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Preface

Nonsmooth variational problems have their origin in the study of nondiffer-
entiable energy functionals, and they arise as necessary conditions of critical
points of such functionals. In this way, variational inequalities are related with
convex energy or potential functionals, whereas the new class of hemivaria-
tional inequalities arise in the study of nonconvex potential functionals that
are, in general, merely locally Lipschitz. The foundation of variational inequal-
ities is from Fichera, Lions, and Stampacchia, and it dates back to the 1960s.
Hemivariational inequalities were first introduced by Panagiotopoulos about
two decades ago and are closely related with the development of the new con-
cept of Clarke’s generalized gradient. By using this new type of inequalities,
Panagiotopoulos was able to solve various open questions in mechanics and
engineering.

This book focuses on nonsmooth variational problems not necessarily re-
lated with some potential or energy functional, which arise, e.g., in the study
of boundary value problems with nonsmooth data and/or nonsmooth con-
straints such as multivalued elliptic problems with multifunctions of Clarke’s
subgradient type, variational inequalities, hemivariational inequalities, and
their corresponding evolutionary counterparts. The main purpose is to pro-
vide a systematic and unified exposition of comparison principles based on
a suitably extended sub-supersolution method. This method manifests as an
effective and flexible technique to obtain existence and comparison results
of solutions. Moreover, it can be employed for the investigation of various
qualitative properties such as location, multiplicity, and extremality of solu-
tions. In the treatment of the problems under consideration, a wide range of
methods and techniques from nonlinear and nonsmooth analysis are applied;
a brief outline of which has been provided in a preliminary chapter to make
the book self-contained. The book is an outgrowth of the authors’ research on
the subject during the past 10 years. A great deal of the material presented
here has been obtained only in recent years and appears for the first time in
book form.



vi Preface

The materials presented in our book are accessible to graduate students
in mathematical and physical sciences, researchers in pure and applied math-
ematics, physics, mechanics, and engineering.

It is our pleasure to acknowledge a debt of gratitude to Dr. Viorica Motre-
anu for her competent and dedicated help during the preparation of this book
at its various stages. Finally, the authors are grateful to the very professional
editorial staff of Springer, particularly to Ana Bozicevic and Vaishali Damle
for their effective and productive collaboration.

Halle Siegfried Carl
Rolla Vy K. Le
Perpignan Dumitru Motreanu
September 2005
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1

Introduction

A powerful and fruitful tool for proving existence and comparison results for
a wide range of nonlinear elliptic and parabolic boundary value problems is
the method of sub- and supersolutions.

In one of its simplest forms, this method is a consequence of the classic
maximum principle for sub- and superharmonic functions that can be seen in
the following classic example. Consider the homogeneous Dirichlet boundary
value problem

−Δu = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, f : Ω → R is

some given smooth function, and assume the existence of a classic subsolution
u and supersolution ū of (1.1), i.e., u, ū ∈ C2(Ω) ∩ C(Ω) satisfying

−Δu ≤ f in Ω, u ≤ 0 on ∂Ω, (1.2)
−Δū ≥ f in Ω, ū ≥ 0 on ∂Ω. (1.3)

Then w = u−ū is readily seen as a subharmonic function inΩ with nonpositive
boundary values, i.e.,

−Δw ≤ 0 in Ω, w ≤ 0 on ∂Ω, (1.4)

and thus, by the classic maximum principle (see [187]), it follows that w ≤ 0
in Ω, i.e., u ≤ ū in Ω. Moreover, because any solution u of (1.1) satisfies both
(1.2) and (1.3), it must be at the same time a subsolution and a supersolution
of (1.1), which implies the unique solvability of the Dirichlet problem (1.1).
Thus, in view of the maximum principle, any pair of sub-supersolutions of
(1.1) must be ordered, and the solution u of (1.1) must be unique and must
be contained in the ordered interval [u, ū]. In this way, the maximum principle
enables us to obtain a priori bounds for the solution of problem (1.1). Also,
an immediate consequence of the maximum principle is the order-preserving
property of solutions of (1.1), which means that if u1 and u2 are the solutions
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of (1.1) corresponding to right-hand sides f1 and f2, respectively, satisfying
f1 ≤ f2, then u1 ≤ u2 in Ω.

Unfortunately, maximum principles do not hold in many nonlinear elliptic
problems written in the abstract form

Au = f in Ω, Bu = 0 on ∂Ω. (1.5)

However, if u and ū are appropriate (weak) sub- and supersolutions of (1.5)
satisfying, in addition, u ≤ ū, then (weak) solutions of (1.5) (not necessarily
unique) exist within the interval [u, ū] formed by the ordered pair of sub- and
supersolutions. It is basically this property that we will refer to as a compari-
son principle for the problems under consideration. For example, consider the
following prototype of (1.5):

−Δpu+ g(u) = f in Ω, u = 0 on ∂Ω, (1.6)

where Δpu = div (|∇u|p−2∇u) is the p-Laplacian, 1 < p <∞, f ∈ Lq(Ω) with
q being the Hölder conjugate to p satisfying 1/p + 1/q = 1, and g : R → R

is a continuous function with some growth condition. As is well known, in
general, problem (1.6) does not admit classic solutions, and therefore, it has
to be treated within the framework of weak solutions. Let V = W 1,p(Ω) and
V0 =W 1,p

0 (Ω) denote the usual Sobolev spaces with their dual spaces V ∗ and
V ∗

0 , respectively, then a weak solution of the Dirichlet problem (1.6) is defined
as follows:

u ∈ V0 : −Δpu+ g(u) = f in V ∗
0 , (1.7)

where due to the continuous embedding Lq(Ω) ⊂ V ∗
0 , f has to be interpreted

as a dual element of V ∗
0 . As Au = −Δpu + g(u) defines a bounded and

continuous mapping from V0 into V ∗
0 , (1.7) provides an appropriate functional

analytic framework for the boundary value problem (1.6), which is equivalent
with the following variational equation:

u ∈ V0 : 〈−Δpu+ g(u), ϕ〉 = 〈f, ϕ〉 for all ϕ ∈ V0, (1.8)

where 〈·, ·〉 denotes the duality pairing. It follows from standard integration
by parts that the variational equation (1.8) is equivalent to

u ∈ V0 :
∫

Ω

|∇u|p−2∇u∇ϕdx+
∫

Ω

g(u)ϕdx = 〈f, ϕ〉 for all ϕ ∈ V0.

(1.9)

A natural extension of the classic notion of sub- and supersolution to the weak
formulation (1.7) of the boundary value problem (1.6) is defined as follows.
The function ū ∈ V is a weak supersolution of (1.7) if

ū ≥ 0 on ∂Ω and −Δpū+ g(ū) ≥ f in V ∗
0 , (1.10)
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where the inequality in V ∗
0 has to be taken with respect to the dual-order cone

V ∗
0,+ of V ∗

0 , defined by

V ∗
0,+ = {u∗ ∈ V ∗

0 : 〈u∗, ϕ〉 ≥ 0 for all ϕ ∈ V0 ∩ Lp
+(Ω)},

where Lp
+(Ω) is the positive cone of all nonnegative elements of Lp(Ω) by

which the natural partial ordering of functions in Lp(Ω) is defined. Due to
(1.10), we obtain the following well-known equivalent definition of a weak
supersolution of (1.7). The function ū ∈ V is a weak supersolution if ū ≥ 0
on ∂Ω and∫

Ω

|∇ū|p−2∇ū∇ϕdx+
∫

Ω

g(ū)ϕdx ≥ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω).

(1.11)

Similarly, u ∈ V is a weak subsolution of (1.7) if u ≤ 0 on ∂Ω and∫
Ω

|∇u|p−2∇u∇ϕdx+
∫

Ω

g(u)ϕdx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω).

(1.12)

Comparison principles for solutions of nonlinear elliptic and parabolic varia-
tional equations including the special case (1.7) are well known and can be
found, e.g., in the monographs [43, 66, 83]. Thus, we have, e.g., if u and ū
are sub- and supersolutions of (1.7), respectively, and if u ≤ ū, then solutions
exist within the ordered interval [u, ū]. Moreover, the solution set S enclosed
by an ordered pair of sub- and supersolutions can be shown to be compact and
to possess greatest and smallest elements with respect to the natural partial
ordering of functions induced by the order cone Lp

+(Ω). A review and detailed
proofs of these results will be given in Chap. 3.

The existence and comparison results along with the topological and order
related characterization of the solution set S obtained for nonlinear elliptic
and parabolic variational equations generalize the following elementary result
on the real line R. Consider the real equation

F (u) = 0, u ∈ R, (1.13)

and assume that:

(i) The function F : R → R is continuous.
(ii) s, s̄ ∈ R satisfying s ≤ s̄ exist such that F (s) ≤ 0 and F (s̄) ≥ 0.

Then solutions of (1.13) exist within the real interval [s, s̄], and the set of all
solutions of (1.13) is closed and bounded and, thus, compact. Moreover, the
solution set has a greatest and smallest element s∗ and s∗, respectively (see
Fig. 1.1).

This classic existence and enclosure result follows from the intermediate
value theorem for continuous functions, whereas the existence of greatest and
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Fig. 1.1. Sub-supersolution

smallest solutions is an immediate consequence of the order property of the
real line R, which, speaking in abstract terms, is a completely ordered Banach
space.

Now the results above concerning (weak) solutions of the nonlinear prob-
lem (1.6) nicely fit into this elementary picture. Let F : V0 → V ∗

0 be defined
by

F (u) = −Δpu+ g(u) − f.

Then the equivalent elliptic variational equation (1.7) can be rewritten as

u ∈ V0 : F (u) = 0 in V ∗
0 .

Assume that:

(i∗) The function g : R → R is continuous and satisfies a certain growth
condition.

(ii∗) u, ū ∈ V satisfying u ≤ ū exist with

u ≤ 0 on ∂Ω, ū ≥ 0 on ∂Ω such that F (u) ≤ 0 and F (ū) ≥ 0.

Then the existence and comparison result as well as the characterization of
the solution set for (1.6) given above hold. Note that in view of (i∗), the
operator F : V0 → V ∗

0 is continuous, bounded, and pseudomonotone, but not
necessarily coercive. As will be seen in Chap. 3, the existence of sub- and
supersolutions supposed in (ii∗) will be used to compensate this drawback.

In this monograph, we focus primarily on nonsmooth variational problems.
Just as “nonlinear” in mathematics stands for “not necessarily linear,” we use
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“nonsmooth” to refer to certain situations in which smoothness is not neces-
sarily assumed. The relaxed smoothness requirements have often been moti-
vated by the needs of disciplines other than mathematics, such as mechanics
and engineering.

Our main goal is to extend the idea of sub-supersolutions and to provide
a systematic and unified approach for obtaining comparison principles for
both nonsmooth stationary and evolutionary variational problems. We shall
demonstrate that much of the idea of the method of sub-supersolutions that
has been known for elliptic and parabolic variational equations can be devel-
oped in a general nonsmooth setting. To give an idea of what we mean by
nonsmooth variational problems, let us consider a few examples.

A nonsmooth variational problem arises, e.g., when the nonlinearity g in
(1.9) is no longer continuous. If g : R → R satisfies some growth condition but
is only supposed to be Borel-measurable, then problem (1.9) becomes a dis-
continuous variational equation. Even though the operator A of the equivalent
operator equation (1.7) given by Au = −Δpu + g(u) is still well defined and
bounded from V0 into its dual space V ∗

0 ; it is, however, no longer continuous.
In this case, the sub-supersolution method, in general, fails as shown by the
following simple example.

Let us consider (1.7) with p = 2, f(x) ≡ 1, and g the Heaviside step
function given by g(s) = 0 for s ≤ 0, and g(s) = 1 for s > 0; i.e., we consider

u ∈ V0 =W 1,2
0 (Ω) : −Δu+ g(u) = 1 in V ∗

0 . (1.14)

One readily verifies that the constant functions u = −c and ū = c with c
any positive constant provide an ordered pair of sub-supersolutions of (1.14).
However, problem (1.14) has no solutions within the order interval [−c, c]. Fur-
thermore, (1.14) does not possess solutions at all. In fact, if u was a solution,
then it satisfies the variational equation∫

Ω

∇u∇ϕdx =
∫

Ω

(1 − g(u))ϕdx for all ϕ ∈ V0.

Taking as a special test function the solution u, we obtain in view of the
definition of g the following inequality:∫

Ω

|∇u|2 dx =
∫

Ω

(1 − g(u))u dx ≤ 0,

and hence it follows that u = 0. This result is a contradiction, because u = 0
is apparently not a solution of (1.14).

Problem (1.14) with g being the Heaviside function is embedded into a
relaxed multivalued setting replacing the discontinuous function g by an as-
sociated multivalued function s 
→ [g(s), ḡ(s)], where g(s) and ḡ(s) denote the
left-sided and right-sided limits of g at s ∈ R. It turns out that this multifunc-
tion that, roughly speaking, arises from g by filling in the gap at the point of
discontinuity, coincides with the multifunction s 
→ ∂j(s), where ∂j(s) denotes
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Fig. 1.2. Subdifferential of j Fig. 1.3. Primitive of Heaviside
function

the subdifferential of the primitive j : R → R of g given by j(u) =
∫ u

0
g(s) ds,

which is a convex and Lipschitz continuous function, (see Fig. 1.2 and Fig.
1.3).

Thus, the relaxed multivalued problem (1.14) reads as follows:

u ∈ V0 : −Δpu+ ∂j(u) � 1 in V ∗
0 , (1.15)

where j : R → R is the above primitive of the Heaviside function. As j
is convex and even Lipschitz continuous, one can easily show that (1.15) is
equivalent to

u ∈ V0 : ∂Ê(u) � 0,

where ∂Ê(u) is the subdifferential at u of the nonsmooth, convex, continuous,
and coercive functional Ê : V0 → R defined by

Ê(u) =
1
p

∫
Ω

|∇u|p dx+
∫

Ω

j(u) dx− 〈1, u〉.

As Ê in our example is even strictly convex, a unique solution of the opti-
mization problem exists

u ∈ V0 : Ê(u) = inf
v∈V0

Ê(v),

which in turn is equivalent to ∂Ê(u) � 0. Thus, problem (1.15) has only one
solution, which is the minimum point of the nonsmooth functional Ê.

To motivate other types of nonsmooth variational problems, consider the
functional E:

E(u) =
1
p

∫
Ω

|∇u|p dx+
∫

Ω

j(u) dx− 〈f, u〉, u ∈ V0, (1.16)
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where f ∈ V ∗
0 and j : R → R is the primitive of a continuous function g

that satisfies some growth condition. Then E : V0 → R is a C1-functional
whose critical points are the solutions of the variational problem (1.9). In this
sense, (1.9) may be considered as a smooth variational problem in case g is
continuous.

A nonsmooth variational problem already occurs if we are looking for
critical points of the C1-functional E of (1.16) under some constraint, which
is represented, for example, by a closed convex subset K ⊂ V0. This leads to
the following well-known variational inequality for the operator Au = −Δpu+
g(u):

u ∈ K : 〈Au− f, ϕ− u〉 ≥ 0, for all ϕ ∈ K. (1.17)

Introducing the indicator function IK of the set K, we see that (1.17) is
equivalent to the variational inequality

u ∈ K : 〈Au− f, ϕ− u〉 + IK(ϕ) − IK(u) ≥ 0, for all ϕ ∈ V0, (1.18)

which in turn is equivalent to the differential inclusion

u ∈ K : −Au+ f ∈ ∂IK(u),

where ∂IK is the subdifferential of the indicator function IK : V0 → [0,+∞],
which is proper if K �= ∅, convex, and lower semicontinuous.

Another type of nonsmooth variational problems arises if we consider criti-
cal points of the functional E above when j is the primitive of a not necessarily
continuous function g satisfying only some growth and measurability condi-
tions. Under these assumptions, E : V0 → R is, in general, no longer convex,
but only locally Lipschitz, and u is called a critical point of E if

0 ∈ ∂E(u), (1.19)

where ∂E(u) ⊂ V ∗
0 denotes Clarke’s generalized gradient. For example, if u

is a minimum point of E over V0, then u is a critical point, and it satisfies
(1.19). Applying basic facts from nonsmooth analysis, we see that (1.19) is
equivalent to

u ∈ V0 : 〈−Δpu− f, ϕ〉 + Jo(u;ϕ) ≥ 0, for all ϕ ∈ V0, (1.20)

where Jo(u; v) denotes the generalized directional derivative at u in direction
v of the locally Lipschitz functional J : V0 → R given by

J(u) =
∫

Ω

j(u) dx.

Problem (1.20) is called a hemivariational inequality, which is equivalent to
the inclusion

Δpu+ f ∈ ∂J(u),
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Fig. 1.4. Zig-zag friction law

where ∂J(u) ⊂ V ∗
0 is Clarke’s generalized gradient of the integral functional J

at u. Closely related but, in general, not equivalent to (1.20) is the following
differential inclusion:

u ∈ V0 : −Δpu+ ∂j(u) � f in V ∗
0 , (1.21)

where ∂j : R → 2R\{∅} is Clarke’s generalized gradient of the locally Lipschitz
integrand j : R → R of J . An example of multifunctions ∂j that appear in
applications is shown in Fig. 1.4.

Finally, if we try to find solutions of the hemivariational inequality under
constraints, we arrive at the nonsmooth variational problem

u ∈ K : 〈−Δpu− f, ϕ− u〉 + IK(ϕ) − IK(u) + Jo(u;ϕ− u) ≥ 0,
for all ϕ ∈ V0, (1.22)

which is called a variational-hemivariational inequality. The field of hemivari-
ational inequalities, initiated with the pioneering work of Panagiotopoulos (cf.
[179, 180]), has attracted increasing attention over the last decade mainly due
to its many applications in mechanics and engineering. This new type of varia-
tional inequalities arises, e.g., in mechanical problems governed by nonconvex,
possibly nonsmooth energy functionals (so-called superpotentials), which ap-
pear if nonmonotone, multivalued constitutive laws are taken into account.

However, note that the multivalued problems (1.15) and (1.21), the varia-
tional inequality (1.17), the hemivariational inequality (1.20), and the varia-
tional-hemivariational inequality (1.22) only serve as prototypes of nonsmooth
variational problems of elliptic type that will be treated in this book. Com-
parison principles will be obtained for more general nonsmooth variational
problems that are not necessarily related to some potential functional, and for
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their evolutionary counterparts. It should be noted also that the treatment
of evolutionary nonsmooth variational problems is by no means a straightfor-
ward extension of nonsmooth (stationary) elliptic variational problems, and
it requires different tools. Moreover, not only scalar but also systems of non-
smooth variational problems will be treated.

As shown, the notion of sub- and supersolution for nonlinear elliptic varia-
tional equations is an almost direct extension of the classic notion of sub- and
supersolution for the Laplace equation. A similar statement can be made for
parabolic variational equations, for which the notion of sub- and supersolution
is a natural extension of the one for the heat equation.

The situation is, however, different for variational and hemivariational in-
equalities. Because of the intrinsic asymmetry of these problems (where the
problems are stated as inequalities rather than as equalities), it is much more
difficult to define sub- and supersolutions for variational and hemivariational
inequalities. As an indispensable requirement, this notion should be an ex-
tension of the well-known notion of sub- and supersolution for variational
equations. It seems to be the main reason that this powerful method and
the comparison principles related with it have not been employed so far to
investigate nonsmooth variational problems.

The rapid development of the theory of variational and hemivariational in-
equalities and the prolific growth of its numerous applications (see [124, 177])
made evident to us the need for a detailed and systematic exposition of the
sub-supersolution method for nonsmooth variational problems that covers the
one for variational equations in a natural way. We have made efforts to define
a notion of sub- and supersolution in such a way that will allow us to estab-
lish comparison principles for nonsmooth variational problems similar to the
corresponding concepts for variational equations. The comparison principles
based on the new notion of sub- and supersolution will be seen to preserve
many characteristic features of the elementary example on the real line con-
sidered above; i.e., we will be able to prove not only existence and enclosure of
solutions for nonsmooth variational problems but also qualitative properties
of the solution set, such as compactness and existence of smallest and greatest
solutions. In addition, these new comparison principles will be shown to pro-
vide effective tools to study noncoercive nonsmooth variational problems and
permit more flexible requirements on the growth rates of certain nonlinear
data involved.

This book is basically an outgrowth of the authors’ research on the sub-
ject during the past 10 years. It consists of seven chapters, including the
introductory chapter. Each chapter begins with a short overview, and notes
and remarks are added at the end. Chapter 2 provides needed mathematical
prerequisites to make the book self-contained. Chapter 3 deals with the sub-
supersolution method for weak solutions of nonlinear elliptic and parabolic
variational equations, and it may be considered in some sense as a prepara-
tory chapter to get to know some methods and techniques used also in later
chapters. Chapter 4 to Chapter 7 form the core of the book dealing with
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nonsmooth variational problems. Chapter 4 deals with multivalued elliptic
and parabolic problems that involve multifunctions of Clarke’s subgradient
type. The key notion of sub-supersolution for variational inequalities is de-
veloped in Chapter 5. In Chapter 6, we deal with comparison principles for
hemivariational inequalities and reveal their connection with the multivalued
problems considered in Chapter 4. Finally, in Chapter 7, we treat variational–
hemivariational inequalities and related problems such as eigenvalue problems
for this kind of variational problems.

Some important features of the monograph are as follows:

• Presenting a systematic and unified exposition of the sub-supersolution
method for nonsmooth stationary and evolutionary variational problems,
including variational and hemivariational inequalities.

• Proving existence and comparison results, and characterizing the solution
set topologically and order theoretically.

• Inclusion of numerous new results, some of which have never been pub-
lished.

• Efforts have been made to make the presentation self-contained by pro-
viding the necessary mathematical background and theories in an extra
chapter.

• Attempts to draw a broad audience by writing the first section of each
chapter in a manner that emphasizes simple cases and ideas more than
complicated refinements.

• Being accessible to graduate students in mathematics and engineering.
• The power of the developed methodology is demonstrated through various

examples and applications.



2

Mathematical Preliminaries

In this chapter, we provide the mathematical background as it will be used in
later chapters.

2.1 Basic Functional Analysis

The purpose of this section is to provide a survey of basic results from func-
tional analysis that will be used in the sequel. However, we will assume that
the reader is familiar with some elementary notions such as metric spaces,
Banach spaces, and Hilbert spaces, as well as notions related with the topo-
logical structure of these spaces. Unless otherwise indicated, all linear spaces
considered in this book are assumed to be defined over the real number field
R. The proofs of the results presented in this section can be found in standard
textbooks, e.g., [5, 13, 24, 129, 200, 222].

2.1.1 Operators in Normed Linear Spaces

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces, and let

A : D(A) ⊂ X → Y

be an operator with domain D(A) and range denoted by range(A). When
D(A) = X, we write

A : X → Y.

Note that usually we drop the subscripts X and Y in the notation of the
norms ‖ · ‖X and ‖ · ‖Y , respectively, if no ambiguity exists.

Definition 2.1. Let A : D(A) ⊂ X → Y.

(i) A is continuous at the point u ∈ D(A) iff for each sequence (un) in D(A),

un → u implies Aun → Au.
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The operator A : D(A) ⊂ X → Y is called continuous iff it is continuous
at each point u ∈ D(A).

(ii) A is called compact iff A is continuous, and A maps bounded sets into
relatively compact sets.

Note that one sometimes uses the notion completely continuous for compact.
For compact operators, the following fixed-point theorem from Schauder holds.

Theorem 2.2 (Schauder’s Fixed-Point Theorem). Let X be a Banach
space, and let

A :M →M

be a compact operator that maps a nonempty subset M of X into itself. Then
A has a fixed point provided M is bounded, closed, and convex.

In finite-dimensional normed linear spaces, Theorem 2.2 reduces to Brouwer’s
fixed-point theorem.

Corollary 2.3 (Brouwer’s Fixed-Point Theorem). If the operator

A :M →M

is continuous, then A has a fixed point provided M is a compact, convex,
nonempty subset in a finite-dimensional normed linear space.

Let
A : D(A) ⊂ X → Y

be a linear operator, which means that the domain D(A) of the operator A
is a linear subspace of X and A satisfies

A(αu+ βv) = αAu+ βAv for all u, v ∈ D(A), α, β ∈ R.

Proposition 2.4. Let A : X → Y be a linear operator. Then the following
two conditions are equivalent:

(i) A is continuous.
(ii) A is bounded; i.e., there is a constant c > 0 such that

‖Au‖ ≤ c‖u‖ for all u ∈ X.

For a linear continuous operator A : X → Y , the operator norm ‖A‖ is defined
by

‖A‖ = sup
‖u‖≤1

‖Au‖,

which can easily be shown to be equal to

‖A‖ = sup
‖u‖=1

‖Au‖.
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Proposition 2.5. Let L(X,Y ) denote the space of linear continuous opera-
tors A : X → Y, where X is a normed linear space and Y is a Banach space.
Then L(X,Y ) is a Banach space with respect to the operator norm.

Definition 2.6. Let
A : D(A) ⊂ X → Y

be a linear operator. The graph of A denoted by Gr(A) is defined by the subset

Gr(A) = {(u,Au) : u ∈ D(A)}

of the product space X × Y. The operator A is called closed (or graph-closed)
iff Gr(A) is closed in X×Y, which means that for each sequence (un) in D(A),
it follows from

un → u in X and Aun → v in Y

that u ∈ D(A) and v = Au. Finally, on D(A), the so-called graph norm ‖ · ‖A

is defined by
‖u‖A = ‖u‖ + ‖Au‖ for u ∈ D(A).

Corollary 2.7. If X and Y are Banach spaces and A : D(A) ⊂ X → Y
is closed, then D(A) equipped with the graph norm, i.e., (D(A), ‖ · ‖A), is a
Banach space.

Theorem 2.8 (Banach’s Closed Graph Theorem). Let X and Y be Ba-
nach spaces. Then each closed linear operator A : X → Y is continuous.

For completeness, we shall recall the Uniform Boundedness Theorem and the
Open Mapping Theorem, which together with Banach’s Closed Graph Theo-
rem are all consequences of Baire’s Theorem.

Theorem 2.9 (Uniform Boundedness Theorem). Let F be a nonempty
set of continuous maps

F : X → Y,

where X is a Banach space and Y is a normed linear space. Assume that

sup
F∈F

‖Fu‖ <∞ for each u ∈ X.

Then a closed ball B in X of positive radius exists such that

sup
u∈B

( sup
F∈F

‖Fu‖) <∞.
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Corollary 2.10 (Banach–Steinhaus Theorem). Let L ⊂ L(X,Y ) be a
nonempty set of linear continuous operators

A : X → Y,

where X is a Banach space and Y is a normed linear space. Assume that

sup
A∈L

‖Au‖ <∞ for each u ∈ X.

Then supA∈L ‖A‖ <∞.

Theorem 2.11 (Banach’s Open Mapping Theorem). Let X and Y be
Banach spaces and A : X → Y be a linear continuous operator. Then the
following two conditions are equivalent:

(i) A is surjective.
(ii) A is open, which means that A maps open sets onto open sets.

Corollary 2.12 (Banach’s Continuous Inverse Theorem). Let X and
Y be Banach spaces and A : X → Y be a linear continuous operator. If the
inverse operator

A−1 : Y → X

exists, then A−1 is continuous.

Definition 2.13 (Embedding Operator). Let X and Y be normed linear
spaces with

X ⊂ Y.
The embedding operator i : X → Y is defined by i(u) = u; i.e., i is the identity
operator from X into Y.

(i) The embedding X ⊂ Y is called continuous iff the embedding operator
i : X → Y is continuous; i.e., a constant c > 0 exists such that

‖u‖Y ≤ c ‖u‖X for all u ∈ X,

which is equivalent with

un → u in X implies un → u in Y.

(ii) The embedding X ⊂ Y is called compact iff the embedding operator i :
X → Y is compact; i.e., i is continuous and each bounded sequence (un)
in X has a subsequence that converges in Y.

Remark 2.14. More generally, one can define a continuous embedding of a
normed linear space X into a normed linear space Y , whenever a linear,
continuous, and injective operator i : X → Y exists. Similarly, X is compactly
embedded into Y iff a linear, compact, and injective operator i : X → Y exists.



2.1 Basic Functional Analysis 15

2.1.2 Duality in Banach Spaces

Definition 2.15. Let X be a normed linear space. A linear continuous func-
tional on X is a linear continuous operator

f : X → R.

The set of all linear continuous functionals on X is called the dual space X∗

of X; i.e., X∗ = L(X,R). For the image f(u) of the functional f at u ∈ X,
we write

〈f, u〉 = f(u) u ∈ X, f ∈ X∗,

and 〈·, ·〉 is called the duality pairing.

According to the operator norm defined in Sect. 2.1.1, the norm of f is
given through

‖f‖ = sup
‖u‖≤1

|〈f, u〉|.

As a consequence of Proposition 2.5, we get the following result.

Corollary 2.16. Let X be a normed linear space. Then the dual space X∗ is
a Banach space with respect to the norm ‖f‖ for f ∈ X∗.

The most important theorem about the structure of linear functionals on
normed linear spaces is the Hahn–Banach Theorem. For real linear spaces,
the Hahn–Banach Theorem reads as follows (see [24]).

Theorem 2.17 (Hahn–Banach Theorem). Let p : E → R be a function
on a real linear space E satisfying

p(λx) = λp(x), ∀ x ∈ E, ∀ λ ≥ 0,
p(x+ y) ≤ p(x) + p(y), ∀ x, y ∈ E.

Let G be a linear subspace of E, and let g : G→ R be a linear functional such
that

g(x) ≤ p(x), ∀ x ∈ G.

Then a linear functional f : E → R exists with the properties

f(x) = g(x), ∀ x ∈ G

and
f(x) ≤ p(x), ∀ x ∈ E.

As an immediate consequence from Theorem 2.17, we obtain the following
theorem, which is the Hahn–Banach Theorem for normed linear spaces.
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Theorem 2.18. Let X be a normed linear space. Assume M is a linear sub-
space of X, and F :M → R is a linear functional such that

|F (u)| ≤ c ‖u‖ for all u ∈M,

where c is some positive constant. Then F can be extended to a linear contin-
uous functional f : X → R that satisfies

|〈f, u〉| ≤ c ‖u‖ for all u ∈ X.

First consequences from the Hahn–Banach Theorem are given in the fol-
lowing corollary.

Corollary 2.19. Let X be a normed linear space.

(i) For each given u0 ∈ X with u0 �= 0, a functional f ∈ X∗ exists such that

〈f, u0〉 = ‖u0‖ and ‖f‖ = 1.

(ii) For all u ∈ X, one has

‖u‖ = sup
f∈X∗, ‖f‖≤1

|〈f, u〉|.

(iii) If for u ∈ X the condition

〈f, u〉 = 0 for all f ∈ X∗

holds, then u = 0.

We set
X∗∗ = (X∗)∗,

which is called the bidual space and which consists of all linear continuous
functionals F : X∗ → R.

Proposition 2.20. Let X be a normed linear space. The operator j : X →
X∗∗ defined by

j(u)(f) = 〈f, u〉 for all u ∈ X, f ∈ X∗

has the following properties:

(i) j is linear and
‖j(u)‖ = ‖u‖ for all u ∈ X.

(ii) j(X) is a closed subspace of X∗∗ if and only if X is a Banach space.

The operator j : X → X∗∗ is called the canonical embedding of X into X∗∗.

Definition 2.21. A normed linear space X is called reflexive if the canonical
embedding j : X → X∗∗ is surjective; i.e., j(X) = X∗∗.
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We readily observe that every reflexive normed linear space X is in fact a
Banach space, which is isometrically isomorphic to X∗∗, and thus, we may
write X = X∗∗.

Corollary 2.22. (i) Each Hilbert space is reflexive.
(ii) Every closed linear subspace of a reflexive Banach space X is again re-

flexive.
(iii) The product of a finite number of reflexive Banach spaces is a reflexive

Banach space.
(iv) Let X and Y be two isomorphic normed linear spaces. If X is a reflexive

Banach space, then Y is also a reflexive Banach space.
(v) Let X be a Banach space. Then X is reflexive if and only if X∗ is reflex-

ive.
(vi) If X is a separable and reflexive Banach space, then X∗ is separable.

Next we define the dual or adjoint operator of a linear operator A : D(A) ⊂
X → Y, where X and Y are two Banach spaces.

Definition 2.23. Assume D(A) is dense in X. Then the dual operator

A∗ : D(A∗) ⊂ Y ∗ → X∗

is defined by the following relation:

〈A∗v, u〉 = 〈v,Au〉 for all v ∈ D(A∗), u ∈ D(A),

where v ∈ Y ∗ belongs to D(A∗) if and only if a w ∈ X∗ exists such that

〈w, u〉 = 〈v,Au〉 for all u ∈ D(A).

To verify that A∗ is well defined, we note first that according to Definition
2.23, an element v ∈ Y ∗ belongs to D(A∗) if and only if a w ∈ X∗ exists such
that

〈w, u〉 = 〈v,Au〉 for all u ∈ D(A).

We set A∗v = w. As D(A) is dense in X, the element w is uniquely determined
by v, and thus, the operator A∗ is well defined. Moreover, one readily observes
that A∗ is linear and graph-closed. In the special case that D(A) = X, we
have the following results.

Proposition 2.24. Let X and Y be two Banach spaces, and let A : X → Y
be a linear and continuous operator. Then the dual operator

A∗ : Y ∗ → X∗

is also linear and continuous, and we have

‖A∗‖ = ‖A‖.

Moreover, if the linear operator A : X → Y is compact, then so is the dual
operator A∗ : Y ∗ → X∗.
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The following facts about the duality of embeddings are important, e.g., for
the understanding of the concept of evolution triple, which will be introduced
in Sect. 2.4.3.

Proposition 2.25. Let X and Y be Banach spaces with X ⊂ Y such that X
is dense in Y , and the embedding

i : X → Y

is continuous. Then the following is true:

(i) The embedding Y ∗ ⊂ X∗ is continuous, and the embedding operator î :
Y ∗ → X∗ is identical with the dual operator of i; i.e., î = i∗.

(ii) If X is, in addition, reflexive, then Y ∗ is dense in X∗.
(iii) If the embedding X ⊂ Y is compact, then so is the embedding Y ∗ ⊂ X∗.

Proof: As for (i), density arguments show that each element of Y ∗ can be
uniquely identified with an element ofX∗, and the continuity of the embedding
Y ∗ ⊂ X∗ follows from the continuity of i. The proof of (ii) makes use of the
Hahn–Banach Theorem in connection with the reflexivity of X. (see [222,
Chap. 18, 21]), and (iii) follows from Proposition 2.24. ��

In finite-dimensional Banach spaces, closed and bounded sets are compact.
This result is no longer true for infinite-dimensional Banach spaces because
of the following famous theorem due to Riesz.

Theorem 2.26 (Riesz’ Lemma). Let X be a normed linear space. Then,
the closed unit ball in X is compact if and only if X is finite-dimensional.

According to Theorem 2.26, in infinite-dimensional Banach spaces, there
are bounded sequences that have no convergent subsequence. This lack of com-
pactness in infinite-dimensional spaces is one of the main reasons for many
difficulties in the functional analytical treatment of variational problems. To
overcome these difficulties, new concepts of convergence (or new topologies)
have been introduced with respect to which the unit ball is compact (respec-
tively, sequentially compact).

Definition 2.27. Let X be a Banach space. A sequence (un) ⊂ X is called
weakly convergent in X to an element u ∈ X iff

〈f, un〉 → 〈f, u〉 for all f ∈ X∗.

The weak convergence is denoted by

un ⇀ u as n→ ∞ or w− lim
n→∞un = u.

Note, in contrast to the weak convergence, we call the usual convergence
with respect to the norm (un → u) sometimes the strong convergence. The
following theorem provides a compactness result with respect to the topology
introduced by the weak convergence.
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Theorem 2.28 (Eberlein–Smulian Theorem). Let X be a reflexive Ba-
nach space. Then, each bounded sequence (un) ⊂ X has a weakly convergent
subsequence.

A few properties of weak convergence are summarized in the next propo-
sition.

Proposition 2.29. Let X be Banach spaces, and (un) ⊂ X.
(i) un → u implies un ⇀ u.
(ii) If X is finite-dimensional, then strong and weak convergence are equiva-

lent.
(iii) If un ⇀ u, then (un) is bounded and

‖u‖ ≤ lim inf
n→∞ ‖un‖.

(iv) If un ⇀ u in X and fn → f in X∗, then it follows that

〈fn, un〉 → 〈f, u〉.

(v) If un → u in X and fn ⇀ f in X∗, then it follows that

〈fn, un〉 → 〈f, u〉.

The reverse of the Eberlein–Smulian Theorem is also true; i.e, a Banach
space is reflexive if and only if every bounded sequence has a weakly convergent
subsequence. Thus, the compactness result given by Theorem 2.28 is only
valid in reflexive Banach spaces. To deal with nonreflexive Banach spaces, the
following so-called weak∗ convergence has been introduced.

Definition 2.30. Let X be a Banach space. A sequence (fn) ⊂ X∗ is called
weakly∗ convergent to an element f ∈ X∗ iff

〈fn, u〉 → 〈f, u〉 for all u ∈ X.

The weak∗ convergence is denoted by

fn ⇀
∗ f as n→ ∞, or w∗− lim

n→∞ fn = f.

Proposition 2.31. Let X be a Banach space, and let (fn) be a sequence in
the dual space X∗.

(i) fn → f in X∗ implies fn ⇀
∗ f.

(ii) If fn ⇀
∗ f, then (fn) is bounded in X∗ and

‖f‖ ≤ lim inf
n→∞ ‖fn‖.

(iii) If un → u in X and fn ⇀
∗ f in X∗, then it follows that

〈fn, un〉 → 〈f, u〉.
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(iv) fn ⇀ f in X∗ implies fn ⇀
∗ f .

(v) If X is reflexive, then fn ⇀
∗ f is equivalent to fn ⇀ f.

Definition 2.32. Let A : X → Y be a linear operator, where X and Y are
Banach spaces. A is called weakly sequentially continuous iff

un ⇀ u implies Aun ⇀ Au.

A is called strongly continuous iff

un ⇀ u implies Aun → Au.

A few simple consequences are provided in the next proposition.

Proposition 2.33. Let A : X → Y be a linear operator, where X and Y are
Banach spaces.

(i) If A is continuous, then A is weakly sequentially continuous.
(ii) If A is compact, then A is strongly continuous.
(iii) If A is strongly continuous and X is reflexive, then A is compact.

2.1.3 Convex Analysis and Calculus in Banach Spaces

Let X be a normed linear space. A subset K of X is convex iff

u, v ∈ K implies tu+ (1 − t)v ∈ K for all 0 ≤ t ≤ 1.

Theorem 2.34. Let H be a Hilbert space with inner product (·, ·), and let
K be a nonempty, closed, and convex subset of H. Then to each u ∈ H, a
uniquely defined v ∈ K closest to u exists, that is,

v ∈ K : ‖u− v‖ = inf
w∈K

‖u− w‖.

Equivalently, v ∈ K is the uniquely defined solution of the variational inequal-
ity

v ∈ K : (u− v, w − v) ≤ 0 for all w ∈ K.
Consequences of Theorem 2.34 are the well-known Orthogonal Projection The-
orem and the Riesz Representation Theorem of linear continuous functionals
on Hilbert spaces. The latter implies that a Hilbert space H is isometrically
isomorphic with its dual space H∗. A generalization of the Riesz Representa-
tion Theorem is the Lax–Milgram Theorem (see Sect. 2.3).

Important consequences of the Hahn–Banach Theorem are various sepa-
ration theorems, such as the following one.

Theorem 2.35 (Separation Theorem). Let X be a normed linear space,
and let K ⊂ X be a closed and convex subset. If u0 ∈ X \ K, then a linear
continuous functional f ∈ X∗ and an α ∈ R exists such that

〈f, u〉 ≤ α for all u ∈ K, and 〈f, u0〉 > α.
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Definition 2.36. A subset M of a normed linear space X is called weakly
sequentially closed if the limit of every weakly convergent sequence (un) ⊂M
belongs to M ; i.e.,

(un) ⊂M and un ⇀ u implies u ∈M.

Simple examples show that, in general, closed sets of a normed linear space
need not be weakly sequentially closed. However, by means of Theorem 2.35,
one gets the following equivalence.

Proposition 2.37. Let M be a convex subset of a normed linear space X.
Then, M is closed if and only if M is weakly sequentially closed.

Next we present some convexity and smoothness properties of the norm
in Banach spaces that are important for proving existence results for abstract
operator equations involving operators of monotone type (see Theorem 2.156
in Sect. 2.4.4).

Definition 2.38. A Banach space X is called strictly convex if and only if

‖tu+ (1 − t)v‖ < 1 provided that ‖u‖ = ‖v‖ = 1, u �= v, and 0 < t < 1.

A Banach space X is called locally uniformly convex if and only if for each
ε ∈ (0, 2], and for each u ∈ X with ‖u‖ = 1, a δ(ε, u) > 0 exists such that for
all v with ‖v‖ = 1 and ‖u− v‖ ≥ ε, the following holds:

1
2
‖u+ v‖ ≤ 1 − δ(ε, u).

A Banach space X is called uniformly convex if and only if X is locally uni-
formly convex and δ can be chosen to be independent of u.

Obviously we have the following implications:

uniformly convex =⇒ locally uniformly convex =⇒ strictly convex.

Example 2.39. Each Hilbert space is uniformly convex. This readily follows
from the parallelogram identity∥∥∥∥1

2
(u− v)

∥∥∥∥2

+
∥∥∥∥1

2
(u+ v)

∥∥∥∥2

=
1
2
(‖u‖2 + ‖v‖2).

Example 2.40. Let 1 < p <∞ and Ω ⊂ R
N be a domain; then from Clarkson’s

inequality (see Sect. 2.2.4), it follows that Lp(Ω) is uniformly convex. By using
this result, one readily sees that the Sobolev spaces Wm,p(Ω) are uniformly
convex too, for 1 < p <∞ and m = 0, 1, . . . .

Furthermore, the following theorems hold.
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Theorem 2.41 (Milman–Pettis Theorem). Each uniformly convex Ba-
nach space is reflexive.

Convexity properties of the norm are closely related with smoothness proper-
ties of the norm, i.e., the smoothness of the function u 
→ ‖u‖.

Theorem 2.42. Let X be a reflexive Banach space. Then the following holds:

(i) If X∗ is strictly convex, then the function u 
→ ‖u‖ is Gâteaux-differentiable
on X \ {0}.

(ii) If X∗ is locally uniformly convex, then the function u 
→ ‖u‖ is Fréchet-
differentiable on X \ {0}.

(iii) (Troyanski) In every reflexive Banach space X, an equivalent norm can
be introduced so that both X and X∗ are locally uniformly convex.

The notions of Gâteaux and Fréchet derivatives that occur in Theorem 2.42
are natural generalizations of the directional and total derivative of functions
f : R

n → R
m, respectively, to mappings between Banach spaces. In particular,

in the calculus of variations, these notions allow us to generalize the classic
criteria in the study of extrema for real-valued functions in R

n to real-valued
functionals F : D(F ) ⊂ X → R defined on a subset of a Banach space X.

Definition 2.43 (Gâteaux Derivative). Let X and Y be Banach spaces,
and let f : U ⊂ X → Y be a map whose domain D(f) = U is an open subset
of X. The directional derivative of f at u ∈ U in the direction h ∈ X is given
by

δf(u;h) = lim
t→0

f(u+ th) − f(u)
t

provided this limit exists. If δf(u;h) exists for every h ∈ X, and if the mapping
DGf(u) : X → Y defined by

DGf(u)h = δf(u;h)

is linear and continuous, then we say that f is Gâteaux-differentiable at u,
and we call DGf(u) the Gâteaux derivative of f at u.

Definition 2.44 (Fréchet Derivative). Let X and Y be Banach spaces,
and let f : U ⊂ X → Y, where the domain D(f) = U is an open subset of
X. Then f is called Fréchet-differentiable at u ∈ U if and only if a linear and
continuous mapping A : X → Y exists such that

lim
‖h‖→0

‖f(u+ h) − f(u) −Ah‖
‖h‖ = 0

or equivalently

f(u+ h) − f(u) = Ah+ o(‖h‖), (h→ 0).

If such a mapping A exists, then we call DF f(u) = A (or simply f ′(u) = A)
the Fréchet derivative of f at u.
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Corollary 2.45. Let X and Y be Banach spaces, and let f : U ⊂ X → Y.
Then the following relations between Gâteaux and Fréchet derivative hold:

(i) If f is Fréchet-differentiable at u ∈ U, then f is Gâteaux-differentiable at
u.

(ii) If f is Gâteaux-differentiable in a neighborhood of u0 and DGf is contin-
uous at u0, then f is Fréchet-differentiable at u0 and f ′(u0) = DGf(u0).

Remark 2.46. If f : U ⊂ X → Y is Fréchet-differentiable in U and f ′ : U →
L(X,Y ) is continuous, then we write f ∈ C1(U ;Y ) or simply f ∈ C1(U) if
Y = R. In a similar way as for mappings from R

n into R
m, one can prove

chain rules for both the Fréchet and the Gâteaux derivative.

Example 2.47. Let X = Lp(Ω), where 1 < p < ∞. We will compute the
Gâteaux derivative of the p th power Lp-norm, i.e., of the function f : X → R

defined by
f(u) = ‖u‖p

Lp(Ω).

After elementary calculations, we get

DGf(u)h = δf(u;h) = p
∫

Ω

|u|p−2uh dx

if we consider real-valued functions u : Ω → R. In case the functions are
complex-valued, we get

δf(u;h) =
p

2

∫
Ω

|u|p−2(ūh+ uh̄) dx.

We introduce next the notions of convex and semicontinuous functions (or
functionals).

Definition 2.48 (Semicontinuous, Convex Functionals). Let X be a Ba-
nach space and φ :M ⊂ X → [−∞,∞] with M = D(φ).

(i) The functional φ is called sequentially lower semicontinuous at u ∈M if
and only if

φ(u) ≤ lim inf
n→∞ φ(un) (2.1)

holds for each sequence (un) ⊂M such that un → u as n→ ∞.
(ii) The functional φ is called lower semicontinuous if and only if the set Mr

is closed relative to M for all r ∈ R, where

Mr = {u ∈M : φ(u) ≤ r}.

(iii) The functional φ is called weak sequentially lower semicontinuous at u ∈
M if and only if (2.1) holds for each weakly convergent sequence (un) to
u, i.e., un ⇀ u.
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(iv) The functional φ is called sequentially upper semicontinuous (respectively,
weak sequentially upper semicontinuous, upper semicontinuous) if and
only if −φ is sequentially lower semicontinuous (respectively, weak se-
quentially lower semicontinuous, lower semicontinuous).

(v) The functional φ is called convex if and only if M is convex and

φ(tu+ (1 − t)v) ≤ tφ(u) + (1 − t)φ(v), 0 ≤ t ≤ 1, (2.2)

for all u, v ∈ M for which the right-hand side of (2.2) is meaningful; φ
is called strictly convex if and only if for all t with 0 < t < 1 and for all
u, v ∈M with u �= v inequality (2.2) holds strictly; i.e., (2.2) holds with
≤ replaced by <.

The following proposition provides the connection between the above no-
tions.

Proposition 2.49. Let X be a Banach space and φ : M ⊂ X → [−∞,∞]
with M = D(φ).

(i) φ is sequentially lower semicontinuous on M if and only if φ is lower
semicontinuous on M.

(ii) Assume u ∈ M with φ(u) �= ±∞. Then φ is sequentially lower semicon-
tinuous at u if and only if, for each ε > 0, a δ(ε) > 0 exists such that for
all v ∈M with

‖v − u‖ < δ(ε) implies φ(u) < φ(v) + ε.

(iii) φ is continuous if and only if φ is both lower and upper semicontinuous.
(iv) If, in addition, M is closed and convex, and φ is convex, then lower

semicontinuous, sequentially lower semicontinuous and weak sequentially
lower semicontinuous are mutually equivalent.

Let X be a Banach space. In what follows we consider only convex func-
tionals φ : X → R ∪ {+∞}; i.e., we do not allow “−∞” as a value for the
convex functional φ. The reason is that if φ(u0) = −∞ at some point u0 and
if, in addition, φ is lower semicontinuous, then φ would be nowhere finite.
This can readily be seen by the following arguments. Assume there is some
u ∈ X with φ(u) ∈ R. Then from the convexity we get for all t ∈ (0, 1),
φ(tu0 + (1 − t)u) = −∞. Taking the limit t → 0, the lower semicontinuity
yields φ(u) = −∞, a contradiction.

Definition 2.50. Let X be a Banach space and φ : X → R ∪ {+∞} be a
convex functional.

(i) The effective domain of φ is the set dom(φ) defined by

dom(φ) = {u ∈ X : φ(u) < +∞}.

(ii) φ is said to be proper if dom(φ) �= ∅.



2.1 Basic Functional Analysis 25

(iii) The epigraph of φ, denoted by epi(φ), is given by

epi(φ) = {(u, λ) ∈ X × R : φ(u) ≤ λ}.

We summarize some elementary properties of convex functionals as follows.

Corollary 2.51. Let X be a Banach space, and let φ, φi : X → R ∪ {+∞},
i = 1, 2, be convex functionals. Then the following holds:

(i) dom(φ) is convex.
(ii) If λ ≥ 0, then λφ is convex.
(iii) If φ1 and φ2 are convex, then φ1 + φ2 is convex.
(iv) φ is convex, proper, and lower semicontinuous if and only if epi(φ) is,

respectively, convex, nonempty, and closed in X × R.

Proposition 2.52. Let X be a Banach space, and let φ : X → R ∪ {+∞}
be a convex, proper, and lower semicontinuous functional. Then φ is locally
Lipschitz on the interior of dom(φ).

Theorem 2.53 (Weierstrass’ Theorem). Let X be a reflexive Banach
space. If φ : X → R ∪ {+∞} is a convex, proper, and lower semicontinu-
ous functional satisfying

lim
‖u‖→∞

φ(u) = +∞,

then the problem
u ∈ X : φ(u) = inf

v∈X
φ(v)

admits at least one solution.

The following notion of subgradient generalizes the classic concept of a
derivative.

Definition 2.54 (Subdifferential). Let X be a Banach space, and let φ :
X → R ∪ {+∞} be a convex and proper functional. An element u∗ ∈ X∗ is
called a subgradient of φ at u ∈ dom(φ) if and only if the following inequality
holds:

φ(v) ≥ φ(u) + 〈u∗, v − u〉 for all v ∈ X. (2.3)

The set of all u∗ ∈ X∗ satisfying (2.3) is called the subdifferential of φ at
u ∈ dom(φ), and is denoted by ∂φ(u).

First properties of the subdifferential are given in the following proposition.

Proposition 2.55. Let X be a Banach space, and let φ : X → R ∪ {+∞} be
a convex and proper functional. Then we have the following properties of ∂φ:
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(i) ∂φ(u) is convex and weak∗-closed.
(ii) If φ is continuous at u ∈ dom(φ), then ∂φ(u) is nonempty, convex,

bounded, and weak∗-compact.

Note, in (i) of Proposition 2.55 ∂φ(u) = ∅ is possible.

Proposition 2.56. Let X be a Banach space, and let φ : X → R ∪ {+∞}
be a convex and proper functional. If φ is Gâteaux-differentiable at u ∈
int(dom(φ)), then ∂φ(u) = {DGφ(u)}. If φ is continuous at u and ∂φ(u)
is a singleton, then φ is Gâteaux-differentiable at u.

The following sum rule for the subdifferential is due to Moreau and Rock-
afellar.

Proposition 2.57 (Sum Rule). Let X be a Banach space, and let φ1, φ2 :
X → R ∪ {+∞} be convex functionals. If there is a point u0 ∈ dom(φ1) ∩
dom(φ2) at which φ1 is continuous, then the following holds:

∂(φ1 + φ2)(u) = ∂φ1(u) + ∂φ2(u) for all u ∈ X.

Example 2.58. Let f : R → R be a nondecreasing function with its one-sided
limits f and f̄ . Define φ : R → R by

φ(x) =
∫ x

x0

f(s) ds =
∫ x

x0

f̄(s) ds.

Note that φ is convex and finite on R, i.e., dom(φ) = R, and thus φ is even lo-
cally Lipschitz. Elementary calculations show that the subdifferential is given
by

∂φ(x) = [f(x), f̄(x)].

Example 2.59. Let φ : R → R ∪ {+∞} be a convex, proper, lower semicon-
tinuous function, and Ω ⊂ R

N a Lebesgue-measurable set such that either
0 = φ(0) = mins∈R φ(s) or the measurable set Ω has finite measure. Define
Φ : Lp(Ω) → R ∪ {+∞}, 1 < p <∞, by

Φ(u) =
∫

Ω

φ(u(x)) dx if φ(u) ∈ L1(Ω), +∞ otherwise.

Then Φ : Lp(Ω) → R ∪ {+∞} is convex, proper, lower semicontinuous, and
u∗ ∈ ∂Φ(u) if and only if

u∗ ∈ Lq(Ω), and u∗(x) ∈ ∂φ(u(x)), for a.e. x ∈ Ω,

where q is the Hölder conjugate; i.e., 1/p+ 1/q = 1.
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2.1.4 Partially Ordered Sets

Definition 2.60 (Partially Ordered Set). Let P be a nonempty set. We
say that a relation x ≤ y between certain pairs of elements of P is a par-
tial ordering in P , and that (P,≤) is a partially ordered set, if “≤” has the
following properties:

(i) x ≤ x for all x ∈ P (reflexivity).
(ii) If x ≤ y and y ≤ x, then x = y (antisymmetry).
(iii) If x ≤ y and y ≤ z, then x ≤ z (transitivity).

Note that x < y stands for x ≤ y and x �= y. Next we define several notions
based on the partial ordering introduced above.

Definition 2.61. Let (P,≤) be a partially ordered set.

(i) An element b of P is called an upper bound of a subset A of P if x ≤ b
for each x ∈ A. If b ∈ A, we say that b is the greatest element of A. A
lower bound of A and the smallest element of A are defined similarly,
replacing x ≤ b above by b ≤ x.

(ii) If the set of all upper bounds of A has the minimum, we call it a least
upper bound of A and denote it by supA. The greatest lower bound, inf A,
of A is defined similarly.

(iii) An element x ∈ A is called a maximal element of A ⊂ P, if there is
no y �= x in A for which x ≤ y. Similarly, a minimal element of A is
defined. Obviously, every greatest element of A is a maximal element of
A.

(iv) We say that a partially ordered set P is a lattice if inf{x, y} and
sup{x, y} exist for all x, y ∈ P .

(v) A subset C of P is said to be upward directed if for each pair x, y ∈ C
there is a z ∈ C such that x ≤ z and y ≤ z, and C is downward directed
if for each pair x, y ∈ C there is a w ∈ C such that w ≤ x and w ≤ y. If
C is both upward and downward directed, it is called directed.

(vi) A subset C of a partially ordered set P is called a chain if x ≤ y or y ≤ x
for all x, y ∈ C.

(vii) We say that C is well ordered if each nonempty subset of C has a min-
imum, and inversely well ordered if each nonempty subset of C has a
maximum. Obviously, each (inversely) well-ordered set is a chain and
each chain is directed.

Theorem 2.62 (Zorn’s Lemma). If in a partially ordered set P, every chain
has an upper bound, then P possesses a maximal element.
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2.2 Sobolev Spaces

In this section, we summarize the main properties of Sobolev spaces. These
properties include, e.g., the approximation of Sobolev functions by smooth
functions (density theorems), continuity properties and compactness condi-
tions (embedding theorems), the definition of the boundary values of Sobolev
functions (trace theorem), and calculus for Sobolev functions (chain rule).

2.2.1 Spaces of Lebesgue Integrable Functions

Let R
N , N ≥ 1, be equipped with the Lebesgue measure, and let Ω ⊂ R

N be
a domain; i.e., Ω is an open and connected subset of R

N . For 1 ≤ p <∞, we
denote by Lp(Ω) the Banach space of measurable functions u : Ω → R with
respect to the norm

‖u‖Lp(Ω) =
(∫

Ω

|u|pdx
)1/p

<∞.

For a measurable function u, we put

‖u‖L∞(Ω) = inf{α ∈ R : meas ({x ∈ Ω : |u(x)| > α}) = 0}.

We denote by L∞(Ω) the Banach space of all measurable functions f satisfying
‖u‖L∞(Ω) <∞.

We also introduce the local Lp-spaces, denoted by Lp
loc(Ω). A function u

belongs to Lp
loc(Ω) if it is measurable and∫

K

|u|p dx <∞

for every compact subset K of Ω.
The following main theorems can be found in standard textbooks on real

analysis and measure theory (see [201, 114]).

Theorem 2.63 (Lebesgue’s Dominated Convergence Theorem). Sup-
pose (un) is a sequence in L1(Ω) such that

u(x) = lim
n→∞un(x)

exists almost everywhere (a.e.) on Ω. If there is a function g ∈ L1(Ω) such
that, for a.e. x ∈ Ω, and for all n = 1, 2, . . . ,

|un(x)| ≤ g(x)

then u ∈ L1(Ω) and

lim
n→∞

∫
Ω

|un − u| dx = 0.
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In some sense the following reverse statement of Theorem 2.63 holds.

Theorem 2.64. Let un, u ∈ L1(Ω), n ∈ N, be such that

lim
n→∞

∫
Ω

|un − u| dx = 0.

Then a subsequence (unk
) of (un) exists with

unk
(x) → u(x) for a.e. x ∈ Ω.

Theorem 2.65 (Fatou’s Lemma). Let (un) be a sequence of measurable
functions, and let g ∈ L1(Ω). If

un ≥ g a.e. on Ω,

then we have ∫
Ω

lim inf
n→∞ un dx ≤ lim inf

n→∞

∫
Ω

un dx.

If Ω ⊂ R
N is a measurable subset, we denote its Lebesgue measure by

meas(Ω) = |Ω|.

Theorem 2.66 (Egorov’s Theorem). Let (un), u be measurable functions,
and

un → u a.e. on Ω,

where Ω ⊂ R
N is measurable with |Ω| <∞. Then for each ε > 0, a measurable

subset E ⊂ Ω exists such that

(i) |Ω \ E| < ε.
(ii) un → u uniformly on E.

A characterization of the dual spaces of Lp(Ω) is given in the next theorem.

Theorem 2.67 (Dual Space). Let Ω ⊂ R
N be a domain, and let Φ be a

linear continuous functional on Lp(Ω), 1 < p < ∞. Then a uniquely defined
function g ∈ Lq(Ω) exists with q satisfying 1/p+ 1/q = 1 such that

〈Φ, u〉 =
∫

Ω

g u dx for all u ∈ Lp(Ω)

and
‖Φ‖(Lp(Ω))∗ = ‖g‖Lq(Ω).

If Φ is a linear continuous functional on L1(Ω), then a uniquely defined func-
tion g ∈ L∞(Ω) exists such that

〈Φ, u〉 =
∫

Ω

g u dx for all u ∈ L1(Ω)

and
‖Φ‖(L1(Ω))∗ = ‖g‖L∞(Ω).
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In view of Theorem 2.67, the dual space of Lp(Ω) is isometrically isomorphic
to Lq(Ω) for 1 ≤ p <∞ with q = ∞ if p = 1.

We summarize some important properties of Lp-spaces in the following
theorem.

Theorem 2.68. Let Ω ⊂ R
N be a domain.

(i) For 1 ≤ p <∞, the spaces Lp(Ω) are separable.
(ii) L∞(Ω) is not separable.
(iii) For 1 < p <∞, the spaces Lp(Ω) are reflexive.
(iv) L1(Ω) and L∞(Ω) are not reflexive.
(v) For 1 < p <∞, the spaces Lp(Ω) are uniformly convex.

2.2.2 Definition of Sobolev Spaces

Let α = (α1, . . . , αN ) with nonnegative integers α1, . . . , αN be a multi-index,
and denote its order by |α| = α1 + · · · + αN . Set Di = ∂/∂xi, i = 1, . . . , N,
and Dαu = Dα1

1 · · ·DαN

N u, with D0u = u. Let Ω be a domain in R
N with

N ≥ 1. Then w ∈ L1
loc(Ω) is called the αth weak or generalized derivative of

u ∈ L1
loc(Ω) if and only if∫

Ω

uDαϕ dx = (−1)|α|
∫

Ω

wϕ dx, for all ϕ ∈ C∞
0 (Ω),

holds, where C∞
0 (Ω) denotes the space of infinitely differentiable functions

with compact support in Ω. The generalized derivative w denoted by w = Dαu
is unique up to a change of the values of w on a set of Lebesgue measure zero.

Definition 2.69. Let 1 ≤ p ≤ ∞ and m = 0, 1, 2, . . . . The Sobolev space
Wm,p(Ω) is the space of all functions u ∈ Lp(Ω), which have generalized
derivatives up to order m such that Dαu ∈ Lp(Ω) for all α: |α| ≤ m. For
m = 0, we set W 0,p(Ω) = Lp(Ω).

With the corresponding norms given by

‖u‖W m,p(Ω) =

⎛⎝ ∑
|α|≤m

‖Dαu‖p
Lp(Ω)

⎞⎠1/p

, 1 ≤ p <∞,

‖u‖W m,∞(Ω) = max
|α|≤m

‖Dαu‖L∞(Ω),

Wm,p(Ω) becomes a Banach space.

Definition 2.70. Wm,p
0 (Ω) is the closure of C∞

0 (Ω) in Wm,p(Ω).

Wm,p
0 (Ω) is a Banach space with the norm ‖ · ‖W m,p(Ω).
Before we summarize some basic properties of Sobolev spaces, we need to

classify the regularity of boundaries.
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Definition 2.71. Let Ω ⊂ R
N be a bounded domain, with boundary ∂Ω. We

say that the boundary ∂Ω is of class Ck,λ, k ∈ N0, λ ∈ (0, 1], if there are
m ∈ N Cartesian coordinate systems Cj , j = 1, . . . ,m,

Cj = (xj,1, . . . , xj,N−1, xj,N ) = (x′j , xj,N )

and real numbers α, β > 0, as well as m functions aj with

aj ∈ Ck,λ([−α, α]N−1), j = 1, . . . ,m,

such that the sets defined by

Λj = {(x′j , xj,N ) ∈ R
N : |x′j | ≤ α, xj,N = aj(x′j)},

V j
+ = {(x′j , xj,N ) ∈ R

N : |x′j | ≤ α, aj(x′j) < xj,N < aj(x′j) + β},
V j
− = {(x′j , xj,N ) ∈ R

N : |x′j | ≤ α, aj(x′j) − β < xj,N < aj(x′j)},

possess the following properties:

Λj ⊂ ∂Ω, V j
+ ⊂ Ω, V j

− ⊂ R
N \Ω, j = 1, . . . ,m,

and
m⋃

j=1

Λj = ∂Ω.

Remark 2.72. If ∂Ω ∈ C0,1, then we call ∂Ω a Lipschitz boundary, which
means that ∂Ω is locally the graph of a Lipschitz continuous function. In this
case, the (N − 1)-dimensional surface measure is well defined, on the basis
of which Lp(∂Ω)-spaces can be introduced (see [66]). As Lipschitz continuous
functions admit a.e. a gradient, the outer unit normal on ∂Ω exists for a.a.
x ∈ ∂Ω (see [94]), which allows us to extend the integration by parts formula
to Sobolev functions on Lipschitz domains.

Theorem 2.73. Let Ω ⊂ R
N be a bounded domain, N ≥ 1. Then we have

the following:

(i) Wm,p(Ω) is separable for 1 ≤ p <∞.
(ii) Wm,p(Ω) is reflexive for 1 < p <∞.
(iii) Let 1 ≤ p < ∞. Then C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω), and if

∂Ω is a Lipschitz boundary, then C∞(Ω) is dense in Wm,p(Ω), where
C∞(Ω) and C∞(Ω) are the spaces of infinitely differentiable functions in
Ω and Ω, respectively (cf. [99]).

As for the proofs of these properties we refer to [99].
Now we state some Sobolev embedding theorems. Let X,Y be two normed

linear spaces with X ⊂ Y . We recall the operator i : X → Y defined by
i(u) = u for all u ∈ X is called the embedding operator of X into Y . We say
X is continuously (compactly) embedded in Y if X ⊂ Y and the embedding
operator i : X → Y is continuous (compact).
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Theorem 2.74 (Sobolev Embedding Theorem). Let Ω ⊂ R
N , N ≥ 1,

be a bounded domain with Lipschitz boundary ∂Ω. Then the following holds:

(i) If mp < N, then the space Wm,p(Ω) is continuously embedded in Lp∗
(Ω),

p∗ = Np/(N − mp), and compactly embedded in Lq(Ω) for any q with
1 ≤ q < p∗.

(ii) If 0 ≤ k < m− N
p < k + 1, then the space Wm,p(Ω) is continuously em-

bedded in Ck,λ(Ω), λ = m− N
p −k, and compactly embedded in Ck,λ′

(Ω)
for any λ′ < λ.

(iii) Let 1 ≤ p <∞, then the embeddings

Lp(Ω) ⊃W 1,p(Ω) ⊃W 2,p(Ω) ⊃ · · ·

are compact.

Here Ck,λ(Ω) denotes the Hölder space; cf. [99]. As for the proofs we refer to,
e.g., [99, 222].

The proper definition of boundary values for Sobolev functions is based
on the following theorem.

Theorem 2.75 (Trace Theorem). Let Ω ⊂ R
N be a bounded domain with

Lipschitz (C0,1) boundary ∂Ω, N ≥ 1, and 1 ≤ p < ∞. Then exactly one
continuous linear operator exists

γ :W 1,p(Ω) → Lp(∂Ω)

such that:

(i) γ(u) = u|∂Ω if u ∈ C1(Ω).
(ii) ‖γ(u)‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) with C depending only on p and Ω.
(iii) If u ∈W 1,p(Ω), then γ(u) = 0 in Lp(∂Ω) if and only if u ∈W 1,p

0 (Ω).

Definition 2.76 (Trace). We call γ(u) the trace (or generalized boundary
function) of u on ∂Ω.

Remark 2.77. We note that the trace operator

γ :W 1,p(Ω) → Lp(∂Ω)

in Theorem 2.75 is not surjective; i.e., there are functions ϕ ∈ Lp(∂Ω) that are
not the traces of functions u from W 1,p(Ω). To describe precisely the range of
the trace operator, Sobolev spaces of fractional order, usually referred to as
Sobolev–Slobodeckij spaces, have to be taken into account (see [90, 132, 213,
219]). From [132, Theorem 6.8.13, Theorem 6.9.2], we obtain the following
result.

Theorem 2.78. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω, N ≥ 1, and 1 < p <∞. Then

γ(W 1,p(Ω)) =W 1− 1
p ,p(∂Ω).
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The following compactness result of the trace operator holds (see [132]).

Theorem 2.79. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω, N ≥ 1.

(i) If 1 < p < N, then
γ :W 1,p(Ω) → Lq(∂Ω)

is completely continuous for any q with 1 ≤ q < (Np− p)/(N − p).
(ii) If p ≥ N, then for any q ≥ 1,

γ :W 1,p(Ω) → Lq(∂Ω)

is completely continuous.

Sobolev–Slobodeckij spaces form a scale of continuous and even compact
embeddings with respect to their fractional order of regularity. More precisely,
we can deduce the following compact embedding result for the spacesW l,2(Ω)
with l ∈ R+ from [219, Theorem 7.9, Theorem 7.10].

Theorem 2.80. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω, N ≥ 1, and let l2 < l1 ≤ 1, where l1, l2 ∈ R+. Then the embedding

W l1,2(Ω) ⊂W l2,2(Ω)

is compact.
If M is a Ck,κ-manifold (C0,1 stands for Lipschitz-manifold) and l2 <

l1 < k + κ with l1, l2 ∈ R+ (for l1 integer, l1 = k + κ is admissible), then the
embedding

W l1,2(M) ⊂W l2,2(M)

is compact.

In a similar way as for Sobolev spaces we have the following trace theorem,
which can be deduced from [219, Theorem 8.7].

Theorem 2.81 (Trace Theorem). Let Ω ⊂ R
N be a bounded domain with

Lipschitz boundary ∂Ω, N ≥ 1, and let 1/2 < l ≤ 1 with l ∈ R+. Then a
uniquely defined continuous linear operator exists

γ :W l,2(Ω) →W l−1/2,2(∂Ω)

such that
γ(u) = u|∂Ω if u ∈ C1(Ω).

Theorem 2.80 and Theorem 2.81 hold likewise in the general case of the spaces
W l,p(Ω) with l ∈ R+, 1 < p < ∞, and can be found, e.g., in [90, 132, 212,
213, 219].

The following extension result is useful in the study of unbounded domain
problems.
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Lemma 2.82. Let Ω0 ⊂⊂ Ω, that is, Ω0 is compactly contained in Ω. Assume
g ∈ W 1,p(Ω), u ∈ W 1,p(Ω0), and u − g ∈ W 1,p

0 (Ω0), 1 ≤ p < ∞. Then the
function w defined by

w(x) =

{
u(x) if x ∈ Ω0 ,

g(x) if x ∈ Ω \Ω0

is in W 1,p(Ω), and its generalized derivative Diw = ∂w/∂xi, i = 1, . . . , N, is
given by

Diw(x) =

{
Diu(x) if x ∈ Ω0 ,

Dig(x) if x ∈ Ω \Ω0 .

For the proof of Lemma 2.82, see [120, Lemma 20.14]. Its proof is based on the
density property (iii) of Theorem 2.73 and the characterization of the traces
of W 1,p

0 (Ω) function.

2.2.3 Chain Rule and Lattice Structure

In this section, we assume that Ω ⊂ R
N is a bounded domain with Lipschitz

boundary ∂Ω.

Lemma 2.83 (Chain Rule). Let f ∈ C1(R) and sups∈R |f ′(s)| < ∞. Let
1 ≤ p <∞ and u ∈ W 1,p(Ω). Then the composite function f ◦ u ∈ W 1,p(Ω),
and its generalized derivatives are given by

Di(f ◦ u) = (f ′ ◦ u)Diu, i = 1, . . . , N.

Lemma 2.84 (Generalized Chain Rule). Let f : R → R be continuous
and piecewise continuously differentiable with sups∈R |f ′(s)| < ∞, and u ∈
W 1,p(Ω), 1 ≤ p < ∞. Then f ◦ u ∈ W 1,p(Ω), and its generalized derivative
is given by

Di(f ◦ u)(x) =

{
f ′(u(x))Diu(x) if f is differentiable at u(x) ,

0 otherwise.

The chain rule may further be extended to Lipschitz continuous f ; see [99,
222].

Lemma 2.85 (Generalized Chain Rule). Let f : R → R be a Lipschitz
continuous function and u ∈ W 1,p(Ω), 1 ≤ p < ∞. Then f ◦ u ∈ W 1,p(Ω),
and its generalized derivative is given by

Di(f ◦ u)(x) = fB(u(x))Diu(x) for a.e. x ∈ Ω,

where fB : R → R is a Borel-measurable function such that fB = f ′ a.e. in
R.
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The generalized derivative of the following special functions are frequently
used in later chapters.

Example 2.86. Let 1 ≤ p <∞ and u ∈W 1,p(Ω). Then u+ = max{u, 0}, u− =
max{−u, 0}, and |u| are in W 1,p(Ω), and their generalized derivatives are
given by

(Diu
+)(x) =

{
Diu(x) if u(x) > 0 ,
0 if u(x) ≤ 0 ,

(Diu
−)(x) =

{
0 if u(x) ≥ 0 ,
−Diu(x) if u(x) < 0 ,

(Di|u|)(x) =

⎧⎪⎨⎪⎩
Diu(x) if u(x) > 0 ,
0 if u(x) = 0 ,
−Diu(x) if u(x) < 0 .

As for the traces of u+ and u−, we have (cf. [66])

γ(u+) = (γ(u))+, γ(u−) = (γ(u))−.

Lemma 2.87 (Lattice Structure). Let u, v ∈W 1,p(Ω), 1 ≤ p <∞. Then
max{u, v} and min{u, v} are in W 1,p(Ω) with generalized derivatives

Di max{u, v}(x) =

{
Diu(x) if u(x) > v(x) ,
Div(x) if v(x) ≥ u(x) ,

Di min{u, v}(x) =

{
Diu(x) if u(x) < v(x) ,
Div(x) if v(x) ≤ u(x) .

Proof: The assertion follows easily from the above examples and the general-
ized chain rule by using max{u, v} = (u−v)++v and min{u, v} = u−(u−v)+;
see [112, Theorem 1.20]. ��
Lemma 2.88. If (uj), ( vj) ⊂ W 1,p(Ω) (1 ≤ p < ∞) are such that uj → u
and vj → v in W 1,p(Ω), then min{uj , vj} → min{u, v} and max{uj , vj} →
max{u, v} in W 1,p(Ω) as j → ∞.
For the proof, see [112, Lemma 1.22]. By means of Lemma 2.88, we readily
obtain the following result.

Lemma 2.89. Let u, ū ∈W 1,p(Ω) satisfy u ≤ ū, and let T be the truncation
operator defined by

Tu(x) =

⎧⎪⎨⎪⎩
ū(x) if u(x) > ū(x) ,
u(x) if u(x) ≤ u(x) ≤ ū(x) ,
u(x) if u(x) < u(x) .

Then T is a bounded continuous mapping from W 1,p(Ω) [respectively, Lp(Ω)]
into itself.
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Proof: The truncation operator T can be represented in the form

Tu = max{u, u} + min{u, ū} − u.

Thus, the assertion easily follows from Lemma 2.88. ��

Lemma 2.90 (Lattice Structure). If u, v ∈W 1,p
0 (Ω), then max{u, v} and

min{u, v} are in W 1,p
0 (Ω).

Lemma 2.90 implies that W 1,p
0 (Ω) has a lattice structure as well; see [112].

A partial ordering of traces on ∂Ω is given as follows.

Definition 2.91. Let u ∈ W 1,p(Ω), 1 ≤ p < ∞. Then u ≤ 0 on ∂Ω if
u+ ∈W 1,p

0 (Ω).

2.2.4 Some Inequalities

In this section, we recall some well-known inequalities that are frequently used
and that can be found in standard textbooks; see [93, 132, 222].

Young’s Inequality

Let 1 < p, q <∞, and 1/p+ 1/q = 1. Then

ab ≤ ap

p
+
bq

q
(a, b ≥ 0).

Proof: For a, b ∈ R+ satisfying ab = 0, the inequality is trivially satisfied.
Let a, b > 0. As the function x 
→ ex is convex, it follows that

ab = elog a+log b = e
1
p log ap+ 1

q log bq

≤ 1
p
elog ap

+
1
q
elog bq

=
ap

p
+
bq

q

��

Young’s Inequality with Epsilon

Let 1 < p, q <∞, and 1/p+ 1/q = 1. Then

ab ≤ εap + C(ε)bq (a, b ≥ 0, ε > 0)

with C(ε) = (εp)−q/p 1
q .

Proof: Again we only need to consider the case where a, b > 0. In this case,
we set ab = ((εp)1/pa)( b

(εp)1/p ) and apply Young’s inequality. ��
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Equivalent Norms

Let 1 ≤ s <∞, and ξi ∈ R, ξi ≥ 0, i = 1, . . . , N, then we have the following
inequality:

a

(
N∑

i=1

ξsi

)1/s

≤
N∑

i=1

ξi ≤ b
(

N∑
i=1

ξsi

)1/s

,

where a and b are some positive constants depending only on N and s.

Proof: The inequality is an immediate consequence of the fact that all norms
in R

N are equivalent to each other. ��

Monotonicity Inequality

Let 1 < p <∞. Consider the vector-valued function a : R
N → R

N defined by

a(ξ) = |ξ|p−2ξ for ξ �= 0, a(0) = 0.

If 1 < p < 2, then we have

(a(ξ) − a(ξ′)) · (ξ − ξ′) > 0 for all ξ, ξ′ ∈ R
N , ξ �= ξ′.

If 2 ≤ p <∞, then a constant c > 0 exists such that

(a(ξ) − a(ξ′)) · (ξ − ξ′) ≥ c |ξ − ξ′|p for all ξ ∈ R
N .

Hölder’s Inequality

Let 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1. If u ∈ Lp(Ω), v ∈ Lq(Ω), then one has∫
Ω

|uv| dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Minkowski’s Inequality

Let 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω); then

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).
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Clarkson’s Inequalities

Let u, v ∈ Lp(Ω). If 2 ≤ p <∞, then

‖u+ v‖p
Lp(Ω) + ‖u− v‖p

Lp(Ω) ≤ 2p−1
(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

)
.

If 1 < p < 2, then

‖u+ v‖p
Lp(Ω) + ‖u− v‖p

Lp(Ω) ≤ 2
(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

)
.

Proof: Use the function ϕ : [0, 1] → R defined by

ϕ(t) =
(1 + t)p + (1 − t)p

1 + tp
, t ∈ [0, 1].

��

Remark 2.92. It follows immediately from Clarkson’s inequalities that the
spaces Lp(Ω) and the Sobolev spaces Wm,p(Ω) are uniformly convex for
1 < p <∞, and m = 0, 1, . . . , .

Poincaré–Friedrichs Inequality

Let Ω ⊂ R
N be a bounded domain, 1 ≤ p < ∞, and u ∈ W 1,p

0 (Ω). Then we
have the estimate

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω),

where the constant C only depends on p, N, and Ω.

Remark 2.93. The Poincaré–Friedrichs inequality implies that

‖u‖W 1,p
0 (Ω) = ‖∇u‖Lp(Ω)

defines an equivalent norm on W 1,p
0 (Ω). Equivalent norms on W 1,p(Ω) play

an important role in the treatment of boundary value problems. The following
general result provides a tool to identify equivalent norms on W 1,p(Ω).

Proposition 2.94. Let Ω ⊂ R
N , N ≥ 1, be a bounded domain with Lipschitz

boundary ∂Ω. Assume ϕ : W 1,p(Ω) → R+, 1 ≤ p < ∞, is a seminorm that
satisfies the following conditions:

(i) A positive constant d exists such that

ϕ(u) ≤ d ‖u‖W 1,p(Ω) for all u ∈W 1,p(Ω).

(ii) If u = constant, then ϕ(u) = 0 implies u = 0.
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Then ‖ · ‖∼ defined by

‖u‖∼ =
(
‖∇u‖p

Lp(Ω) + ϕ(u)p
) 1

p

defines an equivalent norm in W 1,p(Ω).

As an application of Proposition 2.94, we obtain, e.g., an equivalent norm
on the closed subspace VΓ of W 1,p(Ω) defined by

VΓ = {u ∈W 1,p(Ω) : γ(u) = 0 on Γ},

where Γ ⊂ ∂Ω is some part of the boundary ∂Ω with strictly positive surface
measure |Γ | > 0. To this end, define ϕ by

ϕ(u) =
(∫

Γ

|γ(u)|p dΓ
) 1

p

for all u ∈W 1,p(Ω),

where γ is the trace operator. We observe that (i) and (ii) of Proposition
2.94 are satisfied, and thus ‖ · ‖∼ defined above gives an equivalent norm on
W 1,p(Ω). As ϕ(u) = 0 for u ∈ VΓ , we see that

‖u‖∼ = ‖∇u‖Lp(Ω) for all u ∈ VΓ

is an equivalent norm on the subspace VΓ .

2.3 Operators of Monotone Type

In this section, we provide the basic results on pseudomonotone operators
from a Banach space X into its dual space X∗.

2.3.1 Main Theorem on Pseudomonotone Operators

Let X be a real, reflexive Banach space with norm ‖ · ‖, X∗ its dual space,
and denote by 〈·, ·〉 the duality pairing between them. The norm convergence
in X and X∗ is denoted by “→” and the weak convergence by “⇀”.

Definition 2.95. Let A : X → X∗; then A is called

(i) continuous (respectively, weakly continuous) iff un → u implies Aun →
Au (respectively, un ⇀ u implies Aun ⇀ Au)

(ii) demicontinuous iff un → u implies Aun ⇀ Au
(iii) hemicontinuous iff the real function t→ 〈A(u+ tv), w〉 is continuous on

[0, 1] for all u, v, w ∈ X
(iv) strongly continuous or completely continuous iff un ⇀ u implies Aun →

Au
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(v) bounded iff A maps bounded sets into bounded sets
(vi) coercive iff lim‖u‖→∞

〈Au,u〉
‖u‖ = +∞

Definition 2.96 (Operators of Monotone Type). Let A : X → X∗; then
A is called

(i) monotone (respectively, strictly monotone) iff 〈Au−Av, u−v〉 ≥ (respec-
tively, >) 0 for all u, v ∈ X with u �= v

(ii) strongly monotone iff there is a constant c > 0 such that 〈Au−Av, u−v〉 ≥
c‖u− v‖2 for all u, v ∈ X

(iii) uniformly monotone iff 〈Au − Av, u − v〉 ≥ a(‖u − v‖)‖u − v‖ for all
u, v ∈ X where a : [0,∞) → [0,∞) is strictly increasing with a(0) = 0
and a(s) → +∞ as s→ ∞

(iv) pseudomonotone iff un ⇀ u and lim supn→∞〈Aun, un − u〉 ≤ 0 implies
〈Au, u− w〉 ≤ lim infn→∞〈Aun, un − w〉 for all w ∈ X

(v) to satisfy (S+)-condition iff un ⇀ u and lim supn→∞〈Aun, un − u〉 ≤ 0
imply un → u

We can show (cf. [18]) that the pseudomonotonicity according to (iv) of Def-
inition 2.96 is equivalent to the following definition.

Definition 2.97. The operator A : X → X∗ is pseudomonotone iff un ⇀ u
and lim supn→∞〈Aun, un − u〉 ≤ 0 implies Aun ⇀ Au and 〈Aun, un〉 →
〈Au, u〉.

For the following result, see [222, Proposition 27.6].

Lemma 2.98. Let A,B : X → X∗ be operators on the real reflexive Banach
space X. Then the following implications hold:

(i) If A is monotone and hemicontinuous, then A is pseudomonotone.
(ii) If A is strongly continuous, then A is pseudomonotone.
(iii) If A and B are pseudomonotone, then A+B is pseudomonotone.

The main theorem on pseudomonotone operators due to Brézis is given by
the next theorem (see [222, Theorem 27.A]).

Theorem 2.99 (Main Theorem on Pseudomonotone Operators). Let
X be a real, reflexive Banach space, and let A : X → X∗ be a pseudomonotone,
bounded, and coercive operator, and b ∈ X∗. Then a solution of the equation
Au = b exists.

Remark 2.100. Theorem 2.99 contains several important surjectivity results
as special cases, such as Lax–Milgram’s theorem and the Main Theorem on
Monotone Operators, which will be formulated in the following corollaries.
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Corollary 2.101 (Main Theorem on Monotone Operators). Let X be
a real, reflexive Banach space, and let A : X → X∗ be a monotone, hemicon-
tinuous, bounded, and coercive operator, and b ∈ X∗. Then a solution of the
equation Au = b exists.

For the proof of Corollary 2.101, we have only to mention that in view of
Lemma 2.98, a monotone and hemicontinuous operator is pseudomonotone.

Corollary 2.102 (Lax–Milgram’s Theorem). Let X be a real Hilbert
space, and let a : X ×X → R be a bilinear form. Assume that

(i) a is bounded; i.e., there is a C > 0 such that

|a(x, y)| ≤ C‖x‖‖y‖ for x, y ∈ X.

(ii) a is coercive, i.e., there is a C0 > 0 such that

a(x, x) ≥ C0‖x‖2 for x ∈ H.

Then, for each f in X∗, there is a unique element u in X such that

a(u, v) = 〈f, v〉 for v ∈ X.

The mapping f 
→ u is one-to-one, continuous, and linear from X∗ onto X.

As for the proof, note that the bilinear form a of Corollary 2.102 defines a
linear, bounded, and strongly monotone operator A : X → X∗ acccording to

〈Au, v〉 = a(u, v) for all u, v ∈ X,

and thus the equation a(u, v) = 〈f, v〉 of Corollary 2.102 is equivalent with
the operator equation Au = f in X∗. The existence result for the latter
follows immediately from Corollary 2.101, because A is strongly monotone
and continuous and therefore, in particular, also coercive. The uniqueness is
a consequence of the strong monotonicity of A.

2.3.2 Leray–Lions Operators

An important class of operators of monotone type is the so-called Leray–Lions
operators (see [215, 152]). These kinds of operators occur in the functional
analytical treatment of nonlinear elliptic and parabolic problems.

Definition 2.103 (Leray–Lions Operator). Let X be a real, reflexive Ba-
nach space. We say that A : X → X∗ is a Leray–Lions operator if it is bounded
and satisfies

Au = A(u, u), for u ∈ X,

where A : X ×X → X∗ has the following properties:
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(i) For any u ∈ X, the mapping v 
→ A(u, v) is bounded and hemicontinuous
from X to its dual X∗, with

〈A(u, u) −A(u, v), u− v〉 ≥ 0 for v ∈ X.

(ii) For any v ∈ X, the mapping u 
→ A(u, v) is bounded and hemicontinuous
from X to its dual X∗.

(iii) For any v ∈ X, A(un, v) converges weakly to A(u, v) in X∗ if (un) ⊂ X
is such that un ⇀ u in X and

〈A(un, un) −A(un, u), un − u〉 → 0.

(iv) For any v ∈ X, 〈A(un, v), un〉 converges to 〈F, u〉 if (un) ⊂ V is such
that un ⇀ u in X, and A(un, v)⇀ F in X∗.

As for the proof of the next theorem, see [215].

Theorem 2.104. Every Leray–Lions operator A : X → X∗ is pseudomono-
tone.

Next we will see that quasilinear elliptic operators satisfying certain struc-
ture and growth conditions represent Leray–Lions operators. To this end, we
need to study first the mapping properties of superposition operators, which
are also called Nemytskij operators.

Definition 2.105 (Nemytskij Operator). Let Ω ⊂ R
N , N ≥ 1, be a

nonempty measurable set, and let f : Ω × R
m → R, m ≥ 1, and u : Ω → R

m

be a given function. Then the superposition or Nemytskij operator F assigns
u 
→ f ◦ u; i.e., F is given by

Fu(x) = (f ◦ u)(x) = f(x, u(x)) for x ∈ Ω.

Definition 2.106 (Carathéodory Function). Let Ω ⊂ R
N , N ≥ 1, be a

nonempty measurable set, and let f : Ω×R
m → R, m ≥ 1. The function f is

called a Carathéodory function if the following two conditions are satisfied:

(i) x 
→ f(x, s) is measurable in Ω for all s ∈ R
m.

(ii) s 
→ f(x, s) is continuous on R
m for a.e. x ∈ Ω.

Lemma 2.107. Let f : Ω × R
m → R, m ≥ 1, be a Carathéodory function

that satisfies a growth condition of the form

|f(x, s)| ≤ k(x) + c
m∑

i=1

|si|pi/q, ∀ s = (s1, . . . , sm) ∈ R
m, a.e. x ∈ Ω,

for some positive constant c and some k ∈ Lq(Ω), and 1 ≤ q, pi < ∞ for all
i = 1, . . . ,m. Then the Nemytskij operator F defined by
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Fu(x) = f(x, u1(x), . . . , um(x))

is continuous and bounded from Lp1(Ω) × · · · × Lpm(Ω) into Lq(Ω). Here u
denotes the vector function u = (u1, . . . , um). Furthermore,

‖Fu‖Lq(Ω) ≤ c
(
‖k‖Lq(Ω) +

m∑
i=1

‖ui‖pi/q
Lpi (Ω)

)
.

Definition 2.108. Let Ω ⊂ R
N , N ≥ 1, be a nonempty measurable set. A

function f : Ω × R
m → R, m ≥ 1, is called superpositionally measurable (or

sup-measurable) if the function x 
→ Fu(x) is measurable in Ω whenever the
component functions ui : Ω → R of u = (u1, . . . , um) are measurable.

Now let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, let

A1 be the second-order quasilinear differential operator in divergence form
given by

A1u(x) = −
N∑

i=1

∂

∂xi
ai(x, u(x),∇u(x)),

and let A0 denote the operator

A0u(x) = a0(x, u(x),∇u(x)) .

Let 1 < p <∞, 1/p+ 1/q = 1, and assume for the coefficients ai : Ω × R ×
R

N → R, i = 0, 1, . . . , N the following conditions.

(H1) Carathéodory and Growth Condition: Each ai(x, s, ξ) satisfies Carathéo-
dory conditions, i.e., is measurable in x ∈ Ω for all (s, ξ) ∈ R×R

N and
continuous in (s, ξ) for a.e. x ∈ Ω. A constant c0 > 0 and a function
k0 ∈ Lq(Ω) exist so that

|ai(x, s, ξ)| ≤ k0(x) + c0(|s|p−1 + |ξ|p−1)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R×R
N , with |ξ| denoting the Euclidian

norm of the vector ξ.
(H2) Monotonicity Type Condition: The coefficients ai satisfy a monotonicity

condition with respect to ξ in the form

N∑
i=1

(ai(x, s, ξ) − ai(x, s, ξ′))(ξi − ξ′i) > 0

for a.e. x ∈ Ω , for all s ∈ R, and for all ξ, ξ′ ∈ R
N with ξ �= ξ′.

(H3) Coercivity Type Condition:

N∑
i=1

ai(x, s, ξ)ξi ≥ ν|ξ|p − k(x)

for a.e. x ∈ Ω , for all s ∈ R, and for all ξ ∈ R
N with some constant

ν > 0 and some function k ∈ L1(Ω).
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Let V be a closed subspace of W 1,p(Ω) such that W 1,p
0 (Ω) ⊂ V ⊂ W 1,p(Ω),

then under condition (H1) the differential operators A1 and A0 generate map-
pings from V into its dual space (again denoted by A1 and A0, respectively)
defined by

〈A1u, ϕ〉 =
N∑

i=1

∫
Ω

ai(x, u,∇u)
∂ϕ

∂xi
dx , 〈A0u, ϕ〉 =

∫
Ω

a0(x, u,∇u) ϕ dx .

Theorem 2.109. Set A = A1 + A0. Then the operators A, A0, and A1 have
the following properties:

(i) If (H1) is satisfied, then the mappings A,A1, A0 : V → V ∗ are continuous
and bounded.

(ii) If (H1) and (H2) are satisfied, then A : V → V ∗ is pseudomonotone.
(iii) If (H1), (H2), and (H3) are satisfied, then A has the (S+)-property.

Conditions (H1) and (H2) are the so-called Leray–Lions conditions that guar-
antee that A is pseudomonotone. In their original paper, Leray and Lions
[149] showed the pseudomonotonicity under conditions (H1), (H2), and the
following additional condition.

(H4) lim sup|ξ|→∞, s∈B

∑N
i=1

ai(x,s,ξ)ξi

|ξ|+|ξ|p−1 = +∞, for a.e. x ∈ Ω and all bounded
sets B.

However, Landes and Mustonen have shown in [136] that condition (H4) is re-
dundant for the pseudomonotonicity of A. As for the proof of the results stated
in Theorem 2.109 as well as on existence theorems involving pseudomonotone
operators, we refer to [17, 18] and [23, 27, 105, 152, 208, 222].

Example 2.110. Let Ω ⊂ R
N be a bounded domain. A prototype of a mono-

tone elliptic operator in Ω is the negative of the p-Laplacian Δp, 1 < p <∞,
defined by

Δpu = div(|∇u|p−2∇u) where ∇u = (∂u/∂x1, . . . , ∂u/∂xN ).

This operator coincides with the Laplacian Δ if p = 2, and is of the form A1

with the coeffients ai, i = 1, . . . , N, given by

ai(x, s, ξ) = |ξ|p−2ξi.

Thus, hypothesis (H1) is satisfied with k0 = 0, c0 = 1, and a0 = 0. Hypothesis
(H2) follows from the inequalities satisfied by the vector-valued function ξ 
→
|ξ|p−2ξ, (see Sect. 2.2.4) and (H3) is obviously true with ν = 1 and k = 0 due
to

N∑
i=1

ai(x, s, ξ)ξi =
N∑

i=1

|ξ|p−2ξi ξi = |ξ|p.

Therefore, hypotheses (H1)–(H3) are satisfied by the negative p-Laplacian,
and in view of Theorem 2.109, we see that −Δp : V → V ∗ is continuous,
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bounded, pseudomonotone, and has the (S+)-property. Moreover, from the
inequality

〈−Δpu− (−Δpv), u− v〉 =
∫

Ω

(|∇u|p−2∇u− |∇v|p−2∇v)(∇u−∇v) dx ≥ 0,

for all u, v ∈ V, we infer that −Δp : V → V ∗ is, in particular, also a monotone
operator. Depending on the domain of definition of −Δp, we can say even
more. For example, let V =W 1,p

0 (Ω). According to Sect. 2.2.4,

‖u‖V =
(∫

Ω

|∇u|p dx
)1/p

defines an equivalent norm in V . From the inequalities for the function ξ 
→
|ξ|p−2ξ, we see that the operator −Δp : W 1,p

0 (Ω) → (W 1,p
0 (Ω))∗ has the

mapping properties given in the following lemma.

Lemma 2.111. Let V be a closed subspace of W 1,p(Ω) such that W 1,p
0 (Ω) ⊂

V ⊂W 1,p(Ω). Then one has:

(i) −Δp : V → V ∗ is continuous, bounded, pseudomonotone, and has the
(S+)-property.

(ii) −Δp :W 1,p
0 (Ω) → (W 1,p

0 (Ω))∗ is
(a) strictly monotone if 1 < p <∞.
(b) strongly monotone if p = 2 (Laplacian).
(c) uniformly monotone if 2 < p <∞.

2.3.3 Multivalued Pseudomonotone Operators

In this section, we briefly recall the main results of the theory of pseudomo-
notone multivalued operators developed by Browder and Hess to the extent
it will be needed in the study of variational and hemivariational inequalities.
For the proofs and a more detailed presentation, we refer to the monographs
[222, 177].

First we present basic results about the continuity of multivalued functions
(multifunctions) and provide useful equivalent descriptions of these notions.
Even though these notions can be defined in a much more general context, we
confine ourselves to mappings between Banach spaces, which is sufficient for
our purpose.

Definition 2.112 (Semicontinuous Multifunctions). Let X,Y be Banach
spaces and A : X → 2Y be a multifunction.

(i) A is called upper semicontinuous at x0, if for every open subset V ⊂ Y
with A(x0) ⊂ V, a neighborhood U(x0) exists such that A(U(x0)) ⊂ V. If
A is upper semicontinuous at every x0 ∈ X, we call A upper semicontin-
uous in X.
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(ii) A is called lower semicontinuous at x0 if for every neighborhood V (y) of
every y ∈ A(x0), a neighborhood U(x0) exists such that

A(u) ∩ V (y) �= ∅ for all u ∈ U(x0).

If A is lower semicontinuous at every x0 ∈ X, we call A lower semicon-
tinuous in X.

(iii) A is called continuous at x0 if A is both upper and lower semicontinuous
at x0. If A is continuous at every x0 ∈ X, we call A continuous in X.

Alternative equivalent continuity criteria are given in the following proposi-
tions. To this end, we introduce the preimage of a multifunction.

Definition 2.113 (Preimage). Let M ⊂ Y and A : X → 2Y be a multi-
function. The preimage A−1(M) is defined by

A−1(M) = {x ∈ X : A(x) ∩M �= ∅}.

Proposition 2.114. Let X,Y be Banach spaces and A : X → 2Y be a multi-
function. Then the following statements are equivalent:

(i) A is upper semicontinuous.
(ii) For all closed sets C ⊂ Y, the preimage A−1(C) is closed.
(iii) If x ∈ X, (xn) is a sequence in X with xn → x as n → ∞, and V is an

open set in Y such that A(x) ⊂ V , then n0 ∈ N exists depending on V
such that for all n ≥ n0, we have A(xn) ⊂ V.

Proposition 2.115. Let X,Y be Banach spaces and A : X → 2Y be a multi-
function. Then the following statements are equivalent:

(i) A is lower semicontinuous.
(ii) For all open sets O ⊂ Y, the preimage A−1(O) is open.
(iii) If x ∈ X, (xn) is a sequence in X with xn → x as n→ ∞, and y ∈ A(x),

then for every n ∈ N, we can find a yn ∈ A(xn), such that yn → y, as
n→ ∞.

Remark 2.116. For a single-valued operator A : X → Y , upper semicontinuous
and lower semicontinuous in the multivalued setting is identical with conti-
nuous. For A : M → 2N having the same corresponding properties, where M
and N are subsets of the Banach spaces X and Y, respectively, then M and
N have to be equipped with the induced topology.

Next we introduce the notion of multivalued monotone and pseudomono-
tone operators from a real, reflexive Banach space X into its dual space and
formulate the main surjectivity result for these kinds of operators.

Definition 2.117 (Graph). Let X be a real Banach space, and let A : X →
2X∗

be a multivalued mapping; i.e., to each u ∈ X, there is assigned a subset
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A(u) of X∗, which may be empty if u /∈ D(A), where D(A) is the domain of
A given by

D(A) = {u ∈ X : A(u) �= ∅}.
The graph of A denoted by Gr(A) is given by

Gr(A) = {(u, u∗) ∈ X ×X∗ : u∗ ∈ A(u)}.

Definition 2.118 (Monotone Operator). The mapping A : X → 2X∗
is

called

(i) monotone iff

〈u∗ − v∗, u− v〉 ≥ 0 for all (u, u∗), (v, v∗) ∈ Gr(A)

(ii) strictly monotone iff

〈u∗ − v∗, u− v〉 > 0 for all (u, u∗), (v, v∗) ∈ Gr(A), u �= v

(iii) maximal monotone iff A is monotone and there is no monotone mapping
Ã : X → 2X∗

such that Gr(A) is a proper subset of Gr(Ã), which is
equivalent to the following implication:

(u, u∗) ∈ X ×X∗ : 〈u∗ − v∗, u− v〉 ≥ 0 for all (v, v∗) ∈ Gr(A)

implies (u, u∗) ∈ Gr(A)

The notions of strongly and uniformly monotone multivalued operators are
defined in a similar way as for single-valued operators.

Example 2.119. If X = R, then a maximal monotone mapping β : R → 2R is
called maximal monotone graph in R

2. For example, an increasing function
f : R → R generates a maximal monotone graph β in R

2 given by

β(s) := [f(s− 0), f(s+ 0)],

where f(s± 0) are the one-sided limits of f in s.

A single-valued operator

A : D(A) ⊂ X → X∗

is to be understood as a multivalued operator A : X → X∗ by setting Au =
{Au} if u ∈ D(A) and Au = ∅ otherwise. Thus, A is monotone iff

〈Au−Av, u− v〉 ≥ 0 for all u, v ∈ D(A),

and A : D(A) ⊂ X → X∗ is maximal monotone iff A is monotone and the
condition

(u, u∗) ∈ X ×X∗ : 〈u∗ −Av, u− v〉 ≥ 0 for all v ∈ D(A)

implies u ∈ D(A) and u∗ = Au.
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Definition 2.120 (Pseudomonotone Operator). Let X be a real reflexive
Banach space. The operator A : X → 2X∗

is called pseudomonotone if the
following conditions hold:

(i) The set A(u) is nonempty, bounded, closed, and convex for all u ∈ X.
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to

the weak topology on X∗.
(iii) If (un) ⊂ X with un ⇀ u, and if u∗n ∈ A(un) is such that

lim sup〈u∗n, un − u〉 ≤ 0,

then to each element v ∈ X, u∗(v) ∈ A(u) exists with

lim inf〈u∗n, un − v〉 ≥ 〈u∗(v), u− v〉.

Definition 2.121 (Generalized Pseudomonotone Operator). Let X be
a real reflexive Banach space. The operator A : X → 2X∗

is called generalized
pseudomonotone if the following holds:
Let (un) ⊂ X and (u∗n) ⊂ X∗ with u∗n ∈ A(un). If un ⇀ u in X and u∗n ⇀ u∗

in X∗ and if lim sup〈u∗n, un − u〉 ≤ 0, then the element u∗ lies in A(u) and

〈u∗n, un〉 → 〈u∗, u〉.

The next two propositions provide the relation between pseudomonotone
and generalized pseudomontone operators.

Proposition 2.122. Let X be a real reflexive Banach space. If the operator
A : X → 2X∗

is pseudomonotone, then A is generalized pseudomonotone.

Under the additional assumption of boundedness, the following converse of
Proposition 2.122 is true.

Proposition 2.123. Let X be a real reflexive Banach space, and assume that
A : X → 2X∗

satisfies the following conditions:

(i) For each u ∈ X, we have that A(u) is a nonempty, closed, and convex
subset of X∗.

(ii) A : X → 2X∗
is bounded.

(iii) If un ⇀ u in X and u∗n ⇀ u∗ in X∗ with u∗n ∈ A(un) and if
lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ A(u) and 〈u∗n, un〉 → 〈u∗, u〉.

Then the operator A : X → 2X∗
is pseudomonotone.

As for the proof of Proposition 2.123 we refer to [177, Chap. 2]. Note that the
notion of boundedness of a multivalued operator is exactly the same as for
single-valued operators; i.e., the image of a bounded set is again bounded.

The relation between maximal monotone and pseudomonotone operators
as well as the invariance of pseudomonotonicity under addition is given in the
following theorem.
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Theorem 2.124. Let X be a real reflexive Banach space, and let A, Ai : X →
2X∗

, i = 1, 2.

(i) If A is maximal monotone with D(A) = X, then A is pseudomonotone.
(ii) If A1 and A2 are two pseudomonotone operators, then the sum A1 +A2 :

X → 2X∗
is pseudomonotone.

The main theorem on pseudomonotone multivalued operators is formu-
lated in the next theorem.

Theorem 2.125. Let X be a real reflexive Banach space, and let A : X →
2X∗

be a pseudomonotone and a bounded operator, which is coercive in the
sense that a real-valued function c : R+ → R exists with

c(r) → +∞, as r → +∞

such that for all (u, u∗) ∈ Gr(A), we have

〈u∗, u− u0〉 ≥ c(‖u‖X)‖u‖X

for some u0 ∈ X. Then A is surjective; i.e., range(A) = X.

Remark 2.126. We remark that the boundedness condition supposed in The-
orem 2.125 can be dropped (see [177, Theorem 2.6]). This is because by
definition of a multivalued pseudomonotone operator A according to Defi-
nition 2.120 the operator A has to be upper semicontinuous from each finite-
dimensional subspace Xn of X to the weak topology on X∗. This latter con-
dition along with the coercivity and the properties of the images allows us to
get a surjectivity result on finite-dimensional subspaces Xn.

Theorem 2.127. Let X be a real reflexive Banach space, Φ : X → 2X∗
a

maximal monotone operator, and u0 ∈ D(Φ). Let A : X → 2X∗
be a pseu-

domonotone operator, and assume that either Au0 is quasi-bounded or Φu0 is
strongly quasi-bounded. Assume further that A : X → 2X∗

is u0-coercive; i.e.,
a real-valued function c : R+ → R exists with c(r) → +∞ as r → +∞ such
that for all (u, u∗) ∈ Gr (A), we have 〈u∗, u−u0〉 ≥ c(‖u‖X)‖u‖X . Then A+Φ
is surjective; i.e., range(A+ Φ) = X∗.

The operators Au0 and Φu0 that appear in Theorem 2.127 are defined by
Au0(v) := A(u0 + v) and similarly for Φu0 . As for the notion of quasi-bounded
and strongly quasi-bounded, we refer to [177, p. 51]. In particular, one has that
any bounded operator is quasi-bounded and strongly quasi-bounded.

2.4 First-Order Evolution Equations

In this section we present the basic functional analytic tools needed in the
study of first-order single- and multivalued evolution equations in the form
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u ∈ X, u′ ∈ X∗ : u′ +Au � f in X∗, u(0) = u0, (2.4)

where X = Lp(0, τ ;V ), 1 < p < ∞, with τ > 0 is the Lp-space of vector-
valued functions u : (0, τ) → V defined on the interval (0, τ) with values in
some Banach space V, and u′ is the generalized or distributional derivative of
the function t 
→ u(t) with respect to t ∈ (0, τ). The right-hand side f ∈ X∗

is given, and A : X → 2X∗
is some (in general) multivalued operator. The

initial values u0 are taken from some Hilbert spaceH such that the embedding
V ⊂ H is continuous and dense. Problem (2.4) provides an abstract framework
for the functional analytic treatment of initial-boundary value problems for
parabolic differential equations and inclusions.

2.4.1 Motivation

To give a motivation for the study of the abstract problem (2.4), let us consider
the classic initial-boundary value problem for the heat equation.

Let Ω ⊂ R
N be a bounded domain with smooth boundary ∂Ω, and denote

Q = Ω × (0, τ) and Γ = ∂Ω × (0, τ) for some τ > 0. We are looking for a
function (x, t) 
→ u(x, t) defined in Ω × [0, τ) such that

ut −Δu = f in Q,
u = 0 on Γ,

u(·, 0) = u0(·) in Ω,
(2.5)

where the right-hand side f : Q → R and the initial values u0 : Ω → R are
given functions. A classic (or strong) solution of (2.5) is a function that satisfies
all equations of (2.5) pointwise in the usual sense. This, however, requires
sufficient smoothness assumptions on the data f and u0 as well as on the
domain Ω. To be able to deal with (2.5) under relaxed regularity assumptions
on the data, one tries instead to consider an appropriate generalized problem
corresponding to (2.5), which in turn leads to the notion of weak solutions.
To make plausible the definition of weak solutions of (2.5), we temporarily
suppose that u is in fact a smooth solution of (2.5). In a similar way as in the
explanation of weak solutions of the Dirichlet problem for elliptic equations
(see Chap. 1), we formally multiply the heat equation by v ∈ C∞

0 (Ω) and
subsequently integrate by parts, which yields

d

dt

∫
Ω

u(x, t)v(x) dx+
∫

Ω

∇u(x, t)∇v(x) dx =
∫

Ω

f(x, t)v(x) dx, (2.6)

for all v ∈ C∞
0 (Ω). As V =W 1,2

0 (Ω) is the closure of C∞
0 (Ω) in W 1,2

0 (Ω), we
see that (2.6) makes perfect sense for v ∈ V and u(·, t) ∈ V with f ∈ L2(Q).
Now we change our viewpoint concerning the function u in that we deal with
the space variable x and the time variable t in different ways. We associate
with u = u(x, t) a mapping (again denoted by u) u : [0, τ) → V defined by

(u(t))(x) = u(x, t), x ∈ Ω, t ∈ [0, τ),
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which means that we are going to consider u not as a function of x and t
together, but as a mapping u : [0, τ) → V. Let H = L2(Ω), and denote by
(·, ·) the inner product in H. Similarly as for u, we interpret the right-hand
side function f as a mapping f : [0, τ) → H according to

(f(t))(x) = f(x, t), x ∈ Ω, t ∈ [0, τ).

By means of the bilinear form a : V × V → R defined by

a(w, v) =
∫

Ω

∇w∇v dx,

we can rewrite (2.6) in the form

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) for all v ∈ V, (2.7)

which together with u(0) = u0 ∈ H represents a weak formulation of the
initial-boundary value problem (2.5) [note that the homogeneous boundary
values are taken into account by u(t) ∈ V ]. For fixed t, let us consider the
mapping v 
→ (f(t), v). Apparently this mapping is linear, and in view of the
continuous embedding V ⊂ H, we have

|(f(t), v)| ≤ ‖f(t)‖H‖v‖H ≤ c‖f(t)‖H‖v‖V ,

which shows that the mapping is bounded. Thus, the mapping v 
→ (f(t), v)
belongs to V ∗; i.e., there is a b ∈ V ∗ such that

〈b, v〉 = (f(t), v), for all v ∈ V,

where 〈·, ·〉 denotes the duality pairing between V and V ∗. Next we will see
that the functional b is defined in a unique way. Assume there is another
h ∈ H that generates the same functional b. It yields

(f(t) − h, v) = 0 for all v ∈ V,

and thus f(t) = h, because V ⊂ H is densely embedded. It allows us to
identify b with f(t). In this way, the element f(t) ∈ H has to be considered
as an element of V ∗, and thus, we have

〈f(t), v〉 = (f(t), v) for all v ∈ V. (2.8)

The bilinear form a defined above, which can easily be seen to be bounded,
generates a linear and bounded operator A : V → V ∗ through

〈Aw, v〉 = a(w, v) for all w, v ∈ V. (2.9)

Thus, by (2.8) and (2.9), we can rewrite (2.7) in the form
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d

dt
(u(t), v) + 〈Au(t), v〉 = 〈f(t), v〉 for all v ∈ V. (2.10)

We will later introduce the generalized or distributional derivative of a vector-
valued function t 
→ u(t), whose derivative u′(t) turns out to have the property

〈u′(t), v〉 =
d

dt
(u(t), v) for all v ∈ V, (2.11)

where d/dt is the generalized derivative of the real-valued function t 
→
(u(t), v) on (0, τ). Equations (2.10) and (2.11) result in the operator equa-
tion

u′(t) +Au(t) = f(t) in V ∗, (2.12)

which is only required to be satisfied for a.e. t ∈ (0, τ).
Let X = L2(0, τ ;V ), and denote by X∗ its dual space, which is given by

X∗ = L2(0, τ ;V ∗) (see Sect. 2.4.2). Furthermore, by means of the operator
A : V → V ∗, we define an operator Â : X → X∗ by

(Âu)(t) = Au(t), t ∈ (0, τ).

Thus, in view of (2.12) and the definition of Â, a generalized formulation of
the initial-boundary value problem (2.5) reads as follows: For given u0 ∈ H
and f ∈ X∗, we seek a function u ∈ X such that u′ ∈ X∗ and

u′ + Âu = f in X∗, u(0) = u0, (2.13)

which is of the abstract form of the (single-valued) evolution equation (2.4).
We observe a few particularities that are typical in the functional analytic

setting of parabolic problems.

(i) The space and time variables x and t are treated differently, and the
function (x, t) 
→ u(x, t) is considered as a vector-valued function.

(ii) The formulation of the given initial-boundary value problem as an ab-
stract operator equation of the form (2.13) requires the use of two spaces
H and V with the need that V ⊂ H is densely and continuously embed-
ded. It leads to the concept of evolution triple: V ⊂ H ⊂ V ∗.

(iii) The solution space for the operator equation (2.13) is given by

W = {u ∈ X : u′ ∈ X∗},

where u′ has to be understood as the distributional derivative of the
vector-valued function u.

