scale as in the Athens of Pericles or in second century
Rome, the emphasis was not upon transport and decentralization and dis-
persion of functions, but on adapting the site to the most cultured art and
architecture in an effort to mesh the pure geometry of building with the
natural geometry of the landscape.

By the middle ages, the slow accretion and adaptation of development
to its site so characteristic of the medieval town was well established and
there are several illustrative examples. We have already seen the evolution
of Regensburg in Figure 1.3 from its Roman grid in the fourth century to
its replacement by a huddled mass of different sized and shaped buildings
by the year 1100. The development is characteristic of the high feudalism
which made its mark on the medieval market town too. A more picturesque
example taken from southern Bohemia around 1300 is the town of Cesky
Krumlov (Morris, 1979) which shows how the meander of the river, the
topography of the river valley in which it sits and the circuitous nature of
the transport routes have molded its urban form. There is no sense of the
grid or the circle in this type of town, although had this been the New
World of the 19th century, a grid would certainly have been imposed with
interesting consequences. The town and its medieval development are
shown in Figure 1.11. Finally, the medieval town also represents the last
example of very slow organic growth where towns were compact and
constrained behind their walls in a period of comparative stability when
population and economic growth was modest but slow.

By the 17th century, Europe and the Americas were on their way to the
industrial era where better transport systems and building technologies
were to ultimately lead to much bigger and much lower density cities. The
city wall went first, thus enabling the town to begin to conform to its classic
star-like shape. In Figure 1.12(a), we show the form of Boston in 1640 (from
Reps, 1965), which is reminiscent of the medieval English village, although
showing clear evidence of the extent to which the cluster of buildings and
space is no longer necessary. This is as good an example of the embryonic
radially- concentric modern city as any we can portray. Its form is
reinforced by another 80 years of growth in John Bonner’s 1722 map (Vance,
1990) shown in Figure 1.12(b), but this illustrates the way in which the
‘pictorial” map provides a somewhat less clear way of presenting the salient
characteristics of form - the radially concentric nature of the transport pat-
tern and the disposition of development. Nevertheless, like Cesky Krumlov,
Boston shows no sense of pure geometry in its plan, but it does show form
closely adapted to its physical site.
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Figure 1.11. Medieval organic growth in Cesky Krumlov (from Morris,
1979).

Although we are unable to present a clear map of the development of
Rome in the late Empire, an excellent illustration of urban development in
the early 19th century is Clarke’s 1832 map which is given in Figure 1.13.
Many of the features of organic and geometric form which we have noted
in these last two sections are illustrated here; amongst these, are the clear
radial structure of the city in its straight roads focussing upon the Palatine
Hill, the slow cell-like growth of Rome itself and its medieval development,
the distinct Roman monumental architecture of the Coliseum, forum, stad-
ium and so on, and the geometric planning of Pope Sixtus V in the late
Renaissance. The wall is still intact to a degree, but the city is spreading
across the Tiber and outside its wall, much more characteristic of the pre-
sent century than earlier ones. There is substantial evidence of the dual mix
of traditions of city building in this map, but with an emphasis already on
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Figure 1.13. The organic growth of Rome by the early19th century (from Morris, 1979).

the power of individual decisions concerning development in contrast to
earlier and grander geometric plans for coordination.

Only at this point are we in a position to examine the kinds of urban
form which will determine the essence of our explanations in this book. As
we have indicated, we do not have a clear and unambiguous time series
of urban development in terms of visual (or for that matter any other) form
except from old maps, and these are never consistent from time period to
time period. However, to give some sense of evolution of urban form over
the last 200 years, we show in Figure 1.14 a series of maps for the town of
Cardiff from the mid-18th century to the modern day, all reproduced at
different scales, showing the way urban development has been depicted
differently over this period and also the type of irregularity of form which
is the norm rather than the exception in terms of the modern city. We have
not abstracted from these maps because we do so in later chapters where
we use Cardiff extensively as one of our examples. In fact, in Plate 5.1 (see
color section), we show the growth of the city from the late 1880s to 1949
in four stages taken from the relevant maps within the series given in
Figure 1.14.

By the mid-20th century, the notion of examining urban form at a larger
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Figure 1.14. The growth of Cardiff, Wales, from the mid-18th century (from the National
Museum of Wales).
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Med-17th Century

scale, that of the city and its region, had been well established. In Figure
1.15, we show a diagram from the first edition (1950) of Gallion and Eisner’s
(1975) book The Urban Pattern which is entitled “The Exploding Metropolis’,
where the caption implying that such growth is disordered, hence undesir-
able, both illustrates the predominant concerns of the urban analyst and
the ideologies of the city planner. These are the kinds of patterns which
we will begin to measure and explain from the next chapter on in our
quest to convince that this type of form reveals a degree of order which is
considerably deeper than the superficial order associated with the city of
pure geometry. Moreover, although we will not dwell very much in this
book upon the way in which cities grow and merge forming larger metro-
politan areas and urban regions, conurbations in Geddes’ (1915, 1949)
terms, our analysis and ideas will be entirely consistent with these
examples.

The reader is encouraged to skim the figures in later chapters to get some
idea of the kinds of forms we will be investigating here, although we will
conclude this section with what we consider to be an example of the arch-
etypical urban form for which a theory of the fractal city is most appropri-
ate. Figure 1.16 shows five urban clusters without any scale. There are sev-
eral points to make here. This pattern of urban development shows no
evidence of planned growth, it is radially concentric in structure, it shows
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Figure 1.15. The exploding metropolis (from Gallion and Eisner, 1950, 1975).
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Figure 1.16. Contemporary urban growth patterns (from Chapin and Weiss, 1962).

clusters growing together and it could be at any scale from that of an urban
region the size of Tokyo to a cluster of villages and market towns in rural
England such as those, for example, we illustrate in Chapter 10. In fact, it is
the pattern of urban development in 1958 for five towns in North Carolina -
Winston-Salem, Greensboro, High Point, Thomasville and Lexington -
taken from Chapin and Weiss (1962). The scale is in fact about 50 miles in
the horizontal direction but it could be much larger. This clearly indicates
that although our focus is, to an extent, scale dependent, that is, emphasiz-
ing urban growth at the city scale up, the patterns we are concerned with
do have a degree of scale independence, and our analysis is not restricted
to a narrow range which limits the use of our theories and techniques. This
whole question of scale will be exceedingly important to our subsequent
analysis, and in the next chapter we explore its implications in considerable
detail. But it is important to accept that in the application of geometry to
human artifacts such as cities, definitions and approaches are always con-
tingent upon the mode of inquiry, the culture to which the analysis applies,
and the time at which the application is made. In this sense then, our ideas
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about the fractal city are appropriate now, and although the principles are
likely to be enduring, the examples will change as the approach develops.

1.6 Morphology: Growth and Form, Form and

Function

We have made use of the word ‘form’ extensively already without
attempting any definition, for in one sense, the term is self-evident: as
D’Arcy Thompson (1917, 1961) implies, form means shape, and in this con-
text, shape pertains to the way cities can be observed and understood in
terms of their spatial pattern. In fact, we will need to reflect a little more
deeply on the word because our usage here implies a certain approach to
geometry and space as well as process and function. Whyte (1968) sums
this up when he says: “The word ‘form” has many meanings, such as shape,
configuration, structure, pattern, organization, and system of relations. We
are here interested in these properties only in so far as they are clearly set
in space”, and this is the usage we will follow here. Form is broader than
shape per se, although our immediate and first attack on its measurement
and understanding is through the notion of shape, in “the outward appear-
ance of things” (Arnheim, 1968). In terms of the study of cities, form will
represent the spatial pattern of elements composing the city in terms of its
networks, buildings, spaces, defined through its geometry mainly, but not
exclusively, in two rather than three dimensions. Yet form can never merely
be conceived in terms of these local properties but has a wider significance
or gestalt, a more global significance in the way cities grow and change.
The analytic study of form of which this book is a part is always more
than it seems at first sight. Form is the resultant of many forces or determi-
nants interacting in a diverse manner through space and time, thus causing
the system to evolve in novel and often surprising ways. D’Arcy Thompson
(1917, 1961) best sums it up when he says: “In short, the form of an object
is a ‘diagram of forces’”, and in this sense, the study of form without the
processes which give rise to it is meaningless. The association of process
with form has two clear dimensions. The first is ‘growth” which is loosely
used in biology and even in city planning to embrace all types of change,
and involves the notion that forms evolve through growth, that objects are
transformed through the diverse interaction of their forces. This has led to
the term ‘organic form’. The second dimension relates to function. The vari-
ous processes which contain the forces which determine form have specific
functions and a study of form from the static viewpoint, form at one snap-
shot in time for example, is often rooted in the quest to understand function.
This approach has been widely exploited throughout the arts and sciences,
especially in the first half of the 20th century. “‘Form Follows Function’ has
been the battle cry of the Modern Movement in Architecture, although it
is somewhat ironic that in its application to city planning by designers such
as Corbusier and Wright, the plans produced have rarely followed the
motto faithfully, forms being developed which embody the most
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minimalist, hence the most restrictive of functions. Indeed, it is the task of
this chapter and of this book to demonstrate the poverty of urban analysis
and city planning which seeks such a rigid interpretation of form.

The term morphology was first coined by Goethe in 1827 as ‘the study
of unity of type of organic form’ (noted in March and Steadman, 1971).
Morphology is thus the study of form and process, growth and form, form
and function and as Goethe stated: “The formative process is the supreme
process, indeed the only one, alike in nature and art” (quoted in Whyte,
1968). Form too is always more than shape, and we will follow Whyte
(1968) who speaks of spatial form which he defines as comprising external
form or visible shape, and internal form which is structure. This brings us
back full circle to the idea of form being some manifestation of system with
structure being the underlying or invisible form which explains the external
urban form, the form which is the subject of our immediate and casual
observation. Systems are often studied in terms of their statics or their
dynamics, the first implying structure, the second behavior usually in the
context of changing structures. Our first grasp of systems, at least those
that in some sense are external to us, is in terms of their structure from
which we proceed to infer their behavior in the quest to understand their
dynamics. In fact, it is system structure of which form is the most superficial
characteristic which often provides the basis for classification, the begin-
nings of scientific study through appropriate description and measurement.

System structures are defined as being composed of elements and
relations, the elements being the basic components of the system, the
relations defining the way the elements interact and function. Various
decompositions of the system into sets of elements define subsystems which
it may be possible to associate with, and arrange into, a distinct hierarchy.
The various elements, and aggregations thereof into subsystems, may
reflect the same form but at different system levels of the hierarchy, and if
this conception of organizing the system this way is spatial in any sense,
these subassemblies may be replications of the same form at different scales.
This is an important point for it reflects one of the principles which we will
use in the sequel to develop our idea that cities are fractal in form.

There are, however, many ways to describe the elements of the city which
usually depend upon the disciplinary perspective of the theory being
invoked. Many of these are spatial, although what constitute the key
elements will determine whether or not the city system can be subdivided
into a strictly spatial hierarchy. For example, the city might be conceived
in terms of activity systems of land uses which do not group easily into
spatially distinct parts, or in terms of social-organizational groupings which
are not obviously spatial in their most significant variations. In fact, many
of these systemic descriptions may map only partially onto the strict spatial
organization of the city, and thus we consider the approach to be developed
here consistent with a variety of related urban theory which is not explicitly
spatial. However, the most obvious way to describe cities is in terms of the
way they develop. Hamlets become villages, villages towns, towns cities
and cities urban regions, all involving a growth and compounding of spatial
forces which leave their mark on the evolution of form. The reverse
processes of decline are also evident, while in terms of such change,
discontinuities and strange cycles can occur, for the evolution is far from
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remorseless. The basic component or building block of cities is a unit of
development, often housing, sometimes called a ‘block’, smaller than the
neighborhood, and these can be usually assembled into a hierarchy of both
distinct and overlapping spatial areas. Together with the various communi-
cations networks which link these components and all the related functions
such as employment, commerce, education, recreation which have their
own hierarchies and networks, these compose a complex but rich spatial
ordering which manifests itself in a geometry which cannot be captured in
the traditions of Euclid. However, from this brief description, it is important
to draw out the idea that system structure can be described by relations
organized as networks and/or hierarchies, and this will be the path we
follow in the rest of this book.

There are many more problems in finding as convenient a representation
for the dynamic processes which evolve the city through its functions. Pro-
cesses are never immediately obvious, or directly observable, and our
measurement of them is subject to an uncertainty principle. We do not have
time here to speculate on the wide array of theories and methods used to
study urban processes which are the subject of inquiry throughout the
social sciences. All we can say is that many of the current approaches which
at some point enable an understanding and prediction of urban spatial form
can be seen as consistent with the ideas we pursue here. For example, the
idea of a hierarchy of urban space which results from growth of cities and
the development of systems of cities is a basic ordering principle of general
systems enabling stable growth and change. Systems, when changed, are
changed at the level of their cells rather than more globally, and in this
sense, contain a degree of spatial resilience which is manifested in the per-
sistence of their form (Simon, 1969). Moreover, such cellular or local growth
by the successive addition or deletion of basic elements also leads to a
fitness of the resultant form to its context or environment which can be
destroyed through too rapid growth or intervention at an inappropriate
level. This is Alexander’s (1964) thesis in which he argues that good design
or good decision-making in a broader sense must be based on an under-
standing of the ways the system evolves through the elements within its
hierarchy.

Therefore our approach to urban form will be through tracing the “invis-
ible structure” of relations which underlie the external form or outward
appearance of cities, using ideas involving hierarchies and networks and
searching for functions which are consistent with the shape of cities and
their evolution. We can sketch out such a structure from the top down,
illustrating how urban space can be seen as both a hierarchy and a network
which in fact represent different sides of the same coin. In Figure 1.17,
we show how this is done, beginning with an idealized square geometry,
successively subdividing the space in binary terms (1.17(a)), tracing out a
perfect and symmetric hierarchy (1.17(b)). The subdivision can also be
traced out as a network on the square space as in Figure 1.17(c), and a
comparison of (b) and (c) shows that the hierarchy is the network and vice
versa. In a simple way the hierarchy might be considered an inverted tree,
and the network the same tree in plan form. As we shall see in Chapter 2,
such hierarchies provide models of trees and vice versa. We should also
note that the system of relations we show in Figure 1.17 is independent of
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the actual shape of the space to which we apply it: that is, it serves to define
either the organic city or the city of pure geometry although as we shall
see, it does cast a different light upon the idea of organic form.

If we take a bottom-up approach to the same set of relations, the idea
of a distinct hierarchy immediately collapses. As a generating device the
hierarchy is efficient, but if we pose the question as to how the elemental
units — the most basic grid squares in Figure 1.17 — might aggregate, it is
likely that the hierarchy would not capture the degree of diversity within
such a structure. If the rule be assumed that each unit aggregates with its
nearest neighbor, with the new units overlapping one another in that each
element can now belong to one or more aggregate, then what emerges is
the semi-lattice structure which we show in Figure 1.18. This is an order
of magnitude more complex than the hierarchy; it demonstrates a richness
of structure which is in fact still very restrictive in terms of what types of
aggregate space might be present in a town, and it is but one of a multitude
of possible lattice-like structures. In fact, this is what Alexander (1965) in
his famous article ‘A City is Not a Tree’ suggests is the difference between
artificial cities and naturally evolving ones. He says: “What is the inner
nature, the ordering principle, which distinguishes the artificial city from
the natural city? You will have guessed from my title what I believe this
ordering principle to be. I believe that a natural city has the organization
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Figure 1.18. Spatial aggregation: overlapping subdivision and lattice
structure.

of a semi-lattice; but that when we organize a city artificially, we organize
it as a tree”.

It is but a short step from Alexander’s ideas to the notion that organic
cities are not only cities which display an ‘irregular’ geometry but also cities
where that underlying structure of the geometry of its relationships is also
‘irregular’, or at least asymmetric in the sense of the difference between a
lattice and tree. In fact, Alexander (1965) goes on to say that: “. . . whenever
a city is ‘thought out’ instead of ‘grown’, it is bound to get a tree-like struc-
ture”. Thus in terms of Jane Jacobs’ (1961) arguments, the doctrine of visual
order is doubly at fault for not only imposing a rigid geometry which goes
against the natural grain, but also for imposing rigidity of social and func-
tional structure, both of which are highly unrealistic and thus increase
rather than diminish the problems they seek to solve. We have raised a
theme and an expectation concerning an appropriate geometry of cities
which it may appear in subsequent chapters we cannot address or meet.
Our succeeding ideas will be dominated by hierarchies and networks, some
of which will overlap but most of which will not. However, the complexity
we seek to address will take much more than the ideas of this book to
report, for this is but a beginning, and the approach we seek to establish
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is in fact entirely consistent with lattice structures as overlapping hier-
archies. The functions we will fit and the patterns we will generate may at
first seem strictly hierarchical, but as we will show, this is only the most
superficial reaction to the ideas we will introduce. Hierarchies are useful
generating principles as we will see in the next section, but the phenomena
we seek to explain are always richer, and the models we use always capable
of dealing with deeper complexity.

1.7 Urban Hierarchies

Hierarchies, we have argued, are basic organizing devices for describing
and measuring the importance of urban functions across many spatial
scales. As they are a property of general systems, their import extends
beyond individual cities to systems of cities, and thus they present us with
the framework for linking local to global and vice versa. In fact, it is the
lattice which provides a more appropriate descriptor for this captures the
richness of overlap between scales and the somewhat blurred nature of
any definition of a distinct and unambiguous scaling. Yet the strict non-
overlapping hierarchy which Alexander (1965) rightly ascribes as having
been used extensively to purge the natural complexity and variety of cities,
is still useful as an initial foray into the way we might organize the relation
of scales, one to another, and the fact that we can simplify scales according
to a strict hierarchical order does not exclude a richer order from existing
within the hierarchy.

Spatial hierarchies relate elements of city systems and systems of cities
at successive scales where elements of urban structure are repeated in
diverse ways across the range (Berry, 1964). The key idea in this book and
the basis of fractal geometry involves identifying systems in which elements
are repeated in a similar fashion from scale to scale. If this similarity is
strong in a geometric sense, then it is referred to as self-similarity or in its
weaker form as self-affinity. We will define these characteristics of the new
geometry in Chapter 2 but the idea is all pervasive in the context of cities.
In terms of their description, then we will follow a top-down approach in
contrast to their generation which always occurs from the ground up. The
classic example in the city relates to those routine functions such as retail
and commercial services whose frequency and scale of provision is closely
tied to the same characteristics of the places where they locate. The largest
focus is the CBD, while a loose hierarchy of centers exists throughout the
city with lesser numbers of district centers, larger numbers of neighborhood
centers, even more local centers and so on, with a size and spacing com-
mensurate with their position in the hierarchy. The same structure exists
for the educational and leisure system which is differentiated according to
the finer grained differences between functions.

On this basis, cities are usually organized into neighborhoods, typically
from 5000 to 10,000 in population, enough to support basic educational and
retail functions. Indeed the theory of the ideal city from Plato on has
focussed around town sizes which are rarely more than 50,000, often less,
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implying that a balanced urban structure would be one which contains no
more than about 10 neighborhoods (Keeble, 1959). Districts usually com-
prise two or three neighborhoods, but the differentiation does not end
there. Larger towns might comprise smaller, and so on up the hierarchy,
while the various transport systems used to enable communication consist
of a hierarchy of distributors from primary or trunk down to local, often
involving overlapping networks which are further differentiated according
to mode (Buchanan et al., 1963).

The smallest examples of urban hierarchies are contained in residential
housing layouts where the clearest are those in which vehicle and ped-
estrian transport is segregated. The layout at Radburn, New Jersey,
designed in the late 1920s by Clarence Stein and Henry Wright in the
Garden Cities tradition is the prototype (Kostof, 1991). In such layouts
where pedestrian routes rarely intersect with vehicular, the networks follow
a strict hierarchy and although, in practice, these layouts are generated this
way, they are obviously used in a somewhat more flexible fashion. It is
in the British New Towns and 1950s housing development that the most
archetypical examples can be found. Figure 1.19 provides an example from
the town of Coventry where we show the layout simplified as a plan of
the road system (1.19(a)), the actual layout of housing (1.19(b)), and the
road system as a hierarchy (1.19(c)). Note that Figure 1.19(a) contains an
implicit hierarchy of roads where pedestrians can move within the major
housing blocks without crossing them, and that these types of layout are
reminiscent of many towns in Africa and the Middle East where cul-de-
sacs are used extensively to constrain movement.

These layouts are clearly generated artificially, notwithstanding the exist-
ence of similar plans which have evolved more naturally. However, various
descriptions of cities in terms of the clustering of their neighborhoods and
districts also follow strict hierarchies. Abercrombie (1945) in his Greater Lon-
don Plan organized the metropolis into several distinct districts as we show
in Figure 1.20, while this idea is also the basis of the development of a
hierarchy of small towns, arranged as satellites around an existing central
city which is the essence of Howard's (1898, 1965) Garden Cities idea. The
kind of geometry which this settlement structure implies is shown in Figure
1.21, and from this there is a clear link to theories of systems of cities which
rely upon the notion of a hierarchy of city sizes and hinterlands. Howard’s
conception of the dependence of small ‘new’ towns on the central city, at
least in the way such settlements were sized and spaced, is clearly consist-
ent with the theory of central places due to Christaller (1933, 1966). By way
of conclusion to this section and to systems of relations which we will use
in the sequel, we will now show how such theories are consistent with
these ideas of hierarchy and city structure at the more local level.

The simplest geometric form of a system of cities is based on an entirely
regular grid of basic settlement types — neighborhoods or villages say —
which are systematically aggregated into all encompassing regions at suc-
cessive levels up the hierarchy. We will proceed using this bottom-up
approach which is consistent with the way small settlements grow into
larger ones, although such systems are often described in the reverse direc-
tion. Let us assume a regular landscape of basic urban units which are
arranged on a square lattice or grid as in Figure 1.22. In fact, if we assume
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Figure 1.19. Residential layout as hierarchy (after Keeble, 1959).
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Figure 1.20. The hierarchy of social districts in London (from Abercrombie, 1945).
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Figure 1.20. Continued.

that these units grow from the smallest seeds, then their areas of influence
overlap and the most efficient demarcation between them is clearly the grid;
that is, the packing of such hinterlands is most likely to be a grid in this
case as shown in Figure 1.22(a). A central place system emerges by defining
regularly spaced central places at successive levels of hierarchy, the places
in question at each level existing as similar centrally placed locations at all
lower levels. The process of aggregating about one major central place in
the square grid is shown in Figure 1.22(b).

The number of basic units generated as the aggregation proceeds through
levelsi=0, 1,2, 3, ... is given by n' where n is the number of units in the
first aggregate i = 1. In the case of the grid in Figure 1.22(b), n = 9 (which
is formed from an inner grid of 3?) and thus the sequence of 1, 9, 81, 729,
6561, ... units in typical regions i =0, 1, 2, 3, 4, ... can be formed. The
number of units in these regions is given by the recursive relation

n=n"". i=0.1,2, ....,n%=1, (1.1)

from which a total population N; can be calculated in proportion to 7',
where we assume a constant population density p. This can be written as

N" = p?‘I" = N"_lﬂ, NO =1. (1.2)

From equation (1.2), it is easy to derive another recursive relation relating
any earlier aggregation of basic units to a later one, that is smaller aggre-
gates to larger ones. Then noting that N,_, = N;/n

N;

Nigy=
where j is now the ‘rank’ in the hierarchy with i, the largest index region
or the base being associated with the first rank j = 1 and so on down the
cascade. In essence, equation (1.3) is a rank-size rule of the kind associated
with hierarchies based on the Pareto frequency distribution of city sizes
(Zipf, 1949). In short, equations (1.1) to (1.3) are power or scaling laws, but
with their powers being the ranks or scales themselves. The more usual
and simpler rank-size rule is of the form
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Figure 1.21. Ebenezer Howard's ideal system of social cities (after Howard, 1898, 1965,
from Kostof, 1991).

N; .
N;_U_1}=F, } — 1, 2, 3, ses (14)

where 7 is some power usually greater than unity. From equations (1.3)
and (1.4), for any level j, 7 = {[(j-1) log(n)]/log(j)}. There are various ways
in which equation (1.3) might conform to the simple rank-size rule implied
by equation (1.4), most obviously by setting the density of population p as
some function of the scale or rank. This we will indicate in Chapter 10
where we show how T might be a function of the fractal dimension D. But
for the moment, it is sufficient to note that hierarchies generate power laws
and that power laws are one of the bases of fractal geometry.

The hierarchy which is generated in this way is shown in Figure 1.22(c),
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Figure 1.22. Grid geometry and the hierarchy of central places.
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and we are immediately drawn to suggesting how this might be made more
realistic. If we transform the underlying grid of points to a triangular rather
than square net, we generate a packing of basic units which is hexagonal,
not square, this now being the geometrical basis of central place theory
(Christaller, 1933, 1966). In the square grid system in Figure 1.22, n was the
basic number of settlement units which was dependent upon a central place
at the next order of hierarchy, in that case n being equal to 9. The usual
approach is to assume that hinterlands defining the dependence of places
on a center, share basic settlement units, and in Figure 1.23 we show how
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Figure 1.23. Hexagonal geometry and the lattice of central places.
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this might be so. Figure 1.23(a) shows the basic hexagonal packing while
1.23(b) shows the way successive hinterlands are constructed with each of
six places defining the hexagonal trade area around each center at a given
level in the hierarchy, being shared with two other adjacent hinterlands. In
this case, the number of dependent settlements within each aggregate at a
given level of hierarchy is n =[1 + (1/3)6] = 3. Different aggregations which
still employ a hexagonal geometry are possible with n =4, 7, 9, 12 and so
on, these being called central place systems with given k values, the k
defined here as 1, the number of dependent settlements between each level
(Haggett, Cliff, and Frey, 1977).

In the case of the system shown in Figure 1.23(b), this is based on the
most minimal of hexagonal tessellations which, using equation (1.2), gener-
ates a sequence of 3, 9, 27, 81, 243, . .. basic settlement units at successive
levels of hierarchy. Moreover, because of the split dependence of centers
on adjacent hinterlands, the hierarchy is, in fact, a lattice of overlapping
regions, and this is shown in Figure 1.23(c). It is possible to further increase
the realism of these types of systems. By letting the integer n vary at differ-
ent levels i, and over space, considerable distortions in the central place
landscape can be produced (Isard, 1956). The theory is one of the corner-
stones of human geography, and although we will show at various points
in this book how this structure is consistent with fractal geometry, we have
introduced enough to give the reader a flavor of how it might connect to
the theories we will espouse here. In fact, the development of central place
theory and fractal geometry constitutes a study in its own right, and already
a beginning has been made by Arlinghaus (1985). To complete this rapid
but long survey of the geometry of cities, we will now focus the conclusions
to this chapter on the need for introducing a geometry of the irregular
into city systems, noting briefly how these might be linked to other formal
approaches to urban design which have emerged over the last 20 years.

1.8 A New Geometry

In this chapter, we have reviewed the study of shape in two ways: first, in
terms of the simplest geometry used by those intent on developing the
doctrine of visual order, and second, in terms of more abstract geometrical
relations, hierarchies and networks, used by those seeking a deeper mean-
ing to spatial order in the city. Whilst Euclidean geometries are largely
descriptive and difficult to link to the underlying processes of growth
explicitly, the geometry of relations used to show how space and shape
within the city is ordered, does begin to suggest ways of unravelling the
complexity of urban form. But there have been a succession of approaches
to urban form developed over the last 20 years which build on more sys-
tematic, mathematical ideas, linking surface to underlying structure and
process. We have already noted the coincidence of hierarchical ideas in
design pioneered by Alexander (1964), for example, with those in human
geography based on central place theory, and it is worth noting that the
formality of these ideas has been even further relaxed by Alexander et al.
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(1977) amongst others in the search for appropriate frameworks for
explaining the diversity and richness of urban form. This stream of work
will continue to inform the ideas presented in later chapters.

Several formal approaches to shape and layout from the architectural to
the city level are built around the ideas of relations or connectivity, a natu-
ral starting point being the theory of networks or graphs (March and Stead-
man, 1971). The idea of a graph as the dual of continuous spatial subdiv-
ision has become the basis of architectural morphology in terms of building
plans (Steadman, 1983), while more recent work has sought to develop the
theory of spatial order using shape grammars built on the basic ideas of
mathematical linguistics originally inspired by Chomsky (March and Stiny,
1985). These approaches do not, however, directly broach the notion that
form is complex and irregular but ordered, and hence explicable. Perhaps
the emphasis within architecture on the ultimate order imposed by Eucli-
dean geometry in building structures has inhibited discussion of irregu-
larity in form which exists at every scale, but only becomes strongly appar-
ent at the larger scales of the city and the metropolis. In this sense,
architecture is rooted in the idea of the planned form in contrast to more
naturally evolving ‘organic’ structure, and as Steadman (1979) implies, the
biological analogy, although exploited in a casual way, has had less impact
on the way designers design. In fact, the development of shape grammars
and their linking to cellular automata implies that at the level of buildings,
such approaches could well begin to address concepts of irregularity and
growth if developments in complexity theory from this perspective gain
influence as appears likely at present.

Two other approaches are worth noting. Hillier and Hanson’s (1984)
approach to spatial form is at a slightly higher scale than the architectural,
and they base their ideas on measuring the actual network qualities of
neighborhoods and districts up to entire cities. Their approach turns space
inside out with a strong emphasis on the way buildings are connected
through their external spaces, employing many statistics associated with
the patterns of connectivity described using graph theory. Ideas of growth
and change are more central to their approach which is clearly based on a
concern for the organic in contrast to planned evolution of city systems.
Finally, we should note the emerging body of work on treating building
and urban systems and their design using cognitive theory, particularly
knowledge-based systems which in turn link these ideas back to shape
grammars and the morphology of graphs (Coyne ef al., 1990).

Yet there is a need for a geometry that grapples directly with the notion
that most cities display organic or natural growth, that form cannot be
properly described, let alone explained, using Euclidean geometry, that
urban form must be related to the underlying theories of the city which
form the conventional wisdom of urban economics and human geography.
We have implied that such an approach would grapple with the geometry
of the irregular but at this point we must also recognize that there are
many types of regularity, which do not fit within the traditional Euclidean
paradigm, often incorrectly attributed to geometries of the “irregular’. Such
a geometry must deal directly with the notion that our assumptions of con-
tinuity when it comes to urban form must be more sophisticated, that shape
is not continuous and manifests many discontinuities at the levels of lines
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and surfaces, but that the way we articulate its dimensions as discrete or
discontinuous is too strict an order and must be relaxed to embrace the
notion of continuous variation.

This would be a geometry that went beyond the superficial description
of form, that built on the essential idea of linking form to function, of form
to process, of statics to dynamics, a geometry commensurate with D"Arcy
Thompson'’s (1917, 1961) original quest for a geometry of growth and form.
That geometry has emerged during the last 20 years in the geometry of
fractions, of shapes that do not display the clean lines and continuity of
Euclidean geometry. As Porter and Gleick (1990) in their book Nature’s
Chaos so vividly portray, the geometry which has emerged, fractal
geometry, is as much about the artificial world as the natural. They say:

A painter hoping to represent the choppy ocean surface can hardly settle for a
regular array of scalloped brush strokes, but somehow must suggest waves on a
multiplicity of scales. A scientist puts aside an unconscious bias toward smooth
Euclidean shapes and linear calculations. An urban planner learns that the best
cities grow dynamically, not neatly, into complex, jagged, interwoven networks,
with different kinds of housing and different kinds of economic uses all jumbled
together.

This is a geometry of order on many scales, a geometry of organized
complexity which we will begin to develop and apply in the next chapter.



2

Size and Shape, Scale and
Dimension

We are here face to face with the crucial paradox of knowledge. Year by year we
devise more precise instruments with which to observe nature with more fineness.
And when we look at the observations, we are discomforted to see that they are
all still fuzzy and we feel that they are as uncertain as ever. We seem to be running
after a goal which lurches away from us to infinity every time we come within
sight of it. (Bronowski, 1973, p. 256.)

2.1 Scale, Hierarchy and Self-Similarity

We have already seen in Chapter 1 that cities are organized hierarchically
into distinct neighborhoods, their spatial extent depending upon the econ-
omic functions which they offer to their surrounding population. This hier-
archy of functions exists throughout the city, with the more specialized
serving larger areas of the city than those which meet more immediate and
local needs. The centers and their hinterlands which form this hierarchy
have many elements in common in functional terms which are repeated
across several spatial scales, and in this sense, districts of different sizes
at different levels in the hierarchy have a similar structure. Moreover, the
hierarchy of functions exists for economic necessity, and the growth of cities
not only occurs through the addition of units of development at the most
basic scale, but through increasing specialization of key centers, thus raising
their importance in the hierarchy. These mechanisms of urban growth also
ensure that the city is stable, in the sense portrayed in the previous chapter
where hierarchical differentiation was associated with the process of
building resilient systems (Simon, 1969).

Cities are primarily vehicles for bringing people together to engage in
the exchange of ideas and material goods, and city size depends upon the
level at which the city exists in the entire hierarchy of size from the smallest
hamlet to the most global city. But large cities grow from the tiniest seeds,
and the nature of economic production and consumption which are related
to each other in the market is directly based on the level of population
the market can support and vice versa. Perhaps incredibly, the way spatial
markets are organized across the range of spatial scales is virtually ident-
ical. When consumers purchase goods in retail outlets, the same structures
and mechanisms are used at whatever level of the hierarchy such



Size and Shape, Scale and Dimension 59

transactions take place. Such structures which repeat themselves at different
levels of the hierarchy and which in turn are associated with different scales
and sizes are said to be self-similar. Moreover, it is this property of self-
similarity that is writ large in the shape and form of cities, and provides the
rationale for a new geometry of cities which is to be elaborated in this book.

To make progress in tracing the link between urban form and function,
we must now embark upon a more structured analysis of city systems. In
this chapter, we will outline the rudiments of this new geometry of form
and function which has been developed over the last two decades, and
which we anticipated in our introduction and in the previous chapter. This
geometry has been christened by its greatest advocate, Benoit Mandelbrot
(1983), as a ‘geometry of nature’, and although its most graphic examples
exist in nature, it is increasingly being used to explore the ways in which
artificial or man-made systems develop and are organized. In this book,
we will speculate on how this geometry can be applied to cities, and in
this chapter we will present its rudiments, concentrating on natural forms,
but gradually introducing and demonstrating man-made forms which have
similar properties.

When we talk of geometry, we usually talk of a geometry based on the
straight line, the geometry of Euclid upon which our concept of dimension
is based. Although most natural shapes that we can imagine are clearly not
composed of straight lines, we are able to approximate any object to the
desired degree by representing it as straight line segments. However, we
can only make formal sense of such objects if we can represent the entire
form of the object in ways in which we might apply the calculus of Newton
and Leibnitz, and invariably with real objects this is not possible. It is some-
times possible to make progress by studying gross simplifications of natural
objects in which form is continuous and differentiable, but we are so accus-
tomed to assuming that our understanding of natural objects must be based
on atomistic principles that we often assume away any pattern and order
which does not fit our Euclidean-Newtonian methods of analysis. In short,
our understanding of natural form and how it relates to function has been
woefully limited, usually lying beyond analysis.

During the last 20 years, there has emerged a geometry of nature based
on the very assumption that objects whose structure is irregular in Eucli-
dean terms, often display patterns within this irregularity which are as
ordered as those in simpler objects composed of straight lines. Objects com-
posed of a multitude of lines which are nowhere smooth may well manifest
order in more aggregative terms than the sorts of simple objects which
are dealt with in mathematics. Such objects which show the same kind of
irregularity at many scales have been called fractals (from the Latin adjective
fractus meaning ‘broken’) by their inventor and popularizer Mandelbrot
(1983, 1990) and the geometry which has emerged in their study is called
‘fractal geometry’. In essence, a fractal is an object whose irregularity as a
non-smooth form, is repeated across many scales, and in this sense, systems
such as cities which manifest discrete self-similarity are ideal candidates
for such study. A somewhat looser definition is given by Lauwerier (1991)
who says that “A fractal is a geometrical figure that consists of an identical
motif repeating itself on an ever-reduced scale”. Cities with their manifest
self-similarity of market area and repeating orders of centers and neighbor-
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hoods meet these criteria and form the set of fractal objects which we will
explore in this book.

The best way to begin describing fractals is by example. A coastline and
a mountain are examples of natural fractals, a crumpled piece of paper an
example of an artificial one. However, such irregularity which characterizes
these objects is not entirely without order and this order is to be found in
fractals in terms of the following three principles. First, fractals are always
self-similar, at least in some general sense. On whatever scale, and within
a given range you examine a fractal, it will always appear to have the same
shape or same degree of irregularity. The ‘whole” will always be manifest
in the ‘parts’; look at a piece of rock broken off a mountain and you can
see the mountain in the part. Look at the twigs on the branches of a tree
and you can see the whole tree in these, albeit at a much reduced scale.

Second, fractals can always be described in terms of a hierarchy of self-
similar components. Fractals are ordered hierarchically across many scales
and the tree is the classic example. In fact, the tree is a literal interpretation
of the term hierarchy and as such, it represents the most fundamental of
fractals. There are many other examples of hierarchy: as we indicated in
the last chapter, the organization and spacing of cities as central places is
such an order while the configuration of districts and neighborhoods, and
spatial distribution of roads and other communications are hierarchically
structured. The third principle relates to the irregularity of form. Here by
irregularity we mean forms which are continuous but nowhere smooth,
hence non-differentiable in terms of the calculus. This point is so important
that we must elaborate upon it further.

If you try to describe a coastline, you will encounter the following prob-
lem. If you measure its length from a map, the map will have been con-
structed at a scale which omits lower level detail. If you actually measure
the length by walking along the beach, you will face a problem of knowing
what scale or yardstick to use and deciding whether to measure around
every rock and pebble. In essence, what you will get will be a length which
is dependent on the scale you use, and as you use finer and finer scales
down to microscopic levels even, the length of the coastline will continue
to increase. We are forced to conclude that the coastline’s length is “infi-
nitely’ long or rather, that its absolute length has no meaning and the length
given is always relative to the scale of measurement.

This conundrum has been known for a very long time. Richardson (1961)
wrote about it for coastlines and national boundaries, while the geographer
Andreas Penck (1894) alluded to it (Nysteun, 1966; Perkal, 1958a). There is
some evidence that Leonardo da Vinci knew about it (Stevens, 1974) and
if Leonardo knew about it, so probably did the Greeks. But it was not until
the mid-1960s that the problem was raised formally and explicitly by Mand-
elbrot (1967). Building on Richardson’s (1961) paper, Mandelbrot in an arti-
cle entitled “How Long is the Coast of Britain?” argued that if the length
of a straight line is absolute with Euclidean dimension 1, and the area of
a plane is absolute with dimension 2, then something like a coastline which
twists about in the plane must intuitively have a dimension between 1 and
2; in short a fractional or fractal dimension. Thus Mandelbrot was arguing
that fractals were not only irregular lines like coastlines with self-similarity
across a range of scales or orders in a hierarchy, but were also characterized
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by fractional dimension. Mountains would thus have fractal dimensions
between 2 and 3, as if they were sculpted out of a solid block, more than
the plane but less than the volume (cube). Fractals, however, would not be
restricted to simply the dimensions we can visualize between the point and
the volume but could exist between any adjacent pairs of higher dimen-
sions. Indeed, as Mandelbrot (1967) argued, such objects are more likely to
be the rule than the exception with Euclidean being a special case of fractal
geometry. Most objects would thus have fractional, not integral dimension.

In this chapter, we will illustrate this geometry using idealized forms. In
other words, we will present fractal geometry in terms of objects which are
well-specified and manifest similarity across scales which we can model
exactly. This is in contrast to most of the fractals illustrated in the rest of this
book which will not be exact in terms of their self-similarity, but manifest
similarities across scales which are ordered only in terms of their statistical
distribution. In the sequel, we will begin by exploring the simplest of deter-
ministic fractals — the Koch curve — and then we will use this to derive the
basic mathematics used to describe fractal forms, in particular, emphasizing
the meaning of fractal dimension. We will explore one-dimensional curves
which fill two-dimensional space, hierarchies and tree structures, and we
will then outline a rather different approach to fractals based upon repeated
transformations used to generate their form at every scale. This approach
which is largely due to Barnsley (1988a) is called Iterated Function Systems
(IFS) and it provides a powerful way of illustrating the critical properties
of fractals.

In this book, we will be speculating on the measurement of urban form
in two ways: first in terms of boundaries around and within cities, and
second, in terms of the way cities grow and fill the space available to them.
Our ideas will be largely restricted to those fractals which exist between
the one dimension of the line and the two dimensions of the plane. Our
mathematics will be elementary, requiring no more than high school
algebra and calculus, and when we introduce some trickier development
we will explicitly present our algebra through all the needed steps. Another
feature of our approach and indeed of the development of fractals generally
is that it is easiest to work with them using computer graphics. Indeed
some say that without computer graphics, fractals would certainly not have
come alive in the last 20 years. We will thus present many computer graph-
ics to illustrate these ideas, some of which will be in gray tones or black
and white, and others in color (see color plate section).

2.2 The Geometry of the Koch Curve

To construct the simplest fractals we follow Mandelbrot (1983) in starting
with a geometric object which we call an initiator. To this we apply a motif
which repeats itself at every scale calling this the generator. We construct
the fractal by applying the generator to the initiator, deriving a geometric
object which can be considered to be composed of several initiators at the
next level of hierarchy or scale down. Applying the generator once again
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at this new scale results in a further elaboration of the object’s geometry at
yet a finer scale, and the process is thus continued indefinitely towards the
limit. In practice, the iteration or recursion is stopped at a level below which
further scaled copies of the original object are no longer visible in terms of
the scale at which the fractal is being viewed. In essence, however, the
true fractal only exists in the limit, and thus what we see is simply an
approximation to it.

We illustrate this process in Figure 2.1 for the non-rectifiable curve intro-
duced by Helge von Koch in 1904, where we show the initiator — a straight
line, and the generator which replaces the line by four copies of itself
arranged as a continuous line but scaled so that each copy is one third the
length of the initiator. The recursion which defines the process is shown
as a hierarchy, or cascade as we will term it, in Figure 2.1. The tree which
defines this cascade is indicative of the generative process which at each
level replaces each part of the object by four smaller parts. As we have
already implied, the tree which defines the cascade is itself a fractal, and
in the rest of this chapter we will define all our fractals in terms of initiators,
generators and the cascade which forms the process of application. In some
fractals, we will see their geometry in terms of the cascading tree much
more clearly than in others.

The Koch curve is an excellent example of a line which is scaled up in
length at each iteration through replacing each straight line acting as its
initiator by a line four thirds the length of the initiator, ordered in four
continuous straight line segments. An even better illustration of this process
for our purposes is given by the Koch island whose construction and the
first three levels of its cascade is illustrated in Figure 2.2. In this case, the
initiator is an equilateral triangle — the island, and the generator consists
of scaling the triangle to one which is one third the length of each of the
initiator’s sides, and then ‘gluing’ each smaller copy of the triangle to each
of the initiator’s sides. Each side of the Koch island is thus a Koch curve
which in the limit defines a fractal. It is easy to see that the Koch island is
composed of smaller and smaller Koch islands which are identical motifs
scaled successively by the same ratios. It is in this sense then that we speak
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Figure 2.1. The construction of the Koch curve.
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Figure 2.2. The Koch island.

of ‘self-similarity’. We also illustrate the island after four cascades in Plate
2.1. In the Koch curve, the endlessly repeating motifs are strictly self-similar
in that the scaling imposed by the generator does not stretch the object in
one direction over another. In fact, objects which are stretched or distorted
and scaled in the manner of fractals at successive scales are still fractals in
our use of the term, although their scaling is said to embrace the property
of self-affinity rather than self-similarity. We will encounter examples of
these later in this chapter; in practice, most real fractals in nature and in
the man-made world display self-affinity rather than strict self-similarity.

The Koch island represents one of the best fractals with which to illustrate
the various conundrums which throw into doubt our Euclidean conceptions
of space and dimension. Figure 2.1 suggests that the length of the Koch
curve like the coastline of Britain is infinitely long, whereas Figure 2.2 and
Plate 2.1 suggest that the area of the Koch island composed of three Koch
curves is in fact bounded. We can illustrate these intuitions formally as
follows. Let the length of the initial Koch curve which is each side of the
original Koch island be defined as r. As Figure 2.1 implies, each side of the
generator has length r/3 and consists of four copies of the initiator. Then
we can define the increasing length of the Koch curve as follows. The length
of the original line is

Lk @2.1)

Applying the generator to the initiator results in a line L; which is 4/3 the
length of Ly

2
3!

and subsequent recursion gives

4 4\2
L= 3 L= (g) 7, (2.3)

4
L‘l = 5 LD = (22)
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4 4\k
L= 3 Liy= (5) ¥ (2.4)
It is clear that as k — o, then
4 k
lim L, = (ﬁ) r— o, (2.5)
k—ze

To all intents and purposes, the line is of infinite length like the coastline
of Britain in Mandelbrot’s early writing on fractals. In fact, the Koch curve
is a somewhat serendipitous choice for as Mandelbrot (1967) shows, it has
a fractal dimension close to the coastline of Britain, thus providing a graphic
example of this conundrum concerning length.

If we now examine the Koch island in Figure 2.2, then it is clear that the
perimeter of the island is three times the length of a single Koch curve and
thus we must replace the length r with 3r in equations (2.1) to (2.5) above.
We will now examine the area of this island and show that despite its
perimeter being of infinite length, its area converges to a finite value. To
show this, first let us define the area of the initiating equilateral triangle as
A, and with each side given as r, the area is

|

3
Ao= g1 (2.6)

On the first iteration, three equilateral triangles are added to each of the
three sides of the initiator and the area of each defined as A, is

A= ‘—{; (%r) 27)

and the area of the three triangles A, is given as

3

Ay~ % e 2.8)
Clearly A, < A, and thus the sum of areas so far given as A,

< \3 1

A=A+ A= z:»2(1+§). 2.9)

At each stage of the recursion 3 x 4" triangles are added and the cumulat-
ive total area to k is thus

Av=Ag+ Ay +4As + ... + 41 A, (2.10)
Ay is defined as

Ak=_ —-?‘2=-—A0, (2.11)

and this simplifies to

3 4\k1
!
Ay = o r? (5) . (2.12)
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The cumulative total area on iteration k can now be written as

- ‘E 2+ ”/3 [1 gt (9)2 - (g)m}. (213)

Equation (2.13) can be written more compactly as
3
A= ‘/ ‘/ 57 2 ( ) (2.14)

The summation term in equation (2.14) is a converging geometric series
which can easily be shown to sum to 9/5 as k — =, and thus the limit of
equation (2.10) is given as

3 3
A= hmAk=\—/—r2 ‘/—rzg

| -

2|3

= -—r2=~ b (2.15)

Equivalent summations are given in Woronow (1981) and by Peitgen, Jurg-
ens and Saupe (1992).

2.3 length, Area and Fractal Dimension

The mathematical argument presented above in equations (2.1) to (2.15) is
a formal statement of the coastline conundrum. Although the length of the
curve which bounds the Koch island increases without bound as the scale
is reduced — becomes finer, the area of the island converges to a finite value
which is 0.69372. If the length of the curve converged, then its dimension
would clearly be 1 and the area it enclosed 2 but in the case of the Koch
curve, it is apparent that length measured in the conventional Euclidean
sense is unbounded. In an attempt to unravel the paradox of infinite length
and finite area, let us restate the generation of the Koch curve in the follow-
ing way. We will first repeat equation (2.4) as

L= (g)*}. (2.4)

Now this length in (2.4) is made up of the number of copies of the initiator
used in generating the curve which we call N; and the scaling ratio r;
applied to the original line length r which gives the length of each line in
the N, copies. Therefore length L, is defined as

LI: = Nkrk, (2.16)

from which it is clear that N, = 4 and r,. = r/3%.

In Table 2.1, we show the increase in N; in comparison to 7, as well as
the length L; for both the Koch curve in equation (2.16) and the straight
line, where N, is divided into the same number of parts as the inverse of
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Table 2.1. Scaling properties of the Koch curve

Koch curve Straight line
lteration
k Ni I % Nrg Ne e i N
0 1 1 1 1 1 1 1 ]
1 4 1/3 3 1.333 4 1/4 4 ]
2 16 1/9 e 1777 16 1/16 16 1
3 ]

64 1/27 27 2370 64 1/64 64

the individual length of each part ;. It is clear that for the Koch curve,
the number of copies N; increases at a much faster rate than the inverse
i, This can be seen by examining N, which for the straight line is a
constant, whereas for the Koch curve is increasing. If we were to predict
the number of copies N generated from the number of parts ;! the initiator
is divided into, then it is clear that ;' would need to be raised to a power
D greater than unity. That is

Ny = (r")° = rz®. (217)

For a straight line, D = 1 while for the Koch curve the similarity factor 7,
must scale as a power D > 1. Now if we substitute N, in equation (2.17)
into equation (2.16), the equation for the length of the line becomes

Lk = Nkrk = r{l_D,. (218)

If the parameter D is equal to 1 then equation (2.18) gives a constant (unit)
length, while if D > 1, L, is unbounded. Moreover, it is intuitively obvious
that D plays the role of dimension in these equations and as such, we have
now demonstrated that the Koch curve has a dimension which is greater
than 1, hence must be fractional, not integral in value.

In strictly self-similar curves, the dimension D can be calculated exactly,
for the recursion which generates the curve is itself identical at each level
or scale. Then taking the log of equation (2.17), the dimension D at any
level k called Dy is given as

_log Ni, _ log N,
logr, log (1/n)

In the case of the Koch curve where we assume without loss of generality
that r = 1, then N, = 4* and (1/r) = 3, and equation (2.19) reduces to

(2.19)

k=

_ooJogd
D=D,= Tog3 1.262,

which is the value of the fractal dimension. This bears out our intuition
that the Koch curve has a dimension nearer 1 than 2 in that the curve
departs from the straight line significantly but does not fill very much of

the two-dimensional space.
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There are many different types of fractal dimension (Falconer, 1990;
Takayasu, 1990). The one we have derived is often called the ‘similarity
dimension” which is only defined for strictly self-similar objects. In this
context, we will use the notion of the fractal dimension in its generic sense
for we will define such dimensions in a variety of contexts, and as our
purpose is with applications, it will suffice to think of such dimensions as
a measure of the extent to which space is filled. In fact, our concern here
will be almost exclusively with fractal dimensions which vary between 1
and 2. Our focus is on the spatial structure of cities that exist in the plane
and although there are many studies of urban structure which stress their
three-dimensional form, we will be mainly dealing with cities as they are
expressed through two-dimensional maps. However, the fractal dimensions
we will develop will depend upon the particular aspect of urban form we
are measuring; the boundaries of cities, for example, will have different
dimensions from the density of development, while the actual value of the
dimensions computed will inevitably depend upon the methods used in
their measurement and calculation.

From equation (2.17), it is clear that the number of copies of the initiator
generated at any iteration k, N, varies inversely with r{, and their product
will be constant, that is

NP =1. (2.20)

As illustrated in Table 2.1, this relation holds for the straight line when D
= 1. Where the object in question fills the plane as in the case of a square,
then the number of copies generated varies with the square of the scaling
factor 1/ry as 1%, where D = 2. Clearly for a fractal object with dimension
between 1 and 2, then equation (2.20) is only satisfied when the value of
D ensures it is constant.

However, consider the case where N varies as r;> where  is not equal
to D. Then we can write equation (2.20) as

Nkr’?zrf:ar!?!

1 &D
== (3] @2y
Tk

If 3 is less than D, the actual fractal dimension, then N; will diverge towards
infinity. This would be the case where we assumed that the object were a
straight line, but in fact it is a Koch curve. On the other hand, if we assumed
that & were greater than D, then equation (2.21) would converge towards
zero. Thus the fractal dimension D is the only value which would ensure
that equation (2.20) is satisfied. Formally this can be written as

— oo ifd<D,
lim NP =rP®=4 1 ifd=D, (2.22)
|
—0 ifd>D.
It is possible to visualize the value of 3 converging toward D from above
or below and only when it is exactly equal to D will equations (2.20) and

(2.22) be equal to 1 (Feder, 1988).
We have already introduced the notion that fractals exist which are self-
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affine in that their scaling ratios {r,} may differ. Such a fractal would be
self-similar in that there would be copies of the object at every scale but
that these copies would be distorted in terms of the original initiator in
some way. There is a straightforward generalization of equation (2.20) for
this case. We now have m scaling factors which we call 7,; and if we associ-
ate a distinct scaling factor with each copy of the object, then the fractal
dimension must satisfy

m

> =1 (2.23)
j=0

In this case, we can find D by solving the equation for any level k which
is based on the fact that the fractal never changes its scaling factors over
the range of levels and scales for which the object is observed (Barnsley,
1988a; Feder, 1988).

We can examine this best by example. In Figure 2.3 and in Plate 2.2, the
Koch curve has been regularly distorted in that the two base pieces of the
generator have quite different scaling and the two perturbed pieces which
are equal in length form a spike rather than a pyramid to the curve. This
generates what Mandelbrot (1983) calls a Koch forest. We can easily com-
pute the dimension from this figure, given the scaling factors. Then in the
case where m = 4 for the Koch forest, equation (2.23) simplifies to

0.30° + 0.42° + 0.42° + 0.63° =1,

and the dimension D which solves this equation is 1.750, considerably
larger, as expected, than the regular Koch curve whose dimension is 1.262.

2.4 The Basic Mathematical Relations of Fractal
Geometry

Initiator

Generator 0—/\—0

Cascade

So far we have assumed that we are measuring the geometric properties
of a single object and we have shown how we might do this for strictly

Figure 2.3. The self-affine Koch forest.
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self-similar fractals. In essence, we compute the fractal dimension by exam-
ining the object at different scales, taking the ratio of the number of its
repetitions to its scaling factors. There are, however, other ways of looking
at the form of such objects and we will use two such ways here. First, we
may have a set of objects which we know are of the same type and which
are all measured at the same scale. In such a case, we can develop methods
for computing the fractal dimension of the set by examining changes in
form at the fixed scale of measurement. Second, we may have an object
which is constructed or measured at the same scale but whose size changes
in some regular way which we might associate with growth or decline. In
short, its mass or the number of its parts increases or decreases as the object
grows or dies. In one sense these differences in measurement are strongly
related to the fact that the object(s) in question changes its size or scale,
and it is such changes that are essential in computing its fractal dimension.

We will begin by treating single objects for which we are able to control
the scale of measurement as in the cases already introduced for the Koch
curve. We will now use the variable r to measure continuous scale and we
will drop the explicit reference to iterations of fractal construction. Then
generalizing equations (2.17) and (2.18), we get

N(r) = Kr P, (2.24)
and
L(r) = N(r)r = Kr(-D), (2.25)

N(r) and L(r) are the number of parts and the length of the object respect-
ively where we are implying that we are dealing with fractal lines, and K
is a constant of proportionality. If we have a series of observations of N(r)
and L(r) at different scales r, then we can derive the fractal dimension by
taking log transforms of each of these equations and performing a
regression of these variables in cases where the variation is stochastic, hence
statistical not deterministic. Because we will be mainly concerned with
regressing length on scale, then the log transform of equation (2.25) yields

log L(r) = log K + (1-D) log 7, (2.26)

where it is clear that the slope of the regression line is (1-D) from which
the dimension can be derived directly. We will say much more about this
in Chapters 5 and 6 where we will deal with statistical variations, but note
here that if we apply equations (2.24) and (2.25) to, say, the Koch curve,
then these equations collapse back to those from which they have been gen-
eralized.

To derive the dimension from a set of objects all of different size but
measured at the same scale r, we now need to define the scale more
explicitly and for this we assume that the scaling ratio 1/r is applied
directly to a size R which is the size of the object in question. Equation
(2.25) can be written as

L(r)=K (?)Dr = KRPr(-D), (2.27)

When we have a fixed scale, r'? is constant and it is R, the size, which
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varies. Incorporating the various constants into G, dropping the scale r and
subscripting the variables L; and R; where i indicates a particular object,
equation (2.27) can be written as

L;=GRP. (2.28)

The size R; is clearly related to the area of the object A;, and if we consider
R; to be equal to the square root of A;, then

R, = JA;= A2

Substituting for R; in equation (2.28), we obtain a relationship between
length and area, the so-called perimeter-area relation,

L;= GAP/2 (2.29)
A log transform of equation (2.29) gives

log L;=1log G + -g— log A; (2.30)

from which it is clear that the slope of any regression line estimated using
equation (2.30) is D/2. This equation has been widely used to measure
fractal dimensions in sets of physical objects such as clouds (Lovejoy, 1982),
moon craters (Woronow, 1981) and islands (Goodchild, 1980).

The third and last method of measuring dimension is based on a single
object where the scale change is implied by the object increasing or decreas-
ing in size. Here we will be concerned with the mass of the object which
we consider is measured by the number of parts of the object at scale 7,
N(r). Using R again as the size of the object, equation (2.24) can be written as

N(r)=K (?—)D. (2.31)

Then at a fixed scale r, the mass or number of parts of the object scales
with R as

N(R) = ZRP. (2.32)

Note that we now use R instead of r for the index of scale change which
is based on the change in the size R of the object. If we have the area of
the object A(R), then we can normalize equation (2.32) to obtain a den-
sity relation
HNEB) R g

p(R) A0 Z R B= (2.33)
We can obtain the fractal dimension by taking a log transform of equations
(2.32) or (2.33) and we will use these equations extensively when we discuss
urban growth models in Chapters 7 to 10. Note also that in the sequel we
will refer to the measure of mass N(R) as a measure of population size.

In this section we have examined three ways of computing fractal dimen-
sion and in Table 2.2 we summarize these methods in terms of their empha-
sis on size and scale. In fact we do not have any methods for estimating
dimension where there are several objects which vary across several scales.
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Table 2.2, Equations associated with measuring fractal dimension

Number of objects Varying scale Varying size
One object (2.24), (2.25) (2.32), (2.33)
More than one _ 2.28), (2.29)

In this case, some selection from the three methods introduced here would
be necessary. For example, it would be possible to treat every object separ-
ately and to estimate a set of fractal dimensions using equations (2.24) and
(2.25). If a single fractal dimension were required, then all the scale changes
for all the objects could be combined into one set and a single regression
carried out. However, in the case of a set of objects where their scale can
be varied, then it is likely that the emphasis would be on estimating a set
of dimensions and making comparisons between objects. We will develop
these ideas further in Chapter 6 when we deal with the fractal dimensions
of different land uses in a town.

2.5 More Idealized Geometries: Space-Filling
Curves and Fractal Dusts

The last section was something of a digression in that the equations we
presented, although derived from the geometry of the Koch curve and of
extremely general import throughout this book, will be used mainly for the
measurement of fractals using statistical methods. Now we will return to
our discussion of methods applicable to exact fractals and provide some
more examples to impress the idea that a large number of objects can exist
with fractal dimensions between 0 and 2. Perhaps the best examples are
those continuous lines which have a Euclidean or topological dimension of
1 but a fractal dimension of 2 and are called space-filling curves, for reasons
which will become obvious. We will begin with the curve first introduced
by Peano in 1890 (Mandelbrot, 1983) and whose construction is shown in
Figure 2.4.

This curve is formed by applying a generator which spans a square
whose initiator is a diagonal line across the square. In Figure 2.4, at each
level of recursion, the generator replaces the straight line by nine copies of
itself, each scaled to one-third the length of the line. To present the curve,
we cut off each corner of the right-angled twists in the line to show that
the line is continuous. Four generations of the line are shown starting with
the originator at k = 0. If the recursion is continued beyond k = 4, the curve
falls below the resolution of the computer screen on which it was generated
and for all intents and purposes at the scale of the picture, the curve literally
‘fills" the space. However, because it is a fractal, the line has no width, and
as we continue to zoom into the picture, the curve continues to generate
ever more detail on its path towards infinity. In short, it never fills the
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Figure 2.4. Peano’s space-filling curve.

space because we can never reach the limit, thus illustrating the paradox
which Bronowski (1973) referred to in the quote which introduces this chap-
ter. In generating the curve at any level k, it is clear that the number of
parts N, are 9% and the similarity ratio is (1/3)%. From equation (2.19), the
fractal dimension is computed as D = (log 9)/(log 3), and our intuition that
this curve fills all the two-dimensional space available to it is rewarded in
that the fractal dimension is indeed 2.

There are several other curves which we can generate which have a frac-
tal dimension equal to 2. If we take a straight line as initiator and generate
two parts to the line forming a right angled triangle resting on the initiator
(which in turn is the hypotenuse of this triangle shown in Figure 2.5), then

Initiator

Generator

Cascade

Figure 2.5. The 'C’ curve.
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Figure 2.6. The Dragon curve.

we generate a closed curve which is called the ‘C’ curve. Assuming that
the length of each of the two new lines is 1, then the original initiator has
a length V2, and the similarity ratio is 1/v2. Using these values in equation
(2.19) also gives this curve a fractal dimension of D = (log 2)/(log 32) =2,
For the C curve, we generate new lines always outwards from the initiator,
whereas if we replace the two lines which are generated with one outwards
and one inwards as shown in Figure 2.6, the construction which we gener-
ate is called the ‘dragon’ curve which also has a fractal dimension of 2. To
further impress this notion of space-filling, examine the double dragon
curve in Plate 2.3 which suggests that infinite space can be perfectly tiled
and entirely filled with such constructions.

Figures 2.4 to 2.6 illustrate that the actual shape of an object does not
necessarily influence the value of its fractal dimension which is, in a sense,
obvious in that there is nothing that we have introduced so far which relates
dimension to geometric shape. In fact, we can change the fractal dimension
by virtually keeping the same shape. Figure 2.7 illustrates how we might

Initiator

Generator D—A—ﬂ

Cascade

Figure 2.7. The Peano-Cesaro triangle sweep.
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sweep out a design in the plane using a generator similar to those used in
the C and dragon curves. In this case, the generator is the same right-
angled triangle as used in the dragon curve but with both triangles turned
inwards at each level of recursion. To actually show the curve, we have set
the similarity ratio at 0.673 which is a little less than 1/V2 ( = 0.707) and
this leads to a dimension of 1.750. The design we have generated in Figure
2.7 is called by Mandelbrot (1983) the Peano—Cesaro triangle sweep and its
self-similarity is sometimes reminiscent of a fern, although as we shall see
later, much more realistic designs can be generated as the strictures
imposed by exact self-similarity are relaxed.

Another design we must introduce is one which can be interpreted as
sculpting out scaled versions of the object in the two-dimensional plane,
thus showing that fractals can be generated by taking away rather than
adding to the initiator. In Figure 2.8, we begin with an initiator which is a
solid equilateral triangle, and take out a scaled copy of the original, pos-
itioned centrally in the object at each level of recursion. Another way of
looking at the generation process which we will invoke later is to see the
scaling as taking three copies of the triangle, and scaling these in such a
way as to ‘tile’ the original triangle. A final way of seeing this which is
also shown in Figure 2.8 is as a continuous curve which spans the triangle
and it is this which we can use to calculate the fractal dimension. In essence,
the scaling is 1/2 and the number of pieces of scaled line or triangle gener-
ated at each generation is 3. The fractal dimension of the resulting lattice-
like structure, called the Sierpinski gasket, after its originator, is D = log
(3)/1og (2) = 1.585. We will return to this construction when we introduce
Barnsley’s (1988a) IFS approach below.

There is one last construction we must mention before we change tack
and examine branching structures, and this is a fractal whose dimension
lies between 0 and 1. We refer to such fractals as ‘dusts” and the best one
to illustrate this is named after the mathematician George Cantor, the ‘Can-
tor Set’. This is based on a straight line initiator which is replaced at each
iteration by two copies of itself, but these copies are scaled by 1/3 of the

Initiatar
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Figure 2.8. Sierpinski’s gasket: sculpting and tiling space.
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Plate 3.1 (leff] A Simple
Rendition of Mandelbrot's
Planetrise.
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Plate 3.3 The Hierarchy of the Planetrise

The four levels of construction are shown with the twa ‘Iricks’ 1o render "planetrise’ — the circular sculpting and the light source
shading - illustrated in the last two subglates.



Plate 3.4 The Hierarchy of the Fractal City
Blue is commercial-industrial land use, red is residential, and
green is open space-recreational




CITY SIMULATION
iypethetical Urban Strosturs
pensd on Misrarchicel Levels 34,8 &

B innrry 07 migh-dens resid
Bl cpen-space |0 medi-dens resid
 pommeros B low —dens reaid
o fpecial Perterbatica

o Randomoess 1o Lend-wse Allocation
Hiwrarchical Fastort @

CITY SIMLATION

Iﬂl Urban Stresturs

Bassnd oo Hisrsrchical Levels 3,4,8 &
2§ ndennry igh-deat renid
-M 0 i -duns remid
B commeres D low ~dems resid
Spacial Pertorbation

Mo Randosnsrs 6 Lesd-ese Al[ocation
Hisrarchical Facter: 34

CITY SDALATION

Mypetbetical Urban Strestsrs

Bewwd oa Misrarchical Levels 34,8 &

B ety | hlghedenn remid

B pen-apace | meddedess restd
| commerce W0 Low ~dens resid

Mo Special Perterbation

Eencomnogn 1o Lesd-cie Allocation
Misrarchical Fastor: &

<&

Plate 4.1 A Sampling of the Space of All Cities.
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Plate 4.2 'Realistic’ Hypothetical Urban Simulations.



Plate 4.3 (right) The Graphical Data Base:
Age of Housing in London.

Averoge age of housing: B years (white), 26 years
{light blue), 48 years (magenta|, 78 years (dark
blue), 110 years [yellow), 150 years [green), and
175 years [red)

Plate 8.4 [above) Deterministic Simulations
of House Type in London.

Converted Hats (red), purpose-built flats {yellow),
terraced housing (green), ond detached/semi-

detached housing (blue).

Plate 5.1 (right) Urban Growth of Cardiff's
Boundary.




Plate 5.2 Structured Walks Along the Urban Boundary.




Plate 5.3 Cell-Counts of the Space Along the Urban Boundary.
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Plate 7.3 Dendritic Growth from the Diltusion-Limited Aggregation (DLA) Model
(bosed on a 500 = 500 lattice with 10 000 particles).

Simulation over

SYSTEM HISTORY

Plate 8.1 Dendritic Growth from the Dielectric Breakdown Model [DBM).
{based on o 150 = 150 latice with 1856 parficles).




Plate 8.2 Physically Constrained DBM Simulations



Plate 8.3 (lef) The
Baseline Simulation n = 1.

Plate 8.5 (below) The
Urban Area of Cardiff.




Plate 8.4 Urban Forms Generated by Systemotic Distortions to the DBM Field



Plate 8.6 5imu|1::|ﬁng the Urban Growth of Cardiff
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previous line. This construction is shown in Figure 2.9 where it is clear that
the object is being systematically reduced from the one-dimensional line
which is its initiator by removing the middle third of each line. Using equ-
ation (2.19), the dimension is D = log (2)/log (3) = 0.631. In one sense, we
can see both the Sierpinski gasket and the Cantor dust as objects which
begin with two- and one-dimensional shapes respectively and gradually
reduce the dimension of the shape as pieces of it are removed. In this sense,
then we might think of both of these as ‘dusts’.

Finally in this section we will anticipate later chapters of this book by
generalizing these results. In Figure 2.10, we show the sorts of objects which
exist across a continuum of dimensions from points to lines to planes to
volumes, in Euclidean terms from zero to three dimensions. We also show
three typical fractals which exist between zero and one, one and two, and
two and three dimensions, these being dusts, trees and surfaces respect-
ively. In fact as we have already implied, we will mainly concentrate upon
objects with a fractal dimension between 1 and 2 in this book because our
predominant way of representing cities will be through maps. So far in our
discussion of fractals we have only dealt with lines and points of the sim-
plest kind, and insofar as we have dealt with trees or dendrites it has been
through ideas about hierarchy, not with any more substantial represen-
tation of reality. In the next section we will remedy this and then be in a
position to introduce a somewhat different approach to fractals which
enables us to round off the elementary insights we are attempting to present
in this chapter.

2.6 Trees and Hierarchies

We have already noted that the tree or cascade structure used to show how
the generator relates to the initiator in deterministic fractals is itself a fractal,
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Figure 2.9. The Cantor curve: fractals as ‘dusts’.
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for the tree shows how many self-similar copies of the object are generated
but not their scaling. In fact we will deal with a much reduced set of tree
structures here, and restrict our attention to structures which branch into
two copies of the object at each level. In fact, we know that this yields only
a subset of all possible trees but it is sufficient for our purposes which is
simply to establish the background. There has already been substantial
work on the morphology of trees and we will not attempt to summarize
this work here. Readers who wish to follow up these ideas are referred to
MacDonald (1983) in the biological literature, to Aono and Kunii (1984) in
computer graphics, and to Prusinkiewicz and Lindenmayer (1990) for a
treatment in terms of fractals.

First we will state some of the obvious relationships governing branching
structures of the binary or dichotomous kind. The number of branches of
any tree which are generated at a given level of recursion or hierarchy k is
given as

Ny =9, (2.34)

where 9 is the bifurcation ratio equal to 2 for binary branching, 3 for ternary
and so on. The number of branches at any level of the hierarchy is the sum
of these numbers over k defined as

K
Ng= >, N (2.35)
k=1
Equations (2.34) and (2.35) can be used to compute the number of elemen-
tary operations in any recursive scheme at and down to any level k. With
respect to botanical trees, several relationships have been established
between branch lengths and widths, angles, their scaling or contraction,
and their symmetry, but we will only state one which was first articulated
by Leonardo da Vinci in 16th century Italy. This is based on relating the
width of any stem in a tree to the two stems which branch from this
between levels k — 1 and k. Then

Wi = gWi + [ W;, (2.36)

where W is the width at the relevant level, s is a parameter of the relation
and R and L indicate the right and left branches respectively. Leonardo
(Stevens, 1974) suggested that the parameter s in equation (2.36) be equal
to 2 and in this case the tree could be called Pythagorean in that the width
of the branch stem W,_, would be the hypotenuse of a right angled triangle
whose two sides are xW, and ;W,. Examples of such trees are given in the
book by Lauwerier (1991). McMahon (1975) suggests that the width of any
branch W, should be proportional to its length as

Wi < L2, (2.37)

In fact strict Pythagorean trees have the length of their branches identical
to their width although this leads to somewhat squat looking trees. As
McMahon (1975) and others imply, the parameter s, which makes the
relation in equation (2.37) realistic, is unlikely to be as low as 2 but never
more than 3. However, the biggest single factor affecting the shape of trees
concerns their branching angles, but these do not affect our computation of
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fractal dimension which only depends upon the rate at which the branches
contract or scale and the number of branches which are associated with
each stem or trunk.

Computing the fractal dimension of trees illustrates the existence of sev-
eral dimensions which depend upon the particular aspect of the tree’s form
which is measured. Examining the branch tips of a bifurcating binary tree
suggests that the canopy of the tree which contains the branch tips is a
kind of dust. If the width of the two branches of the stem are less than the
width of the stem itself, then the canopy formed is a Cantor set with dimen-
sion between 0 and 1. However, this dimension takes no account of the
length of the branches. A more obvious dimension is based on the fact that
the initiator is a stem and the two branches are scaled copies of the stem
as in the C and dragon curves shown earlier in Figures 2.5 and 2.6. Often
the branch angles are chosen so that the tree is self-avoiding in that the
branch tips do not touch or at least just touch but do not overlap. In Figure
2.11, we show a tree in which the branch angles are chosen so that the tips
of the branches just touch one another and the contraction or scaling ratio
for each branch is 0.6. The fractal dimension using equation (2.19) is com-
puted as —log(2)/log(0.6) = 1.357.

In contrast in Figure 2.12, we show two more realistic looking trees. The
first is symmetric but with the branches overlapping with a contraction
ratio of 0.8, hence a fractal dimension of 3.106 which implies that the over-
lap more than covers three dimensions, while the second tree is asymmetric
with contraction factors of 0.8 and 0.7 for the left and right branches respect-
ively; hence using equation (2.23), the dimension is 2.435 covering more
than the plane. This tree has been computed to a depth of 10 branches, thus
illustrating how the branches contract to the canopy in contrast to the other
tree in this figure which is only plotted to a depth of five branches. Note
that in these cases where the branches are not self-avoiding, our equations
for fractal dimension gives values greater than 2, thus indicating that our

Figure 2.11. A self-avoiding symmefric free.
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Figure 2.12. Fractal trees with overlapping branches.

pictures of these trees are not entirely adequate in visualizing their geo-
metric form. The full tree is also pictured in Plate 2.4, while its use in ‘tiling’
space to form landscapes is illustrated in Plates 2.5 and 2.6.

The best example of a tree which fills the plane is provided by the H
tree which is shown in Figure 2.13(a). This tree is symmetric, it is self-
avoiding in that its branch angles are chosen to be 90° and the rate at which
both its branches contract is 0.707. This gives a fractal dimension of 2 which
bears out our intuition. A slight variation of this contraction ratio down to
0.7 and a slight decrease in the branch angles from 90° to 85° produces a
slightly more realistic structure with a dimension of 1.943, but this remains
strictly self-similar. This is also shown as Figure 2.13(b). These forms are
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Figure 2.13. ‘H' trees as plan forms.

B [

By Ay Bl (B



80 Fractal Cities

classic space-filling curves. They are reminiscent of traffic systems in resi-
dential areas of towns. In fact, one of the features of these binary trees
which is brought out by this analogy is that it is possible to visit every
branch of the tree without crossing any other branch. As we noted in the
first chapter, this form of layout plan was suggested by Clarence Stein as
being an ideal layout for a residential housing area in that its residents
could walk around the layout without crossing any of the roads. This was
adopted quite widely as a model for pedestrian segregation from vehicular
traffic and it was widely implemented in the design of residential areas in
the British New Towns, illustrated earlier in Figure 1.19. Another feature
of such trees is that they are a minimal form of strongly connected graph
where every branch is connected directly or indirectly to every other, but
which will break into two parts if any branch in the structure is severed.
This model has also been used to show how trees can grow in a con-
strained space, and the example which best illustrates this is the human
lung. Analogies between trees and human lungs as well as rivers, cities
and electric breakdown were made almost thirty years ago by Woldenberg
(1968) and Woldenberg and Berry (1967). More recently the analogies have
been derived and extended to make the tree model more realistic. Figures
2.14(a) and (b) show how bifurcating trees can fill a circular space and be
self- avoiding with suitably chosen contraction ratios (Nelson and Manches-
ter, 1988). These trees like the H trees, are reminiscent of views of the tree
from directly above, plans of the tree rather than end or side views. In
another context, they could be seen as cross sections of the growth of the
tree above and below ground showing its roots as well as its foliage in the
manner illustrated by Doxiadis (1968). In fact, Nelson and Manchester
(1988) use this type of spatial constraint as a model of the growth of the
human lung although these models go back to the work of Woldenberg in

Df = 1.94 Df = 1.87

G
N

a) b)

Figure 2.14. Self-avoiding trees with geometric constraints on growth (after Nelson and
Manchester, 1988).
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the late 1960s. In Figure 2.15(a), we show a plastic cast of the lung made
by Keith Horsfield (see also West and Goldberger (1987)) and in 15(b), the
growth of the lung as a tree structure based initially on an ellipse which
expands into two with increasing fractal dimension. Finally in Figure

Figure 2.15. Growth of the human lung: (o) plaster cast (by Horsfield);
(b) idealized growth models; (c) restricted tree growth (both after Nelson
and Manchester, 1988).
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2.15(c), we show a stylized representation of a severely restricted lung taken
from the models proposed by Nelson and Manchester (1988).

Our last variants of tree fractals indicate what happens to such structures
which contract to a point or expand to infinity. If there is no contraction
whatsoever in the branches, then the dimension of the binary tree becomes
log(2)/log(1/1) which is infinite. In Figure 2.16, we show what happens
when there is no contraction in a tree structure which has branching angles
of 60°. We generate an ever-expanding tessellation of the plane based on
regular hexagons, strongly reminiscent of Christaller’s (1933, 1966) econ-
omic landscapes of central places which we illustrated in Figure 1.23. If we
increase the branching angles to 90° then the plane is tiled, as with squares
(Figure 1.22). These forms are highly suggestive and have important impli-
cations for the hierarchy and form generated by central place theory. We
cannot, however, pursue these further here, and the interested reader is
referred to the work of Arlinghaus (1985).

