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Preface

Let me be clear about what this book is and is not: It is not a book on the applications of Fourier
analysis; it is a book on the mathematics of the Fourier analysis used in applications. The
overriding goal is for the reader to gain a sufficiently deep understanding of the mathematics
to confidently and intelligently employ “Fourier analysis” in the reader’s own work, be it in
optics, systems analysis, vibrational analysis, the analysis of partial differential equations, or
any of the many other areas in which “Fourier analysis” can be usefully applied. And when
I say “intelligently employ’; I mean more than simply memorizing and blindly using formulas
from this book. “Intelligent employment” requires understanding what the formulas are really
saying, when they can be used, how they can be used, and how they should rnot be used.

Got the idea?

In this rather large book, we will develop the mathematics of what I consider to be the four
core theories of Fourier analysis — the classical theory for Fourier series, the classical theory
for Fourier transforms, the generalized theory for Fourier transforms, and the theory for discrete
Fourier transforms — and we will see how the theories of each are related to the others (ultimately
discovering that the classical and discrete theories are special cases of the generalized theory).
Relatively little mathematical background is required on the part of the reader. A basic knowledge
of calculus, differential equations, and linear algebra should suffice. On the other hand, those
who have had more advanced courses in real analysis, complex analysis, and functional analysis
are strongly encouraged to look for those places where the material developed in those courses
can be used here. In particular, those acquainted with the Lebesgue integral and the analysis of
analytic functions on the complex plane should be able to simplify some of the more involved
proofs presented here and may even be able to extend some of the discussions. Indeed, the proof
of one small lemma (lemma 34.8 on page 587) had to be left as an exercise for those familiar
with Cauchy’s integral formula from complex analysis.

Notice that I did just use the word “proof”> While I gladly employ nonrigorous arguments
to motivate and enlighten, I also feel strongly that important claims in a text such as this must be
supported by mathematically rigorous arguments that can be understood by the reader. I have
seen too many other texts (especially in Fourier analysis) in which this was not done, and in
which the authors made claims that were, at times, inaccurate or just plain false. Good proofs
keep us honest. Where convenient and enlightening, I’ve tried to incorporate the proofs into the
narrative. Where less convenient, the proof of a claim usually follows the statement of the claim
in the traditional manner. Of course, a few carefully chosen proofs are left as exercises. And
some of the proofs are — let’s face it — long and hard. I won’t apologize for including these;
some important things just don’t come easy.

On the other hand, I hardly expect every reader to tackle every proof. Beginning students,
especially, need to understand the gist of material without becoming bogged down in detailed
discussions devised simply so that some fact can be verified under every possible condition.
Accordingly, I've attempted to arrange the material so that the particulars of the longer, less
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enlightening, and downright tedious proofs can be skipped easily and with relative safety. (True,
many of the shorter and highly enlightening proofs can also be skipped by just going straight
from the introductory word “PROOF” to the little black rectangle denoting the end of the proof
— but slackers who do that endanger their souls.)

As much as possible, I've written this book for everyone who uses or may use Fourier
analysis. That is why I imposed such minimal mathematical prerequisites. This text should
serve both beginning students who have seen little or no Fourier analysis, and the more advanced
students who are somewhat acquainted with the subject but need a deeper understanding (see
the Sample Courses described just after this preface). Because of the general analysis developed
here, this book could also be useful in a more general “applied analysis” course. Parts of it
should even be of interest to professionals who are already experts in Fourier analysis because
the generalized theory presented here (in part IV) extends the better known theory normally
presented. I believe that this extended generalized theory, which is based on my own research,
will prove useful in applications.

I will not pretend this is a complete guide to the mathematics of Fourier analysis. Time and
space considerations, along with the limited prerequisites, made that impossible. Instead, please
view this tome as providing a starting point and “brief” overview of the mathematics of Fourier
analysis. Interesting topics were left out. If I left out a topic of particular interest to you, I am
sorry. I certainly left out topics of interest to me.

Finally, I must thank some of the many people who helped make this book possible. This
includes my wife, Maureen, and my son, Jason, who saw far less of me than they should have
and, yet, still gave me support and understanding during the writing of this book; and the folks
at CRC Press, particularly Bob Stern, Sara Seltzer, and Chris Andreasen, who were directly
involved with getting this book to press. Most importantly, I must thank the many students who
suffered through earlier versions of this book and advised me on what to keep, change, correct,
and toss. For their aid, patience, and insight, I am truly grateful.

Kenneth B. Howell
March 2001
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Sample Courses

In the ideal world of the author, this book would be the main text for a two-semester sequence
in Fourier analysis (possibly supplemented with some material on wavelets or applications of
particular interest to the class). More realistically, it can serve as the text for a number of one-
term courses involving Fourier analysis. Here are brief descriptions of the material I would
suggest as being appropriate for two such single-semester courses: an “introductory course”
and an “intermediate course” in Fourier analysis. The suggestions are based on courses I have
regularly taught using preliminary versions of this text. Naturally, individual instructors should
make adjustments based on the needs, background, abilities, and interests of their own students.

The introductory course is for undergraduates in engineering, science (especially physics
and optics), and mathematics who have had little or no prior exposure to Fourier analysis, but
know they will be needing it. For this course I suggest covering the following:

Part I: Preliminaries
All of chapters 1 through 6 (cover this material quickly, and leave the material in chapter
7 to be discussed as the need arises).

Part II: Fourier Series
All of chapter 8.
All of chapter 9.
All of chapter 10.
Sections 1 through 4 of chapter 11.
All of chapter 12.
Sections 1, 2, and 4 of chapter 13.
If time allows: sections 1 and 4 of chapter 15, along with sections 1 and 2 of chapter 16.

Part III: Classical Fourier Transforms
All of chapter 17.
Sections 1, 2, and 3 of chapter 18 (go through section 3 rather quickly).
All of chapter 19 (skip the proofs in the last section).
All of chapter 20.
Sections 1, 2, and 3 of chapter 21.
Sections 1 and 3 of chapter 22.
Sections 1 and 2 of chapter 23 (briefly discuss the transforms in section 3).
All of chapter 24.
Section 1 and, perhaps, section 2 of chapter 25 .
Section 1 of chapter 26.
All of chapter 27.

LSI Systems or Discrete Transforms
Either all of chapter 28 or all of chapters 38 and 39.
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The intermediate course is for graduate students in engineering, science, and mathematics.
While they are not expected to have taken the introductory course, these students can be expected
to have had some previous introduction to some elements of Fourier analysis. For this course I
suggest covering the following:

Part I: Preliminaries
Chapters 1 through 6 (cover these quickly, and leave the material in chapter 7 to be
discussed as the need arises).

Part II1: Classical Fourier Transforms
Sections 1, 2, and 3 of chapter 18 (return to section 4 as necessary later on).
All of chapter 19 (possibly skipping the proofs in the last section).
All of chapter 20.
Sections 1, 2, and 3 of chapter 21 (consider including section 4, also).
Sections 1, 2, and 3 of chapter 22.
Sections 1, 2, and 4 of chapter 23 (briefly mention the transforms in section 3).
All of chapter 24.
All of chapter 25.
Sections 1, 2, and 3 of chapter 26.
Sections 1 and 2 (and, perhaps, 3) of chapter 29.

Part IV: Generalized Functions and Fourier Transforms
All of chapter 30.
Sections 1 through 4 of chapter 31.
Sections 1 through 4 (and, possibly, 5) of chapter 32.
All of chapter 33.
Sections 1 through 5 of chapter 34.
Sections 1 and 2 of chapter 35.
Sections 1 and 2 of chapter 36.

Part V: The Discrete Theory
All of chapter 38.
All of chapter 39.
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Part I

Preliminaries



1
The Starting Point

You may already know that Fourier analysis is “stuff you do with the Fourier series and the
Fourier transform” You may even realize that Fourier series and Fourier transforms are useful
because they provide formulas for describing functions found in many applications — formulas
that are often more easily manipulated and analyzed than other formulas and equations describing
these functions.

On the other hand, you may not know anything about Fourier analysis. If so, then I’ll just
tell you this: It involves things called “Fourier series” and “Fourier transforms’, and it is useful
in many applications because these series and transforms provide convenient formulas for the
functions in these applications.

Whether or not you have seen any “Fourier analysis’; let us take a brief look at one of the
historical starting points of the subject. It will help illustrate how these “Fourier formulas” might
be helpful, and will provide us with a good starting point for our own studies.

1.1 Fourier’s Bold Conjecture

In the early 1800s Joseph Fourier (along with others) was attempting to mathematically describe
the process of heat conduction in a uniform rod of finite length, subject to certain initial and
boundary conditions. Fourier’s approach required that the temperature u(x) at position x in
the rod at some fixed time be expressed as

u(x) = agp + ajcos(cx) + bysin(cx) + apcos(ex) + by sin(2cx)

(1.1)
+ azcos(3cx) + b3sin(3¢cx) + ---

where ¢ is 7 divided by the rod’s length, and the a;’s and by’s are constants to be determined
after plugging this representation for u into the equations modeling heat flow. (Precisely how
they are determined will be discussed in chapter 16, where you will also discover that I've
simplified things here a bit. For one thing, the a;’s and by’s are actually functions of time.)

Fourier’s approach was successful, and that idea of representing a function in terms of sines
and cosines eventually led to the development of a lot of incredibly useful mathematics.

What Fourier did with the function u(x) was very similar to what we normally do with a
three-dimensional vector v . Basically, v is just some entity possessing “length” and “direction’’
Rarely, though, are vector computations done directly using a vector’s length or direction. In
practice such computations are normally done using the vector’s components (v, vz, v3). For
example, the length of v is usually computed using the component formula

IVl = V(W12 + (12)2 + (v3)?
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These components are the coefficients in the unique representation of v as a linear combination
of vectors from the standard basis {i, j, k},

v = v 4+ vyj + vk . (1.2)

Because every vector can be so represented and because {i, j, k} is a particularly nice basis
(because all of its elements are orthogonal to each other and have unit length), most vector
manipulations can be reduced to fairly simple computations with the three separate components
of each vector. Indeed, it’s hard to imagine doing vector analysis without using these components.

?» Exercise 1.1: ~ What is the geometric definition for the dot product of two vectors? What is
the component formula for the dot product? Which of these two formulas do you normally
use to compute v -w ?

The similarities between formulas (1.1) and (1.2) are significant. In each, a fairly general
entity — the vector v in formula (1.2) and the function u(x) in formula (1.1) — is being
expressed as a (possibly infinite) linear combination' of “basic entities” In formula (1.2) these
basic entities are i, j, and k, the standard basis vectors for three-dimensional space, while in
formula (1.1) the basic entities are sines and cosines.” In a sense, formula (1.1) says that the
function u(x) can be expressed in “component form” (ag, a1, b1, az, bz, a3, b3, ...), and sug-
gests that some manipulations involving u(x) can be reduced to simpler computations involving
these components.

This gives us our starting point. We will start with a goal of developing a theory for manip-
ulating and analyzing functions that is analogous to the theory we already use for manipulating
and analyzing vectors in two- and three-dimensional space. For our “basis functions” we will
use sines and cosines. This assumes, of course, that all functions of reasonable interest can be
expressed as linear combinations of sines and cosines. This is a bold assumption. Moreover, at
this point, we have no real reason to believe it is valid! So, perhaps, we should refer to it as:

Fourier's Bold Conjecture
Any “reasonable” function can be expressed as a (possibly infinite) linear combination of sines
and cosines.

If Fourier’s conjecture is valid, then we should be able to simplify many problems (such
as, for example, the problem of mathematically predicting the temperature distribution along
a given rod at a given time) by expressing the unknown functions as linear combinations of
well-known sine and cosine functions. With luck, the coefficients in these linear combinations
will be relatively easy to determine, say, by plugging the expressions into appropriate equations
and solving some resulting algebraic equations.

Naturally, it is not all that simple. For one thing, I cannot honestly tell you that Fourier’s
conjecture is completely valid, at least not until we better determine what is meant by a function
being “reasonable’’ But the conjecture turns out to be close enough to the truth to serve as the
starting point for our studies, and determining the extent to which this conjecture is valid will

! Recall: If {¢1, &2, @3, ...} is any collection of things that can be multiplied by scalars and added together, then a
linear combination of the ¢ ’s is any expression of the form

191 + ¢y + 343 + -

where the c;’s are constants. Unless otherwise stated, a linear combination is always assumed to have a finite number
of terms. When we add the adjective “possibly infinite’, however, we are admitting the possibility that the expression
has infinitely many terms.

2 Since cos(Ocx) = 1 forall x, we can view the ag term in formula (1.1) as being ag cos(Ocx) .
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Additional Exercises 5

be one of our major goals in this text. And, of course, whenever possible, we will want to
find out how to compute the “components” of any given (reasonable) function and how to use
these components in the manipulations of interest to us (e.g., differentiation, finding solutions
to various differential equations, and evaluating functions).

Since sines and cosines are periodic functions, it is logical to first consider periodic func-
tions. This will lead to the classical Fourier series (discussed in part II of this book). We will
also see that the analysis developed for periodic functions can be applied to functions defined on
finite intervals. In trying to stretch the analysis to nonperiodic functions on the real line, we will
discover the classical Fourier transform (part III). Continuing along those lines will eventually
lead to generalized functions and the generalized Fourier transform (part IV). Finally, we will
consider the adaptations we must make so that we can deal with functions known only by sets
of data taken by measurement. This will lead to the discrete theory of Fourier analysis (part V).

By the way, do not expect Fourier analysis to simply be “vector analysis with functions’
Frankly, as the subject material evolves, the analogy between Fourier analysis and vector analysis
will seem more and more tenuous to most readers.

1.2 Mathematical Preliminaries
and the Following Chapters

The theory of Fourier analysis did not spring fully developed from the minds of the mathemat-
ically ignorant. Likewise, we cannot pretend to study Fourier analysis without having some
understanding of the mathematics underlying the subject.

Presumably, you are already reasonably proficient with the basics of calculus (computing
and manipulating derivatives, integrals, and infinite series) as well as the basics of linear algebra,
and you nod knowingly at statements like “the domain of a function f isthesetofall x for which
f(x) is defined.” Still, a little review would be wise if only to ensure that we are all using the
same notation and terminology. More importantly, though, the development and intelligent use
of Fourier analysis requires a better understanding and appreciation of certain basic mathematical
concepts than many beginning students have yet had reason to cultivate. So, in the next few
chapters (the rest of part I of this text), we will briefly review some of the mathematics we will
need, emphasizing issues you might have not considered so deeply in your previous studies.

If you are impatient to begin the study of Fourier analysis, don’t worry. It’s not necessary to
cover everything in part I before starting on part IT or part III. After all, most of part I is supposed
to be a review! You should have seen most of this material before (in some form), and you can
always return to the appropriate sections of this review as the need arises. Just make sure you
understand the material in the next chapter (primarily on notation and some conventions we will
be following); carefully skim through the chapter after that, and then quickly skim through the
rest of part I. Then plan on returning to the appropriate sections as the need arises.
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Additional Exercises

1.2. Show that the standard components of a vector are the dot products of the vector with
the corresponding basis vectors. That is, show that, if

v=uvi+uvyj+urk ,
then
vy =v-i s V=V-j and v3=v-k

(Analogous formulas will be developed in part II of this text for computing the “com-
ponents” of functions.)
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2

Basic Terminology, Notation,
and Conventions

We begin our review of the mathematical preliminaries by discussing how we will describe some
of the basic entities of Fourier analysis — numbers, functions, and operators. Perhaps the most
important part of this discussion is in determining just what will be meant by the phrase “ f isa
function” and by the notation “ f (x) > Pay close attention to this discussion even if you think you
know what a “function” is. It turns out that people in different disciplines have developed slightly
different views as to the meaning of this word. That is one reason a text on Fourier analysis
by a mathematician specializing in, say, functional analysis will often look quite different from
a corresponding text by an electrical engineer specializing in, say, signals and systems. These
differences cause few problems for those who understand the differences, but they can lead the
unwary into making substantially more work for themselves and even, on occasion, to making
foolish errors in computations. Moreover, if we do not all agree on exactly what a function is
and what f(x) denotes, then we will find it very difficult to develop clear, precise, and brief
notation for the manipulations we will be doing with these things. And if we cannot adequately
describe these manipulations, then the rest of this text might as well be written using grunts and
hand waves.

2.1 Numbers

The set of all real numbers, also called the real number line, will be denoted by either (—o0, 00)
or R depending on how the spirit moves us. If —oco < o < B8 < oo, then (o, §) denotes the
open interval between « and B (i.e., the set of all x where ¢ < x < ), and [«, 8] denotes
the closed interval (i.e., the set of all x where o < x < ). Of course, for the closed interval
[a, B], neither & nor B can be infinite. Furthermore, both o and B8 must be finite whenever
(o, B) is identified as a finite or bounded interval.

For brevity, let us agree that whenever a phrase such as “the interval («, §)” is encountered
in this text, it may automatically be assumed that —oo <o < 8 < c0.

The set of all complex numbers, denoted by C, will also play an important role in our

computations.[A[Brief[feview[df[¢[¢mentary[¢bmplex[dnalysis[is[given[in[¢hapter[6.
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2.2 Functions, Formulas, and Variables
Basics

Here are the standard definitions for function, domain, and range commonly found in elementary
introductions to mathematical analysis: A function f on some set 7 of real numbers is a
mapping from that set into the set of real or complex numbers. That is, for each real number x
in T, f defines a corresponding value f(x). The function is said to be real or complex valued
according to whether all the f(x)’s are real or complex values. In this book you should assume
that any function under discussion is complex valued unless it is otherwise explicitly stated or
obviously implied by other assumptions. (As already noted, a brief review of complex numbers
and complex-valued functions will be given in chapter 6. No real harm will be done if, until
then, you visualize all functions as being real valued.) The domain of f is the set of all values
of x for which f(x) is defined, and the range of f is the set of values that f(x) can assume.

Most of the time we will be concerned with functions defined on some given interval of the
real line. If no interval is explicitly stated or obviously implied by other conditions, then you
may assume that the functions under consideration are defined on the entire real line.

Typically, a function f is described (or defined) by stating its domain and a formula for
computing the value of f(x) for all “relevant values of x” (For now, “all relevant values of
x” should be taken as meaning “all x in the domain of the function’; though we’ll soon see that
this is not always quite the case.) For our purposes, a formula for f is any set of instructions
for determining the value of f(x) for each relevant value of x . Sometimes the formula will be
a simple expression involving well-known functions (e.g., (3 + x)? or sin(2x) ). Other times
the formula may be a collection of simple formulas with each valid over a different interval. For
example, the ramp function is the function on (—oo, 0o) given by the formula

0 if x<0
remp(x) = { X if 0<x
We should also expect formulas involving integrals and infinite summations, such as
t e — .
fx) = /z:o 3t-dt and glx) = ,; VL sin(nmx)

Obviously, we will not be able to evaluate some of these formulas for particular values of x
using elementary techniques.

Although functions are often identified with formulas, you should realize that the two are
not truly the same. For example, 2x and x + x are two different formulas, but they certainly
describe the same function. That is what we mean when we write 2x = x + x .

Within the formulas for functions are variables, symbols used to show how given values are
manipulated to evaluate the indicated function at those given values. It is important to recognize
that there are different types of variables and that the context in which a given variable appears
determines what it represents. Consider, for example, the expression

fx) = /x03t2dt . 2.1)
o

It contains two variables, x and . The x can be considered a true variable. It represents values
that can be “inputed” into the function or formula. In a particular application, x can be replaced
by a specific number, say 4, giving us the value of f at that point,

4 4
f4) = / 32dr = t3‘ — 64
=0 0
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On the other hand, if we try to assign ¢ the value 4 in equation (2.1), then we get

X
fx) = / 3.47d4
4=0
which makes no sense at all. This ¢ cannot be assigned a value. It is being used to describe
the function being integrated and has no meaning outside the integral. Such variables are called

internal or dummy variables.!

Along the same lines, the precise meaning of “ f(x)” where f is some function, also
depends on the context in which it is used. We will have three slightly different meanings
assigned to this notation.

First of all, f(x) will denote the numerical value of f at x. In this sense, f(x) isa
number. (This is the standard definition found in many textbooks.)

We will alsouse f(x) to represent any formula for computing the numerical value of f(x)
for every x in the domain of f. In other words, we won’t quibble over whether f(x) = x?2
indicates a value or is a formula for computing the values.

Finally, let us agree that f(x), as well as any formula defining [, can denote the function.
So, instead of saying

The derivative of f, where f(x)=x?,is f’, where f'(x) =2x.
and

Consider the function g given by the formula g(x) = sin(2wx).
we will often just say

The derivative of x2 is 2x .
and

Consider the function sin(2wx) .

We are simply agreeing that, at times, we will not explicitly distinguish between “a function”
and “a description of the function” This agreement does violate conventions stated in some math
texts, but it does agree more with common usage in most disciplines (and many math texts) and
it will greatly simplify the discussion in this text.

Exactly which of these three interpretations should be applied to an appearance of “ f(x)”
should be clear from the context.

Another way of denoting f(x) is f]|,. As illustrated in footnote 1, this notation will be
particularly convenient when we start dealing with operators and transforms.

Keep in mind that changing the symbol used as the variable in a function does not change
the function.? For example, if f(x) = x2 for —oco < x < 0o, then defining g(s) to be 52
for —0co < s < oo does not introduce a new function. f and g are the same function because,
for every real value a, f(a) = a®> = g(a). On the other hand, replacing the variable in a
function’s formula with a nontrivial formula involving another variable definitely does give us
a different function. For example, substituting 2s for the x in f(x) = x2 results in a new
function, h(s) = f(2s) = 4s>. f and h are not the same function, because, in general,

h(a) = 4a® # a® = f(a)

2
x=3"

2 We are talking about function definition and not computations using formulas. Suddenly changing, without adequate
warning, the symbol being used for a particular variable in a series of computations can easily render your results
totally meaningless!