In the following subsections, we will give the basic notions and existence
results for the abstract evolution equation (2.4).
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2.4.2 Vector-Valued Functions

Let B be a Banach space with norm ‖ · ‖, B∗ its dual space, and 0 < τ <∞.
We consider vector-valued functions u : [0, τ ] → B and explain first some
notions such as measurability and integrability. Most of the material in this
subsection can be found in [93, 208, 222].

Definition 2.128. Let u and s be vector-valued functions.

(i) s : [0, τ ] → B is called simple (or step function) if it is of the form

s(t) =
m∑

i=1

χEi(t)ui, 0 ≤ t ≤ τ,

where each Ei is a Lebesgue measurable subset of the interval [0, τ ], ui ∈ B
(i = 1, . . . ,m), and χEi

is the characteristic function of Ei.
(ii) u : [0, τ ] → B is strongly measurable if a sequence (sk) of simple functions

sk : [0, τ ] → B exists such that sk(t) → u(t) as k → ∞, for a.e. t ∈ [0, τ ].
(iii) u : [0, τ ] → B is weakly measurable if for each u∗ ∈ B∗ the mapping

t→ 〈u∗, u(t)〉 is Lebesgue measurable.
(iv) u : [0, τ ] → B is almost separably valued if a subset N ⊂ [0, τ ] of zero

measure exists such that the set {u(t) : t ∈ [0, τ ]\N} is a separable subset
of B.

Theorem 2.129 (Pettis). The function u : [0, τ ] → B is strongly measurable
if and only if u is weakly measurable and almost separably valued.

Definition 2.130. The integral of vector-valued functions is defined as fol-
lows:

(i) The integral of the simple function s(t) =
∑m

i=1 χEi
(t)ui is defined by∫ τ

0

s(t) dt =
m∑

i=1

meas(Ei) ui.

(ii) The vector-valued function u : [0, τ ] → B is called integrable if a sequence
(sk) of simple functions exists such that∫ τ

0

‖sk(t) − u(t)‖ dt→ 0 as k → ∞.

(iii) If u : [0, τ ] → B is integrable, its integral is defined by∫ τ

0

u(t) dt = lim
k→∞

∫ τ

0

sk(t) dt.
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Theorem 2.131. The function u : [0, τ ] → B is integrable if and only if u is
strongly measurable and t→ ‖u(t)‖ is integrable. Furthermore, one has∥∥∥∥∫ τ

0

u(t) dt
∥∥∥∥ ≤

∫ τ

0

‖u(t)‖ dt, and
〈
u∗,

∫ τ

0

u(t) dt
〉

=
∫ τ

0

〈u∗, u(t)〉 dt,

for each u∗ ∈ B∗.

Definition 2.132. Let 1 ≤ p ≤ ∞. We denote by Lp(0, τ ;B) the space of
(equivalent classes of) measurable functions u : [0, τ ] → B such that ‖u(·)‖
belongs to Lp(0, τ ; R) with

‖u‖Lp(0,τ ;B) =
(∫ τ

0

‖u(t)‖p dt

)1/p

for 1 ≤ p <∞,

‖u‖L∞(0,τ ;B) = ess sup
0≤t≤τ

‖u(t)‖ <∞.

The space C([0, τ ];B) comprises of all continuous functions u : [0, τ ] → B
with

‖u‖C([0,τ ];B) = max
0≤t≤τ

‖u(t)‖ <∞.

Theorem 2.133. Let B and Y be Banach spaces. Then we have the following
results:

(i) Lp(0, τ ;B) with 1 ≤ p ≤ ∞ and the norm given by Definition 2.132 is a
Banach space.

(ii) C([0, τ ];B) is dense in Lp(0, τ ;B) for 1 ≤ p < ∞, and the embedding
C([0, τ ];B) ⊂ Lp(0, τ ;B) is continuous.

(iii) If B is a Hilbert space with scalar product (·, ·)B , then L2(0, τ ;B) is also
a Hilbert space with the scalar product

(u, v) =
∫ τ

0

(u(t), v(t))B dt.

(iv) Lp(0, τ ;B) is separable if B is separable and 1 ≤ p <∞.
(v) Lp(0, τ ;B) is uniformly (strictly) convex in the case where B is uniformly

(strictly) convex and 1 < p <∞.
(vi) If the embedding B ⊂ Y is continuous, then the embedding

Lr(0, τ ;B) ⊂ Lq(0, τ ;Y ), 1 ≤ q ≤ r ≤ ∞,

is also continuous.
(vii) Let B be a reflexive and separable Banach space, and let 1 < p <

∞, 1/p+ 1/q = 1. Then X = Lp(0, τ ;B) is also reflexive and separable,
and its dual space X∗ is norm-isomorphic to Lq(0, τ ;B∗). Therefore, X∗

and Lq(0, τ ;B∗) may be identified. The duality pairing 〈·, ·〉X between X
and its dual X∗ can be written as

〈v, u〉X =
∫ τ

0

〈v(t), u(t)〉B dt for all u ∈ X, v ∈ X∗.
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Remark 2.134. We usually drop the subscripts X and B in 〈v, u〉X and
〈v(t), u(t)〉B , respectively, because from the context, the type of duality pair-
ing is clear.

2.4.3 Evolution Triple and Generalized Derivative

The material of this subsection is mainly taken from [208, 222].

Definition 2.135 (Evolution Triple). A triple (V,H, V ∗) is called an evo-
lution triple if the following properties hold:

(i) V is a real, separable, and reflexive Banach space, and H is a real, sep-
arable Hilbert space endowed with the scalar product (·, ·).

(ii) The embedding V ⊂ H is continuous, and V is dense in H.
(iii) Identifying H with its dual H∗ by the Riesz map, we then have H ⊂ V ∗

with the equation

〈h, v〉V = (h, v) for h ∈ H ⊂ V ∗, v ∈ V.

Remark 2.136. As V is reflexive and V is dense in H, the space H∗ is dense
in V ∗, and hence, H is dense in V ∗. It is a simple consequence of Proposition
2.25 in Sect. 2.1.2 applied to the embedding operator i : V → H.

Example 2.137. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω, and let V be a closed subspace of W 1,p(Ω) with 2 ≤ p < ∞ such that
W 1,p

0 (Ω) ⊂ V ⊂ W 1,p(Ω). Then (V,H, V ∗) with H = L2(Ω) is an evolution
triple with all embeddings being, in addition, compact.

Definition 2.138. Let Y, Z be Banach spaces, and u ∈ L1(0, τ ;Y ) and w ∈
L1(0, τ ;Z). Then, the function w is called the generalized derivative of the
function u in (0, τ) iff the following relation holds:∫ τ

0

ϕ′(t)u(t) dt = −
∫ τ

0

ϕ(t)w(t) dt for all ϕ ∈ C∞
0 (0, τ).

We write w = u′.

Theorem 2.139. Let V ⊂ H ⊂ V ∗ be an evolution triple, and let 1 ≤ p, q ≤
∞, 0 < τ < ∞. Let u ∈ Lp(0, τ ;V ); then the generalized derivative u′ ∈
Lq(0, τ ;V ∗) exists iff there is a function w ∈ Lq(0, τ ;V ∗) such that∫ τ

0

(u(t), v)Hϕ
′(t) dt = −

∫ τ

0

〈w(t), v〉V ϕ(t) dt

for all v ∈ V and all ϕ ∈ C∞
0 (0, τ). The generalized derivative u′ is uniquely

defined and u′ = w.
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Definition 2.140. Let V be a real, separable, and reflexive Banach space, and
let X = Lp(0, τ ;V ), 1 < p <∞. A space W is defined by

W = {u ∈ X : u′ ∈ X∗},

where u′ is the generalized derivative, and X∗ = Lq(0, τ ;V ∗), 1/p+ 1/q = 1.

Theorem 2.141 (Lions–Aubin). Let B0, B,B1 be reflexive Banach spaces
with B0 ⊂ B ⊂ B1, and assume B0 ⊂ B is compactly and B ⊂ B1 is contin-
uously embedded. Let 1 < p <∞, 1 < q <∞, and define W by

W = {u ∈ Lp(0, τ ;B0) : u′ ∈ Lq(0, τ ;B1)}.

Then W ⊂ Lp(0, τ ;B) is compactly embedded.

Example 2.142. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω. As W 1,p(Ω) ⊂ Lp(Ω) is compactly embedded, and Lp(Ω) ⊂ W 1,p(Ω)∗

is continuously embedded for 2 ≤ p < ∞, Theorem 2.141 can be applied by
setting B0 = W 1,p(Ω), B = Lp(Ω) and B1 = W 1,p(Ω)∗, 2 ≤ p < ∞. Thus,
W defined in Definition 2.140, i.e.,

W = {u ∈ Lp(0, τ ;W 1,p(Ω)) : u′ ∈ Lq(0, τ ;W 1,p(Ω)∗)},

is compactly embedded in Lp(0, τ ;Lp(Ω)) ≡ Lp(Q), where Q = Ω × (0, τ).

Let Ω ⊂ R
N be as in Example 2.142, and Γ = ∂Ω × (0, τ). If u ∈ X =

Lp(0, τ ;W 1,p(Ω)), then for a.e. t ∈ (0, τ) the function t 
→ γu(t) ∈ Lp(∂Ω)
is well defined, where γ : W 1,p(Ω) → Lp(∂Ω) denotes the trace operator
(see Theorem 2.75). In view of Theorem 2.133 (vi) and the continuity of
γ : W 1,p(Ω) → Lp(∂Ω), we get that t 
→ γu(t) belongs to Lp(0, τ ;Lp(∂Ω)) ≡
Lp(Γ ). If we denote the mapping that assigns u ∈ X to the vector-valued
function t 
→ γu(t) again by γ, then it follows that γ : X → Lp(Γ ) is linear
and continuous. Moreover, as the trace operator γ : W 1,p(Ω) → Lp(∂Ω) is
even compact, we obtain the following result.

Proposition 2.143. Let Ω ⊂ R
N be a bounded domain with Lipschitz bound-

ary ∂Ω, and let X = Lp(0, τ ;W 1,p(Ω)) with 2 ≤ p < ∞. Then the trace
operator γ :W → Lp(Γ ) is compact.

Proof: We apply Theorem 2.141. To this end, let B0 = W 1,p(Ω), B =
W 1−ε,p(Ω), and B1 = B∗

0 . As B0 ⊂ B is compactly embedded for any
ε ∈ (0, 1), and B ⊂ B1 is continuously embedded, from Theorem 2.141, it fol-
lows thatW ⊂ Lp(0, τ ;W 1−ε,p(Ω)) is compactly embedded. If we select ε such
that 0 < ε < 1 − 1/p, then γ : W 1−ε,p(Ω) → W 1−ε−1/p,p(∂Ω) is linear and
continuous, and thus γ : Lp(0, τ ;W 1−ε,p(Ω)) → Lp(0, τ ;W 1−ε−1/p,p(Ω)) ⊂
Lp(Γ ) is linear and continuous, which due to the compact embedding of
W ⊂ Lp(0, τ ;W 1−ε,p(Ω)) completes the proof. ��
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Theorem 2.144. Let V ⊂ H ⊂ V ∗ be an evolution triple, and let 1 < p <
∞, 1/p+ 1/q = 1, 0 < τ <∞. Then the following hold:

(i) The space W defined in Definition 2.140 is a real, separable, and reflexive
Banach space with the norm

‖u‖W = ‖u‖X + ‖u′‖X∗ .

(ii) The embedding W ⊂ C([0, τ ];H) is continuous.
(iii) For all u, v ∈ W and arbitrary t, s with 0 ≤ s ≤ t ≤ τ, the following

generalized integration by parts formula holds:

(u(t), v(t))H − (u(s), v(s))H =
∫ t

s

〈u′(ζ), v(ζ)〉V + 〈v′(ζ), u(ζ)〉V dζ.

Remark 2.145. The integration by parts formula is equivalent to

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉V + 〈v′(t), u(t)〉V for a.e. t ∈ (0, τ).

In particular, for u = v, we obtain

d

dt
‖u(t)‖2

H = 2〈u′(t), u(t)〉V ,

which implies ∫ t

s

〈u′(ζ), u(ζ)〉V dζ =
1
2
(‖u(t)‖2

H − ‖u(s)‖2
H). (2.14)

In case that V = W 1,p(Ω), 2 ≤ p < ∞, and H = L2(Ω), we obtain the
following generalization of formula (2.14), which will be useful for obtaining
comparison principles in evolutionary problems.

Lemma 2.146. Let X = Lp(0, τ ;W 1,p(Ω)) with 2 ≤ p < ∞ and W = {u ∈
X : u′ ∈ X∗}, where Ω ⊂ R

N is a bounded domain with Lipschitz boundary
∂Ω. Let θ : R → R be continuous and piecewise continuously differentiable
with θ′ ∈ L∞(R), and θ(0) = 0, and let Θ denote the primitive of θ defined by

Θ(r) =
∫ r

0

θ(s) ds.

Then, for w ∈W , the following formula holds:∫ s

r

〈w′(t), θ(w(t))〉 dt =
∫

Ω

Θ(w(s)) dx−
∫

Ω

Θ(w(r)) dx, (2.15)

for a.e. 0 ≤ r < s ≤ τ.
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Proof: The proof makes use of density arguments and the generalized chain
rule for Sobolev functions (see Lemma 2.84). Note first that in view of the
assumptions on θ and Lemma 2.84, the composed function θ(w) is in X for
w ∈ W. The space C1([0, τ ];C1(Ω)) of smooth functions is dense in W (cf.
[222, Chap. 23]). Let w ∈ W be given. Then there is a sequence (wn) ⊂
C1([0, τ ];C1(Ω)) with wn → w as n → ∞. For the smooth functions wn, we
have ∫ s

r

〈w′
n(t), θ(wn(t))〉 dt =

∫ s

r

∫
Ω

w′
n(x, t)θ(wn(x, t)) dxdt

=
∫ s

r

∫
Ω

∂

∂t

(
Θ(wn(x, t))

)
dxdt

=
∫

Ω

(
Θ(wn(x, s)) −Θ(wn(x, r))

)
dx. (2.16)

The assumptions on θ imply that θ is Lipschitz continuous, and thus, it follows
that for some subsequence of (wn) (again denoted by (wn)),

θ(wn) → θ(w) in X, (2.17)

and due to the continuous embedding W ⊂ C([0, τ ];L2(Ω)), one gets for all
t ∈ [0, τ ]

Θ(wn(t)) → Θ(w(t)) in L2(Ω). (2.18)

By using (2.17), (2.18), we may pass to the limit in (2.16) for some subse-
quence, which completes the proof. ��

Example 2.147. Let θ(s) = s. Then θ trivially satisfies all assumptions of
Lemma 2.146, and the primitive Θ is given by Θ(s) = (1/2)s2, and thus,
formula (2.15) becomes∫ s

r

〈w′(t), w(t)〉 dt =
1
2

∫
Ω

(w(s))2 dx− 1
2

∫
Ω

(w(r))2 dx

=
1
2
(‖w(s)‖2

H − ‖w(r)‖2
H), (2.19)

for all 0 ≤ r < s ≤ τ, where H = L2(Ω), which is formula (2.14.)

The following example will play a crucial rule in obtaining comparison results.

Example 2.148. If θ(s) = s+ = max{s, 0}, then its primitive can easily be seen
to be Θ(s) = (1/2)(s+)2, and thus, for w ∈W , we get the formula∫ s

r

〈w′(t), (w(t))+〉 dt =
1
2
(‖(w(s))+‖2

H − ‖(w(r))+‖2
H). (2.20)
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2.4.4 Existence Results for Evolution Equations

The material of this subsection is mainly based on results obtained in [19, 20,
208]; see also [152, 222].

Let V ⊂ H ⊂ V ∗ be an evolution triple, and let X = Lp(0, τ ;V ), X∗

and W be the spaces of vector-valued functions as defined in Sect. 2.4.3 with
1 < p < ∞, 1/p + 1/q = 1, and 0 < τ < ∞. We provide an existence result
for the evolution equation

u ∈W : u′(t) +A(t)u(t) = f(t), 0 < t < τ, u(0) = 0, (2.21)

where f ∈ X∗ is given and A(t) : V → V ∗ is some operator specified later.
Without loss of generality, homogeneous initial values have been assumed,
because inhomogeneous initial values can be transformed to homogeneous ones
by translation. The generalized derivative Lu = u′ restricted to the subset

D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = 0} = {u ∈W : u(0) = 0}

defines a linear operator L : D(L) → X∗ given by

〈Lu, v〉 =
∫ τ

0

〈u′(t), v(t)〉 dt for all v ∈ X.

The operator L has the following properties.

Lemma 2.149. Let V ⊂ H ⊂ V ∗ be an evolution triple, and let X =
Lp(0, τ ;V ), where 1 < p < ∞. Then the operator L : D(L) ⊂ X → X∗

is densely defined, closed, and maximal monotone.

Proof: First we note that the set M defined by

M = {u ∈ C1([0, τ ];V ) : u(0) = 0}

satisfies M ⊂ D(L) and M = X, which shows that D(L) = X, and thus,
L is densely defined. Due to the continuous embedding W ⊂ C([0, τ ];H), it
follows that D(L) is closed in W , and thus, L is closed. From formula (2.19),
we get

〈Lu, u〉 =
∫ τ

0

〈Lu(t), u(t)〉 dt =
1
2
(‖u(τ)‖2

H − ‖u(0)‖2
H) =

1
2
‖u(τ)‖2

H ≥ 0,

(2.22)

which shows that L is monotone. To prove that L is maximal monotone, we
make use of the characterization of single-valued maximal monotone operators
(see Sect. 2.3.3). To this end, suppose (v, w) ∈ X ×X∗ and

〈w − Lu, v − u〉 ≥ 0 for all u ∈ D(L). (2.23)

We need to show that v ∈ D(L) and w = Lv = v′. Let u be chosen as
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u = ϕz, with ϕ ∈ C∞
0 (0, τ) and z ∈ V.

Obviously, u ∈ D(L) with u′ = ϕ′z, and 〈Lu, u〉 = 0 in view of (2.22). Due to
inequality (2.23), we then have

0 ≤ 〈w, v〉 −
∫ τ

0

〈ϕ′(t)v(t) + ϕ(t)w(t), z〉V dt for all z ∈ V, (2.24)

which implies∫ τ

0

〈ϕ′(t)v(t) + ϕ(t)w(t), z〉V dt = 0 for all ϕ ∈ C∞
0 (0, τ),

and thus, v′ = w. It remains to show that v ∈ D(L). Again by applying
formula (2.22) with u replaced by v − u, we obtain

0 ≤ 〈v′ − u′, v − u〉 =
1
2
(‖v(τ) − u(τ)‖2

H − ‖v(0) − u(0)‖2
H). (2.25)

To complete the proof, we only need to show that v(0) = 0. To this end,
choose a sequence (vn) ⊂ V with τvn → v(τ) in H (note that V is dense in
H) and specialize u(t) = tvn. Then u ∈ D(L), and from (2.25), one obtains

0 ≤ 1
2
(‖v(τ) − τvn‖2

H − ‖v(0)‖2
H),

which by passing to the limit as n→ ∞ results in v(0) = 0. ��

Remark 2.150. With only slight modifications one can prove that L : D(L) ⊂
X → X∗ defined by

Lu = u′ : D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = u(τ)}

is a densely defined, closed, and maximal monotone operator (cf. [222, Propo-
sition 32.10]).

Now we state the following conditions on the time-dependent operators
A(t) : V → V ∗:

(H1) ‖A(t)u‖V ∗ ≤ c0
(
‖u‖p−1

V + k0(t)
)

for all u ∈ V and t ∈ [0, τ ] with some
positive constant c0 and k0 ∈ Lq(0, τ).

(H2) A(t) : V → V ∗ is demicontinuous for each t ∈ [0, τ ].
(H3) The function t→ 〈A(t)u, v〉 is measurable on (0, τ) for all u, v ∈ V.
(H4) 〈A(t)u, u〉 ≥ c1(‖u‖p

V − k1(t)) for all u ∈ V and t ∈ [0, τ ] with some
constant c1 > 0 and some function k1 ∈ L1(0, τ).

Define an operator Â related with A(t) by

Â(u)(t) = A(t)u(t), t ∈ [0, τ ], (2.26)
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which may be considered as the associated Nemytskij operator generated by
the operator-valued function t 
→ A(t). Thus, problem (2.21) corresponds to
the following one:

u ∈ D(L) : Lu+ Â(u) = f in X∗. (2.27)

Definition 2.151. Let D(L) be equipped with the graph norm; that is,

‖u‖L = ‖u‖X + ‖Lu‖X∗ .

The operator Â : X → X∗ is called pseudomonotone with respect to the graph
norm topology of D(L) (or pseudomonotone w.r.t. D(L) for short); if for any
sequence (un) ∈ D(L) satisfying

un ⇀ u in X, Lun ⇀ Lu in X∗, and lim sup
n→∞

〈Â(un), un − u〉 ≤ 0,

it follows that

Â(un)⇀ Â(u) in X∗ and 〈Â(un), un〉 → 〈Â(u), u〉.

In an obvious similar way, the (S+)-condition with respect to D(L) is defined.

For the following surjectivity result, which yields the existence for problem
(2.27), we refer to [19, 152].

Theorem 2.152. Let L : D(L) ⊂ X → X∗ be as given above, and let Â :
X → X∗ defined by (2.26) be bounded, demicontinuous, and pseudomonotone
w.r.t. D(L). If Â is coercive, then (L + Â)(D(L)) = X∗; that is, L + Â is
surjective.

The next result shows that certain properties of the operators A(t) are trans-
fered to its Nemytskij operator Â; cf. [20].

Theorem 2.153. Let hypotheses (H1)–(H4) be satisfied. Then we have the
following results:

(i) If A(t) : V → V ∗ is pseudomonotone for all t ∈ [0, τ ], then Â : X → X∗

is pseudomonotone with respect to D(L) according to Definition 2.151.
(ii) If A(t) : V → V ∗ has the (S+)-property for all t ∈ [0, τ ], then Â : X → X∗

has the (S+)-property with respect to D(L).
(iii) Hypotheses (H1) and (H3) imply that Â : X → X∗ is bounded.
(iv) Hypotheses (H1)–(H3) imply that Â : X → X∗ is demicontinuous.
(v) Hypothesis (H4) implies that Â : X → X∗ is coercive.
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2.4.5 Multivalued Evolution Equations

In this section, we briefly recall a general surjectivity result for multivalued
operators in a real reflexive Banach space X, which allows us to deal with
multivalued evolution equations in the form

u ∈ X : u′ +A(u) � f in X∗, u(0) = u0. (2.28)

To this end, we introduce first the notion of a multivalued pseudomonotone
operator with respect to the graph norm topology of the domain D(L) (w.r.t.
D(L) for short) of some linear, closed, densely defined, and maximal monotone
operator L : D(L) ⊂ X → X∗.

Definition 2.154. Let L : D(L) ⊂ X → X∗ be a linear, closed, densely
defined, and maximal monotone operator. The operator A : X → 2X∗

is called
pseudomonotone w.r.t. D(L) if the following conditions are satisfied:

(i) The set A(u) is nonempty, bounded, closed, and convex for all u ∈ X.
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to

the weak topology of X∗.
(iii) If (un) ⊂ D(L) with un ⇀ u in X, Lun ⇀ Lu in X∗, u∗n ∈ A(un)

with u∗n ⇀ u∗ in X∗, and lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ A(u) and
〈u∗n, un〉 → 〈u∗, u〉.

Definition 2.155. The operator A : X → 2X∗
is called coercive iff either the

domain D(A) of A is bounded or D(A) is unbounded and

inf{〈v∗, v〉 : v∗ ∈ A(v)}
‖v‖X

→ +∞ as ‖v‖X → ∞, v ∈ D(A).

The following surjectivity result can be found in [79, Theorem 1.3.73, p. 62].

Theorem 2.156. Let X be a real reflexive, strictly convex Banach space with
dual space X∗, and let L : D(L) ⊂ X → X∗ be a linear, closed, densely
defined, and maximal monotone operator. If the multivalued operator A : X →
2X∗

is pseudomonotone w.r.t. D(L), bounded, and coercive, then L + A is
surjective; i.e., (L+A)(D(L)) = X∗.

Consider the multivalued evolution equation

u ∈ X : u′ +A(u) � f in X∗, u(0) = 0, (2.29)

where
X = Lp(0, τ ;V ), 1 < p <∞,

and V ⊂ H ⊂ V ∗ is an evolution triple with V being strictly convex. As
earlier, we define the operator L by
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Lu = u′, with D(L) = {u ∈W : u(0) = 0} (2.30)

(forW see Definition 2.140). Thus, problem (2.29) can equivalently be written
in the form

u ∈ D(L) : u′ +A(u) � f in X∗. (2.31)

Corollary 2.157. If the multivalued operator A : X → 2X∗
in (2.29) is pseu-

domonotone w.r.t. D(L), bounded, and coercive, then problem (2.29) has at
least one solution.

Proof: In view of Theorem 2.133, the Banach space X is reflexive and strictly
convex. The operator L : D(L) ⊂ X → X∗ given by (2.30) is densely defined,
linear, closed, and maximal monotone (see Lemma 2.149). Thus, the assertion
follows from Theorem 2.156. ��

2.5 Nonsmooth Analysis

The area of nonsmooth analysis is closely related with the development of a
critical point theory for nondifferentiable functions, in particular, for locally
Lipschitz continuous functions based on Clarke’s generalized gradient. It pro-
vides an appropriate mathematical framework to extend the classic critical
point theory for C1-functionals in a natural way, and to meet specific needs in
applications, such as in nonsmooth mechanics and engineering. In this section,
we provide basic facts and results of nonsmooth analysis to such an extent as
it will be needed in the study of the problems we shall be investigating in this
book.

2.5.1 Clarke’s Generalized Gradient

Throughout this section, X stands for a real Banach space endowed with the
norm ‖ · ‖. The dual space of X is denoted X∗, and the notation 〈·, ·〉 means
the duality pairing between X∗ and X.

We recall the following well-known definition.

Definition 2.158. A functional f : X → R is said to be locally Lipschitz if
for every point x ∈ X a neighborhood V of x in X and a constant K > 0 exist
such that

|f(y) − f(z)| ≤ K‖y − z‖, ∀ y, z ∈ V.

Example 2.159. A convex and continuous function f : X → R is locally Lip-
schitz. More generally, a convex function f : X → R, which is bounded above
on a neighborhood of some point is locally Lipschitz (see [68, p. 34]).
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Example 2.160. A functional f : X → R, which is Lipschitz continuous on
bounded subsets of X is locally Lipschitz. The converse assertion is not gen-
erally true. For instance, consider the next situation (given through [203]).
On the Hilbert space �2, let the function f : �2 → R be defined by

f(x) = sup
n≥0

(2n|xn| − n), ∀ x ∈ �2,

where xn are the components of x. The function f is convex, continuous, and
not bounded on the bounded sets. Indeed, f is defined on �2 because for any
x ∈ �2, the set

{n : 2n|xn| − n ≥ 0} =
{
n : |xn| ≥

1
2

}
is finite. The function f is convex because it is the upper hull of the convex
functions fn on �2 given by fn(x) = 2n|xn| −n. We note that f is zero on the
ball centered at 0 and radius 1

2 because 0 = f0(x) ≤ f(x) and 2|xn| ≤ 1 if
‖x‖ < 1

2 . Being bounded on a nonempty open set, the function f is continuous.
Finally, it is seen that f(en) = n, where en is the n-th vector of the canonical
basis of �2. It turns out that the function f is not bounded from above on the
unit sphere in �2. Consequently, the function f is not Lipschitz continuous on
bounded subsets, but as pointed out in Example 2.159, f is locally Lipschitz.

The classic theory of differentiability does not work in the case of locally
Lipschitz functions. However, a suitable subdifferential calculus approach has
been developed by Clarke [68]. Here we give a brief introduction. Further
details can be found in [68, 43, 79, 103, 173].

Definition 2.161. Let f : X → R be a locally Lipschitz function, and fix
two points u, v ∈ X. The generalized directional derivative of f at u in the
direction v is defined as follows:

fo(u; v) = lim sup
x→u

t↓0

f(x+ tv) − f(x)
t

.

As f is locally Lipschitz, it is clear that fo(u; v) ∈ R .

Proposition 2.162. If f : X → R is a locally Lipschitz function, then the
following holds:

(i) The function fo(u; ·) : X → R is subadditive, positively homogeneous,
and satisfies the inequality

|fo(u; v)| ≤ K‖v‖, ∀ v ∈ X,

where K > 0 is the Lipschitz constant of f near the point u ∈ X.
(ii) fo(u;−v) = (−f)o(u; v), ∀ v ∈ X.
(iii) The function (u, v) ∈ X ×X 
→ fo(u; v) ∈ R is upper semicontinuous.
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Proof: The result follows directly from Definition 2.161. ��

The next definition focuses on the case where fo(u; v) reduces to the usual
directional derivative

f ′(u; v) = lim
t↓0
f(u+ tv) − f(u)

t
.

Definition 2.163. A locally Lipschitz function f : X → R is said to be regular
at a point u ∈ X if

(i) the directional derivative f ′(u; v) exists, for every v ∈ X.
(ii) fo(u; v) = f ′(u; v), ∀ v ∈ X.

Significant classes of regular functions are given in the following examples.

Example 2.164. If the function f : X → R is strictly differentiable, that is, for
all u ∈ X, f ′(u) ∈ X∗ exists such that

lim
w→u

t↓0

f(w + tv) − f(w)
t

= 〈f ′(u), v〉, ∀ v ∈ X,

where the convergence is uniform for v in compact sets, then f is locally
Lipschitz and regular in the sense of Definition 2.163. In particular, if f : X →
R is a continuously differentiable function, then f is strictly differentiable, so
it is locally Lipschitz and regular.

Example 2.165. A convex and continuous function f : X → R is regular.

On the basis of Definition 2.161, one introduces the main notion in this
section.

Definition 2.166. The generalized gradient of a locally Lipschitz functional
f : X → R at a point u ∈ X is the subset of X∗ defined by

∂f(u) = {ζ ∈ X∗ : fo(u; v) ≥ 〈ζ, v〉, ∀ v ∈ X}.

By using the Hahn–Banach theorem (see [24, p. 1]), it follows ∂f(u) �= ∅.

Example 2.167. If f : X → R is a locally Lipschitz function that is Gâteaux
differentiable and regular at the point u ∈ X, then one has ∂f(u) = {DGf(u)},
where DGf(u) denotes the Gâteaux differential of f at u. Indeed, as f is
Gâteaux differentiable and regular at u, we may write

〈DGf(u), v〉 = f ′(u; v) = fo(u; v), ∀ v ∈ X,

that implies DGf(u) ∈ ∂f(u). Conversely, if ζ ∈ ∂f(u), from Definitions 2.166
and 2.163 in conjunction with the assumption that f is Gâteaux differentiable
at u, it turns out that

〈ζ, v〉 ≤ fo(u; v) = f ′(u; v) = 〈DGf(u), v〉, ∀ v ∈ X,

so ζ = DGf(u).
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Example 2.168. If f : X → R is continuously differentiable, then ∂f(u) =
{f ′(u)} for all u ∈ X, where f ′(u) denotes the Fréchet differential of f at u.
It is a direct consequence of Example 2.167.

Example 2.169. If f : X → R is convex and continuous, then the generalized
gradient ∂f(u) coincides with the subdifferential of f at u in the sense of
convex analysis. It follows from Examples 2.159 and 2.165.

Remark 2.170. It is seen from Definition 2.166, Example 2.169, and Propo-
sition 2.162(i) that the generalized gradient of a locally Lipschitz functional
f : X → R at a point u ∈ X is given by

∂f(u) = ∂(fo(u; ·))(0),

where in the right-hand side, the subdifferential in the sense of convex analysis
is written.

The next proposition presents some important properties of generalized
gradients.

Proposition 2.171. Let f : X → R be a locally Lipschitz function. Then for
any u ∈ X, the following properties hold:

(i) ∂f(u) is a convex, weak∗-compact subset of X∗ and

‖ζ‖X∗ ≤ K , ∀ ζ ∈ ∂f(u),

where K > 0 is the Lipschitz constant of f near u.
(ii) fo(u; v) = max{〈ζ, v〉 : ζ ∈ ∂f(u)}, ∀ v ∈ X.
(iii) The mapping u 
→ ∂f(u) is weak∗-closed from X into X∗.
(iv) The mapping u 
→ ∂f(u) is upper semicontinuous from X into X∗, where

X∗ is equipped with the weak∗-topology.

Proof: As for (i) and (ii), one applies Definitions 2.161 and 2.166, and as
for (iv), see [68]. To see (iii), let (un) ⊂ X satisfy un → u in X, and let
ζn ∈ ∂f(un) with ζn ⇀∗ ζ in X∗. We need to show that ζ ∈ ∂f(u). By
Definition 2.166, we have 〈ζn, v〉 ≤ fo(un; v) for all v ∈ X, which from the
weak∗-convergence of (ζn) and the upper semicontinuity of the function x 
→
fo(x; v) according to Proposition 2.162(iii) implies

〈ζ, v〉 ≤ lim sup
n→∞

fo(un; v) ≤ fo(u; v) for all v ∈ X,

and thus, ζ ∈ ∂f(u). ��

Remark 2.172. The definitions and results given here are applicable to a lo-
cally Lipschitz function f : U → R on a nonempty, open subset U of the
Banach space X .
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In the final part of this subsection, we present, for the sake of providing
more information on the development of generalized differentiation theory in
variational analysis, some basic elements of another subdifferential calculus for
nonsmooth functionals, namely the one introduced by Mordukhovich ([164],
[165]). The subsequent chapters of the book will not make use of this theory
because we need calculus rules and specific properties related to Clarke’s con-
cept of generalized gradient for locally Lipschitz functionals in the sense of
Definition 2.166 as will be given in the next subsection devoted to calculus,
but we consider that it is useful to outline here the subdifferentiation approach
in [164], [165] (see also [22]).

Given a nonempty subset S of a Banach space X and a point u ∈ S, it
is introduced, for every number ε ≥ 0, the set of ε- normals to S at u as the
subset of X∗ equal to

N̂ε(u;S) = {ζ ∈ X∗ : lim sup
w→u
w∈S

〈ζ, w − u〉
‖w − u‖ ≤ ε}.

The basic normal cone N(u;S) to S at u is defined by

N(u;S) = lim sup
w→u,w∈S

ε↓0
N̂ε(w;S),

where in the right-hand side, the sequential Painlevé–Kuratowski upper limit
is written. Explicitly, this means that

N(u;S) = {ζ ∈ X∗ : there are sequences wk → u with wk ∈ S, εk ↓ 0,

ζk ⇀
∗ ζ with ζk ∈ N̂εk

(wk;S) for all k}.
It is shown in [165, Theorem 2.9] that in the case where X is an Asplund
space (i.e., every separable subspace of X has a separable dual), the formula
of N(u;S) results in

N(u;S) = lim sup
w→u,w∈S

N̂0(w;S).

Now we are in a position to introduce the notion of subdifferential of an
extended real-valued function f : X → [−∞,+∞] at u ∈ X with f(u) ∈ R as
follows:

∂̃f(u) := {ζ ∈ X∗ : (ζ,−1) ∈ N((u, f(u)); epi(f))}.
If f : X → R is locally Lipschitz and X is an Asplund space, the relationship
between the above subdifferential ∂̃f(u) and Clarke’s generalized gradient in
the sense of Definition 2.166 is expressed by the following formula:

∂f(u) = cl∗co ∂̃f(u), for all u ∈ X

(see [165, Theorem 8.11]), where the notation cl∗co stands for the convex
closure in the weak∗ topology on the space X∗.
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2.5.2 Some Calculus

This subsection is devoted to the basic calculus rules with generalized gradi-
ents.

Proposition 2.173. Let f : X → R be a locally Lipschitz function, let λ ∈ R,
and let u ∈ X . Then the following formula holds:

∂(λf)(u) = λ∂f(u).

In particular, one has
∂(−f)(u) = −∂f(u).

Proof: If λ = 0, the property is obvious. If λ > 0, we have

ζ ∈ ∂(λf)(u) ⇐⇒ 〈 1
λ
ζ, v〉 ≤ 1

λ
(λf)o(u; v) = fo(u; v), ∀ v ∈ X

⇐⇒ ζ ∈ λ∂f(u).

If λ < 0, we have ζ ∈ ∂(λf)(u) ⇐⇒

〈 1
λ
ζ, v〉 = − 1

λ
〈ζ,−v〉 ≤ − 1

λ
(λf)o(u;−v) = − 1

λ
(−λf)o(u; v)

= fo(u; v), ∀ v ∈ X

⇐⇒ ζ ∈ λ∂f(u), where Proposition 2.162(ii) has been used. ��

Proposition 2.174. Let f, g : X → R be locally Lipschitz functions. Then
for every u ∈ X, the following inclusion holds:

∂(f + g)(u) ⊂ ∂f(u) + ∂g(u).

If, in addition, the functions f and g are regular at the point u ∈ X, then the
above inclusion becomes an equality, and f + g is regular at u.

Proof: Let ζ ∈ ∂(f + g)(u). Definition 2.166 ensures

〈ζ, v〉 ≤ fo(u; v) + go(u; v), ∀ v ∈ X. (2.32)

Arguing by contradiction, let us admit that ζ �∈ ∂f(u) + ∂g(u). Then, by
separation in the space X∗ endowed with the w∗-topology, w ∈ X exists such
that

〈ζ, w〉 > max{〈z, w〉 : z ∈ ∂f(u) + ∂g(u)}
= max{〈z1, w〉 : z1 ∈ ∂f(u)} + max{〈z2, w〉 : z2 ∈ ∂g(u)}
= fo(u;w) + go(u;w),

where Proposition 2.171(ii) has been employed. It contradicts (2.32), which
proves the first assertion in Proposition 2.174.
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Suppose now that f and g are regular at u in X. Then, by means of
Definition 2.166 for every ζ ∈ ∂f(u) + ∂g(u), we have

〈ζ, v〉 ≤ fo(u; v) + go(u; v)
= f ′(u; v) + g′(u; v)
= (f + g)′(u; v)
≤ (f + g)o(u; v)

for all v ∈ X. We conclude ζ ∈ ∂(f + g)(u), which completes the proof. ��

Remark 2.175. The inclusion of Proposition 2.174 becomes an equality also
when at least one of the two locally Lipschitz functions is strictly differentiable.

We state a useful necessary condition of optimality in the case of locally
Lipschitz functions.

Proposition 2.176. If u ∈ X is a local minimum or maximum point for the
locally Lipschitz function f : X → R, then 0 ∈ ∂f(u).

Proof: We may assume that u is a local minimum (if u is a local maximum,
we can argue with −f). Then we obtain that fo(u; v) ≥ 0, ∀ v ∈ X, which is
equivalent to 0 ∈ ∂f(u). ��

The result below presents the mean value property for locally Lipschitz
functionals due to Lebourg [148].

Theorem 2.177. Let f : X → R be a locally Lipschitz function. Then for all
x, y ∈ X, u = x+ t0(y − x) with 0 < t0 < 1, and ζ ∈ ∂f(u) exist, such that

f(y) − f(x) = 〈ζ, y − x〉.

Proof: Consider the function θ : [0, 1] → R defined by

θ(t) = f(x+ t(y − x)) + t[f(x) − f(y)], ∀ t ∈ [0, 1].

The continuity of θ combined with the equalities θ(0) = θ(1) = f(x) yields a
point t0 ∈ (0, 1) where θ assumes the minimum or maximum. By Proposition
2.176, we find that

0 ∈ ∂θ(t0) ⊂ 〈∂f(x+ t0(y − x)), y − x〉 + [f(x) − f(y)].

The conclusion of Theorem 2.177 follows. ��

Another important result in the calculus with generalized gradients is the
chain rule.

Theorem 2.178. Let F : X → Y be a continuously differentiable mapping
between the Banach spaces X, Y , and let g : Y → R be a locally Lipschitz
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function. Then the function g ◦ F : X → R is locally Lipschitz, and for any
point u ∈ X, the formula holds:

∂(g ◦ F )(u) ⊂ ∂g(F (u)) ◦DF (u), (2.33)

in the sense that every element z ∈ ∂(g ◦ F )(u) can be expressed as

z = DF (u)∗ζ, for some ζ ∈ ∂g(F (u)),

where DF (u)∗ denotes the adjoint operator associated with the Fréchet dif-
ferential DF (u) of F at u. If, in addition, F maps every neighborhood of u
onto a dense subset of a neighborhood of F (u), then (2.33) is satisfied with
equality.

Proof: The mean value theorem for the continuously differentiable mapping
F readily yields that g ◦F is locally Lipschitz. According to Proposition 2.171
(ii), inclusion (2.33) is equivalent to the inequality

(g ◦ F )o(u; v) ≤ max{〈z,DF (u)v〉 : z ∈ ∂g(F (u))〉}
= go(F (u);DF (u)v), ∀ v ∈ X . (2.34)

Fix w, v ∈ X and t > 0. Applying Theorem 2.177 ensures the existence of
t0, t1 ∈ (0, 1) and ζ ∈ ∂g(F (w) + t0(F (w + tv) − F (w))) such that

g ◦ F (w + tv) − g ◦ F (w) = 〈ζ, F (w + tv) − F (w)〉 = t〈ζ,DF (w + t1tv)v〉.

Dividing by t, then letting w → u in X and t → 0, and taking into account
that the multifunction ∂g is upper semicontinuous from X to X∗ endowed
with the w∗-topology [cf. Proposition 2.171(iv)], we obtain (2.34). Assuming
now that F maps an arbitrary neighborhood of u onto a dense subset of a
neighborhood of F (u) implies

go(F (u);DF (u)v) = lim sup
x→u

t↓0

g(F (x) + tDF (u)v) − g(F (x))
t

= lim sup
x→u

t↓0

g(F (x+ tv)) − g(F (x))
t

= (g ◦ F )o(u; v), ∀ v ∈ X.

Therefore, (2.34) holds with equality, so the same is true for (2.33). ��

Corollary 2.179. Under the assumptions of the first part of Theorem 2.178,
if g (or −g) is regular at F (u), then g ◦ F (or −g ◦ F ) is regular at u and
equality holds in (2.33).

Proof: As ∂(−g)(F (u)) = −∂g(F (u)), it is sufficient to suppose that g is
regular at F (u). It turns out that
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go(F (u);DF (u)v) = g′(F (u);DF (u)v)

= lim
t↓0
g(F (u) + tDF (u)v) − g(F (u))

t

= lim
t↓0

[
g(F (u) + tDF (u)v) − g(F (u+ tv))

t

+
g(F (u+ tv)) − g(F (u))

t

]
= (g ◦ F )′(u; v) ≤ (g ◦ F )o(u; v), ∀ v ∈ X.

Consequently, we have equality in (2.34), so equality holds in (2.33). ��

Corollary 2.180. If a linear continuous embedding i : X → Y of the Banach
space X into a Banach space Y exists, then for every locally Lipschitz function
g : Y → R, we have

∂(g ◦ i)(u) ⊂ i∗∂g(i(u)), ∀ u ∈ X.

If, in addition, i(X) is dense in Y , then

∂(g ◦ i)(u) = i∗∂g(i(u)), ∀ u ∈ X.

Proof: One applies Theorem 2.178 for F = i. ��

Finally, we give Aubin–Clarke’s Theorem [9] of subdifferentiation under
the integral sign.

Let numbers m ≥ 1, 1 < p < +∞, and let T be a positive complete
measure space with |T | < ∞, where |T | stands for the measure of T . Let
j : T × R

m → R be a function such that j(·, y) : T → R is measurable
whenever y ∈ R

m, and satisfies either

|j(x, y1) − j(x, y2)| ≤ k(x)|y1 − y2|, a.a. x ∈ T, ∀ y1, y2 ∈ R
m, (2.35)

with a function k ∈ Lq(T ) and 1/p + 1/q = 1, or, j(x, ·) : R
m → R is locally

Lipschitz for almost all x ∈ T and there are a constant c > 0 and a function
h ∈ Lq(T ) such that

|z| ≤ h(x) + c|y|p−1, a.a. x ∈ T, ∀ y ∈ R
m, ∀ z ∈ ∂yj(x, y). (2.36)

The notation ∂yj(x, y) in (2.36) means the generalized gradient of j with re-
spect to the second variable y ∈ R

m; i.e., ∂yj(x, y) = ∂j(x, ·)(y). We introduce
the functional J : Lp(T ; Rm) → R by

J(v) =
∫

T

j(x, v(x))dx , ∀ v ∈ Lp(T ; Rm). (2.37)
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Theorem 2.181 (Aubin-Clarke’s Theorem). Under assumption (2.35) or
(2.36), one has that the functional J : Lp(T ; Rm) → R in (2.37) is Lipschitz
continuous on the bounded subsets of Lp(T ; Rm) and its generalized gradient
satisfies

∂J(u) ⊂ {w ∈ Lq(T ; Rm) : w(x) ∈ ∂yj(x, u(x)) for a.e. x ∈ T}. (2.38)

Moreover, if j(x, ·) is regular at u(x) for almost all x ∈ T , then J is regular
at u and (2.38) holds with equality.

Proof: Using Hölder’s inequality in conjunction with (2.35) or (2.36), one
verifies easily that J is Lipschitz continuous on bounded subsets of Lp(T ; Rm).
Definition 2.161 ensures that the map x 
→ joy(x, u(x); v(x)) is measurable on
T [see the arguments given in the proof of Theorem 2.7.2 in Clarke [68] related
with the superpositional measurability of s 
→ joy(·, s; 1)], where the subscript y
indicates that the generalized directional derivative jo is taken with respect to
the second variable. Furthermore, by assumption (2.35) or (2.36), it is known
that this function is integrable. Let us check the inequality

Jo(u; v) ≤
∫

T

joy(x, u(x); v(x))dx , ∀ u, v ∈ Lp(T ; Rm). (2.39)

If (2.35) is assumed, then Fatou’s lemma leads directly to (2.39). In the case
where (2.36) is admitted, Theorem 2.177 enables us to write

j(x, u(x) + λv(x)) − j(x, u(x))
λ

= 〈ζx, v(x)〉,

with ζx ∈ ∂j(x, u∗(x)) for some u∗(x) lying on the open segment in R
m with

endpoints u(x) and u(x) + λv(x). Then Fatou’s lemma implies (2.39). Notice
that the application of Fatou’s lemma is possible because of the growth condi-
tion in (2.36). In view of (2.39), any z ∈ ∂J(u) belongs to the subdifferential
at 0 of the convex function on Lp(T ; Rm) given by

v ∈ Lp(T ; Rm) 
→
∫

T

joy(x, u(x); v(x))dx ∈ R.

The subdifferentiation under the integral for the convex integrands (see [79])
and Remark 2.170 allow us to conclude that (2.38) holds. Finally, assume
further that j(x, ·) is regular at u(x) for almost all x ∈ T . Then, under either
assumption (2.35) or (2.36), we may apply Fatou’s lemma to get

lim inf
λ↓0

1
λ

(J(u+ λv) − J(u)) ≥
∫

T

j′y(x, u(x); v(x))dx

=
∫

T

j0y(x, u(x); v(x))dx , ∀ v ∈ Lp(T ; Rm).

Combining with (2.39), it follows that the directional derivative J ′(u; v) exists
and J ′(u; v) = Jo(u; v) for every v ∈ Lp(T ; Rm), thus we obtain the regularity
of J at u , as well as the equality
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Jo(u; v) = J ′(u; v) =
∫

T

j′y(x, u(x); v(x))dx , ∀ v ∈ Lp(T ; Rm).

Thereby, due to the regularity assumption for j(x, ·), it is seen that (2.38)
becomes an equality. ��

2.5.3 Critical Point Theory

In this subsection, we present basic elements of a general critical point theory
for nonsmooth functionals I : X → R ∪ {+∞} on a real Banach space X
verifying the structural hypothesis

(H) I = Φ + Ψ , with Φ : X → R locally Lipschitz and Ψ : X → R ∪ {+∞}
convex, lower semicontinuous, and proper (i.e., �≡ +∞).

For more details and developments, we refer to the works [102], [103, Chap.
4], [156], [171, Chap. 3], [173, Chap. 2].

Definition 2.182. An element u ∈ X is called a critical point of the func-
tional I : X → R ∪ {+∞} satisfying (H) if

Φo(u; v − u) + Ψ(v) − Ψ(u) ≥ 0 ∀ v ∈ X, (2.40)

where the notation Φo(u; ·) means the generalized directional derivative of Φ
at u (see Definition 2.161).

Definition 2.182 can be expressed equivalently as follows.

Proposition 2.183. An element u ∈ X is a critical point of the functional
I : X → R ∪ {+∞} satisfying (H) if and only if u ∈ D(∂Ψ) and

0 ∈ ∂Φ(u) + ∂Ψ(u), (2.41)

where the notations ∂Φ(u) and ∂Ψ(u) stand for the generalized gradient of
Φ at u and the subdifferential (in the sense of convex analysis) of Ψ at u,
respectively, whereas D(∂Ψ) denotes the domain of the subdifferential ∂Ψ ; i.e.,
D(∂Ψ) = {x ∈ X : ∂Ψ(x) �= ∅}.

Proof: Assume that u ∈ X satisfies relation (2.40), or equivalently,

Φo(u;w) + Ψ(w + u) − Ψ(u) ≥ 0 ∀ w ∈ X.

It follows that 0 is a minimum point of the convex function

w 
→ Φo(u;w) + Ψ(w + u) − Ψ(u),

so u ∈ D(∂Ψ), and by using the subdifferential calculus for convex functions,

0 ∈ ∂(Φo(u; ·)+Ψ(·+u)−Ψ(u))(0) = ∂(Φo(u; ·))(0)+∂Ψ(u) = ∂Φ(u)+∂Ψ(u)
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(see the last part of the statement of Proposition 2.174). Conversely, if (2.41)
is satisfied, ξ ∈ ∂Φ(u) and η ∈ ∂Ψ(u) exist such that 0 = ξ + η in X∗. Taking
into account Definition 2.166 and because η ∈ ∂Ψ(u), we derive

Φo(u; v − u) + Ψ(v) − Ψ(u) ≥ 〈ξ, v − u〉 + 〈η, v − u〉 = 〈ξ + η, v − u〉 = 0

for all v ∈ X. ��

Corollary 2.184. Let Φ : X → R be a locally Lipschitz function, and let K
be a nonempty, closed, convex subset of X. Denote by IK : X → R ∪ {+∞}
the indicator function of K; i.e., IK(x) = 0 whenever x ∈ K and IK = +∞
otherwise. Then u ∈ X is a critical point of Φ+ IK if and only if u ∈ K and
0 ∈ ∂Φ(u) + NK(u), where NK(u) = {η ∈ X∗ : 〈η, v − u〉 ≤ 0, ∀v ∈ K} is
the normal cone of K at u.

Proof: One applies Proposition 2.183 for Ψ = IK . ��

The examples below illustrate the concept of critical point introduced in
Definition 2.182.

Example 2.185. Every local minimum u ∈ X of a nonsmooth functional I :
X → R∪{+∞} satisfying (H) with I(u) < +∞ is a critical point in the sense
of Definition 2.182. Indeed, if u ∈ X with I(u) < +∞ is a local minimum of
I, then, by convexity of Ψ , for any v ∈ X and a small t > 0, we have

0 ≤ I(u+ t(v − u)) − I(u) ≤ Φ(u+ t(v − u)) − Φ(u) + t(Ψ(v) − Ψ(u)).

Dividing by t and letting t→ 0+, we deduce that u fulfills Definition 2.182.

Example 2.186. Every minimum u ∈ X of Φ|K with Φ : X → R locally Lip-
schitz and a nonempty, closed, convex subset K ⊂ X is a critical point of
Φ+ IK in the sense of Definition 2.182. Indeed, if u is a minimum of Φ on K,
then u ∈ K and

inf
X

(Φ+ IK) = (Φ+ IK)(u) = Φ(u),

and Example 2.185 leads to the desired conclusion.

Example 2.187. Every local maximum u ∈ X of a nonsmooth functional I :
X → R∪{+∞} satisfying (H) with I(u) < +∞ is a critical point in the sense
of Definition 2.182. Indeed, under the given hypotheses, u is in the interior of
the effective domain of Ψ , and thus, Ψ is Lipschitz continuous near u. Actually,
I = Φ+ Ψ is Lipschitz continuous near u and Proposition 2.174 yields

0 ∈ ∂I(u) = ∂(Φ+ Ψ)(u) ⊂ ∂Φ(u) + ∂Ψ(u),

where ∂Φ(u) is the generalized gradient of Φ and ∂Ψ(u) is the subdifferen-
tial of Ψ in the sense of convex analysis (see Example 2.169). According to
Proposition 2.183, u is a critical point of I.
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Example 2.188. Let Φ : X → R be a locally Lipschitz function. Setting Ψ = 0
in (H), we see by Definition 2.182 that u ∈ X is a critical point of Φ if and only
if 0 ∈ ∂Φ(u). Therefore, in this case, Definition 2.182 reduces to the definition
of Chang [64] for a critical point of a locally Lipschitz function. In particular,
if Φ ∈ C1(X) and Ψ = 0 in (H), one obtains the notion of critical point in the
smooth critical point theory.

Example 2.189. Consider in assumption (H) that Φ ∈ C1(X) and Ψ : X → R∪
{+∞} is convex, lower semicontinuous, and proper. Notice that the functional
I = Φ + Ψ : X → R ∪ {+∞} complies with hypothesis (H). Then, according
to Definition 2.182, u ∈ X is a critical point of I = Φ+ Ψ if and only if

〈Φ′(u), v − u〉 + Ψ(v) − Ψ(u) ≥ 0 ∀ v ∈ X;

i.e., −Φ′(u) ∈ ∂Ψ(u). Consequently, in this case, Definition 2.182 reduces to
the definition of critical point as given by Szulkin [211].

We present the Palais–Smale condition for the class of nonsmooth func-
tionals satisfying the structural hypothesis (H).

Definition 2.190. The functional I = Φ + Ψ : X → R ∪ {+∞} in (H) is
said to satisfy the Palais–Smale condition (for short, (PS)) if every sequence
(un) ⊂ X such that (I(un)) is bounded in R and

Φo(un; v − un) + Ψ(v) − Ψ(un) ≥ −εn‖v − un‖, ∀ v ∈ X,

for a sequence (εn) with εn ↓ 0, contains a strongly convergent subsequence.

Example 2.191. If Φ ∈ C1(X) and Ψ : X → R ∪ {+∞} is convex, lower
semicontinuous, and proper, then Definition 2.190 coincides with the (PS)
condition in the sense of Szulkin [211]. In particular, if Φ ∈ C1(X) and Ψ = 0,
then Definition 2.190 is the usual smooth (PS) condition.

We need the following result from [211].

Lemma 2.192. Let χ : X → R ∪ {+∞} be a lower semicontinuous, convex
function with χ(0) = 0. If

χ(x) ≥ −‖x‖, ∀ x ∈ X,

then z ∈ X∗ exists such that ‖z‖X∗ ≤ 1 and

χ(x) ≥ 〈z, x〉, ∀ x ∈ X.

Proof: Consider the following convex subsets A and B of X × R :

A = {(x, t) ∈ X × R : ‖x‖ < −t} and B = {(x, t) ∈ X × R : χ(x) ≤ t}.
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Notice that A is an open set, and due to the condition χ(x) ≥ −‖x‖, one has
A∩B = ∅. A well-known separation result (see [24, p. 5]) yields the existence
of α, β ∈ R and w ∈ X∗ such that (w,α) �= (0, 0),

〈w, x〉 − αt ≥ β , ∀ (x, t) ∈ Ā

and
〈w, x〉 − αt ≤ β , ∀ (x, t) ∈ B.

We see that β = 0 because (0, 0) ∈ Ā∩B. Set t = −‖x‖ in the first inequality
above. It follows that 〈w, x〉 ≥ −α‖x‖, ∀ x ∈ X, which implies α > 0 and
‖w‖X∗ ≤ α. Set z = α−1w. Using t = χ(x), we deduce that 〈z, x〉 ≤ χ(x),
∀ x ∈ X. As ‖w‖X∗ ≤ α, we obtain ‖z‖X∗ ≤ 1. ��

The following result establishes the equivalence between Definition 2.190
with Ψ = 0 and the (PS) condition in the sense of Chang [64].

Proposition 2.193. A locally Lipschitz function Φ : X → R satisfies the
(PS) condition in the sense of Definition 2.190 if and only if Φ verifies the
Palais–Smale condition as defined in [64].

Proof: Assume that the locally Lipschitz function Φ : X → R satisfies the
(PS) condition formulated in Definition 2.190. Let a sequence (un) ⊂ X with
Φ(un) bounded and for which

λ(un) = inf
w∈∂Φ(un)

‖w‖X∗ → 0 as n→ ∞.

It is known from Proposition 2.171 (i) that an element zn ∈ ∂Φ(un) can be
found such that λ(un) = ‖zn‖X∗ . As

Φo(un; v) ≥ 〈zn, v〉 ≥ −‖zn‖X∗ ‖v‖, ∀ v ∈ X,

the inequality in Definition 2.190 (with Ψ = 0) is verified with εn = ‖zn‖.
It implies that (un) possesses a convergent subsequence, which ensures the
Palais–Smale condition in the sense of [64].

Conversely, we suppose that Φ verifies the Palais–Smale condition in the
sense of [64]. Let (un) be a sequence as in Definition 2.190. We can apply
Lemma 2.192 for χ = 1

εn
Φo(un; ·), which gives an element wn ∈ X∗ with

‖wn‖X∗ ≤ 1 and
1
εn
Φo(un;x) ≥ 〈wn, x〉, ∀ x ∈ X.

It follows that εnwn ∈ ∂Φ(un) and εnwn → 0 in X∗ as n→ ∞. According to
the Palais–Smale condition in [64], we have that (un) contains a convergent
subsequence, so the (PS) condition in the sense of Definition 2.190 holds. ��
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2.5.4 Linking Theorem

The objective of this subsection is to provide sufficient conditions for the
existence of critical points in the setting of functionals of type (H) in Sect.
2.5.3. We start with the following minimization result.

Theorem 2.194. Assume that the function I = Φ + Ψ : X → R ∪ {+∞}
satisfies hypothesis (H), is bounded from below, and verifies the (PS) condition.
Then u ∈ X exists such that I(u) = infX I ∈ R and u is a critical point of I
in the sense of Definition 2.182.

Proof: Denote m = infX I ∈ R. We find a (minimizing) sequence (un) ⊂ X
such that

I(un) < m+ ε2n,

for a sequence (εn) of positive numbers, with εn ↓ 0. Applying Ekeland’s
variational principle (cf. [91]) to the function I, a sequence (vn) ⊂ X exists
such that

I(vn) < m+ ε2n
and

I(v) ≥ I(vn) − εn‖vn − v‖, ∀ v ∈ X, ∀ n ∈ N.

Setting v = (1− t)vn + tw in the above inequality, for arbitrary 0 < t < 1 and
w ∈ X, we obtain

Φ((1 − t)vn + tw) + Ψ((1 − t)vn + tw)
≥ Φ(vn) + Ψ(vn) − εnt‖w − vn‖, ∀ w ∈ X, ∀ t ∈ (0, 1).

The convexity of Ψ : X → R ∪ {+∞} yields

Φ((1 − t)vn + tw) − tΨ(vn) + tΨ(w)
≥ Φ(vn) − εnt‖w − vn‖, ∀ w ∈ X, ∀ t ∈ (0, 1).

Dividing by t and letting t ↓ 0, we deduce that for all w ∈ X, one has

Φo(vn;w − vn) + Ψ(w) − Ψ(vn)

≥ lim sup
t↓0

1
t
(Φ(vn + t(w − vn)) − Φ(vn)) + Ψ(w) − Ψ(vn) ≥ −εn‖w − vn‖.

On the other hand, we have Φ(vn) + Ψ(vn) → m as n → ∞. Then the (PS)
condition (see Definition 2.190) implies that along a relabelled subsequence
vn → u in X, for some u ∈ X. The lower semicontinuity of I yields I(u) ≤
lim infn→∞ I(vn) ≤ m, so I(u) = m . Making use of Example 2.185, we derive
that u is a critical point of I. ��

We now focus on the existence of critical points for functionals of type (H)
that are not obtained by minimization, thus, saddle-points. The subsequent
minimax principle makes use of the notion of linking as given in [88].
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Definition 2.195. Let S be a nonempty closed subset of the Banach space X,
and let Q be a compact topological submanifold of X with nonempty boundary
∂Q (in the sense of manifolds with boundary). We say that S and Q link if
S ∩ ∂Q = ∅ and f(Q) ∩ S �= ∅ whenever f ∈ Γ , where

Γ := {f ∈ C(Q,X) : f |∂Q = id∂Q}.

Example 2.196. Let X = E × R, with a Banach space E, and let 0 < ρ < r.
The sets S = E × {ρ} and Q = {(0, tr) ∈ E × R : t ∈ [0, 1]} link.

The following result given in [171, Chap. 3] provides critical points of
saddle-point type for nonsmooth functionals having the structure in (H).

Theorem 2.197. Let the functional I : X → R ∪ {+∞} satisfy assumptions
(H) and (PS). Let S and Q link in the sense of Definition 2.195. Assume
further that

sup
Q
I ∈ R, b := inf

S
I ∈ R, a := sup

∂Q
I < b.

Then the number
c := inf

f∈Γ
sup
x∈Q

I(f(x)),

with Γ in Definition 2.195, is a critical value of I; that is, there is a critical
point u of I in the sense of Definition 2.182 and I(u) = c. Moreover, c ≥ b.

Proof: The inequality c ≥ b is a direct consequence of linking property in
Definition 2.195. Arguing by contradiction we assume that c is not a critical
value of I. Applying the deformation result in Theorem 3.1 in [171], with
ε̄ = c − a > 0, we get an ε ∈ (0, ε̄) as stated therein. Define Γ1 as the set of
all continuous mappings ϕ : Q→ X such that

ϕ(∂Q) ⊂
{
x ∈ X : I(x) ≤ c− ε

2

}
and ϕ|∂Q, id∂Q are homotopic maps from ∂Q into

{
x ∈ X : I(x) ≤ c− ε

4

}
.

We have idQ ∈ Γ1 . Using the definitions of c and Γ1, we obtain

c = inf
ϕ∈Γ1

sup
x∈Q

I(ϕ(x)). (2.42)

It is seen that Γ1 is a closed subset of the Banach space C(Q;X) with respect
to the uniform norm ‖ϕ‖ = supx∈Q ‖ϕ(x)‖. Consider the lower semicontinuous
functional Π : Γ1 → R ∪ {+∞} defined by

Π(ϕ) = sup
x∈Q

I(ϕ(x)), ∀ϕ ∈ Γ1.

Taking into account (2.42), Ekeland’s variational principle [91] applied to the
function Π on Γ1 yields a ϕ ∈ Γ1 satisfying c ≤ Π(ϕ) ≤ c+ ε and
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Π(ψ) −Π(ϕ) ≥ −ε‖ψ − ϕ‖, ∀ ψ ∈ Γ1 . (2.43)

Theorem 3.1 in [171] provides a deformation hϕ :W×[0, s̄] → X corresponding
to the compact set A = ϕ(Q), where W is a closed neighborhood of A in X
and s̄ is a positive number, satisfying

‖v − hϕ(v, s)‖ ≤ s , ∀ v ∈W, ∀ s ∈ [0, s̄], (2.44)

sup
v∈A

I(hϕ(v, s)) − sup
v∈A

I(v) ≤ −2εs , ∀ s ∈ [0, s̄]. (2.45)

Let us show that for s̄ > 0 small enough, we have

hϕ(ϕ(·), s) ∈ Γ1 , ∀ s ∈ [0, s̄]. (2.46)

To prove (2.46), it suffices to note that hϕ(ϕ(·), s)|∂Q and ϕ|∂Q are homotopic
maps from ∂Q into

{
x ∈ X : I(x) ≤ c− ε

2

}
. Such a homotopy is (x, t) 
→

hϕ(ϕ(x), ts) as can be seen from (2.44) and (2.46). It follows from (2.45),
(2.46), (2.43), and (2.44) that

−2εs ≥ Π(hϕ(ϕ(·), s)) −Π(ϕ)
≥ −ε‖hϕ(ϕ(·), s) − ϕ‖ ≥ −εs , ∀ 0 ≤ s ≤ s̄ .

This contradiction proves that our initial assumption that c is not a critical
value of I is not possible, which completes the proof. ��

Corollary 2.198. Let E be a Banach space, let Φ : E × R → R be locally
Lipschitz, and let Ψ : E × R → R ∪ {+∞} be proper, convex, and lower
semicontinuous. Suppose that the function

F = Φ+ Ψ : E × R → R ∪ {+∞}

satisfies the (PS) condition and positive numbers ρ and r exist with ρ < r
such that F (0, 0) ≤ 0, F (0, r) ≤ 0, 0 < inf

v∈E
F (v, ρ) < +∞. Then

c = inf{ sup
t∈[0,1]

F (g(t)) : g ∈ C([0, 1], E × R), g(0) = (0, 0), g(1) = (0, r)}

is a critical value of F , and we have the estimate

inf
v∈E

F (v, ρ) ≤ c ≤ sup
t∈[0,1]

F (0, tr).

Proof: Apply Theorem 2.197 with X = E × R and I = F using the linking
in Example 2.196. The last inequality above is obtained by taking the path
g(t) = (0, tr) for all t ∈ [0, 1]. ��

Remark 2.199. In the general setting of nonsmooth functionals verifying hy-
pothesis (H), Theorem 2.197 incorporates important minimax results in the
critical point theory such as the mountain-pass theorem, saddle-point theo-
rem, and generalized mountain-pass theorem.
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Remark 2.200. A basic hypothesis in Theorem 2.197 is that b > a. Under
the situation of linking in Theorem 2.197, we then have c > a. As from the
expression of the minimax value c it is seen that always c ≥ a, the situation
that is not covered by Theorem 2.197 is the so-called liming case c = a. The
specific situation c = a is treated in [156].



3

Variational Equations

This chapter deals with existence and comparison results for weak solutions of
nonlinear elliptic and parabolic problems. The ideas and methods developed
here will also be useful in the treatment of nonsmooth variational problems
in later chapters. Section 3.1 deals with semilinear elliptic Dirichlet boundary
value problems and may be considered as a preparatory section for Sect. 3.2
and Sect. 3.3, where general quasilinear elliptic and parabolic problems are
treated. The purpose of Sect. 3.1 is to emphasize the basic ideas and to present
various approaches without overburdening the presentation with too many
technicalities. As an application of the general results of Sect. 3.2 combined
with critical point theory, the existence of multiple and sign-changing solutions
is proved in Sect. 3.4. Finally, in Sect. 3.5, the concept of sub-supersolutions is
extended to some nonstandard elliptic boundary value problem, which in the
one-space dimensional and semilinear case reduces to a second-order ordinary
differential equation subject to periodic boundary conditions. The chapter
concludes with bibliographical notes and further applications and extensions
of the theory developed in the preceeding sections.

3.1 Semilinear Elliptic Equations

In this section, the basic ideas and methods to prove existence and comparison
results will be demonstrated with the help of the following simple semilinear
elliptic boundary value problem (BVP, for short):

−Δu+ g(u) = f in Ω, u = 0 on ∂Ω, (3.1)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary ∂Ω, and g :

R → R is a continuous function. Let V = W 1,2(Ω), V0 = W 1,2
0 (Ω), and

assume f ∈ V ∗
0 . If G denotes the Nemytskij operator related with g by

G(u)(x) = g(u(x)),
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then u is a called a weak solution of the BVP (3.1) if G(u) ∈ L2(Ω) (⊂ V ∗
0 )

and u satisfies

u ∈ V0 : −Δu+G(u) = f in V ∗
0 , (3.2)

which is equivalent to

u ∈ V0 :
∫

Ω

(∇u∇ϕ+G(u)ϕ) dx = 〈f, ϕ〉 for all ϕ ∈ V0. (3.3)

3.1.1 Comparison Principle

We first introduce the notion of (weak) sub- and supersolution for the BVP
(3.1).

Definition 3.1. The function u ∈ V is called a subsolution of (3.1) if G(u) ∈
L2(Ω), u ≤ 0 on ∂Ω, and∫

Ω

(∇u∇ϕ+G(u)ϕ) dx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ L2
+(Ω). (3.4)

Similarly, we have the following definition for a supersolution.

Definition 3.2. The function ū ∈ V is called a supersolution of (3.1) if
G(ū) ∈ L2(Ω), ū ≥ 0 on ∂Ω, and∫

Ω

(∇ū∇ϕ+G(ū)ϕ) dx ≥ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ L2
+(Ω). (3.5)

Remark 3.3. The condition u ≤ 0 on ∂Ω means that γ(u) ≤ 0 in L2(∂Ω),
where γ : V → L2(∂Ω) denotes the trace operator (see Sect. 2.2.2). Inequality
(3.4) is equivalent to the following inequality in V ∗

0 :

−Δu+G(u) ≤ f,

where the order relation is generated by the dual-order cone of V ∗
0 . Similar

statements hold for ū.

We are going to prove the following existence and comparison result.

Theorem 3.4. Let u and ū be sub- and supersolutions of (3.1), respectively,
that satisfy u ≤ ū, and assume a local growth condition for g in the form

|g(v(x))| ≤ k(x) for all v ∈ [u, ū], (3.6)

where k ∈ L2
+(Ω). Then solutions of the BVP (3.1) exist within the ordered

interval [u, ū].
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Proof: By the growth condition (3.6), the Nemytskij operator G provides a
continuous and bounded mapping from the ordered interval [u, ū] ⊂ L2(Ω)
into L2(Ω). As L2(Ω) is continuously embedded into V ∗

0 , we may consider
G(u) ∈ L2(Ω) as an element of V ∗

0 given by

〈G(u), ϕ〉 =
∫

Ω

G(u)(x)ϕ(x) dx, ϕ ∈ V0.

The Laplacian −Δ : V0 → V ∗
0 given by

〈−Δu,ϕ〉 =
∫

Ω

∇u∇ϕdx, ϕ ∈ V0,

defines a strongly monotone, bounded, and continuous mapping (see Lemma
2.111). We next consider the following auxiliary truncated BVP:

u ∈ V0 : −Δu+ (G ◦ T )u = f in V ∗
0 , (3.7)

where T is the truncation operator related with the given ordered pair of sub-
and supersolutions, which is given by

Tu(x) =

⎧⎪⎨⎪⎩
ū(x) if u(x) > ū(x) ,
u(x) if u(x) ≤ u(x) ≤ ū(x) ,
u(x) if u(x) < u(x) .

Due to Lemma 2.89, the operator T is, in particular, bounded and continuous
from from L2(Ω) into [u, ū] ⊂ L2(Ω), which implies that the composition
G ◦ T : L2(Ω) → L2(Ω) is continuous and uniformly bounded with

‖(G ◦ T )v‖2 ≤ ‖k‖2 for all v ∈ L2(Ω), (3.8)

where ‖ · ‖2 denotes the norm in L2(Ω). Due to the compact embedding of
V0 ⊂ L2(Ω), we infer that G ◦ T : V0 → L2(Ω) ⊂ V ∗

0 is strongly continuous
and, thus, in particular, pseudomonotone (see Lemma 2.98). As −Δ : V0 → V ∗

0

is strongly monotone, continuous, and bounded, it is also pseudomonotone,
and thus by Lemma 2.98, we obtain that

−Δ+G ◦ T : V0 → V ∗
0 (3.9)

is a pseudomonotone, bounded, and continuous operator. By Theorem 2.99,
the BVP (3.7) possesses a solution provided that the operator −Δ +G ◦ T :
V0 → V ∗

0 is coercive. The latter, however, follows easily from the uniform
boundedness (3.8) and the strong monotonicity of −Δ, which yields

〈−Δu+ (G ◦ T )u, u〉 ≥ c ‖u‖2
V0

− ‖k‖2‖u‖2 ≥ c ‖u‖2
V0

− ‖k‖2‖u‖V0 ,

where we have used that u 
→ (
∫

Ω
|∇u|2 dx)1/2 defines an equivalent norm in

V0. This process completes the existence proof for the auxiliary BVP (3.7).
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The assertion of the theorem is proved provided we can show that there is a
solution u of the auxiliary problem (3.7), which satisfies u ≤ u ≤ ū; since then
we have Tu = u, and thus, u must be also a solution of the original problem
(3.1). In fact we are going to show that any solution of (3.7) is contained in
the ordered interval [u, ū]. Let u be any solution of (3.7), which is equivalent
to ∫

Ω

(∇u∇ϕ+ (G ◦ T )uϕ) dx = 〈f, ϕ〉 for all ϕ ∈ V0. (3.10)

We first show that u ≤ ū. Subtracting the inequality (3.5) for the supersolution
from (3.10), we obtain for all ϕ ∈ V0 ∩ L2

+(Ω) the inequality∫
Ω

∇(u− ū)∇ϕdx+
∫

Ω

((G ◦ T )u−G(ū))ϕdx ≤ 0. (3.11)

Testing (3.11) with ϕ = (u− ū)+ ∈ V0 ∩ L2
+(Ω) and observing that∫

Ω

((G ◦ T )u−G(ū)) (u− ū)+ dx = 0,

we get

0 ≤
∫

Ω

|∇(u− ū)+|2 dx =
∫

Ω

∇(u− ū)∇(u− ū)+ dx ≤ 0,

and thus ‖(u− ū)+‖V0 = 0, which implies (u− ū)+ = 0; i.e., u ≤ ū. The proof
for the inequality u ≤ u can be done in an obvious similar way. This process
completes the proof of the theorem. ��

Remark 3.5. The existence proof for the auxiliary BVP (3.7) can also be done
in a more elementary way by using Lax–Milgram’s Theorem (see Corollary
2.102) and Schauder’s fixed point theorem (see Theorem 2.2), because here
we have the special situation that V0 is a Hilbert space and

〈−Δu,ϕ〉 =
∫

Ω

∇u∇ϕdx, u, ϕ ∈ V0,

defines a coercive and bounded bilinear form in V0.

3.1.2 Directed and Compact Solution Set

We denote by S the set of all solutions of the BVP (3.1) within the ordered
interval [u, ū]. The main goal of this section is to show that S is a directed and
compact set in V0. The directedness will be seen as an immediate consequence
of the following generalized version of Theorem 3.4.
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Theorem 3.6. Let u1, . . . , uk and ū1, . . . , ūm with k, m ∈ N be sub- and su-
persolutions of (3.1), respectively, such that

u = max{u1, . . . , uk} ≤ ū = min{ū1, . . . , ūm}, (3.12)

and assume a local growth condition for g in the form

|g(v(x))| ≤ k(x) for all v ∈ [min{u1, . . . , uk},max{ū1, . . . , ūm}], (3.13)

where k ∈ L2
+(Ω). Then solutions of the BVP (3.1) exist within the ordered

interval [u, ū].

Proof: The proof follows the idea of the proof of Theorem 3.4 and is based on
the consideration of a suitably constructed auxiliary problem, which is now
more involved and which reads as follows:

u ∈ V0 : −Δu+ P (u) = f in V ∗
0 , (3.14)

where the operator P is given by

P (u) = (G ◦ T )u+
m∑

i=1

|(G ◦ T i)u− (G ◦ T )u| −
k∑

j=1

|(G ◦ Tj)u− (G ◦ T )u|,

(3.15)

where the truncation operators Tj , T
i, and T are defined as follows:

Tu(x) =

⎧⎨⎩
ū(x) if u(x) > ū(x) ,
u(x) if u(x) ≤ u(x) ≤ ū(x) ,
u(x) if u(x) < u(x) ,

Tju(x) =

⎧⎨⎩
uj(x) if u(x) < uj(x) ,
u(x) if uj(x) ≤ u(x) ≤ ū(x) ,
ū(x) if u(x) > ū(x) ,

T iu(x) =

⎧⎨⎩
u(x) if u(x) < u(x) ,
u(x) if u(x) ≤ u(x) ≤ ūi(x) ,
ūi(x) if u(x) > ūi(x) ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ k, x ∈ Ω. The operators G◦T, G◦Tj , G◦T i stand for
the compositions of the Nemytskij operator G and the truncation operators
T , Tj , T i, respectively, and we have

〈|(G ◦ T i)u− (G ◦ T )u|, v〉 =
∫

Ω

|g(·, T iu) − g(·, Tu)| v dx

as well as

〈|(G ◦ Tj)u− (G ◦ T )u|, v〉 =
∫

Ω

|g(·, Tju) − g(·, Tu)| v dx
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for all u, v ∈ V0. As Tj , T
i, T : L2(Ω) → L2(Ω) are bounded and continuous,

it follows from the compact embedding V0 ⊂ L2(Ω) and in view of the growth
condition imposed on g that P : V0 → L2(Ω) ⊂ V ∗

0 is uniformly bounded and
completely continuous. The same arguments as in the proof of Theorem 3.4
apply to ensure that

−Δ+ P : V0 → V ∗
0

is pseudomonotone, bounded, continuous, and coercive, which implies that
−Δ + P : V0 → V ∗

0 is surjective and thus solutions of the auxiliary BVP
(3.14) exist. The proof of the theorem is accomplished provided any solution
u of (3.14) can be shown to satisfy

uj ≤ u ≤ ūi, 1 ≤ i ≤ m, 1 ≤ j ≤ k. (3.16)

As a result, u satisfies also u ≤ u ≤ ū, which finally results in Tu = u, Tju =
u, T iu = u, and thus P (u) = G(u) showing that u is a solution of the original
problem (3.1) within [u, ū].

Let us first show that any solution u of (3.14) satisfies u ≤ ūl for l ∈
{1, . . . ,m} fixed. By assumption, ūl is a supersolution; i.e., ūl ≥ 0 on ∂Ω and

−Δūl +G(ūl) ≥ f (3.17)

with respect to the dual-order cone of V ∗
0 . Subtracting (3.17) from (3.14), we

obtain
−Δ(u− ūl) + P (u) −G(ūl) ≤ 0,

which is equivalent to∫
Ω

∇(u− ūl)∇ϕdx+
∫

Ω

(P (u) −G(ūl))ϕdx ≤ 0 (3.18)

for all ϕ ∈ V0 ∩ L2
+(Ω). Taking the special test function ϕ = (u − ūl)+ in

(3.18), we obtain for the first term on the left-hand side of (3.18)∫
Ω

∇(u− ūl)∇(u− ūl)+ dx =
∫

Ω

|∇(u− ūl)+|2 dx ≥ 0. (3.19)

Let us consider the second term on the left-hand side of (3.18); i.e.,∫
Ω

(P (u) −G(ūl))(u− ūl)+ dx =
∫

{u>ūl}

(P (u) −G(ūl))(u− ūl) dx, (3.20)

where {u > ūl} = {x ∈ Ω : u(x) > ūl(x)}. As for the estimate of the right-
hand side of (3.20), we note that ūl ≥ ū ≥ u ≥ uj , which yields by taking into
account the definition of the truncation operators that Tju(x) = ū(x) = Tu(x)
for x ∈ {u > ūl} and all j = 1, . . . , k, and thus,∫

{u>ūl}

k∑
j=1

|(G ◦ Tj)u− (G ◦ T )u|(u− ūl) dx = 0.
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By means of the last equation and taking into account that T lu(x) = ūl(x)
for x ∈ {u > ūl}, we obtain the following estimate:∫

Ω

(P (u) −G(ūl))(u− ūl)+ dx

=
∫

{u>ūl}

(P (u) −G(ūl))(u− ūl) dx

=
∫

{u>ūl}

[((G ◦ T )u−G(ūl))(u− ūl) +
m∑

i=1

|(G ◦ T i)u− (G ◦ T )u|(u− ūl)] dx

=
∫

{u>ūl}

(G(ū) −G(ūl) + |G(ūl) −G(ū)|)(u− ūl) dx

+
∫

{u>ūl}

∑
i �=l

|(G ◦ T i)u−G(ū)|(u− ūl) dx ≥ 0. (3.21)

Testing (3.18) with ϕ = (u − ūl)+, we get with the help of (3.19) and (3.21)
the inequality

0 ≤
∫

Ω

|∇(u− ūl)+|2 dx ≤ 0,

which implies (u−ūl)+ = 0, and hence, it follows u ≤ ūl for any l ∈ {1, . . . ,m}.
The proof of the inequalities uj ≤ u for j = 1, . . . , k can be done in a similar
way. Thus, inequalities (3.16) are satisfied, which completes the proof of the
theorem. ��

As an immediate consequence of Theorem 3.6, we get the following corol-
lary.

Corollary 3.7 (Directedness). The solution set S of the BVP (3.1) is di-
rected.

Proof: Let ui ∈ S, i = 1, 2. As any solution ui is, in particular, also a
subsolution, Theorem 3.6 ensures the existence of a solution u of the BVP
(3.1) within the ordered interval [max{u1, u2}, ū]. To this end, we only need
to specialize m = 2 and k = 1 with ū1 = ū. Thus, there is a solution u of the
BVP (3.1) satisfying u ≤ ui ≤ u ≤ ū, which means that S is upward directed.
As any u ∈ S is also a supersolution, one can show in just the same way that
S is downward directed, which shows the directedness. ��

An alternative method to prove directedness of the solution set S is based
on the following result.

Theorem 3.8. If u1 and u2 are subsolutions of the BVP (3.1)and if the Ne-
mytskij operator G : [min{u1, u2},max{u1, u2}] → L2(Ω) is well defined, then
max{u1, u2} is a subsolution. Analogously, if u1 and u2 are supersolutions of
the BVP (3.1) with the same assumption on the Nemytskij operator G, then
min{u1, u2} is a supersolution.
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Proof: Let u1 and u2 be subsolutions; i.e., we have uk ≤ 0 on ∂Ω and∫
Ω

(∇uk∇ϕ+G(uk)ϕ) dx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ L2
+(Ω), (3.22)

and k = 1, 2. Denote u = max{u1, u2}. Then according to Sect. 2.2.3, we have
u ∈ V and u ≤ 0 on ∂Ω, and thus for u being a subsolution, we need to verify
the following inequality:∫

Ω

(∇u∇ϕ+G(u)ϕ) dx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ L2
+(Ω), (3.23)

where

G(u)(x) =

{
G(u1)(x) if x ∈ {u1 ≥ u2} ,
G(u2)(x) if x ∈ {u2 > u1} .

For any ε > 0, we introduce the nondecreasing, piecewise differentiable func-
tion θε : R → R given by

θε(s) =

⎧⎨⎩
0 if s ≤ 0 ,
1
ε s if 0 < s < ε ,
1 if s ≥ ε .

(3.24)

Furthermore, if D+ denotes the following set of nonnegative smooth functions:

D+ = {ψ ∈ C∞
0 (Ω) : ψ ≥ 0 in Ω},

then its closure in V coincides with V0 ∩ L2
+(Ω). Now we apply special test

functions to (3.22). With ψ ∈ D+, we take in case k = 1 the test function

ϕ = ψ (1 − θε(u2 − u1)) ∈ V0 ∩ L2
+(Ω),

and in case k = 2, we take

ϕ = ψ θε(u2 − u1) ∈ V0 ∩ L2
+(Ω).

Adding the resulting inequalities, we obtain∫
Ω

(
∇u1∇(ψ (1 − θε(u2 − u1))) + ∇u2∇(ψ θε(u2 − u1))

)
dx

+
∫

Ω

(
G(u1)ψ (1 − θε(u2 − u1)) +G(u2)ψ θε(u2 − u1)

)
dx

≤ 〈f, ψ〉, (3.25)

which yields ∫
Ω

(
∇u1∇ψ + ∇(u2 − u1)∇(ψ θε(u2 − u1))

)
dx
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+
∫

Ω

(
G(u1)ψ + (G(u2) −G(u1))ψ θε(u2 − u1)

)
dx

≤ 〈f, ψ〉. (3.26)

By means of the chain rule (see Sect. 2.3.3), we get

∇(ψ θε(u2 − u1)) = ∇ψ θε(u2 − u1) + ψ θ′ε(u2 − u1)∇(u2 − u1),

which gives the following estimate for the first term on the left-hand side of
(3.26): ∫

Ω

(
∇u1∇ψ + ∇(u2 − u1)∇(ψ θε(u2 − u1))

)
dx

=
∫

Ω

(
∇u1∇ψ + |∇(u2 − u1)|2ψ θ′ε(u2 − u1))

)
dx

+
∫

Ω

∇(u2 − u1)∇ψ θε(u2 − u1) dx

≥
∫

Ω

(
∇u1∇ψ + ∇(u2 − u1)∇ψ θε(u2 − u1)

)
dx. (3.27)

From (3.26) and (3.27), we obtain for any ψ ∈ D+ and ε > 0,∫
Ω

(
∇u1∇ψ + ∇(u2 − u1)∇ψ θε(u2 − u1)

)
dx

+
∫

Ω

(
G(u1)ψ + (G(u2) −G(u1))ψ θε(u2 − u1)

)
dx

≤ 〈f, ψ〉.

Applying Lebesgue’s dominated convergence theorem (see Theorem 2.63) and
taking into account that

θε(u2 − u1) → χ{u2−u1>0} as ε→ 0,

where χ{u2−u1>0} is the characteristic function of the set {u2 − u1 > 0} =
{x ∈ Ω : u2(x) − u1(x) > 0}, we finally get∫

Ω

(
∇u1 + ∇(u2 − u1)χ{u2−u1>0}

)
∇ψ dx

+
∫

Ω

(
G(u1) + (G(u2) −G(u1))χ{u2−u1>0}

)
ψ dx

≤ 〈f, ψ〉. (3.28)

Inequality (3.28) is equivalent with∫
Ω

(∇u∇ψ +G(u)ψ) dx ≤ 〈f, ψ〉 for all ψ ∈ D+, (3.29)
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with u = max{u1, u2}, and thus, u is a subsolution, because D+ is dense
in V0 ∩ L2

+(Ω). As for the proof of the second part of the theorem, which
consists in showing that if u1 and u2 are supersolutions, then min{u1, u2} is
a supersolution, we can proceed in just the same way. This process completes
the proof of the theorem. ��
Remark 3.9. With the help of Theorem 3.8 and Theorem 3.4, we can provide
an alternative to prove the directedness of the solution set S as follows. If
u1, u2 ∈ S, then u1 and u2 are, in particular, subsolutions of the BVP (3.1),
which in view of Theorem 3.8 implies that max{u1, u2} ∈ [u, ū] is a subsolu-
tion. Therefore, we may apply Theorem 3.4, which yields the existence of a
solution of the BVP (3.1) within the ordered interval [max{u1, u2}, ū]; i.e., a
u ∈ S exists such that u ≥ u1 and u ≥ u2, which implies that S is upward di-
rected. As u1, u2 ∈ S, are also, in particular, supersolutions of the BVP (3.1),
from Theorem 3.8, we infer that min{u1, u2} ∈ [u, ū] is a supersolution, and
hence, Theorem 3.4 implies the existence of a solution of the BVP (3.1) within
the ordered interval [u,min{u1, u2}]; i.e., a u ∈ S exists such that u ≤ u1 and
u ≤ u2, which implies that S is downward directed. Thus, S is both upward
and downward directed; i.e., S is directed.

Theorem 3.10 (Compactness). The solution set S is compact in V0.

Proof: Let (un) ⊂ S, i.e., un ∈ [u, ū] and un is a solution of the BVP (3.1),
which means

un ∈ V0 :
∫

Ω

(∇un∇ϕ+G(un)ϕ) dx = 〈f, ϕ〉 for all ϕ ∈ V0. (3.30)

Testing (3.30) with ϕ = un and noting that

‖G(un)‖2 ≤ c for all n ∈ N,

we see that ‖un‖V0 ≤ c for all n ∈ N, and thus, a subsequence (uk) of (un)
exists such that

uk ⇀ u in V0, uk → u in L2(Ω). (3.31)

Replacing n in (3.30) by k and applying the convergence properties (3.31), we
see that the limit u satisfies

u ∈ V0 :
∫

Ω

(∇u∇ϕ+G(u)ϕ) dx = 〈f, ϕ〉 for all ϕ ∈ V0, (3.32)

which implies that the limit u belongs to S. We are going to show that (uk)
is not only weakly convergent to u in V0 but also strongly convergent. To this
end, we subtract (3.32) from (3.30) with n replaced by k and obtain by using
the test function ϕ = uk − u the following relation:∫

Ω

|∇(uk − u)|2 dx =
∫

Ω

(G(u) −G(uk))(uk − u) dx. (3.33)

As uk → u in L2(Ω) implies G(uk) → G(u) in L2(Ω), the right-hand side of
(3.33) tends to zero, which shows that uk → u in V0, completing the proof. ��
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3.1.3 Extremal Solutions

As in Sect. 3.1.2, we denote by S the set of all solutions of the BVP (3.1)
within the ordered interval [u, ū]. The main goal of this section is to show
that S has extremal elements; i.e., the greatest and smallest element in S
exists.

Theorem 3.11. The solution set S possesses extremal elements; i.e., there
is a greatest solution u∗ and a smallest solution u∗ of the BVP (3.1) within
[u, ū].

Proof: The main tools used in the proof are Corollary 3.7 and Theorem 3.10.
We focus on the existence of the greatest element of S.

As V0 is separable, it follows that S ⊂ V0 is separable, so a countable, dense
subset Z = {zn : n ∈ N} of S exists. By Corollary 3.7, S is, in particular,
upward directed, so we can construct an increasing sequence (un) ⊂ S as
follows. Let u1 = z1. Select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ ū.

The existence of un+1 is due to Corollary 3.7. From the compactness of S
according to Theorem 3.10, a subsequence of (un) exists, denoted again (un),
and an element u ∈ S such that un → u in V0, and un(x) → u(x) a.e. in Ω.
This last property of (un) combined with its increasing monotonicity implies
that the entire sequence is convergent in V0, and moreover, u = supn un. By
construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ u, for all n ∈ N,

thus, Z ⊂ [u, u]. As the interval [u, u] is closed in V0, we infer

S ⊂ Z ⊂ [u, u] = [u, u],

which in conjunction with u ∈ S ensures that u = u∗ is the greatest solution
of the BVP (3.1).

The existence of the smallest solution u∗ of the BVP (3.1) can be proved
in a similar way using the fact that S is also downward directed. ��

Remark 3.12. An alternative proof of the greatest and smallest elements of S,
which is based on Zorn’s lemma (see Theorem 2.62) is as follows. Again we
focus on the existence of the greatest element of S. To this end, we first show
that S possesses maximal elements (see Definition 2.61) by applying Zorn’s
lemma. Therefore, let C ⊂ S be a well-ordered chain. By Theorem 3.10, S
is compact, and thus C is bounded in V0, which implies the existence of an
increasing sequence (un) ⊂ C satisfying

un → sup C in L2(Ω),
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un ⇀ sup C in V0.

The compactness of S implies that u = sup C belongs to S, which shows that
any well-ordered chain C of S has an upper bound in S. Now Zorn’s lemma
can be applied, which yields the existence of a maximal element û ∈ S. As
S is, in particular, upward directed, the maximal element of S is uniquely
defined and must be the greatest one; i.e., û = u∗. To see the uniqueness
of the maximal element, assume there are maximal elements û1 and û2 with
û1 �= û2. Because S is upward directed, an element u ∈ S exists such that

max{û1, û2} ≤ u ≤ ū. (3.34)

However, (3.34) implies that u = û1 and u = û2, which contradicts û1 �=
û2. This process completes the alternative proof of extremal elements.

We finally study some order-preserving property of the extremal solutions
of the BVP (3.1). First, consider the case g = 0. In this case, the BVP (3.1)
is uniquely solvable, and the unique solution is order preserving with respect
to the right-hand side f, which means that the solution operator of the linear
BVP

u ∈ V0 : −Δu = f in V ∗
0 , (3.35)

denoted by (−Δ)−1 : V ∗
0 → V0 is isotone; i.e., (−Δ)−1 satisfies

f1 ≤ f2 =⇒ u1 ≤ u2, (3.36)

where uk = (−Δ)−1fk, k = 1, 2. The uniqueness result for (3.35) follows from
the fact that −Δ : V0 → V ∗

0 is a strongly monotone, linear, continuous, and
bounded operator, and property (3.36) can be seen from the following simple
calculation. Let f1 ≤ f2 in V ∗

0 , which means

〈f1, ϕ〉 ≤ 〈f2, ϕ〉 for all ϕ ∈ V0 ∩ L2
+(Ω),

and let uk = (−Δ)−1fk, k = 1, 2 denote the corresponding unique solutions.
By subtraction we obtain

−Δ(u1 − u2) = f1 − f2 ≤ 0 in V ∗
0 , (3.37)

which yields with the nonnegative test function ϕ = (u1 −u2)+, the following
inequality:

0 ≤ ‖∇(u1 − u2)+‖2
2 =

∫
Ω

∇(u1 − u2)∇(u1 − u2)+ dx ≤ 0,

and thus, (u1 − u2)+ = 0; i.e., u1 ≤ u2.
However, in general, BVP (3.1) is not uniquely solvable, and therefore, the

above arguments are not applicable. But still an order-preserving property



3.2 Quasilinear Elliptic Equations 93

can be shown to hold for the extremal solutions. Consider the BVP (3.1) with
right-hand sides fk, k = 1, 2; i.e.,

u ∈ V0 : −Δu+G(u) = fk in V ∗
0 , (3.38)

and assume that u and ū are sub- and supersolutions of both problems (3.38)
with u ≤ ū.

Theorem 3.13. Let u∗k ∈ [u, ū] denote the greatest solution of the BVP (3.38)
with right-hand side fk. If f1 ≤ f2, then u∗1 ≤ u∗2, and similarly, u1∗ ≤ u2∗
for the smallest solutions uk∗ of BVP (3.38).

Proof: To prove u∗1 ≤ u∗2, let us consider the BVP

u ∈ V0 : −Δu+G(u) = f1 in V ∗
0 . (3.39)

In view of f1 ≤ f2, any solution of (3.39) is a subsolution of the BVP

u ∈ V0 : −Δu+G(u) = f2 in V ∗
0 , (3.40)

and thus, in particular, the greatest solution u∗1 of (3.39) is a subsolution of
(3.40) as well. Therefore, u∗1 and ū is an ordered pair of sub- and supersolutions
of the BVP (3.40), which by applying Theorem 3.4 implies the existence of a
solution u of (3.40) satisfying

u∗1 ≤ u ≤ ū. (3.41)

As u∗2 is the greatest solution of the BVP (3.40) within [u, ū], it follows u ≤
u∗2, and thus, we finally get u∗1 ≤ u∗2. The proof of u1∗ ≤ u2∗ can be done
analogously. ��

3.2 Quasilinear Elliptic Equations

Let Ω ⊂ R
N be as in Sect. 3.1. In this section, we extend the results of Sect.

3.1 to the following quasilinear elliptic BVP:

−
N∑

i=1

∂

∂xi
ai(·, u,∇u) + g(·, u,∇u) = f in Ω, u = 0 on ∂Ω. (3.42)

In the study of (3.42), we assume for the coefficient functions ai : Ω×R×R
N →

R, i = 1, . . . , N, the so-called Leray–Lions conditions (H1)–(H3) formulated
in Sect. 2.3.2, and g : Ω × R × R

N → R is assumed to be a Carathéodory
function; i.e.,

x 
→ g(x, s, ξ) is measurable in Ω for all (s, ξ) ∈ R × R
N ,

(s, ξ) 
→ g(x, s, ξ) is continuous in R × R
N for a.e. x ∈ Ω.
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Set V = W 1,p(Ω) and V0 = W 1,p
0 (Ω). Let a : V × V → R be the semilinear

form given by

a(u, v) =
∫

Ω

N∑
i=1

ai(·, u,∇u)
∂v

∂xi
dx, (3.43)

which is well defined for any (u, v) ∈ V × V in view of (H1). By means of
(3.43), we introduce an operator A through

〈Au,ϕ〉 = a(u, ϕ) for all ϕ ∈ V0, (3.44)

which is well defined for any u ∈ V ; i.e., Au ∈ V ∗
0 , and A : V → V ∗

0 is
continuous and bounded in view of the Carathéodory and growth condition
(H1) imposed on ai, i = 1, . . . , N.

Let G denote the Nemytskij operator related to g by

G(u)(x) = g(x, u(x),∇u(x)),

and suppose that f ∈ V ∗
0 .

Definition 3.14. The function u ∈ V0 is called a (weak) solution of the BVP
(3.42) if G(u) ∈ Lq(Ω) ⊂ V ∗

0 and u satisfies the equation

Au+G(u) = f in V ∗
0 . (3.45)

Note q denotes the conjugate Hölder exponent to p; i.e., 1/p + 1/q = 1 and
equation (3.45) is equivalent to

a(u, ϕ) +
∫

Ω

G(u)ϕdx = 〈f, ϕ〉 for all ϕ ∈ V0. (3.46)

3.2.1 Comparison Principle

Let hypotheses (H1)–(H3) formulated in Sect. 2.3.2 be fulfilled throughout
this section. In a similar way as in Sect. 3.1.1, we introduce the notion of
(weak) sub- and supersolution.

Definition 3.15. The function u ∈ V is called a subsolution of the BVP
(3.42) if G(u) ∈ Lq(Ω), u ≤ 0 on ∂Ω, and

a(u, ϕ) +
∫

Ω

G(u)ϕdx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω). (3.47)

By reversing the inequality sign in Definition 3.15, we get the following defi-
nition for the supersolution.
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Definition 3.16. The function ū ∈ V is called a supersolution of the BVP
(3.42) if G(ū) ∈ Lq(Ω), ū ≥ 0 on ∂Ω, and

a(ū, ϕ) +
∫

Ω

G(ū)ϕdx ≥ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω). (3.48)

The following comparison principle is a classic result that can be found,
e.g., in [83].

Theorem 3.17. Let u and ū be sub- and supersolutions of the BVP (3.42),
respectively, that satisfy u ≤ ū; assume (H1)–(H3) and the following local
growth condition for g :

|g(x, s, ξ)| ≤ k1(x) + c |ξ|p−1 (3.49)

for a.e. x ∈ Ω, for all ξ ∈ R
N , and for all s ∈ [u(x), ū(x)], where k1 ∈ Lq

+(Ω)
and c > 0. Then solutions of the BVP (3.42) exist within the ordered interval
[u, ū].

Proof: Let T be the truncation operator introduced in the proof of Theorem
3.4. According to Lemma 2.89, we have that T : V → V is continuous and
bounded. As we are interested in the existence of solutions of the BVP (3.42)
within the interval [u, ū], we consider first the following auxiliary truncated
BVP:

u ∈ V0 : ATu+ λB(u) + (G ◦ T )u = f in V ∗
0 , (3.50)

where the operator AT : V0 → V ∗
0 is defined by

〈ATu, ϕ〉 = aT (u, ϕ) =
∫

Ω

N∑
i=1

ai(·, Tu,∇u)
∂ϕ

∂xi
dx for all ϕ ∈ V0. (3.51)

The parameter λ > 0 will be specified later, and B is the Nemytskij operator
generated by the following cutoff function b : Ω×R → R related to the ordered
pair of sub- and supersolutions, and given by

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x).

(3.52)

We readily verify that b is a Carathéodory function satisfying the growth
condition

|b(x, s)| ≤ k2(x) + c3 |s|p−1 (3.53)

for a.e. x ∈ Ω, for all s ∈ R, with some function k2 ∈ Lq
+(Ω) and a constant

c3 ≥ 0. Moreover, one has the following estimate:
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Ω

b(x, u(x))u(x) dx ≥ c4 ‖u‖p
p − c5, ∀ u ∈ Lp(Ω), (3.54)

where c4 and c5 are some positive constants and ‖ · ‖p denotes the norm
in Lp(Ω). In view of (3.53), the Nemytskij operator B : Lp(Ω) → Lq(Ω)
is continuous and bounded, and thus due to the compact embedding V0 ⊂
Lp(Ω), it follows that B : V0 → V ∗

0 is completely continuous. Hypotheses
(H1)–(H3), the growth condition (3.49), and the continuity of T : V → V
imply that AT +G◦T : V0 → V ∗

0 is bounded, continuous, and pseudomonotone
due to Theorem 2.109. As B : V0 → V ∗

0 is bounded and completely continuous,
it follows that

AT + λB +G ◦ T : V0 → V ∗
0 is bounded, continuous, and pseudomonotone.

By the Main Theorem on pseudomonotone operators (see Theorem 2.99), the
auxiliary BVP (3.50) possesses solutions provided that AT + λB + G ◦ T :
V0 → V ∗

0 is coercive, which will be shown next. From (3.54), we get

〈B(u), u〉 =
∫

Ω

B(u)u dx ≥ c4 ‖u‖p
p − c5. (3.55)

The growth condition (3.49) in conjunction with Young’s inequality implies
the estimate ∣∣∣∣∫

Ω

(G ◦ T )(u)u dx
∣∣∣∣ ≤ ∫

Ω

(
|k1u| + c |∇u|p−1|u|

)
dx

≤ ‖k1‖q‖u‖p + c ‖∇u‖p−1
p ‖u‖p

≤ ε ‖∇u‖p
p + c(ε)‖u‖p

p + c, (3.56)

for any ε > 0, where c > 0 is some generic constant and c(ε) is some positive
constant depending only on ε. By means of hypothesis (H3), we obtain

〈ATu, u〉 ≥ ν ‖∇u‖p
p − ‖k‖1. (3.57)

Hence, from (3.55)–(3.57), we get

〈(AT + λB +G ◦ T )u, u〉 ≥ (ν − ε) ‖∇u‖p
p + (λ c− c(ε))‖u‖p

p − c, (3.58)

which yields the coercivity of the operator AT + λB + G ◦ T : V0 → V ∗
0 by

choosing ε < ν and λ sufficiently large such that λ c− c(ε) > 0.
The assertion of the theorem is proved provided we can show that any

solution of the auxiliary BVP (3.50) is contained in the interval [u, ū] formed
by the sub- and supersolution; i.e., we are going to prove now that u ≤ u ≤ ū,
for any solution u of (3.50).

Let us show that u ≤ ū. Taking in (3.50) and (3.48) the nonnegative test
function ϕ = (u − ū)+ ∈ V0 ∩ Lp(Ω) and subtracting (3.48) from (3.50) we
obtain
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〈ATu−Aū+ λB(u) + (G ◦ T )u−G(ū), (u− ū)+〉 ≤ 0. (3.59)

By definition of AT given in (3.51) and using hypothesis (H2), we have

〈ATu−Aū, (u− ū)+〉
= aT (u, (u− ū)+) − a(ū, (u− ū)+)

=
∫

Ω

N∑
i=1

(
ai(·, Tu,∇u) − ai(·, ū,∇ū)

) ∂(u− ū)+
∂xi

dx

=
∫
{u>ū}

N∑
i=1

(
ai(·, ū,∇u) − ai(·, ū,∇ū)

) ∂(u− ū)
∂xi

dx ≥ 0, (3.60)

where {u > ū} = {x ∈ Ω : u(x) > ū(x)}. By definition of the truncation
operator T , the third term on the left-hand side of (3.59) results in

〈(G ◦ T )u−G(ū), (u− ū)+〉

=
∫

Ω

(
g(·, Tu,∇Tu) − g(·, ū,∇ū)

)
(u− ū)+ dx

=
∫
{u>ū}

(
g(·, ū,∇ū) − g(·, ū,∇ū)

)
(u− ū) dx = 0. (3.61)

Applying the definition of the cutoff function b, we get for the second term on
the left-hand side of (3.59)

〈λB(u), (u− ū)+〉 =
∫
{u>ū}

(u− ū)p dx = λ ‖(u− ū)+‖p
p, (3.62)

and hence, it follows from (3.59)–(3.62)

‖(u− ū)+‖p
p ≤ 0,

which implies (u− ū)+ = 0; i.e., u ≤ ū. The proof of the inequality u ≤ u can
be done in an obvious similar way, which completes the proof of the theorem.

��

3.2.2 Directed and Compact Solution Set

Theorem 3.17 of the previous section shows that the set S of all solutions of the
BVP (3.42) within the ordered interval [u, ū] is nonempty. In this section, we
prove directedness and compactness results for S. Unlike the corresponding
results in the semilinear case, the proofs in the quasilinear case are much
more involved. Although for the compactness of S the same hypotheses as
in Theorem 3.17 are sufficient, we will see that the proof of the directedness
of S requires some additional assumption, which is basically caused by the
dependence of the coefficients ai(·, u,∇u) on u.
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Theorem 3.18. Let the hypotheses of Theorem 3.17 be fulfilled. Then the
solution set S is compact.

Proof: Let (un) ⊂ S be any sequence. We have to show that there is a
subsequence of (un), which is strongly convergent in V0 to some u ∈ S. By
definition of S, we have un ∈ [u, ū], and

un ∈ V0 : 〈Aun +G(un), ϕ〉 = 〈f, ϕ〉 for all ϕ ∈ V0. (3.63)

Taking in (3.63) the special test function ϕ = un, we get by hypothesis (H3)
for the first term on the left-hand side the estimate

〈Aun, un〉 ≥ ν ‖∇un‖p
p − ‖k‖1, (3.64)

and by means of the growth condition (3.49) on g in conjunction with Young’s
inequality, the following estimate for the second term on the left-hand side of
(3.63) is readily verified:∣∣∣∣∫

Ω

G(un)un dx

∣∣∣∣ ≤ ∫
Ω

(
|k1un| + c |∇un|p−1|u|

)
dx

≤ ‖k1‖q‖un‖p + c ‖∇un‖p−1
p ‖un‖p

≤ ε ‖∇un‖p
p + c(ε), (3.65)

for any ε > 0, where c(ε) is some positive constant depending only on ε. For
(3.65), we have used the fact that (un) is bounded in Lp(Ω) due to un ∈ [u, ū].
For the right-hand side of (3.63) with ϕ = un, we obtain by using Young’s
inequality the estimate

|〈f, un〉| ≤ ‖f‖V ∗
0
‖un‖V0 ≤ c(δ, f) + δ ‖∇un‖p

p, (3.66)

for any δ > 0, where c(δ, f) > 0 is some constant depending only on δ and
the norm of f. Thus, from (3.63) with ϕ = un and (3.64)–(3.66), we obtain
the estimate

(ν − ε− δ) ‖∇un‖p
p ≤ c(ε, δ, f) for all n ∈ N, (3.67)

which shows the boundedness of the sequence (un) in V0 when selecting ε and
δ sufficiently small such that ε + δ < ν. Thus, a subsequence of (un) exists,
denoted by (uk) such that

uk ⇀ u in V0, uk → u in Lp(Ω). (3.68)

Replacing n by k in (3.63) and taking ϕ = uk − u, we obtain

〈Auk, uk − u〉 =
∫

Ω

G(uk)(u− uk) dx+ 〈f, uk − u〉. (3.69)

Passing to the lim sup in (3.69) as k → ∞ and taking into account the boun-
dedness of (uk) in V0 as well as the convergence properties (3.68), we get
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lim sup
k

〈Auk, uk − u〉 ≤ 0,

which due to the (S+)-property of the operator A (see Theorem 2.109) implies
the strong convergence uk → u in V0. To complete the proof we only need to
show that the limit u belongs to S. This process however, follows immediately
from (3.63) by replacing n by k and passing to the limit as k → ∞. ��

To show that the solution set S of the BVP (3.42) is a directed set, the
following additional assumption on the coefficients ai : Ω × R × R

N → R is
required.

(H4) Modulus of Continuity Condition: Let a function k3 ∈ Lq
+(Ω) and a

function ω : R+ → R+ exist such that

|ai(x, s, ξ) − ai(x, s′, ξ)| ≤ [k3(x) + |s|p−1 + |s′|p−1 + |ξ|p−1]ω(|s− s′|) ,

holds for a.e. x ∈ Ω , for all s, s′ ∈ R and for all ξ ∈ R
N , where ω :

R+ → R+ is a continuous function with the property∫
0+

dr

ω(r)
= +∞ . (3.70)

Remark 3.19. Equation (3.70) means that for every ε > 0, the integral taken
over [0, ε] diverges; i.e.,

ε∫
0

dr

ω(r)
= +∞ .

Hypothesis (H4) includes, for example, ω(r) = c r , ∀ r ≥ 0, i.e., a Lipschitz
condition of the coefficients ai(x, s, ξ) with respect to s.

In the semilinear case, the directedness of the solution set S is an immedi-
ate consequence of either Theorem 3.6 or Theorem 3.8. Both theorems can be
extended to the quasilinear case considered in this section under the assump-
tions of Theorem 3.17 and the additional hypothesis (H4). As the extension
of Theorem 3.6 to the quasilinear case has been treated in great detail in [43],
we provide in the following theorem the extension of Theorem 3.8.

Theorem 3.20. Assume hypotheses (H1)–(H4), and let u1 and u2 be subso-
lutions of the BVP (3.42) such that the Nemytskij operator

G : [min{u1, u2},max{u1, u2}] → Lq(Ω)

is well defined. Then max{u1, u2} is a subsolution of the BVP (3.42). Ana-
logously, if u1 and u2 are supersolutions of the BVP (3.42) with the same
assumption on the Nemytskij operator G, then min{u1, u2} is a supersolution.
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Proof: We consider first the case that u1 and u2 are subsolutions; i.e., we
have uk ≤ 0 on ∂Ω and

a(uk, ϕ) +
∫

Ω

G(uk)ϕdx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω), (3.71)

and k = 1, 2. Denote u = max{u1, u2}; then according to Sect. 2.2.3, we have
u ∈ V and u ≤ 0 on ∂Ω, and

∇u(x) =

{
∇u1(x) if u1(x) ≥ u2(x) ,
∇u2(x) if u2(x) ≥ u1(x) .

Thus, for u being a subsolution, we need to verify the following inequality:

a(u, ϕ) +
∫

Ω

G(u)ϕdx ≤ 〈f, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω), (3.72)

where

G(u)(x) =

{
G(u1)(x) if x ∈ {u1 ≥ u2} ,
G(u2)(x) if x ∈ {u2 > u1} .

In view of hypothesis (H4), for any fixed ε > 0, a δ(ε) ∈ (0, ε) exists such that∫ ε

δ(ε)

1
ω(r)

dr = 1.

This property allows us to introduce the function θε : R → R+, which is
defined by

θε(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < δ(ε),∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε,

1 if s > ε.