To generate fractals with zero dimension, we set one of the branch angles
to zero. This means that the stem only ever generates a single branch and
whatever the contraction ratio, the dimension is equal to that of a point,
zero. We show this in Figure 2.17 where the contraction ratios for the left
and right branches are 0 and 0.8 giving a dimension of log (1)/log (1/0.8)
= 0. In fact this generates yet another fractal — a spiral; readers who wish
to explore the meaning of these forms in greater depth should look at books
by Mandelbrot (1983) and Lauwerier (1991) which both contain many other
examples. We will return to tree shapes again in the last half of the book
where we show how such fractals can be grown using geometrically ‘con-
strained” or ‘limited” diffusion. But before we conclude our discussion of
deterministic fractals, we need to introduce one last approach which gives
us greater insights into methods for generating fractals, and in particular,
shows us how to generate considerably more realistic shapes.

Figure 2.16. Non-contracting trees: infinite tiling of the plane.
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Figure 2.17. Contraction of a tree into a spiral.

2.7 Fractal Attractors: Generation by Transformation

So far most of the fractals we have generated are strictly self-similar and
non-overlapping, although the trees of the last section were based on slight
relaxations of these assumptions. Moreover, the way we constructed these
fractals was by emphasizing recursion of the generator through many levels
of the hierarchy or cascade. There is, however, another way of generating
fractals which in one sense is little different from the methods we have
used so far, but in another sense exploits the geometric rather than struc-
tural properties of the object through its emphasis on the nature of the
‘transformations’ involved. This method involves treating fractals as a pro-
cess of transforming and contracting a large object into a smaller one, pro-
gressively moving towards the ultimate geometric form of the fractal which
is now referred to as a ‘fractal attractor’. From what we have said so far
in this chapter, we have assumed the existence of fractals without dwelling
on the ultimate form of the limiting process which we have taken on trust.
The great value of the approach which is based on specifying the nature
of transformations is that there are proofs that the limiting forms for a large
set of fractals exist and are unique. The mathematical proofs have been
developed by Hutchinson (1981) and Barnsley and Demko (1985) amongst
others, but the practical application of this fairly esoteric approach is due
almost entirely to Barnsley (1988a, b).

As we have indicated, the essence of the approach is to specify the correct
set of geometric transformations which enable the object in question to be
‘tiled’ or formed from copies of the object at successively finer scales. Such
transformations do in fact exist in the computer programs used to generate
the fractals which we have presented so far in this chapter, although these
transformations have not been the particular subject of our interest. The
basic idea of Barnsley’s (1988a) approach is to approximate the final form
of the object which we assume is the given shape by a series of transform-
ations which, when applied to any point on the object, will generate another
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point on the object but at the same time ‘contract’ the first point into the
second. By applying these transformations successively to the point gener-
ated so far, the process will ultimately lead to the shape of the attractor
being “filled in’. The restrictions on permissible transformations imply that
they be contractive and that they represent the best possible geometric
approximation to the object in question.

If the transformations are badly chosen, then the object’s shape will not
be generated and the resulting fractal will not be the one that is observed
in reality. However, we can first illustrate this approach for strictly self-
similar fractals because we can intuitively guess their correct transform-
ations. In fact, we have been doing this throughout this chapter in the com-
puter programs which have been used in their generation. Another feature
of the approach is that we must specify the right number of transform-
ations. If some are left out, the ultimate object will in some way be incom-
plete. The transformations do not have to generate strictly self-similar
objects, they can be self-affine and they may tile the object with overlapping
copies. In fact the success of the approach is due precisely to this. As we
will restrict most of fractals in this book to those with a dimension between
1 and 2, we can illustrate the typical transformation for any pair of coordi-
nates x and y in 2-space in matrix terms as

= =L (2.38)
y

where x” and i’ are the transformed points x and y, based on all three types
of transformation — scaling, rotation and translation, where 4, b, ¢ and d
are the coefficients specifying the scaling and rotation, and ¢ and f are the
translations associated with x and y respectively (Barnsley, 1988a, b;
Barnsley and Sloan, 1988).

The best way to demonstrate the method is by example. We will show
how the Sierpinski gasket discussed earlier in Section 2.5 and illustrated in
Figure 2.8 can be generated by suitable transformations. From Figure 2.18,
we see three transformations of the big into the little equilateral triangles,
and it is clear that successive application of these transformations will yield
the Sierpinski gasket shown in Figure 2.8. Moreover, it is easy to specify
these transformation because all that is involved are scalings and trans-
lations. Now it is also clear that if we merge the three transformations
shown in Figure 2.18, we obtain the fractal at the second level of the cas-
cade. Defining the object at level k as F;, the object at the second level is
given as

Fy = @,(Fp) U wy(Fy) U ws(Fy)
= (UF,), (2.39)

where w,, w,, w; are the three transformations and () a combined transform-
ation operator. If we use equation (2.39) recursively then we obtain at the
next level

F, = Q(F,) = Q[(F)), (2.40)

and in general for Fy
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Figure 2.18. Transforming Sierpinski’s gasket.

Fo=Q(F) = QO ... QF,) -.-]. (2.41)

If the transforms are those in Figure 2.18 which are based on strict self-
similarity, then the object is generated in the limit as F.. = lim, _. .. F; and
the Sierpinski gasket is defined as in Figures 2.8 and 2.18. Barnsley (1988a)
summarizes this process of putting the transformations together in the Col-
lage Theorem which ensures that the fractal attractor is generated in the
limit. -

So far there is little that is radically different from the recursions used in
the generation of the previous fractals in this chapter. In the case of the
Sierpinski gasket in Figure 2.8 for example, the computer program used to
generate this involves a recursion which generates 3* copies of the initial
triangle on the kth level. In Figure 2.8 this yields 3* = 81 copies. Even at
this level the ultimate form of the gasket is clear, but if there had been
many more transformations which were self-affine and overlapping, then
the process of generating these by direct recursion could be very lengthy.
This is where the second part of Barnsley’s approach becomes important,
and we will sketch this in the next section.

2.8 Fractals as lterated Function Systems

As the recursion of transformations proceeds according to equation (2.41),
the generated points move closer and closer to the attractor. At some point
the approximation is good enough for the scale of the fractal generated
becomes finer than that of the computer screen on which it is viewed or
the resolution of the printer on which it is printed. When this scale is
reached, further application of the transformations will not add any further
detail to the picture. The crucial issue then is to get as close as possible to
the best possible approximation to the attractor by generating as few points
as possible, for once a point is reached on the attractor, all subsequent
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transformations of that point will also be on the attractor and the picture
will be quickly revealed.

Barnsley (1988a) suggests the following procedure: pick any point on the
computer screen, hopefully and ideally in the vicinity of the fractal in that
the object is to be plotted on that screen. Then pick a transformation from
the set of transformations at random and generate a new point by using
this transformation on the old point. Now if this procedure is repeated a
sequence of points will be generated which will only move towards the
attractor if the transformations are contractive, that is if they scale and dis-
tort the object into a smaller copy of the original initiating object. In one
sense, we are unlikely to pick objects which have no self-similarity because
there would be as many transformations as points in the original picture
to generate. The art, of course, is to encode the picture in as few a number
of transformations as possible, and for the object to be tiled by these they
must contract the original shape. Now assuming that this is the case as in
Figure 2.18, a point very near the attractor will be generated with near
certainty, say by the 10th iteration, if the original point chosen is ‘near’ the
fractal. Once the point is there, then further applications of the transform-
ations randomly will begin to fill in the form of the attractor and the picture
will emerge like a pointillist painting composed of tiny dots.

If only one transformation is chosen from several, the picture will be
incomplete. If some of the transformations are more important to the pic-
ture than others in terms of the ‘amount’ of the object they generate, then
these transformations should be picked more frequently. Rather than choos-
ing each transformation to apply with equal probability, we can measure
the importance of the transformation in proportion to the determinant of
the scaling-rotation matrix given in equation (2.38). In short if there are n
transformations, then the probability p; of applying the jth transformation
to the point in question can be set as

lajd; - bl
R

- (2.42)
E Iﬂ,d,' o brcl'l

where the coefficients 4, b;, ¢; and d; are those associated with the jth trans-
formation specified in equation (2.38). The method is thus operated as fol-
lows: each transformation should be chosen in accord with the probabilities
computed in equation (2.42) and after about 10 iterations, the sequence of
points will be on or very near to the attractor and can thus be plotted on
the screen or printed as hard copy. Equation (2.42) is a measure of the
area of the fractal associated with the jth transformation. This method of
generating fractals is referred to by Barnsley (1988a) as the Iterated Function
System (IFS), while the process of randomly generating points but in a
structured form is called the ‘Chaos Game’ (Barnsley, 1988b). In Figure 2.19,
we show four stages in generating the Sierpinski gasket given earlier in
Figures 2.8 and 2.18. There are three transformations used and the coef-
ficients associated with them are given as 4, =a, =a;=05,d, =d, =d3 =
05,e,=1,e5=f=0.5 and p, = p, = p» = 0.33 with all other coefficients set
to zero, thus showing that scaling and translation are the only transform-
ations used in constructing this fractal.
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Figure 2.19. Generating Sierpinski’s gasket using IFS.

The real power of this method cannot be demonstrated with strictly self-
similar objects because these can be generated as quickly if not faster in a
variety of more direct ways. However where an object is composed of much
less obvious self-affine copies of itself, then the method is truly magical.
We will demonstrate this for three objects, all tree-like shapes which are
much more realistic than those shown in the previous sections of this chap-
ter. First we show a simple twig which involves three transformations of
the original object into two which reflect branching and one which reflects
the stem. Figure 2.20 illustrates the transformations in terms of the first
level of recursion and the final object after some 10,000 iterations. This twig
is adapted from Peitgen, Jurgens and Saupe (1992) who show that it does
not matter what the actual object is which initiates the process because
whatever object it is, it will be scaled down to a point at the resolution of
the screen before it is plotted; thus it is only the transformations of the point
which govern the form of the object which is eventually generated. We
might begin with the Taj Mahal or some equally elaborate object but as
long as the transformations of the object are those shown in Figure 2.20, a
twig will be the ultimate form which we see as an approximation to the
fractal attractor.

In Figure 2.21, we show an even more realistic tree, specified as four
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Figure 2.20. Three transformations defining a twig.

transformations to begin with and then as five. These too are adapted from
Peitgen, Jurgen and Saupe’s (1990) article and their (1992) book and the
figure shows how the object can be improved in realism through the
addition of a single transformation. However, perhaps the best fractal object
created by this approach so far is Barnsley’s (1988a, b) fern which is shown
in Figure 2.22. This is a remarkable demonstration of how a seemingly com-
plex object can be tiled with only four self-affine overlapping but neverthe-
less contractive transformations. Demko, Hodge and Naylor (1985) also
show how other conventional fractal objects such as dragon and Koch
curves can be generated using IFS. The developments of the IFS approach
are only just beginning and they are likely to be manyfold. In particular,
there are two which are noteworthy. The first relates to showing how very
different objects can be transformed into one another. The Koch curve with
which we began this chapter consists of four transformations which are
structurally identical to those used to generate the Barnsley fern. If the four
sets of coefficients {a, b, c, d, ¢, and f} are compared for each object, then it
is possible to interpolate a sequence of values between those for the Koch
curve and those for the fern. If the objects associated with these interpolated
values are plotted in accordance with the order of interpolation, it is poss-
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Figure 2.21. Redlistic trees based on four and five transformations.

ible to see the Koch curve transform itself into a fern and vice versa. In fact
this ‘morphogenesis’ can be animated for the interpolated values are like
those used by animators in the process of ‘in-betweening’; an example is
given by Peitgen, Jurgens and Saupe (1992).

A related set of animations are even more powerful in that they consist
of transforming a real object such as a tree or fern or Koch curve into an
object with the same number of transformations but those with values
which specify objects which exist only in mathematical space such as the
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Figure 2.22. Barnsley's fern.

Mandelbrot and Julia sets. These are also shown in Peitgen, Jurgens and
Saupe (1992) and this is at once a demonstration of the fundamental nature
of fractal geometry which links real objects with those which only exist in
mathematics as well as real attractors to mathematical attractors which
might be the ‘strange’ attractors appearing in chaos theory. Finally, the
power of Barnsley’s method is being most widely realized in providing a
new approach to image compression. Fractals have been used already for
such purposes as in those space-filling curves used to store two-dimen-
sional data in one-dimensional form (Goodchild and Mark, 1987) but
Barnsley’s approach is more direct. Compressing images by defining IFS
codes is immediately apparent in, for example, the fern which only requires
four transformations each with six coefficients, making 24 numbers in all
to be specified. As Barnsley and Hurd (1993) indicate, the real advantages
to such compression are not only the limited data needed but that fractal
compression is, in the last analysis, independent of the ultimate resolution
of the object. This is a fundamental consequence of thinking and articulating
the world in terms of fractals.
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2.9 ldealized Models of Urban Growth and Form

This has been a long but necessary chapter, long because it is essential to
have at least a rudimentary knowledge of all the key developments in frac-
tal geometry and fractal forms before we begin our applications to urban
form, necessary because it puts us into a position to begin speculating on
the geometrical properties of city shapes and how we might see them as
fractals. In the rest of this book we will be dealing with two basic properties
of urban form which involve, on the one hand, boundaries to urban devel-
opment, and on the other hand, the growth of cities, their size, shape and
density as we might perceive them in terms of fractal clusters. We are,
however, already in a position to say something about how strictly self-
similar fractal forms compare with idealized city shapes which have been
suggested down the ages and which we briefly reviewed in Chapter 1. As
a conclusion to this chapter, we will present some of these speculations.

The Koch curve was used by Mandelbrot (1967) as an idealized model
of a coastline because its fractal dimension was close to that estimated for
the west coast of Britain (D = 1.262), while its geometric properties nicely
captured the way a coastline might repeat its form at different scales. In
fact, as we will show in Chapter 5, urban boundaries are somewhat like
coastlines in terms of the extent to which they fill space, and thus the Koch
curve might also be a good model for a city boundary. There is, however,
an obvious but perhaps serendipitous comparison we can draw here. Man-
delbrot (1983) noted that the slightly distorted H tree such as that shown
in Figure 2.13(b) reminded him of the 17th century fortress works of the
French Engineer Vauban, and in the same way the Koch island might be
likened to the regular fortifications suggested by Renaissance scholars as
encompassing ideal cities and actually implemented in many new towns
such as Naarden and Palma Nuova (Morris, 1979; Rosenau, 1983). In Figure
2.23, we show a selection of ideal town plans produced during the Renaiss-
ance in Europe and echoing the classical ideals of Greek architecture and
urban design as portrayed for example by Vitruvius.

The regular sorts of fortification which are such a feature of European
towns during these centuries were in fact based on the notion of maximiz-
ing the amount of cross-fire which could be directed from the town at an
approaching army. At the same time, this increased the amount of wall
which had to be defended, and inevitably what was built was some
compromise between these conflicting ideas. The town plans shown in Fig-
ure 2.23 in fact show fortifications which are built, not on the triangular
Koch island which was used to illustrate the meaning of fractals in the
early sections of this chapter, but upon regular pentagons, hexagons and
octagons. Although these Koch islands only show detailed perturbation of
the initiator down one or two levels, it is clear that their fractal dimensions
over a couple of orders of scale are close to that of the Koch curve. One
last point relating to these ideal towns involves the fact that most organi-
cally growing towns prior to the post-industrial age are radially concentric
in that the town develops around a seed site, usually a palace, temple or
market complex which is linked to other towns and to the surrounding
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Figure 2,23. Idealized plans: fortified Renaissance towns and Koch islands (from Morris,
1979).

suburbs by a regular patterns of radial roads. These features are even clear
for the ideal towns shown in Figure 2.23.

Our second example also relates to the Koch curve. In Chapter 1, we dealt
with the Radburn layout of residential housing in which it was possible to
visit any place alongside the branches of roads servicing the area without
crossing any of these roads. Such layouts were shown in Figure 1.19 and
we discussed their properties in terms of the H tree in an earlier section of
this chapter. Arlinghaus and Nysteun (1990) have suggested that fractals
such as the Koch forest (Figure 2.3) and the Cesaro-Peano sweep curve
(Figure 2.7) might be used as designs which ‘maximize’ the amount of lin-
ear space for mooring boats in a marina. They illustrate the idea using the
Cesaro-Peano design which we show in Figure 2.24 where they speculate
that the elaborate nature of the mooring is more likely to coincide with the
distribution of preferences in the related population than a design based
on routine mooring along a waterfront. Moreover, as the amount of boat
mooring is also increased dramatically by such space-filling designs, the
density of development would be greater and costs per unit of development
would likely be lower for each participant in the scheme.

The last example we will introduce here involves an idealized version of
the fractal growth model which we will introduce from Chapter 7 on. We
have already presented several ways of viewing Sierpinski’s gasket and an
elaboration on this would be to tile a square initiator with five copies of
itself in the manner shown in Figure 2.25. Mandelbrot (1983) refers to
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Figure 2.24. Maximizing linear frontage using the Koch forest (from
Arlinghaus and Nysteun, 1990).

(c)

K=0 K=1 K=2 K=3

Figure 2.25. Sierpinski’s free: an idealized model of fractal growth.
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similar designs as Sierpinski carpets although in this case, the design is a
dendritic form rather than that of an object into which holes are punched.
We will refer to this then as a Sierpinski tree in the spirit of Mandelbrot.
It is easy to see that this tree is formed by tiling the initiator with five copies
of itself, each scaled by one third the original size of the initiator. Thus
using equation (2.19) the dimension is D = log (5)/log (3) = 1.465. In Figure
2.25 we show three ways of presenting this idealized tree. In 2.25(a), we
show the tree as a strictly self-similar fractal in which we form the attractor
by tiling an aggregate unit, a square, by five smaller squares at each level
of hierarchy. This is the same way we introduced Sierpinski’s gasket; it
represents the way we might measure the dimension of this fractal if we
were approximating its form at different levels by changing the scale on
which we were viewing and measuring it.

However, in Figure 2.25(b), we show the dendrite as a spanning tree at
each level of the hierarchy. It is from this figure that we might measure
the perimeter of the fractal. Using equation (2.16) with N, =5 and 1. =r/3%,
assuming the length of each diagonal of the unit square at k = 0 to be V2,
and that there are four diagonal spans to the perimeter of each square at
the appropriate level, then the perimeter of the entire tree at level k would
be given as

5\
Lk = Nkrk = 4\;2 (5) - (2.18)

The third way to examine the Sierpinski tree is as a growing fractal and
this is shown in Figure 2.25(c). In this case, we now have a fixed scale r
and a varying yardstick or ‘radius’ R at scale k. Now the mass of the fractal
can be measured as its number of parts N where this number is growing
as the scale k of the tree gets larger. Then

Ry 2 DD
Ni=|-f| =RPre. (2.43)

Equation (2.43) is of the same form as equation (2.31) which is the relation-
ship between mass and linear scale for a growing fractal. In short, this is
the relation that we are seeking and which we will exploit from Chapter 7
on when we develop real versions of the Sierpinski tree as the skeleton on
which most cities develop.

Noting that the fixed scale » of the growing fractal is 1/27 = 37, then the
perimeter can be calculated for each scale k as (4¥2/27)5* where we again
use the four diagonal spans as the perimeter of each basic unit whose side
is 1/27 of the unit square. This is a reasonable model of a growing dendrite
although its construction is somewhat different from those trees presented
in an earlier section. It is easy to use IFS to generate the tree for like the
Sierpinski gasket, its only transformations are scaling and translation. There
are five transformations and the coefficients are given as 4; = d; = 1/3 for
alli; b;=c,=0forall;ey=fi=fr=es=0;e,=fr=€,=f,=2/3; and &5 =
fs = 1/3. The tree is shown in Figure 2.26 for four stages in its generation.

In the next part of the book, we will begin to apply these ideas to more
realistic looking cities than those with which we have concluded here. In
this we will link our ideas back to some of those presented in our survey
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Figure 2.26. Generating Sierpinski’s free using IFS.

of urban form in Chapter 1. In particular in the next chapter, we will
develop fractal models of cities in the manner in which realistic fractals
were first modeled as statistical simulations of self-similar lines and sur-
faces. We will look once again at the simulation of coastlines and then
develop more idealized models based on simple location theory and on
principles of hierarchical dependence. To do this, we will develop yet
another model of self-similarity, this time of a stochastic, not deterministic,
variety, but we will still restrict our models to two-dimensional maps and
our fractal dimensions will still range between 1 and 2.



3

Simulating Cities as Fractal
Picturescapes

Suppose I want to understand the ‘structure’ of something. Just what exactly does
this mean? It means, of course, that I want to make a simple picture of it, which
lets me grasp it as a whole. And it means, too, that as far as possible, I want to
paint this picture out of as few elements as possible. The fewer the elements there
are, the richer the relationships between them, and the more of the picture lies in
the ‘structure’ of these relationships. (Alexander, 1979, p. 34.)

3.1 The Quest for Visual Realism

The new geometry finds its most obvious expression in the natural world
with examples of fractals all around us. Yet as Mandelbrot (1982) himself
has argued, fractals are equally applicable to systems other than those por-
trayed in nature. Any system in which the whole is composed of parts
arranged hierarchically in some self-similar order is fractal, and in fact, the
most serious candidates may ultimately turn out to be artificial systems
ranging from silicon chips to business organizations. Man-made structures
such as cities, we will argue, display all the characteristics we have associ-
ated so far with fractals. In this spirit then, this chapter pursues two goals.
First, we will begin to establish the applicability of fractal methods for
describing and modeling cities in terms of the way their form reflects their
function, although this will also be our longer term goal throughout sub-
sequent chapters. A second and more immediate goal is to illustrate how
fractal geometry combined with state-of-the-art computer graphics, can be
used to produce highly realistic but minimalist pictures as Alexander (1979)
implies above, pictures which have more than just superficial meaning
when applied to city systems.

In a sense, we anticipated this at the end of the previous chapter. But to
make real progress, we need to relax our approach to fractals which so far
has been mainly based on strictly self-similar forms, completely and pre-
cisely determined by their initiators and generating rules. The fractals of
Chapter 2 are hardly natural in any case, although as artifacts, they are
products of our mathematical imagination, notwithstanding their
occasional resemblance to real physical systems. To make progress here
therefore, we need to consider fractals whose self-similarity across a range
of scales can be described by statistics of randomly distributed variables
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through various forms of deviation or variance around the mean. These we
will refer to as “statistical or random’ fractals whose form can be self-similar
or self-affine but only in terms of averages measured across several scales.

Statistical fractals are obviously necessary if we are to generate realistic
natural scenes where randomness of form exists within well-articulated
structure. The convergence of fractals and computer graphics is important
too and we will start our discussion of realism with a little of its history.
It is widely recognized that fractal geometry would not have established
itself so firmly in so many sciences without the use of computer graphics
in generating pictures. Mandelbrot (1983) describes how the mathematics
of deterministic fractals remained largely inaccessible to generations of
mathematicians because there was no way of illustrating its import in less
esoteric and abstract terms. In fact it was Mandelbrot (1975) who first used
computer graphics to illustrate ideas about the modeling of natural terrain
using Brownian motion. His ideas in this realm were first formed when he
noted the coincidence of the frequency distribution of random coin tossing
illustrated in Feller’s (1950) famous book on probability with typical cross-
sections of terrain.

These early graphics were picked up quickly by a number of researchers.
Carpenter (1980) used the ideas to generate computer graphic backcloths
for flight simulators while Goodchild (1980) showed how these models
might represent real terrain. Smith (1982) showed how they were used in
the movie Star Trek II to generate a living planet, and Fournier, Fussell and
Carpenter (1982) generalized this usage further, producing various types
of fictional terrain. However, the pictures which accompanied Mandelbrot’s
(1983) second English edition of his book The Fractal Geometry of Nature,
particularly those by his colleague Voss (1985), have gained the greatest
recognition and have done most to popularize the subject. Stunning pic-
tures of fractal mountainscapes at different fractal dimensions and their
aggregation to the terrain and seas of planet-like worlds have been pro-
duced. Most recently, these landscapes such as those generated by Mus-
grave and his colleagues (Musgrave, Kolb and Mace, 1989; Mandelbrot,
1990) have become so realistic that they are hard to tell apart from natural
scenes. This suggests that geomorphic and geologic processes of weathering
and erosion are bound to generate fractal forms, thus giving further weight
to the long-standing notion that ‘form follows function’. Moreover, Mandel-
brot’s (1982) view that “. .. the basic proof of a stochastic model of nature
is in the seeing: numerical comparisons must come second” has gained
much credence through such demonstrations.

There have been other powerful demonstrations of fractal geometry using
computer graphics and these have revolved around the idea of illustrating
the fractal structure of mathematical space. Although this book is not con-
cerned with these types of fractal, much of the glamour of the subject and
not a little of its appeal has come from these geometries. In essence, the
geometry of mathematical space is usually geometry which shows the
properties of the mathematics involved, particularly the solutions to equa-
tions. For example, consider the iterative equation z,.,; = z7 + ¢ which is the
discrete equation for the logistic growth of a variable z such as population.
Then if we consider that the solutions to such equations are complex num-
bers in that they have real and imaginary parts, and if we plot these on
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x-y coordinates when z converges to a finite value, then the geometry of
the solution is fractal in the following sense. If we start with ¢ = 0, then the
resulting solutions with different starting values for z, based on complex
numbers, form what are called ‘Julia sets’, while the map of real and
imaginary values which we get when we start with ¢ as a complex number
and z, = 0, define the ‘Mandelbrot set’. When we plot both types of set
and color the map systematically, the boundaries between solutions to the
equations and the areas where the z, values diverge towards infinity are
fractal; as we zoom in on these boundaries, detail is magnified and shows
the same form, however deep we zoom. These are remarkable results from
such simple equations whose form can only be revealed directly through
the power of computer graphics.

These sets have been beautifully rendered by Peitgen’s group from Bre-
men (Peitgen and Richter, 1986) but on a more fundamental level, formal
relationships between mathematical and physical fractals are being pursued
through the idea of fractal attractors. We came across this idea in Chapter
2 when we summarized Barnsley’s (1988) work. In essence, what can now
be shown is that fractals in mathematical space such as Julia sets can be
transformed into fractals in physical space. For example, it is easy, using
changes in the transformation rules, to show how the Koch island can
emerge from the Julia set and vice versa, the Koch island and the Julia set
both being attractors in two dimensions. Finally, perhaps with an even
greater sense of mystery, the solutions to many chaotic systems have been
shown to have an underlying order which is fractal; and the visualization
of chaotic solutions has again only been made possible through recent
advances in computer graphics (Devaney, 1990).

Computer graphics is fast becoming a new medium for simulation
throughout the sciences as well as in the arts and design. Clearly through
the desire to simulate the ‘fictional realism’ of scenes which look realistic
but are figments of the designer’s imagination, there come useful ways of
rendering backcloths in movies and the graphic arts. But the use of graphics
to see what has not been seen before, to explore the whole question of scale
and limits, and to render scientific predictions in ways in which the data
have not been visualized hitherto, are central to the way fractals have been
pioneered and are applicable. This is especially true in fields where data
are extensive and have hitherto not been easy to visualize, and it is nowhere
more appropriate than in the spatial sciences such as those dealing with
both natural and artificial, physical and social systems, especially with
urban phenomena in the form of cities, our focus here.

Mathematical models of city systems implemented on computers were
first developed 30 years or more ago, but the theories of spatial organization
and location used therein originated in economic theory from the early 19th
century onwards. The typical urban models proposed so far have thus con-
centrated upon the location of and interaction between economic activities
such as employment, population and transportation at the macro-spatial
level where cities are divided into large zones such as census tracts (Batty,
1976) or at the micro-level of the individual or firm (Anas, 1982). Models
which take the level of analysis down to the physical form of the city or
to the relationship between urban activities, land uses and their physical
form have rarely been developed. This is possibly because it is the activity
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level which is the most appropriate for simulation, for it is here that econ-
omic theory can be brought to bear on model design, and thus there is the
implicit view that the translation of spatial activity into physical land use
is a fairly trivial task or at least, does not matter. It is more likely that the
dearth of modeling the physical configuration of land use per se is largely
due to unconscious neglect by those who have found it easier to begin with
activity simulation and whose disciplinary biases have constrained their
interest in the physical form of cities.

However, a major problem has begun to emerge in conventional urban
modeling which relates to the meaning of spatial data and predictions. For
a long time it has been known that when model outputs in terms of activi-
ties are mapped spatially in aggregate zones or as individual point patterns,
their form often looks ‘wrong’ in some indefinable physical sense. Excep-
tionally good fits in terms of numerical indicators can be obtained, and
such models may manifest robust and causally acceptable structures, but
when their predictions are mapped, the whole does not seem to add up to
the sum of the parts; systematic biases appear and the patterns often look
physically imbalanced. In macro-modeling, such biases can often be cor-
rected, or at least there are strategies which enable under- and over-predic-
tion to be handled consistently, but with models based on individual dis-
crete predictions, these problems are rarely addressed because the outputs
are hardly ever mapped spatially. There are thus few checks on whether
or not such models generate spatially acceptable predictions. In short, what-
ever type of model is used, their data and predictions have been difficult
to assess spatially for computer graphics in this field is in its infancy.

This problem of visualizing spatial data and urban model predictions has
only just begun to be tackled in terms of the development of appropriate
computer graphics. It is already clear that a school of thought is fast emerg-
ing that the ultimate test of any model is that ‘it must look right’. In one
sense, this school represents a ‘back-to-basics” movement which is not only
borne of a dissatisfaction with the structure and focus of contemporary
models. It is also based on the fact that as powerful computers are now
available which make graphics easy to employ, visual reality would seem
to be more important than statistical reality. In this, any models which
attempt some physical simulation are likely to produce more reasonable-
looking spatial patterns than those which are highly abstracted as points
and networks. In fact, in this chapter we will show some examples of urban
simulations which look distinctly ‘uncity-like’, thus demonstrating both the
power and limits of simulation and the potential of fractal geometry as an
organizing mechanism for such simulation. In one sense, although this
entire chapter will be focussed on simulating ‘right-looking’ cities, it will
also show how limited our best known theories and models of urban struc-
ture are in simulating the physical structure of land uses and urban activi-
ties. Before we can do this, however, we need to continue to relax fractal
geometry by presenting the statistical view.
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3.2 Randomness and Self-Similarity

In Chapter 2, we introduced several deterministic fractals from the strictly
self-similar to self-affine but in each case, their generators produced the
same forms or attractors each time they were initiated. Thus there is no
uncertainty in the geometry of the resulting structures, and the rules for
adding, taking away, displacing and transforming the initiator always
produce a form whose ultimate attractor is unique. Such fractals however
only exist in the world of mathematics for in nature, there is always chance.
Objects may be similar but they are rarely identical, or if they are, their
identity is only to the resolution of the measuring device, and there is
always uncertainty beyond this. The fact that chance plays so dominant a
role in the natural world is underscored by theories of evolution whose
basis in selective mutation is now well established (Dawkins, 1986), while
in the physical world, the repercussions of quantum theory are still rever-
berating throughout physical theory. In a less abstract realm, natural scenes
composed of terrain, vegetation and particular climatic regimes are subject
to all the physical and natural forces which enable change to take place in
the landscape. It is clear that for any circumstance, although the processes
which act as functions of form might be known, their operation is, to all
intents and purposes, beyond our ability to observe, and we must be con-
tent in estimating their meaning statistically.

The intensity of the processes involved as well as the degree to which
they interact within one another are also complemented by various con-
straints on the operation of the processes in question. In an urban context,
such constraints are physical and artificial, ranging from areas of land upon
which urban development is virtually impossible within given technologi-
cal limits to institutional processes which constrain physical development
in diverse ways. In short, processes which form cities operate under a var-
iety of constraints which distort and transform the structure in general, and
which thus have to modeled statistically. To demonstrate this we will begin
with our basic fractal model, the Koch curve which we portrayed at the
end of Chapter 2 as an idealized city form or boundary. We will begin
relaxing this strictly self-similar deterministic fractal by introducing some
elements of chance into its generation, and it is appropriate that we begin
with the curve and its form as an island shown in Figures 2.1 and 2.2
respectively. Peitgen, Jurgens and Saupe (1992) provide similar demon-
strations.

To introduce the element of chance, consider the way in which the gener-
ator is applied to the initiator in the traditional Koch curve which forms
each side of the island shown in Figure 3.1(a). The generator is based on
the regular midpoint displacement of the line into a line 4/3 times the
length with each of the four segments of the line being 1/4 the length of
the original line. The Koch curve is obtained by using this generator with
the same orientation each time it is applied. However, we can introduce an
element of chance by letting this orientation be chosen randomly on either
side of the line which, when applied to the island, enables the boundary
to be enhanced by adding or subtracting to obtain the new detail. The new
island is shown in Figure 3.1(b) where the orientation either side of the line
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Figure 3.1. Regular and random Koch islands with identical fractal
dimensions.

has been chosen randomly at each iteration of the generation. As Figure
3.1(b) shows, it is quite remarkable how the Koch island becomes irregular
by introducing this simple chance effect. It is much closer to a natural coast-
line than the original island, although as the same number of lines with
the same length are generated on each iteration, the fractal dimensions of
each figure are the same, that is D = log (4)/log (3) = 1.262. This is perhaps
the most remarkable aspect of randomization in generating fractals, and it
not only shows that very different looking forms can have the same dimen-
sion and virtually identical functions (generators), but that fractal dimen-
sion says little about the orientation and overall shape of the ultimate fig-
ure. We will leave the reader to ponder this further, for it is an important
issue throughout this book. However, before we leave the Koch island, we
will show how even more irregular coastlines might be generated.

The generator of the Koch curve contains three parameters which might
be manipulated or chosen randomly to form different curves, and we have
already seen one way of doing this in Chapter 2 where we altered the
midpoint and size of vertical displacement to form the Koch forest shown
in Figure 2.3 and Plate 2.2. Thus we can alter not only the height of the
displacement but also the position of the perturbation of the line given by
the two points which define its location relative to the midpoint. These
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values, called H, W, and W, respectively, are shown in Figure 3.2(a). We
can now generate Koch islands with the values of H chosen randomly
between 0 and say, the length of the initiating line, with the offset values
W; and W, set between 0 and 0.5. In Figure 3.2(b), we show six Koch islands
generated in this way where the three parameters are chosen randomly at
the beginning of the generation process, but with the orientation chosen
randomly at each iteration as in Figure 3.1(b).

The fractal dimensions of the resulting curves are not equal to 1.262,
and to compute these, we have used equations (2.25) and (2.26) which are
repeated here:

L(r) = N(#)r = Kr'=D), (2.25)

N(r) and L(r) are the number of parts and the length of the line respectively
at scale r, and K is a constant of proportionality. The log transform of equ-
ation (2.25) yields

log L(r) =log K + (1-D) log r, (2.26)

where (1-D) is the slope of the regression of log L(r) on log r from which
the dimension D can be derived directly. For the six islands in Figure 3.2(b)
we have calculated the perimeter L(r) over six orders of magnitude and the
estimated dimensions and the coefficients of determination associated with
these estimates are also shown in this figure. We have not yet formally
introduced regression to determine fractal dimensions, and we will post-
pone further discussion of this until Chapter 5 where we will build on the
method first introduced by Richardson (1961).

In fact we will avoid such measurement until then, but from these results
it is immediately clear that as the curve becomes more irregular and in this
sense fills more of the two-dimensional space available, the fractal dimen-
sion increases. The consequent interpretation is that more rugged ria-like
coastlines have higher fractal dimensions than smoother lines, and an obvi-
ous interpretation is that the value of the fractal dimension has strong
implications for the underlying processes of weathering and erosion which
lead to such forms. The great appeal of the Koch curve is that its fractal
dimension of 1.262 is close to that estimated for the west coast of Britain
by Richardson (1961) and Mandelbrot (1967). This is in contrast to the coast-
line of Australia with a dimension of 1.13 and of South Africa with 1.02.
Ria coastlines have higher dimensions, but these are seldom more than 1.5,
for above that value, the curve would have to considerably distorted in a
rather systematic fashion for it to avoid self-intersection which, of course,
is a physical necessity in terms of coastlines.

To illustrate the use of these ideas further in terms of generating realistic
curves, we will take a memorable shape and perturb its straightline seg-
ments using degrees of perturbation which imply different fractal dimen-
sions. Mainland Australia has been chosen, and it is easily described by the
upper left hand shape in Figure 3.3 which consists of 10 straightline seg-
ments. Each straightline segment in itself has a dimension of 1, and we can
see how close this shape is to the ‘real’ Australia by simulating different
degrees of ruggedness. In Figure 3.3, we show what happens as the degree
of ruggedness increases — as the fractal dimension increases in stages from
D = 1 to D =~ 2. We must be clear about what we are doing here. If we
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(@)

(b)

D= 1.03 r=0.93 D=~ 1.05r*=0.94

D= 1.14 r* = 0.96 D=1.19r*=0.95

D= 120 r®=0.92 D=133r2=091

Figure 3.2. Random Koch islands with different fractal dimensions.
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Figure 3.3. Simulating the coastline of Australia.

measured the fractal dimension of each ‘Australia’ in Figure 3.3, we would
get values different from those which we have shown and have used to
generate the shape. This is because our overall shape has already been fixed
or constrained, and we are just simulating irregularity about each of its
parts. Moreover, as the algorithms we use to generate such displacement
imply the operation of chance, the values shown are those used to constrain
this chance, but do not imply that the level of chance is fixed to those values
we input. Nevertheless, the simulations do give us some feel for how the
degree of irregularity increases as we increase dimension in the same way
we did for the Koch curve in Figure 3.2(b).

Up to D = 1.15 which is near the accepted dimension of mainland Aus-
tralia, the simulations clearly increase the realism of the coastline, but after
this the coast becomes too rugged. By the time it reaches a ria-like level of
1.5, the only thing in common with Australia is the fact that the simulated
coast passes through the eleven points which define the initial map. D =
1.71 is the dimension of many crystals (and cities as we will see from Chap-
ter 7 onwards) while the map where D = 2 is much more reminiscent of
a random walk across space. As such, Figure 3.3 provides a useful template
for assessing approximate fractal dimensions (as Figure 3.2(b) does too).
The real point of this example is not simply to show the range of irregu-
larity. It is to emphasize the point that once the degree of irregularity is
chosen in terms of a fractal dimension, it is possible to simulate such curves
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using computer graphics. In fact, Figure 3.3 shows that we are able to simu-
late more realistic maps of Australia than the straightline map we started
with, but the success of the simulation depends intrinsically upon this start-
ing point, that is upon the initiator. For the pictures of planets, mountains
and cities we will show in this chapter, all depend upon choosing initiators
which are planet-, mountain- or city-like and upon the use of fractal render-
ing to make them realistic. There are a number of similar applications where
fractals have been used to enhance cartographic detail in cases where the
shape is too complex to describe in all its available detail, but where it can
be approximated using fractal rendering (Dutton, 1981; Hill and Walker,
1982). The classic example is Australia as we have shown, and other
examples where this map has been used to illustrate similar ideas are given
in Fournier, Fussell and Carpenter (1982) and in Dell’'Ocro and Ghiron
(1983).

Before we conclude our introduction to statistical fractals generated from
the occurrence of random events, we will examine the other classic fractal
of Chapter 2, the Sierpinski gasket. Consider Figure 3.4(a) and note that
the gasket can be seen as a process whereby an original equilateral triangle
is tiled with three copies of itself which cover only three-quarters of the
initiator. The number of units used to cover the shape is three and the
scaling is 1/2, in that each side of the original triangle divides into two
which form two of the sides of two new triangles. The fractal dimension
is thus D = log (3)/log (2) ~ 1.585. First we will relax the scaling in that
instead of choosing the midpoint of each side of the initiator which divides
the side into those of two new triangles, we let this value be chosen ran-
domly as any point on the side. This generates the random gasket shown
in Figure 3.4(b) whose fractal dimension must be computed using one of
the methods such as cell counting introduced in later chapters. The dimen-
sion is not important for Figure 3.4(b); this is only one step along the road
to a completely random Sierpinski gasket which we will be using as the
basis for generating terrain later in this chapter. Imagine now that our initi-
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Figure 3.4. The Sierpinski gasket: (a) without, and (b) with random ‘midpoint’ displacement.
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ating triangle is no longer equilateral: it may take on any shape. Then
instead of constraining the subdivision of each of the triangle’s sides to be
somewhere on each of these sides, let this point be chosen randomly some-
where within a circle centered on the midpoints, as in Figure 3.5 which is
taken from McGuire (1991). The three new triangles distort the original
shape, and further subdivision in the same way continues the distortion.
In Figure 3.5, the shape after 10 iterations is shown where the resemblance
to terrain is clear. Of course, the Sierpinski gasket is not a particularly good
model of a mountain, although the fact that it is a triangle is perhaps close
enough for the point to be made. As we did for Australia, we can control
the degree of displacement or the fractal dimension in this case by setting
the radius of the circle in which the displacement takes place, although we
have not pursued this in any formal sense in terms of this example. The
way we have generated fractals in this and in the last chapter really
depends upon the process of defining a generator which is consistently and
persistently applied to an originating or initiating object. At this point, we
must step back a little and say something about the possibility that there
may be underlying mathematical models of fractals which will help us in

Figure 3.5. Using the random Sierpinski gasket to simulate terrain (from
McGuire, 1991).
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the quest to generate realistic objects. To this end, we will now introduce
Brownian motion, one of the central ideas of this chapter.

3.3 Fractional Brownian Motion

The search for underlying generating functions which give rise to fractal
geometries is in some sense a fruitless quest. The generating functions we
have used so far can all be specified geometrically, and as Barnsley (1988)
has so persuasively shown, a slight change in emphasis based on their treat-
ment as classic transformations yields further insights into their form. In
fact, we began our introduction to fractals in Chapter 2 by implying with
Mandelbrot (1983) that a shift from continuous functions to discrete rep-
resented the obvious way to deal with irregular shapes based on curves
which might be continuous everywhere but have no derivatives. Such of
course is the Koch curve and its generalization to the coastline. However,
the search for an underlying fractal model in one sense throws us back to
the very mathematics which fractal geometry has released us from. Not
quite perhaps. Although our purpose is not to develop a strict mathematical
treatment of fractals in this book, we must indicate that there exist highly
formalized models of fractal order which can be approximated by the tech-
niques of continuous mathematics, in particular by infinite series such as
Fourier transforms and related functions.

Our starting point in this is ‘Brownian motion’ or Bm as it is sometimes
called. In 1828, the Scottish biologist Robert Brown first made known his
observations of the motion of dust particles which appeared to move at
whatever scale they were examined. In short, their motion appeared to be
fractal. We have almost provided an example of two-dimensional Brownian
motion in the last section where our simulation of the coastline of Australia
with the dimension near to 2 shows a self-intersecting curve whose lengths
and orientations are entirely random. If we were to relax the constraint that
the walk should pass through the 11 points of the Australian coastline, then
the walk would represent true Brownian motion. However, to get a better
sense of this motion, it is worth developing the analysis taking the example
of a time-varying phenomena, and then generalizing the analysis to the
cases of coastlines and terrain in the two and three dimensions of physical
space respectively. Our exposition will closely follow the way the subject
is treated in the fractal literature and in this we will closely follow Saupe
(1988, 1991) and Voss (1988).

Consider a variable V(f) which is the value of some phenomena at time
t and define the change in this variable AV as

AV = V(t) - V(to),
where the time interval Af is also defined as
At =t —t,

It is the change in the variable AV which is of major interest in that we
will assume that it is this variable which is randomly distributed; thus over
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any time period At, the value of AV would be that which is taken from a
normal or Gaussian distribution of the variable. However, because the vari-
able is a fractal, it is not possible to determine any limiting value of dV/dt
and thus the value of AV must be proportional in some way to the length
of the time interval At. In fact, we assume that it is the variance of the
variable called var(AV) which is directly proportional to time, that is

var(AV) =([V(t) - V(to)") = (t - to)a™. (3.1)

Without loss of generality we will assume that the variance o® can be nor-
malized to I, and thus in the following exposition, we will only include it
explicitly where it is important to do so. Thus equation (3.1) can be writ-
ten as

var(AV) = At. (3.2)
The implication of equations (3.1) and (3.2) is that the variable AV is thus
proportional to the square root of Af, that is

AV o« Af1/2, (3.3)

This means that the scaling between AV and At is one where if time changes
by four units, then the value of the variable will only increase by two. In
short, the relationship over different time scales is self-affine, not strictly
self-similar in the language of Chapter 2.

Before we generalize these equations to a wider class of Brownian
motion, we will formally examine this scaling. If we assume that the time
changes by a factor r, then the appropriate change variables can be writ-
ten as

AV’ = V(rt)) — V(rty),
and
At =rl — rig = rAt.
Now the variance of AV’ can be written as
var(AV’) = At o2 = rAto?
=r var(AV), (3.4)

from which it is clear that the value of the change variable AV’ is scaled
by the square root of 7, that is

AV’ = r12AV x (rAf)V2. (3.5)

We can now generalize this formalism to fractional Brownian motion
(fBm) where we introduce the exponent H from which, as we will show
below, the fractal dimension D can be derived. Following equation (3.1),
the variance of AV can now be stated as

var(AV) = AfHg?, (3.6)

where H is the Hurst exponent (named after the researcher who first used
this equation in measuring the discharge rate of rivers, see Mandelbrot
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(1983)), and o? the variance which we can normalize as 1. The variable AV
can be written as

AV « AtHg, (3.7)

and it is easy to show that the scaling of time by r following equation (3.5)
is given as

AV’ = tHAV « A, (3.8)

Thus a change in scale of 7 units in time leads to a change of ' in AV, and
it is clear that the case of pure Brownian motion is given when H = 1/2.
We will assume that H varies in the range from 0 to 1 in this particular
example. The last point we should make is that when equations (3.1) to
(3.8) apply to any and every time interval At, we say that the variable AV
shows stationarity.

It is fairly straightforward to determine the fractal dimension of fBm. Let
us assume that the variable AV is examined over N time periods and that
for each equal time interval, At =1/N. Thus for every change in scale of
1/N, the variable AV changes in proportion to (1/N)". If we consider that
for each time interval of length 1/N, we place a ‘box’ of length 1/N times
(1/N)* over the change in frequency of the variable, then we have to multi-
ply this by all N boxes to get a total coverage of the change in the variable.
Formally, we have the change in AV with At as

AV N

HE=E (3.9

and as there are N time periods, the number of square ‘boxes’ of size (1/N)?
called N(At) is given as

N(At) = NAQ—T = N2

1 2-H
= (E) = AtH2, (3.10)

Now from equation (2.17) which counts the number of equal elements
which approximate a fractal line, it is clear that the number of segments is

N(AY) = AFP, (3.11)

A comparison of equations (3.10) and (3.11) shows that the exponent in
both must be equal; that is

N(Af) = AtH2 = A#P, (3.12)

from which it is clear that D = 2 — H. We can now write our equations of
fractional Brownian motion given above in (3.6) and (3.7) as

var(AV) = APHg? = At+20g2, (3.13)
AV « Aty = AP-Dg. (3.14)

To complete this section, we need to clarify the meaning of different
values of the Hurst exponent H and the fractal dimension. Clearly for the
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case of pure Brownian motion, H = 1/2 and thus D = 1.5 and in one sense,
this represents the baseline. In the case where H = 1, then D also equals 1
and this represents a completely smooth function. The change in AV is
simply a function of time as equation (3.14) indicates. When H = 0, then D
= 2, and this means that at whatever scale the variation in the function is
examined, the motion or change is the same. This is characteristic of very
spiky-looking functions which ‘fill the space available’. We will generalize
these ideas to landscapes in the next two sections, but it is worth anticipat-
ing what the values of H and D are with respect to terrain. Smoothly vary-
ing terrain has both fractal and Hurst dimensions equal to 1, while at the
other extreme, very rugged and cavernous terrain has a D near to 2 and a
Hurst exponent near to 0. In the next section we will show how these ideas
can be developed for simulating landscapes, but if readers wish a more
complete exposition, then the chapters by Voss (1988) and by Saupe (1988,
1991) are worth reading as are the relevant sections in Mandelbrot (1983).

3.4 Fractal Planetscapes and Terrain

The equations describing the variance properties of fBm given in (3.1) to
(3.14) above only illustrate the properties of these processes and give little
insight into the way they might be computed. In fact for pure Brownian
motion in the plane this is straightforward and it can be implemented as
follows. Defining the variable V(f) now as the total distance traveled so far
by a point tracing out a random walk in the plane, we define appropriate
units of time; in each equal time interval, we select a pair of x-y coordinates
in the plane by drawing random numbers from a Gaussian distribution,
appropriately normalized to represent the physical distance-scale proper-
ties of the problem. A change in the distance At(x,.1, ¥,+1) can then be com-
puted from (u? + v?)'/? where u = x,,; — x,, and v = ¥,,; — ¥,. The total
distance traveled at time {,,; is

T(an-lt yrr+1) = T(Im yn) + AT(x!H-]J yru‘l)' (315)

where n + 1 acts both as an index of time and space. A plot of such motion
is shown in Figure 3.6, while a graph of the change in distance at each time
step A7(X,..1, ¥».1) and the total distance traveled 7(x,.1, ¥».1) from equation
(3.15) is drawn in Figure 3.7. It is clear from these figures that the motion
is Brownian, and in particular that changes in the total distance traveled
over an arbitrarily chosen time period are proportional in some way to the
length of that time period. Detailed measurement of the variation in this
function indicates that it is consistent with equations (3.1) and (3.2).
These ideas can easily be generalized to a system with any number of
dimensions for fBm in terms of equations (3.13) and (3.14), but their appli-
cation is somewhat more difficult. There are two broad classes of algorithm
which can be used in their implementation, and before we present the orig-
inal and perhaps most consistent method, we will outline these. The first
class of methods is based on recursive algorithms, in that its application
involves ever more detailed approximation to the limiting fractal function



Simulating Cities as Fractal Picturescapes 111

Figure 3.6. Pure Brownian motion in the plane.
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Figure 3.7. Profiles of pure Brownian motion.
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and the process of approximation involves algorithms which are iteratively
applied at each scale of resolution. In contrast, the second class involves
fixed resolution algorithms which approximate the function at a prespecified
level of detail and thus have to be computed afresh if different levels of
detail apply. The computational properties of these algorithms are such that
the recursive methods are usually more efficient and enable computation
to stop on the basis of what has been computed so far, whereas the second
class requires complete computation before the appropriateness of its appli-
cation can be evaluated.

The best known recursive method is midpoint displacement of the variety
we have been using so far in this book and which is best illustrated by the
generation of the Koch curve. There are several variants on this process.
These involve adding noise and variation after the computation has taken
place at each level of resolution in order to resolve the key problem with
such methods that the functions generated are not stationary. The second
recursive method is more involved although the functions it generates are
stationary. This is the random cuts method which is based on the idea of
increasing the scale of resolution by taking random cuts across the function,
computing its displacement randomly to meet the variance constraints, and
continuing this process until a fixed number of cuts are generated. Because
the cuts are randomly positioned, it is not possible to ensure that a level
of detail is reached by a particular iteration, although the resolution does
increase as the method proceeds.

Fixed resolution methods depend upon approximating fBm at a prespeci-
fied level of resolution, and these methods are in general based upon
approximating the function using various forms of series. The most well-
known are based on Fourier transforms, although the general problem with
these methods is that they tend to be periodic, in that the functions repeat
themselves on a cycle of 2m. Such problems have been dealt with by keep-
ing the transformations well-within the period range, although in general,
a major problem remains in that such functions generate intensive demands
for computation time. There are also a variety of new methods based on
modified midpoint displacement outlined by Mandelbrot (1988), some of
which have been implemented by Musgrave, Kolb and Mace (1989). In the
sequel, we will not use the fixed resolution methods because the recursive
methods are deemed more appropriate for the exploratory ideas developed
here. However, there remains the challenge not only to develop new and
better methods, but also to provide more definitive comparisons. Useful
surveys of the methods and their algorithms are presented by Voss (1988)
and Saupe (1988, 1991).

We will begin by outlining how the random cuts method has been
applied while in the next section we will deal with midpoint displacement.
As indicated earlier, the random cuts method produces functions which
exhibit stationarity in their variances. Generalizing fBm to three-dimen-
sional space, for any two-dimensional measure of distance 1,, computed as
(4? + v*)'/2, the variance must satisfy

([z(x+u, y+v) = z(x, )] = (1.)*" 0%, (3.16)

where z(x, y) is the elevation of the terrain at coordinate x, y. In this case
we can also assume that o is normalized to unity. The major change when
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one moves from two to three dimensions, from functions in the plane to
those in the volume, is that the fractal dimension is now given as D = 3 —
H. Note also that the intersection of a plane with the fBm surface yields a
profile with a fractal dimension of D = 2 — H, and these results can be
easily generalized. In the context of terrain, this implies that if the fractal
dimension of a coastline is determined, then the dimension of its relevant
surface is D + 1, while if the dimension of the surface is calculated, then
the dimension of the plane which cuts the surface as a coastline is D - 1.
This can provide a cross check in the computation of such dimensions.

The best way to illustrate the idea of the random cuts method is to con-
sider displacement on a sphere or a circle. On the circle, a randomly chosen
line which intersects the circle in two places is chosen, and a displacement
consistent with the fractal dimension adopted is made. Another cutting line
is then chosen which is independent of the first line, a displacement of
appropriate proportions is made and so on. This process continues until a
level of accuracy required is reached, but unlike midpoint displacement,
this is not known in advance. The process stops when all points defining
the circle reach the appropriate level of resolution, but it is likely that more
than half of these points will be at a level of detail greater than that specified
in the stopping rule. This method was originally used by Voss (1985) for
pure Brownian motion, for H = 1/2, although in later applications, the
method has been generalized to fBm.

The method is beautifully illustrated by Voss’s (1985) construction of
Mandelbrot’s famous planetscape Planetrise over Labelgraph Hill which is
reproduced on the back cover of Mandelbrot's (1983) book. In another con-
text, we illustrate a much simplified reduction of this in Plate 3.1 (see color
section). The method clearly demonstrates how the original sphere is cut
and then projected onto the flat plane. This picture was based on the ran-
dom cuts method simulating pure Brownian motion, but since then, various
renditions of similar planetscapes have been made using a modified form
of the method consistent with H # 1/2. Voss (1985) and Mandelbrot (1983)
both imply that by zooming in on the planet, it is possible to generate
mountain and valley landscapes for the fact that the displacement is based
on a sphere means that three-dimensional terrain is actually being simu-
lated. Voss has also produced the terrain for this application, and these too
are illustrated in Mandelbrot’s (1983) book.

Before looking at these pictures, it is worth noting that little work has
been done on calculating the actual fractal dimensions of terrain. This has
not yet caught the interest of those concerned with computer graphic simul-
ations, although there has been a good deal of discussion concerning ways
to increase the realism of such scenes by varying such dimensions. An
exception to this is in the work of Goodchild (1980) who has generated
several hypothetical fBm terrains using the cutting plane method and who
has explored their geomorphologic properties. Goodchild’s hypothetical
terrains are shown in Figure 3.8 where it is immediately clear that as the
fractal dimension of these scenes increases towards 3, the landscapes
become a jumble of spikes like stalagmites and stalactites and bear little
resemblance to real surface landscapes (Goodchild, 1982; Goodchild and
Mark, 1987). In fact, it is at the lower dimensions that these landscapes look
more realistic. Mark and Aronson (1984) have fitted fBm surfaces to 17 sets
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Figure 3.8. Simulated terrain with different fractal dimensions (from Goodchild and Mark,
1987).
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of digital elevation data and found that although the fractal function pro-
vided rather good fits for spacing intervals less than 0.5 km with a dimen-
sion of around 2.25, above this spacing there was a clear break in the slope
of the related variogram, suggesting a dimension of 2.75 for 0.5 to 5 km
spacing. Over 5 km, there was no correlation with the fractal function.

These points have been recognized by those developing simulations of
terrain. Voss (1985, 1988), for example, indicates that several of his land-
scapes have been made more realistic by scaling elevations to make them
smoother through post-processing of the outputs from the cutting plane
method. Other ad hoc techniques have been used. For example, some have
varied fractal dimension directly with respect to elevation, with higher
dimensions at higher elevations. As we have indicated earlier, Musgrave,
Kolb and Mace (1989) have developed such simulations by including
hydraulic erosion and thermal weathering processes directly into such
simulations with striking effect. There is clearly much that can be done to
extend these models, but before we show how they can be applied to city
systems, we will introduce the technique of midpoint displacement which
has been used more widely than the method just described.

3.5 Simulating Brownian Motion by Midpoint
Displacement

There are several reasons why the technique of midpoint displacement,
although less consistent than the random cuts method, might be preferred.
First it allows direct control over the level of detail simulated. That is, in
advance, one has some idea of how the landscape might look and this is
important if the goal is simply realistic-looking terrain rather than terrain
which accurately reproduces some reality. It is of course easier to
implement and perhaps easier to analyze, and it relates to the ideas we
have already introduced in our study of fractals. Its basic problem is that
it does not completely produce the required stationary variances; that is,
the variances produced are stationary, but only with respect to those dis-
placements that reflect the hierarchical structure of the way the function
is computed.

To illustrate the process, we will revert to our two-dimensional function
which relates the variable V() to time t. To fix ideas, we might think of
this as a line whose coordinates are V(t) and f and to illustrate the method,
we show this line in Figure 3.9. We will first outline the method for the
case of pure Brownian motion using equation (3.1) based on the interval
At =t, -ty =1 where t; = 1 and t, = 0. First we restate equation (3.1)

var(AV) = ([V(t) - V(t)]) = (t — to)a?, 6.1
where using the unit interval, this becomes
var(AV) = (1 - 0)o? = o> (3.17)

We will now begin the midpoint displacement. In the first step, we choose
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Figure 3.9. Brownian motion as midpoint displacement.

the variance of V(1/2) as the midpoint 1/2 by adding a variance displace-
ment A to half the variance of the entire original interval. The variances
([V(1/2) = V(0)P» and ([V(1/2) — V(1)]?) are equal for one of these, then

V(1/2) - V(0)= % [V(1) = V(0)] + A, (3.18)
(V(1/2) = VO =5 V(1) - VOR) + A3 = 02
=%02+A§=%c% (319)

It is easy to see that the variance in the displacement and the displacement
itself from equation (3.19) are calculated as

1 1
A%:Zazand A‘:EG'

The second step proceeds in like manner. The variances ([V(1/4) — V(0)]>)
and ([V(3/4) — V(1)]?) are equal and taking one of these, the new displace-
ment values A% and A, are calculated from

V(1/4) - V(0) = % [V(1/2) - V(0)] + A, (3.20)
V79 - VOR) = ; (V(/2) - VO)R) + A= 1

0%+ A2=2 o2, (3.21)

L
8
The displacements are thus
1

1 1/2
AZ= 3 o?and A, = (g) a.
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Continuing this process and noting the equality of the variance displace-
ments for subdivisions of the intervals at the same level, it is easy to show
that on iteration k, the mean squared displacement or variance of the dis-
placement is given as

1
ﬂ"’:E’:EO‘Z,

from which the actual displacement is the square root. The logic of this
subdivision is shown in Figure 3.9 where it is clear that equations (3.18) to
(3.21) apply to all subdivisions at the appropriate level and not just those
intervals that are given above.

This method although applied in its pure form several times (Carpenter,
1980; Fournier, Fussell and Carpenter, 1982), can easily be generalized to
fBm. We follow exactly the same steps, but note now that there is an
exponent of 2H on the time interval associated with the variance. Restating
equation (3.6)

var(AV) = ([V(t,) - V()P = (t; - to)*0?, (3.6)
and using the unit interval as in equation (3.17)
var(AV) = (1 - 0)*a? = ¢?, (3.22)
we follow an identical sequence to the pure case above. In the first step,
V(1/2) - V(0) = 5 [V2) - VO)] + Ay (329)
1 1\
{v(/2)- v = i ([(v1) = V(O)PP) + AT = (5) o’
2H
= i - (%) & (3.24)

with the displacement calculated as

o

The second step proceeds in like manner. The variances {[V(1/4) - V(0)]*)
and ([V(3/4) — V(1)) are equal and the new displacement values A3 and
A, are calculated from

v/ - V(O) =5 [V(1/2) - VO)] + Ay (3.25)

2H
(vV(1/4) - v(OP) = i (V(1/2) = V(O)D) + A} = (i) a2
-3 (%)m"“’ e G)w"z : (3.26)

A little rearrangement of equation (3.26) shows that the variance of the
displacements is



118 Fractal Cities

2
= (12249,
(22)H
and in general
0-2
A2 = 1 — 22H-2y,
Bt )

In Figure 3.10, we show an example of the application of midpoint displace-
ment for the case of a fractal line whose details at successive levels of resol-
ution have been generated using pure Brownian motion (with H = 1/2).
This illustrates how the profile for each level of resolution provides the
initiator for the generation of detail at the next level down.

3.6 Fractal Terrain Using the Midpoint
Displacement: the ‘Earthrise’ Sequence

We have already seen how we might generate fairly realistic terrain by
tiling the plane with triangles whose coordinates are chosen randomly but
within the logic of hierarchical midpoint displacement. The sequence of

257
129

65

33

Figure 3.10. Brownian motion computed by midpoint displacement
across several scales.
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distorting the Sierpinski gasket used by McGuire (1991) presented in Figure
3.5 illustrates a more general approach which we will use in generating
landscape and cityscape scenes in the rest of this chapter. A particularly
useful demonstration of this method is given as van Dam (1984) which
involves replacing each triangle with four, not three, copies of itself is
shown in Plate 3.3. There is however a problem in using midpoint displace-
ment in that the nonstationarity of the process sometimes leads to creasing
in the landscape (or in the form of whatever object is being rendered). This
is due to the fact that at the higher and earlier levels of recursion, the points
and lines generated are not subject to any further randomization, thus
implying greater degrees of nonstationarity when compared with points
which are generated later in the recursion.

We can show this formally in terms of equations (3.17) to (3.26) which
we used in the last section to generate fBm. First note that the variances
for the intervals [1/4, 0] and [3/4, 1] must be the same, that is

V(1/4) = VO)P) = ([V(3/4) - V)P) = (i)moz. (3:27)

Now if we add these two variances we would expect them to equal the
variance of the interval [1/2, 0] or [1, 0]. Equating these two variances,
we get

(IV(1/2) - V(O)P) = ([V(1/4) = V(O)P) + ([V(3/4) - V(D)
which from equations (3.24) and (3.27) implies that

(%)moﬂ =2 (%)ZHUJ, (3.28)

which is only the case when H = 1/2, the case of pure Brownian motion.
This is the main reason why those using the midpoint displacement algor-
ithm usually introduce some form of additional random generator either
during the process of iteration or after the output at the required level of
resolution has been computed. However, the use of other tessellations in the
plane can help resolve this, such as the choice of a square grid as initiator.
Mandelbrot (1988) has used nested hexagons to develop the method more
recently, although later in this chapter, we will demonstrate the importance
of choosing the correct initiator by adopting a square grid for the generation
of cityscapes.

We will use the triangular net to first show how it is possible to construct
a planetscape and then a mountainous terrain by midpoint displacement
for the case of pure Brownian motion. Our method is extremely fast and
involves very short computer programs which assume that some overall
shape of the object in question is input to the program in the first place.
In Figure 3.11, we show how a mountainous landscape can be generated
by inputting the basic structure of the landscape in terms of its overall form.
In this case, the inputs are large overlapping triangles which are then used
in the rendering of fractal detail. Each triangle is rendered separately using
the type of triangle displacement shown in Figure 3.11. The colors of the
scene are chosen so that the nearer the top of each mountain, the more
likely the mountain is to be snow-covered. The technique we use examines
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Figure 3.11. Simulating an Alpine scene using triangular midpoint displacement.

each of the most detailed triangles generated, computes the distance from
its centroid to the top of the relevant mountain and then chooses the color
randomly but within the limits imposed by the value of this distance. The
effect of creasing, however, is quite clear in this picture although this can
clearly be used to advantage in that real mountainous terrain often shows
this type of creasing due to differences in underlying geological structure.
We have used the same method to copy the Mandelbrot-Voss planetrise
picture shown earlier in Plate 3.1. In this case, we use a solid blue circle
on which a triangular continental land mass is placed. This land mass is
then rendered using triangular midpoint displacement. The colors are
chosen in the same way as those determined in the Alpine scene in Plate
3.2. The centroid of the basic land mass is computed and the further away
the centroid of each individual triangle at the most detailed level is, the
more likely the triangle is to be colored green, the less likely to be colored
yellow. This generates reasonably realistic continental land masses. At the
same time, islands are spawned from this, for the choice of color is also
extended to the generation of blue sea in the peripheral areas of the land
masses. However, our pictures are very much in the spirit of Voss’s (1985)
fractal forgeries in that to generate the planet in the plane, we let the conti-
nents overlap the edge of the circle and simply clean them off once the
detail of the planet’s terrain is complete. This is shown in Figure 3.12(a).
We have also used two other elements to generate the illusion that the
picture is a true three-dimensional rendering when it is only two. First we
have constructed a lunar-like landscape by triangular displacement and
into this we have introduced some oval shaped craters. The colors chosen
for this part of the landscape — black and yellow - give high contrast to
the picture as the planet is based on blue, yellow and green, typical of the
colors of the earth seen from space. Finally we have introduced a light
source which, like the sun, is a long distance away from the planet. This
means that one side of the planet is dark. In Plate 3.3, we show the planet
and its final rendering through four stages of construction. In fact, the pic-
ture is sufficiently realistic on the fourth iteration for no further rendering
to be necessary, although this is because the scene has been generated on
a small computer with a low resolution screen of the order of 320 x 256
pixels. Note that in both these pictures — the mountainscape and the planet-
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(a)

(b)

Figure 3.12. A simple planetrise: (a) construction; (b) final rendering.
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scape — only four colors were employed, but even these can still be used
to realistic effect.

Saupe (1991) says: “In order to generate a fractal, one does not have to
be an expert in some involved theory. More importantly, the complexity
of a fractal, when measured in terms of the length of the shortest computer
program that can generate it, is very small”. This statement can be borne
out in the applications which are featured throughout this book, but it is
particularly pertinent to the examples of this section. To generate the
planetscape in Figure 3.12 and Plate 3.3 requires 165 statements in BASIC
with an additional 15 relating to the input data. With some optimization
of this code, this can be reduced to around 120 statements. What is so
remarkable about fractals is that their realism increases dramatically, per-
haps exponentially, as their generation at lower levels proceeds. This is very
clear in Plate 3.3 where four levels of successive resolution are illustrated.
In running the programs associated with this planetscape, the emergence of
realism is almost magical as it is observed on the computer screen, although
readers must be warned that such realism is in the eye of the beholder who
is viewing the picture from a fixed human scale. What might appear
realistic would not be so if its scale where enlarged accordingly. For exam-
ple, zooming in on the fourth level of recursion which demonstrates fractal
detail as in Plate 3.3 and scaling this back up to the base scale of the
observer, the detail would then look crude and unrealistic. However, if the
fractal generation were to continue to orders of magnitude well below the
resolution of the computer screen, scaling back up would give sufficient
detail to retain the realism.

3.7 Elementary Models of Urban Structure

When we come to apply these ideas to cities and urban systems generally,
we require much more elaborate models than those which lie behind the
planetscapes and terrain simulated above. These models are simplistic in
the extreme, based on common observations of how landscapes look and
even in these contexts, to increase the realism further requires models of
erosion and weathering which build on more formal ideas in geomorphol-
ogy. In developing fractal geometry in city simulation, some rudimentary
theory about what activities and land uses are located where, must be used,
and this means that theories of location and urban structure which form
the basis of urban economics, transportation and human geography, are
required. In this section, we will introduce the most elementary of such
theories and use the resulting model to determine what activity or land use
is to be located in each of our zones or sites of the city, and where in turn
these sites are generated, using hierarchical triangular midpoint displace-
ment,

Cities and their activities and land uses clearly manifest forms which are
self-similar as we demonstrated in Chapter 1 and loosely alluded to in
terms of fractals in Chapter 2. At higher levels of spatial aggregation, for
example at the regional level, self-similarity is directly invoked in central
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place theory (Woldenberg and Berry, 1967). The idea of modeling self-simi-
larity at different scales involves finding an appropriate generating function
which can be applied to each scale in a recursive manner. A simple example
might be based on central place theory or on theories of the disposition of
neighborhoods and district centers within cities: such a rule might involve
market area, range of good, population served, the variety of services and
goods available at different hierarchical levels and so on. Such a function
would be applied first to the largest center, and then follow the rank-size
distribution through lower order centers. We are able to use any method
which subdivides the original space into regular numbers of subspaces,
quadrants, whatever, at each level of the hierarchy and the generation
would continue until the lowest order of center is reached. Clearly the
recursive rule involves locating lower and lower orders of non-overlapping
subdivision. The method we will use will begin with one or four spaces
and continually subdivide these by four at lower levels, leading to an hier-
archy of locations ordered from 1 to 4, 4 to 16, 16 to 64, and in general for
any iteration k, 2% to 2*. We will explain the hierarchical nesting in detail
in the next section.

The hierarchy we have just alluded to might equally well be an artifact
of the method as it clearly is in the landscape examples given earlier. It
does not have to have substantive meaning at each level for it to generate
realistic scenes or locations. However, in the examples of cities, we will
attempt to give the hierarchy more substantive meaning in terms of location
theory and the perception of space at different scales. Central place theory
and neighborhood hierarchies have already been mentioned, but there are
also hierarchies of traffic routes, public and private services, firms in terms
of their spatial organization from regions to the local level and so on, as we
implied in Chapter 1. As we also noted there, treating cities as hierarchies is
somewhat controversial for a number of studies, notably that by Alexander
(1965), argue that hierarchy is too simplistic an ordering device, that activi-
ties and land uses in cities are composed of overlapping areas whose order
is more lattice- than tree-like. However, this takes us to questions of the
rationale for such hierarchies, and we will postpone this until the next sec-
tion.

We have already introduced the notion that appropriate models of urban
activity are to be used to predict the land use/activity type at each level
of fractal detail, thus forming a basis for rendering. In this first application,
however, we will only use such models to predict land use at the lowest
level, not at intermediate levels which would imply that the hierarchy used
in simulation has substantive meaning. Thus once a lowest branch in the
hierarchy is reached, the model is invoked to enable activity types to be
determined. Here we have assumed that there are three key urban activities
in one-to- one correspondence to land uses: these are commercial-industrial
(u = 1), residential-housing (# = 2), and open space-recreational (¢ = 3)
where the index u defines the particular land use-activity in question. The
model for these activities is based on a simple distance relationship to the
central business district (CBD) where the profiles of land use type imply
that different land uses dominate different concentric rings. These are the
so-called von Thunen rings which characterize the organization of land use
in strongly monocentric cities. In general these profiles are structured so
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that commercial-industrial land uses dominate the core and inner areas of
the city, residential housing the peripheral areas of the city and the inner
suburbs, with open space more randomly configured throughout the city.
These patterns have been central to theories of urban structure and location
from urban ecology in the mid-1920s to contemporary urban economics
which began with Alonso (1964).

The general form of the model predicts a probability p“(r) which is a
function of the distance r from the CBD specific to each land use u. This
is given as

p(r=a*+b*(r-R),u=1,23, (3.29)

where 4%, b* and R" are parameters whose magnitude and sign control the
profile of the probability distribution with respect to distance from the CBD.
The precise forms of these equations for the simulation which will follow
can now be stated. For the commercial-industrial activity u = 1, equation
(3.29) can be written

p'(r < 400) = 1.38 — 0.0074r

where the probability declines inversely with distance, and is near to 0
when r = 186. When the distance is greater than 400, the probability is set
at a threshold value of

p'(r > 400) = 0.002

reflecting a minimum threshold on the existence of this activity. It is quite
clear, however, if only these equations were to be used, that there would
be a break in the profile from r = 186 to r = 400 where the probability would
be 0. To control for this, an additional equation is also applied which is set
up as the conditional that

if p'(r) < 0.04, then p'(r = 400) = 0.04.

The combined effect of these equations generates the commercial-industrial
profile shown in Figure 3.13. Note that the values used are arbitrary and
only of relative meaning for they reflect the coordinates for plotting on the
particular display used.

Residential land use (# = 2) is controlled by a similar set of equations
which reflect both positive and inverse distance relations. Then

p*(r = 315) = 0.20 + 0.0024 (r — 30)
and
p*(r > 315) = 0.88 — 0.0035 (r — 315).

The effect of these equations is to generate an increasing function of dis-
tance from p*(0) = 0.128 to a maximum of p*(315) = 0.88 which then declines
to p*(516) = 0. To ensure a minimum value of residential activity, the con-
ditional is

if pX(r) < 0.05, then p*(r) = 0.05.

Finally for open space u = 3, the relationship is simply one of inverse dis-
tance
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Figure 3.13. Land use profiles and von Thunen rings in the monocentric

city.
p3(r) = 0.12 — 0.0002r

where the probability declines from p*(0) = 0.12 to p*(480) = 0. To ensure
that this function does not predict negative values, the conditional

if p*(r) < 0, then p(r) =0

is invoked. These three profiles are shown in Figure 3.13.

Examining these probabilities, it is clear that they are nowhere nor-
malized to exactly sum to 1. We have done this so that when X, p*(r) < 1,
the residual probability is regarded as the probability of vacant land occur-
ring. The overall probability of vacant land occurring is best seen by visu-
ally aggregating the profiles in Figure 3.13 and this implies that as distance
increases away from the CBD, the probability of vacant land also increases.
The other point is that in the vicinity of the CBD, the probabilities sum to
greater than 1, that is %, p“(r) > 1. This does not constitute a problem
because the order in which the activities are considered in the simulation
means that commercial-industrial are always allocated first, then residen-
tial and finally open space. This achieves the following effects.

The probability structure is first set up in the order of importance of these
activities. A range of probability is fixed for each activity as: rNy =1, N, =
1000p'(r), N, = 1000 [p'(r) + p*(r)], and rN; = 1000 [p*(r) + p*(r) + p(r)]. An
activity type is allocated by drawing a random number between 1 and 1000.
If the sum of the probabilities is greater than 1, then the commercial-indus-
trial land use takes priority, then the residential and finally open space. In
fact when r = 0, then rN; = 1000 x 1.38 and thus the activity will always be
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commercial-industrial at the CBD. Only when r > 50 will other activities
be ‘competing’ for allocation. However, when r > 550, 7N; = 6 and effec-
tively all the activity will be vacant land. In essence, this marks the bound-
ary of the city. These equations thus control many dimensions of urban
activity allocation and physical form. The shape of the city can be quite
radically altered by changing the parameters a*, b* and R*. The values used
were fixed by a process of trial and error simulation as well as being judged
consistent with simple urban bid-rent and population density theory which
we refer to in later chapters.

We have thus defined a simple model of urban land use location which
operates through functions which imply the importance and dominance of
each land use at different distances from the CBD. Such a monocentric
model is of course a gross simplification. It is not unlike the ‘model” we
used to render the slopes of the mountainscape in the last section. Never-
theless, it does provide a useful rationale for urban location and much of
the theoretical edifice of urban economics and human geography is built
upon these basic ideas. However, our focus here is not upon developing
the best model but upon using a rudimentary model of urban structure to
provide a rationale for ‘coloring’ the city using triangular midpoint
displacement. To this we now turn.