1 The distinction between true and dummy variables is not always clear cut. Consider the expression Z—xx
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A Pragmatic Approach to Domains and Function Equality

Often we must deal with functions that are not well defined at a few isolated points in the intervals
of interest. Sometimes this is because the formula defining the function has ambiguities. Other
times this is because of inherent discontinuities in the function. In practice, though, we are only
concerned with the behavior of a function over intervals, not at isolated points. Because of this,
we can take a rather pragmatic point of view concerning these functions and adopt the following
convention:

Convention (irrelevance of function values at isolated points)
Let f and g be two functions on an interval (a, b) . If f(x) = g(x) for all but a finite number
of x’s in (a,b), then f and g are viewed as the same function over that interval.>*

To a great extent, this convention concerns how we use formulas to define functions. A few
examples may help clarify the matter.
> Example 2.1: A trivial example is given by

x2 -1
—1

fx) =

which is undefined for x = 1. In applications, however, most of us would feel justified in
“simplifying” f(x),
-1 4D -D

fo)y = 2= = =x+1
x—1 x—1

and then ignoring the fact that the original formula for f(x) was not defined for x = 1. In
other words, “for all practical purposes” we would agree that

x2 -1

= x+1
x—1

> Example 2.2 (unit step functions):  Two unit step functions u and h are given by

0 if x<0 0 if x <0
u(x) = and ]’l()C) =
1 if 0<ux 1 if 0<ux

These two formulas differ only at one point, x = 0, where u equals 0 and h equals 1.
Thus, according to the above convention, the solitary difference between u and h at the one
point can be ignored, and we can view u and h as being the same function on the real line.

One reason we can ignore the values of a function at isolated points is that the basic
manipulations of Fourier analysis are based on integration, and for integrals the value of a
function at a single point (or a finite set of points) is truly irrelevant. For example, if v is either
of the above defined step functions, then

2 0 2
/ v(x)dx = / 0dx +/ ldx = 0%, + x|} =2
1 0

—1 —

3 Those who know about equivalence classes should realize that, with this convention, we are defining an equivalence
relation ( f ~ g whenever f(x) = g(x) for all but a finite number of x’s in (a, b)) and then identifying functions
with their corresponding equivalence classes.

4 Those who know about Lebesgue integration can extend this convention to If f and g are two functions on (a, b)
that differ only on a set of measure zero, then f and g may be viewed as the same function over (a, b).
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The value of v(0) is completely irrelevant to the computation of this integral. We would have
gotten exactly the same result if v(0) = 827 as long as we still have v(x) = 0 when x < 0
and v(x) =1 when 0 < x.

This convention also corresponds to the way we normally use functions to describe events
around us. Functions such as the step function are used to describe phenomena involving very
rapid changes during a very brief periods — so brief that it is impractical to accurately describe
the phenomena during these brief periods. For example, when an incandescent light is turned
on, it takes time for the filament to heat up enough to produce light. But when you walk into a
room and turn on the lights, the filament heats up so quickly that a function like the step function
— which is zero for ¢t < 0 and some fixed value for 0 < ¢ — is usually adequate for describing
the light output. In such cases we don’t really care about the exact light output at the exact
instant we activate the lights. And if we do care (maybe we are studying the rate at which the
lamp’s filament heats up), then we should not try to describe the phenomenon using a simple
step function.

While the value of a function at an individual point is irrelevant, the values of the function
over intervals on either side of that point are quite relevant. We will see how this affects the way
we deal with discontinuities in the next chapter.

Notice how this convention affects our notion of two functions being equal. By the conven-
tion, the statement that two functions f and g (given by formulas f(x) and g(x)) are equal
over an interval (o, ), which we will also write as

f =g (oras f(x) = glx)) over (a.B) ,
means the following:

1. If (a, B) is a finite interval, then, numerically, f(x) = g(x) for all except some finite
number (possibly zero) of x’s between « and .

2. If («, B) is an infinite interval, then, in the sense just described, f = g on every finite
subinterval of («, 8).

> Example 2.3: By our convention,

x2 -1

=x+1 over (—o00,00) ,

even though the formula on the left-hand side is not well defined for x = 1.

This convention also modifies our concept of a function’s domain. We can now accept a
function f as being defined over an interval even if it (or the formula defining it) is not well
defined at a few isolated points on that interval. More precisely, the statement that f is defined
on (a, B) will mean that:

1. If (@, B) is a finite interval, then the value of f(x) is defined for all except some finite
number (possibly zero) of x’s between « and 8.

2. If (v, B) is an infinite interval, then f is defined, in the sense just described, on every
finite subinterval of («, 8).

> Example 2.4:  Recall the cotangent function,

cot(x) = C?S(x)
sin(x)
This is defined for every real value of x except x = 0, +m, 2w, 37, .... Since each

finite subinterval of (—o0, 00) can only contain a finite number of such points, we will say
that cot(x) is defined on (—o0, 00).
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About Delta Functions

(This is for those of you who are acquainted with the (Dirac) delta function. If you don’t know
about the delta function, skip to the next section.)

You may wonder how the (Dirac) delta function § — which is often visualized as being
zero everywhere on the real line except at x = 0, where itis “infinite” — fits into our discussion.
The answer is simple: It doesn’t. The (Dirac) delta function § is not a function, at least not in
the sense being considered here.

Remember what a function on an interval is. It is simply a mapping from that interval
(excluding, possibly, a few isolated points) into the set of complex numbers. Thus, for f to
be a function on some interval, we must be able to define f simply by describing the value of
f(x) for all x’s on that interval. Unfortunately, the important properties of the delta function
cannot be derived simply from an expression of the form

0 if x#0

d(x) =
+00 if x=0

(This will be verified rigorously at the start of part IV.) Invariably, some additional (and often
mathematically questionable) property must be specified (such as ffooo d(x)dx =17). Con-
sequently, “the delta function” falls outside of the theory of functions we are now discussing.

Later (in part IV and, to a lesser extent, in chapter 27) we will develop the mathematics
for dealing with the delta “function”. It is an important part of Fourier analysis, and well worth
the wait. Until then, though, we will not have the mathematics to justify any use of the delta
function.

2.3 Operators and Transforms
Basic Concepts

Any mathematical entity that changes one function into another function is called either an
operator or a transform. (The two terms are equivalent, and which term is used for a particular
entity is largely a matter of tradition.) For example, the differential operator D is defined by

D[f] = f'
For some specific f’s,
D[xz] = 2x and D[sin(2wx)] = 27 cos(2mx)

Note that here the symbol x is being used both as a dummy variable to describe the function
being differentiated (inside the “[]”’) and as a true variable. It should be clear that

D[xz]‘3 = 2x|3 =23 =6,
while
D[x*]|; # D[3*] = DI9] = 0 !

It is often more convenient to use different symbols for the two variables. The reader may
recall the Laplace transform £, given by

LIfl, = / Swetar 2.2)
1=
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In particular, for s > 2,

o= (521 |

o0 X
£[€2t]|< = e St dt = e Vg = 2
§ t=0 =0 s—2

=0 s—2
Here it is particularly important to realize that the function being “plugged into” the Laplace
transform is the function described by the formula e* . Any other formula describing this
function could have been used. Also, the actual symbol used as the variable in the formula (as
well as for the dummy variable in the integration) is totally irrelevant. Using x instead of ¢,

00
o) e—(5—2)x

o
£[e2x]| = e N dx = PR L —
5 x=0 x=0 s—2

In principle, we could use the same symbol for both variables,

oC |: e2x ]
In practice, though, this would surely lead to confusion in computing Laplace transforms.
Later on, much of our work will involve extensive manipulations of various transforms

of many functions. In doing these manipulations, say, for a transform 7 , keep in mind that
T[f(x)] is shorthand for

=0 s—2

. 1
X x =2

TLf] where f is the function described by the formula f(x)

Changing the symbol used for the variable in the formula (here, the x in f(x) ), does not change
the function described by that formula and so, does not change the transform of that function.
Thus,

TIf®] = T1Lf©®)]

On the other hand, as noted earlier, replacing the symbol used in the formula with a nontrivial
formula involving any other symbol does change the function and, thus, changes the transform
of that function.

?» Exercise 2.1: Consider the Laplace transform as defined above, and let f(t) = e* .
Show that L[ f(2x)] # L[ f(t)] by computing L[ f(2x)]|; and comparing it to L[ f(t)]l,
(computed above).

Like functions, operators and transforms have “formulas” and “domains” For a given
operator, the domain is the set of all functions on which the operator can operate, and a formula
is just an expression telling us how to compute the result of an operator operating on any
function in its domain. Typically, as in formula (2.2), the operator’s formula describes how to
manipulate the formula for any “input function” — the f(x) in (2.2) — to get the formula for
the corresponding “output function” — the L[ ]|, in (2.2).

The specification of the domain of an operator should always be part of the definition
of the operator. Unfortunately, violations of this rule are commonplace. If no domain for a
particular operator 7 is given, then any function f for which 7[ f] “makes sense” can usually
be assumed to be in the domain of 7 . For example, although it was not stated, the domain for
the differential operator D is the set of all functions on (—o00, co) for which the derivative is
defined as a function on (—o0, 00).

?» Exercise 2.2:  What would be a reasonable domain for the Laplace transform?
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g
J

Unfortunately, it may not always be clear when [f] makes sense’, and we will see
examples of how easy it is to make serious errors by assuming that some particular function is
in an operator’s domain when, in fact, it is not. Determining the appropriate domains for the
operators in Fourier analysis will be an important issue.

Linear Transforms

Many operators of interest are linear. Recall that an operator T is linear if and only if the
following holds:

If f and g are in the domain of 7, and a and b are any two (possibly com-
plex) constants, then the linear combination af + bg is also in the domain of J .
Furthermore,

Tlaf +0gl = aT[f] + bT (gl

Of course, if f, g, and & are three functions in the domain of a linear operator 7, and
a, b,and c are three constants, then, since af + bg is in the domain of 7, so is the sum of
af + bg with ch, af + bg + ch . Furthermore,
Tlaf +bg 4+ ch]l = T[(af + bg) + ch]
Tlaf +bgl + c¢T[h] = aT[f] + bT[g] + cT[h]

Continuing along these lines leads to the following completely equivalent definition of an operator
T being linear:

Whenever {fi, f2, ..., fy} is a finite set of functions in the domain of 7, and
{c1, c2, ..., cn} is a finite set of (possibly complex) constants, then the linear
combination ¢y f1 +c¢a fo + -+ cy fn is also in the domain of 7 . Furthermore,

Tlafi+tcafa+--+envfn]l = aTlfil + T 2] + -+ + enT [fn]

> Example 2.5: Consider the differential operator D with the set of all differentiable
functions on (—oo, 00) asits domain. From calculus we know that, if f and g are functions
with derivatives on (—00, 00) and a and b are any two constants, then the linear combination
af + bg is differentiable on (—o00, 00) and

(af +bg) = af +bg

In other words, if f and g are in the domain of D, and a and b are any two constants,
then the linear combination af + bg is in the domain of D and

Dlaf + bg] = aD[f] + bD[g]

Thus, D is a linear operator.

?» Exercise 2.3:  Is the Laplace transform a linear operator (use the domain from exercise 2.2)?
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Basic Analysis I:
Continuity and Smoothness

One good way to generate errors and embarrass yourself is to use a formula or identity without
properly verifying its validity under the circumstances at hand. This seems particularly easy to
do in Fourier analysis, and it is not at all unusual to see differential identities and integral formulas
from the theory of Fourier analysis being used with functions that are neither differentiable or
integrable. (It’s especially disturbing when such abuses occur in textbooks.) The results range
from questionable to disastrously wrong.

We, of course, will try to avoid such mistakes. So we must be able to identify when the
various results derived in this text are valid and when they are not. To simplify this process,
functions are commonly classified according to pertinent properties which they may or may not
satisfy. For example, a function f on some interval («, 8) is classified as being bounded over
that interval if there is a finite value M such that

[f(x)] < M  whenever o <x <p

If no such M < oo exists, then f is said to be unbounded (over the interval).

In the next few chapters we will briefly review some of the basic elements of function
analysis (i.e., “calculus”) that will be especially important in later discussions. In this particular
chapter, the emphasis is on how smoothly function values vary near each point where they are
defined, and on how this smoothness affects some of the manipulations we might wish to do
with our functions.

3.1 (Dis)Continuity

You surely remember that a function f is continuous at a point xq if f(xp) and lim,_, v, f(x)
both exist! and

lim f) = fxo)

Let’s now look at what can happen when a function is not continuous.

1 Unless otherwise indicated, any statement that a certain limit exists should be understood to mean that the limit
converges to some finite (possibly complex) number. Thus we are excluding “limits converging to infinity’; such as
lim,_, ¢ l/|,)c|
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16 Continuity and Smoothness
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Figure 3.1: The sinc function (a) with the trivial discontinuity at x = 0 and (b) with the
trivial discontinuity removed.

Discontinuities

Let f be some function on (¢, 8), and let xo be a point in the interval («, 8). If f is not
continuous at xg then it must have one of three types of discontinuities at xo — trivial, jump
or “bad” — as described below.

Trivial Discontinuities

The function f has a trivial discontinuity (also called a removable discontinuity) at xq if the
limit of f(x) does exist as x approaches xp but, for some reason, either this limit does not
equal f(xg) or f(xp) does not even exist according to the definition given for the function.
A classic example is the sinc (pronounced “sink™) function on (—o0, 00). It is given by the
formula?

sinc(x) = S

X

While this formula is indeterminate at x = 0, we see that, using L’Hopital’s rule,

d .
; — sin(x)
. sin(x . . cos(x
lim ()=11m‘1’64=11m ():1
x—>0 X x—0 ix x—=0 1
dx

But recall our discussion in the previous chapter. As far as we are concerned, the value of a
function at a single point is irrelevant, and (re)defining the formula for it at any single point (or
any finite number of points on any finite interval) does not change that function. This means we
can “remove” the discontinuity in the sinc function by appropriately (re)defining sinc(x) to be

1 when x =0,
sin(x)

if x#0
sinc(x) =
1 if x=0

The graphs of the sinc function with the trivial discontinuity at x = 0 and with this discontinuity
removed are sketched in figure 3.1.

Likewise, any other function f with a trivial discontinuity at some point x( can have that
discontinuity removed by (re)defining f (xo) tobe lim,_,, f(x). Since redefining a function’s
formula at isolated points does not change the function as far as we are concerned, let us agree
that, if any function is initially defined or otherwise described with a finite number of trivial

5 . . . . . sin(2mwx)
Warning: Some texts define the sinc function by  sinc(x) =

X
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(Dis)Continuity 17

discontinuities on any finite interval, then those trivial discontinuities are automatically assumed
to be removed.

> Example 3.1:  For all —oo < x < 00, let

sin(2w x)
= —-—— .1
ALY sin(r x) @.1)
This function is clearly continuous at any x other than xo = 0, =1, 2, .... On the other

hand, when x is an integer, both the numerator and denominator are zero. Using L’Hopital’s
rule to evaluate the limits at these points, we find that

-2 if  xq is odd

sin(27x) 2mecos2rxg) | 2 if Xxoiseven
x—xg sin(rx) 7 cos(mrxq) -

Thus, since trivial discontinuities are assumed to be removed, formula (3.1) is understood to
mean

sin(2w x) . . .
—_— if x is not an integer
sin(w x)
f) = +2 if x=0,+2, +4, ... - (3.2)
-2 if x =41, £3, £5, ...

The above example illustrates the fact that, typically, trivial discontinuities arise because of
limitations in the formula used to describe the function. “Removing the trivial discontinuities”
then amounts to giving a more complete or precise formula for the function, and our agreement
that “all trivial discontinuities are assumed removed” is simply an agreement that a more complete
formula (such as formula (3.2)) will be assumed whenever we state a less precise formula (such
as formula (3.1)).

?» Exercise 3.1:  Verify that, it g is given by

2(x) = sin(27 x) ’
X

then g(0) = 27 . (Remember, trivial discontinuities are assumed to be removed.)

Jump Discontinuities

The function f has a jump discontinuity at xo if the left- and right-hand limits of the function

at xqo,
lim f(x) and lim f(x) ,
x»xof x%xar

both exist but are not equal (see figure 3.2). The jump in f at xo is the difference

Jo = lim f(x) — lim f(x)

X—)XO X—).XO

Clearly, such a function cannot be made continuous by (re)defining the function at the jump
discontinuity. We could, for reasons of aesthetics (again, see figure 3.2), (re)define the value of
a function at a jump discontinuity to be the midpoint of the jump,

o) = ;[ lim_f(x) + limf(X)] ,

)C*))CO X*)XO
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18 Continuity and Smoothness
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Figure 3.2: Generic jump discontinuity in f at xo with yjer = lim, _, Xy fx),

Yright = limx_mar f(x) and ypig = “midpoint of the jump”

but this will not appreciably simplify the mathematics of interest to us. Since this is the case
and since we have already agreed that the value of a function at a single point is irrelevant, we
will simply not worry about the value of a function at a jump. And if the value of a function is
accidentally specified at a jump, we will feel free to ignore that specification.

> Example 3.2 (the step function):  One of the simplest examples of a function with a jump
discontinuity is the unit step function

0 if x<0

steplx) = 1 if 0<ux

Note that step = u = h where u and h are the functions from example 2.2.3

Bad Discontinuities

Any discontinuity that is neither trivial nor a jump will be considered a bad discontinuity. Some
functions with bad discontinuities at x = 0 have been (very crudely) sketched in figure 3.3.
The classical theory of Fourier analysis is not well suited for dealing with functions having such
discontinuities. Because of this, little will be said about these functions until the generalized
theory is discussed in part IV.

Classifying Functions Based on Continuity
Continuous Functions

Afunction f is continuous on aninterval («, 8) if and only if it is continuous at each point in the
interval. Remember that, if any finite subinterval of («, 8) contains a finite (but not inﬁnite4)
number of trivial discontinuities, then all trivial discontinuities are automatically assumed to
have been removed.

3 The unit step function is also known as the Heaviside step function and is commonly denoted by either u# or . That
notation, however, would become confusing for us since we’ll be using these symbols for so many other things.

4 In this book, we will concern ourselves only with functions initially possessing at most a finite number of trivial
discontinuities in any given finite interval. More advanced readers should be aware that functions with infinitely
many trivial discontinuities (and no other discontinuities) can still be treated as continuous so long as the set of all
discontinuities “has measure zero”
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(Dis)Continuity 19

f@ = g0 = o) = sin( 1)

X

Figure 3.3: Three functions with bad discontinuities at x = 0.

> Example 3.3:  The function from example 3.1,

sin(2 x)

fx) =

’

sin(r x)

is continuous on the real line.

Even though a function is continuous on a given interval, it might still be rather poorly
behaved near an endpoint of the interval. For example, even though the function I/, is continuous
on the finite interval (0, 1), it is not bounded. Instead, it “blows up” around x = 0. To exclude
such functions from discussion when (¢, §) is a finite interval, we will impose the condition of
“uniform continuity’; as defined in the next paragraph.

Let («, B) be a finite interval. The function f is uniformly continuous on (a, B) if, in
addition to being continuous on («, B), its one-sided limits at the endpoints,

1im+ f(x) and lim f(x) ,

x—>o x—p~

both exist.
?» Exercise 3.2: Whyis (x — 1)~! not uniformly continuous on (0, 1) ?

Let us observe that, if f is continuous on any interval («, 8), finite or infinite, and if
o <a <b < B,then f iscontinuous over the finite subinterval (a, b) . Moreover, since f is
continuous at a and b, the one-sided limits

lim+ fx) and 1112_ f(x)

X—a

both exist. Thus, f is uniformly continuous over (a, b). This fact is significant enough to be
recorded in a lemma for future reference.

Lemma 3.1
Let f be continuous on any interval («, B), andlet « < a < b < . Then f is uniformly
continuous over the finite subinterval (a, b) .

The next two lemmas describe two properties of uniformly continuous functions. The first
should seem pretty obvious if you think about sketching a uniformly continuous function. The

© 2001 by Chapman & Hall/CRC



20 Continuity and Smoothness

second provides an alternate definition of uniform continuity that will be useful for some of the
more theoretical work we may be doing later.

Lemma 3.2
Any function that is uniformly continuous on a finite interval is also a bounded function on that
interval.

Lemma 3.3 (alternate definition of uniform continuity)
A function f is uniformly continuous on a finite interval («, 8) if and only if there is a positive
value Ax, for each positive value € such that

1fx) — fF@)I] < €
for each pair of points x and x in (o, B) that satisfies

x — x| < Axe

It might be noted that the alternate definition of uniform continuity indicated in lemma 3.3
can be used to define uniform continuity on infinite intervals as well as finite intervals.

The boundedness of uniformly continuous functions on finite intervals can probably be
accepted as fairly obvious. The validity of lemma 3.3 may not be so obvious and should be
proven before the lemma is used. However, it will be a while before we need this lemma, and,
while the proof is terribly interesting (to some), it is also somewhat lengthy. So let us place this

prooffin[dn[dddendum[fo[this[¢hapter[(see[page[32)[o[be[deviewed[dt[d[dore[dppropriate[fime.

Discontinuous Functions

Fourier analysis would be of very limited value if it only dealt with continuous functions. Still,
we won’t be able to deal with every possible discontinuous function. We will have to restrict our
attention to discontinuous functions we can reasonably handle. Typically, the minimal continuity
requirement that we can conveniently get away with is “piecewise continuity” over the interval
of interest. Occasionally the requirements can be weakened so that we can deal with some
functions that are merely “continuous over some partitioning of the interval”

Because it is the more important, we will describe “piecewise continuity” first.