(3.73)

Obviously, for each ε > 0, the function θε is continuous, piecewise differen-
tiable, and the derivative is nonnegative and bounded. Thus, the function θε
is Lipschitz continuous and nondecreasing, and moreover, it satisfies

θε → χ{s>0} as ε→ 0,

where χ{s>0} is the characteristic function of the set {s > 0} = {s ∈ R : s >
0}. In addition, one has

θ′ε(s) =

⎧⎨⎩
1
ω(s)

if δ(ε) < s < ε,

0 if s �∈ [δ(ε), ε].
(3.74)

As in the proof of Theorem 3.8, let us introduce the set D+ of nonnegative
smooth functions; i.e.,
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D+ = {ψ ∈ C∞
0 (Ω) : ψ ≥ 0}.

In case that k = 1, we take the special test function

ϕ = ψ (1 − θε(u2 − u1)) ∈ V0 ∩ Lp
+(Ω),

where ψ ∈ D+, and in case k = 2, we take

ϕ = ψ θε(u2 − u1) ∈ V0 ∩ Lp
+(Ω).

Adding the resulting inequalities, we obtain

a(u1, ψ) + a(u2, ψ θε(u2 − u1)) − a(u1, ψ θε(u2 − u1))

+
∫

Ω

G(u1)ψ dx+
∫

Ω

(G(u2) −G(u1))ψ θε(u2 − u1)) dx

≤ 〈f, ψ〉. (3.75)

We discuss next the terms depending on ε. To this end, we need the partial
derivative ∂/∂xi of ψ θε(u2 − u1), which can be calculated by applying the
generalized chain rule (see Lemma 2.84) as follows:

∂

∂xi
(ψ θε(u2 − u1)) =

∂ψ

∂xi
θε(u2 − u1) + ψ θ′ε(u2 − u1)

∂(u2 − u1)
∂xi

. (3.76)

By means of (3.76), we first get

a(u2, ψ θε(u2 − u1)) − a(u1, ψ θε(u2 − u1))

=
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)∂(ψ θε(u2 − u1))
∂xi

dx

=
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
ψ θ′ε(u2 − u1)

∂(u2 − u1)
∂xi

dx

+
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
θε(u2 − u1)

∂ψ

∂xi
dx,

which yields by applying hypotheses (H2) and (H4) as well as the properties
of θε(u2 − u1) the following estimate:

a(u2, ψ θε(u2 − u1)) − a(u1, ψ θε(u2 − u1))

=
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u2,∇u1)

)
ψ θ′ε(u2 − u1)

∂(u2 − u1)
∂xi

dx

+
∫

Ω

N∑
i=1

(
ai(·, u2,∇u1) − ai(·, u1,∇u1)

)
ψ θ′ε(u2 − u1)

∂(u2 − u1)
∂xi

dx
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+
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
θε(u2 − u1)

∂ψ

∂xi
dx

≥
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
θε(u2 − u1)

∂ψ

∂xi
dx

−N
∫
{δ(ε)<u2−u1<ε}

(
k3 + |u1|p−1 + |u2|p−1 + |∇u1|p−1

)
×

×ψ |∇(u2 − u1)| dx. (3.77)

For the last term on the right-hand side of (3.77), we have∫
{δ(ε)<u2−u1<ε}

(
k3 + |u1|p−1 + |u2|p−1 + |∇u1|p−1

)
ψ |∇(u2 − u1)| dx→ 0

(3.78)

as ε→ 0. By means of Lebesgue’s dominated convergence theorem (see The-
orem 2.63), the first term on the right-hand side of (3.77) yields as ε→ 0 the
relation

lim
ε→0

∫
Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
θε(u2 − u1)

∂ψ

∂xi
dx

=
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
χ{u2>u1}

∂ψ

∂xi
dx, (3.79)

and thus from (3.78) and (3.79) we get

lim inf
ε→0

[a(u2, ψ θε(u2 − u1)) − a(u1, ψ θε(u2 − u1))]

≥
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
χ{u2>u1}

∂ψ

∂xi
dx. (3.80)

Again by Lebesgue’s dominated convergence theorem, we have

lim
ε→0

∫
Ω

(G(u2) −G(u1))ψ θε(u2 − u1)) dx

=
∫

Ω

(G(u2) −G(u1))χ{u2>u1}ψ dx. (3.81)

Finally, from (3.75), (3.80), and (3.81), we obtain∫
Ω

N∑
i=1

ai(·, u1,∇u1)
∂ψ

∂xi
dx

+
∫

Ω

N∑
i=1

(
ai(·, u2,∇u2) − ai(·, u1,∇u1)

)
χ{u2>u1}

∂ψ

∂xi
dx
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+
∫

Ω

(
G(u1) + (G(u2) −G(u1))χ{u2>u1}

)
ψ dx

≤ 〈f, ψ〉, (3.82)

which is nothing else as

a(u, ψ) +
∫

Ω

G(u)ψ dx ≤ 〈f, ψ〉 for all ψ ∈ D+. (3.83)

As D+ is dense in V0∩Lp
+(Ω) from (3.83), we obtain (3.72), which proves that

u = max{u1, u2} is a subsolution whenever u1 and u2 are subsolutions. That
the minimum of two supersolutions becomes a supersolution can be proved
analogously. This process completes the proof of the theorem. ��

The following corollary is an immediate consequence of Theorem 3.20.

Corollary 3.21 (Directedness). Assume hypotheses (H1)–(H4), and let the
growth condition (3.49) be satisfied with respect to the ordered interval [u, ū].
Then the solution set S of the BVP (3.42) is directed.

Proof: The same arguments as in the proof of Corollary 3.7 apply. ��

3.2.3 Extremal Solutions

Let S be the same as in Sect. 3.2.2. The following extremality result can
easily be proved by means of the directedness and compactness results of the
previous section.

Theorem 3.22. Under the hypotheses of Corollary 3.21, the solution set S
possesses extremal elements; i.e., there is a greatest solution u∗ and a smallest
solution u∗ of the quasilinear BVP (3.42) within the ordered interval [u, ū] of
sub- and supersolutions.

Proof: The main tools used in the proof are Theorem 3.18, Theorem 3.20,
and Corollary 3.21. We focus on the existence of the greatest element of S.

As V0 is separable, we have that S ⊂ V0 is separable, so a countable, dense
subset Z = {zn : n ∈ N} of S exists. By Corollary 3.21, S is upward directed,
so we can construct an increasing sequence (un) ⊂ S as follows. Let u1 = z1.
Select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ ū.

The existence of such an un+1 ∈ S follows from Corollary 3.21. By induction
we get an increasing sequence (un) ⊂ S, which converges to u = supn un in
Lp(Ω) because the order cone Lp

+(Ω) is a fully regular order cone, (see [111]).
As S is a compact subset of V0, a subsequence of (un) exists, which converges
in V0, and whose limit belongs to S. As un → u in Lp(Ω), all convergent sub-
sequences must have the same limit, and thus, the entire increasing sequence
(un) satisfies un → u ∈ S strongly in V0. By construction, we see that
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max{z1, z2, . . . , zn} ≤ un+1 ≤ u, for all n ∈ N,

and thus, u is an upper bound for Z, which implies Z ⊂ [u, u]. As the interval
[u, u] is closed in V0 and Z is dense in S, we infer

S ⊂ Z ⊂ [u, u] = [u, u],

which, because u ∈ S, ensures that u = u∗ is the greatest element of S; i.e.,
u is the greatest solution of the BVP (3.42) within [u, ū]. The existence of
the smallest solution u∗ of the BVP (3.42) can be proved in a similar way by
using the fact that S is also downward directed. ��

The extremality result due to Theorem 3.22 allows us to extend the order-
preserving property of the extremal solutions in the semilinear case to the
quasilinear case. Consider the BVP (3.42) with right-hand sides fk ∈ V ∗

0 ,
k = 1, 2; i.e.,

u ∈ V0 : Au+G(u) = fk in V ∗
0 . (3.84)

Let u and ū be an ordered pair of sub- and supersolutions for both problems
(3.84), and denote by uk∗ and u∗k the corresponding smallest and greatest solu-
tions of (3.84), respectively, within [u, ū]. With these notations, the following
result holds.

Theorem 3.23. If f1 ≤ f2, then u∗1 ≤ u∗2, and similarly, u1∗ ≤ u2∗.

Proof: The proof follows the same idea as for the proof of Theorem 3.13. ��

Example 3.24. Let us consider the following special case of the BVP (3.42):

−Δpu+ g(u) = f in Ω, u = 0 on ∂Ω, (3.85)

where Δpu = div (|∇u|p−2∇u) is the p-Laplacian, and f ∈ V ∗
0 is given. Let

u and ū be an ordered pair of sub- and supersolutions, and assume that
g : R → R is a continuous function that satisfies the growth condition:

|g(s)| ≤ c (1 + |s|p−1) for all s ∈ R, (3.86)

where c is some positive constant.

Corollary 3.25. The BVP (3.85) possesses solutions within the ordered in-
terval [u, ū], and the solution set S of all solutions of (3.85) in [u, ū] is compact
in V0 and has extremal elements that depend monotonically on the right-hand
side f.

Proof: In the special case of the p-Laplacian, the coefficients ai, i = 1, . . . , N,
defining the differential operator are given by

ai(x, s, ξ) = |ξ|p−2ξi.
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As ai do not depend on x and s, hypothesis (H4) is trivially satisfied. Hy-
potheses (H1) and (H3) are easily seen to be true, and hypothesis (H2) follows
from the monotonicity inequality of Sect. 2.2.4. For any s ∈ [u(x), ū(x)], one
has

|s| ≤ |u(x)| + |ū(x)|,
and thus, the growth condition (3.49) of Theorem 3.17 follows from (3.86)
with

k1(x) = c
(
1 + (|u(x)| + |ū(x)|)p−1

)
.

Note k1 ∈ Lq(Ω). Therefore, Theorem 3.17, Theorem 3.8–Theorem 3.11, and
Corollary 3.21 are applicable, which completes the proof of the corollary. ��

Remark 3.26. Note that the “global” growth condition (3.86) is more restric-
tive than the “local” one given by (3.49) of Theorem 3.17. Of course, also for
Corollary 3.25 to hold, it is enough to assume only a local growth condition
for g with respect to the ordered interval of sub- and supersolutions; i.e.,

|g(s)| ≤ k1(x) for all s ∈ [u(x), ū(x)].

Remark 3.27. Theorem 3.17–Theorem 3.23 and Corollary 3.21 remain true if
the hypotheses (H2) and (H3) of Sect. 2.3.2 imposed on the coefficients ai,
i = 1, . . . , N, are replaced by the following strong ellipticity:

N∑
i=1

(ai(x, s, ξ) − ai(x, s, ξ′))(ξi − ξ′i) ≥ μ |ξ − ξ′|p, (3.87)

where μ > 0 (for a.e. x ∈ Ω, for all s ∈ R, and for all ξ, ξ′ ∈ R
N ), whereas

condition (3.70) of hypothesis (H4) is replaced by∫
0+

dr

ωq(r)
= +∞, (3.88)

with q being the Hölder conjugate to p. Condition (3.88) allows us to deal
with coefficients ai(x, s, ξ), which satisfy, e.g., a Hölder condition with respect
to s. For a more detailed analysis in this case, we refer to [43].

3.3 Quasilinear Parabolic Equations

In this section, we shall use the notations and results provided in Sect. 2.4. Let
Ω ⊂ R

N be a bounded domain with Lipschitz boundary ∂Ω, Q = Ω × (0, τ),
and Γ = ∂Ω×(0, τ), with τ > 0. Our goal is to prove comparison, extremality,
and compactness results for the following quasilinear initial-boundary value
problem (IBVP, for short):

ut +Au+ g(·, ·, u,∇u) = f in Q,



106 3 Variational Equations

u = 0 in Ω × {0}, u = 0 on Γ, (3.89)

where A is assumed to be a second-order quasilinear differential operator in
divergence form given by

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)). (3.90)

We impose the following hypotheses of Leray–Lions type on the coefficients
ai : Q× R × R

N → R, i = 1, . . . , N .

(A1) Carathéodory and Growth Condition: Each ai(x, t, s, ξ) satisfies Carathé-
odory conditions, i.e., is measurable in (x, t) ∈ Q for all (s, ξ) ∈ R×R

N

and continuous in (s, ξ) for a.e. (x, t) ∈ Q. A constant c0 > 0 and a
function k0 ∈ Lq(Q) exist so that

|ai(x, t, s, ξ)| ≤ k0(x, t) + c0(|s|p−1 + |ξ|p−1)

for a.e. (x, t) ∈ Q and for all (s, ξ) ∈ R × R
N , with |ξ| denoting the

Eucleadian norm of the vector ξ ∈ R
N .

(A2) Monotonicity Type Condition: The coefficients ai satisfy a monotonicity
condition with respect to ξ in the form

N∑
i=1

(ai(x, t, s, ξ) − ai(x, t, s, ξ′))(ξi − ξ′i) > 0

for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ, ξ′ ∈ R
N with ξ �= ξ′.

(A3) Coercivity Type Condition:

N∑
i=1

ai(x, t, s, ξ)ξi ≥ ν|ξ|p − k(x, t)

for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ ∈ R
N with some constant

ν > 0 and some function k ∈ L1(Q).

As the coefficients ai are not necessarily differentiable, the IBVP (3.89) has
to be understood in an appropriate generalized sense, a motivation of which
has already been given in Sect. 2.4.1 for a simpler IBVP. As in the previous
section, let V = W 1,p(Ω) and V0 = W 1,p

0 (Ω). We assume throughout this
section

2 ≤ p <∞,

and set H = L2(Ω). Then V ⊂ H ⊂ V ∗ (respectively, V0 ⊂ H ⊂ V ∗
0 )

forms an evolution triple with all embeddings being continuous, dense, and
compact, (see Sect. 2.4.3). We introduce the spaces X = Lp(0, τ ;V ) and X0 =
Lp(0, τ ;V0) of vector-valued functions, and we define
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W = {u ∈ X : ut ∈ X∗} , (respectively, W0 = {u ∈ X0 : ut ∈ X∗
0}) ,

where the derivative ut = ∂u/∂t = u′ is understood in the sense of vector-
valued distributions (see Sect. 2.4). Let a : X×X → R be the semilinear form
related to the differential operator A and given by

a(u, v) =
∫

Q

N∑
i=1

ai(·, ·, u,∇u)
∂v

∂xi
dxdt; (3.91)

then due to (A1), a is well defined for any (u, v) ∈ X × X. Again by (A1),
for fixed u ∈ X the mapping ϕ 
→ a(u, ϕ) is linear and continuous on X
(respectively, on X0). With the help of (3.91), we introduce an operator (again
denoted by A) defined by

〈Au,ϕ〉 = a(u, ϕ) for all ϕ ∈ X0, (3.92)

where 〈·, ·〉 is the duality pairing between X∗
0 and X0. From (3.92) for any

u ∈ X, we have Au ∈ X∗
0 , and in view of (A1), the operator A : X → X∗

0

is continuous and bounded (respectively, A : X0 → X∗
0 is continuous and

bounded).
Let us agree to use the notation 〈·, ·〉 for any of the dual pairings between

X and X∗, X0 and X∗
0 , V and V ∗, and V0 and V ∗

0 . For example, with f ∈
X∗

0 , u ∈ X0,

〈f, u〉 =
∫ τ

0

〈f(t), u(t)〉 dt.

Furthermore, a natural partial ordering in Lp(Q) is defined by u ≤ w if and
only if w − u belongs to the positive cone Lp

+(Q) of all nonnegative elements
of Lp(Q). It induces a corresponding partial ordering also in the subspace W
of Lp(Q), and if u, w ∈W with u ≤ w, then

[u,w] = {v ∈W : u ≤ v ≤ w}
denotes the ordered interval formed by u and w.

As for the lower order terms g of the parabolic equation, we assume the
following hypothesis.

(H) The function g : Q×R×R
N → R is a Carathéodory function that satisfies

the growth condition

|g(x, t, s, ξ)| ≤ k1(x, t) + c1 |ξ|p−1 (3.93)

for a.e. (x, t) ∈ Q, for all ξ ∈ R
N , and for all s ∈ [v(x, t), v̄(x, t)], where

k1 ∈ Lq
+(Q), c1 is some positive constant, and [v, v̄] is some ordered

interval specified later.

Denote by G the Nemytskij operator related to g, i.e.,

G(u)(x, t) = g(x, t, u(x, t),∇u(x, t)),
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and assume the right-hand side f of the parabolic equation to be an element
of X∗

0 . Then a generalized solution of the IBVP (3.89) is defined as follows.

Definition 3.28. The function u ∈ W0 is a solution of the IBVP (3.89) if
G(u) ∈ Lq(Q), u(·, 0) = 0 in Ω, and

u′ +Au+G(u) = f in X∗
0 . (3.94)

Remark 3.29. We have assumed homogeneous initial and boundary conditions
in the IBVP (3.89) only for the sake of simplicity. Without loss of generality,
nonhomogeneous initial and boundary conditions of the form

u = ψ in Ω × {0}, u = h on Γ (3.95)

can be treated as well, where ψ ∈ H, and h = γ(w) is the trace of a function
w ∈ W. The corresponding nonhomogeneous IBVP will be reduced to the
homogeneous case by translation. To this end, let û ∈W be any function that
satisfies the initial and boundary data (3.95); i.e.,

û = ψ in Ω × {0}, û = h on Γ.

The existence of such a function û will be demonstrated in the next section.
Consider now the nonhomogeneous IBVP

ut +Au+ g(·, ·, u,∇u) = f in Q,

u = ψ in Ω × {0}, u = h on Γ, (3.96)

and perform the translation
u = û+ v,

which yields the following homogeneous IBVP in v:

vt + Âv + ĝ(·, ·, v,∇v) = f̂ in Q,

v = 0 in Ω × {0}, v = 0 on Γ, (3.97)

where the coefficients âi of the transformed operator Â, ĝ, and f̂ are given by

âi(x, t, s, ξ) = ai(x, t, s+ û(x, t), ξ + ∇û(x, t)),
ĝ(x, t, s, ξ) = g(x, t, s+ û(x, t), ξ + ∇û(x, t)),

f̂ = f − ût. (3.98)

To verify that the transformed IBVP (3.97) is of the same structure as the
original homogeneous IBVP (3.89), we need to show that the data âi, ĝ, and
f̂ preserve the regularity and structure hypotheses imposed on ai, g, and f,
respectively. First, note that ût ∈ X∗ ⊂ X∗

0 , and thus, f̂ ∈ X∗
0 . One readily

verifies that ĝ is a Carathéodory function satisfying the growth condition
(3.93) with possibly a different function k1 and constant c1, and which is true
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with respect to the shifted ordered interval [u − û, ū − û]. The coefficients
âi are Carathéodory functions as well, and they satisfy apparently a similar
growth condition as in (A1). As ai satisfy (A2), we obtain

N∑
i=1

(âi(x, t, s, ξ) − âi(x, t, s, ξ′))(ξi − ξ′i)

=
N∑

i=1

(
âi(x, t, s, ξ) − âi(x, t, s, ξ′)

)(
(ξi + ûxi(x, t)) − (ξ′i + ûxi(x, t))

)
> 0

for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ, ξ′ ∈ R
N with ξ �= ξ′, which

shows that âi satisfy (A2) as well. Consider now
∑N

i=1 âi(x, t, s, ξ)ξi. For its
estimate below, we use the following elementary inequality. There is a positive
constant c such that

|ξ|p ≤ (|ξ + η| + |η|)p ≤ c
(
|ξ + η|p + |η|p

)
for all ξ, η ∈ R

N . (3.99)

Applying (A3) satisfied by ai, we obtain

N∑
i=1

âi(x, t, s, ξ)ξi =
N∑

i=1

ai(x, t, s+ û(x, t), ξ + ∇û(x, t))ξi

≥ ν |ξ + ∇û(x, t)|p − k(x, t)

−
N∑

i=1

ai(x, t, s+ û(x, t), ξ + ∇û(x, t))ûxi(x, t). (3.100)

By means of the growth condition of (A1) and Young’s inequality, we get for
the last term the estimate∣∣∣∣∣

N∑
i=1

ai(x, t, s+ û(x, t), ξ + ∇û(x, t))ûxi(x, t)

∣∣∣∣∣
≤ ε

c0
|k0(x, t)|q + ε |s+ û(x, t)|p + ε |ξ + ∇û(x, t)|p

+c(ε)|∇û(x, t)|p (3.101)

for every ε > 0, where c(ε) is a positive constant only depending on ε. Taking
into account the inequality [see (3.99]

|ξ + η|p ≥ 1
c
|ξ|p − |η|p for all ξ, η ∈ R

N ,

and (3.100) and (3.101), we get

N∑
i=1

âi(x, t, s, ξ)ξi ≥
ν − ε
c

|ξ|p − ε

c
|s|p − k̂ε(x, t), (3.102)
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where k̂ε ∈ L1(Q). If ai do not depend on s, the above estimates yield

N∑
i=1

âi(x, t, ξ)ξi ≥
ν − ε
c

|ξ|p − k̂ε(x, t) (3.103)

for any ε > 0, which shows that in this case, for ε < ν, also hypothesis (A3)
is satisfied. Therefore, in the special case that ai(x, t, ξ) do not depend on
s, we have justified that homogeneous initial and boundary values can be
assumed without loss of generality. In the general case, (A3) is not necessarily
true for the transformed problem due to the term − ε

c |s|p on the right-hand
side of (3.102). However, as we will see later, the comparison technique to be
developed here, which is based on sub- and supersolutions, turns out to be
flexible enough to compensate also this drawback, so that also in the general
case, we are allowed to deal with the homogeneous IBVP without loss of
generality.

3.3.1 Parabolic Equation with p-Laplacian

Let us consider the following IBVP:

ut −Δpu = f in Q,

u = ψ in Ω × {0}, u = 0 on Γ, (3.104)

where Δpu = div (|∇u|p−2∇u) is the p-Laplacian, f ∈ X∗
0 , and ψ ∈ H.

Problem (3.104) is a special case of the IBVP (3.89) and arises from (3.89)
by setting g = 0 and ai(x, t, s, ξ) = |ξ|p−2ξi. According to Definition 3.28, a
function u is a solution of the IBVP (3.104) if u satisfies

u ∈W0, u(x, 0) = ψ(x) and u′ −Δpu = f in X∗
0 . (3.105)

Lemma 3.30. The IBVP (3.104) (respectively, (3.105) has a unique solution.

Proof: The operator −Δp : X0 → X∗
0 given by

〈−Δu,ϕ〉 =
∫

Q

|∇u|p−2∇u∇ϕdxdt for all ϕ ∈ X0

can easily be seen to be a monotone, continuous, bounded, and coercive op-
erator. Hence, the existence of a unique solution of the IBVP (3.105) follows
by applying [222, Theorem 30.A]. ��

With the help of Lemma 3.30 we can prove the existence of a function
û ∈ W satisfying given nonhomogeneous initial and boundary data as it was
assumed in Remark 3.29 of the previous section.

Corollary 3.31. Let ψ ∈ H and h = γ(w), where γ(w) denotes the trace of
a function w ∈W on Γ. Then a function û ∈W exists with

û = ψ in Ω × {0}, û = γ(w) on Γ.



3.3 Quasilinear Parabolic Equations 111

Proof: As W ⊂ C([0, τ ];H) is continuously embedded, we have w(·, 0) ∈ H.
The IBVP (3.104) with ψ replaced by ψ − w(·, 0) ∈ H has a unique solution
u ∈W0, and thus, the function û defined by û = w + u satisfies

û ∈W, γ(û) = γ(w) on Γ, û(x, 0) = w(x, 0) + u(x, 0) = ψ(x),

which proves the corollary. ��

Definition 3.32. A function u ∈ W is called a subsolution of the IBVP
(3.104) if u(x, 0) ≤ ψ(x) for x ∈ Ω, u ≤ 0 on Γ , and

〈u′ −Δpu, ϕ〉 ≤ 〈f, ϕ〉 for all ϕ ∈ X0 ∩ Lp
+(Q).

Similarly, ū is a supersolution of the IBVP (3.104) if the reversed inequa-
lities in Definition 3.32 hold with u replaced by ū.

Lemma 3.33. Let u and ū be sub- and supersolutions of the IBVP (3.104).
Then u ≤ ū and the unique solution u of (3.104) satisfies u ∈ [u, ū].

Proof: Subtracting the corresponding inequalities satisfied by the sub- and
supersolution, respectively, we get

〈u′ − ū′, ϕ〉 +
∫

Q

(
|∇u|p−2∇u− |∇ū|p−2∇ū

)
∇ϕdxdt ≤ 0 (3.106)

for all ϕ ∈ X0 ∩ Lp
+(Q). In particular, ϕ = (u − ū)+ is an admissible test

function for inequality (3.106), because γ((u − ū)+) = 0 on Γ, and thus,
(u− ū)+ ∈ X0∩Lp

+(Q). Moreover, as (u− ū)+(x, 0) = 0, we see from Example
2.148 that

〈(u− ū)′, (u− ū)+〉 =
1
2
‖(u− ū)+(·, τ)‖2

H . (3.107)

As 2 ≤ p <∞, we obtain for the integral on the left-hand side of (3.106) the
following estimate:∫

Q

(
|∇u|p−2∇u− |∇ū|p−2∇ū

)
∇(u− ū)+ dxdt

≥ c
∫

Q

|∇(u− ū)+|p dxdt ≥ ĉ ‖(u− ū)+‖p
X0
. (3.108)

Testing (3.106) with ϕ = (u− ū)+ and applying (3.107) and (3.108) results in

‖(u− ū)+‖X0 = 0,

which implies (u− ū)+ = 0; i.e., u ≤ ū. Finally, because the unique solution u
of the IBVP (3.104) is both a subsolution and a supersolution, it follows that
u ∈ [u, ū]. ��
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3.3.2 Comparison Principle for Quasilinear Equations

The main goal of this section is to prove a comparison result for the general
IBVP (3.89) based on the notions of sub- and supersolutions, which are defined
as follows.

Definition 3.34. The function u ∈ W is called a subsolution of the IBVP
(3.89) if G(u) ∈ Lq(Q), u ≤ 0 in Ω × {0}, u ≤ 0 on Γ, and

u′ +Au+G(u) ≤ f in X∗
0 ,

which is equivalent to

〈u′, ϕ〉 + a(u, ϕ) +
∫

Q

G(u)ϕdxdt ≤ 〈f, ϕ〉 for all ϕ ∈ X0 ∩ Lp
+(Q).

Similarly, we define a supersolution as follows.

Definition 3.35. The function ū ∈ W is called a supersolution of the IBVP
(3.89) if G(ū) ∈ Lq(Q), ū ≥ 0 in Ω × {0}, ū ≥ 0 on Γ, and

ū′ +Aū+G(ū) ≥ f in X∗
0 ,

which is equivalent to

〈ū′, ϕ〉 + a(ū, ϕ) +
∫

Q

G(ū)ϕdxdt ≥ 〈f, ϕ〉 for all ϕ ∈ X0 ∩ Lp
+(Q).

In preparation of our main result, we provide first an existence result for
an associated auxiliary truncated IBVP of the form

ut +ATu+ (G ◦ T )u+ λB(u) = f in Q,

u = 0 in Ω × {0}, u = 0 on Γ, (3.109)

where T is the truncation operator related with an ordered pair of sub- and
supersolutions given by

Tu(x, t) =

⎧⎪⎨⎪⎩
ū(x, t) if u(x, t) > ū(x, t) ,
u(x, t) if u(x, t) ≤ u(x, t) ≤ ū(x, t) ,
u(x, t) if u(x, t) < u(x, t) ,

and G ◦ T denotes the composition of the operators G and T. The operator
AT is defined by

〈ATu, ϕ〉 = aT (u, ϕ) =
∫

Q

N∑
i=1

ai(·, ·, Tu,∇u)
∂ϕ

∂xi
dxdt for all ϕ ∈ X0.

(3.110)
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In just the same way as in the elliptic case, the parameter λ > 0 will be
specified later, and B stands for the Nemytskij operator generated by the
cutoff function b : Q × R → R, which is related to the ordered pair of sub-
and supersolutions, and given by

b(x, t, s) =

⎧⎨⎩
(s− ū(x, t))p−1 if s > ū(x, t),
0 if u(x, t) ≤ s ≤ ū(x, t),
−(u(x, t) − s)p−1 if s < u(x, t).

(3.111)

Again we have that b is a Carathéodory function satisfying

|b(x, t, s)| ≤ k2(x, t) + c2 |s|p−1 (3.112)

for a.e. (x, t) ∈ Q, for all s ∈ R, with some function k2 ∈ Lq
+(Q) and a constant

c2 ≥ 0, and∫
Q

b(x, t, u(x, t))u(x, t) dxdt ≥ c3 ‖u‖p
p − c4 for all u ∈ Lp(Q), (3.113)

where c3 and c4 are some positive constants. To transform the IBVP (3.109)
into an equivalent operator equation, we introduce the operator L = ∂/∂t
with domain D(L) given by

D(L) = {u ∈ X0 : ut ∈ X∗
0 and u(·, 0) = 0 in Ω}.

Then L : D(L) ⊂ X0 → X∗
0 is a closed, densely defined, and maximal mono-

tone operator (see Lemma 2.149), and generalized or weak solutions of the
IBVP (3.109) are solutions of the following operator equation:

u ∈ D(L) : Lu+ATu+ (G ◦ T )u+ λB(u) = f in X∗
0 . (3.114)

Lemma 3.36. Assume hypotheses (A1)–(A3), and let hypothesis (H) be sa-
tisfied with respect to an ordered pair of sub- and supersolutions. If λ > 0 is
sufficiently large, then the IBVP (3.109) possesses solutions.

Proof: We note first that the truncation operator T : X → X is continuous
and bounded (see Sect. 2.2.3 or [84]). Hypothesis (H) implies that the operator
G : [u, ū] ⊂ X → Lq(Q) is continuous and bounded, and thus, the composition
G ◦ T : X0 → Lq(Q) ⊂ X∗

0 is continuous and bounded. In view of (A1), the
operator AT : X0 → X∗

0 is continuous and bounded. The Carathéodory and
growth condition (3.112) of b imply that B : Lp(Q) → Lq(Q) is continuous
and bounded, which due to the continuous embeddingX0 ⊂ Lp(Q) shows that
B : X0 → X∗

0 is continuous and bounded. Moreover, because of the compact
embedding W0 ⊂ Lp(Q), it follows that B : X0 → X∗

0 is even completely
continuous w.r.t D(L). Hypotheses (A1), (A2), and (H) are sufficient to prove
that AT +G◦T +λB : X0 → X∗

0 is pseudomonotone w.r.t. D(L). For a proof,
we refer to [152] and [174]. So far we know that the operator AT + G ◦ T +
λB : X0 → X∗

0 is continuous, bounded, and pseudomonotone w.r.t. D(L).



114 3 Variational Equations

According to Theorem 2.152, the operator L+AT +G◦T +λB : D(L) → X∗
0

is surjective; i.e., the IBVP (3.114) has a solution, provided AT +G◦T +λB :
X0 → X∗

0 is, in addition, coercive. This result will be shown next. From (A3)
and (3.113), it follows that

〈ATu+ λB(u), u〉 ≥ ν ‖∇u‖p
p + λ c3‖u‖p

p − ‖k‖1 − λ c4. (3.115)

By means of (H) in conjunction with

|∇Tu| ≤ |∇u| + |∇ū| + |∇u|,

we obtain an estimate in the form

|〈(G ◦ T )u, u〉| =
∣∣∣∣∫

Q

(G ◦ T )(u)u dxdt
∣∣∣∣ ≤ ∫

Q

(k4 + c5|∇u|p−1)|u| dxdt,

for some constant c5 > 0 and k4 ∈ Lq
+(Q), which by applying Young’s in-

equality yields the estimate

|〈(G ◦ T )u, u〉| ≤ ε ‖∇u‖p
p + c(ε)(‖u‖p

p + 1) (3.116)

for any ε > 0. With (3.115), and (3.116) we finally get the estimate

〈(AT +G ◦ T + λB)u, u〉 ≥ (ν − ε) ‖∇u‖p
p +

(
λ c3 − c(ε)

)
‖u‖p

p − ĉ(ε).
(3.117)

If we select ε < ν, then for λ sufficiently large, we get λ c3 − c(ε) > 0, which
proves the coercivity of AT +G ◦ T + λB : X0 → X∗

0 in view of (3.117). This
process completes the proof. ��

Now we can prove the following comparison principle.

Theorem 3.37. Let u and ū be sub-and supersolutions of the IBVP (3.89)
satisfying u ≤ ū, and assume the hypotheses of Lemma 3.36. Then the IBVP
(3.89) has solutions within the interval [u, ū].

Proof: First we note that by using the operator L = ∂/∂t introduced above,
we can rewrite the notion of solution of the IBVP (3.89) given in Definition
3.28 as the following operator equation:

u ∈ D(L) : Lu+Au+G(u) = f in X∗
0 , (3.118)

where G(u) ∈ Lq(Q). The proof of the theorem is based on the auxiliary
truncated IBVP (3.109); i.e.,

u ∈ D(L) : Lu+ATu+ (G ◦ T )u+ λB(u) = f in X∗
0 .

The existence of solutions of (3.109) is ensured by Lemma 3.36. The proof of
the theorem is achieved if we only know that any solution u of the auxiliary
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problem (3.109) is in fact contained in the interval [u, ū], because then Tu = u
and B(u) = 0; that is, u must be a solution of the original IBVP (3.89). Let
us show first u ≤ ū.

According to Definition 3.35, the function ū ∈W is a supersolution of the
IBVP (3.89) if G(ū) ∈ Lq(Q), ū ≥ 0 in Ω × {0}, ū ≥ 0 on Γ, and

ū′ +Aū+G(ū) ≥ f in X∗
0 , (3.119)

where inequality (3.119) has to be considered in the weak sense, i.e., with
respect to the dual-order cone. From the initial and boundary conditions for
ū, and in view of the lattice structure of X, we get

(u− ū)+ ∈ X0 ∩ Lp
+(Q) and (u− ū)+(x, 0) = 0 for x ∈ Ω. (3.120)

Testing (3.109) and (3.119) with ϕ = (u − ū)+ and subtracting (3.119) from
(3.109), we arrive at

〈(u− ū)′, (u− ū)+〉 + 〈ATu−Aū, (u− ū)+〉

+
∫

Q

(
(G ◦ T )u−G(ū

)
(u− ū)+ dxdt

+λ
∫

Q

B(u) (u− ū)+ dxdt ≤ 0. (3.121)

In view of Example 2.148 and (3.120), we obtain for the first term on the
left-hand side of (3.121)

〈(u− ū)′, (u− ū)+〉 =
1
2
‖(u− ū)+(·, τ)‖2

H . (3.122)

By definition of AT and hypothesis (A2), the second term of (3.121) yields

〈ATu−Aū, (u− ū)+〉

=
∫

Q

N∑
i=1

(
ai(·, ·, Tu,∇u) − ai(·, ·, ū,∇ū)

)∂(u− ū)+
∂xi

dxdt

=
∫
{u>ū}

N∑
i=1

(
ai(·, ·, ū,∇u) − ai(·, ·, ū,∇ū)

)∂(u− ū)
∂xi

dxdt

≥ 0. (3.123)

For the third term we get∫
Q

(
(G ◦ T )u−G(ū)

)
(u− ū)+ dxdt

=
∫
{u>ū}

(
g(·, ·, ū,∇ū) − g(·, ·, ū,∇ū)

)
(u− ū) dxdt

= 0, (3.124)
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and finally, by definition of the cutoff function b, the last term on the left-hand
side of (3.121) becomes

λ

∫
Q

B(u) (u− ū)+ dxdt = λ
∫
{u>ū}

(u− ū)p dxdt = λ ‖(u− ū)+‖p
p. (3.125)

Thus, (3.121)–(3.125) yields

0 ≤ λ ‖(u− ū)+‖p
p ≤ 0,

which implies (u− ū)+ = 0; i.e., u ≤ ū in Q. The proof of the inequality u ≤ u
can be done analogously, which shows that any solution u of the auxiliary
problem (3.109) is contained in the interval [u, ū] completing the proof of the
theorem. ��

Remark 3.38. Notice that the role played by the term λB(u) of the auxiliary
truncated IBVP (3.109) is twofold. On the one hand, we see from the proof of
Lemma 3.36 that λB(u) provides a coercivity generating term if λ is chosen
sufficiently large. On the other hand, it allows for the comparison of the solu-
tions of the auxiliary problem with the sub- and supersolutions, which finally
proves our comparison principle. It is this term that can be used, in addition,
to compensate the term −(ε/c) |s|p we mentioned in Remark 3.29 that arises
when transforming inhomogeneous initial and boundary data to homogeneous
ones in the general case of the operator A.

3.3.3 Directed and Compact Solution Set

Let us again denote the set of all solutions of the IBVP (3.89) within the
ordered interval [u, ū] by S. We are going to show that S is a directed set,
which is compact in W0. For the latter, the following preliminary result will
be useful.

Lemma 3.39. Let the operator A given by (3.90) satisfy hypotheses (A1)–
(A3). Then A : X0 → X∗

0 is bounded, continuous, and pseudomonotone w.r.t.
D(L), and it has the (S+)-property w.r.t. D(L).

Proof: The proof is a consequence of Theorem 2.153, where the (S+)-property
w.r.t. D(L) means: If (un) ⊂ W0 satisfies un ⇀ u in X0, Lun ⇀ Lu in X∗

0 ,
and

lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

then un → u in X0. ��

Theorem 3.40 (Compactness). Under the hypotheses of Theorem 3.37, the
solution set S is compact in W0.
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Proof: First note that S ⊂ [u, ū], which shows that S is bounded in Lp(Q).
As u ∈ S satisfies

u ∈ D(L) : Lu+Au+G(u) = f in X∗
0 ,

we get from (A3) and

〈Lu, u〉 =
1
2
‖u(·, τ)‖2

H ≥ 0,

ν ‖∇u‖p
p ≤ ‖k‖1 + ‖f‖X∗

0
‖u‖X0 + |〈G(u), u〉|. (3.126)

By means of (H) and taking into account that S is bounded in Lp(Q), the
last term on the right-hand side of (3.126) can be estimated as follows:

|〈G(u), u〉| ≤ ε ‖∇u‖p
p + c(ε), (3.127)

for any ε > 0, where c(ε) is some constant only depending on ε. Thus, (3.126)
and (3.127) yield

(ν − ε) ‖∇u‖p
p ≤ c(ε) + ‖f‖X∗

0
‖u‖X0 for all u ∈ S, (3.128)

which by selecting ε < ν implies the boundedness of S in X0. As A : X0 → X∗
0

and G : X0 ∩ S → X∗
0 are bounded operators, from

Lu = f −Au−G(u),

we see that
‖Lu‖X∗

0
≤ c for all u ∈ S,

which in view of (3.128) implies that

‖u‖W0 ≤ c for all u ∈ S. (3.129)

Let (un) ⊂ S be any sequence. Then (un) is bounded in W0, and thus, by
the reflexivity of W0, a subsequence (uk) exists that is weakly convergent in
W0 to u; i.e., uk ⇀ u in X0, u

′
k ⇀ u′ in X∗

0 . As D(L) ⊂ W0 is convex and
closed, it follows that D(L) is weakly closed, and thus, u ∈ D(L). Therefore,
we have uk ⇀ u in X0 and Luk ⇀ Lu in X∗

0 . As solutions of the IBVP (3.89),
uk satisfy

uk ∈ D(L) : 〈Luk +Auk +G(uk), uk − u〉 = 〈f, uk − u〉. (3.130)

Using

〈Luk, uk − u〉 = 〈Luk − Lu, uk − u〉 + 〈Lu, uk − u〉 ≥ 〈Lu, uk − u〉,

we get from (3.130)
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〈Auk, uk − u〉 ≤ 〈Lu, u− uk〉 + 〈f, uk − u〉 +
∫

Q

|G(uk)(uk − u)| dxdt,

(3.131)

where the last term on the right-hand side of inequality (3.131) can be esti-
mated by applying hypothesis (H) as follows:∫

Q

|G(uk)(uk − u)| dxdt ≤ c (1 + ‖∇uk‖p−1
p )‖uk − u‖p. (3.132)

The compact embedding W0 ⊂ Lp(Q) implies uk → u in Lp(Q), and thus,
from (3.131), (3.132), and the boundedness of (uk) in W0, we obtain

lim sup
k→∞

〈Auk, uk − u〉 ≤ 0, (3.133)

which in view of the (S+)-property of A according to Lemma 3.39 shows that
(uk) is strongly convergent in X0; i.e., uk → u in X0. The strong convergence
of (uk) in X0 and the weak convergence Luk ⇀ Lu allow us to pass to the
limit in

Luk +Auk +G(uk) = f in X∗
0 ,

as k → ∞, which shows that u ∈ S. Moreover, by the strong convergence
uk → u in X0 and the continuity of the operators A : X0 → X∗

0 and G :
X0 → X∗

0 , we have

‖Luk − Lu‖X∗
0
≤ ‖G(uk) −G(u)‖X∗

0
+ ‖Auk −Au‖X∗

0
→ 0,

as k → ∞, which proves the strong convergence of (uk) to u in W0. ��

To show the directedness of the solution set S, the following additional
assumption on the coefficients ai : Q× R × R

N → R, i = 1, . . . , N, is needed.

(A4) Modulus of Continuity Condition: Let a function k3 ∈ Lq
+(Q) and a

function ω : R+ → R+ exist such that

|ai(x, t, s, ξ)−ai(x, t, s′, ξ)| ≤ [k3(x, t)+|s|p−1+|s′|p−1+|ξ|p−1]ω(|s−s′|) ,

holds for a.e. (x, t) ∈ Q , for all s, s′ ∈ R and for all ξ ∈ R
N , where

ω : R+ → R+ is a continuous function with the property∫
0+

dr

ω(r)
= +∞ . (3.134)

Note that (A4) is empty if ai(x, t, s, ξ), i = 1, . . . , N, do not depend on s. Also,
Remark 3.19 holds correspondingly. The directedness of S will be seen to be
an immediate consequence of the following generalized comparison result.
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Theorem 3.41. Let hypotheses (A1)–(A4) be satisfied. Let u1, . . . , uk and
ū1, . . . , ūm with k, m ∈ N be sub- and supersolutions of the IBVP (3.89),
respectively, such that

u = max{u1, . . . , uk} ≤ ū = min{ū1, . . . , ūm}, (3.135)

and assume hypothesis (H) on g to be satisfied with respect to the ordered
interval [v, v̄], where

v = min{u1, . . . , uk}, v̄ = max{ū1, . . . , ūm}. (3.136)

Then solutions of the IBVP (3.89) exist within the ordered interval [u, ū].

Proof: The following auxiliary truncated IBVP plays a key role in the proof:

u ∈ D(L) : Lu+Au+ P (u) + λB(u) = f in X∗
0 , (3.137)

where B is as above the Nemytskij operator generated by the cutoff function
b given by (3.111), and λ > 0 is a free parameter to be specified later. The
operator P is given by

P (u) = (G ◦ T )u+
m∑

i=1

|(G ◦ T i)u− (G ◦ T )u| −
k∑

j=1

|(G ◦ Tj)u− (G ◦ T )u|,

(3.138)

where the truncation operators Tj , T
i, and T are defined in a similar way as

in Sect. 3.1.2; i.e.,

Tu(x, t) =

⎧⎨⎩
ū(x, t) if u(x, t) > ū(x, t) ,
u(x, t) if u(x, t) ≤ u(x, t) ≤ ū(x, t) ,
u(x, t) if u(x, t) < u(x, t) ;

Tju(x, t) =

⎧⎨⎩
uj(x, t) if u(x, t) < uj(x, t) ,
u(x, t) if uj(x, t) ≤ u(x, t) ≤ ū(x, t) ,
ū(x, t) if u(x, t) > ū(x, t) ;

T iu(x, t) =

⎧⎨⎩
u(x, t) if u(x, t) < u(x, t) ,
u(x, t) if u(x, t) ≤ u(x, t) ≤ ūi(x, t) ,
ūi(x, t) if u(x, t) > ūi(x, t) ;

for 1 ≤ i ≤ m, 1 ≤ j ≤ k, (x, t) ∈ Q. The operators G ◦ T, G ◦ Tj , G ◦ T i

stand for the compositions of the Nemytskij operator G and the truncation
operators T , Tj , and T i, respectively. Furthermore, we have

〈|(G ◦ T i)u− (G ◦ T )u|, v〉 =
∫

Q

|g(·, ·, T iu,∇T iu) − g(·, ·, Tu,∇Tu)| v dxdt

as well as
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〈|(G ◦ Tj)u− (G ◦ T )u|, v〉 =
∫

Q

|g(·, ·, Tju,∇Tju) − g(·, ·, Tu,∇Tu)| v dxdt,

for all u, v ∈ X0. As Tj , T i, and T : X0 → X0 are bounded and continuous,
the operator P : X0 → Lq(Q) ⊂ X∗

0 preserves the structure and mapping
properties of G◦T.We may apply similar arguments as in the proof of Lemma
3.36 to ensure the existence of solutions of the auxiliary IBVP (3.137). The
proof of the theorem is completed provided we can show that any solution u
of (3.137) satisfies

uj ≤ u ≤ ūi, 1 ≤ i ≤ m, 1 ≤ j ≤ k, (3.139)

because then u satisfies also u ≤ u ≤ ū, which finally results in Tu = u,
Tju = u, T iu = u, and thus, P (u) = G(u), as well as B(u) = 0. It shows that
u is a solution of the original problem IBVP (3.89), which lies in [u, ū].

Let us first show that any solution u of the auxiliary problem (3.137)
satisfies u ≤ ūl for l ∈ {1, . . . ,m} fixed. By assumption, ūl is a supersolution;
i.e., we have ūl ≥ 0 in Ω × {0}, ūl ≥ 0 on Γ, and

ū′l +Aūl +G(ūl) ≥ f in X∗
0 . (3.140)

Subtracting (3.140) from (3.137), we get

u′ − ū′l +Au−Aūl + P (u) −G(ūl) ≤ 0 in X∗
0 . (3.141)

Let θε : R → R+ be the Lipschitz continuous and nondecreasing function
introduced in Sect. 3.2.2 and defined by (3.73); i.e.,

θε(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < δ(ε),∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε,

1 if s > ε.

Then the composed function θε(u − ūl) : Q → R+ is in X0 ∩ Lp
+(Q). Let Θε

be the primitive of the function θε defined by

Θε(r) =
∫ r

0

θε(s) ds;

then in view of Lemma 2.146, one has

〈(u− ūl)′, θε(u− ūl)〉 =
∫

Ω

Θε(u− ūl)(x, τ) dx ≥ 0, (3.142)

because Θε(u − ūl)(x, 0) = 0 for x ∈ Ω. The partial derivative ∂/∂xi of
θε(u− ūl) yields

∂

∂xi
θε(u− ūl) = θ′ε(u− ūl)

∂(u− ūl)
∂xi

. (3.143)
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By means of (3.143), (A2), and (A4), we derive the following estimate:

〈Au−A(ūl), θε(u− ūl)〉

=
∫

Q

N∑
i=1

(
ai(x, t, u,∇u) − ai(x, t, ūl,∇ūl)

) ∂

∂xi
θε(u− ūl) dx dt

≥
∫

Q

N∑
i=1

(
ai(x, t, u,∇u) − ai(x, t, u,∇ūl)

)∂(u− ūl)
∂xi

θ′ε(u− ūl) dxdt

−N
∫

Q

(k3 + |u|p−1 + |ūl|p−1 + |∇ūl|p−1)|∇(u− ūl)| dxdt

≥ −N
∫
{δ(ε)<u−ūl<ε}

h |∇(u− ūl)| dxdt, (3.144)

where h = k3+|u|p−1+|ūl|p−1+|∇ūl|p−1 ∈ Lq(Q). The term on the right-hand
side of (3.144) tends to zero as ε→ 0. By using

θε → χ{s>0} as ε→ 0,

where χ{s>0} is the characteristic function of the set {s > 0} = {s ∈ R : s >
0}, and applying Lebesgue’s dominated convergence theorem, it follows that

lim
ε→0

∫
Q

B(u) θε(u− ūl) dx dt =
∫

Q

B(u)χ{u−ūl>0} dx dt (3.145)

and

lim
ε→0

∫
Q

(P (u) −G(ūl)) θε(u− ūl) dx dt =
∫

Q

(P (u) −G(ūl))χ{u−ūl>0} dx dt.

(3.146)

By definition of the operator B, the right-hand side of (3.145) can be estimated
in the following way:∫

Q

B(u)χ{u−ūl>0} dx dt =
∫
{u>ūl}

(u− ū)p−1dx dt ≥
∫
{u>ūl}

(u− ūl)p−1dx dt.

(3.147)

Applying similar arguments as in the estimate (3.21), we have for the right-
hand side of (3.146) the estimate∫

Q

(P (u) −G(ūl))χ{u−ūl>0} dx dt ≥ 0. (3.148)

Finally, testing inequality (3.141) with θε(u − ūl) ∈ X0 ∩ Lp
+(Q) and using

(3.142), as well as (3.144)–(3.148), one obtains as ε→ 0
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0 ≤
∫

Q

[(u− ūl)+]p−1 dxdt =
∫
{u>ūl}

(u− ūl)p−1dx dt ≤ 0, (3.149)

which implies (u− ūl)+ = 0; i.e., u ≤ ūl, for any l ∈ {1, . . . ,m}. The proof of
the inequalities uj ≤ u for j = 1, . . . , k can be done in a similar way. Thus,
inequalities (3.139) are satisfied, which completes the proof of the theorem.

��

Corollary 3.42 (Directedness). Assume hypotheses (A1)–(A4), and let
(H) be satisfied with respect to the ordered interval [u, ū] of sub- and superso-
lution. Then the solution set S of the IBVP (3.89) is directed.

Proof: Taking into account that any solution of the IBVP (3.89) is a subsolu-
tion and a supersolution as well, the assertion follows from Theorem 3.41. ��

3.3.4 Extremal Solutions

With the help of the compactness and directedness results given by Theorem
3.40, Theorem 3.41, and Corollary 3.42, the following extremality property of
the solution set S can be shown in a similar way as the corresponding result
in the elliptic case (see Theorem 3.22).

Theorem 3.43 (Extremal Solutions). Under the assumptions of Corollary
3.42, the solution set S of the IBVP (3.89) has extremal elements; i.e., there
is a greatest solution u∗ and a smallest solution u∗ of the IBVP (3.89) within
the ordered interval [u, ū] of sub- and supersolutions.

Theorem 3.43 in conjunction with the comparison principle formulated in
Theorem 3.37 will allow us to verify an order-preserving property of extremal
solutions. To this end, we consider the IBVP (3.89) with right-hand sides
fk ∈ X∗

0 , k = 1, 2; i.e.,

u ∈ D(L) : Lu+Au+G(u) = fk in X∗
0 . (3.150)

Let uk∗ and u∗k denote the corresponding smallest and greatest solutions of
(3.150) with respect to a common ordered interval [u, ū] of sub- and super-
solutions. The order-preserving property of the extremal solutions is given in
the next theorem.

Theorem 3.44. Assume the hypotheses of Corollary 3.42. If f1 ≤ f2, then
u∗1 ≤ u∗2, and u1∗ ≤ u2∗.

Proof: Let us show: u∗1 ≤ u∗2. Consider the IBVP

u ∈ D(L) : Lu+Au+G(u) = f1 in X∗
0 . (3.151)

Then the greatest solution u∗1 of (3.151) is readily seen to be a subsolution of
the IBVP
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u ∈ D(L) : Lu+Au+G(u) = f2 in X∗
0 , (3.152)

because f1 ≤ f2. As u∗1 and ū form a pair of sub- and supersolutions of
(3.152), a solution u of (3.152) exists within the interval [u∗1, ū]. Because u∗2
is the greatest solution of (3.152) within [u, ū], we get u∗1 ≤ u ≤ u∗2, which
proves the assertion. Similarly, u1∗ ≤ u2∗ can be shown. ��

Remark 3.45. Theorem 3.37–Theorem 3.44 and Corollary 3.42 remain true if
the hypotheses (A2) and (A3) imposed on the coefficients ai, i = 1, . . . , N,
are replaced by the following strong ellipticity:

N∑
i=1

(ai(x, t, s, ξ) − ai(x, s, t, ξ′))(ξi − ξ′i) ≥ μ |ξ − ξ′|p, (3.153)

where μ > 0 (for a.e. (x, t) ∈ Q, for all s ∈ R, and for all ξ, ξ′ ∈ R
N ), and

condition (3.134) of hypothesis (A4) is replaced by∫
0+

dr

ωq(r)
= +∞, (3.154)

with q being the Hölder conjugate to p. Condition (3.154) allows us to deal
with coefficients ai(x, t, s, ξ), which satisfy, e.g., a Hölder condition with re-
spect to s. For a more detailed analysis in this case, we refer to [43].

3.4 Sign-Changing Solutions via Fučik Spectrum

This section deals with the existence of sign-changing and multiple solutions
for a class of nonlinear elliptic Dirichlet-problems involving the p-Laplacian.

Let Ω ⊂ R
N , N ≥ 1 be a bounded domain with smooth boundary ∂Ω,

and let V0 =W 1,p
0 (Ω) and V =W 1,p(Ω). We consider the quasilinear elliptic

boundary value problem (BVP for short)

u ∈ V0 : −Δp u = f(x, u) in V ∗
0 , (3.155)

where Δpu = div (|∇u|p−2∇u) is the p-Laplacian, 1 < p <∞. Although there
are many existence and multiplicity results for (3.155) in the literature (see [70,
71, 74, 87, 119, 186]), only a few papers deal with sign-changing solutions, such
as [221, 220, 118]. The approach in [118] and [221, 220] is based, among others
on the calculation of critical groups and the construction of pseudo-gradient
vector field in V0, respectively. The approach suggested here is different and
relies on a combined use of the results on extremal solutions provided in Sect.
3.2 and the variational characterization of the Fučik spectrum. The results
presented here are based on the paper in [61].



124 3 Variational Equations

3.4.1 Introduction

The existence of sign-changing and multiple solutions for (3.155) will be stu-
died under the following assumptions on the right-hand side f.

(H1) f : Ω × R → R is a Carathéodory function satisfying the growth condi-
tion

|f(x, t)| ≤ c (1 + |t|p−1), (3.156)

for a.e. x ∈ Ω, and for all t ∈ R, and f is assumed to be of the form

f(x, t) = a (t+)p−1 − b (t−)p−1 + g(x, t), (3.157)

with

lim
t→0

g(x, t)
|t|p−1

= 0 uniformly in x, (3.158)

where (a, b) ∈ R
2, and t+ = max{t, 0}, and t− = max{−t, 0}.

Definition 3.46. The set Σp of those points (a, b) ∈ R
2 for which the asymp-

totic problem

u ∈ V0 : −Δp u = a (u+)p−1 − b (u−)p−1 in V ∗
0 (3.159)

has a nontrivial solution is called the Fučik spectrum of the p-Laplacian on Ω.

The Fučik spectrum was introduced in the semilinear case p = 2 by Dancer
[73] and Fučik [96] who recognized its significance for the solvability of prob-
lems with jumping nonlinearities. In the semilinear ordinary differential equa-
tion (ODE) case, p = 2, N = 1, Fučik [96] showed that Σ2 consists of a
sequence of hyperbolic-like curves passing through the points (λl, λl), where
(λl)l∈N are the eigenvalues of −d2/dx2, with one or two curves going through
each point. Drábek [86] has recently shown that Σp has this same general
shape for all p > 1 in the ODE case.

In the partial differential equation (PDE) case, N ≥ 2, much of the work
to date on Σp has been done for the semilinear case p = 2. It is now known
that Σ2 consists, at least locally, of curves emanating from the points (λl, λl)
(see [72, 73, 77, 96, 157]). Schechter [204] has shown that Σ2 contains two
continuous and strictly decreasing curves through (λl, λl), which may coincide,
such that the points in the square (λl−1, λl+1)2 that are either below the lower
curve or above the upper curve are not inΣ2, whereas the points between them
may or may not belong to Σ2 when they do not coincide.

In the quasilinear PDE case p �= 2, N ≥ 2, it is known that the first eigen-
value λ1 of −Δp is positive, simple, and admits a positive eigenfunction ϕ1

(see Lindqvist [151]), so Σp clearly contains the two lines λ1×R and R×λ1. In
addition, σ(−Δp) has an unbounded sequence of variational eigenvalues (λl)
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Fig. 3.1. Fučik Spectrum

satisfying a standard min-max characterization, and Σp contains the corre-
sponding sequence of points (λl, λl). A first nontrivial curve C in Σp through
(λ2, λ2) asymptotic to λ1 ×R and R× λ1 at infinity was recently constructed
and variationally characterized by a mountain-pass procedure by Cuesta, de
Figueiredo, and Gossez [71] (see Fig. 3.1).

More recently, unbounded sequences of curves (analogous to the lower and
upper curves of Schechter) have been constructed and variationally character-
ized by min-max procedures by Micheletti and Pistoia [161] for p ≥ 2 and by
Perera [185] for all p > 1.

The main goal of this section is to identify the set of points (a, b) relative
to the Fučik spectrum that ensure the existence of sign-changing solutions of
(3.155). More precisely, assuming the existence of a positive supersolution ū
and a negative subsolution u of (3.155) and (a, b) located above the curve C,
we prove the existence of at least three nontrivial solutions within the order
interval [u, ū]: a positive solution, a negative solution, and a sign-changing
solution.

3.4.2 Preliminaries

As usual we denote the norm in V0 and Lp(Ω) by ‖·‖V0 and ‖·‖p, respectively.
Consider the boundary value problem

u ∈ V0 : −Δp u = h in V ∗
0 . (3.160)

Besides the hypothesis (H1), we will assume the following hypotheses to hold
throughout the rest of Sect. 3.4.

(H2) A positive supersolution ū and a negative subsolution u of (3.155) exist,
and the point (a, b) ∈ R

2 is above the curve C of the Fučik spectrum
(see Fig. 3.1).

(H3) Any solution u of (3.160) with h ∈ L∞(Ω) belongs to C1(Ω).
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Remark 3.47. (i) Assuming the existence of super- and subsolutions as in hy-
pothesis (H2) is a weaker assumption than the usual condition on the jumping
nonlinearity at infinity.

(ii) By (H3), we impose C1(Ω)-regularity of the solution of (3.160). As for
regularity results up to the boundary (C1,α-regularity), we refer to Giaquinta
and Giusti [98], Liu and Barrett [153], Lieberman [150], or Giuffré [100].

Lemma 3.48. If u ≥ (respectively, ≤) 0 is a solution of (3.155), then either
u > (respectively, <) 0 or u ≡ 0. Moreover, if u > 0, then there is an ε > 0
such that u ≥ εϕ1, where ϕ1 is the positive eigenfunction that belongs to the
first eigenvalue of −Δp.

Proof: First we note that by the results of Anane [6] and di Benedetto [85]
any solution u of (3.155) belongs to L∞(Ω) ∩ C1(Ω), and thus, the right-
hand side of (3.155) yields a function h ∈ L∞(Ω), which by (H3) implies that
u ∈ C1(Ω). If u ≥ 0 is a solution of (3.155) that is not identically zero, then
by means of the Harnack inequality (Trudinger [216, Theorem 1.1]), u must
be positive in Ω. For " > 0, let Ω� = {x ∈ Ω : dist (x, ∂Ω) ≤ "}. Then for
" sufficiently small, we have f(x, u(x)) ≥ 0 for all x ∈ Ω� by (H1) and (H2).
This result allows us to apply the strong maximum principle from Vázquez
[217] to get the strict inequality (∂u/∂ν)(x) > 0 for all x ∈ ∂Ω, where ν is
the interior normal at x. The eigenfunction ϕ1 of the first eigenvalue of −Δp

is positive, is of class C1,α(Ω) for α ∈ (0, 1), and satisfies (∂ϕ1/∂ν)(x) > 0
(see [6] and [151]). Therefore, for ε sufficiently small, we obtain u ≥ εϕ1 in
Ω. ��

Lemma 3.49. Given a bounded sequence (un) ⊂ V0 and a sequence of positive
reals (εn) with εn → 0 as n→ ∞; then for a subsequence,

1
εp−1

n

∫
Ω

|g(x, εnun(x))| dx→ 0 as n→ ∞. (3.161)

Furthermore, if G is the primitive of g, i.e., G(x, t) =
∫ t

0

g(x, s) ds, then

1
εpn

∫
Ω

|G(x, εnun(x))| dx→ 0 as n→ ∞ (3.162)

for a subsequence.

Proof: Passing to a subsequence [again denoted by (un)], we may assume
that un → u a.e. and in Lp(Ω). By Egoroff’s theorem (Theorem 2.66), for
any μ > 0, there is a measurable subset Ωμ of Ω such that |Ω \Ωμ| ≤ μ and
un → u uniformly on Ωμ. Thus, εnun → 0 a.e. in Ωμ. We have

1
εp−1

n

∫
Ω

|g(x, εnun(x))| dx
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=
∫

Ωμ

|g(x, εnun(x))|
εp−1

n |un(x)|p−1
|un(x)|p−1 dx

+
∫

Ω\Ωμ

|g(x, εnun(x))|
εp−1

n |un(x)|p−1
|un(x)|p−1 dx. (3.163)

By (3.156)–(3.158), it follows that

|g(x, t)|
|t|p−1

≤ C. (3.164)

The first integral on the right hand-side of (3.163) tends to zero by the asymp-
totic behavior (3.158) of g, (3.164), and Lebesgue’s dominated convergence
theorem (observe that the integrand is majorized by C

(
|u(x)|+ δ

)p−1 for any
δ > 0 because the uniform convergence in Ωμ). The second integral is bounded
by

C |Ω \Ωμ|
1
p ‖un‖

p−1
p

p ≤ C μ 1
p → 0 as μ→ 0,

which proves (3.161). Observing that the elementary inequality

|G(x, εnun(x))| ≤ εn|un(x)||g(x, τn(x) εnun(x))|

holds, where 0 < τn(x) ≤ 1, which yields

1
εpn

∫
Ω

|G(x, εnun(x))| dx ≤
∫

Ω

|g(x, τn(x) εnun(x))|
τn(x)p−1 εp−1

n |un(x)|p−1
|un(x)|p dx,

we see that (3.162) follows similarly. ��

Lemma 3.50. Problem (3.155) has a positive solution u > 0 within the order
interval [0, ū] and a negative solution u < 0 within the order interval [u, 0].

Proof: In the proof, we focus on the existence of a positive solution only,
because the existence of a negative solution can be shown in a similar way.

As is well known, solutions of (3.155) are the critical points of the smooth
functional

Φ(u) =
∫

Ω

(
|∇u|p − pF (x, u)

)
dx, u ∈ V0, (3.165)

where F (x, t) =
∫ t

0

f(x, s) ds. Let f be the following truncated nonlinearity:

f(x, t) =

⎧⎨⎩
0 if t ≤ 0 ,
f(x, t) if 0 < t < ū(x) ,
f(x, ū(x)) if t ≥ u(x) ,

(3.166)

and F its associated primitive given by



128 3 Variational Equations

F (x, t) =
∫ t

0

f(x, s) ds.

Consider the functional

Φ(u) =
∫

Ω

(
|∇u|p − pF (x, u)

)
dx

whose critical points are the solutions of the auxiliary boundary value problem

u ∈ V0 : −Δp u = f(x, u) in V ∗
0 . (3.167)

Obviously, Φ : V0 → R is bounded from below, weakly lower semicontinuous,
and coercive. Thus, there is a global minimizer; so a critical point u of Φ,
which is a solution of (3.167), i.e.,

0 = 〈Φ′
(u), ϕ〉 =

∫
Ω

(
|∇u|p−2 ∇u∇ϕ− f(x, u)ϕ

)
dx. (3.168)

We will show that this global minimizer is in fact a positive solution of (3.155)
within [0, ū]. Taking in (3.168) the special test function ϕ = u− = max{−u, 0},
we get in view of the definition of f the equation

0 =
∫

Ω

(
|∇u|p−2 ∇u∇u− − f(x, u)u−

)
dx = ‖u−‖p

V0
,

which shows u− = 0, and thus, u ≥ 0. As ū is a supersolution, ϕ = (u− ū)+ ∈
V0 ∩ Lp

+(Ω), so by definition of the supersolution and (3.168), we obtain

0 ≥
∫

Ω

[ (
|∇u|p−2 ∇u− |∇ū|p−2 ∇ū

)
∇(u− ū)+

−
(
f(x, u) − f(x, ū)

)
(u− ū)+

]
dx

=
∫
{u>ū}

(
|∇u|p−2 ∇u− |∇ū|p−2 ∇ū

)
(∇u−∇ū) dx ≥ 0,

which implies that ∇(u − u)+ = 0, and thus, u ≤ u. This result shows that
the global minimizer u of the functional Φ satisfies u ∈ [0, u], and thus, u
is a solution of (3.155) because of the definition of f . As a > λ1, we get by
hypothesis (H1) that

Φ(εϕ1) < 0, ε > 0 small.

As u is a global minimizer of Φ, it follows that Φ(u) ≤ Φ(εϕ) < 0, and thus,
in view of Lemma 3.48, u must be a positive solution of (3.155). ��

Definition 3.51. A solution u+ is called the smallest positive solution of
(3.155) if any other positive solution u of problem (3.155) satisfies u ≥ u+.
Similarly, u− is the greatest negative solution of (3.155) if any other negative
solution u satisfies u ≤ u−.
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Lemma 3.52. Problem (3.155) has a smallest positive solution u+ and a
greatest negative solution u−.

Proof: We are going to prove the existence of the smallest positive solution
only, because the proof of the existence of the greatest negative solution is
analogous. In view of Lemma 3.50, a positive solution u ∈ [0, ū] exists, and
applying Lemma 3.48, there is a ε > 0 small enough such that εϕ1 ≤ u, where
ϕ1 is the positive eigenfunction that belongs to the first eigenvalue λ1 of −Δp.
As a > λ1, one readily verifies that εϕ1 is a subsolution of problem (3.155)
for sufficiently small ε > 0. Thus, there is a ε0 > 0 such that ε0 ϕ1 and ū
form an ordered pair of sub- and supersolutions. Applying Theorem 3.22 on
the existence of extremal solutions for general quasilinear elliptic problems, we
obtain the existence of a smallest and greatest solution of (3.155) with respect
to the order interval [ε0 ϕ1, ū]. We denote the smallest solution within this
interval by u0. Now let (εn) be a decreasing sequence with εn → 0 as n→ ∞,
and denote by un the corresponding smallest solution of (3.155) with respect
to the order interval [εnϕ1, ū]. Then obviously (un) is a decreasing sequence
of smallest positive solutions of (3.155), which converges to its nonnegative
pointwise limit u∗ in Lp(Ω). We will show that u∗ is in fact the smallest
positive solution; i.e., u∗ = u+. First we verify that u∗ is a solution of (3.155).
As the un are solutions of (3.155), we get from (3.155) with test function un

the equation

‖un‖p
V0

=
∫

Ω

|∇un|p−2 ∇un∇un dx =
∫

Ω

f(x, un)un dx,

which by the growth condition (H1) and the boundedness in Lp(Ω) of the
sequence (un) implies its boundedness in V0; i.e., ‖un‖V0 ≤ c. Thus, a subse-
quence weakly convergent in V0 exists, and because of the strong convergence
of (un) in Lp(Ω), even the entire sequence is weakly convergent in V0 with
weak limit u∗. From (3.155) with the test function un − u∗, we obtain

〈−Δpun, un − u∗〉 =
∫

Ω

|∇un|p−2 ∇un∇(un − u∗) dx

=
∫

Ω

f(x, un) (un − u∗) dx,

which implies that

lim sup
n

〈−Δpun, un − u∗〉 ≤ 0. (3.169)

The weak convergence of (un) and (3.169) along with the (S+)-property of
the operator −Δp (see Lemma 2.111) yield its strong convergence in V0. This
process allows the passage to the limit in (3.155) with u replaced by un, and
hence, u∗ is a solution of problem (3.155). To show that u∗ > 0, our argument
is by contradiction. Suppose u∗ = 0; that is, un → 0 in V0. As un > 0, we
may consider ũn = un/‖un‖V0 , which satisfies
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Ω

|∇ũn|p−2 ∇ũn∇ϕdx =
∫

Ω

[
a ũp−1

n +
g(x, un)
‖un‖p−1

V0

]
ϕdx. (3.170)

By definition ‖ũn‖V0 = 1, so there is a subsequence (ũn) that converges weakly
in V0 and strongly in Lp(Ω) to ũ due to the compact embedding of V0 ⊂ Lp(Ω).
Taking in (3.170) as special test function ϕ = ũn−ũ, we get for the right-hand
side of (3.170)∫

Ω

[
a ũp−1

n +
g(x, un)

|un(x)|p−1
|ũn(x)|p−1

]
(ũn − ũ) dx→ 0,

as n → ∞, because the terms in parentheses are Lq(Ω)-bounded. Hence,
(3.170) implies that

lim sup
n

〈−Δpũn, ũn − ũ〉 ≤ 0,

which because of the S+-property of −Δp implies the strong convergence of
ũn → ũ in V0. Moreover, the second integral term on the right-hand side of
(3.170) converges to zero by Lemma 3.49, so we may pass to the limit to get∫

Ω

|∇ũ|p−2 ∇ũ∇ϕdx =
∫

Ω

a ũp−1 ϕdx for all ϕ ∈ C∞
0 (Ω);

i.e., ũ satisfies the boundary value problem

ũ ∈ V0 : −Δpũ = a ũp−1 in V ∗
0 . (3.171)

As ‖ũn‖V0 = 1 and ũn > 0, by Lemma 3.48, we have the same properties for ũ,
which, however, contradicts that a nontrivial solution of (3.171) changes sign.
So far we have shown that the limit u∗ of the least solutions un ∈ [εnϕ1, ū] is
a positive solution of (3.155). Finally, to prove that u∗ is the smallest positive
solution, let w be any positive solution of (3.155). Then by Lemma 3.48, there
is a εn > 0 for n sufficiently large such that εnϕ1 ≤ w, which by definition of
the sequence of smallest solutions (un) yields u∗ ≤ un ≤ w (for n sufficiently
large), which proves that u∗ = u+ is in fact the smallest positive one. ��

3.4.3 Main Result

The main result of Sect. 3.4 reads as follows.

Theorem 3.53. Let hypotheses (H1)–(H3) be satisfied. Then the BVP (3.155)
has at least three nontrivial solutions: a positive solution, a negative solution,
and a sign-changing solution.

Proof: We introduce the cutoff function f̃+ by
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f̃+(x, t) =

⎧⎨⎩
0 if t ≤ 0 ,
f(x, t) if 0 < t < u+(x) ,
f(x, u+(x)) if t ≥ u+(x) ,

with its primitive F̃+ given by

F̃+(x, t) =
∫ t

0

f̃+(x, s) ds.

Consider the functional

Φ̃+(u) =
∫

Ω

(
|∇u|p − p F̃+(x, u)

)
dx.

Arguments similar to those in the proof of Lemma 3.50 show that critical
points of Φ̃+ are solutions of the BVP (3.155) in the order interval [0, u+], so
0 and u+ are the only critical points of Φ̃+ by Lemmas 3.48 and 3.52. Now,
Φ̃+ is bounded from below and coercive, and

Φ̃+(εϕ1) < 0, for ε > 0 small,

because a > λ1, so Φ̃+ has a global minimizer at a negative critical level. It
follows that u+ is the (strict) global minimizer of Φ̃+ and Φ̃+(u+) < 0.

Now let

f̃(x, t) =

⎧⎨⎩
f(x, u−(x)) if t ≤ u−(x) ,
f(x, t) if u−(x) < t < u+(x) ,
f(x, u+(x)) if t ≥ u+(x) ,

with its primitive

F̃ (x, t) =
∫ t

0

f̃(x, s) ds,

and the associated functional Φ̃ given by

Φ̃(u) =
∫

Ω

(
|∇u|p − p F̃ (x, u)

)
dx.

As before, critical points of Φ̃ are solutions of the BVP (3.155) in the order
interval [u−, u+], so it follows from Lemma 3.48 and Lemma 3.52 that any
nontrivial critical point of Φ̃ other than u± is a sign-changing solution. We
are going to prove this latter assertion by using the following auxiliary result.

Lemma 3.54. The solutions u± are strict local minimizers of Φ̃, and it holds
that Φ̃(u±) < 0.

Proof: We only consider u+ as the argument for u− is similar. Suppose that
there is a sequence uj → u+ in V0, uj �= u+ with Φ̃(uj) ≤ Φ̃(u+). By (3.156)
and (3.158), we have
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|F̃ (x, t)| ≤ C |t|p,
which implies that

Φ̃(uj) =
∫

Ω

(
|∇u+

j |p − p F̃ (x, u+
j )
)
dx+

∫
Ω

(
|∇u−j |p − p F̃ (x,−u−j )

)
dx

≥ Φ̃+(u+
j ) + ‖u−j ‖

p
V0

− C ‖u−j ‖p
p.

If u−j = 0, then u+
j �= u+ and

Φ̃+(u+
j ) ≤ Φ̃(uj) ≤ Φ̃(u+) = Φ̃+(u+),

which contradicts that u+ is the unique global minimizer of Φ̃+; so u−j �= 0.
We will show that

‖u−j ‖
p
V0
> C ‖u−j ‖p

p, j large. (3.172)

Assume for the moment the last inequality, then we have the contradiction
Φ̃+(u+

j ) < Φ̃+(u+). To see that (3.172) holds, we first note that the measure of
the set Ωj = {x ∈ Ω : uj(x) < 0} goes to zero. To see this result, given ε > 0,
take a compact subset Ωε of Ω such that |Ω \Ωε| < ε and let Ωε

j = Ωε ∩Ωj .
Then

‖uj − u+‖p
p ≥

∫
Ωε

j

|uj − u+|p dx ≥
∫

Ωε
j

up
+ dx ≥ cp |Ωε

j | (3.173)

where c = minΩε u+ > 0. Thus, in view of (3.173), we get |Ωε
j | → 0. As

Ωj ⊂ Ωε
j ∪ (Ω \Ωε) and ε > 0 is arbitrary, we see that |Ωj | → 0 as j → ∞.

If (3.172) does not hold, setting ũj = u−j /‖u−j ‖p, it follows that ‖ũj‖V0 is
bounded for some subsequence, so ũj → ũ in Lp(Ω) and a.e. in Ω for a further
subsequence, where ‖ũ‖p = 1 and ũ ≥ 0. But then Ωμ = {x ∈ Ω : ũ(x) ≥ μ}
has positive measure for all sufficiently small μ > 0 and

‖ũj − ũ‖p
p ≥

∫
Ωμ\Ωj

|ũj − ũ|p dx =
∫

Ωμ\Ωj

ũp dx ≥ μp (|Ωμ| − |Ωj |). (3.174)

As the right-hand side of (3.174) tends to μp |Ωμ| > 0 as j → ∞, we get a
contradiction. ��

By means of Lemma 3.54, we will show that Φ̃ has a nontrivial critical point
other than u±, which completes the proof of our main result. We note first that
a standard deformation argument ensures the existence of a mountain-pass
point u1 at the critical value

c = inf
π∈Π

max
u∈π([−1,1])

Φ̃(u) > Φ̃(u±), (3.175)

where Π = {π ∈ C([−1, 1];V0) : π(± 1) = u±} is the class of paths joining
u±. To show that u1 �= 0, we will construct a path that lies in Φ̃0 = {u ∈ V0 :
Φ̃(u) < 0}.
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First we show that, for all sufficiently small ε > 0, ± εϕ1 can be joined by
a path πε in Φ̃0. Note that Φ̃ can be rewritten in the form

Φ̃(u) = I(a,b)(u) −
∫

Ω

G̃(x, u) dx,

where
I(a,b)(u) =

∫
Ω

(
|∇u|p − a (u+)p − b (u−)p

)
dx

is the functional associated with (3.159) and

G̃(x, t) = p F̃ (x, t) − a (t+)p − b (t−)p = o(|t|p) as t→ 0.

As the tuple (a, b) is above the curve C of the Fučik spectrum, there is a path
π0 in {

u ∈ V0 : I(a,b)(u) < 0, ‖u‖p = 1
}

joining ±ϕ1 by the construction of C according to [71]. For u ∈ π0([−1, 1]),
we have

Φ̃(εu) ≤ εp
[
max I(a,b)(π0([−1, 1])) +

∫
Ω

|G̃(x, εu)|
εp

dx

]
, (3.176)

and the last integral on the right-hand side of (3.176) goes to 0 uniformly on
the compact set π0([−1, 1]) as ε→ 0 by Lemma 3.49; so we can take πε = ε π0.

We complete the proof by showing that ± εϕ1 and u± can be joined by
paths in Φ̃0. Again we only consider εϕ1 and u+. Setting α = inf Φ̃+ = Φ̃+(u+)
and β = Φ̃+(εϕ1) = Φ̃(εϕ1) < 0, by the second deformation lemma (see
Chang [63]), the sublevel set Φ̃α

+ =
{
u ∈ V0 : Φ̃+(u) ≤ α

}
= {u+} is a strong

deformation retract of Φ̃β
+; that is, there is an η ∈ C([0, 1]× Φ̃β

+, Φ̃
β
+) such that

(i) η(0, u) = u for all u ∈ Φ̃β
+.

(ii) η(t, u+) = u+ for all t ∈ [0, 1].
(iii) η(1, u) = u+ for all u ∈ Φ̃β

+.

In particular, π = η(·, ε ϕ1) is a path in Φ̃β
+ joining εϕ1 and u+. Now the path

π+ defined by π+(t) = π(t)+ also joins εϕ1 and u+, and

Φ̃(π+(t)) = Φ̃+(π(t)) −
∫

Ω

|∇π(t)−|p ≤ β < 0,

which completes the proof of Theorem 3.53. ��
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3.5 Quasilinear Elliptic Problems of Periodic Type

In this section, we are interested in a variational sub-supersolution approach
to a quasilinear elliptic boundary value problem that, in the one-space dimen-
sional and semilinear case, is a boundary value problem for a second-order
scalar ordinary differential equation subject to periodic boundary conditions.
The latter problem was first studied by Hans Knobloch [125] and later by
many other authors using various kinds of nonlinear analysis methods (see
[205], [158], [126], [107]). The continuation and extension of the one-space di-
mensional case to the higher-space dimensional case presented here is based
on a recent result due to V. Le and K. Schmitt [147].

3.5.1 Problem Setting

Let Ω ⊂ R
N be a bounded domain with smooth boundary ∂Ω. We consider

the following boundary value problem (BVP, for short):

−div[a(x,∇u)] + f(x, u) = 0, x ∈ Ω, (3.177)

u(x) = constant, x ∈ ∂Ω, (3.178)

∫
∂Ω

a(x,∇u) ν dS = 0, (3.179)

where ν denotes the outward unit normal on ∂Ω, and

div[a(x,∇u)] =
N∑

i=1

∂

∂xi
ai(x,∇u).

(Note that in condition (3.178), it is understood that the trace γ(u) of u is
a constant function, with the constant not being fixed.) We assume that the
coefficients ai : Ω×R

N → R are Carathéodory functions satisfying conditions
(H1)–(H3) of Sect. 2.3.2, which can be reformulated in terms of the vector
function a = (a1, . . . , aN ) as follows.

(H1) A constant c0 > 0 and a function k0 ∈ Lq(Ω) exist so that

|a(x, ξ)| ≤ k0(x) + c0|ξ|p−1, (3.180)

for a.e. x ∈ Ω, and for all ξ ∈ R
N , where p and q are Hölder conjugate

reals with 1 < p <∞, 1/p+ 1/q = 1.
(H2) a(x, ξ) is monotone in ξ; that is,

[a(x, ξ) − a(x, ξ′)](ξ − ξ′) > 0 (3.181)

for a.e. x ∈ Ω, and for all ξ, ξ′ ∈ R
N with ξ �= ξ′.
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(H3) a satisfies the following coercivity property: k ∈ L1(Ω) and μ > 0 exist
such that

a(x, ξ) ξ ≥ μ |ξ|p − k(x) (3.182)

for a.e. x ∈ Ω, and for all ξ ∈ R
N .

Remark 3.55. When N = 1 and Ω = (c, d) is some bounded interval, the
boundary condition (3.178)–(3.179) becomes the following boundary condition
on (c, d):

u(c) = u(d), a(c, u′(c)) = a(d, u′(d)),

which, when a(x, v) = v corresponds to the usual set of periodic boundary
conditions,

u(c) = u(d), u′(c) = u′(d).

Example 3.56. The p-Laplacian is a prototype of the operator a above; i.e.,

a(x,∇u) = |∇u|p−2∇u, 1 < p <∞.

It is easy to check that a satisfies conditions (H1)–(H3) above. In this case,
the boundary condition (3.179) becomes∫

∂Ω

|∇u|p−2 ∂u

∂ν
dS = 0.

Assume that f : Ω × R → R is a Carathéodory function with some ap-
propriate growth condition to be specified later. As in previous sections, we
denote by V =W 1,p(Ω), and define an operator A : V → V ∗ via the following
semilinear form:

〈Au, v〉 =
∫

Ω

a(x,∇u)∇v dx for all u, v ∈ V.

Let F denote the Nemytskij operator related to f . If F (u) ∈ Lq(Ω) for u ∈ V ,
then F defines a mapping (which is again denoted by F ) from V into V ∗ by

〈F (u), v〉 =
∫

Ω

F (u) v dx.

Hypotheses (H1)–(H3) imply that A is continuous, bounded, monotone, and
satisfies

〈Au, u〉 ≥ μ‖∇u‖p
p − ‖k‖1, for all u ∈ V, (3.183)

where ‖ · ‖r stands for the norm in Lr(Ω) for 1 ≤ r <∞. Let

Vc = {u ∈ V : u|∂Ω = constant}.

Then Vc is a closed subspace of V , and thus, a reflexive Banach space with
the restricted norm of V. The weak (variational) formulation of the boundary
value problem (3.177)–(3.179) is given as follows.
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Definition 3.57. The function u ∈ Vc is called a (weak) solution of the BVP
(3.177)–(3.179) if the following variational equality holds:∫

Ω

a(x,∇u)∇v dx+
∫

Ω

f(x, u) v dx = 0 for all v ∈ Vc. (3.184)

Let us justify that Definition 3.57 provides an appropriate notion of weak
solution. Note that if u satisfies (3.177)–(3.179) and v ∈ Vc, then

0 = −
∫

Ω

div a(x,∇u) v dx+
∫

Ω

f(x, u) v dx

=
∫

Ω

a(x,∇u)∇v dx− (v|∂Ω)
∫

∂Ω

a(x,∇u) ν dS +
∫

Ω

f(x, u) v dx

=
∫

Ω

a(x,∇u)∇v dx+
∫

Ω

f(x, u) v dx.

Hence, we have (3.184). Conversely, if u ∈ Vc is a solution of (3.184),
then by choosing v ∈ C∞

0 (Ω) ⊂ Vc in (3.184) and applying the Divergence
theorem as above, we see that (3.177) holds. Choosing v = 1 in (3.184), we
have

∫
Ω
f(x, u)dx = 0. On the other hand, integrating (3.177) over Ω and

using once more the Divergence theorem yield

0 = −
∫

Ω

div a(x,∇u)dx+
∫

Ω

f(x, u)dx = −
∫

∂Ω

a(x,∇u) ν dS.

Hence, we have the boundary condition (3.179).

3.5.2 Sub-Supersolutions

We will study the existence of solutions of (3.184) by first defining appropriate
concepts of sub- and supersolutions.

Definition 3.58. A function u (respectively, ū) in Vc is called a subsolution
(respectively, supersolution) of (3.184) if∫

Ω

a(x,∇u)∇v dx+
∫

Ω

f(x, u)v dx ≤ 0 (respectively, ≥ 0), (3.185)

for all v ∈ Vc ∩ Lp
+(Ω).

Remark 3.59. In case of the Laplacian, i.e., a(x,∇u) = ∇u and p = 2, or when
N = 1 (ordinary differential equation case), the above definition of sub- and
supersolutions is the variational form of those given in [206], without imposing
additional smoothness assumptions.

As is the case with solutions satisfying additional smoothness conditions,
sub- and supersolutions, when smooth enough, satisfy additional boundary
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conditions. Let us see this in the case of the p-Laplacian. For assume that
α ∈ Vc ∩W 2,p(Ω) satisfies (cf. (17) of [206]):∫

Ω

|∇α|p−2∇α∇φdx+
∫

Ω

f(x, α)φdx ≤ 0 (3.186)

for all φ ∈ C∞
0 (Ω) with φ ≥ 0, and∫

∂Ω

|∇α|p−2∇α ν dS ≤ 0. (3.187)

As α ∈W 2,p(Ω), the divergence theorem implies that∫
Ω

[−div
(
|∇α|p−2∇α

)
+ f(x, α)]φdx ≤ 0

for all φ ∈ C∞
0 (Ω), φ ≥ 0; i.e. (in the sense of distributions),

−div
(
|∇α|p−2∇α

)
+ f(x, α) ≤ 0 a.e. on Ω. (3.188)

Let v ∈ Vc ∩ Lp
+(Ω). It follows from (3.188) that

0 ≥
∫

Ω

[−div
(
|∇α|p−2∇α

)
+ f(x, α)] v dx

=
∫

Ω

|∇α|p−2∇α∇v dx−
∫

∂Ω

|∇α|p−2 ∂α

∂ν
v dS +

∫
Ω

f(x, α) v dx.

Hence,∫
Ω

|∇α|p−2∇α∇v dx+
∫

Ω

f(x, α) v dx ≤ (v|∂Ω)
∫

∂Ω

|∇α|p−2 ∂α

∂ν
dS ≤ 0;

that is, α satisfies (3.185). Conversely, assume α ∈ Vc ∩ W 2,p(Ω) satisfies
(3.185). As C∞

0 (Ω) ⊂ Vc, we have (3.186). To prove that α satisfies (3.187),
we choose a sequence (Ωn) of subdomains of Ω such that

Ωn ⊂ Ωn+1, for all n, and Ω =
∞⋃

n=1

Ωn. (3.189)

For each n ∈ N, choose φn ∈ C∞
0 (Ω) such that 0 ≤ φn(x) ≤ 1 for all x ∈ Ω,

and φn(x) = 1 for all x ∈ Ωn. Let vn = 1− φn (n ∈ N). Then vn ∈ Vc, vn = 1
on ∂Ω, and 0 ≤ vn ≤ 1 on Ω. Letting v = vn in (3.185), we get

0 ≥
∫

Ω

|∇α|p−2∇α∇vn dx+
∫

Ω

f(x, α) vn dx

=
∫

Ω

[−div
(
|∇α|p−2∇α

)
+ f(x, α)] vn dx+

∫
∂Ω

|∇α|p−2 ∂α

∂ν
vn dS
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=
∫

Ω

[−div
(
|∇α|p−2∇α

)
+ f(x, α)] vn dx+

∫
∂Ω

|∇α|p−2 ∂α

∂ν
dS.

(3.190)

Because vn = 0 on Ωn, from (3.189) and the dominated convergence theorem,
we obtain

lim
n→∞

∫
Ω

[−div
(
|∇α|p−2∇α

)
+ f(x, α)] vn dx = 0.

Letting n→ ∞ in (3.190), we obtain∫
∂Ω

|∇α|p−2 ∂α

∂ν
dS ≤ 0,

which is (3.187).

3.5.3 Existence Result

The main result of Sect. 3.5 is the following theorem.

Theorem 3.60. Assume a pair of sub- and supersolution u and ū of (3.184)
exists such that u ≤ ū and that f satisfies the following growth condition:

|f(x, u)| ≤ k1(x), (3.191)

for a.e. x ∈ Ω, for all u ∈ [u(x), ū(x)], with k1 ∈ Lq
+(Ω). Then, (3.184) has a

solution u ∈ Vc such that u ≤ u ≤ ū.

Proof: As earlier in this chapter, we introduce the truncation operator T and
the cutoff function b : Ω×R → R related to the given sub- and supersolutions
by

Tu(x) =

⎧⎨⎩
ū(x) if u(x) > ū(x) ,
u(x) if u(x) ≤ u(x) ≤ ū(x) ,
u(x) if u(x) < u(x) ,

and

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x),

(3.192)

and note that b is a Carathéodory function satisfying

|b(x, s)| ≤ k2(x) + c2 |s|p−1 (3.193)

for a.e. x ∈ Ω, for all s ∈ R, with some function k2 ∈ Lq
+(Ω) and a constant

c2 > 0. Therefore, the operator B : V → V ∗ given by
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〈Bu, v〉 =
∫

Ω

b(x, u)v dx for all v ∈ V,

is well defined, completely continuous, and bounded. Moreover, there are
c3, c4 > 0 such that

〈Bu, u〉 ≥ c3‖u‖p
p − c4 for all u ∈ V. (3.194)

Let us consider the following variational equation in Vc:

u ∈ Vc : 〈Au+B(u) + (F ◦ T )u, v〉 = 0 for all v ∈ Vc. (3.195)

It follows from (3.191) that F ◦ T : V → V ∗ is well defined and completely
continuous. Because A is monotone, it follows that A+B + F ◦ T is pseudo-
monotone. Next, let us show that A + B + F ◦ T is coercive on V in the
following sense:

lim
‖u‖V →∞

〈Au+B(u) + (F ◦ T )u, u〉
‖u‖V

= +∞. (3.196)

In fact, from the definition of the truncation operator T and (3.191),

|〈(F ◦ T )u, u〉| =
∣∣∣∣∫

Ω

f(x, Tu)u dx
∣∣∣∣ ≤ ∫

Ω

k1|u| dx ≤ ‖k1‖q‖u‖p. (3.197)

Combining (3.197) with (3.194) and (3.183), we get

〈Au+B(u) + (F ◦ T )u, u〉
≥ μ ‖∇u‖p

p − ‖k‖1 + c3‖u‖p
p − c4 − ‖k1‖q‖u‖p

≥ min{μ, c3}(‖u‖p
p + ‖∇u‖p

p) − ‖k1‖q‖u‖V − ‖k‖1 − c4
= c5 ‖u‖p

V − c6‖u‖V − c7, for all u ∈ V,

with c5, c6, c7 > 0. Because p > 1, this estimate implies (3.196).
As Vc is a closed subspace of V , the existence of solutions of (3.195) follows

from Theorem 2.99 of Sect. 2.3. Assume that u is any solution of (3.195). To
complete the proof of the theorem, we only need to prove that

u ≤ u ≤ ū a.e. in Ω, (3.198)

because then Tu = u, B(u) = 0, and thus, u is also a solution of (3.184). Let
us verify the first inequality in (3.198). As u, u ∈ V , we have (u − u)+ ∈ V
from the lattice structure of V (see Sect. 2.2.3). Moreover, because the traces
γ(u) = u|∂Ω and γ(u) = u|∂Ω are constants, we have

γ((u− u)+) = (γ(u) − γ(u))+ = constant,

(see Sect. 2.2.3); i.e.,
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(u− u)+ ∈ Vc. (3.199)

Choosing v = (u− u)+ in (3.195), we obtain∫
Ω

a(x,∇u)∇(u− u)+ dx+
∫

Ω

[b(x, u) + f(x, Tu)](u− u)+ dx = 0. (3.200)

On the other hand, taking v = (u − u)+(≥ 0) as a special test function in
inequality (3.185) gives us∫

Ω

a(x,∇u)∇(u− u)+ dx+
∫

Ω

f(x, u)(u− u)+ dx ≤ 0. (3.201)

Subtracting (3.200) from (3.201) yields∫
Ω

[a(x,∇u) − a(x,∇u)]∇(u− u)+ dx+
∫

Ω

[f(x, u) − f(x, Tu)](u− u)+ dx

≤
∫

Ω

b(x, u)(u− u)+ dx. (3.202)

By means of (3.181) and Example 2.86, we have∫
Ω

[a(x,∇u) − a(x,∇u)]∇[(u− u)+] dx

=
∫
{u>u}

[a(x,∇u) − a(x,∇u)] (∇u−∇u) dx

≥ 0, (3.203)

where {u > u} = {x ∈ Ω : u(x) > u(x)}. From the definition of Tu, we have
Tu(x) = u(x) on {u > u}, and thus,∫

Ω

[f(x, u) − f(x, Tu)](u− u)+ dx

=
∫
{u>u}

[f(x, u) − f(x, Tu)](u− u)dx = 0. (3.204)

Using (3.203) and (3.204) in (3.202), we obtain

0 ≤
∫

Ω

b(x, u)(u− u)+ dx = −
∫
{u>u}

(u− u)pdx ≤ 0.

This result implies that∫
{u>u}

(u− u)p dx =
∫

Ω

[(u− u)+]p dx = 0,

i.e., (u − u)+ = 0, which proves the first inequality in (3.198). The other
inequality there is established in the same way, which completes the proof of
the theorem. ��
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Remark 3.61. By modifying the proof of Theorem 3.60 in the spirit of The-
orem 3.6 or Theorem 3.41, we can extend Theorem 3.60 to the existence of
solutions of (3.184) between a finite number of sub- and supersolutions. In
fact, we can show that if u1, . . . , uk (respectively, ū1, . . . , ūm) are subsolutions
(respectively, supersolutions) of (3.184) such that

max{u1, . . . , uk} ≤ min{ū1, . . . , ūm},

and that f satisfies an appropriate growth condition between these sub- and
supersolutions, then a solution u of (3.184) exists such that

max{u1, . . . , uk} ≤ u ≤ min{ū1, . . . , ūm}.

Remark 3.62. We note that for the method of proof of Theorem 3.60 to work,
the important property of the subspace Vc that was needed was that u+ ∈ Vc

for any u ∈ Vc. We therefore see that Theorem 3.60 remains valid, if Vc is
replaced by any subspace Ṽ , which has this property (and, of course, the
definitions of sub- and supersolutions are appropriately modified). This more
general theorem, for example, contains the sub-supersolution existence result
for boundary value problems subject to Neumann boundary conditions.

3.6 Notes and Comments

The sub-supersolution method was motivated by the well-known Perron argu-
ments on sub- and superharmonic functions and was used in [4, 15, 159, 202] to
study the solvability of nonlinear elliptic and parabolic problems in the classic
sense. In these papers, it was also established the existence of extremal classic
solutions. The sub-supersolution argument was later employed in [83, 84] to
study the existence of weak solutions of quasilinear elliptic and parabolic vari-
ational equations. However, weak extremal solutions were not investigated in
those works. The existence of weak extremal solutions was considered among
others in [43, 75, 106, 133, 138, 146, 189] (see also the references in [43]). The
concept of sub-supersolutions has been established for various different types
of nonlinear elliptic and parabolic problems, such as quasilinear Dirichlet-
periodic boundary value problems in [31], reaction-diffusion equations under
nonlinear and nonlocal flux boundary conditions in [44, 49], and boundary
value problems in unbounded domains in [32, 33, 42]. An extension of this
method to quasilinear elliptic problems with a right-hand side f not in V ∗

0

but in L1(Ω) has been considered in [62]. Nonlinear parabolic problems with
1 < p < 2 were treated in [67, 92]. The sub-supersolution method has been
proved to be a powerful and fruitful tool not only in the qualitative analy-
sis for a wide range of nonlinear elliptic and parabolic problems, but also in
their quantitative analysis. This method coupled with the monotone iteration
has been proved to be an effective and flexible technique in the theoretical
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as well as the constructive analysis of semilinear elliptic and parabolic prob-
lems, which has extensively been discussed within the framework of classic
solutions in the monograph by C. V. Pao, cf. [182]. The constructive aspect of
the sub-subersolution method has been improved in a recent monograph by
V. Lakshmikantham and S. Köksal [135] by combining it with the so-called
quasilinearization method to get not only monotone but also rapidly conver-
gent approximate solutions (see also [48, 49]). For these iteration methods
to work, comparison principles of related linearized problems based on sub-
supersolutions are the main tools.



4

Multivalued Variational Equations

The subject of this chapter is boundary value problems for quasilinear differ-
ential inclusions of elliptic and parabolic type whose governing multivalued
terms are of Clarke’s gradient type. We introduce concepts of sub- and su-
persolutions that are designed to obtain existence and comparison results and
that generalize the notion of sub- and supersolutions of variational equations
considered in Chap. 3 in a natural way. Thus, the least requirement of any
notion of sub-supersolutions for inclusions is that to include the corresponding
notion for equations as introduced in Chap. 3. In Sect. 4.1, we first provide
some motivation for differential inclusions with the help of elementary exam-
ples and introduce the basic concept of sub- and supersolutions. Depending
on the structure and growth assumptions imposed on the multivalued terms,
the notion of sub- and supersolutions and the comparison principles related
with them are further developed in Sect. 4.2, Sect. 4.3, and Sect. 4.5 for gen-
eral quasilinear elliptic and parabolic inclusion problems. As an application
of the theory presented in this chapter, an elliptic inclusion is considered
whose multivalued term is given in Sect. 4.4 by the difference of Clarke’s
generalized gradient and the usual subdifferential. An alternative notion of
sub-supersolution existing in the literature and its relation to the one intro-
duced here is considered in Sect. 4.6. The chapter concludes with comments
and further bibliographical notes.

4.1 Motivation and Introductory Examples

To motivate the study of differential inclusions, let us consider the following
simple discontinuous semilinear BVP:

−Δu+ g(u) = 1 in Ω, u = 0 on ∂Ω, (4.1)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary ∂Ω and the

nonlinearity g : R → R is assumed to be the Heaviside step function; i.e.,
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g(s) =
{

0 if s ≤ 0,
1 if s > 0. (4.2)

For the BVP (4.1) with the nonlinearity (4.2), one readily verifies that the
constant functions u(x) ≡ −c and ū(x) ≡ c with c > 0 form an ordered
pair of sub- and supersolutions, respectively. However, in Chap. 1, it has been
proved that (4.1) does not possess any solution. Consequently, in general, the
existence and comparison principle proved in Chap. 3 fails if the nonlinearities
involved are discontinuous. Therefore, instead of the discontinuous BVP (4.1),
we consider the following relaxed multivalued BVP:

−Δu+ [g(u− 0), g(u+ 0)] � 1 in Ω, u = 0 on ∂Ω, (4.3)

which arises from (4.1) by replacing the discontinuous nonlinearity g by the
multifunction s 
→ [g(s− 0), g(s+0)], with g(s± 0) being the one-sided limits
of g at s (see Fig. 1.2). Note that the multifunction in Fig. 1.2 is a maximal
monotone graph in R

2. In Sect. 4.1.1, we give some further motivation for
studying the differential inclusion (4.3) and provide a notion of its solution,
and in Sect. 4.1.2, a first comparison principle will be given. In Sect. 4.1.3,
we present an existence and comparison result for a nonmonotone elliptic
differential inclusion whose multifunction is of the form shown in Fig. 1.4.
The main goal of Sect. 4.1 is to introduce basic ideas in the study of existence
and comparison principles for differential inclusions with the help of simple
model problems.

4.1.1 Motivation

Let j : R → R be the primitive of g vanishing at 0 for g in (4.2); i.e.,

j(s) =
∫ s

0

g(t) dt,

which yields j(s) = s+ (see Fig. 1.3), and consider the minimization problem

u ∈ V0 : E(u) = inf
v∈V0

E(v), (4.4)

where V0 =W 1,2
0 (Ω) and E is the functional given by

E(v) =
1
2

∫
Ω

|∇v|2 dx+
∫

Ω

(j(v) − v) dx, v ∈ V0. (4.5)

The functional E : V0 → R is easily seen to be convex (even strictly convex)
and continuous, and thus it is also weakly sequentially lower semicontinuous.
Also, one readily verifies that E is coercive in the sense that E satisfies

E(v) → +∞ as ‖v‖V0 → +∞.
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Thus, we may apply Weierstrass’ Theorem 2.53, which ensures the existence
of solutions of problem (4.4). Moreover, because E : V0 → R is strictly con-
vex, the minimum problem (4.4) has a uniquely defined solution. By using
elementary facts from the calculus of convex analysis, solutions of (4.4) can
equivalently be characterized as the critical points of the nonsmooth func-
tional E; i.e., we have the following equivalence:

u ∈ V0 : E(u) = inf
v∈V0

E(v) ⇐⇒ 0 ∈ ∂E(u), (4.6)

where ∂E(u) is the subdifferential of E at u. By standard calculation, we
obtain

0 ∈ ∂E(u) ⇐⇒ Δu+ 1 ∈ ∂(J ◦ i)(u), (4.7)

where i : V0 → L2(Ω) is the embedding operator and J : L2(Ω) → R is the
following integral functional:

J(u) =
∫

Ω

j(u(x)) dx,

which is convex and even Lipschitz continuous in view of j(s) = s+. Because
V0 is dense in L2(Ω), we may apply the chain rule given in Corollary 2.180 to
evaluate the subdifferential of J ◦ i at u, which results in

∂(J ◦ i)(u) = i∗∂J(i(u)), u ∈ V0, (4.8)

where i∗ is the adjoint operator to i. The subdifferential of convex functions
and convex integral functionals has been characterized by Example 2.58 and
Example 2.59, respectively, given in Sect. 2.1.3, and thus, we obtain for v ∈
L2(Ω)

v∗ ∈ ∂J(v) ⇐⇒ v∗ ∈ L2(Ω) and v∗(x) ∈ ∂j(v(x)) = [g(v(x)), ḡ(v(x))],

where g(s) = g(s − 0) and ḡ(s) = g(s + 0) are the left-sided and right-
sided limits of g at s. As here g is the Heaviside function, the multifunction
s 
→ ∂j(s) is the maximal monotone graph that arises from the Heaviside
function by filling in the gap at the point of discontinuity (see Fig. 1.2). So far
we have seen that the minimum problem (4.4) is equivalent to the variational
inequality

u ∈ V0 : 〈−Δu− 1, v − u〉 + (J ◦ i)(v) − (J ◦ i)(u) ≥ 0, ∀ v ∈ V0, (4.9)

which is defined on the entire space V0, and which in turn is equivalent to the
Dirichlet problem of the differential inclusion

u ∈ V0 : −Δu+ ∂j(u) � 1 in V ∗
0 . (4.10)

Taking into account the chain rule (4.8) and the characterization of the sub-
differential of integral functionals as given above, the notion of (weak) solution
of the inclusion problem (4.10) is as follows.
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Definition 4.1. The function u ∈ V0 is a solution of the inclusion problem
(4.10) if there is a w ∈ L2(Ω) ⊂ V ∗

0 such that

(i) w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.
(ii) −Δu+ w = 1 in V ∗

0 ⇐⇒
∫

Ω

(
∇u∇ϕ+ (w − 1)ϕ

)
dx = 0, ∀ ϕ ∈ V0.

We already know that problem (4.10) is uniquely solvable, and we read-
ily observe that u = 0 is the unique solution, because (u,w) ∈ V0 × L2(Ω)
with (u,w) = (0, 1) fulfills Definition 4.1. To summarize our considerations
above, we have seen that on the one hand, the differential inclusion problem
(4.10) may be considered as a relaxation of the discontinuous problem (4.1)
that arises by replacing the discontinuous nonlinearity g by the associated
multivalued nonlinearity ∂j(s) = [g(s), ḡ(s)], and on the other hand, the in-
clusion problem (4.10) may be interpreted as the Euler–Lagrange equation of
the nonsmooth (locally Lipschitz and convex) functional E defined in (4.5) or
as the necessary (in our case also sufficient) condition for critical points of E.

4.1.2 Comparison Principle: Subdifferential Case

Let us consider the differential inclusion problem (4.10), which according to
the preceding section is uniquely solvable. Extending the notion of sub- and
supersolution for (single-valued) BVPs in a natural way, we introduce the
following notion for the multivalued problem (4.10).

Definition 4.2. The function u ∈ V = W 1,2(Ω) is a subsolution of the in-
clusion problem (4.10) if there is a w ∈ L2(Ω) ⊂ V ∗

0 such that

(i) u ≤ 0 on ∂Ω.
(ii) w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.
(iii) −Δu+ w ≤ 1 in V ∗

0 .

Note that inequality (iii) of Definition 4.2 has to be taken with respect to the
order defined by the dual-order cone of V ∗

0 ; i.e., that (iii) means∫
Ω

(
∇u∇ϕ+ (w − 1)ϕ

)
dx ≤ 0, for all ϕ ∈ V0 ∩ L2

+(Ω).

Analogously, we define the supersolution as follows.

Definition 4.3. The function ū ∈ V = W 1,2(Ω) is a supersolution of the
inclusion problem (4.10) if there is a w̄ ∈ L2(Ω) ⊂ V ∗

0 such that

(i) ū ≥ 0 on ∂Ω.
(ii) w̄(x) ∈ ∂j(ū(x)) for a.e. x ∈ Ω.
(iii) −Δū+ w̄ ≥ 1 in V ∗

0 .
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Remark 4.4. The determination of sub- and supersolutions for the differential
inclusion (4.10) can be reduced to finding sub- and supersolutions of an appro-
priately associated differential equation. For this purpose, let g̃ : R → R be any
single-valued selection of the maximal monotone graph ∂j; i.e., g̃(s) ∈ ∂j(s)
for all s ∈ R, and consider the following (single-valued) BVP:

−Δu+ g̃(u) = 1 in Ω, u = 0 on ∂Ω. (4.11)

Even though the BVP (4.11) may not have any solution, its subsolutions
(supersolutions) are subsolutions (supersolutions) of the inclusion (4.10). To
see this, let u ∈ V be a subsolution of (4.11) in the sense of Chap. 3; i.e.,
u ≤ 0 on ∂Ω, g̃(u) ∈ L2(Ω), and the inequality

−Δu+ g̃(u) ≤ 1 in V ∗
0

holds. By setting w = g̃(u), then obviously u and w satisfy all conditions
of Definition 4.2. Similarly we show that any supersolution of (4.11) is a
supersolution of (4.10).

Lemma 4.5. Let u and ū be sub- and supersolutions, respectively, of problem
(4.10). Then u ≤ ū in Ω.

Proof: From Definition 4.2 and Definition 4.3, we obtain u − ū ≤ 0 on ∂Ω
and∫

Ω

∇(u− ū)∇ϕdx+
∫

Ω

(w − w̄)ϕdx ≤ 0 for all ϕ ∈ V0 ∩ L2
+(Ω), (4.12)

where w(x) ∈ ∂j(u(x)) and w̄(x) ∈ ∂j(ū(x)) for a.e. x ∈ Ω. Taking ϕ =
(u− ū)+ as a special test function in (4.12), we get∫

Ω

|∇(u− ū)+|2 dx+
∫
{u>ū}

(w − w̄) (u− ū) dx ≤ 0. (4.13)

As s 
→ ∂j(s) is a maximal monotone graph, the second integral on the left-
hand side of (4.13) is nonnegative, and thus from (4.13), we obtain∫

Ω

|∇(u− ū)+|2 dx = 0,

which implies (u− ū)+ = 0; i.e., u ≤ ū. ��

Remark 4.6. As any solution of the inclusion (4.10) is both a sub- and superso-
lution, Lemma 4.5 provides an alternative to prove the uniqueness of solution
for (4.10). However, it should be noted that if the Laplacian is replaced by
a more general (not necessarily strictly monotone) elliptic operator, sub- and
supersolutions need not be order related to each other.
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The definitions and results regarding the differential inclusion problem
(4.10) can easily be extended to the following more general BVP:

u ∈ V0 : −Δu+ ∂j(u) � f in V ∗
0 , (4.14)

where f ∈ V ∗
0 , and j : R → R is a convex function whose subdifferential

∂j : R → 2R \ {∅} satisfies a linear growth condition; i.e., there is a constant
c ≥ 0 such that

|η| ≤ c(1 + |s|), η ∈ ∂j(s), (4.15)

for all s ∈ R. The following existence and comparison principle of the subdif-
ferential inclusion (4.14) can be obtained by an almost straightforward appli-
cation of methods and results used in the treatment of the special problem
(4.10).

Lemma 4.7. Let j : R → R be a convex function whose subdifferential ∂j :
R → 2R \ {∅} satisfies (4.15). Then the the BVP (4.14) enjoys the following
properties:

(i) The BVP (4.14) is uniquely solvable.
(ii) If u and ū are sub- and supersolutions of (4.14), then u ≤ ū.
(iii) Let ui be the unique solution of (4.14) with the right-hand side fi ∈ V ∗

0 ,
i = 1, 2. If f1 ≤ f2, then u1 ≤ u2. In other words, the operator −Δ+∂j :
V0 → V ∗

0 is inverse monotone increasing.

Proof: Ad (i). As j is convex on the real line and its subdifferential satisfies a
linear growth condition, it follows that the integral functional J : L2(Ω) → R

given by

J(v) =
∫

Ω

j(v(x)) dx, v ∈ L2(Ω),

is well defined, convex, and locally Lipschitz continuous. Moreover, because j
is bounded below by an affine function and Ω is a bounded domain, we get
the following estimate:

J(v) ≥ −c(1 + |v|2), v ∈ L2(Ω), (4.16)

where c is some positive constant and | · |2 denotes the norm in L2(Ω). As in
the special case above, one easily verifies that solutions of the BVP (4.14) are
the critical points of the (nonsmooth) functional

E(v) =
1
2

∫
Ω

|∇v|2 dx+ (J ◦ i)(v) − 〈f, v〉, v ∈ V0, (4.17)

where i : V0 → L2(Ω) is the embedding operator. The functional E is strictly
convex, and in view of (4.16), it is also coercive. Therefore, the only critical
point of E is its minimum point u satisfying



4.1 Motivation and Introductory Examples 149

u ∈ V0 : E(u) = inf
v∈V0

E(v),

whose existence is ensured by Weierstrass’ Theorem 2.53.
Ad (ii). The proof can be done in just the same way as for Lemma 4.5.
Ad (iii). The unique solution ui with right-hand side fi satisfies∫

Ω

∇ui∇ϕdx+
∫

Ω

wiϕdx = 〈fi, ϕ〉, for all ϕ ∈ V0, (4.18)

where wi ∈ L2(Ω) satisfies wi(x) ∈ ∂j(ui(x)) for a.e. x ∈ Ω and i = 1, 2. By
subtraction, we get from (4.18) the relation∫

Ω

∇(u1 − u2)∇ϕdx+
∫

Ω

(w1 − w2)ϕdx ≤ 0 for all ϕ ∈ V0 ∩ L2
+(Ω).