3.8 Fractal Cityscapes: The ‘London’ Sequence

As we implied above, we will now operationalize the model within the
context of triangular midpoint displacement for an urban system with the
broad dimensions of a world city such as London or Tokyo. A justification
for fractal rendering of the sites of the city at its lowest level is based both
on our casual and more formal observations that cities display such irregu-
lar patterns. Such patterns are formed from individual sites and parcels
whose irregularity is conditioned by a myriad of historical, social and
physical characteristics. Such patterns are impossible to describe in detail,
and defy conventional modeling over a range of scales, although we do
know the general principles and reasons as to how and why such patterns
are formed. The patterns do in fact appear to be fractal, and thus a first
attempt in unraveling their structure can be based on fractal simulation.
This is an important point which we cannot stress too much. This chapter
is about using fractals to generate a perceived realism in which traditional
urban models might be embedded. This is a much more modest goal than
designing a complete fractal model, although our models will become more
complete as the chapters unfold.

Here we not only acknowledge that fractals are useful in identifying the
basic processes at work in cities, but that they are useful in more superficial
ways - for rendering the forms produced by traditional models, thus
making their outputs more visually acceptable. Such a goal is important in
communicating problems, plans and policies in ways in which decision-
makers best understand. As we continue, our focus will begin to change
as we move towards models based on better founded urban theory, but
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we will still retain an emphasis on their visualization using state-of-the-art
computer graphics. The method we have developed begins by dividing the
urban space, which we define as a circle centered on the CBD, into 10 ident-
ical triangular wedges or sectors. Each sector is then subjected in turn to
hierarchical subdivision, and once the appropriate level of fractal detail has
been reached in any sector, the simulation moves to an adjacent one and
begins afresh. The process starts with the due eastern sector and rotates in
counterclockwise fashion until all the sectors have been treated. We con-
sider that the use of the triangular lattice rather than a square grid is poss-
ibly more appropriate to highly polarized cities where the development has
occurred historically from the CBD to the periphery, although the lattice
used should make little difference to the simulation.

Let us first define the spatial units or zones in question. The original
circular space is subdivided into 10 sectors, each sector referred to as Z,
where 0 is an index reflecting the angular orientation of the sector in ques-
tion. Within each sector, the zones are referred to by Z,(s) where k is the
zone in question and s is the hierarchical or recursive level. From each
branching of the hierarchy, there are K zones, k=1, 2, ..., K. Over the levels
of the hierarchy given by recursive levels s = 1, 2, ..., S, particular zones
are referred to in the sequence i, j, k, ..., where i is a typical zone on the (s
— 2)th level, j is a zone on the (s — 1)th, k is a zone on the sth level and so
on. The generating rule used to subdivide zones from one level of the
hierarchy to the next is given as

Zk(s) = Gk[zj(s - 1)]! j!’ k= 1: 2: e Kr 5= 1! (3'30)

where j is the zone being subdivided on level s — 1 and G, is the subdivision
operator. A particular sequence of zones can now be generated in the fol-
lowing way. The process is begun by applying the rule in equation (3.30)
to the original sector Z,

Z{0)=G;[Z,], 6=2m/10,4m/10,...,2m i=1,..., K (3.31)
Recursion on equation (3.30) using equation (3.31) leads to the sequence
Z,(s) = Gy [Gy, [-G; [Gi [Zo]] - 1). (3.32)

Because K zones are generated from each branch in the hierarchy, it is easy
to show that at the sth level down the hierarchy, there a total of K* zones.
There is also need for a stopping rule to end the recursion.

In our case, we are subdividing space to form a triangular mesh. The
original segment Z, is divided into four triangles in the manner shown in
Figure 3.14 where K = 4. From this diagram, it is clear that at recursive
level s = 1, there are four sectors in the original segment, at level s = 2, 16;
at s = 3, 64, and so on. The stopping rule is based on the level of resolution
below which further spatial detail is not required. In this case, this is the
level of pixel resolution of the display (which is 320 x 256 pixels). A quick
calculation shows that with 10 sectors, when s = 6 we are below the level
of resolution of the screen, and thus in the sequel we will find that fractal
detail can be most clearly articulated at levels s = 4 and s = 5, not greater.
We have chosen G, to reflect the subdivision of triangular space into four
triangles in the manner shown in Figure 3.14. This involves midpoint dis-
placement of each side in a constrained random fashion, the degree of con-
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Figure 3.14. Fractal rendering of the monocentric city.

straint reflecting the degree of irregularity, hence the fractal dimension of
the resulting surface as described earlier in this chapter. The algorithm used
to effect the displacement uses simple trigonometric functions to compute
the associated coordinate pairs which define the triangular mesh. The
degree of randomness introduced is difficult to quantify in any simple way,
but it is reflected in the displacements in Figure 3.14.

The fractal simulations involve a straightforward concatenation of the
recursive generating process (in Figure 3.14 and equations (3.30) to (3.32))
with the general model structure (in Figure 3.13 and equation (3.29)). To
demonstrate the dependence of pattern and shape on the level of recursion,
we have run the model with distances and scale similar to those of Greater
London (GLC, 1985) for levels of recursion 1 = s = 5. This produces five
simulations which are presented in Plate 3.4 where the colors blue, red
and green represent commercial-industrial, residential, and open space—
recreational land uses respectively. These show quite different patterns. Up
to level s = 2, the pictures reveal the coarseness of the triangular mesh used
to generate shapes of land use activity. Moreover, not enough zones are
generated to achieve a reasonable distribution of activity types. However,
for s > 2, the pattern becomes much more acceptable; but when s > 5,
which touches the level of pixel resolution, the pattern looks more like a
pointillist painting than a city. The most appropriate-looking images are
thus generated for s = 3 and s = 5. This is an important point in the simul-
ation of visual realism, and it also suggests that the probability structure
of the underlying model is not invariant to scale, an issue which in some
senses is obvious, but one which has rarely been explored in the main-
stream of research.

These types of simulation do, however, reveal the inadequacies of con-
ventional urban models in terms of their spatial patterns and visual realism.
The images shown in Figure 3.14 are too compact in that one might expect
a much greater spread of development unconnected to the main city but
indicative of the way development hops around on the edge of a large city.
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Despite the preset wedge-sector geometry which provides the template for
the city, these patterns do not display the classic corridor effects which
characterize the typical radial-concentric city. Compare these, especially the
images for s = 3, 4 and 5 in Plate 3.4, to those in Chapter 1 ~ Figures 1.15
and 1.16, and Chapter 7 — Figures 7.2 to 7.5 and Plate 7.1, which illustrate
real urban agglomerations. The advantage of fractal simulation thus
becomes clear. Spatial effects in models are immediately clarified, and sys-
tematic biases can be detected and corrected. Only large-scale simulations
can achieve this, and the pictures in Plate 3.6 speak for themselves.

Finally, although the broad shape of our simulations reflect those of Lon-
don, these simulations are as much ‘London’ as are the Mandelbrot-Voss
planetrise pictures shown earlier which are implied to be the ‘Earth’ as seen
from the ‘Moon’. This is a very important issue in fractal graphics for in
this case, it suggests the sorts of elements required in order to generate
minimal city forms. The whole feel to the images for s = 3 is that of a large
monocentric city like London. In fact, we have cheated slightly by adding
the distinctive River Thames to the images after they have been generated.
This is a strong perceptual clue to any picture but even without it, the
images for s = 3 reflect a large city like London. In our fully-fledged simula-
tions which we will develop in the next chapter, we will in fact omit the
river for in these simulations which will actually be of London; the shape
of the city will be encoded in the input data which reflect the built-up area
and the Greater London County boundary.

The examples we have ended with in this chapter constitute a good basis
for experimentation, in terms of the mechanisms of developing cities in
physical terms, of exploring model structures through their causal chains,
and of judging visual realism. A particularly important issue is to find out
the way parameters might combine with one another to generate realistic
and unrealistic morphologies, and the “London’ sequence developed here
provides a firm basis for this. In the next chapter, we will extend our hypo-
thetical model by setting up a computer laboratory to generate a variety of
experiments in visualizing urban form. This, however, will be but an initial
foray into this kind of experimentation, and as such represents a powerful
line of inquiry which we will leave for future research. We will also pro-
gress our simulations forward by developing more realistic models which
we render with fractal midpoint displacement, and the emphasis will turn
to explicitly fitting these models to data. The great strength of fractal mod-
els which generate picturescapes is that they provide a way of making our
theories more real and of communicating more meaning to our analyses.
For the first time we can move away from but still retain the logic of our
theoretical models which hitherto have usually been regarded as extreme
cases; with a little imagination, we can render these more realistically with-
out losing the need for high theory. Fractal rendering represents a powerful
way of achieving this, and in the next chapter, we will demonstrate how
this is possible in the real as well as in the imaginary world.
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When I wrote the program, I never thought that it would evolve anything more than
a variety of tree-like shapes . . . nothing in my 20 years’ experience of programming
computers, and nothing in my wildest dreams, prepared me for what actually
emerged on the screen. I can’t remember exactly when in the sequence it first began
to dawn on me that an evolved resemblance to something like an insect was poss-
ible. (Dawkins, 1986, p. 59.)

4.1 Experimentation as Visualization

The understanding we have already gained about the systematic irregu-
larity of fractal shapes creates a very strong case for judging the success of
models by their visual appearance. For example, it is easy to conjecture that
the physical properties of land use in terms of plot size, shape and density
display an irregularity which is considered to be fractal. From earlier chap-
ters, we know that cities are self-similar in a variety of ways, central place
theory being the clearest demonstration of this principle (Arlinghaus, 1985).
Thus the idea that actual city structures might be fractal is appealing, but
of more import is the possibility that fractal geometry may well contain the
basis for linking activity models to their physical context. However, before
we launch into the use of fractal geometry in rendering traditional com-
puter models of cities more realistically, we need to formally consider how
we might develop this understanding further through designing a consist-
ent and structured set of experiments for the hypothetical model we intro-
duced in the last chapter. Our ‘London’ sequence provides us with such a
model with a strictly limited number of parameters whose variation will
generate different urban forms. Here we will extend this model and in a
laboratory-like setting, we will manipulate the values of its parameters so
that we might explore the complete set of forms which can be generated.
The parameter space which bounds this set we will treat as a mathematical
space populated by different forms which can be derived from one another,
and we will call this the ‘space of all cities’. In this space, we will exper-
iment with city patterns whose forms we will assess and evaluate visually,
thus establishing a process of experimentation through visualization and
vice versa.

Our experiments will consist of sampling different urban forms from the
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space of all cities, and simply involve a conventional selection based on
different combinations of the limited set of parameter values. The hypo-
thetical models based on our ‘London’ model from Chapter 3 and which
we will explore in the next section, will contain a very limited number of
parameters. Such models must reflect the principle of parsimony so that
there can be a clear assessment of the effects of different parameter values.
Furthermore, throughout this book, we will deal with highly simplified
models which in no way approach those operational urban models which
are used in the real world by planners and engineers involved in forecasting
and designing the future city. Moreover, because our models, although
highly structured, are random in that land use is allocated through chance
events, we are dealing here with urban forms which portray a general
typology of cities rather than anything which is more specific. Indeed in
the very title of this book Fractal Cities, our emphasis is not upon thinking
of some cities as being fractal in contrast to others, which are not, but that
all cities display structures and patterns which in certain senses might be
fractal, and it is our emphasis on the degree to which their form is fractal
which can provide important insights into their functioning.

In the study of form through computer experiments, it is the way certain
shapes evolve relative to some baseline which is our essential quest. In one
sense, this is the principle which has been used for nearly a century in the
study of the evolution of biological forms first exploited by D’Arcy
Wentworth Thompson (1917, 1961). His view is cogently illustrated when
he says: “In a very large part of morphology, our essential task lies in the
comparison of related forms rather than in the precise definition of each;
and the deformation [his italics] of a complicated figure may be a phenom-
enon easy of comprehension, though the figure itself has to be left unana-
lysed and undefined”. Thompson'’s point is of general import to our work
here. We can begin as we did at the end of the last chapter with a theoretical
model of a city based on the concentric rings of land use around the city’s
center, the land use being defined according to von Thunen’s bid-rent prin-
ciples which are implied in the land use profiles shown in Figure 3.13. By
systematically changing a parameter value, the shape of the city can be
deformed or reformed to another, and by systematically charting this defor-
mation, we are engaging in the time-honored tradition of experimentation
in which different responses in terms of form are being generated by chang-
ing one parameter value at a time. The space in which this occurs is what
we have termed the ‘space of all cities’.

We have continually alluded to such experimentation in previous chap-
ters. For example, if we have a model whose form is defined in two-dimen-
sional space, in the plane, by various transformations of its x-y coordinates,
then as these transformations vary in value, so does the shape which is
generated. We noted this in Chapters 2 and 3 where we briefly described
how a Koch curve could be related to a Julia set in 2-space using Barnsley’s
(1988a) IFS method. By interpolating between the transformation values for
both objects, we indicated that one object could be slowly transformed into
the other. The intermediate forms generated represent the visual trace or
trajectory of this process. Whether or not this transition is meaningful will
of course depend upon our choice of objects or systems. Here we will not
map the complete range of possibilities but simply select some forms which
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appear to be good bounds to the space in which our family of cities exists.
In fact, an extension to our-laboratory which we have not yet developed,
could be based on a process in which one form actually evolved to another,
the decisions concerning the evolution consisting of single small changes
to the parameter values being made by the user on the basis of some visual
assessment of the appropriateness of the form. The quote from Dawkins
(1986) which prefaced this chapter is based on his response to such a pro-
cess which initially produced tree-like forms, but through judicious selec-
tion of changes in parameter values one at a time, ultimately led to insect-
like forms. Dawkins’ surprise was over the fact that the kinds of parameters
which characterized trees, such as branch orders, widths, bifurcation ratios,
branch angles and so on, could quickly develop to shapes which were mani-
festly insect-like. His amazement is no different from that of the transition
between a Koch curve and a Julia set as well as the sorts of deformation
between biological systems which was first popularized by D’Arcy Thomp-
son (1917, 1961). We will not develop these possibilities further, but there
is considerable potential in our field for such evolution through experimen-
tation, and this represents an important area of work for the future.

In Chapter 1, we introduced, albeit informally, many different examples
of urban form, far wider than we will explore here. Later in this book, we
will eventually develop more fundamental fractal models, and this will give
us some scope for generating a massive variety of urban forms, but these
we will leave until Chapter 7. However, at this stage, it is worth reiterating
the range of forms which are possible with our ‘London” model so that the
experimental work of the next section can be put in context. There are a
series of dichotomies which characterize such forms. First there is the dis-
tinction between monocentric and multicentric cities. The monocentric tend
to be industrial cities in that their development in terms of commerce and
industry has been centered in and around the CBD, and this is contrast to
those multicentric cities where there are several dispersed centers which
compete with one other. Multicentric cities characterize the presently
emerging post-industrial age where the power of the CBD is no greater, if
not less, than many peripheral centers. But there are also multicentric cities
which have developed as the fusion of several separate industrial cities;
these are called ‘conurbations’ by Geddes (1915, 1949), and ‘megalopolis’
by Gottmann (1961) and Doxiadis (1968).

Overlying these distinctions is the notion of concentrated to dispersed
which is loosely akin with high to low density cities. Centralized and
decentralized also follow this classification, and there are more specific
terms such as the ‘exploded’ city and the ‘imploded’ which represent grow-
ing and declining monocentric forms. The classification of form in this way
presents an endless array of different characterizations which are all seman-
tically a little different, but in general, cover a range from concentrated to
dispersed. Moreover, there are distinctions which overlie these in terms of
shape, from linear to concentric, almost mirroring our distinction between
one- and two-dimensional forms which we portrayed in Chapter 2, as for
example in Figure 2.10. In our experiments which follow, it is essential that
we appreciate the bounds which make possible only a restricted set of
forms. In essence, the space of all cities which we define only includes
monocentric cities which develop around a single pole or CBD. We will see
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how various cities which are concentrated or dispersed can emerge through
changes in the way the chance elements operate on land use allocation; this
may suggest some multicentric form, but this is still within the bounds of
the monocentric assumption and is caused by chance locations of centers
which are not related to the CBD. The way we construct our cities is on
the assumption that all development is arrayed concentrically around the
CBD, and this rules out the possibility of linear cities emerging. This will
only be possible with our more fundamental models which we develop
from Chapter 7 on.

Finally, there is the possibility that cities might be classified according to
the form of their transport networks, usually in terms of the distinction
between radially symmetric nets and ‘Manhattan’ grids. We will not pursue
these types of form either, largely because we are continually conscious
that the number of parameters which we can deal with and from which
we can derive meaningful conclusions must be severely limited. This is not
a book about theories of cities. As Crick (1990) says: “The job of the theorist

. is to suggest experiments”, and the experiments we will choose are
those which are naturally suggested by simple theories of the monocentric
city which still compose much of urban economics. We will be content to
explore the role of chance in land use allocation and in the shape which
such locational patterns display, rather than being concerned with elaborat-
ing new or existing theory. We have resisted extending our approach to
multicentric urban systems and to models based on spatial interaction, larg-
ely because we view our task here as simply a beginning. Moreover, we
are conscious that most urban economic theory has also been developed
using the monocentric assumption and thus there is more than enough
research to develop in first linking fractal patterns to these theories. It is
always tempting to add more and more constraints to the models to reflect
how cities actually work. Here, however, our concern is not with
developing completely realistic models of cities, but with demonstrating
that an approach through fractal geometry leads to important insights into
their form and functioning.

To set the context, we will also note the idea that the model-building
process is based on the loose cycle of inductive explanation, and deductive
prediction. For example, some models such as those based on discrete cho-
ice are strongly inductive in their specification and estimation, while spatial
interaction models are usually specified a priori, and are hence deductive.
Proponents of either style of modeling rarely pursue the inductive-deduct-
ive cycle in any complete sense, but the argument here suggests that fractal
simulation can provide a framework for such a process. Large-scale simul-
ation itself establishes such a framework, but there are few attempts which
model the entire cycle. The work of Chapin and Weiss (1968) is an exception
in that they attempted to explain urban growth using a linear statistical
model and then reproduced that growth as a large-scale random simul-
ation. The ideas of this and the last chapter are very much in this spirit but
in attempting to model the entire scientific cycle, a number of corners will
be cut and only picked up as items for further research.

Another issue which first emerges in this chapter relates to the variety
of computer systems and software used to develop these fractally-rendered
models. Our work has only been made possible through advances in
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computer systems and software, and our demonstrations involve a remark-
able mixture of computer and modeling systems and styles. The discrete
choice models we use, for example, are estimated using a standard logit
package mounted on a mainframe computer, with intermediate processing
on a minicomputer which acts as the front end to yet another mainframe
on which the spatial mapping is conducted, while the simulations are con-
ducted using a graphics-based micro whose memory is mainly given over
to the screen display. In fact, these styles are seen quite clearly in the figures
in this chapter and in the various color plates in which the spatial predic-
tions produced for the discrete choice models are presented using standard
plotter outputs, in contrast to the simulations which are illustrated in photo-
graphs of the raster graphics screen reproduced in the various color plates.
Indeed throughout this book, the examples presented have been computed
on micros such as PCs and high school computers, Vaxes, Sun workstations,
IBM mainframes and so on. Clearly the availability of various machines
has influenced what we have used, but it is important not to lose sight of
the fact that fractals can be computed using very simple computer pro-
grams as Saupe (1991) has noted. Thus the ideas portrayed here should be
accessible to a wide variety of readers with different programming skills
and with access to very different types of computer.

After extending our hypothetical simulation model, we will take one step
back and briefly introduce the model-building process in terms of expla-
nation and simulation, induction and deduction, emphasizing the need to
contain both within any complete cycle. We will show how the concept of
systems hierarchy, which is so central to fractals, might be exploited
through the modeling process, and we will then illustrate how this process
can be completed for the fractal simulation of urban structure using the
example of residential-housing location in London. The inductive approach
we will adopt is based on discrete choice theory, the estimation of a stan-
dard multinomial logit model (Hensher and Johnson, 1981) to housing cho-
ice, and measurement of its performance using McFadden’s (1979) pre-
dicted success statistics. We will show how the model is fitted to data which
relate choice of house type and location in London to key variables of urban
structure based on age and distance. Several models are fitted, some are
reestimated and computer maps are used to aid the interpretation process.
We are then in a position to begin the fractal simulation of urban structure
on the basis of the fitted discrete choice models. The simulations are essen-
tially visual, the data themselves being displayed on the screen and being
replaced by predictions of housing types as the simulation proceeds. Two
types of simulation are attempted — random and deterministic, and it is
shown how it is necessary to develop deterministic procedures to enable
the discrete choice models to generate realistic patterns. There are many
conclusions to this chapter, and work on both fractal images (Pentland,
1984) and spatial discrete choice models (Lerman, 1985) represent major
directions for further research.
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4.2 Exploring Urban Forms in the Space
of All Cities

The advantage of any computer model of a city is that its parameters can
be varied with a view to exploring the effect of such changes on the
resulting spatial form. Through visualizing the form using computer graph-
ics, the strength of various relationships which compose urban structure
can be assessed, both to improve such models in the laboratory as well as
to refine relationships in terms of generating the best fit with reality. In our
‘London’” model of the last chapter, we could control the distribution and
amount of the three land uses generated, by varying their parameters 4",
b* and R¥. We can also vary the degree of midpoint displacement which is
related to the fractal dimension. In fact in this example, if we were to col-
lapse the random allocation of land use to a deterministic one, and use
non-random midpoint displacement, we would generate a city in which
commercial-industrial land use would entirely dominate the inner suburbs
and CBD, and residential the outer suburbs and the periphery, providing
a clear example of the von Thunen rings. This is implied in the land use
profiles shown in Figure 3.13.

What we will do first is extend our model to encompass other effects.
We will increase our land uses by disaggregating the residential sector into
three types — high, medium and low density housing, and split the commer-
cial-industrial use into their two separate components. We argued earlier
that at different hierarchical levels, various activities might dominate. For
example, if we were simulating the growth of an industrial city, then
decisions about location depend on the characteristics of a neighborhood.
Industrial neighborhoods tend to attract like industries, while residential
activity tends to avoid location there, and so on. We will extend our model
by allocating land use at each hierarchical level, and using the land use
allocation at that level to determine land use allocation at the next. The
way this mechanism might work is for a neighborhood to be classed in
terms of its dominant land use at the first spatial level of the simulation
and then for this dominance to be reflected at the next level of detail down.
This involves modification of the probabilities of allocation at that level,
these being conditional on the probabilities of land use at the next.

The way we simulate this effect is by modifying equation (3.29) in the
following manner:

pi(ry)=a“+b* (r,—RY), u=1,2,...,6, (4.1)

where a“, b" and R" are parameters as before but the distance r, now reflects
the fact that equation (4.1) is applied at each level s of hierarchical simul-
ation. Land use is not actually allocated at level s by the model but at the
next level down, p*(r,) is used to condition a new probability P“(r..,) using
the following equation:

P(rga) o [1 + PAr)l™™ p*(re). (4.2)

P¥(r,,;) is the probability used to effect the allocation. In fact the allocation
only takes place at the most detailed level of resolution and this probability
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is in fact that passed down from the previous level which acts on the basic
probability given by equation (4.1). y(u) is a parameter greater than 0 which
measures the importance of the effects at previous levels. If y(u) is equal
to 0, then there is no effect from previous levels and P¥(r,;) = p*(rs,1). The
strength of the influence increases as y(u) increases in value and in the
simulations to be shown next we have set y(u) at five values, namely (1)
=0, 1, 5, 25 and 50. Of course equation (4.2) has to be appropriately nor-
malized. We have not made y(u), a*, b* or R* specific to each level because
the number of possible combinations of values becomes too large to handle,
and in the interest of developing parsimonious but general models, we have
begun our experiments with as small a number of parameters as possible.

We will now explore some 20 possible urban forms and the tree of possi-
bilities defining the ‘space of all cities” within which different forms exist
is shown in Figure 4.1. First we can allocate our land use randomly as in
the last section or in deterministic fashion based on the dominant land use
predictor at each level and in terms of each basic location. This gives us
two choices. As our fractal simulations are based on midpoint displacement
of the pure Brownian type with a Hurst exponent H = 1/2, then we can
either use that level of random displacement of the midpoint or no ran-
domness whatsoever; this also gives us two options. Finally we can use the
five values of y(u) and this gives us five possibilities when we keep each
value of y(u) the same for each land use u across all hierarchical levels. In
total therefore, we have 20 options to simulate. This modified fractal model
was simulated on a Sun workstation, and some of its outputs are illustrated
in Plate 4.1 (see color section) where the simulations are shown at levels
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Figure 4.1. The combinatorial map of the space of all cities.



Laboratories for Visualizing Urban Form

137

s = 2, 4 and 6, thus illustrating once again the extent to which the patterns
become more realistic as the scale gets more detailed.

In Plate 4.1, we present six from the 20 simulations to give some flavor
of the differences. The deterministic model based on no fractal perturbation,
deterministic allocation of land use, and no hierarchical conditioning where
Y(u) = 0, Vu produces classic von Thunen rings, and as such, represents the
theoretical baseline for all our simulations. The CBD and inner areas are
dominated by commercial use, while there are three other rings of high,
medium and low density housing. Open space and industrial uses do not
dominate anywhere, and because any area of the city contains its most
dominant land use, these two uses never have a chance of being located.
The other feature worth noting is that because there is no fractal pertur-
bation, then the final units for location are identical and perfectly formed
triangles. This simulation is illustrated in Plate 4.1(a), and it is just possible
to make out the perfect symmetry of the triangles formed by midpoint dis-
placement with no randomness. If we introduce fractal rendering for the
same set of parameters, then the von Thunen rings simply appear some-
what cracked due to the fact that the sites are no longer identical in terms
of shape and location, although the outputs are still highly reminiscent of
von Thunen’s theoretical model; this is shown in Plate 4.1(b).

In Plate 4.1(c), we show what happens when heavy hierarchical con-
ditioning is introduced to the model which has fractal rendering but deter-
ministic land use allocation. The heavy conditioning is enabled with -y(u)
=25 for all six land uses, and the effect is to produce a very strange pattern
in which residential land uses dominate everywhere. This is clearly
unusual, quite extreme and unlikely to be observed anywhere. Next we
show in Plate 4.1(d), the simulation based on no fractal perturbation, hence
perfect triangles as sites, randomness in land use allocation, and extreme
hierarchical conditioning. Again this produces a slightly more realistic pat-
tern, but one which is sufficiently different from reality to be somewhat
unlikely. Note the way the perfect triangles appear at any level here due
to the fact that y(u) = 50 for all land uses. Reducing the hierarchical factor
v¥(u) to 5 produces more realism as in Plate 4.1(e), while finally in Plate
4.1(f), we show the most realistic simulation we have achieved, based on
fractal perturbation, randomness in land use allocation and very slight
hierarchical conditioning [y(1) = 1, Vu]. This case is interesting in that the
simulation at level s = 4 is more realistic than s = 6 which is, once again,
reminiscent of pointillist painting.

The examples we have shown provide a good cross-section of the poss-
ible patterns which compose the experiments in our laboratory: we have
four examples of hierarchical conditioning and the four possibilities in
terms of land use allocation and spatial perturbation. What is quite clear
here is that the hierarchical conditioning is far too extreme once it rises
much above y(u) = 1. Moreover, it is the randomness in land use allocation
which seems to provide more of the realism in contrast to fractal pertur-
bation although the fractal perturbation does indicate that the problem of
creasing becomes considerably more apparent as hierarchical conditioning
is increased. In fact, it is clear that although our model is more realistic
than the one we developed in the last section for ‘London’, it is still fairly
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unrealistic in its incorporation of hierarchy and of fractal perturbation
where the choice is either H = 1/2 or non-random midpoint displacement.

Our last foray into this type of fractal modeling partly resolves the prob-
lems of the models just outlined in two important ways. We will now intro-
duce control over the fractal dimension in quite explicit terms and we will
reduce the range of hierarchical conditioning to screen out the extreme
effects such as those shown in Plate 4.1(c) and (d). Thus, the most extreme
conditioning in the new model is where y(u) is equivalent to 5 (but on a
new scale where this value is given as 25). Another innovation which we
find useful is based on replacing the triangular lattice with a square grid.
In Figure 4.2, we show this grid and how successive random midpoint
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Figure 4.2, Simulating patterns using midpoint displacement of a square
grid.
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displacement enables a surface to be produced which appears to have less
creasing than the triangular. Moreover, as the grid is based on the unit
square, there is no measure of distortion present in the first place and thus
this would appear a less arbitrary and less biased form of initiator. We
have also increased the land uses in the residential sector to be defined
over a continuum of population densities, and this makes the simulations
more realistic in that densities are determined as a combination of random
allocation and distance from the CBD. In effect, this does not add to the
number of land uses per se, as the simulation is structured to determine the
density of the residential use at the stage when this use is allocated.

We show typical simulations from this model in Plate 4.2(a) and (b). In
(a), a fractal dimension of 1.26 has been used, hierarchical conditioning is
heavy with a value of 5, and randomness in land use allocation has been
used. In fact, this simulation is more realistic than any of those shown in
Plate 4.1 and it would appear that our new model provides an ideal basis
for computer experimentation. We cannot show all the possibilities here,
but in Plate 4.2(b), we show the von Thunen rings case where the fractal
dimension is unity (no spatial perturbation), there is no hierarchical con-
ditioning and land use allocation is deterministic. In these examples we
have also separated out the residential from other land uses, thus showing
how the different patterns stand by themselves. In this way, it would
appear that both the residential and commercial land uses, which make up
most of the city, have distinctive location patterns which are close to those
we might observe in existing cities.

There are many more variants we can generate using this model. Clearly
we can let the fractal dimension range from 1 to 2, we can explore a range
of hierarchical conditioning from y = 0 to y = 5, and we can make this
parameter specific to each level s and/or each land use u. We can even let
these parameters take on values outside the range of 0 to 5. But the models
developed here simulate only one type of city, the monocentric, and thus
it is important to simulate forms other than those which are unipolar and
concentric. This would involve introducing mechanisms which measure the
accessibility of any point in the city to any other and it would take us
towards the mainstream of urban modeling which is based on spatial inter-
action (Batty, 1976). In fact throughout this book, we will steer well clear
of these types of models because these are for a very different purpose.
Although we continually allude to fitting fractal models to real situations,
in the last analysis, our exposition of fractal cities is motivated by our search
for the applicability of these ideas, and the insights they might give to the
broad domain of urban studies. Indeed from Chapter 7 onwards, we will
begin to demonstrate how fractal models give us a very different perspec-
tive on studies of urban density, which suggest that much previous research
should be reworked. The value, then, of these forays into hypothetical
urban form is in the applicability of the fractal idea and the somewhat more
superficial idea of visualizing computer models using fractal rendering. We
will now turn to more realistic examples, developing a conventional urban
model of housing in London and then showing how its predictions can be
best evaluated in terms of the spatial forms that they imply.
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4.3 Hierarchical Urban Structure

So far the hierarchical structures we have introduced do not relate to any
observable characteristics of city systems except in the most superficial way.
Clearly for levels s < 4 in Plate 4.1, the images generated show the strong
influence of the triangular patches making up the hierarchy and are thus
not realistic. When levels with s = 4 are reached, the images no longer
display the influence of the triangular method in that the concatenation of
triangles at these levels produces the sorts of irregularity characteristic of
land use patterns. Thus in one sense, the triangular subdivision process is
scale-dependent. However, in fractal simulation, there is still the need to
relate the method of construction to substantive characteristics of the sys-
tem as in other forms of modeling. Indeed, many examples of fractals can
only be modelled coherently by defining their intrinsic properties of self-
similarity: trees, for example, are self-similar through their mode of repro-
duction and growth. In geomorphology, the process of weathering and ero-
sion acts in a self-similar fashion. This is clearly true for cities as well and
thus hierarchical structure must reflect this.

We can sketch an idealized process of fractal simulation to which we
might aspire. We begin by identifying hierarchy in the system of interest
based on our perception of self-similarity in description, and we are then
able to measure whether or not the phenomenon is fractal and whether or
not the fractal dimension is invariant to changes in scale. Each stage of
measurement and description leads to further development of the underly-
ing process through which the structure can be generated, and this in turn
leads to models which are consistent with fractal structure. Once appropri-
ate models, applicable to different levels of the spatial hierarchy, have been
developed, other fractal structures utilizing such hierarchy and incorporat-
ing the application of the underlying process through recursion, can be
simulated.

This approach is in fact the classic process of observing a phenomenon,
deciding whether or not it meets any theoretical preconceptions we have,
developing a ‘best’ model structure, and then using this to enable new and
different predictions to be made. Essentially this is the process of induction
followed by deduction, or in a different sense, analysis followed by syn-
thesis. We can think of induction as a process of building theory from the
bottom up, from specifics to universals, while deduction is a top-down pro-
cess in which universals are used to predict specifics. The best expression of
this complete process is in the fields of design and problem-solving where
problems must be understood (through induction and analysis) prior to
their solution (through deduction and synthesis). In fact in design, methods
for analysis and synthesis exist which are based on searching for hier-
archical structure: problems are decomposed in the quest to induce their
structure and thence composed in the quest to synthesize a solution from
the elements (Alexander, 1964; Johnson, 1984). There are parallels with the
process used here to enable appropriate description and explanation prior
to fractal simulation.

A simple example which relates to spatial theory is the rank-size distri-
bution of cities. City size distributions display regular properties which are



Laboratories for Visualizing Urban Form

141

consistent with subdivision of a national or regional space into market areas
whose decreasing size reflects the frequency of spatial dependence and the
rarity value of spatial goods. Idealized size distributions can be developed
by taking a primate city and its national market area, generating two next
order cities, then four, and eight, and so on, in the manner we illustrated
in Chapter 1 in equations (1.1) to (1.4). This is the type of method used in
Central Place Theory, and another interpretation using fractal geometry has
been developed by Wong and Fotheringham (1990). In terms of our com-
plete cycle of model-building, we first need to identify the hierarchy of
market area, transport routes, population centers etc., thus explaining spa-
tial structure at different levels. This is accomplished inductively in bottom-
up fashion, possibly using clustering type methods. The simulation then
begins from the top-most level in the hierarchy by subdivision and fractal
rendering, generating centers and activities at different scales in such a way
that lower levels depend on upper. Although there is a sense in which the
simultaneity of dependence is treated by correct bottom-up followed by
top-down analysis, in terms of fractal simulation which is arbitrarily struc-
tured in hierarchial terms, the dependence is only one way. In fact, this is
a problem with many hierarchical descriptions for it is clear that any
activity at any position in the hierarchy owes its stability to those activities
both above and below. This is the concept of ‘niche’ and it is something
which must be explored in considerable depth in further research on frac-
tal simulation.

In spatial modeling, there are some very well-developed techniques to
effect this process of hierarchical explanation and simulation. The logical
output of a process of continual subdivision is the elemental space which
contains the individual, and thus individual behavior lies at the base of the
spatial hierarchy. Such models have been widely developed during the last
decade to address problems of discrete choice in the economic domain
using standard methods of econometric estimation (Lerman, 1985). These
are the models which will be used here, and a particularly attractive feature
of them is the fact that they can easily and logically incorporate hierarchical
structure: these are the so-called sequential or nested logit models (Hensher
and Johnson, 1981).

As yet, very few applications exist of truly spatial discrete choice models,
and even fewer have been developed in a spatially-nested form. Neverthe-
less, these models appear promising as the basis of the recursive generation
of activity through the spatial hierarchy. The other class of models which
will be considered at a later stage of this research, and which are related
to discrete choice models, are spatial interaction-entropy models. It is well-
known that such models have highly articulate properties of spatial
decomposition (Roy, 1983) and this also makes them attractive to hier-
archical simulation. There are a variety of methods for enabling hierarchy
to be defined and built into spatial models, such as the standard multivari-
ate cluster-type techniques as well as methods based on more subjective
comparisons such as Saaty’s (1980) analytic hierarchy process; these could
also prove useful to further research.

In the sequel, we will not attempt to address the full process of hier-
archical description through the identification and use of hierarchical mod-
els but we will follow the broad sequence of inductive, then deductive
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stages in the modeling process. We will begin by selecting models for indi-
vidual choice of housing type and location in Greater London which is the
urban region we intend to simulate. This first involves a traditional process
of formulating, estimating and selecting appropriate discrete choice models.
Having accomplished this, we will move onto the simulation in which these
discrete choice models are used to predict housing choice at the lowest
level of fractal detail generated. In this way, an image of the residential
urban structure of Greater London is built up. Hierarchy is still a largely
arbitrary affair in these applications, although we will address it in future
research. But there are other problems relating to modeling and simulation
which emerge and must be dealt with, specifically related to spatial vari-
ation. In any case, the logical next step in this work is to develop a ‘realistic’
version of our hypothetical simulation presented earlier. To this end, we
will now sketch the inductive side of this effort, beginning with the theory
of discrete choice and its application to residential housing location in
Greater London.

4.4 Discrete Choice Models of Urban Structure

To set the context, we must review some fairly standard results but in doing
so, we will adapt discrete choice models to our application and thus only
select those aspects which are of relevance here. We will first state the
multinomial logit model (MNL) in which we can identify the choice by
individual i,i=1, 2, ..., N, of alternative k, from the set of alternatives k =
1, 2, ..., K, where there are clearly N individuals in the system making
choices from K alternatives. This set of K is referred to as the choice set
and in our applications involves types of housing. The MNL model predicts
a probability P; which is the probability of individual 7 choosing house
type k where there are K = 4 house types to choose from, and where i
implicitly represents the location of the individual in the city. Thus the
model is designed to explain choice in terms of location.

First we must associate a utility of choosing alternative k with the individ-
ual i. This utility Uy is usually specified as a linear sum of exogenous
(input) variables which may be specific to the choice in question or non-
specific (generic). In our context, the parameters of these variables are made
specific, being referred to as alternative specific constants, but the variables
apply to each house type. Then

Uy = 2 Bicn Xim + €mym =1,2, ..., M,

where the first term on the right-hand side of the equation contains strict
utility components made up of parameters f,, and independent variables
X;., and the error term ¢, reflects differences in tastes, unobservable influ-
ences and such like. The MNL model is derived by assuming that the error
components [e;,} are identically and independently distributed, and by
maximizing utility using the traditional economic logic (Hensher and John-
son, 1981; Ben Akiva and Lerman, 1985). This random utility derivation of
the MNL model is subject to the normalization
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EP %=1,
k
and the model is derived as

exp [2 Brom x:'m}
k —_ = il .
>, exp {Uy) S exp {2 Bum .‘l‘,-,,,}

These sorts of models have been widely applied in transport research, but
have also been adapted to a variety of spatial contexts (see Wrigley, 1985).
We will not dwell on this, but suffice it to say that equation (4.3) is a particu-
larly flexible and adaptable model structure.

For purposes of estimation and prediction we need to express equation
(4.3) somewhat differently. First we must choose one alternative, say k, as
the base or numeraire, and express equation (4.3) as

1

L+ z exp [2 (Bum = Bkm) xim}

uk m

exp {Uyl 43)

Py =

(4.4)

We form the ratio of any two probabilities for different choice alternatives
u and k using equation (4.3), and this gives

exp [E Bum xim]
P_I-_: = = = exp [2 (Bum = Brm) xim]- (4.5)
; exp [E Bkm xa‘m]

m

We can now express P;, in terms of the numeraire P; using equations (4.4)
and (4.5) which simplify to

P, = Py exp {2 (Bum — Bim) xfm]
exp [2 (Blml — Bkm) xl’m}

1 + z E'XP [2 (BHM | Bkm) xfm}

usk

(4.6)

When k = u, equation (4.6) collapses to equation (4.4). In the sequel, equation
(4.5) is used in estimation while model predictions are made using equ-
ation (4.6).

4.5 Estimation Methods for the
Multinomial Logit Model

The logarithm of equation (4.5) is referred to as the log-odds of alternative
u versus k, and this is the actual equation which is used in estimation. Then
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log IF::I: = 2 (Bum Sk Bl‘m) Xim = z hum Xime (47)
There is a clear interpretation of the parameters in equation (4.7). If \,,, is
positive, this implies that the choice of alternative u is more important with
respect to the variable x;, in question than the choice of alternative k. The
reverse is true if \,,, is negative, while there is no difference in importance
between choices if \,,, = 0.

The model parameters in equation (4.7) are usually estimated using
weighted least squares or maximume-likelihood, and here we prefer to use
the latter because of the availability of Hensher’s BLOGIT computer pack-
age (Hensher and Johnson, 1981). To assess goodness of fit we also require
the data set of actual choices made which is given as F; where F) =1 if i
actually chose k, while F;, = 0 if this choice was not made. We calibrate the
model by maximizing the log-likelihood which is given as

AB) =D, D) Fylog Py, (4.8)
i k

and we can also assess the fit as a variation of this likelihood function. A
null hypothesis can be set up in which B,,,, = 0, V #,m implying no variation
across individuals, that is, Py = P, Vi. This can be used to compute the
null-likelihood from equation (4.8) which is given as

A©)=> D Filog P.=, Nilog Py, (4.9)
i ok k

where Nj is the actual number of choices of k made by all individuals i. A
measure of fit, in some ways similar to the correlation coefficient, is defined
as £2. This statistic is defined as

2_1_AB)

£=1- A0) (4.10)
which varies between 0 and 1. The statistic can also be modified to reflect
degrees of freedom, while typically good value of £ range between 0.2 and
0.4. In fact Hensher and Johnson (1981) argue that any model with £ > 0.2
is likely to be acceptable. Other measures of fit and diagnostics for log-
linear model equations are discussed in Wrigley and Longley (1984), Wrig-
ley (1985), and Ben Akiva and Lerman (1985).

There is a major difficulty in generating less global goodness of fit meas-
ures for discrete choice models. Because the observed data represents dis-
crete choices {Fy, Fy =0 or 1} while the predictions are given as probabilities
{Py, 0 = Py = 1), comparisons at the individual level are meaningless. Thus
some aggregation is always necessary. One scheme suggested by McFadden
(1979) involves computing expected choices, that is, the numbers of individ-
uals who originally chose alternative k and are expected to choose alterna-
tive u. In fact, in later simulations we will examine individual predictions,
but for the applications to London which follow, comparisons between
observations and predictions will be confined to success statistics based on
expected choices.

To introduce these statistics, first note the structure of the observed choice
set {Fy}. Then by definition,
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ZP&:LEE&:N&:
P :

> 2 Ex=2 Ny=N. 4.11)
i k k

The first equation in (4.11) implies that any individual can only make one
choice, the second is the constraint on the number of choices made for each
alternative, while the third simply says that all the number of choices made
is the same as the number of individuals N. The analogous structure for
the probability set {P;} is

EP&:lrsz:Nb
k i

> Py=> Ny=N. (4.12)
ik k

Similar interpretations for equations (4.12) exist as for those in (4.11), but
note that summation of {P,} with respect to individuals yields predicted
numbers of choices Nk in contrast to actual numbers N;.

For each individual choice F; (where F; = 1) there is a probability that
the same individual will make a different choice P;,. The number of such
choices across all individuals is the number of individuals who originally
chose k and are expected to choose u, and this is defined as

Ne =D, FyPise (4.13)

{Ny,} is the so-called predicted success matrix. Using equations (4.11) to
(4.13), the matrix has the following properties:

2 Nu=2 Fi D, Pu=N, (4.14)
and
E Ny = 2 (2 F,-k) Pu=N (4.15)
k k

i

From these definitions it is clear that
> > Nu=> Ne=> N,=N.
k wu k W

We can devise a variety of statistics relating to proportions and differences
between observed and predicted successes using these aggregations. First
we can compute the proportion of correct predictions, noting that N, gives
the number of such correct predictions. Then

1 = Nu/N,, (4.16)

which varies between 0 and 1. Total predictive success occurs when Ny, =
Ny, Vk and Ny, = 0, k # u. For the entire system the equivalent statistic to
equation (4.16) is defined as

1=, Nu/N. 4.17)
k
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The second index relates to differences between predicted and observed
numbers of choices, expressed as proportions or shares. An absolute meas-
ure of this index is given by N, — N; while its relative form is defined as

&= (Ni - Np)/N, (4.18)

which can be positive or negative.

The final index we have computed is called by McFadden (1979) the pre-
diction-success index ¢, One problem is that if the predicted choices for u
were much larger than k, that is if N, > N,, then the value N,, would be
affected accordingly. To account for this, ¢ is defined as

Q= Nk N;
and an overall index ¢, appropriately weighted, is defined as
oL
m—%Ncpk—g[N (N) : (419)
The maximum value of ¢ occurs when 3, Ni. = N, and then
_ Ni)?
‘Pmax'-l—g (N) (4.20)

A normalized measure is given by ¢/@n..; other applications are given in
Wrigley (1985). These indices based on equations (4.13) to (4.20) will be
further adapted in the empirical work which follows to aggregations of
subsets of individuals located in specific zones; these will be presented
below.

4.6 Determinants of Spatial Structure: the Data Base

Conventional descriptions of urban structure tend to be based on disaggre-
gations of urban activities into land use by type and location. One realiz-
ation of conventional structure was used in the hypothetical ‘London” dem-
onstration model presented in the last chapter and its extensions presented
earlier in this. In those models, commercial-industrial (work), residential
(living) and open space (leisure) activities were treated in a locational
framework which emphasized in diverse ways the radial and concentric
nature of the contemporary city. It is not possible to take this model further
to the applications stage here, largely because we do not have easy access
to a comprehensive land use-activity data base. Moreover, we are inter-
ested in developing more formally structured discrete choice models which
can be embedded within the fractal simulation, thus enabling us to assess
the impact of individual spatial choice behavior in the large.

Another consideration which has guided us is not just the absence but
the availability of data. We have access to a large-scale housing survey —
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the English House Condition Survey (EHCS: DoE, 1978, 1979) — which was
conducted in 1976. This was based on a fairly low sample of households
in England, something in the order of 1 in 3000, but this represents an easily
available, highly disaggregate data source and thus we have chosen to
make use of it. Logit models of housing tenure choice have previously been
calibrated using this data set (Longley, 1984).

We have chosen housing type as the key variable defining urban struc-
ture which is a major category in the EHCS data. Houses are classified into
five types: purpose-built flats (apartments), converted flats, terraced (row)
houses, detached/semi-detached (single-family) houses, and a miscel-
laneous group. House type is a particularly clear way of representing urban
structure for different areas of the city are often perceived generally in
terms of house type: historically, cities have grown reflecting different
house types, and house type seems to relate to how far people wish to live
from the CBD. Cities are often articulated as spatial patterns with flats near
the center, terraced houses occupying the inner suburbs, detached/semi-
detached the outer suburbs, each ring reflecting a stage in city growth. Thus
density and distance variables are indirectly reflected in house type, and
in the case of London, this is particularly relevant in that the city is strongly
monocentric, has a well-developed flats market and has been economically
buoyant for several centuries. In our applications, we have in fact excluded
the miscellaneous category because of the fact that it acts as a residual cate-
gory and contains less than 2% of the observations available in the data
base.

Choice of house type lies at the base of several contemporary theories of
urban structure which integrate two important constructs. First, bid-rent
theory postulates an implicit trade-off in housing decisions between hous-
ing space and type versus proximity to, or distance from, central urban
functions; and urban growth and dynamics (as manifest by filtering, sub-
urbanization, urban renewal etc., and as expressed in the age of the stock)
exhibit an identifiable correspondence with distinctive dwelling types such
as subdivided central city houses, suburban semi-detached homes, pur-
pose-built flats in revitalized inner city neighborhoods and so on. The impli-
cation is that dwelling and neighborhood type are clearly related to distance
from the CBD and the date at which the land parcel was integrated (or
reintegrated) into the contemporary urban development process.

Thus age and distance represent key determinants of urban structure. In
designing the models, it was thought important to keep these variables as
simple as possible and at the same time, easily measurable. We also con-
sidered neighborhood quality at an early stage, but eventually dropped this
to keep the model simple; in any case, neighborhood quality was subjec-
tively specified in the EHCS data and thus difficult to predict generally.
Age of house in which the household respondent resided was available in
the survey, but distance from the CBD was not, and this constitutes a prob-
lem. Each individual was not coded by exact location in the data set, but
located by Borough, of which there are 33 in Greater London. What we
have done in measuring distance is to simply locate a centroid in each
Borough and use airline distance from this to a point in the City.

Another consideration involved the fact that when we embed the discrete
choice models into the large-scale (fractal) simulation, we require data on
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age of housing and distance from the CBD at every conceivable point of
residential development in Greater London. These data are amongst the
easiest to obtain from independent sources. We used an age distribution
for housing measured over seven levels which was available from the (then)
Greater London Council (GLC) Intelligence Unit Library. Distance is
measurable directly from the map, while neighborhood quality, although
available from the GLC, did not appear to match that used in the EHCS,
and was thus excluded at an early stage of model estimation.

The general form of the models we have estimated, in log-odds form, is

P.
IOg ‘l?"f = hul’] + AulRJr:' + AuQin f = Zm U= 2! 3! 4 (421)
il

The log-odds equation is normalized with respect to the probability of
choosing a purpose-built flat, P;; and the other choices involved converted
flats (1 = 2), terraced houses (1 = 3) and detached/semi-detached homes (i
=4). Q; is the age of the dwelling in which individual i resided and R, is
the distance from the CBD to the centroid of the Borough in which i resides.

In essence, we assume that R; is unobserved and that equation (4.21)
is an appropriate approximation to the underlying discrete choice model
analogous to equation (4.21) in which R; replaces R,. Equation (4.21) will
only be acceptable if R, is the mean distance, and the sum of the differences
around R,, in the Borough cancel. Formally, if R; = R, + €; where ¢, is the
‘error’ difference between the mean and the actual distance to individual
i, the average R, can be defined in terms of R; as

z Ri/Nn =Rn T E E:‘/Nn' (4.22)

ieZ, ieZ,

Z, is the spatial definition of the Borough n and N,, is the number of individ-
uals in Z,. From equation (4.22), the mean will only be equal to R, if %;.2
€; = 0, that is the errors around the mean are self-canceling in total. We
cannot explore the detailed implications of this aggregation further, but it
is important to further research. Discrete choice theory is strangely deficient
in clear discussion of the spatial aggregation problem, with the exception
of important work by Anas (1981, 1982, 1983).

Before we broach questions of model selection and estimation, we will
sketch how the model we are working with could be developed in nested
fashion, to account not only for the aggregate form of the distance data,
but also for more substantive questions related to the sequence of spatial
decision-making. Because distance from CBD is only available at Borough
level, it might make sense to conceive the house type-residential location
process as one in which a choice of neighborhood type is made first on the
Borough (Z,) level in terms of neighborhood quality and distance from the
CBD and then the choice of house type made at the individual location
with respect to age. Such a model could be written as

Pl'qk = Pl'q Pi'ldrp
where P, is the probability of an individual i choosing neighborhood type
q and house type k, P;, the probability that the individual chooses neighbor-

hood type g at Borough level and Py, the probability the same individual
then chooses house type k, having chosen neighborhood type 4. Such a
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sequence could be structured so that the fractal simulation enabled neighb-
orhood type to be chosen at an appropriate level of fractal resolution,
house-type at a lower level. Although neighborhood type is predicted here,
this could be suppressed if it were regarded as only an intermediate vari-
able of little visual significance. There are many issues to resolve here, but
some work along these lines in an industrial location context by Hayashi
and Isobe (1985) looks promising, as does the theoretical work of Roy
(1983). Nested models of this type need to be pursued in extensions to
these applications.

4.7 Model Selection and Estimation

We developed a number of preliminary specifications of the model before
we decided upon equation (4.21). We first estimated some models based
on housing tenure but then dropped these in favor of house type when
our ideas relating to urban structure became clearer. We began with five
categories of house type including miscellaneous but dropped this when it
appeared non-significant in explanation. We then estimated the house type
model with all combinations of up to three exogenous variables: age and
distance which we eventually selected, but also neighborhood quality. With
three variables, there are seven models in all which can be specified and
the global fit of each of these seven is given in Table 4.1.

By far the best of the models, indicated in bold type in Table 4.1, are the
two which include the age and distance variables. These models in fact are
the only ones which reach the threshold of acceptability in which & > 0.2
suggested by Hensher and Johnson (1981). The best model also includes
neighborhood quality but the percentage increase in fit between the model
without this variable and that with is less than 5% and thus neighborhood
quality has been omitted. Other reasons relate to the fact that neighborhood
quality is difficult to produce in a consistent and comprehensive data base
for London, and to the fact that in our fractal simulations we have severe
memory limitations, which means we need to hold both input and output

Table 4.1. Global fits of models incorporating age, distance and neighbor-

hood quality

Independent variables £
Age 0.118
Distance 0.089
Neighborhood quality 0.069
Age and distance 0.207
Age and neighborhood quality 0.123
Distance and neighborhood quality 0.095
Age, distance and neighborhood quality 0.218

Bold type indicates acceptable models within the Hensher-Johnson Limit £ > 0.2.
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data in screen memory simultaneously. This limits the number of variables
we can deal with and thus neighborhood quality was felt to be dispensable.

We will now examine the discrete choice model estimated for the age-
distance variables in equation (4.21). The three fitted equations are given
as follows, with the notation: purpose-built flats: # = 1, converted flats: u
= 2, terraced houses: # = 3 and detached /semi-detached houses: u = 4.

P, 4862 + 0.034R, + 0.067Q;,

toe P2 _ 423
%D, (7984  (0754)  (10.599)* (4.2%)
(0.609) (0.045) (0.006)
3605 + 0177R, + 0052Q,
g e ¥ * Q (4.23b)
Py (9818  [6735)  (11.439)*
0367)  (0.026) (0.005)
P, -5737 + O0354R, + 0.046Q,
og 5= (4.23¢)
Py {-12.143} {11.379)* {9.102}*
(0.472) (0.031) (0.005)

where £ =0.207 and N = 809. ¢ statistics are shown in curly brackets, signifi-
cance being denoted by an asterisk; standard errors are shown in parenth-
eses.

Note that the log-odds is essentially the log-likelihood that individual i
will select the numerator alternative rather than the denominator alterna-
tive. In view of the aggregated nature of the distance data, the £ of 0.207
indicates a reasonable degree of overall fit, whilst the variable parameters
and their corresponding ¢ statistics lend support to our a priori expectations.
Equations (4.23b) and (4.23c) imply that both terraced and detached/semi-
detached are likely to be further from the CBD and to be older than pur-
pose-built flats; and equation (4.23a) suggests that converted flats are likely
to be older than their purpose-built counterparts.

These interpretations can only be borne out by a full-scale simulation and
the pattern of coefficients suggests that flats of both kinds are nearest to
the CBD, while terraced, then detached/semi-detached houses are further
away, assuming that terraced are older than detached/semi-detached. As
we intend the simulation to be entirely spatial, and spatial structure is not
apparent from the model fits presented so far, we need to see how well
the models perform spatially at an aggregate level first. The obvious level
on which to perform such spatial analysis is similarly aggregate. We will
present our analysis visually in the next section where the models’ predic-
tive success indices are mapped for the 33 Boroughs.

We have already shown that it is necessary to aggregate individual pre-
dicted probabilities so that we can enable some comparison with the
observed data. To this end, we introduced McFadden's (1979) predicted
success matrix in equations (4.11) to (4.15), and then presented various indi-
ces of success in which correct proportions, and differences between
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observed and predicted choices were computed in equations (4.16) to (4.20).
However, it is possible to compute equation (4.13), the numbers of persons
originally choosing k and predicted to choose u, for subsets of individuals,
in particular individuals residing in certain zones, in this case Boroughs Z,.
In all the indices which follow equation (4.13), N,, is replaced with

Nkw, = E .F,'k P,'w (4-24)

1eZ,

where Ny, is the number of individuals originally choosing k and predicted
to choose u in Borough Z,.

The proportion of correct predictions defined in equations (4.16) and
(4.17) for the whole of Greater London can act as a basis for comparison
with their zonal equivalents. These statistics were computed using the
model in equation (4.23) as

1, = 0.533, 1, = 0.198, 3 = 0.433, and m, = 0.397.

These indices seem rather low; only in the case of purpose-built flats is there
a better than 50% success rate, and converted flats are poorly predicted. The
overall percentage of correct predictions from equation (4.17) is computed
as m = 0.432 which is an appropriate average of {v,}. The spatial (zonal Z,)
equivalents of m, called 7, are mapped across the 33 Boroughs in Figure
4.3 (note that in all these types of map, the City Borough does not contain
any observations and thus is not shaded). These percent-correct predictions
show a much wider range of variation. In general, purpose-built flats are
better predicted closer to the CBD, while the reverse holds for
detached /semi-detached houses. The distribution of converted flats gener-
ally shows a low percent prediction with a slight increase towards the CBD
while terraced houses show a less distinctive spatial pattern with a slight
increase in performance towards the periphery. In fact, Figure 4.3 contains
the clearest demonstration we have that individual choice behavior varies
spatially. The obvious conclusion is that there are two sets of models, one
for inner, the other for outer London, but before we consider these further,
we will examine other indices of predictive success.

Indices of the percentage difference between observed and predicted cho-
ices given by equation (4.18), {¢x} have been computed in spatial equivalent
form and are mapped in Figure 4.4. The patterns are much less clear than
those in Figure 4.3. For purpose-built flats, the largest differences are in the
inner suburbs, and the smallest in the center and the west. For converted
flats, the pattern is much more random with a slight bias towards higher
differences in the inner suburbs. For terraced houses, the inner suburbs
show higher levels of under- and over-prediction in the cases of
detached /semi-detached houses. These maps are more difficult to interpret
than their counterparts in Figure 4.3. What they do show, however, is that
there are both sectoral and concentric-geometric spatial biases in the pat-
tern of predictions which can only be accounted for by the addition of new
and different explanatory variables (and the possible deletion of one of the
existing ones), or the development of models which accept these spatial
differences. We will pursue the latter course.

To conclude, it is useful to examine the pattern of overall correct predic-
tions from equation (4.17), computed and mapped spatially, and this is
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pes (cont.): (a)

Figure 4.3. Proportions of correct choices of house ty
purpose-built flats; (b) converted flafs.
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Histogram

Figure 4.3. Proportions of correct choices of house types: (c) terraced
houses; (d) detached/semi-detached houses.
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Percent

Figure 4.4. Differences in observed and predicted housing choices
[cont.): (a) purpose-built flats; (b) converted flats.
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Figure 4.4. Differences in observed and predicted housing choices: (c)
terraced houses; (d) detached/semi-detached houses.
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presented in Figure 4.5. The best predictions are recorded in and near the
center, and in the outermost suburbs. This suggests the need for two separ-
ate models of individual choice behavior, one for inner, the other for outer
zones. The need for this distinction is even clearer when the normalized
success index computed from the spatial equivalents of equations (4.19)
and (4.20), and defined as ¢,/ ¢y, max, is examined. This is mapped in Figure
4.6, and shows that the best predictions occur nearest the CBD, the worst
in the far western and eastern suburbs. On this basis we decided to reesti-
mate our models based on equation (4.21) for inner and outer London,
where inner London is based on the 13 Boroughs which compose the Inner
London Education Authority (ILEA).

The sample size of 809 observations was divided into 337 based on the
inner Boroughs, the remaining 472 comprising the outer Boroughs. First
equation (4.21) for the inner Boroughs was estimated as

P, -5446 + 0.194R, + 0.061Q,
1081—,77-‘ - (4.25a)
1 {-5.849} {1.478} {8.305}

(0.931) (0.131) (0.007)

Figure 4.5. Proportions of correct choices for all house types.
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= Histogra

Figure 4.6. Overall normalized success indices for all house types.

- Pa_ 5106 + O0430R, + 0.0500;

og — =

8Py (-7.046F  (4106F (8722
(0.725) (0.105) (0.005)

(4.25b)

p, -7430 + 0546R, + 0.050Q;,

log ——= (4.25c)
Py {-5.810) {3.203)* {5.767}*
(1.279) (0.171) (0.009)

where £2 = 0.228 and Njnner = 337; t statistics and standard errors denoted as
above; and the appropriate equation(s) for the outer Boroughs estimated as

P, -5119 + 0.030R, + 0.075Q;,
log P " " (4.26a)
n {-3.307) {0.280} {6.514}

(1.548) (0.106) (0.012)

o Po_ 130 ~ OOOR, + 0.059Q,
%8P, (-1754) (0170}  (7.450*
(0741)  (-0051)  (0.008)

(4.26b)
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p, -3537 + 0.86R, + 0.051Q,
log =2 = (4.26¢)
EPy (-4740)  (3816]  (6.538)* ;

(0.746) (0.049) (0.008)

where £ = 0.106; Noyer = 472. What becomes apparent in terms of the t and
£” statistics is that the inner London model (equations (4.25)) performs very
much as the original model (equations (4.23)), whilst the outer London
results are rather different. Equation (4.26) reflects a diminished role of the
distance variable (two of its associated f statistics are insignificant and one
parameter exhibits an unexpected sign) which contributes towards a much
lower & goodness-of-fit measure.

We might rationalize this in terms of our previous land use theory as
follows: whilst difficulties of physical accessibility constrained the physical
growth of London up until the First World War, the subsequent innovation
of mass transit and the automobile rapidly opened up large tracts of land
for development. Because most of this development occurred over very
large areas, the form of physical development is much less likely to exhibit
a very close and identifiable correspondence with distance from the CBD.
Reestimation of our model for outer London without the distance
variable yields

P, -4695 + 0.075Q,

- 427
%8P, (7388  (6.490)* edin)
(0.635) (0.011)
P, -1399 + 0.059Q,
5B 427b
%8P, 4990  (7.470)* (L)
(0.280) (0.008)
P, -0.881 + 0.048Q, —_—

%8P, 1-3347) (6241
(0.263) (0.008)

£ = 0.078 and N = 372; t statistics and standard errors denoted as above.
The & statistic is less than that for equations (4.26) and thus the model has
not been used in the simulations which follow. At this point we can con-
clude our section on estimation. Many avenues remain unexplored but sev-
eral models have been tested and we will take forward those in equations
(4.23), (4.25) and (4.26).
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4.8 Fractal Simulation of House Type and
Location in London

One of the more obscure reasons for developing such a simplified model
based on age and distance can now be made clear. Age is a spatially exten-
sive variable, while distance is a property of space itself. Thus it is possible
to display a single map shaded according to age from which distance can
also be read, in particular distance to some fixed point from any other. If
we had more than a single extensive variable, age and neighborhood qual-
ity say, these could not be represented on the same map in easily codable
form. Clearly it is useful for ease of interpretation to have a single map of
input data, for this can be directly associated with a map of the outputs
from the models. In fact, the need to store data in map form is essential,
for the fractal simulation was run on a very small microcomputer in which
only 8K of memory was available for program and data, 20K of memory
being given over to the graphics screen. Although it might be possible to
store data on disk, and thus include a larger number of independent spatial
variables, the continual reading and writing required would make the oper-
ation of the model prohibitively slow. In fact, because the data are spatially
extensive, it is essential to store them in screen mode, for the resolution we
are working with involves 160 x 256 pixel points which makes any form
other than screen storage extremely problematic. The data on age are stored
as a screen map, and airline distance is easy to compute from screen coordi-
nates which in turn are a function of the screen addressing,.

The age data were made available by the GLC Intelligence Unit in seven
age groups which were coded in grid fashion, and colored in the screen
memory according to the age group. The screen map is shown in Plate 4.3
where the colors refer to the age of housing. The following average ages
in years define the seven ranges in question, —8 —26 —48 —78 —110 —150
—175 —, and these are colored white, light blue, magenta, dark blue, yel-
low, green and red respectively. These represent weighted averages which
reflect the distribution of housing in any grid square. Distance from the
CBD to Borough centroids is measured in kilometers, the GLC boundary
being about 24 km maximum from the City and the ILEA boundary used
for the inner London model being about 13 km distant. Note also that the
shape of urban development in London is coded into the data through grid
squares colored on a black background which does not contain housing.
These represent ‘vacant’ land in the sense used earlier, although in these
applications, the model in no way predicts this.

The way the simulation works involves first loading the age map into
the screen memory from file. Then the fractal simulation begins in the order
used previously in the demonstration model, and when the appropriate
level of fractal detail is reached, the program retrieves the color of the cen-
troid of the triangle space reached, from the screen, converts this into an
age value, computes distance and uses these variables in the model struc-
ture based on equation (4.21) to compute the probability of house type.
Thus the simulation works by replacing the regular gridded age map by
the irregular fractal land use pattern in a literal sense. This rather innovative
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technique for input is immediately converted to output and this occurs
directly ‘before your eyes’. In a sense, it is a version of the WYSIWYG
principle (‘What You See Is What You Get’) which is central to many oper-
ations with graphics computers. A note on technical detail is required. The
simulation operates on a display with resolution 160 x 256 pixels in 16 col-
ors. Eight colors are reserved for the age map (seven ages and one vacant
land use) and five are used in choosing house type (four types and one
vacant land use). The process of replacement is not as clear as it might be
because only eight absolute colors are available, hence the replacement of
the input map with the output map uses similar colors and is only
distinguished in terms of its irregularity.

The process of fractal simulation is essentially the same as that used pre-
viously in Chapter 3 in the ‘London’ sequence. Moreover, we have also
used the triangular midpoint displacement technique for fractal rendering
which was shown there in Figure 3.14 for the hypothetical demonstrations.
The only difference relates to the way the input data are stored and sampled
and the way the probability models are developed. Four land use types
based on housing, rather than three based on activities, now form the simu-
lated urban structure. The area over which the simulation is operated is
fixed and in a sense residential location is already predetermined through
the data, and thus it is only house type by location which varies.

We have already noted that two model structures are to be used: that
based on the whole of Greater London using equations (4.23) and that based
on the distinction between inner and outer London based on equations
(4.25) and (4.26). In these simulations, we work at recursive level s = 5 which
essentially fixes fractal detail at just above the pixel level of the screen. Each
simulation takes about three hours and involves examining 10 x 4° = 10,240
randomly positioned contiguous triangles which form the network of frac-
tal detail at the lowest level of resolution. In fact, the models are based on
809 data points, and in the area in question there are in excess of three
million households, thus the simulation itself is still very much in the nature
of a sample-style exercise in which an ‘average’ individual residing at the
lowest level of fractal detail makes a house-type choice which is then
assumed to be typical of all individuals at that level and in the space which
contains that location.

The other issue involves the conversion of probabilities {P;} into discrete
choices. In the demonstration model, a random simulation was adopted in
which choice of land use was accomplished according to the probability
range fixed by the land use models but ultimately determined using a ran-
dom number device. The resultant outputs were very satisfactory because
the probability profiles were quite distinct, thus enabling fairly clear
decisions to be made and characteristic spatial patterns to emerge. Here,
however, the probability profiles of the house type models are much less
different from one another, and thus to develop clearer spatial patterns,
we have also used a deterministic simulation. This simulation is based on
choosing a house type according to the rule

Type «— max {Py} (4.28)
k
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which simply makes the choice according to that alternative which has the
maximum probability for individual i.

We can now show the simulations. We will first discuss the random
simulations which are based on equation (4.23), then equations (4.25) and
(4.26), but we will not show these visually as they do not generate much
imagery of import. The main impression is one of massive variability of
house type in spatial terms. There is almost a complete mix of types every-
where for both types of equation, thus implying that the relative evenness
and similarity of the probability profiles gives much greater weight to the
lower probabilities in each choice situation than would be the case in a real
context. Little spatial pattern can thus be discerned and this suggests that
random simulations based on discrete choice models are likely to produce
too little spatial discrimination if predicted in this way.

The deterministic simulations which involve equation (4.28) are shown
in Plate 4.4(a) and (b) for the full, and inner-outer models respectively,
where the four colors - red, yellow, green and blue — reflect converted flats,
purpose-built flats, terraced houses, and detached/semi-detached houses
respectively. Very clear spatial patterns emerge this time which show the
characteristic structure of residential land use in London, but there is little
difference between the two sets of model. The clearer of the two patterns
is Plate 4.4(a) based on the full model, but there is a ring of purpose-built
flats between the terraced and detached/semi-detached areas which is
unexpected. In Plate 4.4(b), purpose-built flats are closer in towards the
CBD. Note that in the simulations the total number of house choices is not
scaled in any way to reflect the scale of housing in London; thus this rep-
resents an additional prediction from the model. The patterns in general
though are very plausible, reflecting flats, terraced and detached/semi-
detached houses at increasing distance from the CBD, with the distribution
of purpose-built and converted flats clearly characterizing the flat-market
in London. One limitation of the deterministic model is that it does not
pick up the degree of local variation one might expect, but a more detailed
data base might resolve this.

Finally, we have begun to experiment with these simulations. Running
the models at s > 5 requires a larger processor because the memory
required explodes due to the recursion, and so far we have run the model
up to s = 7, although the increase in time required is exponential. Level of
recursion does affect the patterns we get, but generally these help us to
improve the ultimate look of the geometry, not the models themselves. Sim-
ple policy-predictive runs of the simulations are possible, for the input data
are easy to update. One could assume a process of aging and renewal,
varying according to simple rules and policies, which would then enable
a pseudo-dynamic simulation to be developed. A series of images of the
typical house types in London over the next 50 years could be generated
in this way. But these are for the future, and in any case, there are many
lines of inquiry that have to be followed up before then.



162 Fractal Cities

4.9 Extending the Laboratory for Experimentation
and Visualization

The ability to display the overall pattern produced by models with an
implicit spatial dimension is a clear advantage of the large-scale simulations
adopted here. But these need not be generated within a fractal framework.
Simulation could proceed by examining each pixel in turn and building up
urban structure in this way on a regular spatial grid. Nevertheless, fractals
do generate realistic images, and one of the goals of this chapter has been
to make abstract models more visually intelligible and acceptable, and for
this, the fractal framework seems promising. As such, the technique is one
of generating spatial realism, and this clearly depends upon the display
devices used. The main problem emerging from this chapter, however,
relates to the development of a more consistent modeling strategy which
can be effectively incorporated into the hierarchical method used to struc-
ture the simulation. We have already indicated what is involved: in essence,
the hierarchy guiding the fractal simulation should be based on character-
istics of the city, and this clearly relates to the type of explanation and
modeling required. Discrete choice models show promise here, but so do
sequential and nested approaches involving entropy models (Batty, 1976).
This reasoning leads us to the conclusion that a more fundamental strat-
egy may be actually to explore land-use models which are themselves frac-
tal. Some examples already exist in physical geography: for example, the
sorts of terrain model explored by Goodchild (1982) and illustrated in
Chapter 3, and image processing techniques such as those developed by
Pentland (1984) are suggestive of the types of stochastic model that might
underlie the structure of land use. There are difficulties in that some of the
patterns are discontinuous, but it is worth exploring how such ideas could
be used to link what we already know about land use, central place, and
rank-size together in a fractal framework. With respect to discrete choice
models, there may even be the possibility of a fractal interpretation of the
underlying mechanisms which give rise to various forms of logit and probit
models, and there is clearly a possibility that questions of nesting and
aggregation might be reconciled with ideas about recursion and hierarchy.
In fact, in this chapter, the whole question of the spatial basis of discrete
choice models has emerged as problematic, and this suggests that further
research on spatial aggregation and discrete choice is worthy as an end in
itself, notwithstanding any fractal interpretations which might emerge.
Many other speculations are possible about where such developments
will best be focussed. An interesting project would be to examine the extent
to which regular, non-random fractal patterns built from cell-space models
(Tobler, 1979b; Couclelis, 1985) could be used as first approximations to
city patterns, and there is much work now developing in this domain
around concepts of cellular automata and artificial life. We also need to
consider how such simulations might be made dynamic, especially as there
is an obvious dynamic process underlying a model in which age acts as an
independent variable. In one sense, our models might already be seen as
explaining urban structure in terms of time and space, age and distance,
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and our earlier comments on possible policy simulations endorse this. In
particular, the question of redevelopment is central to residential location,
and any dynamic extension to the framework should enable such processes
to be captured. We will explore these ideas more fully from Chapter 7
onwards, but we also require a firmer empirical basis to our assertion that
urban structure is indeed fractal, in order to inform both description and
theory. We will begin our assault on this measurement task in the next
two chapters.



5
Urban Boundaries and Edges

The fascination of boundaries lies in their ambivalent role of dividing and con-
necting at the same time. They mark the transition between different modes of exist-
ence. They transmit and control exchange between territories. They are the play-

ground for discovery and conquest ... They are the result of never ending
competition and exhibit structure on many scales. (Richter and Peitgen, 1985,
p. 571-572.)

5.1 At the Edge of the City

Boundaries, as Richter and Peitgen (1985) so graphically portray, are places
which mark the transition between different regimes, different systems, and
this is nowhere more so than between the rural and urban worlds at the
edge of the city. In one sense, the boundary of the city marks the transition
between different epochs, between an older agricultural society and the
newer industrial, although the distinction is becoming weaker as contem-
porary society is beginning to make its transition to a post-industrial era
with all its consequences for how cities will be organized. Nevertheless,
such zones of transition do reflect the tension between the old and the
new, places where more stable, established structures are being continually
tested by a newer, ever-changing dynamic. Even in these terms, such
boundaries are not likely to be ‘smooth” in any sense and as we shall see,
their physical form is both irregular but self-similar in that a precise tran-
sition between the old and the new can never be definitively marked out.

In defining the physical form of the city, its edge or boundary is the most
obvious visual delimiter of its size and shape. Statistical definitions of cities
rely upon the definition of boundaries, although such definitions are never
comprehensive; there are so many possible ways of cutting the continuum
of development from urban to rural that the general idea of a boundary
remains a conceptual notion which is only given physical form through
narrow definitions. Urban boundaries, however, are not simply linear con-
structs which mark off one side of the continuum from the other but they
imply area, and thus shape (Batty, 1991). As we have argued in earlier
chapters, although cities can be visualized across many dimensions, they
are usually best pictured in the plane as two-dimensional phenomena and
thus their boundaries immediately imply some measure of area. In this
sense, the boundary is clearly something more than a one-dimensional line
for whenever we examine such an edge, we conceptualize an area.
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There are many notions as to what constitutes the boundary of the city,
several of which we will be using in this book. In Chapters 3 and 4, we
defined cities in terms of concentric rings of different land uses about their
CBDs based on von Thunen'’s original division of land use along a spectrum
from highly urban to rural; in contemporary terms, this continuum begins
with high density commercial at the core of the city and evolves to low
density agricultural uses such as market gardening at the periphery. We
also referred extensively in Chapter 4 to the notion of inner and outer sub-
urban areas, while the idea of the suburban fringe as the zone of transition
between urban and rural can be extended to the quasi-urban area at the
rural edge of the city sometimes called exurbia. In later chapters, we will
have recourse to extend our definition of the city to its wider hinterland
or field, that area which contains all the development which in one way or
another is associated with the city. Definitional problems abound, too, for
in the age of the world city, activities may exist everywhere on the globe
which are in some sense dependent upon the city in question. Finally, we
will make our definitions of the extent of the city much more precise from
Chapter 7 on when we begin to introduce the idea that population density
must be the delimiter of form and that density itself rather than the shape
of land use or physical development, is the true measure of whether or not
cities are fractal.

In this chapter and the next, we will begin to define and measure the
form of the city in analogy to the way we discussed the definition of a
fractal line in Chapters 2 and 3. There we argued that fractal lines are some-
thing more than the one-dimensional Euclidean line but something less
than the two-dimensional plane; the coastline is the example par excellence.
In fact, it is likely that the fractal dimension of our urban boundaries will
be closer to 1 than to 2 for we will not consider cities which are entirely
composed of boundaries, in which the boundary itself twists and turns to
fill the two-dimensional space. This point in itself is somewhat contro-
versial, for it is possible to define cities which are entirely composed of
boundaries if the level of spatial resolution is chosen accordingly. More-
over, there are recent theories of the post-industrial city which are predi-
cated on the idea that everything significant in the modern city is at the
edge: ‘Edge Cities” as they have been called (Garreau, 1991), thus giving
some meaning to our own notion that the most interesting aspects of urban
phenomena depend upon what is happening on their boundaries.

However, urban boundaries or edges can be very different from coast-
lines in the following sense. Whereas our interest in coastlines is often only
over a fixed stretch of the line, our interest in urban boundaries is likely
to be over their entirety in that to define a city by its boundary, there is
usually some measure of closure to the line. The boundary thus marks out
an envelope. In fact, if we examine coastlines in their entirety too, we must
consider the same sorts of closed line. It is nonetheless a comment on the
rudimentary development of fractal geometry that there are virtually no
discussions so far of the implications for measurement posed by objects
with closed, in contrast to open, boundaries. We will in fact extend our
discussion into these realms, but to anticipate the outcome, much remains
to be done. In this chapter we will define the problem of the closed
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boundary away by adopting artificial closure, and only in the next will we
broach the matter directly.