Let f be a function defined on an interval (¢, B8). If («, B) is a finite interval, then we
will say f is piecewise continuous on («, 8) if and only if all of the following three statements
hold:

1. f has at most a finite number (possibly zero) of discontinuities on (e, ) .
2. All of the (nontrivial) discontinuities of f on («, 8) are jump discontinuities.
3. Both lim,_, 4+ f(x) and lim,_,g- f(x) exist (as finite numbers).

If, on the other hand, («, B8) is an infinite interval, then f will be referred to as piecewise
continuous on (o, B) if and only if it is piecewise continuous on each finite subinterval of
(o, B) .

It is important to realize that a piecewise continuous function is not simply “continuous
over pieces of («, §)” To see this, let («, ) be a finite interval, and let x1, x3, ..., xy be
the points in (o, f) — indexed so that x; < x» < --- < xy — at which a given piecewise

© 2001 by Chapman & Hall/CRC



(Dis)Continuity 21

continuous function f is discontinuous . These points partition («, B) into a finite number of
subintervals

(o, x1) , (x1,x2) , (2,x3) , ... , (N, B)

with f being continuous over each of these subintervals. But the second and third parts of the
definition also ensure that

lim (), lm f0 . lim ) . lm o fG) .., lim £

x—>a x—x] x—x] xX—x; x—p~

all exist (and are finite). Thus, not only is f continuous on each of the above subintervals, it is
uniformly continuous on each of the above subintervals.>

?» Exercise 3.3:  Show, by example, that there are functions continuous on a finite interval,
say, (0, 1), that are not piecewise continuous on that interval.

“Continuity over a partitioning” is simply piecewise continuity without the uniformity.
More precisely, we’ll say that a function is continuous over a partitioning of an interval (¢, B)
if and only if that function has at most a finite number of (nontrivial) discontinuities on each
finite subinterval of («, B) .

By the way, the “partitioning of the interval” being referred to is the partitioning of (c, )
into subintervals,

o (enx2) o, (o,x3) 0 (a3, x4)

by the points ..., x1, x2, x3, ... at which f is discontinuous (with the indexing choosen so that
<X <X <X3<...)

> Example 3.4:  The function f(x) = '/x has only one discontinuity on the real line, at
x =0. Since '/y - +o0 as x — %0, the discontinuity is neither trivial nor a jump. Hence,
this function is continuous over a partitioning of (—oo, 00) . In particular, it is continuous
over partitioning consisting of the subintervals

(—00,0) and (0, 00)

However, because the discontinuity at x = 0 is neither trivial nor a jump, this function is not
piecewise continuous on the real line.

Equality of (Dis)continuous Functions

Considering our pragmatic approach to the equality of functions, it may be worthwhile to re-
examine this concept when the two functions are piecewise continuous over an interval or even
just continuous over a partitioning of that interval.

Lemma 3.4
Let f and g be two functions defined on an interval («, B) , and assume f = g on this interval
(in the sense described in section 2.2). Then (after removal of all trivial discontinuities):

5 This definition of “piecewise continuity” is firmly fixed in the standard literature. The author briefly considered
using the more descriptive phrase “piecewise uniformly continuous” for those functions traditionally called piecewise
continuous, and using the term “piecewise continuous” for any function that was just “continuous over pieces of the
interval”> The shocked reactions of his colleagues to this heresy convinced him to follow tradition.
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22 Continuity and Smoothness

1. If f is continuous on (o, B), then sois g. Moreover, f(x) = g(x) for every x in
(o, B) .

2. If f is piecewise continuous on («, B), then so is g. Moreover, f(x) = g(x) for
every x in (o, B) at which f is continuous.

3. If f is continuous on a partitioning of («, ), then g is continuous on the same parti-
tioning. Moreover, f(x) = g(x) forevery x in («, f) at which f is continuous.

The proof of this lemma is straightforward and left as an exercise.

?7» Exercise 3.4: Prove lemma 3.4.

Endpoint Values

On occasion we will have a function f that is uniformly continuous on some finite open interval
(o, B), and we will want to discuss something regarding “the value of f(x) at one of the
endpoints” Strictly speaking, the values f(«) and f(8) may not be well defined either because
f(x) was not originally defined for x = o or x = 8, or because f is not continuous at one or
both of these points. Still, if we are restricting our attention to the behavior of f just over the
interval (o, B), then we really do not care about the values of the function outside that interval.
So let us agree that, whenever we are restricting our attention to a function f over a finite
interval (o, ) over which f is uniformly continuous, then, by f(«) and f(8), we mean

fla) = x1ir2+ fx) and  f(B) = xgng_ Jf(x)

3.2 Differentiation

In Fourier analysis we often must deal with derivatives of functions that are not, strictly speak-
ing, differentiable. To understand why this is not a contradiction, let us carefully review the
terminology.

Differentiability
A function f is differentiable at a point x if and only if

lim L& A0 - f)

Ax—0 Ax (3-3)

exists. If f is differentiable at every point in a given interval («, 8), then f is said to be
differentiable on the interval (o, B) or, if we want to be very explicit, differentiable everywhere
on (o, B).

Observe that, if a function is differentiable at a point or on some interval, then that function
must also be continuous at that point or on that interval. On the other hand, there are many
continuous functions which are not everywhere differentiable. It is also worth recalling the
geometric significance of differentiability and the above limit; namely, that the statement “ f
is differentiable at x ” is equivalent to the statement “the graph of f has a single well-defined
tangent at x .” Moreover, the limit in expression (3.3) gives the slope of this tangent line.
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Differentiation 23

?» Exercise 3.5:  Verify that |x| is continuous, but not differentiable, at x = 0.

Derivatives

For each point x at which f is differentiable, the derivative of f at x, denoted by f’(x), is
the number given by the limit in expression (3.3),

Py = tim LGHA0 =70

4
Ax—0 Ax S

Suppose f is differentiable at all but a finite number (possibly zero) of points in each finite
subinterval of («, ). Then formula (3.4) also defines another function on (¢, ), called,
naturally, the derivative of f on (a, 8) and commonly denoted by f’ (or df/dx or df/d; or
...). Notice that the derivative of a function can exist on an interval even though the function is
not differentiable everywhere on that interval. In fact, as our next example shows, it is possible
for the derivative to be continuous (after removing the trivial discontinuities) even though the
function, itself, has a nontrivial discontinuity.

> Example 3.5:  The step function,

0 if x<0

step(x) = { 1 if 0<x

is clearly differentiable everywhere on (—o00, 0c0) except at the point x = 0 where the step
function has a nontrivial jump discontinuity. It should also be clear that

tep' () 0 if x<0

step' (x) =

P 0 if 0<ux

The discontinuity at x = 0 is a trivial one. Removing this discontinuity gives

step’ = 0

which is continuous on the entire real line even though the step function is not differentiable
on the real line.

?» Exercise 3.6: What is the derivative of |x| ?

Remember, “differentiability” (i.e., “differentiability at every point on a given interval”) is a
much stronger condition than “the derivative exists”> Do not assume a function f is differentiable
on an interval just because f’ exists on the interval. This is important because we will be using
and deriving a number of formulas involving derivatives of differentiable functions. In general,
these formulas will not be valid for functions that are not differentiable everywhere. Using these
formulas without checking that the functions involved are suitably differentiable can lead to
serious (and embarrassing) errors.

> Example 3.6:  You surely recall that

B
/ flxydx = f(B)— f@
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24 Continuity and Smoothness

whenever f isdifferentiable on an interval containing « and B . If we ignore the requirement
that f be differentiable, then, (mis)using this equation with f(x) = step(x) and recalling
that step’(x) = 0 we obtain

3 3
0 = / 0dx = / step’(x)dx = step(3) — step(—2) = 1 !
2 )

Smoothness
Smooth Functions

To be smooth over an interval («, B), a function f must satisfy two conditions:
1. f must be differentiable (and, hence, continuous) everywhere on (¢, ), and

2. f’ must also be a continuous function on («, ).

> Example 3.7:  The function |x| is not smooth on any interval containing the origin since,
as was seen in exercise 3.5, |x| is not differentiable at x = 0.

> Example 3.8:  Even though the derivative of the step function is continuous on the real
line (after removing the trivial discontinuity, see example 3.5), the step function, itself, is not
smooth on any interval containing the origin because it has a jump discontinuity at x =0 .

The graph of a smooth, real-valued function looks like a smoothly curving line. Typically,
the graphs of nonsmooth functions contain nontrivial discontinuities (as with the step function
at x = 0) or else have sharp corners (as with |x| at x =0).

From the definition it is clear that a smooth function is differentiable. And, if you were to
test a random sampling of known differentiable functions, it may appear as if all differentiable
functions are smooth. This, however, is not true. There are differentiable functions which are
not smooth (see exercise 3.17 on page 36).

Uniform Smoothness
Let («, B) be afinite interval. A function f is uniformly smooth on («, B) if and only if
1. f is smooth on (a, B), and

2. both f and f’ are uniformly continuous on («, B).

(This also defines uniform smoothness for a function on an infinite interval, provided the def-
inition of uniform continuity is the alternative definition given in lemma 3.3 — with the word
“finite” replaced by “infinite’)

> Example 3.9:  Consider the function f(x) = x1/2 over the interval (0, 1). Both f and
its derivative, f'(x) = %x‘l/ 2 are clearly continuous everywhere on (0, 1) . In fact, f is
uniformly continuous on (0, 1) (You verify this!). But

. .1
lim f'(x) = lim ~x'? = o0
x—0t x—0t 2

So f’ is not uniformly continuous on (0, 1), and hence, f is not uniformly smooth on the
interval (0, 1).

7% Exercise 3.7:  Show that x'/? is uniformly smooth on (o, 8) whenever 0 < a < < 00.
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Basic Manipulations and Smoothness 25

Piecewise Smoothness

A function is said to be piecewise smooth over a finite interval («, 8) if and only if (o, 8) can
be partitioned into a finite number of subintervals over which the function is uniformly smooth.

If (o, B) is an infinite interval, then a function is piecewise smooth over («, B) if and only
if it is piecewise smooth over every finite subinterval of («, ).

?» Exercise 3.8:  Sketch the graphs of some functions that are piecewise smooth over the real
line. Also, sketch the graphs of some functions that are not piecewise smooth over the real
line.

Higher Order Smoothness

A function f on some interval is said to be twice differentiable (on that interval) whenever it
and its derivative, f’, are both differentiable. Notice that, for f’ to be differentiable, it must
first be continuous. So a twice-differentiable function is automatically a smooth function.

To continue along these lines, let k be any positive integer. We will refer to a function f
as being k-times differentiable on an interval (or k" differentiable or k" order differentiable on
some interval) if and only if it and all of its derivatives up to order k — 1 are differentiable on
that interval. To extend the observation made in the previous paragraph, note that whenever f
is k-times differentiable on some interval, then f, f’, f”,...,and f*=D must all be smooth
functions on that interval.

Ultimately, a function and all of its derivatives may be differentiable on an interval. In that
case, of course, that function and all of its derivatives must be smooth functions on that interval.
Such functions are said to be either infinitely differentiable or, equivalently, infinitely smooth on
the interval.

7> Exercise 3.9  a: Verify that f(x) = x*/ 3 js differentiable but not twice differentiable on
the real line.

b: Give an example of a function that is twice differentiable but not third-order differentiable
on the real line.

c: Give an example of an infinitely differentiable function on the real line.

3.3 Basic Manipulations and Smoothness

Scaling, Shifting, and Linear Combinations

Scaling, shifting, and forming linear combinations are operations that arise naturally when using
functions. Since we will be using these operations extensively, and since we have already recalled

what a “linear combination” is (footnote 1 on page 4), let us briefly review what it means to scale
and shift a function.
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26 Continuity and Smoothness

Scaling

>

Let y be anumber and f a function. “Scaling by y ” can refer to either of two operations. It
can mean that the function is being multiplied by y (i.e., f(x) is replaced by y f(x)). More
commonly, in this text at least, scaling by y means that the variable is being multiplied by y
(i.e., f(x) isreplacedby f(yx)). Inthiscase y isusually assumed to be a nonzero real number.
Notice that the behavior of the scaled function, f(yx), around the point x = a corresponds to
the behavior of the original function, f(x), around the point x = ya . Conversely, the behavior
of the original function, f(x),around the point x = a corresponds to the behavior of the scaled
function, f(yx), around the point x where yx = a (that is, the point x = %, ). It follows
then, that the graph of f(yx) is a horizontally compressed version of the graph of f(x) when
1 < y, and is a horizontally expanded version of the graph of f(x) when 0 <y < 1.

?» Exercise 3.10: Let
x(1—x) if 0<x<1

0 otherwise

Sketch the graphs of f(x) and f(yx) for the following cases:

a: 1<y (say, y =2).

b: 0 <y <1 (say, y =1/2).

c: y=-—1.

In each case be sure to compare the graph of f(yx) with the graph of f(x).

?» Exercise 3.11:  In general, what happens to the graph of f(yx)
aasy—>oo?
b: asy — 0 ?
Assume f is defined on all of R.

Shifting and Translation

A function f(x) is said to be shifted or translated by a fixed real number y when the variable
x is replaced by x — y . The graph of the resulting shifted function can be obtained from the
graph of the original function by shifting the original graph horizontally by a distance of |y]|.
If y > 0, the shift is to the right. If y < 0, the shift is to the left.

?» Exercise 3.12: Let
x(1 —x) if 0<x<1
fx) =

0 otherwise

Sketch the graphs of f(x) ands f(x — y) for the following cases:
a: O<y (say, y =2).
b: y <0 (say, y = —-2).
In each case be sure to compare the graph of f(x — y) with the graph of f(x).
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Addenda 27

Smoothness under Basic Operations

Suppose we have a function f(x) that satisfies any of the properties discussed thus far in this
chapter (boundedness, continuity, piecewise continuity, differentiability, etc.) over an interval
(o, B), and let y be any nonzero real number.

It is easy to see that the scaled function f(yx) also satisfies the same properties as f(x),
but over the interval (a, b) where

@ ﬁ) if 0
vy ! =¥

(B5) e

(a,b) =

It should also be clear that the translationof f by y, f(x—y), satisfies the same properties
as f,but over the interval (@« — y, 8 — y).

Finally, suppose we have a collection of functions, {fi, f2, ...}, and that, on the interval
(e, B), all of these functions satisfy any one of the conditions discussed thus far (e.g., all
are bounded or all are smooth on the interval). Then it should be clear that any finite linear
combination of these fi’s also satisfies that property over the interval («, §) .

On the other hand, if g is defined to be an infinite linear combination of the f;’s,

gx) = a1 fikx) + c2fo(x) + c3fax) + -+,

then there is no general assurance that g satisfies any of the properties satisfied by all the fi’s.
Indeed, an infinite linear combination of the f;’s is actually an infinite series of functions which
might not even converge to any sort of a function. This will be one of our concerns when we
deal with such linear combinations.

3.4 Addenda

Some of the proofs in this text will involve technical issues that are best discussed only when
the need arises. For want of a better place, we’ll discuss some of those issues here. If you've
not yet reached those proofs, you may just want to give the following material a quick glance so
you’ll know where to return when you do reach those proofs.

A Refresher on Limits

Presumably, you already have good intuitive notion of what is meant by the equivalent statements

f(x) > L as x — xg and lim f(x) = L ,

X—> X0

as well as such standard variations as

lim+ f(x) =L , xli)moof(x) =L and lim f(x) = o

x_)xo X—>X0

For most of this text your intuitive notion of these concepts should serve quite well, provided
you also recall such basic limit theorems from elementary calculus as
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As long as
lim f(x) and lim g(x)

X—>Xx0 XxX—> X0

both exist and are finite, then
lim (f(x)g(x)) = ( lim f(x))( lim g(x))
X—>X0 X—>X0 X—>X0

You should also realize that, suitably rephrased, these theorems hold for complex-valued func-
tions of complex variables, as well as for functions of two or more variables.

On occasion, however, we may need to employ a certain “limit test” which the reader may
have forgotten. This is a fundamental test for showing both that the limit of f(x) exists as x
approaches a finite point xo and that

lim f(x) = 0 . (3.52)

X— X0

This last statement is, of course, equivalent to

lim [f(x)] = 0 . (3.5b)
X—> X0

Recall what expression (3.5b) really says. It says that, by setting the value of x “suitably close
to xp’; we will force the value of | f(x)| to be “correspondingly close to zero”’ This, then, is
what our test needs to show, namely, that we can force |f(x)| to be as close to zero as desired
by simply choosing x to be “close enough” to xo. (Remember, “close” means “within some
small but non-zero distance”) Traditionally, € denotes how close to zero we desire f(x) to
be, and Ax (or §) denotes how close we need x to be to xo to ensure that f(x) is within the
desired distance, €, of zero. In these terms, what we need to show can be stated as

For every given € > 0, there is a corresponding Ax > 0 such that

|[f(x)] < € whenever 0 < |x—x0| < Ax

Thus, a basic test for showing that the limit of f(x) as x — x¢ exists and that
lim f(x) =0
X—>X0

is to explicitly show that, for every choice of € > 0, there is a corresponding (positive) value
for Ax such that

lf(x)] < € whenever 0 < |x —xp] < Ax

This “test” should look vaguely familiar. It is, in fact, the standard definition of expression
(3.5b). Admittedly, it is rarely used to actually compute a limit. Still, on occasion, we will find
it necessary to return to this basic test/definition.

While on the subject, let’s recall the basic tests/definitions for a few other limits:

1. If x¢ is a finite point and L is a finite value, then the statements

lim f(x) = L and lim |f(x) — L| = 0
X—>X(

X—> X0

mean the same thing.
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2. If L is a finite value and f is a function on the real line, then
lim f(x) =L
x—>00
if and only if, for every € > 0, there is a corresponding finite real value X such that
|[f(x) — L| < € whenever X < «x

3. If xo is any finite point, then
lim |f(x)] = o0
X—>X0

if and only if, for every M > 0, there is a corresponding Ax > 0 such that

lf(xX)] > M whenever 0 < |x —xg| < Ax

Some Useful Inequalities

At various points in our work we will need to determine “suitable upper bounds” for various
numerical expressions. At some of these points, the inequalities discussed below will be invalu-
able.

Two basic inequalities will be identified. You are probably well acquainted with the first
one, the triangle inequality, though you may not have given it a name before. You may not be
as well acquainted with the second one, the Schwarz inequality. It is somewhat more subtle
than the triangle inequality and will require a formal proof. Both, it should be mentioned, are
fundamental inequalities in analysis and have applications and generalizations beyond the simple
formulas discussed in this section.

The Triangle Inequality

Let A and B be any two real numbers. If you just consider how values of |A|, |B|, |A + B],
and |A| + |B| depend on the signs of A and B, then you should realize that

|A+B| < [Al + [B| . (3.6)

This inequality is called the triangle inequality. The reason for its name is explained in chapter
6 (see page 58), where it is also shown that this inequality holds when A and B are complex
numbers as well.

There are two other inequalities that we can immediately derive from the triangle inequality.
The first is the obvious extension to the case where we are adding up some (finite) set of numbers

{A1, A2, Az, ..., An}. Successively applying the triangle inequality,
[A1 +Ax+ A3+ -+ Ay| < |A1] + |[A2+ A3+ -+ Apn|
< |A1l + |A2] + |A3+ -+ An|
<

s

we are, eventually, left with the inequality
A1+ A2+ A3+ -+ An| = A1l + [A2] + [A3]+---+]AN]

which can also be called the triangle inequality.
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The derivation of the other inequality requires a smidgen of cleverness. Let A and B
be any two numbers (real or complex) and observe that, by the original triangle inequality and
elementary algebra,

Al = |[A-B+B| < |A-B| + |B]
Subtract B from both sides and you have
|Al — |B] = |A—B|
For future reference, we’ll summarize our derivations in the following lemma and corollary.

Lemma 3.5 (triangle inequality)
Given any finite set of numbers (real or complex) {A1, A, A3, ..., An}, then

A1+ A2+ A3+ -+ An| = A1l + [A2] + [A3]+ -+ |AnN]

Corollary 3.6
Let A and B be any two real or complex numbers. Then

|Al — |B| < |A— B]

These inequalities will often be used with functions that are either nondecreasing or non-
increasing. Observe that, if f is a nondecreasing function on the real line (i.e., f(a) < f(b)
whenever a < b), then the above inequalities immediately imply that

flx+yD = fAxl+1yD  and  flx[=IyD = f(x—yD

On the other hand, if g is a nonincreasing function (i.e., f(a) > f(b) whenever a < b), then
we have

flx+yD = flxl+1yD  and  flx[ =1y = flx—=yD

?» Exercise 3.13: Let « be a positive value, and let x and b be any two real numbers. Verify
the following inequalities:
a: ealx—h| < ea|x|ea|b| b: ea\x—bl > ea|x|e—a|b|
c: e*a|X*b| > efalxlefalb\ d: efalebl < efotlxleoz\bl

(Note: We’ll use these particular inequalities later.)