(4.19)

Testing (4.19) with the nonnegative function ϕ = (u1−u2)+, one concludes in
a similar way as in the proof of Lemma 4.5 that (u1 −u2)+ = 0; i.e., u1 ≤ u2.

��

4.1.3 Comparison Principle: Clarke’s Gradient Case

We now extend our considerations of the previous section to the BVP

u ∈ V0 : −Δu+ ∂j(u) � f in V ∗
0 , (4.20)

where f ∈ V ∗
0 , and ∂j : R → 2R \ {∅} is the generalized Clarke’s gradient of

a locally Lipschitz function j : R → R that is assumed to fulfill the following
structure and growth conditions:

(H1) A constant c1 ≥ 0 exists such that

η1 ≤ η2 + c1(s2 − s1)

for all ηi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
(H2) A constant c2 ≥ 0 exists such that

|η| ≤ c2(1 + |s|), η ∈ ∂j(s),

for all s ∈ R.

A model for a generalized Clarke’s gradient satisfying (H1) and (H2) is
illustrated in Fig. 1.4. The graph of ∂j given in Fig. 1.4 can easily be seen to
have a representation in the form

∂j(s) = ∂j1(s) − ∂j2(s), s ∈ R, (4.21)
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Fig. 4.1. Graph of ∂j1 Fig. 4.2. Graph of ∂j2

where ∂ji, i = 1, 2, are the maximal monotone graphs shown in Fig. 4.1 and
Fig. 4.2 with ∂j2(s) = {c1s}, c1 > 0, being a line having a positive slope; i.e.,
in this case, we have

∂j(s) + c1s = ∂j1(s), s ∈ R, (4.22)

which implies (H1). The notion of sub- and supersolution for the BVP (4.20)
that is similar to the one for the special BVP (4.10) is given by the following
definition.

Definition 4.8. The function u (ū) ∈ V = W 1,2(Ω) is a subsolution (su-
persolution) of the inclusion problem (4.20) if there is a function w (w̄) ∈
L2(Ω) ⊂ V ∗

0 such that

(i) u ≤ 0 (ū ≥ 0) on ∂Ω.
(ii) w(x) ∈ ∂j(u(x)) (w̄(x) ∈ ∂j(ū(x))) for a.e. x ∈ Ω.
(iii) −Δu+ w ≤ f (−Δū+ w̄ ≥ f) in V ∗

0 .

Note that problem (4.20), in general, is not uniquely solvable. To see this,
consider for example the special case

j(s) = −λ
2
s2, f = 0,

where λ may be any eigenvalue of the Laplacian. The function s 
→ −λ
2 s

2 is
locally Lipschitz with ∂j(s) = {−λs}, and thus, hypotheses (H1) and (H2)
are trivially satisfied. However, in this case, the BVP (4.20), which reduces to
the eigenvalue problem

u ∈ V0 : Δu+ λu = 0 in V ∗
0
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is not uniquely solvable. Consequently, sub- and supersolutions of (4.20) need
not be order related; i.e., Lemma 4.5 of the previous section no longer holds
for inclusions of Clarke’s gradient type. However, we are going to prove an
existence and comparison principle for (4.20) under hypotheses (H1) and (H2),
which basically asserts the existence of solutions of (4.20) within the interval
formed by an ordered pair of sub- and supersolutions. Furthermore, we will
show that the set of all solutions of (4.20) contained in the interval of sub- and
supersolutions has extremal elements and is compact. The relatively simple
structure of the BVP (4.20) allows for its treatment to use only very basic
tools. The next two lemmas provide some preliminary results that will be used
in the proof of the main existence and comparison principle of this section.

Lemma 4.9. Let s 
→ ∂j(s) be the generalized Clarke’s gradient of a locally
Lipschitz function j : R → R satisfying (H1). Then the multifunction s 
→
∂j(s) + c1s is a maximal monotone graph in R

2.

Proof: Hypothesis (H1) implies that the multifunction s 
→ ∂j(s) + c1s is
monotone. To prove that its graph is maximal monotone, let r, w ∈ R such
that

[w − (z + c1s)](r − s) ≥ 0, ∀ s ∈ R, ∀ z ∈ ∂j(s). (4.23)

We must show that w ∈ ∂j(r) + c1r. Assume w �∈ ∂j(r) + c1r. Then λ ∈ R,
λ �= 0 exists such that

max
ζ∈∂j(r)

(ζλ) < (w − c1r)λ. (4.24)

Let tn ↓ 0 and γn ∈ ∂j(r + tnλ). By (4.23), we may write

[w − (γn + c1(r + tnλ))](r − (r + tnλ)) ≥ 0,

or equivalently,
λ[w − (γn + c1(r + tnλ))] ≤ 0.

Along a relabeled subsequence, one has γn → γ with γ ∈ ∂j(r) (because ∂j
has closed graph in R

2). Passing to the limit in the previous inequality, we
get

λ[w − (γ + c1r)] ≤ 0;

that is,
(w − c1r)λ ≤ γλ,

which contradicts (4.24). ��

Lemma 4.10. Let j : R → R be a locally Lipschitz function satisfying (H1).
Then ĵ : R → R defined by

ĵ(s) = j(s) +
c1
2
s2
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is convex and locally Lipschitz, and its subdifferential is given by

∂ĵ(s) = ∂j(s) + c1 s,

where ∂j is the generalized Clarke’s gradient of j.

Proof: The function ĵ(s) = j(s)+ c1
2 s

2 is locally Lipschitz, and its generalized
Clarke’s gradient is given by ∂ĵ(s) = ∂j(s)+c1 s, which is a maximal monotone
graph according to Lemma 4.9. To complete the proof, we need to show that
ĵ is convex. By means of Lebourg’s Theorem (see Theorem 2.177) and using
the maximal monotonicity of the multifunction s 
→ ∂ĵ(s), we readily verify
that ∂ĵ : R → 2R \ {∅} is also maximal cyclic monotone, where ∂ĵ is called
cyclic monotone iff the inequality

s∗1(s1 − s2) + s∗2(s2 − s3) + · · · + s∗n(sn − sn+1) ≥ 0 (4.25)

holds for all si ∈ R and s∗i ∈ ∂ĵ(si), i = 1, . . . , n, and n ∈ N, where we set
sn+1 = s1. In fact we have

n∑
k=1

(ĵ(sk) − ĵ(sk+1)) = 0. (4.26)

(Note that sn+1 = s1.) By means of Lebourg’s Theorem, we get

ĵ(sk) − ĵ(sk+1) = ξ∗k(sk − sk+1), ξ∗k ∈ ∂ĵ(ξk), (4.27)

where ξk = sk + θk(sk+1 − sk) for some θk ∈ (0, 1). If s∗k ∈ ∂ĵ(sk), then the
following inequality holds:

(ξ∗k − s∗k)(sk − sk+1) ≤ 0. (4.28)

Thus, from (4.26) to (4.28) along with the maximal monotonicity of ∂ĵ, we
obtain (4.25).

A general result due to Rockafellar (see [222, Corollary 32.18] or [223,
Theorem 47.5]) asserts that the maximal cyclic monotonicity of a multifunc-
tion A : X → 2X∗

on the real Banach space X is equivalent to the existence
of a convex, proper, and lower semicontinuous function f : X → (−∞,+∞]
satisfying A = ∂f. Applying this result to the special multifunction ∂ĵ yields
the existence of a convex function j̃ : R → R defined on the entire real line
(and thus, j̃ is even locally Lipschitz) such that for its subdifferential we have
∂j̃ = ∂ĵ. As the function j̃ is uniquely determined to within a constant c, we
infer

ĵ(s) = j̃(s) + c, s ∈ R;

i.e., ĵ : R → R must be convex. ��

Now we are in a position to prove the following existence, comparison, and
compactness result.
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Theorem 4.11. Let u and ū be sub- and supersolutions of the differential
inclusion problem (4.20) that satisfy u ≤ ū. Then under hypotheses (H1)
and (H2), extremal solutions of (4.20) exist within the ordered interval [u, ū].
Moreover, the solution set S of all solutions of (4.20) lying in [u, ū] is compact.

Proof: First, we note that problem (4.20) is equivalent to the following one:

u ∈ V0 : −Δu+ ∂j(u) + c1u � f + c1u in V ∗
0 , (4.29)

where c1 ≥ 0 is the constant of (H1). With ĵ introduced in Lemma 4.10,
problem (4.20) is equivalent to

u ∈ V0 : −Δu+ ∂ĵ(u) � f + c1u in V ∗
0 , (4.30)

where ∂ĵ is the maximal monotone graph of the convex function ĵ (see Lemma
4.10) that satisfies a linear growth condition. The proof of the existence and
comparison result of (4.20) or equivalently of (4.30) formulated in the theorem
will be based on the following iteration:

un+1 ∈ V0 : −Δun+1 + ∂ĵ(un+1) � f + c1un in V ∗
0 . (4.31)

We remark that if un ∈ L2(Ω), then fn = f +c1un ∈ V ∗
0 and un+1 ∈ V0 is the

uniquely defined solution of the inclusion (4.31), which is of subdifferential
type. Let us start the iteration (4.31) with the given supersolution of (4.20);
i.e., u0 = ū. The first iterate u1 is the unique solution of the inclusion

u ∈ V0 : −Δu+ ∂ĵ(u) � f + c1u0 in V ∗
0 . (4.32)

As the supersolution u0 of (4.20) is also a supersolution of (4.32), it follows
by the comparison result for inclusions of subdifferential type according to
Lemma 4.7 (ii) that u1 ≤ u0. Assume un ≤ un−1. The iterates un+1 and un

are the unique solutions of (4.32) with right-hand sides fn = f + c1un and
fn−1 = f + c1un−1, respectively. In view of un ≤ un−1, we have fn ≤ fn−1,
and thus by applying the comparison result due to Lemma 4.7 (iii), it follows
that un+1 ≤ un. In a similar way by induction, we obtain u ≤ un for all
n ∈ N, and hence, our iteration (4.31) above with u0 = ū yields a monotone
decreasing sequence of iterates satisfying

u ≤ · · · ≤ un+1 ≤ un ≤ · · · ≤ u1 ≤ u0 = ū. (4.33)

From (4.33), the a.e. pointwise limit of the monotone sequence (un) exists;
i.e.,

un(x) → u∗(x) for a.e. x ∈ Ω.
Obviously u∗ ∈ [u, ū], and by applying Lebesque’s dominated convergence
theorem, we readily see that

un → u∗ in L2(Ω).
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We are going to show that u∗ is the greatest solution of (4.20) within the
ordered interval [u, ū]. As solutions of (4.31), the iterates un+1 satisfy

un+1 ∈ V0 : −Δun+1 + wn+1 = f + c1un in V ∗
0 , (4.34)

where wn+1 ∈ L2(Ω) ⊂ V ∗
0 and wn+1(x) ∈ ∂ĵ(un+1(x)). As ∂ĵ satisfies a

linear growth condition and because the sequence (un) is bounded in L2(Ω),
it follows that (wn) is bounded in L2(Ω) as well, which in view of (4.34)
implies the boundedness of (un) in V0 and, thus, the existence of a weakly
convergent subsequence. The compact embedding V0 ⊂ L2(Ω) in conjunction
with the monotonicity of the sequence (un) yield the weak convergence of the
entire sequence in V0; i.e.,

un ⇀ u∗ in V0.

Testing (4.34) with ϕ = un+1 − u∗, we obtain∫
Ω

|∇(un+1 − u∗)|2 dx = 〈f +Δu∗, un+1 − u∗〉

+
∫

Ω

(c1un − wn+1)(un+1 − u∗) dx. (4.35)

As (un) is weakly convergent in V0 and strongly convergent in L2(Ω), and
(wn) is bounded in L2(Ω), it follows that the right-hand side of (4.35) tends
to zero, which implies the strong convergence of (un) in V0. To show that the
limit u∗ is a solution of (4.20) or equivalently of (4.29), we note that the BVP
(4.31) is equivalent to the variational inequality

〈−Δun+1 − f − c1un, v − un+1〉 + (Ĵ ◦ i)(v) − (Ĵ ◦ i)(un+1) ≥ 0 (4.36)

for all v ∈ V0, where Ĵ : L2(Ω) → R is the convex and locally Lipschitz
functional generated by the convex function ĵ : R → R. Using the convergence
properties of the iterates, we may pass to the limit as n→ ∞ in (4.36), which
yields

〈−Δu∗ − f − c1u∗, v − u∗〉 + (Ĵ ◦ i)(v) − (Ĵ ◦ i)(u∗) ≥ 0

for all v ∈ V0, which is equivalent to

Δu∗ + f + c1u∗ ∈ ∂(Ĵ ◦ i)(u∗);

i.e., a w∗ ∈ L2(Ω) exists such that w∗(x) ∈ ∂ĵ(u∗(x)) for a.e. x ∈ Ω, and

Δu∗ + f + c1u∗ = w∗ in V ∗
0 . (4.37)

By Lemma 4.10, we have ∂ĵ(s) = ∂j(s)+c1 s, which implies w∗(x)−c1 u∗(x) ∈
∂j(u∗(x)), and thus from (4.37), we obtain
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−Δu∗ + η∗ = f in V ∗
0 ,

where η∗ = w∗−c1 u∗, which proves that u∗ is a solution of (4.20) lying within
[u, ū].

Next we show that u∗ is the greatest solution of (4.20) in [u, ū]. To this
end, let u be any solution of (4.20) [or equivalently of (4.29)] in [u, ū]. In
particular, u is then a subsolution of (4.29), and using the comparison result
of Lemma 4.7 (ii) and the induction principle, we get u ≤ un for all n ∈ N,
which proves u ≤ u∗; i.e., u∗ is the greatest solution.

Starting the iteration with the subsolution u0 = u, by similar arguments,
we can prove the existence of the smallest solution u∗ of (4.20) in [u, ū].

To complete the proof of the theorem, we are going to show that the
solution set S of all solutions of (4.20) in [u, ū] is compact. Let (un) ⊂ S be
any sequence. Obviously, (un) is bounded in L2(Ω) and satisfies the BVP

un ∈ V0 : −Δun + wn = f in V ∗
0 , (4.38)

where wn ∈ L2(Ω) satisfy wn(x) ∈ ∂j(un(x)) for a.e. x ∈ Ω. In view of the
linear growth of s 
→ ∂j(s), the sequence (wn) is bounded in L2(Ω), which
according to (4.38) implies the boundedness of (un) in V0. Thus, a subsequence
(uk) of (un) exists that is weakly convergent in V0 and strongly convergent
in L2(Ω) to the limit u. Replacing n by k in (4.38), and testing the resulted
equation with ϕ = uk − u ∈ V0, we obtain∫

Ω

|∇(uk − u)|2 dx = 〈Δu+ f, uk − u〉 −
∫

Ω

wk(uk − u) dx→ 0,

which implies the strong convergence of (uk) in V0. In the same way as for u∗

above, we can prove that the limit u is a solution of (4.20), which completes
the proof of the theorem. ��

4.2 Inclusions with Global Growth on Clarke’s Gradient

As a model problem we consider the following quasilinear elliptic inclusion
under homogeneous Dirichlet boundary condition governed by the p-Laplacian
Δp in the form:

u ∈ V0 : −Δpu+ f(u) + ∂j(u) � h in V ∗
0 , (4.39)

where V0 = W 1,p
0 (Ω), 1 < p < ∞, h ∈ V ∗

0 , and Ω is as in Sect. 4.1. The
multifunction ∂j : R → 2R \ {∅} is the generalized Clarke’s gradient of a
locally Lipschitz function j : R → R, and f : R → R is assumed to be a
continuous function. We impose the following hypotheses on ∂j and f .

(H1) A constant c1 ≥ 0 exists such that

η1 ≤ η2 + c1(s2 − s1)p−1

for all ηi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
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(H2) A constant c2 ≥ 0 exists such that

|η| ≤ c2(1 + |s|p−1), η ∈ ∂j(s)

for all s ∈ R.
(H3) A constant c3 ≥ 0 exists such that

|f(s)| ≤ c3(1 + |s|p−1 for all s ∈ R.

Remark 4.12. Note that for both the generalized Clarke’s gradient ∂j and
f, we have assumed by (H2) and (H3) a global growth condition. We will
see later how to deal with the more general case of local growth conditions.
Rather than to treat the case of local growth conditions for the inclusion
(4.39), we are going to consider this case in a general setting of quasilinear
elliptic inclusions. It will be done in the next section. We remark also that
the methodology to be developed for problem (4.39) can easily be extended to
inclusions with general quasilinear elliptic operators. Only for simplifying our
presentation and to emphasize the basic ideas, we have restricted ourselves in
this section to the p-Laplacian and a lower order term f that is independent
of the gradient.

The main goal of this section is to generalize the sub-supersolution method
introduced in Sect. 4.1 to problem (4.39). It should be noted that the extension
of the existence and comparison results obtained in Sect. 4.1 to problem (4.39)
is by no means straightforward and requires much more involved tools.

Let us denote V = W 1,p(Ω), V0 = W 1,p
0 (Ω), and let q be the Hölder con-

jugate to p with 1 < p <∞. Throughout this section, we assume hypotheses
(H1)–(H3). We first introduce the notion of solution and sub-supersolution
for problem (4.39).

Definition 4.13. The function u ∈ V0 is called a solution of (4.39) if there
is a function w ∈ Lq(Ω) ⊂ V ∗

0 such that

(i) w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.
(ii) 〈−Δpu+ f(u) + w,ϕ〉 = 〈h, ϕ〉 for all ϕ ∈ V0.

Definition 4.14. The function u (ū) ∈ V is a subsolution (supersolution) of
the inclusion problem (4.39) if there is a function w (w̄) ∈ Lq(Ω) ⊂ V ∗

0 such
that

(i) u ≤ 0 (ū ≥ 0) on ∂Ω.
(ii) w(x) ∈ ∂j(u(x)) (w̄(x) ∈ ∂j(ū(x))) for a.e. x ∈ Ω.
(iii) 〈−Δpu+ f(u) + w,ϕ〉 ≤ 〈h, ϕ〉 for all ϕ ∈ V0 ∩ Lp

+(Ω).
(〈−Δpū+ f(ū) + w̄, ϕ〉 ≥ 〈h, ϕ〉 for all ϕ ∈ V0 ∩ Lp

+(Ω)).

Remark 4.15. By using the definition of the generalized Clarke’s gradient ∂j
(see Sect. 2.5), one readily sees that any solution of (4.39) is a solution of the
following associated hemivariational inequality
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u ∈ V0 : 〈−Δpu+ f(u) − h, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

(4.40)

where jo(s; r) denotes the generalized directional derivative of j at s in the
direction r. The reverse is true only if j satisfies some additional regularity
condition in the sense of Clarke (see Definition 2.163). Comparison principles
for hemivariational inequalities will be studied in Chap. 6.

4.2.1 Preliminaries

We introduce the functional J : Lp(Ω) → R by

J(v) =
∫

Ω

j(v(x)) dx, ∀ v ∈ Lp(Ω).

Using the growth condition (H2) and Lebourg’s mean value theorem (see
Theorem 2.177), we note that the functional J is well defined and Lipschitz
continuous on bounded sets in Lp(Ω), thus locally Lipschitz. Moreover, the
Aubin–Clarke theorem (see Theorem 2.181) ensures that, for each u ∈ Lp(Ω),
we have

ξ ∈ ∂J(u) =⇒ ξ ∈ Lq(Ω) with ξ(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.

Consider now the multivalued operator ∂(J |V0) : V0 → 2V ∗
0 , where J |V0 : V0 →

R denotes the restriction of J to V0, which can be expressed by J |V0 = J ◦ i
with i : V0 → Lp(Ω) being the embedding operator.

Lemma 4.16. The multivalued operator ∂(J |V0) : V0 → 2V ∗
0 is bounded and

pseudomonotone in the sense of Definition 2.120.

Proof: By the chain rule (see Corollary 2.180), we have [note that V0 is dense
in Lp(Ω)]

∂(J |V0)(v) = ∂(J ◦ i)(v) = i∗∂J(i(v)) for all v ∈ V0, (4.41)

where i∗ denotes the adjoint operator to i. The growth condition (H2) en-
sures that ∂(J |V0) is bounded. As J : Lp(Ω) → R is locally Lipschitz, it fol-
lows that ∂(J |V0)(v) is nonempty for all v ∈ V0, and from Proposition 2.171
that ∂J(i(v)) is a convex and weak∗-compact subset of Lq(Ω) = (Lp(Ω))∗

satisfying
‖ζ‖q ≤ K, ∀ ζ ∈ ∂J(i(v)),

which implies that ∂(J |V0)(v) = i∗∂J(i(v)) is convex and closed in V ∗
0 . In

view of Proposition 2.123, the lemma is proved provided ∂(J |V0) : V0 → 2V ∗
0

is a generalized pseudomonotone operator in the sense of Definition 2.121.
To this end, let vn ⇀ v in V0 and wn ⇀ w in V ∗

0 with wn ∈ ∂(J |V0)(vn).
The compactness of the embedding V0 ⊂ Lp(Ω) implies that we have vn → v
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in Lp(Ω). Using the density of V0 in Lp(Ω), we know that wn ∈ ∂J(vn), so
(wn) is bounded in Lq(Ω). Thus, we obtain that wn ⇀ w in Lq(Ω) along a
subsequence. This result yields w ∈ ∂J(v) because u 
→ ∂J(u) is weak closed
from Lp(Ω) into Lq(Ω), and

〈wn, vn〉V ∗
0 ,V0 = 〈wn, vn〉Lq(Ω),Lp(Ω) → 〈w, v〉Lq(Ω),Lp(Ω) = 〈w, v〉V ∗

0 ,V0 ,

which proves the generalized pseudomonotonicity of the operator ∂(J |V0). ��

If F denotes the Nemytskij operator related with the continuous function
f , then in view of (H3), F : Lp(Ω) → Lq(Ω) is continuous and bounded. Thus,
by the compact embedding i : V0 → Lp(Ω), we have F : V0 → V ∗

0 is bounded
and completely continuous. As −Δp : V0 → V ∗

0 (1 < p < ∞) is continuous,
bounded, and strictly monotone, we obtain that −Δp + F : V0 → V ∗

0 is
a continuous, bounded, and pseudomonotone operator. Taking Lemma 4.16
into account and applying Theorem 2.124, we get the following result.

Lemma 4.17. The operator −Δp + F + ∂(J |V0) : V0 → 2V ∗
0 is bounded and

pseudomonotone.

Let B be the Nemytskij operator introduced in (3.50), which is generated
by the cutoff function b : Ω×R → R related to some ordered pair u ≤ ū in V
as follows:

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x).

(4.42)

We already know that B : Lp(Ω) → Lq(Ω) is bounded and continuous, and
thus, B : V0 → V ∗

0 is bounded and completely continuous (see Sect. 3.2.1).

Lemma 4.18. The operator −Δp +F +λB+∂(J |V0) : V0 → 2V ∗
0 is bounded,

pseudomonotone, and coercive provided λ > 0 is sufficiently large.

Proof: As B : V0 → V ∗
0 is bounded and completely continuous, from Lemma

4.17, it immediately follows that −Δp + F + λB + ∂(J |V0) : V0 → 2V ∗
0 is

bounded and pseudomonotone for any λ. Therefore, we only need to show its
coercivity when λ is sufficiently large. To this end, let w ∈ ∂(J |V0)(v). By
means of (H2), we get

|〈w, v〉| ≤
∫

Ω

|w v| dx ≤ c2
∫

Ω

(1 + |v|p−1)|v| dx ≤ C(‖v‖p + ‖v‖p
p), (4.43)

for some generic positive constant C, where ‖ · ‖p denotes the norm in Lp(Ω).
From (H3), we obtain

|〈F (v), v〉| ≤
∫

Ω

|f(v) v| dx ≤ C(‖v‖p + ‖v‖p
p), (4.44)
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and the estimate (3.54) of the cutoff function yields

〈B(v), v〉 =
∫

Ω

b(·, v) v dx ≥ c4‖v‖p
p − c5 (4.45)

for some positive constants c4 and c5. Thus, from (4.43) to (4.45), we obtain
the estimate

〈−Δpv + F (v) + λB(v) + w, v〉
≥ ‖∇v‖p

p + (λc4 − 2C)‖v‖p
p − 2C‖v‖p − λc5. (4.46)

Selecting λ > 2C/c4, estimate (4.46) implies the coercivity. ��

Let us consider the following auxiliary problem associated with (4.39):

u ∈ V0 : −Δpu+ f(u) + λ b(·, u) + ∂j(u) � h in V ∗
0 . (4.47)

An existence result for (4.47) is given by the following corollary.

Corollary 4.19. If λ > 0 is sufficiently large, then problem (4.47) possesses
solutions.

Proof: According to Lemma 4.18, the operator −Δp+F+λB+∂(J |V0) : V0 →
2V ∗

0 is bounded, pseudomonotone, and coercive. Therefore, by Theorem 2.125,
−Δp+F+λB+∂(J |V0) is surjective, i.e., range(−Δp+F+λB+∂(J |V0)) = V ∗

0 ,
which means that a u ∈ V0 exists such that h ∈ −Δpu + F (u) + λB(u) +
∂(J |V0)(u); i.e., there is a η ∈ ∂J(u) such that η ∈ Lq(Ω) with η(x) ∈ ∂j(u(x))
and

−Δpu+ F (u) + λB(u) + η = h in V ∗
0 ,

which means that u ∈ V0 is a solution of (4.47). ��

Lemma 4.20. Let (un) ⊂ V0 such that un ⇀ u in V0. If wn ∈ ∂(J |V0)(un) =
∂(J ◦ i)(un) ⊂ V ∗

0 , then wn = i∗(zn) with zn ∈ ∂J(un) ⊂ Lq(Ω), and a
subsequence (wk) of (wn) exists with wk = i∗(zk) → w = i∗(z) in V ∗

0 , where
zk ⇀ z in Lq(Ω) with z ∈ ∂J(u) and w = i∗(z) ∈ ∂(J |V0)(u). Moreover, the
limit z ∈ Lq(Ω) satisfies z(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.

Proof: As V0 ⊂ Lp(Ω) is densely embedded, the chain rule in Corollary
2.180 applies and yields ∂(J ◦ i)(u) = i∗∂J(i(u)) = i∗∂J(u) for all u ∈ V0,
where i∗ denotes the adjoint operator to the embedding i : V0 → Lp(Ω)
and ∂J : Lp(Ω) → 2Lq(Ω) is Clarke’s generalized gradient of the integral
functional J : Lp(Ω) → R. Therefore, wn ∈ ∂(J |V0)(un) are of the form wn =
i∗(zn) with zn ∈ ∂J(un). The weak convergence of the sequence (un) in V0

implies its strong convergence in Lp(Ω), which because of the local Lipschitz
continuity of J : Lp(Ω) → R results in the boundedness of (zn) in Lq(Ω),
and thus, a subsequence (zk) of (zn) exists with zk ⇀ z in Lq(Ω) and wk =
i∗(zk) → w = i∗(z) in V ∗

0 because of the compactness of the adjoint operator
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i∗. By Proposition 2.171, Clarke’s generalized gradient ∂J : Lp(Ω) → 2Lq(Ω)

is weak∗ closed from Lp(Ω) into Lq(Ω), where Lq(Ω) is equipped with the
weak∗ topology, which coincides with the weak topology from the reflexivity of
Lq(Ω). Hence, it follows that z ∈ ∂J(u) and w = i∗z ∈ i∗∂J(u) = ∂(J ◦ i)(u).
Moreover, in view of Theorem 2.181, we have z(x) ∈ j(u(x)) for a.e. x ∈ Ω,
which completes the proof. ��

Remark 4.21. Because the embedding i and its adjoint operator i∗ are injec-
tive, we usually identify w = i∗(z) ∈ ∂(J◦i)(u) ⊂ V ∗

0 with z ∈ ∂J(u) ⊂ Lq(Ω).
This identification will be used in what follows. We note that the result of
Lemma 4.20 has been applied already in the proof of Lemma 4.16.

4.2.2 Comparison and Compactness Results

The goal of this section is twofold. We first prove an existence, comparison,
and compactness result for problem (4.39), and then we show that the set of all
solutions within the ordered interval of sub- and supersolutions has extremal
elements.

Theorem 4.22. Let u and ū be sub- and supersolutions of (4.39) such that
u ≤ ū. Then problem (4.39) has solutions within the ordered interval [u, ū],
and the set S of all solutions of (4.39) contained in [u, ū] is compact in V0.

Proof: The proof will be given in two steps.

Step 1: Existence and Comparison

Consider the following auxiliary truncated problem:

u ∈ V0 : −Δpu+ f(Tu) + λ b(·, u) + ∂j(u) � h in V ∗
0 , (4.48)

where T is the usual truncation operator related to the given pair of sub- and
supersolutions (see Sect. 3.1.1). Let F ◦T be the composition of the Nemytskij
operator F with the truncation T . As T : Lp(Ω) → Lp(Ω) is bounded and
continuous, it follows that F ◦T : Lp(Ω) → Lq(Ω) is bounded and continuous
as well, and thus, F ◦ T : V0 → V ∗

0 is bounded and completely continuous.
Therefore, Corollary 4.19 can likewise be applied to problem (4.48), which
proves the existence of solutions of (4.48) for λ > 0 sufficiently large. To
complete the existence and comparison part of the proof, we only need to
show that any solution u of (4.48) is contained in the ordered interval [u, ū],
because then Tu = u and b(·, u) = 0, and thus, u must be a solution of (4.39)
in [u, ū]. Let us check that u ≤ ū, where u is a solution of (4.48); i.e., u ∈ V0

and

−Δpu+ f(Tu) + λ b(·, u) + w = h in V ∗
0 , (4.49)

with w ∈ Lq(Ω) and w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω. As ū is a supersolution
of (4.39), we have ū ≥ 0 on ∂Ω, and a function w̄ ∈ Lq(Ω) exists with
w̄(x) ∈ ∂j(ū(x)) for a.e. x ∈ Ω such that
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−Δpū+ f(ū) + w̄ ≥ h in V ∗
0 . (4.50)

Subtracting (4.50) from (4.49) and testing the resulted inequality with (u −
ū)+ ∈ V0 ∩ Lp

+(Ω), we obtain

〈−(Δpu−Δpū) + f(Tu) − f(ū) + w − w̄ + λb(·, u), (u− ū)+〉 ≤ 0. (4.51)

For the terms on the left-hand side of (4.51), the following relations can easily
be verified:

〈−(Δpu−Δpū), (u− ū)+〉 ≥ 0, (4.52)

〈f(Tu) − f(ū), (u− ū)+〉 =
∫

Ω

(f(Tu) − f(ū)(u− ū)+ dx = 0, (4.53)

〈λb(·, u), (u− ū)+〉 = λ
∫

Ω

[(u− ū)+]p dx. (4.54)

By means of (H1) and the properties of w and w̄, we get

〈w − w̄, (u− ū)+〉 =
∫
{u>ū}

(w − w̄)(u− ū) dx ≥ −c1
∫

Ω

[(u− ū)+]p dx.

(4.55)

Taking (4.52)–(4.55) into account from (4.51), we obtain the following esti-
mate:

(λ− c1)
∫

Ω

[(u− ū)+]p dx ≤ 0. (4.56)

If λ > 0 is chosen sufficiently large such that, in addition, λ > c1, then
from (4.56), we infer (u − ū)+ = 0; i.e., u ≤ ū. The proof of u ≤ u can be
done in a similar way, which completes Step 1.

Step 2: Compactness

Let S denote the set of all solutions of (4.39) within the interval [u, ū], which
is nonempty due to Step 1. Let (un) ⊂ S; i.e., un ∈ [u, ū] and

−Δpun + f(un) + wn = h in V ∗
0 , (4.57)

where wn ∈ Lq(Ω) with wn(x) ∈ ∂j(un(x)) for a.e. x ∈ Ω. As (un) is bounded
in Lp(Ω), it follows that both sequences (wn) and (f(un)) are bounded in
Lq(Ω) in view of (H2) and (H3), respectively. Thus, from (4.57), we imme-
diately get the boundedness of (un) in V0, which implies the existence of
subsequences (uk) of (un) and (wk) of (wn) satisfying

uk ⇀ u in V0 and wk ⇀ w in Lq(Ω). (4.58)

The compact embedding V0 ⊂ Lp(Ω) implies uk → u in Lp(Ω), which together
with (4.58) yields
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〈−Δpuk, uk − u〉 = 〈h, uk − u〉 −
∫

Ω

(f(uk) + wk)(uk − u) dx→ 0, (4.59)

and thus,

lim
k→∞

〈−Δpuk, uk − u〉 = 0. (4.60)

Relation (4.60) in conjunction with the (S+)-property of the p-Laplacian im-
plies the strong convergence of the subsequence (uk) in V0; i.e., uk → u in V0.
To complete the compactness proof, we only need to check that the limit u
belongs to S. By (4.58), we have wk ⇀ w in Lq(Ω), which implies wk → w
in V ∗

0 because of the compactness of the adjoint operator i∗ : Lq(Ω) → V ∗
0 .

Replacing n in (4.57) by k and taking into account the convergence properties
of (uk) and (wk) as well as the continuity of −Δp : V0 → V ∗

0 and F : V0 → V ∗
0

(F is even completely continuous), we may pass to the limit as k → ∞, which
yields

−Δpu+ f(u) + w = h in V ∗
0 .

Obviously u ∈ [u, ū], and thus, the proof is complete provided w can be shown
to satisfy w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω, because then u belongs to S. In
view of wk(x) ∈ ∂j(uk(x)), we obtain∫

Ω

wk(x)ϕ(x) dx ≤
∫

Ω

jo(uk(x);ϕ(x)) dx, ∀ ϕ ∈ Lp(Ω). (4.61)

As (uk) is, in particular, strongly convergent in Lp(Ω), a subsequence of (uk)
exists [again denoted by by (uk)], which is a.e. pointwise convergent; i.e.,

uk(x) → u(x) for a.e. x ∈ Ω.

The a.e. pointwise convergence, the weak convergence of (wk), and the upper
semicontinuity of (s, r) 
→ jo1(s; r) allows us to pass to the limit in (4.61),
which by applying Fatou’s Lemma results in∫

Ω

w(x)ϕ(x) dx ≤
∫

Ω

jo(u(x);ϕ(x)) dx, ∀ ϕ ∈ Lp(Ω). (4.62)

From the last inequality, we are going to deduce w(x) ∈ ∂j(u(x)). Note that
(4.62), in particular, holds for all ϕ ∈ Lp

+(Ω), which because r 
→ jo(s; r) is
positively homogeneous yields∫

Ω

w(x)ϕ(x) dx ≤
∫

Ω

jo(u(x); 1)ϕ(x) dx, ∀ ϕ ∈ Lp
+(Ω). (4.63)

Clarke’s generalized directional derivative jo satisfies (see Proposition
2.171)

jo(s; r) = max{ζr : ζ ∈ ∂j(s)}, (4.64)
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which implies the existence of a function w∗ : Ω → R such that

jo(u(x); 1) = w∗(x) for a.e. x ∈ Ω, (4.65)

where

w∗(x) = max{ζ : ζ ∈ ∂j(u(x))}. (4.66)

(Note: ∂j(s) is a nonempty, convex, and compact subset of R.) We next verify
that w∗ ∈ Lq(Ω). The function s 
→ jo(s; 1) is upper semicontinuous, and due
to (H2), it satisfies the growth condition

|jo(s; 1)| ≤ c2(1 + |s|p−1). (4.67)

By applying general approximation results for lower (respectively, upper)
semicontinuous functions in Hilbert spaces (see [8]), a sequence of locally Lips-
chitz functions exists converging pointwise to jo. It implies that s 
→ jo(s; 1) is
superpositionally measurable, which means that the function x 
→ jo(u(x); 1)
is measurable whenever u : Ω → R is measurable. Thus, in view of (4.65) and
(4.67), we infer that w∗ ∈ Lq(Ω), and (4.63) yields∫

Ω

w(x)ϕ(x) dx ≤
∫

Ω

w∗(x)ϕ(x) dx, ∀ ϕ ∈ Lp
+(Ω). (4.68)

From (4.68), it follows that

w(x) ≤ w∗(x) for a.e. x ∈ Ω. (4.69)

Testing (4.62) with nonpositive functions ϕ = −ψ where ψ ∈ Lp
+(Ω), we get

−
∫

Ω

w(x)ψ(x) dx ≤
∫

Ω

jo(u(x);−1)ψ(x) dx, ∀ ψ ∈ Lp
+(Ω). (4.70)

Similar arguments as before apply to ensure the existence of a function " ∈
Lq(Ω) such that

"(x) = max{−ζ : ζ ∈ ∂j(u(x))} = −min{ζ : ζ ∈ ∂j(u(x))}. (4.71)

Setting w∗ = −", we obtain from (4.70)

−
∫

Ω

w(x)ψ(x) dx ≤ −
∫

Ω

w∗(x)ψ(x) dx, ∀ ψ ∈ Lp
+(Ω),

and thus, ∫
Ω

w(x)ψ(x) dx ≥
∫

Ω

w∗(x)ψ(x) dx, ∀ ψ ∈ Lp
+(Ω), (4.72)

which implies that
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w(x) ≥ w∗(x) for a.e. x ∈ Ω. (4.73)

From (4.69) and (4.73), it follows that

w∗(x) ≤ w(x) ≤ w∗(x) for a.e. x ∈ Ω,

which in view of (4.66), (4.71), and w∗ = −" results in w(x) ∈ ∂j(u(x)) as
asserted. ��

Next we are going to show the existence of extremal solutions in S. A
crucial step toward this goal is to prove that S enjoys the property of direc-
tedness. This property, however, is an immediate consequence of the following
lemma.

Lemma 4.23. If u1, u2 ∈ S, then max{u1, u2} is a subsolution and min{u1,
u2} is a supersolution of the inclusion problem (4.39).

Proof: We first prove that u = max{u1, u2} is a subsolution of (4.39) where
uk, k = 1, 2, are solutions of (4.39) within [u, ū]; i.e.,

uk ∈ V0 : 〈−Δpuk + f(uk) + wk, ϕ〉 = 〈h, ϕ〉 for all ϕ ∈ V0, (4.74)

with wk ∈ Lq(Ω) and wk(x) ∈ ∂j(uk(x)) for a.e. x ∈ Ω. To this end, we
introduce the function w by

w(x) =

{
w1(x) if x ∈ {u1 ≥ u2} ,
w2(x) if x ∈ {u2 > u1} .

Obviously w ∈ Lq(Ω) and w(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω. Note that u ∈ V0,
and thus, u is a subsolution provided that u satisfies the following inequality:

〈−Δpu+ f(u) + w,ϕ〉 ≤ 〈h, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω). (4.75)

To verify (4.75), we employ a special test function technique that has been
developed in Sect. 3.1.2. For k = 1, we use in (4.74) the test function

ϕ = ψ (1 − θε(u2 − u1)) ∈ V0 ∩ Lp
+(Ω),

and for k = 2, we use the test function

ϕ = ψ θε(u2 − u1) ∈ V0 ∩ Lp
+(Ω),

where ψ ∈ D+ with

D+ = {ψ ∈ C∞
0 (Ω) : ψ ≥ 0 in Ω},

and for any ε > 0, the nondecreasing, piecewise differentiable function θε :
R → R is given by
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θε(s) =

⎧⎨⎩
0 if s ≤ 0 ,
1
ε s if 0 < s < ε ,
1 if s ≥ ε .

Applying the special test functions given above to (4.74) and adding the re-
sulted equations, we obtain∫

Ω

|∇u1|p−2∇u1∇ψ dx

+
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1)∇(ψ θε(u2 − u1)) dx

+
∫

Ω

(
f(u1)ψ + (f(u2) − f(u1))ψ θε(u2 − u1)

)
dx

+
∫

Ω

(
w1ψ + (w2 − w1)ψ θε(u2 − u1)

)
dx

= 〈h, ψ〉. (4.76)

By using

∇(ψ θε(u2 − u1)) = ∇ψ θε(u2 − u1) + ψ θ′ε(u2 − u1)∇(u2 − u1),

we can estimate the second integral on the left-hand side of (4.76) as follows:∫
Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1)∇(ψ θε(u2 − u1)) dx

≥
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1)∇ψ θε(u2 − u1) dx. (4.77)

With (4.77), we get from (4.76) the inequality∫
Ω

|∇u1|p−2∇u1∇ψ dx

+
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1)∇ψ θε(u2 − u1) dx

+
∫

Ω

(
f(u1)ψ + (f(u2) − f(u1))ψ θε(u2 − u1)

)
dx

+
∫

Ω

(
w1ψ + (w2 − w1)ψ θε(u2 − u1)

)
dx

≤ 〈h, ψ〉, (4.78)

which by passing to the limit as ε→ 0 yields∫
Ω

|∇u1|p−2∇u1∇ψ dx

+
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1)χ{u2−u1>0}∇ψ dx
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+
∫

Ω

(
f(u1) + (f(u2) − f(u1))χ{u2−u1>0}

)
ψ dx

+
∫

Ω

(
w1 + (w2 − w1)χ{u2−u1>0}

)
ψ dx

≤ 〈h, ψ〉, (4.79)

where
θε(u2 − u1) → χ{u2−u1>0} a.e. in Ω as ε→ 0,

and χ{u2−u1>0} is the characteristic function of the set {u2 − u1 > 0} =
{x ∈ Ω : u2(x) − u1(x) > 0}. Inequality (4.79) is, however, nothing else
but inequality (4.75), which proves that u = max{u1, u2} is a subsolution.
By analogous reasoning, one shows that min{u1, u2} is a supersolution that
completes the proof. ��

As an immediate consequence of Lemma 4.23 and Theorem 4.22, we obtain
the following corollary.

Corollary 4.24. The solution set S of (4.39) is directed and possesses ex-
tremal elements.

Proof: Let u1, u2 ∈ S. From Lemma 4.23, max{u1, u2} ∈ [u, ū] is a subsolu-
tion, and thus, by Theorem 4.22, a solution of (4.39) exists within the interval
[max{u1, u2}, ū], which shows that S is upward directed. In a similar way,
one can prove that S is also downward directed. The existence proof of the
greatest and smallest elements of S follows the same arguments as used in the
proof of Theorem 3.11 and is based on the directedness and compactness of
S. ��

Remark 4.25. Under the assumptions (H1) and (H2) on Clarke’s generalized
gradient, the results of this section can be extended to general quasilinear
elliptic inclusions in the form

−
N∑

i=1

∂

∂xi
ai(·, u,∇u) + f(·, u,∇u) + ∂j(·, u) � h, (4.80)

where ai : Ω × R × R
N → R satisfy the usual Leray–Lions conditions and

condition (H3) above is replaced by

|f(x, s, ξ)| ≤ k(x) + c3(|s|p−1 + |ξ|p−1)

with k ∈ Lq(Ω). The approach to treat boundary value problems for (4.80) is
closely related to methods that will be developed in Chap. 6 for quasilinear
hemivariational inequalities. Therefore, we refer to Chap. 6 for the general
problem (4.80). Instead in the next section we are going to deal with the
Dirichlet problem of quasilinear elliptic inclusions in the form (4.80) under lo-
cal growth conditions on the governing nonlinearities and Clarke’s generalized
gradient whose treatment requires different tools.
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4.3 Inclusions with Local Growth on Clarke’s Gradient

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω. In this

section, we consider the Dirichlet problem for the following general elliptic
inclusion:

Au+ Fu+ ∂j(·, u) � h in Ω, u = 0 on ∂Ω, (4.81)

where A is a second-order quasilinear differential operator in divergence form
of Leray–Lions type given by

Au(x) = −
N∑

i=1

∂

∂xi
ai(x, u(x),∇u(x)),

and F is the Nemytskij operator of the lower order terms generated by a
function f : Ω × R × R

N → R and defined by

Fu(x) = f(x, u(x),∇u(x)).

The function j : Ω × R → R is assumed to be the primitive vanishing at 0 of
some locally bounded and Borel measurable function g : Ω × R → R; i.e.,

j(x, s) =
∫ s

0

g(x, τ) dτ. (4.82)

Thus, j(x, ·) : R → R is locally Lipschitz and Clarke’s generalized gradient
∂j(x, ·) : R → 2R \ {∅} of j with respect to its second argument exists, which
is given by

∂j(x, s) := {ζ ∈ R : jo(x, s; r) ≥ ζ r, ∀ r ∈ R}, (4.83)

where jo(x, s; r) denotes the generalized directional derivative of j at s in
the direction r. As in the previous section, we set V = W 1,p(Ω) and V0 =
W 1,p

0 (Ω), 1 < p < ∞, and denote by V ∗ and V ∗
0 their corresponding dual

spaces, respectively.
The main goal of this section is to prove comparison, extremality, and

compactness results of the inclusion problem (4.81). Unlike in the previous
section, only a local growth condition on Clarke’s generalized gradient is im-
posed, which makes the treatment of problem (4.81) difficult, because now
the integral functional J generated by j(x, ·) is no longer locally Lipschitz
continuous. To overcome this difficulty, the approach here is based on a reg-
ularization technique combined with appropriate truncation and special test
function techniques.

4.3.1 Comparison Principle

We impose the following hypotheses of Leray–Lions type on the coefficient
functions ai, i = 1, . . . , N , of the operator A.
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(A1) Each ai : Ω × R × R
N → R satisfies the Carathéodory conditions;

i.e., ai(x, s, ξ) is measurable in x ∈ Ω for all (s, ξ) ∈ R × R
N and

continuous in (s, ξ) for almost all x ∈ Ω. A constant c0 > 0 and a
function k0 ∈ Lq(Ω) , 1/p+ 1/q = 1 exist, such that

|ai(x, s, ξ)| ≤ k0(x) + c0(|s|p−1 + |ξ|p−1) ,

for a.e. x ∈ Ω and for all (s, ξ) ∈ R × R
N .

(A2)
∑N

i=1(ai(x, s, ξ) − ai(x, s, ξ′))(ξi − ξ′i) > 0 for a.e. x ∈ Ω , for all s ∈ R,
and for all ξ, ξ′ ∈ R

N with ξ �= ξ′.
(A3)

∑N
i=1 ai(x, s, ξ)ξi ≥ ν|ξ|p − k1(x) for a.e. x ∈ Ω , for all s ∈ R, and for

all ξ ∈ R
N with some constant ν > 0 and some function k1 ∈ L1(Ω).

(A4) |ai(x, s, ξ) − ai(x, s′, ξ)| ≤ [k2(x) + |s|p−1 + |s′|p−1 + |ξ|p−1]ω(|s− s′|) ,
for some function k2 ∈ Lq(Ω), for a.e. x ∈ Ω , for all s, s′ ∈ R and for all
ξ ∈ R

N , where ω : [0,∞) → [0,∞) is a continuous function satisfying∫
0+

dr

ω(r)
= +∞ . (4.84)

Remark 4.26. Hypothesis (A4) is a condition on the modulus of continuity
and includes for example ω(r) = c r , for all r ≥ 0, with c > 0, i.e., a Lipschitz
condition of the coefficients ai(x, s, ξ) with respect to s.

As a consequence of (A1), the semilinear form a associated with the oper-
ator A by

〈Au,ϕ〉 := a(u, ϕ) =
N∑

i=1

∫
Ω

ai(x, u,∇u)
∂ϕ

∂xi
dx, for all ϕ ∈ V0

is well defined for any u ∈ V , and the operator A : V → V ∗
0 is continu-

ous and bounded. The notion of weak solution as well as of weak sub- and
supersolutions of problem (4.81) reads as follows.

Definition 4.27. A function u ∈ V0 is a solution of the BVP (4.81) if Fu ∈
Lq(Ω) and if there is a function v ∈ Lq(Ω) such that

(i) v(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω.
(ii) 〈Au,ϕ〉 +

∫
Ω

(Fu(x) + v(x))ϕ(x) dx = 〈h, ϕ〉, ∀ ϕ ∈ V0.

Definition 4.28. A function u ∈ V is called a subsolution of (4.81) if Fu ∈
Lq(Ω) and if there is a function v ∈ Lq(Ω) such that

(i) u ≤ 0 on ∂Ω.
(ii) v(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω.
(iii) 〈Au,ϕ〉 +

∫
Ω

(Fu(x) + v(x))ϕ(x) dx ≤ 〈h, ϕ〉, ∀ ϕ ∈ V0 ∩ Lp
+(Ω).

Similarly, a function ū ∈ V is a supersolution of (4.81) if the reversed inequal-
ities hold in Definition 4.28 with u and v replaced by ū and v̄, respectively.
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Remark 4.29. One possibility to determine sub- and supersolutions of (4.81)
is to replace the multivalued problem by the following single-valued one:

Au+ Fu+ ĝ(·, u) = h, in Ω, u = 0, on ∂Ω, (4.85)

where ĝ : Ω×R → R may be any single-valued selection of ∂j(·, u) such as the
functions g and ḡ given below. Then obviously any subsolution (supersolution)
of (4.85) is also a subsolution (supersolution) of the inclusion (4.81) according
to Definition 4.28.

Let u and ū be sub- and supersolutions of (4.81) such that u ≤ ū. We
assume the following local growth and structure conditions on g and f .

(H1) The function g : Ω × R → R satisfies:
(i) g is Borel-measurable in Ω × R, and g(x, ·) : R → R is locally

bounded.
(ii) Constants α > 0 and c1 ≥ 0 exist such that

g(x, s1) ≤ g(x, s2) + c1 (s2 − s1)p−1,

for a.e. x ∈ Ω, and for all s1, s2 with u(x)−α ≤ s1 < s2 ≤ ū(x)+α.
(iii) There is a function k3 ∈ Lq

+(Ω) such that

|g(x, s)| ≤ k3(x),

for a.e. x ∈ Ω, and for all s ∈ [u(x)− 2α, ū(x) + 2α], where α is as
in (ii).

(H2) f : Ω × R × R
N → R is a Carathéodory function, and a function k4 ∈

Lq
+(Ω) exists such that for some constant c2 ≥ 0, the following estimate

holds:
|f(x, s, ξ)| ≤ k4(x, t) + c2 |ξ|p−1,

for a.e. x ∈ Ω, for all ξ ∈ R
N , and for all s ∈ [u(x), ū(x)] .

Remark 4.30. First we note that the global growth conditions in the preceding
section imply the corresponding local growth conditions given here. Further-
more, from (H1)(i), Clarke’s generalized gradient ∂j(x, s) can be represented
in the form

∂j(x, s) = [g(x, s), ḡ(x, s)], for all s ∈ R, and a.e. x ∈ Ω, (4.86)

where
g(x, s) = lim

δ↓0
g

δ
(x, s), ḡ(x, s) = lim

δ↓0
ḡδ(x, s),

with
g

δ
(x, s) = ess inf

|t−s|<δ
g(x, t), ḡδ(x, s) = ess sup

|t−s|<δ

g(x, t).

Hypothesis (H1)(ii) implies that Clarke’s generalized gradient ∂j(x, s) fulfills
the condition: For ηi ∈ ∂j(x, si), i = 1, 2, we have
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η1 ≤ η2 + c1 (s2 − s1)p−1, (4.87)

for a.e. x ∈ Ω, and for all s1, s2 with u(x)−α ≤ s1 < s2 ≤ ū(x)+α. Condition
(4.87) will play a crucial role in the proof of the comparison and extremality
results.

In preparation for the comparison principle to be proved in this section,
we introduce truncation mappings T and Tα related with the given sub- and
supersolutions u and ū, respectively, as follows:

Tu(x) =

⎧⎨⎩
ū(x) if u(x) > ū(x),
u(x) if u(x) ≤ u(x) ≤ ū(x),
u(x) if u(x, t) < u(x),

and with α given in (H1)(ii), we define the truncation operator Tα by

Tαu(x) =

⎧⎨⎩
ū(x) + α if u(x) > ū(x) + α,
u(x) if u(x) − α ≤ u(x) ≤ ū(x) + α,
u(x) − α if u(x) < u(x) − α.

It is known that these truncation operators T , and Tα are continuous and
bounded from V into V (see Chap. 2). Furthermore, let ρ : R → R be a
mollifier function; that is, ρ ∈ C∞

0 ((−1, 1)), ρ ≥ 0 and∫ +∞

−∞
ρ(s) ds = 1.

For any ε > 0, we define the regularization gε of g with respect to the second
variable by the convolution; i.e.,

gε(x, s) =
1
ε

∫ +∞

−∞
g(x, s− ζ)ρ

(ζ
ε

)
dζ. (4.88)

From hypothesis (H1)(iii), it readily follows that for any u ∈ [u, ū] and for any
ε : 0 < ε < 2α, we get the estimate

|gε(x, t, u(x, t))| ≤ k3(x) . (4.89)

Let Gε denote the Nemytskij operator associated with gε. Then by means
of the truncation operator Tα, we define the regularized truncated Nemytskij
operator

Gε
α(u)(x) = (Gε ◦ Tα)(u)(x) = gε(x, Tαu(x)) . (4.90)

Finally, we use again the cutoff function b : Ω × R → R given by

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x),
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which is a Carathéodory function satisfying the growth condition

|b(x, s)| ≤ k5(x) + c3|s|p−1 (4.91)

for a.e. x ∈ Ω and for all s ∈ R, where c3 > 0 and k5 ∈ Lq(Ω). Moreover, we
have the following estimate:∫

Ω

b(x, u(x))u(x) dx ≥ c4‖u‖p
p − c5, ∀ u ∈ Lp(Ω), (4.92)

for some constants c4 > 0 and c5 > 0. Thus, by (4.91), the Nemytskij operator
B : Lp(Ω) → Lq(Ω) defined by

Bu(x) = b(x, u(x))

is continuous and bounded.
The main result of this subsection is the following comparison principle.

Theorem 4.31. Let hypotheses (A1)–(A3) and (H1), (H2) be satisfied. Then
the inclusion problem (4.81) possesses at least one solution u within the or-
dered interval [u, ū] formed by the given sub- and supersolution u and ū, re-
spectively.

Proof: The proof will be given in four steps.

Step 1: Existence result for an auxiliary problem.

We introduce the following regularized truncated BVP:

(Pε) ATu+ (F ◦ T )(u) +Gε
α(u) + λB(u) = h, in Ω, u = 0, on ∂Ω,

where F ◦ T is the composition of F and T , Gε
α is given by (4.90), and λ > 0

is some constant to be specified later. The operator AT is defined by

ATu(x) = −
N∑

i=1

∂

∂xi
ai(x, Tu(x),∇u(x)). (4.93)

By hypotheses (A1)–(A3) and the continuity of the truncation operator T :
V → V , it follows that the operator AT : V0 → V ∗

0 is continuous, bounded,
and pseudomonotone, and, moreover, the following estimate holds:

〈ATu, u〉 =
∫

Ω

N∑
i=1

ai(x, Tu,∇u)
∂u

∂xi
dx ≥ ν ‖∇u‖p

p − ‖k1‖1 (4.94)

for all u ∈ V0. The truncation operator T : V0 → [u, ū] ∩ V0 is bounded
and continuous, and from (H2), the Nemytskij operator F generated by f is
bounded and continuous from [u, ū]∩V0 into Lq(Ω) ⊂ V ∗

0 . Thus, the composed
operator F ◦ T : V0 → V ∗

0 given by
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〈(F ◦ T )(u), ϕ〉 =
∫

Ω

f(·, Tu(·),∇Tu(·))ϕdx for all ϕ ∈ V0,

is bounded and continuous, and the following estimate holds:

|〈(F ◦ T )(u), u〉| ≤
(
‖k4‖q + c2‖∇u‖p−1

p

)
‖u‖p (4.95)

for all u ∈ V0. Hypotheses (A1), (A2), and (H2) imply that the sum AT +F ◦T :
V0 → V ∗

0 is a pseudomonotone operator (cf. Theorem 2.109). The operators
Gε

α, B : Lp(Ω) → Lq(Ω) ⊂ V ∗
0 are continuous and bounded, and thus,

Gε
α, B : V0 → V ∗

0 are completely continuous from the compact embedding
V0 ⊂ Lp(Ω). Hence, it follows that the operator

A = AT + F ◦ T +Gε
α + λB : V0 → V ∗

0

is continuous, bounded, and pseudomonotone, and thus, by the main theorem
on pseudomonotone operators (see Theorem 2.99), A : V0 → V ∗

0 is surjective
provided that A is, in addition, coercive. By (H1)(iii), it follows that Gε

α :
Lp(Ω) → Lq(Ω) is uniformly bounded, and we have

|〈Gε
α(u), u〉| =

∫
Ω

|Gε
α(u)u dx| ≤ ‖k3‖q‖u‖p, for all u ∈ Lp(Ω). (4.96)

Young’s inequality yields for any η > 0

‖∇u‖p−1
p ‖u‖p ≤ η ‖∇u‖p

p + C(η)‖u‖p
p, (4.97)

where C(η) > 0 is some constant depending only on η. Thus, from (4.92),
(4.94), (4.95), (4.96), and (4.97) we obtain the estimate

〈Au, u〉 ≥ ν ‖∇u‖p
p − η ‖∇u‖p

p − C(η)‖u‖p
p + λ c4 ‖u‖p

p

−
(
‖k3‖q + ‖k4‖q

)
‖u‖p − λc5 − ‖k1‖1. (4.98)

Selecting η small enough such that η < ν, and choosing the parameter λ
sufficiently large such that the inequality λ c4 − C(η) > 0 holds, we see from
(4.98) that A is coercive, which completes the existence proof of problem (Pε).

Step 2: Convergence of some subsequence of solutions of (Pε).

Let (εn) be a sequence such that εn ∈ (0, α) and εn → 0 as n→ ∞. From the
previous step, we know that for all n, problem (Pεn

) has at least one solution,
which will be denoted by un. The coercivity of the operator A implies that the
sequence (un) of solutions of (Pεn) is bounded in V0. We are going to prove
the following convergence properties of some subsequence of (un), which is
again denoted by (un):

(i) un ⇀ u (weakly) in V0 as n→ ∞.
(ii) un → u (strongly) in Lp(Ω) as n→ ∞.
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(iii) Gεn
α (un)⇀ v (weakly) in Lq(Ω) as n→ ∞, where v(x) ∈ ∂j(x, (Tαu)(x))

for a.e. x ∈ Ω.

Properties (i) and (ii) readily follow from the fact that V0 is reflexive and
V0 ⊂ Lp(Ω) is compactly embedded. The first part of (iii) is a consequence
of the boundedness of (Gεn

α (un)) in Lq(Ω), which implies the existence of a
weakly convergent subsequence in Lq(Ω) with weak limit v. To complete the
proof for (iii), we need to show that v(x) ∈ ∂j(x, (Tαu)(x)) for a.e x ∈ Ω,
which in view of (4.86) is equivalent to

v(x) ∈ [g(x, (Tαu)(x)), ḡ(x, (Tαu)(x))]. (4.99)

The strong convergence of un → u in Lp(Ω) and the continuity of the trunca-
tion operator Tα imply the strong convergence of Tαun → Tαu in Lp(Ω). By
the definition of the regularization gε according to (4.88), we get the inequality

ess inf
|s−(Tαun)(x)|<εn

g(x, s) ≤ gεn(x, (Tαun)(x)) ≤ ess sup
|s−(Tαun)(x)|<εn

g(x, s).

(4.100)

The strong convergence of (Tαun) in Lp(Ω) implies the almost everywhere
convergence of some subsequence [again denoted by (Tαun)]. By applying
Egoroff’s theorem (see Theorem 2.66), for any δ > 0, there is a measurable
subset E ⊂ Ω with Lebesgue measure |E| < δ such that

Tαun → Tαu (uniformly) in Ω \ E .

Let " ∈ (0, α) arbitrarily be given. Then from the uniform convergence of
Tαun in Ω \ E and because of εn → 0, there is a N(") such that for all
n > N(") we have

0 < εn < "/2 and |(Tαun)(x) − (Tαu)(x)| < "/2, ∀ x ∈ Ω \ E . (4.101)

Thus, from (4.100) and (4.101), we get for x ∈ Ω \ E and n > N(")

gεn(x, (Tαun)(x)) ≤ ess sup
|s−(Tαun)(x)|<�/2

g(x, s) ≤ ess sup
|s−(Tαu)(x)|<�

g(x, s), (4.102)

and similarly

gεn(x, (Tαun)(x)) ≥ ess inf
|s−(Tαun)(x)|<�/2

g(x, s) ≥ ess inf
|s−(Tαu)(x)|<�

g(x, s). (4.103)

From (4.102) and (4.103), we obtain for all n > N(")

g
�
(x, (Tαu)(x)) ≤ gεn(x, (Tαun)(x)) ≤ ḡ�(x, (Tαu)(x)) (4.104)

for all x ∈ Ω\E. Let χ{Ω\E} denote the characteristic function of the set Ω\E,
and let ϕ ∈ Lp

+(Ω). As gεn(·, (Tαun)(·)) = Gεn
α (un)⇀ v weakly in Lq(Ω), we
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obtain from (4.104) by multiplying the inequality with ϕχ{Ω\E} ∈ Lp
+(Ω),

integrating over Ω, and passing to the limit as n→ ∞ the following inequality:∫
Ω

g
�
(x, (Tαu)(x))ϕ(x)χ{Ω\E}(x) dx ≤

∫
Ω

v(x)ϕ(x)χ{Ω\E}(x) dx

≤
∫

Ω

ḡ�(x, (Tαu)(x))ϕ(x)χ{Ω\E}(x) dx,

which yields for any ϕ ∈ Lp
+(Ω \ E)∫

Ω\E

g
�
(x, (Tαu)(x))ϕ(x) dx ≤

∫
Ω\E

v(x)ϕ(x) dx

≤
∫

Ω\E

ḡ�(x, (Tαu)(x))ϕ(x) dx. (4.105)

Inequality (4.105) holds for any " ∈ (0, α), and thus by applying Fatou’s
lemma (see Theorem 2.65), we get as "→ 0∫

Ω\E

g(x, (Tαu)(x))ϕ(x) dx ≤
∫

Ω\E

v(x)ϕ(x) dx

≤
∫

Ω\E

ḡ(x, (Tαu)(x))ϕ(x) dx

for all ϕ ∈ Lp
+(Ω \ E), which yields

v(x) ∈ [g(x, (Tαu)(x)), ḡ(x, (Tαu)(x))], for a.e. x ∈ Ω \ E. (4.106)

As the Lebesgue measure |E| < δ and δ > 0 may be arbitrarily small, the
inclusion (4.106) must hold for a.e. x ∈ Ω, which completes the proof of (iii);
i.e., we have for a.e. x ∈ Ω

v(x) ∈ [g(x, (Tαu)(x)), ḡ(x, (Tαu)(x))] = ∂j(x, (Tαu)(x)). (4.107)

Step 3: Passage to the limit in (Pεn
).

Let (un) be a sequence of solutions of (Pεn
) for εn → 0 with the convergence

properties (i), (ii), and (iii) of the previous Step 2, i.e., un satisfies

(Pεn) un ∈ V0 : 〈ATun + (F ◦ T )un +Gεn
α (un) + λBun, ϕ〉 = 〈h, ϕ〉

for all ϕ ∈ V0. Hypotheses (A1)–(A3), (H2), and the fact that the truncation
operator T : V0 → V0∩[u, ū] is continuous and bounded imply that AT +F ◦T :
V0 → V ∗

0 possesses the so-called (S+)-property (cf. Theorem 2.109), which
means that

un ⇀ u in V0 and lim sup
n→∞

〈(AT + F ◦ T )un, un − u〉 ≤ 0
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implies un → u (strongly) in V0. From (Pεn), we obtain with ϕ = un − u

〈(AT + F ◦ T )un, un − u〉
= 〈Gεn

α (un) + λBun, u− un〉 + 〈h, un − u〉

=
∫

Ω

(
Gεn

α (un) + λBun

)
(u− un) dx+ 〈h, un − u〉. (4.108)

As B : Lp(Ω) → Lq(Ω) is continuous and bounded, and Gεn
α (un)⇀ v weakly

in Lq(Ω), the right-hand side of (4.108) tends to zero if un ⇀ u in V0, which
from the (S+)-property of AT + F ◦ T implies the strong convergence of (un)
in V0. This result allows the passage to the limit as n → ∞ in (Pεn), which
yields the following problem (P0) for the limit u:

(P0) u ∈ V0 : 〈ATu+ (F ◦ T )u+ v + λB(u), ϕ〉 = 〈h, ϕ〉

for all ϕ ∈ V0, where v ∈ Lq(Ω) satisfies v(x) ∈ ∂j(x, (Tαu)(x)) for a.e. x ∈ Ω.

Step 4: Comparison: u ≤ u ≤ ū.

We complete the proof of the theorem by showing that any solution u of (P0)
satisfies u ≤ u ≤ ū, because then we have Tu = u, and Tαu = u, which shows
that ATu = Au, v(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω and (F ◦ T )u = Fu, and
Bu = 0, and therefore, any solution u of (P0) must be a solution of the original
inclusion problem (4.81) satisfying u ≤ u ≤ ū. Let us first prove u ≤ ū. To
this end, recall that ū ∈ V is a supersolution of (4.81); i.e., ū ≥ 0 on ∂Ω and
there is a v̄ ∈ Lq(Ω) such that v̄(x) ∈ ∂j(x, ū(x)) for a.e. x ∈ Ω, and

〈Aū+ Fū+ v̄, ϕ〉 ≥ 〈h, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω). (4.109)

Subtracting (4.109) from (P0) and taking the special nonnegative test function
ϕ = (u− ū)+ ∈ V0, we obtain

〈ATu−Aū+ (F ◦ T )u− Fū+ v − v̄ + λBu, (u− ū)+〉 ≤ 0 . (4.110)

The definition of AT given in (4.93) in conjunction with (A2) yields

〈ATu−Aū, (u− ū)+〉

=
∫

Ω

N∑
i=1

(
ai(x, Tu,∇u) − ai(x, ū,∇ū)

) ∂(u− ū)+
∂xi

dx

=
∫
{u>ū}

N∑
i=1

(
ai(x, ū,∇u) − ai(x, ū,∇ū)

) ∂(u− ū)
∂xi

dx ≥ 0. (4.111)

The second difference in (4.110) results in

〈(F ◦ T )u− Fū, (u− ū)+〉

=
∫

Ω

(
f(·, Tu,∇Tu) − f(·, ū,∇ū)

)
(u− ū)+ dx
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=
∫
{u>ū}

(
f(·, ū,∇ū) − f(·, ū,∇ū)

)
(u− ū) dx = 0. (4.112)

If x ∈ {u > ū}, we see from the definition of Tα that ū(x) < (Tαu)(x) ≤
ū(x) + α, from which we infer by using hypothesis (H1)(ii)

v̄(x) − v(x) ≤ c1
(
(Tαu)(x) − ū(x)

)p−1

.

As (Tαu)(x) ≤ u(x) for x ∈ {u > ū}, we get from the last inequality

〈v̄ − v, (u− ū)+〉 =
∫
{u>ū}

(v̄(x) − v(x))(u(x) − ū(x)) dx

≤ c1
∫
{u>ū}

(u(x) − ū(x))p dx. (4.113)

The last term on the left-hand side of (4.110) becomes

λ 〈Bu, u− ū)+〉 = λ
∫
{u>ū}

(u(x) − ū(x))p dx. (4.114)

Taking into account the estimates (4.111)–(4.114), we finally get from (4.110)
the inequality

(λ− c1)
∫
{u>ū}

(u(x) − ū(x))p dx ≤ 0. (4.115)

According to Step 1, the parameter λ was chosen to satisfy λ > C(η)/c4.
Thus, λ can be selected such that

λ > max

{
C(η)
c4

, c1

}

is satisfied, which by (4.115) implies that∫
{u>ū}

(u(x) − ū(x))p dx =
∫

Ω

[(u(x) − ū(x))+]p dx = 0,

and hence, it follows that (u(x) − ū(x))+ = 0 for a.e. x ∈ Ω; i.e., u ≤ ū a.e.
in Ω. In a similar way, we can prove u ≤ u, which completes the proof of the
theorem. ��

4.3.2 Compactness and Extremality Results

Let S denote the set of all solutions of the inclusion problem (4.81) within the
ordered interval [u, ū] of sub- and supersolutions. In view of Theorem 4.31,
S is nonempty. In this section, we are going to show that S is compact and
directed, which in turn immediately implies the existence of extremal elements
of S.
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Theorem 4.32. Let hypotheses (A1)–(A3) and (H1), (H2) be satisfied. Then
the solution set S of all solutions of (4.81) within [u, ū] is a compact subset
of V0.

Proof: Let (un) be any sequence in S. We have to show that there is a
subsequence of (un) that is strongly convergent in V0 to some u ∈ S. By
definition of S, we have un ∈ [u, ū], and

un ∈ V0 : 〈Aun + F (un) + vn, ϕ〉 = 〈h, ϕ〉 , for all ϕ ∈ V0, (4.116)

where vn ∈ Lq(Ω) satisfies vn(x) ∈ ∂j(x, un(x)) for a.e. x ∈ Ω. In view of
hypothesis (A3), we get an estimate

〈Aun, un〉 ≥ ν ‖∇un‖p
p − ‖k1‖1, (4.117)

and by (H2) and Young’s inequality, the following estimate is readily verified:

|〈F (un), un〉| ≤
∫

Ω

|f(·, un,∇un)un| dx

≤
(
‖k4‖q + ‖∇un‖p−1

p

)
‖un‖p

≤ C(ε) + ε ‖∇un‖p
p, (4.118)

for any ε > 0. For (4.118), we have used that (un) is bounded in Lp(Ω) from
un ∈ [u, ū]. From (H1)(iii), we see that (vn) is bounded in Lq(Ω), which shows
that

|〈vn, un〉| ≤ ‖vn‖q ‖un‖p ≤ c. (4.119)

Again by Young’s inequality, the following inequality holds for any δ > 0:

|〈h, un〉| ≤ ‖h‖V ∗
0
‖un‖V0 ≤ C(δ) + δ ‖∇un‖p

p, (4.120)

where we have used that ‖u‖ = ‖∇u‖p defines an equivalent norm in V0.
Thus, from (4.116), with the special test function ϕ = un, and using estimates
(4.117)–(4.120), we obtain the inequality

(ν − ε− δ) ‖∇un‖p
p ≤ C(δ, ε),

where C(δ, ε) is some constant depending only on δ and ε. Selecting ε and δ
sufficiently small such that ε+δ < ν, we see from the last inequality that (un)
is bounded in V0. Thus, subsequences of (un) and (vn) exist, denoted by (uk)
and (vk), respectively, such that

uk ⇀ u in V0, vk ⇀ v in Lq(Ω). (4.121)

The weak convergence of (uk) in V0 implies the strong convergence in Lp(Ω)
by the compact embedding V0 ⊂ Lp(Ω). Taking, in addition, the boundedness
of (un) in V0 into account, we get from (4.116)
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lim sup
k

〈Auk, uk − u〉 ≤ 0, (4.122)

which because of the (S+)-property of the operator A implies the strong con-
vergence uk → u in V0. Passing to the limit in (4.116) as k → ∞ results in
the following equation for the strong limit u:

u ∈ V0 : 〈Au+ F (u) + v, ϕ〉 = 〈h, ϕ〉 , for all ϕ ∈ V0.

The proof of the compactness is complete provided v satisfies v(x) ∈ ∂j(x, u(x))
for a.e. x ∈ Ω. To this end, recall that vk ⇀ v in Lq(Ω), and for a.e. x ∈ Ω,
we have

vk(x) ∈ ∂j(x, uk(x)) = [g(x, uk(x)), ḡ(x, uk(x))].

Note that the multivalued mapping s 
→ ∂j(x, s) = [g(x, s), ḡ(x, s)] is upper
semicontinuous (see Proposition 2.171), and thus s 
→ ḡ(x, s) is an upper
semicontinuous function and s 
→ g(x, s) is a lower semicontinuous function.
With ϕ ∈ Lp

+(Ω) arbitrarily given, we get∫
Ω

g(x, uk(x))ϕ(x) dx ≤
∫

Ω

vk(x)ϕ(x) dx ≤
∫

Ω

ḡ(x, uk(x))ϕ(x) dx.

The strong convergence of (uk) in Lp(Ω) implies the a.e. pointwise convergence
of some subsequence, which is again denoted by (uk). Using vk ⇀ v in Lq(Ω),
uk → u in Lp(Ω), and a.e. pointwise in Ω as well as the upper semicontinuity
of ḡ(·, s) and the lower semicontinuity of g(·, s) with respect to s, we deduce
by applying Fatou’s lemma that∫

Ω

g(x, u(x))ϕ(x) dx ≤
∫

Ω

v(x)ϕ(x) dx ≤
∫

Ω

ḡ(x, u(x))ϕ(x) dx,

which shows that g(x, u(x)) ≤ v(x) ≤ ḡ(x, u(x)) for a.e. x ∈ Ω. This process
completes the proof. ��

Lemma 4.33. Let hypotheses (A1)–(A4) and (H1), (H2) be satisfied. If u1,
u2 ∈ S, then max{u1, u2} is a subsolution and min{u1, u2} is a supersolution
of the inclusion problem (4.81).

Proof. Denote u = max{u1, u2}, and define a function v : Ω → R by

v(x) =
{
v1(x) if x ∈ {u1 ≥ u2},
v2(x) if x ∈ {u2 > u1},

where vk ∈ Lq(Ω) satisfy vk(x) ∈ ∂j(x, uk(x)) for a.e. x ∈ Ω, k = 1, 2, and

〈Auk + F (uk) + vk, ϕ〉 = 〈h, ϕ〉 for all ϕ ∈ V0. (4.123)

Obviously, u ∈ V0 and v ∈ Lq(Ω) satisfies v(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω.
Thus, u = max{u1, u2} is a subsolution of (4.81) provided we can verify the
following inequality:
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〈Au+ F (u) + v, ϕ〉 ≤ 〈h, ϕ〉 for all ϕ ∈ V0 ∩ Lp
+(Ω). (4.124)

To prove inequality (4.124), we employ the ideas used in the proof of Lemma
4.23 of the previous section. However, from the dependence of the coefficients
ai on both ∇u and u, a more involved special test function technique is needed
that is related with the modulus of continuity of ai(·, u,∇u) with respect to
u [see (A4)]. As this technique has already been used in the proof of Theorem
3.20 of Chap. 3, we may confine ourself to a sketch of the proof of inequality
(4.124). As in Sect. 4.2 for k = 1, we use in (4.123) the test function

ϕ = ψ (1 − θε(u2 − u1)) ∈ V0 ∩ Lp
+(Ω),

and for k = 2, we use the test function

ϕ = ψ θε(u2 − u1) ∈ V0 ∩ Lp
+(Ω),

where ψ ∈ D+ with

D+ = {ψ ∈ C∞
0 (Ω) : ψ ≥ 0 in Ω}.

However, unlike in the previous section, the function θε : R → R is defined
as follows. In view of hypothesis (A4), for any fixed ε > 0, δ(ε) ∈ (0, ε) exists
such that ∫ ε

δ(ε)

1
ω(r)

dr = 1.

Using this property, we define

θε(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < δ(ε),∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε,

1 if s > ε.

(4.125)

Obviously, for each ε > 0, θε is continuous, piecewise differentiable and the
derivative is nonnegative and bounded. Thus, the function θε is Lipschitz
continuous and nondecreasing and moreover, it satisfies

θε → χ{s>0} a.e. as ε→ 0,

where χ{s>0} is the characteristic function of the set {s > 0} = {s ∈ R : s >
0}. In addition, we have

θ′ε(s) =

⎧⎨⎩
1
ω(s)

if δ(ε) < s < ε,

0 if s �∈ [δ(ε), ε].
(4.126)

Taking in (4.123) for k = 1, 2 the test functions specified above and adding
the resulted equations, we get
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〈Au1 + F (u1) + v1, ψ〉
+〈Au2 −Au1 + F (u2) − F (u1) + v2 − v1, θε(u2 − u1)ψ〉

= 〈h, ψ〉. (4.127)

Applying hypothesis (A4) and passing to the limit in (4.127) as ε → 0, we
finally arrive at

〈Au+ F (u) + v, ψ〉 ≤ 〈h, ψ〉 for all ψ ∈ D+. (4.128)

As D+ is dense in V0 ∩Lp
+(Ω), from (4.128), we obtain (4.124). The proof for

min{u1, u2} being a supersolution can be done in a similar way. ��

As an immediate consequence of Theorem 4.32 and Lemma 4.33, we obtain
the following extremality result.

Theorem 4.34. Under hypotheses (A1)–(A4) and (H1), (H2), the solution
set S of all solutions of (4.81) within [u, ū] possesses extremal elements.

Proof: Lemma 4.33 implies that S is a directed set, which due to Theorem
4.32, is also compact. With these two properties of S, the proof of the exis-
tence of extremal elements follows now the same arguments as in the proof of
Theorem 3.22 in Chap. 3. ��

4.4 Application: Difference of Multifunctions

In this section, we consider the Dirichlet problem of an elliptic inclusion whose
governing multivalued term is given by the difference of Clarke’s generalized
gradient of some locally Lipschitz function s 
→ j(·, s) and the subdifferential
of some convex function s 
→ β(·, s). More precisely, the following problem
will be considered:

Au+ ∂j(·, u) − ∂β(·, u) � f, in Ω, u = 0, on ∂Ω, (4.129)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary ∂Ω and A is

a second-order quasilinear differential operator in divergence form of Leray–
Lions type of the form

Au(x) = −
N∑

i=1

∂

∂xi
ai(x,∇u(x)). (4.130)

Even though the function s 
→ j(·, s) − β(·, s) is locally Lipschitz, its genera-
lized Clarke’s gradient, in general, only satisfies

∂(j(·, s) − β(·, s)) ⊂ ∂j(·, s) − ∂β(·, s).

Therefore, any solution of
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Au+ ∂(j(·, u) − β(·, u)) � f, in Ω, u = 0, on ∂Ω,

is also a solution of problem (4.129). However, the reverse may be not true.
Moreover, the multifunction s 
→ ∂j(·, s) − ∂β(·, s) does not satisfy the one-
sided growth condition (H1)(ii), and thus, (4.129) cannot be reduced to those
considered in the previous section, and it requires a new approach. How-
ever, we will see that methods and results of the previous sections can effec-
tively be used in the treatment of (4.129). Moreover, without assuming sub-
supersolutions for (4.129), we are going to prove the existence of extremal
solutions and the compactness of its solution set provided certain growth con-
ditions are satisfied. In this sense, the latter can be regarded as sufficient
conditions for the existence of sub-supersolutions. The purpose of this section
is on the one hand to enlarge the class of the multifunctions and on the other
hand to provide a substitute for the existence of sub-supersolutions.

4.4.1 Hypotheses and Main Result

We basically use the notation of Sect. 4.3, and we assume hypotheses (A1)–
(A3) for the coefficients ai : Ω ×R

N → R of the operator A given by (4.130).
Only for the sake of simplicity, the coefficients ai(·,∇u) are supposed to be
independent of u. Note that in this case hypothesis (A4) is empty. As in Sect.
4.3, the function j : Ω×R → R is assumed to be the primitive of some locally
bounded and Borel-measurable function g : Ω × R → R; i.e.,

j(x, s) =
∫ s

0

g(x, τ) dτ.

The function β : Ω × R → R is assumed to be the primitive of some Borel-
measurable function h : Ω × R → R that is monotone nondecreasing in its
second variable; i.e.,

β(x, s) =
∫ s

0

h(x, τ) dτ. (4.131)

Thus, β(x, ·) : R → R is convex with ∂β(x, ·) : R → 2R \ {∅} denoting the
usual subdifferential of β with respect to its second argument, and we have

∂β(x, s) = [h(x, s), h̄(x, s)], (4.132)

where h and h̄ denote the left-sided and right-sided limits of h, respectively,
with respect to the second argument.

As for the function g related with j and the function h related with β, we
assume the following hypotheses.

(B1) The function g : Ω × R → R satisfies
(i) g is Borel-measurable in Ω × R, and g(x, ·) : R → R is locally

bounded.
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(ii) A constant c1 ≥ 0 exists such that

g(x, s1) ≤ g(x, s2) + c1 (s2 − s1)p−1,

for a.e. x ∈ Ω, and for all s1 , s2 with s1 < s2.
(iii) A function k2 ∈ Lq

+(Ω) and a constant μ1 ≥ 0 exist such that

|g(x, s)| ≤ k2(x) + μ1 |s|p−1,

for a.e. x ∈ Ω, and for all s ∈ R.
(B2) The function h : Ω×R → R is Borel-measurable, monotone nondecreas-

ing in its second argument, and satisfies with some function k3 ∈ Lq
+(Ω)

and with some constant μ2 ≥ 0 the growth condition

|h(x, s)| ≤ k3(x) + μ2 |s|p−1

for a.e. x ∈ Ω and for all s ∈ R.
(B3) Let cF > 0 denote the best constant in Poincaré–Friedrichs inequality

and denote μ = μ1 +μ2, where μ1 and μ2 are the nonnegative constants
of (B1) and (B2), respectively. Then the positive constant ν of (A3) is
supposed to satisfy

cpF μ < ν.

Definition 4.35. A function u ∈ V0 is a solution of the inclusion problem
(4.129) if there are functions η ∈ Lq(Ω) and κ ∈ Lq(Ω) such that the following
holds:

(i) η(x) ∈ ∂j(x, u(x)) and κ(x) ∈ ∂β(x, u(x)) for a.e. x ∈ Ω.
(ii) 〈Au,ϕ〉 +

∫
Ω

(η(x) − κ(x))ϕ(x) dx = 〈f, ϕ〉, ∀ ϕ ∈ V0, where f ∈ V ∗
0 .

The main result of this section is given by the following theorem.

Theorem 4.36. Under hypotheses (A1)–(A3) and (B1)–(B3), problem (4.129)
possesses extremal solutions and the solution set is compact in V0.

4.4.2 A Priori Bounds

We shall prove the existence of a priori bounds for the solutions of (4.129),
which are crucial in the proof of our main result. To this end, consider the
following auxiliary problems:

u ∈ V0 : Au = f + k + μ |u|p−1 in V ∗
0 , (4.133)

u ∈ V0 : Au = f − k − μ |u|p−1 in V ∗
0 , (4.134)

where k ∈ Lq
+(Ω) is given by k(x) = k2(x) + k3(x) and μ = μ1 + μ2.

Lemma 4.37. Problems (4.133) and (4.134) possess solutions, and their re-
spective solution sets are bounded in V0.
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Proof. We prove the existence of solutions and the boundedness of the solu-
tion set for the problem (4.133) only, because the same arguments can be ap-
plied for (4.134). Let P denote the Nemytskij operator related to the function
s 
→ μ |s|p−1, then P : Lp(Ω) → Lq(Ω) ⊂ V ∗

0 is continuous and bounded, and
from the compact embedding V0 ⊂ Lp(Ω), it follows that P : V0 → V ∗

0 is com-
pletely continuous. As A : V0 → V ∗

0 is bounded, continuous, and monotone,
the operator A− P : V0 → V ∗

0 is bounded, continuous, and pseudomonotone.
Rewriting the BVP (4.133) in the form

u ∈ V0 : (A− P )u = f + k in V ∗
0 , (4.135)

and noting that f+k ∈ V ∗
0 , solutions of (4.135) exist provided A−P : V0 → V ∗

0

is coercive; i.e., the following holds:

〈(A− P )u, u〉
‖u‖V0

→ +∞ as ‖u‖V0 → ∞. (4.136)

By means of (A3) and (B3), we obtain

〈(A− P )u, u〉 ≥ ν ‖∇u‖p
Lp(Ω) − ‖k1‖L1(Ω) − μ ‖u‖p

Lp(Ω)

≥ (ν − cpF μ)‖∇u‖
p
Lp(Ω) − ‖k1‖L1(Ω), (4.137)

which proves the coercivity from (B3) and the fact that ‖u‖ = ‖∇u‖Lp(Ω)

defines an equivalent norm in V0. The coercivity argument applies also to
get the boundedness of the solution set of (4.133). To this end, let u be any
solution of the BVP (4.133); then from (4.135) and (4.137), we get

(ν − cpF μ)‖∇u‖
p
Lp(Ω) − ‖k1‖L1(Ω) ≤ 〈(A− P )u, u〉

≤ (‖f‖V ∗
0

+ ‖k‖Lq(Ω))‖u‖V0 ,

which proves the assertion. ��

Lemma 4.38. The solution sets of the BVP (4.133) and (4.134), respectively,
are directed and compact sets.

Proof. We are going to prove the assertion for the BVP (4.133) only, because
analogous arguments apply for the BVP (4.134).

Step 1: Directedness of the Solution Set.

Let us denote by S the solution set of the BVP (4.133). Then S �= ∅ in view
of Lemma 4.37. If u1, u2 ∈ S and u is defined by u = max{u1, u2} ∈ V0, then
u is a subsolution of the BVP (4.133) (see Theorem 3.20). Let T denote the
following truncation operator:

(Tu)(x) =
{
u(x) if u(x) ≤ u(x),
u(x) if u(x, t) < u(x),
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and consider the auxiliary BVP

u ∈ V0 : Au = f + k + μ |Tu|p−1 in V ∗
0 . (4.138)

The same arguments as in the proof of Lemma 4.37 apply to ensure the
existence of solutions of the BVP (4.138). We shall show first that S is upward
directed. To this end, we only need to verify that any solution u of the BVP
(4.138) satisfies u ≥ u, because then Tu = u, and thus, it follows that u is
a solution of the BVP (4.133), which exceeds the given solutions u1 and u2.
This result proves S is upward directed. Let u be any solution of (4.138), and
recall that u is a subsolution of (4.133); i.e., we have

〈Au,ϕ〉 ≤ 〈f, ϕ〉 +
∫

Ω

(k + μ |u|p−1)ϕdx, ∀ ϕ ∈ V0 ∩ Lp
+(Ω), (4.139)

and u is any solution of (4.138); i.e.,

〈Au,ϕ〉 = 〈f, ϕ〉 +
∫

Ω

(k + μ |Tu|p−1)ϕdx, ∀ ϕ ∈ V0. (4.140)

Taking as special nonnegative test function ϕ = (u − u)+ ∈ V0 ∩ Lp
+(Ω), we

obtain by subtracting (4.140) from (4.139) the inequality∫
Ω

N∑
i=1

(ai(x,∇u) − ai(x,∇u)
∂(u− u)+
∂xi

dx

≤ μ
∫

Ω

(|u|p−1 − |Tu|p−1) (u− u)+ dx

= μ
∫
{u>u}

(|u|p−1 − |u|p−1) (u− u) dx = 0, (4.141)

where {u > u} = {x ∈ Ω : u(x) > u(x)}. By means of (A2), we deduce from
(4.141) that ∇(u−u)+ = 0, and thus, (u−u)+ = 0, which yields u ≤ u. This
process completes the proof for S being upward directed. Noting that for any
solutions u1, u2 ∈ S, the function ū = min{u1, u2} is a supersolution of the
BVP (4.133) (see Theorem 3.20). We can show in a similar way that S is also
downward directed and thus the directedness of S.

Step 2: Compactness of the Solution Set.

Let (un) ⊂ S, where S denotes the solution set of (4.133). In view of Lemma
4.37, the sequence (un) is bounded in V0 and thus, a subsequence (uk) exists
with

uk ⇀ u in V0 and uk → u in Lp(Ω). (4.142)

From (4.133), we get

〈Auk, uk − u〉 = 〈f, uk − u〉 +
∫

Ω

(k + μ |uk|p−1) (uk − u) dx,
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which in view of (4.142) yields

lim
k→∞

〈Auk, uk − u〉 = 0,

and thus, by the (S+)-property of the operator A (see Theorem 2.109), we see
that the sequence (uk) is strongly convergent in V0 to u. Passing to the limit
in

Auk = f + k + μ |uk|p−1 in V ∗
0

proves that u ∈ S. ��

As a consequence of Lemma 4.38, we obtain the following corollary.

Corollary 4.39. The BVP (4.133) and (4.134) have extremal solutions.

Proof. Again the proof will be given for the BVP (4.133) only, because for
the BVP (4.134), it can be done similarly. Moreover, we will concentrate on
the existence of the greatest solution of (4.133), because the existence of the
smallest solution follows by obvious dual reasoning. We also note that here
the proof of the extremal solutions is not a straightforward application of the
arguments used in previous sections, because here the solution sets are not
contained in some interval of sub-supersolutions. Let S be the solution set of
the BVP (4.133). First we shall show the existence of a maximal element of S
by means of Zorn’s lemma. To this end, let C ⊂ S be any well-ordered chain
that is bounded in V0 by Lemma 4.37 and, thus, in particular, also bounded in
Lp(Ω). Then, an increasing sequence (un) of C exists, which converges strongly
in Lp(Ω) and weakly in V0 to w = sup C. This result occurs because the order
cone Lp

+(Ω) is fully regular (see [111, Proposition 5.8.7]). In just the same way
as in Step 2 of Lemma 4.38, we see that w belongs to S. Thus, C possesses
an upper bound in S, so that Zorn’s lemma can be applied, which ensures
the existence of a maximal element w∗. Because S is, in particular, upward
directed, the maximal element is unique and must be the greatest one. Thus,
w∗ is the greatest solution of (4.133). ��

By means of Corollary 4.39, we can now derive a priori bounds of the
original problem (4.129).

Lemma 4.40. Let w∗ be the greatest solution of the BVP (4.133) and w∗
be the smallest solution of the BVP (4.134) that exist due to Corollary 4.39.
Then any solution u of the inclusion problem (4.129) is contained in [w∗, w∗].

Proof. Let u be any solution of (4.129); i.e., we have by Definition 4.35,

〈Au,ϕ〉 +
∫

Ω

(η(x) − κ(x))ϕ(x) dx = 〈f, ϕ〉, ∀ ϕ ∈ V0, (4.143)

where η(x) ∈ ∂j(x, u(x)) and κ(x) ∈ ∂β(x, u(x)) for a.e. x ∈ Ω. In view of
the growth conditions in (B1) and (B2), we have
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|η(x)| ≤ k2(x) + μ1 |u(x)|p−1, |κ(x)| ≤ k3(x) + μ2 |u(x)|p−1. (4.144)

From (4.143) and (4.144), we see that u is a subsolution of the BVP (4.133).
Now the same arguments as in Step 1 of the proof of Lemma 4.38 apply, which
shows that solutions of the BVP (4.133) exist that are greater than u. However,
w∗ is the greatest of all solutions of (4.133), and thus, it exceeds also u, which
proves that w∗ is an upper bound of any solution of the original problem
(4.129). The proof for w∗ being a lower bound is carried out analogously. ��

4.4.3 Proof of Theorem 4.36

In this section, we are going to prove our main result. The proof is inspired
by an idea used in [36, 39] to treat boundary hemivariational inequalities of
d.c.-type and will be given in two steps.

Step 1: Existence of Extremal Solutions of (4.129).

Lemma 4.40 provides a priori bounds w∗ and w∗ of solutions of (4.129) where
w∗ is the greatest solution of the BVP (4.133) and w∗ is the smallest solution
of the BVP (4.134). We are going to prove that (4.129) possesses extremal
solutions within the ordered interval [w∗, w∗], which justifies the existence
of extremal solutions of (4.129). Let us concentrate on the existence of the
greatest solution, because the existence of the smallest solution can be shown
similarly.

We recall that the subdifferential ∂β(x, s) is generated by the function
h : Ω × R → R, which is monotone nondecreasing in its second argument via

∂β(x, s) = [h(x, s), h̄(x, s)],

where s 
→ h(x, s) and s 
→ h̄(x, s) are the left- and right-sided limits, re-
spectively, of s 
→ h(x, s). Denote by H and H̄ the Nemytskij operator
associated with h and h̄, respectively. By hypothesis (B2), the operators
H, H̄ : Lp(Ω) → Lq(Ω) are well defined, monotone nondecreasing, but not
necessarily continuous. Consider the following inclusion of Clarke’s gradient
type involving a discontinuous nonlinearity:

u ∈ V0 : Au+ ∂j(·, u) � f + H̄(u) in V ∗
0 . (4.145)

Our goal is to show that (4.145) has the greatest solution u∗ within [w∗, w∗],
and that u∗ is the greatest solution of the original problem (4.129). To this
end, let us consider first the following inclusion with given right-hand side:

u ∈ V0 : Au+ ∂j(·, u) � f + H̄(w∗) in V ∗
0 . (4.146)

By (B1)(iii) and (B2), and taking into account that w∗ is the greatest solution
of (4.133), we get for any η∗ ∈ ∂j(·, w∗), the estimate

Aw∗ + η∗ = f + k + μ |w∗|p−1 + η∗ ≥ f + k3 + μ2 |w∗|p−1 ≥ f + H̄(w∗),
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which proves that w∗ is a supersolution of (4.146). Analogously we show that
w∗ is a subsolution of (4.146). Thus, by applying Theorem 4.34 of the previous
section with the right-hand side f+H̄(w∗) ∈ V ∗

0 , extremal solutions of (4.146)
exist within the interval [w∗, w∗]. Let u1 denote the greatest solution of (4.146)
within [w∗, w∗], and consider next the inclusion

u ∈ V0 : Au+ ∂j(·, u) � f + H̄(u1) in V ∗
0 . (4.147)

By the monotonicity of H̄, we have H̄(u1) ≤ H̄(w∗), and thus, u1 is a super-
solution for (4.147). One readily verifies that w∗ is a subsolution for (4.147)
as well. Again by applying Theorem 4.34, extremal solutions of (4.147) exist
within [w∗, u1]. In this way, we can define by induction the following iteration
process: Let u0 := w∗ and define by un+1 ∈ V0 the greatest solution of

u ∈ V0 : Au+ ∂j(·, u) � f + H̄(un) in V ∗
0 (4.148)

within [w∗, un]. From un+1 ∈ [w∗, un], this iteration yields a monotone non-
increasing sequence (un) that satisfies

w∗ ≤ · · · ≤ un+1 ≤ un ≤ · · · ≤ u1 ≤ u0 = w∗ (4.149)

and

Aun+1 + ηn+1 = f + H̄(un) in V ∗
0 , (4.150)

where ηn+1 ∈ ∂j(·, un+1), and ηn+1 ∈ Lq(Ω). As the sequence (un) can easily
be seen to be bounded in V0, and because (ηn) ⊂ Lq(Ω) is bounded as well,
we obtain the following convergence properties:

(i) un ⇀ u∗ in V0.
(ii) un → u∗ in Lp(Ω).
(iii) ηn ⇀ η∗ in Lq(Ω) [for some subsequence that is again denoted by (ηn)].

In (iii), we have η∗ ∈ ∂j(·, u∗). The boundedness of (H̄(un)) in Lq(Ω) and the
convergence properties (i)–(iii) imply that

lim sup
n→∞

〈Aun, un − u∗〉 ≤ 0.

As the operator A : V0 → V ∗
0 is, in particular, pseudomonotone, it follows

that

(iv) Aun ⇀ Au∗ in V ∗
0 .

The function s 
→ h̄(x, s) related with the Nemytskij operator H̄ is monotone
nondecreasing and right-sided continuous, so that by means of Lebesgue’s
dominated convergence theorem and from the a.e. monotone pointwise con-
vergence of the sequence (un) according to (4.149), we get∫

Ω

H̄(un)ϕdx→
∫

Ω

H̄(u∗)ϕdx, (4.151)
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for all ϕ ∈ Lp(Ω). Finally, the convergence properties (i)–(iv) above and
(4.151) allow us to pass to the limit in (4.150) as n → ∞, which shows that
u∗ ∈ [w∗, w∗] is a solution of the inclusion (4.145). Moreover, u∗ is the greatest
solution of (4.145) within [w∗, w∗]. To verify this result, let u ∈ [w∗, w∗] be any
solution of (4.145). Then u is, in particular, a subsolution of (4.145). Replacing
in the iteration above w∗ by u, we see that u ≤ un ≤ w∗ holds for all n. Thus,
we get u ≤ u∗; i.e., u∗ is the greatest solution of (4.145) in [w∗, w∗]. Now,
defining κ∗ := H̄(u∗), then obviously we have κ∗(x) ∈ ∂β(x, u∗(x)) for a.e.
x ∈ Ω, and thus, u∗ satisfies

Au∗ + η∗ − κ∗ = f in V ∗
0 ,

which means that u∗ is a solution of the original problem (4.129) as well.
It remains to prove that u∗ is the greatest solution of (4.129). To this end,

take any solution ũ of (4.129), which satisfies ũ ∈ [w∗, w∗] and

Aũ+ η̃ − κ̃ = f,

where η̃ ∈ ∂j(·, ũ) and κ̃ ∈ ∂β(·, ũ) ⊂ [H(ũ), H̄(ũ)]. As κ̃ ≤ H̄(ũ), we see that
ũ is a subsolution of the inclusion (4.145). By the same iteration procedure
introduced above with w∗ replaced by ũ, we get ũ ≤ un ≤ w∗, which implies
ũ ≤ u∗, and thus, u∗ must be the greatest solution of the original problem
(4.129). The existence of the smallest solution u∗ can be shown by obvious
dual reasoning, which completes the proof of the extremality result.

Step 2: Compactness of the Solution Set of (4.129).

Denote by T the set of all solutions of (4.129). Then T ⊂ [u∗, u∗], where u∗
and u∗ is the smallest and the greatest solution of (4.129). Let (un) ⊂ T be any
sequence. Then (un) is bounded in V0, and one has the following convergence
properties for some subsequences:

(v) uk ⇀ u in V0,
(vi) uk → u in Lp(Ω),
(vii) ηk ⇀ η and κk ⇀ κ in Lq(Ω),

where ηk ∈ ∂j(·, uk) and κk ∈ ∂β(·, uk), and we have

Auk + ηk − κk = f in V ∗
0 . (4.152)

The compact embedding V0 ⊂ Lp(Ω) implies the compact embedding Lq(Ω) ⊂
V ∗

0 , which yields

ηk → η, κk → κ in V ∗
0 , (4.153)

where η ∈ ∂j(·, u) and κ ∈ ∂β(·, u). Because of (4.153) from (4.152), we get

〈Auk, uk − u〉 = 〈f − ηk + κk, uk − u〉 → 0, (4.154)
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so that in view of the pseudomonotonicity of A, we infer Auk ⇀ Au in V ∗
0 as

k → ∞. Passing to the limit as k → ∞ in (4.152) yields

Au+ η − κ = f in V ∗
0 ,

and thus, u ∈ T . Finally, the (S+)-property of A in conjunction with (4.154)
yields the strong convergence uk → u in V0, which completes the compactness
proof. ��

We remark the interesting fact that κ∗ related with the greatest solution
u∗ whose existence is proved in Step 1 above is given by κ∗ = max{∂β(·, u∗)}.

Special Case. As a special case of (4.129), we consider the inclusion problem

u ∈ V0 : −Δpu+ ∂j(·, u) − ∂β(·, u) � f, (4.155)

where Δp denotes the p-Laplacian. Obviously, −Δp satisfies (A1)–(A3). The
variational characterization of the first Dirichlet eigenvalue λ1 of −Δp, which
is positive and given by

λ1 = inf
0�=u∈V0

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

(see [151]), enables us to sharpen the condition (B3) as follows:

(B4) Let μ = μ1 + μ2 < λ1 be satisfied.

The following result is an immediate consequence of Theorem 4.36.

Corollary 4.41. If conditions (B1), (B2), and (B4) are satisfied, then the in-
clusion (4.155) has extremal solutions and the solution set is compact in V0.

Remark 4.42. (i) Our main result (Theorem 4.36) can be extended to more
general Leray–Lions operators A such as

Au(x) = −
N∑

i=1

∂

∂xi
ai(x, u(x),∇u(x)) + a0(x, u(x),∇u(x)).

Only for the sake of simplifying our presentation, and to emphasize the main
idea, we have taken a nonlinear, monotone operator A.

(ii) When we assume the existence of an ordered pair w ≤ w̄ that satisfies
w ≤ 0 and w̄ ≥ 0 on ∂Ω as well as the inequalities

w̄ ∈ V : Aw̄ + η̄ ≥ f + H̄(w̄), where η̄ ∈ ∂j(·, w̄),

and
w ∈ V : Aw + η ≤ f +H(w), where η ∈ ∂j(·, w),

we can prove extremality and compactness of the solution set contained within
the ordered interval [w, w̄]. In this case, hypothesis (B3) can be dropped, and
only local growth conditions of g and h are required.
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4.5 Parabolic Inclusions with Local Growth

The subject of this section is the parabolic version of the quasilinear elliptic
inclusion (4.81) treated in Sect. 4.3.

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, Q =

Ω×(0, τ), and Γ = ∂Ω×(0, τ), with τ > 0. Our goal is to provide a comparison
principle as well as extremality and compactness results for the quasilinear
initial-boundary value problem

ut +Au+ ∂j(·, ·, u) � Fu+ h in Q,

u = 0 in Ω × {0}, u = 0 on Γ, (4.156)

where A is given by

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)),

and F is the Nemytskij operator associated with the Carathéodory function
f : Q × R → R. Unlike in the elliptic case of Sect. 4.3, here we do not
suppose s 
→ j(·, ·, s) to be the primitive of some locally bounded measurable
function. Instead, we only assume s 
→ j(·, ·, s) to be locally Lipschitz and
for its generalized Clarke’s gradient to satisfy certain local growth conditions.
Under these more general assumptions on j, the methods of proofs as used
in Sect. 4.3 for the elliptic case cannot be applied here in a straightforward
manner and have to be modified appropriately. However, it should be noted
that the more general approach we are going to develop in this section also
works in the elliptic case.

Problem (4.156) will be treated within the framework of evolution equa-
tions as in Sect. 3.3. Therefore, we are going to use the same notation as
in Sect. 3.3; i.e., we set X = Lp(0, τ ;V ) and X0 = Lp(0, τ ;V0), where V =
W 1,p(Ω) and V0 =W 1,p

0 (Ω), and introduce

W = {u ∈ X : ut ∈ X∗} , (respectively, W0 = {u ∈ X0 : ut ∈ X∗
0}) ,

where the derivative ut = ∂u/∂t = u′ is understood in the sense of vector-
valued distributions (see Sect. 2.4). Throughout this section, we assume

2 ≤ p <∞ and q : 1/q + 1/p = 1.

If there is no ambiguity, we use the notation 〈·, ·〉 for any of the dual pairings
between X and X∗, X0 and X∗

0 , V and V ∗, and V0 and V ∗
0 . For example,

with f ∈ X∗
0 , u ∈ X0,

〈f, u〉 =
∫ τ

0

〈f(t), u(t)〉 dt.

Finally we note that homogeneous initial and boundary values can be assumed
without loss of generality (see Sect. 3.3).
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4.5.1 Comparison Principle

We impose the following hypotheses of Leray-Lions type on the coefficient
functions ai, i = 1, . . . , N , of the operator A.

(A1) ai : Q×R×R
N → R are Carathéodory functions; i.e., ai(·, ·, s, ξ) : Q→

R is measurable for all (s, ξ) ∈ R×R
N and ai(x, t, ·, ·) : R×R

N → R is
continuous for a.e. (x, t) ∈ Q, and

|ai(x, t, s, ξ)| ≤ k0(x, t) + c0
(
|s|p−1 + |ξ|p−1

)
for a.e. (x, t) ∈ Q and for all (s, ξ) ∈ R × R

N , for some constant c0 > 0
and some function k0 ∈ Lq(Q).

(A2)
N∑

i=1

(ai(x, t, s, ξ) − ai(x, t, s, ξ′))(ξi − ξ′i) > 0 for a.e. (x, t) ∈ Q, for all

s ∈ R and all ξ, ξ′ ∈ R
N with ξ �= ξ′.

(A3)
N∑

i=1

ai(x, t, s, ξ)ξi ≥ ν|ξ|p − k1(x, t) for a.e. (x, t) ∈ Q and for all (s, ξ) ∈

R × R
N , for some constant ν > 0 and some function k1 ∈ L1(Q).

(A4) |ai(x, t, s, ξ)−ai(x, t, s′, ξ)| ≤ [k2(x, t)+|s|p−1+|s′|p−1+|ξ|p−1]ω(|s−s′|)
for a.e. (x, t) ∈ Q, for all s, s′ ∈ R and all ξ ∈ R

N , for some function
k2 ∈ Lq(Q) and a continuous function ω : [0,+∞) → [0,+∞) satisfying∫

0+

1
ω(r)

dr = +∞.

From (A1), the semilinear form a : X ×X → R given by

a(u, v) =
∫

Q

N∑
i=1

ai(·, ·, u,∇u)
∂v

∂xi
dxdt

is well defined for any (u, v) ∈ X ×X, and the operator A : X → X∗
0 (respec-

tively, A : X0 → X∗
0 ) defined by

〈Au,ϕ〉 = a(u, ϕ) for all ϕ ∈ X0

is continuous and bounded. For an appropriate functional analytic setting
of the inclusion problem (4.156), we introduce the operator L = ∂/∂t with
domain D(L) given by

D(L) = {u ∈ X0 : ut ∈ X∗
0 and u(·, 0) = 0 in Ω},

where L : D(L) ⊂ X0 → X∗
0 is defined by

〈Lu, ϕ〉 =
∫ τ

0

〈ut(t), ϕ(t)〉 dt for all ϕ ∈ X0.
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We already know that L : D(L) ⊂ X0 → X∗
0 is a closed, densely defined,

and maximal monotone operator (see Lemma 2.149). This way (4.156) can be
rewritten in the form of the operator equation

u ∈ D(L) : Lu+Au+ ∂j(·, ·, u) � Fu+ h in X∗
0 . (4.157)

A solution of (4.156) (respectively, (4.157)) is defined as follows.

Definition 4.43. A function u ∈ D(L) is called a solution of (4.156) (re-
spectively, (4.157)) if Fu ∈ Lq(Q) and if there is a function η ∈ Lq(Q) such
that

(i) η(x, t) ∈ ∂j(x, t, u(x, t)) for a.e. (x, t) ∈ Q.
(ii) 〈Lu + Au,ϕ〉 +

∫
Q
η(x, t)ϕ(x, t) dxdt =

∫
Q

(Fu)(x, t)ϕ(x, t) dxdt + 〈h, ϕ〉
for all ϕ ∈ X0.

Our notion of sub-supersolutions of (4.156) reads as follows.

Definition 4.44. A function ū ∈ W is called a supersolution of problem
(4.156) if Fū ∈ Lq(Q) and if there is a function η̄ ∈ Lq(Q) such that

(i) ū(x, 0) ≥ 0 in Ω and ū ≥ 0 on Γ .
(ii) η̄(x, t) ∈ ∂j(x, t, ū(x, t)) for a.e. (x, t) ∈ Q.
(iii) 〈ūt +Aū, ϕ〉 +

∫
Q
η̄(x, t)ϕ(x, t) dxdt ≥

∫
Q

(Fū)(x, t)ϕ(x, t) dxdt+ 〈h, ϕ〉
for all ϕ ∈ X0 ∩ Lp

+(Q).

Similarly, a function u ∈ W is called a subsolution problem (4.156) if the
reversed inequalities hold in Definition 4.44 with ū, η̄ replaced by u, η.

Let u, ū ∈ W be an ordered pair of sub- and supersolutions of (4.156).
We impose the following local growth hypotheses on j and f .

(H1) The function j : Q× R → R satisfies:
(i) j(·, ·, s) : Q→ R is measurable for all s ∈ R.
(ii) j(x, t, ·) : R → R is locally Lipschitz and constants α > 0 and

c1 ≥ 0 exist such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for a.e. (x, t) ∈ Q, for all ξi ∈ ∂j(x, t, si), i = 1, 2, and for all s1, s2
with u(x, t) − α ≤ s1 < s2 ≤ ū(x, t) + α.

(iii) There is a function k3 ∈ Lq
+(Q) such that

|z| ≤ k3(x, t)

for a.e. (x, t) ∈ Q, for all s ∈ [u(x, t) − 2α, ū(x, t) + 2α] and all
z ∈ ∂j(x, t, s), where α is the one entering (ii).
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(H2) The function f : Q×R → R is a Carathéodory function and k4 ∈ Lq
+(Q)

exists such that
|f(x, t, s)| ≤ k4(x, t)

for a.e. (x, t) ∈ Q, for all s ∈ [u(x, t), ū(x, t)].

In preparation for the comparison principle to be proved in this section,
we provide first some preliminaries.

With α given in (H1)(ii), we introduce the truncation operator Tα by

(Tαu)(x, t) =

⎧⎨⎩
u(x, t) + α if u(x, t) > u(x, t) + α
u(x, t) if u(x, t) − α ≤ u(x, t) ≤ u(x, t) + α
u(x, t) − α if u(x, t) < u(x, t) − α.

It is well known that the truncation Tα is continuous and bounded from X
into X. Let ρ : R → R be a mollifier function; that is, ρ ∈ C∞

0 ((−1, 1)), ρ ≥ 0
and ∫ +∞

−∞
ρ(s) ds = 1.

For any ε > 0, we define the regularization jε of j with respect to the third
variable by convolution, i.e.,

jε(x, t, s) =
1
ε

∫ +∞

−∞
j(x, t, s− ζ)ρ

(ζ
ε

)
dζ,

and we introduce the operator Jε
α : Lp(Q) → Lq(Q) by

Jε
αu = (jε)′(·, ·, (Tαu)(·, ·)), (4.158)

where (jε)′(x, t, s) stands for the derivative with respect to s. The definition
makes sense because, by (H1)(iii), k3 ∈ Lq(Q), and we have

|(Jε
αu)(x, t)| = |(jε)′(x, t, (Tαu)(x, t))| ≤ k3(x, t) (4.159)

for a.e. (x, t) ∈ Q, for all u ∈ Lp(Q) and for all ε with 0 < ε < α. To show
that (4.159) is true, we see from (H1)(iii) that

(jε)′(x, t, (Tαu)(x, t)) ∈
1
ε

∫ +∞

−∞
∂j(x, t, (Tαu)(x, t) − ζ)ρ

(ζ
ε

)
dζ. (4.160)

Here we used the Aubin–Clarke Theorem (see Theorem 2.181) whose appli-
cation is possible from the inequalities

u(x, t)−2α ≤ u(x, t)−α− ζ ≤ (Tαu)(x, t)− ζ ≤ u(x, t)+α− ζ ≤ u(x, t)+2α.