In Chapter 2, we identified four ways in which we might define objects
of interest and measure their scale-dependence, hence their fractal dimen-
sion. We noted that we could derive the fractal dimension of a single object
by measuring the same object at different scales or by varying the extent
or size of the object over which the dimension might be computed. In
essence, we will be adopting the first method here, that is taking a given
city and examining its physical properties at different scales in contrast to
the second method where we change the size of the given object; this we
will develop from Chapter 7 on. We can also derive the fractal dimension
of a set of objects by examining the size distribution of the objects in ques-
tion, and we will do this for individual land use parcels in Chapter 6 which
will extend the ideas of this chapter. If we have a set of objects, we could
also change each of their scales and simply combine all the scale-dependent
results and use the methods of this chapter to compute a fractal dimension
for the entire set. But for a set of objects, the most appropriate methods are
those which involve examining their size, not scale. In short, what we will
introduce in this chapter are methods such as those we presented in Chap-
ter 2 for deterministic fractals such as the Koch curve and we will apply
these to a single city, deriving its fractal dimensions from the lines which
compose its boundary.

Here we will use the town of Cardiff, which is the capital city of Wales,
as our example. Cardiff has a very distinct urban edge, and our problems
of defining its boundary are considerably less than in many other possible
examples. However, the boundary is a closed line, and without any knowl-
edge of fractal geometry, it seems intuitively obvious that such a line
implies an object with a dimension somewhat greater than one. Any layman
would probably associate the closed line with an area and argue that the
purpose of the line was simply to mark out the area. Common sense would
thus imply that resulting object was in the plane rather than the line. How-
ever, as we shall see, the measurement of the fractal dimension of these
closed lines yields values which are much closer to one than two, and which
are quite close to the theoretical Koch coastline where D = 1.262. What
these findings will impress is that the concept of fractal dimension is com-
pletely dependent upon what is being measured, or rather what physical
properties of an object are being selected for measure, and that there are
likely to be many different types and values of fractal dimension. We will,
of course, elaborate this important point throughout the rest of this book.

We will first discuss the way geographical boundaries might be rep-
resented before we move to outline the formal methods which we use to
derive the fractal dimension of a line. These methods are those which we
have already presented in Chapter 2 but they will be repeated again here
for we will adapt them somewhat differently to this context. We illustrate
the basic method for the case of Cardiff’s urban edge (in 1949) and this
serves to point up some problems of measurement and statistical method.
We then go on to outline the way these methods might be used to compute
the changing dimension of a growing city, using data from the growth of
Cardiff from the late 19th century to the middle of the 20th. To generate the
relevant dimensions, we will use four different methods of approximating a
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fractal line, namely, the structured walk, equipaced polygon, a hybrid of
both these, and the so-called cell-count which is a simplification of the well-
known box-counting method (Voss, 1988). Finally, we will draw these
results together so that we might extend them to measuring the boundaries
of different land uses in Chapter 6.

5.2 Cartographic Reﬁresentaﬁon and

Generalization of Geograp

As we demonstrated in Chapters 2 and 3, the most celebrated example of
a fractal is a coastline. Although the development of fractal geometry only
really took off after Mandelbrot’s famous paper in Science in 1967 where
he posed the conundrum of length in terms of ‘How long is the coast of
Britain?’, it was Richardson (1961) who first articulated the problem in these
familiar terms. Richardson demonstrated quite unequivocally that the
length of a coastline depended upon the yardstick or scale with which its
length was measured. As we illustrated for the Koch curve, he showed that
as the scale became finer, more and more detail could be picked up by the
measuring instrument, thus implying no bounds on its length. Although
Richardson did not formalize the concept of fractal dimension, which was
left to Mandelbrot (1967), he did derive the familiar log-linear relationship
between length and scale, and in estimating this, demonstrated that the
fractal dimension of coastlines ranged from around 1.02 for South Africa,
1.13 for Australia to 1.25 for the western shore of Britain.

As we also noted in Chapter 2, this conundrum has been remarked upon
for at least a hundred years, and it is likely that it was known in some
form to Renaissance geometers and thus probably to the Greeks. In the
1960s with the development of mathematical geography, Nysteun (1966) in
a seminal paper, not only identified the problem and suggested a solution
through the definition of length contingent upon the scale used, but he also
pointed to the work of the Polish mathematician Steinhaus (1954, 1960) and
geographer Perkal (1958a, 1958b) who had both reflected upon the paradox.
Perkal in fact drew attention to the work of the Viennese geographer Penck
(1894) who was familiar with the problem in the late 19th century. How-
ever, the problem was simply noted, and apart from some attempts at its
resolution with respect to associating length with explicit scale, there were
no attempts until Mandelbrot (1967) to pose it in a wider framework. It
would, in fact, have been remarkable had not the problem been posed in
countless guises throughout history, but it probably had to await the arrival
of computer graphics, hence fractals, before its universal import could be
appreciated.

What is fascinating is that the problem has never been restricted simply
to physical systems. Nysteun (1966) described the conundrum of length in
discussing the boundary of the town of Ann Arbor, Michigan; Perkal
(1958b) illustrated the same for the boundary of the town of Wroclaw in
Poland, while Richardson (1961) himself used political frontiers as examples

ical Boundaries
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of fractal curves. In fact, he derived the fractal dimension of the frontier
between Spain and Portugal as 1.14 and of the German land frontier in
1899 as 1.15. Although Mandelbrot (1983) developed his new geometry
mainly with natural examples in mind, he is strident in maintaining that
the geometry is applicable to artificial systems. He says in discussing the
amount of circuitry which can be packed onto a chip: “This and a few other
case studies help demonstrate that in the final analysis, fractal methods can
serve to analyze any ‘system’, whether natural or artificial, that decomposes
into parts in a self-similar fashion, and such that the properties of the parts
are less important than the rules of the articulation”.

That urban boundaries are fractal in some sense might already seem self-
evident, although we still have to demonstrate the point. There is, however,
another issue which dominates the definition of boundaries for geographi-
cal systems, and this involves the concept of ‘generalization” as it appears
in cartography. Generalization is the process of aggregating cartographic
features which encompass a map, from one scale to another, and as such,
the various methods developed have often alluded to the problem posed
by the conundrum of length where cartographic lines are involved. In fact,
cartographers have made considerable progress in the search for methods
for selectively aggregating and filtering geometric detail as lines are
generalized from smaller to larger scales, and have, perhaps unwittingly
sometimes, invoked the geometry of fractals (Lam and Quattrochi, 1992).

In exploring the extent to which any boundary or line might be depen-
dent on scale, the process of generalization is likely to detect such variations
and thus its development is important to the measurement of fractal dimen-
sion in cartographic lines. Buttenfield (1985) has conceptualized it as
encompassing four related procedures and processes: first, simplification,
such as in the removal of unwanted detail and the smoothing of features;
second, symbolization, in which line character is graphically encoded
according to geographical and perceptual conventions; third, classification,
in which cartographic information is aggregated and/or partitioned into
categories; and fourth, induction, in which the creative logical assumptions
which are made during generalization are applied. As such, it is clear that
the depiction of cartographic information is the end result of a variety of
codification conventions mediated by a human judgmental process. This is
no less the case in the generation of computer-digitized data bases than in
traditional cartographic line-drawing (Jenks, 1981).

There are many types of method for line generalization. Buttenfield
(1985) develops a comprehensive classification and critique of such algor-
ithms including various random and systematic point weeding routines to
simplify detail, the fitting of various mathematical functions to lines, the
epsilon neighborhood concept based on linking line length to scale (Perkal,
1958a, 1958b), and the use of both angular and band-width tolerancing to
dispense with successive points which fall outside a prespecified angular
and/or band-width threshold (Peucker, 1975). She concludes that the choice
of method used can depend upon the often-conflicting emphases that differ-
ent studies have placed upon geographical and perceptual accuracy.

The measurement of shapes through boundaries has a long history in
natural science too and has also been absorbed into the locational analysis
tradition of human geography (see Haggett, Cliff and Frey, 1977). Many of
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the earliest shape indices were based upon simple length, breadth and area
relations. This was primarily because the constraints associated with time-
consuming manual measurement restricted the assessment of line structure
to simple indices of variation at selected points and to the monotonicity of
line segments about a base line anchoring the end points of the line. These
efforts were nevertheless well-motivated, since even fairly crude measure-
ments and classifications of form can enhance urban analysis. There are
numerous examples of such use. At an extreme, Thomson (1977) develops
simple areal density measures in order to classify the functional relation-
ship between transport infrastructure and urban form, while closer to the
ideas to be developed here, Benguigui and Daoud (1991) have undertaken
a detailed empirical analysis of the relationship between the form of the
Paris suburban railway system and the distribution of the urban popu-
lation. As we demonstrated in Chapter 1, many of our conceptions of the
city, ancient and modern, are rooted in the idea that the geometry of the
city in terms of simple indices of shape can, in some way, be tied to its
functioning, and that to change or control its functioning involves manipul-
ating its geometry. In this sense, form follows function and our ultimate
aim in this book is to demonstrate how the new geometry of fractals can
inform this quest. In this chapter, we will begin by linking the shape of
cities to their boundaries.

In the present context, we suggest that most of these methods involving
techniques of generalizing lines or measuring simple geometric properties
of shapes are flawed in at least two fundamental ways. First, in a geographi-
cal sense, most are heavily reliant upon the a priori definition of the scale,
starting points and ending points of constituent line features for the syn-
thesis of total line structure. Second, in a perceptual sense, many algorithms
fail to preserve the qualitative visual character of a line in terms of its shape
when it is generalized (Muller, 1986). Seen in the context of the emergent
relationship between measurement and simulation of urban form, this
produces two grave shortcomings. First, it is not possible to specify a priori
those features which we expect to characterize urban boundaries, since their
inductive generalization remains one of the primary goals of the measure-
ment exercise. Second, if we are to derive visually acceptable space par-
titioning rules for land use simulations then our measurement parameters
must maintain perceptual accuracy in any of the lines which they are used
to generate. In this chapter, we will contend that use of fractal techniques
can provide a consistent and feasible route beyond this impasse, since first
by using very few parameters, the line can be measured as a total entity
rather than as a piecemeal amalgam of constituent features; and second,
the line’s visual character is preserved by using the concept of self-simi-
larity and by sensitive assessment of the range of scales over which the
fractal property holds.

Before we launch into the measurement task, it is important to reflect
upon the notion of exact or statistical self-similarity resulting from a single,
or small number of processes. Clearly this notion becomes increasingly
strained as we make the transition from physical to social systems where,
for example, urban edges clearly evolve under a wide range of simul-
taneous physical and social processes. At a theoretical level, many of the
more abstract spatial theories anticipate self-similarity, with central place
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theory being perhaps the best example (Arlinghaus, 1985). At a procedural
level, we might consider that at worst, the differences in the nature of self-
similarity between physical and social systems are of degree rather than
of kind. In such circumstances, there would be no rationale why fractal
measurement should not proceed in a similar manner to applications in
disciplines as diverse as particle science, mineralogy and music (Dearnley,
1985; Kaye, 1978; Mark and Aronson, 1984; Dodge and Bahn, 1986).

All such analyses depend critically upon isolating the most appropriate
range of scales over which any statistical property of fractals holds. For
example, it is likely to be the case that geographical features will revert to
man-made Euclidean dimensions at certain fine scales. Additionally, and
in all such instances, the cartographer is the arbiter, and to some extent the
architect, of the final depiction of the map feature, and any summary meas-
ure must ultimately be viewed in part as the outcome of a human judgmen-
tal process. In summary then, the measurement and generalization of carto-
graphic lines using fractals is likely to have a number of advantages over
other forms of representation (Muller, 1987) and there are grounds to antici-
pate that empirical evaluation of the fractal dimension “. . .may be the most
important parameter of an irregular cartographic feature, just as the arith-
metic mean and other measures of central tendency are often used as the
most characteristic parameters of a sample” (Goodchild and Mark, 1987).
The rest of this chapter will be focussed on demonstrating how such dimen-
sions emerge as a natural consequence of the process of generalization.

5.3 The Basic Scaling Relations for a Fractal Line

The two basic relations for a fractal line associate the number of parts into
which the line can be divided, and its length, to some measure of its scale.
These relations have already been stated in equations (2.24) and (2.25)
respectively and we will proceed in analogy to these. First, consider an
irregular line of unspecified length R between two fixed points. Define a
scale of resolution r, such that when this line is approximated by a
sequence of contiguous segments or chords each of length r,, this yields N,
such chords. Now determine a new scale of resolution r; which is one-half
ro, that is, r; = /2. Applying this scale r; to the line yields N, chords. If
the line is fractal, then it is clear that “.. halving the interval always gives
more than twice the number of steps, since more and more of the self-
similar detail is picked up” (Mark, 1984). Formally this means that

N, "o

No > 2 and e 2. (5.1)
This is illustrated for three different scales in Figure 5.1. Using equation
(2.25), the lengths of the approximated curves or perimeters, in each case,
are given as L, = Nyr, and L, = Ny and from the assumptions implied in
equation (5.1), it is easy to show that L, > L,. This provides the formal
justification that the length of the line increases without bound, as the chord
size (or scale) r converges towards zero.
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Figure 5.1. Approximating an irregular line and measuring perimeter
length at three adjacent scales.

The relationship in (5.1) can be formally equated if it is assumed that the
ratio of the number of chord sizes at any two scales is always in constant
relation to the ratio of the lengths of the chords. Then

N, _ (r)°
N, - (?'1) : 62)

where D is defined as the fractal dimension. If halving the scale gives
exactly twice the number of chords, then equation (5.2) implies that D =1,
and that the line would be straight. If halving the scale gives four times
the number of chords, the line would enclose the space and the fractal
dimension would be 2. Equation (5.2) can be rearranged as

N; = (Nor§) 1i° = arg®. (5.3)

where the term in brackets (Nyr§) acts as the base constant « in predicting
the number of chords N, from any interval of size r, relative to this base.

From equations (5.2) and (5.3), a number of methods for determining D
emerge. Equation (5.2) suggests that D can be calculated if only two scales
are available (Goodchild, 1980). Rearranging equation (5.2) gives

D =log %’: log :—j (5.4)

However, most analyses not only involve a determination of the value of
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D but also of whether or not the phenomenon in question is fractal, and
thus more than two scales are required. Generalizing equation (5.3) as in
equation (2.25) gives

N(r) = ar® (5.5)

where N(r) is the number of chords associated with any r. Using logarithms,
we can linearize equation (5.5) as

log N(r) =log « — D log r. (5.6)

Equation (5.6) can be used as a basis for regression by using estimates of
N and r from several scales. The related formula involving the length of
the curve or perimeter L analogous to equation (2.25) is derived from equ-
ation (5.5) as

L =Nr = ar(-D, (5.7)
Equation (5.7) can also be linearized by taking logarithms,
logL=loga+plogr (5.8)

where B = (1 — D). It is clear that the intercepts « in equations (5.6) and
(5.8) are identical and the slopes are related to the fractal dimension D in
the manner shown. In later sections, we will use equation (5.8) rather than
equation (5.6), for equation (5.8) will enable us to check the range of scales
used more effectively.

The original method used by Richardson (1961) to measure the length of
coastlines and frontiers involved manually walking a pair of dividers along
the boundaries at different scales and then determining D from equation
(5.8). To enable the entire perimeter to be traversed, the last chord length
which always finishes at the last coordinate point is generally a fraction of
the step size, and the step sizes used at each scale usually reflect orders of
magnitude in geometric relationship; that is r, = a™ ry, a > 1, which enables
each step size to be equally weighted and spaced in the log-log regression.
In Richardson’s (1961) research, about six orders of magnitude or scale were
used which is regarded as sufficient to determine a least-squares regression
line. Computer simulations of Richardson’s manual method are now well
established. Kaye (1978, 1989a) refers to the method as a ‘structured walk’
around the perimeter of an object, and he calls the log-log scatter plot of
perimeter lengths versus scale intervals a ‘Richardson plot’; this provides
a useful visual test of whether or not the phenomenon is fractal. The struc-
tured walk method is easy to implement on a computer, and here we have
used the algorithm developed by Shelberg, Moellering and Lam (1982)
which involves approximating the boundary of an object consisting of line
segments between digitized coordinates, with different sized chord lengths.

There are two variants involving this method. First, the number of chords
and perimeter lengths will depend upon the starting-point along the curve.
To reduce the arbitrariness of this variation, several workers have sug-
gested the structured walk be started at several different points, and aver-
ages of the results then formed (Kent and Wong, 1982). For example, Kaye,
Leblanc and Abbot (1985) start the walk at five different points along the
curves, but there is no reason why, in principle, the walk should not be
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started at each of the digitized points which define the base curve. In the
illustrative example which we will develop in the next section using the
digitized points of Cardiff’s urban boundary in 1949, we will initiate suc-
cessive walks from each of the 1558 digitized points which define the urban
edge, the walks proceeding in both directions towards the endpoints of the
boundary. This variation on the basic method is inevitably time-consuming
in computational terms.

The second variant involves starting the structured walk at different div-
ider lengths and generating sequences of predictions from these different
lengths. The range of scales over which the perimeter lengths were com-
puted varied from about half the average chord length associated with the
digitized data, to over the maximum distance between any two coordinate
points on the perimeter. The average chord length is computed as follows.
First, the distances between each adjacent pair of (x,y) coordinates, i and
i + 1, are computed using the standard triangle equality

df',iﬂ = [(xl' i xl'+'i)z + @i i ym)?]m: i= I.r ey — l.r (59)

and then the perimeter L of the base-level curve which has been digitized
at resolution r can be summed as

L(r) = "2 di(t'.'.‘]- (5.10)

i=1
The average chord length d of the original curve is therefore

L(r)

S (5.11)

d

I

and a lower bound for the chord length used to start the approximation,
as suggested by Shelberg, Moellering and Lam (1982), is taken as approxi-
mately d. The maximum distance between any pair of coordinates, which
in fine particle science is referred to as Feret's diameter by Kaye (1978,
1989a), is given as

F =max (d;;.1), (5.12)

i+l

and Kaye (1978), amongst others, suggests that an appropriate upper bound
for chord length approximation is =~F/2. The intermediate chord lengths
between these lower and upper limits should be ordered a geometrical
sequence so as to ensure more equal weighting in the regressions.

5.4 Estimating the Fractal Dimension: the Urban
Boundary of Cardiff

We have now presented sufficient method to derive our first example of a
fractal dimension for a city. In order to illustrate the procedure, we have
digitized the 1158 points composing the boundary of the town of Cardiff
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in 1949 which we show in Figure 5.2. This figure provides an excellent
example of the problems of measurement which we confront. As such it
represents a visual trace akin to the sorts of photographs physicists use
to search for the existence of elementary particles, but with an important
difference. The points which are defined in Figure 5.2 represent a series of
subjective judgements as to the level of detail needed to represent the
boundary at this elemental level. As the irregularity of the boundary varies
over its length, then more points in general are defined where more detail
is observed. It could be argued that we should represent this elemental
level at the same level of detail everywhere and this of course would occur
if, for example, a grid or other regular tessellation of the plane were used to
detect the boundary. However, such a grid would have much redundancy if
it were to detect the finest level of detail and therefore we have proceeded
on the assumption that it is important to present as much detail as possible
at the elemental level. As we shall see, some of the methods we use to
derive fractal dimension will be based on regular tessellations of the plane
but the problem of measuring ‘objective’ statistics such as fractal
dimensions in subjectively specified data sets will continue to concern us
throughout this book and we will return to it again in the sequel.

The boundary marking the extent of the urban area of Cardiff was
defined from the 1:25,000 Ordnance Survey map published in 1949. The
usual problems of definition were encountered in determining the edge of
the urban area, and several rules of thumb were invoked. Typically, allot-
ments and other urban fringe land-uses were excluded, villages linked to
the urban area by ribbon development were included, man-made alter-

Figure 5.2. The density of point digitization of the 1949 Cardiff urban
edge.
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ations to rivers and coast were included, but large landed estates which
subsequently become part of the urban fabric were included only if devel-
opment had surrounded them. The entire definition process emphasized
the obvious problems that urban processes and constraints operate at differ-
ent scales, and this casts some doubt on the fractal concept of self-similarity
in this context; but perhaps no more doubt than exists in other areas of the
physical sciences where fractal concepts have been shown to apply only
over restricted scales. Once the boundary had been defined, it was digitized
to within 1 mm resolution; the coastline contained some 900 points, whereas
the urban boundary was based on 1558 points. Figure 5.2 is thus a fair
representation of the land which by 1949 had become ‘irreversibly urban’
in character, and is consistent with other official standards for defining
“urbanity” (OPCS, 1984).

Figure 5.3 shows the digitized outlines as well as a coarse approximation
to the boundary produced by the structured walk method, which is about
30 times the scale of the original data. The approximating polygon touches
the original boundary at those points on the base curve which are retained
for the approximation, and all of the chords are of equal length except for
the end (residual) chord distance(s). The perimeter of the digitized bound-
ary determined from equations (5.9) and (5.10) gives L = 3104.456 units,
with the average chord length d = 1.993 from the equation (5.11), and the
Feret diameter F = 432.935 from equation (5.12). These measures are useful
to keep in mind when we discuss the relative merits of different fractal
measurement methods. We will deal first with the structured walk method.
For a given chord length used to start the sequence of predictions of per-
imeter lengths, a complete series of 10 chord lengths are used in the

Figure 5.3. A typical scale approximation fo the digitized urban edge of
Cardiff.
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approximations, starting from the finest level of scale now given by r, and
moving to coarser scales r,. The sequence of chord lengths is computed
fromr,=2"V,n=0,1,...,9, where V is the start length which is always
a function of d, the average chord length. Thus, for example, where V =
d/2 which is the lower bound recommended by Shelberg, Moellering and
Lam (1982), the sequence of chord lengths used are in the following ratios:
31,2, 4,8, 16, 32, 64, 128, 256. In this case, r, = 1 and r, = 510 which is
much larger than Kaye’s (1978) upper bound of F/2. To provide some feel
for this range of approximations, we have plotted the approximated bound-
aries of Cardiff for r,, n =0, 1, ..., 8, in Figure 5.4. With r,, the boundary
is approximated by only one chord which is clearly inappropriate. Indeed,
even with r, and r, the approximations are too coarse to be of much use.
This is clear from Figure 5.4 which shows that this kind of visual test is
essential in selecting an appropriate range of measurements for use in the
subsequent regressions.

We will illustrate the issue of ascertaining the most appropriate scale

o =v2d n=d

r,=324d rr=644d

)

Figure 5.4. A sequence of scale approximations to the urban edge.
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range for measuring fractal dimension by selecting 10 different starting
values of the chord length V, and generating ten sets of measurements for
each of these starting values. The values of V chosen are V = 0.4d, 0.5d, 0.6d,
0.8d, d, 1.5d, 2d, 3d, 4d and 5d. From the sequences generated, it is clear that
several of the chosen measurements are the same between series, but each
of the regressions developed below involves different sets of measures. A
visual comparison of each of the ten sequences generated is also contained
in the Richardson plots in Figure 5.5 which show the ten measures of log
L versus log r for each of the ten starting values of V. These plots are all
on the same scale for comparative purposes and also show the values of
d/2,d,F/2 and F.

Before we present the results of the regressions, we need to consider how
we can systematically narrow the range of results we are able to generate,
and to this end, we have devised five criteria. First, we have used the range
0.4d = r = F/2 to select those observations which are appropriate. Second,
we have used the Richardson plots to identify outliers for exclusion. In
particular, when r > F, then the algorithm always gives the same perimeter
length because it always closes the single chord on the last coordinate point.
Such points show up horizontally on the Richardson plots and must be
excluded. Third, the scale approximation must be acceptable visually. An
examination of Figure 5.4 suggests that approximations with ten chords or
less are not satisfactory in representing the overall shape, and thus must
be excluded. Fourth, we suggest that the r> measure of fit (coefficient of
determination) should always be better than 0.95, and fifth, the stan-
dardized variation in average perimeter length for each chord r should not
be greater than 10% of the mean value. This also enables poor approxi-
mations to be excluded.

For each of the 10 starting values of V in the structured walk, we have
performed regressions on all 10 points shown in the Richardson plots in
Figure 5.5, on the first nine, the first eight, seven, six, then five, below which
it is not appropriate to carry out such least-squares fitting. The absolute
values of the slopes of the regression lines |B| = |(1 — D)| are shown in Table
5.1 along with the r* values, but as Shelberg, Moellering and Lam (1982)
indicate, such r* values should be used in a descriptive rather than an infer-
ential sense. In Table 5.1, the figures which are in bold type involve
regressions in which the observations meet all the five criteria mentioned
above, and this narrows the range considerably. Note that the fractal
dimension is given by adding 1 to the absolute slopes in Table 5.1, that is,
D=1+|p|

For the structured walk method, there is still a large variation in fractal
dimension from 1.155 = D = 1.289, and from Table 5.1 it is quite clear that
as finer and finer scales come to dominate the regression, so the value of
D decreases. This implies that there is greater irregularity at coarser scales,
but it also indicates that where the scale is below the level of resolution of
the digitized boundary, that is, where r < d, then no further detail is picked
up and the boundary must be considered Euclidean. This is the case for
the first four starting values (first four rows) in Table 5.1, and if these are
excluded from consideration, the range of D is from 1.234 to 1.289. In fact,
the rule of thumb suggested by Shelberg, Moellering and Lam (1982) that
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Figure 5.5. Richardson plots based on ten structured walks.
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Table 5.1. Logarithmic regression of perimeter on scale associated with the
Richardson plots in Figure 5.5

Starting Number of observations?
values V!
10 9 8 7 6 5
0.4d 0.269 0.244 0.231 0.207 0.177  0.155
0.953 0.959 0.947 0.944 0.961 0.969
0.5d 0.278 0.258 0.255 0.236 0.211 0.180
0.969 0.975 0963 0.956 0.956 0.975
0.6d 0.279 0.263 0.254 0.236 0.216 0.185
0.975 0.975 0.964 0.963 0.953 0.966
0.8d 0.292 0.291 0.266 0.254 0.231 0.198
0.976 0.966 0.973 0.962 0.957 0.974
d 0.291 0.297 0.276 0.278 0.261 0.234
0.982 0.977 0.983 0.975 0.967 0.963
1.5d 0.293 0.309 0.308 0.280 0.261 0.254
0.975 0.980 0.971 0.980 0.980 0.963
2.0d 0.282 0.304 0.315 0.293 0.303 0.289
0.969 0.984 0.982 0.989 0.987 0.979
3.0d 0.274 0.303 0.327 0.331 0.301 0.282
0.945 0.972 0.984 0.977 0.986 0.985
4.0d 0.254 0.284 0.313 0.331 0.306 0.328
0.924 0.958 0.981 0.983 0.989 0.996
5.0d 0.245 0.276 0.308 0.331 0.321 0.329

0.915 0.953 0.984 0.996 0.997 0.996

'Starting values in each sequence of the structured walks.
“Number of observations of perimeter—chord lengths used in regressions. The first value in
each row-column is slope [B|; the second value in parentheses is r2.

V should begin at about d/2 should be reevaluated in future work so that
the variation around d can be considered.

5.5 Form and Process: Cardiff's Changing
Urban Edge

Boundaries which partition complex systems from their environment and
from one another reflect properties and processes which can be inferred
from their morphology, as Richter and Peitgen (1985) imply in the quote
introducing this chapter. For example, transport and building technologies,
social controls over development as well as physical constraints determine
the boundary investigated in the previous section, just as the shape and
form of the coastlines referred to in Chapters 2 and 3 reflect the action of
a variety of geophysical processes. If we were able to observe the change in



180 Fractal Cities

boundaries through time, then this should give us some clue to the various
processes at work, and in this section, we will explore this issue with
respect to what the changing boundary of Cardiff over a 50 year period
implies for the urban growth of that city.

Thus far, we have seen how perimeter—scale relations may be displayed
as a Richardson plots as in Figure 5.5, and we have used such plots in
order to detect the range of scales over which it is appropriate to extract
information from a data base digitized to a given level of resolution. If a
fractal dimension is stable over many scales and the scatter of points about
a simple regression line is well-behaved (that is, close fitting), we can infer
that the morphology is consistent with a single set of processes operating
at every scale. In the case of an urban boundary, which evolves as a concat-
enation of a variety of processes, it is more plausible to anticipate that a
multitude of processes leads to the emergence of a particular fractal dimen-
sion. In fact, measurements of the fractal dimensions of boundaries, particu-
larly coastlines (Kent and Wong, 1982; Mandelbrot, 1967; Nakano, 1983,
1984; Richardson, 1961) and fine particles (Flook, 1978; Kaye, Leblanc and
Abbot, 1985; Orford and Whalley, 1983), have suggested that such phenom-
ena may be ‘multifractal’, that is, with different (in this case usually lower)
fractal dimensions at smaller scales. This is intuitively plausible in that we
might anticipate that different processes operate at different scales,
especially where man-made and natural processes combine (Kaye, 1984;
1989a). The importance of the fractal dimension thus lies in identification
of the range of scales over which processes operate and the different scales
at which such properties manifest themselves over time. It also enables
changes in the morphological effects of self-similarity to be explored.

Here we will develop the example used above in order to examine how
the irregularity of the boundary of an urban area changes at different scales
and through time. We will seek to use these measurements to infer changes
in the processes which condition urban growth in time and space. Reexam-
ining some of the graphs in Figure 5.5 reveals evidence of a slight curvi-
linear trend about the points in the Richardson plots, suggesting that a
multifractal (rather than conventional straight line, or log-linear) formu-
lation of the perimeter-step length/scale relationship may have been
appropriate in this instance. In focussing upon temporal changes in detailed
morphology, we have therefore increased the precision with which the
boundaries for this substantive analysis were digitally measured. We will
consider the urban boundaries of Cardiff in 1886, 1901 and 1922, but in
order to avoid ambiguity of interpretation we will not compare our results
with the 1949 digitized perimeter, since this data set was not digitized at
a directly comparable level of resolution. We do, however, show the four
boundaries overlying one another in Plate 5.1 (see color section) which
shows the town'’s urban expansion, its extent and the changing irregularity
of the urban edge over time.

Just as the form of a coastline evolves as the outcome of a range of simul-
taneous physical circumstances, so the morphology of the city is the out-
come of a multitude of physical and social processes as we have already
implied (Batty, 1992). These include the technology of building, patterns of
land tenure, the size of building plots, the demand for residential space, the
mobility of the population, and the efficiency and availability of transport
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technology. These processes manifest themselves at different scales, for
example, building technologies at smaller, transport at larger scales. It is a
reasonable assumption that these processes are reflected in the boundary
of the city, hence in its degree of irregularity and fractal dimension (Perkal,
1958a, 1958b).

Accordingly, we will advance three hypotheses concerning changes in
the fractal dimension of these urban boundaries. First, we consider that the
boundary is multifractal across a range of scales; second, that as there is
greater control over physical development at smaller scales, the fractal
dimension is likely to decrease with scale; and third, that the fractal dimen-
sion at smaller scales should decrease over time as greater controls over
building technology and land development have been instituted. At larger
scales, it is less clear how the fractal dimension changes although increasing
mobility and accessibility imply it too will decrease through time. We will
test these hypotheses by determining the fractal dimensions of the urban
boundary of Cardiff in 1886, 1901 and 1922. These times have been chosen
because of the rapid urban growth of the city from a population of 80,000
to 230,000 during this period. This period also marked the development of
the tramway system which began in 1872 and was complete by 1914, and
it was the period when the predominant style of late Victorian worker hous-
ing gave way to more spacious suburban housing. The landed estates which
dominated the form of development in Cardiff in the mid-19th century
were no longer significant and the period represented the pinnacle of indus-
trial prosperity in Cardiff which was ended by World War I (Daunton,
1977).

The urban boundaries defined from 1:10,560 scale Ordnance Survey maps
in 1886, 1901 and 1922, which were digitized to ] mm accuracy, are dis-
played Figure 5.6, and overlayed in Plate 5.1. Considerable control was
exercised in digitizing to ensure the same level of detail was picked up

1886 1901

Number of perimeter points N = 2457 N=2757 N = 4755
Length of perimeter L = 30664 L = 30365 L =50213
Average chord length L/N =12.480 L/IN=11.014 LIN = 10.560

Figure 5.6. The urban edge of Cardiff in 1886, 1901, 1992,
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from each map, thus minimizing the possibility that the fractal dimension
becomes an artifact of the mapping process. Computing these dimensions
involves the same procedure as was outlined above in the previous section:
first the length of the perimeter of each boundary is calculated by simulat-
ing a traverse of the curve at different scales, and second, these perimeter
estimates are related to their associated scales using a curve fitting pro-
cedure which yields the fractal dimension. The perimeter L is measured
using a simulation of Richardson’s method of walking a pair of dividers
around the curve, the step length of the dividers r being a measure of scale
(Richardson, 1961; Shelberg, Moellering and Lam, 1982). Details of the way
in which the algorithm operates will be given below in the next section.

The two variants in the method described in Section 5.3 above have both
been invoked. First, successive measurements are started at every digitized
point on the curve and the perimeter taken as an average of each walk to
remove any dependence on starting values. The method is extremely time-
consuming, each pass of the method taking 65 minutes of CPU time for a
curve involving 4755 digitized points (the 1922 boundary), running on a
computer operating at 2 MIPS. Second, the scales used in each walk varied
from a step length r, computed as the average of the chords linking the
digitized points, to a scale which gave not less than eight chords, below
which any approximation to the boundary was deemed unacceptable in
accordance with the criteria developed at the end of Section 5.4. Thirty
changes in scale were used and each scale was related to the lowest step
length r,by r,=2"V,n=0, 1, ..., 30, where V is the parameter controlling
the geometric scaling related to d in equation (5.11). As in Section 5.4, these
scales ensure equal weighting of values in the log-log regressions based on
the log-log plots of perimeter against scale. These are shown in Figure 5.7
for each boundary.

As we have seen in Chapter 3, geophysical boundaries are characterized
by a wide variation in the value of D (Burrough, 1981), but for coastlines,
the value of D is likely to be less than 1.3 as first shown by Richardson
(1961) and confirmed many times since (Kent and Wong, 1982; Mandelbrot,
1984; Shelberg, Moellering and Lam, 1982). The slope a and intercept B are
once again determined by a linear regression of log L on log r as in equation
(5.8). Richardson plots describing the scaled perimeter measurements for
the three time periods in Figure 5.7 form the basic data for the regressions
and the results of fitting straight lines through these scatters are given in
Table 5.2. The fractal dimensions D decrease as hypothesized with the larg-
est falling in the period 1886-1901. However, both Figure 5.7 and Table 5.2
reveal that the phenomena are multifractal. It is impossible to identify clear
breaks in the slopes of the plots and thus approximating the plots by several
linear functions would be arbitrary. It would appear that the fractal dimen-
sion itself is a function of scale, and thus we have postulated that the scaling
coefficient B is determined as

B=X\+ dr. (5.13)
Substituting (5.13) into (5.8) gives
log L =log o + A log r + ¢r log 7, (5.14)

from which it is clear that
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Figure 5.7. Richardson plots over many scales for Cardiff in 1886,
1901 and 1992.

Table 5.2. Scaling constants and fractal dimensions from equation (5.8)

Data set log « D=1-8 Goodness-offit
(%)

1886 11.080 1.239 0.914

1901 10.866 1.184 0.927

1922 11.393 1.185 0.907
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Table 5.3. Scaling constants and fractal dimensions from equation (5.14)

Data set log a D=1-1 bx 1073 Goodness-of-fit
(when r=0) (P)
1886 10.719 1.141 5.865 0.983
1901 10.622 1.117 3.947 0.985
1922 11.114 1.109 3.901 0.984
D=1-\-¢r. (5.15)

As the scale r — 0, D — 1 — A. Thus the term ¢r log r in equation (5.14)
acts as a dispersion factor which increases the fractal dimension as the scale
increases. If ¢ = 0, then this factor which introduces the non-linearity into
the plots is redundant and equation (5.14) collapses back to equation (5.8).
The model is thus consistent with increasing fractal dimension with scale.

Regressions based on equation (5.14) are shown in Table 5.3 and the per-
formance of each model measured by r* dramatically improves in compari-
son with equation (5.8) and Table 5.2. Changes in the fractal dimensions
based on equation (5.15) are plotted in Figure 5.8 from which it is quite
clear that the smallest scale dimension where r = 0, declines over time in
the manner hypothesized. The effect of scale given by ¢ also decreases over
time, and in both cases, the greatest decreases in A\ and ¢ occur between
1886 and 1901 when the greatest changes in transport technology — new
docks and tramways — were developed. These results are consistent with

1.3
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Figure 5.8. Predicted variations in fractal dimension over scale for the
1886, 1901 and 1992 data sets.
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the three hypotheses originally stated, although the decrease in the irregu-
larity of Cardiff’s urban boundary between 1886 and 1922 cannot be specifi-
cally attributed to changes in any single process of development. However,
the traditional image of urban growth becoming more irregular as tentacles
of development occur around transport lines is not borne out by this analy-
sis. It would appear that greater social and physical controls over develop-
ment in the late 19th and early 20th century city, together with increased
accessibility due to improvements in transport, have combined to gradually
reduce the irregularity of urban areas such as Cardiff. These results will
only apply to West European cities and similar analyses of North American
and other world cities are required. It is also tempting to speculate that
these results reflect the general notion of man’'s increasing control over
environment, but such a conclusion should be avoided because there is
greater variation in the dimensions produced by different methods than by
different temporal data sets on the same city (Batty and Longley, 1987).

These empirical findings suggest that it is necessary to postulate fractal
models based on processes which operate at different scales and which thus
generate multifractal geometries. Nakano (1983) has indicated how this is
possible for a coastline, and Suzuki (1984) has demonstrated how such geo-
metries can emerge theoretically over time. These ideas involve the notion
of transient self-similarity and transfer the analysis to models of varying
self-similarity with respect to morphology and scale. In fact, since the mid-
1980s, there has been increasing concern for the concept of multifractals
and the notion that all physical objects are likely to imply a multitude of
fractal dimensions has become accepted as the basic notions of what consti-
tutes a fractal have been relaxed and broadened through empirical
examples (Feder, 1988; Stanley and Ostrowsky, 1986). In this context, it may
now be possible to examine detailed changes in the form of a city,
developing an incremental model of urban change in which changes in
shape through the boundary are associated with different processes, differ-
ent degrees of irregularity, different fractal dimensions, all persisting
through time, a theme we will return to in Chapters 7 and 8. For the
moment, however, it is sufficient to note that fractal dimensions of urban
boundaries are a function of scale. Other published data such as that per-
taining to coastlines, fine particle morphologies, indeed a host of other
related examples throughout the physical and natural sciences (Kaye,
1989a), should be reexamined in the light of this argument.

5.6 Fractal Measurement Methods Compared I:
the Structured Walk

Thus far, we have described how fractal dimensions are calculated for ‘real
world” or ‘empirical” irregular curves, and this has been developed using
the analogy between automated computation and the manual process of
obtaining scaled measurements through dividers. The process of changing
the divider span with which a base curve is measured is, in fact, just one
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way of adjusting the scale or resolution at which that curve is measured.
In this and the following sections, we will first review the process by which
the divider-based measurement algorithm works, and will assess the accu-
racy and computational burden associated with its use. We will then
describe three other methods of measuring fractal irregularity and will dis-
cuss the relative merits of each with reference to the basic structured walk
method. We will evaluate each of these methods using the examples
introduced in Sections 5.4 and 5.5 above.

In his original application, Richardson (1961) manually ‘walked” a pair
of dividers along a mapped boundary, and obtained scale-dependent
measurements by systematically increasing the divider span. Shelberg,
Moellering and Lam (1982) were among the first to automate this procedure
with an algorithm designed to approximate a digitized curve using a pre-
specified range of chord lengths. In Section 5.4, we described how the initial
(base) scale length for each curve was computed by first calculating the
distances between each adjacent pair of (x,y) coordinates i and i + 1 using
equation (5.9). Successive scale changes were then incremented using a geo-
metrical progression of chord lengths. In our later examples, we specified
criteria to define the maximum and minimum chord lengths to be used in
the measurement process, and interpolated 30 scale changes across the scale
range bounded by these two extremes.

The walk at any given scale begins by calculating the distance 4,; from
a starting point (x,, y,) to the second coordinate pair (x;, ;) using equation
(5.9). If this distance is less than the chord length r, the next coordinate pair
(Xis1, Yin1) is selected, the distance d, ., is computed and the test against
chord length r is made again. This process continues until the distance d. ;.
> r and when this is achieved, a new point (x,,;, ¥.,1) is interpolated onto
the line segment which joins points (x;.1, Yisk-1) and (Xik Yi). The walk
then recommences from this interpolated point and proceeds through
painstaking use of trigonometry to span the curve with chords of exactly
length r. As the end of the curve is approached, the distance between the
last interpolated point and the end point will invariably be less than r; in
this instance, a fraction of the chord length r is computed in order to close
the interpolated curve. Measured perimeter lengths (L) at any scale (r) can
be obtained from any starting point on the digitized base curve; if the walk
begins other than at either the end points, the interpolation proceeds along
the curve in both directions and the final recorded length is the sum of
these computed values. As stated previously, the empirical measurements
recorded in the Cardiff example comprise the average of the lengths meas-
ured from every possible starting point on the curve, repeated, of course,
for every scale change.

The rudiments of this procedure are given visual expression in Figure
5.9(a) and (b) and in Plate 5.2. The displays in Plate 5.2 are of the 1949 urban
edge and were produced using an interactive version of the structured walk
algorithm. In this algorithm, the user specifies the initial and final chord
lengths (the former as a percentage of mean chord length on the base curve,
the latter as an absolute value), the starting point on the base curve, and
the number of generalizations (levels) that are to be produced using the
walk algorithm. Screen annotation for each level records (from the bottom
line to the top) the chord length to be interpolated onto the base curve, the
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Figure 5.9. The mechanisms underlying the four measurement methods.
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measured perimeter of the curve at this scale, and the number of (complete
or partial) traverses that are necessary to close the curve on its end points.
The sequence of displays allows the user to gain a visual appreciation of
the manner in which measured perimeter lengths (and number of chords)
decrease as scale increases, and could also assist a decision on the level of
fractal detail most appropriate to the storage and display of a given
digitized data set.

We have recorded the computer time required to make repeated
measurements of the 1949 urban boundary information used in Section 5.4
as well as the 1886, 1901 and 1922 data used in Section 5.5. Scaled measure-
ments for each of the four data series are shown together in Figure 5.10,
and the range of scales common to all four analyses are highlighted here.
The rate of increase in CPU time in relation to increased numbers of digit-
ized points is shown in Figure 5.11. In order to compare the methods, we
have fitted both of the functional forms (5.8) and (5.14), and the results for
this basic structured walk are shown alongside the CPU times in Table 5.4.
One of our earlier substantive findings was that a ‘transient dimens’on’
model (in which fractal dimension is itself a function of scale) was appr(ipri-
ate to the measurement of urban boundaries and these results are presffi'hted
in summary form in Table 5.4, together with the computer processing times
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Figure 5.10. Richardson plots of perimeter-scale relations from the structured walk method.
e: observation falling within scale range common to all four temporal data bases, 1886,

1901, 1922 and 1949.
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Figure 5.11. CPU usage associated with the four measurement methods.

Table 5.4. The structured walk method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

Llog o D 2 log o 1-X dx10-3 P
1886 0:15:23 11.080 1.239 0.914 10.719 1.141 5.865  0.983
1901 0:19:11  10.886 1.184  0.927 10.622 1.117 3.947 0985
1922 2:07:10 11.393  1.186 0.907 11.114 1.109 3.901 0.984
1949 0:07:49 12.150 1.267 0.975 11.883 1.211 1.202 0.991

associated with each of the analyses. The »* values show that the transient
dimension model produces a consistently better statistical fit than the stan-
dard log-linear form for every one of the four time slices under analysis.

The Richardson plots shown in Figure 5.10 illustrate that the structured
walk method produced estimates which correspond closely to this func-
tional form, with the clearest continuous trend being discernible for the
smaller step lengths. Although the positioning of the points does become
slightly more erratic for the largest step lengths, there is no evidence of any
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sudden ‘flattening’ of the curve, which would have indicated that the scales
were too coarse to pick up further fractal detail. This cohesion of the larger
scale points about the best fitting functional form is the result of the averag-
ing of each scale observation through measurements from every single
possible starting point. Finally, Figure 5.11 shows that the structured walk
method is consistently associated with the highest CPU usage of the four
methods to be described here. This is a consequence of the precise trigono-
mefric interpolation of points upon the base curve. It might be conjectured
that this precision obviates the need to average out the measured perimeter
lengths by using every conceivable starting point, although the decay in
the trend in the points at larger scale steps suggests this is not necessarily
the case.

5.7 Fractal Measurement Methods Compared |I:
Equipaced Polygon, Hybrid Walk and
Cell-Count Methods

The structured walk method provides a precise means of calculating the
fractal dimensionality of vectorized boundary data. As we have seen in
Chapter 2, fractal measurement and compression provides a general and
powerful means of storing coordinate information. It can be used on infor-
mation stored in both vectorized and rasterized formats, and its use in
association with these different data structures can make alternative
measurement methods more appropriate. Moreover, data processing
requirements for large data sets can make computer processing time an
important consideration in devising measurement algorithms. Three such
alternative measurement procedures are the equipaced polygon, hybrid
walk and cell-count methods. In this section, we will describe their compu-
tation and evaluate the comparative performance of each using the Cardiff
urban edge data. Repeated averaging of measurements is carried out as
earlier, and similar ranges of scale changes are also used.

The equipaced polygon method was first suggested by Kaye (1978, 1989a)
and elaborated in Kaye and Clark (1985) as a measurement method in
which there is no need to compute new base-level points. The first per-
imeter length for the sequence of scale changes is computed by summing
the distance between adjacent coordinates; the second perimeter length rep-
resents the summed distance between every second coordinate; the third
sums the distance between every fourth coordinate; and so the progression
continues, weeding out all but every 8th, 16th, 32nd, ... point. This geo-
metric point weeding series is contrived so as to give observations a more
equal spacing in the Richardson plots, and hence a more equal weighting
in the regression analysis. In terms of the Richardson plots and regression
analysis, the chord length r which is to be paired with an associated meas-
ured perimeter length is given by the average chord length spanning the
points at the corresponding level of the point weeding sequence. This is
illustrated in Figure 5.9(c).
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Formally then, a direction is established from a given starting point on
the base-level curve (x;, y;) and a chord is constructed to a digitized point
(Xi4ks Yisr) which is k steps away from (x;, y,); k is thus an index of scale. The
distance d;;,; is computed using equation (5.9), and then the next chord
involving the point (X;,o, ¥i.24) is constructed from (x.y, ¥i.i). Eventually the
endpoint of the base-level curve is approached, and the level k curve is
closed on this endpoint when the remaining number of base points is less
than step length k (this is equivalent to the ‘remainder’ as described for the
structured walk). Computations in both directions from the starting point
are added to determine the perimeter and mean chord lengths.

The Richardson plots from the Cardiff data which are associated with
this method are shown in Figure 5.12 and the results of regression analysis
in Table 5.5. At an intuitive level, one might anticipate that this method
yields results of a slightly more arbitrary nature, because exact perimeter
lengths will be dependent upon the evenness with which the base curve
has been digitized. For example, points are unlikely to have been “forced"
on long straight sections, so these sections are unlikely to contain chord
end points; moreover, the entire shape of a measured curve is likely to
change if the base curve contains major irregularities or fissures (for exam-
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Table 5.5. The equipaced polygon method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

log « D r log a 1-x ¢x107° >
1886 0:00:36 11.176 1.236 0.875 10.589 1.086 11.200 0.995
1901 0:00:45 10.923 1.178  0.917 10.594 1.094 5920 0.994
1922 0:02:09 11.420 1.172 0.902 11.078 1.085 5.187  0.992
1949 0:00:20 12.342 1.293  0.992 12.132 1.250 1.211 0.998

ple, lines bounding suburban communities connected to the main urban
area by ribbon development) which will be detected abruptly at a shift
between two scale changes. The equipaced polygon method was particu-
larly susceptible to such phenomena, since the measured curve could sud-
denly dislocate when the point weeding criteria missed some fissured
points for the first time. Figure 5.13 shows an example of this susceptibility

Figure 5.13. Sudden changes in approximation at two adjacent scales
using the equipaced polygon method.
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at two adjacent scales. In fact, the Richardson plots show that this effect is
removed by the averaging process, and the points actually follow a clearer
trend than the structured walk plots. The regression results compare
directly with the structured walk results, both in terms of measured fractal
dimensions and the statistical fits of the two competing functional form
specifications. The biggest apparent difference between the two methods
seems to be CPU usage as seen in comparing Tables 5.4 and 5.5, in that the
equipaced polygon method used less than 5% of the resources required for
the structured walk in a fully averaged run. However, intermediate poly-
gon plots are more erratic than those for the structured walk when full
averaging does not take place.

The second alternative method is the hybrid walk which was suggested
by Clark (1986) as a method which retains some favorable characteristics
of both the structured walk and the equipaced polygon methods. It is based
directly upon the same prespecified geometric chord length series as the
structured walk, which makes it less vulnerable than the equipaced polygon
method to the spacing of points on the base curve. However, it is similar
to the equipaced polygon method in that no new points are interpolated
onto the base curve; rather, each chord is either extended or contracted to
coincide with the nearest digitized point, which is then used as the origin
from which the next chord is sought. Removal of the time-consuming trig-
onometric interpolations thus serves to speed up the computations. It is
based on the same lowest level of resolution 7, as the previous two methods
and entails similar treatment of the ‘remainder” distance as the end of the
curve is approached. This is illustrated in Figure 5.9(d).

Formally, the method proceeds in the same way as the structured walk,
except that when a point (X, ¥:.s) is reached where d,;,, > r, no new point
is interpolated using the Shelberg-Moellering-Lam algorithm. If |d; ., — 7]
< |d; o1y — 1], then point (x4 Yiue) is selected; if not, then the point (X,
Vi) is selected, because this point is the closest to the point at which
chord length r intersects the base curve. The Richardson plots associated
with this method illustrated in Figure 5.14 show a similar pattern to those
of the structured walk method in Figure 5.4. The analytical results given
in Table 5.6 are also comparable with the first two methods, although the
method is unable to discriminate between the log-linear forms of the 1901
and 1922 series. The graphs of CPU usage in Figure 5.11 show that only
comparatively modest savings are made compared to the structured walk
method, and the equipaced polygon method remains the least demanding
by far in this respect.

The final method that we will consider is the cell-count method. This
method is more akin to a rasterized conception of the digitized base curve
and has been suggested by a number of authors (Dearnley, 1985; Goodchild
1980; Morse et al., 1985). In effect, the computer algorithm imposes a square
lattice for a range of different spacings on the base curve. The spacings of
the different lattices introduce the sequence of scale changes over which
the irregularity of the base curve is to be measured. At each scale (grid
spacing), the cell-count algorithm simply enumerates all of the cells that
the base-level curve passes through. Counts are made at each scale change
for grids originating at each point on the base curve: these are averaged to
produce the final observations for each scale change in the now familiar
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Figure 5.14. Richardson plots of perimeter-scale relations from the hybrid walk method. e:

observation falling within scale range common to all four temporal data bases, 1886, 1901,
1922 and 1949.

Table 5.6. The hybrid walk method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

log a D P Llog « T=A dx10-° e
1886 0:12:34 11.119  1.248 0.913 10.715 1.137 7.256 0987
1901 0:15:52  10.895 1.190 0.929 10.633 1117 4560  0.990
1922 1:21:56 11.412  1.190  0.906 110711 1.106 4.567  0.989
1949 0:06:52 12.416 1.308 0.989 12.197 1.262 1.001 0.996

way. Strictly speaking, each grid scale should be defined with respect to
the start and endpoints on the base-level curve, although for reasons of
convenience and comparability, the empirical results reported and depicted
below are based on the same 31 scales used for the structured and hybrid
walk methods. This is illustrated in Figure 5.9(e). This cell-counting pro-
cedure is related but not identical to box-counting, and its associated
dimension, the box dimension (Voss, 1988). Falconer (1990), however,
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includes all four of the techniques introduced here under the broader head-
ing of box-counting to distinguish these from spectral methods for comput-
ing dimension which we alluded to in Chapter 3.

Formally, from a given starting point (x,, y;) with a selected cell size r
and direction of traverse, the next coordinate (x; 1;) on the base curve is
alighted upon. A test is made to see if this point lies within the same cell
by considering whether |x, — x;| = r or |y, — ;| = r. If either of these con-
ditions hold, a new point is established where the coordinate in question
is updated in the direction of greatest increase. Thus if |x, — x| = [y, — v,
Xss1 = X + 7 and ¥,y = Y, whilst if the converse holds, x,,; = x; and y,., =
¥ + r. If the increase along both the x and y axes is less than the grid size
r, then a new coordinate point (x.,, ¥;,,) is selected and the tests are made
once again. Each time the direction is updated, a cell has been crossed and
is thus counted. Unlike the previous methods, when the end point of the
curve is approached, the cell approximation simply finishes when the cell
in which the end point exists has been identified.

The way in which this procedure works is illustrated in Plate 5.3 where
the aggregation shows that the intricate form of the line is lost at an early
stage in the cell-count process. It is for this reason that the method has
been advocated as a computationally inexpensive first approximation to
measurement. Figure 5.11 shows that the cell-count method is closest to the
equipaced polygon method in its meager CPU requirements. Although the
Richardson plots shown in Figure 5.15 exhibit generally smooth trends,
there is some evidence of the ‘bottoming out’ of the curves at the coarsest
scales. This indicates that the method does not detect fractal detail at these
scales, despite the averaging that has taken place. Although the choice of
starting point makes little or no difference to the results when the base
curve is being traversed in very small increments, Figure 5.16 shows that
this is not invariably the case for large step increments which only crudely
approximate the curve. Such measurements are highly sensitive to the
lengths of the residual steps which are left at a fairly coarse resolution using
the cell-count method. This is illustrated in Figure 5.16 where the outline
initiated at coordinate 456 (Figure 5.16(a)) is very different from that
initiated at coordinate 1234 (Figure 5.16(b)). Largely because of this, the
fractal dimensions and statistical fits shown in Table 5.7 bear less direct
comparison with the other methods than has been the case in the pre-
vious sections.

5.8 Beyond Lines to Areas

The algorithms described in this chapter have been used to investigate a
wide range of physical phenomena (Burrough, 1984), but rarely has the
irregularity of artificial boundaries been investigated. The preceding sec-
tions have illustrated that fractal measurement provides a plausible and
flexible means of detecting the structure and character of cartographic
boundaries, while our substantive example suggests that the processes
which structure urban form and urban edges might be investigated with
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Figure 5.15. Richardson plots of perimeter-scale relations from the cell-count method. e:

observation falling within scale range common to all four temporal data bases, 1886, 1901,
1922 and 1949.

respect to the manifest fractal irregularity which characterizes different cit-
ies in time and space. This latter objective might be accomplished by having
regard to what urban theory suggests about the concatenation of processes,
but also by recognizing different types of irregularity at different scales and
over different ranges of the same phenomenon. Historical variations in frac-
tal dimension are indeed likely, for the development of cities has been influ-
enced by processes whose form and scale has changed over time. Whilst
fractal methods can be used to generate ‘semi-realistic’ tessellations of the
plane in order to facilitate routine spatial forecasting as we demonstrated
in Chapter 4, such measurements are likely to be more useful in developing
appropriate physical theory for cities. We will return to this issue of reconci-
ling form with function in later chapters.

Describing the fractal form of cities from cartographic lines which mark
their edge is perhaps the most simplistic approach we can take to linking
form to function. Although it is clear that planned cities are likely to have
dimensions which are integer in contrast to the organically growing cities
whose irregularity gives fractional dimension, urban boundaries simply
provide the envelopes for urban form and as such give little clue as to how
much of the two-dimensional space is filled by the city. Envelopes do not
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(a)

(b)

Figure 5.16. Variations in shape approximation using different starting
points for the cell-count method.

Table 5.7. The cell-count method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

Llog o D r log « 1-\ bx 105 ?
1886 0:03:04 11.326 1.267 0.953 11.109 1.207 3.525 0.973
1901 0:03:51 11.079 1200 0.967 10.919 1.156 2.592 0.989
1922 0:11:30  11.617 1209 0.957 11.426 1.156 2.686  0.988
1949 0:01:37 12.288 1.274 0.985 12.144 1.244 0.646  0.990

pick up the detailed texture and irregular fabric of urban development and
thus offer little by way of linking dimension to the density of development.
We will in fact explore these notions from Chapter 7 onwards where we
will switch our focus away from boundaries to cellular development where
the focus will be upon density, occupancy and area rather than upon lines
and edges.

In Chapter 10, we will return once again to questions of the urban bound-
ary, but then we will explore the way boundary length and area are related
across different sizes of city, in this way seeking to model the relation
between area and perimeter and deriving fractal dimensions which pertain
to different size classes of city. Here, however, we will continue to explore
the fractal form of single cities, and to this end, we will examine the pattern
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of land uses which occur within the urban envelope, seeking to generate
the fractal dimension and properties of sets of different land use. The notion
that boundaries and edges do not exist in their own right but simply serve
to define space by marking off different regimes from one another, while
closing some from others, is central. In the next chapter we will examine
the patterns of several sets of land uses in a small English town, measuring
their boundaries and computing their fractal dimensions, but with the
explicit intention of exploring the extent to which we can relate boundaries
to areas through the area—perimeter relations which enable the dimension
of sets of objects rather than a single object to be computed. However, in
providing an unambiguous link between boundaries of entire cities and
their areas, we will have to wait until the last chapter before we tie together
these ideas formally and empirically. In the meantime, we will disaggregate
not aggregate our spatial focus, exploring land use inside the city rather
than relations between cities of different sizes.



6

The Morphology of Urban
land Use

Nature uses only the longest threads to weave her patterns, so each small piece of
her fabric reveals the organization of the entire tapestry. (Feynman, 1965, p. 34.)

6.1 Inside the Fabric of the City

As soon as we turn our attention to the geometrical composition of a city’s
land use, the urban boundaries with which we have been working, reveal
themselves to be both crude and simplistic descriptors of urban form. Inside
these envelopes lies a rich mix of heterogeneous activities and uses which
are often easier to distinguish from one another than “urban’ is from ‘rural’
but which belie a level of complexity that threatens to destroy the most
sustained attempt to classify their geometry. New problems of boundary
definition arise where different land uses, clearly embodying different pro-
cesses of development, have common edges, and thus the problem becomes
one of knowing how to distinguish different processes from a geometry
which shows itself in only one form. The problem of defining fractal objects
which are spatially adjacent or contiguous to one another becomes central,
and thus introduces the tantalizing specter of fractal objects which are cle-
arly different geometrically at one level but when aggregated to the next,
compose higher-order objects which have their own integrity and unity. It
is in this sense then that the tapestry which Richard Feynman (1965) refers
to above is woven from threads which reveal themselves at the lowest level.
This chapter will be concerned with identifying how these threads which
we defined as entire boundaries to urban development in the last chapter,
compose the fabric of the city at the more detailed level of its land use.
So far in our analyses, we have focussed upon the difficulties inherent
in measuring geographical boundaries to satisfactory levels of precision,
and we have also addressed the difficulties in obtaining objective and con-
sistent definitions of categories of urban land use. We have produced some
limited evidence to suggest that the ambiguities inherent in defining ‘irrev-
ersibly urban” phenomena and the subjective nature of boundary encoding
are not in themselves sufficient to impede us in observing temporal trends
in the changing fractal dimension of urban boundaries. In the spirit of frac-
tal measurement primarily in the natural sciences, in the last chapter we
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developed and extensively tested four different algorithms for measuring
irregularity, drawing conclusions as to the strengths and weaknesses of
these alternative procedures. In this chapter, we will use these methods to
explore the fractal nature of the more detailed urban fabric. This amounts
to a broad conceptual treatment and a thorough technical exposition, yet
there is an important sense in which our analysis remains a simplistic treat-
ment of geographical tessellations and land use categories. That is, whilst
measurement in science can, in many circumstances, be considered to con-
cern physically and geographically isolated structures, this assumption cle-
arly becomes strained where the subjects of our measurements constitute
juxtaposed contiguous areal units, which are embedded within an overall
geographical matrix.

Viewed from this more holistic perspective, we might expect measure-
ments of line character to reflect predominantly the processes that have
molded the form of each pair of adjacent land parcels, or have embodied
both sets of processes in more or less equal amount. We are not aware of
fractal measurement that explicitly acknowledges the role of boundaries as
mediators between adjacent categories, for in the mainstream, such
phenomena are considered to be the edges of geographical isolates. From
this new standpoint, the coastlines in Chapters 2 and 3 should also reflect
characteristics of both adjacent media, that is, the lithology and structural
geomorphology of the land mass, and the erosional and/or depositional
characteristics of the water body (Kaproff, 1986; Turcotte, 1992). In a system
of contiguous land use areas that compose an urban settlement, the bound-
ary to each use will similarly always consist of parts of the boundary of
other uses. In this chapter we will begin to address this issue and in so
doing, will raise, but not resolve, some severe conceptual problems for the
first time.

We will begin by providing a brief summary of the fractal relations we
seek to define, in particular the area—perimeter relations which are central
to this chapter as well as the perimeter-scale relations which we discussed
extensively in the last. We will also present two formulations of scale
dependence which we will apply to each of these relations. The application
of these methods to land use boundaries in the English town of Swindon
is then introduced by first describing the characteristics of the urban area
in question. Fractal dimensions based on area-perimeter relations across
scales are estimated, and these same dimensions are next derived by exam-
ining scale changes within the digital representation of the perimeters them-
selves. Finally, individual dimensions of each of the land use parcels can
be classified on the basis of their fractal dimension. The analysis contains
some inevitable ambiguities, but it is clear that careful measurement is
required in all such applications, and thus we see this exposition as charting
the ground rules for fractal measurement in this domain. Moreover, the
sensitivity of the analysis to measurement differences casts considerable
doubt on many of the results from applications of fractal geometry
presented to date in a variety of other fields.
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6.2 Area-Perimeter Relations and Scale
Dependence

As we indicated at the end of Chapter 5, in moving to a more detailed level
of spatial resolution, we now require methods which will not only compute
the fractal dimension of a single object, but of many objects, in this case
land uses composing distinct sets. To do this, we must supplement the
perimeter—scale relations given in Chapter 2 as equations (2.24) and (2.25),
and in Chapter 5 as (5.5) and (5.7) with the relationship between perimeter
and its area. This area—perimeter relation was derived in Chapter 2 as equ-
ation (2.29) and we will begin by discussing its relevance to the application
posed here. In this section, we will also repeat, for the reader’s convenience,
the perimeter-scale relations which we used in the last chapter.

In Euclidean geometry, a measure of size in a given dimension will scale
directly with a measure in another, for example in an adjacent dimension,
and this scaling will be some product of the dimensions themselves. Con-
sider area A and volume V based on two and three dimensions respectively.
Area has a size calculated as the square of the line measure L, that is L?,
while volume has a size L2 If it is required to derive area from volume, it
is clear that this can be done as A x V?/3, In the same way, if it is required
to derive the line L (which we will henceforth term more familiarly the
perimeter) from area A, the relation is

L« A2, (6.1)

All relationships such as those implied by equation (6.1) show that size in
one dimension can be scaled directly by knowing the dimension of the
object in a higher or lower dimension. For example, if A = mr?, the area of
a circle with radius r, L « r and so on for variety of regular forms. These
types of relation appear widely in the natural sciences where they form an
essential part of the study of relative growth or allometry (Gould, 1966). If
the relationship between a line and an area is as postulated in equation
(6.1), this is the condition of isometry. If the power of A were greater than
1/2, this would be positive allometry, if less, this would be negative
allometry.

Let us now define the area at a given scale k as A*. If area is regarded
as a measuring device for the perimeter, when the scale is increased to
k + 1, it is clear that

Liz A, 1/2

because more and more scaled detail concerning the boundary will be
picked up. In fact, the equivalent to the coastline conundrum is that in the
limit as k — o, the ratio of areas in equation (6.2) will converge but the
ratio of the perimeters will continue to increase. From equation (6.1), it is
clear that to derive L from A, area must be rescaled by a parameter which
is greater than 1 but less than 2. That is

L = (AP = AP, (6.3)
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where 1 < D < 2. If D = 2, then perimeter would scale up as area which
would imply that the area be defined as a space-filling curve, a physically
impossible realization for the kinds of geographical systems that we will
consider here. If D = 1, perimeter would not scale more than the basic unit
of measurement, the line, which would imply that no scale effects were
present as area increased. The coefficient D is, of course, the fractal dimen-
sion. In this context, it again serves as an empirical measure of how much
the curve in question departs from a straight line, thus indicating how ‘crin-
kled’ or tortuous the boundary across the space is. The relation in equation
(6.3) is known as the area-perimeter relation and the nature of its scaling
clearly implies a way of estimating the value of D (Lovejoy, 1982).

In measuring the boundary of single objects, we have restricted our atten-
tion to a single geometrical relation, namely that between a scale defined
by a unit r and a measured perimeter L. The general form of this relation
was given earlier in equations (2.25) and (5.7) and indexing it now by its
scale r, it is

L(r) = N(#)r = ar®D), (6.4)

where N(r) is the number of chords at scale r which approximate the per-
imeter L(r). We thus have two relationships for the perimeter L(r), one in
terms of area as in equation (6.3), and one in terms of scale as in equation
(6.4). Combining these gives

L(r) « AP/? o y1-D), (6.5)

It is tempting to try to equate these by considering how A relates to the
scale r. However, it is not possible to do this in general for it is only mean-
ingful in special cases where the geometry is known or assumed.

Besides the area—perimeter and perimeter-scale relations, there is a third
which could be used to estimate the fractal dimension D. This is the num-
ber-area rule known as Korcak’s law (Mandelbrot, 1983). It relates the num-
ber of or fraction of areas Fr(A) with an area greater than A, to the area
itself as

Fr(A) < AP/2, (6.6)

Here the characteristic length is again taken as the square root of area A
and used in a generalization of the number-scale relation in equation (2.24).
We will not use equation (6.6) in any of our analyses for it requires a much
larger number of objects, in this case land use parcels, than the level of
resolution of the application we have chosen permits. Nevertheless, there
may be circumstances amongst the kinds of geographical applications
which we will describe where it might be useful (Kent and Wong, 1982).
Both the area-perimeter and perimeter-scale relations in equations (6.3)
to (6.5) are intrinsically linear in their parameters D and can thus be esti-
mated by regression techniques after suitable logarithmic transformation.
However, the data for these estimations are quite different. For the area—
perimeter relation, it would in theory be possible to measure the area and
perimeter of an irregular object at different scales and perform the
regression on these measurements: but the relation is more suited to esti-
mation using a series of areas and perimeters associated with a set of
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objects, all of different sizes. If the relationship holds over many scales,
more scaling detail will be picked up in larger objects than in smaller ones.
In the case of the perimeter—scale equation, we will use the techniques of
Chapter 5 which involve measuring the same object at different scales. In
this chapter, we will explore the consequences of these two methods and
note some of the conceptual difficulties resulting from their comparison. In
the rest of this section, however, we will concern ourselves solely with their
estimation as well as techniques for measuring the effects of scale.
First we will write the area—perimeter:relation in equation (6.3) as

L =yARD), (6.7)

where vy is a constant of proportionality and f(D) is some power function
involving the fractal dimension D, in this case (D) = D/2. Taking logs of
equation (6.7) gives

log L =log y + f(D) log A, (6.8)

where in the case of equation (6.3), log vy is the intercept and f(D) = D/2,
the slope of the regression line of the log of perimeter on the log of area.
Clearly the slope f(D) can take different functional forms from which D can
always be derived, given an estimate of the slope. The perimeter-scale
relation in equation (6.4) can also be generalized as

L(r) = ars®, (6.9)

where « is the constant of proportionality and g(D) a function which in
equation (6.4) is (1 — D). Taking logs of equation (6.8) gives

log L(r) = log a + g(D) log r, (6.10)

where log a is the intercept and g(D) = (1 - D), the slope of the associated
regression line. Note that equations (6.9) and (6.10) are generalized versions
of the perimeter-scale relations given in Chapter 5.

The conventional fractal model based on the use of equation (6.3) in (6.7)
or equation (6.4) in (6.9), has a linear form implying that D is scale-
invariant. However, as we have seen in Chapter 5, in some contexts it can
be hypothesized that dimension itself might vary with scale or area and in
this case, the linear form would be more complex. A second model based
on the notion that fractal dimension does vary systematically with scale
was used in Chapter 5 and these variants will also be tested here. In the
case of the area—perimeter relation, the fractal dimension D can be hypo-
thesized to be f(D) = ({ + nA'/?)/2 which when used in equation (6.8) gives

log L=log7+%logA+gA”2 log A. (6.11)

In equation (6.11), the coefficient {/2 has an analogous role to D/2 in equ-
ation (6.3) as applied to (6.7). The third term on the right-hand side of
equation (6.11) is a dispersion factor which measures the non-linearity of
the area—perimeter relation. It is clear that as m — 0, { — D and equation
(6.11) collapses back to the logarithmic transformation of equation (6.3) or
strictly (6.7) with f(D) = D/2.

For the case of the perimeter-scale relation in equation (6.10), we have
already seen in Chapter 5 that when g(D) is a function of scale A + ¢r, then
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log L(r) =log a +ylog r + &r log r, (6.12)
where the fractal dimension D is given by
D=1-\-¢r, (6.13)

In equation (6.13), as the scale r — 0, D — 1 — \. The term ¢r log r in (6.12)
also acts as a dispersion factor which increases the fractal dimension as the
scale increases and is a kind of weighted entropy, modulating the effect of
the fractal dimension. In the sequel, these ‘transient dimension” models
based on the systematic variation of dimension with area or scale will be
referred to as the ‘modified models’ in contrast to the ‘conventional models’
of equations (6.3) and (6.4) where dimension is scale-invariant.

Estimating D for the two models using the area-perimeter relations in
equation (6.8) with f(D) = D/2 and in equation (6.11) is straightforward.
For each land parcel, the area and perimeter can be easily measured and
form the dependent and independent variables respectively. The number
of parcels in the study obviously affects the fit of the regression, and it may
be necessary to identify and exclude outliers. However, the variation in
scale within the observations forming the data set is only influenced by the
prior selection of land parcels, not by any peculiarity of the area—perimeter
measurement. In contrast, the perimeter-scale relations in equation (6.10)
with g(D) = 1 — D and in equation (6.12) depend upon the choice of scale
and the measurement of the perimeter associated with that scale for each
individual object. In some of the applications we present below, we will
adapt this procedure to form aggregate perimeters from more than one
land parcel. Furthermore, we will make these perimeter-scale measure-
ments using each of the four measurement methods outlined previously in
Sections 5.6 and 5.7 of Chapter 5.

6.3 Areas and Perimeters: the Fractal Geometry of
Urban Land Use

Swindon, the town chosen for our expository analysis, is located in south
central England about 70 miles west of London. The town is quite compact
and not affected in its form by the presence of any rapidly growing nearby
towns. It has a reasonably buoyant economy which in the 1960s was due
to its designation as an expanded town, taking overspill population from
Greater London. More recently, its favored location in an expanding area
of southern England has led to the location of new service and high tech-
nology industries in and around the town itself. Figure 6.1 and Plate 6.1
shows the pattern of land use composing the town in 1981 from which it
is clear that as the town has grown, it has absorbed villages in its immediate
periphery. This fairly aggregated land use map was compiled using diverse
data sources: remotely sensed data and local authority map records used
by Rickaby (1987) as part of his studies into the energy requirements of
small towns. The five land uses — residential, commercial-industrial, edu-
cational, transport and open space — shown in Figure 6.1 constitute the basic
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Figure 6.1. Urban land use in Swindon, 1981.

data for this study. The map was digitized using locally available software
(Bracken, Holdstock and Martin, 1987) and the land parcels were extracted
in polygon form using conventional digital cartographic techniques.

Figure 6.2 shows the polygons which represent the land parcels, drawn
to scale and classified according to the five land uses but not arranged in
any particular order. Observing how these parcels fit together to form the
overall map, the conundrum raised in the introduction to this chapter relat-
ing to contiguous boundaries between different uses is immediately appar-
ent. For example, the largest land parcel of all is part of the set of residential
land uses shown in Figure 6.2. In one sense, this parcel can be considered
as a skeleton for the entire town, but it is clear that about half its boundary
is common with other land uses; this raises the conceptual difficulty of
making comparisons of the irregularity and form of this boundary with
that of adjacent land uses. For the moment, we will assume that the differ-
ent parcels can be treated separately, and we will pursue the estimation in
this manner before commenting further on the problem below.

Some characteristics of the digital representation of the five land uses are
presented in Table 6.1. There is considerable variation in the set of land
uses, and it is clear that no generalizations can be made about educational
land use which comprises only three parcels; and there are limits to how
far one can make inferences about the transport land use which comprises
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Figure 6.2. land parcels separated into distinct land uses.
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Table 6.1. Characteristics of digitized urban land use in Swindon

Land use Number Number Number Percent
of of digitized of common of common
parcels points N points points
Residential 16 2989 1534 51.4
Commercial-industrial 18 1030 626 60.8
Educational 3 109 17 15.6
Transport 6 510 261 51.2
Open space 29 1421 1286 90.5
All land uses 72 6059 3724 61.5
Land use Mean no. Average Length of Feret's
of points chord _ perimeter diameter
per parcel length d LA = N(r F
Residential 186.8 0.785 2344.9 119.5
Commercial-industrial 57.2 0.837 861.8 42.4
Educational 36.3 0.727 78.5 11.5
Transport 85.0 0.821 417.7 52.8
Open space 49.0 0.776 1106.2 52.9
All land uses 84.2 0.795 4816.3 119.5

only six parcels. However, examining the average chord length of these
data which ranges from 0.727 to 0.837 base level units, indicates that the
base level digitization is fairly independent of land use type. The number
of digitized points given in Table 6.1 for each land use and for the total
involves the double counting of common boundaries referred to above in
that the points which are common to any pair of land uses are included in
each land use. '

Of the 6059 points which comprise the total of points in each of the dis-
tinct land uses, there are only 2335 points which are not common to adjac-
ent land use boundaries. The remaining 3724 points which are common to
various pairs of land uses are in fact counted twice (for each land use in
each pair) and thus there are 1862 points which are common in the data
set. In total, there are 4197 distinct points in the set, 43% of these being
common to adjacent land uses. In terms of the individual uses, 51% of the
points defining the residential parcels are common to other uses, while over
90% of the points referring to open space are part of the boundaries of other
land uses. These percentages, shown in Table 6.1, give some indication of
the position of the land uses within the town. For example, most of the
open space is enclosed within the town itself, not on its edge, while edu-
cational land use is mainly on the town’s edge. In Table 6.1, the perimeter
length refers to the sum of all the perimeters relating to a given land use
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2.0+

while the Feret diameter represents the maximum spanning distance found
amongst the parcels of any given land use, as defined previously in equ-
ation (5.12). It is clear from this and from Figure 6.2 that there is some
considerable variation among land use parcels with respect to size.

We are now in a position to estimate the first set of fractal dimensions
based on the area—perimeter relation, In Figure 6.3, the log-log plots of
perimeter against area are presented as scatter diagrams for each of the five
sets of land uses in turn, and then for all five land uses comprising the 72
land parcels in the town. These plots demonstrate strong relationships
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Figure 6.3. Scatter plots of the area—perimeter relations.
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between perimeter and area, and it is difficult to detect any significant non-
linearity in their form. To these data we have fitted the conventional per-
imeter—area model based on using equation (6.3) in (6.7) which we can write
in the form of equation (6.8) as

log L =log v, + % log A. (6.14)

The modified perimeter-area model given earlier in its logarithmic form in
equation (6.11) we will repeat for convenience as

log L = log y + %105; A+ 3 A2 Jog A, (6.15)

but note that we now distinguish the intercept terms in equations (6.14)
and (6.15) as <y; and vy, respectively.