The Schwarz Inequality (for Finite Sums)

The Schwarz inequality is a generalization of the well-known fact that, if a and b are any two
two- or three-dimensional vectors, then

la-bl = llall [[b]

In component form, with a = (ay, a2, a3) and b = (b1, by, b3) , this inequality is

3 1/2 3 1/2
(Z |ak|2) (Z |bk|2>
k=1 k=1

IA

3
Z aiby,
k=1
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This inequality, suitably generalized, is the one generally referred to as the Schwarz inequality.®

Theorem 3.7 (Schwarz inequality for finite summations)
Let N be any integer, and let {ay, a3, a3, ..., ay} and {b1, by, b3, ..., by} be any two sets
of N numbers (real or complex). Then,

N 1 N 1
< (Zmﬁ) <Z|bk|2) : (3.7)

k=1 k=1

N
Z arby
k=1

PROOF: Suppose we can show

N N V2 /N 2
D lal bl < (Z |ak|2) (Z |bk|2) : (3.8)
k=1 k=1 k=1

Then inequality (3.7) follows immediately by combining the above inequality with the triangle

inequality,
N N N
Y abe| < ) laxbil =) lagl bl
k=1 k=1 k=1

So we only need to verify that inequality (3.8) holds.
Consider, first, the trivial case where either

N N

Dolal? =0 or Yl =0

k=1 k=1

In this case, all the ax’s or all the by’s clearly must be 0, and the statement of inequality (3.7)
reduces to the obviously true statement that 0 < 0.
Now consider the case where

N N
Z|ak|2 >0 and Zlbk|2 >0
k=1 k=1

For convenience, let

N 1/2 N 1
A = <Z|ak|2> and B = <Z|bk|2>
k=1 =1

Using elementary algebra, we see that

)

N
0 < Y (Blaxl — Albg))?
k=1

N
> o[BI — 24Blalibel + A2 |bil?]
k=1

N N N
B> la* — 2ABY |l bkl + A% |bkl?
k=1 k=1 k=1

6 It’s also referred to as Schwarz’s inequality or the Cauchy-Schwarz inequality or even the Cauchy-Buniakowsky-
Schwarz inequality — depending on the generalization and the mood of the author.
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N
= B%2A? — 2ABZ|ak||bk| + A’B?
k=1

N
2AB|:AB - Zlakllbkl}

k=1

Thus, since 2AB is positive,

N
0 < AB — > lax! bk
k=1

And so,

N N N '
> lallbil < AB = (mez) (Z |bk|2) : |
k=1 k=1 k=1

Uniform Continuity

Here we discuss the proof of lemma 3.3 on page 20 on uniform continuity. For convenience the
lemma will be broken into two smaller lemmas, lemmas 3.9 and 3.10 below. Also, to reduce the
number of symbols, let’s just consider proving the lemma assuming that (¢, 8) = (0, 1). (We
can always extend the arguments to cases involving arbitrary intervals by the use of scaling and
shifting.)

The proof of each part of lemma 3.3 employs something you should recall from calculus.
For reference, I’ll remind you of that something in the next lemma.

Lemma 3.8

Let « and B be two real numbers and assume {ay, az, a3, ...} is a sequence of real numbers
with o < a, < B for each n. Assume, further, that {ai, a>, a3, ...} is either a nondecreasing
sequence (i.e., a, < a4 foreach n ) or is a nonincreasing sequence (i.e., a, > a,4 for each
n ). Then this sequence converges and

o < lima, < B

n—oo

Here is the first part of lemma 3.3:

Lemma 3.9
Let f be uniformly continuous on (0, 1), and let € be any fixed positive value. Then there is
a corresponding positive value Ax. such that

[f(x) — f()] < €
for each pair of points x and x in («, B) that satisfies
|x — x| < Ax
Since f is assumed to be uniformly continuous on (0, 1), we can assume

1) = lin&f(X) and  f(1) = 1ini17 J(x)
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If you recall what these limits mean (see the refresher on limits earlier in this addendum), you
will realize that the above lemma is trivially true with ““ (0, 1) ” replaced by “ (0, 8) ” for some
suitably small positive value B . What we will do is to construct a sequence of intervals (0, bg),
(0, by), (0, by), ... such that the above lemma is obviously true when “ (0, 1) ” replaced by each
“(0, by) ", and then show that one of those (0, b,)’s must be the entire interval (0, 1) .

PROOF (of lemma 3.9):  For each pair of integers n and k with n > 0 and 0 < k < 2", let

k
On = — and Xnk = kb, = o

(Observe that x, 0 = 0 and x,2» = 1.) Now, choose b, to be the largest x, x such that the
following statement is true:

lf) = fI < €

whenever

x and y are points in [0, x,, ;] satisfying |x —y| < &,

Since this statement holds trivially when k = 0, we are guaranteed that each b, exists. Also,
since the largest x, ; for each n is x,2» = 1, we must have b, < 1 for each n. Observe,
moreover, that if one of the b,,’s, say, by , equals 1, then the claim of the lemma immediately
follows (with Ax. = §x ). So all we need to verify is that b, = 1 for some n. We will do this
by showing that it is impossible for b, < 1 for all n. Our arguments will use the results from
the following exercise.

?» Exercise 3.14:  Let N be a fixed positive integer. Using the above definition for the
b,’s:
a: Show that by < by41 . (Suggestion: Let K be the integer such that by = xn g . Then
verify that by = xy+12kx and that xy412k < bny1.)

b: Show that, as long as by < 1, there must be a pair of points sy and ty with

by =8y < sy <ty < by+dn 3.9
such that
[f(Gsn) — fam) =€ . (3.10)

So now let’s assume b, < 1 for every positive integer n, and see why this assumption
cannot be valid.

From the first part of the above exercise we know that the b,’s form a nondecreasing
sequence in [0, 1]. As noted in lemma 3.8, every such sequence converges to some value in
[0, 1]. Let

b = lim b,
n—0oo
Now let s, 52, ... and 71, 2, ... be the points described in the second part of the above

exercise. From inequalities (3.9) and the fact that §, = 27" — 0 and n — oo, we see that
lim s, = lim b, = by and lim t, = lim b, = by
n— oo n—od n— oo n— oo

Thus, by the continuity of f,

nli{gof(sn) = f(boo) and nll>n;of(t”) — f(boo)
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Combining this with inequality (3.10) gives us
e = lim [f(sy) = fun)] = [f(boo) = flboo)l = 0,

which is certainly impossible because € is a positive value. Consequently, our assumption that
b, < 1 for every positive integer n cannot be valid. There must be a positive integer n for
which b, = 1.

Here is the other part of lemma 3.3:
Lemma 3.10

Let f be a function on (0, 1), and assume that, for each € > 0, there is a corresponding Ax.
such that

[f(x) — f)] < €
whenever x and X is a pair of points in (c«, B) with
lx — x| < Axe
Then f is uniformly continuous on (0, 1) ; thatis, f is continuous on (0, 1), and
xl_i)rf)1+ fx)  and Sl_if{g fx)
both exist.

The continuity of f on (0, 1) should be obvious if you recall the definitions of continuity
and limits. Showing that the limits at x = 0 and x = 1 exist is a bit more tricky. Here’s a brief
outline of the proof that lim,_, o+ f(x) exists, assuming f isreal valued. For a complex-valued
function, apply the following to the real and imaginary parts separately.

PROOF (outline only, that lim,_, o+ f(x) exists):  First of all, using the assumptions of the
lemma it can be easily verified that we can choose a sequence of positive values §1, 62, 83, . . .
satisfying all of the following:

1. For each positive integer n,
) = f@] < o
whenever x and x is a pair of points in (0, 1) such that
lx —X| < 8,
281 =28 = ...=8;, = 641 = ...
3. 6, —>0asn— 0.
Note that, in particular,
[f(x)—f@)| < 1 whenever 0 < x < §;

Thus, for each x in (0, 61),
Ly < fx) < U
where
U = f1)+1 and Ly = f(§)—1
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For each successive positive integer n greater than 1, choose U,, to be the smaller of

f@n) + % and  Up-1
and choose L, to be the larger of
f@) — -~ and L,

It is easily verified that, for each n > 2 and x in (0, §,),
Ly <L, =L, < f(x) <U, =U,1 =U

This tells us is that the U,’s form a bounded, nonincreasing sequence of real numbers, while
the L,’s form a bounded, nondecreasing sequence of real numbers. Consequently both series
converge. Denote the limits of these two sequences by Uy, and L., respectively, and then
observe that

0 < Ux — Lo = lim [U, — Ly]

n— 00
< dim [f6) + 2 = fG) - 1] = lim 2 =0
n—oo n n n—-oon

So Usxy, = Loo. From this and the fact that L, < f(x) < U, foreach n > 2 and x in
(0, 8,,) , it immediately follows that

lim f(x) = Usy . |
x—07t

Showing that lim,_, ;- f(x) exists is just as easy.

Additional Exercises

3.15. Verity the validity of each of the following statements:

a. If f isuniformly continuous on a finite interval (¢, B), then f is piecewise contin-
uous on (a, B).

b. If f is both continuous and piecewise continuous on a finite interval («, ), then f
is uniformly continuous on («, f) .

c. If f is piecewise continuous on (c, 8), then f is continuous over a partitioning of

(@, B) .

d. If f and g are both continuous on (&, B) , and a and b are any two constants, then
the linear combination af + bg is continuous on («, ).

e. If f and g are both uniformly continuous on a finite interval («, 8), and a and b
are any two constants, then the linear combination af + bg is uniformly continuous

on (o, B).

f. If f and g are both piecewise continuous on («, ), and a and b are any two
constants, then the linear combination af + bg is piecewise continuous on (o, ) .
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g. If f and g are both continuous over a partitioning of (o, ), and a and b are any
two constants, then the linear combination af + bg is continuous over a partitioning

of (o, B).

3.16. Several functions defined on (—oo, 00) are given below. For each, sketch the graph
over the real line and state whether the given function is bounded, continuous, piecewise
continuous, or continuous over a partitioning of R .

1

a. sin(x) - c. sincx
sin(x)

d. step(x) e. ¢ f. tan(x)

g. the stair function, where stair(x) = the smallest integer greater than x

3.17. Consider the function .
f) = 22 sin(-)
X
a. Verify that this function is continuous at x = 0 and that f(0) =0.
b. Sketch the graph of this function over any interval containing x = 0.

c. Obviously, this function is differentiable at every x # 0. Show that it is also differ-
entiable at x = 0 by computing

oy o SO+ AD — )
FO = jm, Ax

(Thus f is differentiable everywhere on (—o00, 00) .)
d. Compute f’(x) assuming x # 0.
e. Show that f is not smooth on any interval containing x = 0 by showing that
)}ig}) f'x) # £
In fact, you should show that lim,_.o f'(x) does not even exist! (Suggestion: Try

computing this limit using x, = (n2wa)~! with n — oo and various different
“clever” choices for a. You might even try to sketch the graph of f'(¢).)
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Basic Analysis II:
Integration and Infinite Series

The importance of integration and infinite series to Fourier analysis cannot be overstated. Indeed,
we’ll find that the basic entities of classical Fourier analysis — Fourier transforms and Fourier
series — are constructed using integrals and infinite series.

4.1 Integration
Well-Defined Integrals and Area

In this text, any reference to “an integral” will invariably be a reference to a definite integral of
some function f over some interval («, 8),

B
/ f(x)dx . @.1)

A number of integration theories have been developed, and the precise definition of expres-
sion (4.1) and of “integrability” depends somewhat on the particular theory. For our purposes,
any of the theories normally used in the basic calculus courses' will suffice.

Whichever theory is used, if f is a real-valued, piecewise continuous function on (¢, 8),
then, geometrically, expression (4.1) represents the “net area” of the region between the X—axis
and the graph of f(x) with ¢ < x < §. That s,

B
/ f(x)dx = Areaofregion R4 — Areaofregion R_
o

where R4 and R_ are the regions above and below the X—axis indicated in figure 4.1a. The
corresponding total area, of course, is given by

B
/ | f(x)| dx = Areaofregion Ry + Areaofregion R_
o

B
/ f(x)dx

! This is usually a variant of the Riemann theory. The more advanced students acquainted with the Lebesgue theory,
of course, should be thinking in terms of that theory.

It should be clear that P
< f 1l dx (42)
o

37
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“Ax N

(a) (b)

Figure 4.1: (a) Regions above and below the X—axis and (b) the Riemann sum
approximation for [ D‘? f(x)dx when f isreal valued.

(We will have much more to say about f f | f(x)| dx and inequality (4.2), especially when
(o, B) is an infinite interval, in chapter 18.)

If, instead, f is a complex-valued, piecewise continuous function, then f can be written
as f =u+iv where u and v are real-valued functions (see chapter 6). We then have

B B B B
/ fx)dx = / [u(x) +iv(x)]dx = / ux)dx + i / v(x)dx
o o o o
with the integrals of u and v representing the “net areas” between their graphs and the X-—axis.
We should note that inequality (4.2) is also true when f is complex valued. This will be verified
in chapter 6 (see, in particular the section on complex-valued functions starting on page 59).

Because of the central role that integration plays in Fourier analysis, it will be important
to ensure that our integrals (equivalently, the “net areas” represented by the integrals) are well
defined. This means that we must be able, in theory at least, to find the areas of the regions R
and R_, and that both of these areas must be finite.?

Certainly, no matter which theory of integration is used, |, aﬂ f(x)dx is well defined when-
ever («, B) is a finite interval and f is piecewise continuous on («, 8) . In this case the areas
of R4+ and R_ are clearly finite and, for each positive integer N , the total net area can be
approximated by a corresponding N Riemann sum,

N
Ry = ) f(&) Ax (4.3)
k=1
where (see figure 4.1b)
Ax = f-e R
N
and, for k=0,1,2,..., N,
X = o+ kAx

and x; is some conveniently chosen point on the closed interval [x;_1, x;] at which f is well
defined (i.e., where f is continuous).

Geometrically, each term in the Riemann sum is the “signed” area of the k™ rectangle
in figure 4.1b, with the sign being positive when the rectangle is above the X-axis (i.e., when
f(xx) > 0) and negative when the rectangle is below the X-axis (i.e., when f(xx) < 0).

2 Sometimes it is possible to use clever trickery to “cancel out infinities” and seemingly obtain a finite “net area”
when both R4 and R_ have infinite areas. I would advise against using these tricks. Besides, as far as we will
be concerned, the generalized theory, which will be developed in part IV, will provide more general and much safer
ways of dealing with situations in which such tricks might be considered.

© 2001 by Chapman & Hall/CRC



Integration 39

Clearly, as N — oo, the Ry’s will converge to a finite value, and this finite value is the net
area represented by the integral,

B N
dx = lim Ry = li A
/a f(x)dx = lim Ry Nl_r)nool;f(xw x

?» Exercise 4.1 (for the more ambitious): Prove that the Ry’s defined by expression (4.3)
converge to a finite number as N — oo. Remember: (o, ) is finite and f is piecewise
continuous on («, B) . (Trytofirst prove this assuming f isuniformly continuouson (c, ) .)

For the classical theory of Fourier analysis (part II and part III of this text), we will usually
limit our discussions to functions that are at least piecewise continuous over the intervals of
integration. This will ensure that the integrals over finite intervals are well defined. An additional
property, absolute integrability, will be introduced and used in part III to identify integrals on
infinite intervals that are well defined.

To be honest, limiting ourselves to piecewise continuous functions while discussing the
classical theory is not absolutely necessary. Still, it will not be a severe restriction and besides,
the generalized theory we will develop in part IV will provide much better tools for dealing with
functions that are not piecewise continuous.

Integral Formulas

We will be using a number of integral formulas in our work, most of which should be well known
from basic calculus. For example, you surely recall that no one really calculates an integral via
Riemann sums. Instead, we use the fact that, as long as f is uniformly smooth on a finite
interval (¢, ),

B
/ fleydx = “f(B) — fl@)” . 4.4)

Notice the quotes around the right-hand side of this equation. As written, this formula assumes
f is continuous at the endpoints of (o, 8). Often, though, we will be dealing with functions
that have jump discontinuities at the endpoints of the intervals over which we are integrating. In
these cases, the correct formula is actually

B
/ f/(x)dx = lim f(x) — lim f(x) . 4.5)
a x—B~ x—at
For convenience, this will often be written as
B ) 5
f fwdx = fof (4.6)
o

where it is understood that
f@[E = lim @) — lim £
x—B x—at

Because we will often be integrating functions that are not smooth, let us state and verify
the following slight generalization of the above:

Theorem 4.1
Let f be continuous and piecewise smooth on the finite interval (¢, 8). Then

P B
f fleode = f@l, - @7
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PROOF (partial): First of all, if f" has no discontinuities, then f is uniformly smooth on
(«, B) and, from elementary calculus, we know equation (4.7) holds.

If f/ has only one discontinuity in (e, 8), say, at x = xg, then f is uniformly smooth
on (&, x9) and (xg, B). Thus,

B X0 B
f fxydx = / flodx + / /() dx
o o X0
- [ lim f(x)— lim f(x)] + [ lim f(x)— lim f(x)i|
X=Xy x—at x—>p- x_>x8r
= 1112 f(x) — lim f(x) + lim f(x) — lim f(x) . (4.8)
X—=>p~ x—at X=X xﬁxar

But, because f is continuous everywhere on («, §),

lim f(x) — lim f(x) = f(xo)— f(xo) = 0

x—>x0 X—>X0

and so, equation (4.8) reduces to equation (4.7). I

Extending this to the cases where f’ has more than one discontinuity is left as an exercise.

?» Exercise 4.2:  Extend the above proof of theorem 4.1 to the following cases:
a: f’ has exactly two discontinuities on (o, ) .

b: f’ has any finite number of discontinuities on (c, B) .

It’s worth glancing back at example 3.6 on page 23 to see what foolishness can happen
when formula (4.7) is used with a function that is not continuous (see, also, exercise 4.6).

As acorollary, we have the following slight generalization of the classic integration by parts
formula. This formula will be important when we discuss differentiation in Fourier analysis.

Theorem 4.2 (integration by parts)
Assume f and g are both continuous and piecewise smooth functions on a finite interval (a, ) .
Then

B B
/ flg)dx = f(x)g(X)|§ —/ fgdx . (4.9)

PROOF: Clearly, the product fg will also be piecewise smooth and continuous on (¢, 8) .
By theorem 4.1 and the product rule,

B g B
fgw|) = / (f(x)g(x)) dx =f f'()gx)dx +/ fg'xydx

which, after cutting out the middle and rearranging things slightly, is equation (4.9). I

Occasionally, we will need to approximate fairly general integrals. The following well-
known (and easily proven) theorem can often be useful in such cases.
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Theorem 4.3 (mean value theorem for integrals)
Let f be a uniformly continuous, real-valued function on the finite interval («, 8) . Then there
isan x with o < x < B such that

B
FEB—al = / £y dx

The value f(x) in this theorem is commonly re-
ferred to as the mean (or average) value of the function
f over the interval and is simply the height of the rec- F@)
tangle having the interval (o, 8) as its base and having / ’\/
the same net area as is under the graph of f over the /
same interval (see figure 4.2).

Other well-known formulas from integral calculus !
will be recalled as the need arises. o F; B

3>
>

Figure 4.2: Illustration for the
mean value theorem.

4.2 Infinite Series (Summations)

For mathematicians (and others indoctrinated by mathematicians — like you), an infinite series
is simply any expression that looks like the summation of an infinite number of things. For
example, you should recognize

oo
1 1,1 ,1, 1, 1
ZE =14+ 45+t +c+
k=1
(with the “- - - ” denoting “continue the obvious pattern”) as the famous harmonic series.

In Fourier analysis we must deal with infinite series of numbers, infinite series of functions,
and, ultimately, infinite series of generalized functions. Here, we will review some basic facts
concerning infinite series of numbers. Later, as the need arises, we’ll extend our discussions to
include those other infinite series.

Basic Facts

Let cg, c1, c2, ... be any sequence of numbers, and consider the infinite series with these
numbers as its terms,

o
ch =c+crtex+---
k=0
Here the index, k, started at 0. In practice, it can start at any convenient integer M . For any

integer N with N > 0 (or, more generally, with N > M), the N partial sum Sy is simply
the value obtained by adding all the terms up to and including cy ,

N
Sy = ch =c+c+ert---+en
k=0

The sum (or value) of the infinite series, which is also denoted by Y = ck , is the value we get
by taking the limit of the N partial sums as N — oo,

00 N
ch = lim Sy = lim ch
=0 N—o0 N%ookzo
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This assumes, of course, that the limit exists. If this limit does exist (and is finite), then the series
is said to be convergent (because the limit of partial sums converges). Otherwise the series is
said to be divergent. In the special cases where the limit is infinite (or negatively infinite), we
often say that the series diverges to infinity (or to negative infinity).

A convergentseries Y -, cx canbe further classified as being either absolutely convergent
or conditionally convergent. 1t is absolutely convergent if Y oo, lck| converges, and it is
conditionally convergent if Y p- ), cx converges but Y oo, |ck| does not. Basically, if a series
converges absolutely, then its terms are decreasing quickly enough to ensure the convergence of
the series. On the other hand, a conditionally convergent series converges because its terms tend
to cancel themselves out. Unfortunately, the pattern of cancellations for such a series depends on
the arrangement of the terms, and it can be shown that the sum of any conditionally convergent
series can be changed by an appropriate rearrangement of its terms. By contrast, the sum of an
absolutely convergent series is not affected by any rearrangement of its terms. For this reason
(and other reasons we’ll discuss later) it is usually preferable to work with absolutely convergent
series whenever we are fortunate enough to have the choice.

Let’s note a few facts regarding an arbitrary infinite series of numbers Y ;,, cx which are
so obvious that we will feel free to use them later without comment:

1. Ifwedo not have ¢y — 0 as k — oo, then the series must diverge. (On the other hand,

the fact that c,p—[0 as k[3> oo [does[#of guarantee[the[¢bhnvefgence[dflthe[dEkies![Bee,
for[¢xample,[¢xeftise[4.3.)

2. If L isaninteger with M < L, then either both > 72, ¢k and Y 2, cx converge or
both diverge. That is, the convergence of a series does not depend on its first few terms.

3. (The triangle inequality) If Y 22, |ck| converges, so does Y po ,, ¢k . Moreover,

o o0
Sal = 3
k=M k=M

(see,[dlso,[page29).