Using again (H1)(iii), it results in

|(jε)′(x, t, (Tαu)(x, t))| ≤
1
ε

∫ +∞

−∞
k3(x, t)ρ

(ζ
ε

)
dζ = k3(x, t);

i.e., (4.159) is true.
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Lemma 4.45. Let (un) ⊂W0 and (εn) ⊂ (0, α) such that εn → 0 as n→ ∞.
If

(i) un ⇀ u in W0 as n→ ∞,
(ii) Jε

αun ⇀ η in Lq(Q) as n→ ∞,

then η(x, t) ∈ ∂j(x, t, (Tαu)(x, t)) for a.e. (x, t) ∈ Q.

Proof. Let us first establish the following inequality:∫
Q

lim sup
n→∞

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
dxdt

≥ 〈η, w〉Lq(Q),Lp(Q), ∀ w ∈ Lp(Q), (4.161)

where the notation j0 stands for the generalized directional derivative in the
sense of Clarke of j with respect to the third variable. For any w ∈ Lp(Q),
using (4.158), (4.160), and [68, Proposition 2.1.2], we have

〈Jεn
α un, w〉Lq(Q),Lp(Q) = 〈(jεn)′(Tαun), w〉Lq(Q),Lp(Q)

=
∫

Q

(jεn)′(x, t, (Tαun)(x, t))w(x, t) dxdt

=
∫

Q

(
1
εn

∫ +∞

−∞
zn(x, t, ζ)ρ

( ζ
εn

)
dζ

)
w(x, t) dxdt

≤
∫

Q

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
dxdt,

(4.162)

with zn(x, t, ζ) ∈ ∂j(x, t, (Tαun)(x, t) − ζ). Passing to the upper limit in the
previous inequality (4.162) and using Jεn

α un ⇀ η in Lq(Q) as well as Fatou’s
lemma (see Theorem 2.65), we obtain

〈η, w〉Lq(Q),Lp(Q) = lim
n→∞〈Jεn

α un, w〉Lq(Q),Lp(Q)

≤ lim sup
n→∞

∫
Q

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
dxdt

≤
∫

Q

lim sup
n→∞

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
dxdt,

which is (4.161). The application of Fatou’s lemma was possible because of
the inequalities

1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

=
1
εn

∫ +∞

−∞
zn(x, t, ζ)w(x, t)ρ

( ζ
εn

)
dζ
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≤ 1
εn

∫ +∞

−∞
k3(x, t)|w(x, t)|ρ

( ζ
εn

)
dζ = k3(x, t)|w(x, t)|,

with k3w ∈ L1(Q), and∫
Q

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
dx dt

≥ −
∫

Q

(
1
εn

∫ +∞

−∞
|zn(x, t, ζ)| |w(x, t)|ρ

( ζ
εn

)
dζ

)
dx dt

≥ −
∫

Q

k3(x, t)|w(x, t)| dx dt,

where zn(x, t, ζ) ∈ ∂j(x, t, (Tαun)(x, t) − ζ) is fixed such that

j0(x, t, (Tαun)(x, t) − ζ;w(x, t)) = zn(x, t, ζ)w(x, t).

Next we are going to show that

lim sup
n→∞

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
≤ j0(x, t, (Tαu)(x, t);w(x, t)), (4.163)

for a.e. (x, t) ∈ Q, and for all w ∈ Lp(Q). From the compact embedding
W0 ⊂ Lp(Q) and the continuity of Tα, we get Tαun → Tαu in Lp(Q) as
n → ∞, which by passing eventually to a subsequence (again denoted by
Tαun) results in

(Tαun)(x, t) → (Tαu)(x, t) for a.e. (x, t) ∈ Q as n→ ∞. (4.164)

Thus, to prove (4.163), it is sufficient to show that (4.163) holds for every w ∈
Lp(Q) and every point (x, t) ∈ Q satisfying (4.164) (because (4.164) is valid for
a.e. (x, t) ∈ Q). Fix w ∈ Lp(Q) and any point (x, t) ∈ Q satisfying (4.164). Let
ε > 0 be an arbitrary number. The upper semicontinuity of j0(x, t, ·;w(x, t))
yields a number δ > 0 such that for all ξ with |ξ − (Tαu)(x, t)| < δ, we have

j0(x, t, ξ;w(x, t)) < j0(x, t, (Tαu)(x, t);w(x, t)) + ε. (4.165)

On the other hand, the convergence in (4.164) gives a positive integer nε

[depending on (x, t)] such that

|(Tαun)(x, t) − ζ − (Tαu)(x, t)| ≤ |(Tαun)(x, t) − (Tαu)(x, t)| + |ζ|
≤ |(Tαun)(x, t) − (Tαu)(x, t)| + εn < δ

for all n ≥ nε, and for all ζ ∈ (−εn, εn). This result allows us to apply (4.165)
with ξ = (Tαun)(x, t) − ζ to get

j0(x, t, (Tαun)(x, t) − ζ;w(x, t)) < j0(x, t, (Tαu)(x, t);w(x, t)) + ε
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for all n ≥ nε and all ζ ∈ (−εn, εn). Consequently, we may write

1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

=
1
εn

∫ εn

−εn

j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ
( ζ
εn

)
dζ

< j0(x, t, (Tαu)(x, t);w(x, t)) + ε.

Passing to the upper limit in the last inequality as n→ ∞, we derive that

lim sup
n→∞

(
1
εn

∫ +∞

−∞
j0(x, t, (Tαun)(x, t) − ζ;w(x, t))ρ

( ζ
εn

)
dζ

)
≤ j0(x, t, (Tαu)(x, t);w(x, t)) + ε.

As ε > 0 was arbitrary, we conclude that (4.163) holds true. Combining (4.161)
and (4.163), we obtain∫

Q

η(x, t)w(x, t) dx dt ≤
∫

Q

j0(x, t, (Tαu)(x, t);w(x, t)) dx dt (4.166)

for all w ∈ Lp(Q). Next we apply a Lebesgue’s point argument to (4.166). Let
r ∈ R be an arbitrarily fixed real, and let B((x̄, t̄), R) be the open ball in Q
with radius R > 0 centered at some fixed point (x̄, t̄). Denote by χB((x̄,t̄),R)

the characteristic function of B((x̄, t̄), R). Setting w = χB((x̄,t̄),R)r in (4.166),
we have ∫

Q

η χB((x̄,t̄),R) r dx dt ≤
∫

Q

j0(·, ·, (Tαu);χB((x̄,t̄),R) r) dx dt.

This inequality can be equivalently written as

1
|B((x̄, t̄), R)|

∫
B((x̄,t̄),R)

η(x, t)r dx dt

≤ 1
|B((x̄, t̄), R)|

∫
B((x̄,t̄),R)

j0(x, t, (Tαu)(x, t); r) dx dt,

where |B((x̄, t̄), R)| denotes the Lebesgue-measure of B((x̄, t̄), R). As the func-
tions η and j0(·, ·, (Tαu)(·, ·); r) belong to Lq(Q), letting R→ 0 in the previous
inequality, we arrive at

η(x̄, t̄)r ≤ j0(x̄, t̄, (Tαu)(x̄, t̄); r), ∀ r ∈ R.

The definition of the generalized gradient of Clarke gives

η(x̄, t̄) ∈ ∂j(x̄, t̄, (Tαu)(x̄, t̄)),

which completes the proof of the lemma. ��

The comparison principle for the parabolic inclusion (4.156) now reads as
follows.



4.5 Parabolic Inclusions with Local Growth 197

Theorem 4.46. Let u, ū be sub-supersolutions of (4.156) satisfying u ≤ ū.
If hypotheses (A1)–(A3) and (H1), (H2) are fulfilled, then problem (4.156)
admits at least one solution u within the ordered interval [u, ū].

Proof. The proof will be done in three steps.

Step 1: Auxiliary Problem.

We consider first the following regularized truncated initial-boundary value
problem:

(Pε) u ∈ D(L) : Lu+ATu+ Jε
αu+ λB(u) = (F ◦ T )u+ h in X∗

0 ,

where Jε
α is given by (4.158) with 0 < ε < α, and λ is some constant sufficiently

large. Similarly as in (3.110), the operator AT is defined by

ATu(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, Tu(x, t),∇u(x, t)), (4.167)

where T is the truncation between the given sub- and supersolution u and
ū, respectively. The operator B denotes the Nemytskij operator generated by
the cutoff function b : Q× R, which is given by

b(x, t, s) =

⎧⎨⎩
(s− u(x, t))p−1 if s > u(x, t)
0 if u(x, t) ≤ s ≤ u(x, t)
−(u(x, t) − s)p−1 if s < u(x, t).

In view of the boundedness of the regularization according to (4.159), the
existence of solutions of problem (Pε) can be proved in the same way as
Lemma 3.36 in Sect. 3.3.2. Therefore, for each ε with 0 < ε < α, solutions
of (Pε) exist. Let (εn) be a sequence satisfying εn ∈ (0, α) and εn → 0 as
n→ ∞. For each n, let un be a solution of problem (Pεn

). By Remark 2.145,
we have for any u ∈ D(L)

〈Lu, u〉 =
1
2
‖u(τ)‖2

L2(Ω), (4.168)

which in conjunction with (A3) and (4.159) yields the boundedness of (un)
in X0. This result combined with (Pεn

) implies that (u′n) is bounded in X∗
0 .

Hence, the sequence (un) is bounded inW0. Thus, a subsequence of (un) exists
[again denoted by (un)] satisfying the hypotheses of Lemma 4.45.

Step 2: Passage to the Limit as n→ ∞.

According to the previous step ,there is a sequence (un) ⊂W0 such that

(i) un ⇀ u in W0 as n→ ∞.
(ii) Jε

αun ⇀ η in Lq(Q) as n → ∞ with η(x, t) ∈ ∂j(x, t, (Tαu)(x, t)) for a.e.
(x, t) ∈ Q.



198 4 Multivalued Variational Equations

On the basis of (Pεn) and (4.168), we have

〈ut, un − u〉 + 〈ATun, un − u〉 + 〈Jε
αun, un − u〉Lq(Q),Lp(Q)

+〈λB(un) − (F ◦ T )(un), un − u〉
≤ 〈h, un − u〉.

Passing to the lim sup in the last inequality and using properties (i) and (ii) as
well as the fact that λB −F ◦ T : D(L) ⊂ X0 → X∗

0 is completely continuous
with respect to D(L), we obtain

lim sup
n→∞

〈ATun, un − u〉 ≤ 0.

Taking into account that un ⇀ u in W0, the pseudo-monotonicity of AT :
X0 → X∗

0 with respect to the graph norm of D(L) yields

ATun ⇀ ATu in X∗
0 as n→ ∞.

Letting now n → ∞ in problem (Pεn
) and making use of the above conver-

gence properties, we conclude that u ∈W0 is a solution of the problem

(P0) u ∈ D(L) : Lu+ATu+ η + λB(u) = (F ◦ T )u+ h in X∗
0 ,

where η(x, t) ∈ ∂j(x, t, (Tαu)(x, t)) for a.e. (x, t) ∈ Q.

Step 3: Comparison u ≤ u ≤ ū.

We complete the proof of the theorem by showing that any solution u of (P0)
satisfies u ≤ u ≤ ū, because then we have Tu = u, and Tαu = u, which shows
that ATu = Au, η(x, t) ∈ ∂j(x, t, u(x, t)) for a.e. (x, t) ∈ Q and F ◦ Tu = Fu,
and Bu = 0, and therefore, any solution u of (P0) must be a solution of
the original parabolic inclusion (4.156) satisfying u ≤ u ≤ ū. We first prove
that u ≤ ū. To this end, recall that ū ∈ W is a supersolution of (4.156),
i.e., ū ≥ 0 on Ω × {0}, ū ≥ 0 on Γ , and there is a η̄ ∈ Lq(Ω) such that
η̄(x, t) ∈ ∂j(x, t, ū(x, t)) for a.e. (x, t) ∈ Q, and

〈ūt +Aū+ η̄, ϕ〉 ≥ 〈Fū+ h, ϕ〉 for all ϕ ∈ X0 ∩ Lp
+(Q). (4.169)

Subtracting (4.169) from (P0) and taking the special nonnegative test function
ϕ = (u− ū)+ ∈ X0, we obtain

〈ut − ūt +ATu−Aū+ η − η̄ + λB(u), (u− ū)+〉
≤ 〈(F ◦ T )u− Fū, (u− ū)+〉. (4.170)

As a consequence of Lemma 2.146 (see Example 2.148), we have

〈(u− ū)t, (u− ū)+〉 =
1
2
‖(u− ū)+(·, τ)‖2

L2(Ω). (4.171)
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Taking (4.171) into account, we can proceed in a similar way as in Step 4 of
the proof of Theorem 4.31 to finally get the following inequality:

(λ− c1)
∫
{u>ū}

(u(x, t) − ū(x, t))p dxdt ≤ 0. (4.172)

Now we may select λ large enough such that λ − c1 > 0, which in view of
(4.172) implies that∫

{u>ū}
(u(x, t) − ū(x, t))p dxdt =

∫
Q

[(u(x, t) − ū(x, t))+]p dxdt = 0,

and hence, it follows that (u(x, t)− ū(x, t))+ = 0 for a.e. (x, t) ∈ Q; i.e., u ≤ ū
a.e. in Q. In a similar way, we can prove u ≤ u, which completes the proof of
the theorem. ��

Remark 4.47. One possibility to determine sub- and supersolutions of the mul-
tivalued problem (4.156) is to replace the problem by the following single-
valued one:

u ∈ D(L) : ut +Au+ ĵ(·, ·, u) = Fu+ h in X∗
0 , (4.173)

where ĵ : Q × R → R may be any single-valued measurable selection of ∂j.
Then obviously any subsolution (supersolution) u (ū) of the single-valued
problem (4.173) is a subsolution (supersolution) of the multivalued one with
η = ĵ(·, ·, u) (η̄ = ĵ(·, ·, ū)).

Example 4.48. Let p = q = 2 and h ∈ X∗
0 . Consider the initial-Dirichlet

boundary value problem

(E) u ∈ D(L) : Lu−
N∑

i=1

∂

∂xi
ai(·, ·,∇u) + ∂j(·, ·, u) � Fu+ h in X∗

0 ,

where j : Q× R → R verifies condition (H1)(i), and the generalized gradient
∂j satisfies the following global growth conditions:

(ii) ξ1 ≤ ξ2+c1(s2−s1) for a.e. (x, t) ∈ Q and for all ξi ∈ ∂j(x, t, si), i = 1, 2,
with s1 < s2, and c1 some positive constant.

(iii) There is some function k5 ∈ L2
+(Q) such that |ξ| ≤ k5(x, t)+ c2|s| for a.e.

(x, t) ∈ Q, for all s ∈ R and ξ ∈ ∂j(x, t, s).

Furthermore, we assume conditions (A1)–(A3) for ai (note that here (A4) is
trivially satisfied) and suppose f : Q×R → R to be a Carathéodory function
having the following global growth:

(iv) |f(x, t, s)| ≤ k6(x, t) + c2|s|, for a.e. (x, t) ∈ Q, for all s ∈ R, and with
some function k6 ∈ L2

+(Q) and a positive constant c2.
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Now we consider the following uniquely solvable single-valued problems: Find
u ∈ D(L) such that

(U) Lu−
N∑

i=1

∂

∂xi
ai(·, ·,∇u) − (k5 + c2|u|) = k6 + c2|u| + h in X∗

0

and

(S) Lu−
N∑

i=1

∂

∂xi
ai(·, ·,∇u) + (k5 + c2|u|) = −(k6 + c2|u|) + h in X∗

0 .

Denote the unique solutions of (U) and (S) by ū and u, respectively. Then by
comparison, we get u ≤ ū. Furthermore, u and ū are sub- and supersolutions
for problem (E). To verify this result for the case of the supersolution, let ĵ
be any single-valued measurable selection of ∂j; then the definition is satisfied
with η̄ = ĵ(·, ·, ū). Similarly, we verify that u is a subsolution. We easily see
also that all the hypotheses (H1)–(H2) are fulfilled. For instance, the function
k3 in (H1)(iii) is

k3(x, t) = k5(x, t) + c2 max{|ū(x, t) + c0|, |u(x, t) − c0|},

with a constant c0(= 2α) > 0, whereas k4 required in (H2) is

k4(x, t) = k6(x, t) + c2 max{|ū(x, t)|, |u(x, t)|}.

Thus, Theorem 4.46 can be applied.

Example 4.49. We give an example where Theorem 4.46 provides nonnegative
bounded solutions of an initial-Dirichlet boundary value problem of the form
(4.156) in case that the following hypotheses are satisfied:

(i) ai(x, t, 0, 0) = ai(x, t, 1, 0) = 0 for a.e. (x, t) ∈ Q, i = 1, . . . , N .
(ii) h = 0.
(iii) j : Q×R → R is a Carathéodory function and j(x, t, ·) is locally Lipschitz

for a.e. (x, t) ∈ Q.
(iv) Constants α > 0 and c1 ≥ 0 exist such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for a.e. (x, t) ∈ Q, for all ξi ∈ ∂j(x, t, si), i = 1, 2, and for all s1, s2 with
−α ≤ s1 < s2 ≤ 1 + α.

(v) There is some function k3 ∈ Lq
+(Q) such that |z| ≤ k3(x, t) for a.e.

(x, t) ∈ Q, for all s ∈ [−2α, 1 + 2α] and z ∈ ∂j(x, t, s).
(vi) f : Q× R → R is a Carathéodory function for which k4 ∈ Lq

+(Q) exists
such that

|f(x, t, s)| ≤ k4(x, t) for a.e. (x, t) ∈ Q, for all s ∈ [0, 1].
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(vii) For a.e. (x, t) ∈ Q, the following is supposed:

max{z : z ∈ ∂j(x, t, 1)} ≥ f(x, t, 1)
min{z : z ∈ ∂j(x, t, 0)} ≤ f(x, t, 0).

By taking η̄(x, t) = max{z : z ∈ ∂j(x, t, 1)}, we readily verify that under
hypotheses (i)–(vii), the constant function ū = 1 is a supersolution of (4.156).
Similarly, setting η(x, t) = min{z : z ∈ ∂j(x, t, 0)}, we find that u = 0 is a
subsolution of (4.156). As assumptions (H1) and (H2) are easily seen to be
satisfied, Theorem 4.46 can be applied that yields the existence of solutions
of problem (4.156) within the ordered interval [0, 1].

4.5.2 Extremality and Compactness Results

Denote by S the set of all solutions of (4.156) within the ordered interval [u, ū]
of the given sub- and supersolutions u and ū, respectively. By Theorem 4.46,
we have that S �= ∅. Moreover, under the additional assumption (A4), the
following lemma holds true.

Lemma 4.50. Under hypotheses (A1)–(A4) and (H1–(H2), the solution set
S is directed.

Proof: We are going to show that S is upward directed, because the proof
for S being downward directed can be done analogously. To this end, we show
the following:

If u1, u2 ∈ S, then a u ∈ S exists satisfying

max{u1, u2} ≤ u. (4.174)

The proof of (4.174) will be given in three steps.

Step 1: Regularized Truncated Problem.

We set u0 = max{u1, u2} and assume 0 < ε < α. For k = 0, 1, 2, we define
the truncation mappings Tk related with uk as follows:

(Tku)(x, t) =

⎧⎨⎩
ū(x, t) if u(x, t) > ū(x, t),
u(x, t) if uk(x, t) ≤ u(x, t) ≤ ū(x, t),
uk(x, t) if u(x, t) < uk(x, t),

and introduce the cutoff function b0 : Q× R → R given by

b0(x, t, s) =

⎧⎨⎩
(s− ū(x, t))p−1 if s > ū(x, t),
0 if u0(x, t) ≤ s ≤ ū(x, t),
−(u0(x, t) − s)p−1 if s < u0(x, t).

Let us consider the following auxiliary regularized truncated problem:

(P̂ε) u ∈ D(L) : Lu+Au+ Jε
αu+ λB0(u) = E(u) + h in X∗

0 ,
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where Jε
α is given by (4.158), B0 : Lp(Q) → Lq(Q) is the Nemytskij operator

related to b0, and the operator E is defined by

E(u) = (F ◦ T0)u+
2∑

i=1

|(F ◦ Ti)u− (F ◦ T0)u|.

The existence of solutions of problem (P̂ε) can basically be obtained in the
same way as for problem (Pε), because the operators A, B0, E of (P̂ε) possess
the same structure and mapping properties as the corresponding operators
AT , B, F ◦ T of (Pε), which ensures the existence of solutions of (P̂ε).

Step 2: Passage to the Limit as εn → 0.

Let εn ∈ (0, α) with εn → 0 as n → ∞, and let un be a solution of (P̂εn
).

In the same way as in the proof of Theorem 4.46, we can show that (un) is
bounded in W0, and thus, there is a a subsequence of (un) [again denoted by
(un)] satisfying

(i) un ⇀ u in W0 as n→ ∞.
(ii) Jε

αun ⇀ η in Lq(Q) as n → ∞ with η(x, t) ∈ ∂j(x, t, (Tαu)(x, t)) for a.e.
(x, t) ∈ Q.

As in Step 2 of the proof of Theorem 4.46, we may pass to the limit in
(P̂εn), which results in the following equation (P̂0) satisfied by the limit u
and η ∈ ∂j(·, ·, Tαu):

(P̂0) u ∈ D(L) : Lu+Au+ η + λB0(u) = E(u) + h in X∗
0 .

Step 3: Comparison u0 ≤ u ≤ ū.

To complete the proof of the lemma, we only need to show that any solution
u of (P̂0) satisfies u0 ≤ u ≤ ū, because then B0u = 0, Tαu = u, Tiu = u for
i = 0, 1, 2, and thus η ∈ ∂j(·, ·, u) and E(u) = Fu, which shows that u ∈ S
and u ≥ u0 = max{u1, u2}.

To prove u0 ≤ u, we show that uk ≤ u, k = 1, 2. As uk ∈ S, it follows that
for k = 1, 2, uk ∈W0 is a solution of (4.156), i.e.,

uk ∈ D(L) : Luk +Auk + ηk = Fuk + h in X∗
0 , (4.175)

where ηk ∈ ∂j(·, ·, uk). Substracting (P̂0) from (4.175) results in

(uk − u)′ +Auk −Au+ ηk − η − λB0u

= Fuk − E(u) in X∗
0 . (4.176)

By (A4), for any fixed ε > 0, δ(ε) ∈ (0, ε) exists such that∫ ε

δ(ε)

1
ω(r)

dr = 1.
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Now we make use of the comparison technique developed in the proof of
Theorem 3.41. To this end, we define the function

θε(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < δ(ε),∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε,

1 if s > ε.

It is clear that, for each ε > 0, the function θε is continuous, piecewise differen-
tiable and the derivative is nonnegative and bounded. Therefore, the function
θε is Lipschitz continuous and nondecreasing. In addition, it satisfies

θε → χ{s>0} a.e. as ε→ 0, (4.177)

where χ{s>0} is the characteristic function of the set {s > 0}. Moreover, we
have

θ′ε(s) =

⎧⎨⎩
1
ω(s)

if δ(ε) < s < ε

0 if s �∈ [δ(ε), ε].

Taking in the weak formulation of (4.176) the test function θε(uk − u) ∈
X0 ∩ Lp

+(Q), it follows that

〈(uk − u)′, θε(uk − u)〉 + 〈Auk −Au, θε(uk − u)〉

+
∫

Q

(ηk − η)θε(uk − u) dx dt− λ
∫

Q

(B0u)θε(uk − u) dx dt

=
∫

Q

(Fuk − E(u))θε(uk − u) dx dt. (4.178)

Let Θε be the primitive of the function θε defined by

Θε(s) =
∫ s

0

θε(r) dr,

then for the first term on the left-hand side of (4.178), we obtain

〈(uk − u)′, θε(uk − u)〉 =
∫

Ω

Θε(uk − u)(x, τ) dx ≥ 0. (4.179)

By using (A2) and (A4), the second term on the left-hand side of (4.178) can
be estimated as follows:

〈Auk −Au, θε(uk − u)〉 ≥ −N
∫
{δ(ε)<uk−u<ε}

k |∇(uk − u)| dx dt, (4.180)

where k = k2+|uk|p−1+|u|p−1+|∇u|p−1 ∈ Lq(Q). The term on the right-hand
side of (4.180) tends to zero as ε→ 0.

By (4.177), the application of Lebesgue’s dominated convergence theorem
implies that
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lim
ε→0

∫
Q

(ηk − η − λB0u− Fuk + E(u))θε(uk − u) dx dt

=
∫

Q

(ηk − η − λB0u− Fuk + E(u))χ{uk>u} dx dt. (4.181)

Taking (4.179)–(4.181) into account, we get from (4.178) by passing ε → 0
the inequality

−λ
∫

Q

(B0u)χ{uk>u} dx dt ≤
∫

Q

(η − ηk + Fuk − E(u))χ{uk>u} dx dt,

which yields by applying the definitions of the truncations Ti entering in E
as well as of the characteristic function χ the following inequality:

−λ
∫
{uk>u}

(B0u) dx dt ≤
∫
{uk>u}

(η − ηk) dx dt. (4.182)

If (x, t) is such that u(x, t) < uk(x, t), from the definition of Tα, we see that
u(x, t)−α ≤ (Tαu)(x, t) < uk(x, t) ≤ ū(x, t)+α. Applying (H1)(ii), we derive

η(x, t) − ηk(x, t) ≤ c1(uk(x, t) − (Tαu)(x, t))p−1.

Combining the previous inequality with (4.182) and making use of the defini-
tion of b0 (respectively, B0), we obtain

λ

∫
{uk>u}

(u0 − u)p−1 dx dt = −λ
∫
{uk>u}

B0u dx dt

≤ c1
∫
{uk>u}

(uk − Tαu)p−1 dx dt.

If (x, t) is such that u(x, t) < uk(x, t), then by the definition of Tα, we have
(uk − Tαu)(x, t) ≤ (u0 − u)(x, t), which yields

(λ− c1)
∫
{uk>u}

(u0 − u)p−1 dx dt ≤ 0.

As (u0 − u)(x, t) > 0 whenever (uk − u)(x, t) > 0, we infer from the previous
inequality that the Lebesgue measure of the set {uk > u} is equal to 0 when
λ is chosen large enough such that λ > c1. This result implies that uk ≤ u
a.e. in Q, for k = 1, 2, and thus, u0 ≤ u.

To prove u ≤ ū, we use Definition 4.44 for the supersolution ū, and problem
(P̂0), as well as the test function θε(u− ū) ∈ X0 ∩ Lp

+(Q) to deduce

〈(u− ū)t, θε(u− ū)〉 + 〈Au−Aū, θε(u− ū)〉

+
∫

Q

(η − η̄)θε(u− ū) dx dt+ λ
∫

Q

(B0u)θε(u− ū) dx dt
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≤
∫

Q

(E(u) − Fū)θε(u− ū) dx dt,

where η ∈ ∂j(·, ·, Tαu) and η̄ ∈ ∂j(·, ·, ū). Using similar arguments as in
proving (4.182), on the basis of (4.177), we obtain

λ

∫
Q

(B0u)χ{u>ū} dx dt ≤
∫
{u>ū}

(η̄ − η) dx dt.

If (x, t) is such that u(x, t) > ū(x, t), we have that u(x, t) − α ≤ ū(x, t) <
Tαu(x, t) ≤ ū(x, t) + α. Applying (H1)(ii), we get

η̄(x, t) − η(x, t) ≤ c1(Tαu(x, t) − ū(x, t))p−1.

Consequently, in view of the definition of b0, we deduce that

λ

∫
{u>ū}

(u− ū)p−1 dx dt ≤ c1
∫
{u>ū}

(Tαu− ū)p−1 dx dt.

As Tαu(x, t) ≤ u(x, t) whenever u(x, t) > ū(x, t), it follows that

(λ− c1)
∫
{u>ū}

(u− ū)p−1 dx dt ≤ 0,

which by choosing λ > c1 implies u ≤ ū. ��

Next, we prove compactness results for the solution set S of all solutions
of (4.156) within the ordered interval of the given sub- and supersolutions u
and ū, respectively.

Lemma 4.51. The solution set S is weakly sequentially compact in W0 and
compact in X0.

Proof: As S ⊂ [u, ū], the boundedness of S in W0 follows from hypothesis
(A3) and the growth conditions (H1)(iii) and (H2). Let (un) ⊂ S be any
sequence. By the reflexivity of W0, we find a subsequence of (un), denoted
again by (un), such that

un ⇀ u in W0, un → u in Lp(Q) and a.e. in Q as n→ ∞, (4.183)

for some u ∈ W0, where the compactness of the embedding W0 ⊂ Lp(Q) has
been used. As L is a closed linear operator, its graph is weakly closed, so
un ⇀ u in W0 implies u ∈ D(L). From the fact that (un) ⊂ S, it follows that

un ∈ D(L) : Lun +Aun + ηn = Fun + h in X∗
0 (4.184)

with ηn ∈ ∂j(·, ·, un). Hypothesis (H1)(iii) ensures that (ηn) is bounded in
Lq(Q). Thus, a subsequence of (ηn) exists, denoted again by (ηn), such that
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ηn ⇀ η in Lq(Q) as n→ ∞ (4.185)

for some η ∈ Lq(Q). Next we are going to verify that

η ∈ ∂j(·, ·, u). (4.186)

Using ηn ⇀ η in Lq(Q), ηn ∈ ∂j(·, ·, un), the convergence properties (4.183),
Fatou’s lemma, as well as the upper semicontinuity of j0(x, t, ·;w(x, t)) : R →
R, we deduce that∫

Q

η(x, t)w(x, t) dx dt = lim
n→∞

∫
Q

ηn(x, t)w(x, t) dx dt

≤ lim sup
n→∞

∫
Q

j0(x, t, un(x, t);w(x, t)) dx dt

≤
∫

Q

lim sup
n→∞

j0(x, t, un(x, t);w(x, t)) dx dt

≤
∫

Q

j0(x, t, u(x, t);w(x, t)) dx dt.

To use Lebesgue’s point argument, fix r ∈ R, (x̄, t̄) ∈ Q, and R > 0 and take
w = χB((x̄,t̄),R)r in the previous inequality, with χB((x̄,t̄),R) the characteristic
function of the open ball B((x̄, t̄), R). We then obtain

1
|B((x̄, t̄), R)|

∫
B((x̄,t̄),R)

η(x, t)r dx dt

≤ 1
|B((x̄, t̄), R)|

∫
B((x̄,t̄),R)

j0(x, t, u(x, t); r) dx dt. (4.187)

Letting R→ 0 in inequality (4.187), we infer that

η(x̄, t̄)r ≤ j0(x̄, t̄, u(x̄, t̄); r) for all r ∈ R,

which by definition of Clark’s generalized gradient shows that (4.186) is sa-
tisfied. Testing (4.184) with un − u ∈ D(L) and taking into account the
convergence properties (4.183), (4.185) as well as the inequality

〈Lun, un − u〉 ≥ 〈Lu, un − u〉,

we arrive at

lim sup
n→∞

〈Aun, un − u〉 ≤ 0. (4.188)

By the pseudomonotonicity of A with respect to the graph norm topology of
D(L) (w.r.t. to D(L)), this inequality and the limit un ⇀ u in W0 imply that
Aun ⇀ Au in X∗

0 . This result allows us to pass to the limit as n → ∞ in
(4.184), obtaining



4.5 Parabolic Inclusions with Local Growth 207

Lu+Au+ η = Fu+ h in X∗
0 .

As η satisfies (4.186), it follows that u ∈ S, which proves that S is weakly
sequentially compact in W0. Furthermore, from hypotheses (A1)–(A3), the
operator A enjoys the (S+)-property with respect to D(L) (see Sect. 2.4.4),
which by the weak convergence un ⇀ u in W0 in conjunction with (4.188)
implies that un → u strongly in X0, and hence, it follows that S is compact
in X0. ��

The comparison principle given by Theorem 4.46 as well as the directedness
and compactness results from Lemma 4.50 and Lemma 4.51 provide the tools
to prove the following theorem.

Theorem 4.52. Under the hypotheses of Lemma 4.50, the solution set S pos-
sesses extremal elements.

Proof: Let us show the existence of the greatest element of S; i.e., the ex-
istence of the greatest solution of (4.156) within the ordered interval [u, ū].
As W0 is separable, we have that S ⊂ W0 is separable, so a countable, dense
subset Z = {zn : n ∈ N} of S exists. By Lemma 4.50, S is upward directed,
so we can construct an increasing sequence (un) ⊂ S as follows. Let u1 = z1.
Select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ ū.

The existence of un+1 follows from Lemma 4.50. By Lemma 4.51, we find
a subsequence of (un), denoted again (un), and an element u ∈ S such that
un ⇀ u in W0, un → u in Lp(Q) and un(x, t) → u(x, t) a.e. (x, t) ∈ Q. This
last property of (un) combined with its increasing monotonicity implies that
u = supn un. By construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ u for all n ∈ N,

and thus, Z ⊂ [u, u]. As the interval [u, u] is closed in W0, we infer

S ⊂ Z ⊂ [u, u] = [u, u],

which in conjunction with u ∈ S ensures that u is the greatest solution of
(4.156). The existence of the smallest solution of (4.156) can be proved in a
similar way. This process completes the proof. ��

Remark 4.53. The results obtained in Sect. 4.5.1 and Sect. 4.5.2 can be used
to treat more general multivalued parabolic problems in the form

u ∈ D(L) : Lu+Au+ ∂j(·, ·, u) − ∂β(·, ·, u) � Fu+ h in X∗
0 , (4.189)

where s 
→ β(·, ·, s) is assumed to be a convex function with s 
→ ∂β(·, ·, s)
denoting the usual subdifferential of β at s. It is well known that ∂β has a
representation in the form
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∂β(·, ·, s) = [h1(·, ·, s), h2(·, ·, s)],

where s 
→ h1(·, ·, s) is a nondecreasing, left-sided continuous function and
s 
→ h2(·, ·, s) is a nonincreasing, right-sided continuous function. Let Hi,
i = 1, 2, denote the Nemytskij operators associated with hi; we define sub-
supersolutions for (4.189) as follows.

Definition 4.54. A function ū ∈ W is called a supersolution of problem
(4.189) if Fū ∈ Lq(Q) and if there is a function η̄ ∈ Lq(Q) such that

(i) ū(x, 0) ≥ 0 in Ω and ū ≥ 0 on Γ .
(ii) η̄(x, t) ∈ ∂j(x, t, ū(x, t)) for a.e. (x, t) ∈ Q.
(iii) 〈ūt + Aū, ϕ〉 +

∫
Q
η̄ ϕ dxdt ≥

∫
Q

(F (ū) + H2(ū))ϕdxdt + 〈h, ϕ〉 for all
ϕ ∈ V0 ∩ Lp

+(Q).

Similarly, a function u ∈ W is called a subsolution of problem (4.189) if the
reversed inequalities hold with ū, η̄ replaced by u, η, respectively, and H2(ū)
replaced by H1(u). Assuming an ordered pair of sub-supersolutions in the
sense of Definition 4.54, a comparison principle as well as extremality and
compactness results for (4.189) can be proved. As for a detailed treatment
and proofs, we refer to [60].

Remark 4.55. The case of global growth conditions on Clarke’s generalized
gradient can effectively be treated within the framework of evolutionary hemi-
variational inequalities, which will be considered in Chap. 6. We readily can
see that any solution of the inclusion (4.156) is also a solution of the hemi-
variational inequality

u ∈ D(L) : 〈Lu+Au− Fu− h, ϕ− u〉 +
∫

Q

jo(·, ·, u;ϕ− u) dxdt ≥ 0

for all ϕ ∈ X0. However, the reverse is not true in general.

4.6 An Alternative Concept of Sub-Supersolutions

An alternative notion of sub-supersolution for elliptic and parabolic inclusions
with multifunctions of Clarke’s generalized gradient can be found, e.g., in [43]
or [97]. With the help of the elliptic inclusion (4.81) considered in Sect. 4.3,
we are going to point out the differences between this alternative concept of
sub-supersolutions and the one introduced in Sect. 4.3. Consider the elliptic
inclusion (4.81) written in the form

Au− h+ Fu ∈ −∂j(·, u) in Ω, u = 0 on ∂Ω, (4.190)

and assume that j : Ω × R → R is given by (4.82), which results in the
following representation:
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∂j(·, s) = [g(·, s), ḡ(·, s)], s ∈ R, (4.191)

with g and ḡ as given in Remark 4.30. Noting that

−∂j(·, s) = [−ḡ(·, s),−g(·, s)], s ∈ R,

the alternative notion of sub-supersolutions is as follows.

Definition 4.56. A function u ∈ V is a subsolution of (4.190) if Fu ∈ Lq(Ω)
and ḡ(·, u) ∈ Lq(Ω) such that

(i) u ≤ 0 on ∂Ω.
(ii) Au− h+ Fu ≤ −ḡ(·, u) in V ∗

0 .

Definition 4.57. A function ū ∈ V is a supersolution of (4.190) if Fū ∈
Lq(Ω) and g(·, ū) ∈ Lq(Ω) such that

(i) ū ≥ 0 on ∂Ω.
(ii) Aū− h+ Fū ≥ −g(·, ū) in V ∗

0 .

Comparing Definition 4.56 with Definition 4.28, we can easily see that a subso-
lution in the sense of Definition 4.56 is also a subsolution in the sense of Defini-
tion 4.28. This result is because v(x) ∈ ∂j(x, u(x)) implies v(x) ≤ ḡ(x, u(x)).
Analogously, any supersolution in the sense of Definition 4.57 is a supersolu-
tion in the sense defined in Sect. 4.3.1. Thus, the alternative notions provided
by Definition 4.56 and Definition 4.57 are more restrictive than the one in-
troduced in Sect. 4.3. On the other hand, using these alternative notions, a
comparison principle can be proved without assuming the one-sided growth
condition (H1) (ii). However, the order structure of the solution set S; i.e., the
directedness and extremality property of S seems to be violated if condition
(H1) (ii) is dropped. This result shows that the concept of sub-supersolution
introduced in this monograph is in some sense a natural generalization of the
corresponding notions for equations considered in Chap. 3, because all char-
acteristic features of the comparison principles as well as the properties of
the solution set S are preserved. Moreover, our concept fits nicely into the
framework of hemivariational inequalities, which is the subject of Chap. 6.

4.7 Notes and Comments

Differential inclusions considered in this chapter arise, e.g., in mechanical
problems governed by nonconvex, possibly nonsmooth energy functionals,
called superpotentials, which appear if nonmonotone, multivalued constitu-
tive laws are taken into account (see [177, 180]). In our presentation of com-
parison principles for elliptic and parabolic inclusions, we have concentrated
on Dirichlet and initial-Dirichlet problems, respectively. However, the theory
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developed here is not restricted to such kind of problems and can straight-
forwardly be extended to include boundary conditions of mixed type such as
problems in the form

Au+ Fu = h in Ω, u = 0 on ∂Ω \ Γ, −∂u
∂ν

∈ ∂j(u) on Γ, (4.192)

where Γ ⊂ ∂Ω is a relatively open portion of ∂Ω having a positive surface
measure. As for problem (4.192), we refer to [36], and for a related parabolic
version of (4.192), see [39]. In the spirit of this chapter, inclusion problems
with multifunctions in the form of state-dependent subdifferentials have been
treated in bounded as well as in unbounded domains, e.g., in [43] and [34].
As for systems of elliptic and parabolic inclusion problems, we refer to [47]
and [45]. In the system case, the corresponding notion of sub-supersolution
is replaced by the notion of trapping region, which is defined via outward
pointing vector fields. In Chap. 6, we will clarify the interrelation between
inclusions of Clarke’s gradient type and hemivariational inequalities.



5

Variational Inequalities

The goal of this chapter is starting a systematic study of the sub-supersolution
method in variational inequalities. By using subsolutions or supersolutions, we
can show the solvability and the existence of extremal solutions of noncoer-
cive inequalities. Despite the nonsymmetric structure of variational inequali-
ties, we show that both supersolutions and subsolutions can be defined in an
appropriate manner, which naturally extends the corresponding concepts in
equations.

We first consider the case of variational inequalities defined on closed con-
vex sets. After that, in Sect. 5.2, we extend the concepts and results to the
more general case of inequalities with convex functionals. We next present a
sub-supersolution theory for parabolic variational inequalities on convex sets
(Sect. 5.3) and one for systems of elliptic inequalities (Sect. 5.5). When sub-
and supersolutions have some additional properties, an approximation scheme
is elaborated that yields a monotone approximation for the solutions between
sub- and supersolutions while no monotonicity assumption is imposed on the
lower order term (Sect. 5.4).

For a simple motivation of the concepts of sub- and supersolutions for
variational inequalities, let us consider the equilibrium problem of an elastic
string with fixed end points at 0 and l (l > 0). The energy of the system is
given by E(u) = 1

2

∫ l

0
[u′(x)]2dx, where u(x) is the displacement at x. In the

case without obstacle, at the equilibrium position, u satisfies

u ∈ V0 : E(u) = inf
v∈V0

E(v),

where V0 can be chosen as V0 = W 1,2
0 (0, l). The Euler–Lagrange equation of

this minimization problem could be written in the weak form as the following
variational equation:

u ∈ V0 :
∫ l

0

u′φ′dx = 0, ∀ φ ∈ V0, (5.1)
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(which has a unique solution u ≡ 0, as expected). The equilibrium problem
with an obstacle, represented by ψ ∈ C[0, l] (ψ(0) > 0, ψ(l) > 0), is formulated
as the minimization problem

u ∈ K : E(u) = inf
v∈K

E(v),

with K = {v ∈ V0 : v ≤ ψ}, which has as the Euler–Lagrange “equation” the
following variational inequality:

u ∈ K :
∫ l

0

u′(φ− u)′dx ≥ 0, ∀ φ ∈ K. (5.2)

According to Chap. 3, a supersolution of (5.1) is a function ū ∈ V =
W 1,2(0, l) satisfying ū(0) ≥ 0, ū(l) ≥ 0, and∫ l

0

ū′v′dx ≥ 0, ∀ v ∈ V0 ∩ L2
+(0, l). (5.3)

Similarly a subsolution of (5.1) is a function u ∈ V satisfying u(0) ≤ 0, u(l) ≤
0, and ∫ l

0

u′v′dx ≤ 0, ∀ v ∈ V0 ∩ L2
+(0, l). (5.4)

To get an idea for the notion of sub-supersolutions for the variational in-
equality (5.2) with K being a proper closed, convex subset, we reformulate the
corresponding inequalities for sub-supersolutions in the variational equation
case as follows. Let us consider the inequality (5.4) of the subsolution. Then
(5.4) is equivalent to ∫ l

0

u′(−v+)′dx ≥ 0, ∀ v ∈ V0. (5.5)

Substitution −v+ = w − u in (5.5) yields∫ l

0

u′(w − u)′dx ≥ 0, ∀ w ∈ Y, (5.6)

where Y = {w = u−v+ : v ∈ V0}. A subset of Y is the following set Z defined
by

Z = {w = u− (u− v)+ : v ∈ V0} = {w = u ∧ v : v ∈ V0} =: u ∧ V0.

We will show later that the set Z is dense in Y , or equivalently that the set
M given by

M = {(u+ v)+ : v ∈ V0}



5.1 Variational Inequalities on Closed Convex Sets 213

is dense in V0 ∩ L2
+(0, l), (see Lemma 5.4). Therefore, we have the follow-

ing equivalent notion of a subsolution of the variational equation (5.1): The
function u ∈ V is a subsolution if u(0) ≤ 0, u(l) ≤ 0, and∫ l

0

u′(w − u)′dx ≥ 0, ∀ w ∈ u ∧ V0. (5.7)

By similar arguments, ū ∈ V is supersolution of (5.1) if ū(0) ≥ 0, ū(l) ≥ 0,
and ∫ l

0

ū′(w − ū)′dx ≥ 0, ∀ w ∈ ū ∨ V0. (5.8)

The inequalities (5.7) and (5.8) provide the motivation for the notion of
sub- and supersolution of the variational inequality (5.2) in the general case,
replacing V0 by K, which suggests the following definitions.

Subsolution: u ∈ V is a subsolution of (5.2) if u(0) ≤ 0, u(l) ≤ 0, and∫ l

0

u′(w − u)′dx ≥ 0, ∀ w ∈ u ∧K. (5.9)

Supersolution: ū ∈ V is a supersolution of (5.2) if ū(0) ≥ 0, ū(l) ≥ 0, and∫ 1

0

ū′(w − ū)′dx ≥ 0, ∀ w ∈ ū ∨K. (5.10)

Inequalities (5.9) and (5.10) play a crucial role in generalizing the concept
of sub-supersolutions to variational inequalities. Based on these concepts, we
can develop existence and comparison principles for inequalities as were done
for equations. More details are given in the following sections and chapters.

5.1 Variational Inequalities on Closed Convex Sets

To convey the main ideas, we first consider the following variational inequality:⎧⎨⎩
∫

Ω

A0(x,∇u) · (∇v −∇u)dx ≥
∫

Ω

F (x, u)(v − u)dx, ∀ v ∈ K
u ∈ K.

(5.11)

As mentioned in the previous chapters, Ω is a bounded domain in R
N (N ≥ 1)

with Lipschitz boundary, and W 1,p(Ω) and W 1,p
0 (Ω) are the usual Sobolev

spaces with 1 < p < ∞. Morevover, here K is a closed, convex subset of
W 1,p

0 (Ω). A0 : Ω × R
N → R

N is a Carathéodory, monotone function, and
F : Ω × R → R is a lower order, perturbing term. Because of the rate of
growth of F , the variational inequality (5.11) is, in general, noncoercive.
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5.1.1 Solutions and Extremal Solutions above Subsolutions

For simplicity, we use here the notation V =W 1,p(Ω), V0 =W 1,p
0 (Ω),

‖u‖ = ‖u‖W 1,p(Ω)

and

‖u‖0 = ‖u‖W 1,p
0 (Ω) =

(∫
Ω

|∇u|p
) 1

p

dx.

It is well known from Poincaré’s inequality that ‖ · ‖ is equivalent to ‖ · ‖0 on
V0. We also denote by V ∗ the dual of V and by 〈·, ·〉 the dual pairing between
V and V ∗ and between V0 and V ∗

0 .
Let A0 : Ω × R

N → R
N be a Carathéodory function such that{

A0(x, v)v ≥ α|v|p,
|A0(x, v)| ≤ ν|v|p−1 + γ(x), (5.12)

for a.e. x ∈ Ω, all v ∈ R
N , where α > 0, ν ∈ R, and γ ∈ Lp′

(Ω) (p′ is the
Hölder conjugate exponent of p). We assume that A0(x, ·) is monotone; i.e.,

[A0(x, v1) −A0(x, v2)] · (v1 − v2) ≥ 0, (5.13)

for a.e. x ∈ Ω, for all v1, v2 ∈ R
N . Consider the operator A : V → V ∗ defined

by

〈A(u), v〉 =
∫

Ω

A0(x,∇u) · ∇vdx, ∀ u, v ∈ V.

It can be checked that A given above is well defined, continuous, bounded,
and coercive in V0 in the sense that

lim
‖u‖→∞,u∈V0

〈A(u), u− φ〉
‖u− φ‖0

= +∞, (5.14)

for φ ∈ V0 fixed. This property of A is a direct consequence of (5.12) and
Hölder’s inequality. Assume that F : Ω × R → R is a Carathéodory function
that satisfies a certain growth condition to be specified later (cf. Sect. 5.1.1).

We are concerned here with the existence of solutions and extremal solu-
tions of the variational inequality (5.11). As usual, an element u ∈ K is called
a solution of (5.11) if F (·, u) ∈ Lp′

(Ω) and (5.11) is satisfied.
Note that although A is coercive, the operator u 
→ A(u) −

∫
Ω
F (·, u)dx,

and thus the variational inequality (5.11), are not coercive in general. In the
sections that follow, we use the sub- and supersolution method to show the
existence of solutions of (5.11) either above a subsolution (or under a super-
solution) or between a subsolution and a supersolution. We show furthermore
the existence of smallest and/or greatest solutions.
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Definitions of Sub- and Supersolutions in Variational Inequalities

In this section, we define subsolutions and supersolutions of the variational
inequality (5.11). Assume that v and w are functions defined on Ω and L and
M are sets of functions defined on Ω. We use the notation w∧v = min{w, v},
L ∧ M = {w ∧ v : w ∈ L, v ∈ M}, and w ∧ M = {w} ∧ M . Similarly,
w∨ v = max{w, v}, L∨M = {w∨ v : w ∈ L, v ∈M}, and w∨M = {w}∨M .

Definition 5.1. A function u ∈ V is called a subsolution of (5.11) if

u ≤ 0 on ∂Ω, (5.15)

F (·, u) ∈ Lp′
(Ω), (5.16)

and

〈A(u), w − u〉 ≥
∫

Ω

F (·, u)(w − u)dx, ∀ w ∈ u ∧K. (5.17)

We also consider maxima of a finite number of subsolutions; i.e., functions
u of the form

u = max{u1, . . . , uk}, (5.18)

where u1, . . . , uk are subsolutions of (5.11).

We have similar definitions for supersolutions of (5.11):

Definition 5.2. A function ū ∈ V is called a supersolution of (5.11) if

ū ≥ 0 on ∂Ω, (5.19)

F (·, ū) ∈ Lp′
(Ω), (5.20)

and

〈A(ū), w − ū〉 ≥
∫

Ω

F (·, ū)(w − ū)dx, ∀ w ∈ ū ∨K. (5.21)

Before showing some existence results for (5.11) based on the new concept
of sub- and supersolutions introduced above, we make some remarks about
relationships between Definition 5.1 and Definition 5.2 and the definitions of
sub- and supersolutions in variational equations (see Sect. 3.2 and cf. [83],
[133], or [29]).

Remark 5.3. (a) IfK satisfies the conditionK∧K ⊂ K (respectively,K∨K ⊂
K), i.e.,

w, v ∈ K ⇒ w ∧ v ∈ K, (5.22)
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(respectively,

w, v ∈ K ⇒ w ∨ v ∈ K), (5.23)

then any solution of (5.11) is also a subsolution (respectively, supersolution).
In fact, because u ∈ K, u = 0 on ∂Ω. Moreover, it follows from (5.22) that

u ∧K ⊂ K. Hence, (5.11) implies (5.17); i.e., u is a subsolution of (5.11).
(b) We note that both (5.22) and (5.23) are satisfied in several types of

convex sets usually occur in applications. Some examples are the following.

K = W 1,p
0 (Ω). In this case, (5.11) is an equation and (5.22) and (5.23) are

immediate consequences of the lattice structure of W 1,p
0 (Ω) and W 1,p(Ω)

(cf. [99] or Chap. 2).
K = {u ∈ V0 : u(x) ≥ ψ(x), for a.e. x ∈ Ω0}; i.e., (5.11) is an obstacle

problem. Here, Ω0 is a subset of Ω, and ψ is a given function on Ω0,
representing the obstacle.

K = {u ∈ V0 : ψ1(x) ≤ u(x) ≤ ψ2(x) for a.e. x ∈ Ω0}; i.e., (5.11) is a
biobstacle problem. Here, ψ1, ψ2 are given functions on Ω0.

K can be given by certain gradient condition, as in the elasto-plastic torsion
problem (cf. [197], [95], or [145]):

K = {u ∈ V0 : |∇u(x)| ≤ c, for a.e. x ∈ Ω0},

c ≥ 0 is a given number. This example can be generalized as:
K = {u ∈ V0 : ∂iu(x) ≤ (≥)ψi(x), for a.e. x ∈ Ω0 (i ∈ I)}, where I ⊂

{1, . . . , N} and the ψi’s (i ∈ I) are given functions.

It can be easily checked that both (5.22) and (5.23) are satisfied in all of
these examples.

Coherence with Sub-Supersolution Concepts in Equations

Before stating some existence theorems resulted from the above concepts
of sub-supersolutions, we note that the definitions above extend in a natural
way the classic concepts of sub- and supersolutions for (smooth) variational
equations. In fact, let us consider the case where K =W 1,p

0 (Ω); i.e., (5.11) is
an equation on W 1,p

0 (Ω).
Let us show that when K = W 1,p

0 (Ω) is the entire space, the definition
above reduces to the usual definition of sub- and supersolutions for variational
equations [see Sect. 3.2 (cf. [83] or [133])]. For the proof, the following density
result is crucial.

Lemma 5.4. Let u ∈ V with u|∂Ω ≤ 0. If M is the set defined by

M = {(u+ v)+ : v ∈ V0} = {v+ : v ∈ V, v|∂Ω = u|∂Ω},

then the closure of M in V0 results in

M
V0 = V0 ∩ Lp

+(Ω). (5.24)
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Similarly, if ū ∈ V with ū|∂Ω ≥ 0, then the set N given by

N = {(v − ū)+ : v ∈ V0} = {v+ : v ∈ V, v|∂Ω = −ū|∂Ω}

satisfies
N

V0 = V0 ∩ Lp
+(Ω).

Proof: Let us prove (5.24) only, because the density for N follows the same
arguments. Obviously, M ⊂ V0 ∩Lp

+(Ω). First we note that if v ∈ V0 ∩Lp
+(Ω)

and v has compact support in Ω, then v ∈ M . To prove this, we assume
κ = supp v is a compact subset of Ω. Then, a function ϕ ∈ C∞

0 (Ω) exists such
that

0 ≤ ϕ(x) ≤ 1, ∀ x ∈ Ω and ϕ(x) = 1, ∀ x ∈ κ,
(cf. [115]). Put

ṽ = v + (1 − ϕ) min{u, 0}.
As ϕ is smooth, ṽ ∈ V . Also, because 0 ≤ 1 − ϕ ≤ 1 and 1 − ϕ = 0 on κ, we
immediately have

ṽ+ = v. (5.25)

Furthermore, ṽ = min{u, 0} on Ω \ suppϕ, because κ ⊂ suppϕ. Thus, in view
of u|∂Ω ≤ 0, we get

ṽ|∂Ω = min{u, 0}|∂Ω = u|∂Ω . (5.26)

(5.25) and (5.26) show that v ∈M .
To prove (5.24), we just note that any function v in V0∩Lp

+(Ω) can always
be approximated in V0 by functions in V0 ∩ Lp

+(Ω) with compact support.
This fact follows from the density of C∞

0 (Ω) in V0 and the continuity of the
truncation operator: V0 → V0, v 
→ max{v, 0}. ��

In view of (5.24), we see that (5.17) is equivalent to

〈A(u), v〉 ≤
∫

Ω

F (·, u)vdx, ∀ v ∈ V0 ∩ Lp
+(Ω).

Hence, u is a subsolution in the usual sense of Sect. 3.2 (cf. [133] or [83]).
We have a similar observation for supersolutions. Hence, Definition 5.1 and
Definition 5.2 are extensions to variational inequalities of the usual sub- and
supersolution concepts in equations.

Existence of Solutions above Subsolutions

We show in this section the existence of solutions of (5.11) that lie above
several subsolutions. Assume that the variational inequality (5.11) has subso-
lutions u1, . . . , uk. Let us denote
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u = max{u1, . . . , uk} (5.27)

and u0 = min{u1, . . . , uk} ∈ V . We assume that F has the following growth
condition:

|F (x, u)| ≤ a(x) + b|u|σ, (5.28)

for a.e. x ∈ Ω, all u ∈ R, u ≥ u0(x). Here, a ∈ Lp′
(Ω), b is a positive constant,

and 0 ≤ σ < p − 1. Under those conditions, we have the following existence
theorem of solutions above subsolutions.

Theorem 5.5. Assume (5.27), (5.28), and

uj ∨K ⊂ K, 1 ≤ j ≤ k. (5.29)

Then, a solution u of (5.11) exists such that

u ≥ u. (5.30)

Proof: The proof is motivated by the truncation method already used in the
previous chapters (see also in [83], [113], [133], and [29]). We first define some
auxiliary mappings. Put

b(x, t) = −{[u(x) − t]+}p−1 =
{

0 if t ≥ u(x)
− [u(x) − t]p−1 if t < u(x),

(5.31)

for x ∈ Ω, t ∈ R. b is clearly a Carathéodory function and, for some c0 > 0
depending only on p,

|b(x, t)| ≤ (|t| + |u(x)|)p−1

≤ c0(|t|p−1 + |u(x)|p−1)
= a1(x) + c0|t|p−1,

(5.32)

with a1 = c0|u|p−1 ∈ Lp′
(Ω). Hence, u 
→ b(·, u) is a continuous mapping from

Lp(Ω) to Lp′
(Ω). In the sequel, we use the set notation

{g < h} = {x ∈ Ω : g(x) < h(x)} and {g ≤ h} = {x ∈ Ω : g(x) ≤ h(x)}.

Elementary calculations show that positive constants c1 and c2 exist depend-
ing only on p such that −(u − t)p−1t ≥ c1|t|p − c2|u|p−1|t|, for all u, t ∈ R,
u ≥ t. Hence, for u ∈ Lp(Ω),∫

Ω

b(·, u)u dx =
∫
{u<u}

−[u− u]p−1u dx

≥
∫
{u<u}

(c1|u|p − c2|u|p−1|u|) dx

≥ c3
∫
{u<u}

|u|pdx− c4
∫

Ω

|u|pdx

= c3

∫
{u<u}

|u|pdx− c5,

(5.33)
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where c3, c4, c5 are positive constants independent of u. For j ∈ {1, . . . , k}, we
define

Tj(u)(x) = (u ∨ uj)(x) =
{
uj(x) if u(x) < uj(x)
u(x) if u(x) ≥ uj(x),

(5.34)

T (u)(x) = (u ∨ u)(x) =
{
u(x) if u(x) < u(x)
u(x) if u(x) ≥ u(x). (5.35)

It is known that Tj , T are continuous mappings from Lp(Ω) to itself, and from
V into itself; see Chap. 2 or [43]. Moreover, for all u ∈ Lp(Ω), Tj(u), T (u) ≥ u0

a.e. on Ω. Together with the growth condition (5.28), this implies that the
mappings u 
→ F (·, Tj(u)) and u 
→ F (·, T (u)) are bounded and contin-
uous from Lp(Ω) to Lp′

(Ω) (j ∈ {1, . . . , k}). Let us consider the following
variational inequality:{

〈A(u) + βB(u) −H(u), v − u〉 ≥ 0, ∀ v ∈ K
u ∈ K, (5.36)

where β is a positive constant,

〈B(u), φ〉 =
∫

Ω

b(·, u)φdx, (5.37)

and

〈H(u), φ〉 =
∫

Ω

[
F (·, T (u)) +

k∑
j=1

|F (·, Tj(u)) − F (·, T (u))|
]
φdx, (5.38)

for all φ ∈ V . As the mappings u 
→ b(·, u), u 
→ F (·, Tj(u)), and u 
→
F (·, T (u)) are bounded and continuous from Lp(Ω) to Lp′

(Ω), by using
the compact embedding W 1,p(Ω) ⊂ Lp(Ω) and the continuous embedding
Lp′

(Ω) ⊂
[
W 1,p(Ω)

]∗, we immediately obtained that βB−H is a completely
continuous mapping from V0 into V ∗

0 .
As A is monotone and bounded, A + βB − H is pseudomonotone and

bounded. On the other hand, for u, v ∈ V ,

|〈H(u), v〉| ≤
∫

Ω

[
|F (·, T (u))|(k + 1) +

k∑
j=1

|F (·, Tj(u))|
]
|v| dx. (5.39)

Now, for j ∈ {1, . . . , k},
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Ω

|F (·, Tj(u))| |v|dx

≤
∫
{u≥u0}

|F (·, u)| |v|dx+
∫
{u<u}

|F (·, uj)| |v|dx (since u0 ≤ uj ≤ u)

≤
∫
{u≥u0}

(a+ b|u|σ) |v|dx+
∫
{u<u}

|F (·, uj)| |v|dx (by (5.28))

≤ ‖a‖Lp′ (Ω)‖v‖Lp(Ω) + b|Ω|1−
σ+1

p ‖u‖σ
Lp(Ω)‖v‖Lp(Ω)

+‖F (·, uj)‖Lp′ (Ω)‖v‖Lp(Ω).

(5.40)

A similar estimate holds for the integral with Tj replaced by T . Hence, from
(5.39) and (5.40), we get

|〈H(u), v〉| ≤ (2k + 1)
[
‖a‖Lp′ (Ω)‖v‖Lp(Ω)

+b|Ω|1−
σ+1

p ‖u‖σ
Lp(Ω)‖v‖Lp(Ω) + ‖F (·, uj)‖Lp′ (Ω)‖v‖Lp(Ω)

]
= c6‖v‖Lp(Ω) + c7‖u‖σ

Lp(Ω)‖v‖Lp(Ω), for all u, v ∈ V ,
(5.41)

where c6, c7 are positive constants independent of u, v. Now, fix φ ∈ K.
From (5.12), (5.32), (5.33), (5.41), and the continuous embedding W 1,p

0 (Ω) ⊂
Lp(Ω), we get

〈A(u) + βB(u) −H(u), u− φ〉
≥ 〈A(u), u〉 − |〈A(u), φ〉| + β〈B(u), u〉 − β|〈B(u), φ〉| − |〈H(u), u− φ〉|
≥ α

∫
Ω

|∇u|pdx−
∫

Ω

(
ν|∇u|p−1 + γ

)
|∇φ|dx+ βc3

∫
{u<u}

|u|pdx− βc5

−β
∫

Ω

(a1 + c0|u|p−1)|φ|dx− c6‖u− φ‖Lp(Ω) − c7‖u‖σ
Lp(Ω)‖u− φ‖Lp(Ω)

≥ α‖u‖p
0 − c8

(
‖u‖p−1

0 + ‖γ‖Lp′ (Ω)

)
‖φ‖0 − βc5 − β‖a1‖Lp′ (Ω)‖φ‖Lp(Ω)

−βc0‖u‖p−1
Lp(Ω)‖φ‖Lp(Ω) − c6

(
‖u‖Lp(Ω) + ‖φ‖Lp(Ω)

)
− c7‖u‖σ+1

Lp(Ω)

−c7‖u‖σ
Lp(Ω)‖φ‖Lp(Ω)

≥ α‖u‖p
0 − c9‖u‖

p−1
0 − c10‖u‖0 − c11‖u‖σ+1

0 − c12‖u‖σ
0 − c13,

(5.42)

for all u ∈ V0, where the ci’s (0 ≤ i ≤ 13) are positive constants that do not
depend on u. As σ + 1 < p, the right-hand side of (5.42) is bounded from
below by α

2 ‖u‖
p
0, for all u ∈ K with ‖u‖0 sufficiently large. Hence,

lim
‖u‖0→∞, u∈K

〈A(u) + βB(u) −H(u), u− φ〉
‖u− φ‖0

= +∞;

i.e., A+ βB −H is coercive on K. By classic existence results for variational
inequalities (cf. [152], [124]), (5.36) has a solution u ∈ K.

We now check that u ≥ uj , for all j ∈ {1, . . . , k}, which implies that u ≥ u.
Let q ∈ {1, . . . , k}. As u ∈ K, we have uq ∧u ∈ uq ∧K, and thus, (5.17) (with
u replaced by uq) gives
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〈A(uq), uq ∧ u− uq〉 ≥
∫

Ω

F (·, uq)(uq ∧ u− uq)dx.

Because uq ∧ u = uq − (uq − u)+, this inequality is the same as

−〈A(uq), (uq − u)+〉 ≥ −
∫

Ω

F (·, uq)(uq − u)+dx. (5.43)

On the other hand, it follows from (5.29) that uq ∨ u ∈ K. Letting v = uq ∨ u
in (5.36), we get

〈A(u) + βB(u) −H(u), uq ∨ u− u〉 ≥ 0.

As uq ∨ u = u+ (uq − u)+, this gives

〈A(u) + βB(u) −H(u), (uq − u)+〉 ≥ 0. (5.44)

Adding (5.43) and (5.44) yields

〈A(u) −A(uq), (uq − u)+〉 + β
∫

Ω

b(·, u)(uq − u)+dx

+
∫

Ω

[
F (·, uq) − F (·, T (u)) −

k∑
j=1

|F (·, Tj(u)) − F (·, T (u))|
]
(uq − u)+dx

≥ 0.
(5.45)

Now, from (5.13),

〈A(u) −A(uq), (uq − u)+〉
= −

∫
{uq−u>0}

[
A0(·,∇uq) −A0(·,∇u)

]
· ∇(uq − u)dx

≤ 0.

(5.46)

On the other hand,∫
Ω

[
F (·, uq) − F (·, T (u)) −

k∑
j=1

|F (·, Tj(u)) − F (·, T (u))|
]
(uq − u)+dx

=
∫
{uq>u}

[
F (·, uq) − F (·, T (u)) −

k∑
j=1

|F (·, Tj(u)) − F (·, T (u))|
]
(uq − u)dx

≤ 0.
(5.47)

In fact, for x such that uq(x) > u(x), we also have u(x) ≥ u(x). Hence, in
view of (5.34) and (5.35),

Tq(u) = uq and T (u) = u.
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Thus,

F (·, uq) − F (·, T (u)) −
k∑

j=1

|F (·, Tj(u)) − F (·, T (u))|

≤ F (·, uq) − F (·, T (u)) − |F (·, Tq(u)) − F (·, T (u))|
= F (·, uq) − F (·, u) − |F (·, uq) − F (·, u)|
≤ 0,

implying (5.47). Now, (5.45), (5.46), and (5.47) imply that

0 ≤
∫

Ω

b(·, u)(uq − u)+dx

=
∫
{uq>u}

b(·, u)(uq − u)dx

= −
∫
{uq>u}

(u− u)p−1(uq − u)dx (because u ≥ uq)

≤ 0.

Consequently,

0 =
∫
{uq>u}

(u− u)p−1(uq − u)dx ≥
∫
{uq>u}

(uq − u)pdx ≥ 0.

This result shows that uq − u = 0 a.e. on {uq > u}; i.e., the measure of
{uq > u} is 0. We have proved that u ≥ uq a.e. in Ω. As this holds for all
q ∈ {1, . . . , k}, u ≥ u.

From (5.31), b(x, u) = 0 a.e. in Ω; i.e., B(u) = 0. Also, T (u) = Tj(u) = u,
∀ j ∈ {1, . . . , k} and F (·, u) ∈ Lp′

(Ω) by (5.28). Hence,

〈H(u), φ〉 =
∫

Ω

F (·, u)φdx.

(5.36), therefore, reduces to (5.11); i.e., u is a solution of (5.11). Hence, (5.11)
has a solution u ≥ u. ��

Remark 5.6. Under some obvious modifications (for example, reversing the
inequality and the min-max signs in (5.27), (5.28), (5.29), and (5.30)), we can
prove existence results, similar to Theorem 5.5, for solutions of the inequality
(5.11) that are bounded from above by supersolutions of (5.11).

Existence of Extremal Solutions

In this section, we show that if K has a certain lattice structure, then the
variational inequality (5.11) has a greatest solution. First, we need an estimate
for solutions of (5.11). Let

S = {u ∈ V0 : u ≥ u and u is a solution of (5.11)}.

By Theorem 5.5, S �= ∅. Moreover, we have the following lemma.
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Lemma 5.7. S is bounded in V0.

Proof: We fix an element φ ∈ K. For u ∈ S, we have u(x) ≥ u(x) a.e. in Ω,
and ∫

Ω

A0(·,∇u) · ∇(φ− u)dx ≥
∫

Ω

F (·, u)(φ− u)dx.

It follows from (5.12), the growth condition (5.28), and Hölder’s inequality
that

α‖u‖p
0 ≤

∫
Ω

A0(·,∇u) · ∇udx

≤
∫

Ω

A0(·,∇u) · ∇φdx−
∫

Ω

F (·, u)(φ− u)dx

≤
∫

Ω

|A0(·,∇u)| |∇φ|dx+
∫

Ω

|F (·, u)| (|φ| + |u|)dx

≤ ν‖u‖p−1
0 ‖φ‖0 + ‖γ‖Lp′ (Ω)‖φ‖0 + ‖a‖Lp′ (Ω)

(
‖u‖Lp(Ω) + ‖φ‖Lp(Ω)

)
+b|Ω|1−

σ+1
p ‖u‖σ

Lp(Ω)

(
‖u‖Lp(Ω) + ‖φ‖Lp(Ω)

)
≤ c14

(
‖u‖p−1

0 + ‖u‖0 + ‖u‖σ
0 + ‖u‖σ+1

0 + 1
)

≤ c15
(
‖u‖p−1

0 + ‖u‖σ+1
0 + 1

)
,

where c14, c15 do not depend on u. As σ + 1 < p, it implies that ‖u‖0 is
uniformly bounded for all u ∈ S. ��

We consider on S ⊂ V the usual ordering:

u ≤ v ⇐⇒ u(x) ≤ v(x) a.e. x ∈ Ω.

Now, we show the following improvement of Theorem 5.5, about the existence
of greatest solutions of (5.11).

Theorem 5.8. If K satisfies (5.29), (5.22), and (5.23), then (5.11) has a
greatest solution u∗ ≥ u; i.e., u∗ is a solution of (5.11), and if u is any
solution of (5.11) such that u ≥ u, then u ≤ u∗.

Proof: The greatest solution of (5.11) is the greatest element of S with respect
to the (partial) ordering ≤. We shall show the existence of such an element by
using Zorn’s lemma. To apply this lemma, we first prove that each (nonempty)
chain C in S has an upper bound.

Let u0 ∈ C and C0 = {u ∈ C : u ≥ u0}. Then, u0 ∈ C0 and any upper bound
of C0 is also an upper bound of C. As C0 ⊂ S, the set {‖u‖Lp(Ω) : u ∈ C0} is
bounded by Lemma 5.7. Let

α0 = sup{‖u‖Lp(Ω) : u ∈ C0}(<∞).

By considering C0−u0 instead of C0, we can assume, without loss of generality,
that C0 ⊂ Lp

+(Ω). If u ∈ C0 exists such that ‖u‖Lp(Ω) = α0, then u is an upper
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bound of C0. In fact, u ∈ S and for any v ∈ C0, we either have v ≤ u or v ≥ u.
In the second case,

α0 =
∫

Ω

updx ≤
∫

Ω

vpdx ≤ α0.

Hence,
∫

Ω
updx =

∫
Ω
vpdx. As v ≥ u ≥ 0 in Ω, this holds only if u = v a.e.

on Ω; i.e., u = v. Thus, u ≥ v, for all v ∈ C0; i.e., u is an upper bound of C0

(and then of C).
Now, assume otherwise that ‖u‖Lp(Ω) < α0,∀ u ∈ C0. By the definition of

α0, we have u1 ∈ C0 such that

α0 > ‖u1‖Lp(Ω) > α0 − 1.

Inductively, we can choose, for each n ∈ N, an element un ∈ C0 such that

α0 > ‖un‖Lp(Ω) > max
{
‖un−1‖Lp(Ω), α0 −

1
n

}
. (5.48)

We must have un ≥ un−1. In fact, if this does not hold, then un−1 ≥ un,
because C0 is a chain. It follows that

‖un−1‖p
Lp(Ω) ≥ ‖un‖p

Lp(Ω),

which contradicts the choice of un. It means that (un) is an increasing sequence
in Lp

+(Ω). Letting u = sup{un : n ∈ N}, we have un ↑ u a.e. in Ω. By the
Monotone convergence theorem, we get∫

Ω

up
ndx→

∫
Ω

updx.

From (5.48),
∫

Ω
updx = lim

∫
Ω
up

ndx = αp
0. Therefore, u ∈ Lp(Ω) and

‖u‖Lp(Ω) = α0. Also, because

0 ≤ |un − u|p = (u− un)p ≤ up,

an application of the Dominated convergence theorem gives∫
Ω

|un − u|pdx→ 0, n→ ∞,

i.e.,

un → u in Lp(Ω). (5.49)

We now check that u is an upper bound for C0. Let v ∈ C0. If v ≤ un for
some n, then v ≤ u. Assume that v �≤ un, ∀ n. As C0 is a chain, we must have
un ≤ v, ∀ n. Using arguments as presented previously, we have ‖un‖p

Lp(Ω) ≤
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‖v‖p
Lp(Ω), ∀ n. Letting n → ∞, we get α0 ≤ ‖v‖p

Lp(Ω), which contradicts our
assumption about α0. Hence, u is an upper bound of C0.

We now prove that u ∈ S. As un ≥ u, for all n, we have u ≥ u. Also,
as (un) is bounded in V0, by passing to a subsequence if necessary, we can
assume that

un ⇀ u in V0.

As A is monotone, continuous, and bounded, it is pseudomonotone (cf. [152]).
On the other hand, as K is closed and convex in V0, it is weakly closed in this
space. Hence, u ∈ K. Now, because un ∈ S,

〈A(un), v − un〉 ≥
∫

Ω

F (·, un)(v − un)dx,∀ v ∈ K, ∀ n ∈ N. (5.50)

Letting v = u in this inequality, we have

〈A(un), u− un〉 ≥
∫

Ω

F (·, un)(u− un)dx.

As un → u in Lp(Ω) and un, u ≥ u, it follows from (5.28) that F (·, un) →
F (·, u) in Lp′

(Ω). Hence,∫
Ω

F (·, un)(u− un)dx→ 0.

Thus, lim sup 〈A(un), u− un〉 ≤ 0. As A is pseudomonotone,

lim inf〈A(un), un − v〉 ≥ 〈A(u), u− v〉, ∀ v ∈ K. (5.51)

It follows, from (5.50) and (5.51), that

〈A(u), v − u〉 ≥ lim sup 〈A(un), v − un〉
≥ lim sup

∫
Ω

F (·, un)(v − un)dx

=
∫

Ω

F (·, u)(v − u)dx,

for all v ∈ K. Thus, u is a solution of (5.11); i.e., u ∈ S.
We have shown that every chain C in S has an upper bound in S. By

Zorn’s lemma, S has a maximal element u∗. We prove that u∗ is, in fact, the
greatest element of S. Assume otherwise that an element v ∈ S exists such that
v �≤ u∗. As K satisfies (5.22), both v and u∗ satisfy (5.15)–(5.17). Moreover,
as v, u∗ ≥ u ≥ u0, (5.28) holds. Also, as v, u∗ ∈ K, we have v ∨ K ⊂ K
and u∗ ∨K ⊂ K, by (5.23). Hence, by Theorem 5.5, a solution w ∈ K exists
such that w ≥ ũ = max{v, u∗}(≥ u). We have w ∈ S and w ≥ u∗. Hence,
w = u∗ ≥ v, contradicting the choice of v. This contradiction shows that u∗

is the greatest element of S. ��
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Remark 5.9. A part of the proof of Theorem 5.8 was to prove that for a Lp-
bounded chain C, an increasing sequence (un) exists that converges in Lp(Ω)
to sup C ∈ Lp(Ω). This fact has already been used also in previous chapters
to show the existence of extremal solutions by using Zorn’s lemma.

We can prove furthermore that under the above conditions of Theorem
5.8, the variational inequality (5.11) has a smallest solution. In fact, we have
the following result.

Theorem 5.10. If K satisfies (5.29), (5.22), and (5.23), then (5.11) has a
greatest solution u∗ and a smallest solution u∗ such that

u ≤ u∗ ≤ u∗,

in the sense that for any solution u of (5.11) that satisfies u ≥ u, we have

u∗ ≤ u ≤ u∗.

The proof of this theorem, which requires some arguments in Sect. 5.1.2,
will be presented in that section.

Remark 5.11. (a) Theorem 5.10 establishes the existence of solutions and both
the greatest and smallest solutions, from solely the existence of subsolutions
of (5.11). We have similar results for solutions and extremal solutions below
supersolutions of variational inequalities.

(b) To convey the ideas and somewhat simplify the calculations, we con-
sider here perturbing functions F that depend only on x and u. However,
Theorem 5.5, Theorem 5.8, and Theorem 5.10 still hold in the case where
F = F (x, u,∇u) depends also on the gradient of u. The arguments and cal-
culations used above in the proof of Theorem 5.5 can be simplified; however,
we keep the above approach due to its direct way to be extended to this more
general situation. More detailed discussions in this case will be presented in
the next section.

5.1.2 Comparison Principle and Extremal Solutions

In this section, we prove that if the inequality (5.11) has a pair of subsolution
and supersolution, then at least a solution between them exists. Moreover,
both greatest and smallest solutions in that interval exist. In this case (where
both sub- and supersolutions exist), we can weaken the growth condition
imposed on the lower order term F .

We shall keep the notation of the previous section and fix a number q such
that

1 < q < p∗, (5.52)

where p∗ is the Sobolev critical exponent (corresponding to p). As ∂Ω is
Lipschitzian, the embedding
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W 1,p(Ω) ⊂ Lq(Ω) (5.53)

is compact. In this section, we relax condition (5.16) in the definition of sub-
(super)solutions to the weaker condition

F (·, u) ∈ Lq′
(Ω). (5.54)

If we choose q = p in (5.52), then this condition reduces to (5.16).
Now, we assume that (5.11) has subsolutions u1, . . . , uk and supersolutions

ū1, . . . , ūm. Define u as in (5.27) and put

ū = min{ū1, . . . , ūm}.

Suppose furthermore that u ≤ ū. Let u0 = min{u1, . . . , uk} and u0 =
max{ū1, . . . , ūm}. It is clear that u0, u

0 ∈ V . We assume that F has the
growth condition

|F (x, u)| ≤ a(x), for a.e. x ∈ Ω, all u ∈ [u0(x), u0(x)], (5.55)

with a ∈ Lq′
(Ω), b ≥ 0. Note that if F satisfies the seemingly more general

growth condition

|F (x, u)| ≤ a(x) + b|u|q−1, for a.e. x ∈ Ω, all u ∈ [u0(x), u0(x)],

then F also satisfies (5.55) (with a different function a). We are now ready
to prove the following existence result, which can be considered as the analog
to the comparison principle for variational equations proved in Sect. 3.2 of
Chap. 3.

Theorem 5.12. Assume (5.55), (5.27), (5.29), and

ūi ∧K ⊂ K, 1 ≤ i ≤ m. (5.56)

Then, a solution u of (5.11) exists such that

u ≤ u ≤ ū.

Proof: The ideas are similar to those in the proof of Theorem 5.5; however, the
calculations are somewhat more involved and employ truncation techniques
already used in the proof of Theorem 3.6 of Chap. 3. We define the mapping

b(x, t) =

⎧⎨⎩
[t− ū(x)]q−1 if t > ū(x)
0 if u(x) ≤ t ≤ ū(x)
− [u(x) − t]q−1 if t < u(x),

(5.57)

for x ∈ Ω, t ∈ R. b is a Carathéodory function and

|b(x, t)| ≤ (|t| + |ū(x)| + |u(x)|)q−1

≤ c16
{[

|u0(x)| + |u0(x)|
]q−1 + |t|q−1

}
= a2(x) + c17|t|q−1,

(5.58)
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with a2 ∈ Lq′
(Ω), c16 > 0 being a constant. Hence, the mapping u 
→ b(·, u)

is continuous from Lq(Ω)(⊃W 1,p(Ω)) to Lq′
(Ω)(⊂

[
W 1,p(Ω)

]∗). We have, as
in (5.33),∫

Ω

b(·, u)udx

=
∫
{u>ū}

(u− ū)q−1udx−
∫
{u<u}

(u− u)q−1udx

≥
∫
{u>ū}

(c17|u|q − c18|ū|q−1|u|)dx+
∫
{u<u}

(c19|u|q − c20|u|q−1|u|)dx

≥ c21
∫

Ω

|u|qdx− c21
∫
{u≤u≤ū}

|u|qdx− c22
∫

Ω

(|ū|q−1 + |u|q−1)|u|dx− c23
(c21 = min{c17, c19} > 0)

≥ c21
∫

Ω

|u|qdx− c21
∫

Ω

(|ū| + |u|)qdx− c22
∫

Ω

(|ū|q−1 + |u|q−1)|u|dx− c23
≥ c21‖u‖q

Lq(Ω) − c24,
(5.59)

for all u ∈ Lq(Ω), where the ci’s (17 ≤ i ≤ 24) are positive constants inde-
pendent of u. Let 1 ≤ i ≤ k, 1 ≤ j ≤ m. For each u ∈ V , we define

Ti0(u)(x) =

⎧⎨⎩
ui(x) if u(x) < ui(x)
u(x) if ui(x) ≤ u(x) ≤ ū(x)
ū(x) if u(x) > ū(x),

(5.60)

T0j(u)(x) =

⎧⎨⎩
u(x) if u(x) < u(x)
u(x) if u(x) ≤ u(x) ≤ ūj(x)
ūj(x) if u(x) > ūj(x),

(5.61)

and

T (u)(x) =

⎧⎨⎩
u(x) if u(x) < u(x)
u(x) if u(x) ≤ u(x) ≤ ū(x)
ū(x) if u(x) > ū(x),

(5.62)

(x ∈ Ω). It is easy to check that Ti0, T0j , and T are bounded, continuous
mappings from W 1,p(Ω) into itself and from Lq(Ω) into itself. Now, as u0 ≤
ui, u, ū, ūj ≤ u0, the growth condition (5.55) implies that the mappings

u 
→ F (·, Ti0(u)), u 
→ F (·, T0j(u)), and u 
→ F (·, T (u)),

are bounded and continuous from Lq(Ω) into Lq′
(Ω). Consider the following

variational inequality:{
〈A(u) + βB(u) −H(u), v − u〉 ≥ 0, ∀ v ∈ K
u ∈ K. (5.63)
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Here, β is a fixed positive number,

〈B(u), φ〉 =
∫

Ω

b(·, u)φdx, (5.64)

and

〈H(u), φ〉 =
∫

Ω

[
F (·, T (u)) +

k∑
i=1

|F (·, Ti0(u)) − F (·, T (u))|

−
m∑

j=1

|F (·, T0j(u)) − F (·, T (u))|
]
φdx,

(5.65)

for all u, φ ∈ V0. From the continuity and boundedness of the mappings

u 
→ b(·, u), u 
→ F (·, Ti0(u)), u 
→ F (·, T0j(u)), and u 
→ F (·, T (u)),

from Lq(Ω) to Lq′
(Ω) the compactness of the embedding W 1,p

0 (Ω) ⊂ Lq(Ω),
and the continuity of the embedding Lq′

(Ω) ⊂ [W 1,p
0 (Ω)]∗, we have that the

mapping βB − H is bounded and completely continuous from W 1,p
0 (Ω) to

[W 1,p
0 (Ω)]∗. It follows that A + βB − H is pseudomonotone and bounded.

Also, it follows from (5.55) that

|F (x, Ti0(u)(x))|, |F (x, T0j(u)(x))| ≤ a(x),

and thus,

|〈H(u), v〉| ≤ c25‖v‖Lq(Ω), (5.66)

for some constant c25 > 0, fixed. As in the proof of Theorem 5.5, it follows
from (5.12), (5.59), and (5.66) that for φ ∈ K fixed, for all u ∈ K,

〈A(u) + βB(u) −H(u), u− φ〉
≥ 〈A(u), u〉 + β〈B(u), u〉 − |〈A(u), φ〉| − β|〈B(u), φ〉| − |〈H(u), u〉|
−|〈H(u), φ〉|

≥ α‖u‖p
0 + βc21‖u‖q

Lq(Ω) − βc24 − ν‖u‖
p−1
0 ‖φ‖0 − ‖γ‖Lq(Ω)‖φ‖0

−β
(
‖a2‖Lq′ (Ω) + c17‖u‖q−1

Lq(Ω)

)
‖φ‖Lq(Ω) − c25

(
‖u‖Lq(Ω) + ‖φ‖Lq(Ω)

)
≥ α‖u‖p

0 + βc21‖u‖q
Lq(Ω) − c26‖u‖

p−1
0 − c27‖u‖q−1

Lq(Ω) − c28‖u‖Lq(Ω) − c29.
(5.67)

Here, the ci’s are again positive constants depending on p, q, Ω, φ, and other
fixed functions, but not on u. Thus, for some constants c30, c31, c32 > 0, we
have

〈A(u) + βB(u) −H(u), u− φ〉 ≥ c30‖u‖p
0 + c31‖u‖q

Lq(Ω) − c32,

for all u with ‖u‖0 sufficiently large. Hence,
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lim
‖u‖0→∞,u∈K

〈A(u) + βB(u) −H(u), u− φ〉
‖u− φ‖0

= +∞,

which proves the coercivity of A + βB − H on K. We have the existence of
solutions of (5.63) by well-known existence results for variational inequalities,
as in Theorem 5.5.

In the next step, we show that any solution u of (5.63) must satisfy

uq ≤ u ≤ ūr, ∀ q ∈ {1, . . . , k}, r ∈ {1, . . . ,m}. (5.68)

Let us prove the first inequality, the proof of the second being similar. Because
uq satisfies (5.15)–(5.17), we also have (5.43) as in the proof of Theorem 5.5.
On the other hand, arguing as in that theorem, using (5.29), we also have
(5.44), with B,H defined by (5.64) and (5.65). Adding (5.43) and (5.44), we
get

〈A(u) −A(uq), (uq − u)+〉 + β
∫

Ω

b(·, u)(uq − u)+dx

+
∫

Ω

[
F (·, uq) − F (·, T (u)) −

∑
i

|F (·, Ti0(u)) − F (·, T (u))|

+
∑

j

|F (·, T0j(u)) − F (·, T (u))|
]
(uq − u)+dx

≥ 0.

(5.69)

For x ∈ Ω such that uq(x) > u(x), we have u(x) > u(x), and thus,

Tq0(u)(x) = uq(x), T0j(u)(x) = T (u)(x) = u(x), ∀ j ∈ {1, . . . ,m}.

Therefore,∫
Ω

[
F (·, uq) − F (·, T (u)) −

∑
i

|F (·, Ti0(u)) − F (·, T (u))|

+
∑

j

|F (·, T0j(u)) − F (·, T (u))|
]
(uq − u)+dx

=
∫
{uq>u}

[
F (·, uq) − F (·, T (u)) −

∑
i

|F (·, Ti0(u)) − F (·, T (u))|

+
∑

j

|F (·, T0j(u)) − F (·, T (u))|
]
(uq − u)+dx

≤ 0,

(5.70)

because, for x in the set {uq > u},
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F (x, uq(x)) − F (x, T (u)(x)) −
∑

i

|F (x, Ti0(u)(x)) − F (x, T (u)(x))|

+
∑

j

|F (x, T0j(u)(x)) − F (x, T (u)(x))|

= F (x, uq(x)) − F (x, T (u)(x)) −
∑

i

|F (x, Ti0(u)(x)) − F (x, T (u)(x))|

≤ F (x, uq(x)) − F (x, T (u)(x)) − |F (x, Tq0(u)(x)) − F (x, T (u)(x))|
= F (x, uq(x)) − F (x, u(x)) − |F (x, uq(x)) − F (x, u(x))|
≤ 0.

(5.71)

Now, it follows from (5.69), (5.70), and (5.46) that

0 ≤
∫

Ω

b(·, u)(uq − u)+dx

=
∫
{uq>u}

b(·, u)(uq − u)dx

= −
∫
{uq>u}

(u− u)q−1(uq − u)dx (since uq ≤ u)

≤ 0.

(5.72)

This result means that

0 =
∫
{uq>u}

(u− u)q−1(uq − u)dx

≥
∫
{uq>u}

(uq − u)qdx

=
∫

Ω

[
(uq − u)+

]q
dx.

Hence, (uq − u)+ = 0 in Ω; i.e., u ≥ uq a.e. in Ω. Similarly, we can show by
using the same mappings Ti0, T0j , and T that

u ≤ ūr, ∀ r ∈ {1, . . . ,m}.

Consequently,

max{uq : q ∈ {1, . . . , k}} = u ≤ u ≤ ū = min{ūr : r ∈ {1, . . . ,m}}.

These inequalities imply that b(·, u) = 0 in Ω and Ti0(u) = T0j(u) = T (u) =
u, ∀ i, j. It thus follows from (5.55) that F (·, u) ∈ Lq′

(Ω). Also,

〈H(u), φ〉 =
∫

Ω

F (·, u)φdx.

(5.63) becomes the variational inequality (5.11); i.e., u is a solution of (5.11).
��
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Existence of Extremal Solutions

We show in this section the existence of extremal (smallest and greatest)
solutions of (5.11), between sub- and supersolutions. Namely, we have the
following result.

Theorem 5.13. Assume (5.55), (5.56), (5.29), and (5.27) are satisfied, and
that K has the lattice structure (5.22)–(5.23). Then, the variational inequality
(5.11) has a greatest solution u∗ and a smallest solution u∗ such that

u ≤ u∗ ≤ u∗ ≤ ū;

i.e., if u is a solution of (5.11) such that u ≤ u ≤ ū, then u∗ ≤ u ≤ u∗.

Proof: The proof follows the same line as that of Theorem 5.8; thus, we
present only the outline here. Let

S = {u ∈ K : u is a solution of (5.11) and u ≤ u ≤ ū}.

From Theorem 5.12, S �= ∅. We show that S has the greatest and the smallest
elements with respect to the ordering ≤. We apply again Zorn’s lemma.

Let C ⊂ S be a nonempty chain. Fix an element u0 ∈ C, and by considering
C0 = {u ∈ C : u ≥ u0}, we can assume that C has a least element u0. Again,
by replacing C by C−u0, we can also assume that C ⊂ Lq

+(Ω). Now, let u ∈ S.
As u ≤ u ≤ ū, we have

|u(x)| ≤ |u(x)| + |ū(x)|, a.e. in Ω,

and thus,
‖u‖Lq(Ω) ≤ c33

(
‖u‖Lq(Ω) + ‖ū‖Lq(Ω)

)
.

This result means that S is bounded in Lq(Ω). Using the same arguments as
in Theorem 5.8, with Lq(Ω), Lq′

(Ω), and ‖ · ‖Lq(Ω) instead of Lp(Ω), Lq(Ω),
and ‖ · ‖Lp(Ω), we come to the same conclusion as in that theorem; i.e., C has
an upper bound in S.

We have shown that each nonempty chain in S has an upper bound (also
in S). By Zorn’s lemma, S has a maximal element. Using arguments as in
Theorem 5.8 (with Theorem 5.12 instead of Theorem 5.5), we see that this
maximal element is, in fact, the greatest element of S. By reversing the in-
equality signs, we can prove, in the same way, the existence of the smallest
element of S. ��

Now, we are ready to complete the proof of Theorem 5.10, which is based
on Theorem 5.13.

Proof of Theorem 5.10: It follows from Theorem 5.8 that a greatest solution
u∗ ≥ u exists. As K satisfies (5.23), u∗ is also a supersolution of (5.11). For
u0(x) ≤ u(x) ≤ u∗(x), we have from (5.28) that
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|F (x, u(x))| ≤ a(x) + b|u(x)|σ ≤ a(x) + b(|u0(x)| + |u∗(x)|)σ. (5.73)

As u0, u
∗ ∈ Lp(Ω) and 0 ≤ σ < p − 1, (|u0| + |u∗|)σ ∈ Lp/σ(Ω) ⊂ Lq(Ω).

Hence, the right-hand side of (5.73) is in Lq(Ω). Therefore, we have (5.55)
with q = p (< p∗).

On the other hand, as u∗ ∈ K, (5.56) follows from (5.22). We see that all
conditions of Theorem 5.13 are satisfied. Consequently, (5.11) has a greatest
solution u∗0 and a smallest solution u0

∗ between u and u∗; i.e.,

u ≤ u0
∗ ≤ u∗0 ≤ u∗,

and u∗0 and u0
∗ are, respectively, the greatest and smallest solutions (i.e., the

greatest and smallest elements) of the set

S1 = {u ∈ V : u ≤ u ≤ u∗, u is a solution of (5.11)}.

Now, recalling that S = {u ∈ V : u ≤ u, u is a solution of (5.11)}, we have
that S = S1 by Theorem 5.8 and the definition of u∗. Therefore, u∗0 and u0

∗
are also the greatest and smallest solutions (i.e., the greatest and smallest
elements) in S. Hence, u∗0 = u∗ and the proof of Theorem 5.10 is complete.

��

We conclude this section with some remarks.

Remark 5.14. (a) To convey the main ideas, we assume here that F depends
only on x and u. However, the arguments given above for F = F (x, u) can be
easily extended to the more general case where F = F (x, u,∇u) also depends
on the gradient of the unknown function u (see the following sections).

(b) In the definitions of sub- and supersolutions presented above, we do
not require that sub- and supersolutions are elements of K, which extends
the scope of application of the subsolution and supersolution method. For
example, consider the variational equation

u ∈W 1,p
0 (Ω) : 〈A(u), v〉 =

∫
Ω

F (x, u,∇u)vdx, ∀ v ∈W 1,p
0 (Ω), (5.74)

which correspondinds to the variational inequality (5.11) when K =W 1,p
0 (Ω).

Then, if u (respectively, ū) is a subsolution (respectively, supersolution) of
(5.74) in the usual sense of sub- and supersolutions of variational equations of
Chap. 3 (cf. [113], [83], and [133]), then u (respectively, ū) is also a subsolution
(respectively, supersolution) of (5.11) in the the sense of Definition 5.1.

In fact, assume that u is a subsolution of (5.74). Then, we have (5.15) and
(5.16). Moreover,

〈A(u), v〉 ≤
∫

Ω

F (x, u,∇u)vdx, ∀ v ∈ V0 ∩ Lp
+(Ω), (5.75)

(cf. Chap. 3 and [113], [83], and [133]). Let w ∈ u ∧K, w = u ∧ w1 for some
w1 ∈ K. It follows that w − u ≤ 0 on Ω. As u|∂Ω ≤ 0 on ∂Ω, w1|∂Ω = 0 on
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∂Ω, we have w|∂Ω = u|∂Ω . Hence, w−u ∈ V0. Using (5.75) with v = −w+u,
we have v ∈ V0, v ≥ 0. Thus, in this case, (5.75) reduces to (5.17). A similar
proof holds for supersolutions.

(c) The applications of the above general results to some specific, but
interesting, noncoercive variational inequalities and equations will be given in
a following section. In the next section, we present an extension of the above
concepts and arguments to a more general variational inequality, containing
convex functionals not necessarily indicators of convex sets. We also study a
sub-supersolution approach for evolutionary variational inequalities.

5.2 Variational Inequalities with Convex Functionals

In this section, we extend the above discussions to more general variational
inequalities that contain convex functionals. We are concerned here with the
existence of solutions and extremal solutions of noncoercive variational in-
equalities of the form:{

〈A(u), v − u〉 − 〈G(u), v − u〉 + j(v) − j(u) ≥ 0, ∀ v ∈ V0

u ∈ V0.
(5.76)

Here, A is (the weak form of) the second-order quasi-linear elliptic operator

−
N∑

i=1

∂

∂xi
[ai(x, u,∇u)] + a0(x, u,∇u) (5.77)

G is the lower order term [cf. (5.78) and (5.83)], and j is a convex functional,
representing obstacles or unilateral conditions imposed on the solutions. De-
pending on the choice of j, the variational inequality (5.76) is the weak form of
an equation or a complementarity problem that contains the operator (5.77)
with various types of free boundaries or constraints (cf. [124, 11, 95]).

This section is the next step of our study plan proposed in Section 5.1 on
sub-supersolution methods applied to variational inequalities on closed convex
sets; that is, the particular case of (5.76) where j is the indicator function of
a closed convex set K:

j(u) =
{

0 if u ∈ K
+∞ if u �∈ K.

However, many interesting problems in mechanics and applied mathematics
lead to other types of convex functionals; for example,

j(u) =
∫

Ω

ψ(x, u(x))dx or j(u) =
∫

∂Ω

ψ(x, u|∂Ω(x))dS,

(cf. [95, 89]). Because of the nonsymmetric nature of the problem, sub-
supersolution methods for smooth equations (cf. [113], [75], [41], or [133])
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and the arguments in [141] for inequalities on convex sets are not directly
applicable to (5.76). The goal of this section is to extend some results in the
previous section to the inequality (5.76) with more generality on the convex
functional j.

5.2.1 General Settings—Sub- and Supersolutions

In this section, we consider some assumptions on the inequality (5.76) and
next define sub- and supersolutions for it. Although similar conditions are
considered before, the main assumptions are presented here for completeness.
In (5.76), A is a mapping from V to V ∗, defined by

〈A(u), v〉 =
∫

Ω

[ N∑
i=1

ai(x, u,∇u)∂iv + a0(x, u,∇u)v
]
dx, ∀ u, v ∈ V, (5.78)

where, for each i ∈ {0, 1, . . . , N}, ai is a Carathéodory function fromΩ × R
N+1

to R. For i ∈ {1, . . . , N},

|ai(x, u, ξ)| ≤ a0(x) + b0(|u|p−1 + |ξ|p−1) (5.79)

and

|a0(x, u, ξ)| ≤ a1(x) + b1(|u|q−1 + |ξ|
p
q′ ), (5.80)

for almost all x ∈ Ω, all u ∈ R, ξ ∈ R
N with b0, b1 > 0, a0 ∈ Lp′

(Ω), a1 ∈
Lp′

(Ω), 1 < q < p∗. (As usual, p′ is the Hölder conjugate of p and p∗ is its
Sobolev conjugate.) Moreover,

N∑
i=1

[ai(x, u, ξ) − ai(x, u′, ξ′)](ξi − ξ′i) + [a0(x, u, ξ) − a0(x, u′, ξ′)](u− u′) > 0,

(5.81)

if (u, ξ) �= (u′, ξ′), and

N∑
i=1

ai(x, u, ξ)ξi + a0(x, u, ξ)u ≥ α(|ξ|p + |u|p) − β(x), (5.82)

for a.e. x ∈ Ω, all u ∈ R, ξ ∈ R
N , where α > 0 and β ∈ L1(Ω). The lower

order operator G is defined by

〈G(u), v〉 =
∫

Ω

F (x, u,∇u)vdx, (5.83)

where F : Ω × R
N+1 → R is a Carathéodory function with a certain growth

condition to be specified later. We also assume that j is a mapping from V to
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R ∪ {+∞} such that the restriction j|V0 is convex and lower semicontinuous
on V0 with nonempty effective domain. Before stating our theorem about
existence of solutions, we need to define subsolutions and supersolutions for
inequalities with convex functionals. These definitions extend those definitions
presented in Sect. 5.1 for inequalities on closed convex sets.

Definition 5.15. A function u ∈ V is called a subsolution of (5.76) if a
functional J (depending on u) exists:

J = Ju : V → R ∪ {+∞},

such that

(i) u ≤ 0 on ∂Ω
(ii) F (·, u,∇u) ∈ Lq′

(Ω)
(iii) J(u) <∞,

(5.84)

and

j(v ∨ u) + J(v ∧ u) ≤ j(v) + J(u), ∀ v ∈ V0 ∩D(j) (5.85)

and

(iv)〈A(u), v − u〉 − 〈G(u), v − u〉 + J(v) − J(u) ≥ 0, (5.86)

for all v ∈ u∧ [V0 ∩D(j)] (D(j) = {v ∈ V : j(v) <∞} is the effective domain
of j). We have a similar definition for supersolutions: ū is a supersolution of
(5.76) if J = Jū : V → R ∪ {+∞} exists such that:

(i) ū ≥ 0 on ∂Ω
(ii) F (·, ū,∇ū) ∈ Lq′

(Ω)
(iii) J(ū) <∞,

(5.87)

and

j(v ∧ ū) + J(v ∨ ū) ≤ j(v) + J(ū), ∀ v ∈ V0 ∩D(j) (5.88)

and

(iv)〈A(ū), v − ū〉 − 〈G(ū), v − ū〉 + J(v) − J(ū) ≥ 0 (5.89)

for all v ∈ ū ∨ [V0 ∩D(j)].

Suppose subsolutions u1, . . . , uk and supersolutions ū1, . . . , ūm of (5.76)
exist. As above, we put

u = max{ui : 1 ≤ i ≤ k}, ū = min{ūl : 1 ≤ l ≤ m},

u0 = min{ui : 1 ≤ i ≤ k}, ū0 = max{ūl : 1 ≤ l ≤ m},
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and assume that F has the following growth condition:

|F (x, u, ξ)| ≤ a2(x) + b2|ξ|p/q′
(5.90)

for a.e. x ∈ Ω, all ξ ∈ R
N , all u such that u0(x) ≤ u ≤ ū0(x)), where

a2 ∈ Lq′
(Ω), b2 ≥ 0, q < p∗.

We conclude this section with some remarks.

Remark 5.16. (i) If u is a solution of (5.76), then u is a subsolution of (5.76),
provided j satisfies the following condition:

j(v ∨ u) + j(v ∧ u) ≤ j(v) + j(u), (5.91)

for all u, v ∈W 1,p(Ω). In fact, if u is a solution of (5.76), then it satisfies (i)–
(ii). By choosing J = j, we see that (5.85) follows from (5.91). If v = u ∧ w,
w ∈ V0, then v = 0 on ∂Ω; i.e., v ∈ V0. Hence, (5.86) is a consequence of
(5.76). Similarly, if (5.91) holds, then any solution is a supersolution.

(ii) (5.91) is satisfied for several usual convex functionals j. For example,
if j is given by

j(u) =
∫

E

ψ(x, u)dx, (5.92)

where E is a subset of Ω or ∂Ω, ψ : Ω × R → R ∪ {+∞}, is a Carathéodory
function such that

ψ(x, u) ≥ a3(x) + b3|u|s, x ∈ Ω, u ∈ R, (5.93)

where a3 ∈ L1(Ω) and 0 ≤ s < p∗. The functional j is well defined from
W 1,p(Ω) to R∪{+∞} and j is convex if ψ(x, ·) is convex for a.e. x ∈ Ω. Also,
by Fatou’s lemma, j is weakly lower semicontinuous. Let u, v ∈ V , and denote

Ω1 = {x ∈ Ω : v(x) < u(x)}, Ω2 = {x ∈ Ω : v(x) ≥ u(x)}.

Then,

j(v ∧ u) + j(v ∨ u) =
(∫

Ω1

+
∫

Ω2

)
ψ(v ∧ u)dx+

(∫
Ω1

+
∫

Ω2

)
ψ(v ∨ u)dx

=
∫

Ω

ψ(x, u) dx+
∫

Ω

ψ(x, v)dx

= j(u) + j(v).
(5.94)

Hence, (5.91) is satisfied. Note that from (5.93), ψ(x, u) is bounded from below
by a function in L1(Ω). Thus, the integrals in (5.94) are in R ∪ {+∞}, and
we can split and combine them as done.

(iii) If j = IK , K is a closed convex set in V0, then we recover the cases
considered in [141] (see also Sect. 5.1). Moreover, (5.91) holds provided K
satisfies the condition
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u, v ∈ K =⇒ u ∧ v, u ∨ v ∈ K. (5.95)

As noted in [141], (5.95) is satisfied whenever K is defined by obstacles or by
certain conditions on the gradients. We can also check that by using (5.92).

(iv) If j = 0, we have an equation in (5.76). By choosing J = 0 also,
we see that (5.85)–(5.88) obviously hold and (5.86)–(5.89) reduce to the usual
definitions of sub- and supersolutions of equations. If j = IK as in (iii), then by
choosing J = 0, we see that the definition of subsolutions in [141] is equivalent
to the definition in (i)-(iv) here. Thus, Definition 5.15 is an extension of that
in [141].

(v) By choosing J = 0 in (5.85) and (5.86), we see that if u is a subsolution
of the equation

〈A(u), v〉 − 〈G(u), v〉 = 0, ∀ v ∈ V0

and j(v ∨ u) ≤ j(v), ∀ v ∈W 1,p
0 (Ω) ∩D(j), then u is a subsolution of (5.76).

Similar observations hold for supersolutions.
(vi) Compared with the definitions in Chap. 3 or [113, 75, 41, 133, 141],

the new ingredient here is the introduction of the functional J in Definition
5.15, which permits more flexibility in constructing sub- and supersolutions
(by choosing different J).

5.2.2 Existence and Comparison Results

In this section, we state and prove our existence results for solutions and
extremal solutions of (5.76), based on the concepts of sub- and supersolutions
in Sect. 5.2.1.

Theorem 5.17. Assume (5.76) has a subsolution u and a supersolution ū
such that u ≤ ū and that (5.90) holds. Then, (5.76) has a solution u such that
u ≤ u ≤ ū.

Proof: We follow the usual truncation–penalization technique as in the pre-
vious sections (see [113, 41, 133, 141]). Therefore, we just outline the main
arguments and present only the different points and modifications needed for
our situation here. Let b be defined as in (5.57). We have the estimates (5.58)
and (5.59).

We also define Ti0, T0j , and T as in (5.60), (5.61), and (5.62). Let us
consider the variational inequality{

〈A(u) + βB(u) −H(u), v − u〉 + j(v) − j(u) ≥ 0, ∀ v ∈ V0

u ∈ V0,
(5.96)

with β > 0 sufficiently large, B given by (5.64), and H by
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〈H(u), φ〉

=
∫

Ω

[
F (·, T (u),∇T (u)) +

k∑
i=1

|F (·, Ti0(u),∇Ti0(u)) − F (·, T (u),∇T (u))|

−
m∑

j=1

|F (·, T0j(u),∇T0j(u)) − F (·, T (u),∇T (u))|
]
φdx

(5.97)

for all u, φ ∈ V0. Let us prove that H = A + βB −H is pseudomonotone on
V . In fact, assume wn ⇀ w in V and

lim sup
n→∞

〈H(wn), wn − w〉 ≤ 0. (5.98)

We show that

lim
n→∞〈H(wn), wn − v〉 ≥ 〈H(w), w − v〉, ∀ v ∈ V. (5.99)

As the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact, we have wn → w in Lq(Ω).
As the sequence (wn) is bounded in V , the sequences

(F (·, Ti0(wn),∇Ti0(wn))), (F (·, T0j(wn),∇T0j(wn))),

and (F (·, T (wn),∇T (wn))) are uniformly bounded in Lq′
(Ω). From (5.97), it

follows that the sequence ((βB − H)(wn)) is bounded in Lq′
(Ω), and thus,

the strong convergence of (un) in Lq(Ω) implies

〈(βB −H)(wn), wn − w〉 → 0.

Hence, from (5.98), we get

lim sup〈A(wn), wn − w〉 ≤ 0. (5.100)

As {ai} (i = 0, 1, . . . , n) satisfy the Leray–Lions conditions (5.79)–(5.81),
the operator A : W 1,p

0 (Ω) → (W 1,p
0 (Ω))∗ is pseudomonotone, and thus by

Definition 2.97, we have

Awn ⇀ Aw and 〈Awn, wn〉 → 〈Aw,w〉,

which shows (5.99) (even equality holds), and thus, A+βB−H is pseudomo-
notone. Using arguments similar to those in [141], we can prove that A +
βB−H is coercive on V0. Moreover, this mapping is obviously continuous and
bounded. Classic existence results for variational inequalities (cf. [152, 124])
give the existence of at least one solution u ∈ V0 of (5.96). Also, it is clear
that u ∈ D(j). We prove that u ≤ u. Let uq (1 ≤ q ≤ k) be a subsolution. As
u ∈ V0 ∩D(j), (5.86) with u = uq and v = u ∧ u gives

〈A(uq), uq ∧ u− uq〉 − 〈G(uq), uq ∧ u− uq〉 + J(uq ∧ u) − J(uq) ≥ 0.
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As uq ∧ u = uq − (uq − u)+, the above inequality becomes

−〈A(uq), (uq − u)+〉 − 〈G(uq), (uq − u)+〉 + J(uq ∧ u) − J(uq) ≥ 0. (5.101)

On the other hand, as uq ∨u = 0 on ∂Ω, v = uq ∨u ∈ V0. Letting v into (5.96)
and noting that uq ∨ u = u+ (uq − u)+, we get

〈A(u) + βB(u) −H(u), (uq − u)+〉 + j(uq ∨ u) − j(u) ≥ 0. (5.102)

Adding (5.101) and (5.102), we get

〈A(u) −A(uq), (uq − u)+〉 + 〈G(uq) + βB(u) −H(u), (uq − u)+〉
+j(uq ∨ u) − j(u) + J(uq ∧ u) − J(uq) ≥ 0.

From (5.85), we get

j(uq ∨ u) − j(u) + J(uq ∧ u) − J(uq) ≤ 0.

Using the integral formulation of B, H, and G, we get

〈A(u) −A(uq), (uq − u)+〉 +
∫

Ω

F (x, uq,∇uq)(uq − u)+ dx

+β
∫

Ω

b(x, u)(uq − u)+dx

−
∫

Ω

[
F (x, T (u),∇T (u)) +

∑
i

|F (x, Ti0(u),∇Ti0(u)) − F (x, T (u),∇T (u))|

−
∑

j

|F (x, T0j(u),∇T0j(u)) − F (x, T (u),∇T (u))|
]
(uq − u)+dx

≥ 0.
(5.103)

We have also the following estimate:

〈A(u) −A(uq), (uq − u)+〉 + β
∫

Ω

b(·, u)(uq − u)+dx

+
∫

Ω

[
F (·, uq,∇uq) − F (·, T (u),∇T (u))

−
∑

i

|F (·, Ti0(u),∇Ti0(u)) − F (·, T (u),∇T (u))|

+
∑

j

|F (·, T0j(u),∇T0j(u)) − F (·, T (u),∇T (u))|
]
(uq − u)+dx

≥ 0.

Using calculations as in (5.70) in the proof of Theorem 5.12, we finally obtain
the following estimate:

0 ≤
∫

Ω

b(·, u)(uq − u)+dx

= −
∫
{uq>u}

(u− u)q−1(uq − u)dx (because uq ≤ u)

≤ 0.
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Thus, 0 =
∫

Ω

[(uq − u)+]qdx and (uq − u)+ = 0 a.e. in Ω; i.e., u ≥ uq a.e. in

Ω. Using these arguments for all q ∈ {1, . . . , k}, we see that u ≥ u. We can
show in the same way that u ≤ ū. Now, from (5.57), we have b(x, u(x)) = 0
for almost all x ∈ Ω; i.e., B = 0. Also, Til(u) = T (u) = u, for all i, l, and
thus,

〈H(u), φ〉 =
∫

Ω

F (·, u,∇u)φdx = 〈G(u), φ〉.

Hence, as u satisfies (5.96), it also satisfies (5.76); i.e., u is a solution of (5.76)
and u ≤ u ≤ ū. ��

We now note that (5.76) has a greatest and a smallest solution within the
interval between u and ū.

Theorem 5.18. Assume (5.76) has a subsolution u and a supersolution ū
such that u ≤ ū. Moreover, (5.90) and (5.91) hold. Then, (5.76) has a greatest
solution u∗ and a smallest solution u∗ such that

u ≤ u∗ ≤ u∗ ≤ ū; (5.104)

that is, u∗ and u∗ are solutions of (5.76) that satisfy (5.104), and if u is a
solution of (5.76) such that u ≤ u ≤ ū, then u∗ ≤ u ≤ u∗ on Ω.