The results of these regressions are presented in Table 6.2. With the
exception of educational land use where there are only three observations,
the adjusted r* statistics for both sets of models are acceptable. There are
no obvious outliers, for example, whose removal might improve these stat-
istics. The modified model gives a slight improvement over the conven-
tional one, but this is not significant. The fractal dimensions in the conven-
tional model are as postulated, that is, 1 < D < 2, with the exception of
the educational land use which we must exclude from serious analysis.
Interpretations of the parameter { in the modified model are problematic
because of the size of m. As n— 0, it is hypothesized that { — D but none of
these results suggest any refined interpretation comparable to the ‘transient
dimension’ perimeter-scale specification explored in Chapter 5. The con-
ventional model is the only one acceptable here and excluding education,
the analysis suggests that the commercial-industrial (D = 1.478) and trans-
port land uses (D = 1.447) have more tortuous boundaries than those of
residential (D = 1.331) and open space (D = 1.243). The dimension associ-
ated with all the land uses (D = 1.296) is clearly an average. All these
results are consistent with other estimates using aerial data produced by
applications of the area—perimeter method (Lovejoy, 1982; Woronow, 1981)
but the correlations are not as good. Nevertheless this provides a backcloth
and comparison to the perimeter-scale analyses which now follow.

Table 6.2. Parameters associated with the area—perimeter relation

Land use Conventional model Modified model

equation (6.14) equation (6.15)

D re L n r
Residential 1.331 0.924 0.499 0.229 0.924
Commercial-industrial 1.478 0.923 0.307 0.361 0.926
Educational 0.569 0.111 -15.426 5.461 Not computed
Transport 1.447 0.913 3.996 -0.845 0.950
Open space 1.243 0.892 -0.710 0.693 0.925

All land uses 1.296 0.880 0.339 0.301 0.892
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6.4 Perimeters and Scale: Constructing Long
Threads from Land Use Parcel Boundaries

Before we introduce the analysis based on perimeter—scale relations, it is
worth discussing the degree of irregularity associated with different land
use patterns as we perceive it in a priori terms. In examining the five land
uses, we might argue that open space is more likely to be defined according
to the boundaries imposed by natural terrain in contrast to more artificially
determined land uses such as the commercial-industrial and transport uses.
Residential land use is likely to have a degree of irregularity in its form
somewhere between these extremes as might educational use. With respect
to the area—perimeter relations, this a priori ranking of open space/
residential /educational /commercial-industrial /transport from higher to
lower degrees of irregularity is not borne out at all by the fractal dimen-
sions. Indeed, Table 6.2 implies somewhat the reverse but the r* coefficients
are lower than anticipated, and it is possible that area-perimeter relations
do not capture scale effects to the same precision as do methods based on
perimeter—scale equations.

However, to be consistent with the area—perimeter analysis, it is neces-
sary to devise a way of determining single fractal dimensions for each set
of land parcels according to land use types. In a later section, we will look
at the variation in fractal dimension across land parcels and types, but here
we will begin by defining a global (or total) perimeter for each land use
set. Were we to simply calculate a single total perimeter for each land use
based on all its parcels, and regress these against scale, this would be simi-
lar to our previous analysis as scale would be a proxy for area. What we
have done in fact is to calculate a total perimeter for each land use by
stringing together the individual land parcel perimeters in the arbitrary
order in which the parcels and their coordinate points have been digitized.
We have also derived a total of total perimeters in the same way which
contains all the points relevant to each land parcel.

In Figure 6.4, we show these total perimeters for each of the five land
uses. These are not drawn to the common scales of the parcels contained
in Figures 6.1 or 6.2, but are scaled up or down to be roughly comparable
in area when displayed on a graphics device. It should be quite straightfor-
ward to identify the land parcels from their classification in Figure 6.2. The
total perimeters are in fact derived by centering the first digitized point of
each land parcel on a common point and producing a string of coordinates
in the order in which each land use was digitized. The educational and
transport land uses with the fewest land parcels show this most clearly in
Figure 6.4. We have not included the total of total perimeters because it is
not possible to produce a clear and clean plot due to the continual overlap-
ping of boundaries: we will, however, use this total of totals in the sub-
sequent analysis.

From these base level perimeters, aggregations across the given range
of scales yield new perimeters which provide the data for estimating the
parameters of the perimeter-scale relation. Two issues are important. First,
the order and orientation of the land parcels forming the total perimeter
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Figure 6.4. Aggregate perimeters for the five land uses.

could be crucial, and second the aggregations should not be as great as to
pick up the aggregate shape of these composite perimeters which is clearly
quite arbitrary. Order and orientation have been varied and this makes little
difference to the subsequent results, but the aggregate shape problem does
affect the estimated dimension. In fact, this leads to a reestimation of the
perimeter—scale relations using a reduced set of aggregations to be reported
in the next section.

As in Chapter 5, the number and scale of the aggregations for each of
these perimeters (which provides the set of observations for the log-log
regressions) is fixed so that each observation is of equal weight in the esti-
mation. The limits of aggregation for the four measurement methods based
on the structured walk, hybrid walk and cell-count are first calculated as
follows. The average chord length d in these data sets is computed from
equation (5.11) and the maximum spanning distance or Feret diameter F
from equation (5.12). Note that we assume there are N points in the digit-
ized base level curve, which is thus made up of N — 1 straightline segments
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or chords. The sequence of aggregations where d represents the first chord
size and F represents the last, and where m is the number of aggregations,
is given by

F=o" 4, (6.16)

In fact, in this instance the starting point is set as the minimum, not average,
chord size, and this can be represented as a fraction { of d. Therefore, equ-
ation (6.16) becomes

UF = ™D d. (6.17)

The weight w scales one chord size to the next in the sequence of aggre-
gations and this is computed from equations (6.16) or (6.17) as

©=exp (%}lfg—‘?). (6.18)

This method of aggregating perimeters can only be applied to the struc-
tured walk, hybrid walk and cell-count methods of perimeter approxi-
mation, for the equipaced polygon method does not involve distances
between points, only the order of points in the base level data set. A similar
method of weighting is used, however, involving numbers of base level
chords, not length based on distances. As the number of base level chords
used to form a new chord increases, the actual length of the new chord
increases and this is akin to aggregation to larger distance scales. Then if the
number of original points needed to approximate the coarsest acceptable
perimeter is Np.x and the minimum number N, the sequence of chord
sizes in the sequence of aggregations is given as

Nmax = w(m—l) Nmim (6'19)

from which o is determined in the same way as previously; that is, as

. log Nmax = 108 Nmin)
® = exp ( = : (6.20)

In fact, Npyn is always 2, and Ny, is set as N/6, thus implying that the
number of chords defining the most aggregate perimeter is 6; this would
make the top level of aggregation consistent with the maximum spanning
distance F.

In fact, the algorithm used to aggregate the original chords on each iter-
ation into new perimeters employs o in equation (6.20) only as a guide.
Clearly the number of chords must be integral, not real, thus equation (6.19)
involves truncation or addition to create integer numbers. The number of
aggregated chords on each iteration k + 1 is given as N;., = int (wN;). How-
ever, if Ny, is equal to N,, then N,,, is increased by one chord length, that
is Ny = Ni + 1. In the application of these algorithms, we have set m as
100 in each case. In fact, for the equipaced polygon method, although this
also applies, the actual number of aggregations made is always less than
100 because of the discrete conditional nature of the aggregation.

The observations produced by applying each of these four methods to
the five total perimeters and the total of totals are shown as Richardson
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plots in Figures 6.5 to 6.8. Before the associated regressions are discussed
there are several points to note. First there are quite clear upper scale effects
caused by aggregation to too high a level. These are seen as departures
from the trend of each graph and as obvious twists and turns in the tails of
some of the plots. Second, these plots show strong evidence of nonlinearity
suggesting, as in Section 5.5, that the modified model, where fractal dimen-
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Figure 6.5. Richardson plots of perimeter-scale from the structured walk.
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Figure 6.6. Richardson plots of perimeter-scale from the equipaced polygons.

sion varies with scale, is more applicable than the conventional model.
Third, and in the context of our evaluation of these different algorithms in
Sections 5.6 and 5.7, the equipaced polygon method gives cause for concern
in that the algorithm attempting equal weighting does not perform well in
establishing equal spacing of observations or in meeting the fixed number
(m =100) of aggregations. There are clear twists in the tails of the associated
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plots at the higher levels of aggregation. Finally, the aggregation in the case
of educational land use to over 100 levels, is problematic in that there are
only 109 digitized points in the total perimeter set as shown in Table 6.1.

We will present the fractal dimensions derived from the conventional
and modified models for all the plots shown in Figures 6.5 to 6.8, notwith-
standing the fact that the equipaced polygon method and educational land
use are, in the sense just described, likely to yield unreliable results. In
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Figure 6.8. Richardson plots of perimeter-scale from the cell-count.

Table 6.3, we show the fractal dimension D, computed from the slope of
the regression line g(D) = 1 — D as in equation (6.4) applied to equations
(6.9) and (6.10) which involves the conventional model; and we also show
the performance of the model in terms of the * statistics. In Table 6.4, we
show the same for the modified model as given in equation (6.12). In this
table, we first give the fractal dimension D derived from the coefficient A
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Table 6.3. Fractal dimensions based on the conventional model'2

Method Residential ~ Commercial-  Educational ~ Transport Open All land
industrial space use
Structured 1.450 1.508 1.396 1.289 1.593 1.570
walk 0.903 0.773 0.842 0.836 0.880 0.867
Equipaced 1.694 2.066 1.274 1.300 1.957 2.021
polygon 0.853 0.619 0.827 0811 0687 0795
Hybrid walk 1.496 1.566 1.442 1.314 1.666 1.619
0.904 0.757 0.799 0.803 0.860 0.862
Cell-count 1.447 1.499 1.402 1.294 1.543 1.571
0.939 0.872 0.946 0.920 0.937 0.909

! The structured walk, hybrid walk and cell-count methods are based on m = 100 aggregations for each land use.
The equipaced polygon method has m = 72, 68, 17, 53, 65 and 75 for the five land uses and all land use applications,
respectively. These m values also pertain to the modified model results in Table 6.4.

2 Each cell shows the fractal dimension D = 1 — g(D) with the r* statistic beneath.

Table 6.4. Fractal dimensions based on the modified model’

Method Residential ~ Commercial- Educational ~ Transport Open All land
industrial space use

Structured 1.272 1.076 1.058 1.096 1.292 1.291
walk -0.004 -0.212 -0.041 -0.006 -0.012 -0.006
0.981 0.995 0.991 0.992 0.980 0.981

Equipaced 1.187 0.559 1.006 1.045 0.716 1.176
polygon ~0.011 -0.061 -0.036 -0.007 -0.064 -0.020
0.997 0.941 0.988 0.999 0.956 0.974

Hybrid walk 1.249 0.956 0.925 1.041 1.157 1.225
-0.006 -0.036 -0.082 -0.011 -0.027 -0.010

0.994 0.977 0.978 0.974 0.996 0.996

Cellcount 1.333 1.204 1.223 1.190 1.375 1.374
-0.002 -0.014 -0.021 -0.003 -0.007  -0.004

0.972 0.993 0.991 0.968 0.976 0.967

! Each cell shows the fractal dimension D = 1 — \, the dispersion coefficient ¢, and the r? statistic beneath.

as 1 = \, and then we give the dispersion coefficient ¢, noting of course
thatas ¢ — 0, D — 1 — \.

It is immediately clear from Tables 6.3 and 6.4 that the modified model
in which dimension is a function of scale gives by far the best performance
over all methods and land uses. Yet the equipaced polygon and hybrid
walk methods produce strange results for the modified model in that fractal
dimensions are less than 1 in four cases. In the case of the conventional
model, these methods also appear to give D values higher than anticipated.
With respect to the ranking of D values from Table 6.3, there is, however,
a fairly consistent order over all methods in which open space, all land uses,
and commercial-industrial have higher fractal dimensions than residential
which in turn is higher than educational and transport.
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A more disordered set of ranks is associated with the modified model
although there are some similarities with the conventional model results,
and in any case, the dispersion coefficients pick up the nonlinearity in the
relations, hence influencing the value of D. In this respect, the dispersion
coefficients are quite low for most land uses. To summarize then, if the
equipaced polygon and hybrid methods which seem to pick up inappropri-
ate larger scale effects, are ignored, the structured walk and cell-count
methods produce a ranking of fractal dimensions across all land uses (with
the exception of educational) which accord to our a priori expectations. At
this stage, it is even possible to say that variations in dimension and coef-
ficients between land uses are clearly wider than between methods, and
this implies that the choice of method is less significant than the division
into standard types of land use. However, the really important point at
issue here is the presence of unwanted and arbitrary scale effects in the
data. It is quite clear from Figures 6.5 to 6.8 that we must remove the high-
est aggregations from all these plots. In doing so, we also immediately
remove some of the non-linearity from the data, thus hopefully improving
the conventional model estimates as well as resolving some of the anomal-
ous dimensions evident in Tables 6.3 and 6.4.

6.5 Refining the Perimeter-Scale Relations for the
Aggregated Land Use Boundaries

The range of aggregations with respect to the structured walk, cell-count
and hybrid walk methods given in equations (6.17) and (6.18) begins with
the first and last chord lengths set as low as 70% of the average distance
d and Feret diameter F for residential land use, to as high as 99% of d and
F for the educational land use. As we have seen in Chapter 5, Shelberg,
Moellering and Lam (1982) recommend that the starting points should be
no lower than d/2 while Kaye (1978) recommends the end point be no
higher than F/2. The lower limits based on yd we have used do not pose
any problem, but the upper limits based on the Feret diameter yF yield
approximations to the total perimeters with as few as two chords and only
as many as five in number. As a general rule it is most unlikely that an
approximation to the boundary of any irregular object can be made in less
than six chords and in the case where we have up to 30 land parcels for-
ming an aggregated perimeter, it could be argued that we should never go
below 180 chords. Below this level we unwittingly include scale effects
which pick up the arbitrariness of the ‘constructed’ perimeters; these are
also sensitive to order and orientation of the land parcel strings. In these
terms, it would appear that we should take an upper limit no greater than
20% of Feret’s diameter, that is ¥ = 0.2

Examining the Richardson plots in Figures 6.5 to 6.8, it is quite straight-
forward to determine cut-off limits at their upper tails which would remove
those observations clearly sensitive to these unwarranted scale effects. We
have defined cut-off limits in these figures, showing the number of obser-
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Table 6.5. Reestimation of the fractal dimensions for the conventional model'-2

Method Residentiol ~ Commercial-  Educafional ~ Transpot ~ Open  All lond
industrial space use
Structured 1.403 1.389 1.229 1.210 1.499 1.486
walk 0.892 0.786 0.9210 0.897 0.869 0.864
Equipaced 1.663 1.747 1.244 1.273 1.916 1.993
polygon 0.850 0.624 0.860 0.823 0.689 0.787
Hybrid walk 1.458 1.477 1.291 1.239 1.573 1.559
0.9211 0.793 0.853 0.895 0.877 0.869
Cell-count 1.422 1.452 1.329 1.263 1.516 1.541
0.925 0.870 0.980 0.892 0.924 0.891

! Format of this table is as Table 6.3.
2 The number of observations used for each regression is indicated in Figures 6.5 to 6.8.

vations each set has been reduced to. This varies for the case of the struc-
tured walk from between 9% and 22% of the original data set, and to as
little as between 5% and 10% in the case of the equipaced polygon methods.
From Figures 6.5 to 6.8, it is clear that we could impose even harsher con-
straints on the range of observations used, but although this would prob-
ably improve the results still further, relevant scale effects would probably
be removed too.

Tables 6.5 and 6.6 show the reestimations of the two models using the
four methods applied to each land use and the total of all land uses. There
are marginal increases in the performance of the conventional model as
comparisons between Tables 6.3 and 6.5 indicate. There is increased consist-
ency between the methods with respect to the dimensions estimated with

Table 6.6. Reestimation of the fractal dimensions for the modified model'-2

Method Residential ~ Commercial-  Educational ~ Transport Open All land
industrial space uses

Structured 1.213 1.050 1.070 1.094 1.203 1.203
walk -0.006 -0.023 -0.035 -0.006 -0.019  -0.008
0.990 0.996 0.986 0.993 0.986 0.991

Equipaced 1.162 0.700 1.030 1.048 0.074 1.117
polygon -0.011 -0.051 -0.031 -0.007 -0.062  -0.022
0.999 0.921 0.996 0.999 0.952 0.980

Hybrid walk 1.237 1.017 1.024 1.093 1.176 1.216
-0.007 -0.031 -0.057 -0.007 -0.026 -0.010

0.994 0.988 0.961 0.994 0.995 0.997

Cellcount 1.261 1.166 1.249 1.110 1.303 1.285
-0.005 -0.017 -0.015 -0.007 -0.012  -0.007

0.992 0.997 0.991 0.996 0.984 0.991

! Format of this table is as Table 6.4.
* The number of observations used for each regression is indicated in Figures 6.5 to 6.8.
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the exception of the equipaced polygon method. This is the most volatile
of all the methods with the structured walk being the most consistent in
terms of the original estimation and the reestimation. With respect to the
ranking of land uses by dimension, an even clearer pattern emerges. Those
with the higher fractal dimensions are open space and all land uses, fol-
lowed by commercial-industrial and residential, with much lower dimen-
sions for educational and transport uses. This bears out the a priori analysis
even more strongly but it must be noted that the performance of the con-
ventional model is barely adequate.

The modified model results shown in Table 6.6 are even better than those
of Table 6.4. The ranking pattern is more variable than that of the conven-
tional model with the commercial-industrial, educational and open space
land uses having the highest degree of non-linearity as measured by the
dispersion coefficient. The equipaced polygon method, somewhat ironically
perhaps, has by no means the worst performance, but it still generates coef-
ficients out of line with the other methods. As with the conventional model,
the structured walk provides the most consistent results over each land use,
and together with the cell-count method gives the best performance.

It is now worth summarizing all these results with respect to the fractal
dimensions produced. In Figure 6.9, an attempt has been made to capture
the variations in dimension produced across all methods and land uses in
a single diagram. Each of the diagrams shows this variation with respect to
the area-perimeter, conventional perimeter-scale and modified perimeter—
scale methods, the latter two being shown with respect to their original
estimation and reestimation. It is quite clear from these plots that the equi-
paced polygon method is the most problematic and should be excluded.
Yet the structure of these results does show that there are greater differ-
ences between land uses than between methods, and this bears out the
original hypothesis that such differences can be detected and possibly
explained with respect to the processes governing the formation and evol-
ution of different land use activities. We will say more about this in our
conclusion but before we explore the variations between land parcels, we
have averaged the dimensions produced in the last three sections, and these
are shown, together with those of the subsequent section, in Table 6.7.

It is clear that the area~perimeter method produces quite different results
from the perimeter—scale methods but that the patterns produced by these
latter methods are more robust and consistent with our a priori theorizing.
For the conventional model, the order of magnitude values of the fractal
dimensions vary from D = 1.5 for open space and all land uses to D = 1.4
for residential and commercial-industrial to D = 1.3 for educational and
transport. With respect to the modified model, D = 1.2 (in its limit) for
open space, all land use, and residential, while for the other three land
uses, 1.0 = D = 1.1. This implies that these three — commercial-industrial,
transport and educational land uses — present greater non-linearity; that is,
their fractal dimensions vary more strongly with scale. These results mask
the wide variation in dimension between land use parcels within any land
use type, and do not in any way address the equality of fractal dimension
over common boundaries between different land uses. In one sense of
course, the purpose of this chapter is to ultimately focus on these questions
and thus, we will address some of these in the next section.
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Figure 6.9. Variations in fractal dimensions across models, methods and
land uses.

6.6 Fractal Dimensions of Individual Land Parcels

Figure 6.2 shows that there are 72 distinct land use parcels although in the
previous analysis, the inner boundaries of some residential land parcels
where such boundaries existed as ‘holes’ in the urban fabric, were added
to the aggregate perimeters. There are eight such inner boundaries, all relat-
ing to residential land use as shown in Figure 6.2, and in the subsequent
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Table 6.7. Fractal dimensions ‘averaged’ over methods of aggregation

Models/methods’ Residential Commercial- Educational Transport ~ Open All land
industrial space uses
S;Eir?:,ﬂ:wek 1.33 1.47 0.56 1.45 1.24 1.29
'ES"';‘;‘:’:;;:“‘“;:‘S“‘*” 1.46 1.52 1.41 1.29 1.59 1.58
P oo e 142 e e ¥ B
Hecor) aorsk 1.28 1.07 1.06 110 127 129
;\gogiﬁ: i?'f&?ﬂ?ls 1.23 1.07 1.10 1.10 1.22 1.23
it o MR kg T
Modified model: 1.08 1.05 1.05 106 108 107

average land parcels

! PS: Perimeter-Scale.

analysis, they are treated as separate land parcels, thus augmenting the
number of parcels treated to 80. First, all four aggregation methods - the
structured and hybrid walks, the equipaced polygon and the cell-count ~
were applied to each of the 80 parcels, with the number of aggregations
structured in geometric form as implied by equations (6.16)-(6.20), but with
o fixed and m varying accordingly.

In the case of the equipaced polygon method, the aggregation of 16 per-
imeters out of the 80 possible yielded too few observations for any sub-
sequent regression. The other methods produced Richardson plots that
were generally more linear than those shown in Figures 6.5 to 6.8, and
therefore it was decided to fit the conventional model to all sets of obser-
vations generated. The r* values ranged from 0.833 to 0.999 in the case of
applying the equipaced polygon method, but it was the structured walk
that produced the most consistent plots in contrast to the hybrid and cell-
count methods which were more volatile across the land parcels. Some
methods produced dimensions for individual land parcels outside the
range 1 < D < 2. It was therefore decided to pursue more detailed analysis
and model fitting using a narrower range of observations taken from the
structured walk method only. In fact, the emphasis in this section is on the
variation between land parcels, not on the variation between methods,
hence our choice of the most robust method to generate the perimeter—
scale data.

The application of both the conventional and modified models is shown
in Figure 6.10 with respect to their fractal dimensions and associated r?
statistics. The results for each land parcel are shown in the arbitrary order
of Figure 6.2 according to the way the parcels were digitized but ordered
within land use types as given previously. All fractal dimensions for the
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Figure 6.10. Fractal dimensions of individual land use parcels.
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conventional model are in the postulated range from 1 < D < 2. For the
largest land parcels, the dimensions appear higher than for the rest, but a
regression of the number of digitized points of all parcels on their conven-
tional model dimensions yields an r* value of only 0.156. With respect to
the five sets of land uses, these r* values were more variable, rising to 0.686
in the case of commercial-industrial. But in general, there does not appear
to be a strong bias to higher dimensions for those land use parcels with
the highest number of perimeter coordinates. Figure 6.10 also shows that
the parameters of the modified non-linear model are consistent with the
range of 1 < D < 2, and the level of dispersion reflecting each parcel’s non-
linearity over scale, is fairly modest in every case.

One way of summarizing these parameters and statistics is by computing
means and standard deviations. Table 6.8 presents these results for both
models. The parameters and dimensions in this table are in their original
form as predicted from the use of equations (6.10) and (6.12), that is, where
the coefficient of the conventional model is g(D) =1 — D, and those for the
modified model A and ¢ where A — (1 — D) as the dispersion parameter ¢
— 0. Table 6.8 presents the variation in size of the land parcels for each
land use and over the whole set in terms of their mean number of coordi-
nates. The distribution of these coordinates with respect to the number of
land parcels is skewed with a much greater proportion of parcels below
their mean size. In the case of the residential parcels, this distribution is
highly skewed, largely because of the existence of the one large parcel
which provides the skeletal structure of the town.

The variation in parameter values and performance of the models, how-
ever, is much less than the variation in the features of the land parcels
themselves. Figure 6.10 makes this apparent, while these results are aver-
aged for each land use over all parcels in Table 6.8. With respect to the
conventional model, the r* values only range from 0.934 in the case of resi-
dential parcels down to 0.919 for transport and the range for each land use
over the land parcels is also quite narrow. The fractal dimensions D also
show a pattern over the land uses which is consistent with the aggregated
perimeter-scale results but is considerably clearer. The ranking of land uses
from largest to smallest D is ordered from residential (D = 1.152), open
space (1.132), transport (1.113), commercial-industrial (1.105), and edu-
cational (1.091) with an average over all land uses of 1.129. These values
are considerably smaller than those shown previously, yet they are more
in line with the examples developed in Chapter 5. In fact, the largest resi-
dential parcel (see Figure 6.2) is just one of five parcels which has a dimen-
sion greater than 1.2. From these results it is clear that the much higher
dimensions produced by the aggregated perimeter—scale relations are due
to the method of aggregating individual perimeters into strings of coordi-
nates. It would appear that the aggregation picks up arbitrary scale effects
which are central to the method itself and not the order or orientation of
the individual parcels in the process of forming these composite perimeters.

The modified model results also shown in Table 6.8 have a wider range
of variation around their mean estimates than those of the conventional
model. In terms of the parameter \, the residential, open space and all land
use parcels have a dimension higher than those of transport, commercial-
industrial and educational, in that order, although these values are over a
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Table 6.8. ‘Average’ dimensions and statistics for the individual land par-

cels’

Land use Zones No. of Mean o, 1-D,
coords coords

All land parcels 80 6059 75.7 177.4 -0.129

Residential 24 2989 124.5 317.2 -0.152

Commercial- 18 1030 57.2 33.3 -0.105

industrial

Educational 3 109 36.3 6.65 -0.091

Transport 6 510 85.0 65.8 -0.113

Open space 29 1421 49.0 38.9 ~-0.132

Land use O (5 a0 A=1 —Dg Op2

All land parcels 0.057 0.927 3.3 -0.071 0.051

Residential 0.063 0.934 3.3 -0.079 0.063

Commercial- 0.061 0.920 3.1 -0.050 0.042

Industrial

Educational 0.035 0.921 4.3 -0.047 0.005

Transport 0.040 0.920 2.2 -0.065 0.028

Open space 0.046 0.928 3.6 -0.077 0.048

Land use ¢ o, ~ on

All land parcels -0.024  0.021 0.969 2.3

All land parcels -0.029 0.022 0.972 1.8

Residental -0.018 0.011 0.979 1.6

Commercial-

industrial

Educational -0.022 0.018 0.952 3

Transport -0.006 0.001 0.960 3.9

Open space -0.030 0.025 0.966 2.3

' The standard deviations are defined as: o, of the coordinates, oy, of the slope parameter (1 - D) in the
conventional model, o, of the parameter A in the modified model, o, of the parameter ¢ in the modified
model and o, (7,, and o,;) of the r* fits of the appropriate model to the land parcel data.
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narrower range. The values of the dispersion factors also confirm this order
and the r? estimates, although slightly better than those of the conventional
model, are not as high as those produced by the aggregate perimeter-scale
relations. Nevertheless, the non-linear model is an improvement over the
linear and in general, these results for the individual parcels are better
than anticipated.

6.7 The Problem of Measurement

The analysis presented here is suggestive rather than definitive and it
reveals some basic problems of observation and measurement which are
generic to all empirical science. In the development of fractal geometry,
these problems have only just been broached and they will hold the center
stage for a long time yet. In terms of developing a morphology of urban
land use based on fractal geometry, it would appear that residential and
open space land uses have a greater degree of irregularity than commercial-
industrial, educational and transport. There is a logic here which we spelt
out before we began the analysis in that for land uses which are larger in
scale, there is likely to be less effort put into the geometric control of land
under development. Yet there remains considerable uncertainty over the
processes in operation. We have, however, shown that in general, scale
effects vary with scale itself, and this is likely to be the result of multiple
processes changing their relative importance through the range of scales.
This argument is consistent with our treatment in Chapter 5 of cartographic
lines as bounding geographical phenomena which are ostensibly isolated.

We have added to Table 6.7 the results of the last section where the whole
range of models and methods applied throughout this chapter are dis-
played in suitably ‘averaged’ form. This shows up the arbitrariness of the
analysis, with dimensions varying from as large as 1.6 to as low as 1.1. In
previous work, the methods themselves have been subject to considerable
variation but here despite some association of dimension values with land
uses, the main variation concerns the way area, perimeter and scale are
defined and measured, and the emphasis on area—perimeter or perimeter—
scale relations. Questions of scale are never very clear in much fractal analy-
sis, despite the fact that fractals are defined by scale-invariance. The area—
perimeter method assumes that objects of varying sizes show the effects of
varying scale itself (Woronow, 1981).

In short, a small residential development will not pick up the aggregate
scale effects which can be detected by a large scale development, so runs
the logic. However, this will depend on the base level of resolution in the
first place, but there has seldom been much discussion of this in the field
to date. The method of aggregating perimeters used in the composite per-
imeter-scale analyses of land uses is also suspect, because of arbitrary scale
effects which can be produced, despite careful control over the process of
aggregation. Lastly, the individual land parcel analysis using conventional
perimeter-scale, not aggregated relations, suffers from its very inability to
aggregate parcels, other than by arbitrary statistics such as simple averages.
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What is clearly required in future work is a close examination of these
approaches in terms of scale effects. We have paid great attention to prob-
lems of defining scale limits and ranges here but on reflection, our analysis
should probably have employed a much narrower range of scales. How-
ever, from the Richardson plots in Figures 6.5 to 6.8, the reader can get
some sense of how the dimensions might change if narrower ranges were
to be used.

New methods are urgently required which are more robust than those
used here, and we have now convinced ourselves that in perimeter-scale
analysis, the hybrid walk and equipaced polygon methods should be aban-
doned in favor of methods such as the structured walk and cell-count
whose properties of aggregation are better understood. But the final con-
clusion to these last two chapters relates to more substantive questions.
Although we have tackled both individual and aggregate analysis here,
much finer analysis of the fractal dimension of parts of perimeter bound-
aries is required. Further classification of the fractal shapes of land parcels
will not emerge until the common boundary problem is directly broached.
This must involve a detailed examination of how such boundaries are for-
med and how they evolve over time. By explaining the development pro-
cess, more satisfactory explanations can be given of the way land uses stick’
to each other to form the whole town. Only by extending the analysis along
these lines can conclusive results about the ways in which urban morpho-
logies are structured and evolve, be demonstrated.

Although we will not concern ourselves any further with conceptual
problems of physical definition and practical problems of measurement, at
least in terms of urban boundaries and edges, we will in fact begin to exam-
ine the ways in which entire morphologies of towns evolve, but at a more
aggregate level. Our focus will move away from cities composed of edges
and boundaries to cities composed of activities, mainly development in gen-
eral and population in particular, which fill space. In the next two chapters,
we will also retreat back to examining single fractal objects as complete
cities, but this time with respect to the way they evolve and grow. We will,
however, continue to examine the way the land parcels which compose the
fabric of the city ‘stick” to one another, and once again, we will trace the
way the smaller threads of urban development can be woven into complete
mosaics whose form is similar across many scales.



7
Urban Growth and Form

To terms of magnitude, and of direction, must we refer all our conceptions of Form.
For the form of an object is defined when we know its magnitude, actual or relative,
in various directions; and Growth involves the same conceptions of magnitude and
direction, related to the further concept, or ‘dimension’, of Time. (Thompson, 1917,
1961, p. 15.)

7.1 Cities in Evolution

The fractal patterns we have presented so far are largely based on super-
ficial pictures of urban form, and go little way to suggesting how such
structures might emerge. All we have done is to show that the geometry
of cities with respect to their boundaries, and the size and distribution of
their land uses, are consistent with fractal laws, but as yet, we have hardly
even implied how such patterns come into existence. This will be our quest
in this and the next chapter where we will seek to show how the fractal
structures illustrated in earlier chapters emerge as cities grow and evolve.
In the terminology of modeling and simulation, our focus will move from
describing static structures which exist and are observed at a cross-section
in time, to developing theories and models for simulating dynamic struc-
tures which grow and change through time.

The way we have generated fractal structures so far in this book is by
choosing some initiating object, regular or not, such as a line or a triangle,
and then systematically computing its geometric form at finer and finer
scales according to some scaling principle embodying self-similarity or
affinity. This is the way we generated the Koch curve in Chapter 2, the
large city forms based on London in Chapters 3 and 4, and the simulated
boundaries of Cardiff and Swindon in Chapters 5 and 6. But of course cities
do not grow in such stylized ways. Like all natural growth, they evolve
through the cumulative addition and deletion of basic units, cells or par-
ticles. In the case of cities, such units may be individuals, households, firms,
transportation links and so on, represented in terms of the immediate space
they occupy, and cities thus grow through successive accumulation at these
basic scales. Those patterns which might exist at higher scales, and which
indicate self-similar scaling, thus emerge almost magically from the growth
process itself.

In short, contained within the growth process are codes which determine
how the organization of these basic units of urban development might
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repeat their form and function across many scales above that at which the
city actually develops. How this is achieved is almost akin to the secret of
life itself and the fractal codes which are embodied in the growth process
might be likened to those composing DNA and RNA (Dawkins, 1986; Levy,
1992). In one sense, however, there is perhaps less mystery than might first
appear; when development is planned at any scale, the individuals and
agencies involved almost subconsciously take account of economies of
agglomeration, the need for similar facilities and functions of different
orders at different scales which must serve associated market areas
efficiently, and the provision of various transportation linkages which com-
bine to meet principles of least cost and minimum effort. In this chapter,
we will in fact suggest a model of urban growth which is consistent with
all of these notions.

The physical units which we have used to describe the city so far have
been largely in terms of lines or edges and the areas these seek to define,
either implicitly in terms of the boundaries of entire urban areas, or
explicitly in terms of the zones which compose various land uses. More-
over, we have associated edges with areas, at least in Chapter 6, and we
have purposively blurred the distinction between them. If we now consider
what constitutes an elemental unit of development such as the occupancy
space surrounding a single individual, then the areas and the edges associ-
ated with this occupancy can to all intents and purposes be considered the
same, at least from the scales at which we typically view urban phenomena.
For example, if we assume that each individual in a city has the same occu-
pancy based on their immediate use of space, then the number of edges or
boundary lines will be proportional to the number of units of development
at the given scale. In this sense then, edges and areas are simply manifes-
tations of the same pattern. In this chapter as in the last, we will find that
edges and areas and the way we can count these represent different sides
of the same ‘fractal coin’, and can both be used to unravel the growth
processes which give rise to such patterns.

We will begin by sketching a more basic theory of the fractal city based
on scaling relations than we have done so far, although this will largely be
a restatement and synthesis of relations already introduced. In particular,
we will show that fractal patterns, whether static or growing, can be ident-
ified by fixing size and varying their scale, or by fixing scale and varying
their size, and that the fractal dimensions of such structures are equivalent.
We then assemble some preliminary evidence for the existence of the fractal
city by an examination of static and dynamic urban patterns, but this sim-
ply forces us to begin the search for better explanations of why such pat-
terns evolve. This we start to do in this chapter by introducing a model of
fractal growth consistent with our observations so far.

The model, first developed by Witten and Sander (1981) and referred to
as the Diffusion-Limited Aggregation (DLA) model, generates highly rami-
fied tree-like clusters of particles or populations with self-similarity about
a fixed point. The extent to which such clusters fill their space is measured
by their fractal dimension which in turn is estimated from the scaling
relations linking population counts and density to various radii within the
clusters. We suggest that this model provides a suitable baseline for simul-
ation models of urban growth and form which manifest similar scaling
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properties. A typical DLA simulation is presented and a variety of measures
of its structure and dynamics are developed. These measures link to those
which we initially present for several city systems in this chapter, but we
tailor them specifically to the urban growth and form of Taunton, a small
town in South West England. Important differences and similarities with
the DLA model are elicited from this analysis and this leads to a generaliz-
ation of the model which is developed in detail in the next chapter.

7.2 The Basic Scaling Relations of the Fractal City

In Chapter 2, we made an important distinction between geometric objects
whose properties might be studied by varying their scale, and those same
objects whose properties could be revealed by varying their size. In short,
their geometry might be explored, first by fixing size and varying scale,
and then by fixing scale and varying size. This is a distinction which is
echoed throughout this book, but it is of central importance to the develop-
ment of a theory of the fractal city. In Chapter 2, we also suggested that
this distinction might be extended to the treatment of sets of objects as well
as single objects, although we will not take this any further here. Later, in
Chapter 10, we will discuss the generalization of these ideas to systems of
cities. We are now, however, in a position to demonstrate that these two
related approaches to fractal measurement are equivalent. This will form
the basic theory which we synthesize in this section in preparation for its
application to measuring and modeling urban growth in the rest of the
chapter.

As previously, we will use the variables N, L and A to define the number
of parts composing an object, the total length of these parts, and their total
area at a given scale r. We will also assume that the size of the object is
proportional to R which as we can anticipate, might be a measure of radius
although could be any linear measure appropriate to its context of measure-
ment. In Chapter 2, we defined number N(r) and length L(r) relations for
varying scale r in equations (2.24) and (2.25) and we will restate these as

N(r) = ar™®, (7.1)
and

L(r) = N(r)r = ar'~P. (7.2)
The total area A(r) of the N(r) parts of the object can be calculated as

A(r)=L(*)r =oar*P (7.3)
and the density p(r) is given as

p(r) = —ﬁ—t% o« ar? P, (7.4)

where A(R) is the area of the object which we assume is constant whatever
the scale of resolution. As the scale becomes finer, the number of parts of
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the object and the total length increase without bound, but the area and
the density (which are proportional to one another) decrease to zero; that
isas r— 0, N(r) = o, L(r) = ¢ and A(r) — 0, p(r) — 0. This of course is based
on the assumption that the dimension D lies between 1 and 2, something we
will now take for granted unless we state otherwise.

Although we have directly demonstrated the meaning of the basic scaling
relations in equations (7.1) to (7.2) for urban boundaries and edges, we
should note that equation (7.1) is now being used to determine the number
of parts into which a plane area such as a city of area A(R) with radius R
might be divided. Equation (7.2) gives the total length of these parts, (7.3)
the total area, and (7.4) the density. We will illustrate these ideas, once we
have completely elaborated them, for the Sierpinski carpet which we used
as a model of urban growth in Chapter 2. For the moment, however, let
us simply note that if the object has a diameter 2R, then the scale can be
given as r = 2R/n where the scale gets finer as n increases integrally. All
the above equations could be rewritten in these terms, but we will only
present the number-scale relation in equation (7.1) which becomes

N@)=N@)=arP=a (%)_D

=unP, (7.5)

where v is a suitably defined constant. Equation (7.5) is perhaps a more
intuitively satisfying representation for it relates the number of parts at the
ever finer scale given by n directly to the fractal dimension D. Without loss
of generality, we can assume that the diameter 2R can be set as 1 and then
v = o. There is one other feature to note in relation to equation (7.1) and
that is that this scaling relation gives the number of parts into which an
object is successively subdivided as the scale becomes finer. The distri-
bution thus created reflects the hierarchical process of subdivision and is
thus clearly related to the rank-size rule of central place theory noted in
Chapter 1; this is also equivalent to Korcak’s rule which we introduced in
Chapter 6. In the sequel, we will explore this further when we relate it to
the number of ‘empty’ parts or ‘free space’ as Frankhauser and Sadler (1991)
calls it, which is the complement of the number of parts into which the
fractal is divided.

Let us now change tack and consider the same object at fixed scale r so
that we might explore what happens to its geometry as its size, which is
proportional to R, changes. Consider the number of parts into which the
object is divided based on equation (7.5) and without loss of generality,
assume that N(n) is the number of parts into which the original object is
first divided. If we keep the scale fixed and simply increase the size of the
object by R, then the number of parts increases in direct proportion. Using
equations (7.1) and (7.5), the number of parts for the new resized object is
given as

N(R) = v(Rn)P = vnPRP (7.6)
= LPRD

where we note that # is fixed and that ¢ =vn”. Clearly the number of parts
increases as the power D of the object’s size R. Following equations (7.2)
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and (7.3), it is easy to show that the total length and area of the growing
object are both proportional to area; that is

A(R) = L(R) x N(R). 7.7)

However, the density relation is different and important. Assuming that
the total size of the space within which the object is contained is given by

A(R) = R?, (7.8)
then the density p(R) is given as
g A(R) ¢RP
PR=7® &2
=§ RP2, (7.9)

As R — =, then p(R) — 0 as is consistent with the density scaling of the
object in equation (7.4). Equations (7.6) and (7.9) are formally equivalent to
equations (2.32) and (2.33) which we derived using a similar argument in
Chapter 2.

The perimeter—-area relation which we used in Chapter 6 can be easily
derived from the fractal growth relation in equation (7.6) by noting that
R = A(R)"/2. However, frequently the perimeter L(R) is likely to scale differ-
ently from both the total area A(R) and the actual area A(R). Let us call the
actual scaling dimension D in contrast to D, and then the perimeter—total
area relation equivalent to equations (2.29) and (6.3) which we used in
Chapter 6 to compute the fractal dimensions for different sets of land
uses, is

L(R) « A(R)P/2 « RP, (7.10)

which is simply equation (7.6) in another form, but now distinguishing D
from D. We can write many such relations in the manner of equation (7.10)
for different perimeter dimensions, but a useful form given by Frankhauser
and Sadler (1991) is similar to (7.10) but using A(R) as in (7.7). Then it is
possible to derive A(R) in (7.8) from (7.7) as A(R)* (= (RP)*/?), and using
this, equation (7.10) becomes

L(R) = A(R)"/P, (7.11)

Equation (7.11) is considerably more general than equation (7.10) in that
when D = D, the actual area relation in (7.6) and (7.7) is derived; when D
= 2, the total area relation in (7.10) is derived while when D =1 and D =
2, the relation for a circle or other plane Euclidean figure results. Moreover,
this relation is particularly useful when it is already clear that perimeter
and number scaling differ and when different methods are available for
computing D and D independently.

We can illustrate our theory of the fractal city most clearly using the
Sierpinski carpet which we first presented in Chapter 2 as a preliminary
example of the scaling laws of urban growth. Figure 7.1 shows an elabor-
ation of this fractal at two levels of magnification, the first for k = 1 where
r =1/3 and the second for k = 2 where r = 1/9. Here we will show that
the dimension of this deterministic fractal is the same whichever way its
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Figure 7.1. Scale and size in the Sierpinski carpet.

scale and size is examined and that the approaches elaborated in equations
(7.1) to (7.5), and in (7.6) to (7.9), yield identical results. First using equation
(7.1), N(1/3) = «(1/3)"P and N(1/9) = «(1/9)~P. Taking the ratio of these
two numbers and counting the actual parts at these two scales in Figure
7.1 gives

525 _Na/9) _ a(1/9)P° 3p

5 N1/3) o(1/3°

from which it is immediately clear that D = log(5)/log(3). Now taking the
other approach and using equation (7.6), the size of the unit square carpet
is given as N(R) = ¢RP while the whole carpet at the next level is grown
to radius 3R and is thus N(3R) = ¢(3R)P. Forming the ratio and counting
parts gives

Bl crid M sl RS | )
S—S_N(R) oRD 37
from which it is quite clear that the dimension has the same value as that
given by the scaling method. Use of the perimeter—area relation in equation
(7.10) (and (7.11) gives the same, that is

_25_L(3R) ((3R)2)Df2= 30

TEEIR C\ R

Perhaps, as a brief digression from the main argument of this chapter, but
as an important pointer to the future development of the fractal geometry of
urban structure, it is worth examining what Frankhauser (1990, 1992) calls
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the ‘free space” generated in the construction of a regular fractal such as
the Sierpinski carpet. Let us write equation (7.1) in the form of (7.5) but
now note that on the first iteration k = 1, there are n subdivisions, on the
second where k = 2 there are n* and so on. We can thus drop the index (1)
from (7.5) and write this as

Ny = u(#")P, (7.12)

where equation (7.12) models the Sierpinski carpet when v= 1. Now on the
first iteration of the carpet, of the total n*> = 9 parts into which the carpet
is divided, N; =5 =3P are generated as being occupied or developed leaving
N, = n* — N; = 4 empty or free. It can easily be shown that the number of
‘free spaces’ Nf; at the kth level of iteration is given by

Nfi= N.Ni-1 = (n* = nP) (n*")? = (n*"P = 1) N,, (7.13)

which, for the Sierpinski carpet, generates a hierarchy of four spaces at the
first level, 20 at the next, then 100 and so on down the cascade. In contrast
to equation (7.12) which gives the number of successive subdivisions, the
series created by equation (7.13) actually generates spaces which continue
to exist as ‘holes” within the fabric of the fractal and can thus be observed
as a hierarchy. Frankhauser (1990, 1992) demonstrates that this is likely to
be a promising line of inquiry in observing the free space in regular as well
as irregular town forms, a concept that we are not emphasizing in this book
but which could become important in further research.

7.3 Preliminary Evidence for a Theory of the
Fractal City

Even though it is clear that there are considerable problems in defining
what constitutes ‘urban development’, there is wide agreement that cities
do not fill the space in which they exist in any compact sense. Most cities
in fact spread out in the plane and hardly touch the third dimension. They
are peppered with undeveloped land, not only the result of physical con-
straints on what can and cannot be built, but caused by the very processes
of development at the micro level which take place slowly and incremen-
tally, with little coordination at this basic scale in terms of physical conti-
guity. As such we can take as a working assumption that their fractal
dimension lies between 1 and 2, and that the sorts of process characteristic
of the way we generated the Sierpinski carpet represent a first approxi-
mation to simulating urban structure. We will refine this considerably as
we proceed, but as such, it provides a useful starting point.

The fractal dimension of cities displayed by their patterns of development
in the plane can be calculated from either of the two sets of scaling relations
outlined in the previous section. Any of the four scaling relations based on
N(r), L(r), A(r) and p(r) in equations (7.1) to (7.4) can be used as can N(R)
and p(R) based on equations (7.6) and (7.9), and the perimeter-area relations
in equations (7.10) or (7.11). If the fractal was a perfect magnification or
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dilation at each scale as in the case of Sierpinski’s carpet, then only one
observation for a fixed scale or size would be necessary to compute the
fractal dimension; for example, using equation (7.12) for the carpet gives v
= 1, hence D = log(N,)/(k log(n)) where k is the level of generation, n the
original scale factor and N, the number of parts at the observed scale. How-
ever, it is possible to compute first approximations to the dimension (for
cases where the growth process is unknown but clearly not perfectly self-
similar or affine), from two sets of observations associated with two scales
or two sizes. In this case, any constants of proportionality cancel, leaving
the dimension the only unknown. For example, for scales r; and r,, the ratio
N(r1)/N(r,) from equation (7.1) can be transformed to give the value of D,
as can all the other scale and size relations for L, A and p. However, the
more usual method is to fit these intrinsically linear relations directly to
several sets of observations through their logarithmic transformations
which yield equations whose parameters can be estimated by regression.

We will use both the “grid’ or ‘cell-counting” method implied in the vary-
ing scale relations and the ‘radius’ method implied by varying size, which
are both illustrated in Figure 7.1 for the Sierpinski carpet. In fact although
we will position our grid systematically above the CBD and also fix the
radius from this center, this does not imply that these methods need be so
used. Later in this chapter, we will argue that it is essential to position
such grids and radii in as many positions as possible across the object, thus
computing ‘average’ dimensions. Although we will use the varying scale
relation for static structures, and the varying size relation for growing struc-
tures, no restriction is implied by this use. As we illustrated for the Sierpin-
ski carpet, both approaches give equivalent results for a perfect fractal,
although we will show a mild preference here and in subsequent chapters
for the use of the size relations in equations (7.6) and (7.9) for the case of
fractal growth.

We have already illustrated the kinds of urban growth patterns which
we intend to measure and model in this chapter. In Chapters 3 and 4, we
developed simulations of land use for hypothetical and real cities using
dimensions and data for London, and we will review the fractal dimension
of this city in some of the examples of this section. To really impress the
extensive evidence for fractal urban growth, however, in Plate 7.1 (see color
section) we illustrate the employment density of London. This was pro-
duced for us by Bracken based on his interpolation algorithms applied to
the 1981 Population Census from which he is able to generate data at 200 m
grid square level (Bracken, 1993). The spectrum from yellow to red matches
high to low densities. More dramatic evidence of the fractal nature of urban
development and its applicability across scales is shown in Plate 7.2 where
the same data are mapped for England and Wales, thus implicitly generaliz-
ing fractal growth to the entire hierarchy of cities, something which we will
explore later in Chapter 10. We could repeat these types of example for
different urban activities and at different scales, time and again, and we
could complement this display of data with that taken from remotely
sensed imagery which shows the same. But our concern here is with
measurement and simulation which requires a somewhat more abstracted
picture of urban development to which we now return.

Our first foray in the computation of fractal dimensions for urban growth
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involves four large cities ~ London, New York, Paris and Tokyo - taken
from Doxiadis’s (1968) book Ekistics. We have used the cell-counting
method for equation (7.1) in these cases to compute the values of D for the
patterns shown in Figure 7.2. These cities are represented at the same basic
scale, although it is immediately clear that in the case of Tokyo, the city
fills much less than the physical space available to it due to the presence
of Tokyo Bay. Furthermore, it is clear that what we count or color as urban
development, and how far out from the CBD we take the cell-count or
grid will both affect the computed values of the dimension. Here we have
computed these values of D as 1.774, 1.710, 1.862 and 1.312 for London,
New York, Paris and Tokyo respectively. Apart from the clearly lower value
for Tokyo which we might expect because of the Bay, we will refrain from
commenting on these except to note that all these values are what we might
expect from casual observation of Figure 7.2. As we shall see, there can be
such substantial differences in the values of D due to the different defi-
nitions of development and the use of different methods, that we will not
provide any comment on the likely values for such structures until we have
introduced our models in this and later chapters.

Our next examples relate to growing structures, and for these we have
used London and Berlin. The growth of London from 1820 to 1962 provides
a classic picture of fractal growth, and is superbly illustrated in both
Abercrombie’s (1945) Greater London Plan 1944 and in Doxiadis’s (1968)
Ekistics from which we have compiled Figure 7.3. We have used the ratio
of two successive scales based on equation (7.1) for each of the eight stages
of growth, and from this, we report dimension values of 1.322, 1.585, 1.415,
1.700, 1.737, 1.765, 1.791 and 1.774 for the years 1820, 1840, 1860, 1880, 1900,
1914, 1939 and 1962. The increase in values during this time is quite consist-
ent with our analysis of the growth of Cardiff in Chapter 5 where we
argued that as cities grow, they come to fill their space more efficiently
and compactly (or at least homogeneously) due to better coordination of
development and increased control over physical form due to better tech-
nology. This evidence is also borne out by Frankhauser’s (1990, 1991, 1994)
results for Berlin, three stages of growth of which are shown in Figure 7.4.
The values computed here are 1.43, 1.54 and 1.69 for the years 1875, 1920
and 1945. A comparison of Figures 7.2 to 7.4, however, also reveals how
subtle changes in definition begin to creep into the representation of pat-
terns of development, thus affecting the values computed in unanticipated
and uncontrolled ways.

The last examples we will develop here are for cities in the North Eastern
United States, namely Albany, Buffalo and Syracuse in New York, Cleve-
land and Columbus in Ohio, and Pittsburgh in Pennsylvania. We have
exceptionally detailed and innovative data sets for these cities based on
100 m grid square lattices ranging from a 1042 x 552 grid for Buffalo to a
1102 x 1201 grid for Albany. These have been derived from the 1990 digit-
ized line files (TIGER files) available for all areas in the US down to block
group features and compose those cells within which some segment of resi-
dential street exists. As an example, the pattern for Buffalo is shown in
Figure 7.5 where it is clear that like Tokyo, a large portion of the space
within which the city might have grown lies across the international frontier
with Canada, adjacent to the downtown, where there has been hardly any
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Figure 7.2. Fractal patterns of urban development: London, Paris, New

York and Tokyo (from Doxiadis, 1968).
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Figure 7.3. The growth of London (from Abercrombie, 1945; Doxiadis, 1968).
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1875

1920

1945 |

Figure 7.4. The growth of Berlin (from Frankhauser, 1994).

development at all. We do not in fact have any data for the Canadian side
of the border, but this is unlikely to affect the value of the dimension very
much. We have estimated fractal dimensions for these six cities in various
ways; these are reported elsewhere (Batty and Xie, 1993), but here we do
report the use of a radial method of analysis which involves the density
relation in equation (7.9). In the case of a lattice, this density can be writ-
ten as

p(R) =2~ = __Ro2, (7.18)

From equation (7.14), we can approximate the dimension directly for any
density p(R) at distance R from the CBD as
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Figure 7.5. The pattern of development in Buffalo, NY.

log p(R)

D(R) ~ 2 + oK. (7.15)
We can in fact produce a continually varying dimension D(R) as R increases
which we will refer to later as the ‘fractal signature’ of the urban area.
However, at this point, a suitable value for equation (7.15) would be the
mean density given as p(R) at radius R, which gives values of D = 1.494,
1.729, 1.438, 1.732, 1.808 and 1.775 for Albany, Buffalo, Syracuse, Cleveland,
Columbus and Pittsburgh respectively.

Frankhauser (1992, 1994) has also computed measures for several cities
around the world using both the radius and traditional box-counting
methods. His results together with those we have just presented, those for
the towns of Cardiff and Taunton and the city of Seoul which we compute
in this and later chapters, and Smith’s (1991) result for Guatemala City, are
presented in Table 7.1. It is immediately clear that there are considerable
variations in the values computed due to the definitions and methods used
and although it is difficult to draw definitive comparisons, there are some
points worthy of note. First all the dimensions lie between 1 and 2 as we
might expect. Second, most of these values are greater than 1.5, most lying
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Table 7.1. The preliminary evidence for fractal cities

Settlement name Dimension D Settlement name Dimension D
Urban development patterns Urban growth patterns

Albany 1990 (Chap 7) 1.494 London 1820 (Dox/Ab) 1.322
Beijing 1981 (Fra) 1.93 London 1840 (Dox/Ab) 1.585
Berlin 1980 (Fra) 1.73 London 1860 (Dox/Ab) 1.415
Boston 1981 (Fra} 1.69 London 1880 (Dox/Ab) 1.700
Budapest 1981 (Fra) 1.72 London 1900 (Dox/Ab) 1.737
Buffalo 1990 (Chap 7) 1.729 London 1914 (Dox/Ab) 1.765
Cardiff 1981 (Chap 8) 1.586 London 1939 (Dox/Ab) 1.791
Cleveland 1990 (Chap 7) 1.732 London 1962 (Dox/Ab) 1774
Columbus 1990 {Chap 7) 1.808

Essen 1981 (Fra) 1.81 Berlin 1875 (Fra) 1.43
Guatemala 1990 (Sm) 1.702 Berlin 1920 (Fra) 1.54
London 1962 (Dox) 1.774 Berlin 1945 (Fra) 1.69
London 1981 (Fra) 1.72

Los Angeles 1981 (Frq) 1.93 Transport networks

Melbourne 1981 (Fra) 1.85

Mexico City 1981 (Fra) 1.76 Suburban Rail

Moscow 1981 (Fra) 1.60 lyon | 1987 (T & M) 1.88
New York 19460 (Dox) 1.710 Lyon Il 1987 (T & M) 1.655
Paris 1960 (Dox) 1.862 Lyon Il 1987 (T & M) 1.64
Paris 1981 (Fra) 1.66 Paris 1989 (B & D) 1.466
Pitisburgh 1981 (Fra) 1.59 Stuttgart 1988 (Fra) 1.58
Pittsburgh 1990 (Chap 7) 1.775

Potsdam 1945 (Fra) 1.88 Public bus

Rome 1981 (Fra) 1.69 Lyon | 1987 (T & M) 1.45
Seoul 1981 (Chap 9) 1.682 Lyon Il 1987 (T & M) 1.00
Stuttgart 1981 (Fra) 1.41 Lyon Il 1987 (T & M) 1.09
Sydney 1981 (Fra) 1.82

Syracuse 1990 (Chap 7) 1.438 Drainage utilities

Taipei 1981 (Fra) 1.39 Lyon | 1987 (T & M) :
Taunton 1981 (Chap 7) 1.636 Lyon Il 1987 (T & M) 1.30
Tokyo 1960 (Dox) 1.312 Lyon Il 1987 (T & M) 1.21

References: B & D ~ from Benguigui and Daoud (1991); Dox — from Doxiadis (1968); Fra — from Frankhauser (1988,
1990, 1992, 1994); T & M - from Thibault and Marchand (1987); Dox/Ab - from a compilation of data from Doxiadis
(1968) and Abercrombie (1945); Sm - from Smith (1991).

Notes: All results are reported to the number of decimal places published and in the case of several different estimates,
in particular from Frankhauser and our own work here, the lower estimates of dimension are given.

between 1.6 and 1.8 with a mean of about 1.7. As we shall see, the model
we suggest in the next section also generates dimensions with a value
around 1.7. Before we conclude our experimental evidence, however, it is
also worth noting that urban transport networks can be regarded as rami-
fied fractal structures as we indicated in Chapter 2. The same type of scaling
equations can be used to measure their fractal dimension by simply count-
ing links in the networks identified through a grid say, as numbers N(R)
or N(r). Thibault and Marchand (1987) computed the dimensions of three
different local urban networks — suburban rail, public bus, and drainage
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utilities — in three different areas of Lyon and their results are also reported
in Table 7.1. Benguigui and Daoud (1991) have done much the same for
the metro and suburban rail networks of Paris giving a typical dimension
of 1.466, while Frankhauser (1990) has calculated the value of D for
Stuttgart’s rail system as 1.580. The networks for Stuttgart and Paris are
shown in Figure 7.6. where either equations (7.1) or have (7.6) could be
used to effect the computation. These network results are also summarized
in Table 7.1.

To impose some order on this casual evidence, we need to explore how
we might model urban structures which show these types of pattern. The
Sierpinski carpet is hardly a model but simply a geometrical generating
principle, and does not show how the carpet evolves in terms of its basic
unit of development. In fact, a remarkable model of fractal growth which
might apply to systems as diverse as crystals and cities, cells and galaxies
has recently been fashioned in the physics of far-from-equilibrium struc-
tures, building on basic ideas of diffusion and transition. It is to this that
we will now turn here and in subsequent chapters before returning towards

Paris

(-} Station

Stuttgart

Figure 7.6. Rail networks as fractal patterns: Paris and Stuttgart (from
Benguigui and Daoud, 1991; Frankhauser, 1994).
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the end of this book to problems of generalizing scale and size relations to
systems of cities.

7.4 A Scaling Model of Urban Growth

So far, our analysis of the fractal city has been largely empirical with few
implications for the way urban development processes might generate frac-
tal forms. However, a remarkable product of this new concern for structures
which scale physically has been a series of models in which simple random
growth, constrained by the geometry of the system in which the growth is
occurring, generates highly ordered fractal structures. The most complete
examples of this new approach to modeling morphologies have developed
in the physics of critical phenomena, particularly involving the aggregation
and growth of fine particles. Since the early 1980s, computer simulation
models have been used to generate forms visually similar to a variety of
particle clusters which also manifest spatial self-similarity across a wide
range of scales, and whose structure is subject to scaling laws consistent
with ideas in fractal geometry. The clearest, most articulate examples can
be generated by a process of diffusion about a seed particle, such diffusion
taking place on a regular lattice which embodies the seed.

These models first suggested by Witten and Sander (1981, 1983) are col-
lectively known as Diffusion-Limited Aggregation (DLA) models. The
structures generated are familiar tree-like forms or dendrites, grown from
the seed, manifesting self-similarity of form across several scales, and
whose properties of scaling suggest that they are fractals. The great power
of these techniques is that they link growth to specific geometrical forms.
They can be easily generalized to other forms such as those with the charac-
teristics of percolation clusters; and more importantly, they are consistent
with the sorts of scaling found in the physics of critical phenomena, particu-
larly in structures which are far-from-equilibrium (Feder, 1988). These ideas
have excited so much interest in the last decade since they were first pro-
posed, that the physicist Leo Kadanoff (1986) has been prompted to say:
“Physical Review Letters complains that every third submission seems to con-
cern fractals in some way or another”. There are several books and proceed-
ings which summarize this emergent field; readers are referred to an early
volume by Stanley and Ostrowsky (1986) and a more recent one by Bunde
and Havlin (1991).

To develop the model, we will proceed using the time-honored method
of analogy (Wilson, 1969). Anticipating our conclusions, there is no perfect
correspondence between theoretical DLA simulations and any of the
empirical urban structures we have examined so far in this book (see Table
7.1) which we might use as a basis for comparison. Nevertheless, the simi-
larities are strong, and give us confidence that this approach has great
potential in urban simulation which we will explore further in Chapter 8.
However, what the approach does suggest is that traditional ways of meas-
uring urban structure, particularly urban population densities, are particu-
larly limited. The DLA approach suggests we must define and measure
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densities much more accurately, having recourse not simply to general
urban concepts such as the density of developed areas, but to the actual
geometry of location: populations measured at. point locations, not over
areas or volumes. This has important implications for previous and existing
quantitative models and measures of urban population density which we
will elaborate in detail in Chapter 9.

The model is conceived as follows: imagine the simplest process in which
a city might grow from some central point or site. Through time, the city
grows by new individuals locating next to or near individuals who have
already clustered about the central point. If the city were to grow irreversi-
bly and individuals were to occupy every available space adjacent to the
growing cluster, the area of the city would expand in proportion to the
square of the radius of the cluster. However, it is most unlikely that all
available space would be occupied as the city grows. Other land uses are
required, some space always remains vacant due to physical obstacles to
development and so on. In real cities, the population is never stable for
individuals move within the city and occupied sites become unoccupied.
For the moment, we will assume that once an individual locates, the
location remains occupied; this type of irreversibility is still consistent with
a process in which individuals can move within the city, although it
assumes that physical locations, once occupied, remain so.

The essential variables describing this growth are N(R), which is the
cumulative number of occupied sites (proportional to population), and
A(R), the total area of all sites occupied and unoccupied at radius R from
the center. These are related to radius R through the size relations in
equations (7.6) and (7.7) which we can rewrite without constants of
proportionality as

N(R) ~ R®, (7.16)
and
A(R) ~ RE, (7.17)

where D is the parameter or fractal dimension which scales population with
distance and E the parameter which scales area with distance, that is, the
Euclidean dimension. We have explicitly assumed E to be the dimension
of area, that is E = 2, although we will continue to refer to this dimension
as E to enable our equations to be generalized.

In analogy to equation (7.9), the density p(R) can now be defined from
(7.16) and (7.17) as

N(R
p(R) = AL

A(R)
The change in population and area, the first derivatives of equations (7.16)
and (7.17) with respect to R, are given as

~ RD-E, (7.18)

ANR) _ ooy
e RP (7.19)
and
R ge, (7.20)

dR
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and the ratio of these equations also defines the density at the margin as
dN(R) /dARR) _ dN(R) _
dR dR  dA(R)

Finally, the change in density with respect to distance is given as

RP-E, (7.21)

dp(R) ~ RD-E-1
o, (7.22)

and higher derivatives of equation (7.22) can be taken if required.

These relationships in equations (7.16) to (7.22) are only of substantive
interest if values are specified for D and E. First, the physical dimension E
could relate to a line, area or volume. In fact, earlier we assumed E = 2,
but it is possible to develop the analysis for urban systems with E = 3 if
the population were to be modelled in three dimensions. From our earlier
argument, we also assumed | < D < 2, that is, that the population does
not occupy the entire space A(R) which would imply D = 2 and a uniform
density, nor that the population simply varies with R which would imply
a linear city with D = 1. Thus assuming E = 2, we will use the following
four relations:

N(R) ~ R¥1 =RP, (7.23)
dN_d;(i"R) ~ RP2= R, (7.24)

p(R) ~ Res = RP2, (7.25)
dNR) _ e, = ro-2 (7.26)
dA(R)

If we assume that 1 < D < 2, then B, and B, in equations (7.23) and (7.24)
are positive, while the exponent on density, B, in equation (7.25), is nega-
tive, hence consistent with traditional urban density theory and observation
(Clark, 1951; Mills, 1970). B, the exponent on marginal density, is also nega-
tive and in theory should equal B;. These B parameters can be estimated
using ordinary least squares regression on the logarithmic transforms of
equations (7.23) to (7.26) and represent different ways of calculating the
scaling parameter D. A fifth estimate of D could be derived from equation
(7.22) where the parameter is D — 3. However, the relationship is negative
and cannot be found by logarithmic regression. We have thus excluded this
from our subsequent analysis.

The above relationships describe how the population of a city or particles
in a cluster fill space, and as we have argued, it is reasonable to assume
that the density of the city or cluster falls at increasing radial distance R
from the center. This is of course borne out by casual observation which
suggests D cannot be as large as 2 but is certainly greater than 1. There is
another way, however, of considering how population fills space. Let us
assume that populations can be linked by a continuous line. If every popu-
lation point on a lattice were occupied, there are well-known curves which
link all such points and seem to fill space as we demonstrated in Chapter
2. However, it is always possible to find a continuous curve which links
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less than all points on a lattice (assuming some are unoccupied). Such a
curve is clearly longer than the diameter of the city but not as long as
the space-filling curve linking every lattice point such as the Peano curve
illustrated in Figure 2.4. It is well-known that such a curve has a fractal
dimension greater than the line (D = 1) but less than the area (D = 2) and
as such, it is a measure of the extent to which space is filled.

Scaling relations such as these have been used throughout the develop-
ment of social physics, and in this sense, we have always worked with
fractals where their parameters have been dimensions; but the new frame-
work provides links between these relationships and the underlying
geometry of the system which has hitherto eluded us. We have already
noted the consistency between urban density theory and densities as given
by equations (7.25) and (7.26), but considerable work has also been done
on relationships between population and area. From equations (7.16) and
(7.17), it is clear that area can be derived from population through the per-
imeter-scale relation given in equations (7.10) and (7.11). These types of
relationship are allometric, and have been extensively studied with respect
to the growth of cities (Dutton, 1973; Nordbeck, 1971; Woldenberg, 1973).
In the development of urban allometry, there has been little attempt to link
these scaling coefficients to urban form, and most of the analysis has been
with respect to the growth of different cities through time, not individual
cities across space. Nevertheless, there are connections here between fractal
geometry and urban allometry which we will explore in detail in Chapters
9 and 10.

There is also a connection between the fractal dimension D in this context
and the exponents in gravitational and potential models of spatial interac-
tion (Stewart and Warntz, 1958). From the approach developed here, we
would argue that the value of the exponent in such gravity models is a
consequence of the form of the system, rather than any noise in the data
(Curry, 1972). In Chapter 9, we give greater substance to these notions, but
we do not follow the idea through in this book, notwithstanding its
important implications for the entire class of urban models based on spatial
interaction (Batty, 1976). It is worth noting, however, that the ideas
developed here might represent a new variety of social physics, a ‘post-
modern’ social physics as some commentators have already referred to it
(Woolley, 1988). In this blend of physics, growth and form are
inextricably linked.

7.5 The Process of Diffusion-Limited Aggregation

The above scaling relations can be estimated for any spatial system of indi-
vidual objects in which central points can be identified; as such, these
relationships are independent of any particular spatial form. Here however,
we will introduce a particular spatial form resulting from a growth process
of constrained diffusion — diffusion-limited aggregation — which will rep-
resent our baseline model through which we will make comparisons with
observable urban growth. It is necessary now that we introduce the DLA
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model. To this end, we will follow the terminology of the field and hope
the reader will bear with our indulgence in referring to the irreducible
objects of the system as particles.

Consider a bounded circular region with a single seed particle fixed at
its center. New particles are launched from points far away from the seed,
on a circular boundary which is at least three times the radius of the cluster
grown so far. These particles are launched from random points on this
boundary one at a time. When a launch occurs, the particle begins a random
walk, usually on a regular lattice, often square, which is centered over the
seed particle, the particle moving only one lattice step at a time. Two states
can occur: if the particle moves outside the boundary circle, it is ‘killed’ or
abandoned; if it approaches the cluster and is within a neighborhood, usu-
ally one lattice step, of an already fixed particle, it sticks to the particle, its
walk is terminated, and the cluster is extended. If either of these cases occur,
another particle is launched, and the process of ‘walking’ on the lattice
begins again. The process only terminates once a size threshold is reached
such as that based on a fixed cluster size in terms of the number of particles,
or once a maximum cluster radius or cluster span is attained.

The form which results is dendritic with tentacles extending from the
seed particle, growth proceeding in a tree-like fashion. It is not immediately
obvious why this is so, but a little thought reveals that when a particle sticks
to another, the probability of more particles sticking in that neighborhood is
much increased. Ribbons of particles begin to form around the center of
the cluster, making it ever more likely that new particles will stick to the
tips of existing dendrites which effectively screen the fissures between the
emerging tentacles from receiving further particles (Sander, 1987). The
resulting form (which can be seen below in abstract in Figure 7.7 and in
simulation in Figure 7.8 and Plate 7.3) is clearly fractal in that the dendrites
making up the cluster appear similar at every scale.

The association between particle clusters and fractal geometry goes back
to a paper by Forrest and Witten (1979) but the original model was sug-
gested by Witten and Sander (1981, 1983). Its subsequent application and
estimation to different particle clusters was motivated by its clear visual
similarity to many naturally occurring forms. The diffusion process itself
has high generality in that it is consistent with the Laplace equation which
applies to many physical systems. Other models such as those simulating
such phenomena as dielectric breakdown (Niemeyer, Pietronero and Wies-
mann, 1984; Satpathy, 1986) which we will develop in the next chapter, and
viscous fingering (Nittmann, Daccord and Stanley, 1985) are also consistent
with DLA. As already indicated, there have been extensive explorations
of the DLA model. Meakin (1983a, b, 1986a, b) has explored a variety of
simulations with dimensions ranging from E =2 to E = 6 and particle sys-
tems of varying sizes. Changes to the probabilities of sticking have been
investigated as well as constraints on the direction of the random walks,
all illustrating the robustness of the model.

Apart from the highly characteristic form generated by the model, several
independent researchers have concluded that D =~ 1.71 for the DLA model.
This dimension hardly changes when the sticking probability is relaxed,
although there is still considerable argument concerning the universality of
this scaling exponent (Meakin, 1986c). There is some recent work which
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suggests that the shape of the underlying lattice has an effect on the simul-
ation (Meakin, 1985; Turkevich and Scher, 1985). Attempts at generating a
mean field theory for the model by Muthukumar (1983) have led to a pre-
diction that D = (E* + 1)/(E + 1) which for a two-dimensional system gives
D =5/3 =1.66 and for a three-dimensional system, D = 5/2 = 2.5; these are
both consistent with simulations. But as yet, there is no general consensus
concerning these issues. The most complete reviews of this enormous body
of work are contained in recent books by Jullien and Botet (1987), Vicsek
(1989), Pietronero (1989), and Bunde and Havlin (1991).

At this stage, we must attempt a preliminary justification for the choice
of DLA as a baseline model for our urban simulations. As we have pointed
out in earlier chapters, many rapidly growing cities during the 19th and
20th centuries appear to be structured along transportation routes radiating
from the central business district, for example, Paris and Stuttgart shown
earlier in Figure 7.6. Similar dendrites incorporating the same pattern are
associated with smaller commercial centers within the city, which are also
structured in a fairly clear hierarchy based on several orders of transport
route. There is a problem in saying much more than this because of the way
in which urban form is traditionally characterized and measured. Much of
urban morphology is predicated in terms of land use patterns and physical
structures which do not map easily onto the density and distribution of
population.

The patterns shown for London, New York, Paris, Tokyo, Berlin and Buf-
falo in Figures 7.2 to 7.5 and Plates 7.1 and 7.2 bear this out in that they
do not correspond to the way the population of these same cities has been
measured in previous estimates of their density (as reviewed, for example,
by Berry and Horton, 1970). Urban population densities are usually defined
across census tracts rather than in terms of the actual physical location of
the population. Indeed, there is some speculation in urban allometry that
urban populations should be conceptualized in three, not two, dimensions
(Dutton, 1973), but there has been no investigation of how such densities
are reflected in the geometry of urban form. Thus, it is not surprising that
the sorts of form characteristic of DLA are not manifest in the data on which
urban population density models have been developed. In short, a clearer
view of how processes of growth give rise to particular urban geometries
such as those seen in DLA, would provide a new approach to measuring
urban densities; and although it is still very much an open question as
to whether the dendritic structures of DLA are highly correlated with the
geometrical characteristics of urban growth, the modest verifications we
have presented so far can only be strengthened through better data.

The other major issue relates to the process by which DLA occurs. Clearly
urban growth is based on a kind of diffusion which leads to cities growing
at their edges. But the process of random wandering necessary to DLA
cannot be given any physical meaning in the behavior patterns of individ-
uals locating in cities. The random walking might be thought of as a proxy
for the process of spatial search which does not normally take place physi-
cally, but this analogy cannot be forced too far. Moreover, cities are not
irreversible in the sense in which DLA clusters are. There is substantial
mobility among any urban population due to life style changes, economic
competition and such like which change occupancies in the physical stock
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of buildings in any city. We fully recognize these issues, although we con-
sider it necessary to begin with the simplest DLA model, and only in later
chapters will we adapt this to the peculiarities of urban growth. The only
work in an explicitly geographical context which we are aware of other
than that summarized earlier in this chapter, is by Lovejoy, Schertzer and
Ladoy (1986) in their study of the global coverage of the Earth’s weather
by meteorological stations for which they estimated a fractal dimension of
D = 1.75.

7.6 The Statistical Measurement of DLA Clusters

In estimating the dimension of any structure which can be described as a
cluster of particles around a central seed such as DLA clusters, we will
assume that there are a total of N particles, each of which occupies a unique
location on a regular lattice. Note now that we are defining the distance
from any particle I to any other particle k as 7. The range I, kis 1, 2, ..., I,
k, ..., N, where these index numbers are consistently ordered around the
central seed site on the lattice I, k = 1. A particle k at distance r from [ is
given as

1 if a particle occupies the lattice point,
0 if the lattice point is unoccupied.

ny(r) = [

We will now present two sets of measures: first those based on a location
around the seed site k = 1, and second, those based on locations around
every occupied site which are formed as averages. We refer to the first as
one-point measures, the second set as two-point.

For the one-point measures, the number of particles at a given distance
r from the seed site is given as n,(r) or n(r)

n(r) = ny(r) = > nu(r), (7.27)

where the summation in equation (7.27) is over all those particles I which
are at distance r (or in distance band r) from the site k = 1. Note that we
can suppress the index k = 1 in subsequent notation because all the one-
point measures introduced are relative to this seed site. The cumulative
number of particles at all distances up to radius R is given as

N(R) = >, n(r), (7.28)

and the number of particles at distance R (or in band R) is
AN(R) = N(R) = N(R—-1) =n(R), (7.29)

noting that N(0) is not defined. N(R) and AN(R) are the discrete equivalents
of equations (7.16) and (7.19) where we assume the distance bands r =1, 2,
.., R are equal in all cases.

To measure density, we must count all lattice points, occupied or unoccu-
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pied around each point n,(r) associated with r, and these are defined as
s(r). The total number of such points up to distance R is given as

S(R) =2, s(r), (7.30)

r=1

and the density of particles associated with all distances up to R is thus

R

>, n(r)

NR) _
PRI=5m ==

2 s

r=1

(7.31)

Two measures of the change in density can be computed. First from equ-
ation (7.31)

NR) N(R-1)

Ap(R) =p(R) = p(R-1) = SQR) ~S(R=1) (7.32)
and second,
n(r) — n(r)
Q(R) = AN(R) _rl r=1 - ?‘I(R) (7 33)
TAS(R) T R R-1 7 g(R) :
> s(r) - 2 s(r)

from equations (7.29) and (7.30). Equation (7.31), the cumulative (average)
density, is equivalent to equation (7.18), equation (7.32) to equation (7.22),
and equation (7.33) to (7.21). As noted previously, we will not use equation
(7.32), and in the subsequent analysis, equations (7.28), (7.29), (7.31) and
(7.33) will be used as approximations to equations (7.23) to (7.26) in that
order.