> Example 4.1 (the geometric series):  Let X be any nonzero real or complex number, and
let M be any integer. The corresponding geometric series is

o0
doxt = xM oy MR XM (4.10)
k=M

The N partial sum is easily computed for any integer N greater than M . First, if
X =1, then

N N
Sy = Zlk = 21 = N-M+1
k=M k=M

If X # 1, then
1-X)Sy = Sy — XSwv

— [XM+XM+1+XM+2++XN]
_ [XMJr] +XM+2 +XM+3+"'+XN+]]
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Dividing through by 1 — X then gives us

XM _ XN-‘rl

>
Xk = sy = 22 | 4.11)
= 1-X

Now recall (or verify for yourself) that

0 if |X]<1
fim ‘XN) =1 i x=1

N—o00
o if |X|>1

Consequently, when |X| <1,

N M N+1 M M
. . X" —-X X" -0 X
lim E Xk = lim = =
NHOOk:M N—o0 1—-X 1-X 1— X

It should also be clear that this limit of partial sums will diverge whenever |X| > 1. Thus,
the geometric series Z,fi M X* converges if and only if |X| < 1. Moreover, when |X| < 1,

00 N M
. X

» xF = lim Y xt = S—

Pyt N—>ook:M 1-X

(Note that, by the above, the geometric series Z,fi m X |k converges if and only if | X| < 1.
So, in fact, this series converges absolutely if and only if |X| < 1.)

In practice, we can rarely find a simple formula for the partial sums of a given infinite series.
So, instead, we often rely on one of the many tests for determining convergence. Some that will
be useful to us are given below. Their proofs can be found in any decent calculus text.

Theorem 4.4 (bounded partial sums test)
Let Y 22, ck be an infinite series such that, for some finite number B and every integer N
greater than M ,

N
Z lexl < B

k=M

Then > ;2 ,, ck converges absolutely and
< B

o0
> lal <
k=M

Theorem 4.5 (comparison test)
Let Y 72, ar and Y ;2 ,, by be two infinite series. Assume that y ;- ,, bx converges abso-
lutely and that, for some finite value B,

lax] < B |b| for every integer k > M

Then Y72 ,, ax also converges absolutely and

o o0
> lal < B Y bl
k=M k=M
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Theorem 4.6 (integral test)
Assume Y ;2 ,, ck is an infinite series with only positive terms, and suppose there is a piecewise
continuous function f on (M, co) such that

1. f(k) = ¢y for each integer k > M , and
2. f(a) > f(b) whenever M <a < b.

Then the infinite series converges absolutely if

/Oof(x)dx < o0 |,
M

and diverges to infinity if

o0
/ f(x)dx = o0
M
Moreover,

/M f(x)dx < k;;q < ey + /M f(x)dx

Theorem 4.7 (alternating series test)
Let Y 724 ck be an alternating series whose terms steadily decrease to zero. In other words,
assume all of the following:

1. ¢cxg—>0ask— 0.

2. |ck| = |ck+1| for each integer k > M .

3. Either
(—l)k |kl for each integer k > M

ck
or
= (=D for each integer k > M

Then Y 72, ck converges, and, for every integer N greater than M ,

0 N
da = D al < lenl
k=M k=M

?» Exercise 4.3 (the harmonic series):  Using the integral test, show that the harmonic series,

o
1 1,1, 1 1 1
Do = lhggho ot
k=1
diverges to infinity.
?» Exercise 4.4 (the alternating harmonic series): Show that the alternating harmonic
series,
= e 1 I T B T
B A o T U N T B
l;( D =S+t ,

converges conditionally.
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The Schwarz Inequality for Infinite Series

One tool we will find useful in discussing the convergence of some infinite series (but which
is often not covered in introductory discussions of series) is the Schwarz inequality. The finite
summation version of this inequality was discussed and proven near the end of the previous
chapter (see theorem 3.7 on page 31). There we saw that, if N is any positive integer, and {a,
a,as,...,an} and {b1, by, b3, ..., by} are any two sets of N real or complex numbers, then

N 1/2 N 1/2
< (Z |ak|2> (Z |bk|2)
k=1 k=1

Letting N — oo then gives us the Schwarz inequality for infinite series.

N

Z arby,

k=1

Theorem 4.8 (Schwarz inequality for infinite series)
Let {ay, az, a3, ...} and {by1, b2, b3, ...} be any two infinite sequences of numbers such that

o0 o0
Dl and Y |bf?
k=1 k=1

are convergent. Then Y ;- | agby is absolutely convergent and

00 n /e 1
< (Z |ak|2) (Z |bk|2> : (4.12)
k=1 k=1

00
Zakbk
k=1

Two-Sided Series

In Fourier analysis we often encounter and use two-sided infinite series, that is, series of the
form

[e¢)
o o ot catcitaotatatat o

k=—00

For convenience, we’ll refer to the type of infinite series discussed in the previous subsection as
one-sided series.

For the most part, the “theory of two-sided infinite series” is the obvious extension of the
theory of one-sided infinite series. For example, instead of the N™ partial sum of 322 __ cx,

we have the (M, N)® partial sum
N

Sun = ch )

k=M

where (M, N) is any pair of integers with M < N. We then say that ) oo
and

oo Ck €ONVerges

o0
E C = lim SMN (4.13)
N—o00
k=—00 M——o0

if and only if this double limit exists. This double limit, in turn, exists and is defined by

lim SMN = lim |: lim SMNi| = lim |: lim SMN:I s
N—o00 M——00 | N—>oo N—oo | M——o00
M— 00
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if and only if the two iterated limits

lim |:1im SMNi| and lim [ lim SMN:|

M——0c0 | N—>oo N—oo | M——o00

exist and are equal. (Also see exercise 4.7.)
Let’s make a rather simple observation. For any two integers M and N with M <0 < N,

ZCkZCM+CM+1+...+C_1+C()+...+CN

co + (C—1+072+'~~+07|M|) + (ci1+c2+---+cnN)

M| N

= c + Zcfk + ch
k=1 k

=1

From this and the basic definitions of the limits you should have little difficulty in proving the
following lemma, which points out that any convergent two-sided series can be viewed as the
sum of two one-sided series.

Lemma 4.9
A two-sided series Y - _ . cx converges if and only if both Y 2, c_x and Y ;- | cx converge.
Moreover, so long as the infinite series all converge,

e8] o0 o0

Z Ck =CQ+ZC_k —|—ch

k=—00 k=1 k=1

At this point it should be clear that all the results previously discussed for one-sided series
can easily be extended to corresponding results for two-sided series. Rather than repeat those
discussions with the obvious modifications, let us assume that these extensions have been made,
and get on with it.

?» Exercise 4.5:  What is the comparison test for two-sided infinite series?

Symmetric Summations

On occasion, it is appropriate to use a weaker type of convergence for a two-sided series
Y e oo Ck - On these occasions we use the symmetric partial sum,

N
S_NN = Z Ck
k=N

If the limit, as N — oo, of the symmetric partial sums exists, then we will say that Z,fifoo Ck
converges using the symmetric partial sums (or, more simply, converges symmetrically).

Certainly, if the two-sided series is convergent (using the stronger definition indicated in
formula (4.13)), then it will converge symmetrically and
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However, it is quite possible for a divergent series to converge symmetrically because of can-
cellations occurring in the symmetric partial sum. This, as well as a danger in using symmetric
partial sums, is demonstrated in the next example.

> Example 4.2 (the two-sided harmonic series): The two-sided harmonic series is

oo
1 1 1 1 1 1
> T R el B S o
k=—00
k#0

Because the one-sided harmonic series, Z,ﬁi 1 I, diverges to infinity (see exercise 4.3),
lemma 4.9 tells us that the two-sided harmonic series diverges. However, the terms in S_yy
cancel out for any positive integer N ,

N
1 1 1 1 1 1
S_ NN = ZE=_N_..._§_5_1+1+E+§+...+

k=—N
k#£0

From this it follows that the two-sided harmonic series converges symmetrically to zero,

N

. 1 .
1 - = = . .
Jm ¥ ¢ = im0 =0 @19
k=—N
k#0

This does not justify a claim that the two-sided harmonic series equals zero! As noted
above, the two-sided harmonic series diverges, and thus, does not have a well-defined sum.
To see why we don’t want to even pretend that such a series adds up to anything, let’s naively
“evaluate” this series using two other sets of limits.

One “evaluation” of the two-sided harmonic series is

N 1 B |M| ) N X
lim lim - | = lim lim — + —
M——oo0 | N>oo Z k M——o0 | N—>oo Z —k Z k
k=M L k=1 k=1
k#£0
M M| . N .
= lim |-) - + Ilim -
M| |
= lim —Z— + oo| = lim [4o0] = +oo
M——oc0 il k M——oc0
On the other hand,
N | B [M| | N .
lim lim Z - | = lim lim — + Z—
N—oo | M——o0 k N—oo | M——o00 —k k
k=M L k=1 k=1
k#0
B \M\l N
= lim |[— lim -+ -
Jim | dim e+ > g
L k=1 k=1
_ v 1
= Ilim | —o0 + Zf = lim [—o0] = —©
N—oo = k
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Thus, naive applications of the above equations lead to

o 1 AR
S b= gm > b=
k=—o00 N_)OO/{Z—N
k0 k0
x 1 ul 1
Z = lim lim i = +o00 ,
koo M——o00 N—>ook=M
k#0 k#0
and
00 N
1 1
Z - = lim lim - = -0 ,
k N—oo | M——o0 k
k=—00 =
k0 k20 |
implying that

Additional Exercises

4.6. Assume («, B) is a finite interval and f is a piecewise smooth function on («, )
which is continuous everywhere in («, 8) except at one point xo where f has a jump
discontinuity with jump

jo = lim f(o) = lim f(x)

X—).X'O X—)XO
a. Show that p
/ fwdx = f@F — jo . 4.15)
o
b. Show that, for each continuous and piecewise smooth function g on (¢, 8),

B g
/ fWgdx = f@g|° — jogo) — / f(x)g'(x)dx

4.7. Another way of defining the double limit in formula (4.13) is to say that the indicated
double limit exists if and only if there is a finite number L such that, for each € > 0,
there is a corresponding pair of integers (M, N¢) such that

|ISun — L| < € whenever M <M., and N, <N
If this holds, we define the limit to be L,

lim SMN =L
N—o00
M— —o00

Show that this definition of the double limit is equivalent to the one given in the text.
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Symmetry and Periodicity

In this chapter we will review some basic facts regarding functions whose graphs exhibit some
sort of repetitive pattern. Either the graphs are symmetric or antisymmetric about the origin
(even and odd functions), or they continually repeat themselves at regular intervals along the
real line (periodic functions). We are interested in even and odd functions because, on occasion,
we will exploit the properties discussed here to simplify our work. Our main interest, however,
will be with periodic functions because of the central role these functions will play in our work.

5.1 Even and Odd Functions

Let f be a function defined on a symmetric interval (—o, o) for some « > 0. The function is
said to be an even function on (—«, o) if and only if

f(=x) = f(x) on (-« ,a)

On the other hand, if
f(=x) = —fx) on (—a,a) ,

then f is said to be an odd function on (—c, ). As usual, if no interval is explicitly given,
then you should assume (—c, o) is the entire domain of f. Some well-known examples of
even functions on R are
2 4
1 s X R X , cos(x) and In | x|

Some well-known examples of odd functions on R are

X , x> , sin(x) and tan(x)

Recall that the graph of an even function is symmetric about the line x = 0, while the graph of
an odd function is antisymmetric about the line x = 0. This is illustrated in figure 5.1.

Not all functions are even or odd, but, given such functions, we can use well-known prop-
erties to simplify computations. Here are some of those properties we will use later:

1. The product of two even functions is an even function.
2. The product of two odd functions is an even function.

3. The product of an even function with an odd function is an odd function.

49
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50 Symmetry and Periodicity

A A

(a) (b)

Figure 5.1: Graphs of (a) an even function and (b) an odd function.

4. If f is an even, piecewise continuous function on a finite interval (—o, «) , then

: fx)dx = 2/af(x)dx
—a 0

5. If f isan odd, piecewise continuous function on a finite interval (—«, o), then
o
/ fx)dx =0
—
Each of these properties is easily verified. For example, if both f and g are even functions on

(—a, @), then, for each x in (—a, @),

fe(=x) = f(=x)g(=x) = fglx) = fglx) ,

verifying the first property in the above list.
The second and third properties are verified in the same manner. To prove the last two note
that

’ fydx = I- + I,

—
where

o
I, = / f(x)dx and I = f(x)dx
0
But, using the substitution s = —x,

0 /a f(s)ds if f iseven
I = —/ fesyds =
* - / f(s)ds  if f isodd

0

I if f iseven
-1 if f isodd

So, if f isevenon (—a, ),
o o
fx)ydx = 1- + 14 =1 + I} = 2/ fx)dx
—o 0
while, if f isodd on (—«, @),
o
f(x)dx = 1_ + I+ = —I+ + I+ = 0
—a

Some other properties of even and odd functions are described in the following exercises.
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?» Exercise 5.1: Let f be a piecewise smooth and even (odd) function on (—«, ). Show
that its derivative, f', is an odd (even) function on (—a, ) .

?» Exercise 5.2:  Show that an even and piecewise continuous function cannot have a nontrivial
jump discontinuity at x = 0.

?» Exercise 5.3: Let f be an odd and piecewise smooth function on (—«, ). Show that
f’ cannot have a nontrivial jump discontinuity at x = 0.

5.2 Periodic Functions
Terminology

A function f, defined on the entire real line, is periodic if and only if there is a fixed positive
value p such that

fx=p) = f) (5.1

(as functions of x on R). The value p is called a period of f . The corresponding frequency
 is related to the period by w = 1/,,.1
Note that, if f is a periodic function with period p, then, for any integer m,

fx+mp) = f(x+mp—p) = f(x+@m—1)p)

Thus, if n is any positive integer, then applying the above successively (using m = n,n — 1,
n—2,...,1,0,—1,..., —n), gives

fx+np) = fx+mr—-1Dp) = -+ = f(x+0p)
and

fx+0p) = f(x—1p) = -+ = f(x —np)
This tells us equation (5.1) is equivalent to
f(xx£np) = f(x) for every integer n . (5.2)

We will often use this, implicitly, when defining periodic functions.

!> Example 5.1 (the saw function): Let p > 0. The basic saw function with period p is
defined by

X it O<x<p
saw,(x) = )
sawp(x — p) in general
The first line of this formula tells us that the graph of this function is the straight line
y = x over the interval (0, p) . The second line, which is equivalent to

saw,(x £ np) = saw,(x) for any integer n

tells us that the function is periodic with period p , and that the rest of the graph of y = saw(x)
is generated by shifting that straight line over (0, p) to the left and right by integral multiples
of p. That is how the graph in figure 5.2 was sketched.

' Some texts refer to w = Y p as the circular frequency. You may also be familiar with the angular frequency
y =27/ p . In this text the term “frequency” will always mean “circular frequency”
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oA

-p 0 4 2p 3p

Figure 5.2: The graph of saw, .

Equation (5.2) also points out that the period of a periodic function is not unique. Any
positive integral multiple of any given period is another period for that function.

If it exists, the smallest period for a given periodic function is called the fundamental period
for that function. The corresponding frequency (which, of course, must be the largest frequency
for the function) is called the fundamental frequency.

There are periodic functions that do not have fundamental periods.

?» Exercise 5.4:  Verify that any constant function f(x) = c¢ (where ¢ is a constant) is a
periodic function with no fundamental period.

On the other hand, if f is not a constant function but is periodic and at least piecewise
continuous, then it should be intuitively obvious that f does have a fundamental period and
that every other period of f is an integral multiple of the fundamental period. We’ll leave the
proof as an exercise (exercise 5.12).

Let’s end this discussion on terminology for periodic functions by noting that, in practice,
the term “period” is often used for two different, but closely related, entities. First, as we have
already seen, any positive number p is referred to as a period for a periodic function f if

fx—=p) = f)

In addition, any finite interval whose length equals a period of f (as just defined) is also called a
period. Thus, if f is aperiodic function with period p , then (0, p), (—%h, Ph),and (2,24 p)
are all considered to be periods for f . In practice, it should be clear from the context whether
a reference to “a period” is a reference to a length or an interval.

Calculus with Periodic Functions

It is easy to see that any shifting or scaling of a periodic function results in another periodic
function, and that any linear combination of periodic functions with a common period is another
periodic function. It should also be clear that the derivative of a piecewise smooth periodic
function is, itself, periodic. Let us also observe that any periodic function which is piecewise
continuous (or piecewise smooth) over any given period must be piecewise continuous (or
piecewise smooth) over the entire real line.

?» Exercise 5.5:  Convince yourself that the claims made in the previous paragraph are true.

?» Exercise 5.6:  Give an example showing that a periodic function can be uniformly contin-
uous on a given period without being continuous on the entire real line.
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?» Exercise 5.7: Assume g is a uniformly continuous function on the finite interval (0, p) .
Let f be the periodic function

g(x) if 0<x<p
fx) = _
gx —p) in general
What additional condition(s) must g satisty for f to be continuous?
We will often need to integrate a periodic function over some given period. The next lemma,

which is easily verified (see exercises 5.8 and 5.9), assures us that we can use whatever period
is most convenient.

Lemma 5.1
Let f be a periodic, piecewise continuous function with period p . Then, for any real a,

a+p p
/ fx)dx = f f(x)dx
a 0

Since there is no need to specify the period, we’ll often simply write

a+
/ .df(x)dx for / pf(x)dx
perio a

where a is an arbitrary real number. Use of this notation assumes, naturally, that f is periodic
and that the particular period p has been agreed upon.

?» Exercise 5.8:  Sketch the graph of a “generic” real-valued, periodic function f . Let p be
any period for the function sketched, and let a be any real number. Demonstrate graphically
that “the net area between the graph of f andthe X axis over (a,a + p)”~ will always be
the same as “the net area between the graph of f and the X axis over (0, p)

?» Exercise 5.9:  Prove lemma 5.1. You might start by showing that

d a+p
E/ fx)dx =0

5.3 Sines and Cosines

We will see that, one way or another, sines and cosines are involved in most of the formulas of
Fourier analysis. So it seems prudent to make sure we are quite familiar with these particular
trigonometric functions. The graphs of sin(x) and cos(x) are sketched in figure 5.3 (in case
you forgot what they look like!). These sketches should remind you that, for any integer n,

sin(nr) = 0 and cos(nw) = (="

Do recall that the sine function is an odd function, while the cosine function is an even
function. They are related to each other by the formula

sin(x) = cos(x — %)
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Y v = cos(x)

1-/ /

y = sin(x)

—1+

Figure 5.3: The sine and cosine functions.

Also recall that each is a periodic function with fundamental period 27 . Thus, if p is any
constant such that either

sin(x — p) = sin(x) for every real value x
or

cos(x — p) = cos(x) for every real value x

then p must be an integral multiple of 2 .

We will often encounter expressions of the form sin(2wat) and cos(2wat) where a is
some fixed real number. Clearly, these functions are also periodic functions of ¢. To determine
the possible periods for these functions observe that, if p is a period for sin(2wat), then

sin2rat — 2 |a| p) = sin(Rra(t &+ p)) = sin(2mwat)
for every real value ¢ . Thus, 27 |a| p must be a period for the basic sine function, sin(x) ; that
is,
2w lal p = k2w for some integer k

Solving for the period gives

p = % where k = 0,1,2,3, ...
a

This tells us that the fundamental period for sin(2wat) (and cos(2mwat))is p = 1/\a| and,
hence, the corresponding fundamental frequency must be w = |a|. This assumes, of course,
that a £ 0. If a =0, then, for all 7,

sin(2rat) = sin(0) = 0 and cos(Qmat) = cos(0) = 1

Certain integrals of products of sines and cosines will be particularly important in the
development of the Fourier series. The values of these integrals are given in the next theorem.

Theorem 5.2 (orthogonality relations for sines and cosines)
Let 0 < p < 00, and let k and n be any pair of positive integers. Then

p P
f cos(ﬁx) dx = / sin(ﬁx) dx =0 (5.3a)
0 P 0 p

P
/ COS(@X> sin(zn—”x) dx =0 , (5.3b)
0 p p
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p 0 if k#n
/ cos(ﬁx) cos(h—nx) dx = , (5.3¢)
0 P P g if k=n
and
p 0 if k#n
/ sin(@x) sin(ﬂx) dx = (5.3d)
0 p P g if k=n

All the equations in theorem 5.2 can be verified by computing the integrals using basic
calculus and trigonometric identities. We’ll verify equation (5.3d) and leave the rest as exercises.

PROOF (of equation (5.3d)): ~ Using the trigonometric identity

2sin(A)sin(B) = cos(A— B) — cos(A+ B) ,

we see that
. ([ 27k . (27n 1 2k 27n 2k 27n
sm(—x) sm(—x) = —[cos(—x — —x) - cos( x + —x)]
P p 2 p p P p
= l[cos(wx) — cos(zn(kJr")x)] ) (5.4)
2 p 4
Thus, if k #n,

/17 . (27rk ) . (27111 )
sin( =—x ) sin{ =—x ) dx
0 p p
P p
= l/ cos(zﬂ(k_n)x) dx — 1/ cos(wx> dx
2 Jy P 2 )y P

N ey L=
4 (k —n) 14 0 4m (k + n) 14 0

= T [sin(2r(k — n)) — sin(0)] — m [sin(27 (k + n)) — sin(0)]

=0 . (5.5)

On the other hand, the computations in (5.5) are not valid if ¥ = n since they involve
division by k — n (whichis 0 when k = n). Instead, if k = n, equation (5.4) reduces to

. (27k . (2nn 1 27 (2k) 1 1 4k
sm(—x) sm(—x) = —[cos(O) — cos(—x)] = - — —cos(—x)
p p 2 P 2 2 p

Hence, when k =n,
P ronk 2n Py 1 4k
sm(—x) sm(—x) dx = [— — —cos(—x)] dx
0 p p o L2 2 p

[z = a5l
X — ——sin X
2 8k p 0

= 2 — L [sin(4nk) —sinO)] = £ . i

N |

?» Exercise 5.10: Verify equations (5.3a) through (5.3c) in theorem 5.2. (In verifying
equations (5.3b) and (5.3c), be sure to consider the cases where k # n and k = n separately.)
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Additional Exercises

5.11. Sketch the graph, and identify the fundamental period and frequency for each of the
periodic functions given below. In each case, a denotes a positive constant.

a. sin(x) b. the rectified sine function, |sin(x)| c. sin’(x)

d. The odd saw function,

X if =% <x <%
oddsaw,(x) = ]
oddsaw, (x — a) in general
e. The even saw function,
| x| if =% <x <%
evensaw, (x) =
evensaw, (x — a) in general
f. A pulse train,
0 if —a<x<0
flx) = 1 if 0<x<a
f(x —2a) otherwise

5.12. Let f be a periodic function.

a. Assume p and q are two periods for f with p < q. Verify that their difference,
q — p,isalso aperiod for f.

b. Show that all periods of f are integral multiples of the fundamental period provided
f has a fundamental period.

c. Prove that f must have a fundamental period if, in addition to being a periodic,
nonconstant function, f is piecewise continuous.