The proof is similar to that of the particular case j = IK , which was already
presented in Theorem 5.13, Sect. 5.1 (see also [141]). Therefore, it is omitted.

As in the case of variational inequalities on convex sets, we still have the
existence of solutions and extremal solutions provided only subsolutions (or
supersolutions) exist together with certain one-sided growth conditions. We
have in fact the following result.

Theorem 5.19. Assume (5.76) has subsolutions u1, . . . , uk and F has the
growth condition

|F (x, u, ξ)| ≤ a3(x) + b3(|u|σ + |ξ|σ) (5.105)

for a.e. x ∈ Ω, all u such that u0(x) ≤ u, all ξ ∈ R
N , where 0 ≤ σ < p−1, a ∈

Lp′
(Ω), and

u0 = min{ui : 1 ≤ i ≤ k}.

Hence, (5.76) has a solution u such that u ≥ u = max{ui : 1 ≤ i ≤ k}.

The idea of the proof of this result is a combination of Theorem 5.17 stated
above and an extension of Theorem 1 in [141] (cf. Theorem 5.5). We omit the
proof and refer to [141] and Sect. 5.1 above for more details. By looking closely
at the set of solutions of (5.76), we can improve Theorem 5.19 and get the
following stronger result.
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Theorem 5.20. Under the assumptions of Theorem 5.19, (5.76) has a great-
est solution u∗ and a smallest solution u∗ such that

u ≤ u∗ ≤ u∗; (5.106)

that is, u∗ and u∗ are solutions of (5.76) that satisfy (5.106), and if u is a
solution of (5.76) such that u ≤ u, then u∗ ≤ u ≤ u∗ a.e. on Ω.

The proof follows the same line as that in Theorem 2, [141], and it is
therefore omitted. For more details, we refer to [141] and [142].

Remark 5.21. Note that if ai = ai(x, ξ) (i = 1, . . . , N) do not depend on u,
then we can choose a0 = 0 and all results stated above still hold.

5.2.3 Some Examples

We now apply these general results to establish the existence of solutions and
extremal solutions in some particular variational inequalities.

Example 5.22. In this example, we study a quasi-linear elliptic variational in-
equality that contains a “unilateral” term given by an integral. Assume that
for i = 0, 1, . . . , N , ai satisfies

ai(x, u, 0) = 0 (5.107)

for a.e. x ∈ Ω, all u ∈ R, and consider the variational inequality⎧⎨⎩ 〈A(u), v − u〉 − λ
∫

Ω

F (x, u,∇u)(v − u)dx+ j(v) − j(u) ≥ 0, ∀ v ∈ V0

u ∈ V0.

(5.108)

Here, A and F are defined as in (5.78), (5.79), and (5.80) of Section 5.2.1. λ
is a real parameter and

j(u) =
∫

Ω

ψ(x, u(x))dx, (5.109)

where ψ : Ω × R → R ∪ {+∞} is a Carathéodory function such that

ψ(x, u) ≥ −a(x) − b|u|p, (5.110)

where a ∈ L1(Ω), b ≥ 0. It follows from this inequality that for u ∈ V ,
x 
→ ψ(x, u(x)) is measurable and because −a − b|u|p ∈ L1(Ω), j is well
defined and j(u) ∈ R ∪ {+∞}. Assume also that for almost all x ∈ Ω, ψ(x, ·)
is convex. Hence, j is convex on V . It follows from Fatou’s lemma that j is
lower semicontinuous on that space. The following lemma shows the existence
of constant sub- and supersolutions of (5.108).
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Lemma 5.23. (a) Assume B ∈ R, B ≤ 0 is such that

(i) F (x,B, 0) ≥ 0 for a.e. x ∈ Ω,
(ii) F (·, B, 0) ∈ Lq′

(Ω),
(5.111)

and

(iii) ψ(x,B) ≤ ψ(x, v), ∀ v ≤ B; (5.112)

then B is a subsolution of (5.108).
(b) Similarly, if A ∈ R, A ≥ 0 and

(i) F (x,A, 0) ≤ 0 for a.e. x ∈ Ω,
(ii) F (·, A, 0) ∈ Lq′

(Ω),
(5.113)

and

(iii) ψ(x,A) ≥ ψ(x, v), ∀ v ≥ A; (5.114)

then A is a supersolution of (5.108).

Proof: (a) Choosing J = 0, we see that u = B satisfies conditions (i)–(iii) of
Definition 5.15. Moreover, (5.85) becomes, in this case,

j(v ∨B) ≤ j(v), v ∈ V0 ∩D(j); (5.115)

i.e., ∫
Ω

ψ(x, v(x) ∨B)dx ≤
∫

Ω

ψ(x, v(x))dx.

In view of (5.109) and (5.110), this is equivalent to∫
{x∈Ω:v(x)>B}

ψ(x, v)dx+
∫
{x∈Ω:v(x)≤B}

ψ(x,B)dx

≤
∫
{x∈Ω:v(x)>B}

ψ(x, v)dx+
∫
{x∈Ω:v(x)≤B}

ψ(x, v)dx.
(5.116)

Now, from (5.112), we have

ψ(x,B) ≤ ψ(x, v(x)) on {x ∈ Ω : v(x) ≤ B},

and thus, ∫
{x∈Ω:v(x)≤B}

ψ(x,B)dx ≤
∫
{x∈Ω:v(x)≤B}

ψ(x, v)dx,

which implies (5.116) and thus (5.115).
To check (5.86), we assume that v = B ∧ w with some w ∈ V0 ∩ D(j).

From (5.107) and the definition of A, A(B) = 0. As v −B ≤ 0, we have from
(5.111)(i) that
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〈G(B), v −B〉 =
∫

Ω

F (x,B, 0)(v −B)dx ≤ 0.

This result implies (5.86), which completes the proof of (a). The proof of (b)
is similar. ��

By using Theorem 5.18, Theorem 5.20, and Lemma 5.23, we have the
following existence result for (5.108).

Theorem 5.24. (a) Assume B ∈ R satisfies (5.111), ψ satisfies (5.112), and
that

|F (x, u, ξ)| ≤ a(x) + b(|u|σ + |ξ|σ)

for a.e. x ∈ Ω, u ≥ B, ξ ∈ R
N , with 0 ≤ σ < p−1, a ∈ Lp′

(Ω). Then, (5.108)
has a smallest solution u∗ and a greatest solution u∗ such that B ≤ u∗ ≤ u∗.

(b) Assume A,B ∈ R (A ≥ B) satisfy (5.111)–(5.114) and that F has the
growth condition

|F (x, u, ξ)| ≤ a(x) + b|ξ|p/q′

for a.e. x ∈ Ω, ξ ∈ R
N , u ∈ [A,B] with q < p∗, a ∈ Lp′

(Ω). Then, (5.108) has
a smallest solution u∗ and a greatest solution u∗ such that B ≤ u∗ ≤ u∗ ≤ A.

Example 5.25. We consider in this example a variational inequality that con-
tains the p-Laplacian, that is, the inequality (5.76) with

〈A(u), v〉 =
∫

Ω

|∇u|p−2∇u · ∇v dx.

In this case, ai = |∇u|p−2∂iu, (1 ≤ i ≤ N), and a0 = 0. The coefficients ai

(i = 0, 1, . . . , N) clearly satisfy (5.79) and (5.80). For each K > 0, suppose
that the function

x 
→ sup{|F (x, u, ξ)| : 0 ≤ u ≤ K, |ξ| ≤ K} (5.117)

belongs to Lq′
(Ω). We also assume the following behavior of F (x, u, ξ) when

u(> 0) is very small or very large:

lim inf
u→0+,|ξ|→0

F (x, u, ξ)
up−1

>
λ0

λ
> lim sup

u→∞,ξ∈RN

F (x, u, ξ)
up−1

, (5.118)

where λ0 is the principal eigenvalue of the p-Laplacian,

λ0 = inf

{(∫
Ω

|u|pdx
)−1 ∫

Ω

|∇u|pdx : u ∈ V0 \ {0}
}
.

Let φ0 be the (unique) eigenfunction corresponding to λ0 such that φ0(x) > 0
for all x ∈ Ω. (It is known, see [178], that φ0 ∈ C1,α(Ω̄) for some α ∈ (0, 1).)
By choosing J = 0 and using the arguments in [140] (Lemma 1), we can show
that the function u = εφ0 satisfies (5.86) for all ε > 0 sufficiently small. On
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the other hand, let Ω̃ be a bounded open region that contains Ω̄ and let λ̃
be the principal eigenvalue of the p-Laplacian on Ω̃ and φ̃ the corresponding
eigenfunction on Ω̃ such that φ̃ > 0 on Ω̃. Then, we can prove that ū = Rφ̃|Ω̄
satisfies (5.89) (with J = 0) for R > 0, sufficiently large. The proofs of these
statements are somewhat lengthy; we refer to [140] for more details. The
following lemma is about the construction of sub- and supersolutions of (5.76)
based on the eigenfunctions φ0 and φ̃ of the p-Laplacian.

Lemma 5.26. (a) If C1 > 0 exists such that ψ is nonincreasing on (−∞, C1),
i.e.,

ψ(x, u) ≤ ψ(x, v), for a.e. x ∈ Ω, for all u, v such that v ≤ u < C1,
(5.119)

then, for ε > 0 sufficiently small, u = εφ0 is a subsolution of (5.108).
(b) Similarly, if C2 > 0 exists such that ψ is nondecreasing on (C2,∞),

i.e.,

ψ(x, u) ≥ ψ(x, v), for a.e. x ∈ Ω, for all u, v such that u ≥ v > C2,
(5.120)

then for R > 0 sufficiently large, ū = Rφ̃|Ω is a supersolution of (5.108).

Proof: (a) We need only to check (5.85); i.e.,

j(v ∨ εφ0) ≤ j(v), ∀ v ∈ V0 ∩D(j).

This result is equivalent to∫
{x∈Ω:v<εφ0}

ψ(x, εφ0)dx+
∫
{x∈Ω:v≥εφ0}

ψ(x, v)dx

≤
(∫

{x∈Ω:v<εφ0}
+
∫
{x∈Ω:v≥εφ0}

)
ψ(x, v)dx;

that is, ∫
{x∈Ω:v<εφ0}

ψ(x, εφ0)dx ≤
∫
{x∈Ω:v<εφ0}

ψ(x, v)dx. (5.121)

Now, as φ0 ∈ L∞(Ω), εφ0(x) < C1, for a.e. x ∈ Ω for ε > 0 small. Hence, for
v < εφ0 < C1, (5.119) implies ψ(x, v(x)) ≥ ψ(x, εφ0(x)) for a.e. x ∈ Ω. This
result implies (5.121). Hence, εφ0 is a subsolution of (5.108). The proof of (b)
is similar. ��

As a consequence of Lemma 5.26 and Theorem 5.18, we have the following
result.
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Theorem 5.27. Under the conditions (5.118) and (5.117), a smallest solu-
tion u∗ and a greatest solution u∗ of (5.108) exist such that

(0 <)εφ0 ≤ u∗ ≤ u∗ ≤ Rφ̃|Ω ,

where ε > 0 sufficiently small and R > 0 sufficiently large. In particular, if F
has the growth condition (5.117) and λ satisfies (5.118), then, (5.108) has a
positive solution.

Remark 5.28. (5.108) can be seen as an eigenvalue problem for a variational
inequality. We have proved that for λ in certain appropriate interval [given by
(5.118)]; then (5.108) has a positive eigenfunction.

5.3 Evolutionary Variational Inequalities

Let Ω ⊂ R
N be as above, Q = Ω × (0, τ) and Γ = ∂Ω × (0, τ), τ > 0. This

section is concerned with existence and comparison results of the following
parabolic variational inequality:

u ∈W0 ∩K, u(·, 0) = 0 : 〈ut +A(u) + F (u) − h, v − u〉 ≥ 0, ∀ v ∈ K,
(5.122)

where K is a closed, convex subset of X0 := Lp(0, τ ;W 1,p
0 (Ω)), W0 = {u ∈

X0 : ut ∈ X∗
0}, 〈·, ·〉 denotes the duality pairing between X∗

0 and X0, and
p ∈ [2,∞). The operator A : X0 → X∗

0 is related with a nonlinear elliptic
operator of Leray–Lions type in divergence form given by

A(u)(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t,∇u(x, t)),

and F is the Nemytskij operator associated with the Carathéodory function
f : Q× R × R

N → R by

F (u)(x, t) = f(x, t, u(x, t),∇u(x, t)).

We assume that h ∈ Lp′
(Q) ⊂ X∗

0 (as above, p′ is the Hölder conjugate of p).
Solutions of the variational inequality (5.122) are usually referred to as

strong solutions (cf. [152]). Many papers deal with parabolic inequalities under
different structure and regularity hypotheses of the data such as [65, 67, 81,
84, 89, 95, 152, 175, 184, 188, 214, 218] and the recent survey paper [198].
The aim of this section is to develop the method of sub-supersolutions for the
parabolic variational inequality (5.122).
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5.3.1 General Settings

Only for completeness here we recall the evolutionary framework that has
already been introduced in Chap. 3 and Chap. 4, in which the parabolic
variational inequality is embedded. Throughout this section, we set X =
Lp(0, τ ;W 1,p(Ω)) and its dual space X∗ = Lp′

(0, τ ; (W 1,p(Ω))∗). We also
denote

W = {u ∈ X : ut ∈ X∗},
where the derivative ∂/∂t is understood in the sense of vector-valued distri-
butions (cf. [222]), which is characterized by∫ τ

0

u′(t)φ(t) dt = −
∫ τ

0

u(t)φ′(t) dt, ∀ φ ∈ C∞
0 (0, τ).

The space W endowed with the graph norm

‖u‖W = ‖u‖X + ‖ut‖X∗

is a Banach space that is separable and reflexive because of the separability
and reflexivity of X and X∗, respectively.

Let ‖ · ‖X and ‖ · ‖X0 be the usual norms defined on X and X0 (and
similarly on X∗ and X∗

0 ) :

‖u‖X =
(∫ τ

0

‖u(t)‖p
W 1,p(Ω) dt

)1/p

, ‖u‖X0 =
(∫ τ

0

‖u(t)‖p

W 1,p
0 (Ω)

dt

)1/p

.

We use the notation 〈·, ·〉 for any of the dual pairings between X and X∗, X0

and X∗
0 , V =W 1,p(Ω) and V ∗, and V0 =W 1,p

0 (Ω) and V ∗
0 =W−1,p′

(Ω). For
example, with f ∈ X∗, u ∈ X,

〈f, u〉 =
∫ τ

0

〈f(t), u(t)〉 dt.

Let L = ∂/∂t and its domain of definition D(L) given by

D(L) = {u ∈ X0 : ut ∈ X∗
0 and u(0) = 0} .

The linear operator L : D(L) → X∗
0 is closed, densely defined, and maximal

monotone. We assume that ai : Q × R
N → R and f : Q × R × R

N → R are
Carathéodory functions, where f has certain growth conditions to be specified
later and ai satisfies:

|ai(x, t, ξ)| ≤ c1|ξ|p−1 + c2(x, t), (5.123)

N∑
i=1

[ai(x, t, ξ) − ai(x, t, ξ′)](ξi − ξ′i) > 0, (5.124)
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N∑
i=1

ai(x, t, ξ)ξi ≥ c3|ξ|p − c4(x, t), (5.125)

for almost all (x, t) ∈ Q, all ξ, ξ′ ∈ R
N with ξ′ �= ξ, where c1, c3 ∈ (0,∞),

c2 ∈ Lp′
(Q), and c4 ∈ L1(Q).

The operators A : X → X∗ ⊂ X∗
0 related with the quasilinear elliptic

operator, and F : X → X∗ ⊂ X∗
0 , as well as h ∈ Lp′

(Q) ⊂ X∗
0 , are defined as

follows:

〈A(u), v〉 =
N∑

i=1

∫
Q

ai(x, t,∇u)vxi
dxdt,

〈F (u), v〉 =
∫

Q

f(·, ·, u,∇u)v dxdt,

〈h, v〉 =
∫

Q

h(x, t)v(x, t) dxdt,

(5.126)

for all v, u ∈ X. Thus, the variational inequality (5.122) may be rewritten as:

u ∈ D(L) ∩K : 〈Lu+A(u) − F (u) − h, v − u〉 ≥ 0, ∀ v ∈ K. (5.127)

Furthermore, as above, for u, v ∈ X, U, V ⊂ X, we use the notation u ∧ v =
min{u, v}, u∨v = max{u, v}, U∗V = {u∗v : u ∈ U, v ∈ V }, and u∗U = {u}∗U
with ∗ ∈ {∧,∨}.

Our basic notion of sub-and supersolution of (5.122) is defined as follows.

Definition 5.29. A function u ∈W is called a subsolution of (5.122) if

(i) Fu ∈ Lp′
(Q),

(ii) u(·, 0) ≤ 0 a.e. in Ω, u ≤ 0 on Γ, and
(iii) 〈ut, v − u〉 + 〈A(u), v − u〉 + 〈F (u), v − u〉 ≥ 〈h, v − u〉, ∀ v ∈ u ∧K.

(5.128)

We have a similar definition for supersolutions of (5.122).

Definition 5.30. A function ū ∈W is called a supersolution of (5.122) if

(i) Fū ∈ Lp′
(Q),

(ii) ū(·, 0) ≥ 0 a.e. in Ω, ū ≥ 0 on Γ, and
(iii) 〈ūt, v − ū〉 + 〈A(ū), v − ū〉 + 〈F (ū), v − ū〉 ≥ 〈h, v − ū〉, ∀ v ∈ ū ∨K.

(5.129)

Definition 5.31. Let C �= ∅ be a closed and convex subset of a reflex-
ive Banach space X. A bounded, hemicontinuous and monotone operator
P : X → X∗ is called a penalty operator associated with C ⊂ X if

P (u) = 0 ⇐⇒ u ∈ C.
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We assume that a pair of sub-supersolutions u and ū of (5.122) exists such
that u ≤ ū a.e. in Q and that f has the following growth between u and ū:

(H1) |f(x, t, u, ξ)| ≤ c5(x, t) + c6|ξ|p−1, (5.130)

for some c5 ∈ Lp′
(Q), for a.e. (x, t) ∈ Q, all ξ ∈ R

N , and all u ∈
[u(x, t), ū(x, t)]. Moreover, suppose that a penalty operator P : X0 →
X∗

0 exists associated with K ⊂ X0 with the following properties.
(H2) For each u ∈ D(L), w = w(u) ∈ X0 exists such that

(i) 〈ut +Au,w〉 ≥ 0, and
(ii) 〈Pu,w〉 ≥ D‖Pu‖X∗

0
‖w‖Lp(Q),

(5.131)

for some constant D > 0 independent of u and w.

5.3.2 Comparison Principle

Now, let us prove the following existence and comparison result for the in-
equality (5.122).

Theorem 5.32. Assume (5.122) has an ordered pair of sub- and supersolu-
tions u and ū and that (5.123)–(5.125) and (H1)–(H2) are satisfied. Suppose
furthermore that D(L) ∩K �= ∅ and

u ∨K ⊂ K, ū ∧K ⊂ K. (5.132)

Then, (5.122) has a solution u such that u ≤ u ≤ ū a.e. in Q.

Proof: The proof is a combination of arguments for parabolic variational
equations [29] (see Chap. 3) with those for elliptic variational inequalities in
[141] (see Sect. 5.1 and Sect. 5.2). As in previous sections, we define the cutoff
function b and truncation operator T :

b(x, t, u) =

⎧⎨⎩
[u− ū(x, t)]p−1 if u > ū(x, t)
0 if u(x, t) ≤ u ≤ ū(x, t)
−[u(x, t) − u]p−1 if u < u(x, t),

for (x, t, u) ∈ Ω × (0, τ) × R and

(Tu)(x, t) =

⎧⎨⎩
ū(x, t) if u(x, t) > ū(x, t)
u(x, t) if u(x, t) ≤ u(x, t) ≤ ū(x, t)
u(x, t) if u(x, t) < u(x, t),

for (x, t) ∈ Q, u ∈ X. It is easy to check that b is a Carathéodory function
with the growth condition

|b(x, t, u)| ≤ c7(x, t) + c8|u|p−1, for a.e. (x, t) ∈ Q, all u ∈ R, (5.133)

with c7 ∈ Lp′
(Q), c8 > 0. Hence, the operator B : X0 → X∗

0 given by
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〈Bu, v〉 =
∫

Q

b(·, ·, u) v dxdt (u, v ∈ X), (5.134)

is well defined. Moreover, there are c9, c10 > 0 such that∫
Q

b(·, ·, u)u dxdt ≥ c9‖u‖p
Lp(Q) − c10, ∀ u ∈ X0. (5.135)

We define the operator C from X0 to X∗
0 by

C(u) = γBu+ F ◦ T (u), u ∈ X0 (5.136)

(γ is a positive constant to be determined later and F ◦T denotes the compo-
sition of F and T ) and consider the following auxiliary variational inequality
in X0:

u ∈ D(L) ∩K : 〈Lu+A(u) + C(u) − h, v − u〉 ≥ 0, ∀ v ∈ K. (5.137)

Using usual arguments, we readily verify that A+ C is pseudomonotone with
respect to D(L). Let us check that A + C is coercive on X0 in the following
sense:

lim
‖u‖X0→∞

〈(A+ C)(u), u− ϕ〉
‖u‖X0

= +∞, (5.138)

for any ϕ ∈ X0. In fact, from (5.125), we have

〈Au, u〉 ≥ c3‖|∇u|‖p
Lp(Q) − c11, ∀ u ∈ X0, (5.139)

with some constant c11 > 0. Using Stampacchia’s theorem (cf. [124, 99]) and
Young’s inequality together with (5.130), we have for each ε > 0, constants
c12 = c12(ε), c13 > 0 such that for all u ∈ X0,

|〈F ◦ T (u), u〉| =
∣∣∣∣∫

Q

(F ◦ T )(u)u dxdt
∣∣∣∣

≤ ‖c5‖Lp′ (Q)‖u‖Lp(Q) + c6‖|∇u|‖p−1
Lp(Q)‖u‖Lp(Q)

≤ ε‖|∇u|‖p
Lp(Q) + c12‖u‖p

Lp(Q) + c13.

(5.140)

Combining (5.135) with (5.139) and (5.140), we get

〈(A+C)(u), u〉 ≥ (c3−ε)‖|∇u|‖p
Lp(Q)+(γc9−c12)‖u‖p

Lp(Q)−(c11+γc10+c13),

for all u ∈ X0. Choosing ε = c3/2 and γ = c3c12c−1
9 , we have c14, c15 > 0 such

that

〈(A+ C)(u), u〉 ≥ c14‖u‖p
X0

− c15, ∀ u ∈ X0. (5.141)

For any ϕ ∈ X0 fixed, it is inferred from (5.123), (5.133), and (5.130) that
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|〈(A+ C)(u), ϕ〉| ≤ c16(‖u‖p−1
X0

+ 1)‖ϕ‖X0 , ∀ u ∈ X0, (5.142)

for some constant c16 = c16(ϕ) > 0. From (5.141) and (5.142), we obtain
(5.138).

It follows from the pseudo-monotonicity and coercivity of A + C with re-
spect to D(L) that the variational inequality (5.137) has a solution u. The
proof of this claim is given in Lemma 5.33 below. Now, let us show that any
solution u of (5.137) satisfies: u ≤ u ≤ ū a.e. in Q. We verify that u ≤ u, the
second inequality is proved in the same way. Because u ∈ K, it follows from
(5.132) that

u+ (u− u)+ = u ∨ u ∈ K.
Letting v = u+ (u− u)+ into (5.137), we get

〈ut, (u− u)+〉 + 〈Au+ γBu+ F (Tu), (u− u)+〉 ≥ 〈h, (u− u)+〉. (5.143)

On the other hand, as u is a subsolution, it follows from (5.128)(iii), with

v = u− (u− u)+ = u ∧ u ∈ u ∧K,

that

−〈ut, (u− u)+〉 − 〈Au, (u− u)+〉 − 〈F (u), (u− u)+〉 ≥ −〈h, (u− u)+〉.
(5.144)

Adding (5.143) and (5.144), we get

〈(u− u)t, (u− u)+〉 + 〈Au−Au+ γBu, (u− u)+〉
+〈F (Tu) − F (u), (u− u)+〉 ≥ 0. (5.145)

We have u− u ∈W and (u− u)+(·, 0) = 0, and thus,

〈(u− u)t, (u− u)+〉 =
1
2
‖(u− u)+(·, τ)‖2

L2(Ω) ≥ 0. (5.146)

On the other hand, it is easy to check from (5.124) that

〈Au−Au, (u− u)+〉 ≥ 0. (5.147)

Moreover,

〈F (Tu)−F (u), (u−u)+〉 =
∫

Q+
[f(·, ·, Tu,∇(Tu))−f(·, ·, u,∇u)](u−u) dxdt,

where Q+ = {(x, t) ∈ Q : u(x, t) ≥ u(x, t)}. But because of

Tu = u and ∇(Tu) = ∇u a.e. on Q+,

we have
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〈F (Tu) − F (u), (u− u)+〉 = 0. (5.148)

Combining (5.146)–(5.148) with (5.145), we obtain

0 ≤ γ〈Bu, (u− u)+〉
= −

∫
Q+

(u− u)p dxdt

≤ 0.

This result proves that u − u = 0 a.e. on Q+, and thus, u ≤ u a.e. on Q.
A similar proof shows that u ≤ ū. From u ≤ u ≤ ū, we have Bu = 0 and
Tu = u. Consequently, u is also a solution of (5.127). ��

To complete the proof of the Theorem 5.32, we need to show the solvability
of the inequality (5.137), which is given in the following lemma.

Lemma 5.33. Under the assumptions of Theorem 5.32, the variational in-
equality (5.137) has solutions.

Proof: The penalty arguments we use here are motivated by Deuel and Hess’
paper [84]. For ε > 0, let us consider the following penalized equation:

u ∈ D(L) : 〈ut, v〉 + 〈(A+ C)(u), v〉 +
1
ε
〈Pu, v〉 = 〈h, v〉, ∀ v ∈ X0, (5.149)

where P is a penalty operator (associated to K) that satisfies (5.131).
Because A+C is pseudomonotone with respect to D(L) and ε−1P is mono-

tone, A+ C + ε−1P is also pseudomonotone with respect to D(L). Moreover,
it is bounded and hemicontinuous on X0. From the coercivity of A + C, see
(5.138), and the monotonicity of ε−1P , it is easy to see that A+ C + ε−1P is
coercive on X0:

lim
‖u‖X0→∞

〈(A+ C + ε−1P )(u), u− ϕ〉
‖u‖X0

= +∞, (5.150)

for any ϕ ∈ X0 (fixed). According to existence results for solutions of parabolic
variational equalities (see Chap. 3, and cf. [152, 19, 20]), for each ε > 0,
(5.149) has solutions. Let uε be a solution of (5.149). We show that the family
{uε : ε > 0, small} is bounded with respect to the graph norm of D(L). In
fact, let u0 be a (fixed) element of D(L)∩K. Putting v = uε −u0 into (5.149)
(with uε) and noting the monotonicity of L and that Pu0 = 0, we get

〈h− u0t, uε − u0〉
= 〈uεt − u0t, uε − u0〉 + 〈(A+ C)(uε), uε − u0〉 +

1
ε
〈Puε − Pu0, uε − u0〉

≥ 〈(A+ C)(uε), uε − u0〉.

Thus,
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〈(A+ C)(uε), uε − u0〉
‖uε − u0‖X0

≤ ‖h− u0t‖X∗
0
,

for all ε > 0. From (5.138), we have that ‖uε‖X0 is bounded. As a consequence,
we see that {Auε} and {Cuε} are bounded sequences in X∗

0 . Moreover, from
the growth conditions of b and F and the definition of T , we can also prove
that {Cuε} is a bounded sequence in Lp′

(Q).
Next, we check that the sequence {ε−1Puε} is also bounded in X∗

0 . To see
this, for each ε, we choose w = wε to be an element satisfying (5.131) with
u = uε. From (5.149), we have

〈uεt, wε〉 + 〈(A+ C)(uε), wε〉 +
1
ε
〈Puε, wε〉 = 〈h,wε〉.

From (5.131)(i), 〈uεt, wε〉 + 〈Auε, wε〉 ≥ 0. Therefore,

1
ε
〈Puε, wε〉 ≤ 〈h− C(uε), wε〉. (5.151)

As {‖Cuε‖Lp′ (Q)} is bounded, a constant c > 0 exists such that

|〈h− Cuε, wε〉| ≤ c‖wε‖Lp(Q), ∀ ε.

This result and (5.131)(ii) imply that

1
ε
‖Puε‖X∗

0
≤ c

D
, ∀ ε.

On the other hand, as

uεt = h− (A+ C + ε−1P )(uε)

in X∗
0 , the above estimate implies that {uεt} is also bounded in X∗

0 . We
have shown that {uε} is bounded with respect the graph norm of D(L). As
a consequence, u ∈ X0 (with ut ∈ X∗

0 ) and a subsequence of {uε} exist, still
denoted by {uε}, such that

uε ⇀ u in X0, uεt ⇀ ut in X∗
0 (ε→ 0+). (5.152)

As D(L) is closed in W and convex, it is weakly closed in W , and thus,
u ∈ D(L).

Now, we prove that u is a solution of the variational inequality (5.137).
First, note that Pu = 0. In fact, we have Puε → 0 in X∗

0 . It follows from the
monotonicity of P that

〈Pv, v − u〉 ≥ 0, ∀ v ∈ X0.

As in the proof of Minty’s lemma (cf. [124]), we obtain from this inequality
that

〈Pu, v〉 ≥ 0, ∀ v ∈ X0.
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Hence, Pu = 0 in X∗
0 , that is, u ∈ K. On the other hand, (5.152) and Aubin’s

lemma (see [152]) imply that

uε → u in Lp(Q). (5.153)

As a consequence, we get

〈Cuε, uε − u〉 → 0 as ε→ 0+. (5.154)

For w ∈ K, letting v = w − uε in (5.149) (with u = uε), we get

〈uεt, w − uε〉 + 〈(A+ C)(uε), w − uε〉 − 〈h,w − uε〉

=
1
ε
〈−Puε, w − uε〉 ≥ 0. (5.155)

By choosing w = u in (5.155), we have

〈Auε, u− uε〉
≥ 〈h, u− uε〉 − 〈Cuε, u− uε〉 − 〈ut, u− uε〉 + 〈ut − uεt, u− uε〉
≥ 〈h, u− uε〉 − 〈Cuε, u− uε〉 − 〈ut, u− uε〉.

As a consequence, we get

lim inf
ε→0+

〈Auε, u− uε〉 ≥ 0.

Because A is of class (S+) with respect to D(L) (see Chap. 2, and cf. [19, 20]
or [43]), we infer from (5.152) and this limit that

uε → u in X0. (5.156)

Letting ε → 0 in (5.155) and taking (5.152) and (5.156) into account, we
obtain

〈ut, w − u〉 + 〈(A+ C)(u), w − u〉 − 〈h,w − u〉 ≥ 0.

This result holds for all w ∈ K, proving that u is in fact a solution of (5.137).
��

Remark 5.34. (a) Theorem 5.32 can be extended to the case in which u is the
maximum of some subsolutions and ū is the minimum of some supersolutions.
In fact, assume that

u := max{u1, . . . , uk} ≤ ū := min{ū1, . . . , ūm},

where u1, . . . , uk (respectively, ū1, . . . , ūm) are subsolutions (respectively, su-
persolutions) of (5.122). If f has the growth condition (5.130) for a.e. (x, t) ∈
Q, all ξ ∈ R

N , all u in the interval

[min{u1, . . . , uk}(x, t),max{ū1, . . . , ūm}(x, t)],

then (5.122) has a solution within the interval [u, ū].
(b) If K satisfies K∧K ⊂ K (respectively, K∨K ⊂ K), then any solution

of (5.122) is also a subsolution (respectively, supersolution).
(c) The following result, whose proof is given in [51], is about the existence

of extremal (i.e., greatest and smallest) solutions of (5.122).
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Corollary 5.35. Let the hypotheses of Theorem 5.32 be satisfied, and assume,
in addition, that K satisfies K ∧ K ⊂ K (respectively, K ∨ K ⊂ K). Let S
denote the set of all solutions of (5.122) in [u, ū]. If S is bounded in W0, then
the variational inequality (5.122) possesses extremal solutions within [u, ū];
i.e., the greatest solution u∗ and the smallest solution u∗ of (5.122) in [u, ū]
exists such that for any other solution u of (5.122) in [u, ū], we have u∗ ≤
u ≤ u∗.

5.3.3 Obstacle Problem

As an example of the applicability of the general results of the preceding
sections, we consider an obstacle problem, where the convex set K is given by

K = {u ∈ X0 : u ≤ ψ a.e. on Q},

with ψ a function inW such that ψ(·, 0) ≥ 0 on Ω, ψ ≥ 0 on Γ , and ψt+Aψ ≥
0 in X∗

0 ; i.e.,
〈ψt +Aψ, v〉 ≥ 0, ∀ v ∈ X0 ∩ Lp

+(Q).

The penalty function P can be chosen as

〈Pu, v〉 =
∫

Q

[(u− ψ)+]p−1 v dxdt, (5.157)

for all u, v ∈ X0. It is easy to verify that P satisfies (5.131). To check (5.131),
for each u ∈ D(L), we choose w = (u− ψ)+. Then, w ∈ X0 and (5.131)(i) is
satisfied. In fact, because (u− ψ)+(·, 0) = 0, we have

〈ut − ψt, (u− ψ)+〉 =
1
2
‖(u− ψ)+(·, τ)‖2

L2(Ω) ≥ 0.

On the other hand, as above, we infer easily from (5.124) that

〈Au−Aψ, (u− ψ)+〉 ≥ 0.

These inequalities imply that

〈ut +Au, (u− ψ)+〉 ≥ 〈ψt +Aψ, (u− ψ)+〉 ≥ 0,

because (u − ψ)+ ∈ X0 ∩ Lp
+(Q). We have checked (i) of (5.131). To verify

(5.131)(ii), we note that

〈Pu,w〉 =
∫

Q

[(u− ψ)+]p dx = ‖(u− ψ)+‖p
Lp(Q). (5.158)

From (5.157) and Hölder’s inequality, we have

|〈Pu, v〉| ≤ ‖(u− ψ)+‖p−1
Lp(Q)‖v‖Lp(Q),
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for all v ∈ X0. Hence,

‖Pu‖X∗
0
≤ c‖(u− ψ)+‖p−1

Lp(Q), ∀ u ∈ X0,

for some constant c > 0. This result, together with (5.158), implies (5.131)(ii).
For our example of K, ū ∧ K ⊂ K for every ū ∈ W and u ∨ K ⊂ K if

u ≤ ψ on Q. Moreover, the conditions K ∧K ⊂ K (respectively, K ∨K ⊂ K)
are satisfied, which allows us to apply Theorem 5.32. As far as the existence
of extremal solutions is concerned, Corollary 5.35 cannot be applied directly.
However, if we assume the existence of special sub- and supersolutions, we can
prove the existence of extremal solutions by a penalty approach (see Section
5.4).

Finally, let us conclude this section by verifying that the notion of sub-
supersolutions of the parabolic variational inequality (5.122) introduced here
is consistent with the usual notion of (weak) sub-supersolutions of the corre-
sponding nonlinear parabolic boundary value problem; i.e., the case of varia-
tional equalities, that is when K = X0, which has been considered in Chap.
3. We show that in this case, the definitions given above agree with those in
Chap. 3, Sect. 3.3 (see also [29]) for sub- and supersolutions of equations. It
is enough to show that if u satisfies (5.128) (with K = X0), then it satisfies
the inequality

〈ut, v〉 + 〈Au, v〉 + 〈Fu, v〉 ≤ 〈h, v〉, (5.159)

for all v ∈ X0∩Lp
+(Q). Note that, because u∧w = u−(u−w)+, the inequality

in (5.128)(iii) is equivalent to that in (5.159) for all v ∈M , where

M = {(u+ w)+ : w ∈ X0}
= {v+ : v ∈ X and v(t)|∂Ω = u(t)|∂Ω for a.e. t ∈ (0, τ)}. (5.160)

As u(t) ≤ 0 for a.e. t ∈ (0, τ), we have M ⊂ X0 ∩ Lp
+(Q). To show that

(5.128)(iii) is equivalent to (5.159), we only need to verify the following density
result, which is the analog to Lemma 5.4.

Lemma 5.36. If M is the set given by (5.160), then M is dense in X0 ∩
Lp

+(Q); i.e.,

M
X0 = X0 ∩ Lp

+(Q). (5.161)

Proof: First, we observe that if v ∈ X0∩Lp
+(Q) and there is a compact subset

κ of Ω (independent of t) such that

supp v(t) ⊂ κ for a.e. t ∈ (0, τ), (5.162)

then v ∈M . In fact, we can choose ϕ ∈ C∞
0 (Ω) such that ϕ(x) ∈ [0, 1], ∀ x ∈

Ω and ϕ(x) = 1, ∀ x ∈ κ (cf. [115]). We define

ṽ(x, t) = v(x, t) + [1 − ϕ(x)] min{u(x, t), 0} ((x, t) ∈ Q).
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As min{u, 0} ∈ X and 1 − ϕ is smooth on Ω, we have ṽ ∈ X. Moreover,
because 1 − ϕ(x) ∈ [0, 1], ∀ x, and 1 − ϕ(x) = 0, ∀ x ∈ κ, and

v(x, t) = 0, for a.e. x ∈ Ω \ κ, a.e. t ∈ (0, τ),

we have
ṽ+(x, t) = v(x, t) for a.e. (x, t) ∈ Q.

On the other hand, for almost all t ∈ (0, τ), because

ṽ(t) = (1 − ϕ) min{u(t), 0} = min{u(t), 0},

a.e. on Ω \ suppϕ, we have

ṽ(t)|∂Ω = min{u(t), 0}|∂Ω = u(t)|∂Ω .

This result shows that v = ṽ+ ∈M .
Now, let v ∈ X0 ∩ Lp

+(Q). Then v can be approximated (in X0) by poly-
nomials of the form

vn(x, t) =
mn∑
i=0

ain(x)ti, (5.163)

where ain ∈W 1,p
0 (Ω) (cf. Chapter 23, [222]). As C∞

0 (Ω) is dense in W 1,p
0 (Ω)

(with respect to the norm topology), we can choose the functions ain above
to be in C∞

c (Ω). Because the truncation operator

v 
→ max{v, 0}

is continuous from V0 to V0 and thus from X0 to X0 (cf. [43]), we have

wn := max{vn, 0} → max{v, 0} = v in X0. (5.164)

It is clear that wn ∈ X0 ∩ Lp
+(Ω). Moreover, for almost all t ∈ (0, τ),

suppwn(t) ⊂ supp vn(t) ⊂
mn⋃
i=0

supp ain,

where
⋃mn

i=0 supp ain is a compact subset of Ω. This result means that wn

satisfies (5.162). From the above arguments, wn ∈M . This finding and (5.164)
show (5.161). ��

5.4 Sub-Supersolutions and Monotone Penalty
Approximations

In this section, we consider the following quasilinear variational inequality:
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u ∈ K : 〈Au+ F (u), v − u〉 ≥ 0, ∀ v ∈ K, (5.165)

with

K = V0 ∩ K, (5.166)

where K is a closed convex subset of V (V = W 1,p(Ω) and V0 = W 1,p
0 (Ω) as

defined above). The operator A : V → V ∗
0 is assumed to be a second-order

quasilinear differential operator in divergence form given by

Au(x) = −
N∑

i=1

∂

∂xi
ai(x,∇u(x)), (5.167)

and F is the Nemytskij operator generated by a Carathéodory function f :
Ω × R × R

N → R, and is defined by

〈F (u), ϕ〉 =
∫

Ω

f(·, u,∇u)ϕdx, ϕ ∈ V0. (5.168)

From the structure and growth conditions that will be imposed on f , the
operator A + F : V0 → V ∗

0 is neither monotone nor coercive, in general, and
thus, standard existence results for (5.165) cannot be applied.

The main goal of this section is to provide a monotone approximation
scheme for the extremal solutions by a sequence of penalty problems assuming
the existence of specific super- and subsolutions. We show the convergence of
the extremal solutions of the penalty equations to the corresponding solutions
of the original problem. We note that the sequences of approximated solutions
are monotone (increasing or decreasing), but no monotonicity condition is
imposed on the lower order term F (u). As a model problem for (5.165), we
deal with an obstacle problem given by (5.165), (5.166) with

K = {v ∈ V : v ≤ ψ}. (5.169)

5.4.1 Hypotheses and Preliminary Results

The coefficient functions ai, i = 1, . . . , N , of the operator A are assumed to
satisfy the following hypotheses of Leray–Lions type:

(A1) Each ai : Ω × R
N → R satisfies the Carathéodory condition, and a

constant c0 > 0 and a function k0 ∈ Lp′
(Ω), 1/p + 1/p′ = 1, exist such

that
|ai(x, ξ)| ≤ k0(x) + c0 |ξ|p−1 ,

for a.a. x ∈ Ω and for all ξ ∈ R
N .

(A2)
∑N

i=1(ai(x, ξ) − ai(x, ξ′))(ξi − ξ′i) > 0 for a.a. x ∈ Ω , and for all ξ, ξ′ ∈
R

N with ξ �= ξ′.
(A3)

∑N
i=1 ai(x, ξ)ξi ≥ ν|ξ|p − k1(x) for a.a. x ∈ Ω , and for all ξ ∈ R

N with
some constant ν > 0 and some function k1 ∈ L1(Ω).
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As a consequence of (A1), (A2) the semilinear form a associated with the
operator A by

〈Au,ϕ〉 := a(u, ϕ) =
∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx, ∀ ϕ ∈ V0

is well defined for any u ∈ V , and the operator A : V0 → V ∗
0 is continuous,

bounded, and monotone. The notion of super- and subsolutions introduced in
Sect. 5.1 (cf. [141]) is equivalent to the following definitions.

Definition 5.37. A function u ∈ V is called a subsolution of (5.165) if the
following holds:

(i) u ≤ 0 on ∂Ω.
(ii) F (u) ∈ Lp′

(Ω).
(iii) 〈Au+ F (u), (u− v)+〉 ≤ 0, ∀ v ∈ K.

Definition 5.38. ū ∈ V is a supersolution of (5.165) if the following holds:

(i) ū ≥ 0 on ∂Ω.
(ii) F (ū) ∈ Lp′

(Ω).
(iii) 〈Aū+ F (ū), (v − ū)+〉 ≥ 0, ∀ v ∈ K.

For a given pair ū, u of super-subsolutions of (5.165) satisfying u ≤ ū, we
assume the following hypothesis for f :

(H) The function f : Ω × R × R
N → R is a Carathéodory function satisfying

the growth condition

|f(x, s, ξ)| ≤ k2(x) + c1 |ξ|p−1,

for a.a. x ∈ Ω, for all s ∈ [u(x), ū(x)], and for all ξ ∈ R
N , with k2 ∈

Lp′
+ (Ω) and c1 > 0.

In the construction of our approximate scheme, we make use of the follow-
ing result (see [215, Theorem 4.19] and Definition 5.31).

Lemma 5.39. Let C �= ∅ be a closed and convex subset of a reflexive Banach
space V , and let A : V → V ∗ be a pseudomonotone and coercive operator,
and f ∈ V ∗ be given. If P : V → V ∗ is a penalty operator associated with C,
then a sequence (un) exists, where each un satisfies

un ∈ V, Aun +
1
εn
P (un) = f in V ∗, (5.170)

with εn → 0+ as n → ∞, which converges weakly in V toward a solution of
the variational inequality

u ∈ C : 〈Au− f, v − u〉 ≥ 0, ∀ v ∈ C. (5.171)
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5.4.2 Obstacle Problem

In this section, we consider the variational inequality (5.165) with the convex
set K given by

K = {v ∈ V0 : v ≤ ψ}, (5.172)

which is of the form (5.166) with K given by (5.169). Let us assume ψ ∈ Lp(Ω).
Then it can easily be seen that a penalty opeartor P : V0 → V ∗

0 associated
with K is given by

〈P (u), ϕ〉 =
∫

Ω

{(u− ψ)+}p−1ϕdx, ϕ ∈ V0. (5.173)

Furthermore, we assume the existence of functions ū, u ∈ V with the prop-
erties:

(O1) u, ū ∈ V and u ≤ ū.
(O2) (i) u ≤ 0 on ∂Ω, and u ≤ ψ.

(ii) F (u) ∈ Lp′
(Ω).

(iii) Au+ F (u) ≤ 0 in V ∗
0 .

(O3) (i) ū ≥ 0 on ∂Ω.
(ii) F (ū) ∈ Lp′

(Ω).
(iii) Aū+ F (ū) ≥ 0 in V ∗

0 .

Hypotheses (O2) and (O3) imply, in particular, that ū and u are supersolution
and subsolution, respectively, of (5.165), (5.172) according to Definition 5.37
and Definition 5.38. Moreover, ū and u satisfy the lattice conditions u ∨K ⊂
K, ū ∧K ⊂ K, K ∨K ⊂ K, K ∧K ⊂ K.

For later purposes, we introduce the cutoff function b : Ω × R → R and
truncation operator T related with the functions u, ū, and given by [cf. (5.57)
and (5.62)]

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x),

(5.174)

and

(Tu)(x) =

⎧⎨⎩
ū(x) if u(x) > ū(x),
u(x) if u(x) ≤ u(x) ≤ ū(x),
u(x) if u(x) < u(x).

(5.175)

It is known that the truncation operator T is continuous and bounded from
V into V (see [43, Chap. C.4]). We readily verify that b is a Carathéodory
function satisfying the growth condition [cf. (5.58)]

|b(x, s)| ≤ k3(x) + c2 |s|p−1 (5.176)
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for a.a. x ∈ Ω, for all s ∈ R, with some function k3 ∈ Lp′
+ (Ω), and some

positive constant c2. Moreover, we have the following estimate [cf. (5.59)]:∫
Ω

b(x, u(x))u(x) dx ≥ c3 ‖u‖p
Lp(Ω) − c4, ∀ u ∈ Lp(Ω), (5.177)

where c3 and c4 are some positive constants. In view of (5.176), the Nemytskij
operator B : Lp(Ω) → Lp′

(Ω) defined by

Bu(x) = b(x, u(x))

is continuous and bounded.
Now we associate with the obstacle problem (5.165), (5.172), the following

penalty problems (Pn):

u ∈ V0 : Au+ F (u) +
1
εn
P (u) = 0 in V ∗

0 , (5.178)

where (εn) is a sequence of positive penalty parameters tending to zero; e.g.,
let us take εn = 1/(n + 1). The main result of this section is given by the
following theorem.

Theorem 5.40. Assume hypotheses (A1)–(A3), and let (H) be satisfied with
respect to the order interval given by the pair of functions u, ū, which satis-
fies the above hypotheses (O1)–(O3).Then the greatest solution of the obstacle
problem (5.165), (5.172) within [u, ū] can be obtained as the limit of a mono-
tone decreasing sequence of solutions of the penalty problems (5.178).

Proof: Note first that u ∈ [u, ū] is a solution of the variational inequality
(5.165), (5.172) if and only if it is a solution of the following auxiliary varia-
tional inequality:

u ∈ K : 〈Au+ (F ◦ T )(u) + λB(u), v − u〉 ≥ 0, ∀ v ∈ K. (5.179)

The term λB(u) has been introduced to apply Lemma 5.39 where λ ≥ 0 is
some constant, which from (5.177) can be specified in such a way that λB(u)
is a coercivity generating term for the operator A = A + F ◦ T + λB. The
corresponding penalty problems are then given by

u ∈ V0 : Au+ (F ◦ T )(u) + λB(u) +
1
εn
P (u) = 0 in V ∗

0 . (5.180)

In view of the definition of B and T , a function u within the interval [u, ū] is a
solution of (5.178) if and only if it is a solution of (5.180). Moreover, we readily
verify that the given ū is a supersolution and u is a subsolution of (5.180)
[and of (5.178)] for any penalty parameter εn in the usual sense of variational
equations. Let εn = 1/(n+ 1), and consider (5.180) for n = 0. As u and ū are
sub- and supersolutions, respectively, of (5.180), extremal solutions of (5.180)
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exist within the interval [u, ū], i.e., the greatest and smallest solutions (see
Chap. 3). Denote the greatest solution of (5.180) within [u, ū] by u0. Then we
observe that u0 is a supersolution of the problem (5.180) for n = 1, because
ε1 < ε0 and Pu ≥ 0 for any u. Thus, applying the extremality result for
(5.180) with n = 1, extremal solutions of (5.180) exist within [u, u0]. Denote
the greatest one by u1. By induction, we obtain a monotone sequence of
extremal solutions (un) of (5.180) satisfying un ∈ [u, un−1]. One can show
that (un) is bounded in V0 and thus converges weakly in V0 and strongly
in Lp(Ω) due to its monotonicity and the compact embedding of V0 into
Lp(Ω). Let limn→∞ un = u; then we can verify in a similar way as in the
proof of Lemma 5.39 that this limit is a solution of the variational inequality
(5.179), and trivially u satisfies u ≤ u ≤ ū. Because of the latter, we have
Bu = 0 and Tu = u, and thus, the limit u must be a solution of the original
obstacle problem (5.165), (5.172). Finally, we show that the limit u is the
greatest solution u∗ of (5.165), (5.172) within [u, ū]. To this end, let û ∈ [u, ū]
be any solution of (5.165), (5.172). Then we readily verify that û satisfies,
in particular, hypothesis (O2) with u replaced by û. Obviously (O2)(i) and
(O2)(ii) are fulfilled by û. To see that (O2) (iii) is valid too, take as a special
function v ∈ K in (5.165) v = û − ϕ, where ϕ ∈ V0 ∩ Lp

+(Ω). Thus, û is a
subsolution for the penalty problems (5.180) for any parameter εn, and for
the sequence constructed above, we have û ≤ un for all n, which shows û ≤ u;
i.e., u = u∗. ��

Remark 5.41. Note that Theorem 5.40 provides a monotone scheme only for
the greatest solution of the obstacle problem (5.172). A similar monotone
scheme can be established for the smallest solution of the obstacle problem

K = {v ∈ V0 : v ≥ ψ}, (5.181)

within the interval [u, ū], where the condition (O2)(i) has to be replaced by

u ≤ 0 on ∂Ω,

and condition (O3)(i) has to be replaced by

ū ≥ 0 on ∂Ω, and ū ≥ ψ.

5.4.3 Generalized Obstacle Problem

In this section, we extend our arguments above to general types of obstacle
problems. We consider the variational inequality (5.165) with the convex set
K given by

K = V0 ∩ K, (5.182)

where K is a closed convex subset of V . Assume that K has a penalty operator
P. Moreover, suppose P has the following properties:
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P (u) − P (v), (u− v)+

〉
≥ 0, ∀ u, v ∈ V (5.183)

and

〈P (u), v〉 ≥ 0, ∀ u ∈ V, v ∈ V +
0 := V0 ∩ Lp

+(Ω). (5.184)

Note that P is not necessarily given by an integral over Ω. Also, (5.183) is
a monotonicity condition on the positive parts and (5.184) means that P is
a positive operator with respect to the positive cone V +

0 in V0. Assumption
(O2)(i) now becomes:

(O2) (i’) u ≤ 0 on ∂Ω, u ∈ K.

Assume that a pair of functions u and ū exists satisfying (O1)–(O3) with
condition (O2)(i) now replaced by (O2)(i’). The inequality (5.165) is approx-
imated by a sequence of equations (Pn) [cf. (5.178)], with a general penalty
operator P having the above properties (5.183) and (5.184). The definitions
of sub- and supersolutions for (5.178) are similar to those for variational equa-
tions (see Chap. 3, and [29, 43, 75, 113, 133]). For example, a function w ∈ V
is a subsolution of (5.178) if w ≤ 0 on ∂Ω, F (w) ∈ Lp′

(Ω), and

Aw + F (w) +
1
εn
P (w) ≤ 0 in V ∗

0 . (5.185)

The existence of the least and greatest solutions of (5.178) in this more
general setting is given in the following result.

Theorem 5.42. Assume w, w̄ ∈ [u, ū] are sub- and supersolutions of (5.178).
Then, the least and greatest solutions of (5.178) exist within the interval [w, w̄].

Proof: The proof is similar to that for variational equations as given in Chap.
3 and is only outlined with the necessary differences (see also [43, 75, 133]).
Let b and T be the cutoff function and truncation operator, respectively,
associated with w and w̄. As A + F ◦ T + λB : V0 → V ∗

0 is pseudomonotone
and P : V0 → V ∗

0 is monotone, the operator A + F ◦ T + λB + ε−1
n P is

pseudomonotone on V0. Also, it is coercive with λ chosen sufficiently large.
Hence the equation

Au+ (F ◦ T )(u) + λB(u) +
1
εn
P (u) = 0 (5.186)

has a solution u ∈ V0. Let us show that u ≥ w. By (5.185) and (5.186), we
obtain 〈

Aw −Au+ F (w) − F (Tu) − λB(u) +
1
εn
P (w) − 1

εn
P (u), v

〉
≤ 0, ∀ v ∈ V +

0 .

Choosing v = (w − u)+ ∈ V +
0 in this inequality, we get
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Aw −Au, (w − u)+

〉
+

1
εn

〈
P (w) − P (u), (w − u)+

〉
− λ

〈
B(u), (w − u)+

〉
≤ 〈F (Tu) − F (w), (w − u)+〉 = 0.

From the assumption on A and (5.183), we obtain 〈B(u), (w − u)+〉 ≥ 0. This
result implies that (w − u)+ = 0 on Ω, and therefore, w ≤ u. A similar proof
shows that u ≤ w̄.

By modifying the terms F◦T andB appropriately, we can extend the above
arguments to the case w is the maximum of a finite number of subsolutions and
w̄ is the minimum of a finite number of supersolutions of (5.178). Using this
fact, we can proceed as in the case of usual equations to show the existence of
extremal solutions of (5.178) (again, we refer to Chap. 3 for more details). ��

The following simple lemma gives us some relations between solutions of
(5.165) and (5.178) in terms of the so-called recession cone, cf. [196].

Definition 5.43. Let K �= ∅ be a closed and convex subset of a reflexive Ba-
nach space V. The recession cone rcK of K is defined by rcK :=

⋂
t>0 t (K−

x0), where x0 is any (fixed) element of K, and K − x0 = {x− x0 : x ∈ K}.

The above definition does not depend on x0 ∈ K. As K is a closed and
convex set, we can prove that the following holds:

v ∈ rcK ⇐⇒ x0 + tv ∈ K, ∀ t > 0 ⇐⇒ x+ tv ∈ K, ∀ x ∈ K, ∀ t > 0.
(5.187)

It follows from Definition 5.43 and (5.187) that 0 is always in rcK and rcK
is a closed and convex cone (not necessarily contained in K in general). As
for these properties, we refer to the book by Rockafellar [196]. Even though in
[196] the finite-dimensional case has been treated only, the above properties
hold for the infinite dimensional case as well.

Lemma 5.44. (a) If u is a solution of (Pn) within [u, ū], then it is a super-
solution of (Pn+1).

(b) Assume K has the following property:

V −
0 := V0 ∩ Lp

−(Ω) ⊂ rcK. (5.188)

Then all solutions of (5.165) are subsolutions of (Pn) for any n ∈ N.

Proof: (a) Assume u is a solution of (Pn) within the interval [u, ū]. For v ∈
V +

0 , in view of (5.184),〈
Au+ F (u) +

1
εn+1

P (u), v
〉

=
(

1
εn+1

− 1
εn

)
〈P (u), v〉 ≥ 0.

This result shows that u is a supersolution of (Pn+1).
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(b) Assume u is a solution of (5.165). Let w ∈ V +
0 . We have −w ∈ rcK.

Properties of recession cones (cf. [196]) imply that u−w ∈ K. Letting v = u−w
in (5.165) and noting that P (u) = 0, we get

0 ≥ 〈Au+ F (u), w〉 =
〈
Au+ F (u) +

1
εn
P (u), w

〉
.

��

Theorem 5.45. Assume (5.165) has a pair of sub- and supersolution u and
ū satisfying (O1)–(O3) with (O2)(i) replaced by (O2)(i’), and the convex set
K satisfies (5.182), (5.183), (5.184), and (5.188). Then the greatest solution
of (5.165) within the interval [u, ū] can be obtained as the limit of a monotone
decreasing sequence of solutions un ∈ [u, ū] of (5.178).

Proof: The proof follows the same lines as that of Theorem 5.40 and is just
outlined here. As P (u) = 0, we see that u is a subsolution of (5.178) for any n.
Also, from (5.184), ū is a supersolution of (5.178)(for any n). For n = 0, from
Theorem 5.42, (P0) has a greatest solution within [u, ū], which is denoted by
u0. From Lemma 5.44, u0 is a supersolution of (P1). Assume un ∈ [u, un−1]
is the greatest solution of (Pn). From Lemma 5.44 and Theorem 5.42, un is a
supersolution of (Pn+1), and thus, (Pn+1) has a greatest solution un+1 within
the interval [u, un] ⊂ [u, ū]. By induction, we have a decreasing sequence (un)
of solutions of (5.178) in the interval [u, ū]. Note that any solution of (5.178)
within [u, ū] is also a solution of the associated auxiliary problem (5.180) and
vice versa.

As (un) is bounded in Lp(Ω), the coercivity of A = A+ F ◦ T + λB and
monotonicity of P imply that (un) is also bounded in V0. Because (un) is
a monotone sequence, there is u∗ ∈ V0 such that un ⇀ u∗ in V0. It can be
checked that u∗ ∈ K and is a solution of (5.165), and moreover, u ≤ u ≤ ū.
As un − u∗ ≥ 0, we get by (5.184) that 〈P (un), un − u∗〉 ≥ 0, and thus,

lim sup
n→∞

〈Aun, un − u∗〉 ≤ 0. (5.189)

Because un ⇀ u∗ in V0 and A possesses the (S+)–property (cf. Theorem
2.109 in Chap. 2), we infer that the convergence of un to u∗ is in fact a strong
convergence in V.

To show that u∗ is the greatest solution of (5.165) within [u, ū], we assume
that û is any solution of (5.165) such that u ≤ û ≤ ū. From Lemma 5.44, û is a
subsolution of (P0). Then there is a solution u of (P0) such that u ≤ û ≤ u ≤ ū.
We have u ≤ u0 and thus û ≤ u0. Using induction again, we have û ≤ un for
all n. Thus, û ≤ u∗. ��

Some Examples

Example 5.46. In the obstacle problem, we considered in Sect. 5.4.2, the
penalty operator P , given by
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〈P (u), v〉 =
∫

Ω

{[u− ψ]+}p−1vdx, ∀ u, v ∈ V,

satisfies (5.183)–(5.184). The closed and convex set K is of the form (5.182)
with K = {u ∈ V : u ≤ ψ a.e. on Ω}. Moreover, rcK = {u ∈ V0 : u ≤
0 a.e. on Ω} = V −

0 and so (5.188) also holds. To see that rcK = V −
0 , let

u ∈ K and v be given such that u + t v ∈ K for all t > 0. Then first v ∈ V0

from u + t v ∈ V0 and u ∈ V0, and second, in view of u ≤ ψ and u + t v ≤ ψ
for all t > 0, it follows that (letting t → ∞) v ≤ 0 a.e. on Ω, and thus by
(5.187), we get v ∈ rcK = V −

0 .
We can extend this result to a local obstacle ψ defined on a measurable

set M in Ω. Assuming that ψ ∈ Lp(M), the penalty operator P is now given
by

〈P (u), v〉 =
∫

M

{[u− ψ]+}p−1vdx, ∀ u, v ∈ V.

Example 5.47. Assume S is an (N − 1)-dimensional surface and S ⊂ Ω. We
consider a thin obstacle problem with an obstacle ψ on S. In this case, the
set K in (5.165) is given by

K = {u ∈ V0 : u ≤ ψ μ-a.e. on S},

where ψ ∈ Lp(S) and dμ = dS is the surface measure on S (we refer to [123]
and the references therein for more discussions on low-dimensional obstacle
problems).

The penalty operator P is now given by

〈P (u), v〉 =
∫

S

{[u− ψ]+}p−1vdμ (∀ u, v ∈ V ).

K and P also satisfy the assumptions we mentioned above.

Example 5.48. Assume p > N . As V ⊂ C(Ω), our penalization approach
above is applicable to obstacle problems with even lower dimensions. The set
S in (b) is now an m-dimensional manifold in Ω (m ≤ N).

Remark 5.49. If instead of (5.188), we have V +
0 ⊂ rcK and P satisfies

〈P (u), v〉 ≤ 0, ∀ v ∈ V +
0 ,

instead of (5.184), then similar arguments to those we had before show that
the least solution of (5.165) can be approximated by a monotone sequence of
solutions of the penalized problem (5.178).

An example for this case is the lower obstacle problem, in which the convex
set K in (5.165) is given by

K = {v ∈ V0 : v ≥ ψ}.
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Remark 5.50. If monotone approximation is wanted for both smallest and
greatest solutions of (5.165) by our approach here, then in view of Lemma
5.44, we need

V +
0 , V

−
0 ⊂ rcK.

As rcK is a convex cone, this implies that rcK = K = V0; i.e., (5.165) is a
variational equation. This result also shows that we cannot use our arguments
here directly to convex sets defined by constraints on ∇u, such as K = {u ∈
V0 : |∇u| ≤ 1 a.e. on Ω}.

Remark 5.51. When f does not depend on the gradient and s 
→ f(x, s) is Lip-
schitz continuous with sufficiently small Lipschitz constant, then the penalty
problem (5.178) has a unique solution un and the greatest solution of (5.165)
within [u, ū] is the limit of the iterates un. Numerical realizations of monotone
iteration schemes for coercive semilinear obstacle problems have been proved,
e.g., in [14, 127].

Remark 5.52. Our approach can be extended to variational inequalities (5.165)
involving general (nonmonotone) Leray–Lions operators A in the form

Au(x) = −
N∑

i=1

∂

∂xi
ai(x, u(x),∇u(x)).

5.5 Systems of Variational Inequalities

Let V = W 1,p(Ω) and V0 = W 1,p
0 (Ω) be as in the previous sections. We

consider here the following system of variational inequalities: For k = 1, . . . ,m

uk ∈ Kk : 〈Akuk + Fk(u,∇u), vk − uk〉 ≥ 0, ∀ vk ∈ Kk, (5.190)

where u = (u1, . . . , um), ∇u = (∇u1, . . . ,∇um), and Kk is a closed and
convex set of V0, and 〈·, ·〉 denotes the duality pairing between V ∗

0 and V0.
The operator Ak is assumed to be a second -order quasilinear differential
operator in divergence form of Leray–Lions type given by

Akv(x) = −
N∑

i=1

∂

∂xi
a
(k)
i (x,∇v(x)), (5.191)

and Fk is the Nemytskij operator generated by some Carathéodory function
fk : Ω × R

m × R
mN → R, and defined by

〈Fk(u,∇u), ϕ〉 =
∫

Ω

fk(·, u,∇u)ϕdx, ϕ ∈ V0. (5.192)

Our main goal in this section is to prove existence and enclosure of solu-
tions for (5.190) in terms of an appropriately defined rectangle R formed by



268 5 Variational Inequalities

an ordered pair of vectors u, ū ∈ W 1,p(Ω; Rm), which generalizes the notion
of super- and subsolutions in the scalar case. More precisely, we are going
to prove the existence of minimal and maximal (in the set theoretical sense)
solutions within some ordered interval of an appropriately defined pair of sub-
and supersolutions. Furthermore, for weakly coupled quasimonotone systems
of variational inequalities, the existence of smallest and greatest solutions, i.e.,
extremal solutions, is proved.

5.5.1 Notations and Assumptions

We impose the following hypotheses of Leray–Lions type on the coefficient
functions a(k)

i , i = 1, . . . , N , of the operators Ak.

(A1) Each a(k)
i : Ω×R

N → R satisfies Carathéodory conditions; i.e., a(k)
i (x, ξ)

is measurable in x ∈ Ω for all ξ ∈ R
N and continuous in ξ for almost all

x ∈ Ω. Constants c(k)
0 > 0 and functions κ(k)

0 ∈ Lq(Ω) , 1/p + 1/q = 1
exist, such that

|a(k)
i (x, ξ)| ≤ κ(k)

0 (x) + c(k)
0 |ξ|p−1 ,

for a.e. x ∈ Ω and for all ξ ∈ R
N .

(A2)
∑N

i=1(a
(k)
i (x, ξ) − ai(x, ξ′))(ξi − ξ′i) > 0 for a.e. x ∈ Ω , and for all

ξ, ξ′ ∈ R
N with ξ �= ξ′.

(A3)
∑N

i=1 a
(k)
i (x, ξ)ξi ≥ νk|ξ|p for a.e. x ∈ Ω , and for all ξ ∈ R

N with some
constants νk > 0.

As a consequence of (A1) and (A2), the operators Ak : V → V ∗ defined
by

〈Aku, ϕ〉 := ak(u, ϕ) =
N∑

i=1

∫
Ω

a
(k)
i (x,∇u) ∂ϕ

∂xi
dx

are continuous, bounded, and monotone and, hence, in particular, pseudomo-
notone. If u, w ∈ Lp(Ω; Rm), then a partial ordering is given by u ≤ w if
and only if uk ≤ wk, for k ∈ {1, . . . ,m}; i.e., Lp(Ω; Rm) is equipped with the
componentwise partial ordering, which induces a corresponding partial order-
ing in the spaces X := W 1,p(Ω; Rm) and X0 := W 1,p

0 (Ω; Rm). Furthermore,
if s ∈ R

m, then we denote

[s]k := (s1, . . . , sk−1, sk+1, . . . , sm) ∈ R
m−1,

(t, [s]k) := (s1, . . . , sk−1, t, sk+1, . . . , sm) ∈ R
m,

and for η = (η1, . . . , ηm) ∈ R
mN with ηk ∈ R

N and τ ∈ R
N , we denote

[[η]]k := (η1, . . . , ηk−1, ηk+1, . . . , ηm) ∈ R
(m−1)N ,

(τ, [[η]]k) := (η1, . . . , ηk−1, τ, ηk+1, . . . , ηm) ∈ R
mN .
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Thus, we may write, e.g., fk(·, s, η) = fk(·, sk, ηk, [s]k, [[η]]k).
In the following definition, we introduce our basic notion of a pair of super-

and subsolutions.

Definition 5.53. The two vectors ū, u ∈ X are said to form a pair of super-
and subsolutions of (5.190) if the following conditions hold:

(i) u ≤ ū in Ω and u ≤ 0 ≤ ū on ∂Ω.
(ii) 〈Akuk +Fk(uk,∇uk, [w]k, [[∇w]]k), (uk −vk)+〉 ≤ 0, ∀ vk ∈ Kk and ∀ w :

[u]k ≤ [w]k ≤ [ū]k,
(iii) 〈Akūk +Fk(ūk,∇ūk, [w]k, [[∇w]]k), (vk − ūk)+〉 ≥ 0, ∀ vk ∈ Kk and ∀ w :

[u]k ≤ [w]k ≤ [ū]k.

For a given pair of super- and subsolutions, we assume the following hy-
pothesis on the fk:

(H) For k ∈ {1, . . . ,m}, the functions fk : Ω × R
m × R

mN → R are
Carathéodory and satisfy the growth conditions

|fk(x, s, η)| ≤ "k(x) + c(k)
1 (|η1|p−1 + · · · + |ηm|p−1),

for a.e. x ∈ Ω, for all s ∈ [u(x), ū(x)], and for all η ∈ R
mN , where

"k ∈ Lq
+(Ω).

Let K = K1 × · · · ×Km, and Au = (A1u1, . . . , Amum), as well as

F (u,∇u) = (F1(u,∇u), . . . , Fm(u,∇u)).

We denote

〈Au+ F (u,∇u), v〉 =
m∑

k=1

〈Akuk + Fk(u,∇u), vk〉.

Then problem (5.190) is equivalent to

u ∈ K : 〈Au+ F (u,∇u), v − u〉 ≥ 0, ∀ v ∈ K. (5.193)

5.5.2 Preliminaries

Let ū, u be an ordered pair of super- and subsolutions, and let hypotheses
(A1)–(A3) and (H) be satisfied throughout this section. We are going to prove
an existence result for some related auxiliary system of variational inequalities
that is crucial in the proof of our main result. To this end, we introduce the
following truncation operators:

(Tkuk)(x) =

⎧⎨⎩
ūk(x) if uk(x) > ūk(x),
uk(x) if uk(x) ≤ uk(x) ≤ ūk(x),
uk(x) if uk(x) < uk(x),

(5.194)
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which are known to be continuous and bounded from V into V (see Chap. 2).
The related truncated vector function Tu is given by Tu = (T1u1, . . . , Tmum).
Next we introduce cutoff functions bk : Ω × R → R given by

bk(x, s) =

⎧⎨⎩
(s− ūk(x))p−1 if s > ūk(x),
0 if uk(x) ≤ s ≤ ūk(x),
−(uk(x) − s)p−1 if s < uk(x).

(5.195)

As seen in previous sections, bk is a Carathéodory function satisfying the
growth condition

|bk(x, s)| ≤ ρk(x) + c(k)
2 |s|p−1 (5.196)

for a.e. x ∈ Ω, for all s ∈ R, with some function ρk ∈ Lq
+(Ω). Moreover, we

have the following estimate∫
Ω

bk(x, uk(x))uk(x) dx ≥ c(k)
3 ‖uk‖p

Lp(Ω) − c
(k)
4 , ∀ uk ∈ Lp(Ω), (5.197)

where c(k)
3 and c(k)

4 are some positive constants. In view of (5.196), the Ne-
mytskij operator Bk : Lp(Ω) → Lq(Ω) defined by

Bkuk(x) = bk(x, uk(x))

is continuous and bounded. Let Bu = (B1u1, . . . , Bmum); then

B : Lp(Ω; Rm) → Lq(Ω; Rm)

is continuous and bounded. For λ ∈ R
m
+ , we define λ ·Bu as

λ ·Bu = (λ1B1u1, . . . , λmBmum),

and we consider the following auxiliary, truncated variational inequality:

u ∈ K : 〈Au+ F (Tu,∇Tu) + λ ·Bu, v − u〉 ≥ 0, ∀ v ∈ K, (5.198)

where λ will be specified later. The existence result for (5.198) given by the
next lemma plays an important role in the proof of our main result.

Lemma 5.54. For λ ∈ R
m
+ suitably chosen, the system of variational inequal-

ities (5.198) possesses solutions.

Proof: By the compact embeddingX0 ⊂ Lp(Ω; Rm) the operator λ·B : X0 →
X∗

0 is completely continuous and bounded. As T : X0 → X0 is continuous and
bounded, the composed operator F ◦ T : X0 → X∗

0 defined by F ◦ T (u) =
F (Tu,∇Tu) is continuous and bounded as well due to (H). Moreover, the
Leray–Lions conditions (A1)–(A3) together with (H) finally imply that A +
F ◦ T + λ · B : X0 → X∗

0 is a bounded, continuous, and pseudomonotone
operator. Thus, the existence of solutions for (5.198) follows provided the
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operator A+F ◦T +λ ·B : X0 → X∗
0 can be shown to be coercive relative to

K, i.e., provided the following holds: An v0 ∈ K exists such that

〈(A+ F ◦ T + λ ·B)u, u− v0〉
‖u‖X0

→ 0 as ‖u‖X0 → ∞. (5.199)

In view of (A3), we get the estimate

〈Au, u〉 ≥
m∑

k=1

νk‖∇uk‖p
Lp(Ω), (5.200)

and by (A1), we obtain

|〈Au, v0〉|

≤
m∑

k=1

(
‖κ(k)

0 ‖Lq(Ω)‖∇v0,k‖Lp(Ω) + c(k)
0 ‖∇uk‖p−1

Lp(Ω)‖∇v0,k‖Lp(Ω)

)
≤ C +

m∑
k=1

(
δk ‖∇uk‖p

Lp(Ω) + ck(δk)‖∇v0,k‖p
Lp(Ω)

)
= C(δ, v0) +

m∑
k=1

δk ‖∇uk‖p
Lp(Ω),

(5.201)

where δ = (δ1, . . . , δm) may be any strictly positive vector of R
m, and C(δ, v0)

is some constant only depending on δ and v0. For the estimate (5.201), we
have made use of Young’s inequality. Next we provide an estimate for the term
〈F ◦ Tu, u − v0〉. To this end, we first prove an estimate for the components
by using (H).

|〈Fk ◦ Tu, uk − v0,k〉|
≤
∫

Ω

|fk(·, Tu,∇Tu)(uk − v0,k)| dx

≤
∫

Ω

(
"k(x) + c(k)

1 (|∇u1|p−1 + · · · + |∇um|p−1 + |∇ū1|p−1 + · · · + |∇ūm|p−1

+|∇u1|p−1 + · · · + |∇um|p−1
)
(|uk| + |v0,k|) dx

≤ ck(‖uk‖Lp(Ω) + ‖v0,k‖Lp(Ω))

+εk
m∑

j=1

‖∇uj‖p
Lp(Ω) + ck(εk)‖uk‖p

Lp(Ω) + ck(εk)‖v0,k‖p
Lp(Ω)

= C(εk, v0) + C(εk, v0) ‖uk‖p
Lp(Ω) + εk

m∑
j=1

‖∇uj‖p
Lp(Ω),

(5.202)

where εk ∈ R may be any positive constant and C(εk, v0) is some constant
only depending on εk and v0. By estimate (5.202), we get
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|〈F ◦ Tu, u− v0〉|

≤
m∑

k=1

(
C(εk, v0) + C(εk, v0) ‖uk‖p

Lp(Ω) + εk
m∑

j=1

‖∇uj‖p
Lp(Ω)

)
≤ C(ε, v0) + C(ε, v0)

m∑
k=1

‖uk‖p
Lp(Ω) + (ε1 + · · · + εm)

m∑
k=1

‖∇uk‖p
Lp(Ω).

(5.203)

By using (5.197), we obtain

〈λkBkuk, uk〉 ≥ λk c
(k)
3 ‖uk‖p

Lp(Ω) − c
(k)
4 , (5.204)

and in view of (5.196), we have

|〈λkBkuk, v0,k〉| ≤ ck(v0,k) + λk c
(k)
2 ‖uk‖p−1

Lp(Ω)‖v0,k‖Lp(Ω)

≤ Ck(λk, v0,k, θk) + θk λk ‖uk‖p
Lp(Ω),

(5.205)

where θk ∈ R may be any positive constant and Ck(λk, v0,k, θk) is some con-
stant only depending on θk, v0,k, and λk. Thus, (5.204) and (5.205) yields

〈λ ·Bu, u− v0〉 ≥
m∑

k=1

λk (c(k)
3 − θk)‖uk‖p

Lp(Ω) − C(λ, v0, θ). (5.206)

From (5.200), (5.203), and (5.206), we obtain

〈(A+ F ◦ T + λ ·B)u, u− v0〉

≥
m∑

k=1

(
νk − δk −

m∑
j=1

εj

)
‖∇uk‖p

Lp(Ω)

+
m∑

k=1

(
λk(c(k)

3 − θk) − C(ε, v0)
)
‖uk‖p

Lp(Ω)

−C(δ, v0) − C(ε, v0) − C(λ, v0, θ).

(5.207)

From (5.207), we see that by chosing εk, δk, and θk sufficiently small and λk

large enough, we arrive at

〈(A+ F ◦ T + λ ·B)u, u− v0〉 ≥ μ ‖u‖p
X0

− C(ε, δ, θ, v0), (5.208)

for some positive constant μ, which proves the coercivity of the operator
A+ F ◦ T + λ ·B. ��

5.5.3 Comparison Principle for Systems

The main result of this section is the following theorem.

Theorem 5.55. Let ū, u ∈ X be a pair of super- and subsolutions, and let
hypotheses (A1)–(A3) and (H) be satisfied. Assume uk ∨Kk ⊂ Kk and ūk ∧
Kk ⊂ Kk; then the system of variational inequalities (5.190) has solutions
within [u, ū].
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Proof: By Lemma 5.54, solutions of the auxiliary variational inequality
(5.198) exist. We are going to prove that any solution of (5.198) belongs
to the rectangle [u, ū], which verifies that (5.190) has solutions within [u, ū],
because then we have Tu = u and Bu = 0. Let u be a solution of (5.198). We
show first u ≤ u.

By Definition 5.53 u satisfies u ≤ 0 on ∂Ω and

〈Akuk + Fk(uk,∇uk, [w]k, [[∇w]]k), (uk − vk)+〉 ≤ 0, (5.209)

for all vk ∈ Kk and for all w : [u]k ≤ [w]k ≤ [ū]k, k = 1, . . . ,m. The solution
u of (5.198) satisfies

uk ∈ Kk : 〈Akuk + Fk(Tu,∇Tu) + λk Bkuk, vk − uk〉 ≥ 0, ∀ vk ∈ Kk,
(5.210)

for k = 1, . . . ,m. In (5.209), we may take, in particular, w = Tu and vk = uk,
and in (5.210), we may take vk = uk ∨ uk = uk + (uk − uk)+, which yields

〈Akuk + Fk(uk,∇uk, [Tu]k, [[∇Tu]]k), (uk − uk)+〉 ≤ 0 (5.211)

and

〈Akuk + Fk(Tu,∇Tu) + λk Bkuk, (uk − uk)+〉 ≥ 0. (5.212)

Subtracting (5.212) from (5.211), we obtain

〈Akuk −Akuk − λk Bkuk, (uk − uk)+〉
≤ −〈Fk(uk,∇uk, [Tu]k, [[∇Tu]]k) − Fk(Tu,∇Tu), (uk − uk)+〉 (5.213)

The right-hand side can easily be seen to become zero, and because of

〈Akuk −Akuk, (uk − uk)+〉 ≥ 0,

we get from (5.213)

〈−λk Bkuk, (uk − uk)+〉 ≤ 0, (5.214)

which by definition of the cutoff function yields

−λk

∫
{uk>uk}

−(uk − uk)p dx ≤ 0, (5.215)

and therefore,

0 ≤ λk

∫
Ω

(
(uk − uk)+

)p

dx ≤ 0. (5.216)

From (5.216), we infer (uk − uk)+ = 0; i.e., uk ≤ uk. Similarly, we show
uk ≤ ūk, which completes the proof of the theorem. ��

Only for simplicity we have assumed operators Ak that are monotone.
Theorem 5.55 can be extended to general Leray–Lions operators Ak of the
form

Akv(x) = −
N∑

i=1

∂

∂xi
a
(k)
i (x, v(x),∇v(x)).
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5.5.4 Generalization, Minimal and Maximal Solutions

Our existence theorem above can be extended to solutions between a fi-
nite number of subsolutions and supersolutions. Assume u(1), . . . , u(l) ∈
Lp(Ω,Rm), we use the notation

∨l
r=1u

(r) = max{u(1), . . . , u(l)}

= (max{u(1)
1 , . . . , u

(l)
1 }, . . . ,max{u(1)

m , . . . , u(l)
m })

and

∧l
r=1u

(r) = min{u(1), . . . , u(l)} = (min{u(1)
1 , . . . , u

(l)
1 }, . . . ,min{u(1)

m , . . . , u(l)
m }).

It is clear that if u(1), . . . , u(l) ∈ X (respectively,X0), then ∨l
r=1u

(r),∧l
r=1u

(r) ∈
X (respectively, X0). Also, for u ∈ X, we denote

u ∧K =
m∏

k=1

(uk ∧Kk), u ∨K =
m∏

k=1

(uk ∨Kk)

We have the following theorem.

Theorem 5.56. Let u(r) (r = 1, . . . , R) and ū(s) (s = 1, . . . , S) are vectors in
X and

u = ∨R
r=1u

(r), ū = ∧S
s=1ū

(s).

Suppose that for each r = 1, . . . , R, each s = 1, . . . , S, the vectors u(r), ū and
u, ū(s) form pairs of sub- and supersolutions of (5.190). Assume furthermore
hypotheses (A1)–(A3) and the following growth condition:

(H′) For any k ∈ {1, . . . ,m},

|fk(x, s, η)| ≤ "k(x) + c(k)
1

m∑
k=1

|ηk|p−1,

for a.e. x ∈ Ω, for all s ∈ [∧R
r=1u

(r)(x),∨S
s=1ū

(s)(x)], and all η ∈ R
mN ,

where "k ∈ Lq
+(Ω).

If u(r), ū(s) and K satisfy the lattice assumption

u(r) ∨K ⊂ K, ū(s) ∧K ⊂ K, r = 1, . . . , R, s = 1, . . . , S, (5.217)

(i.e., u(r)
k ∨ Kk ⊂ Kk and ū(s)

k ∧ Kk ⊂ Kk, for k = 1, . . . ,m, r = 1, . . . , R,
s = 1, . . . , S), then the system (5.190) has solutions within [u, ū].

The proof follows the same line as that of Theorem 5.55 and is omitted.
We refer to [50] for more details.

We now consider some properties of the set of solutions within the interval
[u, ū], whose verifications could be done as in Theorem 5.8 and Theorem 5.13.
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Theorem 5.57. Under the conditions of Theorem 5.55 or Theorem 5.56,
within the interval [u, ū] a maximal solution u∗ and a minimal solution u∗
exist in a set theoretical sense; that is, u∗ and u∗ are solutions of (5.190),

u ≤ u∗, u∗ ≤ ū,

and if u is a solution of (5.190) within [u, ū] and u ≥ u∗ (respectively, u ≤ u∗),
then u = u∗ (respectively, u = u∗).

5.5.5 Weakly Coupled Systems and Extremal Solutions

Note that different from the scalar case, solutions of systems of equations or
inequalities are not, in general, sub- or supersolutions. However, this property
holds if certain monotonicity conditions are imposed. We assume in the sequel
that the lower order term F does not depend on ∇u. As above, we assume
that u = ∨R

r=1u
(r) and ū = ∧S

s=1ū
(s) are as in the assumptions of Theorem

5.56 and that fk (k = 1, . . . ,m) are quasi-monotone in the following sense:

fk(x, u) ≤ fk(x, uk, [w]k), (5.218)

for a.e. x ∈ Ω, all u,w ∈ R
m such that [u]k ≥ [w]k, or rather,

fk(x, u(x)) ≤ fk(x, uk(x), [w(x)]k), (5.219)

for a.e. x ∈ Ω, all u,w ∈ X such that u ≤ u,w ≤ ū and [u]k ≥ [w]k. Under
condition (5.218) (or (5.219)), we have the following result.

Lemma 5.58. If u is a solution of (5.190) within the interval [u, ū] such that

u ∧K ⊂ K (respectively, u ∨K ⊂ K), (5.220)

then u, ū (respectively, u, u) form a pair of sub-supersolution for (5.190).

Proof: Let s = 1, . . . , S. It is clear that u and ū(s) satisfy conditions (i) and
(iii) in Definition 5.53. Let us check condition (ii) in that definition. Because
u is a solution of (5.190),

〈Akuk + Fk(u), ṽk − uk〉 ≥ 0, ∀ṽk ∈ Kk. (5.221)

For any vk ∈ Kk, by choosing

ṽk = uk − (uk − vk)+ = uk ∧ vk ∈ Kk,

in (5.221), we get
〈Akuk + Fk(u), (uk − vk)+〉 ≤ 0.

Also, according to (5.219), if [w]k ≥ [u]k, then

〈Fk(u), (uk − vk)+〉 ≥ 〈Fk(uk, [w]k), (uk − vk)+〉.
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Thus,

〈Akuk + Fk(uk, [w]k), (uk − vk)+〉 ≤ 〈Akuk + Fk(u), (uk − vk)+〉 ≤ 0.

We have condition (ii) in Definition 5.53. Similarly, we can prove that u(r), u
form a pair of sub-supersolution of (5.190) by verifying condition (iii) in Def-
inition 5.53. ��

Now we can prove an extremality result of the solution set S enclosed by
u and ū.

Theorem 5.59. Under assumption (5.218) [or (5.219)] and the following lat-
tice condition

K ∧K ⊂ K, K ∨K ⊂ K (5.222)

(that is, Kk ∧Kk ⊂ Kk, Kk ∨Kk ⊂ Kk, for k = 1, . . . ,m), or rather

{v ∈ K : v ≥ u} ∧K ⊂ K, {v ∈ K : v ≤ ū} ∨K ⊂ K,

the set S of solutions of (5.190) between u and ū has greatest and smallest
elements u∗ and u∗, respectively, with respect to the ordering ≤; i.e., for any
u ∈ S, we have u∗ ≤ u ≤ u∗.

Proof: Let u∗ be a maximal element of S, whose existence is proved previously
in section 5.5.4. We show that u∗ is in fact the greatest element of S; that
is, u ≤ u∗ for all u ∈ S. Assume otherwise that there is v ∈ S such that
v �≤ u∗. From the above lemma, u∗, ū and v, ū are pairs of sub-supersolutions
of (5.190). Condition (5.222) implies that u∗ ∨ K ⊂ K, v ∨ K ⊂ K. The
growth condition (H’) of Theorem 5.56 also holds for u∗, ū and v, ū because it
is satisfied for u, ū. According to Theorem 5.56, a solution ũ of (5.190) exists
such that

(u ≤)u∗ ∨ v ≤ ũ ≤ ū.

Hence, ũ ∈ S. As ũ ≥ u∗, we must have u∗ = ũ ≥ v. This result contradicts
the choice of v and proves that u∗ is the greatest element of S. The existence
of the smallest element u∗ of S is established in the same way. ��

Note the difference between the notion of minimal and maximal solutions
(see Theorem 5.57) on the one hand and of smallest and greatest solutions (see
Theorem 5.59) on the other hand. As for the existence of extremal solutions,
i.e., greatest and smallest solutions, for general quasilinear (scalar) elliptic
variational equalities and inequalities, we refer to Chap. 3 and Chap. 4, and
e.g., [35, 36, 43, 141, 146, 142].

Let us conclude this section with some remarks on particular cases of the
above definitions and results and a simple example. When m = 1, the system
(5.190) becomes a single (scalar) variational inequality and the definitions
above reduce to those in [141] (see previous sections).
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In the case where Kk = V0 (k = 1, . . . ,m), (5.190) becomes a system
of variational equations. In this case, Definition 5.53 reduces to the usual
definition of sub- and supersolutions in equations (see Chap. 3 and cf. [83] for
the scalar case and [40, 111, 134] for systems). The proof of this definition
coherence follows the same lines as in the case of a single variational inequality
in Section 5.1.

Example 5.60. To illustrate the above concepts and assumptions, we consider
a system of obtacle problems. Let us consider problem (5.190) with Kk given
by

Kk = {vk ∈ V0 : vk ≤ gk a.e. on Gk, vk ≥ hk a.e. on Hk},

where Gk, Hk are measurable subsets of Ω and gk : Gk → [−∞,+∞], hk :
Hk → [−∞,+∞] are given measurable functions. Assume that Kk �= ∅ for
k = 1, . . . ,m. It is clear that Kk are closed, convex subsets of V0. Also,
condition (5.222) always holds for K. Let uk ∈ V0. Then uk ∨ Kk ⊂ Kk

if uk ≤ gk on Gk and uk ∧Kk ⊂ Kk if uk ≥ hk on Hk.

5.6 Notes and Comments

The solvability of noncoercive variational inequalities has been studied exten-
sively recently by various methods, such as bifurcation, recession, variational,
and topological/fixed point approaches (cf. [131, 190, 207, 137] (bifurcation
methods), [12, 10, 7] (recession arguments), [162, 211, 143] (variational ap-
proaches), [209, 210] (topological/fixed point methods), and the extensive
references therein). Chapter 5 is about another way to study the solvability
of noncoercive variational inequalities, that of sub- and supersolutions. As
discussed, compared with the other methods, this approach when applica-
ble (i.e., when sub- and supersolutions exist) usually permits more flexible
requirements on the growth rate of the perturbing term F (x, u,∇u). More-
over, based on the lattice structure of the spaces W 1,p(Ω) and W 1,p

0 (Ω), the
sub- and supersolution method could also give insight into properties of the
solution set between the sub- and supersolutions such as its compactness or
directedness and, especially, the existence of extremal solutions.

The sub-supersolution method for classic (or strong) solutions of equations,
motivated by the well-known Perron arguments on sub- and superharmonic
functions, were used by Nagumo, Akô, Sattinger ([176, 4, 202]) to study the
solvability of quasilinear and semilinear equations and systems. The method
was extended later by Bebernes and Schmitt ([15]) to parabolic equations with
perturbing terms also depending on the gradient of the unknown function. The
existence of extremal solutions was also established in [4, 202, 15].

The sub-supersolution argument was later employed by Deuel and Hess
([83, 84]) to study the existence of weak solutions of equations in variational
forms. The existence of weak extremal solutions of nonlinear equations was
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considered recently by Dancer/Sweers, Kura, Carl, Heikkilä, Lakshmikan-
tham, Papageorgiou, Le/Schmitt, and others (cf. [75, 133, 29, 41, 46, 110,
183, 146, 138] and the references therein; see also Chap. 3 and Chap. 4). All
of these cited papers are concerned with solutions of various equations. From
the symmetric structure of equations (i.e., the equality of left- and right-hand
sides) in both classic and weak formulations, subsolutions and supersolutions
for equations are defined in a natural and straightforward manner, by replac-
ing the equality by the corresponding inequalities.

The situation is, however, different for variational inequalities. Because of
the intrinsic asymmetry of variational inequalities (where the problems are
stated as inequalities rather than equalities), it is more difficult to define sub-
and supersolutions for variational inequalities. An attempt in this direction
has been made in [184], where a class of parabolic variational inequalities is
studied. However, because of the presence of unilateral constraints (and/or
obstacles) and the asymmetry of the problem, the authors only defined su-
persolutions for these inequalities. As a consequence, the existence of minimal
solutions (but not maximal solutions) of those inequalities is established in
[184], in cases where supersolutions exists. Another restriction in [184] is that
the supersolutions are assumed to be in the convex setsK(t); hence, they must
have a zero boundary condition, which is somewhat restrictive, compared with
the usual requirements on supersolutions in equations (in equations with zero
Dirichlet boundary condition, supersolutions are only assumed to be nonneg-
ative on the boundary).

In this chapter, we proposed a systematic investigation of the subsolution-
supersolution method in variational inequalities. Despite the nonsymmetric
structure of variational inequalities, we showed that both supersolutions and
subsolutions could be defined in an appropriate manner, which naturally ex-
tends the corresponding concepts in equations. Moreover, the presence of uni-
lateral constraints and obstacles in variational inequalities does not, in many
interesting situations, preclude the existence of both sub- and supersolutions.
Consequently, this finding permits us to establish the existence of both small-
est and greatest solutions in inequalities and other interesting properties of
solution sets such as their directedness or compactness. Moreover, under some
growth condition from above (respectively, from below) on the perturbing
functions F (x, u,∇u), we can show that the existence of subsolutions (re-
spectively, supersolutions) alone would imply the solvability and then the
existence of both smallest and greatest solutions. However, we note that the
sub-supersolution methods are presented here only in function spaces with
some lattice structure [such as W 1,p(Ω)]. That is the reason why we apply
the method here mainly to problems with second-order operators.

Variational inequalities similar to (5.122) [or (5.137)] were studied in [175]
by Rothe’s method (see also [121]). In addition to coercivity, smoothness con-
ditions are usually required for the coefficients of the principal operators and
lower order terms. These smoothness conditions are relaxed here, and if sub-
supersolutions exist, we also have existence in noncoercive cases.
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Hemivariational Inequalities

Hemivariational inequalities have been introduced by P. D. Panagiotopou-
los (see [179, 180]) to describe, e.g., problems in mechanics and engineering
governed by nonconvex, possibly nonsmooth energy functionals (so-called su-
perpotentials). This kind of energy functionals appear if nonmonotone, pos-
sibly multivalued constitutive laws are taken into account. Hemivariational
inequalities are of the following abstract setting:

Let A : B → B∗ be a pseudomonotone and coercive operator from a
reflexive Banach space B into its dual B∗, and let f ∈ B∗ be some given
element. Find u ∈ B such that

〈Au− f, v〉 + Jo(u; v) ≥ 0 for all v ∈ B, (6.1)

where Jo(u; v) denotes the generalized directional derivative in the sense of
Clarke of a locally Lipschitz functional J : B → R (see Chap. 2, Sect. 2.5).
An equivalent multivalued formulation of (6.1) is given by

u ∈ B : −Au+ f ∈ ∂J(u) in B∗, (6.2)

where ∂J(u) : B → 2B∗ \{∅} denotes Clarke’s generalized gradient (see Chap.
2, Sect. 2.5). Abstract existence results for (6.1) [respectively, (6.2)] can be
found in [177].

In particular, if J : B → R is convex (note that dom(J) = B), then
∂J coincides with the usual subdifferential in convex analysis, and therefore,
problem (6.2) reduces to the variational inequality:

u ∈ B : 〈Au− f, v − u〉 + J(v) − J(u) ≥ 0 , for all v ∈ B. (6.3)

In this sense, hemivariational inequalities are a generalization of variational
inequalities. To indicate this finding and for a later treatment of hemivaria-
tional inequalities under constraints (see Chap. 7), we will write (6.1) in the
following equivalent form:

u ∈ B : 〈Au− f, v − u〉 + Jo(u; v − u) ≥ 0 for all v ∈ B. (6.4)
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In this chapter, we deal with concrete realizations of (6.1) and its correspond-
ing dynamic counterpart in the form

∂u

∂t
+Au− f ∈ ∂J(u), (6.5)

where A is assumed to be a quasilinear (in the case of (6.5) also time-
dependent) elliptic differential operator of Leray–Lions type, J is some in-
tegral functional, and B is a subspace of the Sobolev space W 1,p(Ω). More
precisely, we are going to consider integral functionals J of the form

J(u) =
∫

Ω

j(x, u(x)) dx, (6.6)

where the function s 
→ j(x, s) is assumed to be locally Lipschitz, and x 
→
j(x, s) is measurable in Ω with Ω being some bounded Lipschitz domain
in R

N . Other integral functionals defined on some portion of the boundary
∂Ω whose Clarke’s gradient representing certain multivalued flux boundary
conditions will also be considered in Chap. 7. Assuming a suitable growth
condition on s 
→ ∂j(x, s) to be specified later, we can show that J : Lp(Ω) →
R is locally Lipschitz and that the following relation holds:

Jo(u; v) ≤
∫

Ω

j0(x, u(x); v(x)) dx, (6.7)

where jo(·, s; r) denotes the generalized directional derivative of j at the point
s in the direction r. Motivated by the weak solution of elliptic (parabolic)
boundary value problems, and taking into account (6.7), we further relax the
problem (6.1) in that we are going to treat the problem

u ∈ B : 〈Au− f, v〉 +
∫

Ω

jo(·, u; v) dx ≥ 0 for all v ∈ B. (6.8)

Obviously, any solution of (6.1) is also a solution of (6.8) (in the above specified
situation of integral functionals). The reverse, in general, is not true, and it
only holds under additional assumptions on j such as to require j to be regular
in the sense of Clarke (see Sect. 2.5). Hemivariational inequalities of the form
(6.8) are closely related to and in fact generalize problems for differential
inclusions considered in Chap. 4, because any solution of

u ∈ B : Au− f + ∂j(·, u) � 0 in B∗ (6.9)

is also a solution of (6.8). To prove the latter, we only need to apply the
definition of Clarke’s generalized gradient. In the special case that j is given
by the primitive of a locally bounded function g : R → R satisfying some
growth condition, problem (6.9) reduces to the inclusion

u ∈ B : Au− f + [g(u), ḡ(u)] � 0 in B∗. (6.10)
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In this sense, the hemivariational inequality (6.8) may be considered as a gen-
eralization of the inclusion problems in Chap. 4 and, thus, in turn of boundary
value problems with discontinuous nonlinearities.

The goal of this chapter is to establish comparison principles for hemi-
variational inequalities in the form (6.8) and its evolutionary counterpart,
which are based on an appropriate notion for sub-supersolutions. As hemi-
variational inequalities with integral functionals include differential inclusions
considered in Chap. 4 as a special case, the new notion of sub-supersolution
should be compatible with the corresponding notion for inclusions. In fact we
will see that if Clarke’s generalized gradient of j satisfies certain global growth
conditions, then hemivariational inequalities and their corresponding inclu-
sion problems are equivalent. The new technique to be developed here will
allow us to study hemivariational inequalities under additional restrictions
represented, in general, by some convex, lower semicontinuous functionals
Φ : B → R∪{+∞}, which leads to the subject of variational–hemivariational
inequalities (see Chap. 7).

6.1 Notion of Sub-Supersolution

In this section, we provide a motivation for the new notion of sub-supersolution
for hemivariational inequalities in the form (6.8) with the help of a simple
example.

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, and let

V = W 1,2(Ω) and V0 = W 1,2
0 (Ω) denote the usual Sobolev spaces. Consider

the hemivariational inequality

u ∈ V0 : 〈−Δu− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0, (6.11)

where f ∈ V ∗
0 is given, and the function j : R → R is supposed to satisfy the

following structure and growth condition.

(H) The function j : R → R is locally Lipschitz and its Clarke’s generalized
gradient ∂j satisfies the following growth conditions:
(i) A constant c1 ≥ 0 exists such that

ξ1 ≤ ξ2 + c1(s2 − s1)

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
(ii) A constant c2 ≥ 0 exists such that

ξ ∈ ∂j(s) : |ξ| ≤ c2 (1 + |s|), ∀ s ∈ R.

In addition, consider the inclusion problem

−Δu+ ∂j(u) � f in Ω, u = 0 on ∂Ω. (6.12)
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When j : R → R is regular in the sense of Clarke (see Sect. 2.5), problem
(6.11) can equivalently be written in the form

u ∈ V0 : −Δu+ ∂(J ◦ i)(u) � f in V ∗
0 , (6.13)

where i : V0 → L2(Ω) is the embedding operator and J : L2(Ω) → R is the
integral functional given by

J(u) =
∫

Ω

j(u(x)) dx. (6.14)

From hypothesis (H)(ii) and as j has been assumed to be regular in the sense
of Clarke, it follows that J : L2(Ω) → R is locally Lipschitz, and moreover,
we have

η ∈ ∂J(u) ⇐⇒ η ∈ L2(Ω) and η(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω. (6.15)

The characterization of Clarke’s gradient (6.15) in conjunction with the chain
rule for Clarke’s gradient immediately imply that (6.11) and (6.12) are equi-
valent, where (6.12) has to be understood in the generalized sense; i.e., u is a
solution of (6.12) if the following is satisfied:

u ∈ V0 : −Δu+ η = f in V ∗
0 , (6.16)

where η ∈ L2(Ω) satisfies η(x) ∈ ∂j(u(x)).
To develop a proper notion of sub-supersolution for the hemivariational in-

equality (6.11), we have to take into account that it should be compatible with
the corresponding notion for sub-supersolutions for inclusion problems given
in Chap. 4. So our point of departure will be the notion of sub-supersolution
for the inclusion (6.12). Let u ∈ V be a subsolution of (6.12); i.e.,

(i) u ≤ 0 on ∂Ω.
(ii) There is a η ∈ L2(Ω) with η(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.
(iii) 〈−Δu− f, ϕ〉 +

∫
Ω
η ϕ dx ≤ 0, ∀ ϕ ∈ V0 ∩ L2

+(Ω).

Inequality (iii) is, in particular, satisfied for ϕ = (u−ψ)+ ∈ V0 ∩L2
+(Ω) with

ψ ∈ V0, which yields

〈−Δu− f,−(u− ψ)+〉 +
∫

Ω

η (−(u− ψ)+) dx ≥ 0, ∀ ψ ∈ V0. (6.17)

As v = u− (u− ψ)+ = u ∧ ψ, we see that (6.17) is equivalent with

〈−Δu− f, v − u〉 +
∫

Ω

η (v − u) dx ≥ 0, ∀ v ∈ u ∧ V0. (6.18)

By definition of Clarke’s gradient, we have

jo(u; v − u) ≥ η (v − u),
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and thus (6.18) results in the following inequality:

〈−Δu− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ u ∧ V0. (6.19)

It is relation (6.19), which leads to our basic notion of subsolution for the
hemivariational inequality (6.11). Similar considerations can be done for the
supersolution. Our new definition for sub-supersolution for (6.11) reads as
follows.

Definition 6.1. The function u ∈ V is a subsolution of (6.11) if it satisfies

(i) u ≤ 0 on ∂Ω.
(ii) 〈−Δu− f, v − u〉 +

∫
Ω
jo(u; v − u) dx ≥ 0, ∀ v ∈ u ∧ V0.

Definition 6.2. The function ū ∈ V is a supersolution of (6.11) if it satisfies

(i) ū ≥ 0 on ∂Ω.
(ii) 〈−Δū− f, v − ū〉 +

∫
Ω
jo(ū; v − ū) dx ≥ 0, ∀ v ∈ ū ∨ V0.

An immediate consequence of these definitions for sub-supersolutions of the
hemivariational inequality (6.11) is the following corollary.

Corollary 6.3. If u is a solution of (6.11), then it is both a subsolution and
a supersolution of (6.11).

The following result is crucial in the study of the relation between the hemi-
variational inequality (6.11) and the associated differential inclusion (6.12).

Theorem 6.4. Assume j : R → R is locally Lipschitz and let the growth
condition (H)(ii) be satisfied. Then u (ū) ∈ V is a subsolution (supersolution)
of (6.11) if and only if it is a subsolution (supersolution) of (6.12).

Proof: As the definitions given above for sub- and supersolutions of (6.11)
arise from the corresponding notions for the inclusion (6.12), we only need to
prove that any subsolution (supersolution) of (6.11) is also a subsolution (su-
persolution) of (6.12). Let u be a subsolution of (6.11) according to Definition
6.1. As v ∈ u ∧ V0, it is of the form v = u ∧ ψ = u − (u − ψ)+ with ψ ∈ V0,
and thus, from the inequality (ii) of Definition 6.1, we obtain

〈−Δu− f,−(u− ψ)+〉 +
∫

Ω

jo(u;−(u− ψ)+) dx ≥ 0, ∀ ψ ∈ V0. (6.20)

Denoting ϕ = (u − ψ)+ ∈ V0 ∩ L2
+(Ω) and taking into account the density

result given by Lemma 5.4, the set {ϕ = (u − ψ)+ : ψ ∈ V0} is dense in
V0 ∩ L2

+(Ω), and thus we get

〈−Δu− f, ϕ〉 −
∫

Ω

jo(u;−1)ϕdx ≤ 0, ∀ ϕ ∈ V0 ∩ L2
+(Ω). (6.21)



284 6 Hemivariational Inequalities

By the properties of the generalized Clarke’s gradient, a function η : Ω → R

exists such that

η(x) ∈ ∂j(u(x)) and jo(u(x);−1) = (−1)η(x) for a.e. x ∈ Ω. (6.22)

We are going to show that η is in fact an element from L2(Ω). The function
s 
→ jo(s;−1) is upper semicontinuous, and by hypothesis (H)(ii), it satisfies
the growth condition

|jo(s;−1)| ≤ c2(1 + |s|), ∀ s ∈ R.

By applying general approximation results for lower (upper) semicontinuous
functions in Hilbert spaces (see [8]), a sequence (jn) of locally Lipschitz func-
tions jn : R → R exists which converge pointwise to jo(·;−1); i.e.,

jn(s) → jo(s;−1), ∀ s ∈ R

as n → ∞. As the functions jn are superpositionally measurable, it follows
that s 
→ jo(s;−1) is superpositionally measurable as well, which means that
the function x 
→ jo(u(x);−1) is measurable whenever u : Ω → R is a measur-
able function. Thus, from (6.22), we infer that η = −jo(u;−1) is a measurable
function, which from (H)(ii) satisfies

|η(x)| ≤ c2(1 + |u(x)|) for a.e. x ∈ Ω,

and therefore, η ∈ L2(Ω). In view of (6.21), the latter implies

〈−Δu− f, ϕ〉 +
∫

Ω

η ϕ dx ≤ 0, ∀ ϕ ∈ V0 ∩ L2
+(Ω),

and thus u is a subsolution for the inclusion (6.12). In a similar way, we can
prove the result for the supersolution. ��

Note that for Theorem 6.4 to be valid, j is not required to be regular in
the sense of Clarke. We next will see that if in addition to the assumption of
Theorem 6.4 j satisfies also (H)(i), then problems (6.11) and (6.12) are in fact
equivalent, and comparison principles hold for both problems.

Theorem 6.5. Assume j : R → R satisfies hypothesis (H). If u and ū are
sub- and supersolutions of (6.11) satisfying u ≤ ū, then solutions of (6.11)
within [u, ū] exist, and the solution set S of all solutions of (6.11) in [u, ū]
is compact and possesses extremal elements. Moreover, problems (6.11) and
(6.12) are equivalent.

Proof: We already know by just applying the definition of Clarke’s gradient
∂j that any solution of the inclusion (6.12) is a solution of (6.11). Now, let u
be a solution of (6.11); then u is both a sub- and supersolution of (6.11), and
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by Theorem 6.4, u is a sub- and supersolution of (6.12) as well. This result
means there are pairs (u, η) and (u, η̄) such that η ∈ ∂j(u), η̄ ∈ ∂j(u) and

−Δu+ η ≤ f, −Δu+ η̄ ≥ f. (6.23)

Note that η and η̄ need not be the same, because η is chosen such that
jo(u;−1) = η (−1) and η̄ is chosen such that jo(u; 1) = η̄ 1. But −jo(u;−1 �=
jo(u; 1), in general, so η �= η̄. Now, from hypothesis (H), we may apply the
comparison principle for the inclusion (6.12) (see Theorem 4.11 in Chap. 4),
which implies the existence of a solution of (6.12) within the interval [u, u] =
{u}; i.e., there is a η ∈ L2(Ω) with η ∈ ∂j(u) such that

−Δu+ η = f, (6.24)

which shows that the solution u of (6.11) is in fact a solution of (6.12). A
further application of Theorem 4.11 in Chap. 4 completes the proof of the
theorem. ��

Remark 6.6. An alternative proof of the equivalence of the problems (6.11) and
(6.12) is based on Lemma 4.10 of Chap. 4, which states that under hypothesis
(H)(i) given above, the function j admits a representation in the form

j(s) = ĵ(s) − c1
2
s2, (6.25)

where ĵ : R → R is a convex function. As convex functions are regular in the
sense of Clarke, it follows from (6.25) that j must be regular in the sense of
Clarke as well, which implies the equivalence of (6.11) and (6.12). We note
that the equivalence of the two problems requires the growth conditions (H)
(i) and (ii) on ∂j to be satisfied globally.

6.2 Quasilinear Elliptic Hemivariational Inequalities

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, and let

V = W 1,p(Ω) and V0 = W 1,p
0 (Ω), 1 < p < ∞, denote the usual Sobolev

spaces with their dual spaces V ∗ and V ∗
0 , respectively. In this section, we deal

with the following quasilinear hemivariational inequality:

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0, (6.26)

where jo(s; r) denotes the generalized directional derivative of the locally Lip-
schitz function j : R → R at s in the direction r, and the operator A : V → V ∗

0

is assumed to be a second-order quasilinear differential operator in divergence
form
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Au(x) = −
N∑

i=1

∂

∂xi
ai(x,∇u(x)). (6.27)

For j we assume the following hypothesis that is the analog to hypothesis (H)
in the preceding section and again denoted by (H).

(H) The function j : R → R is locally Lipschitz, and its Clarke’s generalized
gradient ∂j satisfies the following growth conditions:
(i) A constant c1 ≥ 0 exists such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
(ii) A constant c2 ≥ 0 exists such that

ξ ∈ ∂j(s) : |ξ| ≤ c2 (1 + |s|p−1), ∀ s ∈ R.

Basically, similar arguments as for problems (6.11) and (6.12) apply also here
to show that under the hypothesis (H) of this section the hemivariational
inequality (6.26) is equivalent with the differential inclusion

u ∈ V0 : Au+ ∂j(u) � f in V ∗
0 . (6.28)

Only for the sake of demonstrating an alternative technique we prove the
comparison principle for the hemivariational inequality (6.26) independently
without reducing it to the inclusion (6.28). Without difficulties and using the
tools developed in the previous chapters, the comparison results for (6.26) can
be extended to hemivariational inequalities involving more general quasilinear
elliptic operators of Leray–Lions type and functions j : Ω×R → R depending,
in addition, on the space variable x.

6.2.1 Comparison Principle

We assume f ∈ V ∗
0 and impose the following hypotheses of Leray–Lions type

on the coefficient functions ai, i = 1, . . . , N , of the operator A:

(A1) Each ai : Ω×R
N → R satisfies the Carathéodory conditions; i.e., ai(x, ξ)

is measurable in x ∈ Ω for all ξ ∈ R
N and continuous in ξ for almost

all x ∈ Ω. A constant c0 > 0 and a function k0 ∈ Lq(Ω), 1/p+ 1/q = 1,
exist such that

|ai(x, ξ)| ≤ k0(x) + c0 |ξ|p−1 ,

for a.e. x ∈ Ω and for all ξ ∈ R
N .

(A2)
∑N

i=1(ai(x, ξ)−ai(x, ξ′))(ξi−ξ′i) > 0 for a.e. x ∈ Ω , and for all ξ, ξ′ ∈ R
N

with ξ �= ξ′.
(A3)

∑N
i=1 ai(x, ξ)ξi ≥ ν|ξ|p − k1(x) for a.e. x ∈ Ω , and for all ξ ∈ R

N with
some constant ν > 0 and some function k1 ∈ L1(Ω).
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From (A1), (A2), the semilinear form a associated with the operator A by

〈Au,ϕ〉 := a(u, ϕ) =
∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx, ∀ ϕ ∈ V0

is well defined for any u ∈ V , and the operator A : V0 → V ∗
0 is continuous,

bounded, and monotone. For functions w, z : Ω → R and sets W and Z of
functions defined onΩ, we use, as in Chap. 5, the notations: w∧z = min{w, z},
w ∨ z = max{w, z}, W ∧ Z = {w ∧ z : w ∈ W, z ∈ Z}, W ∨ Z = {w ∨ z :
w ∈W, z ∈ Z}, and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z. From Sect. 6.1, the
analogous definitions for sub- and supersolutions for (6.26) read as follows.