So far, these measures are all specified in terms of the radius R about a
central point, the seed point at the center of the lattice. It is possible, indeed
appropriate due to the self-similarity of DLA clusters, to compute the meas-
ures as averages around all N particles in the system. In analogy to equation
(7.27), we first compute the number of particles n,(r) at distance r from any
lattice point k as

n(r) = 2, my(r). (7.34)
!

The average of all particles at distance » from one another is then given as

N N
Domdr) > D nulr)

ﬁ(r)zk:lN = ‘N : (7.35)

The cumulative two-point average of particles up to distance R and the
change in particles between distances or distance bands are defined respect-
ively as
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NR) =2, #(r) (7.36)
and
AN(R) = N(R) - N(R - 1) = i(R). (7.37)

Density measures can now be formed, noting that the number of lattice
points I for each distance r is independent of k and /. In analogy to equation
(7.30), the two-point cumulative density is given as

ER i Z nu(r)

p(R) = f((ff)) == ; (7.38)
NXs(r)
Density change can b: 1computed as
AB(R) = 6CR) - SR - ) = 5 )~ 5 x 1 7:39)
and the marginal change in density as
_ e
con- 318205

As in the case of the one-point measures, the two-point measures in equa-
tions (7.36), (7.37), (7.38) and (7.40) will be used as approximations to equa-
tions (7.23) to (7.26) in that order.

The two-point measures defined between equations (7.34) and (7.40) cle-
arly take account of any self-similarity in the physical structure, but in the
case of all these measures, it is necessary to be extremely careful concerning
the radial distances over which they are computed. Much of the subsequent
analysis is concerned with these issues for in all cases, the measures are
only appropriate for those parts of the system which are fully developed,
and in any cluster, this will be somewhat less than the total cluster itself.
Lastly, Witten and Sander (1981, 1983) and Meakin (1983a, b) amongst
many who have worked with these models, argue that the two-point meas-
ures are considerably more appropriate than the one-point, and they sug-
gest that the two-point density measure Q(R) is the best to use in estimating
D. In the sequel, we will use all the measures presented, thus demonstrating
the sensitivity of the estimation to the measures themselves as well as to
different ranges of distance.

7.7 Space-Time Histories and Accounts

The DLA model has an extremely straightforward growth dynamics. Par-
ticles are launched one at a time and no more than one particle can be
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randomly walking on the lattice at any one point in time. Therefore a com-
plete history of the system’s growth dynamics is represented by the order
in which the particles stick to the cluster along with their location on the
lattice. We must now formulate the model with respect to time t as well
as space r for several reasons. First, in comparison with real systems, it
may be necessary to calibrate the model so that the theoretical growth pro-
cess can be tailored to an actual process if a development history of an
urban area is available. Second, it is necessary to explore the stability of
the cluster over time with respect to the stability of its dimension D and
the spatial properties of successive particle locations. Third and perhaps of
greatest importance here, we need to measure the growth profiles of the
cluster with regard to its fully developed parts; thus the dynamics of the
growth process will enable us to define the appropriate sub-cluster from
the whole.

We will now extend our spatial notation where we refer to any distance
by r, and up to a given radial distance by R, to an index of any time by ¢,
and up to a given time by T. Assume that space is recorded by r = 1, 2,
.. »» Ry, where the units of space are distance bands and R, is the boundary
of the system, and that time is given by t =1, 2, ..., T, where the units of
time are periods and T, is the last period in the growth process. Strictly
speaking, each particle has a unique location in time and space for no more
than one lattice point is ever occupied and no more than one particle ever
circulates in the system at any point in time. However, in the subsequent
analysis, we will require these distance and time bands to be defined.

The basic unit of account is now the number of particles in distance band
r and time period t, n(r, t). We are able to analyze this number over time
or space or both, Thus

Ry, '

n(t)= 2, n(r, t) (7.41)
and

n(r) = E n(r, t), (7.42)

t=1

where n(r) is defined as in (7.27). Note that an equivalent unit of account
fi(r, t) could be defined based on two-point averages but this is less mean-
ingful with respect to the actual growth of the cluster. Equations (7.41) and
(7.42) when summed over ¢t or r respectively add to give the total particles
in the system, that is

N=E n(t) = E n(r)
Te Rb
=> > n(r, f). (7.43)
t=1 r=1

Equations (7.41) to (7.43) define a simple but complete set of space-time
accounts.
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It is necessary, however, to examine how the system converges towards
the marginal and total sums in equations (7.41) to (7.43). Cumulative vari-
ables are thus defined as

R

n(R, t) = >, n(r, H) (7.44)
and
T
n(r, T) = >, n(r, ). (7.45)

Equations (7.44) and (7.45) are equal to (7.41) and (7.42) when R = R,, and
T = T, respectively. A total accumulation over time and space defined in
analogy to equation (7.43) is

n(R, T) = 2, n(R, t) = X, n(r, T)

t=1 r=1

T R
=2 2 nn b (7.46)

=1l r=1

The other variable of interest which serves to integrate these accounts with
the previous one-point measures is defined as

T,

NR) =2, n(r) =, n(R, #), (7.47)

r=1 =1

and the analogous cumulative total over time is given as

i Ry

N(T) =3 n(t) = 2, n(r, T). (7.48)
=1 r=1

As R = R, and T — T, equations (7.47) and (7.48) converge to the total

number of particles in the system, N, defined by equation (7.43).

For DLA simulations, we already have a clear idea how the growth pro-
cess develops with respect to time and space due to the fact that in general,
particles launched later in time, are added to tips of dendrites on the per-
iphery of the cluster; in short, there is a strong correlation between time of
launch and location of particles with respect to distance from the central
seed in the cluster. Examining the distribution of particles n(r, t) across
space r for each time £, or across ¢ for each distance band r, reveals wave-like
phenomena with most particles locating on the edge of the cluster grown so
far in the latest time period. The cumulative distributions n(R, f) and n(r,
T) also show cumulative waves across space and time as will be clearly
illustrated in a later section when an example of the DLA model is pre-
sented. The build-up of waves of growth generated from n(R, t) where R
is accumulated over space, but plotted at different times f, and generated
from n(r, T) where T varies across time, but is plotted for different distance
bands 7, is easy to show. We can also plot n(R, T) through time from equ-
ation (7.46), but across space and vice versa. In the sequel, we will plot
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these variables on size-distance graphs for each individual time t and
accumulated time T so that we can examine the spatial similarities through
time, and define appropriate thresholds for the one- and two-point
measurements of the cluster.

7.8 Theoretical Simulations: |. Statics

Before we explore the statistical and spatial properties of a typical DLA
simulation, we must present the method of simulation in more detail. As
we indicated in an earlier section, a seed is first planted at a point on the
lattice and a cluster is built up around this seed by launching particles at
some distance far away from the edge of the cluster. Each particle makes
a random walk on the lattice until it reaches a lattice point adjacent to one
already occupied by a particle where it ‘sticks’, or until it leaves the system
by crossing its boundary where it is deemed to have disappeared or been
destroyed. Although there is some debate about the anisotropy introduced
by the geometry of the underlying lattice as we noted earlier, lattices based
on a square grid have mainly been used, and we will adopt this conven-
tion here.

To reduce the computation time required, particles are launched from a
circular orbit which is set at the maximum radius of the cluster plus five
lattice steps. Particles are deemed to have been destroyed once they enter
the region outside the bounding circle which is set at least three times the
maximum cluster radius. As the cluster builds up, its maximum radius, the
launch circle and the bounding circle continually increase, and with these
conventions, clusters can be grown to any size: the only limits are computer
time and memory. The geometry of the method is illustrated in Figure 7.7
which shows how these assumptions are incorporated into the spatial
development of the cluster. This mechanism, first proposed by Meakin
(1983b), enables modest clusters up to 10* or so particles to be grown in

Figure 7.7. The mechanism of diffusionlimited aggregation.
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about 10 hours CPU time using a MicroVax. However, if bigger clusters
need to be grown on workstations, it is necessary to develop faster methods
based on off-lattice random walks when far away from the cluster, with a
transition to lattice walks in the neighborhood of the cluster. Differences
in form are not apparent and clusters up to 10° particles have been grown
successfully (Meakin, 1986b). Clusters of larger magnitude can be grown,
but these require high performance machines.

Here we will illustrate the operation of a typical DLA model but we
must note that definitive results concerning the fractal dimension D of such
models depend upon averaging the dimensions associated with many runs.
Different clusters are produced for each run due to the random walk mech-
anism of the model, and thus on average, D = 1.71 + 0.03 where the value
0.03 represents the standard error (Jullien and Botet, 1987). This standard
error is fairly low, but suggests that for the majority of runs, D should be
within the range 1.68 to 1.74. The DLA simulation discussed here is shown
in Figure 7.8 where the gray tones give some idea of the sequence in which
particles are added to the cluster, and it is also illustrated in Plate 7.3. This
aggregate consists of N = 10,000, clustered around a seed particle which is
located at the center of a 500 x 500 square lattice.

Some properties of this simulation are shown in Table 7.2 which also
includes similar properties of urban growth for the town of Taunton; these
will be used later as a basis for comparison. To enable analysis to proceed,
the various measures of cluster size and spread must be normalized with
respect to the number of points in the lattice. Such normalization involves
computing indices relating to the size of the cluster and its radius. The
maximum radius of the cluster R,, computed as the largest distance from
any particle to the seed, can be used to compute the effective area of the
cluster (wRy) if all lattice points were occupied. The actual area is given by

Diffusion-Limi
figgrepation

Figure 7.8. A typical DLA simulation.
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Table 7.2. Spatial properties of the theoretical and real systems

System characteristics DLA simulation Taunton
Dimension of lattice 500 x 500 150 150
Lattice points 250,000 22,500
Points occupied, N 10,000 3179
Maximum radius, R, 248.244 62,936
Total effective area, wR2 193,600.700 12,443.850
Average density, N/mR2 0.052 0.256
Mean radius,' R 124.620 33.184
Standard deviation, o 56.075 14.189
R/R., 0.502 0.527
a/R, 0.226 0.225
a/R 0.450 0.428
Length of boundary, B 19,855 3994
Maximum circumference, 2mR,, 1559.762 395.442
Tortuosity index, B/2mR,, 12.729 10.100
Number of boundary points, N, 10,000 2709
Density of boundary, N,/N 1.000 0.852
Interior points, N; 0 470
Density of interior, N/N 0 0.148
Nearest neighbors, N, 23,938 13,804
Average neighbors, N,/N 2.394 4.342

1 Mean radius R = ([£,Z;n,(r)]/N, where r; now represents the distance from the seed particle
k =1 to the distance band i which contains particles I associated with r.

N (assuming each point occupies a unit square), thus the density here is
only about 5% of the total effective area. This is an extremely sparse struc-
ture; indeed, all the occupied lattice points are on the boundary of the clus-
ter and there are no interior points (occupied points entirely surrounded
by other occupied points) whatsoever. The length of the boundary is 12.7
times the circumference of the effective area (2mR,) which represents a
good measure of the tortuosity of the structure. The sparsity is also indi-
cated by the fact that on average, there are only about 2.4 nearest neighbors
to each lattice point. We will return to this table in a later section when
we come to examine the properties of the urban area composing the town
of Taunton.

For both this and the subsequent application to Taunton, we will examine
the spatial distribution of development using the four relationships given
earlier in equations (7.23) to (7.26). We first use the one-point N(R) from
equation (7.28), n(R) from equation (7.29), p(R) from (7.31) and Q(R) from
(7.33) as approximations to N(R), dN(R), p(R) and dN(R)/ dA(R) in equations
(7.23) to (7.26) using 50 distance bands each of width R,,/50. The computed
absolute values of these variables and their logarithmic transformations are
shown in Figures 7.9 and 7.10 respectively. Note that each distance band
is the same width, thus no approximation to dR is required.

From equations (7.23) to (7.26), N(R) should increase at an increasing rate,
dN(R) should increase at a decreasing rate, the density p(R) should decrease
at a decreasing rate as should dN(R)/dA(R). Figure 7.9 indicates this for p(R)
and dN(R)/dA(R), but N(R) behaves like a logistic function, while dN(R) is
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Figure 7.9. Absolute one-point relationships for the DLA simulation.

almost parabolic. These functions should all be linear when plotted logar-
ithmically as in Figure 7.10, but the graphs indicate very sharp changes in
slope and direction in the neighborhood of R = 125. All this is an indication
that the cluster is well developed up to this distance from the central seed;
at greater distances the development is increasingly incomplete due to the
termination of the growth process. Thus it is standard practice in fitting
these relationships to data to exclude longer distances which reflect the
incomplete peripheral regions of the cluster, and sometimes to exclude
short distances which can also be subject to volatile fluctuations in occu-
pancy.

Therefore, we have generated the parameters from the following equa-
tions which have been fitted using ordinary least squares regression:

log N(R) = a; + B, log R,
log n(R) = &, + B, log R,
log p(R) = a3 + B5 log R, (7.49)
log Q(R) = ay + B4 log R.

Initially, we fitted these equations to all 50 distance bands, reestimated their
parameters using an upper cut-off after the 26th band, and then produced
a final estimation of the equations excluding the first three distance bands.
These thresholds/cut-offs are indicated in Figures 7.9 and 7.10.
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Figure 7.10. Logarithmic one-point relationships for the DLA simulation.

Estimates of the various parameters B;; B2, B; and B4 in terms of their
fractal dimensions are shown on the first rows of each estimate in Table
7.3, with their standard errors on the second rows, and their adjusted r?
values on the third. For these one-point estimates, 3, and B; are related by

Table 7.3. One-point estimates of the scaling equations for the DLA simul-

ation

Distance bands D =g, D=1+8; D=2+B; D=2+ B,

1-50 1.574 1.267 1.574 1.174
0.017 0.100 0.017 0.095
0.994 0.111 0.924 0.602

1-26 1.665 1.777 1.665 1.638
0.006 0.032 0.006 0.029
1.000 0.959 0.992 0.856

4-26 1.659 1.739 1.659 1.686
0.009 0.049 0.009 0.050
0.999 0.908 0.985 0.632

Note: the first line of results for each distance band gives the fractal dimension, the second
line the standard error, and the third the adjusted coefficient of determination r%. These
definitions are used for all subsequent tables of this type in this and the next chapter.
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Bs = B1 — 2 and thus there are only three, not four independent estimates
in this table. The initial estimation over all 50 distance bands reveals volatile
1* values and considerable inconsistency between the B estimates. Cutting
off the cluster at the 26th band improves these results dramatically. The
standard errors are considerably lower, and all 7* are greater than 0.850.
The fractal dimension of 1.665 from B, is close to the value of 1.71 produced
in averaging many DLA simulations and it is even closer to Muthukumar’s
(1983) field theory prediction of (E* + 1)/(E + 1) = 1.666. Excluding the
shorter distance range does not change these estimates very much and it
is encouraging that all three independent estimates of D from B;, B, and
B, for distance ranges 1-26 and 4-26 lie between 1.638 and 1.777.

It is widely argued in the literature that two-point measures are consider-
ably better than one-point, for these measures capture the dilation sym-
metry or self-similarity implicit in Figure 7.8. Using N(R), i(R), p(R) and
Q(R) from equations (7.36), (7.37), (7.38) and (7.40) respectively as the
dependent variables in equations (7.49) provides another set of estimates
of the fractal dimension D. First these variables are plotted against distance
in absolute and logarithmic form in Figures 7.11 and 7.12. The graphs are
considerably smoother than those in Figures 7.9 and 7.10 due to the exten-
sive averaging for every particle related to every other. In fact the two-
point averages required about three hours CPU time on a MicroVax and
these cannot easily be generated alongside the DLA simulation. Moreover
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Figure 7.11. Absolute two-point relationships for the DLA simulation.
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Figure 7.12. logarithmic two-point relationships for the DLA simulation.

the set of distances now relates to all possible distances between every lat-
tice point, there being R=1, 2, .. ., 488 in contrast to the one-point measures
where we have assumed that 50 distance bands is a good approximation
to the variation in the cluster up to R, = 248. It is considerably more difficult
to detect distance thresholds from these plots because of their smoothness.
Thus we have selected five possible ranges for estimation purposes. The
initial range uses all 488 distances but this is reduced to 174, 11-174, 11—
157 and 11-123, the last three also excluding the first 10 bands.

Estimates of the B parameters and the associated fractal dimensions are
shown in Table 7.4. As expected, these coefficients are quite inconsistent as
estimated over the whole range of distances, but as the ranges are reduced,
the coefficients converge quite remarkably to give fractal dimensions
between 1.640 and 1.677. The standard errors shown in this table and the
correlations are also much improved as the range is reduced, with the final
estimates based on the range 11-123 giving near perfect correlations. From
the analysis, it would appear that the fractal dimension is nearer 1.66 than
1.71, and this is borne out in several other simulations we have generated.
However, we have not attempted anything like the number of simulations
reported by Witten and Sander (1983) and Meakin (1983b) amongst others,
although it is interesting that since the DLA model was proposed, the cer-
tainty with which researchers have held to the universality of D =~ 1.71,
has become much weaker. The precise value of D, however, whether it be
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Table 7.4, Two-point estimates of the scaling equations for the DLA simul-

ation
Distance bands D=g, D=1+8, D=2+B; D=2+p,
1-488 1.338 0.161 1.367 0.179
0.011 0.081 0.012 0.079
0.966 0.178 0.852 0.519
1-174 1.586 1.588 1.644 1.588
0.004 0.008 0.002 0.008
0.999 0.972 0.992 0.945
11-174 1.619 1.545 1.641 1.545
0.003 0.011 0.004 0.011
0.999 0.941 0.983 0.917
11-157 1.631 1.575 1.654 1.575
0.003 0.010 0.003 0.010
1.000 0.954 0.988 0.920
11-123 1.652 1.640 1.677 1.641
0.002 0.009 0.002 0.009
1.000 0.978 0.997 0.933

1.66 or 1.71 is not important per se. What is important is that DLA generates
self-similar forms which provide a baseline for comparison with real
growth, and it also provides a vehicle for adapting such models to more
realistic simulations of urban growth and form.

7.9 Theoretical Simulations: Il. Dynamics

As already indicated, we will not examine the temporal dynamics in the
DLA model in complete detail for we are unlikely to have substantial histor-
ies of urban growth on which to base our comparisons. But we are able to
use the model dynamics to explore the extent to which the cluster is com-
plete at any stage of its development. This issue has already been broached
in selecting distance thresholds for the estimation of fractal dimensions as
reported above. Thus there are two aspects of the growth process which
we will focus upon: first the question of spatial development with respect
to the form of the cluster, and second, measurement of the statistical proper-
ties of the cluster at different time periods. We will deal with these in turn.

We have arbitrarily divided the growth process into 10 (= T,) time periods
and have allocated N/T, = 1000 particles to each time period. In short, we
will associate the first 1000 particles with f = 1, the second thousand with
t = 2 and so on. With respect to the temporal accounts presented earlier,
for each time period ¢

Ry,

n(t) = >, n(r, ) = 1000 (7.50)

r=1
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and

Tc Ry, T,

N=> > n(r, t) =, n(t) = 10,000. (7.51)

=1 r=1 =1

The location of each of the N particles on the lattice with respect to each
time period t in which the location takes place, is shown in Figure 7.13.
This is a dramatic example of the model’s growth dynamics which indicates
quite clearly how the ultimate form of the cluster is established. The first
and perhaps second time periods determine the basic skeleton of the form
with subsequent evolution largely representing the addition of particles to
the already established dendrites. Growth takes place mainly on the cluster
tips. We have computed the correlation (%) between the location of particles
represented in terms of radial distance from the seed, and the time of devel-
opment: this value is 0.79 for a linear comparison and it rises to 0.90 if a
non-linear relationship between time and space is postulated. These are
very high values giving a clear indication that the dendritic structure is
extremely effective in screening undeveloped areas from further develop-
ment. Figure 7.13 also presents a classic example of the fact that the overall
form of the cluster cannot easily be inferred from its parts. Finally, specu-
lation that the underlying lattice on which the cluster is based introduces
anisotropy which biases the form to a diamond shape (Meakin, 1986c), is
seen clearly in the growth of the cluster in later time periods.

The wave-like spread of the cluster is clearly observed in Figure 7.13, but
the high correlation between space and time must be qualified in that some
particles are still locating at short distances from the seed as late as the
final time period. For example in the fifth time period, particles are locating
in the 11th distance band from the center while in the last (10th) time per-
iod, particles are locating as close in as the 18th distance band when over
90% of the cluster has been developed. It is these effects which make it
essential to consider a fairly tight distance threshold over which to measure
the cluster’s properties, as was used in the previous section.

It is also possible to demonstrate the wave-like growth of the system in
a manner akin to the cumulative and individual growth of population given
by N(R) and n(R) respectively. In Figure 7.14, we have plotted the cumulat-
ive total n(R, t) for increasing R in terms of each 10 time periods. This is
essentially the growth pictured in Figure 7.13 collapsed to one-dimensional
form. The individual profiles n(r, t) are also plotted and these show the
overlapping nature of the waves which occur when all the particles in Fig-
ure 7.13 are collapsed to form Figure 7.8. Figure 7.14 also shows the cumu-
lative total #(R, T) over R for cumulative time T =1, 2, .. .. Note that the
graph of n(R, T,) is that of N(R) shown in Figure 7.9. The composition of
the aggregate of individual change n(R), given as n(r, T) where T = 1, 2,
... is also shown revealing how wave upon wave of growth builds up the
overall cluster.

We can estimate the stability of the cluster through time by computing
the fractal dimension associated with n(R, f) and n(R, T) in Figure 7.14,
using the graphs of n(r, f) and n(R, T) to indicate appropriate distance
thresholds over which the regressions can be run. Both these variables n(R,
t) and n(R, T) should be proportional to RP if the cluster is fractal in its
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Figure 7.13. Spatial dynamics of the DLA simulation.

parts. Appropriate distance thresholds have been set by inspecting changes
in the profiles of n(R, t) and n(R, T) in Figure 7.14. The fractal dimensions
associated with these cumulative populations are shown in Figure 7.15. For
n(R, t), the fractal dimensions are fairly volatile ranging from 1.351 to 1.966
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Figure 7.15. Time-dependent fractal dimensions and r? statistics for the
evolving DLA cluster.

with 72 values ranging from 0.950 to 0.999. When these same regressions
are carried out on the cumulative population which is also accumulating
over time periods n(R, T), the dimensions estimated are much more charac-
teristic of the dimensions eiven in Tables 7.3 and 7.4. These dimensions
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vary from 1.600 to 1.664 with the dimension falling slightly in later time
periods. The r? values are very high, only varying from 0.997 to 0.999.

What is important for analysis is the great variation in fractal dimension
for the time-period-specific accumulation. Whereas the first time period
development shown in Figure 7.13 looks fractal with D = 1.664, later ones
do not. Remarkably though, once put together to form the whole cluster
as shown in Figure 7.8, these patterns appear fractal over many scales: an
intriguing demonstration that the whole is greater than the sum of the parts,
that overall pattern emerges from ordered partitions of this system which
display no such form. This type of analysis is of considerable significance
for any adaptation of the model which might attempt to incorporate some
reversibility. The early development of the cluster appears to have an enor-
mous influence on the ultimate form, and it is this early development which
would be first subject to further change. If these earlier parts of the cluster
were to change, the whole cluster might suddenly become non-fractal in
form. Indeed, this type of experiment is worth attempting without thinking
of any reversible DLA process so that the dependence of the overall cluster
on its parts can be explored more thoroughly.

7.10 An Empirical Test: The Urban Growth of

Taunton

In developing DLA and related models of urban systems, it is first essential
to see how close the baseline model is to reality. Comparisons with the
various examples displayed in the third section of this chapter have been
in mind throughout the development of the model and as Table 7.1 clearly
shows, there is a strong tendency for the observed fractal dimensions of all
our examples, hence perhaps all cities, to lie between 1.5 and 1.9 with a
mean around the value of the theoretical model of DLA. However, the
model in its current form does not account for any specific constraints on
its development, other than those posed by the geometry of the dendrites
which screen areas from further growth. Accordingly, to progress the
empirical analysis quite carefully, we have selected an urban area whose
development has not been strongly affected by its underlying geomorphol-
ogy or by large-scale man-made constraints: the town of Taunton in Somer-
set, South West England (population = 49,000 in 1981) meets these criteria
quite well.

The urban form was digitized on a 50 m grid imposed on the 1:10,000
scale Ordnance Survey maps which were last revised in 1981. This scale
was not fine enough to pick up individual locations, but it was sufficient
as a first attempt in that it involved making hard decisions about the
exclusions of small areas of open space, and of course, non-population-
related land uses. It is clear, however, that the underlying form of the popu-
lation distribution in detailed spatial terms is still largely unknown,
although detailed scrutiny of the 1:10,000 scale does reveal considerably
greater variety in geometry than has been picked up in the measurements
illustrated here.
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The digitized map of urban Taunton is shown in Figure 7.16. Although
this does not reveal clear dendritic structure, this is as much due to the
scale of digitization as to the fact that no dendritic structure might exist.
There are 3179 developed cells contained within a rectangular grid of
110 x 118 cells. These cells were then located on a square 150 x 150 lattice
with the center positioned on the ruined castle, the first known center of
settlement. The physical characteristics of the town have been given pre-
viously in Table 7.2 where direct comparisons can be made with the DLA
simulation. The density of cells or lattice points is much higher than the
DLA simulation: nearly 26% of all points in the total effective area are occu-
pied in contrast to only 5% in the DLA simulation. However, it is remark-
able that 85% of the 3179 cell points are on the boundary, only 15% being
classed as interior points. The index of tortuosity is 10.100 in comparison
with 12.729 for the DLA simulation, but there are nearly twice as many
nearest neighbors for each occupied point in Taunton in comparison with
the DLA example (4.342 compared with 2.394). One fascinating similarity
involves the mean radius R which is 52% of the maximum radius in Taun-
ton, 50% in the DLA, while the ratio of the standard deviation to this mean
is 0.225 in both cases. Although Taunton is more compact than the DLA
cluster, several of its basic dimensions are comparable as Table 7.2 shows.

Measurement of the four relationships given in equations (7.23) to (7.26)
proceeded in the same way for Taunton as in the DLA simulation. The
measures N(R), n(R), p(R) and Q(R) were computed and graphed over 50
distance bands as shown in Figure 7.17. Figure 7.18 illustrates their logarith-
mic transformation and a comparison of the equivalent Figures 7.9 and 7.10
in the DLA simulation reveals a strong similarity. The major difference is
the clear discontinuity in these relations within short distances of the center

TAUNTON
URBAN
GROWTH
Digitised From

1:18808 05 Map
Sheets 5T 2¢

SYSTEM HISTORY
NOT AVAILABLE

All 3179 Cells
fis Coloured Below

Figure 7.16. Urban development in Taunton at 1981.
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Figure 7.17. Absolute one-point relationships for Taunton.

of the town, which is strong evidence of reversibility in that it is consistent
with the crater effect observed in population profiles around the Central
Business District in many western cities. This is clearly seen in the density
variables p(R) and Q(R) and their logarithmic transformation in Figures 7.17
and 7.18.

In estimating the parameters of equations (7.49) using the Taunton data,
the need to restrict the distance range by defining cut-off points is also
clear from these figures. We have defined four ranges beginning with all
50 distance bands, restricting these to the first 34, then excluding the first
six bands and finally the first eight. The B parameters and fractal dimen-
sions are given in Table 7.5. There is considerably more volatility in these
estimates than in the case of DLA, with probably the best results reflected
in the narrower ranges 6-34 and 8-34. Fractal dimensions vary between
1.573 and 1.716 for the 6-34 range and between 1.484 and 1.515 for the
8-34 range. Standard errors and 7? statistics in Table 7.5 are also more vari-
able than for the DLA model but there is some evidence here that the
dimension D is a little lower than for the DLA simulation, notwithstanding
the fact that the town is more compact.

Measurement of the two-point variables also proceeded in the same man-
ner as that reported earlier. The graphs of N(R), 7i(R), p(R) and Q(R) against
distance shown as absolutes and logarithmic transformations in Figures
7.19 and 7.20 are again very similar to those for the DLA simulation in



Urban Growth and Form 269

Inn (R)
5_

3

24

InQ(R)

04 ©

«1

Figure 7.18. Logarithmic one-point relationships for Taunton.

-0.5+

In N (R)

il

5-

I
I
|
I
f
|
|

-

InR

T
4

1
5

Table 7.5. One-point estimates of the scaling equations for Taunton

Distance bands D=B| D=I+ﬂg D=2+Bg D=2+B4
1-50 1.766 1.309 1.766 1.254
0.032 0.121 0.032 0.118
0.984 0.104 0.522 0.446
1-34 1.893 1.787 1.893 1.727
0.034 0.051 0.034 0.047
0.990 0.882 0.217 0.523
6-34 1.716 1.573 1.716 1.536
0.022 0.057 0.022 0.056
0.996 0.784 0.861 0.703
8-34 1.647 1.515 1.647 1.484
0.013 0.069 0.013 0.069
0.998 0.680 0.967 0.678

Figures 7.11 and 7.12. These graphs are smoother than the one-point meas-
ures and they do not show any crater effect at small distances within the
density profiles. In some respects, the distance thresholds are easier to
define than for the one-point measures. We begin with all 125 distances,
reduce these to the first 43, cut out the first five values, and finally work
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Figure 7.19. Absolute two-point relationships for Taunton.

with the range 6-35. The B parameters and fractal dimensions are shown
in Table 7.6. In contrast to Table 7.5, the fractal dimensions increase in value
as the ranges are restricted, the best values being those in the 6-35 range
where D varies between 1.430 and 1.638. The standard errors are better
than those for the one-point averages as are the * statistics shown in Table
7.6. In fact, the values in the ranges 1-43 and 6—43 are not radically different
from those in the 6-35 range, and as in the one-point analysis, the fractal
dimensions would appear to be lower than those for the DLA simulation.

What is clear from this analysis is that urban density in Taunton is associ-
ated with a more compact urban form than that produced by DLA. Growth
in Taunton is structured around four or five main tentacles emanating from
the center which is fairly similar to the DLA simulation. But the fingers of
growth are much wider in Taunton, and it is not possible to say anything
about self-similarity in this example because of the level at which urban
growth was digitized. Nevertheless this analysis is suggestive and encour-
aging enough to prompt us to search further and to develop finer measure-
ment techniques for detecting the geometry of urban form.
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Figure 7.20. Logarithmic two-point relationships for Taunton.

Table 7.6. Two-point estimates of the scaling equations for Taunton

Distance bands D=8, D=1+B, D=2+pB; D=2+B,
1-125 1.284 0.017 1.353 0.021
0.022 0.181 0.025 0.179
0.964 0.187 0.843 0.494
1-43 1.539 1.584 1.683 1.584
0.005 0.015 0.007 0.015
1.000 0.972 0.981 0.947
6-43 1.588 1.525 1.616 1.526
0.005 0.022 0.006 0.022
1.000 0.941 0.989 0.929
6-35 1.574 1.570 1.638 1.571
0.004 0.025 0.005 0.025

1.000 0.948 0.993 0.912
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7.11 Extending the Growth Model

We could have chosen other particle simulation models which give more
compact clusters than the DLA model. There are a number of variants
which are being actively explored, based not only upon particle-cluster
aggregation, but cluster—cluster aggregation, ballistic aggregation, perco-
lation and so on. In fact, there are different ways of formulating the DLA
model in terms of probability fields which involve rather different methods
of simulation. Nittman and Stanley (1986), for example, develop models
governed by parameters which explicitly control the compactness of the
resulting form in which dendritic forms can be simulated as particular
cases. In fact, in the next chapter, we will generalize the DLA model to deal
explicitly with the relation between fractal dimension and compactness,
adopting Niemeyer, Pietronero and Wiesmann’'s (1984) dielectric break-
down model (DBM) which will enable us to generate cities of many differ-
ent shapes and degrees of compactness.

There are several extensions to our baseline model which have already
been developed (Jullien and Botet, 1987). Lowering the sticking prob-
abilities can increase the compactness, while constraints on the direction of
the random walk have a strong influence on the resulting form. Many of
these forms are not fractal, but there is increasing doubt that the Witten—
Sander DLA model is fractal over as many orders of scale as has been
assumed, and recently large-scale off-lattice simulations suggest the exist-
ence of somewhat different forms (Meakin, 1986¢). In any case, the concept
of fractal dimension itself should not be interpreted too narrowly. Strictly
speaking, this dimension only exists as a mathematical limit (Feder, 1988),
and its real importance is in the identification of appropriate length scales
and self-similarities which provide useful but contingent characterizations
dependent upon context.

A related use of the DLA model as the baseline for urban simulation
involves the focus upon urban form. The geometry of urban form has
largely remained separate from empirical and theoretical models of urban
structure as we anticipated in Chapter 1. In the case of discrete urban mod-
els, form is represented as areas defined by points or centroids, while in
urban density theory, form is largely assumed away in assumptions con-
cerning monocentricity. Consequently in measuring urban densities, there
has been little thought given to the underlying geometry of urban structure.
Our focus on fractal models changes this substantially. Very hard questions
about the space which individuals occupy have to be resolved for inappro-
priate definitions of density will hinder the development of any models in
which growth processes and geometrical form are inextricably linked. In
Chapter 9, we will look at the underlying patterns of urban growth and
extend both the empirical observations and theoretical models of this and
the next chapter to mainstream urban density theory.

The DLA model is one of the simplest formulations of irreversible cluster
growth. We know that the assumption of irreversibility (that is, once par-
ticles stick, they never move) is incorrect with respect to urban structure.
Densities of large cities increase over time, whereas growth by DLA leads
to lower average densities as the aggregate grows. The difference is largely
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accountable in terms of reversibility, as seen in the fall in central city den-
sities and the flattening of density gradients over time (Bussiere, 1972a;
Parr, 1985a). There is little work as yet on DLA models which incorporate
reversibility, but extending such models is not difficult in principle, given
that a complete history of particle aggregation is always available. The real
issue is to extend such models in ways which appear close to what we know
about urban growth and decline without losing the underlying simplicity in
their growth processes and the resulting geometry. To this end, we will
now extend our DLA model to fully-fledged computer simulations in which
we can fine-tune growing clusters to mimic the characteristics of ‘real cities’.



8

Generating and Growing the
Fractal City

Mandelbrot has attracted the attention of scientists on the ubiquity of fractal shapes
among natural objects. This was an important and fruitful contribution. What is
still missing in general is an understanding of how fractal shapes arise. (Ruelle,
1991, p. 178.)

8.1 Simulating Growth

Fractals have caught our imagination because the geometric patterns that
they weave seem superficially simple, but on further scrutiny reveal infinite
complexity through their self-similarity. Our fascination with them thus
revolves around the mystery of explaining the myriad of processes which
give rise to such patterns, and as David Ruelle (1991) suggests above, our
concern for their geometry is only just giving way to a serious study of the
dynamics of this pattern creation. Most of our knowledge of fractals so far
is based upon methods for describing their geometry in the manner we
began to illustrate in Chapter 2, and as yet, our knowledge of the way
fractal structures emerge and evolve — their dynamics — is rudimentary. In
this book, our use of fractal geometry in modeling city systems, and the
limitations and potential which it displays is little different from many
other domains in which this geometry is being developed. However, the
DLA model which we developed in Chapter 7 and its generalization which
we will seek in this chapter probably still represents the most promising
approach to fractal dynamics (Orbach, 1986).

The ideal approach to a fractal dynamics of cities would be based on
detailed histories of the development process in which the location of each
behaving unit and its characteristics are recorded in time and space. As we
noted in the last chapter, such histories are rarely available, certainly not
from secondary data. The best we can hope for without engaging in massive
primary survey, are time-series assembled from isolated observations of the
system development at cross-sections in time, ideally on a regular time scale
but unlikely at intervals finer than five years. In short, all we have are
snapshots of development through time from which we can only infer the
system’s underlying dynamic. The pictures of London and Berlin, for exam-
ple in Figures 7.3 and 7.4, provide the most detailed dynamics we have
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available in the empirical work reported in this book. Thus for the most
part, we are forced back to grounding and validating our models of fractal
processes in terms of the ultimate development of the system at a single
point in time; this was how we compared Taunton against the DLA model
and how we will compare the town of Cardiff with the dielectric break-
down model (DBM) which is the subject of this chapter.

Yet despite these limitations posed by data, we can turn our attention
away from comparisons of ultimate outcomes from static models of urban
development patterns, to more detailed simulations of the growth process.
As we illustrated in Chapter 7, the DLA model provides a rich dynamics
with many similarities to the way urban development takes place. Indeed,
one of the themes implicit in our notion of the fractal city is that the models
we are proposing are not necessarily immediately applicable to real cities
per se but enable us to work toward a general theory of cities. As such,
fractal geometry changes the way we think about and observe the develop-
ment of cities. There are, of course, many ways in which we might fine-
tune our fractal models to real examples and we will demonstrate some of
these in this chapter. But unlike more mainstream simulation models useful
in urban analysis and planning, our approach separates models from their
applications far more strictly than the norm. The example which we use
here — based on Cardiff — simply provides the geometric container or the
physical space within which we are able to grow a fractal cluster using
DLA or DBM. In this sense then, our applications will emphasize the way
in which the real geometry of the system interacts with a standard fractal
dynamics to provide a simulation which best mirrors the reality.

In the more mainstream modeling of city systems, there is much less
emphasis on the geometry of the system and how this molds and constrains
development, and thus more concern for fine-tuning the dynamics of the
simulation to the particular reality. Of course it is possible to fine-tune frac-
tal models in this way, and in related work, we have explored how this
might be done by altering the way particles aggregate and diffuse in DLA
(Fotheringham, Batty and Longley, 1989). But here our focus will be upon
showing how realistic urban systems can be simulated by growing ‘pure’
fractal clusters, but within geometrically ‘impure’ physical systems where
the constraints and local conditions of the geometry are specified exogen-
ously. It is these exogenous factors which we would not expect a fractal
model to be able to replicate. An example is in order. If a fractal cluster
growing in an unrestricted space according to a DLA interpretation of
urban dynamics were to meet some physical barrier such as a mountain
range which would distort its growth, ways of breaching the barrier might
be necessary. Such breaches would clearly have to be input from outside
the model. Although the model might be able to simulate the build-up of
pressure against such a barrier which in turn might imply a need for some
decision to breach it, the ultimate decision would have to be made outside
the model and input as data to the process. It might be possible to link the
model to another submodel of such decision-making, for example in the
case of the mountain, a model which would predict what roads, bridges,
tunnels and so on might be built. But these factors are outside the remit of
the models we are working with here, and thus effective simulation of
urban systems using fractal dynamics can only come through a judicious
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manipulation of fractal growth processes with the geometry of the real sys-
tem under study.

The model we developed in the last chapter was able to generate fractal
structures whose self-similarity was dendritic or tree-like (Feder, 1988).
These structures are far-from-equilibrium and, like cities, display a high
degree of order. Such systems are the result of irreversible growth which
keeps the structure intact; growth does not turn to decline, and thus the
dynamics of development remain simple. As we have noted, such irreversi-
bility is not the case for urban development, but the existence of models
which link growth to form in such a simple way, yet generate richly
ordered structures, is attractive as an analogy for city growth. Such parsi-
mony provides a useful benchmark or baseline model which accounts for
a substantial amount of all development, whilst enabling us to relax its
assumptions slowly, one by one, in adding more realistic detail.

The model we will explore here generates a variety of urban forms of
the dendritic type whose actual structures range from the linear to the con-
centric. Their units of development or ‘particles’ as we will continue to refer
to them (Jullien and Botet, 1987), locate around a core or seed site such as
the CBD. This DLA model which generates ramified dendritic structures
around the seed site, is based on a simple process of diffusion which is
limited by contact with the growing cluster of particles. It mirrors how a
city might grow around a CBD with particles diffusing from a distant
source which controls the amount of growth the city could attract, eventu-
ally reaching the growing city and sticking irreversibly once contact had
been made. Its fractal dynamic is based on diffusion by random walk. Walk-
ers are released one by one, at a far distance from the cluster, and then
wander randomly on a lattice, one lattice step at a time, eventually walking
away from the system and being ‘killed” or towards the seed site, thus
adding to the growing cluster. The emergence of a tree-like structure is a
result of the fact that the particular places where the particles stick to the
cluster are randomly formed. As branches begin to grow, these reinforce
the structure. It is clear that the dendrite which is formed is the result of
noise in the system, for, if the process of working towards the cluster was
not random, an amorphous mass with little order would form. Thus it is
noise or randomness which causes structure of the most articulate and
ordered kind, a surprising conclusion perhaps, but one which is also emerg-
ing in the study of evolution and adaptation (Allen, 1982; Levy, 1992;
Lewin, 1992; Waldrop, 1992).

The structure generated is fractal in the following sense: the mass of the
dendrite created is less than the mass of the space that it occupies. Imagine
a circular space in which the cluster is grown around the center of the
circle. The dendrite occupies ‘more’ space than the line across the circle (its
diameter say) but ‘less’ space than the entire circle itself. The line has
dimension E =1, the circle E = 2, and it is intuitively attractive to think of
the dendrite as having a fractal dimension D between 1 and 2. In this chap-
ter we will reformulate the model as a diffusion process in a potential field,
using the logic of the dielectric breakdown model (DBM). This is done to
show how the model is able to generate a continuum of forms by systematic
distortion of the potential field. The fractal case is the ‘pure’ case where
there is no distortion of the field and where we refer to this as the ‘baseline’
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model. We will introduce a parameter to control the distortion and show
how forms can be generated which are reminiscent of ideal linear cities
with D (and E) = 1 to radial-concentric cities with D (and E) = 2, the forms
in-between embodying a continuum of city shapes with fractional dimen-
sion. Moreover, it is absolutely essential to formulate and solve this DLA
model mathematically if an efficient means for generating these forms is to
be developed.

We will first explore the relationship between DLA and DBM (which we
will call the continuum model) and then show how we can solve the model.
We will show how the fractal dimension can be measured with respect to
the distributions of particles and their densities, introducing conventional
but slow, then approximate but fast methods of estimation. A typical sol-
ution of the model based on a 300 x 300 lattice is presented in terms of its
spatial properties and its fractal dimensions are estimated using the pro-
cedures outlined in Chapter 7. As the model is based on random site selec-
tion, it is necessary to see how its forms vary with respect to this ran-
domness, and the stability of its form and dimension is then evaluated over
several runs of the model, showing how robust the procedures are. A circu-
lar space has been assumed, but in comparison with real city systems, such
circularity is unrealistic. Therefore the effect of ‘taking out’ larger and larger
sectors of the circle, and the resultant model forms, are presented, demon-
strating how both dimension and form are affected. We are then in a pos-
ition to see how a variety of such forms can be generated by varying the
control parameter on the potential field of the model, thus illustrating how
a continuum can be simulated. Finally, we will show how the model might
be used to mimic reality using data pertaining to urban development in
the medium-sized town of Cardiff.

8.2 Diffusion-Limited Aggregation and Dielectric
Breakdown

In diffusion-limited aggregation, a source of diffusion is assumed at a dis-
tance far enough from the seed to have no effect upon the isotropy of the
plane around the growing cluster. The source is modeled on a distant circle
where particles are released one at a time, to begin a random walk on a
lattice, usually square with unit spacing, progressing in any of the four
adjacent directions on the grid. If the walker goes outside another circle
defining the ‘sphere of influence’ of the cluster, its walk is terminated and
another walker is released from the source. If the walker remains on the
lattice, it will eventually touch a lattice point adjacent to the cluster where
it sticks irreversibly. Another walker is then released. Because the sticking
point is essentially random, initial perturbations from a compact cluster are
exaggerated and branches form. Walkers are more likely to reach the tips
of these branches than the crevasses in between, the tips effectively screen-
ing the crevasses from potential growth. A useful explanation of this pro-
cess is given by Sander (1987).



278 Fractal Cities

As we illustrated in Chapter 7, the emerging dendritic cluster does not
fill the space, but it is not as sparse as a line of particles running across the
space. In short, the number of particles, N(R), at a distance R from the seed
scales according to a fractional power law, N(R) = R”, where D is the fractal
dimension and 1 < D < 2. Witten and Sander (1983) argue that D =
1.70 £ 0.02 and this has been confirmed by many other simulations and real
experiments since then (Jullien and Botet, 1987). It is argued that D is a
universal scaling constant for such structures, although as we noted in the
last chapter, there are other theorists such as Muthukumar (1983) who
argues that D = (E? + 1)/(E + 1), where E is the dimension of the space:
when E = 2, D = 1.66. No way has yet been found to predict D theoretically.
In the previous chapter, we showed that D was nearer 1.66 than 1.70, but
there is recent speculation and some evidence that D depends on the size
of the lattice and the number of particles constituting the cluster as well as
the methods used to estimate this parameter (Meakin and Tolman, 1989).
Meakin (1986b) who has produced extensive simulations of DLA also
argues that the geometry of the underlying lattice has an effect on the shape
of the growing cluster (Meakin, 1986c).

Although the usual model of DLA is based on algorithms which simulate
the random walk, the original statement of the model by Witten and Sander
(1983) was presented in more formal terms as follows. On a square lattice
whose coordinates are given as (x, y), the probability of a walker visiting
point (x, y) at time t, given by u(x, y, t) is

u, y, )=tux+1,yt-1)+ux-1,yt-1) _
+ulx,y+ 1L t=1)+ulxy-11-1)]. (8.1)
Rearranging equation (8.1), we get
[u(x+1,y,t=1)-2ulx,y, ) +ulx-1,y, t-1)]
+[ux,y+1,t=1)=2u(x,y, t) +ulx,y-1,t-1)] =0. (8.2)

Equation (8.2) is a discrete approximation to the continuum limit of the
Laplace equation

2 2
aML%0=&ML%U+3ML%ﬂ=Q (8.3)
at ax? ay?

which can be more generally stated as

du(x, y, t)
at

where g is the diffusion constant. Note that we can assume that equations
(8.3) or (8.4) are equal to zero (or a constant) because the source of diffusion
is far away, the walk of each particle is slow, and the emission of particles
is uniform. It is also clear that the growth velocity v(x, y, t) of any site is

v(x, y, t) =Vu(x, y, t), (8.5)

and that growth is subject to the following boundary conditions. On the
interface between the edge of the cluster and the lattice, that is, for those
particles forming the boundary of the cluster, there is zero probability of

=pViulx, y, t), (8.4)
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reaching these sites, u(x, y, f) = 0. This simply rules out the already
developed cluster from reoccupation. At the distant source, the probability
of reach is 1, that is u(x, y, t) = 1, for this is the source of the walkers. The
model can then be solved from equation (8.4) subject to these two boundary
conditions. Further details are given in the review paper by Witten (1986).

The DLA model provides a remarkable analog for a range of physical
diffusion problems such as the diffusion of viscous fluids and dielectric
breakdown, and there is very clear evidence that the model is applicable
to these real physical processes (Ball, 1986). For viscous fluids, the applica-
bility of DLA was first noted by Paterson (1984) for a process in which a
fluid with low viscosity replaces one with high viscosity through per-
meation. Here u(x, y, t) is the velocity potential, the equation of fluid flow
v(x, y, t) embodies Darcy’s law, and the Laplace equation is the incompress-
ibility condition. A variety of such simulations are noted in the paper by
Nittmann, Daccord and Stanley (1985). However, the most useful model
for generating a continuum of forms is the dielectric breakdown model
(DBM) first presented by Niemeyer, Pietronero and Wiesmann (1984) which
we refer to here as the continuum model.

In this model, the probability field u(x, y, f) of the DLA model is now a
potential electric field, &(x, y, t). The central seed site is the point of dis-
charge in the field; its potential ¢(x, v, t) =0, and the breakdown occurs in
the direction of the highest potential in the field, ¢(x, y, t) = 1, which is the
uniform attractor at a distance far from the source. The model thus simu-
lates the breakdown of the field and produces dendritic structures charac-
teristic of, for example, lightning amongst other forms. The probability that
any site adjacent to the discharge pattern created so far will form the next
point of discharge, is analogous to the flow modeled by equation (8.5),
that is

ab(x, y, t) ad(x, y, b)
+
ox ay

ab(x, y, 1) ddb(x, y, t)
2( ax T oy )

Py, t) = (8.6)

where the summation is over all candidate sites adjacent to the pattern of
discharge. The partial derivatives in equation (8.6) reduce to ¢(x, y, t) for
all the candidate sites, because the potential at the interface is zero. This is
the boundary condition equivalent to that on the edge of the cluster gener-
ated by the DLA model.

The DBM model is thus solved from Laplace’s equation as

V2(x, y, 1) =0, (8.7)

subject to the boundary conditions ¢(x, y, t) = 0 at the interface between
the discharge and the field, and &(x, y, t) = 1 for those potential points
which are at distance r > R,, where r = [(x — x.)* + (y — y)*]', and R, is a
distance threshold. x. and y, represent the coordinates of the central point
of discharge. This model is formally equivalent to the DLA model sketched
previously. It leads to fractal structures which are simply-connected den-
drites which in turn form the patterns of discharge. Moreover, the Laplace
equation in equation (8.7) ensures that the field is non-local and the
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boundary condition at the edge of the cluster or discharge ensures that this
field continually adapts to the increasing discharge.

The most innovative feature of DBM, however, relates to the way in
which the field, ¢(x, y, t), can be systematically distorted. Niemeyer, Pie-
tronero and Wiesmann (1984) show that different forms of discharge can
be predicted if the probability of discharge in equation (8.6) is scaled by
means of a parameter m. We will define the potential as ¢,,, suppressing
time ¢. The probability of growth at the interface, p.,, is now given as

r

2

xyeC
where the summation is over all those sites (x, y) which are part of C, the
interface to the pattern of discharge at time f. Before we show how the
form is affected by the parameter v, we will summarize the classic case
where m = 1. In Figure 8.1, the lattice on which the discharge takes place
is illustrated with the solid dots and bonds showing the pattern of discharge
so far, and the open dots and broken bonds showing the sites adjacent to
the discharge for which the probabilities of selection are computed as in
equation (8.8). Niemeyer, Pietronero and Wiesmann (1984) compute the
fractal dimension of DBM as D = 1.75 £0.02.

. (8.8)

Field radius Flf

from central
seed site %

Candidate sites

Figure 8.1. Cluster growth on a square lattice.
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8.3 Analogies and Solutions

Comparisons with existing diffusion models of urban location which have
developed as a part of social physics are instructive. Diffusion usually
occurs from points of higher to lower potential, the highest point being the
central site or CBD in the case of a city. Population potential as suggested
by Stewart and Warntz (1958) is sometimes used to define a field analogous
to gravitational potential, and diffusion thus takes place according to geo-
graphical distance decay, sometimes combined with a local or neighbor-
hood effect (Hagerstrand, 1965). The DLA model is quite different. The
highest potential is farthest away from the central site, and once a site has
been occupied, its potential for reoccupation is zero. In fact, the potential
measures the amount of space available at a distance from the central seed
site and this captures the notion that it is the environment around a city
which is the source of growth, not the city itself.

However, the city grows by finding areas of highest potential adjacent
to existing development, and this constrains the development to remain as
a connected aggregate. The DLA model is a less useful analog than DBM
because the process of random walking is less realistic than the discharge
process with respect to urban form. As Nittmann, Daccord and Stanley
(1986) also state: “DLA has the purely phenomenological drawback that
the cluster growth occurs by aggregation, whereas in RVF [radial viscous
fingering], growth originates from the center of the structure”. It is useful
to think of the potential function ¢(x, y, t) as reflecting available space in
the immediate vicinity of the site (x, y) but also influenced by the growing
cluster. In this sense, it is clear that the branch tips of the cluster are ‘closest’
to the points of highest potential, and it is easy to see why growth would
occur there, thus reinforcing the dendritic nature of the structure. Once sites
are occupied they have no further space potential, and this ensures the
irreversibility of the process. Moreover, the basic constraint that the cluster
must remain connected enables the process to be one of balancing the
achievement of maximum space potential against the need to generate the
scale economies associated with a connected spatial cluster.

The concepts of flow and potential appear extensively in social physics,
but the restrictive nature of the Laplace equation governing the smoothness
of the potential field has not been widely invoked. In fact, Sheppard (1979)
suggests that the general form of Poisson’s equation where V2¢(x, y, f) =
g(x, y, t), is more appropriate, g(x, y, t) representing some local source of
variation at (x, y). Tobler (1981) and Dorigo and Tobler (1983) have used
Poisson’s equation in their models of movement, where g(x, y, f) represents
differences in spatial attraction. In modeling migration, Dorigo and Tobler
minimize V2¢(x, y, #) to derive migration potentials and flows, and it is
possible that a related interaction-flow interpretation might be given to
DLA and DBM. In fact, Niemeyer, Pietronero and Wiesmann (1984) note
that a length scale can be introduced into the simulation if V2¢(x, y, t) is
assumed to be a positive constant over all (x, y). However, it is probably
more useful to think of the Laplace equation as imposing a smoothness
criterion across the field which balances local and global effects. This
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interpretation has also been exploited by Tobler (1979a) in modeling general
geographic fields.

We can now speculate on the continuum of urban forms which might be
generated using DBM through equations (8.7) and (8.8). The fractal case, 7
= 1, can be regarded as the baseline where the spatial potential function
remains undistorted. As n — 0, the sites which might be occupied around
the boundary of the cluster become more evenly distributed, with the impli-
cation that the cluster will grow in a much less branch-like fashion. When
m > 1, structures based on lines of particles across the space will emerge,
and the implication is that the fractal dimension D will tend towards 1. In
other words, ‘linear cities’ will be generated for m > 1, dendrites for n =1,
and circular cities for 0 = m < 1. A continuum of forms will emerge where
the parameter 7 in the range 0 to % maps onto the range of fractal dimen-
sion D from 2 to 1.

There is one last speculation to be made before the discrete form of the
model is discussed. The parameter m which distorts the potential field &,
might be regarded as a measure of ‘planning control’. To produce linear
cities, certain sites have to be given exclusive preference for development
and this can only occur if planning control is absolute and the market for
land is in the hands of a single agent. At the other extreme, where there is
a different type of control, the market might consist of many agents each
bidding for development sites. This is consistent with a city which grows
amorphously. The extremes of the linear and amorphous cities reflect the
parameter values from m — = and m — 0, respectively. The baseline case
where m = 1 thus consists of a few large land agents and many small ones,
thus mirroring the kind of markets that might characterize Western indus-
trialized cities. To go further with this speculation would not be wise, but in
general it fruitful to think of  as embodying a measure of planning control.

The major disadvantage to formulating the model in DBM rather than
DLA terms relates to its solution. For each additional particle which is
added to the cluster, the Laplace equation (8.7) must be solved subject to
the previously given boundary conditions. For a lattice of 500 x 500 points
say, there are up to 250,000 non-linear partial differential equations to be
solved. These can only be solved iteratively and experience suggests it takes
at least ten iterations to effect a solution. Where there is a cluster of 10,000
particles to be grown, this will involve the solution of 25 billion equations.
In terms of computer time the problem is likely to take ten times as long
as its equivalent formulation as a DLA model, thus requiring amounts of
supercomputer time simply not available for these experiments. However,
the model must be solved in DBM terms if the effects of varying the control
parameter m are to be evaluated. Consequently smaller lattices will be used
for growing particle clusters, in contrast to those demonstrated previously
for the DLA model in Chapter 7.

The discrete approximation to Laplace’s equation will now be restated,
with the time subscript t omitted. Then

¢x,y = 1(¢’Jr-o-'l,3,|l + d)x—l,y + ¢"x,y+1 2 ¢x,y-‘l)' (89)

Equation (8.9) can be generated as an approximation based on forward
differences, and, for any iteration of its solution, the difference between the
right-hand and left-hand sides of equation (8.9) is given as
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q)x,y = d)x.y = i‘((t’xﬂ,y + ¢’x—l,y + ¢’x,y+1 + d:’x,y—l)' (810)
The method of solution used to solve equation (8.9) involves identifying
the differences ®, , across the lattice, and relaxing values of ¢, according
to the largest differences adjacent to each point (x, y) (Williams, 1987). In
the simulations to be reported here, once the original potential field ¢,
has been computed at time t = 0, it takes an average of 13 iterations of
equation (8.9) to bring each potential value ¢, to within 0.5% of its aver-
aged neighboring values. Formally, the iteration on equation (8.9) (and
(8.10)) using relaxation methods ceases when

max Puy = 0.005. (8.11)

(x.y) Xy

At each time ¢, once the field ¢(x, y, f) has been computed to the criterion
set in equation (8.11), the probabilities of the candidate sites adjacent to the
cluster are computed from equation (8.8), and one is selected for growth
using a randomly generated number. This changes the boundary condition
on the interface which in turn necessitates that the field ¢(x, y, t) be recom-
puted, and so the process continues until the cluster has been grown to the
required size.

The structures generated by the continuum model do of course follow
the same scaling laws as those used to describe the distribution of particles
in the DLA model regardless of the values of the parameter . The four
scaling relations linking the size characteristics of the cluster to the radial
distance R from the cluster’s center are those which relate N(R), dN(R)/dR,
p(R), and dN(R)/dA(R) (= Q(R)) to R, given previously as equations (7.23),
(7.24), (7.25) and (7.26), in that order. N(R) is the cumulative count of the
particle or population, dN(R)/dR the actual population at R, which as Pie-
tronero, Evertsz and Wiesmann (1986) note, gives the number of branches
or bonds in the discharge pattern or cluster at a given distance, p(R) is the
cumulative density, and dN(R)/ dA(R) is one measure of the actual density
at R. The parameters of these relations are all simple functions of the fractal
dimension D, easily computed through logarithmic regression as in Chap-
ter 7.

The discrete measures used for the dependent variables in each of these
relations are of two forms: either a simple count of the number of particles
and their density with respect to the central seed site, these being known
as one-point measures; or averages of the same counts but taken over all
possible sites in the cluster, these being the two-point measures. The com-
putation of these one-point measures is given in equations (7.27) to (7.33)
and the two-point measures in (7.34) to (7.40), and we will make use of
these equations again in this chapter. The one-point measures for fixed dis-
tance bands R are defined as N(R), AN(R), p(R) and Q(R) and, as in Chapter
7, the two-point measures are notated similarly with bars indicating that
these are averages, that is N(R), AN(R), (R) and Q(R).

The use of two-point averages is standard practice as approximations to
density—density correlation functions (Meakin, 1986b: Witten and Sander,
1983), and both two-point and one-point measures can be used to find the
parameters of the scaling relationships given in equations (7.23) to (7.26).
In logarithmic form, these relations, given in equations (7.49), are repeated
here for convenience as
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log N(R) = oy +B,logR,
log n(R) = o+ B,logR, (7.49)
log p(R) = o5+ B;logR,
log Q(R) = a4+ BslogR.

Note that one-point measures are stated here, and it is assumed that the
distance bands associated with R are equal. Last, the fractal dimensions can
be computed from the slope parameters in equations (7.49) as D =,, D =
1+ B, D=2+B; and D = 2 + By, respectively. Use of the two-point
measures, however, is a problem because of the computer time involved,
and the use of regression analysis is extremely sensitive to the range of
distance bands selected. It is well known that these occupancy and density
functions are highly variable over a short range in the vicinity of the origin,
and there are marked edge effects over the larger scale because of the fact
that the clusters are still developing in a wide area of their periphery.
Regression analysis is able to cope well with these edge effects, but it is
difficult to identify the short-range effects. This suggests the need for both
faster and more robust methods of estimation which we briefly presented
in the last chapter. As these methods are used widely in this chapter, we
will restate them.

As all measurements and simulations take place on a square lattice with
unit spacing, it is expected that N(R) ~ wRP, and A(R) ~ wR2 Therefore the
density in equation (7.25) can be specified as

ME)

p(R) =7 RP-2, (8.12)

For any value of R, it is thus possible to count N(R) and measure A(R) and
to manipulate equation (8.12) to provide an approximation to D which we
will call D(R). Then

D(R) ~ 2 + %. (8.13)

In a real example or typical simulation, we are likely to have a very large
number of values of density associated with distances R, and from the first
distance R = to the boundary of the cluster where R = R,,, we can compute
values of D(R). For example, if we begin at the seed site and measure den-
sity p(R) with increasing distance from this center, we might expect D(R)
to be volatile over the short range in the vicinity of the seed site but to
settle down gradually as the cluster grows outwards. Towards the edge of
the cluster, a change in D(R) may occur, thus revealing that this is still an
area of growth and that the cluster is incomplete.

A plot of D(R) against R will reveal the stability of the dimension, and
we will refer to this somewhat loosely as the ‘signature’ of the fractal clus-
ter. We might expect different fractal forms to exhibit different signatures,
but as yet, we still have to explore this possibility. However, we would
expect D(R,;) to be a biased estimate of D for this pertains to the entire
cluster. A more appropriate value of D for the cluster would be D(R), where
R is the mean distance about the seed site in the cluster, defined as
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R= iy, k=1. (8.14)

&

The seed site or center of the cluster is at k = 1, and R, represents the first
distance for which occupancy around the seed site occurs.

This fast estimation procedure given in equation (8.13) is possible because
the constants of proportionality defining the scaling relations cancel. It is
possible to construct other measures which normalize estimation in this
fashion, and we will note two. First we can normalize equation (7.23) as

ol
NR ~ \Rn) * B
from which Dy(R/R,,) can be estimated as
N(R R
Du(R/Ra) = s 108 (R—) (8.16)

In a similar manner, the same can be done for density in equation (7.25).
Then

PR) _ (&)”"
R " \Re) S
from which D,(R/R,,) can be predicted as
—24 PR R
DR R=ins [p(Rm) log (Rm)]' (B

We will use equations (8.16) to (8.18) below, but to anticipate our con-
clusions, equation (8.13) is the most useful estimation technique found so
far.

8.4 Form and Dimension of the Baseline Model

Our previous simulations with the DLA model used a square lattice of
500 x 500 points and grew clusters of 10,000 particles achieving an average
density of occupation of the lattice of 4%. These simulations each took 10
hours of CPU time on a MicroVax which was dedicated to these runs. To
solve the continuum model at the same level of resolution and cluster size
would take at least 12 days. Although supercomputer facilities were avail-
able, the amount of supercomputer time required was too great, and the
only way to proceed was to work with coarser lattices and smaller clusters.
As an example, we will first show a simulation of the DBM for a 300 x 300
lattice with a cluster size of 4157 particles. This simulation took one day,
21 hours and two minutes CPU time on the MicroVax, and thus in the
more extensive analysis following this section we were forced to reduce
the resolution of the lattice even further to 150 x 150 so that CPU time could
be contained within five hours or so for each simulation run.
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As already reported, the model was solved by iterating equations (8.9)
to (8.11) for each time period and randomly allocating particles to lattice
sites according to the probabilities given in equation (8.8) with m = 1. The
number of particles generated in the examples reported here was not fixed
in advance, for each cluster was grown up to about two thirds of the
maximum radius of the lattice, which for a 300 x 300 lattice with the seed
site fixed at x = y = 150, is R, = 100. In this case, the model generates a
cluster of 4157 particles. As m changes, however, the number of particles
will change because m controls the compactness and density of the cluster.
The other critical issue which affects the simulations involves the location
of the outer boundary defining the highest points of potential. This bound-
ary is fixed at the maximum radius of the lattice, in the case of the 300 x 300
lattice, at Ryax = 150. Thus the cluster is grown two thirds of the way
towards this boundary. In the experiments reported, it would appear that
the cluster is not distorted with R,,,. set at 3 R,, or greater. We have exam-
ined the smoothness of the field as the cluster grows and it seems that the
isotropy of the field outside the cluster is maintained. However, we are
conscious that we are working at the limits of acceptable cluster growth
and this problem can only be resolved by running the model on an
appropriate supercomputer.

The forms produced by this simulation are shown in Figures 8.2 and 8.3.
Figure 8.2 shows the way sites are selected in the cluster with respect to
their bonding to the various occupied lattice points. This clearly reveals the
dendritic structure as in Figure 8.1 and it is obvious that the graph of this
structure is simply connected. Figure 8.3 shows the order or dynamics in
which sites are occupied. Twelve gray scales are used to show this order
with the darkest sites being the earliest to locate, the lightest the latest;
because of difficulties in capturing these images photographically and
reproducing the gray scales, this and other similar figures are impression-

]

Figure 8.2. Dendritic fractal growth as a simply connected graph.
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Figure 8.3. A system history of fractal growth using the continuum model.

istic, but nevertheless this does provide a clear illustration of the history of
the system. Comparison of Figures 8.2 and 8.3 also shows that the dendritic
pattern in Figure 8.2 is blurred by the coloring in Figure 8.3, thus leading
to some cells appearing as though they are surrounded.

The structural characteristics of urban form will be measured using vari-
ous indices of size and density. The total number of lattice points, N is
90,000, that is 300 x 300. The number of points occupied is given as N and
the density N/N, reflects the degree of sparseness of the structure. R
the maximum radius of the lattice, R, the maximum radius of the cluster
(=0.66R,,), and R the mean distance within the cluster have already been
defined. Three other measures describe the compactness of the structure.
First the average density is defined as

_ N
B mR2,
The number of particles on the boundary of the cluster can be counted
directly as Ny, and the ratio of boundary to total occupied points defined as

Ny
¥ = N
The proportion of interior points in the cluster is then 1 — 9. The last meas-

ure of consequence is the average number of nearest neighbors defined as
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where N, is the total number of nearest neighbors for all particles in the
system; each particle has eight possible neighbors according to the eight
compass points around the point in question on the lattice.

Table 8.1 presents these various measures for the 300x300 lattice
example simulated here, and the 150 x 150 lattice model presented in the
next section. These models will be referred to henceforth as the baseline
models. These will act as a basis for comparison when the potential field
is distorted and when areas of the lattice are absent from the spatial system.
This table is largely self-explanatory. However, it is worth noting that the
lattice density N/N; and the average density p decline as the system gets
larger. This is an obvious consequence of the model and is consistent with
the density in equation (7.25) which embodies a negative fractional power
law. In later comparisons where the lattice is of the same size, variations
in these densities will become relevant. The boundary ratio ¥ is slightly
less than 1, despite the fact that Figure 8.2 reveals that all the particles are
on the boundary of the structure. This is simply a consequence of the way
the boundary is represented which is as in Figure 8.3, not Figure 8.2. Lastly,
the average number of nearest neighbors can range from 0 to 8 and this
represents a measure of the compactness of the structure.

The parameters which give rise to different dimensions D are a function
of the four power laws given in equations (7.23) to (7.26). These equations
can be linearized as in equations (7.49) and parameters B;, B2, B; and By
estimated using regression analysis. The fractal dimensions are derived as
D=B,D=1+B, D=2+ pB;and D =2 + B, and these can be computed
for two sets of measures; the one-point (or two-point measures) N(R),
AN(R), p(R) and Q(R) are then used in their respective regressions. We will
begin with the one-point measures, and these are plotted in their logarith-
mic form in Figure 8.4. The edge effect posed by the incompleteness of the
cluster is easily detectable, but identifying the short-range effect is much
more problematic. These graphs are based on dividing the range of distance
up to R,, into 30 distance bands where each band is of equal width R,,/30.

Table 8.1. Characteristics of the baseline model

System Fine resolution Coarse resolution
characteristic baseline baseline
Dimension 300 x 300 150x 150
Lattice points, N; 20,000 22,500
Occupied points, N 4157 1856
N/N, 0.046 0.082
Lattice radius, R...x 150 75

Cluster radius, R, 101.356 49.366
RAAR e 0.676 0.658
Mean distance, R 45.734 27.183
R/R, 0.451 0.544
Average density, p 0.129 0.236
Boundary ratio, & 0.957 0.959
Nearest neighbors, & 4.943 4.862
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Figure 8.4. Logarithmic one-point functions.

These plots in Figure 8.4 are very similar to their respective plots for the
DLA simulation shown in the previous chapter. Table 8.2 presents the
dimensions D computed from each regression estimate, the standard errors
of the regression slope coefficients, and the r* goodness-of-fit statistics. The
first results are poor; these are then reestimated taking out the long-range
effects by restricting the data to the first 13 distance bands. Although the
standard errors and r? statistics improve dramatically in every case, the
variation in dimension from D = 1.376 to D = 1.737 indicates that it is the
method of estimation which is volatile with respect to the functions fitted
and the data used.

The equivalent two-point functions are plotted in Figure 8.5. These are
widely regarded as being better measures to be used in estimation, and the
functions are clearly much smoother, being formed from averages of points
associated with all distinct distances within the lattice. These functions

Table 8.2. One-point estimates for the fine resolution model

Distance bands D=g, D=1+8; D=2+B; D=2+,

1-30 1.317 0.994 1.554 0.994
0.023 0.166 0.038 0.166
0.991 0.000 0.834 0.568

1-13 1.376 1.660 1.737 1.660
0.019 0.031 0.023 0.031
0.998 0.997 0.9216 0917

Note: the first line of results for each distance band gives the fractal dimension, the second
line the standard error, and the third the adjusted coefficient of determination r°. These
definitions are used for all subsequent tables of this type in this chapter.
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Figure 8.5. Llogarithmic two-point functions.

appear similar to those computed in the last chapter for the DLA model.
There are 187 distinct distance bands and, again, the long-range edge effect
is clear. The first regressions shown in Table 8.3 are for all these distance
bands, and the results are poor. Restricting the estimation to the first 55
distances improves the performance dramatically, but the fractal dimen-
sions vary between 1.537 and 1.646, again suggesting that the methods of
estimation are unreliable. It is quite clear that the regression methods are
too sensitive to the functions used, and the data averages and aggregations
made. There is need for a simpler, more robust method of estimation, and
we will use that which we introduced earlier in equations (8.12) to (8.16).
First, equation (8.13) has been plotted for R up to R, the cluster radius,
thus producing a ‘signature’ of the form shown in Figures 8.2 and 8.3. This
in effect is a cumulative computation of the fractal dimension D from the
center to the edge of the cluster, and it is shown in Figure 8.6. It is quite
clear that this signature is extremely volatile in the vicinity of the origin or
center site and that once it settles down, the fractal dimension D is virtually

Table 8.3. Two-point estimates for the fine resolution model

Distance bands D=p, D=1+8, D=2+B; D=2+8,

1-187 1.257 0.005 1.311 0.058
0.019 0.143 0.021 0.134
0.959 0.258 0.853 0.533

1-55 1.537 1.588 1.646 1.588
0.007 0.012 0.003 0.012

0.999 0.977 0.996 0.954
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Figure 8.6. The fractal signature of the fine resolution baseline model.

constant over most of the cluster, beginning to fall as the incomplete area
at the edge of the cluster is approached. From Figure 8.6, it is immediately
clear that a good estimate of D is obtained at the mean distance R.

At R, D(R) = 1.708 in comparison with D(R,,) = 1.556 at the edge of the
cluster. It is also possible to form the average of all the dimensions D(R)
up to R, and this gives D = 1.681, biased towards the value of 1.708, an
approximation to this value prevailing over most of the radius of the clus-
ter. In Figure 8.6, the range of D(R) is from 2.697 to 1.556, where R varies
from 1.414 to 101.356, the cluster edge. By the time R has reached 13.342,
the dimension has fallen to 1.756, indicating that the appropriate dimension
of the cluster is about 1.7. This is close to the universal value of 1.71, and
as we shall see, it is a remarkably robust procedure for determining such
values. Last, we will examine the dimensions produced using equations
(8.16) and (8.18). We can compute signatures based on these equations, but
these appear to give values of D which are too low. For example, Dy(R/R,,)
= 0.829 and a similar value is given for D,(R/R,). In fact, the edge of the
cluster is not a good basis for estimation, and thus in future examples, we
will restrict the estimation to the use of equation (8.13) in plotting the signa-
ture of the form and to R in determining the most appropriate fractal
dimension.

8.5 The Effect of Randomness on Form
and Dimension

Before we begin to demonstrate how the control parameter n can generate
very different forms of structure, we need to investigate two features of
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the simulation which affect its fractal dimension. In this section, we will
explore the effect of randomness on the model, and in the next, we will
investigate how reducing the lattice space available for growth alters the
fractal dimension and constrains urban form. The field equations which
enable the potential ¢,, to be evaluated define the probabilities that the
candidate sites on the boundary of the cluster will receive growth. Whether
or not one of these candidate sites receives a unit of development in the
given time period depends upon the random number generated. In this
sense, then, the resultant cluster, although structured in the large according
to the potential field, develops in the small through random decision-mak-
ing. Each run will thus yield a different form, although it is hoped that
variations in these forms will have little effect on their dimension. It is this
that we will explore in this section. To do so effectively, we require a large
number of runs of the model, say at least 30, and this would require about
two months of computer time were we to use the fine resolution model.
Therefore we will compute a new coarse resolution model based on a
150 % 150 lattice which will henceforth act as our baseline.

The physical characteristics of this model have already been listed in
Table 8.1. The urban form produced will not be shown in this section, but
readers who wish to view this now can find it in Plate 8.1 (see color section).
The structure is quite similar to that in Figures 8.2 and 8.3. Its fractal dimen-
sions have been estimated from both the one-point and two-point measures
whose plots are similar to those shown earlier in Figures 8.4 and 8.5. The
dimensions are listed for the one-point measures in Table 8.4 where the
original 30-band distance data and the reduction to 20 bands to exclude
long-range edge effects are shown. The two-point measures are shown in
Table 8.5, and it is immediately obvious that the results are similar to those
for the fine resolution baseline. In fact, the ranking of dimension values
from the full and part one-point and two-point measures is identical to the
ranking in Tables 8.2 and 8.3, and the final values produced in the part
two-point measures in Table 8.5 are similar in absolute terms to those in
Table 8.3. Similar comments with regard to the volatility of these methods
to those made previously apply.

We have also used the fast method of estimation in which we first plot
the signature of the model based on the graph of D(R) against R using
equation (8.13). This is shown in Figure 8.7, and it is fairly similar to the
signature of the fine resolution model shown in Figure 8.6: the short-range
variation and long-range decline in D(R) are apparent, with D(R) varying

Table 8.4. One-point esfimates for the coarse resolution model

Distance bands D= g, D=1+, D=2 +pB; D=2 +By4

1-30 1.467 1.431 1.704 1.431
0.019 0.107 0.017 0.017
0.995 0.368 0.917 0.503

1-20 1.458 1.718 1.751 1.718
0.027 0.030 0.012 0.030

0.994 0.970 0.960 0.833
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Table 8.5. Two-point estimates for the course resolution model

Distance bands D=8, D=1+B, D=2+B; D=2+8,

1-98 1.311 0.219 1.390 0.219
0.022 0.17¢9 0.025 0.179
0.974 0.165 0.862 0.508

1-34 1.504 1.602 1.644 1.602
0.008 0.014 0.005 0.014
0.999 0.982 0.994 0.960
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Figure 8.7. The fractal signature of the coarse resolution baseline model.

from 2.312 for the first distance R, to 1.631 for R,, = 49.163. D(R) falls to
1.751 by R = 14.765, and the mean R generates a value of D(R) = 1.701,
about the same as that for the fine resolution cluster. D(R,,) = 1.631 and
the average over all D(R) generates 1.698. Last, the values of Dy(R/R,,) =
1.251 and D,(R/R,,) = 1.254. These confirm the comments made on these
methods of estimation for the fine resolution model, and generate values
of D(R) almost identical to those of other researchers (Feder, 1988; Jullien
and Botet, 1987).

Including the model run just reported, we have made a total of 30 runs
of the coarse resolution baseline model, seeding the random number gener-
ator with a random start value on each simulation. All the signatures pro-
duced mirror that in Figure 8.7 with similar volatility in the vicinity of the
seed site and a gradual fall in dimension at the edge of the cluster. We
have computed equation (8.13) for R,, R and the average over D(R) for
each run, and we have also formed the averages of these dimensions with
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respect to all 30 simulations. In Figure 8.8, the frequency graphs of the
dimensions produced are plotted, and it is clear that variation around the
means of these dimensions is extremely narrow. The averages are as fol-
lows: for D(R,,), 1.548 + 0.042; for D(R), 1.701 %+ 0.025; and for D(R) averaged
over the averages, the dimension is 1.679 + 0.023. It is quite clear from Fig-
ures 8.6 and 8.7 that in this work, the most appropriate dimension to choose
is based on the mean R.