5.13 a. Using a computer math package such as Maple, Mathematica, or Mathcad, write a
“program” or “worksheet” for graphing a periodic function having period p over the
interval (—%/,2p). Have the function’s period and a formula for the function over
one period, say, (0, p) or (—Ph, Ph) as the inputs to your program/worksheet.

b. Use your program/worksheet to graph each of the following periodic functions (the
first three are from the previous exercise):

i. |sin(x)| ii. evensawg(x) iii. oddsawg(x)
0 if —1<t<0
iv. f(t) = 1 if 0<t<1
f@&—2) in general
1 if —1<t<1
v. g(1) = .
gt —2) in general
0 if 2m<t<0
vi. h(t) = 1 — cos(t) if 0<t<2nm
h(t —4m) in general
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Elementary Complex Analysis

Fourier analysis could be done without complex-valued functions, but it would be very, very
awkward.

6.1 Complex Numbers

Recall that z is a complex number if and only if it can be written as
7z = x+1iy

where x and y are real numbers and i is a “complex constant” satisfying i2> = —1. The real
part of z,denoted by Re[z], is the real number x , while the imaginary part of z, denoted by
Im([z], is the real number y. If Im[z] = O (equivalently, z = Re[z]), then z is said to be real.
Conversely, if Re[z] = 0 (equivalently, z = i Im[z] ), then z is said to be imaginary.

The complex conjugate of z = x +iy, which we will denote by z*, is the complex number
f=x—1iy.

In the future, given any statement like “the complex number z = x + iy’ it should
automatically be assumed (unless otherwise indicated) that x and y are real numbers.

The algebra of complex numbers can be viewed as simply being the algebra of real numbers
with the addition of anumber i whose square is negative one. Thus, choosing some computations
that will be of particular interest,

2ZF == (=i +iy) = 22— (iy)? = 2 +y?

and
1 1 1 x —iy x =iy z

z x+iy  x+iy x—iy  x24y2  zz*
We will often use the easily verified facts that, for any pair of complex numbers z and w,
+w* =+w"  and (w)* = @)W

The set of all complex numbers is denoted by C. By associating the real and imaginary
parts of the complex numbers with the coordinates of a two-dimensional Cartesian system, we
can identify C with a plane (called, unsurprisingly, the complex plane). This is illustrated in
figure 6.1. Also indicated in this figure are the corresponding polar coordinates r and 6 for
z =x +iy. The value r, which we will also denote by |z|, is commonly referred to as either

57
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58 Elementary Complex Analysis

Imaginary Axis
z=x+1y
b |

\ Real AXIs
x

\ 4

Figure 6.1: Coordinates in the complex plane for z = x + iy, where x >0 and y > 0.

the magnitude, the absolute value, or the modulus of z, while 6 is commonly called either the
argument, the polar angle, or the phase of z. It is easily verified that
ro=lz| = /x24+y2 = Vz*z
x = r cos(0) and y = r sin(f)
From this it follows that the complex number z = x 4 iy can be written in polar form,
7z = x+iy = r[cos(f) + isin(9)]
It should also be pretty obvious that
x| < Izl and Iyl = Izl . (6.1)
Recall how trivial it is to verify that
lz+wl < lz] + |wl (6.2)

whenever z and w are two real numbers. This inequality also holds if z and w are any two

complex numbers. Basically, it is an observation about the triangle in the complex plane whose

vertices are the points 0, z, and z+ w . Sketch this triangle and you will see that the sides have

lengths |z|, |w|, and |z 4+ w|. The observation expressed by inequality (6.2) is that no side of

the triangle can be any longer than the sum of the lengths of the other two sides. Because of this,

inequality (6.2) is usually referred to as the (basic) triangle inequality (for complex numbers).
Observe that the polar angle for a complex number is not unique. If

z = |z|[cos(6p) + isin(6p)]

then any 6 differing from 6y by an integral multiple of 27 is another polar angle for z. This
is readily seen by considering how little figure 6.1 changes if the 6 there is increased by an
integral multiple of 27 . It is also clear that these are the only polar angles for z. We will refer
to the polar angle 6 with 0 < 60 < 2m as the principal argument (or principal polar angle) and
denote it by Arg[z].

It is instructive to look at the polar form of the product of two complex numbers. So let z
and w be two complex numbers with polar forms

z = r[cos(f) + isin(0)] and w = plcos(¢p) + isin(p)]
Multiplying z and w together gives

zw = (r[cos(d) + isin(@)]) (p[cos(p) + isin(¢)])
= rp ([cos(B) cos(¢p) — sin(B) sin(¢)] + i [cos(0) sin(¢) + sin(0) cos(¢)])
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which, using well-known trigonometric identities, simplifies to
zw = rplcos(@ +¢) + isin(@ +¢p)] . (6.3)

From this it immediately follows that |zw| = |z| |w| and that a polar angle of zw can be found
by adding the polar angles of z and w.

?» Exercise 6.1: Let N be any positive integer and let z be any complex number with polar
angle 0 . Show that |zV| = |z|" and that N is a polar angle for z" .

6.2 Complex-Valued Functions

Much of our work will involve complex-valued functions defined over subintervals of the real
line. If f is such a function on the interval (o, 8), then it can be written as

f =u+iv
where u and v are the real-valued functions on («, 8) given by

ut) = Re[f(»)] and  v(@) = Im[f(1)]

Naturally, u is called the real part of f and can be denoted by Re[f], while v is called the
imaginary part of f and can be denoted by Im[ f]. Likewise, the complex conjugate of f is

ff = u—iv
and the magnitude (or modulus or absolute value) of f is

Ifl = Vu2 402 = /f*f .

Graphing a complex function f presents a slight difficulty. The values of f(¢) correspond
to points (u(z), v(t)) onthe complex plane. Thus, the graph of f would actually be a curve in a
three-dimensional T U V-space. Sadly, few of us have the artistic ability to sketch such a graph
by hand. And, even if we had a good three-dimensional graphing package for our computer, the
medium of this text is paper, which is, for all practical purposes, two dimensional. So rather than
attempt to draw three-dimensional graphs for complex-valued functions, we will simply graph
the real and imaginary parts separately.

> Example 6.1: Let us graph f(t) = jT(Z +it)? for —oo <t < 0o. Multiplying through,

1

f@O) = t@+in? = @+t —) = 1- 1% + i

So, the graph of the real part of f(t) is that of the parabola
—1_1p2
u) =1 yLaE
while the graph of the imaginary part of f(t) corresponds to the straight line

v(t) =t

These graphs are sketched in figure 6.2.
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U %
2+ 2+
1-\ 1t

12 T 12 T

(a) (b)

Figure 6.2: Graphing f(t) = %(2 + it)2: (a) the real part, u(t) =1 — %t2 ,and
(b) the imaginary part, v(t) =1t .

The reader should realize that, except where it was explicitly stated as otherwise, all the
discussion in the previous chapters applied to complex-valued functions as well as real-valued
functions. In addition, the following facts concerning an arbitrary complex-valued function
f = u + iv should be readily apparent:

1. f iscontinuous at a point fq if and only if # and v are both continuous at ;.

2. f iscontinuous on an interval if and only if # and v are both continuous on that interval.

3. The previous statement remains true if the word “continuous” is replaced by any of
the conditions — bounded, piecewise continuous, uniformly continuous, smooth, even,
periodic, etc. — discussed in the previous chapters.

4. The derivative of f exists on an interval if and only if the derivatives of # and v exist
on the interval. Moreover, if the derivatives exist,

f/ = u +iv
5. Theintegral of f overaninterval (¢, B8) exists if and only if the corresponding integrals
of u and v exist. Moreover, if the integrals exist,

B B p
/ f@)de =/ u(t)ydt + i/ v(t) dt

Here are two more facts concerning f f f(t)dt that will be useful later on in our work:

B * B

(/ f(t)dt) =/ f*(0) dt (6.4)
B

| rwar

B B *
(/ u(t)dr + i/ v(t)dt)
B B
/ u(t)dr — i/ v(t) dt

B B
/[u(t)—iv(t)]dt =/ f*(t) dt

and

IA

B
/ @l de ©65)

The first is easily verified:

([ o)
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The second is obviously true when f is real valued. To see why it holds more generally,
consider the case where f isacomplex-valued, piecewise continuous function on a finite interval
(a, B) . For each integer N construct a corresponding N Riemann sum

N
Ry = ) f() Ax
k=1

for the integral on the left-hand side of inequality (6.5) (see page 38). Then, using the triangle
inequality,

B
/ f@)dt

Extending these computations to cases where f is not piecewise continuous or («, 8) is
not finite — but the integrals exist — is easy and will either be left to the interested reader or
discussed as the need arises.

N
Jim 3 f(F) Ax

k=1

N B
S lrGl sy = [ Ir@lar

< lim
N—>o<>k:1

6.3 The Complex Exponential

The basic complex exponential, denoted either by e® or, especially when z is given by a formula
that is hard to read as a superscript, by exp(z), is a complex-valued function of a complex
variable. You are probably already acquainted with this function, but it will be so important
to our work that it is worthwhile to review its derivation as well as some of its properties and
applications.

Derivation

Our goal is to derive a meaningful formula for e that extends our notion of the exponential to the
case where z is complex. We will derive this formula by requiring that the complex exponential
satisfies some of the same basic properties as the well-known real exponential function, and that
it reduces to the real exponential function when z is real.

First, let us insist that the law of exponents (i.e., that eATB = ¢4¢8 ) holds. Thus,

& = &Y = felY (6.6)

We know the first factor, e* . It’s the real exponential from elementary calculus (a function you
should be able to graph in your sleep).
To determine the second factor, consider the yet undefined function

f(t = é"

Since we insist that the complex exponential reduces to the real exponential when the exponent
is real, we must have ‘
fO) =9 =€ =1

Recall, also, that %e‘” = ae*’ whenever a is a real constant. Requiring that this formula be
true for imaginary constants gives

flo = Set = et 6.7
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Differentiating again gives
" _d_/ _d_-it_-Zit__
fr@o =2 = et =%’ = —f@) ,
which can be rewritten as
f'@)y + f® =0

But this is a simple differential equation, the general solution of which is easily verified to be
A cos(t) + Bsin(t) where A and B are arbitrary constants. So

el = f@t) = Acos(t) + Bsin(t)
The constant A is easily determined from the requirement that ¢’ = 1:
1 = ¢ = Acos(0) + Bsin0) = A-1+ B-0=A
From equation (6.7) and the observation that
£ = %[A cos(t) + Bsin(t)] = —Asin(t) + Bcos(t)
we see that
i = ie = f(0) = —Asin(0) + Bcos(0) = —A-0 + B-1 = B

Thus A=1, B=1i,and .
e'' = cos(t) + isin(t) . (6.8)

Formula (6.8) is Euler’s (famous) formula for ¢’ . It and equation (6.6) yield the formula
Y = ¥l = ¥ [cos(y) + isin(y)] (6.9)

for all real values of x and y. We will take this formula as the definition of the complex
exponential.

Properties and Formulas

Using formula (6.9), it can be easily verified that the complex exponential satisfies those prop-
erties we assumed in the derivation of that formula. That is, given any two complex numbers A
and B,

2. e” is the real exponential of A whenever A is real,

and

3. Lot = gort
S .

It is also useful to observe that

xX—iy __ exei(—y)

" [cos(—y) + isin(—y)]
e“ [cos(y) — isin(y)] = (ex+iy)*
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Not only does this give us
@ =

but it also provides the second of the following pair of identities (the first being Euler’s formula,
itself): '
e T = ¢¥ [cos(y) + isin(y)] (6.10a)

and
Y = ¥ [cos(y) — isin(y)] . (6.10b)

Letting x = 0 and y = 6, these identities become the pair

¢! = cos(®) + isin(d) (6.11a)
and
e = cos(@) — isin(®) . (6.11b)

We can then solve for cos(8) and sin(6), obtaining

i0 —if
cos(0) = % (6.122)
and
0 —i6
sin(9) = % . (6.12b)
1

All of the above pairs of identities will be very useful in our work.
On a number of occasions we will need to compute the value of ¢! and |ei’ o | for specific

real values of 6. Computing |eii0| is easy. For any real value 9,

eiie( = \/c052(9)+sin2(9) — 1 . (6.13)

This also tells us that ¢'? is a point on the unit circle in y

the complex plane. In fact, comparing formula (6.11a) T

with the polar form for the complex number ¢’ , we find i0
that 6 is, in fact, a polar angle for ¢’? . The point ¢/’ has
been plotted in figure 6.3 for some unspecified 6 between
0 and /. The real and imaginary parts of ¢!’ can be 0

computed either by using formula (6.11a) (or (6.11b)) or, ——1 ! 1—>
at least for some values of 6, by inspection of figure 6.3.
Clearly, for example,

and
= —i . Figure 6.3: Plot of ¢'? .
?» Exercise 6.2:  Verify that

ei27m

=1 and T = (=1)" for n=0, £1, £2, £3, ...

?» Exercise 6.3: Let 7z be any complex number and let 6 be its polar angle. Verify that

z = |z| e'?
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Much of our work will involve functions of the form ¢!27%* where « is some fixed real

value. From formula (6.11a) it should be clear that ¢/7** is a smooth periodic function of x
on the entire real line. If « = 0, then €/27%¥ g just the constant function 1. Otherwise, it is
a nontrivial periodic function with fundamental frequency || and fundamental period loe| L.
For future reference, let us note that

e = cosQrax) + isinQrax) (6.14)
eI — cos(2max) — isinQwax) (6.15)
cosQrax) = %[eizm” + e_izﬂ‘“] , (6.16)
sin@rax) = %[e"z’m — e—ﬂm] , 6.17)
and
‘eﬂ”‘” -1 . (6.18)

Complex Exponentials in Trigonometric Computations

Any expression involving sines and cosines can be rewritten in terms of complex exponentials
using the above formulas. For many people these resulting expressions are much easier to
manipulate than the original formulas, especially if a table of trigonometric identities is not
readily available.

> Example 6.2:  Let k and n be any pair of positive integers with k # n and consider
evaluating the integral

1
/ sin(2kmrx) sin(2nwx) dx
0

Using formulas (6.12a) and (6.12b),

sin(2km x) sin(2nmx)

ei2k71x _ e—i2knx ei2n7TX _ e—i2nnx
- < 2i ) ( 2i )

1 . . . _: 3 . 3 _:
-3 <e12kﬂxel2nﬂx _ etanxe i2nwx e 12k71x612n71x +oe szﬂxe 12n7rx)

_% (ei2(k+n)nx _ 2k=mmx _ —i2(k-mmx efi2(k+n)nx)

Evaluating the integral of each term over (0, 1) is easy. Since k and n are two different
positive integers, k £ n is a nonzero integer and

1
o2k g o4 1 +i2(kenymx !
0 2k £ n)m 0
1 ; 1
. (eitZ(kin)n _ eo) = 4- (1—1) =0
i2(k £n)mw i2(k £n)m
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Thus, since each of the integrals vanish,

1 1 1
f sin(2kmx) sin(2nwx) dx = _%I:/ o2ty g / pi2k—mmx 4.
0 0 0

1 1
_ / e*iZ(kfn)nx dx + / e*iZ(k+n)ﬂx dx:|
0 0

(You should compare these calculations with those used to prove equation (5.3d) in the
orthogonality relations for sines and cosines (theorem (5.2) on page 54).)

=0

Complex exponentials can also be used to derive trigonometric identities.

> Example 6.3: Let A and B be any two real values. Then

—tA iB —iB
sin(A) sin(B) = ( )(e _2,-6 )

_ (%) <1A iB _ LiA,~iB _ —iA,iB | efiAefiB)
_ 1( i(A+B) _ ,i(A=B) _ ,~i(A=B) efi(AJrB))
4
B ( z(A+B)+e—z(A+B) (i(A=B) | e—i(A—B))

(—cos(A+ B) + cos(A— B))

N =

With a little rearranging this becomes the trigonometric identity,

2sin(A) sin(B) = cos(A — B) — cos(A + B)

6.4 Functions of a Complex Variable”

The basic complex exponential function, e, is an example of a function whose variable is not
limited to some interval, but can range over the set of all complex values. Eventually, we will
deal with many other such functions. So let us suppose f is some function for which f(z) is
somehow defined for every complex value z = x + iy, and let us briefly describe some things
concerning f that will be relevant to future work.

* This section will not be a “review” for many readers. The material here is normally covered in a course on complex
analysis, and, as such, might be considered to be a bit more advanced than the previous material. I should also mention
that this material will not be used until part IV of this book.
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Continuity and Derivatives

Since f is complex valued, it has real and imaginary parts ¥ and v which can be viewed as
functions of two real variables,

u(x,y) = Re[f(x+iy)] and  w(x,y) = Im[f(x +iy)]

So
f) = fx+iy) = ulx,y) + iv(x,y) . (6.19)

As a consequence, we can view f as a function of two real variables or as a function of a single
complex variable, as convenience dictates.

> Example 6.4:  Since we can write the complex exponential e* as

S = ¥ cos(y) + ietsin(y)

the real and imaginary parts of the basic complex exponential are, respectively,

u(x,y) = e*cos(y) and v(x,y) = e"sin(y)

Let zo = xo + iyp be some point on the complex plane. Naturally, we will say that f is
continuous at zq if and only if

Zli)ﬂzlof (2) = fzo) (6.20)

and we will say that f is continuous on the entire complex plane if and only if it is continuous
at every point in C. Keep in mind that this is a two-dimensional limit. Saying that z = x + iy
approaches zop = xo + iyp means both that x approaches xop and that y approaches yy .

We will continue our convention of removing removable discontinuities. So, if the limit
in equation (6.20) exists (as a finite complex value), then we will automatically take f(z¢g) as
defined and equal to that limit.

In terms of the representation given in equation (6.19), the partial derivatives of f are given
by

A VN U VA VL1

ax dx ax ay ay ay
provided the corresponding partials of # and v exist. You can easily verify that this is completely
equivalent to defining the partial derivatives of f at zp by

1 gy LRt A — fo)
0x 20 Ax—0 Ax

and
il _ fzo+iAy) — f(z0)
dy 2 o Ay—0 Ay

provided the limits exist.
In addition, because we can divide complex numbers by complex numbers, we can define
the (complex) derivative of f at zog by
. fzo+Az) — flxo)

:ﬂ = lim

(6.21)
dz Iz, Az—0 Az

1'(z0)

provided this limit exists. Naturally, we will refer to f as being differentiable at z( if and only
if this limit exists.
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Higher order derivatives are defined in the obvious way:
f// — (f/)/ , f(3) — (f//)/ ,

We should observe that, if f is differentiable at a point zg , then the partial derivatives of
Jf must also exist at that point. Moreover,

. Az) — flzp)
/ - Sfzo +
1 (z0) Aim Az
— lim lim ot Ax +i§y) - f(z0)
Ax—0 Ay—0 Ax +iAy
— lim fzo+Ax) — f(z0)
Ax—0 Ax
_
- 0x 20

Switching the order in which the limits are computed gives

fzo+Ax +iAy) — f(z0)

! — 1. 1.
f o) A;IEO A;IBO Ax +iAy

Ay—0 iAy

_ Lo
i dy 2

So,
0 .0
T = fay =~ 6.22)
X 1zg ay

20

whenever f is differentiable at zo. Thus, not only do the partial derivatives exist at each point
where f is differentiable, they also satisfy!
of _ of

S (6.23)

Analyticity
Basic Facts

A function that is differentiable everywhere on the complex plane is said to be analytic (on
the complex plane). On occasion, we will find it useful to recognize that certain functions are
analytic. To this end, let us quote an important theorem from complex analysis:

Theorem 6.1 (test for analyticity)
Let f be a function on the complex plane. Then f is analytic on C if and only if, at each point
in C, the partial derivatives of f(x + iy) exist, are continuous, and satisfy

A

2% = By (6.24)

I Rewritten in terms of the real and imaginary parts of f , equation (6.23) becomes a (famous) pair of equations known
as the Cauchy-Riemann equations.
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This is one theorem we will not attempt to completely prove. We did part of the proof
with our derivation of equation (6.23). Other parts (such as showing the partials are continuous
wherever f is analytic), however, require techniques we just do not have space to develop here.
You will have to trust me that this is a well-known theorem and that its proof is a standard part
of any reasonable course in complex analysis.

!> Example 6.5: Let n be any positive integer, and consider the following two functions on

the complex plane:
fl = 7" and g(x) = ¢

The partial derivatives of f(x 4+ iy) and g(x +iy) are easily computed,

d a . . \n—

U Lty = iy

ox dx

a d . o n—1:

T =% etiyy = nx+inyli

dy dy
8£ — Lex-i-iy — ex+iy and 3_8 — a_ex+iy — ex+iyl-
dx ox dy dy

Clearly, these are continuous functions on the complex plane and satisfy

% = % and

i iag —
dax ay ox ay

everywhere. So 7" and e® are analytic on the complex plane.
On the other hand, if we define a function h by

hix +iy) = x2+iy2 ,

then, whenever x # y,

So h, as defined above, is not analytic on the complex plane.
?» Exercise 6.4:  Verify that any constant function is analytic on the complex plane.