Definition 6.7. A function u ∈ V is called a subsolution of (6.26) if the
following holds:

(i) u ≤ 0 on ∂Ω.
(ii) 〈Au− f, v − u〉 +

∫
Ω
jo(u; v − u) dx ≥ 0, ∀ v ∈ u ∧ V0.

Definition 6.8. ū ∈ V is a supersolution of (6.26) if the following holds:

(i) ū ≥ 0 on ∂Ω.
(ii) 〈Aū− f, v − ū〉 +

∫
Ω
jo(ū; v − ū) dx ≥ 0, ∀ v ∈ ū ∨ V0.

Remark 6.9. In the same way as in Sect. 6.1, we can show that u is a subsolu-
tion (supersolution) of (6.26) if and only if u is a subsolution (supersolution)
of (6.28). Under hypothesis (H) of this section, problems (6.26) and (6.28) are
equivalent. Therefore, the hemivariational inequality (6.26) can be treated via
the differential inclusions (6.28). As mentioned, we provide in the following an
independent proof of comparison principles and related properties for (6.26)
by using hemivariational formulation.

In the proof of the comparison principle, we make use of the cutoff function
b : Ω × R → R related with an ordered pair of functions u, ū, and given by

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x).

(6.29)

We already know from previous chapters that b is a Carathéodory function
satisfying the growth condition

|b(x, s)| ≤ k2(x) + c3 |s|p−1 (6.30)

for a.e. x ∈ Ω, for all s ∈ R, with some function k2 ∈ Lq
+(Ω). Moreover, we

have the following estimate:∫
Ω

b(x, u(x))u(x) dx ≥ c4 ‖u‖p
Lp(Ω) − c5, ∀ u ∈ Lp(Ω), (6.31)
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where c4 and c5 are some positive constants. In view of (6.30), the Nemytskij
operator B : Lp(Ω) → Lq(Ω) defined by

Bu(x) = b(x, u(x))

is continuous and bounded, and thus from the compact embedding V ⊂
Lp(Ω), it follows that B : V0 → V ∗

0 is completely continuous. Now we prove
the following existence and comparison theorem.

Theorem 6.10. Assume hypotheses (A1)–(A3), (H), and let ū and u be
super- and subsolutions of (6.26), respectively, satisfying u ≤ ū. Then so-
lutions of (6.26) exist within the ordered interval [u, ū].

Proof: Let us consider the auxiliary hemivariational inequality

u ∈ V0 : 〈Au− f + λB(u), v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

(6.32)

where λ ≥ 0 is some constant that is at our disposal and that will be specified
later. We note that any solution u ∈ [u, ū] of (6.26) is a solution of (6.32),
and any solution of (6.32) that is in [u, ū] solves (6.26). Let us introduce the
function J : Lp(Ω) → R by

J(v) =
∫

Ω

j(v(x)) dx, ∀ v ∈ Lp(Ω).

Using the growth condition (H)(ii) and Lebourg’s mean value theorem, we
note that the function J is well defined and Lipschitz continuous on bounded
sets in Lp(Ω), thus locally Lipschitz. Moreover, the Aubin–Clarke theorem
(see Theorem 2.181, Chap. 2) ensures that, for each u ∈ Lp(Ω), we have

ξ ∈ ∂J(u) =⇒ ξ ∈ Lq(Ω) with ξ(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.

Consider now the multivalued operator F : V0 → 2V ∗
0 defined by

F (v) = Av + λB(v) + ∂(J |V0)(v), ∀ v ∈ V0,

where J |V0 denotes the restriction of J to V0. We readily verify that the oper-
ator A+ λB : V0 → V ∗

0 is continuous, bounded, strictly monotone, and thus,
in particular, pseudomonotone. By Lemma 4.16 of Chap. 4, the multivalued
operator ∂(J |V0) : V0 → 2V ∗

0 is bounded and pseudomonotone in the sense of
Definition 2.120. Lemma 4.18 of Chap. 4 holds likewise also for the operator F
defined above, which states that F : V0 → 2V ∗

0 is bounded, pseudomonotone,
and coercive for λ > 0 sufficiently large. Thus by Theorem 2.125 of Chap. 2,
it follows that F is surjective; i.e., u ∈ V0 exists such that f ∈ F (u); i.e., there
is an ξ ∈ ∂J(u) such that ξ ∈ Lq(Ω) with ξ(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω and

Au− f + λB(u) + ξ = 0 in V ∗
0 , (6.33)
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where

〈ξ, ϕ〉 =
∫

Ω

ξ(x)ϕ(x) dx for all ϕ ∈ V0, (6.34)

and thus by definition of Clarke’s generalized gradient ∂j, from (6.34), we get

〈ξ, ϕ〉 =
∫

Ω

ξ(x)ϕ(x) dx ≤
∫

Ω

jo(u(x);ϕ(x)) dx for all ϕ ∈ V0. (6.35)

From (6.33) and (6.35), we conclude that u ∈ V0 is a solution of the auxiliary
hemivariational inequality (6.32). To complete the proof, we only need to show
that there are solutions of (6.32) that belong to the interval [u, ū]. In fact, we
are going to prove that any solution u of (6.32) belongs to this interval.

Let us show: u ≤ ū. By definition ū satisfies ū ≥ 0 on ∂Ω and

〈Aū− f, v − ū〉 +
∫

Ω

jo(ū; v − ū) dx ≥ 0, ∀ v ∈ ū ∨ V0.

In view of v = ū ∨ ϕ = ū + (ϕ − ū)+ with ϕ ∈ V0, this implies the following
inequality:

〈Aū− f, (ϕ− ū)+〉 +
∫

Ω

jo(ū; (ϕ− ū)+) dx ≥ 0, ∀ ϕ ∈ V0. (6.36)

Taking in (6.32) the special test function v = u− (u− ū)+ and ϕ = u in (6.36)
and adding the resulting inequalities, we obtain

〈Au−Aū, (u− ū)+〉 + λ〈B(u), (u− ū)+〉

≤
∫

Ω

(
jo(ū; (u− ū)+) + jo(u;−(u− ū)+)

)
dx. (6.37)

Next we estimate the right-hand side of (6.37) by using the facts from nons-
mooth analysis (cf. Chap. 2).

The function r 
→ jo(s; r) is finite and positively homogeneous; ∂j(s) is a
nonempty, convex and compact subset of R; and we have

jo(s; r) = max{ξ r : ξ ∈ ∂j(s)}.

By using (H) and the properties of jo and ∂j, we get for certain ξ̄(x) ∈
∂j(ū(x)) and ξ(x) ∈ ∂j(u(x)), the following estimate:∫

Ω

(
jo(ū; (u− ū)+) + jo(u;−(u− ū)+)

)
dx

=
∫

{u>ū}

(
jo(ū;u− ū) + jo(u;−(u− ū))

)
dx

=
∫

{u>ū}

(
ξ̄(x)(u(x) − ū(x)) + ξ(x)(−(u(x) − ū(x)))

)
dx
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=
∫

{u>ū}

(ξ̄(x) − ξ(x))(u(x) − ū(x)) dx

≤
∫

{u>ū}

c1 (u(x) − ū(x))p dx. (6.38)

As 〈Au−Aū, (u− ū)+〉 ≥ 0 and

〈B(u), (u− ū)+〉 =
∫

{u>ū}

(u− ū)p dx,

we get from (6.37) and (6.38) the estimate

(λ− c1)
∫

{u>ū}

(u− ū)p dx ≤ 0. (6.39)

Selecting the free parameter λ ≥ 0 in such a way that λ− c1 > 0 then (6.39)
yields ∫

Ω

(
(u− ū)+

)p
dx ≤ 0,

which implies (u − ū)+ = 0 and thus u ≤ ū. The proof for the inequality
u ≤ u can be carried out in a similar way that completes the proof of the
theorem. ��

6.2.2 Extremal Solutions and Compactness Results

Let S denote the set of all solutions of (6.26) within the interval [u, ū] of
the ordered pair of sub- and supersolutions u and ū of problem (6.26). In
this section, we are going to show that S possesses the smallest and greatest
element with respect to the given partial ordering.

Lemma 6.11. The solution set S is a directed set.

Proof: By Theorem 6.10 we have S �= ∅. Given u1, u2 ∈ S we shall show that
there is a u ∈ S such that uk ≤ u, k = 1, 2, which means S is upward directed.
To this end, we consider the following auxiliary hemivariational inequality:

u ∈ V0 : 〈Au− f + λB(u), v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

(6.40)

where λ ≥ 0 is a free parameter to be chosen later, but unlike in the proof of
Theorem 6.10, the operator B is now given by the following cutoff function
b : Ω × R → R:



6.2 Quasilinear Elliptic Hemivariational Inequalities 291

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u0(x) ≤ s ≤ ū(x),
−(u0(x) − s)p−1 if s < u0(x),

(6.41)

where u0 = max{u1, u2}. By similar arguments as in the proof of Theorem
6.10, we obtain the existence of solutions of (6.40). The set S is shown to be
upward directed provided that any solution u of (6.40) satisfies uk ≤ u ≤ ū,
k = 1, 2, because then Bu = 0 and thus u ∈ S exceeding uk. By assumption
uk ∈ S, which means uk ∈ [u, ū] satisfies

uk ∈ V0 : 〈Auk − f, v − uk〉 +
∫

Ω

jo(uk; v − uk) dx ≥ 0, ∀ v ∈ V0. (6.42)

Taking the special functions v = u+(uk−u)+ in (6.40) and v = uk−(uk−u)+
in (6.42) and adding the resulting inequalities, we obtain

〈Auk −Au, (uk − u)+〉 − λ〈B(u), (uk − u)+〉

≤
∫

Ω

(
jo(u; (uk − u)+) + jo(uk;−(uk − u)+)

)
dx. (6.43)

Similarly to (6.38), we get for the right-hand side of (6.43) the estimate∫
Ω

(
jo(u; (uk − u)+) + jo(uk;−(uk − u)+)

)
dx

≤
∫

{uk>u}

c1 (uk(x) − u(x))p dx. (6.44)

For the terms on the left-hand side of (6.43), we have

〈Auk −Au, (uk − u)+〉 ≥ 0 (6.45)

and (6.41) yields

〈B(u), (uk − u)+〉 = −
∫

{uk>u}

(u0(x) − u(x))p−1(uk(x) − u(x)) dx

≤ −
∫

{uk>u}

(uk(x) − u(x))p dx. (6.46)

By means of (6.44)–(6.46), we get from (6.43) the inequality

(λ− c1)
∫

{uk>u}

(uk(x) − u(x))p dx ≤ 0. (6.47)

Selecting λ such that λ > c1 from (6.47), we obtain uk ≤ u. The proof for
u ≤ ū follows similar arguments, and thus, S is upward directed. By obvious
modifications of the auxiliary problem, we can show analogously that S is also
downward directed. ��
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Lemma 6.12. The solution set S is compact in V0.

Proof: First we prove that S is bounded in V0. As any u ∈ S belongs to the
interval [u, ū], it follows that S is bounded in Lp(Ω). Moreover, any u ∈ S
solves (6.26), i.e., we have

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

and thus by taking v = 0, we obtain

〈Au, u〉 ≤ 〈f, u〉 +
∫

Ω

jo(u;−u) dx,

which yields by applying (A3), (H)(ii), and Young’s inequality

ν‖∇u‖p
Lp(Ω) ≤ ‖k1‖L1(Ω) + c(ε) ‖f‖q

V ∗
0

+ ε ‖u‖p
V0

+ α̃ (‖u‖Lp(Ω) + ‖u‖p
Lp(Ω)),

with a constant α̃ > 0, for any ε > 0, and hence, the boundedness of S in V0

follows by choosing ε sufficiently small [Note: S is bounded in Lp(Ω)].
Let (un) ⊂ S. Then there is a subsequence (uk) of (un) with

uk ⇀ u in V0, uk → u in Lp(Ω), and uk(x) → u(x) a.e. in Ω. (6.48)

Obviously u ∈ [u, ū]. As uk solve (6.26) we get with v = u in (6.26),

〈Auk, uk − u〉 ≤ 〈f, uk − u〉 +
∫

Ω

jo(uk;u− uk) dx. (6.49)

From (6.48) and because (s, r) 
→ jo(s; r) is upper semicontinuous, we get by
applying Fatou’s lemma

lim sup
k

∫
Ω

jo(uk;u− uk) dx ≤
∫

Ω

lim sup
k

jo(uk;u− uk) dx = 0. (6.50)

In view of (6.50), we thus obtain from (6.48) and (6.49) the relation

lim sup
k

〈Auk, uk − u〉 ≤ 0. (6.51)

As the operator A enjoys the (S+)-property, the weak convergence of (uk) in
V0 along with (6.51) imply the strong convergence uk → u in V0. Moreover,
the limit u belongs to S as can be seen by passing to the lim sup on the
left-hand side of the following inequality:

〈Auk − f, v − uk〉 +
∫

Ω

jo(uk; v − uk) dx ≥ 0, (6.52)

where we have used Fatou’s lemma and the strong convergence of (uk) in V0.
��

By means of Lemma 6.11 and Lemma 6.12, we can prove the following
extremality result.
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Theorem 6.13. The solution set S possesses extremal elements.

Proof: We show the existence of the greatest element of S. As V0 is separable,
we have that S ⊂ V0 is separable too, so a countable, dense subset Z = {zn :
n ∈ N} of S exists. By Lemma 6.11, S is upward directed, so we can construct
an increasing sequence (un) ⊂ S as follows. Let u1 = z1. Select un+1 ∈ S such
that

max{zn, un} ≤ un+1 ≤ u.
The existence of un+1 is from Lemma 6.11. By Lemma 6.12, we find a subse-
quence of (un), denoted again (un), and an element u ∈ S such that un → u
in V0, and un(x) → u(x) a.e. in Ω. This last property of (un) combined with
its increasing monotonicity implies that the entire sequence is convergent in
V0, and moreover, u = supn un. By construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ u, ∀ n;

thus, Z ⊂ [u, u]. As the interval [u, u] is closed in V0, we infer

S ⊂ Z ⊂ [u, u] = [u, u],

which in conjunction with u ∈ S ensures that u is the greatest solution. The
existence of the least solution of (1.1) can be proved in a similar way. ��

6.2.3 Application

Let us assume throughout this subsection the assumptions (A1)–(A3) for A
and (H) for the function j : R → R as before. Here we are going to deal
with the following quasilinear hemivariational inequality with a multivalued
right-hand side:

u ∈ V0, η ∈ ∂Ψ(u) : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈η, v − u〉,

(6.53)

for all v ∈ V0, where ∂Ψ(u) is the subdifferential of the continuous and convex
functional Ψ : Lp(Ω) → R given by

Ψ(u) =
∫

Ω

(∫ u(x)

0

h(τ) dτ

)
dx, (6.54)

with h : R → R being some monotone nondecreasing (not necessarily con-
tinuous) function satisfying a certain growth condition specified later. If ψ
denotes the primitive of h given by

ψ(s) =
∫ s

0

h(τ) dτ, (6.55)
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then ψ : R → R is continuous (but not necessarily smooth) and convex from
the monotonicity of h, and its subdifferential is given by

∂ψ(s) = [h(s), h̄(s)], (6.56)

where h and h̄ denote the left-sided and right-sided limits of h. Furthermore,
the following characterization of the subdifferential ∂Ψ(u) holds:

η ∈ ∂Ψ(u) ⇐⇒ η ∈ Lq(Ω) and η(x) ∈ ∂ψ(x) for a.e. x ∈ Ω. (6.57)

We denote by H and H̄ the Nemytskij operators associated with h and h̄,
respectively, and define sub- and supersolutions for problem (6.53) as follows.

Definition 6.14. The function u ∈ V is called a subsolution of (6.53) if the
following holds:

(i) u ≤ 0 on ∂Ω.
(ii) 〈Au− f, v − u〉 +

∫
Ω
jo(u; v − u) dx ≥ 〈H(u), v − u〉, ∀ v ∈ u ∧ V0.

Definition 6.15. The function ū ∈ V is a supersolution of (6.53) if the fol-
lowing holds:

(i) ū ≥ 0 on ∂Ω.
(ii) 〈Aū− f, v − ū〉 +

∫
Ω
jo(ū; v − ū) dx ≥ 〈H̄(ū), v − ū〉, ∀ v ∈ ū ∨ V0.

Remark 6.16. Under the hypothesis (H) for j, the hemivariational inequality
(6.53) can be shown to be equivalent to the following inclusion problem:

u ∈ V0 : Au+ ∂j(u) − ∂ψ(u) � f in V ∗
0 . (6.58)

This equivalence can be seen as follows. Let u ∈ V0 be a solution of (6.58);
i.e., there are functions ξ ∈ Lq(Ω) and η ∈ Lq(Ω) satisfying ξ(x) ∈ ∂j(u(x))
and η(x) ∈ ∂ψ(u(x)) for a.e. x ∈ Ω and

Au+ ξ − η = f in V ∗
0 .

By definition of Clarke’s generalized gradient, we have∫
Ω

jo(u; v − u) dx ≥
∫

Ω

ξ(v − u) dx,

and thus,

〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈η, v − u〉,

where η ∈ Lq(Ω) is an element of ∂Ψ(u) from (6.57). This result proves that
any solution of (6.58) is also a solution of (6.53). As for the reverse, let u ∈ V0

be a solution of (6.53) i.e., there is an element η ∈ ∂Ψ(u) such that inequality
(6.53) holds. Again by (6.57), it follows that η ∈ Lq(Ω) and η(x) ∈ ∂ψ(u(x))
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for a.e. x ∈ Ω. If we set f̃ = f + η, then u satisfies the hemivariational
inequality

u ∈ V0 : 〈Au− f̃ , v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0,

for all v ∈ V0. Now, under hypothesis (H), we conclude in just the same way
as in the proof of Theorem 6.5 that u satisfies the inclusion

Au+ ∂j(u) � f̃ ,

which means that there is a function ξ ∈ Lq(Ω) such that ξ(x) ∈ ∂j(u(x))
and

Au+ ξ = f̃ in V ∗
0 .

In view of the definition of f̃ , the last equation shows that u is a solution
of the inclusion (6.58). Elliptic problems governed by the difference of multi-
functions have been treated already in Sect. 4.4, where j has been assumed
to be the primitive of some locally bounded function without assuming sub-
supersolutions. Here we continue the study of this kind of problems by using
alternative techniques within the framework of hemivariational inequalities.

We make the following assumption on h:

(H-h) The function h : R → R is monotone nondecreasing and satisfies

|h(s)| ≤ c3 (1 + |s|p−1), ∀ s ∈ R.

The main result for problem (6.53) reads as follows.

Theorem 6.17. Let hypotheses (A1)–(A3) and (H)–(H-h) be satisfied, and let
u and ū be sub- and supersolutions of (6.53) with u ≤ ū. Then the hemivaria-
tional inequality (6.53) possesses extremal solutions within the order interval
[u, ū], and the solution set of all solutions of (6.53) within [u, ū] is a compact
subset in V0.

Proof: Step 1: Existence of Extremal Solutions.

The hypothesis (H-h) ensures that the functional Ψ : Lp(Ω) → R is well
defined, convex, and locally Lipschitz continuous, and so it is the restriction
of Ψ to V0 denoted Ψ |V0 . As V0 ⊂ Lp(Ω) is densely embedded, we get in view
of (6.57) the following characterization of the subgradients of ∂(Ψ |V0)(u) from
[64, Theorem 2.3]:

η ∈ ∂(Ψ |V0)(u) ⇐⇒ η ∈ Lq(Ω) with η(x) ∈ ∂ψ(u(x)) for a.e. x ∈ Ω.
(6.59)

In view of (6.56), the inclusion on the right-hand side is equivalent with η ∈
[H(u), H̄(u)]. Therefore, u is a solution of (6.53) if the following holds: u ∈ V0,
and a η ∈ Lq(Ω) with η ∈ [H(u), H̄(u)] exists such that
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〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈η, v − u〉, ∀ v ∈ V0. (6.60)

Let us consider the following hemivariational inequality related with (6.60):

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈H̄(u), v − u〉, (6.61)

for all v ∈ V0. Note that in view of (H-h), the Nemytskij operator H̄ : Lp(Ω) →
Lq(Ω) is well defined, but not necessarily continuous, which makes the treat-
ment of (6.61) more difficult. We are going to show that (6.61) has the great-
est solution u∗ within the interval [u, ū], and that u∗ is at the same time the
greatest solution of the original problem (6.53) within [u, ū]. To this end, we
consider first the following hemivariational inequality with given right-hand
side H̄(ū) ∈ Lq(Ω) ⊂ V ∗

0 :

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈H̄(ū), v − u〉, (6.62)

for all v ∈ V0. By hypothesis ū is a supersolution of (6.53) and thus, in
particular, a supersolution of (6.62). Because of H(u) ≤ H̄(u) ≤ H̄(ū), we
readily can see that the given subsolution of (6.53) is also a subsolution of
(6.62). Therefore, we may apply Theorem 6.13 with f replaced by f + H̄(ū) ∈
V ∗

0 , which ensures the existence of extremal solutions of (6.62) within [u, ū].
We denote by u1 the greatest solution of (6.62) within [u, ū] and consider next
the hemivariational inequality with H̄(ū) replaced by H̄(u1); i.e.,

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈H̄(u1), v − u〉, (6.63)

for all v ∈ V0. As u1 ≤ ū, we get H̄(u1) ≤ H̄(ū), which shows that u1 is
a supersolution of (6.63). Furthermore, in view of u ≤ u1, we have H(u) ≤
H̄(u) ≤ H̄(u1), and this implies that u is also a subsolution of (6.63). Again
by applying Theorem 6.13, extremal solutions of (6.63) within [u, u1] exist,
and we denote the greatest one by u2. Continuing this process, we get by
induction the following iteration: u0 = ū, and un+1 ∈ [u, un] is the greatest
solution of

u ∈ V0 : 〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 〈H̄(un), v − u〉, (6.64)

for all v ∈ V0, which yields a monotone nonincreasing sequence (un) satisfying

u ≤ · · · ≤ un+1 ≤ un ≤ · · · ≤ u1 ≤ u0 = ū, (6.65)

and (6.64) with u replaced by un+1; i.e., we have

un+1 ∈ V0 : 〈Aun+1 − f, v − un+1〉 +
∫

Ω

jo(un+1; v − un+1) dx
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≥ 〈H̄(un), v − un+1〉, (6.66)

for all v ∈ V0. From (6.65), the sequence (un) is Lp(Ω)-bounded, which implies
that the sequence (H̄(un)) is Lq(Ω)-bounded, and thus from (6.66), we get
by taking v = 0 the following estimate:

〈Aun+1, un+1〉 ≤ 〈H̄(un) + f, un+1〉 +
∫

Ω

jo(un+1;−un+1) dx. (6.67)

As jo(s; r) = max{ζ r : ζ ∈ ∂j(s)}, from (6.67), we get by using (A3) and
(H)(ii), the boundedness of (un) in V0; i.e.,

‖un‖V0 ≤ c, ∀ n. (6.68)

The boundedness (6.68) and the monotonicity of the sequence (un) as well as
the compact embedding V0 ⊂ Lp(Ω) imply the following convergence proper-
ties:

(i) un(x) → u∗(x) a.e. in Ω.
(ii) un → u∗ in Lp(Ω).
(iii) un ⇀ u∗ in V0.

Replacing v in (6.66) by u∗, we get

〈Aun+1, un+1 − u∗〉 ≤
∫

Ω

jo(un+1;u∗ − un+1) dx+ 〈f + H̄(un), un+1 − u∗〉.

(6.69)

As (s, r) 
→ jo(s; r) is upper semicontinuous, Fatou’s lemma yields

lim sup
n

∫
Ω

jo(un;u∗ − un) dx ≤
∫

Ω

lim sup
n

jo(un;u∗ − un) dx = 0. (6.70)

From (6.69), (6.70), the boundedness of (H̄(un)) in Lq(Ω) and the convergence
properties (i)–(iii) above, we obtain

lim sup
n

〈Aun, un − u∗〉 ≤ 0. (6.71)

Hypotheses (A1)–(A3) imply that the operator A enjoys the (S+)-property
(see Chap. 2), which in view of (iii) and (6.71) yields the strong convergence

(iv) un → u∗ in V0.

Furthermore, because the function s 
→ h̄(s) is monotone nondecreasing and
right-sided continuous, we get by means of Lebesgue’s dominated convergence
theorem and the a.e. monotone pointwise convergence of the sequence (un)∫

Ω

H̄(un) v dx→
∫

Ω

H̄(u∗) v dx, ∀ v ∈ Lp(Ω); (6.72)

that is, H̄(un) ⇀ H̄(u∗) in Lq(Ω), which from the compact embedding
Lq(Ω) ⊂ V ∗

0 results in
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(v) H̄(un) → H̄(u∗) in V ∗
0 .

Thus, taking into account the convergencies (i)–(v) and passing to the lim sup
in (6.66), we arrive at

u∗ ∈ V0 : 〈Au∗ − f, v − u∗〉 +
∫

Ω

jo(u∗; v − u∗) dx ≥ 〈H̄(u∗), v − u∗〉,

(6.73)

for all v ∈ V0, which shows that u∗ ∈ [u, ū] is a solution of (6.61). Moreover,
u∗ is also the greatest solution of (6.61) within [u, ū]. To see this, let u ∈ [u, ū]
be any solution of (6.61). Because (6.61) holds, in particular, for all v ∈ u∧V0;
i.e., v is of the form v = u − (u − w)+ with w ∈ V0, and as H̄(u) ≤ H̄(ū),
we infer that u is a subsolution of (6.62). Replacing u by u in the iteration
above and noticing that the iterates un are defined as the greatest solutions,
the same iterates as before satisfy u ≤ un ≤ ū for all n, and thus, u ≤ u∗,
which proves that u∗ is the greatest solution of (6.61) within [u, ū]. If we set
η∗ = H̄(u∗), then, in particular, η∗ ∈ [H(u∗), H̄(u∗)] and we have

u∗ ∈ V0 : 〈Au∗ − f, v − u∗〉 +
∫

Ω

jo(u∗; v − u∗) dx ≥ 〈η∗, v − u∗〉, (6.74)

for all v ∈ V0, which proves that u∗ is a solution of (6.53). Finally, we shall
show that u∗ is the greatest solution of (6.53) in [u, ū] as well. To this end,
let ũ be any solution of (6.53) in [u, ū], which means that there is an η̃ ∈
∂Ψ(ũ) = [H(ũ), H̄(ũ)] such that (6.53) holds with u and η replaced by ũ and
η̃, respectively. As η̃ ≤ H̄(ũ) ≤ H̄(ū), similar arguments as above imply that
ũ is a subsolution of (6.62), which by interchanging the role of u and ũ yields
the following inequality for the iterates (un) : ũ ≤ un ≤ ū, and thus, we get
ũ ≤ u∗, which proves that u∗ is the greatest solution of (6.53) within [u, ū].
By similar reasoning, the existence of the smallest solution u∗ can be proved.

Step 2: Compactness of the Solution Set.

Let S ⊂ [u, ū] denote the set of all solutions of (6.53) within [u, ū], and
let (un) ⊂ S be any sequence; i.e., we have: There are ηn ∈ ∂Ψ(un) =
[H(un), H̄(un)] such that

un ∈ V0 : 〈Aun − f, v − un〉 +
∫

Ω

jo(un; v − un) dx ≥ 〈ηn, v − un〉, (6.75)

for all v ∈ V0. The sequence (un) is bounded in Lp(Ω), and hence, (ηn) is
bounded in Lq(Ω) in view of (H), which by similar reasoning as in Step 1
implies the boundedness of (un) in V0. Thus, subsequences (uk) and (ηk) of
(un) and (ηn) exist, respectively, satisfying

(1) uk(x) → u(x) a.e. in Ω,
(2) uk → u in Lp(Ω),
(3) uk ⇀ u in V0,
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(4) ηk ⇀ η in Lq(Ω),

where ηk ∈ ∂Ψ(uk), and η ∈ ∂Ψ(u). By means of the convergence properties
(1)–(4), we get similarly as in Step 1 the following:

lim sup
k

〈Auk, uk − u〉 ≤ 0,

which by the (S+)-property of A implies the strong convergence

(5) uk → u in V0.

Passing to the limit in (6.75) with un replaced by (uk) as k → ∞ shows that
the limit u belongs to S. ��

In the next section, we shall continue our treatment of hemivariational
inequalities with evolutionary hemivariational inequalities.

6.3 Evolutionary Hemivariational Inequalities

In this section, we are going to study the evolutionary counterpart to the
elliptic hemivariational inequality treated in Sect. 6.2. The problem we are
dealing with is the following evolutionary hemivariational inequality:

u ∈W0, u(·, 0) = 0 in Ω,

〈u′ +Au− f, v − u〉 +
∫

Q

jo(u; v − u) dxdt ≥ 0, ∀ v ∈ X0, (6.76)

where Q = Ω× (0, τ), X0 = Lp(0, τ ;V0), with V0 =W 1,p
0 (Ω), and W0 = {w ∈

X0 : w′ ∈ X∗
0}. Throughout this section, we make use of the same notations

of the evolutionary framework used in the study of parabolic inclusions in
Sect. 4.5 of Chap. 4. As in Sect. 4.5, we will assume 2 ≤ p <∞, and the same
assumptions (A1)–(A4) for the operator A, which are given here again only
for convenience.

(A1) ai : Q×R×R
N → R are Carathéodory functions; i.e., ai(·, ·, s, ξ) : Q→

R is measurable for all (s, ξ) ∈ R×R
N and ai(x, t, ·, ·) : R×R

N → R is
continuous for a.e. (x, t) ∈ Q. In addition, we have

|ai(x, t, s, ξ)| ≤ k0(x, t) + c0
(
|s|p−1 + |ξ|p−1

)
for a.e. (x, t) ∈ Q and for all (s, ξ) ∈ R × R

N , for some constant c0 > 0
and some function k0 ∈ Lq(Q).

(A2)
N∑

i=1

(ai(x, t, s, ξ) − ai(x, t, s, ξ′))(ξi − ξ′i) > 0 for a.e. (x, t) ∈ Q, for all

s ∈ R and all ξ, ξ′ ∈ R
N with ξ �= ξ′.
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(A3)
N∑

i=1

ai(x, t, s, ξ)ξi ≥ ν|ξ|p − k1(x, t) for a.e. (x, t) ∈ Q and for all (s, ξ) ∈

R × R
N , for some constant ν > 0 and some function k1 ∈ L1(Q).

(A4) |ai(x, t, s, ξ)−ai(x, t, s′, ξ)| ≤ [k2(x, t)+|s|p−1+|s′|p−1+|ξ|p−1]ω(|s−s′|)
for a.e. (x, t) ∈ Q, for all s, s′ ∈ R and all ξ ∈ R

N , for some function
k2 ∈ Lq(Q) and a continuous function ω : [0,+∞) → [0,+∞) satisfying∫

0+

1
ω(r)

dr = +∞.

As in Sect. 4.5, let L := ∂/∂t and its domain of definition D(L) given by

D(L) = {u ∈ X0 : u′ ∈ X∗
0 and u(·, 0) = 0 in Ω} .

Thus, the evolutionary hemivariational inequality (6.76) may be rewritten as

u ∈ D(L) : 〈Lu+A(u) − f, v − u〉 +
∫

Q

jo(u; v − u) dxdt ≥ 0, ∀ v ∈ X0.

(6.77)

As mentioned in Remark 4.55, the case of quasilinear parabolic inclusions with
global growth conditions on Clarke’s generalized gradient of j can effectively
be treated within the framework of evolutionary hemivariational inequalities
in the form (6.77). We note that only by applying the definition of Clarke’s
generalized gradient ∂j and without any additional assumtions, we readily see
that any solution of the parabolic inclusion

u ∈ D(L) : Lu+Au+ ∂j(u) � f in X∗
0 (6.78)

(as for parabolic inclusions, see Chap. 4) is also a solution of the hemivaria-
tional inequality (6.77). The reverse, in general, is not true. However, like in
the elliptic case, we will see that under the following (global) assumption (H)
on j the inclusion (6.78) and the hemivariational problem (6.77) are in fact
equivalent.

(H) The function j : R → R is locally Lipschitz and its Clarke’s generalized
gradient ∂j satisfies the following growth conditions:
(i) A constant c1 ≥ 0 exists such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 ∈ R with s1 < s2.
(ii) A constant c2 ≥ 0 exists such that

ξ ∈ ∂j(s) : |ξ| ≤ c2 (1 + |s|p−1), ∀ s ∈ R.
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6.3.1 Sub-Supersolutions and Equivalence of Problems

A motivation for the notion of sub-supersolution for the hemivariational in-
equality (6.77) can be given in a similar way as in Sect. 6.1 for the elliptic
case. For example, let ū be a supersolution of the inclusion (6.78); i.e., ū ∈W ,
and there is a function η ∈ Lq(Q) such that ū(·, 0) ≥ 0 in Ω, ū ≥ 0 on
Γ = ∂Ω × (0, τ), η(x, t) ∈ ∂j(ū(x, t)) and the following inequality holds:

〈ū′ +Aū− f, ϕ〉 +
∫

Q

η(x, t)ϕ(x, t) dxdt ≥ 0, ∀ ϕ ∈ X0 ∩ Lp
+(Q). (6.79)

(Note: W = {u ∈ X : u′ ∈ X∗} and X = Lp(0, τ ;V ) with V = W 1,p(Ω).)
Thus (6.79), in particular, holds for ϕ in the form ϕ = (w− ū)+, for any w ∈
X0, which yields by applying the definition of Clarke’s generalized gradient
the following inequality:

〈ū′ +Aū− f, (w − ū)+〉 +
∫

Q

jo(ū; (w − ū)+) dxdt ≥ 0, ∀ w ∈ X0. (6.80)

As ū ∨ w = ū+ (w − ū)+, from (6.80), we get

〈ū′ +Aū− f, v − ū〉 +
∫

Q

jo(ū; v − ū) dxdt ≥ 0, ∀ v ∈ ū ∨X0. (6.81)

Similar arguments can be applied for the subsolution. This process leads to
the following notion of sub-supersolution for the hemivariational inequality
(6.77).

Definition 6.18. A function u ∈ W is called a subsolution of (6.77) if the
following holds:

(i) u(·, 0) ≤ 0 in Ω, u ≤ 0 on Γ .
(ii) 〈u′ +Au− f, v − u〉 +

∫
Q
jo(u; v − u) dxdt ≥ 0, ∀ v ∈ u ∧X0.

Definition 6.19. A function ū ∈W is a supersolution of (6.77) if the follow-
ing holds:

(i) ū(·, 0) ≥ 0 in Ω, ū ≥ 0 on Γ .
(ii) 〈ūt +Aū− f, v − ū〉 +

∫
Q
jo(ū; v − ū) dxdt ≥ 0, ∀ v ∈ ū ∨X0.

An immediate consequence of these definitions is that any solution of (6.77) is
both a subsolution and a supersolution of (6.77) in the sense of the definitions
above. Next, we will see that the global growth condition (H)(ii) is enough to
prove that sub-supersolutions of (6.77) are also sub-supersolutions of (6.78)
and, thus, the equivalence of the notions of sub-supersolution for (6.77) and
(6.78).

Theorem 6.20. Let j : R → R be locally Lipschitz and satisfy condition (H)
(ii). Then u (ū) ∈ W is a subsolution (supersolution) of (6.77) if and only if
it is a subsolution (supersolution) of (6.78).
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Proof: In fact we only need to show that any subsolution (supersolution)
of the hemivariational inequality (6.77) is also a subsolution (supersolution)
of the inclusion (6.78), because the reverse has been proved above. Let u be
a subsolution of (6.77) according to Definition 6.18. As v ∈ u ∧ X0 can be
written in the form v = u− (u− ψ)+ with ψ ∈ X0, we get

〈u′ +Au− f,−(u− ψ)+〉 +
∫

Q

jo(u;−(u− ψ)+) dxdt ≥ 0, ∀ ψ ∈ X0.

(6.82)

By the density result of Lemma 5.36, we get from (6.82)

〈u′ +Au− f, φ〉 −
∫

Q

jo(u;−1)φdxdt ≤ 0, ∀ φ ∈ X0 ∩ Lp
+(Q). (6.83)

The properties of Clarke’s generalized gradient imply the existence of some
function η : Q→ R such that

η(x, t) ∈ ∂j(u(x, t)) and jo(u(x, t);−1) = η(x, t) (−1).

Similar arguments as in the proof of Theorem 6.4 apply to ensure that s 
→
jo(s;−1) is superpositionally measurable, which implies that

η(x, t) = −jo(u(x, t);−1), (x, t) ∈ Q,

is measurable. Taking the growth condition (H) (ii) of ∂j into account, we infer
that η ∈ Lq(Q), which in view of (6.83) shows that u is in fact a subsolution
of the inclusion (6.78). The proof for the supersolution is analogous and can
be omitted. ��

Now we will show that if j satisfies, in addition, (H)(i), then the two
problems (6.77) and (6.78) are in fact equivalent.

Theorem 6.21. Assume j : R → R fulfills hypothesis (H). Then u is a solu-
tion of the hemivariational inequality (6.77) if and only if u is a solution of
the inclusion (6.78).

Proof: We already know that [even without assumption (H)] any solution
of the inclusion (6.78) solves also (6.77). Thus, let us prove the reverse, and
assume u is a solution of (6.77). As u is trivially both a subsolution and a
supersolution of (6.77), it must be also a subsolution and a supersolution of
(6.78) from Theorem 6.20. For u to be a subsolution of (6.78) means that
there is an η ∈ Lq(Q) such that

η ∈ ∂j(u) : u′ +Au+ η ≤ f in X∗
0 (6.84)

(note: u satisfies homogeneous initial and boundary conditions). Similarly, for
u to be a supersolution of (6.78) means that there is an η̄ ∈ Lq(Q) such that
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η̄ ∈ ∂j(u) : u′ +Au+ η̄ ≥ f in X∗
0 . (6.85)

Note that η and η̄ need not be the same. The hypothese (A1)–(A3) and (H)
allow us to apply the comparison principle for parabolic inclusions given by
Theorem 4.46 of Sect. 4.5 in Chap. 4, which ensures the existence of solutions
between an ordered pair of sub- and supersolutions. Therefore, a solution of
(6.78) exists within the trivial interval [u, u] = {u}, which means the existence
of an η ∈ Lq(Q) such that

η ∈ ∂j(u) : u′ +Au+ η = f in X∗
0 , (6.86)

where in view of inequalities (6.84) and (6.85), we get, in addition, η ∈ [η, η̄].
This process completes the proof. ��

6.3.2 Existence and Comparison Results

In this section we are going to establish existence and comparison results
for the hemivariational inequality (6.77) based on the the notion of sub-
supersolution. In preparation of our main result, we will first provide some
preliminaries used later.

Consider the function J : Lp(Q) → R defined by

J(v) =
∫

Q

j(v(x, t)) dxdt, ∀ v ∈ Lp(Q). (6.87)

Using the growth condition (H)(ii) and Lebourg’s mean value theorem, we
note that the function J is well defined and Lipschitz continuous on bounded
sets in Lp(Q), thus locally Lipschitz so that Clarke’s generalized gradient ∂J :
Lp(Q) → 2Lq(Q) \ {∅} is well defined. Moreover, the Aubin–Clarke theorem
(see Chap. 2 and [68, p. 83]) ensures that, for each u ∈ Lp(Q), we have

ξ ∈ ∂J(u) =⇒ ξ ∈ Lq(Q) with ξ(x, t) ∈ ∂j(u(x, t)) for a.e. (x, t) ∈ Q. (6.88)

We already know that the operator L = ∂/∂t : D(L) ⊂ X0 → X∗
0 is closed,

densely defined, and maximal monotone, and under hypotheses (A1)–(A3),
the operator A : X0 → X∗

0 is pseudomonotone w.r.t. D(L). Denote the re-
striction of J to X0 by J |X0 ; then the following result holds.

Lemma 6.22. Hypothesis (H)(ii) implies that Clarke’s generalized gradient
∂(J |X0) : X0 → 2X∗

0 is pseudomonotone w.r.t. D(L).

Proof: The growth condition (H)(ii) implies that ∂(J |X0) : X0 → 2X∗
0 is

bounded. From the calculus of Clarke’s generalized gradient (see Chap. 2,
Sect. 2.5, or [68, Chap. 2]), we know that ∂(J |X0)(u) is nonempty, closed,
and convex. Condition (ii) in Definition 2.154 is also satisfied (see Chap. 2,
Proposition 2.171, or [68, p.29]). Therefore, we only need to show that ∂(J |X0)
satisfies property (iii) of Definition 2.154. To this end, let (un) ⊂ D(L) with
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un ⇀ u in X0, Lun ⇀ Lu in X∗
0 , u

∗
n ∈ ∂(J |X0)(un) with u∗n ⇀ u∗ in X∗

0 .
We are going to show that already under these assumptions, we get u∗ ∈
∂(J |X0)(u) and 〈u∗n, un〉 → 〈u∗, u〉, which is (iii). By the assumptions on (un),
we have un ⇀ u in W0, which implies un → u in Lp(Q) from the compact
embedding W0 ⊂ Lp(Q). As X0 is dense in Lp(Q), we know that u∗n ∈ ∂J(un)
(see [68, p. 47]), and thus u∗n ∈ Lq(Q) with u∗n ⇀ u∗ in Lq(Q). Because the
mapping ∂J : Lp(Q) → 2Lq(Q) is weak-closed (cf. [68, p. 29] and note Lq(Q)
is reflexive), we deduce that u∗ ∈ ∂J(u), and moreover, the following holds:

〈u∗n, un〉X∗
0 ,X0 = 〈u∗n, un〉Lq(Q),Lp(Q) → 〈u∗, u〉Lq(Q),Lp(Q) = 〈u∗, u〉X∗

0 ,X0 ,

which completes the proof. ��

Corollary 6.23. Assume hypotheses (A1)–(A3) and (H)(ii). Then the ope-
rator A+ ∂(J |X0) : X0 → 2X∗

0 is pseudomonotone w.r.t. D(L) and bounded.

Proof: The Leray–Lions conditions (A1)–(A3) imply that the operator A is
pseudomonotone w.r.t. D(L), and by Lemma 6.22, the multivalued operator
∂(J |X0) : X0 → 2X∗

0 is pseudomonotone w.r.t. D(L). To prove that A +
∂(J |X0) : X0 → 2X∗

0 is pseudomonotone w.r.t. D(L), note first that A +
∂(J |X0) : X0 → 2X∗

0 is bounded. Thus, we only need to verify property (iii)
of Definition 2.154. To this end, assume (un) ⊂ D(L) with un ⇀ u in X0,
Lun ⇀ Lu in X∗

0 , u
∗
n ∈ (A+ ∂(J |X0))(un) with u∗n ⇀ u∗ in X∗

0 , and

lim sup
n

〈u∗n, un − u〉 ≤ 0. (6.89)

We need to show that u∗ ∈ (A + ∂(J |X0))(u) and 〈u∗n, un〉 → 〈u∗, u〉. From
u∗n ∈ (A+ ∂(J |X0))(un), we have u∗n = Aun + ηn with ηn ∈ ∂(J |X0)(un), and
(6.89) reads

lim sup
n

〈Aun + ηn, un − u〉 ≤ 0. (6.90)

Because the sequence (ηn) ⊂ Lq(Q) is bounded and un → u in Lp(Q), we
obtain

〈ηn, un − u〉 =
∫

Q

ηn (un − u) dxdt→ 0 as n→ ∞. (6.91)

From (6.90) and (6.91), we deduce

lim sup
n

〈Aun, un − u〉 ≤ 0. (6.92)

The sequence (Aun) ⊂ X∗
0 is bounded, so that there is some subsequence

(Auk) with Auk ⇀ v. As A is pseudomonotone w.r.t. D(L), it follows that v =
Au and 〈Auk, uk〉 → 〈Au, u〉. This result shows that each weakly convergent
subsequence of (Aun) has the same limit Au, and thus, the entire sequence
(Aun) satisfies
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Aun ⇀ Au and 〈Aun, un〉 → 〈Au, u〉. (6.93)

From (6.93) and u∗n = Aun + ηn ⇀ u∗, we obtain ηn = u∗n −Aun ⇀ u∗ −Au,
which in view of (6.91) and the pseudomonotonicity of ∂(J |X0) implies u∗ −
Au ∈ ∂(J |X0)(u), and thus u∗ ∈ (A+ ∂(J |X0))(u), and moreover,

〈u∗n −Aun, un〉 → 〈u∗ −Au, u〉,

which yields 〈u∗n, un〉 → 〈u∗, u〉. ��

The main result of this section is the following theorem.

Theorem 6.24. Let hypotheses (A1)–(A4) and (H) be satisfied. Given subso-
lutions ui and supersolutions ūi, i = 1, 2, of (6.77) such that max{u1, u2} =:
u ≤ ū := min{ū1, ū2}. Then solutions of (6.77) exist within the order interval
[u, ū].

Proof: The proof will be carried out in three steps.

Step 1: Auxiliary Hemivariational Inequality.

Let us first introduce the cutoff function b : Q × R → R related with the
ordered pair of functions u, ū, and given by

b(x, t, s) =

⎧⎨⎩
(s− ū(x, t))p−1 if s > ū(x, t),
0 if u(x, t) ≤ s ≤ ū(x, t),
−(u(x, t) − s)p−1 if s < u(x, t).

(6.94)

As we know, b is a Carathéodory function satisfying the growth condition

|b(x, t, s)| ≤ k2(x, t) + c3 |s|p−1 (6.95)

for a.e. (x, t) ∈ Q, for all s ∈ R, with some function k2 ∈ Lq
+(Q) and a constant

c3 > 0. Moreover, we have the following estimate:∫
Q

b(x, t, u(x, t))u(x, t) dxdt ≥ c4 ‖u‖p
Lp(Q) − c5, ∀ u ∈ Lp(Q), (6.96)

where c4 and c5 are some positive constants. In view of (6.95), the Nemytskij
operator B : Lp(Q) → Lq(Q) defined by

Bu(x, t) = b(x, t, u(x, t))

is continuous and bounded, and thus, from the compact embedding W0 ⊂
Lp(Q) it follows that B : W0 → Lq(Q) ⊂ X∗

0 is completely continuous,
which implies that B : X0 → X∗

0 is compact w.r.t. D(L). Let us consider the
following auxiliary evolution hemivariational inequality:

u ∈ D(L) : 〈Lu+A(u) + λB(u) − f, v − u〉 +
∫

Q

jo(u; v − u) dxdt ≥ 0

(6.97)
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for all v ∈ X0, where λ is some positive constant to be specified later. The
existence of solutions of (6.97) will be proved by using Theorem 2.156 (see
Chap. 2, Sect. 2.4.4). To this end, consider the multivalued operator

A+ λB + ∂(J |X0) : X0 → 2X∗
0 ,

where J is the locally Lipschitz functional defined in (6.87) and ∂(J |X0) is
the generalized Clarke’s gradient of the restriction J |X0 . By Corollary 6.23
and the property of B, we readily see that A+ λB + ∂(J |X0) : X0 → 2X∗

0 is
pseudomonotone w.r.t. D(L) and bounded. To apply Theorem 2.156, we need
to show the coercivity of A+λB+∂(J |X0) : X0 → 2X∗

0 . For any v ∈ X0 \{0}
and any w ∈ ∂(J |X0)(v), we obtain by applying (A3), (H)(ii) and (6.96) the
estimate

1
‖v‖X0

〈Av + λB(v) + w, v〉

=
1

‖v‖X0

[∫
Q

N∑
i=1

ai(·, ·, v,∇v)
∂v

∂xi
dxdt+ λ〈B(v), v〉 +

∫
Q

wv dxdt

]

≥ 1
‖v‖X0

[
ν

∫
Q

|∇v|p dxdt−
∫

Q

k1 dxdt+ c4λ‖v‖p
Lp(Q) − c5λ

−c2
∫

Q

(1 + |v|p−1)|v| dxdt
]

≥ 1
‖v‖X0

[
ν‖v‖p

X0
− C0

]
,

for some constant C0 > 0, by choosing the constant λ sufficiently large such
that c4λ > c2, which implies the coercivity. Thus, we may apply Theorem
2.156 to ensure that range (L + A + λB + ∂(J |X0)) = X∗

0 , which yields the
existence of u ∈ D(L) such that f ∈ Lu + A(u) + λB(u) + ∂(J |X0)(u); i.e.,
an ξ ∈ ∂(J |X0)(u) exists such that

u ∈ D(L) : Lu+A(u) − f + λB(u) + ξ = 0 in X∗
0 . (6.98)

As X0 is dense in Lp(Q), we get ξ ∈ ∂J(u), and thus, by the characterization
(6.88) of ∂J(u), it follows that ξ ∈ Lq(Q) and ξ(x, t) ∈ ∂j(u(x, t)), so that
from (6.98), we get

〈Lu+A(u) − f + λB(u), ϕ〉 +
∫

Q

ξ(x, t)ϕ(x, t) dxdt = 0, ∀ ϕ ∈ X0. (6.99)

By definition of Clarke’s generalized gradient ∂j, it follows that∫
Q

ξ(x, t)ϕ(x, t) dxdt ≤
∫

Q

jo(u(x, t);ϕ(x, t)) dxdt, ∀ ϕ ∈ X0. (6.100)
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In view of (6.99) and (6.100), the auxiliary problem (6.97) has u ∈ D(L) as
solution. Next we shall show that any solution u of the auxiliary evolution
hemivariational inequality (6.97) satisfies u ≤ u ≤ ū.

Step 2: Comparison u ∈ [u, ū].

Let u be any solution of (6.97). We are going to show that uk ≤ u ≤ ūj holds,
where k, j = 1, 2, which implies the assertion. Let us first prove that u ≤ ūj

is true. By Definition 6.19 ūj satisfies ūj(·, 0) ≥ 0 in Ω, ūj ≥ 0 on Γ , and〈∂ūj

∂t
+Aūj − f, v − ūj

〉
+
∫

Q

jo(ūj ; v − ūj) dxdt ≥ 0, ∀ v ∈ ūj ∨X0,

(6.101)

which implies from v = ūj ∨ ϕ = ūj + (ϕ − ūj)+ with ϕ ∈ X0 the following
inequality:〈∂ūj

∂t
+Aūj − f, (ϕ− ūj)+

〉
+
∫

Q

jo(ūj ; (ϕ− ūj)+) dxdt ≥ 0, ∀ ϕ ∈ X0.

(6.102)

If M := {(ϕ − ūj)+ : ϕ ∈ X0}, then by the density result Lemma 5.36 (see
Chap. 5), it follows that M

X0 = X0 ∩ Lp
+(Q). As s 
→ jo(r; s) is continuous,

we get from (6.102) by using Fatou’s lemma the inequality〈∂ūj

∂t
+Aūj − f, ψ

〉
+
∫

Q

jo(ūj ;ψ) dxdt ≥ 0, ∀ ψ ∈ X0 ∩ Lp
+(Q). (6.103)

Taking in the auxiliary problem (6.97) the special test function v = u−ψ and
adding (6.97) and (6.103), we obtain〈∂u

∂t
− ∂ūj

∂t
+A(u) −A(ūj) + λB(u), ψ

〉
≤
∫

Q

(
jo(ūj ;ψ) + jo(u;−ψ)

)
dxdt (6.104)

for all ψ ∈ X0 ∩ Lp
+(Q). Now we construct a special test function in (6.104).

By (A4), for any fixed ε > 0, δ(ε) ∈ (0, ε) exists such that∫ ε

δ(ε)

1
ω(r)

dr = 1.

We use the function θε : R → R+ defined by

θε(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < δ(ε)∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε

1 if s > ε.
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The function θε has already been used in previous chapters to prove compari-
son results. We readily verify that, for each ε > 0, the function θε is continuous,
piecewise differentiable and the derivative is nonnegative and bounded. There-
fore, the function θε is Lipschitz continuous and nondecreasing. In addition,
it satisfies

θε → χ{s>0} as ε→ 0, (6.105)

where χ{s>0} is the characteristic function of the set {s ∈ R : s > 0}. More-
over, we have

θ′ε(s) =

⎧⎨⎩
1
ω(s)

if δ(ε) < s < ε

0 if s �∈ [δ(ε), ε].

Taking in (6.104) the test function ψ = θε(u− ūj) ∈ X0 ∩ Lp
+(Q), we get〈∂(u− ūj)

∂t
, θε(u− ūj)〉 + 〈A(u) −A(ūj), θε(u− ūj)

〉
+λ

∫
Q

B(u) θε(u− ūj) dxdt

≤
∫

Q

(
jo(ūj ; θε(u− ūj)) + jo(u;−θε(u− ūj))

)
dxdt. (6.106)

Let Θε be the primitive of the function θε defined by

Θε(s) =
∫ s

0

θε(r) dr.

We obtain for the first term on the left-hand side of (6.106) (see Lemma 2.146)〈∂(u− ūj)
∂t

, θε(u− ūj)
〉

=
∫

Ω

Θε(u− ūj)(x, τ) dx ≥ 0. (6.107)

Using (A4) and (A2), the second term on the left-hand side of (6.106) can be
estimated as follows:

〈A(u) −A(ūj), θε(u− ūj)〉

=
N∑

i=1

∫
Q

(ai(x, t, u,∇u) − ai(x, t, ūj ,∇ūj))
∂

∂xi
θε(u− ūj) dx dt

≥
N∑

i=1

∫
Q

(ai(x, t, u,∇u) − ai(x, t, u,∇ūj))
∂(u− ūj)
∂xi

θ′ε(u− ūj) dx dt

−N
∫

Q

(k2 + |u|p−1 + |ūj |p−1 + |∇ūj |p−1)ω(|u− ūj |) ×

× θ′ε(u− ūj)|∇(u− ūj)| dx dt
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≥ −N
∫
{δ(ε)<u−ūj<ε}

γ |∇(u− ūj)| dx dt, (6.108)

where γ = k2 + |u|p−1 + |ūj |p−1 + |∇ūj |p−1 ∈ Lq(Q). The term on the right-
hand side of (6.108) tends to zero as ε → 0. By using (6.105) and applying
Lebesgue’s dominated convergence theorem, it follows that

lim
ε→0

∫
Q

B(u) θε(u− ūj) dxdt =
∫

Q

B(u)χ{u−ūj>0} dx dt. (6.109)

Again by applying Fatou’s lemma and the continuity of s 
→ jo(r; s), we obtain
the following estimate for the right-hand side of (6.106):

lim sup
ε→0

(∫
Q

(
jo(ūj ; θε(u− ūj)) + jo(u;−θε(u− ūj))

)
dxdt

)

≤
∫

Q

(
jo(ūj ;χ{u−ūj>0}) + jo(u;−χ{u−ūj>0})

)
dxdt. (6.110)

Finally, from (6.106) to (6.110), we get the inequality

λ

∫
Q

B(u)χ{u−ūj>0} dx dt

≤
∫

Q

(
jo(ūj ;χ{u−ūj>0}) + jo(u;−χ{u−ūj>0})

)
dxdt. (6.111)

Note that ū = min{ū1, ū2}, which by definition of the operator B yields

λ

∫
Q

B(u)χ{u−ūj>0} dx dt = λ

∫
{u>ūj}

(u− ū)p−1dx dt

≥ λ
∫
{u>ūj}

(u− ūj)p−1dxdt. (6.112)

The function r 
→ jo(s; r) is finite and positively homogeneous, ∂j(s) is a
nonempty, convex, and compact subset of R, and we have

jo(s; r) = max{ξ r : ξ ∈ ∂j(s)}. (6.113)

By using (H)(i), (6.113), and the properties of jo and ∂j, we get for cer-
tain ξ(x, t) ∈ ∂j(u(x, t)) and ξ̄j(x, t) ∈ ∂j(ūj(x, t)) with ξ, ξ̄j ∈ Lq(Q), the
following estimate:∫

Q

(
jo(ūj ;χ{u−ūj>0}) + jo(u;−χ{u−ūj>0})

)
dxdt

=
∫
{u>ūj}

(
jo(ūj ; 1) + jo(u;−1)

)
dxdt
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=
∫
{u>ūj}

(ξ̄j(x, t) − ξ(x, t)) dxdt

≤ c1
∫
{u>ūj}

(u(x, t) − ūj(x, t))p−1 dx dt. (6.114)

Thus, (6.111), (6.112), and (6.114) result in

(λ− c1)
∫
{u>ūj}

(u− ūj)p−1 dx dt ≤ 0. (6.115)

Selecting λ large enough such that λ > c1, then (6.115) implies that meas {u >
ūj} = 0, and thus u ≤ ūj in Q, where j = 1, 2, which shows that u ≤ ū. The
proof of the inequality u ≤ u can be done analogously.

Step 3: Completion of the Proof of the Theorem.

From Step 1 and Step 2, it follows that any solution u of the auxiliary evo-
lution hemivariational inequality (6.97) with λ > 0 sufficiently large satisfies
u ∈ [u, ū], which implies B(u) = 0, and hence u is a solution of the original
evolution hemivariational inequality (6.77) within the interval [u, ū]. ��

The following corollaries are immediate consequences of Theorem 6.24.

Corollary 6.25. Let w and w̄ be any subsolution and supersolution, respec-
tively, of (6.77) satisfying w ≤ w̄. Then solutions of (6.77) exist within the
order interval [w, w̄].

Proof: Set w = u1 = u2 and w̄ = ū1 = ū2, and apply Theorem 6.24. ��

Let S denote the set of all solutions of (6.77) within the interval [w, w̄] of
an ordered pair of sub- and supersolutions; then the following corollary holds.

Corollary 6.26. The solution set S of (6.77) is a directed set.

Proof: Let u1, u2 ∈ S. As any solution of (6.77) is a subsolution and
a supersolution as well, by Theorem 6.24, solutions of (6.77) exist within
[max{u1, u2}, w̄] and within [w,min{u1, u2}]. This process proves the direct-
edness. ��

6.3.3 Compactness and Extremality Results

In this subsection, we are going to show that the solution set S of (6.77) within
the interval of an ordered pair of sub-and supersolutions [w, w̄] possesses the
smallest and greatest elements with respect to the given natural partial or-
dering of functions. The smallest and greatest elements of S are called the
extremal solutions of (6.77) within [w, w̄]. We shall assume hypotheses (A1)–
(A4) and (H) throughout this subsection.
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Theorem 6.27. The solution set S is weakly sequentially compact in W0 and
compact in X0.

Proof: The solution set S ⊂ [w, w̄] is bounded in Lp(Q). We next show that
S is bounded in W0. Let u ∈ S be given, and take as a special test function
in (6.77) v = 0. This process leads to

〈ut +Au, u〉 ≤ 〈f, u〉 +
∫

Q

jo(u;−u) dxdt. (6.116)

As u(·, 0) = 0, it follows that

〈ut, u〉 =
1
2
‖u(·, τ)‖2

L2(Ω) ≥ 0,

and (H)(ii) results in∫
Q

jo(u;−u) dxdt ≤ c2
∫

Q

(1 + |u|p−1) |u| dxdt.

Thus, by means of (A3) and taking the Lp(Q)-boundedness of S into account,
the following uniform estimate follows from (6.116):

‖u‖X0 ≤ C, ∀ u ∈ S. (6.117)

Taking in (6.77) the special test function v = u−ϕ, where ϕ ∈ B = {v ∈ X0 :
‖v‖X0 ≤ 1}, we obtain

|〈ut, ϕ〉| ≤ |〈f, ϕ〉| + |〈Au,ϕ〉| +
∣∣∣∫

Q

jo(u;−ϕ) dxdt
∣∣∣. (6.118)

In view of (6.117) from (6.118), we get

|〈ut, ϕ〉| ≤ const., ∀ ϕ ∈ B, (6.119)

where the constant on the right-hand side of (6.119) does not depend on u,
which yields ‖ut‖X∗ ≤ const, and thus from (6.117) and (6.119), we get

‖u‖W0 ≤ const., ∀ u ∈ S. (6.120)

Now let (un) ⊂ S be any sequence. Then by (6.120), a weakly convergent
subsequence (uk) exists with

uk ⇀ u in W0.

As uk are solutions of (6.77), we have〈
∂uk

∂t
+Auk − f, v − uk

〉
+
∫

Q

jo(uk; v − uk) dxdt ≥ 0, ∀ v ∈ X0.

(6.121)
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Taking as a special test function the weak limit u, we obtain

〈Auk, uk − u〉 ≤
〈∂uk

∂t
− f, u− uk

〉
+
∫

Q

jo(uk;u− uk) dxdt

≤
〈∂u
∂t

− f, u− uk

〉
+
∫

Q

jo(uk;u− uk) dxdt. (6.122)

The weak convergence of (uk) in W0 implies uk → u in Lp(Q) from the
compact embedding W0 ⊂ Lp(Q), and thus by applying (H)(ii), the right-
hand side of (6.122) tends to zero as k → ∞, which yields

lim sup
k

〈Auk, uk − u〉 ≤ 0. (6.123)

As A is pseudomonotone w.r.t. D(L), from (6.123) we get

Auk ⇀ Au and 〈Auk, uk〉 → 〈Au, u〉, (6.124)

and moreover, because A has the (S+)-property w.r.t. D(L), the strong con-
vergence uk → u in X0 holds. The convergence properties of the subsequence
(uk) obtained so far and the upper semicontinuity of jo : R × R → R finally
allow the passage to the limit in (6.121), which completes the proof. ��

Theorem 6.28. The solution set S possesses extremal elements.

Proof: We prove the existence of the greatest solution of (6.77) within [w, w̄];
i.e., the greatest element of S. The proof of the smallest element can be
done in a similar way. As W0 is separable, S ⊂W0 is separable as well, and a
countable, dense subset Z = {zn : n ∈ N} of S exists. By Corollary 6.26, S is a
directed set. This result allows the construction of an increasing sequence
(un) ⊂ S as follows. Let u1 = z1. Select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ w.

The existence of un+1 is from Corollary 6.26. As (un) is increasing and both
bounded and order-bounded, we deduce by applying Lebesgue’s dominated
convergence theorem that un → w := supn un strongly in Lp(Q). By Theorem
6.27, we find a subsequence (uk) of (un), and an element u ∈ S such that
uk ⇀ u in W0, and uk → u in Lp(Q) and in X0. Thus, u = w and each weakly
convergent subsequence must have the same limit w, which implies that the
entire increasing sequence (un) satisfies

un, w ∈ S : un ⇀ w in W0, un → w in X0. (6.125)

By construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ w, ∀ n;

thus, Z ⊂ [w,w]. As the interval [w,w] is closed in W0, we infer
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S ⊂ Z ⊂ [w,w] = [w,w],

which in conjunction with w ∈ S ensures that w is the greatest element of
S. ��

Remark 6.29. It should be noted that the main results of this section remain
valid also when the operator A involves quasilinear first-order terms, i.e.,
operators A in the form

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)) + a0(x, t, u(x, t),∇u(x, t)),

(6.126)

where a0 : Q×R×R
N → R satisfies the same regularity and growth condition

as ai, i = 1, . . . , N.

Next we provide examples to demonstrate the applicability of the theory
developed in this section.

Example 6.30. Let cP denote the best constant in Poincaré’s inequality; i.e.,
the greatest constant cP > 0 satisfying∫

Q

|∇v|p dxdt ≥ cP
∫

Q

|v|p dxdt, ∀ v ∈ X0.

(cP is in fact the first eigenvalue of −Δp on X0.) Assume that (A1)–(A4) and
(H) are fulfilled, and suppose in addition:

(a) ai(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q, i = 1, . . . , N .
(b) f ∈ Lq(Q) satisfying

f(x, t) ≥ max{0, min
ζ∈∂j(0)

ζ} for a.e. (x, t) ∈ Q.

(c) k1 = 0 in assumption (A3).
(d) cP ν > c2, where ν and c2 are the constants in (A3) and (H)(ii), respec-

tively.

Under these assumptions, problem (6.77) admits extremal nonnegative solu-
tions.

First, we check that u = 0 is a subsolution of problem (6.77). Indeed, using
Definition 6.18, we have to check the inequality

〈A0 − f, v〉 +
∫

Q

jo(0; v) dxdt ≥ 0,

for all v ∈ 0 ∧ X0 = {min{0, w} : w ∈ X0} = {−w− : w ∈ X0} (where
w− = max{0,−w}). Taking into account assumption (a), this reduces to
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Q

(jo(0;−1) + f)w− dxdt ≥ 0, ∀ w ∈ X0.

This result is true from assumption (b) because

f(x, t) ≥ min
ζ∈∂j(0)

ζ = − max
ζ∈∂j(0)

ζ(−1) = −jo(0;−1) for a.e. (x, t) ∈ Q.

The claim that u = 0 is a subsolution of (6.77) is verified. Consider now the
initial boundary value problem: Find u ∈W0 with u(·, 0) = 0 in Ω such that

∂u

∂t
−

N∑
i=1

∂

∂xi
ai(x, t, u,∇u) − c2(1 + |u|p−1) = f in Q, (6.127)

which may be rewritten as the following abstract problem:

u ∈ D(L) : Lu+A(u) +G(u) = f in X∗
0 , (6.128)

where G : X0 → X∗
0 is defined by

〈G(u), v〉 = −c2
∫

Q

(1 + |u|p−1) v dxdt.

We easily verify that A + G : X0 → X∗
0 is bounded, continuous, and pseu-

domonotone w.r.t. D(L), and from condition (d) given above, A+G : X0 →
X∗

0 is also coercive. Thus, L+A+G : D(L) ⊂ X0 → X∗
0 is surjective, which

implies that (6.128) and hence (6.127) possesses solutions.
We are going to show that any solution of (6.127) is nonnegative and a

supersolution of (6.77). Let ū ∈ W0 be any solution of (6.127). Testing the
equation by −ū−, we find∫

Q

∂ū

∂t
(−ū−) dxdt+

N∑
i=1

∫
Q

ai(x, t, ū,∇ū)
∂

∂xi
(−ū−) dxdt

=
∫

Q

(c2(1 + |ū|p−1) + f)(−ū−) dxdt.

As ∫
Q

∂ū

∂t
(−ū−) dxdt =

1
2

∫
Ω

(ū−)2(x, τ) dx ≥ 0,

and using assumption (A3), it follows that

ν

∫
{ū≤0}

|∇ū|p dxdt+ c2
∫
{ū≤0}

|ū|p dxdt

≤ c2
∫
{ū≤0}

ū dxdt+
∫
{ū≤0}

fū dxdt ≤ 0.
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Here we used also the assumptions (b) and (c). Taking into account that
ν > 0, we conclude that ū ≥ 0. To obtain the desired conclusion concerning
the existence of extremal nonnegative solutions of (6.77), it is sufficient to
show that ū is a supersolution of problem (6.77). Toward this, we see that
every v ∈ ū ∨X0 can be written as v = ū+ (w − ū)+ with w ∈ X0. Then we
have 〈

∂ū

∂t
+Aū− f, (w − ū)+

〉
+
∫

Q

jo(ū; (w − ū)+) dxdt

≥
〈
∂ū

∂t
+Aū− f, (w − ū)+

〉
− c2

∫
Q

(1 + |ū|p−1)(w − ū)+ dxdt = 0,

for all w ∈ X0, where hypothesis (H)(ii) has been used as well as the fact
that ū solves the initial boundary value problem (6.127). Therefore, ū ≥ 0 is a
supersolution of problem (6.77). Consequently, Theorem 6.28 yields extremal
solutions within the ordered interval [0, ū].

Remark 6.31. When we have p = 2 in Example 6.30, then condition (d) is
not needed, because we can always transform the problem into an equivalent
coercive one by performing the exponential shift transformation

u(x, t) = eλtw(x, t),

with λ > 0 sufficiently large.

Example 6.32. Here we provide sufficient conditions for obtaining constants
as sub-supersolutions. Let us assume that ai(x, t, u, 0) = 0 for a.e. (x, t) ∈ Q,
all u ∈ R, i = 1, . . . , N . Then we have the following proposition.

Proposition 6.33. Let D ∈ R.

(a) If D ≤ 0 and f(x, t) ≥ −jo(D;−1) for a.e. (x, t) ∈ Q, then u = D is a
subsolution of (6.77).

(b) If D ≥ 0 and f(x, t) ≤ jo(D; 1) for a.e. (x, t) ∈ Q, then ū = D is a
supersolution of (6.77).

Proof: (a) We only need to check (ii) in Definition 6.18. Note that ut = 0
and Au = 0. Let v ∈ D ∧X0. As v − u ≤ 0 in Q, we have

〈ut +Au− f, v − u〉 +
∫

Q

jo(u; v − u)dxdt

=
∫

Q

[jo(D; v − u) − f(v − u)]dxdt

=
∫

Q

[jo(D;−1) + f ]|v − u|dxdt ≥ 0.

(b) Similarly, in the second case, we have v −D ≥ 0 for v ∈ D ∨X0 and
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〈ūt +Aū− f, v − ū〉 +
∫

Q

jo(ū; v − ū)dxdt

=
∫

Q

[jo(D; v − ū) − f(v − ū)]dxdt

=
∫

Q

[jo(D; 1) − f ](v − ū)dxdt ≥ 0.

��
As consequences, for example, if D > 0 exists such that

−jo(0;−1) ≤ f(x, t) ≤ j0(D; 1) for a.e. (x, t) ∈ Q, (6.129)

then (6.77) has a nonnegative bounded solution (in the interval [0, D]). Simi-
larly, if there is D < 0 such that

−jo(D;−1) ≤ f(x, t) ≤ j0(0; 1) for a.e. (x, t) ∈ Q, (6.130)

then (6.77) has a nonpositive bounded solution (in [D, 0]).
It should be noted that, e.g., condition (6.129) may also be formulated in

terms of the generalized gradient as follows:

min
ζ∈∂j(0)

ζ ≤ f(x, t) ≤ max
ζ∈∂j(D)

ζ for a.e. (x, t) ∈ Q. (6.131)

Example 6.34. Finally, here we characterize a class of locally Lipschitz func-
tions j satisfying the hypothesis (H).

Let j1 : (−∞, 0) → R be a convex function, and let j2 : [0,+∞) → R be a
continuously differentiable function such that

(1) lims→0 j1(s) = j2(0);
(2) For all t < 0 and for all s ≥ 0 let

−c2(1 + |t|p−1) ≤ min
ξ∈∂j1(t)

ξ ≤ max
ξ∈∂j1(t)

ξ ≤ j′2(s) ≤ c2(1 + |s|p−1);

(3)

sup
0≤s1<s2

j′2(s1) − j′2(s2)
(s2 − s1)p−1

≤ c1.

Here c1 and c2 are positive constants. Then j : R → R defined as j(s) = j1(s)
for s < 0 and j(s) = j2(s) for s ≥ 0 satisfies (H).

6.4 Notes and Comments

Our main goal in this chapter was to extend the comparison principles estab-
lished for variational equations (see Chap. 3) to variational problems involving
nonsmooth and nonconvex integral functionals in the form
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J(u) =
∫

Ω

j(u(x)) dx respectively, J(u) =
∫

Q

j(u(x, t)) dxdt.

We note that without difficulties the methods developed here can be modified
to deal with hemivariational inequalities in the form (for the elliptic case)

u ∈ VΓ : 〈Au− f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0 (6.132)

for all v ∈ VΓ , where Γ ⊂ ∂Ω is some portion of the boundary ∂Ω, and the
space VΓ is defined by

VΓ := {u ∈ V =W 1,p(Ω) : γu = 0 on ∂Ω \ Γ},

with γ : V → Lp(∂Ω) denoting the trace operator. Problem (6.132) is closely
related to the following boundary inclusion problem:

Au = f in Ω (6.133)

u = 0 on ∂Ω \ Γ, −∂u
∂ν

∈ ∂j(u) on Γ. (6.134)

Boundary inclusion problems in the form (6.133), (6.134), and their corre-
sponding evolutionary counterparts have been treated, e.g., in [36, 39]. To
preserve the characteristic features of the comparison principles of the previ-
ous chapters, a one-sided growth condition on Clarke’s generalized gradient ∂j
[see condition (H)(ii)] plays an important role. In fact, this condition allows us
to prove the equivalence of hemivariational inequalities and their correspond-
ing inclusion problems, and it provides a new analytical framework to deal
with differential inclusion problems. Moreover, as we will see in Chap. 7, by
means of the variational methods developed here in conjunction with that for
variational inequalities in Chap. 5, we can consider hemivariational inequal-
ities (respectively, differential inclusion problems) under constraints. In this
sense, Chap. 6 may be considered also as a transition to a unified treatment
of variational and hemivariational inequalities, which leads to the subject of
variational–hemivariational inequalities to be treated in Chap. 7. An example
of this kind is the following problem:

u ∈ K : 〈−Δpu− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ K, (6.135)

where jo(s; r) denotes the generalized directional derivative of some locally
Lipschitz function j : R → R at s in the direction r, and K ⊂ V0 is some
closed and convex subset. The operator Δpu = div (|∇u|p−2∇u) is the p-
Laplacian, 1 < p <∞, and f ∈ V ∗

0 . Problem (6.135) includes various special
cases:

(i) For K = V0 and j : R → R smooth, (6.135) is the weak formulation of
the Dirichlet problem
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u ∈ V0 : −Δpu+ j′(u) = f in V ∗
0 ,

which is a special variational equation considered in Chap. 3.
(ii) If K = V0, and j : R → R is locally Lipschitz (not necessarily smooth)

and satisfies condition (H), then (6.135) is a hemivariational inequality
of the form

u ∈ V0 : 〈−Δpu− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

or equivalently a differential inclusion problem of the form

u ∈ V0 : −Δpu+ ∂j(u) � f in V ∗
0 ,

which is the subject of the current chapter.
(iii) If j = 0, then (6.135) becomes a variational inequality for which a sub-

supersolution method has been developed in Chap. 5.

We introduce the following notion of sub-supersolutions of (6.135).

Definition 6.35. A function u ∈ V is called a subsolution of (6.135) if the
following holds:

(i) u ≤ 0 on ∂Ω.
(ii) 〈−Δpu− f, v − u〉 +

∫
Ω
jo(u; v − u) dx ≥ 0, ∀ v ∈ u ∧K.

Definition 6.36. ū ∈ V is a supersolution of (6.135) if the following holds:

(i) ū ≥ 0 on ∂Ω.
(ii) 〈−Δpū− f, v − ū〉 +

∫
Ω
jo(ū; v − ū) dx ≥ 0, ∀ v ∈ ū ∨K.

Under condition (H) of this chapter, the following comparison principle
has been proved in [37].

Theorem 6.37. Let u and ū be sub- and supersolutions of (6.135), respec-
tively, satisfying u ≤ ū, and assume ū ∧K ⊂ K and u ∨K ⊂ K. Then under
hypothesis (H), solutions of (6.135) exist within the order interval [u, ū].

In Chap. 7, we are going to extend this result to a wider class of variational–
hemivariational inequalities.
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Variational–Hemivariational Inequalities

In the previous chapters, the BVPs we considered in the form of hemivaria-
tional inequalities were formulated on the whole space. We are now taking
into account problems subject to constraints for hemivariational inequalities,
which means dealing with variational–hemivariational inequalities. The aim
of this chapter is three-fold: (a) to develop the method of sub- and super-
solutions for quasilinear elliptic variational–hemivariational inequalities; (b)
to treat an evolution variational–hemivariational inequality by the method of
sub- and supersolutions; and (c) to study variational–hemivariational inequal-
ities by minimax methods in the nonsmooth critical point theory viewing the
(weak) solutions as critical points of the corresponding nonsmooth functio-
nals. The two general methods, namely the sub-supersolutions approach and
the nonsmooth critical point theory, are complementary and permit us to in-
vestigate various types of problems. Specifically, Sect. 7.1 and Sect. 7.2 deal
with the method of sub- and supersolutions for hemivariational inequalities,
whereas Sect. 7.3, Sect. 7.4, and Sect. 7.5 present applications of nonsmooth
critical point results for this kind of problem emphasizing the treatment for
corresponding eigenvalue problems. In both methods, an essential feature con-
sists of the use of comparison arguments. They allow us to provide location
information for the solutions.

7.1 Elliptic Variational–Hemivariational Inequalities

In this section, we study general quasilinear elliptic variational–hemivariational
inequalities through the method of sub- and supersolutions. The problem un-
der consideration is the following: Find u ∈ dom (ψ) ∩ V0 such that

〈Au− f, v − u〉 + ψ(v) − ψ(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0. (7.1)

Let us explain the meaning of the data entering problem (7.1). Here Ω ⊂ R
N

is a bounded domain with Lipschitz boundary ∂Ω. Denote V = W 1,p(Ω)
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and V0 = W 1,p
0 (Ω), for some 1 < p < ∞, with their dual spaces V ∗ and

V ∗
0 , respectively. Let f ∈ V ∗

0 . Given a locally Lipschitz function j : R → R,
the notation jo(s; r) represents the generalized directional derivative of j at
s ∈ R in the direction r ∈ R (cf. Definition 2.161). In (7.1), we also have
a function ψ : V → R ∪ {+∞} that is convex, lower semicontinuous, and
satisfies dom (ψ) ∩ V0 �= ∅, where dom (ψ) stands for the effective domain of
ψ; i.e., dom (ψ) = {v ∈ V : ψ(v) < +∞}. The operator A : V → V ∗

0 is a
second-order quasilinear differential operator in divergence form

Au(x) = −
N∑

i=1

∂

∂xi
ai(x,∇u(x))

being of Leray–Lions type as described in Definition 2.103 whose coefficient
functions ai, i = 1, . . . , N , verify conditions (H1), (H2), (H3) in Sect. 2.3.2,
dropping the dependence with respect to s.

7.1.1 Comparison Principle

For the sake of clarity, we write conditions (H1)–(H3) in Sect. 2.3.2 in the
particular case of the operator A in (7.1):

(A1) Each ai : Ω × R
N → R is a Carathéodory condition; i.e., ai(x, ξ) is

measurable in x ∈ Ω for all ξ ∈ R
N and continuous in ξ for almost all

x ∈ Ω. A constant c0 > 0 and a function k0 ∈ Lq(Ω), 1/p + 1/q = 1
exist, such that

|ai(x, ξ)| ≤ k0(x) + c0 |ξ|p−1 ,

for a.e. x ∈ Ω and for all ξ ∈ R
N .

(A2)
∑N

i=1(ai(x, ξ)−ai(x, ξ′))(ξi−ξ′i) > 0 for a.e. x ∈ Ω , and for all ξ, ξ′ ∈ R
N

with ξ �= ξ′.
(A3)

∑N
i=1 ai(x, ξ)ξi ≥ ν|ξ|p − k1(x) for a.e. x ∈ Ω , and for all ξ ∈ R

N with
some constant ν > 0 and a function k1 ∈ L1(Ω).

Conditions (A1), (A2) ensure that

〈Au,ϕ〉 =
∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx ∈ R, ∀ ϕ ∈ V0,

for any u ∈ V , and the operator A : V0 → V ∗
0 is continuous, bounded, and

strictly monotone (see Theorem 2.109).

Remark 7.1. There are various important special cases of problem (7.1) such
as the following:

(i) For ψ(u) ≡ 0 and j : R → R smooth with its derivative j′ : R → R, (7.1)
reduces to the weak formulation of the Dirichlet problem: Find u ∈ V0

such that
Au+ j′(u) = f in V ∗

0 .
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(ii) For ψ(u) ≡ 0 and j : R → R locally Lipschitz (not necessarily smooth),
then (7.1) is a hemivariational inequality of the form: Find u ∈ V0 such
that

〈Au− f, v − u〉 +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0.

(iii) For j : R → R smooth, then (7.1) becomes the variational inequality:
Find u ∈ dom (ψ) ∩ V0 such that

〈Au+ j′(u) − f, v − u〉 + ψ(v) − ψ(u) ≥ 0, ∀ v ∈ V0.

First we introduce our basic notion of sub-supersolution for problem (7.1).
To this end, for functions w, z : Ω → R and sets W and Z of functions
defined on Ω, we use the notations already given in the previous chapters:
w ∧ z = min{w, z}, w ∨ z = max{w, z}, W ∧ Z = {w ∧ z : w ∈ W, z ∈ Z},
W ∨ Z = {w ∨ z : w ∈W, z ∈ Z}, and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z.

Definition 7.2. A function u ∈ V is called a subsolution of (7.1) if the fol-
lowing conditions are fulfilled:

(i) u ≤ 0 on ∂Ω.
(ii) u ∨ (dom (ψ) ∩ V0) ⊂ dom (ψ) ∩ V0.
(iii) A mapping ψ̂ : V → R∪ {+∞} and a constant ĉ ≥ 0 exists such that the

following holds:
(a) u ∈ dom (ψ̂).
(b) ψ(v ∨ u) + ψ̂(v ∧ u) − ψ(v) − ψ̂(u) ≤ ĉ

∫
Ω

[(u − v)+]p dx for all v ∈
dom (ψ) ∩ V0.

(c) 〈Au − f, v − u〉 + ψ̂(v) − ψ̂(u) +
∫

Ω
jo(u; v − u) dx ≥ 0 for all v ∈

u ∧ (dom (ψ) ∩ V0).

Definition 7.3. A function ū ∈ V is a supersolution of (7.1) if the following
conditions are fulfilled:

(i) ū ≥ 0 on ∂Ω.
(ii) ū ∧ (dom (ψ) ∩ V0) ⊂ dom (ψ) ∩ V0.
(iii) A mapping ψ̃ : V → R ∪ {+∞} and a constant c̃ ≥ 0 exists such that

(a) ū ∈ dom (ψ̃).
(b) ψ(v ∧ ū) + ψ̃(v ∨ ū) − ψ(v) − ψ̃(ū) ≤ c̃

∫
Ω

[(v − ū)+]p dx for all v ∈
dom (ψ) ∩ V0.

(c) 〈Aū − f, v − ū〉 + ψ̃(v) − ψ̃(ū) +
∫

Ω
jo(ū; v − ū) dx ≥ 0 for all v ∈

ū ∨ (dom (ψ) ∩ V0).

Remark 7.4. The above definitions of sub-supersolutions requiring the exis-
tence of functionals ψ̂ and ψ̃ that satisfy conditions (a)–(c) in Definitions 7.2
and 7.3, respectively, extend the ones for variational inequalities and inclu-
sions of hemivariational type as given in the previous chapters (see also the
references [142, 58, 59] and [53, 56, 141, 142]).
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To see the applicability of the above concepts of sub- and super-solutions,
we discuss three relevant examples.

Example 7.5. Assume ψ(u) ≡ 0 and j : R → R smooth. Then, as pointed out
in Remark 7.1(i), problem (7.1) reduces to the Dirichlet problem: Find u ∈ V0

such that
Au+ j′(u) = f in V ∗

0 .

According to Definition 7.2, a function u ∈ V with u ≤ 0 on ∂Ω is a subso-
lution if (ii) and (iii) of Definition 7.2 can be fulfilled. As dom (ψ) = V , we
see that by choosing ψ̂ = 0, the conditions (ii) and (iii), (a)–(b) are trivially
satisfied. Thus, u is only required to satisfy condition (iii)(c); i.e.,

〈Au− f, v − u〉 +
∫

Ω

j′(u)(v − u) dx ≥ 0, ∀ v ∈ u ∧ V0.

Given ϕ ∈ V0, setting v = u ∧ ϕ = u− (u− ϕ)+ yields

〈Au− f,−(u− ϕ)+〉 +
∫

Ω

j′(u)(−(u− ϕ)+) dx ≥ 0.

Thus, we obtain

〈Au− f, w〉 +
∫

Ω

j′(u)w dx ≤ 0, ∀ w ∈W,

whereW = {w = (u−ϕ)+ : ϕ ∈ V0}. Observing thatW is dense in V0∩Lp
+(Ω)

(see Lemma 5.4 in Chap. 5), we get the usual notion of weak subsolution of the
Dirichlet problem. Similarly, Definition 7.3 reduces to the ordinary concept
for a weak supersolution of the above Dirichlet problem.

Example 7.6. Let K ⊂ V0 be a nonempty, closed, and convex set, and let
ψ = IK , where IK : V → R∪ {+∞} denotes the indicator function related to
K; i.e.,

IK(u) =
{

0 if u ∈ K,
+∞ if u /∈ K,

which is proper, convex, and lower semicontinuous. Problem (7.1) then be-
comes: Find u ∈ K such that

〈Au− f, v − u〉 + IK(v) − IK(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0. (7.2)

In this case, u ∈ V is a subsolution of (7.2) according to Definition 7.2 if the
following is satisfied:

(1) u ≤ 0 on ∂Ω.
(2) u ∨K ⊂ K.
(3) 〈Au− f, v − u〉 +

∫
Ω
jo(u; v − u) dx ≥ 0, ∀ v ∈ u ∧K.
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Specifically, taking ψ̂(v) ≡ 0 and ĉ = 0, all conditions of Definition 7.2 are
fulfilled. Analogous conditions can be found for a supersolution ū of (7.2):

(1′) ū ≥ 0 on ∂Ω
(2′) ū ∧K ⊂ K.
(3′) 〈Aū− f, v − ū〉 +

∫
Ω
jo(ū; v − ū) dx ≥ 0, ∀ v ∈ ū ∨K.

Remark 7.7. Conditions (1)–(3) and (1′)–(3′), which were introduced in [141]
(see Chap. 5) to define sub-supersolutions turn out to be special cases of
Definition 7.2 and Definition 7.3, respectively. Problem (7.2) is the object of
the work in [56].

Example 7.8. Given a convex lower semicontinuous function h : R → R, we
introduce g : V → R ∪ {+∞} by

g(v) =
{∫

Ω
h(v(x))dx if h(v) ∈ L1(Ω),

+∞ if h(v) �∈ L1(Ω).

The function g is known to be proper, convex, and lower semicontinuous.
Consider problem (7.1) with ψ = g; i.e., find u ∈ dom (g) ∩ V0 such that

〈Au− f, v − u〉 + g(v) − g(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0.

The following conditions on a function u ∈ V imply that u is a subsolution
according to Definition 7.2:

(1) u ≤ 0 on ∂Ω,
(2) u ∨ (dom (g) ∩ V0) ⊂ dom (g) ∩ V0,
(3) u ∈ dom (g), and

〈Au− f, v − u〉 + g(v) − g(u) +
∫

Ω

jo(u; v − u) dx ≥ 0

for all v ∈ u ∧ (dom (g) ∩ V0).

Indeed, taking ψ̂ = g and ĉ any nonnnegative constant, we can see that in
view of the above assumptions (1)–(3), all conditions of Definition 7.2 are
satisfied. This result is because for all v ∈ dom (g) ∩ V0, we have

g(v ∨ u) + g(v ∧ u) − g(v) − g(u) = 0. (7.3)

Identity (7.3) can easily be proved by splitting up Ω into Ω = Ω1 ∪Ω2, where

Ω1 = {x ∈ Ω : v(x) < u(x)}, Ω2 = {x ∈ Ω : v(x) ≥ u(x)},

and by considering the resulting integrals. For example, if f ∈ Lp∗′
(Ω) (with

p∗ the critical Sobolev exponent and p∗′ being its Hölder conjugate) and
ai(x, 0) = 0 for i = 1, . . . , N, then u = 0 is a subsolution if for some ξ ∈ ∂h(0)
the following inequality holds:
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f(x) ≥ −jo(0;−1) + ξ, for a.e. x ∈ Ω.

For a supersolution ū, we can easily find the corresponding sufficient condi-
tions.

We proceed in studying problem (7.1) by assuming the following hypoth-
esis for j, which was used already in previous chapters:

(H) The function j : R → R is locally Lipschitz, and its generalized gradient
∂j satisfies the following growth conditions:
(i) A constant c1 ≥ 0 exists such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2;
(ii) A constant c2 ≥ 0 exists such that

|ξ| ≤ c2 (1 + |s|p−1)

for all ξ ∈ ∂j(s) and for all s ∈ R.

Like in the previous chapters, let Lp(Ω) be equipped with the natural
partial ordering of functions defined by u ≤ w if and only if w− u belongs to
the positive cone Lp

+(Ω) of all nonnegative elements of Lp(Ω). This finding
induces a corresponding partial ordering also in the subspace V of Lp(Ω), and
if u, w ∈ V with u ≤ w, then

[u,w] = {z ∈ V : u ≤ z ≤ w}

denotes the order interval formed by u and w.
In the proofs of our main results, we again make use of the cutoff function

b : Ω × R → R related with an ordered pair of functions u ≤ ū and given by

b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u(x) ≤ s ≤ ū(x),
−(u(x) − s)p−1 if s < u(x).

Recall that b is a Carathéodory function satisfying the growth condition

|b(x, s)| ≤ k(x) + c3 |s|p−1 (7.4)

for a.e. x ∈ Ω, for all s ∈ R, with some function k ∈ Lq
+(Ω) and a constant

c3 ≥ 0, and we have the following estimate:∫
Ω

b(x, u(x))u(x) dx ≥ c4 ‖u‖p
Lp(Ω) − c5, ∀ u ∈ Lp(Ω), (7.5)

where c4 and c5 are positive constants. In view of (7.4), the Nemytskij operator
B : Lp(Ω) → Lq(Ω) defined byBu(x) = b(x, u(x)) is continuous and bounded,
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and thus from the compact embedding V ⊂ Lp(Ω), it follows that B : V0 →
V ∗

0 is compact.
The main result of the present section is given by the following theorem

in [55] (also see [56] for a special case), which provides an existence and
comparison result for the elliptic variational–hemivariational inequality (7.1).

Theorem 7.9. Let u and ū be sub- and supersolutions of (7.1), respectively,
satisfying u ≤ ū. Then under hypotheses (A1)–(A3) and (H), solutions of
(7.1) exist within the ordered interval [u, ū].

Proof: As we are looking for solutions of (7.1) within [u, ū], we consider the
following auxiliary problem: Find u ∈ dom (ψ) ∩ V0 such that

〈Au− f + λB(u), v − u〉 + ψ(v) − ψ(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

(7.6)

where B is the cutoff operator as above and λ ≥ 0 is some parameter to be
specified later.

The proof consists in two steps.

Step 1: Existence for (7.6).

Let us introduce the functional J : Lp(Ω) → R defined by

J(v) =
∫

Ω

j(v(x)) dx, ∀ v ∈ Lp(Ω).

In view of hypothesis (H), by Theorem 2.181, the functional J is locally Lip-
schitz, and for each u ∈ Lp(Ω), we have

ξ ∈ ∂J(u) =⇒ ξ ∈ Lq(Ω) with ξ(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω.

Consider now the multivalued operator

A+ λB + ∂(J |V0) + ∂(ψ|V0) : V0 → 2V ∗
0 ,

where J |V0 and ψ|V0 denote the restriction of J and ψ, respectively, to V0.
The notation ∂(J |V0) and ∂(ψ|V0) means the generalized gradient of J |V0 and
the subdifferential of ψ|V0 in the sense of convex analysis, respectively. It is
well known that ∂(ψ|V0) : V0 → 2V ∗

0 is a maximal monotone operator (cf. [13]
or [222]). As A : V0 → V ∗

0 is strictly monotone, bounded, and continuous,
and λB : V0 → V ∗

0 is bounded, continuous, and compact, we obtain that A+
λB : V0 → V ∗

0 is a (singlevalued) pseudomonotone, continuous, and bounded
operator. It has already been shown that ∂(J |V0) : V0 → 2V ∗

0 is a (multivalued)
pseudomonotone operator (see Lemma 4.16, Chap. 4), which, from (H), is
bounded. Thus, from Theorem 2.124 (ii), A0 = A+ λB + ∂(J |V0) : V0 → 2V ∗

0

is a pseudomonotone and bounded operator. Hence, it follows by Theorem
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2.127 that range (A0 + ∂(ψ|V0)) = V ∗
0 provided A0 is u0-coercive for some

u0 ∈ D(∂(ψ|V0)). Toward this end, for any v ∈ V0 and any w ∈ ∂(J |V0)(v),
we obtain by applying (A3), (H)(ii), and (7.5) the estimate

〈Av + λB(v) + w, v − u0〉

=
∫

Ω

N∑
i=1

ai(x,∇v)
∂v

∂xi
dx+ λ〈B(v), v〉

+
∫

Ω

wv dx− 〈Av + λB(v) + w, u0〉

≥ ν
∫

Ω

|∇v|p dx− ‖k1‖L1(Ω) + c4λ‖v‖p
Lp(Ω) − c5λ

−c2
∫

Ω

(1 + |v|p−1)|v| dx− |〈Av + λB(v) + w, u0〉|

≥ ν‖v‖p
V0

− C (1 + ‖v‖p−1
V0

), (7.7)

for some constant C > 0. By choosing the constant λ in such a way that
c4λ > c2, the coercivity of A0 follows from (7.7). In view of the surjectivity of
the operator A0 + ∂(ψ|V0) a u ∈ D(∂(ψ|V0)) ⊂ D(ψ) ∩ V0, an ξ ∈ ∂(J |V0)(u)
with ξ ∈ Lq(Ω) and ξ(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω, and an η ∈ ∂(ψ|V0)(u)
exist such that

Au− f + λB(u) + ξ + η = 0 in V ∗
0 , (7.8)

where

〈ξ, ϕ〉 =
∫

Ω

ξ(x)ϕ(x) dx, ∀ ϕ ∈ V0, (7.9)

and

ψ(v) ≥ ψ(u) + 〈η, v − u〉, ∀ v ∈ V0. (7.10)

By definition of the generalized gradient ∂j (see Definition 2.166) from (7.9),
we get

〈ξ, ϕ〉 ≤
∫

Ω

jo(u(x);ϕ(x)) dx, ∀ ϕ ∈ V0. (7.11)

Thus, from (7.8)–(7.11) with ϕ replaced by v−u, we obtain (7.6), which proves
the existence of solutions of problem (7.6).

Step 2: u ≤ u ≤ ū for any solution u of (7.6).

Let us first show u ≤ ū. By Definition 7.3, the supersolution ū satisfies ū ∈
dom (ψ̃), ū ≥ 0 on ∂Ω, and for all v ∈ ū ∨ (dom (ψ) ∩ V0) the following
inequality:
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〈Aū− f, v − ū〉 + ψ̃(v) − ψ̃(ū) +
∫

Ω

jo(ū; v − ū) dx ≥ 0. (7.12)

Let u be any solution of (7.6). We apply the special test function v = ū∨ u =
ū+ (u− ū)+ ∈ ū ∨ (dom (ψ) ∩ V0) in (7.12) and v = ū ∧ u = u− (u− ū)+ ∈
dom (ψ)∩ V0 (from requirement (ii) in Definition 7.3) in (7.6). By adding the
resulting inequalities, we get

〈Aū−Au, (u− ū)+〉 + λ〈B(u),−(u− ū)+〉
+ψ̃(ū ∨ u) − ψ̃(ū) + ψ(ū ∧ u) − ψ(u)

+
∫

Ω

(
jo(ū; (u− ū)+) + jo(u;−(u− ū)+)

)
dx ≥ 0.

From
〈Au−Aū, (u− ū)+〉 ≥ 0,

this yields the inequality

λ〈B(u), (u− ū)+〉
≤ ψ̃(ū ∨ u) − ψ̃(ū) + ψ(ū ∧ u) − ψ(u)

+
∫

Ω

(
jo(ū; (u− ū)+) + jo(u;−(u− ū)+)

)
dx. (7.13)

By using Proposition 2.171 and hypothesis (H)(i), we find the following esti-
mate of the second term on the right-hand side of (7.13):∫

Ω

(
jo(ū; (u− ū)+) + jo(u;−(u− ū)+)

)
dx

=
∫

{u>ū}

(
jo(ū;u− ū) + jo(u;−(u− ū))

)
dx

=
∫

{u>ū}

(
ξ̄(x)(u(x) − ū(x)) + ξ(x)(−(u(x) − ū(x)))

)
dx

=
∫

{u>ū}

(ξ̄(x) − ξ(x))(u(x) − ū(x)) dx

≤
∫

{u>ū}

c1 (u(x) − ū(x))p dx, (7.14)

for certain ξ̄(x) ∈ ∂j(ū(x)) and ξ(x) ∈ ∂j(u(x)). As

〈B(u), (u− ū)+〉 =
∫

{u>ū}

(u− ū)p dx,

we derive from (7.13), (7.14), and thanks to (iii)(b) in Definition 7.3, the
estimate
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(λ− c1 − c̃)
∫

{u>ū}

(u− ū)p dx ≤ 0. (7.15)

Selecting the parameter λ, in addition, such that λ− c1 − c̃ > 0, then (7.15)
yields ∫

Ω

(
(u− ū)+

)p
dx ≤ 0,

which implies u ≤ ū.
The proof for the inequality u ≤ u can be carried out in a similar way.

Specifically, by Definition 7.2, the subsolution u satisfies: u ∈ dom (ψ̂), u ≤ 0
on ∂Ω, and for all v ∈ u ∧ (dom (ψ) ∩ V0),

〈Au− f, v − u〉 + ψ̂(v) − ψ̂(u) +
∫

Ω

jo(u; v − u) dx ≥ 0. (7.16)

Using the test functions v = u ∧ u = u − (u − u)+ ∈ u ∧ (dom (ψ) ∩ V0) in
(7.16) and v = u ∨ u = u+ (u− u)+ ∈ dom (ψ) ∩ V0 in (7.6), respectively, we
get by adding the resulting inequalities the following one:

〈Au−Au, (u− u)+〉 + λ〈B(u), (u− u)+〉
+ψ̂(u ∧ u) − ψ̂(u) + ψ(u ∨ u) − ψ(u)

+
∫

Ω

(
jo(u;−(u− u)+) + jo(u; (u− u)+)

)
dx ≥ 0.

Along the same lines as above, we arrive at

(λ− c1 − ĉ)
∫

{u>u}

(u− u)p dx ≤ 0.

Choosing λ− c1 − ĉ > 0 implies u ≤ u.
Steps 1 and 2 complete the proof of the theorem. Indeed, Step 1 ensures

the existence of a solution to the auxiliary problem (7.6). Taking into account
Step 2 and the definition of the cutoff operator B, we conclude that any
solution of problem (7.6) becomes a solution of problem (7.1), so a solution
of problem (7.1) exists. ��

7.1.2 Compactness and Extremality

In this subsection, we focus on some qualitative properties (compactness and
existence of extremal solutions) for the set of solutions of problem (7.1).

Theorem 7.10. Let u and ū be a sub- and supersolution of (7.1), respec-
tively, satisfying u ≤ ū. Under the hypotheses of Theorem 7.9, the set S of all
solutions of (7.1) within the interval [u, ū] is compact in V0.
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Proof: First we prove that S is bounded in V0. As S is contained in the
interval [u, ū], it follows that S is bounded in Lp(Ω). Moreover, any u ∈ S
solves (7.1); i.e., u satisfies u ∈ dom (ψ) ∩ V0 and

〈Au− f, v − u〉 + ψ(v) − ψ(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0.

Let u0 be any (fixed) element of dom (ψ)∩ V0. By taking v = u0 in the above
inequality, we get

〈Au, u〉 ≤ 〈Au, u0〉 + 〈f, u− u0〉 + ψ(u0) − ψ(u) +
∫

Ω

jo(u;u0 − u) dx.

As ψ is bounded below by an affine function on V , we get the following
estimate with some nonnegative constant d:

ψ(u) ≥ −d(‖u‖V + 1).

Taking into account Young’s inequality and the equivalence of the norms ‖·‖V

and ‖∇ · ‖Lp(Ω) on V0, it turns out that

ψ(u) ≥ −ν
2
‖∇u‖p

Lp(Ω) −D

for some constant D > 0 not depending on u. By means of the last inequality
and by applying (A3), (H)(ii), and Young’s inequality, we obtain the estimate

ν

2
‖∇u‖p

Lp(Ω) ≤ ‖k1‖L1(Ω) + c(ε)(‖f‖q
V ∗

0
+ 1) + ε ‖u‖p

V0
+ α̃ (‖u‖p

Lp(Ω) + 1)

for any ε > 0 and a constant α̃ > 0. Hence, the boundedness of S in V0 follows
by choosing ε sufficiently small and by using that S is bounded in Lp(Ω).

Let (un) ⊂ S. Knowing the boundedness of S in V0, we can pick a subse-
quence (uk) of (un) such that

uk ⇀ u in V0, uk → u in Lp(Ω), and uk(x) → u(x) a.e. in Ω. (7.17)

Obviously u ∈ [u, ū]. As each uk solves (7.1), we can put v = u ∈ V0 in (7.1)
(with uk instead of u) and get

〈Auk − f, u− uk〉 + ψ(u) − ψ(uk) +
∫

Ω

jo(uk;u− uk) dx ≥ 0,

and thus,

〈Auk, uk − u〉 ≤ 〈f, uk − u〉 + ψ(u) − ψ(uk) +
∫

Ω

jo(uk;u− uk) dx. (7.18)

From (7.17) and because (s, r) 
→ jo(s; r) is upper semicontinuous [cf. Propo-
sition 2.162(iii)], we infer by applying Fatou’s lemma
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lim sup
k

∫
Ω

jo(uk;u− uk) dx ≤
∫

Ω

lim sup
k

jo(uk;u− uk) dx = 0. (7.19)

In view of (7.19), we thus obtain from (7.17), (7.18), and because ψ is weakly
lower semicontinuous

lim sup
k

〈Auk, uk − u〉 ≤ 0. (7.20)

As the operator A has the (S+)-property (see Theorem 2.109(iii)), the weak
convergence of (uk) in V0 along with (7.20) imply the strong convergence
uk → u in V0. Moreover, the limit u belongs to S as can be seen by passing
to the lim sup in the inequality

〈Auk − f, v − uk〉 + ψ(v) − ψ(uk) +
∫

Ω

jo(uk; v − uk) dx ≥ 0,

and using Fatou’s lemma, the lower semicontinuity of ψ and the strong con-
vergence of uk → u in V0. This process completes the proof. ��

We are now ready to prove our extremality result for problem (7.1).

Theorem 7.11. Let the hypotheses of Theorem 7.9 be satisfied, and assume,
moreover,

dom(ψ) ∧ dom(ψ) ⊂ dom(ψ) and dom(ψ) ∨ dom(ψ) ⊂ dom(ψ). (7.21)

If there is a constant c ≥ 0 such that

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v) ≤ c
∫

{v>w}

(v − w)p dx (7.22)

for all w, v ∈ dom(ψ), then the set S of all solutions of (7.1) within the
interval [u, ū] possesses extremal elements.

Proof: Step 1: S is a directed set.

Theorem 7.9 ensures that S �= ∅. Given u1, u2 ∈ S, let us show that there
is a u ∈ S such that uk ≤ u, k = 1, 2, which means S is upward directed.
To this end, we consider the following auxiliary variational–hemivariational
inequality. Find u ∈ dom (ψ) ∩ V0 such that

〈Au− f + λB(u), v − u〉 + ψ(v) − ψ(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0,

(7.23)

where λ ≥ 0 is a free parameter to be chosen later. Unlike in the proof of
Theorem 7.9, the operator B is now given by the following cutoff function
b : Ω × R → R:
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b(x, s) =

⎧⎨⎩
(s− ū(x))p−1 if s > ū(x),
0 if u0(x) ≤ s ≤ ū(x),
−(u0(x) − s)p−1 if s < u0(x),

(7.24)

where u0 = max(u1, u2). By arguments similar to those in the proof of Theo-
rem 7.9, we deduce the existence of solutions of (7.23) (see Step 1 in the proof
of Theorem 7.9). The set S is shown to be upward directed provided that any
solution u of (7.23) satisfies uk ≤ u ≤ ū, k = 1, 2, because then Bu = 0 [cf.
(7.24)] and thus u ∈ S.

As uk ∈ S, we have uk ∈ dom (ψ) ∩ V0 ∩ [u, ū] and

〈Auk − f, v − uk〉 + ψ(v) − ψ(uk) +
∫

Ω

jo(uk; v − uk) dx ≥ 0, ∀ v ∈ V0.

(7.25)

Note that (7.21) implies

u+ (uk − u)+ = u ∨ uk ∈ dom (ψ) ∩ V0

and
uk − (uk − u)+ = u ∧ uk ∈ dom (ψ) ∩ V0.

Set v = u+ (uk − u)+ in (7.23) and v = uk − (uk − u)+ in (7.25). Adding the
resulting inequalities, we obtain

〈Auk −Au, (uk − u)+〉 − λ〈B(u), (uk − u)+〉
≤ ψ(u ∨ uk) − ψ(u) + ψ(u ∧ uk) − ψ(uk)

+
∫

Ω

(
jo(u; (uk − u)+) + jo(uk;−(uk − u)+)

)
dx. (7.26)

Arguing as in (7.14), we have the estimate∫
Ω

(
jo(u; (uk − u)+) + jo(uk;−(uk − u)+)

)
dx

≤
∫

{uk>u}

c1 (uk(x) − u(x))p dx. (7.27)

By hypothesis (A2), we know

〈Auk −Au, (uk − u)+〉 ≥ 0, (7.28)

whereas (7.24) yields

〈B(u), (uk − u)+〉 = −
∫

{uk>u}

(u0(x) − u(x))p−1(uk(x) − u(x)) dx

≤ −
∫

{uk>u}

(uk(x) − u(x))p dx. (7.29)



332 7 Variational–Hemivariational Inequalities

Combining (7.26)–(7.29) and assumption (7.22) leads to

(λ− c1 − c)
∫

{uk>u}

(uk(x) − u(x))p dx ≤ 0. (7.30)

Choosing some λ with λ > c1 + c , from (7.30), we deduce uk ≤ u.
The proof for u ≤ ū follows arguments similar to the ones in Step 2 of the

proof of Theorem 7.9. Thus, the ordered set S is upward directed.
The fact that S is downward directed can be shown analogously arguing

on a corresponding auxiliary problem.

Step 2: Existence of extremal solutions.

We show only the existence of the greatest element of S. The existence of the
smallest element of S can be proved in a similar way. As V0 is separable, we
have that S ⊂ V0 is separable too. Fix a countable, dense subset Z = {zn :
n ∈ N} of S. We construct an increasing sequence (un) ⊂ S as follows. Let
u1 = z1. Assuming that un ∈ S is constructed, then Step 1 enables us to
select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ u.

Theorem 7.10 ensures that the set S is compact in V0. Consequently, we can
fix a subsequence of (un), denoted again (un), and an element u ∈ S such
that un → u in V0, and un(x) → u(x) a.e. in Ω. This last property of (un)
combined with its increasing monotonicity implies that the entire sequence is
convergent to u in V0, and moreover, u = supn un. By construction, we see

max{z1, z2, . . . , zn} ≤ un+1 ≤ u, ∀ n;

thus Z ⊂ [u, u]. As the interval [u, u] is closed in V0, we infer

S ⊂ Z ⊂ [u, u] = [u, u].

In conjunction with u ∈ S, this guarantees that u is the greatest solution of
(7.1) within [u, ū]. ��

Remark 7.12. We note for the proof of Theorem 7.11 it is enough to assume
instead of (7.21) that

dom (ψ) ∧ (dom (ψ) ∩ [u, ū]) ⊂ dom (ψ)

and
dom (ψ) ∨ (dom (ψ) ∩ [u, ū]) ⊂ dom (ψ).

Remark 7.13. Condition (7.22) cannot be simplified to have the right-hand
side equal to zero [as, for example, in (7.3)]. There are functionals ψ : V0 → R

for which condition (7.22) is satisfied provided c > 0. For instance, let ψ :
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V0 → R be the function ψ = ψ1|V0 with ψ1 : Lp(Ω) → R differentiable and
convex. The differential at u ∈ V0 is denoted ψ′(u) ∈ V ∗

0 and is equal to
ψ′(u) = i∗ψ′

1(u) in V ∗
0 , with ψ′

1(u) ∈ Lq(Ω) and the inclusion map i : V0 →
Lp(Ω). Assume that a constant c > 0 exists such that whenever v, w ∈ V0, we
have

ψ′
1(v) − ψ′

1(w) ≤ c(v − w)p−1 for a.e. on {w < v}.
For all w, v ∈ V0, we find that

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v)

≤
∫

Ω

ψ′
1(w ∨ v)(w ∨ v − w) dx+

∫
Ω

ψ′
1(w ∧ v)(w ∧ v − v) dx

=
∫

Ω

(ψ′
1(w + (v − w)+) − ψ′

1(v − (v − w)+))(v − w)+ dx

=
∫
{w<v}

(ψ′
1(v) − ψ′

1(w))(v − w) dx ≤ c
∫
{w<v}

(v − w)p dx ,

so (7.22) is valid with c > 0.

In the rest of this section, we illustrate the applicability of our results
to a variational–hemivariational inequality with constraints described by an
obstacle problem.

Let f ∈ L∞(Ω) ⊂ V ∗
0 , and let K ⊂ V0 represent the following obstacle:

K = {v ∈ V0 : v(x) ≤ φ(x) for a.e. x ∈ Ω}, (7.31)

with φ : Ω → R measurable. Let g : V → R∪{+∞} be the integral functional
introduced in Example 7.8 (described by a convex lower semicontinuous func-
tion h : R → R) and IK : V → R∪{+∞} be the indicator function related with
the set K in (7.31) assuming K �= ∅. Then the functional ψ : V → R∪ {+∞}
defined by

ψ = IK + g

is proper, convex, and lower semicontinuous with dom (ψ) = K ∩ dom (g).
With f and ψ as specified above, we consider the variational–hemivariational
inequality (7.1); i.e., we are looking for a u ∈ K ∩ dom (g) such that

〈Au− f, v − u〉 + ψ(v) − ψ(u) +
∫

Ω

jo(u; v − u) dx ≥ 0, ∀ v ∈ V0. (7.32)

The following theorem provides conditions that ensure the existence of an
ordered pair of constant sub- and supersolutions of (7.32).

Theorem 7.14. Let ai(x, 0) ≡ 0 for all 1 ≤ i ≤ N , and let the constants
α ≤ 0, β ≥ 0 satisfy the conditions:

(i) α ≤ φ(x) for a.e. x ∈ Ω.
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(ii) For some ξ ∈ ∂h(α), η ∈ ∂h(β), the following inequalities are satisfied:

−jo(α;−1) + ξ ≤ f(x) ≤ jo(β; 1) + η for a.e. x ∈ Ω. (7.33)

Then the constant functions u = α and ū = β form an ordered pair of sub-
and supersolutions of (7.32).