These values are also confirmed by other research. In the original state-
ment of the model by Witten and Sander (1983), D = 1.70 +£0.02, and this
was computed by averaging the results of six aggregates. Meakin (1986d)
reports a value of D = 1.695 £ 0.002 over 500 aggregates for the DLA model,
and he also reports that Stanley (1977) has estimated D = 1.715 +0.002 for
1000 runs of a 50,000 particle system. These simulations are all based on the
DLA algorithm, although it is now clear that D is likely to vary according to
the number of the particles and size of the system used (Meakin, 1986¢).
Nevertheless, comparison of Figures 8.6 and 8.7, as well as the frequencies
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Figure 8.8. Frequency distributions of fractal dimension for the coarse
resolution baseline model.
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shown in Figure 8.8 does confirm the reliability of estimating fractal dimen-
sion from information on the mean occupancy, N(R) and density, p(R).

8.6 Physical Constraints on the Simulation

Fractal dimension will clearly change as the control parameter varies from
very small to very large positive values, but this dimension is also affected
by the shape of the ‘container’ or lattice in which growth is initiated. If we
begin with a circular field (on a square lattice) and systematically reduce
its size by taking out larger and larger sectors, the growth of the cluster
will be increasingly constrained or ‘compressed” within the available space.
In the limit, one might envisage that the excluded sector approaches the
circle itself, and all that is left for the cluster to grow on is a line of lattice
points. Thus the dimension of the cluster is likely to be progressively
reduced from 1.7 to 1 in the case of the baseline model. This effect, however,
is not as easily imagined as one might first think because it depends on
the scale of the lattice. Fractals are self-similar across a range of scales, and
although the lattice might be compressed at one scale, if the scale is magni-
fied over many orders, a lattice would be reached which to all intents and
purposes would not be so constrained. Measurement of the fractal dimen-
sion of the baseline model at this scale would then reveal no change from
D = 1.7. This simply shows that, although we argue that fractal dimension
is a measure of self-similarity across many scales, it is still dependent upon
the finest scale available which in this context is the 150 x 150 lattice.

A clear example of the effect of the ‘container’ on fractal dimension is
provided by Nittmann, Daccord and Stanley (1985). These researchers set
up an experiment to force a liquid of low viscosity into one of high viscosity
using a Hele-Shaw cell whose geometry was a rectangle 10 units in length
by three in width. The liquid of low viscosity entered the cell at the midpo-
int on its shorter side and the well-known fingers of liquid then began
to spread through the cell. The estimated fractal dimension of the viscous
fingering was D = 1.40+0.04, and Nittmann, Daccord and Stanley (1985)
clearly show how the DBM style of simulation can generate a similar den-
dritic structure with a fractal dimension of D = 1.41 + 0.05. Other examples
of growing clusters from edges rather than central points in space exist
(Voss, 1984), and there is fairly wide agreement that, if the shape of the
basic lattice is distorted, the fractal dimension will alter. There is some
research by Kondo, Matsushita and Ohnishi (1986) who examine the
relationship between the cluster grown in a wedge-shaped sector of varying
angle 6, and there is some discussion of the types of barrier used in such
systems to absorb or reflect particles. However, these are for the DLA
model. What follows here is a systematic examination of the effects of
reducing the size of the space within which the DBM operates.

We will divide the circular plane into eight equal sectors, and proceed
to apply the coarse resolution baseline model to the following degrees of
arc: 27 (the complete baseline model), 1.75w, 1.57, r, 0.757, 0.57 and 0.257.
We thus move from a complete circular baseline simulation (the one
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Table 8.6. Char

reported in the previous section) to a simulation based on a 45° wedge of
the circle. It is important to note how the potential field is evaluated with
respect to the lattice points which form the edges of these sectors. Equation
(8.9) shows that the potential ¢,, depends upon an average of its four
immediate neighboring potential values. If any of these potential values fall
into the omitted sector, the potential average is then formed by excluding
these values. In other words, the omitted sector is not treated as a boundary
constraint but as a natural boundary to the system, outside of which no
potential exists.

The forms produced by the simulations on these eight systems are shown
in Plate 8.2, and it is immediately clear that the geometry of each system
has a marked compressing effect on the growing clusters. In each of these
clusters, we can measure physical characteristics of size and density as we
have done previously in Table 8.1. Table 8.6 shows quite clearly that, as:
the degree of arc is progressively reduced and larger sectors are excluded,
the lattice and average densities remain roughly the same. These densities
range from 0.057 to 0.089 for N/N; and from 0.165 to 0.248 for p. In all
cases, the boundary ratio remains near 1 and the average number of nearest
neighbors is approximately 4.8. In short, although the forms are con-
strained, there is no evidence to suggest that the basic diffusion process at
work is distorted by changing the space in which the process operates.

In Figure 8.9, we show the signatures’ for each of the eight structures,
and it is quite clear that as the angle of arc 6 decreases, the fractal dimension
D falls, In fact, in the vicinity of the central seed site, over-estimation of
the dimension for the more complete systems changes to under-estimation
as the wedge within which the system is contained decreases in angle. The
dimensions based on D(R,), D(R) and the averages over D(R) are given in
Table 8.7 where it is clear that D falls towards unity as the system is con-
strained. These changes in D have not been plotted here, but will be later
in Figure 8.11. However, Table 8.7 suggests that we might easily find a

acteristics of the physically constrained baseline simulations

System characteristic

System shape based on degrees of Arc

2m 175w 157 1257 = 0757 0.5 0.25«
Lattice dimension Al lattices based on the original 150 x 150 grid
Lattice points, N, 22,500 19,687 16,875 14,062 11,250 8437 5625 2812
Occupied points, N 1856 1433 1108 792 672 639 451 251
N/N, 0.082 0.073 0.066 0.057 0.059 0.076 0.080 0.089
Lattice radius, Riex All Ry =75
Cluster radius, R, 49.366 50.000 50.804 49.396 50.448 50.290 51.400 51.088
R/ Rivox 0.658 0.660 0.677 0.659 0.673 04670 0.685 0.681
Mean distance, R 27.183 24.635 22.559 19.609 22.617 25.331 31.662 33.526
R/R., 0.544 0.493 0.444 0.397 0.448 0.504 0.616 0.656
Average density, p 0.236 0.208 0.183 0.165 0.168 0.213 0.216 0.248
Boundary ratio, 9 0.959 0.959 0.960 0.965 0979 0972 0.969 0.952
Nearest neighbors, & 4862 4.868 4.839 4828 4812 4.789 4.896 4.741
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Figure 8.9. Fractal signatures of the sectorally constrained simulations.

Table 8.7. Fractal dimensions associated with the physically constrained
baseline simulations

Angular variation 6 D(R..) D(R) Average over
all D(R)
2.00w (360°) 1.556 1.708 1.681
1.757 (315°) 1.516 1.707 1.647
0.507 (270°) 1.479 1.677 1.628
1.257 (2259) 1.508 1.637 1.591
1.00m (1807 1.387 1.499 1.483
0.757 (135°) 1.417 1.413 1.355
0.507 (90°) 1.234 1.249 1.164
0.257 (45°) 1.093 0.945 0.974

well-fitting function relating D to 8. This is as we expected, but it also
reveals that fractal dimension depends not only upon process but upon the
geometry of the space within which the process takes place. Thus in
explaining real urban form we must attempt to separate out the effects of
both system geometry and the diffusion process control parameter m on
spatial structure.

8.7 Generating the Continuum of Urban Forms

We are at last in a position to explore how different urban forms can be
generated by varying the control parameter . The effect of n on form has
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already been explained, but we will summarize it briefly for convenience.
In equation (8.8) which determines the probabilities of sites being selected
for growth on the boundary of the cluster, as m increases, sites with the
greatest probability of selection become dominant. As m — 0, sites become
more equiprobable for selection, whereas the baseline case where m = 1,
implies a measure of normal control. As n — =, the form generated becomes
linear because the branch tips become highly probable for selection,
whereas as m — 0, a more amorphous, compact form emerges. As n — =,
D—1,and asm— 0, D — 2. If 7 is treated as a planning control, where
control becomes total, it is possible to develop highly geometric city forms
similar to the linear and grid cities of the urban idealists such as Le Corbus-
ier and Frank Lloyd Wright which we introduced in the Chapter 1. When
control is relaxed and m = 1, the city grows as a fractal structure, whereas
when m — 0, it could be argued that this too is a measure of control in
which all sites are treated equally by the control agency.

We will generate nine urban forms, again including our coarse resolution
simulation as the baseline. We will set 1 at 0, 0.25, 0.50, 0.75, at the baseline
of n =1, and at 2, 3, 4 and 5. The constraint on growth is as previously
specified in that, once the cluster reaches 0.66R,,,« (=50) units of distance
from the central seed site, growth will terminate. This means that there are
many more particles contained in structures with low values of m. The nine
forms generated are shown in Plates 8.3 and 8.4. There is little need for
comment as the forms bear out all the prior speculation which we made
earlier. The range is from linear to concentric with the dendritic fractal
structures forming the middle of the continuum. In Table 8.8, we show the
physical characteristics of these nine forms, and we also note the computer
time used to simulate each. The number of particles varies quite widely
from N = 4735 when 1 = 0 to N = 121 when m = 5. This is reflected in the
CPU times reported which range from between five and seven hours when
m < 1 to only 22 minutes for 1 = 5. As we have shown previously, the
densities depend upon the number of particles allocated and these range
widely from p = 0.627 to p = 0.016, thus illustrating how m affects the com-
pactness of the resulting cluster. The percentage of particles on the bound-

Table 8.8. Characteristics of the continuum of urban forms

System characteristic

Urban form based on the control parameter m

m=0 =025 n=050 =075 n=1 mn=2 n=3 mn=4 n=5

CPU time [h:min)
Lattice points, N,
Occupied points, N
N/N,

Lattice radius, Riox
Cluster radius, R,
R/ R

Mean distance, §
R/R.,

Average density, p
Boundary ratio,
Nearest neighbors, &

6:45 7:17 614 541  5:02 1:04 040 023 0:22
All N, = 22,500
4735 3792 2639 2154 1856 404 252 132 121
0210 0.169 0.117 009 0082 0.018 0.011 0.006 0.005
AR, =75
49.041 50.010 51.478 49.366 49.336 49.031 49.010 49.092 49.366
0.654 0.667 0.686 0.658 0.667 0.654 0.653 0.654 0.658
27.436 26.239 24.844 25773 27.183 19.332 22.439 18.433 20.323
0.559 0.525 0.483 0.522 0.544 0.394 0.458 0.376 0.412
0.627 0.483 0317 0281 0236 0053 0.033 0.017 0.016
0.552 0719 0.878 0926 0959 1.000 1.000 1.000 1.000
7103 6.488 5729 5255 4.862 3.832 3.444 3.152 2.909
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Figure 8.10. Fractal signatures of the distorted field simulations.

ary of the cluster is also affected by the type of form generated with an
increasing number of interior points as the structure becomes more compact
and m — 0. The average number of nearest neighbors is a good measure
of compactness and this ranges from 7.103 when m = 0 to 2.909 when n =
5. All these measures reflect the change in density and the increasing size
of the cluster as m — 0.

The next and most crucial stage of our investigation is to estimate the
fractal dimensions of these nine clusters. Using equation (8.13), we have
plotted the signatures for each of these forms in Figure 8.10. As expected,
the average fractal dimensions fall as ) — = and in Table 8.9, these values
are shown for each cluster based on the use of equation (8.13) for R, R
and the average of D(R) over the profiles shown in Figure 8.10. As in the
case of the fractal dimensions computed . for different angular spatial sys-
tems and shown earlier in Table 8.7, it is easy to find a function which

Table 8.9. Fractal dimensions associated with the continuum of urban forms

Control parameter m D[R D(R) Average over
all D(R)
0 1.879 1.971 1.964
0.25 1.814 1.938 1.924
0.50 1.708 1.858 1.847
0.75 1.675 1.782 1.769
1.00 1.631 1.701 1.698
2.00 1.248 1.409 1.417
3.00 1.127 1.187 1.185
4.00 0.960 1.110 1.060

5.00 0.776 1.009 0.976
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predicts D from m. In Figure 8.11, we have plotted these dimensions from
D(R) in Table 8.9 against m, and from Table 8.7 against 6. One obvious
problem in any real structure for which its fractal dimension can be com-
puted, is to isolate the effects of control n from spatial constraint, measured
here by 6. This will preoccupy us in the next section when we apply these
ideas to the medium-sized town of Cardiff. We have also applied one-point
and two-point estimation procedures to these nine forms and, although the
estimated dimensions follow the same graphs as those shown in Figure
8.11, the results are poor, the procedures somewhat volatile; it thus of little
worth to report them here.

8.8 Measuring and Simulating Urban Form in
Medium-Sized Towns: Applications to Cardiff

We have now developed enough insight into the continuum model to make
comparisons with real urban growth and to consider how the processes of
growth embedded in the model might enable simulation of real forms. In
the last chapter, we simply contrasted the DLA model and the form gener-
ated with the form of the medium-sized English town of Taunton. Several
of the measurements of both the theoretical and actual forms were similar,
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but their fractal dimensions were not. We now have a much more robust
method of estimation, we have a parameter which enables us to control the
compaciness, hence fractal dimension of the resultant forms, and we have
some insight into the way geometry and physical constraints on the growth
space affect dimension. Thus it should be possible to begin some simula-
tions of a real urban system. As a first stage in this quest, we will measure
the physical characteristics of Cardiff, and estimate its fractal dimension.

Cardiff was digitized from the 1:50,000 scale map, the area being divided
into 50 m grid squares which yielded a 150 x 150 lattice, making comparison
with our theoretical structures possible. The extent of urban growth is
shown in Figure 8.12 where it is clear that the center of the urban area
which is the original Roman site and the site of the medieval castle, is not
at the center of the lattice. In terms of the 150 x 150 grid, this location is at
(x = 81, y = 66). Moreover, the digitized urban area which comprises all
land uses except open space, covers the entire extent of the lattice because
there are many villages and disconnected clusters of urban development
around the town. The maximum lattice radius R, is not meaningful for
a cluster which is off-center on the lattice, and because of the extent of
urban development, the maximum cluster radius from the center is R,, =
110 units of distance. This is twice the size of the clusters used in the simula-
tions, and must be taken into account when comparisons are made below.
Of the 22,500 lattice points, only 18,245 constitute the area for measurement
and simulation: of the remaining points, 3849 are in the sea and 406 are
inland waterways (rivers, canals and lakes).

The physical characteristics of Cardiff with respect to size and density

CARDIFF
URBAN
GROWTH
Digitised From

1450000 0S Map
Sheet 171

| SYSTEM HISTORY

NOT AVAILABLE
Urban
Development

4 Rivers and
2 Estuary

Figure 8.12. The urban development of Cardiff.
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are shown in Table 8.10. As R,,., is not relevant, related statistics have not
been computed. It is worth saying that we have explored ways in which
the lattice can be extended to make the form symmetric so that some of
the previous measures can be computed. This involves ‘guessing’ the com-
position of areas outside the map area in Figure 8.12, and although some
useful techniques have been developed, these will not be reported here.
From the measures for Cardiff in Table 8.10 and from the visual appreci-
ation of urban form shown in Figure 8.12 and Plate 8.5, we need to specu-
late on the type of structure Cardiff displays with respect to the theoretical
forms discussed previously. In Table 8.10, we have included three of the
forms presented earlier in that these forms seem “close’ to Cardiff in some
way. We have also included the coarse resolution 1 = 1 model, which acts
as the baseline. Examination of the shape of Cardiff in Figure 8.12 indicates
that the urban form is similar to that shown in Plate 8.2 based on the angu-
lar sector 6 = 1.257 simulation. However, with respect to the percentage of
lattice cells excluded, the simulation based on 8 = 1.75% is closer, and thus
this has also been included in Table 8.10. We will comment on the inclusion
of the m = 0.75 model in this table below, but note also that the average
number of nearest neighbors in Cardiff and the boundary ratio suggest a
form based on m = 0.50. Last, it is clear that Cardiff has much more develop-
ment than most of the theoretical simulations here, and this indicates that
in future work, some thought should be given to growing larger theoretical
clusters or excluding development clearly not part of the main cluster under
analysis in real applications.

To proceed with this comparison, the ‘signature’ of the Cardiff cluster
must be examined, and this is illustrated in Figure 8.13. In comparing this
with earlier figures, it has some similarities — short-range volatility of
dimension in the vicinity of the origin and a long-range edge effect but in
the inner area around the seed point, the dimension drops sharply, quickly
recovering to a stable value over most of its profile. At the edge of the

Table 8.10. Characteristics of Cardiff and relevant urban forms

System characteristic Cardiff Closest comparators

1.25% 1.75%m »=075 =1

Lattice dimension All lattices based on the original 150 x 150 grid
Lattice points, N, 18,245 16,875 19,687 22,500 22,500
Occupied points, N 5067 1108 1433 2154 1856
N/N, 0.278 0.066 0.073 0.096 0.082
Lattice radius, Ruex —_ 75 75 75 75
Cluster radius, Rn, 110.318 50.804 50.000 49.366 49.366
R/R o iy 0677 0666 0658 0.667
Mean distance, R 41,539 22,559 24635 25773 27.183
R/R, 0.377 0.444 0493 0.522 0.544
Average density, p 0.164 0.183 0.208 0.281 0.236
Boundary ratio, & 0612 0960 0.959 0926 0.959

Nearest neighbors, & 5833 4839 4868 5255 4.862
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Figure 8.13. Fractal signatures of Cardiff and the baseline simulations in
Cardiff's urban field.

cluster, D(R,,,) = 1.570 whereas at the mean, D(R) = 1.786. The average over
all dimensions shown in Figure 8.13 is 1.772 and thus it is clear that the
fractal dimension of Cardiff is higher than the fractal n = 1 case, thus sug-
gesting that m < 1. From the earlier analysis, a fractal dimension in the
order of 1.78 suggests that the control parameter 7 is more likely to be 0.75
than 1, hence the inclusion of this in Table 8.10.

However, examining the level of physical constraint in Table 8.7 seems
to suggest that the fractal dimension associated with the physical character-
istics of Cardiff would be around 1.60. To generate such a form through
simulation would probably require m to be set much lower, perhaps at 0.5
or even below this, implying a much more even potential field than the m
=1 fractal case is able to generate. This will be explored below in the simula-
tions, but first it is worth making one last point on estimation. We have
also computed the one-point and two-point measures for Cardiff and used
these to estimate fractal dimensions using regression. The results are disap-
pointing as in other cases tested in this chapter. However, what is more
worrying is that the dimensions produced are lower than the universal
value of D = 1.7. For the one-point measures, D varies from 1.29 to 1.49.
This also brings into doubt the results in the previous chapter where the
fractal dimensions of Taunton were also lower than 1.7. However, the pur-
pose of this research is not to aim for consensus with respect to dimension,
but to derive better methods of estimation and simulation. The estimation
procedure introduced in equation (8.13) clearly enables such progress to
be made.

The ultimate focus of this research is on the design of a physical simul-
ation model built on simple and thus intuitively attractive processes which
govern urban growth. To this end, it is worth summarizing the assumptions
of the continuum model. First, there is diffusion from a source of low to
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high potential, but constrained so that the resulting cluster remains intact
or connected. In short, higher potential exists in areas away from the source
where there is more space for expansion, but the cluster must remain intact
as it realizes this higher potential through growth. Second, physical con-
straints which reduce space must act as barriers to development, but must
not reduce potential per se. Third, the resultant form based on the best real-
ization of space potential can be distorted by a control parameter which
modifies the relative distribution of potential for growth on the boundary
of the cluster. Last, the number of seed sites which initiate growth should
be kept to a minimum, ideally to one site.

The first simulation attempted simply uses the fractal (n = 1) baseline
model with its seed site at (x = 81, y = 66) on the 150 x 150 lattice, with the
physical constraints of rivers and sea acting as limits on the area of the
lattice in which it is legitimate for growth to take place. The resulting form
is shown in Figure 8.14 from which several points immediately emerge.
Cardiff does not grow towards its port which is some two miles from the
medieval center and on the coast. This port only opened up in the mid-
19th century as the South Wales coalfield developed (Daunton, 1977), and
this would suggest that another ‘seed’ site is required. The town also grows
in the area between the River Taff (the longest, middle river in Figure 8.12)
and the eastern River Rhymney. Because of these physical constraints,
growth is unable to spread across these barriers and thus the need for bridg-
ing is identified. Last, the cluster grown in Figure 8.14 consists of only 808,
not 5067 particles, and this reinforces the requirement that more areas be
opened up to growth.

Four more simulations have been attempted in which a second seed site

CARDIFF
GROWTH

Simulation over
the Laplace Field

SYSTEM HISTORY

Figure 8.14. The baseline simulation in Cardiff's urban field.
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is planted in the Cardiff docklands after 80 particles have been generated.
Two bridges (breaks in the river constraint) have been established across
the River Taff west of the medieval center and docklands, and one bridge
has been made across the River Rhymney in the east. It would be easily
possible to build in decision rules to generate bridges at suitable points if
the pressures of growth became substantial, but in the interests of parsi-
mony, these changes have been kept to a minimum. Simulations of the
continuum model on the Cardiff lattice have been run with m =1, 0.75, 0.50
and 0.25, and the resultant urban forms are shown in Plate 8.6. It is clear
now that growth spans the rivers, and on the west bank of the Taff, devel-
opment occurs later than in sites at a similar distance north of the center.
But it is only when m < 0.5 that sufficient growth is generated, and the
docklands begin to exert a major effect upon development.

If we examine the fractal dimensions of these four simulations, we find
that the physical constraints exert a powerful effect. For the case of the
single-seed-site simulation shown in Figure 8.14, we have plotted its signa-
ture earlier alongside that of Cardiff in Figure 8.13. For this simulation,
D(R) = 1.460. In Figure 8.15, the signature profiles are shown for the four
simulations based onm =1, n=0.75, 1 = 0.50 and m = 0.25 which incorporate
the two seed sites and bridging developments. These generate fractal
dimensions of D(R) = 1.574, 1.595. 1.704 and 1.820 respectively in compari-
son to their non-constrained equivalents D(R) = 1.701, 1.782, 1.858 and 1.938
given earlier in Table 8.9. On this basis, we might speculate that a model
with m about 0.35 might provide the best simulation for Cardiff. This
implies a degree of control which might be exercised by many single land-
owners in competition or, perhaps, large landowners in collusion.

These simulations are designed to be suggestive, not definitive. They
indicate how we might proceed. When these models are demonstrated, they
tend to evoke considerable reaction, especially when it is realized that
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Figure 8.15. Fractal signatures of the Cardiff simulations.
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physical constraints guide the simulation. Colleagues are quick to point out
many obvious extensions which might make the growth processes more
realistic. But the value of the model as it stands is in its parsimony. Rather
than introduce more decision rules into the structure, there is an urgent
need to examine the role of seed sites, and explore the dynamics of the
model further. For this, we need better data on the historical evolution of
the city, and if we had this, the importance of seed sites could be better
assessed. We would then be in a position to examine thoroughly the role
of physical constraints on urban growth, and to progress the model towards
more realistic simulations. As it stands, our simulations indicate the import-
ance of DLA and DBM to the generation of entire classes of city, but as
yet, such simulations are far from the point where they might be used to
make explicit forecasts.

8.9 Towards More Realistic Models

The continuum model based on DBM which uses Laplace’s equation, its
consequent solution, and the way the potential field can be controlled or
distorted, clearly produces a model which is much easier to explore than
the random walk version of DLA. Indeed, this specification of the model
is an essential step in the process of moving towards simulation of real
urban systems as has been demonstrated here for Cardiff. There are, how-
ever, several urgent developments to initiate. It is necessary to treat much
larger lattices and readers with supercomputer resources such as Connec-
tion Machines whose architecture is adapted to Laplace field problems,
must be encouraged to explore 1000 x 1000 lattices or even larger ones for
this type of problem (Dewar and Harris, 1986). It is also necessary to think
about three-dimensional lattices and DLA simulation, which might capture
some of the characteristics of urban systems, but, wherever this research
seems to offer promising insights, the issue of computer resources and time
is paramount. More realistic DBM models are also possible, and it would
be useful to adapt many of these to the simulation of city systems
(Wiesmann, 1989).

We need to extend our research into the interaction between physical
constraints on space and the control of the potential field and probabilities
of occupancy around cluster boundaries. We have not rigorously examined
the types of forms generated for different combinations of 8 and , although
the inferences made here on the basis of our partial explorations are
unlikely to be badly wrong. We also require a better investigation of physi-
cal indices, and it would be useful if we could classify different urban forms
with respect to a variety of such indices as well as the spatial (6) and plan-
ning control (n) parameters. Many of these developments are already taking
place in the burgeoning field of cluster growth modeling within mathemat-
ical physics, and there is much to learn from current and future develop-
ments in those domains. But by adapting cluster models more closely to the
characteristics of urban development such as discontiguous form, reversible
aggregation and the possible interaction of different cluster processes, that



Generating and Growing the Fractal City 307

is interlocking and interacting DLA processes operating with different types
of development but in the same system, considerable progress can be made
with the approach we have begun to outline here.

Finally, we need better measurements of urban development and density.
In the last chapter, we were concerned that our measurement of real form
was at too coarse a level to pick up the appropriate pattern of urban struc-
ture. The same difficulties apply here, and there is no substitute for finer
resolution to our detection of development patterns. All this demonstrates
is that once again, in the search for universals, whether it be in qualitative
matters or in the social physics which we are espousing here, it is necessary
to proceed with rigor on all fronts. In this chapter, we have clearly demon-
strated that the same fractal dimensions can be generated through different
combinations of physical constraint and planning control. This in turn
brings into question the role of a fixed scale from which all measurements
are taken and simulations initiated. To make further progress, it is neces-
sary to explore the interaction of physical constraints at different scales
more rigorously, and to this end, many more real urban applications are
required.

In the next chapter, we will change tack once again, but in the quest to
extend the ideas of this and the last chapter to more mainstream urban
theory and analysis. We have almost unwittingly begun to home in upon
the idea of urban density, and as a first step in showing how our theory of
the fractal city might inform the mainstream, we will explore how existing
approaches to urban density analysis can be enriched and reformulated in
Chapter 9. This will involve us in theories of urban allometry, and these
we will take further in Chapter 10 when we will move full circle to show
how fractal geometry can begin to inform questions of city size and distri-
bution, so long the traditional preserve of human geography through cen-
tral place theory.



9

Form Follows Function:
Reformulating Population Density
Functions

A simple isolated bit of evidence, however striking, is always open to doubt. It is
the accumulation of several different lines of evidence that is compelling. (Crick,
1990, p. 37.)

9.1 Cities as Population Density Functions

We could have written this book by beginning with existing theories of
city size, shape and distribution and then gradually showing how fractal
geometry could be used to reinterpret, generalize and extend the body of
theory which geographers, economists and planners have been working
with for the last hundred years. But instead we chose a different tack, intro-
ducing fractal geometry first and tracing out its implications for how cities
might be organized, before we embarked upon the ways in which our the-
ory of the fractal city might link to the mainstream of urban studies. With-
out our having reviewed the multitude of urban theories in other than cur-
sory terms, it is already clear that fractal geometry has appealing properties
with respect to cities in ideas concerning space-filling, self-similarity and
density. In fact as Crick (1990) implies above, although these lines of evi-
dence for a fractal theory of cities are highly suggestive, they become com-
pelling when it is realized that much of what has been developed in the
mainstream is entirely consistent with fractal geometry.

We are now at the point where we can begin to make these connections,
in this chapter to the distribution of population and other activities within
the city, in the next to the distribution of population sizes and shapes across
cities. In fact as we have implied throughout this book, our foray into the
fractal geometry of cities is but a beginning and we anticipate that entire
areas of urban theory might be reworked using fractals in the coming years.
Here we will confine our efforts to the most basic applications starting with
simple gravitational density models which constitute the heart of what has
been called social physics. Ever since Newton published his celebrated
Laws of Motion in the late 17th century have there been attempts to apply
classical physics to social systems in general, city systems in particular.
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Social forces between populations in space were described explicitly by
Carey in the mid-19th century using gravitational analogies, while the
notion that the density of economic activity declines with increasing dis-
tance from its market is implicit in the work of von Thunen, circa 1830
(Hall, 1966). In the study of population densities, it is now just over 100
years since Bleicher (1892) wrote: “The rapid decrease in population density
with distance from the center is highly characteristic of an old city such as
ours” (Edmonston, 1975; Mogridge, 1984).

However another 50 years were to elapse before these observations were
associated with specific mathematical functions. There is some evidence
that such functions were being used in the 1940s (Ajo, 1944), but it is Colin
Clark (1951, 1967) who is accredited with the first use of the negative
exponential function as the basic model for population densities. Since then,
many variants of this model have been developed. The negative exponential
density function is consistent with the theories of strict utility-maximizing
associated with urban economic theory (Beckmann, 1969; Muth, 1969),
while the development of operational urban models based on entropy-max-
imizing (Wilson, 1970) and discrete choice theory (Anas, 1982) which we
introduced, albeit briefly, in Chapter 4, make widespread use of such func-
tions. Although early analogies with gravitational models based on the
inverse square function of distance formed the foundations of social physics
in the 1940s and 1950s (Stewart, 1941, 1950), these power functions were
quickly replaced with the negative exponential in the 1960s and 1970s due
to the analytical convenience of such functions in problems of economic
and statistical optimization, as well as to the elegance of the mathematical
forms produced.

These developments, however, appear to have lost sight of the fact that
the density and flow of economic activity across space must be fundamen-
tally constrained and thus determined by the geometrical properties of their
physical systems. It is clear that there is much misunderstanding of these
issues, as Stewart (1950) was never slow to point out. Others such as Col-
eman (1964) who have considered the foundations of social physics have
reinforced the point that power functions in their inverse form are the most
obvious ones which embody the physical properties of the correct systems
of interest (Batty and March, 1976). But such views have never attracted
much attention and have remained apart from the mainstream of urban
analysis during the last three decades. What a fractal theory of cities offers
is a coherent approach to these earlier traditions.

Here we will argue forcibly that the use of the negative exponential func-
tion as a model of population densities is fundamentally flawed. We will
argue that its use is based on its convenience in problems of optimization,
on the elegance of its mathematical properties, not on its appropriateness
to empirical data, and certainly not upon our ability to make sensible
interpretations of its parameters. Our thesis here is based on the identifi-
cation of appropriate scaling laws for urban systems based on ideas associ-
ated with allometry, although our principal concern will be with linking
these laws to the principles of fractal geometry which shows how form
follows function. As we demonstrated in Chapter 7, scaling laws based on
power functions have been given a new lease of life of late in that their
parameters can now be unambiguously associated with the size, shape and
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form of the systems they describe. In short, their parameters can be associ-
ated with the extent to which their systems exploit the space in which they
exist, the fractal dimension being directly associated with these parameters
and with the extent to which the form fills the space available. The form
or morphology of the system is no longer a prerequisite to models of its
functioning, but a consequence of the way the system works in space. In
this sense then, we will be dealing with systems in which ‘form follows
function’”.

This chapter will attempt to weave several diverse themes together. Once
again, we will note the work on urban allometry in which the size of the
urban system is related to the space it occupies (Stewart and Warntz, 1958;
Dutton, 1973), we will show how densities based on power functions arise
as a natural consequence of such allometry, and we will cast our argument
in terms of the new physics of fractional dimension (Davies, 1989) which
uses the empirical ideas of Chapter 7 explicitly and the DLA and DBM
models implicitly. We will first examine the properties of the negative
exponential and inverse power functions, showing that the inverse power
function has certain properties for describing urban population densities
which have hitherto been overlooked. These properties can be easily
exploited through scaling laws appropriate to urban systems, and accord-
ingly, we show how urban form follows quite naturally from such func-
tional descriptions. In this sense, we are also able to show that the density
parameters associated with these functions are directly related to the frac-
tional or fractal dimensions of the space within which these city systems
exist.

These arguments have profound implications for the way we should
measure population density in cities, and thus we then set out to estimate
these functions in a variety of forms. The data set we use is for the city of
Seoul in South Korea for the year 1982 (Kim, 1985); four variants on the
base data set are used in estimating the density parameters of inverse power
functions which we also represent in four related forms. These forms are
estimated using three methods: the first two — regression of their log-linear
forms, and the so-called signature of the underlying fractal growth pro-
cess — were introduced in Chapters 7 and 8, but a third, conventional
method based on entropy-maximizing, is also introduced here. The many
variants of data and estimation which we use produce a range of density
parameters and fractal dimensions which show remarkable consistency.
From the theoretical arguments developed in the last two chapters, we
argue that the fractal dimension of a typical city such as Seoul will have a
value between 1 and 2, probably between 1.5 and 1.8, and a density para-
meter between 0.2 and 0.5. We show that this is indeed the case, and this
suggests that many previous estimates of population density functions
should be reworked with power functions to reveal parameter values which
if consistent, could be used to derive more meaningful taxonomies of city
size and shape.
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9.2 Exponential Functions of Urban Density

Clark’s (1951) original model assumes that population density p(r) at dis-
tance r from the center of the city (r = 0) declines monotonically according
to the following negative exponential

p(r) = K exp(=Ar), (9.1)

where K is a constant of proportionality which is equal to the central density
p(0) and \ is a rate at which the effect of distance attenuates. Note that in
this chapter we will use N\ for the density parameter of the negative
exponential and « for the inverse power function. § will be used as pre-
viously as a general regression parameter of various scaling relations from
which the fractal dimension D can be derived. As previously, we will use
the variable 7 to indicate a variable distance from the CBD, whereas R will
be used to define the accumulation of distance which is an integral of » up
to the radius R. r should not be confused with its use as a measure of scale
in earlier chapters, but its use should be obvious from the context.

Clark’s (1951) paper was wide-ranging, idiosyncratic and brilliant; he not
only fitted the log transform of equation (9.1) to over 20 cities using linear
regression but also speculated on how the parameter A changed through
time, thus charting from the beginning, the direction for all subsequent
empirical work on urban density functions. It is still not clear why Clark
chose the negative exponential function for he was unaware of Ajo’s (1944)
doctoral dissertation in which a negative exponential function was used to
model traffic flow in the Finnish city of Tampere. It is likely, however, that
this function was chosen because it was popular in mathematical economics
in models of capital depreciation and the like of which Clark was prob-
ably aware.

In the parallel development of social physics, inverse power functions of
distance were being widely exploited in gravitational models of traffic flow
and in rank-size relations. But there were no attempts to collapse such
gravitational models to models of population density until the early 1960s
when Smeed (1961, 1963) suggested a suitable such model might be
based on

p(r) = Kre, (9.2)

where K is the constant of proportionality as in equation (9.1) above (but
not defined where r = 0) and « is the parameter on distance. However, by
this time, there was already a major groundswell in urban economics and
transport modeling seeking to replace power functions with the negative
exponential. The use of log-linear utility functions in urban economics from
the work of Alonso (1964) on, and the development of gravity models using
entropy-maximizing (Wilson, 1970) both led to the use of the negative
exponential. The generalization of spatial interaction models into location
as well as traffic distribution models and their collapsing to a single origin
and many destinations led quite naturally to Clark’s (1951) model (Bussiere
and Snickars, 1970). Furthermore, important empirical work by Mills (1970),
by Bussiere (1972b) and Bussiere and Stovall (1981), and by Mogridge (1984)
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drowned out any further attempts to model population densities by any-
thing other than negative exponential functions.

So far, the body of work concerned with population density models is
almost exclusively based on the negative exponential function or its gen-
eralization. As Zielinski (1979) points out, attempts at demonstrating the
precedence of one function over another in this field are quite inconclusive
and in the absence of further empirical evidence, theoretical considerations
suggest the negative exponential function as being superior. There have
been some dissenting voices. Smeed’s (1961) work has been noted, and Blu-
menfeld (1972) (summarized in Vaughan, 1987) and Saviranta (1973) have
both argued for inverse power functions of density. However, there has
been more work at seeking a generalized function such as the gamma
whose typical form is

p(r) = Kr exp(=A\r), (9.3)

where the parameters K, a and \ fulfill the same roles as in equations (9.1)
and (9.2). Tanner (1961), March (1971) and Angel and Hyman (1976) have
suggested that functions such as (9.3) are general enough to encompass the
various debates about one functional form or the other. Finally, it is worth
noting that Parr (1985a, b) amongst others has suggested that the negative
exponential function is more appropriate for describing density in the
urban area itself, while the inverse power function is more appropriate to
the urban fringe and hinterland. In later work, Parr and his colleagues have
argued that the most appropriate generalized function of density is the log-
normal (Parr, O'Neill and Nairn, 1988: Parr and O’Neill, 1989); this relates
to processes which generate such functions, which in turn relate to the use
of such functions in fractal geometry.

The most obvious interpretation of the parameter A in the negative
exponential can be made by taking the first derivative of equation (9.1).
Then

d
%(:—) = —-\K exp(=\r)
==\p(7), @4
and thus
dp(r) _ _
o) - ()

which implies that \ is the percentage change in density for a small change
in distance dr. In this sense then, the parameter plays a crucial role in the
calculation of elasticities in the fully-fledged urban economic theory of the
housing market which gives rise to this function (Muth, 1969).

To find an explicitly spatial interpretation of the parameter \ in equations
(9.4) and (9.5), we need to examine how the density function behaves with
respect to distance. There are two ways of proceeding. First, we will con-
sider p(r) as a one-directional function on a single line of distance from the
center r = 0, and second we will consider how the same function behaves
in the field around its center which involves two directions; this latter possi-
bility involves formulating the density in polar coordinates as p(r, 8) where
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r is the line of distance and 6 is the angular variation, both about the center.
Note that we will use the terms one-directional and two-directional only
in those contexts where it is necessary to draw distinctions between direc-
tion and dimension. In all other contexts, the term dimension will suffice
for both (Batty and Sikdar, 1982).

We will first examine the one-directional function. Note that in the
sequel, we will normalize the density over its space to sum to unity. Then

f ® olr) dr = f *Kexp(-\r)dr=1, 9.6)
le]

(4]

where R, marks the distance to the boundary of the spatial system. Evaluat-
ing equation (9.6) gives the constant K as

A

H= 1 - exp(-ARy) &2
and therefore the density becomes
\ exp(—Ar) ©9.8)

= 1 - exp(-ARy)
Clearly when R, — =, the value of K = \. The cumulative distribution of
p(r), N(R), is given as

R

N(R) =J p(r) dr

0
_ 1-exp(=AR)
" 1—exp(-ARy)

However, it is the mean density in the city which is of most interest, and
this is defined as

=~ 1 — exp(-AR). (9.9)

C(Ry) = J o) #:di
0

- 1 Rb exp(—)\.Rb)
TN 1—exp(-ARy)
In equation (9.10), if R, — =, then C(«) = 1/X and the interpretation of A
is as an inverse measure of the mean density, thus controlling the spread
of the function in the linear direction.
The same type of analysis as presented in equations (9.6) to (9.10) can be
developed for the two-directional model which we stated earlier in polar
coordinates as p(7, 8). The density function is now given as

p(r, 8) = K exp(-Ar), (9.11)

and its normalization as

(9.10)

2m Ry, Ry,
J J p(r,0) rdo dr = ZWKJ exp(=Ar) rdr=1. (9.12)

0 0 0
The normalizing constant K can be evaluated as
A2
" 2w {1 - (1 + ARy) exp(-ARy)}

K (9.13)
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From equation (9.13) when R, — =, then K = A\?*/2. The cumulative distri-
bution function N(R) is

1 - (1 + AR) exp(-AR)
1 - (1 4+ ARy) exp(-ARy)

=~ 1—(1+ AR) exp(—AR). (9.14)

and the mean density

N(R) =

2w Rb
C(Ry) = J J p(r, ) 2 dO dr
o Jo
AR exp(-ARy,)
1—(1+ARy) exp(—-ARy)

As R, — =, C(=) = 2/\, thus implying that \ is also an inverse measure of
mean density controlling the spread of the function over the two directions
of space (Batty, 1974).

When the boundary distance R, — %, AC = 1 for the one-directional func-
tion and AC = 2 for the two-directional. In this context, it is possible to
associate direction with dimension, the dimension of the spatial system
entering the calculation of the parameter \ directly. To anticipate an argu-
ment of a later section, the spread of development is unlikely to be over
the entire two-dimensional space, but it is likely to be spread over more
area than the one-dimensional line. Therefore it is likely that 1 < AC < 2,
and thus the value of AC is a measure of the extent to which the density
fills two-dimensional space, if and only if R, defines a good approximation
to the spread across space of the density function. We will now develop
the same analysis as contained in equations (9.6) to (9.10) and (9.11) to (9.15)
for the inverse power function.

2
=5 (9.15)

9.3 Power Functions of Urban Density

An immediate interpretation of the parameter « in the scaling function in
equation (9.2) is provided by its first derivative

PO __% 00) = ok, (9.16)

which can be written as

o) far__
Y e

where « is clearly an elasticity, the ratio of the percentage change in density
dp(r)/p(r) to the percentage change in distance dr/r. In equations (9.16) and
(9.17), « has a more precise interpretation than the negative exponential
parameter \ in equations (9.4) and (9.5), but its role is similar.

The difficulty with the inverse power function emerges when it is nor-
malized. As previously we will begin with the one-directional form of the
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model and then repeat the analysis for two. The normalization of equation
(9.2) is given by

R,
J " o) dr=Kredr=1. (9.18)
0

The integral in equation (9.18) cannot be evaluated when r = 0, for the
function p(0) is infinite at this value. This has been one of the main reasons
for researchers preferring the negative exponential. However, the problem
can easily be dealt with by translating the origin of system to a value of r
> 0, r =1 being the obvious lower limit. Some have argued that population
density is not defined at the center of the city in any case or that population
density at a point is meaningless although neither of these assumptions are
necessary to the shift of the origin which is arbitrary. Evaluating the integral
in equation (9.18) from r =1 to r = R, gives

P oS (9.19)
Ri=-1
and
(1-a)r™
e, 9.20
p() R 1 (9:20)

As Zielinski (1979) points out, the normalization in equations (9.19) and
(9.20) is still “analytically awkward”, and further indefinite integrals are
impossible to evaluate. With a little simplification, however, it is possible
to proceed. First if the boundary of the system r = R, is much greater than
r =1, then it is possible to ignore the lower limit; second if it is assumed
that o lies between 0 and 1, then equation (9.20) will always act as an
inverse power function. Moreover, if a = 1, then the function breaks down,
and is no longer meaningful as a model of population density. Thus the
use of equation (9.20) implies that there are tight bounds on the value of a.
With these assumptions, the cumulative density function can be written as

R

N(R) = J p(r) dr
1

R(‘.l-a:) -
" RO-), (9.21)

Finally the mean density C(Ry,) is evaluated as

Ry

C(Ry) = J p(r) rdr

1
gt
T 2-«
and this shows that the parameter a depends directly upon the value of

the system boundary R,. From equation (9.22), the parameter o can be
computed as

o _2C(R) - Ry
C(R,) ~ Ry’

R, (9.22)

(9.23)
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but this is still an approximation whose relevance cannot be judged in
advance of any particular application. However, equation (9.23) does pro-
vide some bounds on the value of a, namely that as R, > C(R,), then a =
1. The analysis for the two-directional model follows directly. The normaliz-
ation is given as

27 Ry, Ry
J J p(r, 8) rdr dé = ZwKJ rerdr=1, (9.24)
(4] 1 1
from which K can be evaluated as
W 9.25)
2m (RE= - 1)
Assuming that R, > 1, then the density p(r, 8) becomes
2-—a)r=
r,)=——-—7— 9.26
plr, 0 == — o (9.26)
and the cumulative density is
2w R
N(R) = I J p(r, 0) r dr do
0 1
RZ—«
= =~ RZ<, 9.2
= 9.27)
The mean density C(R,) is now evaluated as
2 Rb
C(Ry) =f J p(r, 8) 1* dr d6
0 1
2-a
=5—o R 9.28)

and this has the same structure as equation (9.22) for the one-directional
model. It is possible to compute a from equation (9.28) as

o = 3C(Ry) ~ 2R,
C(Ry) - Ry’

and from this, it is clear that « is unlikely to be greater than 2. The real
significance of equations (9.23) and (9.29) however is that they show that
the parameter a of the inverse power model is critically dependent on the
boundary of the system Ry, and in certain empirical contexts, it will be
possible to estimate o from these equations.

Although the differences between the two functions elaborated through
equations (9.4) to (9.15) and (9.16) to (9.29) are substantial in mathematical
terms, in practice both have been shown to fit empirical data equally well
(or equally badly). In this section we will seek to demonstrate this. In Figure
9.1, one-dimensional negative exponential and inverse power functions
from equations (9.8) and (9.20) respectively are plotted up to a regional
boundary R, = 50 units of distance. The parameters A and a have been
chosen to fit a mean density C(R,) = 20 units; values of A = 0.025 and

(9.29)
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Figure 9.1. A comparison of the negative exponential and inverse power
functions.

a = 0.349 have been estimated which give simulated mean densities for
both functions within 0.01% of the predetermined mean. Before we explore
these functions further, it is worth noting for the inverse power function
that if equation (9.23) is used to predict a, which is based on the assumption
that the lower limit of 7 is 1, then the value of this parameter is 0.333 which
is within 5% of the computed value.

No simple solution for the parameter A exists for the negative exponential
model. A first approximation to A based on 1/C gives 0.05 while the use
of the two-dimensional equation 2/C gives 0.1. The actual computed value
is half the one-dimensional approximation, thus implying that the negative
exponential over the given range from r = 0 to r = 50 provides only a partial
approximation to its overall spread. This can be easily seen in Figure 9.1
where the inverse power function is much steeper in the area of its origin
compared to the negative exponential which has a more gradual slope over
the same distance to which it is applied. A more direct comparison of these
functions can be made over their intermediate ranges where, from Figure
9.1, it is clear that the functions are similar. These functions will cross at r
=4.011 and r = 33.722, which are solutions to the equation of the two model
functions {A exp(-Ar)/[1 — exp(-ARW)]} = ((1 — a)r’™/Ri™). It is between
these two values that the functions are similar.

From Figure 9.1, it is quite clear that both functions are likely to be poor
predictors of the central densities in the neighborhood of the origin r = 0.
The inverse power function will overpredict while the negative exponential
is unlikely to give a good prediction for there is little flexibility in con-
trolling the value it takes when r = 0. Figure 9.1 also shows the problem
with the negative exponential at the regional boundary. The fall-off in den-
sity from this model is likely to be too great. The pattern of population
density in the hinterlands of western cities has been shown to be more
even and higher than the negative exponential is able to predict, hence the
suggestion that the negative exponential be only used to model intraurban
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variation in density, the inverse power being used to model peripheral vari-
ation (Parr, 1985a).

One of the main reasons for the popularity of the negative exponential
function in population density models relates to its elegant properties. In
fact, as we have shown above, these properties can only be fully exploited
when it is assumed that the regional boundary distance is infinite; in short,
this is only the case when the infinite boundary provides a good approxi-
mation to the observed density field. In the given hypothetical example as
well as in the applications to Seoul which follow, this is clearly not the case
and it is the inverse power model which yields more tractable equations
which can be exploited in rapid estimation. Furthermore, although the
negative exponential emerges ‘naturally’ from entropy-maximizing, this is
due to the constraint on total travel distance adopted. There is in fact con-
siderable evidence to suggest that distance perception is logarithmic, this
being the basis of the Weber-Fechner law in psychology. If the logarithmic
constraint on travel distance is used, then it is easy to show that the inverse
power function is the appropriate derivation using entropy-maximizing. On
balance, it is our view that both functions are useful in different contexts.
Moreover, we should not ignore Zielinski’s (1980) comment: “Since both
(functions) can give practically identical fits to data, what criteria should
be adopted to prefer one to the other? In this case the pragmatist must take
the back seat to the theoretician. And theoreticians must endeavor to prove
their assumptions”. This we will attempt to do in the following sections.

9.4 Urban Allometry, Density and Dimension

In the growth and evolution of natural systems, there has been considerable
research into the ways various features of such systems scale with increas-
ing size, the study of relative sizes being allometry (Gould, 1966). We briefly
alluded to this line of research in Chapters 2, 6 and 7, but here we provide
a more complete summary in preparation for this and the next chapter.
Allometric relationships relate the size of an object to a familiar yardstick
such as length. For example, taking a measure of size in terms of the dimen-
sion of a system E, in Euclidean geometry we can define points where E =
0, lines where E = 1, planes where E = 2 and so on. If we take the yardstick
as a measure of length in one dimension, that is R say, then objects which
scale as a point vary as R° as length itself R', as the plane R* and so on,
in general the scaling relation being RF. If the size of the object in question
is expected to scale as RF, we refer to this as isometric scaling. If the object
scales as RP with D < E, then this is called negative allometry and if D >
E, this is positive allometry.

In its most basic form, population density can be considered as the sca-
ling between population N(R) and area A(R), however defined, where R is
some measure of the linear dimension of the space. Then the key scaling
relation between N(R) and A(R) can be written as

N(R) ~ A(R)®. (9.30)
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From a priori considerations, we can argue that the value of the parameter
¢ indicates how population fills the two-dimensional space available to it.
If & > 1, then the population fills more than the two dimensions of the
space, while if ¢ < 1, population is filling less than its available space.
There have been several studies of this allometric relation over different
sizes of cities based on the general assumption that as cities grow into the
third dimension, then equation (9.30) should exhibit positive allometry.
This is borne out in the work of Stewart (1947) and Stewart and Warntz
(1958) where they show that ¢ = 4/3 for British and American cities with
1951 data. With Swedish data for 1966, Nordbeck (1971) concludes that ¢
= 1.506 which is a little larger than 3/2 which would be the value if cities
filled the three dimensions available to their development. More recently,
Jones (1975) following work by Best, Jones and Rogers (1974), has derived
¢ as 1.193 for cities in England and Wales from the 1971 Population Census,
and Craig and Haskey (1978) who reworked these data concluded that ¢
has remained approximately stable since 1951 with a value between 1.41
and 1.45. However, Woldenberg (1973) using data for American cities has
shown that ¢ varies from around 0.8 to 1.2 depending upon the data set
used.

All these studies refer to data sets based on wide ranges of city size. In
the intra-urban case, where population densities decline with increasing
distance from the center, equation (9.30) will show negative allometry. First
we will replace the measure of area in equation (9.30) with the yardstick
of length R which enables us to link this analysis to population density
functions introduced above. Then equation (9.30) can now be written

N(R) = yA®
= y(mR*)* = ¢R", (9.31)

where we have assumed that the distance associated with the area is given
as R = VA, and y and ¢ are constants of proportionality. From equation
(9.31) it is clear that D = 2¢ and if & < 1, then D < 2. Takayasu (1989)
refers to D as the ‘effective dimension’, but to anticipate our argument, this
of course is the fractal dimension. As in the two previous chapters, the
value of D is thus a measure of the extent to which the city fills its two-
dimensional area.

Without anticipating the value of D for any particular city, we can now
present the equation for population density in terms of the scaling relation
based on the yardstick of length R and explicitly containing the parameter
D. From equations (9.30) and (9.31), we will write the density as in equa-
tions (2.33) and (7.9)

P(R) = i~ AR)*, 9.32)
and from this it is clear that if population is isometric with area and ¢ =
1, then p(R) is constant. For population density to decline with increasing
distance from the center, then the exponent in equation (9.32) must be less
than 0, that is ¢ — 1 < 1, while it is most unlikely that ¢ would be greater
than 1 which would imply increasing density with distance from the center.
Writing (9.32) explicitly in terms of the yardstick R gives
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@RP
= £RP-2, 9.33
=t 9.33)

p(R) =

and for the density to decline with distance, it is clear that the fractal dimen-
sion D should be less than 2, implying that the city will not fill the two-
dimensional space available.

The real value of this analysis is in revealing how density should be
defined. Casual observation should suggest whether the city is filling two
or three dimensions. If the city fills less than the plane, then the appropriate
space on which to compute density is the plane; thus the definition of area
as A(R) = wR? in equation (9.32) is correct and the value of D will be less
than 2. However, if the city is filling three dimensions of space then the
appropriate normalization by area would be A(R) = wR?, the volume, and
then the value of D would probably be greater than 2 but less than 3. In
this case, the more general form of density equation in (7.18) would be
appropriate. In fact, in all studies of density to date (of which the authors
are aware), the implicit assumption is that cities fill the plane, not the vol-
ume, thus suggesting that the argument made by Nordbeck (1971) amongst
others that cities fill the third dimension is spurious.

The other important conclusion from this analysis is that the measure of
area to be used represents the space within which the city grows, its field,
not the more restricted area which is associated with its built-up form; in
fact most studies of density based on the population and area of Census
tracts treat the area of the field, although in some studies which use built-
up area, the parameters derived cannot be compared with those here. What
is certain, however, is that in most studies of population density to date,
researchers have paid very little attention to the definition of area, thus
throwing into question the validity of the parameter values estimated, at
least in terms of the sorts of theory invoked here. Comparisons between
different studies are therefore difficult to make.

9.5 The Basic Scaling Relations Revisited

We are now in a position to relate the density equations stated earlier in
terms of the inverse power functions, to those derived from urban
allometry. We will use the two-directional function given in equation (9.26).
Equating this to the density in equation (9.33), we will integrate over 6.
Then

2w
p(R) = I p(R, 0) d§ = K'R™ = ERP, (9.34)
0

and if the equation holds, then D ~2=—- o or a =2 - D. As D is a measure
of the extent to which space is filled, then it is expected to be less than 2,
and thus « is its complement, a measure of the extent to which the available
space is not filled. The cumulative density functions can also be equated,
and the same conclusions drawn. Comparing equation (9.27) with (9.31)
and using appropriate notation, then
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N(R) = K"R?= = @RP. (9.35)

Equations (9.34) and (9.35) suggest a coherent and useful coincidence
between the fractal dimension D and the parameter of the associated
inverse power function of population density; that is, that the two dimen-
sions of the associated space can be divided into a space-filling component
D and a non-space-filling component a which sum to the Euclidean dimen-
sion E of the space within which the city exists, in short, that E=D + a = 2.

We have already defined three scaling relations, namely the population-
area relation in equation (9.30), the population-radius relation in equations
(9.31) and (9.35), and the density relation in equations (9.33) and (9.34).
We will add to these a fourth relation, based on the first derivative of the
cumulative population-radius relation in equation (9.35). This relation,
referred to as the incremental population-radius equation, is derived as

n(R) = oy hRP-! = hR™. (9.36)

dR

h is a constant of proportionality and 7 is the scaling parameter. We now
have four scaling relations; three of these which relate the cumulative popu-
lation N(R), the incremental population n(R), and the density p(R) to the
radius R and based on equations (9.31), (9.36) and (9.33), are those used in
Chapters 7 and 8 to describe the distribution of particles in the DLA and
DBM simulations. These will be used here in the empirical analysis of den-
sity in Seoul, but note that the alternate density variable Q(R) which was
used in Chapters 7 and 8 and defined previously in equation (7.26) is not
used. The fourth relation is the classic allometric equation which relates
N(R) to A(R) as in equation (9.30).

Before we broach the question of estimation, we must make clear the fact
that we expect the value of the fractal dimension estimated from the Seoul
data to be similar to that of the DLA simulations, that is D =~ 1.7, as implied
in many of the estimates given earlier in Table 7.1. Thus the value of the
density parameter would be around -0.3, that is « = D — 2. Earlier we
speculated that in the case of the negative exponential density function, the
dimension of the system would fall between 1 < AC < 2 from arguments
relating to the mean density in one- and two-dimensional systems. We can
now speculate that AC = 1.7, a result which has already been borne out in
work by one of the authors almost 20 years ago (Batty, 1976). Similar
relations are not obvious for the inverse power function, although D and
« are immediate results of their estimation and further insights must await
further research. To provide some sense of closure to this theoretical section
and to progress the research to applications, methods of estimating equa-
tions (9.31), (9.36), (9.33) and (9.30) in that order will now be discussed.

9.6 Methods of Parameter Estimation

There are two main issues to clarify before we embark on fitting the basic
scaling relations to the empirical data: these deal with aggregating the data,
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and choosing appropriate estimation methods. We will deal with these
issues in turn. Researchers fitting population density models have either
dealt with the data in their raw form by Census tracts or have aggregated
the data into concentric rings. The latter method produces better fits and
hence more reliable estimates because local variations in the data are
reduced, but the use of one or the other data set ultimately depends upon
the purpose for which the analysis is undertaken. Here we will employ
both, but we consider that the method of concentric rings is likely to give
much “truer’ estimates of the values of the parameters D and « which is of
most interest to the analysis performed here. In fact, this was the method
which we used to organize the data in Chapters 7 and 8 for comparing the
theoretical simulations with Taunton and Cardiff. A related issue involves
the way the data are aggregated over distance and whether relationships
are fitted in their cumulative or incremental form. Cumulative relations are
bound to give better fits and this will be our emphasis although we will
also examine some incremental estimates. In this sense then, we will follow
the practice of Bussiere (1972) and Bussiere and Stovall (1981), rather than
the traditional treatment used by Clark (1951).

The first method of estimation we will use and one that will act as our
baseline, involves taking logarithmic transformations of equations (9.31),
(9.36), (9.33) and (9.30) and estimating their parameters using linear
regression. The four relations can now be summarized in discrete form as

log N;=a; + B, log R;, (9.37)
log n;= a, + B, log R;, (9.38)
log p; = a3 + B; log R, (9.39)
log N; = ay + B4 log A (9.40)

Note first that the intercepts or constant terms a;, o, a3 and a, are not
directly related to the parameter a of the inverse power function but are
so defined to make them consistent with their usage in Chapters 7 and 8
through equations (7.49). Throughout the analysis, distances are ordered
so that R; < R;,; < R;,», the cumulative populations are given as N; = Zn;,
(j=1,..., 1), the areas for each cumulative ring as A; = wR?, the actual area
of each ring as a; = A; — Aiy, (i > 0 and A, = 0), and the density p; = n,;/a;.
We also need to be clear about the various parameter estimates in these
equations and the look-up table reproduced as Table 9.1 shows the conver-

Table 9.1. Relationships between the parameters

Equation Intercept Slope Dimension Density
number' parameter parameter D coefficient a
9.37 (9.31) a; = log ¢ By=D B 2 - By
9.38 (9.34) a, =log h B=m 1+ B, 1-B.
9.39 (9.33) ay = log & Bz=D-2 2+ B3 B3
9.40 (9.30) oy =log v Ba=¢ 2B, 2(1 - B4

! The first equation number in each row is the number of the log transform of the second
equation number (which is in brackets).
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sion between these parameters, the dimension D and the coefficient «. In
the sequel, all estimates are given to three decimal places.

There are several other methods of estimation which we consider less
reliable than log-linear regression. Mills (1970), Mills and Tan (1980), and
Weiss (1961) all use methods which involve only two values of density or
population given at two different points within the city. For example, if the
density p(R) or the cumulative population N(R) are known at, say, distances
R and Ry, then using equations (9.26) or (9.27) in the two-dimensional case,
the constant and scaling parameters can be found from the solution of two
equations in two unknowns using the Newton-Raphson method (Batty,
1976). There is little work on how reliable these types of estimates are in
comparison with those from regression, but we consider that such methods
are really only appropriate when no more than two observations are avail-
able.

There are, however, two other methods which we will use, the first of
which was introduced in Chapters 7 and 8 and which can only be used if
population data are available on a very fine lattice. Where each occupied
lattice point is the location of a single equal-sized household, then a good
approximation to the density in equation (9.33) is p(R) ~ R”? where the
constant of proportionality is approximately equal to unity. Then for any
distance R from the center, D can be calculated from a log transform of this
equation, given earlier in equation (8.13) which is restated as

_» , log p(R)
D(R) =2 + oK - (8.13)

In earlier chapters we called the graph of D(R) against R the ‘signature” of
the density function. In the vicinity of its origin, D(R) can fluctuate wildly,
but it soon settles down to a characteristic value (D(R) = 1.7 for the case
of a DLA cluster). At the edge of the cluster, the value of the dimension is
also unreliable because this is the area where the city is likely to be
developing most rapidly. Thus the best value of the dimension will be given
at the distance value of the mean density, that is at D{C(R,)}. We have not
yet said anything about the data in the applications which follow, but two
of the four data sets we will use are based on a crude approximation to
the shape of the city using lattice point data which reveals the morphology
of the city in question. This will become clear in the sequel.

The last method is well-known in that it is based on deriving the density
and population model by entropy-maximizing. Formulating the model in
terms of the location of population #; in individual zones i, the model can
be stated as

n=N s , (2 " = N), (9.41)
2 Rp \

where N is the total population in its absolute value (or normalized form
where N = 1). The parameter v in equation (9.41) is found by solving the
model subject to either of the following two constraint equations
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c-3

R; (9.42)

|8

or

Cog =2 -’;\-; log R (9.43)

r

Strictly speaking, equation (9.41) is associated with constraint equation
(9.43) not (9.42); that is, equation (9.41) is derived by maximizing entropy
subject to equation (9.43), thus leading to the derivation of the inverse
power function (Wilson, 1970). In fact, we will fit equation (9.41) by separ-
ately solving for both equation (9.42) and (9.43), thus giving two estimates
of m (and thence of D and a through Table 9.1). We will not concern our-
selves any further with entropy-maximizing except to point out that there
is a strong relationship between entropy, information and fractal dimension
which finds its clearest expression in the derivation of power functions such
as those treated here (Batty and Sikdar, 1982; Takayasu, 1989).

9.7 Applications to Large Cities: the Seoul
Data Base

Seoul was selected for our empirical work because the negative exponential
model has already been fitted to its population density, thus giving us the
opportunity of making some casual comparisons to the inverse power den-
sity models which we will estimate here (Kim, 1985). We also had access
to reasonable population data for the city at three dates 1970, 1977 and 1982
from which we selected the 1982 data for our applications. Moreover, Seoul
is a rapidly growing city, its population increasing from around 5.5 million
in 1970 to almost nine million in 1982, and we consider that cities such as
this one where rapid growth has taken place under few market imperfec-
tions to be ideal testing ground for the ideas introduced here. The basic set
of zones for the 1982 population data are shown in Figure 9.2(a) which are
aggregations of Census tract data. In the analysis, the center of the city was
found using centrographic analysis on the 1982 data (Kim, 1985). Distances
to all other zones were then defined as crow-fly distances from this center
to each individual zone centroid. From this original data set, the zones are
ranked according to distance from the center and these are aggregated in
the given order for estimating three of the four scaling relations.

The second data set used is quite different. The urban form of Seoul taken
from a 1982 cadastral map was defined by placing a 72 x 72 lattice across
the built-up area and coding each lattice point according to whether the
surrounding cell was developed or undeveloped. The size of the lattice
spacing was half a kilometer, and a lattice point was classified as developed
if more than half the surrounding cell was built up. The basic logic behind
this type of coding is that if the lattice spacing is fine enough, the lattice
will detect the location of population in such a manner as to provide a
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Figure 9.2. Zonal and lattice systems for the four data sefs.

detailed morphology of the city. In short, although each lattice point is
assumed to have an identical population density, when aggregated for pur-
poses of analysis into concentric rings say, then the variable density of
population will be detected. This is clearly not the case here where the
lattice is far too coarse; for it to pick up the kind of variation needed, the
spacing should be as fine as 10 m X 10 m. Our gross approximation here is
thus illustrative rather than definitive, and although it does pick up the
morphology and variable density at a crude scale, the results of using this
data set must be interpreted with caution. The coding is shown in Figure
9.2(b).

Two related data sets have also been produced. First, by combining the
measured population in the first 80 zone data set with the morphology
defined by the second, a third data set in which the actual population is
allocated to the points of the lattice can be defined. This is done by over-
laying the zonal structure in Figure 9.2(a) on the morphology in 9.2(b),
associating each lattice point with one of the original 80 zones, and counting
the number of lattice points in each zone. The population in each original
zone is then allocated equally to as many lattice points as there are in the
zone in question. Figure 9.2(c) shows the overlay of the two zoning systems
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which produces the third, noting that the periphery of the city is excluded
from the original urban morphology shown in Figure 9.2(b) due to the fact
that population data is not available for these outer areas. The fourth and
last data set is similar to the second except for the peripheral areas which
have been excluded. This is simply formed by overlaying the first data
set on the second, excluding the peripheral areas, thus forming a reduced
morphology based on lattice spacing. This is shown in Figure 9.2(d).

For the second, third and fourth data sets which are all based in some
way on the lattice morphology, concentric rings can be easily defined at
increasing units of equal distance around the center. In these cases, we have
divided the greatest radial distance to the edge of the city into 25 equal
units on which we have arranged 25 concentric rings. The populations and
related variables for each ring have then been derived by counting the num-
ber of lattice units (and their populations in the case of the third data set)
which fall into each ring. In subsequent analysis, we will refer to these four
data sets as follows; the first data set based on the zones shown in Figure
9.2(a) is called the Zonal System, the second in Figure 9.2(b) the Full Mor-
phology, the third in Figure 9.2(c) the Zonal Morphology, and the fourth
in Figure 9.2(d) the Reduced Morphology.

It is also important to be clear about which estimation method is to be
applied to which data set at this stage. All four scaling relations in equations
(9.31), (9.36), (9.33) and (9.30) will be fitted to all four data sets using the
logarithmic transformations given in equations (9.37) to (9.40). This will
represent our set of baseline estimates for we consider this type of esti-
mation as providing us with the most comprehensive set of estimates. This
will generate four estimates of the dimension D and the density parameter
a for each of the data sets. The estimates based on solving the entropy-
maximizing constraint equations in (9.42) and (9.43) will also be applied to
each of the four data sets. This will provide us with two sets of parameters
D and a derived from m, one for each solution of the appropriate constraint
equation. Finally, the method of calculating D (and hence «) from the signa-
ture given in equation (8.13) is only valid for the Full and Reduced Mor-
phology data sets, the second and fourth, because this requires that the
data be based on equally dense lattice points. This concludes our survey
of the data and we will now embark on presenting the baseline estimates.

9.8 The Density Model Estimates

Throughout the process of fitting the baseline equations in (9.37) to (9.40)
to the four data sets, the analysis was aided by frequent graphical interpret-
ations of the base data, model predictions and residuals. To provide some
sense of the similarities between the data sets, we have plotted the cumulat-
ive population {N;} against the radius {R;} as given in equation (9.37). The
graphs of these data are plotted in Figure 9.3 and show very characteristic
profiles which go some way to indicating that the four data sets are
detecting the rudiments of the urban form and density of Seoul, as well as
being similar to related profiles in other cities (for example, see the exten-
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Figure 9.3. Cumulative population profiles for the four data sets.

sive examples in Bussiere and Stovall, 1981). Using Figure 9.3, if a detailed
analysis is made of the variation in density and population in the vicinity
of the origin and at the edge of the city, it is clear that density is volatile
and shows no characteristic trend in these areas. Population density is
notoriously difficult to model near the center of the city, while at the edge,
the city is growing at its fastest rate, and the density is nowhere close to
the density which will ultimately prevail.

The models therefore should not be applied in these areas; at the center
whatever function is used is likely to be inappropriate, while at the edge,
densities are likely to be too low, and thus the function will underpredict
these. We will use these characteristics to exclude certain observations from
our data set in the results presented below as we did with the simulation
results and the empirical data pertaining to Taunton and Cardiff in Chap-
ters 7 and 8. This is a particularly important issue in modeling population
density, for we must assume that wherever the density function applies,
the city must be in equilibrium. In previous work, this issue has been
entirely ignored for most research has not been cast into an appropriate
dynamic framework which indicates that densities in the areas of the origin
and periphery of a growing city are likely to be subject to rapid change.
The theory of the growing city which we have alluded to here based on
DLA simulations provides a strong rationale for systematically excluding
these areas from our estimation and accordingly, we will proceed by
doing so.

Table 9.2 presents the results of fitting equations (9.37) to (9.40) to the
Zonal System data whose spatial system is subdivided as in Figure 9.2(a).
In the sequel, all parameter estimates from these equations will be con-
verted into their appropriate fractal dimension D using Table 9.1, and the
reader can easily note the density parameter « by calculating it as D - 2.
Table 9.2 shows immediately that the fit of the cumulative populations with
respect to area and radius are much better than those of the incremental
population and the density. This difference has been widely observed in
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Table 9.2. Dimensions associated with the Zonal System data

Number of Population-  Incremental Population Population~
zones radius population density area
9.37) (9.38) (9.39) (9.40)
80 1.765 1.096 1.633 1.504
97.7 00.9 18.9 87.0
77 1.667 1.088 1.490 1.352
less 1-3 28.0 00.5 25.9 84.2
71 1.850 1.203 1.976 1.976
less 72-80 98.5 04.8 02.3 99.3
68 1.758 1.228 1.932 1.914
less 1-3, 72-80 8.9 04.9 23.7 99.4

Note: The statistics shown below each of the estimates of dimension are coefficients of determi-
nation 10072 calculated for each set of dependent and independent variables. These are also
shown in Tables 9.3, 9.4 and 9.5.

the literature and results from aggregating variables, thus reducing their
variance (Muth, 1969). However, our quest is to increase the fit of all four
equations by systematically removing those observations which are most
suspect. To this end, we have first removed the three central zones, then
the nine peripheral zones, and then these central and peripheral zones
together. The fit of all the equations is improved by these exclusions,
although the estimates of dimension for the incremental population equ-
ation (9.38) differ most from the other three whose values are closest to one
another. The best fits occur for all four equations when both the central
and peripheral zones are excluded with the cumulative population-radius
relation giving a dimension value closest to that of the DLA model (1.758
compared to 1.71), with all four of its dimensions for the four variants on
this data set, falling between 1.667 and 1.850. What is extremely encourag-
ing for this data set is that all the dimensions lie between 1 and 2, the range
which suggests that cities do not fill their entire two-dimensional space. As
we will see, our confidence that the ‘true’” dimension of Seoul lies between
1.5 and 1.8 will be progressively increased as we examine each data set.
The second set of data — the Full Morphology — detects the form of the
city, but is based on the assumption that each lattice cell has the same
density of population. These 1300 cells have been aggregated into 25 equ-
ally spaced concentric rings, and the same type of progressive reduction
in the rings used is made in the attempt to exclude the most problematic
observations. The rationale for these exclusions only becomes clear when
the data are plotted, which has been done in every case but is not illustrated
here for lack of space. The results are shown in Table 9.3, and these indicate
once again that it is the incremental population relation in equation (9.38)
which has the lowest fit, and the cumulative population relation (9.37)
which has the best. Of the 24 estimates of dimension given in Table 9.3,
only two of these fall outside the range of 1 < D < 2. The average of all
dimensions in this table is 1.551, and once again, the estimates from this
data set which detect only the form are similar to those in the first set which
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Table 9.3. Dimensions associated with the Full Morphology data

Number of Population-  Incremental ~ Population  Population—
concentric radius population density area
rings (9.37) (9.38) (9.39) (9.40)
25 1.333 0.668 1.593 1.513
97.3 06.2 63.2 95.5
24 1.290 0.148 1.449 1.389
less 1 95.5 25.1 73.9 94.3
15 1.498 1.597 1.835 1.793
less 16-25 99.5 71.3 55.6 99.2
14 1.552 1.384 1.753 1.721
less 1, 16-25 99.2 41.7 65.8 98.8
9 1.529 1.918 1.957 1.943
less 10-25 99.3 98.1 60.1 99.9
8 1.682 1.876 1.940 1.930
less 1, 10-25 99.7 94.8 54.6 99.9

detect only the density. In Table 9.3, the best estimates across all four scaling
equations are given by the data which excludes the 16 peripheral zones.
Perhaps the most consistent data set for the models developed here is
the third — the Zonal Morphology — which combines both density and form
and which is shown in Figure 9.2(c). The results of fitting the four equations
to this set are shown in Table 9.4 where it is clear that all dimensions esti-
mated, with the exception of one, fall between the limits of 1 and 2. As
observations are excluded, the performance of the models increases signifi-
cantly with the best fitting range of estimates achieved when the 15 periph-

Table 9.4. Dimensions associated with the Zonal Morphology data

Number of Population-  Incremental ~ Population  Population-
concentric radius population density area
rings (9.37) (9.38) (9.39) (9.40)
25 1.434 1.048 1.694 1.641
98.4 00.2 68.3 98.1
24 1.477 0.725 1.632 1.597
less 1 97.7 . 04.6 68.1 97.3
13 1.486 1.873 1.846 1.817
less 14-25 98.5 93.7 78.1 99.7
12 1.640 1.941 1.856 1.842
less 1, 14-25 98.9 89.5 59.3 99.4
10 1.416 1.831 1.822 1.780
less 11-25 98.6 92.2 82.2 99.6
9 1.566 1.887 1.810 1.788

less 1, 11-25 98.7 84.6 67.8 99.3
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eral rings are excluded. Here the dimensions vary from 1.416 to 1.822, and
if the central ring is excluded as well, the range narrows to 1.566 to 1.810
with an average of 1.763, again close to our theoretical value of 1.71. The
last data set — the Reduced Morphology, shown in Figure 9.2(d), is simply
the Full Morphology reduced by the exclusion of the periphery. However,
the data are still organized into 25 concentric rings, and as such, this rep-
resents a scaled-up version of the Full Merphology. The model estimates
for the progressive exclusion of rings from this data set are shown in Table
9.5 where all 24 dimensions computed lie between 1.140 and 1.899. The
same sorts of interpretation as in the previous three data sets emerge again
here: the incremental population and density relations show the poorest
fits with the population-area and population-radius the best. The overall
best fit occurs when 11 peripheral rings are excluded, and the average
dimension when the central ring is excluded as well is 1.798.

The range of dimension values computed from these four data sets is
remarkably narrow, with only three values from the 88 estimated falling
outside the range of 1 < D < 2, these values being less than 1 in each case.
This is fairly conclusive evidence that the inverse power density function
when fitted to population density data computed with respect to the urban
field (and not just the residential built-up area) will yield a fractional
dimension between 1 and 2, with the likely value between 1.5 and 1.8. This
also implies that the density parameter should lie between 0.2 and 0.5. We
would argue that if estimates of the inverse power function yield values of
a > 1 or a < 0, the data or the estimation procedure is likely to be suspect,
or the data in question implies an urban morphology which is unusual.
However, before we conclude, we will also present the other two methods
of estimation, the first based on the signature equation in (8.13), the second
on the entropy estimation method relating to equations (9.41) to (9.43).

We are only able to estimate dimensions for the signature of the density

Table 9.5. Dimensions associated with the Reduced Morphology data

Number of Population-  Incremental Population Population-
concentric radius population density area
rings (9.37) (9.38) (9.39) (9.40)
25 1.472 1.330 1.733 1.689
98.8 16.3 76.5 99.1
24 1.545 1.140 1.699 1.673
less 1 98.7 02.3 72.4 98.6
18 1.504 1.724 1.812 1.781
less 19-25 98.6 86.3 83.0 99.7
17 1.663 1.707 1.817 1.800
less 1, 19-25 99.1 76.0 71.1 99.5
14 1.475 1.835 1.823 1.791
less 15-25 98.3 92.7 78.6 99.6
13 1.630 1.899 1.838 1.824

less 1, 15-25 98.7 88.2 59.8 99.3
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for the Full and Reduced Morphologies, the second and fourth data sets as
presented in Figure 9.2(b) and (d). From equation (8.13), we have plotted
the signature D(R) against R and this is shown in Figure 9.4. This signature
relates to the Full Morphology, but as the Reduced Morphology is a subset
of this, the figure is relevant to both. The regional boundaries differ in that
Ry, = 47.424 for the Full, R, = 28.071 for the Reduced, and these are also
indicated in Figure 9.4. At these values of R, the dimension for the Full
system can be calculated as 1.756 in comparison with 1.704 for the Reduced.
However, it is clear from Figure 9.4 that a better value of R to take would
be the mean value C(R,), and these yield dimensions of D{C(Ry)} of 1.845
for C(18.590), the Full data set, in contrast to 1.856 for C(14.185) for the
Reduced set. These estimates are close to and consistent with the regression
estimates in Tables 9.2 to 9.5, and some exploration of the signature in
Figure 9.4 reveals that in the region of the origin, the estimates of dimension
are volatile, although by R =9, these estimates have settled to around D(9)
= 1.85. Clearly the mean values of C(R;) are the most appropriate to use.
Together with the estimates of the simulations using the DLA and DBM
methods in the two previous chapters, these signature functions have pro-
ved to be the most robust methods of estimation.