The next theorem lists some results that are analogous to well-known results from elemen-
tary calculus. The validity of this theorem should be obvious from theorem 6.1, above, and

equation (6.22).
Theorem 6.2
Let f and g be any two functions analytic on the complex plane. Then

1. the product fg,
2. the linear combination af + bg where a and b are any two complex numbers,

and
3. The composition h(z) = f(g(z))

are all analytic on the complex plane. Moreover,

L. (fe) = flg + f¢.

© 2001 by Chapman & Hall/CRC



Functions of a Complex Variable 69

2. (af +bg) = af’ + by,
and

3. W@ = flig@) ¢x).

It follows from this theorem and our previous example that all polynomials are analytic on
the complex plane. So are all linear combinations of complex exponentials, including the sine
and cosine functions, which are defined for all complex values by

iz _ ,—iz iz —iz
sin(z) = # and cos(z) = erte ©
2i 2
?» Exercise 6.5:  Using the above theorem and results from example 6.5, verify that each of
the following is analytic on the complex plane:

e*3Z2 , sin (z2> and (2 + z3) e*3Zz

Properties of Analytic Functions

As anyone who has taken a course in complex variables can attest, much more can be said about
a function analytic on the complex plane than can be said about a function that is differentiable
on the real line. To illustrate this, let us quote (without proof) two standard theorems that can
be found in any introductory text on complex variables.

Theorem 6.3

If f is analytic on the complex plane, then f is infinitely differentiable on the complex plane.
That is, for every positive integer n , the n™ complex derivative of f exists and is, itself, analytic
on the complex plane.

Theorem 6.4
Let f be analytic on the complex plane, and let zo be any fixed point on the complex plane.
For each nonnegative integer k let

GIES
%=

Then Y ;2 ax (z — z0)K converges absolutely for each complex value z , and
o0
f@ =Y az—z) . (6.25)
k=0

Conversely, if zo is any fixed point on the complex plane and Y ;2 ax (z — z0)k is any
power series that converges absolutely for every complex value z , then the function

o
f@) =) az—z)"
k=0
is analytic on the complex plane.
If you think about it, these two theorems are remarkable. The first assures us that, if a
function is complex differentiable everywhere on the complex plane, then all of its derivatives

— up to any order — exist. The second goes even further and assures us that every such function
can be represented by its Taylor series about any point on the plane.
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Two results that will be of some value in future work can be quickly derived from the above
two theorems (which, of course, is why those theorems were mentioned here).

The first comes from taking equation (6.25) in the last theorem, subtracting a¢ from both
sides, and dividing by z — z¢ . Since ap = f(z0) , the result is

f@ — fzo) — k
— = E bk (z — 20)
k=0

Z — 20

where by = ap41 for each k. After verifying that this last series is also absolutely convergent
for each z (which is easy and left to you), and applying theorem 6.4 once again, we have the
next corollary.

Corollary 6.5
Let f be analytic on the complex plane and define g by
2(2) = f@ = fzo)
Z = 20

where 7z is any fixed complex value. Then g is also analytic on the complex plane.

?» Exercise 6.6:  Verify that the sinc function,

is analytic on the entire complex plane.

Next, consider the case where f and g are two analytic functions on the complex plane
that are identical on the real line; that is, f(x) = g(x) whenever x is a real value. Theorem
6.4 tells us that both f and g can be expressed as Taylor series about 0,

f@ =Y ar and k) =) b
par k=0

But then, for all real values of x,

0= fx) — gw) =Y axx* =Y bx =) (@ —b)xt
k=0 k=0 k=0

From this it is obvious (or, if not obvious, very easy to verify) that a; = by for each of the k’s.
Thus, for every complex value z,

f@ =Y a =Y b =g@
k=0 k=0

This gives us the next corollary of theorem 6.4.

Corollary 6.6
Let f and g be two analytic functions on the complex plane. If f = g on the real line, then
f = g on the entire complex plane.

On occasion, we will find ourselves with a function ¢ defined just on the real line and
another function f defined and analytic on the entire complex plane that equals ¢ on the real
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line (i.e., f(x) = ¢(x) for every real value x ). We will refer to any such f as an analytic
extension of ¢ (to a function on C). Now if g is any “other” such analytic extension of ¢
(i.e., g is defined and analytic on the entire complex plane and equals ¢ on the real line), then,
obviously, f = ¢ = g on the real line and our last corollary assures us that f(z) = g(z) for
each and every complex value z. So there cannot be two different analytic extensions of any
function on the real line. This fact will be important enough to be called a theorem.

Theorem 6.7
Let ¢ be a function defined on the real line. If ¢ has an analytic extension to a function on C,
then there is exactly one analytic extension of ¢ to a function on C.

In the future, to conserve symbols, we will either indicate the analytic extension of a
function, say ¢, on the real line by either adding an “ E” subscript, ¢ , or we will simply use
the same symbol for both the original function and its analytic extension.

Additional Exercises

6.7. Let z =2+ 3i and compute each of the following:
a. Re[z] b. Im[z] c |z d. Arg[z]

e 7’ f. Re[l] g. Im[l]
Z 4
6.8. Show that, for any complex number z,

z+2z* z—2z*
and Im =
2 [zl 2

Re[z] =

6.9. Show that, if 0 is a polar angle for 7z, then —0 is a polar angle for z* .

1

6.10. For the following, let f(t) = —
—1

a. Find and graph the real and imaginary parts of f .
b. Find and graph | f (¢)| .

6.11. Let o and w be two real values (with w > 0 ), and sketch graphs for f(t) = elatio)n
for the cases where « > 0, o« <0,and « =0.

6.12. Evaluate (i.e., find the real and imaginary parts) of each of the following and plot each
on the unit circle:

a. exp(i%) b. exp(i%) c. exp(i%n)

d. exp(—i%) e. 7
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6.13. Let k and n be any two nonzero integers, andlet a, b, and p be any three nonzero real
numbers with p > 0. Evaluate each of the following using complex exponentials:

1 X
a. / sin®(2kmx) dx b. / e cos(bt) dt
0 0
P
c. /0 cos(%x) cos(ijTnx) dx (assuming k #n )

p
d. / cos(z%kx) cos(?x) dx (assuming k =n )
0

6.14. Let A and B be real numbers. Using the complex exponential, derive each of the
following trigonometric identities:

a. sin’(A) = % — %cos(ZA)
b. cos(A+ B) = cos(A)cos(B) — sin(A) sin(B)

6.15a. Let N be a positive integer and ¢ an arbitrary nonzero number (real or complex).
Show that there are exactly N distinct values of z satisfying zV = c, and that they

are given by
w =ré%  for k=012 ..., N-1

>

where, letting ¢ be any single polar angle for c,

r = ¥ and 6 = %

b. Using the above, find all distinct solutions to the following equations:
i t=1 ii. =1 iii. 77 = -1 iv. 7 =-8

6.16. Let f and g be two analytic functions on the complex plane, and let z( be some fixed
complex value. Show that the function

f(2)—g@)

7—20

h(z) =

is analytic on the complex plane.
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7

Functions of Several Variables

Most of the ideas discussed in the previous chapters can be extended to cases where the functions
of interest have more than one variable. In this chapter we will briefly review some extensions that
will be particularly relevant, and we will develop some fairly deep results concerning integrals
of functions of several variables. (In fact, the primary reason this chapter was written was to
discuss those “deep” results, and to prevent us from having to prove two to four special cases of
each of these results at various widely scattered spots in this text.)!

For convenience, we will limit ourselves to discussing functions of two variables. That
will suffice for most of our needs. Also, it covers the hard part of extending one-dimensional
results to multi-dimensional results, at least for the results we will be needing. Once you’ve seen
the basic ideas expressed here, you should have no trouble extending the definitions and results
described in this chapter to corresponding definitions and results for functions whose variables
number three or four or five or ....

7.1 Basic Extensions

Presumably, you are already familiar with partial derivatives and double integrals, and can see
how the discussion in previous chapters regarding derivatives and integrals can apply to suitably
nice functions of two variables. Less clear, perhaps, is how we should extend our notion of a
“suitably nice” function of one variable to a useful notion of a “suitably nice” function of two
variables.

Regions in the Plane

The first extension is pretty obvious. A function of two variables f(x, y) will normally be
defined over a region R in the XY—plane instead of an interval (o, 8). One of the simplest
types of regions is a rectangle, and, given any two intervals on the real line (a, b) and (c, d),
we will let (a, b) x (c,d) denote the rectangle

(a,b) x (c,d) = {(x,y):a<x <band c <y <d}

This is a finite or bounded rectangle if a, b, c,and d are all finite, and infinite or unbounded
otherwise.

1 This may be a good chapter to ignore until those “deep results” are called for. Some of the material in this chapter is
a little more advanced than that in the previous chapters, and none of it will be needed for a while.

73
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74 Functions of Several Variables

Much more exotic subsets of the plane can be created. To keep us within the realm of
practicality, let us agree that the statement “&R is a region in the plane” implies both of the
following:

I. R is an open set of points in the plane (i.e., if (x, y) isin R, then so is every other
point within r of (x, y) for some positive distance r ).

2. The boundary of the intersection of the region with any bounded rectangle consists of a
finite number of smooth curves each having finite length along with (possibly) a finite
number of isolated points.

An arbitrary region will be called bounded if it is contained in a bounded rectangle, and called
unbounded otherwise. The entire plane, itself, is the infinite rectangle (—oo, 00) x (—00, 00),
which is often denoted in the abbreviated form R .

The statement that Ro is a subregion of the region R simply means that Ro is a region
and every point in the Ry is alsoin R . It does not exclude the possibility that Ro and R are
the same region.

Uniform Continuity on Regions

Let f(x,y) be a function of two variables and &R a region in the plane. We will say that
f(x,y) is continuous on R if and only if it is continuous at every point in R ; that is, if we
can write
lim — f(x,y) = f(xo,0) (1.1)
(x, )= (x0,¥0)
for every (xo, yo) in R . Additionally, we will say that f is uniformly continuous on abounded
region R if and only if it is continuous on the region and

lim fx,y) (7.2)

(x,y)= (x0,0)
(x,y)eR
exists and is finite for every (xg, yp) in the boundary of R .

It should be fairly obvious that any product or linear combination of uniformly continuous
functions over a bounded region will also be uniformly continuous over that region. Showing
that other facts regarding uniformly continuous functions of one variable also hold, suitably
modified, for uniformly continuous functions of two variables is fairly straightforward and will
be left to the interested reader. In particular, we should note the following two-dimensional
analogs of lemmas 3.1 through 3.3 (see page 19).

Lemma 7.1
Let f be continuous on a region R in the plane, and let Ry be any bounded subregion of R
whose boundary is also contained in R . Then f is uniformly continuous on Ry .

Lemma 7.2
Any function that is uniformly continuous on a given bounded region is also a bounded function
on that region.

Lemma 7.3
A function f is uniformly continuous on a bounded region R if and only if, for every € > 0,
there is a corresponding Ar. > 0 such that

[fG,y) = fG )] < €
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whenever (x,y) and (x,y) is any pair of points in R satisfying
[(x,y) — (X, )] < Are

There are two reasons for stating this last lemma. One is that its statement can be viewed as
an alternate definition of uniform continuity that can be applied even when R is an unbounded
region. More importantly for us, it provides a way of verifying uniform continuity without
having to explicitly verify the existence of limit (7.3) for every different curve making up the
boundary of the region. We will illustrate this in the next example by rigorously verifying
the unsurprising fact that uniformly continuous functions of one variable also define uniformly
continuous functions of two variables.

> Example 7.1: Let (a,b) and (c,d) be two finite intervals, and assume g is a uniformly
continuous function of one variable on (a, b) . Let us verify that

fl,y) = gx)

is a uniformly continuous functions of two variables on the rectangle R = (a,b) x (¢, d) .
Let € > 0. By lemma 3.3 on page 20 we know there is a corresponding distance
Ax. > 0 such that

1g(x) —g(®)] < €
whenever x and Xx is any pair of points in (a, b) with
[x — x| < Axe
Let Ar. = Ax., and observe that, if (x,y) and (x, y) are any two points in R with
[(x,y) — (5,9 < Are

then x and x arein (a, b) and,

=% < Ja—B2 4+ -2 = 15y - @I < Ax.
So
1)) = FED] = 180 —g@®] < € .

verifying, according to lemma 7.3, that f is uniformly continuous on R .

If (a,b), (c,d),and g areasinourlastexample, and # is auniformly continuous function
of one variable on (c, d), then it should be clear from the example that both

filx,y) = gix) and flx,y) = h(y)

are uniformly continuous functions of two variables on the rectangle (a, b) x (c, d) . They must
also be uniformly continuous on any subregion of this rectangle (see exercise 7.7). This and the
fact that products of uniformly continuous functions on a region are uniformly continuous on
that region gives us the following lemma, which we will often use (usually without comment)
throughout the rest of this chapter.

Lemma 7.4
Let (a, b) and (c,d) be any two finite intervals, and let Ry be any subregion of the rectangle
(a, b) x (c,d). Assume that
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1. g is a uniformly continuous function of one variable on (a, b) ;
2. h is a uniformly continuous function of one variable on (c, d) , and

3. ¢ is a uniformly continuous function of two variables on R .

Then
fx,y) = g)h(e(x,y)

is a uniformly continuous function of two variables on Ry .

Piecewise Continuity on Regions

If R is a bounded region, then the statement “f(x, y) is piecewise continuous on R’ means
that R can be partitioned into a finite number of subregions over each of which f is uni-
formly continuous. Consequently, all the discontinuities of a piecewise continuous function on
a bounded region must be in some finite collection of smooth curves of finite length (the bound-
aries of the subregions over which f is uniformly continuous). We might call these curves the
curves of discontinuity for f on R.

When the region R is unbounded, we will refer to a function on R as being piecewise
continuous (on R ) if and only if the function is piecewise continuous over every bounded
subregion of R . It should be obvious that any product or linear combination of piecewise
continuous functions over a region will also be a piecewise continuous function over that region.

Continuity of Products

Many of our functions of two variables will be constructed by multiplying two or more simpler
functions together. Very often, for example, we will be concerned with functions of the form

fx,y) = g@h(e(x, y)
where
1. g(x) is a piecewise continuous function of one variable on the interval (a, b) ;
2. h(y) is a piecewise continuous function of one variable on the interval (c, d), and
3. ¢(x,y) is a continuous function of two variables on the rectangle (a, b) x (c, d) .

The continuity of such a function can easily be determined from the continuity of its factors.
We have already seen this, to some extent, in lemma 7.4. To further illustrate this fact, let f be
as above, and let (xq, yo) be any point in the rectangle (a, b) x (c,d). If g(x) is continuous
at xo and h(y) is continuous at yq, then

lim  f(x,y) = lim g(x)h(y)px,y) = gxo)h(yo)o (x0, yo) = f(xo0,y0)
(x,y)—(x0.y0) ;:’;g

confirming that the product f(x, y) = gx)h(y)¢(x, y) is continuous at (xq, yo) .

This also tells us that, if this f(x, y) is not continuous at (xg, yg) , then either g(x) is not
continuous at x = xo or A(y) is not continuous at y = yo . In other words, each point (xq, yo)
at which f(x, y) is discontinuous must be contained in either
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1. astraight (vertical) line x = xo on the XY—plane where xg is a point at which g(x)
has a jump discontinuity,

or

2. astraight (horizontal) line y = yo on the XY—plane where yq is a point at which %(y)
has a jump discontinuity.

These observations (along with lemma 7.4 and the definition of piecewise continuity over inter-
vals) give us the next lemma. We will be referring to this lemma often in the third part (classical
Fourier transforms) of this text.

Lemma 7.5
Let f be a function of two variables given by

flx,y) = gh(y)e(x, y)
where
1. g(x) is a piecewise continuous function of one variable on the interval (a, b) ;
2. h(y) is a piecewise continuous function of one variable on the interval (c, d) , and

3. ¢ (x,y) isacontinuous function of two variables on the rectangle R = (a,b) x (¢, d)
and is uniformly continuous on every bounded subregion of R .

Then f(x,y) is piecewise continuous on R and all the discontinuities of f in R are contained
in the straight lines

where the xj’s are the points in the interval (a, b) at which g(x) is discontinuous, and the y;’s
are the points in the interval (c, d) at which h(y) is discontinuous.

Moreover, any bounded subregion of R intersects only a finite number of these straight
lines.

As an exercise, you should verify the following lemma. It will be used when we discuss
convolution (chapter 24).

Lemma 7.6
Let f be a function of two variables given by

fx,y) = g&)h(y)v(Ax + By)
where
1. g(x) is a piecewise continuous function of one variable on the interval (a, b) ;
2. h(y) is a piecewise continuous function of one variable on the interval (c, d) , and

3. wv(s) is a piecewise continuous function on the entire real line with A and B being two
nonzero real constants.
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Then f(x,y) is piecewise continuous on R = (a,b) x (c,d) and all the discontinuities of
f in R are contained in the straight lines

s, Y=Yyr , y=y2 , Y=Yy , 5
, Ax4+By =s1 , Ax+By =s; , Ax+By = s3 ,

where the xi’s are the points in the interval (a, b) at which g(x) is discontinuous, the y;’s are
the points in the interval (c,d) at which h(y) is discontinuous, and the sy ’s are the points on
(—o0, 00) at which v(s) is discontinuous.

Moreover, any bounded subregion of R intersects only a finite number of these straight
lines.

?» Exercise 7.1:  Prove lemma 7.6.
Finally, let us note that, if the intervals (a, b) and (c, d) are both finite in the two lemmas

above, then the discontinuities of f(x,y) in R will all be contained in a finite number of
straight lines on the plane. This will be relevant in a few pages.

7.2 Single Integrals of Functions with Two Variables
Functions Defined by Definite Integrals

Much of Fourier analysis involves manipulating functions of the form

d
e =/ fx,y)dy

where f is some piecewise continuous function on some rectangle R = (a, b) x (c,d). Let
us assume R is bounded and try to answer three questions that will be particularly important
in later work:

1. Does this integral unambiguously define the function  on the interval (a, b) ?

2. Assuming  is well defined, what can we say about the continuity of ¥ on (a, b) ?
and

3. Assuming  is well defined, what can we say about differentiating v over (a, b) ?

To gather some insight, let’s first look at a particular example.

> Example 7.2:  Consider the triangle with vertices (0, 1), (8, 1), and (8, 5) in the rectangle
R = (0,00) x (0,[8)[Ksee[figure[V.1).[]Let[[7T] be[the[fegion[{nside[the[riangle,[[Ro the
subregion of R outside the triangle, and define f on R by
2x%y  if (x,y) isin T
fy) =

0 otherwise

Clearly, f(x,y) is piecewise continuous on R and is uniformly continuous on both 7 and
Ro .
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Ry (8.5)
(f=0)
! T
(f@x.¥) =2x%y)
0. 1) | HE. 1)

\4

x 8 10 y

Figure 7.1: Figure for example 7.2.

Now let .
b = /0 Fxy)dy

T can be described as the region between x = 0 and x = 8 bounded by the lines
y=1and y ="»+41. So, when 0 < x < 8, the above formula for f can be written more
explicitly as

. 1
2x2y if l<y<-x+1
fx,y) = , 2 ,
0 otherwise
and the above formula for Y reduces to

1

ijrl lx_;’_]

Y(x) = / wrydy = T = = R
1

Since f(x,y) =0 for 8 <x < 10 and all y in (0, 6),

6 6
¥ =/f<x,y)dy=/0dy=o for 8 < x < 10
0 0

Combining the above yields

Ty 4 %3 if 0<x <38

Iﬁ()6)==4 ]
0 if 8<x <10

Notice that the jump in  is at x = 8 and that the line x = 8 intersects the boundary
between T (where f(x,y) = 2x%y)and Ry (where f(x,y) = 0) at infinitely many
points. Along this boundary f(x,y) is not unambiguously defined (should it be 2x%y or
0 ?). So all we have is

£, y) ? if 1<y<5
= 0 otherwise
giving
6 5
v(®) = /0 F®,y)dy = /1 Tdy =7

Still, this isn’t much of a problem. The formula obtained above for v elsewhere on (0, 10)
clearly shows that Y is a well-defined, piecewise continuous function on the interval. In
fact, it’s piecewise smooth, with

. ¥+ 3x2 if 0<x<38
X =
0 if 8<x<10
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?» Exercise 7.2: Let f be as in the previous example, and let

10
P(y) = f(x,y)dx for 0 <y <6
0

Show that ¢ is the piecewise continuous function on (0, 6) given by

16 [ 2 3 4 .
— |65y —3y“ + 3y —y] if 1<y<5
d(y) =1 3 ,
0 otherwise

Now consider the general case where f(x, y) is some piecewise continuous function on a
bounded rectangle R = (a,b) x (¢, d), and

d
V) =/ £y dy

As the above example and exercise illustrate, the integral defining ¥ (xo) is certainly well defined
for a given xp in (a, b) solong as the line x = xo contains only a finite number of points in R
at which f(x, y) is not continuous. However, because f(x, y) is merely piecewise continuous
on R, there may be curves along which f(x, y) is not continuous. If one of these curves
intersects the line x = xo at an infinite number of points, then we have a problem defining

d
W) = / Flxo, y)dy

However, this did not turn out to be much of a problem in the example, because the one point
at which that ¢ was not well defined was the only point in (0,5) where that ¥ was not
continuous.

For convenience, let’s define a line of discontinuity for f(x,y) (over aregion R ) to be
any straight line in the plane that contains an infinite number of points in R at which f(x, y)
is discontinuous.