Proof: First let us verify that u(x) ≡ α is a subsolution according to Defi-
nition 7.2. Recall that dom (ψ) = K ∩ dom (g). As α ∈ dom (g), α ≤ 0 and
α ≤ φ [see (i)], we get α ∨ (dom (ψ) ∩ V0) ⊂ dom (ψ) ∩ V0, and thus (i) and
(ii) of Definition 7.2 are satisfied. To verify (iii) of Definition 7.2, we need to
construct an appropriate functional ψ̂ with the properties (a)–(c) of Definition
7.2. To this end, we set ψ̂ = g. Then (a) is satisfied, because α ∈ dom (g). For
v ∈ dom (ψ) ∩ V0 = K ∩ dom (g), we obtain

ψ(v ∨ u) + ψ̂(v ∧ u) − ψ(v) − ψ̂(u) = g(v ∨ α) + g(v ∧ α) − g(v) − g(α) = 0.
(7.34)

The second equality of (7.34) can easily be shown by splitting up the domain
Ω into Ω = Ω1 ∪ Ω2 = {x ∈ Ω : v(x) ≥ α} ∪ {x ∈ Ω : v(x) < α}. It follows
from (7.34) that (b) of Definition 7.2 is verified with ĉ = 0. To see that also
(c) of Definition 7.2 is valid, let v ∈ α ∧ (K ∩ dom (g)). Then v − α ≤ 0 in Ω,
and by (7.33), we get

〈Aα− f, v − α〉 + g(v) − g(α) +
∫

Ω

jo(α; v(x) − α) dx

≥
∫

Ω

(
jo(α;−1) + f(x) − ξ

)
(α− v(x)) dx ≥ 0,

which proves that α is a subsolution.
Let us show that β is a supersolution of (7.32). We readily see that β∧K ⊂

K and β ∧ dom (g) ⊂ dom (g) holds, and thus (i) and (ii) of Definition 7.3
are satisfied. It remains to check (iii) of Definition 7.3. To this end, we show
that with ψ̃ = g and applying (7.33), the conditions (a)–(c) of Definition 7.3
can be fulfilled. We have β ∈ dom (g), and for v ∈ K ∩ dom (g), the following
equalities are satisfied:

ψ(v ∧ ū) + ψ̃(v ∨ ū) − ψ(v) − ψ̃(ū) = g(v ∧ β) + g(v ∨ β) − g(v) − g(β) = 0,

which shows that (b) of Definition 7.3 holds with c̃ = 0. Finally, to verify (c),
let v ∈ β ∨ (K ∩ dom (g)); then v ≥ β, and we obtain by means of (7.33),

〈Aβ − f, v − β〉 + g(v) − g(β) +
∫

Ω

jo(β; v(x) − β) dx

≥
∫

Ω

(
jo(β; 1) − f(x) + η

)
(v(x) − β) dx ≥ 0,

which proves that the constant β ≥ 0 is a supersolution. ��
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Our results in studying problem (7.32) through an ordered pair of constant
sub- and supersolutions are summarized in the next statement.

Corollary 7.15. Let the hypotheses of Theorem 7.14, (A1)–(A3), and (H)
be satisfied. Then the variational–hemivariational inequality (7.32) has the
property that the set of solutions belonging to the order interval [α, β] possesses
extremal elements. Moreover, the set S of all solutions of (7.32) within [α, β]
is compact.

Proof: By Theorem 7.14 the constants α and β form an ordered pair of sub-
and supersolutions, respectively. Then Theorem 7.9 and Theorem 7.10 provide
the existence of solutions within [α, β] and the compactness of the set S of
such solutions. For the existence of extremal solutions, we apply Theorem
7.11. To this end, we only need to verify conditions (7.21) and (7.22) for the
specific functional ψ = IK + g considered here. It can easily be seen that the
following is true: K ∨ K ⊂ K, K ∧ K ⊂ K, dom (g) ∨ dom (g) ⊂ dom (g),
and dom (g)∧dom (g) ⊂ dom (g), and hence condition (7.21) holds [note that
dom (ψ) = K ∩ dom (g)]. For w, v ∈ K ∩ dom (g), we have

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v)
= g(w ∨ v) − g(w) + g(w ∧ v) − g(v) = 0,

and thus, (7.22) is satisfied (with c = 0). This process completes the proof. ��

Finally, we discuss an example that provides a sufficient condition for
zero to be a subsolution of problem (7.1). In the proof, we demonstrate the
flexibility in the choice of the auxiliary functional ψ̂ entering Definition 7.2.

Example 7.16. Assume that the operator A satisfies ai(x, 0) ≡ 0 for all 1 ≤
i ≤ N . Let ψ : V0 → R be given by

ψ(v) =
λ

p

∫
Ω

|v|p dx, ∀ v ∈ V0,

for some λ ≥ 0, and let f ∈ Lp∗′
(Ω) (p∗ being the critical Sobolev exponent

and p∗′ its conjugate) such that f(x) ≥ −jo(0;−1) for a.e. x ∈ Ω, where
j : R → R verifies assumption (H). Then u = 0 is a subsolution of problem
(7.1). Toward this end, we need to verify the conditions of Definition 7.2. As
dom (ψ) = V0, (i) and (ii) of Definition 7.2 are trivially satisfied. To check
condition (iii), let us choose the function ψ̂ : V → R in the form

ψ̂(v) =
mλ

p

∫
Ω

|v|p dx, ∀ v ∈ V,

where m ∈ [0,+∞). Condition (iii)(a) is evident, whereas condition (iii)(b) is
verified because we have

ψ(v+) + ψ̂(−v−) − ψ(v) − ψ̂(0)
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=
λ

p

[∫
Ω

|v+|p dx+m
∫

Ω

|v−|p dx−
(∫

Ω

|v+|p dx+
∫

Ω

|v−|p dx
)]

=
(m− 1)λ

p

∫
Ω

|v−|p dx =
(m− 1)λ

p

∫
Ω

|(−v)+|p dx, ∀ v ∈ V0,

and thus condition (iii)(b) holds with ĉ = 0 for m ∈ [0, 1], and a positive
constant ĉ = (m−1)λ

p for m > 1. It remains to justify condition (iii)(c); that
is,

〈−f, v〉 +
mλ

p

∫
Ω

|v|p dx+
∫

Ω

jo(0; v) dx ≥ 0, ∀ v ∈ 0 ∧ V0.

Setting v = −w− with w ∈ V0, this reads∫
Ω

(
f +

mλ

p
(w−)p−1 + jo(0;−1)

)
w− dx ≥ 0,

which in view of our assumption is true for any m ∈ [0,+∞).

7.2 Evolution Variational–Hemivariational Inequalities

To formulate our evolution problem, let Ω ⊂ R
N be a bounded domain with

Lipschitz boundary ∂Ω, Q = Ω × (0, τ), and Γ = ∂Ω × (0, τ), with τ > 0.
Consider the following quasilinear evolutionary variational–hemivariational

inequality:

Find u ∈W ∩K, u(·, 0) = 0 in Ω,〈
∂u

∂t
+Au− f, v − u

〉
+
∫

Γ

jo(γu; γv − γu)dΓ ≥ 0, ∀ v ∈ K, (7.35)

where K is a closed and convex subset of X = Lp(0, τ ;W 1,p(Ω)), for some
2 ≤ p < ∞. Here 〈·, ·〉 denotes the duality pairing between X and its dual
X∗, whereas W = {w ∈ X : ∂w/∂t ∈ X∗}. The derivative u′ := ∂u/∂t is
understood in the sense of vector-valued distributions (see Definition 2.138).
By jo(s; r), we denote the generalized directional derivative of a locally Lips-
chitz function j : R → R at s in the direction r. The operator A : X → X∗ is
assumed to be A = −Δp, where Δpu = div (|∇u|p−2∇u) is the p-Laplacian,
f ∈ Lq(Q) ⊂ X∗, with q being the Hölder conjugate of p, and γ : X → Lp(Γ )
denotes the trace operator.

The fact that we have only taken into account the p-Laplacian A = −Δp :
X → X∗, i.e.,

〈A(u), v〉 =
∫

Q

|∇u|p−2∇u∇v dx dt, ∀ v ∈ X,

is for emphasizing the main ideas. However, it should be noted that our results
can be extended to general second-order quasilinear differential operators A
of Leray–Lions type in the form
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Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)) + a0(x, t, u(x, t),∇u(x, t))

(see also Definition 2.103).
We point out that problem (7.35) includes various important special cases:

(i) If K = X and j : R → R is smooth with its derivative j′ : R → R, then
(7.35) reduces to the weak formulation of the following parabolic initial
boundary value problem:

u ∈W :
∂u

∂t
+Au = f in X∗,

u(·, 0) = 0 in Ω, and − ∂u

∂ν
= j′(u) on Γ,

where ∂/∂ν denotes the exterior conormal derivative on Γ associated
with the operator A. The method of sub-supersolution for quasilinear
parabolic initial boundary value problems is well established and was the
subject of Chap. 3. Even though in Chap. 3 Dirichlet boundary conditions
have been treated only, the method can easily be extended to nonlinear
boundary conditions.

(ii) IfK = X and the locally Lipschitz function j : R → R is regular (see Def-
inition 2.163), then (7.35) expresses the weak formulation of the following
parabolic initial boundary inclusion problem:

u ∈W :
∂u

∂t
+Au = f in X∗,

u(·, 0) = 0 in Ω, and − ∂u

∂ν
∈ ∂j(u) on Γ,

where ∂j : R → 2R \ {∅} denotes the generalized gradient of j (cf. Defi-
nition 2.166). Existence and comparison results for parabolic inclusions
with Clarke’s gradient by using appropriately defined sub- and super-
solutions have been obtained in Chap. 4 (see also recent papers by the
authors [39, 58]).

(iii) If K = X and j : R → R is a general locally Lipschitz function, then
(7.35) reduces to an evolutionary hemivariational inequality of the form:

Find u ∈W, u(·, 0) = 0 in Ω,〈
∂u

∂t
+Au− f, v − u

〉
+
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ X.

Evolutionary hemivariational inequalities under homogeneous Dirichlet
boundary conditions have been studied in Chap. 6 and recently in [54].
Here the problem is different, because the boundary condition is of a
hemivariational type.
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(iv) For j : R → R smooth and for K being a closed and convex subset of X,
(7.35) becomes a parabolic variational inequality with a nonlinear Robin
type boundary condition:

Find u ∈W ∩K, u(·, 0) = 0 in Ω, and − ∂u

∂ν
= j′(u) on Γ〈

∂u

∂t
+Au− f, v − u

〉
≥ 0, ∀ v ∈ K.

Existence and comparison results for parabolic variational inequalities
under homogeneous Dirichlet boundary condition have been obtained in
in Chap. 5 (see also [51]).

7.2.1 Definitions and Hypotheses

Making use of the linear operator L : D(L) ⊂ X → X∗ defined by L := ∂/∂t
with the domain

D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = 0} ,

we note that the evolutionary variational–hemivariational inequality (7.35)
may be rewritten as follows: Find u ∈ D(L) ∩K such that

〈Lu+A(u) − f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ K. (7.36)

We proceed by recalling some notational conventions related to the partial
ordering in Lp(Q) defined by u ≤ w if and only if w − u belongs to the
positive cone Lp

+(Q) of all nonnegative elements of Lp(Q). This result induces
a corresponding partial ordering in the subspaces W and X of Lp(Q) and
implies a corresponding natural partial ordering for the traces; i.e., if u,w ∈ X
and u ≤ w, then γu ≤ γw in Lp(Γ ). Given u, w ∈W with u ≤ w, we put

[u,w] = {v ∈W : u ≤ v ≤ w}.

Furthermore, for u, v ∈ X, and U1, U2 ⊂ X, we use the usual notation u∧v =
min{u, v}, u ∨ v = max{u, v}, U1 ∗ U2 = {u ∗ v : u ∈ U1, v ∈ U2}, and
u ∗ U1 = {u} ∗ U1 with ∗ ∈ {∧,∨}.

Our basic notion of sub-and supersolution of (7.35) is now defined.

Definition 7.17. A function u ∈ W is called a subsolution of (7.35) if the
following holds:

(i) u(·, 0) ≤ 0 in Ω.
(ii) 〈u′ +Au− f, v − u〉 +

∫
Γ
jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ u ∧K.

Definition 7.18. ū ∈W is a supersolution of (7.35) if the following holds:
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(i) ū(·, 0) ≥ 0 in Ω.
(ii) 〈ū′ +Aū− f, v − ū〉 +

∫
Γ
jo(γū; γv − γū) dΓ ≥ 0, ∀ v ∈ ū ∨K.

Remark 7.19. The notions of sub- and supersolutions introduced here extend
those of the special cases (i)–(iv) presented above. For example, let us show
this in case (i); i.e., when K = X and j : R → R is continuously differentiable
with its derivative j′ : R → R. Let u be a subsolution of (7.35) according
to Definition 7.17. By Example 2.168 and Proposition 2.171, it is clear that
Definition 7.17 reads as

〈u′ +Au− f, v − u〉 +
∫

Γ

j′(γu) (γv − γu) dΓ ≥ 0, ∀ v ∈ u ∧X. (7.37)

Given ϕ ∈ X; then v = u ∧ ϕ ∈ X is expressed by v = u − (u − ϕ)+, where
w+ := w ∨ 0. Thus, (7.37) yields

〈u′ +Au− f,−(u− ϕ)+〉 +
∫

Γ

j′(γu) (−γ(u− ϕ)+) dΓ ≥ 0, ∀ ϕ ∈ X.

(7.38)

It is not very hard to see that the set Y = {y ∈ X : y = (u− ϕ)+, ϕ ∈ X} ⊂
X ∩ Lp

+(Q) is dense in X ∩ Lp
+(Q). Then (7.38) implies

〈u′ +Au− f, ψ〉 +
∫

Γ

j′(γu) γψ dΓ ≤ 0, ∀ ψ ∈ X ∩ Lp
+(Q),

which verifies that u is a subsolution of the parabolic initial boundary value
problem in the usual sense.

In our approach, we need the following notion.

Definition 7.20. Let C �= ∅ be a closed and convex subset of a reflex-
ive Banach space X. A bounded, hemicontinuous, and monotone operator
P : X → X∗ is called a penalty operator associated with C if

P (u) = 0 ⇐⇒ u ∈ C. (7.39)

We recall that if p ≥ 2, there is a constant c(p) > 0 such that

(|ξ|p−2ξ − |ξ′|p−2ξ′) · (ξ − ξ′) ≥ c(p)|ξ − ξ′|p, ∀ ξ, ξ′ ∈ R
N (7.40)

(see also Sect. 2.2.4). Evidently, if p = 2, we have c(p) = 1. In the sequel, we
shall use the positive constant c(p) in (7.40).

We assume in this section the following hypotheses:

(H1) The generalized gradient ∂j of the locally Lipschitz function j : R → R

verifies the growth conditions:
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(i) A constant c1 ≥ 0 exists satisfying c1 ‖γ‖p < c(p) such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
(ii) A constant c2 ≥ 0 exists satisfying c2‖γ‖p < 1 such that

ξ ∈ ∂j(s) : |ξ| ≤ c2 (1 + |s|p−1), ∀ s ∈ R.

(H2) A penalty operator P : X → X∗ exists associated with K fulfilling the
requirement:
For each u ∈ D(L), w = w(u) ∈ X, w �= 0 if P (u) �= 0, exists satisfying:
(i) A constant α > 0 exists independent of u and w such that

〈u′ +Au,w〉 ≥ −α(‖w‖Lp(Q) + ‖γw‖Lp(Γ )). (7.41)

(ii) A constant D > 0 exists independent of u and w such that

〈P (u), w〉 ≥ D‖P (u)‖X∗(‖w‖Lp(Q) + ‖γw‖Lp(Γ )). (7.42)

Remark 7.21. We shall see later that hypothesis (H2) can easily be satisfied
for the obstacle problem described by the obstacle function ψ provided we
have ψ′ +Aψ ≥ 0 in X∗.

7.2.2 Preliminary Results

Consider the functional J : Lp(Γ ) → R defined by

J(v) =
∫

Γ

j(v(x, t)) dΓ, ∀ v ∈ Lp(Γ ).

Using the growth condition (H1)(ii) and Theorem 2.177, we note that the func-
tional J is well defined. Moreover, Theorem 2.181 ensures that it is Lipschitz
continuous on bounded sets in Lp(Γ ), and for each v ∈ Lp(Γ ), its generalized
gradient ∂J : Lp(Γ ) → 2Lq(Γ ) (1/p+ 1/q = 1) satisfies

ξ ∈ ∂J(v) =⇒ ξ ∈ Lq(Γ ) with ξ(x, t) ∈ ∂j(v(x, t)) for a.e. (x, t) ∈ Γ .

Let us introduce the multivalued mapping ∂γJ : X → 2X∗
defined by

∂γJ(u) = {u∗ ∈ X∗ : Jo(γu; γϕ) ≥ 〈u∗, ϕ〉, ∀ ϕ ∈ X}.

Lemma 7.22. The operator ∂γJ : X → 2X∗
is bounded and pseudomonotone

w.r.t. D(L), where L := ∂/∂t and D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = 0} .

Proof: Let us verify the conditions of Definition 2.154. As the functional
J : Lp(Γ ) → R is locally Lipschitz, ∂J(γu) is nonempty for each u ∈ X; i.e.,
there is a ξ ∈ Lq(Γ ) such that
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Jo(γu; v) ≥ 〈ξ, v〉, ∀ v ∈ Lp(Γ ).

If γ∗ : Lq(Γ ) → X∗ stands for the adjoint operator of γ, then we get

Jo(γu; γϕ) ≥ 〈γ∗ξ, ϕ〉, ∀ ϕ ∈ X,

which shows that γ∗ξ ∈ ∂γJ(u), so ∂γJ(u) �= ∅. To prove that ∂γJ(u) is
bounded, we observe that for each u ∈ X, there is a constant Cu ≥ 0 de-
pending on u such that |Jo(γu; v)| ≤ Cu‖v‖Lp(Γ ) for all v ∈ Lp(Γ ). Knowing
that the trace operator γ : X → Lp(Γ ) is linear and bounded, there is some
positive constant Cγ such that ‖γϕ‖Lp(Γ ) ≤ Cγ‖ϕ‖X and we obtain

|Jo(γu; γϕ)| ≤ C‖ϕ‖X , (7.43)

where C = Cu Cγ . In view of the definition of ∂γJ(u) and by applying (7.43),
we derive for u∗ ∈ ∂γJ(u) the estimate

|〈u∗, ϕ〉| ≤ C‖ϕ‖X , ∀ ϕ ∈ X. (7.44)

Inequality (7.44) expresses that ‖u∗‖ ≤ C, thus, the boundedness of ∂γJ(u).
The convexity and closedness of the set ∂γJ(u) are obvious.

Let M ⊂ X be bounded. We are going to show that the set

M∗ =
⋃

u∈M

∂γJ(u)

is bounded in X∗. For a constant C > 0, we have ‖γu‖Lp(Γ ) ≤ C, ∀ u ∈ M .
In view of the Lipschitz continuity of J : Lp(Γ ) → R on bounded sets, this
implies the existence of some positive constants CM and C̃M such that the
following inequalities hold:

|Jo(γu; γv)| ≤ CM‖γv‖Lp(Γ ) ≤ C̃M‖v‖X , ∀ u ∈M and ∀ v ∈ X. (7.45)

By definition of ∂γJ and applying (7.45), we obtain for any u∗ ∈M∗ that

|〈u∗, v〉| ≤ |Jo(γu;±γv)| ≤ C̃M‖v‖X , ∀ v ∈ X,

which leads to ‖u∗‖ ≤ C̃M ; that is, M∗ is bounded.
Next we show that ∂γJ : X → 2X∗

satisfies (ii) of Definition 2.154. We
prove an even stronger result, namely that ∂γJ is strongly-weakly upper semi-
continuous at u ∈ X. Assume ∂γJ fails to have this property. Then there is
a sequence (uk) ⊂ X with uk → u in X and a sequence (u∗k) ∈ X∗ with
u∗k ⇀ u∗ (weakly) in X∗ such that u∗k ∈ ∂γJ(uk) for each k, but u∗ does not
belong to ∂γJ(u). Thus, γuk → γu in Lp(Γ ), which together with the weak
convergence of (u∗k) and the upper semicontinuity of Jo : Lp(Γ )×Lp(Γ ) → R

[see Proposition 2.162(iii)] results in

Jo(γu; γv) ≥ lim sup
k→∞

Jo(γuk; γv) ≥ lim
k→∞

〈u∗k, v〉 = 〈u∗, v〉, ∀ v ∈ X.
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The last inequality implies u∗ ∈ ∂γJ(u) contradicting the assumption.
It remains to verify condition (iii) of Definition 2.154. To this end, let

(un) ⊂ D(L) with un ⇀ u in X, Lun ⇀ Lu in X∗, u∗n ∈ ∂γJ(un) with
u∗n ⇀ u∗ in X∗, and lim sup〈u∗n, un − u〉 ≤ 0. As u∗n ∈ ∂γJ(un), we have

Jo(γun; γv) ≥ 〈u∗n, v〉, ∀ v ∈ X. (7.46)

From the weak convergence of (un) and (Lun), it follows that un ⇀ u in W .
By Proposition 2.143, we know that the trace operator γ : W → Lp(Γ ) is
compact, and thus we get γun → γu in Lp(Γ ). Taking into account inequality
(7.46) and the fact that J : Lp(Γ ) → R is locally Lipschitz, we deduce

|〈u∗n, un − u〉| ≤ Cu‖γun − γu‖Lp(Γ ), (7.47)

with a constant Cu > 0. From (7.47), we directly obtain 〈u∗n, un〉 → 〈u∗, u〉 as
n→ ∞, and by passing to the lim sup in (7.46), we get u∗ ∈ ∂γJ(u). ��

Lemma 2.149 guarantees that the operator L = ∂/∂t : D(L) ⊂ X → X∗ is
closed, densely defined, and maximal monotone. Related to this we have the
following result.

Corollary 7.23. The operator −Δp + ∂γJ : X → 2X∗
is pseudomonotone

w.r.t. D(L) and bounded.

Proof: Let A = −Δp. The operator A : X → X∗ is continuous, bounded,
and monotone. In particular, this result implies that A : D(L) ⊂ X → X∗ is
pseudomonotone w.r.t. D(L) (see [43, Theorem E.3.2]). On the other hand,
Lemma 7.22 establishes that the operator ∂γJ : X → 2X∗

is bounded and
pseudomonotone w.r.t. D(L). As both operators A and ∂γJ are bounded and
pseudomonotone w.r.t.D(L), we only need to verify property (iii) of Definition
2.154 for the sum A+ ∂γJ . To this end, assume (un) ⊂ D(L) with un ⇀ u in
X, Lun ⇀ Lu in X∗, u∗n ∈ (A+ ∂γJ)(un) with u∗n ⇀ u∗ in X∗, and

lim sup
n

〈u∗n, un − u〉 ≤ 0. (7.48)

We must show that u∗ ∈ (A + ∂γJ)(u) and 〈u∗n, un〉 → 〈u∗, u〉. From u∗n ∈
(A+ ∂γJ)(un), we have u∗n = Aun + η∗n with η∗n ∈ ∂γJ(un), and (7.48) reads
as

lim sup
n

〈Aun + η∗n, un − u〉 ≤ 0. (7.49)

It is known from Proposition 2.143 that the trace operator γ :W → Lp(Γ ) is
compact, so the weak convergence un ⇀ u in W allows us to get γun → γu
in Lp(Γ ), and as for obtaining (7.47),

|〈η∗n, un − u〉| ≤ Cu‖γun − γu‖Lp(Γ ) → 0 as n→ ∞. (7.50)

Combining (7.49) and (7.50) implies
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lim sup
n

〈Aun, un − u〉 ≤ 0.

The sequence (Aun) ⊂ X∗ is bounded, so that there is some subsequence
(Auk) with Auk ⇀ v. By means of Theorem 2.153(i), we see that A is pseu-
domonotone w.r.t. D(L). It follows that v = Au and 〈Auk, uk〉 → 〈Au, u〉.
This finding shows that each weakly convergent subsequence of (Aun) has the
same limit Au, and thus, the entire sequence (Aun) satisfies

Aun ⇀ Au and 〈Aun, un〉 → 〈Au, u〉. (7.51)

From (7.51) and u∗n = Aun+η∗n ⇀ u∗, we obtain η∗n = u∗n−Aun ⇀ u∗−Au.
As from (7.49) and (7.51) it follows that

lim sup
n

〈η∗n, un − u〉 ≤ 0,

the pseudomonotonicity of ∂γJ (cf. Lemma 7.22) ensures u∗ − Au ∈ ∂γJ(u);
thus u∗ ∈ (A+ ∂γJ)(u), and

〈u∗n −Aun, un〉 → 〈u∗ −Au, u〉,

which according to (7.51) yields 〈u∗n, un〉 → 〈u∗, u〉. ��

7.2.3 Existence and Comparison Result

Let u, ū be an ordered pair of sub- and supersolutions for problem (7.35). We
introduce the usual cutoff function b : Q × R → R related with this pair as
follows:

b(x, t, s) =

⎧⎨⎩
(s− ū(x, t))p−1 if s > ū(x, t),
0 if u(x, t) ≤ s ≤ ū(x, t),
−(u(x, t) − s)p−1 if s < u(x, t).

It is straightforward to verify that b is a Carathéodory function satisfying the
growth condition

|b(x, t, s)| ≤ k(x, t) + c3 |s|p−1 (7.52)

for a.e. (x, t) ∈ Q, for all s ∈ R, with some function k ∈ Lq
+(Q) and a constant

c3 > 0. Moreover, we have the estimate∫
Q

b(x, t, u(x, t))u(x, t) dx dt ≥ c4 ‖u‖p
Lp(Q) − c5, ∀ u ∈ Lp(Q), (7.53)

where c4 and c5 are some positive constants. Corresponding to the function
b, we introduce the Nemytskij operator B : Lp(Q) → Lq(Q) defined by

Bu(x, t) = b(x, t, u(x, t)), ∀ u ∈ Lp(Q).
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Remark 7.24. The role of the operator B introduced above is twofold. It is
used later in some auxiliary problem as a coercivity generating term, and it
will allow us to provide some comparison result.

Lemma 7.25. Let P : X → X∗ be a penalty operator related with the given
closed, convex subset K of X in the sense of Definition 7.20. Then the (single-
valued) operators B, P : X → X∗ are bounded and pseudomonotone w.r.t.
D(L).

Proof: In view of (7.52), the Nemytskij operator B : Lp(Q) → Lq(Q) is
continuous and bounded. Thus, from the compact embedding W ⊂ Lp(Q), it
follows that B :W → Lq(Q) ⊂ X∗ is completely continuous, so in particular,
pseudomonotone w.r.t. D(L). By definition, the penalty operator P : X →
X∗ is bounded, hemicontinuous, and monotone. This result implies that P :
X → X∗ is pseudomonotone in the usual sense [cf. Lemma 2.98 (i)] and thus
pseudomonotone w.r.t. D(L). ��

Using the above operator B, let us consider now the following auxiliary
variational–hemivariational inequality: Find u ∈ D(L) ∩K such that

〈Lu+A(u) + λB(u) − f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ K,

(7.54)

with a number λ > 0 that will be chosen later.

Lemma 7.26. Let u and ū be sub- and supersolutions of (7.35) satisfying
u ≤ ū. Suppose furthermore that D(L) ∩K �= ∅ and the hypotheses (H1) and
(H2). Then problem (7.54) has solutions.

Proof: We state a penalty problem related to (7.54): Find u ∈ D(L) such
that

〈Lu+A(u) + λB(u) +
1
ε
P (u) − f, v − u〉

+
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ X, (7.55)

where ε > 0 is arbitrarily small, and P is the penalty operator associated with
K whose existence is assumed by hypothesis (H2).

(a) Existence of solutions of (7.55).

Denote A = A+ λB + 1
εP + ∂γJ : X → 2X∗

. We infer from Lemma 7.22 and
Lemma 7.25 that the operator A : X → 2X∗

is bounded and pseudomonotone
w.r.t. D(L). We claim that A is coercive in the sense of Definition 2.155.
Toward this end, let v∗ ∈ ∂γJ(v) �= ∅ (it was shown in the proof of Lemma
7.22 that ∂γJ(v) �= ∅). By means of (H1)(ii) and applying Theorem 2.181, we
get
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Jo(γv; γϕ) ≤
∫

Γ

jo(γv; γϕ) dΓ, ∀ v, ϕ ∈ X. (7.56)

As v∗ ∈ ∂γJ(v), relation (7.56) and assumption (H1)(ii) result in the estimate

|〈v∗, v〉| ≤ c2
∫

Γ

(1 + |γv|p−1)|γv| dΓ. (7.57)

Taking into account that γ : X → Lp(Γ ) is linear and bounded, from (7.57),
we get

|〈v∗, v〉| ≤ c̃2‖v‖X + c2‖γ‖p‖v‖p
X (7.58)

with a constant c̃2 > 0. By Definition 7.20 of the penalty operator, we have

〈P (v), v〉 ≥ 〈P (0), v〉 ≥ −‖P (0)‖X∗‖v‖X . (7.59)

Thus, (7.53), (7.58), and (7.59) yield the estimate

〈A(v) + λB(v) +
1
ε
P (v) + v∗, v〉

≥ (1 − c2‖γ‖p)‖|∇v|‖p
Lp(Q) + (λc4 − c2‖γ‖p)‖v‖p

Lp(Q) − c̃2‖v‖X

−1
ε
‖P (0)‖X∗‖v‖X − c5.

Selecting λ > 0 such that

λ >
c2‖γ‖p

c4
,

and using the assumption c2‖γ‖p < 1 [see (H1)(ii)], this proves the coerciv-
ity of A. We are thus in a position to apply Theorem 2.156. It follows that
range(L + A) = X∗; i.e., there is a u ∈ D(L) and an η∗ ∈ ∂γJ(u) such that

Lu+A(u) + λB(u) +
1
ε
P (u) + η∗ = f in X∗. (7.60)

By definition of ∂γJ(u) and in view of (7.56), we conclude

〈η∗, ϕ〉 ≤
∫

Γ

jo(γu; γϕ) dΓ, ∀ ϕ ∈ X. (7.61)

Finally from (7.60) and (7.61), we derive that for any ε > 0, the penalty
problem (7.55) has a solution.

(b) Boundedness of the penalty solutions in W .

According to part (a) for any ε > 0, a solution uε of (7.55) exists that satisfies
equation (7.60). We show that the family {uε : ε > 0, small} is bounded with
respect to the graph norm of D(L). To this end, let u0 be a (fixed) element of
D(L)∩K. Multiplying (7.60) (with u replaced by uε) by v = uε − u0, we get
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〈Luε +A(uε) + λB(uε) +
1
ε
P (uε) + η∗ε , uε − u0〉 = 〈f, uε − u0〉,

where η∗ε ∈ ∂γJ(uε). Using the monotonicity of L and that Pu0 = 0 [cf.
(7.39)], we get

〈f − u′0, uε − u0〉

= 〈u′ε − u′0, uε − u0〉 + 〈(A+ λB)(uε), uε − u0〉 +
1
ε
〈Puε − Pu0, uε − u0〉

+〈η∗ε , uε − u0〉
≥ 〈(A+ λB)(uε) + η∗ε , uε − u0〉.

Thus,
〈(A+ λB)(uε) + η∗ε , uε − u0〉

‖uε − u0‖X
≤ ‖f − u′0‖X∗ ,

for all ε > 0. As the operator A + λB + ∂γJ : X → X∗ is coercive, we
deduce that ‖uε‖X is bounded. As a consequence, we see that the sets (A(uε)),
(B(uε)), and (η∗ε ) are bounded in X∗. Moreover, from the growth conditions
of b, we readily see that (B(uε)) is bounded in Lq(Q). Recall that the penalty
solutions uε satisfy (7.60); i.e.,〈

Luε +A(uε) + λB(uε) +
1
ε
P (uε) + η∗ε , ϕ

〉
= 〈f, ϕ〉, ∀ ϕ ∈ X. (7.62)

We immediately see from (7.62) that (u′ε) is bounded if and only if (1
εP (uε))

is bounded. Next, we check that the sequence (1
εP (uε)) is bounded in X∗. To

see this, for each ε, we choose w = wε to be an element satisfying (7.41) and
(7.42) with u = uε. From (7.62), we have

〈u′ε, wε〉 + 〈(A+ λB)(uε) + η∗ε , wε〉 +
1
ε
〈Puε, wε〉 = 〈f, wε〉.

By using (7.41), we get

1
ε
〈P (uε), wε〉 ≤ 〈f − λB(uε), wε〉 − 〈η∗ε , wε〉 + α(‖wε‖Lp(Q) + ‖γwε‖Lp(Γ )).

(7.63)

Let c > 0 be some generic constant. As (‖B(uε)‖Lq(Q)) is bounded, we obtain

|〈f − λB(uε), wε〉| ≤ c‖wε‖Lp(Q), ∀ ε,
because λ > 0 is fixed. On the other hand, from (7.44) [see also (7.45)] and
the boundedness of ‖uε‖X , we find that there is a constant c > 0 such that

|〈η∗ε , wε〉| ≤ c‖γwε‖Lp(Γ ), ∀ ε.

Hence, we get for some c > 0,
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|〈f − λB(uε) − η∗ε , wε〉| ≤ c(‖wε‖Lp(Q) + ‖γwε‖Lp(Γ )), ∀ ε.

This result, (7.63), and (7.42) imply that

1
ε
‖Puε‖X∗ ≤ α+ c

D
, ∀ ε.

Consequently, the set (uε) is bounded in W , and thus there is some weakly
convergent subsequence (un) with un = uεn and εn → 0 as n→ ∞; i.e.,

un ⇀ u in X, u′n ⇀ u′ in X∗.

As D(L) is closed inW and convex, it is weakly closed inW , and so u ∈ D(L).

(c) The limit u solves (7.54).

We prove that u obtained as the weak limit in W as shown in part (b) above
is a solution of inequality (7.54). We have already obtained in part (b) that
Pun → 0 in X∗. Then, on the basis of the monotonicity of P , it follows that

〈Pv, v − u〉 ≥ 0, ∀ v ∈ X.

As in the proof of Minty’s lemma (cf. [124]), using the hemicontinuity of P ,
we obtain from this inequality that

〈Pu, v〉 ≥ 0, ∀ v ∈ X.

Hence, Pu = 0 in X∗; that is, u ∈ K (see (7.39) in Definition 7.20).
Setting v = u in the inequality (7.55) satisfied by the penalty solutions un

enables us to write〈
u′n +A(un) + λB(un) +

1
εn
P (un) − f, u− un

〉
+
∫

Γ

jo(γun; γu− γun) dΓ

≥ 0. (7.64)

As
〈u′ − u′n, u− un〉 ≥ 0 and − 1

εn
〈P (un), u− un〉 ≥ 0,

we derive from (7.64) the inequality

〈A(un), un − u〉 ≤ 〈u′ + λB(un) − f, u− un〉 +
∫

Γ

jo(γun; γu− γun) dΓ.

(7.65)

Theorem 2.141 ensures that the embedding W ⊂ Lp(Q) is compact, whereas
Proposition 2.143 guarantees the compactness of the trace operator γ :W →
Lp(Γ ). Then, from the upper semicontinuity of jo (see Proposition 2.162 (iii)),
we get from (7.65)

lim sup
n→∞

〈A(un), un − u〉 ≤ 0.
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Because A is of class (S+) with respect to D(L) [cf. Lemma 2.111(i) and
Theorem 2.153(ii)], we infer

un → u in X. (7.66)

Inequality (7.55) with v ∈ K entails that the penalty solutions un satisfy

〈u′n +A(un) + λB(un) − f, v − un〉 +
∫

Γ

jo(γun; γu− γun) dΓ

≥ 〈− 1
εn
P (un), v − un〉 ≥ 0.

The weak convergence of (un) in W and (7.66) allow us to pass to the limit
as n→ ∞, proving that u is a solution of (7.54). ��

The main existence and comparison result of this section is now formu-
lated.

Theorem 7.27. Let the hypotheses of Lemma 7.26 be satisfied. Suppose fur-
thermore that

u ∨K ⊂ K, ū ∧K ⊂ K.

Then the variational–hemivariational inequality (7.35) has solutions within
the ordered interval [u, ū] formed by the pair of sub- and supersolutions u and
ū with u ≤ ū.

Proof: In view of Lemma 7.26, the auxiliary variational–hemivariational in-
equality (7.54) possesses solutions. To justify the assertion of Theorem 7.27,
we only need to show that there are solutions of (7.54) lying within the inter-
val [u, ū] of the given sub- and supersolutions, because in this case, B(u) = 0
and any solution of (7.54) must be also a solution of (7.35) or equivalently of
(7.36). Let us check that u ≤ ū, where u is a solution of (7.54) and ū is the
given supersolution of (7.35). We have u ∈ D(L) ∩K,

〈Lu+A(u) + λB(u) − f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ K,

(7.67)

and ū ∈W with ū(·, 0) ≥ 0 in Ω and

〈ū′ +A(ū) − f, v − ū〉 +
∫

Γ

jo(γū; γv − γū) dΓ ≥ 0, ∀ v ∈ ū ∨K. (7.68)

Setting v = ū ∧ u ∈ K in (7.67) and v = ū ∨ u in (7.68), we obtain

〈u′ − ū′, (u− ū)+〉 + 〈A(u) −A(ū) + λB(u), (u− ū)+〉

≤
∫

Γ

(
jo(γū; γ(u− ū)+) + jo(γu;−γ(u− ū)+)

)
dΓ. (7.69)
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For the terms on the left-hand side of (7.69), we have

〈u′ − ū′, (u− ū)+〉 ≥ 0 (7.70)

and

〈A(u) −A(ū) + λB(u), (u− ū)+〉 ≥ c(p) ‖(u− ū)+‖p
X (7.71)

for λ large enough, where relation (7.40) has been used. By means of Propo-
sition 2.171(ii) and on the basis of assumption (H1)(i), we can estimate the
right-hand side of (7.69) as follows:∫

Γ

(
jo(γū; γ(u− ū)+) + jo(γu;−γ(u− ū)+)

)
dΓ

=
∫
{γu>γū}

(
jo(γū; γ(u− ū)) + jo(γu;−γ(u− ū))

)
dΓ

=
∫
{γu>γū}

(
ξ̄γ(u− ū) + ξ(−γ(u− ū))

)
dΓ

=
∫
{γu>γū}

(ξ̄ − ξ)(γu− γū) dΓ

≤ c1
∫
{γu>γū}

(γu− γū)p dΓ = c1‖γ(u− ū)+‖p
Lp(Γ )

≤ c1‖γ‖p‖(u− ū)+‖p
X , (7.72)

where ξ̄ ∈ ∂j(γū) and ξ ∈ ∂j(γu). Thus, from (7.69)–(7.72), we get

(c(p) − c1‖γ‖p)‖(u− ū)+‖p
X ≤ 0,

which implies in view of the relation c(p) − c1‖γ‖p > 0 in Hypothesis (H1)(i)
that (u − ū)+ = 0; i.e., u ≤ ū. The proof of the inequality u ≤ u follows the
same arguments, and we omit it. This process completes the proof. ��
Remark 7.28. We remark that the restrictions imposed on the constants c1
and c2 of hypothesis (H1) have been made only for technical reasons and
can be avoided. To this end, the proof presented here that is based on the
auxiliary problem (7.54) has to be appropriately modified in that instead of
(7.54), a more involved auxiliary variational–hemivariational inequality has to
be considered that includes an additional cutoff operator acting on the traces
γu of u ∈ X.

In the following example, we demonstrate the applicability of Theorem
7.27 for a convex, closed set K representing an obstacle problem constructing
a penalty function associated with K to satisfy assumption (H2).

Example 7.29. We consider an obstacle problem where the set of constraints
is given by

K = {u ∈ X : u ≤ ψ a.e. on Q},
with the obstacle function ψ required to verify:
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(i) ψ ∈W and ψ(·, 0) ≥ 0 on Ω.
(ii) ψ′ +Aψ ≥ 0 in X∗; i.e., 〈ψ′ +Aψ, v〉 ≥ 0, ∀ v ∈ X ∩ Lp

+(Q).

The penalty operator P : X → X∗ associated with the convex set K can be
chosen as

〈P (u), v〉 =
∫

Q

[(u− ψ)+]p−1 v dx dt+
∫

Γ

[(γu− γψ)+]p−1 γv dΓ, (7.73)

for all u, v ∈ X. It is easy to see that P is bounded, continuous, and monotone
from X to X∗. Let us check that it also satisfies (7.39). If P (u) = 0, then∫

Q

[(u− ψ)+]p−1 v dx dt =
∫

Γ

[(γu− γψ)+]p−1 γv dΓ = 0, ∀ v ∈ X.

In particular, this result implies that

(u− ψ)+ = 0 a.e. in Q; (7.74)

i.e.,

u ≤ ψ a.e. in Q; (7.75)

that is, u ∈ K. Conversely, assume that u ∈ K; i.e., u satisfies (7.75) or (7.74).
Then, by applying Fubini’s theorem, for a.a. t ∈ (0, τ), we have u(·, t) ≤
ψ(·, t) a.e. in Ω, which ensures that

γ∂Ωu(·, t) ≤ γ∂Ωψ(·, t) a.e. on ∂Ω

(γ∂Ω is the trace operator on ∂Ω). It means that γu ≤ γψ a.e. on Γ , and thus,
(γu − γψ)+ = 0 a.e. on Γ . Together with (7.74), this shows via (7.73) that
P (u) = 0 in X∗, so the equivalence in (7.39) holds. We have to check (7.41)
and (7.42). In this respect, for each u ∈ D(L), we choose w = (u−ψ)+. Then,
w ∈ X and w �= 0 whenever P (u) �= 0. As, by (i), (u− ψ)+(·, 0) = 0, we have

〈u′ − ψ′, (u− ψ)+〉 =
1
2
‖(u− ψ)+(·, τ)‖2

L2(Ω) ≥ 0.

Combining with 〈Au−Aψ, (u− ψ)+〉 ≥ 0 yields

〈u′ +Au, (u− ψ)+〉 ≥ 〈ψt +Aψ, (u− ψ)+〉 ≥ 0,

because (u−ψ)+ ∈ X ∩Lp
+(Q) and from (ii). Thus, (7.41) is satisfied for any

α > 0. To verify (7.42), we note from (7.73) that

〈P (u), w〉 =
∫

Q

[(u− ψ)+]p dx dt+
∫

Γ

[(γu− γψ)+]p dΓ

= ‖(u− ψ)+‖p
Lp(Q) + ‖(γu− γψ)+‖p

Lp(Γ ). (7.76)
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Using Hölder’s inequality and (7.73), we find some constant c > 0 such that

|〈P (u), v〉| ≤ ‖(u− ψ)+‖p−1
Lp(Q)‖v‖Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ )‖γv‖Lp(Γ )

≤ c(‖(u− ψ)+‖p−1
Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ ))‖v‖X ,

for all v ∈ X. Hence,

‖P (u)‖X∗ ≤ c(‖(u− ψ)+‖p−1
Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ )), ∀ u ∈ X.

This result, together with (7.76) and Young’s inequality, implies (7.42). Thus,
P in (7.73) is a penalty operator for K. For K, in our example, we have
ū ∧K ⊂ K whenever ū ∈ W and u ∨K ⊂ K if u ≤ ψ on Q. Moreover, the
conditions K ∧K ⊂ K and K ∨K ⊂ K are also satisfied, so Theorem 7.27
can be applied for any locally Lipschitz potential j verifying condition (H1).

Finally, we focus on the special case of problem (7.35) when K is the whole
space X; i.e., we deal with a hemivariational inequality (see Chap. 6): Find
u ∈ D(L) such that

〈Lu+A(u) − f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ X. (7.77)

As now K = X, Hypotheses (H2) is fulfilled with P = 0. As an immediate
consequence of Theorem 7.27, we have the following existence and comparison
result.

Theorem 7.30. Let u and ū be sub- and supersolutions of (7.77) satisfying
u ≤ ū. Then under Hypothesis (H1), problem (7.77) admits at least one solu-
tion within the ordered interval [u, ū].

7.2.4 Compactness and Extremality

Let S denote the set of all solutions u of (7.77) enclosed by given sub- and
supersolution u, ū; i.e., u ≤ u ≤ ū. We know from Theorem 7.30 that S �= ∅.
We point out some compactness properties of the solution set S.

Theorem 7.31. The solution set S is weakly sequentially compact in W and
compact in X.

Proof: The solution set S ⊂ [u, ū] is bounded in Lp(Q), so we have the
Lp(Γ )−boundedness of the traces of S. Next we show that S is bounded in
W. Let u ∈ S, and take as a test function in (7.77) v = 0. This process leads
to

〈u′ +Au, u〉 ≤ 〈f, u〉 +
∫

Γ

jo(γu;−γu) dΓ. (7.78)
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Notice that
〈u′, u〉 =

1
2
‖u(·, τ)‖2

L2(Ω) ≥ 0,

and by (H1)(i),∫
Γ

jo(γu;−γu) dΓ ≤ c2
∫

Γ

(1 + |γu|p−1) |γu| dΓ.

Then we get from (7.78) the following uniform estimate:

‖∇u‖p
Lp(Q) ≤ ‖f‖X∗‖u‖X + C, ∀ u ∈ S,

with a constant C > 0. This result determines the boundedness of S in X.
Setting in (7.77) the special test function v = u − ϕ, with u ∈ S and with
ϕ ∈ B = {v ∈ X : ‖v‖X ≤ 1}, we obtain

|〈u′, ϕ〉| ≤ |〈f, ϕ〉| + |〈Au,ϕ〉| +
∣∣∣∫

Γ

jo(γu;−γϕ) dΓ
∣∣∣.

In view of the boundedness of S in X, we derive

|〈u′, ϕ〉| ≤ c, ∀ ϕ ∈ B, (7.79)

where c on the right-hand side of (7.79) is a constant that does not depend
on u. Thus, we conclude

‖u‖W ≤ C, ∀ u ∈ S, (7.80)

for a constant C > 0.
Now let (un) ⊂ S be any sequence. Then by (7.80), a subsequence (uk) of

(un) exists with
uk ⇀ u in W,

for some u ∈W . As uk are solutions of (7.77), we have〈
∂uk

∂t
+Auk − f, v − uk

〉
+
∫

Γ

jo(γuk; γv − γuk) dΓ ≥ 0, ∀ v ∈ X.

(7.81)

Taking the weak limit u as test function v in (7.81), we get

〈Auk, uk − u〉 ≤
〈
∂uk

∂t
− f, u− uk

〉
+
∫

Γ

jo(γuk; γu− γuk) dΓ

≤
〈
∂u

∂t
− f, u− uk

〉
+
∫

Γ

jo(γuk; γu− γuk) dΓ. (7.82)

The weak convergence of (uk) in W implies γuk → γu in Lp(Γ ) because of
the compactness of the trace operator (cf. Proposition 2.143), and thus by
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applying (H1)(ii) the right-hand side of the last inequality in (7.82) tends to
zero as k → ∞. This result yields

lim sup
k

〈Auk, uk − u〉 ≤ 0. (7.83)

As A is pseudomonotone w.r.t. D(L), from (7.83), we get

Auk ⇀ Au and 〈Auk, uk〉 → 〈Au, u〉.

Moreover, because A has the (S+)−property w.r.t. D(L), the strong conver-
gence uk → u in X holds. The convergence properties of the subsequence (uk)
obtained so far and the upper semicontinuity of jo : R × R → R [cf. Propo-
sition 2.162(iii)] allow us the passage to the limit in (7.81) leading to u ∈ S,
which completes the proof. ��

Next we shall prove some properties of the solution set S related to the
partial order ≤ on X.

Lemma 7.32. Under hypothesis (H1), the solution set S of (7.77) within
[u, ū], for an ordered pair of sub-supersolutions, is directed.

Proof: For the proof, we only show that S is upward directed, because the
downward directedness can be proved similarly.

Let u1, u2 ∈ S, and denote u0 = max{u1, u2}. We introduce a cutoff
function b0 : Q× R → R as follows:

b0(x, t, s) =

⎧⎨⎩
(s− ū(x, t))p−1 if s > ū(x, t),
0 if u0(x, t) ≤ s ≤ ū(x, t),
−(u0(x, t) − s)p−1 if s < u0(x, t).

Corresponding to the function b0, we introduce the Nemytskij operator B0 :
Lp(Q) → Lq(Q) defined by

B0u(x, t) = b0(x, t, u(x, t)), ∀ u ∈ Lp(Q).

as the function b0 satisfies (7.52) and (7.53) with b replaced by b0, the Ne-
mytskij operator B0 has the same properties as the previously used operator
B. Consider the following auxiliary problem: find u ∈ D(L) such that

〈Lu+A(u) + λB0(u) − f, v − u〉 +
∫

Γ

jo(γu; γv − γu) dΓ ≥ 0, ∀ v ∈ X,

(7.84)

with λ > 0 that will be later chosen sufficiently large. The existence proof for
solutions of (7.84) follows the same idea as for the existence of the penalty
solutions of problem (7.55), making a suitable choice for λ > 0. Let u be a
solution of (7.84). We are going to show next that u verifies the inequality:
u0 ≤ u ≤ ū.



354 7 Variational–Hemivariational Inequalities

Recalling that uk are solutions of (7.77), they satisfy

uk ∈ D(L) : 〈Luk +A(uk) − f, v − uk〉 +
∫

Γ

jo(γuk; γv − γuk) dΓ

≥ 0, ∀ v ∈ X. (7.85)

If we take the special test function v = u + (uk − u)+ in (7.84) and v =
uk − (uk − u)+ in (7.85), we obtain by adding the resulting inequalities the
following:

〈u′k − u′, (uk − u)+〉 + 〈A(uk) −A(u) − λB0(u), (uk − u)+〉

≤
∫

Γ

(
jo(γu; γ(uk − u)+) + jo(γuk;−γ(uk − u)+)

)
dΓ.

As in the proof of Theorem 7.27, the terms on the left-hand side can be
estimated below by

〈u′k − u′, (uk − u)+〉 ≥ 0

and

〈A(uk) −A(u) − λB0(u), (uk − u)+〉 ≥ c(p) ‖(u− ū)+‖p
X , (7.86)

and the right-hand side can be estimated above by∫
Γ

(
jo(γu; γ(uk − u)+) + jo(γuk;−γ(uk − u)+)

)
dΓ

≤ c1‖γ‖p‖(uk − u)+‖p
X . (7.87)

Thus, from (7.86)–(7.87), we get

(c(p) − c1‖γ‖p)‖(uk − u)+‖p
X ≤ 0.

In view of Hypothesis (H1)(i), this implies that (uk − u)+ = 0; i.e., uk ≤ u.
The proof of u ≤ ū is carried over similarly. ��

On the basis of Lemma 7.32, we establish our extremality result.

Theorem 7.33. Assume the hypotheses of Lemma 7.32. The solution set S
has extremal solutions; i.e., a greatest solution u∗ and a smallest solution u∗
of S exist.

Proof: We only prove the existence of the greatest solution of (7.77) within
[u, ū], i.e., the greatest element of S. The proof of the smallest element can
be done in a similar way. As W is separable, the subset S ⊂ W is separable.
Therefore, a countable, dense subset Z = {zn : n ∈ N} of S exists. It is known
from Lemma 7.32 that S is a directed set, which allows the construction of
an increasing sequence (un) ⊂ S as follows. We pose u1 = z1. Select un+1 ∈ S
such that
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max{zn, un} ≤ un+1 ≤ ū.
The existence of un+1 is from Lemma 7.32. As (un) is increasing and both
bounded in Lp(Q) and order-bounded, we deduce by applying Lebesgue’s
dominated convergence theorem that un → u∗ := supn un strongly in Lp(Q).
By Theorem 7.31, we find a subsequence (uk) of (un), and an element u ∈ S
such that uk ⇀ u in W , and uk → u in Lp(Q) and in X. Thus, u = u∗

and each weakly convergent subsequence must have the same limit u∗, which
implies that the entire increasing sequence (un) satisfies

un, u
∗ ∈ S : un ⇀ u∗ in W, un → u∗ in X.

By construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ u∗, ∀ n;

thus Z ⊂ [u, u∗]. As the interval [u, u∗] is closed in W , we infer

S ⊂ Z ⊂ [u, u∗] = [u, u∗],

which together with u∗ ∈ S ensures that u∗ is the greatest element of S. ��

7.3 Nonsmooth Critical Point Theory

The goal of this section is to show how the hemivariational inequalities
can be investigated, alternatively to the sub-supersolution method, by us-
ing the nonsmooth critical point theory. The study of hemivariational in-
equalities has been initiated and developed by P. D. Panagiotopoulos (see
[101, 103, 104, 108, 171, 177, 179, 180]) to treat phenomena arising in me-
chanics and engineering problems where unilateral nonmonotone boundary
value conditions are present. For a recent use of the variational approach in
the frame of hemivariational inequalities, we refer to [78, 80, 97, 103, 104, 109,
154, 155, 169, 170, 171, 172, 173].

We are concerned with the following vector-valued hemivariational inequal-
ity: Find u ∈ V such that

(P ) a(u, v) +
∫

Ω

jo(x, u(x); v(x))dx ≥ 0, ∀ v ∈ V.

Here V stands for a reflexive Banach space, endowed with the norm ‖ · ‖V ,
which is densely and compactly embedded in Lp(Ω; Rm), 2 < p < +∞:

V ⊂ Lp(Ω; Rm), (7.88)

for a bounded domain Ω ⊂ R
N with a Lipschitz boundary ∂Ω. The mapping

a : V × V → R is a continuous, bilinear, symmetric form that is coercive:

a(v, v) ≥ α‖v‖2
V , ∀ v ∈ V, (7.89)

with a constant α > 0. The function j : Ω × R
m → R is supposed to satisfy

the following conditions:
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(a) j(·, y) : Ω → R is measurable, ∀ y ∈ R
m.

(b) j(x, ·) : R
m → R is locally Lipschitz, a.e. x ∈ Ω.

As usual, the notation jo(x, ·; ·) in the formulation of (P ) means the general-
ized directional derivative of j(x, ·) (cf. Definition 2.161). In view of condition
(b), the integrand jo(x, u(x); v(x)) in (P ) is finite a.e. in Ω. For a later use,
we recall that the symbol ∂j(x, ·) ⊂ R

m designates the generalized gradient
of j(x, ·) (cf. Definition 2.166). In addition, the function j : Ω × R

m → R is
assumed to fulfill the following hypotheses:

(H1) A constant c > 0 exists such that

|w| ≤ c(1 + |y|p−1), ∀ w ∈ ∂j(x, y), a.e x ∈ Ω, ∀ y ∈ R
m.

(H2) Constants μ > 2, a1 ≥ 0, a2 ≥ 0 and 0 ≤ σ < 2 exist such that

μj(x, y) − jo(x, y; y) ≥ −a1|y|σ − a2, a.e. x ∈ Ω, ∀ y ∈ R
m.

(H3) lim inf
y→0

j(x, y)
|y|2 ≥ 0 uniformly with respect to x ∈ Ω, and j(·, 0) = 0.

(H4) v0 ∈ V \ {0} exists such that

lim inf
s→+∞ s

−σ

∫
Ω

j(x, sv0(x))dx <
a1
σ − μ

∫
Ω

|v0(x)|σdx.

Notice first that (H1) ensures that the integral in Problem (P ) exists. Indeed,
by Proposition 2.171(ii) and (H1), we can write

|jo(x, u(x); v(x))| = |max{w · v(x) : w ∈ ∂j(x, u(x))}|
≤ c(1 + |u(x)|p−1)|v(x)|

for a.e. x ∈ Ω and for all u, v ∈ V. According to (7.88), we have |u|p−1 ∈
Lq(Ω), with 1/p+ 1/q = 1, and v ∈ Lp(Ω); thus, the integral in (P ) is finite.
We remark also that the integrals in (H4) make sense. This is easily seen from
relation j(·, 0) = 0 [cf. (H3)], Theorem 2.177, and (H1).

Our result for the existence of solutions to problem (P ) is the following.

Theorem 7.34. Assume that conditions (H1)–(H4) are satisfied. Then prob-
lem (P ) possesses at least one (nontrivial) solution u ∈ V \ {0}.

Proof: In view of the application of a variational approach, we consider the
functional I : V → R given by

I(v) =
1
2
a(v, v) +

∫
Ω

j(x, v(x))dx, ∀ v ∈ V (7.90)

and the functional J : Lp(Ω; Rm) → R defined as follows:

J(v) =
∫

Ω

j(x, v(x))dx, ∀ v ∈ Lp(Ω; Rm). (7.91)
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Assumption (H1) guarantees that J is Lipschitz continuous on the bounded
subsets of Lp(Ω; Rm) and its generalized gradient ∂J(v) ⊂ Lq(Ω; Rm) has the
property

∂J(v) ⊆ {w ∈ Lq(Ω; Rm) : w(x) ∈ ∂j(x, v(x)) for a.e. x ∈ Ω} (7.92)

(see Theorem 2.181). The inclusion in (7.92) ensures that every element z ∈
∂J(v) verifies

〈z, v〉 =
∫

Ω

z(x) · v(x)dx, ∀ v ∈ Lp(Ω; Rm) (7.93)

and

z(x) ∈ ∂j(x, v(x)) for a.a. x ∈ Ω. (7.94)

Taking into account (7.88), (7.90), and (7.91), it is clear that the locally
Lipschitz functional I : V → R is expressed by

I(v) =
1
2
a(v, v) +

(
J
∣∣
V

)
(v), ∀ v ∈ V, (7.95)

and its generalized gradient ∂I(v) ⊂ V ∗ satisfies

∂I(v) = Av + i∗∂J(v), ∀ v ∈ V, (7.96)

where A : V → V ∗ is the continuous linear operator corresponding to the
bilinear form a : V × V → R; i.e. 〈Av,w〉V ∗,V = a(v, w), ∀ v, w ∈ V , and
i : V → Lp(Ω; Rm) is the embedding in (7.88).

Our goal is to show that the functional I : V → R has a critical point
u ∈ V in the sense of Definition 2.182 with Ψ = 0 (which in fact is the sense
of Chang [64] as noticed in Example 2.188); that is,

0 ∈ ∂I(u). (7.97)

To this end, we apply Theorem 2.197 with Φ = I and Ψ = 0. We first show that
the functional I : V → R in (7.95) satisfies the (PS) condition in the sense of
Definition 2.190 with Ψ = 0 (which now takes the form in Proposition 2.193).
For checking condition (PS) for the functional I, let (vn) ⊂ V be a sequence
such that

|I(vn)| ≤M, ∀ n ≥ 1, (7.98)

with a constant M > 0, and let (wn) ⊂ V ∗ be a sequence satisfying

wn ∈ ∂I(vn), ∀ n ≥ 1, (7.99)

and
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wn → 0 in V ∗ as n→ ∞. (7.100)

By (7.96) and (7.99), we find that

zn ∈ ∂J(vn) ⊂ Lq(Ω; Rm), ∀ n ≥ 1, (7.101)

such that

wn = Avn + i∗zn, ∀ n ≥ 1. (7.102)

For n sufficiently large, by (7.98), (7.100), (7.95), and (7.102), we have

M + ‖vn‖V ≥ I(vn) − 1
μ
〈wn, vn〉V ∗,V

=
(

1
2
− 1
μ

)
a(vn, vn) +

1
μ

∫
Ω

[
μj(x, vn(x)) − zn(x) · vn(x)

]
dx,

(7.103)

where μ > 2 is given in (H2). Using (7.89), (7.94), (H2) and the continuity of
embedding (7.88), we obtain from (7.103) that constants b1 ≥ 0 and b2 ≥ 0
exist such that

M + ‖vn‖V ≥ α
(

1
2
− 1
μ

)
‖vn‖2

V − b1‖vn‖σ
V − b2. (7.104)

As μ > 2 and σ < 2, the estimate in (7.104) enables us to deduce that the
sequence (vn) is bounded in V . The reflexivity of V and the compactness of
the embedding (7.88) ensure the existence of a subsequence of (vn) denoted
again by (vn) and of an element v ∈ V with vn ⇀ v in V and

vn → v in Lp(Ω; Rm) as n→ ∞. (7.105)

As J : Lp(Ω; Rm) → R is locally Lipschitz, we see from (7.101) and (7.105)
that

(zn) is bounded in Lq(Ω; Rm). (7.106)

Furthermore, the compactness of embedding (7.88) and (7.106) implies that
along a relabeled subsequence

(i∗zn) converges strongly in V ∗. (7.107)

From (7.100), (7.102), and (7.107), we see that for a subsequence of (vn),
(Avn) converges strongly in V ∗. Because of (7.89), it follows that a strongly
convergent subsequence of (vn) exists, which yields the (PS) condition for the
locally Lipschitz functional I.

In the next step of the proof, we show that

lim
t→+∞ I(tv0) = −∞, (7.108)
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where v0 ∈ V is the element from assumption (H4). To prove (7.108), we
remark that, given x ∈ Ω and y ∈ R

m, the following differentiation formula
holds:

d

dτ
(τ−μj(x, τy))

= μτ−μ−1

[
−j(x, τy) +

1
μ
j′y(x, τy)(τy)

]
, for a.a. τ ∈ R, (7.109)

where j′y denotes the differential with respect to y (it exists a.e. because j(x, ·)
is locally Lipschitz). Integrating (7.109) over [1, t], with t > 1, and taking into
account that the differential always belongs to the generalized gradient (see
[68, p. 32]), we see that

t−μj(x, ty) − j(x, y) ≤ −
∫ t

1

τ−μ−1
[
μj(x, τy) − jo(x, τy; τy)

]
dτ (7.110)

holds for all t > 1, for a.a. x ∈ Ω, and for all y ∈ R
m. Thus, (7.110) and (H2)

yield

t−μj(x, ty) − j(x, y) ≤
∫ t

1

τ−μ−1(a1τσ|y|σ + a2)dτ

= a1|y|σ
1

σ − μ (tσ−μ − 1) − a2
μ

(t−μ − 1)

≤ a1
μ− σ |y|

σ +
a2
μ

(7.111)

for all t > 1, for a.a. x ∈ Ω, and for all y ∈ R
m. Setting y = sv0(x) in (7.111),

for x ∈ Ω and s > 0, it turns out that

j(x, tsv0(x)) ≤ tμ
[
j(x, sv0(x)) +

a1
μ− σ s

σ|v0(x)|σ +
a2
μ

]
(7.112)

for all t > 1, s > 0, and for a.a. x ∈ Ω. On the basis of (7.95) and (7.112), we
get

I(tsv0) ≤
1
2
t2s2a(v0, v0) + tμsσ

[
s−σ

∫
Ω

j(x, sv0(x))dx

+
a1
μ− σ

∫
Ω

|v0(x)|σdx+
a2
μ
|Ω|s−σ

]
(7.113)

for all t > 1, s > 0, and for a.a. x ∈ Ω. By assumption (H4), there is a number
s > 0 such that

s−σ

∫
Ω

j(x, sv0(x))dx+
a1
μ− σ

∫
Ω

|v0(x)|σdx+
a2
μ
|Ω|s−σ < 0. (7.114)

Fixing s > 0 in (7.114) and passing to the limit in (7.113) as t → +∞, we
arrive at (7.108), because μ > 2.
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The proof continues by now checking that constants b > 0 and ρ > 0 exist
for which we have

I(v) ≥ b, ∀ v ∈ V with ‖v‖V = ρ. (7.115)

To this end, we make use of (H3). Given ε > 0, by (H3), there is δ = δ(ε) > 0
such that

j(x, y) ≥ −ε|y|2, a.a. x ∈ Ω, ∀ y ∈ R
m, |y| ≤ δ. (7.116)

The function j : Ω × R
m → R can be estimated from (H1) as follows:

|j(x, y)| ≤ c1|y|p + c2, a.a. x ∈ Ω, ∀ y ∈ R
m,

with constants c1 > 0 and c2 > 0, implying that

|j(x, y)| ≤
(
c1 +

c2
δp

)
|y|p, a.a. x ∈ Ω, ∀ y ∈ R

m, |y| ≥ δ. (7.117)

Relations (7.116) and (7.117) lead to

j(x, y) ≥ −ε|y|2 −
(
c1 +

c2
δp

)
|y|p, a.a. x ∈ Ω, ∀ y ∈ R

m. (7.118)

From the continuity of the embedding in (7.88) and using (7.118), we see that
constants c0 > 0 exist and c > 0 such that

I(v) ≥
[
1
2
α− c0ε− c

(
c1 +

c2
δp

)
‖v‖p−2

V

]
‖v‖2

V , ∀ v ∈ V. (7.119)

Choosing ε > 0 sufficiently small and using that p > 2, estimate (7.119) allows
us to get constants b > 0 and ρ > 0 establishing assertion (7.115).

On the other hand, by relation j(·, 0) = 0 in assumption (H3), we know
that I(0) = 0, whereas from (7.108), we can find a number t0 > 0 satisfying

t0‖v0‖V > ρ and I(t0v0) < 0, (7.120)

where ρ > 0 is as in (7.115). We are now in a position to apply Theorem 2.197
for S = {v ∈ V : ‖v‖V = ρ} and Q = [0, t0v0] = {tt0v0 ∈ V : 0 ≤ t ≤ 1},
with ∂Q = {0, t0v0}. According to the first relation in (7.120), the sets S and
Q link in the sense of Definition 2.195 (making in fact the linking situation
in the mountain pass theorem). We have from the second relation in (7.120)
and from (7.115) that

max
∂Q

I ≤ 0 < b ≤ inf
S
I.

Taking into account that the (PS) condition is satisfied, we may apply Theo-
rem 2.197. So u ∈ V exists such that (7.97) holds. From the above inequalities
and the last assertion of Theorem 2.197, we have u �= 0.

We now show that u in (7.97) solves problem (P ). In view of (7.96), relation
(7.97) becomes
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Au+ i∗z = 0 for some z ∈ ∂J(u). (7.121)

Using (7.92), (7.93), (7.94), and Proposition 2.171(ii), equality (7.121) yields
the desired result. ��

Remark 7.35. Theorem 7.34 extends Theorem 2.15 in [64] (and a fortiori The-
orem 3.10 in [3]). The most important aspect in this direction is that assump-
tion (H2) significantly weakens the requirement jo(x, y; y) ≤ μj(x, y) < 0 for
large y used extensively in many works (see Ambrosetti and Rabinowitz [3],
Chang [64], Rabinowitz [191]) by dropping the sign condition j(x, y) < 0 and
allowing a more general growth for μj(x, y) − jo(x, y; y) as well as vector-
values for y [see hypothesis (H2)]. Notice that in the works [3, 64, 191], the
potential −j is used in place of our j. In comparison with the cited works, the
relaxed conditions that we assume permit to treat problems involving both
superlinear and sublinear terms under the integral in (P ). It is also worth to
point out that problem (P ) deals with vector-valued generalized gradients ∂j
that enables us to cover systems of hemivariational inequalities (see [177] for
a different approach but where the superlinear case cannot be treated).

The following examples provide nonsmooth function j satisfying (H1)–
(H4). For the sake of simplicity, we drop the dependence of j with respect to
x ∈ Ω.

Example 7.36. Let the function j : R → R be defined by

j(y) = max
{
− 1
h
|y|h,−1

r
|y|r

}
, ∀ y ∈ R,

with numbers h and r satisfying h, r ∈ (2, p], where p is as in (7.88). It
is clear that the function j is locally Lipschitz and verifies (H3). Using the
differentiation formula for the generalized gradient of the maximum of finitely
many functions (cf. [68, p. 47]), we see that

jo(y; z) = max{−|y|h−2yz,−|y|r−2yz}, ∀ y, z ∈ R.

Thus, the generalized gradient of j verifies the growth condition (H1). A
direct computation shows that (H2) is satisfied by choosing any number μ
with 2 < μ ≤ min{h, r} and any σ ∈ [0, 2). We have for all v0 ∈ V \ {0} and
σ < 2 that

lim inf
s→+∞ s

−σ

∫
Ω

j(sv0(x))dx = −∞.

Therefore, assumption (H4) is verified and Theorem 7.34 can be applied to
the corresponding problem (P ).

Example 7.37. Consider the function j : R
2 → R defined by

j(y) = −1
p
|y1|p +

∫ y2

0

β(t)dt, ∀ y = (y1, y2) ∈ R
2,
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with p > 2 as in (7.88) and a function β : R → R satisfying β ∈ L∞
loc(R),

tβ(t) ≥ 0 for t ∈ R near 0 and |β(t)| ≤ c(1 + |t|γ), for all t ∈ R, with c > 0
and 0 ≤ γ < 1. It is readily seen that the function j is locally Lipschitz
and satisfies the growth condition (H1). Assumption (H2) is verified for any
2 < μ ≤ p and σ = γ + 1. The hypothesis tβ(t) ≥ 0 for t ∈ R near 0 implies
that (H3) is valid. Taking v0 = (v1, 0) ∈ V \ {0}, we note that

lim
s→+∞ s

−(γ+1)

∫
Ω

j(sv0(x))dx = −∞,

so condition (H4) is verified. Theorem 7.34 can be applied to the corresponding
problem (P ).

7.4 A Constraint Hemivariational Inequality

In contrast to the first two sections of this chapter, we now treat the varia-
tional-hemivariational inequalities by variational methods in place of the sub-
supersolution method. Specifically, we take advantage here of the nonsmooth
critical point theory developed in the sense of Definition 2.182.

We introduce the functional setting of our problem. Let Ω be a bounded
domain in R

N with a Lipschitz boundary ∂Ω. Let the Sobolev space H1
0 (Ω)

be endowed with the scalar product

(u, v)H1
0 (Ω) =

∫
Ω

∇u · ∇vdx, ∀ u, v ∈ H1
0 (Ω),

which makes it a Hilbert space. The associated norm is denoted ‖·‖. The cone
of nonnegative functions in H1

0 (Ω), denoted

K = {u ∈ H1
0 (Ω) : u(x) ≥ 0 for a.e. x ∈ Ω}, (7.122)

is a convex and closed set. Corresponding to K in (7.122), we consider its
indicator function Ψ : H1

0 (Ω) → R ∪ {+∞}; that is,

Ψ(u) =
{

0 if u ∈ K
+∞ if u �∈ K. (7.123)

It follows that Ψ is a proper, convex, lower semicontinuous function.
In our problem, there are also given g ∈ L2(Ω) such that

g ≤ 0, a.e. in Ω (7.124)

and a (Carathéodory) function j : Ω × R → R satisfying

(a) j(·, y) : Ω → R is measurable, for all y ∈ R.
(b) j(x, ·) : R → R is locally Lipschitz, for a.a. x ∈ Ω.
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In view of (b), the generalized directional derivative denoted jo(x, y; ·)
of j(x, y) with respect to the second variable y ∈ R and the corresponding
generalized gradient ∂j(x, y) of j with respect to y ∈ R are well defined (cf.
Definition 2.161 and Definition 2.166).

We impose the following hypotheses on the function j : Ω×R → R to be
fulfilled:

(j1) |ξ| ≤ c(1 + |y|p−1) for a.a. x ∈ Ω, for all y ∈ R, and for all ξ ∈ ∂j(x, y),
with constants c > 0 and 1 ≤ p < 2N/(N − 2) if N ≥ 3 and an arbitrary
p ≥ 1 if N = 1 or N = 2.

(j2) lim infy→0+ y−2j(x, y) ≥ 0 uniformly for a.e. x ∈ Ω, and j(·, 0) = 0.
(j3) μ−1jo(x, y; y) ≤ j(x, y) for a.a. x ∈ Ω and for all y ∈ R, y ≥ 0, where μ

is a constant with μ > 2.
(j4) there is an element u0 ∈ K such that∫

Ω

j(x, u0(x))dx < 0.

Denote by λ1 the first eigenvalue of −Δ on H1
0 (Ω). We state the following

result.

Theorem 7.38. Let the subset K of H1
0 (Ω) be the one in (7.122). Under the

above assumptions for g ∈ L2(Ω) and j : Ω × R → R, whenever λ < λ1 the
variational–hemivariational inequality: Find u ∈ K such that∫

Ω

∇u · (∇v −∇u) dx+
∫

Ω

jo(x, u(x); v(x) − u(x)) dx

≥ λ
∫

Ω

u(v − u) dx+
∫

Ω

g(v − u) dx, ∀ v ∈ K, (7.125)

has a nontrivial solution.

Proof: The conclusion will be achieved through Theorem 2.197. First, we
remark that without loss of generality, we may assume p > 2 in (j1). With the
number p in (j1), we introduce the functional J : Lp(Ω) → R by

J(u) =
∫

Ω

j(x, u(x))dx. (7.126)

By means of (j1) and applying Theorem 2.181, we see that the functional
J in (7.126) is Lipschitz continuous on the bounded subsets of Lp(Ω); thus,
it is locally Lipschitz on Lp(Ω). Moreover, Theorem 2.181 ensures that the
generalized gradient ∂J(u) of J at any u ∈ Lp(Ω) satisfies

∂J(u) ⊆ {w ∈ Lq(Ω; R) : w(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω}, (7.127)

with 1/p + 1/q = 1. Let us now define for any fixed number λ ∈ R the
functional Φ : H1

0 (Ω) → R by
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Φ(u) =
1
2
‖u‖2 +

∫
Ω

j(x, u(x)) dx− λ

2
‖u‖2

L2(Ω) −
∫

Ω

gu dx

=
1
2
‖u‖2 + J(u) − λ

2
‖u‖2

L2(Ω) −
∫

Ω

gu dx. (7.128)

In writing (7.128), we have used (7.126) and Theorem 2.74 (i) according to
the assumption for p in (j1). Furthermore, we consider the functional I :
H1

0 (Ω) → R ∪ {+∞} given by

I = Φ+ Ψ, (7.129)

with Φ : H1
0 (Ω) → R and Ψ : H1

0 (Ω) → R ∪ {+∞} expressed in (7.128) and
(7.123), respectively. As Φ : H1

0 (Ω) → R is locally Lipschitz and Ψ : H1
0 (Ω) →

R ∪ {+∞} is proper, convex, and lower semicontinuous, it turns out that the
functional I : H1

0 (Ω) → R∪{+∞} in (7.129) satisfies the structural hypothesis
(H) in Sect. 2.5.3.

We show that the functional I : H1
0 (Ω) → R ∪ {+∞} in (7.129) fulfills

the (PS) condition in the sense of Definition 2.190. To see this, let a sequence
(un) ⊂ H1

0 (Ω) satisfy I(un) → c, with a c ∈ R, and

Φo(un; v − un) + Ψ(v) − Ψ(un) ≥ −εn‖v − un‖, ∀ v ∈ H1
0 (Ω), (7.130)

for a sequence (εn) ⊂ (0,+∞) with εn → 0. It is clear that (un) ⊂ K. Assume
first that λ ∈ [0, λ1). Using the expressions of Φ and Ψ given in (7.128) and
(7.123), respectively, inequality (7.130) becomes∫

Ω

∇un · ∇(v − un)dx+ Jo(un; v − un) − λ
∫

Ω

un(v − un)dx−
∫

Ω

g(v − un)dx

≥ −εn‖v − un‖, ∀ v ∈ K. (7.131)

Notice that by (7.122) it is permitted to put v = 2un in (7.131). Thus, we
derive

‖un‖2 + Jo(un;un) − λ
∫

Ω

u2
n dx−

∫
Ω

gun dx− εn‖un‖, ∀ n ∈ N. (7.132)

Then, for any sufficiently large n, in view of (7.128), (7.132), that I(un) → c,
and making use of the constant μ > 2 in (j3), we obtain

c+ 1 +
1
μ
‖un‖ ≥ Φ(un) +

1
μ
εn‖un‖

≥
(

1
2
− 1
μ

)
‖un‖2 + λ

(
1
μ
− 1

2

)
‖un‖2

L2(Ω) +
(

1
μ
− 1

)∫
Ω

gun dx

+
∫

Ω

j(x, un) dx− 1
μ
Jo(un;un). (7.133)

On the basis of (7.127), Proposition 2.171(ii), and because μ > 2 and λ ≥ 0,
it follows that inequality (7.133) leads to
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c+ 1 +
1
μ
‖un‖ ≥

(
1
2
− 1
μ

)
(1 − λ−1

1 λ)‖un‖2

+
∫

Ω

(
j(x, un) − 1

μ
jo(x, un;un)

)
dx

+
(

1
μ
− 1

)
λ
− 1

2
1 ‖g‖L2(Ω) ‖un‖. (7.134)

In writing (7.134), we have also used the Rayleigh–Ritz variational character-
ization of λ1

λ1 = min
v∈H1

0 (Ω), v �=0

‖un‖2

‖un‖2
L2(Ω)

,

as well as Theorem 2.181. Then (7.134) and (j3) imply

c+ 1 +
1
μ
‖un‖ ≥

(
1
2
− 1
μ

)
(1 − λ−1

1 λ)‖un‖2 +
(

1
μ
− 1

)
λ
− 1

2
1 ‖g‖L2(Ω)‖un‖.

(7.135)

As μ > 2 and λ < λ1, from estimate (7.135), it follows that the sequence (un)
is bounded in H1

0 (Ω). If λ < 0, it is seen from (7.133) (valid for every λ) and
(j3) that the same conclusion holds. Then, by Theorem 2.74(i), u ∈ K such
that along a relabelled subsequence, we have

un ⇀ u in H1
0 (Ω), and un → u in L2(Ω) and in Lp(Ω). (7.136)

Consequently, from (7.136) and (7.131) with v = u, in conjunction with Propo-
sition 2.162(iii), we get

lim sup
n→∞

‖un‖2 ≤ ‖u‖2.

This result yields that un → u strongly inH1
0 (Ω), which enables us to conclude

that the functional I in (7.129) satisfies the (PS) condition in the sense of
Definition 2.190.

Toward the application of Theorem 2.197 to the functional I in (7.129),
we claim that we can find constants α > 0 and ρ > 0 such that

I(v) ≥ α whenever ‖v‖ = ρ. (7.137)

The argument is carried out as follows. Fix an ε > 0. Assumption (j2) ensures
the existence of some δ > 0 such that

|y|−2j(x, y) ≥ −ε for a.a. x ∈ Ω and for all y ∈ R with |y| ≤ δ. (7.138)

Theorem 2.177 (j1) and (j2) imply the estimate

|j(x, y)| = |j(x, y) − j(x, 0)| ≤ c1(1 + |y|p)

for all (x, y) ∈ Ω × R, with a constant c1 > 0. Combining with (7.138), we
find
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−j(x, y) ≤ ε|y|2 + c1(δ−p + 1)|y|p, for a.a. x ∈ Ω, for all y ∈ R.

The following estimate for the functional J in (7.126) is then available:

−J(u) ≤ ε‖u‖2
L2(Ω) + c1(δ−p + 1)‖u‖p

Lp(Ω), ∀ u ∈ Lp(Ω). (7.139)

By Theorem 2.74(i) and because p > 2, we infer from (7.139) that a constant
a > 0 exists independent of ε such that the inequality

−J(u) ≤ εa‖u‖2

holds for all u ∈ H1
0 (Ω) with ‖u‖ sufficiently small. Suppose λ ≥ 0. Then

(7.128), (7.124), and (7.139) yield

I(u) = Φ(u) ≥ 1
2
(1 − λλ−1

1 − εa)‖u‖2

for all u ∈ K provided ‖u‖ is small enough. As λ < λ1 and ε > 0 can be
chosen arbitrarily small, the claim in (7.137) is valid. If λ < 0, from (7.128)
and (7.124), we obtain

I(u) ≥ 1
2
(1 − εa)‖u‖2,

whenever u ∈ K with sufficiently small ‖u‖. Choosing ε < a−1 leads to (7.137).
The next step in the proof is to show that for the element u0 ∈ H1

0 (Ω)
given in assumption (j4) we have

lim
t→+∞ I(tu0) = −∞. (7.140)

For proving this result, we need the formula below involving the general-
ized gradient ∂t with respect to t ∈ R of the locally Lipschitz function
t ∈ (0,+∞) 
→ t−μj(x, ty) ∈ R, where y ∈ R is fixed:

∂t(t−μj(x, ty)) = μt−1−μ(μ−1ty∂j(x, ty) − j(x, ty))

for a.a. x ∈ Ω, all y ∈ R and t > 0. By Theorem 2.177 and Proposition
2.171(ii), the previous relation implies

t−μj(x, ty) − j(x, y) ≤ μτ−1−μ(μ−1jo(x, τy; τy) − j(x, τy))(t− 1) (7.141)

for a.a. x ∈ Ω and all y ∈ R, t > 1, with some τ ∈ (1, t). Here μ designates
the constant μ > 2 entering condition (j3). We note that assumptions (j1),
(j3), and relation (7.141) ensure

j(x, ty) − tμj(x, y) ≤ 0 (7.142)

for a.a. x ∈ Ω, for all y ∈ R, y ≥ 0, and t > 1. Using the element u0 ∈ K
given in assumption (j4), from (7.142), we deduce
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I(tu0) = Φ(tu0)

≤ t2

2

(
‖u0‖2 − λ‖u0‖2

L2(Ω)

)
+ tμ

∫
Ω

j(x, u0(x)) dx− t
∫

Ω

g(x)u0(x)dx.

(7.143)

Letting t → +∞ in (7.143), and taking into account hypothesis (j4) as well
as μ > 2, we arrive at the claim in (7.140).

On the basis of (7.140), we fix t0 > 0 such that

I(t0u0) ≤ 0 and t0‖u0‖ > ρ, (7.144)

for ρ > 0 entering (7.137). Our goal is to apply Theorem 2.197 choosing

S = {v ∈ H1
0 (Ω) : ‖v‖ = ρ}, (7.145)

with ρ > 0 as in (7.137), and

Q = [0, t0u0] = {tt0u0 ∈ H1
0 (Ω) : 0 ≤ t ≤ 1}, (7.146)

where ∂Q = {0, t0u0}. It is clear from the second relation in (7.144) that S
and Q link in the sense of Definition 2.195. In fact, this is the linking situation
in the mountain pass theorem.

Let us show that the functional I : H1
0 (Ω) → R∪{+∞} in (7.129) satisfies

the hypotheses of Theorem 2.197 with the choices for S and Q in (7.145)
and (7.146), respectively. We have already proved that I complies with the
structural hypothesis (H) in Sect. 2.5.3, and it satisfies condition (PS) in the
sense of Definition 2.190. As Q = [0, t0u0] ⊂ K, it follows from the convexity
of Ψ that supQ I ∈ R and infS I ∈ R. Notice, from (7.137), the first relation
in (7.144) and in view of I(0) = 0 [cf. the second part of (j2)], it follows that

max
∂Q

I ≤ 0 < α ≤ inf
S
I.

Consequently, all assumptions of Theorem 2.197 are fulfilled. Applying The-
orem 2.197, we obtain a nontrivial critical point u ∈ K of I = Φ + Ψ in the
sense of Definition 2.182, which reads∫

Ω

∇u · (∇v −∇u)dx+ Jo(u; v − u) ≥ λ
∫

Ω

u(v − u)dx+
∫

Ω

g(v − u)dx

(7.147)

for all v ∈ K, where λ < λ1. On the other hand, (7.127) ensures

Jo(u;w) ≤
∫

Ω

jo(x, u(x);w(x))dx, ∀ w ∈ Lp(Ω). (7.148)

Combining (7.147) and (7.148) results in (7.125), which completes the proof.
��
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Example 7.39. Let the locally Lipschitz function j : R → R be as follows:

j(t) = −1
p
tp +

1
r
tr, ∀ t ≥ 0,

with 2 < r < p < 2∗ and j|(−∞,0) satisfies condition (j1). For the function
j, assumptions (j1)–(j4) are satisfied. Indeed, assumptions (j1) and (j2) are
clearly fulfilled. Condition (j3) is true for any r ≤ μ ≤ p. Condition (j4)
holds with any u0 = k0v0 with v0 ∈ H1

0 (Ω) \ {0}, v0 ≥ 0 a.e. and a constant
k0 > 0 sufficiently large. Notice that j(t) contains both convex and concave
terms. Another locally Lipschitz function j verifying (j1)–(j4), which is not
continuously differentiable is given in Example 7.36. For such functions j,
Theorem 7.38 can be applied to the corresponding problems (7.125).

Remark 7.40. Theorem 7.38 can be formulated for more general second-order
uniformly elliptic operators in place of −Δ. For the situation λ < λ1, it extends
Theorem 5.1 of Szulkin [211], which considers the potential j(t) = (1/p)|t|p
and strict inequality g < 0 a.e. It also extends results in [3, 64, 171, 191].

7.5 Eigenvalue Problem for a
Variational–Hemivariational Inequality

The aim of this section is to study nonlinear eigenvalue problems for gen-
eral variational–hemivariational inequalities that depend on a parameter. The
motivation for such a study comes, for instance, from the investigation of
perturbations, usually determined in terms of parameters. The variational–
hemivariational inequalities considered here are expressed in an abstract form
compatible with the nonsmooth critical point theory developed in Sect. 2.5.3
and Sect. 2.5.4.

We proceed by formulating two problems for variational–hemivariational
inequalities, one being stationary (in the sense that it is independent of a
parameter) and the other one stated with eigenvalues and containing a pa-
rameter. For this purpose, we first describe the functional setting. Let H be a
real Hilbert space endowed with the inner product (·, ·)H and the associated
norm ‖ · ‖. Let J : H × R → R be a locally Lipschitz functional, and let
ψ : H → R ∪ {+∞} be a convex, proper, and lower semicontinuous function.
Fix real numbers a > 0, a1 > 0, α > 0, p ≥ 0, ρ > 0, and r > 0 with ρ < r.

The first problem is the following variational–hemivariational inequality
on H with constraints on the solutions: Find u ∈ H such that

(P0)

⎧⎨⎩ (−J)o(u, 0; v − u, 0) + ψ(v) − ψ(u) + a(u, v − u)H ≥ 0, ∀ v ∈ H;

α ≤ −J(u, 0) + ψ(u) +
a

2
‖u‖2 ≤ α+ a1.

Our second problem is an eigenvalue problem for a variational–hemivariational
inequality with constraints on the eigensolutions (u, λ) ∈ H×R and depending
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on a real parameter denoted s: Find the eigenfunction u ∈ H, the eigenvalue
λ ∈ R, and the parameter s ∈ R such that

(P )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−J)o(u, s; v − u, 0) + ψ(v) − ψ(u) + λ(u, v − u)H ≥ 0, ∀ v ∈ H;
ρ ≤ s ≤ r;
ρ2‖u‖p ≤ λ− a ≤ r2‖u‖p;

− a1 ≤ s2

p+ 2
‖u‖p+2 − J(u, s) +

a

2
‖u‖2 + ψ(u) ≤ α+ a1.

Here (−J)o stands for the generalized directional derivative in Definition 2.161
of the locally Lipschitz function −J . We use −J instead of J to achieve com-
patibility with the framework of nonlinear boundary value problems for semi-
linear elliptic equations as discussed in the example below.

In the following example, we outline the applicability of our approach to
nonlinear elliptic eigenvalue problems, with Dirichlet boundary conditions,
possessing a parameter in the equation and that are subject to constraints.

Example 7.41. Let Ω ⊂ R
N be a bounded domain with a Lipschitz boun-

dary ∂Ω. Consider the Sobolev space H1
0 (Ω) endowed with the scalar product

(·, ·)H1
0 (Ω) as in Sect. 7.4. Let a nonempty, closed, convex subset K ⊂ H1

0 (Ω),
an element f ∈ H−1(Ω), a locally Lipschitz function G : R → R, and a
continuous function q : R → R be given. Assume that the generalized gradient
∂G of G and the function q verify subcritical growth conditions as in (H1) of
Sect. 7.3 or (j1) of Sect. 7.4. With these data, we state the eigenvalue problem:
Find u ∈ K, μ ∈ R and ν ∈ R such that

(Pμ,ν)

∫
Ω

∇u(x) · ∇(v − u)(x) dx+ μ
∫

Ω

(−G)o(u(x); v(x) − u(x)) dx

− ν
[ ∫

Ω

q(u(x))(v(x) − u(x)) dx+ 〈f, v − u〉
]
≥ 0, ∀ v ∈ K.

Assuming μ > 0, dividing by μ, and denoting λ = 1
μ and s = ν

μ , problem
(Pμ,ν) can be put in the form of a variational–hemivariational inequality on
H = H1

0 (Ω) [which will represent the first relation in problem (P )]:

(P1)

∫
Ω

[ (−G)o(u(x); v(x) − u(x)) − sq(u(x))(v(x) − u(x)) ] dx

− s〈f, v − u〉 + λ(u, v − u)H1
0 (Ω) ≥ 0, ∀ v ∈ K.

Let us introduce the locally Lipschitz function J : H1
0 (Ω) × R → R by

J(v, t) =
∫

Ω

(G(v(x)) + tQ(v(x))) dx+ t〈f, v〉,

where
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Q(t) =
∫ t

0

q(τ) dτ

for all t ∈ R, and let ψ : H1
0 (Ω) → R be the indicator function of the subset

K of H1
0 (Ω) [see (7.123)], which is convex, proper, and lower semicontinuous.

Using Theorem 2.181, we see that (P1) fits the formulation of the first in-
equality in (P ). Important situations are included in problems of type (Pμ,ν).
For example, choosing K = H1

0 (Ω), f ∈ L2∗′
(Ω), with 1/2∗ + 1/2∗′ = 1, and

G(t) =
∫ t

0

g(τ) dτ

for all t ∈ R, with g : R → R continuous, problem (Pμ,ν) reduces to an
eigenvalue problem for a semilinear elliptic equation with Dirichlet boundary
condition: {

−Δu = μg(u) + ν [ q(u) + f ] on Ω
u = 0 in ∂Ω.

As an illustration, we indicate the choice g(u) = u+ and q(u) = −u−, where
u+ = max{u, 0} and u− = max{−u, 0}, which involves the Fučik spectrum.

We return to our abstract setting in problems (P0) and (P ). Suppose that the
following conditions hold:

(C1) There is a constant a2 > 0 such that

−J(v, t) + ψ(v) ≥ −a1 − a2‖v‖p+2, ∀ (v, t) ∈ H × R.

(C2) ρ ≥
√
a2(p+ 2) and sup

t∈[0,1]

(−J(0, tr)) + ψ(0) ≤ 0.

(C3) Jo(v, t; 0, t) ≤ 0, ∀ (v, t) ∈ H × R.
(C4) Every sequence (vn) ⊂ H for which there is a sequence (tn) ⊂ R such

that tn → 0, −J(vn, tn) + ψ(vn) + a
2 ‖vn‖2 is bounded in R and which

satisfies

(−J)o(vn, tn; v − vn, 0) + ψ(v)− ψ(vn) + a(vn, v − vn)H ≥ −εn‖v − vn‖

for all v ∈ H, and for some (εn) ⊂ R with εn > 0, εn → 0, is bounded
in H.

(C5) If un ⇀ u in H and tn → t in R, then a subsequence of (un, tn) exists,
which is still denoted by (un, tn), such that

lim sup
n→∞

Jo(un, tn;un − u, tn − t) ≤ 0.

(C6) For every t ∈ [ρ, r], there is vt ∈ H such that

(−J)o(0, t; vt, 0) + ψ(vt) − ψ(0) < 0.

Our result on the problems (P0) and (P ) is expressed as an alternative.
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Theorem 7.42. With given constants a > 0, a1 > 0, p ≥ 0, and 0 < ρ <
r, assume that the conditions (C1)–(C6) are fulfilled. Then, for any number
α > 0, either problem (P0) has a solution u ∈ H \ {0} or problem (P ) admits
a solution (u, λ, s) ∈ H × R × R in the sense that (P ) is satisfied with the
eigensolution (u, λ) ∈ (H \ {0}) × R corresponding to the parameter s ∈ R.

Proof: Fix a constant α > 0 and then choose a function β ∈ C1(R) with the
properties:

(β1) β(0) = β(r) = 0, 2
p+2β(ρ) = a1 + α.

(β2) lim
|t|→+∞

β(t) = +∞.

(β3) β′(t) < 0 ⇐⇒ t < 0 or ρ < t < r.
(β4) β′(t) = 0 =⇒ t ∈ {0, ρ, r}.
We apply Corollary 2.198, with E = H, to the functional F : H × R →
R ∪ {+∞} defined as follows:

F (v, t) =
t2

p+ 2
‖v‖p+2 +

2
p+ 2

β(t) − J(v, t) +
a

2
‖v‖2 + ψ(v). (7.149)

Note that the functional F in (7.149) complies with the structural hypothesis
(H) in Sect. 2.5.3, where the locally Lipschitz functional Φ : H × R → R is
given by

Φ(v, t) =
t2

p+ 2
‖v‖p+2 +

2
p+ 2

β(t) − J(v, t) +
a

2
‖v‖2, (7.150)

and the functional Ψ : H × R → R ∪ {+∞} is defined by

Ψ(v, t) = ψ(v), (7.151)

which is convex, proper, and lower semicontinuous. By the second part of
(C2) and (β1), we see from (7.149) that the assumptions F (0, 0) ≤ 0 and
F (0, r) ≤ 0 in Corollary 2.198 are verified. Furthermore, from (C1), (β1), and
the condition ρ ≥

√
a2(p+ 2) in (C2), we obtain the estimate

F (v, ρ) ≥
(
ρ2

p+ 2
− a2

)
‖v‖p+2 +

2
p+ 2

β(ρ) − a1

≥ 2
p+ 2

β(ρ) − a1 = α, (7.152)

for all v ∈ H, and thus, infv∈H F (v, ρ) > 0. We check that the functional
F : H ×R → R∪{+∞} satisfies the (PS) condition in the sense of Definition
2.190. Let (un, tn) be a sequence in H × R such that there is a constant
M > 0 with |F (un, tn)| ≤M, for all n ∈ N, and there is a sequence (εn) ⊂ R,
εn > 0, εn → 0, for which we have

Φo(un, tn; v − un, t− tn) + Ψ(v, t) − Ψ(un, tn)
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≥ −εn(‖v − un‖ + |t− tn|)

for all (v, t) ∈ H ×R, with Φ and Ψ given in (7.150) and (7.151), respectively.
This finding reads as follows:∣∣∣∣ t2np+ 2

‖un‖p+2 +
2

p+ 2
β(tn) − J(un, tn) +

a

2
‖un‖2 + ψ(un)

∣∣∣∣ ≤M (7.153)

and

2
p+ 2

[
tn‖un‖p+2 + β′(tn)

]
(t− tn) + (−J)o(un, tn; v − un, t− tn)

+ψ(v) − ψ(un) + (a+ t2n‖un‖p)(un, v − un)H

≥ −εn(‖v − un‖ + |t− tn|) (7.154)

for all (v, t) ∈ H × R. Setting v = un in (7.154) leads to

2
p+ 2

[
tn‖un‖p+2 + β′(tn)

]
(t− tn) + (−J)o(un, tn; 0, t− tn)

≥ −εn|t− tn| (7.155)

whenever t ∈ R. For t = 0, inequality (7.155) becomes

2
p+ 2

[
t2n‖un‖p+2 + tnβ′(tn)

]
− Jo(un, tn; 0, tn) ≤ εn|tn|. (7.156)

We obtain from (7.149) and (C1) that

M ≥
(
t2n
p+ 2

− a2
)
‖un‖p+2 +

2
p+ 2

β(tn) − a1, ∀ n ∈ N.

On the basis of condition (β2), we derive from the above inequality that

(tn) is bounded in R. (7.157)

First, we consider in (7.157) the situation

tn → 0 in R as n→ ∞. (7.158)

In view of (7.158), we may suppose |tn| < ρ for n sufficiently large. Then from
(β3), it follows that tnβ′(tn) ≥ 0. The obtained inequality enables us to get
from (7.156) and (C3) that t2n‖un‖p+2 → 0 as n→ ∞. This result can be used
in conjunction with (7.153) to derive

−J(un, tn) + ψ(un) +
a

2
‖un‖2 is a bounded sequence in R. (7.159)

Setting t = tn in (7.154) yields
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(−J)o(un, tn; v − un, 0) + ψ(v) − ψ(un) + a(un, v − un)H

≥ −(εn + t2n‖un‖p+1)‖v − un‖ (7.160)

for all v ∈ H. Writing

t2n‖un‖p+1 = |tn|
2

p+2 (t2n‖un‖p+2)
p+1
p+2 ,

we see that t2n‖un‖p+1 → 0 as n → ∞. Making use of (7.158)–(7.160), we
may invoke assumption (C4), with εn + t2n‖un‖p+1 in place of εn , to deduce
that (un) is bounded in H. So u ∈ H exists such that, along a relabelled
subsequence,

un ⇀ u in H as n→ ∞. (7.161)

Without loss of generality, we may replace the sequence (un, tn) by the re-
labelled subsequence given in assumption (C5). Setting v = u and t = 0 in
(7.154), we obtain

2
p+ 2

[
tn‖un‖p+2 + β′(tn)

]
(−tn) + (−J)o(un, tn;u− un,−tn)

ψ(u) − ψ(un) + (a+ t2n‖un‖p)(un, u− un)H

≥ εn(‖u− un‖ + |tn|).

Letting n→ ∞, from (7.158) and (7.161), we find

0 ≤ lim sup
n→∞

[
(−J)o(un, tn;u− un,−tn) + ψ(u) − ψ(un) − a‖un − u‖2

]
.

Assumption (C5) and the lower semicontinuity of ψ ensure that

lim inf
n→∞ ‖un − u‖2 ≤ 0,

which guarantees that the sequence (un) possesses a strongly convergent sub-
sequence (with limit u). Therefore, the (PS) condition is verified for the func-
tional F in (7.149) in the case where (7.158) holds true.

It remains to check the (PS) condition for F in (7.149) when there is a
constant δ > 0 such that, up to a subsequence of (tn) in (7.157), we have

|tn| ≥ δ, ∀ n ∈ N. (7.162)

Through relation (7.156) and assumption (C3), it is seen that

t2n‖un‖p+2 + tnβ′(tn) ≤ p+ 2
2
εn|tn|,

which, taking into account (7.157), shows that (t2n‖un‖p+2) is a bounded se-
quence. It turns out from (7.162) that
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‖un‖p+2 = (t2n‖un‖p+2)
1
t2n

≤ 1
δ2

(t2n‖un‖p+2),

so we have the boundedness of (un) in H. Therefore, passing to a relabelled
subsequence, we may assume that (7.161) holds and tn → τ in R as n → ∞
for some τ ∈ R. Let us put v = u and t = τ in (7.154). Then letting n → ∞
in (7.154), from assumption (C5) and the lower semicontinuity of ψ, we arrive
at the conclusion

0 ≤ lim sup
n→∞

[
(a+ t2n‖un‖p)(un, u− un)H

]
≤ −a lim inf

n→∞ ‖u− un‖2.

Thus, along a subsequence still denoted (un), we have un → u strongly in H,
which proves that the (PS) condition for F is verified. As all assumptions are
fulfilled, we may apply Corollary 2.198 to the functional F in (7.149), and
therefore, we find a point (u, s) ∈ H × R such that

inf
v∈H

F (v, ρ) ≤ F (u, s) ≤ sup
t∈[0,1]

F (0, tr) (7.163)

and, with Φ introduced in (7.150),

Φo(u, s; v − u, t− s) + ψ(v) − ψ(u) ≥ 0 (7.164)

for all (v, t) ∈ H × R. Using estimate (7.152), the second part of assumption
(C2), and properties (β1), (β3), we deduce from (7.163) that

α ≤ s2

p+ 2
‖u‖p+2 +

2
p+ 2

β(s) − J(u, s) +
a

2
‖u‖2 + ψ(u) ≤ α+ a1. (7.165)

Explicitly, inequality (7.164) means

2
p+ 2

[
s‖u‖p+2 + β′(s)

]
(t− s) + (−J)o(u, s; v − u, t− s)

+(a+ s2‖u‖p)(u, v − u)H + ψ(v) − ψ(u) ≥ 0 (7.166)

for all (v, t) ∈ H × R. Setting in (7.166) t = s and v = u yields, respectively,

(−J)o(u, s; v − u, 0) + ψ(v) − ψ(u) + (a+ s2‖u‖p)(u, v − u)H ≥ 0 (7.167)

for all v ∈ H, and

2
p+ 2

[
s‖u‖p+2 + β′(s)

]
(t− s) + (−J)o(u, s; 0, t− s) ≥ 0 (7.168)

for all t ∈ R. Putting t = 0 in (7.168) gives

2
p+ 2

[
s2‖u‖p+2 + sβ′(s)

]
− Jo(u, s; 0, s) ≤ 0. (7.169)
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Combining (7.169) and hypothesis (C3) ensures that

sβ′(s) ≤ 0. (7.170)

First, we regard the case s = 0 in (7.170). Writing (7.165) and (7.167), for
s = 0, expresses that u ∈ H solves problem (P0). We point out that u �= 0.
This result is true because of the inequalities

0 < α ≤ −J(u, 0) + ψ(u) +
α

2
‖u‖2

[cf. (P0)] and −J(0, 0) + ψ(0) ≤ 0 derived from assumption (C2). It remains
to analyze the situation s �= 0 in (7.170). The monotonicity properties of the
function β required in (β3) and (β4) enable us to conclude from (7.170) that
ρ ≤ s ≤ r. Denoting λ = a + s2‖u‖p, we see then from (7.165) and (7.167)
that the triple (u, λ, s) ∈ H×R×R is a solution of problem (P ). As ρ ≤ s ≤ r
and in view of hypothesis (C6) applied for t = s, it is clear that u �= 0. The
proof is thus complete. ��

Remark 7.43. Hypothesis (C6) is needed only to guarantee that u �= 0 for
every solution (u, λ, s) of eigenvalue problem (P ).

Remark 7.44. We briefly comment about the meaning of assumptions (C1)–
(C6) and how they can be practically verified. Condition (C1) requires a uni-
lateral polynomial growth for the functional −J+ψ. Condition (C2) demands
that the constant ρ > 0 be sufficiently large and an upper estimate for the
functional −J(0, ·) on the interval [0, r]. Condition (C3) expresses a mono-
tonicity property for the function J(v, ·) on R for every v ∈ H. Condition
(C4) asserts a weak form of Palais–Smale condition for the perturbation of
our functional −J + ψ with the fixed quadratic term a

2‖v‖2. Condition (C5)
claims to have the generalized directional derivative Jo sequentially weakly up-
per semicontinuous. For instance, this result can be achieved if the space H is
compactly embedded in a Banach spaceX and J = J̃ |H×R with J̃ : X×R → R

being locally Lipschitz. Condition (C6) presents a kind of nonvanishing re-
quirement with respect to the function ψ for the generalized directional deri-
vative of −J(·, t) at 0 ∈ H when t runs on the prescribed interval [ρ, r] in
R.

7.6 Notes and Comments

In this chapter, we discussed two general methods to treat nonlinear boundary
value problems: sub-supersolution method and minimax method in the critical
point theory. We illustrated them in the general framework of nonsmooth
problems expressed as variational–hemivariational inequalities. The two me-
thods are complementary and as they are used in our approach allow obtaining
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location information for the solutions. A significant combined application of
the two methods has been given in Sect. 3.4.

The exposition of the sub-supersolution method for quasilinear elliptic
variational–hemivariational inequalities of the form (7.1) as presented in Sect.
7.1 relies on [55]. The important particular case of constraint hemivariational
inequality, which can be specified in our problem by taking ψ to be the indica-
tor function, was the object of [56]. Other important classes of problems incor-
porated in our setting are those of variational inequalities and of differential
inclusions with Clarke’s generalized gradient. The study of sub-supersolution
method for variational inequalities was initiated in [141, 142] and was devel-
oped in Chap. 5. For the approach based on the sub-supersolution method
in the case of differential inclusions of hemivariational type, we refer to
[53, 58, 59]. This was the object of Chap. 4.

Section 7.2 constructs the basic frame to handle the sub-supersolution
method for evolutionary variational–hemivariational inequalities of type (7.35).
The development follows [57]. Some special cases can be found in [39, 43, 51,
54, 58]. The applicability of our abstract results is illustrated to an obstacle
problem under hemivariational boundary conditions.

Section 7.3 deals with the nonsmooth critical point theory in the setting of
hemivariational inequalities where it is allowed to contain both superlinear and
sublinear terms. This result is mainly achieved by relaxing the celebrated con-
dition of Ambrosetti–Rabinowitz type (see [3] for the smooth case and [64] for
the nonsmooth case) in assuming our weaker conditions (H2) and (H4). The
existence result given here for nontrivial solutions of hemivariational inequali-
ties is taken from [109]. Concerning the applicability of our result, we remark
that two adhesively connected von Kármán plates subjected to elastoplastic
boundary conditions, to unilateral contact boundary conditions, or to friction
boundary conditions lead to hemivariational inequalities in the form studied
here (cf. [181]). Various models are analyzed in [177, 180].

Section 7.4, as well as Sect. 7.5, makes full use of the nonsmooth critical
point theory developed in Sect. 2.5.3. The geometric situation encountered in
Sect. 7.4 is the one of a mountain pass theorem for variational–hemivariational
inequalities. In the case of smooth functions, the mountain pass theorem was
given in [3] (see also [117, 160, 191]), whereas for the locally Lipschitz function,
this result is found in [64] (and with Cerami condition in [128]). The extension
as applied in Sect. 7.4 was obtained in [171] (and in a slightly less general
version in [102]). The limiting case in the minimax principle has been treated
in [156]. For the situation λ < λ1, Theorem 7.38 extends Theorem 5.1 of
Szulkin [211] as well as other results in [3, 64, 171, 191].

In Sect. 7.5, we treat one-parameter families of nonlinear eigenvalue
boundary value problems with nonsmooth potentials and including con-
straints on the solutions. The pairs (λ, s) ∈ R

2 considered in the variational–
hemivariational inequality can be interpreted like a generalized version of the
Fučik spectrum as outlined in Example 7.41. Our main result, stated as The-
orem 7.42, is expressed as an alternative between having a given number as
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an eigenvalue [see problem (P0)] or solving an eigenvalue problem involving
parameters [see problem (P)]. Our exposition follows [168]. In the case where
the function J does not depend on parameter, this theorem extends a result
in [2] in the nonsmooth case (and the corresponding property in [166] for
the smooth case). In [167], it is shown for the smooth potentials that this
approach allows us to deduce various qualitative properties for the eigensolu-
tions including location information. It is worth pointing out that the location
of eigensolutions is achieved by using the graph of a function enjoying the
properties (β1)–(β4) in the proof of Theorem 7.42. For applications to study
further properties of eigensolutions for eigenvalue problems involving semi-
linear Dirichlet problems, we refer to [167]. A recent new method in treating
nonlinear eigenvalue problems was initiated by Ricceri [193, 194, 195]. This
method has been applied to different nonlinear elliptic problems with smooth
or nonsmooth potentials (see [21, 154, 155, 130]).



List of Symbols

N natural numbers
N0 N ∪ {0}
R real numbers
R+ nonnegative real numbers
R

N N -dimensional Euclidean space
Ω open domain in R

N

∂Ω boundary of Ω
|E| Lebesgue-measure of a subset E ⊂ R

N

X real normed linear space
X∗ dual space of X
X∗∗ bidual space of X
X+ positive (or order) cone of X
X∗

+ dual-order cone of X
x ∧ y min{x, y}
x ∨ y max{x, y}
x+ max{x, 0}
x− max{−x, 0}
“iff” stands for “if and only if”
X ⊂ Y X is a subset of Y including X = Y
2X power set of the set X, i.e., the set of all subsets of X
cl(K) or K closure of a subset K of X

int(K) or
◦
K interior of K

L(X,Y ) space of bounded linear mappings from X to Y
D(A) domain of the operator A
dom(A) effective domain of the mapping A
IK indicator function, i.e., IK(x) = 0 if x ∈ K, +∞ otherwise
χE characteristic function of the set E
Gr(A) graph of the mapping A
A∗ adjoint or dual operator to A
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⇀ weak convergence
⇀∗ weak∗ convergence
δf(u;h) or f ′(u;h) directional derivative
DGf Gâteaux derivative
DF f or f ′ Fréchet derivative
fo(u;h) generalized directional derivative
∂f subdifferential of f or Clarke’s generalized gradient
∇f (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xN ), the gradient of f
Δf ∂2f/∂x2

1 + ∂2f/∂x2
2 + · · · + ∂2f/∂x2

N , the Laplacian of f
Δpf the p-Laplacian of f
C∞

0 (Ω) space of infinitely differentiable functions
with compact support in Ω

‖f‖Lp(Ω)

(∫
Ω
|f |pdx

)1/p, the Lp norm
Lp(Ω) space of p integrable functions (whose Lp norm is bounded)
Lp

loc(Ω) space of locally p integrable functions

‖f‖W m,p(Ω)

(∑
|β|≤m

∫
Ω
|Dβf |pdx

)1/p

, the Sobolev norm
Wm,p(Ω) space of functions with bounded Wm,p(Ω) Sobolev norm
Wm,p

0 (Ω) Wm,p(Ω)-functions with generalized homogeneous
boundary values

γ(u) or γu trace of u or generalized boundary values of u
Lp(0, τ ;B) space of p integrable vector-valued functions

u : (0, τ) → B
C([0, τ ];B) space of continuous vector-valued functions

u : [0, τ ] → B
C1([0, τ ];B) space of continuously differentiable vector-valued

functions u : [0, τ ] → B



References

1. Addou, A., Mermri, B.: Topological degree and application to a parabolic vari-
ational inequality problem. IJMMS, 25, 273–287 (2001)

2. Adly, S., Motreanu, D.: Location of eigensolutions to variational-
hemivariational inequalities. J. Nonlinear Convex Anal., 1, 255-270 (2000)

3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point
theory and applications. J. Func. Anal., 14, 349-381 (1973)
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en dualité. Ann. Inst. Fourier, 18, 115–175 (1968)

24. Brézis, H.: Analyse Fonctionnelle - Théorie et Applications. Masson, Paris
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Laplacian and critical groups. J. Math. Anal. Appl., 254(1), 164–177 (2001)

75. Dancer, E. N., Sweers, G.: On the existence of a maximal weak solution for a
semilinear elliptic equation. Differential Integral Equations, 2, 533–540 (1989)

76. del Pino, M.A., Manásevich, R.F.: Global bifurcation from the eigenvalues of
the p-Laplacian. J. Differential Equations, 92, 226–251 (1991)



References 385

77. de Figueiredo, D., Gossez, J.-P.: On the first curve of the Fuč́ık spectrum of
an elliptic operator. Differential Integral Equations, 7, 1285–1302 (1994)
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