The entropy estimation also produces well-fitting models with dimension
values which accord to the results so far. These estimations involve solving
equations (9.42) or (9.43) for the parameter n by some non-linear method -
here we use the Newton-Raphson method — then using Table 9.1 to calcu-
late the dimensions D (= 1 + m). Two estimates are made for each of the
four data sets, these estimates being based on solving for the constraint in
equation (9.42), then (9.43). All four data sets with their exclusions as given
previously in Tables 9.2 to 9.5 are used in the estimation, thus giving 44
estimates of D in total. These results are shown in Table 9.6. In this table,
under each dimension valte, we first give the coefficient of determination
(1007%) for the predictions of the incremental population model which is

D (R)
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Figure 9.4. The signature of the full and reduced morphologies.
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Table 9.6. Entropy estimates of the dimension

Zonal system Full Morphology Zonal Morphology Reduced Morphology
No. of Equations No. of Equations No. of Equations No. of Equations
zones (9.42) (9.43) rings (9.42) (9.43) rings (9.42) (9.43) rings (9.42) (9.43)
80 1.132  1.703 25 0.898 0.621 25 1.085 0.822 25 1.245 1.029
01.8 01.9 00.9 00.1 00.8 00.3 08.1 01.7
99.8 99.8 Q4.6 96.5 95.1 96.1 97.6 98.0
77 1.134  1.064 24 0698 0.422 24 0940 0.689 24 1151 0947
01.3 01.4 08.4  04.1 00.2 00.1 027  04.8
99.8 99.8 959 971 95.6 96.4 977  98.1
71 1.188 1.134 15 1.405 1.252 13 1.942 1.973 18 1.640 1.544
03.5 03.6 39.4 44.2 94.3 94.4 66.5 68.2
99.8 99.8 98.7 99.1 99.9 999 99.3 99.4
68 1.199  1.130 14 1.283 1.157 12 1972 1.990 17 1.614 1.152
02.8 02.9 21.7 24.5 93.1 93.1 59.2 60.8
99.8 99.8 98.9 99.2 99.9 99.9 99.3 99.4
9 1870 1.829 10 1.882 1.912 14 1.881 1.870
93.3 93.6 94.3 94.4 90.6 0.6
99.8 99.8 99.9 99.9 99.8 99.8
8 1.838 1.803 9 1910 1.931 13 1903 1.890
90.3 90.5 92.6 93.0 88.4 88.4
99.8 99.8 99.9 99.9 99.8 99.8

Note: the first line of each cell is the fractal dimension, the second line is 1007* for the increment of population, and the third line is
1007* for the cumulative population.

the form in which the model is specified in equation (9.41), and below this,
we give the same coefficient for the population in cumulative form.

The results are similar to those in Tables 9.2 to 9.5 in that the Zonal
System data performs least well. The Full, Zonal and Reduced Morphology
data sets give parameter values and fits which are both good and similar
to one another, and there is a consistent increase in the performance of all
models as zones or rings are progressively excluded from the estimation.
Of the 44 estimates, eight fall below D = 1 and none is greater than 2. As
in previous estimates using regression, the best fits are those obtained when
the most zones or rings are excluded. These results again strengthen our
confidence in various hypotheses that suggest that cities never fill their two-
dimensional space in which they grow, regardless of any vertical growth
into the third dimension which has occurred within the last century, and
that their fractional dimension lies between 1.5 and 1.8. Moreover, if the
models and data sets to which they are applied are correctly specified, it
is easy to give order of magnitude estimates for the density and dimension
parameter values before the analysis begins.

9.9 Fractals and City Size

The theoretical analysis with which we introduced this chapter concen-
trated on the relative advantages and limitations of the two classical func-
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tional forms which have dominated social physics, the negative exponential
which has become the conventional wisdom for representing density and
interaction, and the inverse power which was associated with much early
research. Notwithstanding our view that the inverse power function has
less direct but important properties which have hitherto hardly been
exploited or even recognized, the parameters of both functions reflect the
properties of the space within which such functions are defined. However,
it is clear that the parameters of the inverse power function are direct meas-
ures of the extent to which the phenomena whose density is being meas-
ured, fills the space available, and using arguments from urban allometry,
the link between such functions and fractal geometry can be made. Thus
the function used determines the form of the system being modeled, and
it is in this sense that we say ‘form follows function’.

The empirical work in this chapter in which the inverse power function
has been fitted to population density profiles in the city of Seoul has pro-
duced quite startling results. Although all the theory we have developed
in the last three chapters suggests that cities have a fractional dimension
between 1 and 2, we did not expect our results to be quite so conclusive,
over such a large range of scaling relations and estimation methods. Using
the four data sets and variants of these based on excluding certain obser-
vations, we have provided 136 estimates of the dimension D and density
parameter a. Of these, only 11 fall outside the postulated range 1 < D <
2, and these are all less than 1. If we look at the results based on excluding
the most problematic observations, of the 24 values of the dimension pro-
duced, 21 fall within the range 1.566 to 1.940, thus suggesting that the ‘true’
value of the dimension must be nearer 2 than 1.

However, perhaps the most important value of this analysis is not in
demonstrating the consistency of results produced by both theoretical and
empirical analysis, but in the need to be extremely careful in the way data
are collected and density defined. Strictly, we need data bases in which
every household and household size is recorded in terms of its location
before we can develop any definitive analysis of density which exploits the
fractal model most appropriately. This represents an immense task, but
with better data and data systems becoming available, it is now within the
bounds of feasibility. On both the theoretical and empirical sides of this
argument, we also need to explore the link between entropy, information
and dimension (Takayasu, 1989); for in doing so, we are likely to generate
a clearer picture of the role of the conventional model of population density
based on the negative exponential, as well as exploring further the proper-
ties of the inverse power function. This will also enable us to link our
approach to the mainstream where entropy and utility maximizing are
widely used in the derivation and estimation of spatial economic, urban
and transportation models.

Finally, we need to explore the relationship between city size, fractal
dimension, changing densities and changing form. This implies once again
that we broach directly the question of an appropriate model dynamics
which encompasses processes of fractal growth (and decline), as well as
questions of reversibility. Only in this way will we be able to connect these
ideas to the large body of knowledge originally developed by Clark (1951)
which concerns the changing shape of population density profiles over
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time. If we can make progress here, it may be possible to begin to fashion
a theory of city size, shape and form which enables us to classify cities in
terms of the efficiency and perhaps economy of their form. This will be
the goal of our next and final chapter where we will speculate upon the
groundwork which is required for a fractal theory of city size.



10

Extending the Geometry to
Systems of Fractal Cities

... in the final analysis, fractal methods can serve to analyze any ‘system’, whether
natural or artificial, that decomposes into ‘parts’ articulated in a self-similar fashion,
and such that the properties of the parts are less important than the rules of the
articulation. (Mandelbrot, 1983, p. 114.)

10.1 Articulating Systems of Cities

Throughout most of this book, our concern has been with using fractal
geometry to describe and model the shape and distribution of population
within individual cities. In Chapter 6, we focussed upon treating individual
land uses as fractal objects, and examining how fractal geometry could be
used to infer the dimensional properties of the entire distribution of land
use shapes. In Chapter 1, we alluded to the manner in which the spatial
hierarchy of cities gave rise to a rank-size distribution, but as yet, we have
not explored how this geometry might be extended to entire systems of
cities. This will be the quest of the present chapter. There is of course a
well-worked-out theory of city size known as central place theory which
we referred to in Chapter 1 (Christaller, 1933, 1966) and to which we must
relate our extensions of this geometry. Just as we articulated a city in terms
of a hierarchy of development and free space using the Sierpinski carpet
model in Chapters 2 and 7, it is possible to generate a hierarchy of cities,
beginning with a primate city as generator and then partitioning its hinter-
land or sphere of influence successively, generating a distribution of city
sizes and frequencies from the largest to the smallest. In central place the-
ory, the space of the largest city and its hinterland is first exhaustively
partitioned into a series of equal and lesser-sized hinterlands, which in turn
are subdivided into lower levels of hierarchy, thus generating a size distri-
bution often referred to as the rank-size rule. From considerations relating
to the optimal packing of hinterland shapes, the hexagonal hinterland area
emerges, and in terms of these shapes, a nested set of hexagonal market
areas is the result. Various size distributions can be generated depending
upon the partitioning used, while overlapping hinterlands are also possible
as we illustrated in Chapter 1.

To illustrate this idealized system, assume that the largest hinterland,
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which will be our starting point, has a linear measure L,;. Now let us define
a scaling ratio &, which when applied to the original measure L, generates
a measure of the size of a lower order hinterland L, where k is the order
or rank of the city and its hinterland in question:

Lk = L{] Ex. ' (10.1)

Assume that the hinterland of the largest city associated with k=0 is square,
that is, its field area U = L3, that each successive hinterland associated with
the partitioning is also square, and that its subdivision ratio from level to
level is given as r. Note that this ratio must be positive but less than 1, for
it must yield a smaller measure L, when applied to L;, that is

L;( = Lk-1 T [10.2)
Moreover, through recursion from L, equation (10.2) can be written as
Lk = Lgrk, (10.3)

where it is now clear that &, = r* in equation (10.1).
Because the original hinterland is assumed to be square, the number of
cities and their hinterlands generated by this process is given as

me=[(r") (PO =172, (10.4)
and the area U, of each city hinterland in this grid-based hierarchy is thus
Uk = LE = Lurm‘ = LQHII. (10.5)

A couple of examples illustrate the typical size distribution which can be
generated. If we assume that the original area L, (= 1 unit of measure) is
subdivided into four subspaces at the first level of hierarchy implying that
r=1/2, then the number of cities generated from (10.4) are 1, 4, 16, 64, 256,
and so on, with their associated linear dimensions as 1, 1/2, 1/4,1/8, 1/16
... and their areas as 1, 1/4, 1/16, 1/64, 1/256 . ... If the subdivision were
1/3 as in the Sierpinski carpet (see Chapter 2 or Chapter 7), then the fre-
quency distribution would be 1, 9, 81, 729, 6561, and so on. Of course, it
would be possible to generalize this process using a non-square space such
as the hexagon and also a packing parameter which did not assume square
subdivision, that is generalizing equation (10.4) as n, = r*, where v is a
now parameter of the system in question. But these are details which we
do not have time to pursue here, nor are they essential to our quest.

The most important assumption which we will make, however, relates
to the populations which are associated with this system of generating cit-
ies. We will in fact assume that the population of each city in the hierarchy
is generated within its space using a DLA-like process which assumes that
population N; scales with the linear size of its space L, according to the
fractal dimension D. Using this notation our classic scaling relation which
we have previously specified in equations (2.32), (7.6) and (9.31) is

Ni =L, (10.6)
where 1 < D < 2. Then from equation (10.3) or (10.5)
N = @LErP* = NrP*, (10.7)
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where N, is the population of the primate city in the hierarchy. If we now
note that r can be written as 1/z where z is the number of additional cities
generated from one level of the hierarchy to the next, then

Ni=¢ ok (10.8)
Equation (10.8) can be considered as a generalized rank-size equation in
which population size is solely a function of rank, assuming that the para-
meter D is constant. The only way, however, that we are able to generate
a strict rank-size rule of the form N; = ¢ Ny/k" from equation (10.8) is by
assuming that the fractal dimension D varies with rank, that is that D =
(log k)/k. This implies that as city size increases, the fractal dimension also
increases in value. In turn, this implies that the density parameter a would
decrease in value with city size and this would appear to be mildly consist-
ent with some empirical evidence (Clark, 1951; Mills, 1970; Mogridge, 1984),
although the question remains ill-defined. In fact, although this analysis is
highly suggestive of the way we might connect up central place theory to
fractal geometry and to urban density functions, its implications are well
beyond what we are able to pursue in this book and must await further
sustained research. The analysis, however, is rich with implications for the
way we might begin to fuse intra- and inter-urban theory, theories of what
happens inside the city with those which seek to show how systems of
cities develop. As such, it represents a major direction for future work in
human geography and urban economics.

What we have begun to sketch here is a basis for a preliminary explo-
ration of the relationship between population size and linear dimension
over a system of cities. What we have not yet examined is the possibility
that the fractal dimension might actually vary systematically over this size
distribution for this is something we wish to first test. The city size distri-
butions generated here like those we generated earlier within individual
cities using the Sierpinski carpet model, are based on a top-down approach,
and there are no implications for how cities might actually change their
position within the hierarchy through growth or decline. We will, in fact,
assume that the fractal scaling laws governing the population and its distri-
bution within the individual city, can be extended in a straightforward way
to a system of cities as we have already adopted in equations (10.6) to (10.8)
above. If the traditional rank-size rule were an accurate portrayal of city
size distribution, then this would imply that D would increase in value as
cities grew, but we consider that these speculations are so uncertain and
the models postulated no more than examples of the fractal approach, that
we have confidence in proceeding by assuming the constancy of D.

Before we begin to show how our theoretical model might be tested on
different systems of urban settlements, we need to note its relation to the
concept of allometry which we alluded to in earlier chapters. Allometry,
according to Gould (1966), is used “to designate the differences in pro-
portions correlated with changes in absolute magnitude of the total organ-
ism or of the specific parts under investigation”. More commonly, the term
is used to describe scaling relations between two ‘size’ measures of an
organism or system under study (Mark and Peuker, 1978). One relation
linking perimeter length of an urban boundary to its area was stated in
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Chapter 2 as equation (2.29) and used extensively in Chapter 6. In Chapter
9, the relation between population and the size of its urban field was also
examined in equations (9.30) and (9.31). But a much stricter and more con-
ventional view of the allometric relation between population and its actual
area of occupation will be developed here. From equations (10.6) and (10.7),
it is clear that the area occupied by the population - its development —
must vary with the population itself assuming that the density of occupancy
of the elemental unit is the same, regardless of city size. Thus N, « A, where
A, is the occupied, developed or built-up area. This is the relation that we
will also test in the sequel with a view to determining whether the city
system displays positive or negative allometry, or even isometry. On this
basis we might speculate as to whether cities truly grow into their third
dimension or not.

A related theme in this chapter concerns the measurement of size and
shape, area and density. In particular, we will make a central distinction
between the concepts of the built-up urban area and the urban field,
focussing upon the need to relate the particular measurement in question
to the purpose of the analysis. It is already very clear to us from the litera-
ture on the measurement of urban density reviewed in Chapter 9 that con-
ventional practice is confused, and our confidence in previous empirical
estimates of allometric and other scaling relationships in urban studies is
low. Another theme, but one which is of different import, involves the rep-
resentation of spatial shape and area in computer models and information
systems which are concerned with spatial manipulation, analysis and dis-
play. Thus our models which are based on describing size and shape, also
have some more practical implications for the representation of digital data.

In this chapter then, we will work towards a consistent theory of urban
growth and form in a system of urban settlements, combining allometric
relationships and fractal geometries. We will illustrate our theory with data
on the size, shape and spacing of urban settlements in two case studies: in
the County of Norfolk in the English region of East Anglia, and then in the
whole of the South East region of England where we will explore the extent
to which the growth of the settlement pattern has been constrained by plan-
ning policies, specifically those instruments of early 20th century planning
known as ‘green belts’. We will introduce a standard data base for both
case studies, briefly reviewing the principal means by which urban shapes
and areas are represented through boundaries or ‘envelopes’. We will then
apply the various scaling relationships which we consider of major import-
ance in linking size to shape through dimension, to the urban settlement
system in Norfolk, validating the hypotheses which we will set out in the
next section. We will then present a more refined but more speculative
analysis using the same scaling relations, attempting to classify settlements
according to their various dimensions with a view to determining whether
some settlements have been affected by explicit planning policies in terms
of their size and shape. In this way, we will conclude our introduction to
the fractal city by showing how we might use the geometry presented here
to inquire into the impact of ongoing planning policies and other forms of
public decision-making.
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10.2 Scaling Relations for City Size Distributions

The two basic measures of size which we will use are population and area.
Our task will be to seek relationships between these variables, first by
researching how these variables might best be defined, and second, by
exploring how the scaling model of the previous section might be used to
illuminate the postulated relations. In the rest of this chapter, we will
explore these relations first using data from the pattern of urban settlement
in the English County of Norfolk in the region of East Anglia, and then
with a much wider set of the same data for the whole of South East
England. Associated with the population N; of any urban cluster k, there
might be several definitions of area. Note that as each cluster is of a differ-
ent size, and if these are ordered by population, then the index k, in fact,
is consistent with rank-size.

We will use two distinctive measures of area here: first there is the occu-
pied area called A, which can loosely be defined as the built-up or
developed area, and is likely to covary to an extent with population.
Second, there is the urban field whose area U, can be defined as the hinter-
land immediately associated with the greatest radial extent of the cluster
(Hagerstrand, 1952). This may be the immediate circle of area within which
growth has already taken place, or as in the theoretical model in the pre-
vious section, the square area defined by equation (10.5). There is also a
fourth variable of interest which relates area A; to field size U,, and this is
the urban envelope E; defined as the length of the boundary or perimeter
which marks the greatest extent of the built-up area, and which we used
extensively in Chapters 6 and 7 in our early forays into the geometry of
the fractal city. To provide some meaning to these concepts, we have illus-
trated their spatial definition using the example of the largest town from
our data set, Norwich; these definitions are shown in Figure 10.1.

Figure 10.1(a) shows the built-up urban area whose extent A, is indicated
by the cross hatch, and it is this area that contains the population N;. The
urban field is shown in Figure 10.1(b), and this is the bounding circle based
on the center of the cluster, marked by the maximum radius R, which con-
tains the whole cluster. The area of the cluster is given as U, = wR} and U,
> Ay. The urban envelope is shown in Figure 10.1(c), its length E; being a
measure of both the size and the shape of the cluster. In Figure 10.1(d), the
maximum spanning distance across the cluster — ‘Feret’s diameter’ — was
defined earlier in equation (5.12) (Kaye, 1989b); the length of this span is
defined as F;, and this will be used later in estimating and approximating
the radius R,. Note that in the sequel, we will use the radius R, in preference
to the linear measure L, introduced earlier. We will examine two types of
relationship between these variables, first relating population N to area A,
and to field radius R,, second relating the length of the envelope E; to
these same variables. These types of relationship are central to allometry
or ‘relative size’ relationships (Gould, 1966), and by relating size and length
to area, this enables us to explore questions of density. In this way, we are
able once again to relate our work to the mainstream literature on urban
allometry (Dutton, 1973) which we have already introduced in Chapters 7
to 9 in the study of urban population density and form. Here, however, our
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Figure 10.1. Definitions of urban areq, field, envelope and radius.

use of allometric relations will be more conventional, with our emphasis on
fitting such relations to sets of different sized objects ~ towns and cities in
this case, in contrast to our previous use of these relations for examining
changes in the size of the individual city.

The classic allometric relation we will begin with involves the relation-
ship between population size N, and occupied area A; which we can
write as

N, = yAR = yAL/2, (10.9)

v is a constant of proportionality and B is a scaling constant. In equation
(10.9), we have also written B as A/2 where A can be interpreted as a
‘dimension’ of the occupied area, scaling the radius R; of such an area (R
= A}l/?) to population. The use of this convention will become clear in the
sequel when all the scaling parameters have been introduced. As we
pointed out in Chapter 9, there is obviously a strong relationship between
population and area, although the precise form of the scaling is problem-
atic. Nordbeck (1965, 1971) suggests that the scaling constant B should be
3/2 using the argument that population growth takes place in three dimen-
sions; thus if R, = A}/? is taken as the linear size of area, then N; =
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YR} = yA}/%. This hypothesis is borne out in an analysis of the urban popu-
lation of Sweden in 1960 and 1965 (Nordbeck, 1971). Results from urban
density theory also suggest that as cities get bigger, their average density
increases but the empirical evidence on this is mixed and is much compli-
cated by the definitions of urban area used (see Muth, 1969). However,
Woldenberg (1973) shows quite unequivocally that B = 1 from an analysis
of two large population-area data sets for American cities.

In the case of the scaling model introduced earlier, it is clear that the
area occupied by the population N, varies as the population itself. This
point was also made in equation (7.7) where the same analysis was applied
to the individual city. For the growing fractal, the area of each occupied
cell is assumed to be identical, say £ thus the total urban area is A, = N,&>.
In short, the population density N;/A; = &7 is constant regardless of scale
or the stage reached in the growth process. In summary then, we might
expect the empirical relation between N, and A, to be of the simplest kind —-
perfect scaling — with both the theoretical model and much empirical evi-
dence suggesting that B = 1 and A = 2.

With respect to the urban field, the scaling between N, and U is more
complicated. As cities grow, their field becomes correspondingly larger,
growing at a more than proportionate rate, and in the case of very large
cities, the urban field is often considered to be global. This implies that as
cities grow, their field density N,/ U, always decreases. As in previous chap-
ters, it is more appropriate to represent the field area U, in terms of its
radius R, = U}/2. Thus the field relationship can be stated as

N, = ¢RP = UP/2. (10.10)

¢ is a constant of proportionality and D is the scaling constant, the fractal
dimension which will be less than 2 but always greater than 1 as can be seen
from Figure 10.1(b). In terms of the idealized central place theory model of
the previous section, equation (10.10) is equivalent to equation (10.6) and
this is the basic scaling relation linking population to the size of its city
which we used earlier in equations (2.32), (7.6) and (9.31).

Relationships between the length E; of the bounding envelope of urban
development and the area A; and field radius R, will also be explored here.
It is important to note that the bounding envelope is not the perimeter of
the cluster in that any undeveloped interior of the cluster is not detected
by the envelope (see Figure 10.1(a) and (b)). In fact, the perimeter of a DLA
cluster varies directly with its population as we indicated in Chapter 7 (see
equation (7.7)). As the envelope defines the outer edge of the cluster, it is
likely to be smoother and less circuitous than the perimeter, and this sug-
gests that any measure of the fractal dimension of such a line is likely to
be less than the fractal dimension of the cluster. In the case of the urban
area A;, we can relate the envelope to the assumed radius R, = A}/ of
occupied area, giving

Ey=[AY =LA}Y?, (10.11)
while for the field radius, a similar relation is postulated:

E.=vRP, (10.12)
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where w, hence 8 in equation (10.11) and D in equation (10.12) can be
regarded as ‘dimensions’ with { and v as constants of proportionality.

Before we summarize the relationships which we seek to validate empiri-
cally, it is worth noting the theoretical bounds within which our analysis
will take place. It is clear that cities with a variety of forms of development
from the linear to the compact circular are consistent with the theoretical
model we outlined in the first section. In the case of the completely compact
cluster, its occupied area and its field are coincident with N, = yA, = oU,
« wRE and with A = D = 2. The growing zone at the edge of the cluster is
the same as the perimeter, and this is defined as the derivative of N, with
respect to radius Ry, that is dN,/dR; « 7R,. The envelope is also the per-
imeter in this case with E; = {A}? = vR, * mR, and & = D = 1. In the case
where the cluster is linear N, = yA}/2 = pU}/? « wR, and A = D = 1, while
the derivative of N, does not provide the formula for the perimeter, just
the growing zone which is always a point of zero dimension, implying in
this case that 3 = D = 0. In the case of a real urban cluster which does
not completely fill its available space, area, perimeter and envelope can be
approximated by space-filling lines which suggest that all the dimensions
of significance — A, D, D, and & — will be between 1 and 2. The only examples
we are aware of where the dimensions of urban envelopes have been esti-
mated are those we illustrated in Chapters 5 and 6 which yielded values
between about 1.1 and 1.5, in contrast to those for the population-radius
relations which from Table 7.1 lie between about 1.5 and 1.9.

Pulling all these threads together, we will hypothesize that the four
dimensions associated with the four scaling relationships given in equations
(10.9) to (10.12) should be ordered as 1 < D < & < D < A, where D,
8 = 1.26, D = 1.71 and A = 2. The constants associated with these four
relationships can be estimated from regressions of their log-linearized
forms. We will refer to these relationships as being of allometric or DLA
(diffusion-limited aggregation) type, involving independent variables of
occupied area or urban field. The log-linearized forms of equations (10.9)
to (10.12) are given as

log N, =log vy + B log Ay, (A =2B), (10.13)
log N, =log ¢ + D log Ry, (10.14)
log E; =log { + w log Ay, (8 = 2w), (10.15)
log E,=log v + D log R;. (10.16)

Equations (10.13) to (10.16) will be those whose parameters will be esti-
mated in the sequel and used to establish the consistency between the form
of the urban settlement systems in Norfolk, and in South East England, and
the theoretical allometric and DLA relationships outlined in this and the
previous section.

10.3 The Representation of Urban Areas

We have already focussed upon some of the difficulties of measuring the
relationship between the size and form of urban settlements. Early work
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on the size relations within settlement systems was necessarily restricted
by the quality of the measures of the precise extent and population size of
constituent areas. Naroll and von Bertalanffy (1956) attributed much of the
variation in international urban-rural population ratios to differing national
definitions of ‘urbanity” and the differing areal extent of data collection
units which together comprise urban areas. Newling (1966) encountered
problems of the changing areal basis of data collection in his study of the
evolution of intra-urban population density gradients over time. And as
we have noted, Woldenberg (1973) obtained some quite radically different
estimates of population-size relations in his cross-sectional study of the US
settlement system, which depended upon his use of one or other of two
atlases to source his urban area measurements. In the face of such vagaries
and inconsistencies, it is scarcely surprising that the nature of the theoretical
relationship between size and spatial form remains obscure. We have
already begun to clarify some of these issues in earlier sections, and our
empirical analysis which follows is designed to cast further light on these
questions.

The causes of these discrepancies and sources of possible measurement
errors are increasingly understood, and the routine innovation of digital
databases holds the prospect of greater precision in the delineation of urban
areas and monitoring of the areal impacts of change (Shepherd and
Congdon, 1990). But nevertheless, there remains cause for concern that even
in the data-rich environment of the 1990s, the effects of different measure-
ments of areal units will go undetected in spatial analysis. Moreover, there
exist acute definitional difficulties with respect to what is and what is not
unambiguously ‘urban’, and the distance threshold beyond which outlying
urban parcels should be classified as physically (and possibly, by extension,
functionally) separate from main urban areas. Our own investigations in
the examples used throughout this book using comparable boundary data
recorded at different spatial scales, but based upon slightly different digitiz-
ing criteria, suggest that areal discrepancies of the order of 20% to 30% are
likely to be quite common for most settlement sizes. Taken together, this
makes it difficult to assess precisely how marginal increments in population
lead to changed boundaries of urban forms through the process of
accretion, and there is a clear need to develop stronger links between
measurement and theory.

In this context however, all our data are represented in the theoretically
more accurate vector mode. The data source used in both the Norfolk and
South East England examples, is the Office of Population Census Statistics
(OPCS) urban areas data base (OPCS, 1984) in which urban areas are
defined as follows: land on which permanent structures are situated; trans-
portation corridors (roads, railways and canals) which have built-up sites
on one or both sides, or which link built-up sites which are less than 50 m
apart; transportation features such as railway yards, motorway service
areas, car parks as well as operational airfields and airports; mineral work-
ings and quarries, and any area completely surrounded by built-up sites.
The areas were identified using the 1:10,560 Ordnance Survey series in con-
junction with Population Census Enumeration District (ED) base maps.
These maps were used to ascertain which areas of urban land contained
four or more EDs, and on this basis, these qualified as urban areas.
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Population figures from EDs which had 50% or more of their population
within an urban area were included in the population total for that area.
Further general information and details of the treatment of small areas of
population and discontiguous urban land can be found in OPCS (1984).
These boundaries were then reduced to the 1:50,000 scale and computer
digitized to an accuracy of 0.5 mm permitting inaccuracies of up to 250 m
on the ground. Our first case study uses data for the County of Norfolk,
our second for the 13 counties composing the standard region of South East
England, both of which have been extracted from this source.

10.4 Initial Analysis of the Norfolk Settlement
Pattern

The data comprise 86 distinct urban settlements from populations as small
as 45 to the major county town of Norwich which has about 186,000 people.
The pattern and form of these urban settlements are shown in Figure 10.2.
We have already alluded to the difficulty of defining and adhering to defi-
nitions of urban land which are both unambiguous and appropriate to any
specific task, and it is likely that the original decision by OPCS to include
some of the smallest settlements was in practice an arbitrary one. We antici-
pate that the population and area of these smallest settlements would not
closely correspond to any empirical regularities extant elsewhere in the data
set, as a result of disproportionate errors in the measurement of their popu-
lations and bounding envelopes. Settlements whose form is dominated by
transportation infrastructure are also likely to be ‘unusual’ in both geo-
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Figure 10.2. The pattern of urban settlement in Norfolk.
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Figure 10.3. The population-area relation for the Norfolk settlement
system.

metrical and population terms, with such settlements primarily, but not
exclusively, small in size and scale.

Our theory posits that population and area covary in a systematic way,
and thus our preliminary analysis began by assessing whether this was
indeed the case. Figure 10.3 illustrates the relationship between population
and urban area for the entire Norfolk settlement system. This figure depicts
an unambiguous relationship across most of the range of settlement areas,
although this relationship breaks down amongst the 15 smaller settlements.
These settlements are shown in Figure 10.3 by the solid circles. Several
related criteria were used for their exclusion: all 15 settlements are those
which have less than 50 digitized pairs of coordinates defining their urban
areas, thus making computation of their fractal dimensions unreliable using
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Figure 10.4. The cumulative distribution of fractal dimensions.
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the Richardson (1961) ‘walking dividers’ method. These settlements were
also amongst the smallest in terms of population and area, and are mainly
located on the edge of the region. Some are cut by the regional boundary,
hence form only parts of settlements, thus requiring their exclusion from
the data set.

It is reasonable to anticipate this on a priori grounds since the form of
small settlements is likely to be dominated by the transport network rather
than by density-size relations. Although there is visual evidence to suggest
that a different relationship holds for these smaller settlements, we never-
theless simply disregarded them in our subsequent analysis since our focus
is upon the growth of settlements which might be unambiguously
described as ‘urban’. We can also note that the dominant population-area
relation only appears to establish itself above a rough area threshold and
thus suggests that this is a consequence of the dominant impact of transport
infrastructure beneath this threshold. The single other settlement whose
shape is unquestionably distorted by transport infrastructure is Marham
Airfield. This ‘settlement’ has large area but low population and thus con-
stitutes an outlier to the main relationship: as such it too was removed from
the subsequent analysis which was based on the remaining 70 settlements.

We initially computed fractal dimensions for each of these 70 settlements.
Calculation of such dimensions is now an established diagnostic for ident-
ifying the structure and character of digitized curves (Muller, 1986, 1987).
The fractal dimensions of each individual settlement were first computed
using the “structured walk’ algorithm based on Richardson’s (1961) method
of spanning each digitized curve at different scales and calculating their
associated lengths. This algorithm which we first outlined in Chapter 5,
entails measurement of the boundary envelope of each area at a range of
successively finer scales, thus yielding correspondingly increased length
measurements as more and more detail on the base curve is picked up. The
range of scaled measurements obtained for each parcel was set at between
half the mean digitizing intensity for that parcel and one-half of Feret’s
diameter, the maximum spanning distance between any two points on the
digitized base curve (Kaye, 1989a), shown earlier in Figure 10.1(d) for Nor-
wich. Regression analysis was then performed on the paired envelope-scale
length points to establish whether the envelope is indeed fractal from the
value of its (fractal) dimension. In Chapters 6 and 7, we found that the
structured walk method is the most reliable and robust procedure for com-
puting such dimensions.

Figure 10.4 illustrates the distribution of fractal dimensions for the subset
of 70 settlements, in terms of their cumulative frequency, also indicating
the fractal dimension of the west coast of Britain (D =~ 1.26) for comparison
(Richardson, 1961). The mean value of our settlements is rather lower at
1.148 with a standard deviation of 0.059 and this would appear to reflect
the less intricate nature of man-made boundaries. These dimensional
measurements are not directly comparable with the other measurements
reported below due to the fact that our subsequent analysis is based on
computing fractal dimensions using the set of 70 settlements as obser-
vations of the changing size of the fractal city, not scale changes derived
by aggregating curves for individual settlements.

However, the dimensions reported here are likely to have the same order
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of magnitude as those we will compute in the next sections for the envel-
ope-area and envelope-field relations, and these, as we argued earlier, will
be less than those which we will compute from the population-area and
population-field relations. This is a consequence of the different ways in
which the urban boundary is represented as an envelope rather than a per-
imeter, and strikes at the heart of the argument as to which ‘development’
should be included in analyses of urban density. The urban envelopes
which make up the OPCS data base each include urban areas which never-
theless have zero population density through space occupied by industrial,
commercial or educational land uses, by transport infrastructure or by pub-
lic open space. By contrast, fine resolution raster representations of urban
areas maintain ‘holes’ of unoccupied land within the outermost urban
boundary. This explains why analysis of vectorized urban envelopes yields
lower fractal dimensions, although the measurements will remain internally
consistent between settlements. Moreover, when we examine the distri-
bution of the individual fractal dimensions computed here, there is no real
evidence of any spatial patterning, suggesting that boundary geometry
alone is not a sufficiently strong criterion to enable classification of urban
form.

10.5 Estimates of Allometric and Fractal Dimension
in Norfolk

Central to the assessment of urban shape and form is the notion that the
growth of urban areas is fuelled by the functions that each area performs
in relation to the rest of the urban system. As we noted earlier, established
thinking on the nature of urban densities has paid scant attention either to
the juxtapositioning of settlements or to the relationship between popu-
lation growth and boundary shape. However, the development of analogies
between growth through diffusion-limited aggregation (DLA) and pro-
cesses of urban development offers some prospect for understanding how
urban forms and densities evolve within a clearly-specified pattern, whilst
investigation of envelope-area relations may reveal how growth occurs at
the margins of settlements. Thus both may be seen to complement those
more established allometric approaches which reduce form to a simple area
measure; hence our approach may contribute towards a more sensitive and
comprehensive treatment of urban population size and form.

Our present empirical analysis is restricted in the degree to which the
artifacts of urban growth can be clearly identified. We have already defined
the set of urban area data {A,} through the digitized envelope data {E;} in
the OPCS urban areas data set, and population {N,} is also a part of this
data set. However, with respect to our DLA analogies, we do not have data
on the field area Uy or the radius R, ( = YU). In the absence of information
as to where the historical “seed” of each settlement is likely to lie, we can
calculate a crude approximation to its radius, using Feret’s diameter (Fy)
shown in Figure 10.1(d) for Norwich; this enables us to devise a rudimen-
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tary ‘field’ for each of the settlements, and a ‘radius’ R which is taken as
F/2. A further problem is that the rate of urban growth is likely to be
uneven at different places around our envelopes, and it remains to be seen
whether any signals attributable to characteristic growth patterns might be
detectable from aggregate measures of the structure and character of the
entire set of boundaries. To provide some indication of the way the urban
area data set {A} relates to the calculated field areas {U,}, Figure 10.5 illus-
trates that the relationship between built-up area and field across the range
of settlement sizes is quite erratic, although there is a low positive corre-
lation as might be expected. What Figure 10.5 does show, however, is that
urban fields are everywhere much larger than urban areas, thus indicating
that none of the settlements in the data set is compact, and that all must
be irregular, possibly dendritic, and thus fractal in some sense.

In our empirical analysis of the Norfolk data set, we will examine the
four sets of relations identified previously. These are: the population-urban
area relation based on equation (10.9) in accordance with established allo-
metric analysis; the population-radius relation based on equation (10.10)
in analogy with urban forms generated by DLA; the envelope-area relation
based on equation (10.11) which enables us to identify whether there is any
detectable evidence that boundaries are characteristic of growth processes;
and the envelope-radius relation based on equation (10.12) to identify
whether the boundaries of the settlements can be related to fractal growth.
Figure 10.6 illustrates each of these relations for the 70 settlements based
on logarithmic transforms of the data as implied by equations (10.13) to
(10.16), and we have fitted regression lines to the scatters shown in Figure
10.6. The results are shown in Table 10.1.

These results generally confirm our a priori expectations. The dimension
A of the allometric population-urban area relationship is 2.085, close
enough to our hypothesized value of 2 to suggest that density is more or
less constant with settlement size. Our analysis was carried out for a smaller
range of settlement size than previous analyses, and the implication of this

" Log field area (In U)

Figure 10.5. The relation between urban area and urban field.
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Table 10.1. Estimated dimensions for 70 urban settlements

Statistic Population- Population- Envelope— Envelope-
area radius area _radius
A=2 D=17 8~1.3 D=1.2

Slope

coefficient 1.043 1.738 0.613 1.152

4 20.3 76.1 85.7 Q1.5

Dimension 2.085 1.738 1.227 1.152

Note: in this and subsequent tables in this chapter, the r* statistic is the coefficient of determi-
nation which gives the percentage of the covariation explained by the relationship.

finding is to reinforce the simple scaling hypothesis based on an area-area
relation found by Woldenberg (1973) and Dutton (1973), rather than the
area-volume hypothesis argued by Nordbeck (1971). The r* statistic sug-
gests a high global goodness-of-fit, although the high degree of potential
leverage exerted by the three largest settlements is a potential source of
uncertainty. The dimension estimated from the population-radius analysis
is very close to that of a classic DLA structure with D = 1.738, and this is
an encouraging result, particularly in view of the crudity of the approxi-
mation to settlement radius. However, the level of overall statistical fit is
lower, with only 76% of the variance explained, and high potential leverage
effects can again be detected from Figure 10.6(b). Both of the envelope
analyses produced high fitting estimates of their dimensions with & = 1.227
and D = 1.152. It is interesting to note that the average dimension of the
individual settlement dimensions computed by applying Richardson’s
(1961) method to the envelopes of each settlement discussed earlier, was
1.148, and this compares quite favorably with the value of D which is its
closest comparator.

Although these results are most encouraging, confirming our initial
hypotheses and demonstrating, at least to us, the value of prior theoretical
analysis in establishing such hypotheses, we are also concerned to identify
whether or not our results can be disaggregated and generalized to subsets
of settlements of different sizes and in different locations. Accordingly, we
carried out two further sets of analyses on the data. First, the two largest
outlying settlements representing Norwich and King’s Lynn in the graphs
of Figure 10.6 were removed from the data set, first individually and then
together. In a statistical sense, this was carried out in order to verify that
the high potential leverage effect of these observations was not exerted too
strongly against the dominant trend in the data points. In a theoretical
sense, this was also important in so far as all of the size and area relations
confirm that these two settlements are the most important in the study area,
and thus that they might exhibit different relations between density and
form. The results of this analysis are shown in Table 10.2(a)-(c). The r?
statistics shown there are consistently lower than the corresponding values
in Table 10.1, indicating that the major settlements accord with the general
trend in the rest of the data. With the exception of the envelope-urban area
relation, all of the analyses which exclude Norwich and/or King’s Lynn
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Table 10.2. Estimated dimensions of the urban settlements excluding the
largest towns

Statistic Population-  Population- Envelope- Envelope—
area radius area radius
A=2 D=1.7 8=~1.3 D=1.2

(a) Excluding Norwich

Slope

coefficient 1.024 1.603 0.624 1.125
r 87.4 71.7 82.6 89.9
Dimension 2.048 1.603 1.247 1.125
(b) Excluding King's Lynn

Slope

coefficient 1.038 1.698 0.616 1.146
P 89.4 74.5 84.7 90.9
Dimension 2.075 1.698 1.233 1.146
(c) Excluding Norwich and King's

Lynn

Slope

coefficient 1.014 1.541 0.629 1.115
I 85.7 69.3 81.0 89.1
Dimension 2.029 1.541 1.259 1.115

produce lower fractal dimensions, suggesting that the global figure is
boosted by the particularly tentacular structure of these two settlements.

The second set of disaggregate analyses considered the relations within
several subsets of settlements defined a priori. Three classes were identified:
two regions were delineated around the hinterlands of Norwich and King's
Lynn, whilst a third was drawn to embrace all of the settlements along the
coast. Settlements which did not clearly fall into any of these categories
were omitted. This regionalization is shown in Figure 10.7. The rationale
for the first two functional regionalizations was twofold: first, to identify
whether the settlements within two more broadly-defined urban fields,
approximating the sphere of influence of each of the two largest settle-
ments, shared common characteristics; and, second, to make a first attempt
at identifying common characteristics between them. The results shown in
Table 10.3(a)—(c) suggest that although the Norwich region appears to gen-
erate higher dimensions than the King's Lynn area and the full set of 70
settlements (Table 10.1), no startling differences emerge.

The rationale for separating out the coastal region was to identify how
the constraining impact of the sea restricts the shape and form of the settle-
ments. All of the four dimensions — A, D, 8 and D — will fall in value if the
space within which any settlement can grow is restricted. This is an obvious
consequence of constraining the geometry and this effect has been clearly
demonstrated by the simulated urban growth patterns using DLA pre-
sented in Chapter 8. In fact, this effect can be seen in Table 10.3 for the
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Figure 10.7. Regionalization of the Norfolk setlement pattern.

Table 10.3. Estimated dimensions for three regionalizations of the urban
seftlement pattern

Statistic Population- Population- Envelope- Envelope-
area radius area _radivs
A=2 D=17 5=1.3 D=1.2

{a) Norwich region

Slope

coefficient 1.040 1.980 0.601 1.300
r 96.3 83.9 86.5 97.2
Dimension 2.080 1.980 1.202 1.300
(b) King’s Lynn region

Slope

coefficient 1.010 1.750 0.623 1.260
P 94.0 74.4 %0.4 97.6
Dimension 2.020 1.750 1.246 1.260
(c) Coastal region .

Slope

coefficient 1.010 1.630 0.634 1.030
P : 75.4 72.3 90.8 - 879

Diiaitiol 2.020 1.630 1.268 1.030
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DLA dimension associated with the form of the Norfolk coastal settlements.
The slightly higher dimension of the envelope-area relation reflects
increased concentration of growth upon the inland portion of each of the
settlements, although the dimension of the envelope-radius relation is
lower, reflecting the restrictions upon the growth field. From Tables 10.2
and 10.3, it is also significant that it is the DLA dimension D which shows
the greatest sensitivity to our regionalization varying from 1.603 to 1.980,
in contrast to the other three dimensions where the range of variation is
much narrower.

10.6 Constraining Urban Form Through Green Belts

A major problem which we have in one sense avoided, apart from in our
theoretical simulations in Chapter 8, concerns the effect of geometric con-
straints on the city system; these involve the extent to which space is filled,
the density of development, and the parameter values of the scaling
relations. Clearly, ceferis paribus, the less space available, the lower the frac-
tal dimension, and this is especially clear when we consider cities that
develop in coastal regions or in areas where a major part of their hinterland
or field is constrained from development. However, notwithstanding the
problems of assessing these effects, we can turn these problems to our
advantage in exploring the impact which known constraints might have
had on the development of cities. A particularly important constraint on
the form of the city system in Britain has been the impact of planning poli-
cies which have sought to constrain and inhibit development around major
cities during the last 60 years. The most explicit policy instrument used to
effect these policies has been the ‘Green Belt’, and using our scaling analy-
sis, we will now attempt to measure this impact.

The idea of a ‘Green Belt’ of open land encircling a major city and
embracing both small and medium-sized settlements located in the hinter-
land of a ‘core’ city is one of the main philosophical and practical under-
pinnings of the British Town and Country Planning system (Ravetz, 1980).
As such, both the idea and the practice of Green Belts as a planning policy
instrument have been debated and implemented most extensively in
relation to the Metropolitan Green Belt (MGB), an annular tract of land
now extending for between 2540 km in width around the Greater London
conurbation. Not unnaturally, given both its scale and importance and the
nature of the development pressures upon it, the MGB has, over the years,
been the subject of considerable research. Attention has been focussed on
such matters as the distribution of land uses within it, its impact on land
prices within urban areas, the function it performs in terms of human activi-
ties and who gains and who loses from its continued existence (Hall ef al.,
1973; Munton, 1983; Elson, 1986; Evans, 1989).

Although the origins of the MGB (and indeed of Green Belts generally)
can be traced to the Garden City Movement pioneered by Ebenezer Howard
(1898, 1965) and the more conceptually based work of Raymond Unwin for
the Greater London Regional Planning Committee (1927-36), the main post-
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war impetus for the implementation of a complete cordon sanitaire around
London came from Sir Patrick Abercrombie’s 1944 Greater London Plan
(Abercrombie, 1945). This had the multiple aims of stopping the outward
growth of London itself, preserving open land for agriculture and rec-
reation and preventing the coalescence of towns contained within it. In 1946
the multiplicity of aims contained within Abercrombie’s Green Belt pro-
posals were accepted by central government, although the over-riding
objective was, and continues to be, to contain the growth of urban areas
(Elson, 1986). The broader policy was to be effected through the develop-
ment plan provisions of the Town and Country Planning Act 1947, and its
proposals were implemented with a certain enthusiasm by the seven county
planning authorities surrounding London (Mandelker, 1962). The present
extent of the MGB was basically established in the Structure Plans of the
mid-1970s (SERPLAN, 1976) and although there were four main categories
of Green Belt in operational terms (i.e. originally submitted and approved,
approved extensions, extensions with interim approval and areas where
Green Belt controls were operated with central government acceptance), to
all intents and purposes broadly similar restraint measures became operat-
ive over the whole MGB area (Elson, 1986).

The context and the means for containing growth was set out in two
circulars issued by the Ministry of Housing and Local Government in 1955
and 1957. The first established the objectives of Green Belt controls. These
were: to check the further growth of a large built-up area; to prevent
neighboring towns from merging into one another; and to preserve the
special character of a town (MHLG, 1955). From this point on, therefore,
the statutory support for operating development controls within Green
Belts rested ultimately on concerns about urban form (and, working
indirectly through form on urban functions) and not on the preservation -
of urban land for agriculture or recreation (Elson, 1986). The second circular
(MHLG, 1957) introduced, among other things, the concept of ‘white land’
parcels between the town and the Green Belt which would not be
developed in the contemporary plan period but which could be developed
later without prejudice to the strategic and local objectives of a Green Belt.
Thus whilst the objective of Green Belt planning was to be the control of
urban form, there was also scope for some locally declared policy which
might, in the longer term, result in a changed settlement pattern (Elson,
1986).

We might anticipate that this dual strategy of central direction about aims
and local autonomy about means has had an impact upon the nature and
form of settlements, yet this is a subject which has never yet been rese-
arched in anything but superficially descriptive terms. The only extensive
studies of the impact of Green Belts upon urban form are those carried out
by Elson and his colleagues, and these show that, for a very small number
of settlements, the provision of ‘white land’ on the periphery of settlements
was indeed a significant local determinant of change in the pattern of urban
land uses (Elson, 1986). Clearly, however, there is a need for a more broadly
based and systematic empirical analysis of the impact of physical planning
controls such as Green Belts on the form of urban settlements.

In this chapter, we will make a first attempt to address this issue, using
the Office of Population Censuses and Surveys (OPCS) urban areas data-
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base (OPCS, 1984) which we used for the Norfolk example. Using again
the four scaling relations based on the allometric and fractal growth of a
system of cities and given earlier in equations (10.9) to (10.12), we will
consider the degree to which the form and density of urban settlements has
been influenced by Green Belt designation, and we will attempt to discern
apparent variations in the spatial manifestations of what is first and fore-
most a national development policy. To this end, we will develop a straight-
forward analysis of the physical extent of urban areas in South East England
and attempt to interpret shapes and forms with respect to the presence or
absence of direct Green Belt Policy on their development. We will also draw
some general conclusions as to the prospects for devising more coherent
settlement classification systems which incorporate quantitative measures
of shape, dimension and density. Our analysis thus seeks to link our new
measures of urban shape and form to the practical consequences of policies
which seek to mold and constrain urban development. It is in this sense
that our analysis is preliminary, and thus represents only a starting point
for a broader research agenda.

In defining the impact of physical planning policies, particularly those
involving restricting urban development using instruments such as Green
Belts, it is essential to evaluate their effects by examining the extent to
which the physical form of development departs from the ‘norm’. In this
quest, we need to define urban form not only in terms of the size of devel-
opment but also in terms of its shape. This is important because policy
instruments such as New Towns and Green Belts have often been
implemented in terms of idealized forms such as those characterizing the
British New Towns and Garden Cities. But a rigorous study of the size and
shape of urban settlements, however, is in its infancy. Despite the emphasis
in land use planning upon controlling and influencing the size and shape
of towns, most work has hitherto been cast in a somewhat idealistic mold,
reflecting a fascination with form and shape for its own sake rather than
as a consequence of the processes and decisions which condition the spread
of urban settlement.

We are now in a position to make clear our strategy for the analysis of
the impacts of Green Belts on urban form using scaling relations. In essence,
what we will do is compute these measures for different classes of settle-
ment, each of which is classified according to the policy instruments which
have been applied in the control of their development. As we do not have
parameter values of the four relationships for a given baseline, we will also
be concerned with estimating the parameters of this baseline. In short, we
need to develop the following estimates of values associated with the entire
data set of settlements, the values associated with those settlements which
are unlikely to have been affected by Green Belt Policy, and then those that
have been so affected. It is thus the differences in parameter values between
these various-sets that we will be focussing upon. Before we present these,
it is worth noting that the analysis could be inconclusive if our estimates
of the values associated with the control baseline - the set of settlements
not affected by policy instruments — are not significant or imply a poor
performance of the model relationships. The same might be true of other
sets of estimates, and thus there is always the possibility that our
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assessment of impact will be dwarfed by poor performance or contradictory
results from the various estimations.

Before we develop the analysis, we must explain briefly the data set
which we will present in the same way as we did the Norfolk data. A
subset of the OPCS data base pertaining to all of the urban areas in the
South East England planning region is shown in Figure 10.8, and it is useful
to compare this to Bracken’s (1993) visualization illustrated in Plate 7.1.
Although the largest urban areas (notably London) are broken down into
boroughs and districts in the original data set, these administrative div-
isions have been removed for purposes of our analysis. What remains for
these largest settlements is a number of large polygons which describe the
bounding envelopes of contiguous urban development. We recognized at
the outset of our analysis that our posited relationships between settlement
populations and the shapes of urban areas are unlikely to hold over the
entire range of settlement sizes. Specifically, the geometry of those smallest
settlements which comprise a mere handful of inhabited buildings are likely
to be dominated by the intersection of transport links, and thus will reflect
the nature of the local and regional transport network rather than the intrin-
sic characteristics of growing settlements per se. As previously, the smallest
settlements in the data base were thus deemed irrelevant in terms of both
population size and areal extent, and thus removed.

[M South East region boundary
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)
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| N OPCS defined 1981 urban areas
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Figure 10.8. Urban areas in South East England.
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Figure 10.9 illustrates this for the relationship between population and
area in the whole digitized settlement system of the South East. There is a
reasonably clear break in the dominant relationship amongst the very
smallest settlements, and although we have estimated empirical relation-
ships using the entire data set (Table 10.4), these results are neither statisti-
cally efficient nor theoretically coherent. In the bulk of our analysis, we
have adopted the practice of excluding all settlements whose form was
encoded using 15 or fewer digitized points, since such settlements were
deemed too small for our specific purposes. This amounts to a fairly minor
amendment of the Department of the Environment definition of ‘urban’
land use and reduced our data set from the original 701 observations to
686 settlements.

Since the historical center point of each urban area is not digitized as
part of the data set, we have approximated the settlement radius as being
equal to half of the spanning distance joining the two widest spaced digit-
ized points on the settlement boundary (that is, half the Feret diameter). A
further complication in the data set is that the population figures for the
urban areas are not assigned to all of the individual parcels which together
comprise a single named settlement. This means that exact population fig-
ures cannot be attributed to approximately 60 settlements. In practice, this
was resolved by allocating population to physically split named settlements
in direct proportion to the area of the constituent parcels. This does not
affect the weighting of such parcels in our regressions, although if such
named settlements are outliers to the main scatter of points, this does result
in the appearance of a parallel scatter of points about the main trend in the
data, as is clearly seen in Figure 10.9.

10.7 The Impact of Green Belts Using Scaling
Relations

Figure 10.10(a)—(d) illustrates each of the logarithmically transformed sca-
ling relations given in equations (10.13) to (10.16) for the 686 settlements
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Figure 10.9. The population—area relation for the entire South East
England settlement system.
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Figure 10.10. Allometric and DLA relations for the usable settlement system.

which were captured with 16 or more coordinate pairs. The results of fitting
regressions to the scatters shown in Figure 10.10 are given in Table 10.4,
and the 95% confidence intervals about the dimensional estimates are
reproduced in diagrammatic form in Figure 10.11(a)-(d). In interpreting
these results, we will also draw comparisons with our previous empirical
study of the settlement structure of Norfolk. It was recognized at the outset
that no region of England even approximates the isotropic surface on
which, for example, central place theory is developed, although Norfolk
was chosen for our first analysis because of the comparative homogeneity
of its terrain and the absence of abnormal planning restrictions upon
urban growth.

The results of our analyses of the South East England data generally con-
form to our a priori expectations. There are evident differences in the para-
meter and dimensional estimates between the analyses embracing all (701)
settlements and those (686) settlements comprising 16 or more coordinate
pairs. In the cases of the population—area, population-radius and envelope-
area relations, these differences are statistically significant. The classic
population-area relationship has dimension 2.046, which is quite close to
(although, at conventional confidence levels, just above) the widely mooted
value of 2. We made a similar finding in our Norfolk study, where a similar
degree of overall statistical fit (r?, corrected for degrees of freedom) was
discerned. This general consistency between study areas is encouraging,
particularly in view of the inclusion of London as an observation. London
clearly constitutes a high potential leverage point in the analysis, although
it is theoretically suspect to exclude the observation purely on grounds of
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Table 10.4. Estimated dimensions for setflements in the South East region’

Statistic Population- Population- Envelope- Envelope-
area radius area _radius
A=2 D=1.7 8=13 D=1.2

(a) All setilements (701)

Slope

coefficient 0.808 1.569 0.619 1.258
P 75.6 70.8 93.1 95.6
Dimension 1.616 1.569 1.238 1.258

(b} All usable settlements (686)

Slope

coefficient 1.023 1.872 0.645 1.271
P 89.0 79.0 91.1 93.9
Dimension 2.046 1.872 1.290 1.271

(c) Outside the Green Belt (389)

Slope

coefficient 1.047 1.868 0.635 1.236
r 89.1 77.6 89.8 93.0
Dimension 2.093 1.868 1.271 1.236
(d) Partly in the Green Belt (15)

Slope

coefficient 1.083 1.890 0.719 1.317
P 94.1 84.3 92.9 92.4
Dimension 2.167 1.890 1.439 1.317

(e) Within the Green Belt (237)

Slope

coefficient 0.994 1.875 0.663 1.323
r 93.7 86.0 3.3 5.8
Dimension 1.988 1.875 1.326 1.323

In Tables 10.4 to 10.6, data pertaining to settlements that lie within or astride the Oxford and
the Southampton Green Belt boundaries have been omitted from the analyses. The number
in parentheses after the analysis label is the number of settlements in that category.

size, since the impact of the Green Belt is likely to be most significant along
and around the boundary of this area. In practice, however, this potential
leverage transpires not to be against the trend in the rest of the data, and
an exploratory analysis carried out with this dominant central settlement
excluded, yielded results which were neither more consistent in substantive
terms nor were significantly improved in terms of statistical fit.

The result of the population-radius regression yields a significantly
higher dimension than was anticipated on a priori grounds, suggesting that
settlements in the South East fill more of their urban fields than does the
classic space-filling diffusion-limited aggregation model. This was not the
case in any of our previous studies in which the DLA structure provided
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Figure 10.11. Confidence intervals about the dimension estimates (a)
population-area; (b) population-radius; (c) envelope-areq; (d) envelope-
radius.

a plausible theoretical baseline model, and may be taken to imply that
pressures conspire to encourage the development of more intricate settle-
ment forms within the urban fields of settlements in this region. The purely
geometrical analyses yield values consistent with our expectations, and
high levels of statistical fit characterize these relationships.

As the next step, the South East settlements were divided into three
groups according to their position relative to the Greater London Green
Belt: those (237) settlements which lay entirely within it; those (389) that
lay entirely outside of it; and those (15) that lay astride the boundary. The
South East region includes two other Green Belts, centered upon Oxford
and Southampton. For purposes of our present analyses, it was considered
that these Green Belts were different in spatial and temporal terms from
the London Green Belt, and thus settlements that lay either within or astride
the Oxford and Southampton Green Belt boundaries were omitted from
our analysis at this stage. This classification is shown in Figure 10.12. The
results of separate regression analyses upon these subareas are shown in
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Figure 10.12. The Green Belt status of settlements in South East England.

Table 10.4 and Figure 10.11. There is no significant difference between the
estimated dimensions for the population-area relation, although the wider
confidence intervals and the lower r* value for the extra-Green Belt settle-
ments are indicative of greater variation in the effects of forces governing
this relation. The lower estimated dimension for the population-area
relation for the intra-Green Belt settlements is indicative of a dispro-
portionately small increase in area amongst larger Green Belt settlements,
although the global level of statistical fit is insufficient to confirm an
unequivocal difference.

Neither are clear distinctions apparent when considering the population—
radius relationship. Here, the estimated dimension and the extent of the
confidence limits are remarkably similar for all of the settlement classes,
although the modified * statistic suggests greater heterogeneity amongst
the extra-Green Belt settlements. Regarding the envelope-area relation,
there is very limited evidence to suggest that the larger settlements which
straddle the Green Belt boundary exhibit disproportionate increases in
boundary length, and this might be indicative of contortions in urban form
consequent upon differential planning restrictions. However, largely
because of the small number of observations, no statistically significant dif-
ferences are apparent. Significant differences do, however, exist, between
the envelope-radius relations for extra- versus intra-Green Belt settlements.
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The intra-Green Belt dimensional estimate is higher, suggesting that these
settlements are more circular and compact than those outside.

These, then, are our preliminary attempts to utilize detailed vectorized
boundary data in order to gauge the general spatial impact of an important
component of spatial policy. Of course, this discussion presumes that settle-
ment shapes in South East England would be free to evolve in an uncon-
strained manner in the absence of Green Belt planning policy. The spirit of
our approach is to assume that the multitude of other factors which con-
spire to mold urban form (terrain, fluvial features, land ownership patterns,
etc.) do not obscure the central impact of this strict planning control. One
of the most obvious and important confounding influences is that of the
coast, which clearly has constrained the shape, form and density of many
settlements in our study region. Consequently, a separate set of analyses
were carried out in which the coastal settlements illustrated in Figure 10.13
were excluded. The results are presented in Table 10.5, and show that there
exist some minor differences in dimensional estimates and confidence inter-
vals and that the previously significant difference between the ‘partly in’
and ‘outside’ dimensional estimates for the envelope-area relation disap-
pears. The results nevertheless show the same broad relationships as ident-
ified in Table 10.4, and the maintenance of the population-radius differ-

A South East region boundary
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Figure 10.13. Coastal settlements excluded from the analysis.
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Table 10.5. Estimated dimensions for setflements in the South East region
excluding coastal settlements

Statistic Population-  Population— Envelope- Envelope-
area radius area _radius
A=2 D=17 =13 D=1.2

(a) All usable settlements (592)

Slope

coefficient 0.998 1.836 0.645 1.289
r 88.0 77.6 20.3 93.9
Dimension 1.996 1.836 1.290 1.289

(b) Outside the Green Belt

Slope

coefficient 0.996 1.744 0.628 1.250
? 84.4 69.8 86.1 92.3
Dimension 1.992 1.744 1.256 1.250

(c) Partly in the Green Belt (8)

Slope

coefficient 1.005 2.270 0.650 1.486
r 96.5 93.9 92.6 Q2.6
Dimension 2.010 2.270 1.300 1.486

(d) Within the Green Belt (222)

Slope

coefficient 0.997 1.903 0.661 1.323
P 94.2 87.2 4.0 95.8
Dimension 1.995 1.903 1.321 1.323

ences suggests that the distorting impact of the sea is less than that
generated by Green Belt planning policy.

In a final series of analyses, we have begun to investigate whether our
empirical settlement relations vary between County Planning Authorities.
It is conceivable that, over half a century, different County Planning Auth-
orities have evolved consistently different interpretations of Green Belt Pol-
icy. Our four relations were thus estimated for each of the 13 county div-
isions within the South East Region (see Figure 10.14), although the small
number of usable observations for a few of these counties leads to quite
wide confidence intervals. In the case of Greater London, the four relations
were estimated for each of 36 administrative divisions of the area, and so
these results are not strictly comparable with those of the other counties.
The results of this county-based analysis are reproduced in Table 10.6 and
Figure 10.15. There are no evident significant differences amongst the popu-
lation-area and population-radius results, suggesting that population
pressures across different counties have not had the effect of distorting
regional population density norms.

However, there is evidence that the settlement geometry differs between
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Figure 10.14. County divisions in South East England.

individual counties. First, the envelope-area relation suggests that bound-
ing envelopes are significantly shorter for a given settlement area in
Oxfordshire and Hertfordshire than in any of Kent, Surrey, Greater London
and (for the case of Oxfordshire only) Berkshire. The envelope-area
relations for these two counties are also significantly smaller than the esti-
mates derived from the complete set of (686) settlements (Table 10.4). This
can be seen as indicative that growth has been contained within more com-
pact areas in these two counties. The envelope-radius relation for Oxford-
shire also exhibits a significantly lower dimensional estimate than for the
set of all settlements and than for the individual counties of Berkshire,
Essex, Hertfordshire, Kent, Surrey and Greater London, suggesting that
growth in Oxfordshire has been contained within more compact areas than
has been the case in these other counties. A significant difference in the
envelope-area relation also exists between Buckinghamshire and Surrey.

10.8 An Unfinished Agenda

So far we have identified statistical differences between the various sub-
groupings of settlements based on the implementation of Green Belt
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Table 10.6 Estimated dimensions for the County-based settlement analysis

Statistic Population-  Population- Envelope— Envelope-
area radius area radius
A=2 D=1.7 8=1.3 D=1.2

(a) Bedfordshire {33)

Slope

coefficient 0.854 1.564 0.622 1.208
r 64.3 57.7 93.7 95.2
Dimension 1.709 1.564 1.244 1.208
(b) Berkshire (41)

Slope

coefficient 1.027 1.908 0.663 1.272
r 95.0 90.3 94.7 96.0
Dimension 2.055 1.908 1.327 1.272
(c) Buckinghamshire (51)

Slope

coefficient 0.995 1.733 0.644 1.205
[ 96.1 87.4 20.6 95.2
Dimension 1.989 1.733 1.289 1.205
(d) East Sussex (29)

Slope

coefficient 1.150 1.971 0.595 1.187
r 94.8 72.8 84.8 89.5
Dimension 2.300 1.971 1.190 1.187
(e) Essex (87)

Slope

coefficient 1.046 1.891 0.648 1.277
r 91.2 78.5 1.7 3.9
Dimension 2.092 1.891 1.296 1.277
(f) Greater London (42)

Slope

coefficient 1.011 1.993 0.683 1.376
r 98.4 94.7 96.4 96.9
Dimension 2.022 1.993 1.367 1.376
(g) Hampshire (96)

Slope

coefficient 1.072 1.986 0.629 1.269
r 84.1 73.5 89.7 93.1
Dimension 2.144 1.986 1.258 1.269
(h) Hertfordshire {40)

Slope

coefficient 1.040 2.192 0.577 1.311
& 97.5 87.0 90.6 94.4

Dimension 2.079 2.192 1.153 1.311
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Table 10.6. Continued

Statistic Population—  Population- Envelope- Envelope-
area radius area radius
A=2 D=1.7 5=~1.3 D=1.2

(i) Isle of Wight (13)

Slope

coefficient 1.097 1.643 0.637 1.053
I 0.7 66.5 86.8 79.4
Dimension 2.194 1.643 1.273 1.053
(i) Kent (93)

Slope

coefficient 0.995 1.759 0.694 1.343
r 85.4 72.5 90.5 92.4
Dimension 1.990 1.759 1.388 1.343
(k) Oxfordshire (56)

Slope

coefficient 0.931 1.748 0.530 1.089
r~ 78.1 69.1 84.8 90.3
Dimension 1.861 1.748 1.060 1.089
(I) Surrey (40)

Slope

coefficient 0.965 1.756 0.705 1.389
r 93.7 81.7 93.1 95.5
Dimension 1.929 1.756 1.410 1.389
(m) West Sussex (46)

Slope

coefficient 1.124 1.914 0.644 1.202
P 90.5 777 90.2 93.5
Dimension 2.248 1.914 1.287 1.202

policies, geometrical constraints such as those posed by the coastline, and
administrative differences in the operation of planning policies, but we
have not commented on the substantive differences which our analysis has
revealed. In a priori terms, we might expect that where Green Belt Policy
is rigidly enforced, this would constrain the form of settlement and devel-
opment, and in turn would make the boundaries of such settlement more
irregular in contrast to development not so constrained. However, such
constraints also imply that the amount of space in the field about such
settlements would be reduced by Green Belt Policy. This implies that the
value of D associated with the population—field relation would be less than
that for the unconstrained growth, while the value of D for the constrained
case would be greater than for the unconstrained case. In fact, these hypo-
thesized values are borne out in Table 10.4, although the variance in the
parameters of the Green Belt affected settlements is much greater than the
unconstrained set of settlements. In the case of the population-area relation,
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the parameter of the constrained case is just less than 2, while for the uncon-
strained it is a little greater than 2. The same degree of difference is borne
out in the envelope-area parameter values. In the case of the county-based
analysis, there is very wide variation between the purely geometrical
dimensions, whereas population-based relations are more stable across
counties. This suggests the paramount importance of form in the implemen-
tation of planning policy. What is clear is that it is geometrical relations
which exhibit the greatest diversity, and that such relations should be incor-
porated into classifications of settlements vis-i-vis planning policy. More
detailed interpretations are possible, but these must await further research
and analysis and more meaningful classifications of settlements with
respect to both morphology and planning policy.

In this chapter, we have been content simply to develop descriptive meas-
ures of settlement form based on standard methods of scaling and dimen-
sionality which underpin the study of morphology, through allometry and
fractal geometry. We have not implied, in any sense, that settlement forms
which are characterized by particular dimensions indicating their density
and space-filling properties, provide any indicator of their optimality or
efficiency. In fact, one of the most controversial issues in the study of urban
form has been over questions of whether very different forms such as linear
versus concentric, high versus low density, radial versus grid, are more
optimal than one another. For example, from the point of view of transport
accessibility, indices can be derived which show that these various forms
all embody some ideal attributes of such accessibility. Questions of optimal
urban form from the point of view of energy use also provide contradictory
conclusions depending upon what measures are constructed. Moreover in
this context, it could be argued that Green Belt Policy has both increased
the journey to work at a cost but increased access to the countryside as a
benefit, and so on and so forth. In future studies, we might address these
issues, but we feel that at this point that we have at least provided a rich
source of suggestions which might condition future research, which
involves a reworking and extension of the ideas presented here.



Conclusions

Insofar as the statements of geometry speak about reality, they are not certain, and
insofar as they are certain, they do not speak about reality. (Einstein, 1921, p. 3.)

Fractal geometry has emerged in direct response to the need for better
mathematical descriptions of reality, and there is little doubt that it pro-
vides a powerful tool for interpreting and rendering natural systems. Yet
in its wake has come, once again, the realization that all knowledge is con-
tingent upon its context in time and space, that good theory is relative to
what we already have and have had before, thus reminding us of Einstein’s
(1921) thoughts on the limitations of any geometry, indeed of all mathemat-
ics. Although extending our abilities to model both natural and artificial
systems, fractals impress even further upon us the inherent complexity and
uncertainty of the world we live in. In this sense, one kind of uncertainty —
that involving the inapplicability of Euclidean geometry to many real sys-
tems — has been replaced with another — a more appropriate geometry for
simulating reality, but one which is based on the notion that reality itself
has infinite complexity in the geometric sense.

In this conclusion, we will attempt to pull the diverse threads which
we have woven in this book together, and suggest directions in which the
application of fractal geometry to cities as well as the theory of the fractal
city might develop. Throughout, we have made many suggestions and
identified many problems, all of these being worthy of further research,
and we will not attempt to list these again. What we will do, is summarize
the theory as it has emerged here, thus providing readers with both a sense
of closure as well as some directions in which we feel this work should be
taken further. In one sense, we can see this book in two parts: first in the
early chapters, we presented the rudiments of fractal geometry and mildly
suggested ways in which it might pertain to the physical form or mor-
phology of cities. In the second part, from Chapter 5 onwards, we argued
that the city itself is fractal and the new geometry the obvious medium for
its measurement and simulation. In this second part, we also drew a major
distinction between fractals as applied to single cities and to systems of
cities, to intra-urban and to inter-urban spatial structure. But our exposition
has been mainly from the standpoint of fractals as they are applicable to
cities, and not the other way around. Perhaps it is time to change and
rework the edifice of urban spatial theory, noting the ways in which fractals
arise naturally and spontaneously, once we now have this new geometry
in place. This has not been our quest here, but doubtless in time, the map
will be completed in this way by others.
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We are now able to provide a reasonably coherent summary of the ways
in which fractal geometry is applicable to cities in general, urban growth
and form in particular, but before we do so, a word about dimension. The
concepts of Euclidean dimension are so deeply ingrained that we use them
and will continue to do so as a shorthand to describe the magnitude and
complexity of many systems of interest. For example, notwithstanding the
fact that we now know that the dimension of any real system is fractional,
we still refer to it as existing in n dimensions where 7 is an integer (usually
the integral part of the fractal dimension). This is important here in that
we can articulate cities as having properties that can still be measured as
points, lines, areas and volumes, from zero to three dimensions, or even
beyond if our geometry is one that results from urban processes which can
be visualized in mathematical space. However, in this context, most of our
ideas are based on conceiving of the city as sets of lines and areas, and
thus our geometry is based upon one and two dimensions, not zero or
three, although there are arguments which suggest that cities might be tre-
ated as points or volumes, thus composing fruitful extensions to the new
geometry.

The way we have represented the geometry of the city has been central
to our analysis. In essence, cities are conceived as filling two-dimensional
space, as sets of connected points and lines which form areas, less than the
entire space in which they might exist but more than simply the straight
line; their fractal dimensions must therefore fall between one and two. It
was only in Chapter 7 that we began to treat cities in this way for we
first introduced a simplification to the geometry, approximating areas as
boundaries which we dealt with in Chapters 5 and 6. In short, we proposed
that a growth model for the city based on diffusion-limited aggregation
(DLA) with a dimension D =~ 1.71, represents an idealized model of the
way in which urban space is filled, while a simplified form for the boundary
of the space filled was based on the Koch curve with a dimension D =
1.26. We did not provide a rigorous link between DLA and the Koch curve,
but we did present sufficient examples to show that the dimensions of idea-
lized and real boundaries are less in value than those for the entire cities
from which they are formed.

In developing fractal geometry, we introduced two methods for deriving
dimensions, the first based on changing the scale over which an object is
measured, the second based on changing its size. We mainly used the first
method for urban boundaries although it can be used for areas (Batty and
Xie, 1994), whereas the second method is appropriate to systems where we
can grow the city into the space which it fills. In another sense, our distinc-
tion between boundaries and areas filled is one between treating the city
in static as opposed to dynamic terms, the Koch model being a static model
of the way scale is varied, the DLA model being a dynamic one where the
object is grown by varying its size. The relations between the object, the city,
and scale and size are generally the same in that population N, measured by
the number of elements composing the urban boundary or space filled, is
related to scale r or size R through power laws involving the fractal dimen-
sion D. All subsequent analysis flows from these premises.

The critical relations for boundaries relate number of elements and their
length to scale but there are few substantive implications for urban theory.
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For growing cities, however, the link to urban theory is much stronger and
more suggestive. Population as a function of linear size is easily generaliz-
able to area which is at the basis of allometry, the study of relative size,
while once area is invoked, density can be defined. This relates the entire
analysis to mainstream urban economics where classic density profiles for
cities are outcomes of diverse market clearing processes based on the con-
ventional micro-economic behavior of the land market. In short, the key
relations for the city which involve fractal dimension, relate population and
its density to linear size and area, these relations being structured in
incremental or cumulative form. Moreover, we showed in Chapter 9 that
these relations appear to have greater rationale than those used tradition-
ally, and what is more, that the whole approach shows how careful one
must be in defining and measuring densities. One conclusion is that much
of the work on urban density theory and its applications over the last 40
years should be reworked in the light of these developments.

There are many extensions to this geometry which we have pondered
since we began this work. The obvious one which we have explored in part
elsewhere, involves growing cities based on more than one seed or center,
that is moving from a monocentric to a multicentric context. We explored
the influence of two cities planted from separate seeds growing towards
one another, thus forming a larger urban aggregate in terms of the conse-
quent mixing of dimensions (Fotheringham, Batty and Longley, 1989), but
we barely touched the surface of these ideas, and there is all still to be
done. We have also begun to explore DLA in three dimensions, and to
speculate on what a three-dimensional urban fractal might be like, but so
far, we have not had the resources to pursue this line of attack to any
conclusion. We have explored many modifications to the growth processes
in DLA-like models which give rise to different urban forms, hence fractal
dimensions, we have mixed processes and dimensions, and we have con-
sidered ways in which our growth models might incorporate reversibility.
However, we have but scratched the tip of an iceberg, and to extract even
the smallest kernel of knowledge which will advance our understanding
of urban form, there is an enormous research program to initiate.

Extending fractal geometry to systems of cities is comparatively straight-
forward. Hints have been provided in Chapters 1 and 10, but a thorough
analysis is yet to be attempted. We have shown how the central place hier-
archy is fractal as evidenced by the rank-size distribution, and we have
speculated that population densities must fall, and fractal dimensions
increase as cities move up their hierarchy. But we have not shown how
this possibility is consistent with the growth of the single city and its size;
for the analysis of a single growing city implies nothing about the way
cities might grow and compete within a hierarchy. In this book, our analysis
has been largely confined to the single city, to intra-urban spatial structure,
and extensions to systems of cities must therefore be high on any
research agenda.

We began this book by examining visual perceptions of urban form, the
traditional starting point for understanding the city. Indeed, our initial for-
ays into the geometry of cities were in terms of how we might render their
form through data and models so that we might generate more realistic
and more communicable pictures using computer graphics. This somewhat
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serendipitous approach (which incidentally has been largely responsible for
the general awakening of interest in fractals) did, however, introduce the
idea that computers are laboratories for visualizing urban form, with great
potential to enhance our understanding as well as to communicate complex
ideas in manageable form. Throughout, we have been intent upon
developing computer models which can ultimately be used, in such labora-
tory settings, to visualize different urban forms, with very different degrees
of realism and prospects for realization. Now we have come to the end,
we must admit that our models are still highly simplistic, yet do contain
the rudiments of reasonable explanation, particularly those which we exam-
ined in Chapter 8.

The question some will ask is whether or not these ideas have any rel-
evance for real policy making and planning. The answer we must give is,
of course, contingent upon context, but we would argue that these ideas
are as relevant in thinking about current urban problems such as energy,
transportation, spatial polarization and segregation, planning control and
so on as those currently advocated. But they are certainly less accessible,
although our quest has been to make them a little more so and computer
graphics is central to this. What fractal geometry does establish is that cities
like most other real systems manifest a myriad of infinite complexity and
this must change our responses to urban planning which have hitherto been
simplistic and unrealistic, to say the least. Barnsley (1988a) who we quoted
at the beginning of this book, says that “Fractal geometry will make you
see everything differently”, but it also changes our perceptions concerning
the certainty of the reality and how we might manipulate it. There is now
renewed hope that we might be able to forge a more conclusive link
between the physical form of cities and the various social, economic and
institutional processes that are central to their functioning.
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