> Example 7.3:  For the function f(x,y) defined above in example 7.2, the lines of discon-
tinuity over (0, 10) x (0, 6) are the lines

x=8 , y=1 and y:%x+1

Continuity of Functions Defined by Integrals

From our example, it seems reasonable to expect

d
e =/ Fy)dy

to be a piecewise continuous function on (a, b) as long as f(x, y) is piecewise continuous
with only a finite number of lines of discontinuity over R = (a, b) x (c, d) . Furthermore, if
¥ (x) is discontinuous at a point x = x¢, then we should expect the vertical line x = x( to be
one of those lines of discontinuity for f .

Confirming these expectations is usually fairly simple given a particular choice for f (as
in our example and exercise above). Confirming that we can trust our expectations to hold for
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every possible f of interest is less easy and will be relegated to an addendum at the end of this
chapter (starting on page 84). Part of the difficulty is that some of the arguments available to us
depend on the geometry of the curves along which f is discontinuous. In our addendum we
will mainly consider the case where all the discontinuities of f in JR are contained in a finite
collection of straight lines. The resulting lemma is given below. Fortunately, it (or its corollary)
is exactly what will be needed several times in future discussions.

Theorem 7.7

Let f(x,y) be a piecewise continuous function on a bounded rectangle (a, b) x (c,d), and
assume all the discontinuities of f in this rectangle are contained in a finite number of straight
lines. Then

d
V) =/ Fe.y)dy

is a piecewise continuous functions on (a, b) . Moreover, if a < x < b and x = X is not a line
of discontinuity for f,then v is continuous at X and

d d
lim v (x) = / lim f(x,y)dy =f £ y)dy

X—>X

As an immediate corollary, we have:

Corollary 7.8

Let f(x,y) be a piecewise continuous function on a bounded rectangle (a, b) x (c,d), and
assume that all the discontinuities of f in this rectangle are contained in a finite number of
straight lines on the plane. If none of these lines of discontinuity are of the form x = constant,
then

d
v = [ rendy
¢
is uniformly continuous on (a, b) .

Let me mention two things regarding the results just described:

1. Inthe above theorem and corollary we required all the discontinuities of f to be contained
in a finite number of straight lines. That will suffice for our needs and it simplifies the
proofs in the addendum. In fact, though, it will be pretty obvious from the discussion in
the addendum that

d
v ) =/ Fxy)dy

is piecewise continuous on (a, b) whenever f is a “reasonable” piecewise continuous
function on (a, b) x (c,d) with only a finite number of vertical lines of discontinuity.
Crudely speaking, if you can draw all the curves along which f is not continuous, then
you are very likely to be able to show that the corresponding 1 is piecewise continuous.
Moreover, if none of these curves contain any nontrivial vertical segments, then you
should also be able to show that i is continuous.

2. On the other hand, the requirement that f be piecewise continuous (i.e., uniformly
continuous on subregions of (a, b) X (c, d) ) is vital in the above theorem and corollary.
You cannot derive same sort of results for ¥ simply by assuming f is merely continuous
on (a, b) x(c, d) . Infact, it’s not too difficult to construct a function f(x, y) continuous
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on a given (a, b) x (c, d) such that, for some x in (a, b),

d
lim v (x) 7&/ lim f(x,y)dy

One example is given in exercise 7.8 at the end of this chapter.

Differentiating Functions Defined by Integrals
Again, let
d
Yo = / F.y)dy

where (c, d) is a finite interval, and consider computing the derivative of such a function,

d d
Y'(x) = Ef fx,y)dy

The naive approach would be to just “bring the derivative into the integral” (changing it to a
corresponding partial derivative since the integrand is a function of two variables),

d [? 4y
5/ [, y)dy =/ af(x,y)dy

However, as you can easily verify in the next exercise, this naive approach can lead to serious
errors.

?» Exercise 7.3: Let f(x,y) be as in example 7.2 on page 78. Verity that
a [? 39
d—/ fx.ydy # / —fx.y)dy
X 0 0 0x

Using the results from the previous subsection, we can determine conditions under which
the naive approach can be safely applied. The result is the next theorem and corollary, which,
again, will be just what we will need at various points later on.

Theorem 7.9
Let f be a piecewise continuous function on some bounded rectangle R = (a,b) x (c,d),
and assume that both of the following hold:

1. All the discontinuities in R of f are contained in a finite number of horizontal straight
lines (i.e., lines of the form y = constant ).

2. /5. is also a well-defined, piecewise continuous function on R with all its discontinu-
ities in R contained in a finite collection of straight lines, none of which are of the form
X = constant.

Then J
e =f Fxy)dy

is differentiable and has a uniformly continuous derivative on (a,b). Furthermore, on this
interval,

d [ dy
v = 5[ rema = [ rwna

Details of the above theorem’s proof will be discussed in the addendum.
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7.3 Double Integrals

Extending the notion of a single integral to that of a double integral (and other multiple integrals)
is straightforward and is discussed in any reasonable elementary calculus sequence. 1’1l assume
it’s clear that, if f(x, y) is any piecewise continuous function on a bounded region R, then the

double integrals
// f(x,y)dA  and // |f(x, y)| dA
R R

are well defined, with the second giving the total volume of the solid region over R between
the XY—plane and the “surface” z = | f(x, y)| . Moreover,

V flx,y)dA| < // £ (x. y)] dA
R R

Recall also, that if the region is a rectangle, say, R = (a,b) x (c, d), then we actually
have three corresponding double integrals,

d b b d
// foydA //f(x,ywxdy and //f(x,y)dydx
R c a a c

Strictly speaking, these three double integrals represent three different things:

1. The first denotes “the” double integral of f over R (i.e., the “net volume” under the
surface z = f(x, y) if f isreal valued).

2. The second tells us to first integrate with respect to x to get the formula for

b
o) =/ f,y)dx

d
/ ¢ (y)dy

3. The third says to first integrate with respect to y to get the formula for

and then compute

d
v =/ fody

b
/ V(e dx

and then compute

In practice, the distinction between these three double integrals is usually ignored because of
the following well-known theorem.

Theorem 7.10
Let f(x,y) be a piecewise continuous function on a bounded rectangle R = (a,b) x (c,d).

Then
d b b d
f / o y)dxdy = /[Rf(x,y)dA - / f Fxoy) dy dx
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provided the integrals
b d
[ revar [T reonay
a C
define piecewise continuous functions on (c,d) and (a, b) , respectively.

You may not recall the requirement that “integrals ... define piecewise continuous functions
... It’s a technicality omitted in most elementary discussions because, in practice, you almost
never encounter a case where this requirement is not satisfied. Still, counterexamples do exist
(see exercise 7.9 at the end of this chapter), so we will include this requirement simply to ensure
that these single integrals can, themselves, be integrated using the standard elementary theories
of integration.?

?» Exercise 7.4:  Verify the above theorem using Riemann sums. Note where you used the
requirement that “integrals ... define piecewise continuous functions ..."!

Combining the above result with theorem 7.7 on the continuity of certain integrals from the
previous section gives us the next theorem.

Theorem 7.11

Let f(x,y) be a piecewise continuous function on a bounded rectangle R = (a, b) x (c,d),
and assume all the discontinuities of f in R are contained in a finite number of straight lines
on the plane. Then the integrals

b d
/ fe.ydx  and / Fxy)dy

define piecewise continuous functions on (c,d) and (a, b) , respectively, and

d b b d
/ [ Fle.y)dxdy = f/ﬂf(x,y)dA _ / / . y)dydx

7.4 Addendum
Proving Theorem 7.7 on Continuity

Some of the more significant ideas behind the proof of theorem 7.7 can be found in the proof of
the first lemma below.

Lemma 7.12

Let a < x1 <xp <b and ¢ < y; < y» < d, and consider the right triangle with vertices
(x1,y1), (x2,y1),and (x2, y2) . Let T denote the region inside the triangle, and let R be the
subregion of (a, b) x (c, d) outside the triangle (see figure 7.2). Assume f(x, y) is a function
on (a, b) x (c,d) satistying both of the following:

2 The readers who are acquainted with Lebesgue’s definition of the integral and Fubini’s theorem, however, can ignore
this requirement.

© 2001 by Chapman & Hall/CRC



Addendum 85

Figure 7.2: Figure for lemma 7.12.

1. f is uniformly continuous on T .
2. f(x,y)=0 forevery (x,y) in Ro.

Then J
V) =f Fe.y)dy

is a piecewise continuous function on (a, b) . Moreover, if X is any point in (a, b) other than
'x2 s

d
lim § () = / FGEdy . (73)

The hard part of proving this lemma is showing that ¥ is uniformly continuous on the
interval (x1, xp). We will prove that part, leaving the rest as an exercise.

PROOF (uniform continuity of ¥ on (xi, x2) ): According to lemma 3.3 on page 20, it
suffices to verify that, for any € > 0, there is a corresponding Ax > 0 such that

[V (s2) — ¥(s)l < €

whenever s; and sy are two points in (x1, xp) with |sp — 51| < Ax.

Solet s; and sy be two points in (x1, x3) . For convenience, assume these two points are
labeled so that 51 < 57, and let #; and #, be the values such that (sq, #1) and (s2, #2) are points
on the hypotenuse of the triangle illustrated in figure 7.2. Since f vanishes outside the triangle,

[W(s2) — ¥(sp)l

%) 131
f(s2,y)dy — fGs1, y)dy‘
Yo Yo

f 153 !
= fls2,y)dy +/ f(s2,y)dy —/ f(m,y)dy‘
1 R

Yo 0

1 n
= [f(s2,y) — f(s1,Y)]dy + / f(Sz,y)dy‘
n

Yo

15

2
[f(s2, )l dy . (7.4)

IA

1
/ 1f(s2.9) — FGst.y)ldy + /
:

0 3l
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Now let € be some fixed positive value, and, for reasons soon to be obvious, let

€

€ = ——
2(y2 —y1)

As noted in lemma 7.3 on page 74, because f is uniformly continuous on 7, there is a
81 > 0 such that

|f(s,t) — fG.D)] < e1 whenever  |(s,t) — (5,D)| < &
Obviously, though, if |sp — 51| < &1, then
[(s2,y) — (s1, )] < &1
and thus,
f 141
/ | f(s2,y) — fls1, )l dy < / erdy = e1(ti — yo) < e1(y1 — yo)
¥0 Y0

which, by our choice of €1, reduces to

1
[ 16y = sty < 5 75)
Yo

Remember also, that any uniformly continuous function on a finite region is a bounded
function. That is, for some finite number B,

|f(x,y)] < B forall (x,y) in T
Letting m be the slope of the line containing (s1, #1) and (s2, #2) , we find that

h — 1t = m(sy — 51)

and

t n
/ [f(s2, I dy < f Bdy = B(ta — t1) = Bm(sz — s1)
I

n

Consequently, choosing

we have .
2

/ | f(s2, V)] dy < % whenever |so — s1] < & . (7.6)
n

Finally, choose Ax to be the smaller of §; and §,, and observe that inequalities (7.4),
(7.5), and (7.6) all hold whenever |s» — 51| < Ax . Combining them gives

Y (s2) — ¥is)l < % + &=« 1.7)

N M

whenever |s» — 51| < Ax, verifying the uniform continuity of ¥ on (x1, x2) . I

To complete the proof, complete the next exercise.
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?» Exercise 7.5: Let f, ¥, x1, xp,and T be as in lemma 7.12.

a: From the derivation of inequality (7.7), show that

d
lim ¥ (x) = / f(x,y)dy whenever x; <X < x2
X—>X c

b: Using the boundedness of f on T , show that

lim ¥ (x) = 0

X=X

c: Finish verifying equation (7.3).
d: Finish veritying that v is piecewise continuous on (a, b) .
Several things should be obvious if you followed the above proof. First of all, the triangular
region I was chosen mainly so we could present a relatively simple proof illustrating some basic

ideas. Using similar arguments, we can prove the following lemma in which f is uniformly
continuous on the region inside any given polygon in R .

Lemma 7.13

Let (x1,y1), (x2,¥2), ..., and (xy, yn) be the vertices of some polygon with all the x’s in
the closed interval [a, b] and all the y’s in the closed interval [c,d]. Let R be the region
inside this polygon, and let Ry be the set of all points in (a, b) x (c, d) located outside this
polygon. Assume f(x,y) is a function on (a, b) x (c,d) satisfying the following:

1. f is uniformly continuous on R .
2. f(x,y)=0 forevery (x,y) in Rop.
Then

d
¥(x) =/ f&x,y)dy

is a piecewise continuous function on (a, b) . Moreover, if a < X < b and x = X is not a line
of discontinuity for f (i.e., no side of the polygon is contained in the line x = x ), then { is
continuous at x and

d
lim ) =/ £ y)dy

Proving theorem 7.7 is now simple. Remember, that was the theorem stating:

Let f(x,y) be a piecewise continuous function on a bounded rectangle (a, b) x
(c,d), and assume all the discontinuities of f in this rectangle are contained in a
finite number of straight lines. Then

d
V) =/ Fe.y)dy

is a piecewise continuous functions on (a, b) . Moreover,if a <x < b and x = x
is not a line of discontinuity for f, then i is continuous at x and

d d
lim g () = / lim f(x,y)dy =f £ y)dy
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PROOF (of theorem 7.7, briefly): Since all the discontinuities of f in R = (a, b) X (c, d)
are contained in a finite set of straight lines, these lines partition JR into a finite collection of
polygonal regions Ri, R>, ..., and Ry over each of which f is uniformly continuous.
With this partitioning,

M 1 . .
f= me where  f, = [ f,y) if (x,y) isin Ry,
m=1

0 otherwise

For each of these f,’s, lemma 7.13 applies and assures us that

d
Y (x) 2/ Jm(x, y)dy

is piecewise continuous and has discontinuities only at points corresponding to vertical lines of
discontinuity for f . From this and the fact that

d M d M
v = [ rendy = Y [y = Y
¢ m=1v¢ m=1

the claims of the theorem immediately follow. I

The verification of the results described in this addendum were somewhat simplified by the
fact that all the regions considered had boundaries consisting of straight line segments. It’s not
that difficult, however, to extend the ideas illustrated in the proof of lemma 7.13 so as to show
the piecewise continuity of

b
vix) = / fx,y)dx

when f is assumed to be uniformly continuous over particular “nonpolygonal” regions. To see
this yourself, try doing the next exercise.

7> Exercise 7.6:  Let D be the unit disk (i.e., D is the set of all (x, y) where x%>+y? < 1),
andlet R = (a, b) x (c,d) be any rectangle containing O . Assume f(x,y) is a piecewise
continuous function on R satistying both of the following:

1. f is uniformly continuous on D .
2. f(x,y) =0 whenever (x,y) isapointin R with x> +y> > 1.
Then
d
Yx) = / fx,y)dy
C

is a uniformly continuous function on (a, b) .

Proof of Theorem 7.9 on Differentiating Integrals

The “hard part” of proving theorem 7.9 is in proving the next lemma.

Lemma 7.14 B
Let f be a uniformly continuous function on some bounded rectangle R = (a,b) x (¢, d).
Assume, further, that %//y is a well-defined, piecewise continuous function on R with all of
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its discontinuities in R contained in a finite collection of straight lines, none of which are of
the form x = constant. Then

d
V) =f Fe.y)dy

is uniformly smooth on (a, b) . Furthermore, on this interval,

da (4 4
v = 5[ rendy = [ rwnad

PROOF: Let xo be any point in (a, b) . The basic definitions give us
¥ (xo + Ax) — ¥(xo)

’ — I
¥ (x0) A;IEO Ax
_ o e fGot Axydy — [ fo ) dy
- Ax—0 Ax
o1 [
— lim - / LF o+ Ax,y) — fGrooy)ldy (7.8)
Ax—0 Ax J.

So consider

d
/ Lf(xo+ Ax.y) — fxo. )] dy

where Ax is any value small enough that the values xo & |Ax| are also in the interval (a, b) .
First of all, since f is continuous and /s is piecewise continuous,

x0+Ax Bf

ax

flxo+ Ax,y) — fxo,y) = / (x, y)dx

X0

(see theorem 4.1 on page 39), and so,

d d pxo+Ax af
[ treos any = seoynay = [ [ Eeyyaray
c c Jxo

With the assumptions made on f and %/, , theorem 7.11 on page 84 assures us that the order
of integration can be switched. Doing so, we get

d xo+Ax pd af
[ st asn = roonay = [ [" Ly
c X0 c

xX0+Ax
:/ G(x)dx
X

0

where, to simplify subsequent discussion, we’ve set

d
a
6o = [ Leenay
¢ X
By corollary 7.8 we know G(x) is a uniformly continuous function over the interval (a, b).

This allows us to invoke the mean value theorem for integrals (theorem 4.3 on page 41) to
conclude that

d x0+Ax
f [f(xo+ Ax,y) — f(xo,»)]dy = / G(x)dx = G(Xax)Ax

0
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for some xay with [xg — Xax| < |Ax|. Combining this with equation (7.8) gives
.1 [
v = tim [0+ B = feo ) dy
Ax—0 Ax ¢

= lim LG()EA)C)AJC
Ax—0 Ax
= lim G(xax)
Ax—0
But G is continuous at xo and, clearly, xox — xo as Ax — 0. So, after recalling the
definition of G, we find that

d
. — )
V) = lim G(Ean) = Gxo) = / Y oo nydy
Ax—0 c 0x
which, since xq is any pointin (a, b) and G is uniformly continuous on (a, b) , completes the

proof.

The only difference between the lemma just proven and theorem 7.9 on page 82 is that f
is not assumed to be uniformly continuous on (a, b) x (c,d) in theorem 7.9 but is, instead,
assumed to be piecewise continuous with all of its discontinuities in some finite set of horizontal
lines, say, y = y1, y = y2, ..., and y = yy . But this means f is uniformly continuous
on each rectangle (a, b) X (yn, yn+1) (Where yo = ¢, yny1 =d,and n =0, 1, ..., N).
Consequently, for each of these n’s, the above lemma assures us that

Yn+1
e =/ Fxy)dy
Yy

n

is uniformly smooth on (a, b) with

From this it follows that
N
Iﬁ = an
n=0
is also uniformly smooth on (a, b) and, for each x in (a, b),
N N Yn+1 af d Bf
/ _ / _ 97 — el
vw = 3w = 3 [T fenas = [ Heva

Checking back, we see that this proves theorem 7.9, as desired.

Additional Exercises

7.7. Let f(x,y) beauniformly continuous function on a boundedregion R . Use lemma 7.3
to verify that f(x, y) is also uniformly continuous on any subregion Ry of R.
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7.8. Foreach (x, y) in the rectangle (—1, 1) x (0, 2), let

-2

X%y it 0<y<|x|
fay) =1 x2QIxl—y)  if Ix| <y <2lx]
0 otherwise

a. Sketch the graph of f(xq, y) as a function of y for an arbitrary nonzero value of x
in (—1,1).

b. Using your graph, verify that, for each nonzero value of xq in (—1, 1),

2
/0 Flro.y)dy = 1

c. Let y be any fixed point on the Y-axis of your graph and, by considering what
happens to your graph as x — 0, confirm that

Iim f(x,y) = 0
x—0

d. Using the above results, show that

2 2
lim/ . y)dy 7&/ lim f(x, y)dy
x—0Jo 0o x—0

7.9. In the following, we will see one way to construct a piecewise continuous function
f(x,y) on R =(0,1) x (0, 1) such that

1
Yx) = /0 fx,y)dy

is not piecewise continuous on (0, 1) .

a. Forn=0,1,2,...,let a, and ¢, be the points on the plane

(1 d AR
an - F?z_n an Cn - 2}1+1’F s

Using ac to denote the straight line segment between points a and ¢, let C be the
curve in the plane from (0,0) to (1, 1) consisting of all line segments of the form
a,¢, and a,c,;| . Sketch this curve and note that it contains an infinite number of
vertical line segments. Also, in your sketch, label as Ry and R, respectively, the
subregions of the rectangle (0, 1) x (0, 1) above and below C .

b. Find the length of C .
c. ForO<x <1, let
1
) = /0 fxy)dy

where
0 if (x,y) isin R

fey = {1 it (x,y) isin R

Sketch the graph of v, and convince yourself that  has an infinite number of
discontinuities in (0, 1) and, hence, is not piecewise continuous on (0, 1) .
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d. Evaluate // fx,y)dA.
R

(Note: Because C contains infinitely many corners, we have violated the second
agreement concerning “regions” (see page 74). So, strictly speaking, the above f(x, y)
is not piecewise continuous on R . However, you can “round-off” the corners of C
to get a smooth curve Cq of finite length but still containing infinitely many vertical
and horizontal line segments. Using Cqo instead of C to define Rog, R1, and f,
as above, then gives us a piecewise continuous f(x,y) on (0, 1) x (0, 1) such that

Yx) = fol f(x,y)dy is not piecewise continuous on (0, 1) .)
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8

Heuristic Derivation of the Fourier
Series Formulas

Suppose we have a “reasonable” (whatever that means) periodic function f with period p.
If Fourier’s bold conjecture is true, then this function can be expressed as a (possibly infinite)
linear combination of sines and cosines. Let us naively accept Fourier’s bold conjecture as true
and see if we can derive precise formulas for this linear combination. That is, we will assume
there are w’s and corresponding constants A,’s and B,’s such that

9 ?
f() = Zchos(ant) + ZBw sinQrwt)  forall 7 in R . (8.1)
w="? w="?

Then we will derive (without too much concern for rigor) formulas for the w’s and corresponding
Ay’s and B,’s. Later, we’ll investigate the validity of our naively derived formulas.

8.1 The Frequencies

Since f is periodic with period p, it seems reasonable to expect each term of expression (8.1)
to also be periodic with period p. Assuming this, we must determine the values of » such that
each of these terms, A, cos(2rwt) and B, sin(2rwt), has period p .

Certainly, one possible value for w is 0. After all, if @ = 0, then cos(2rwt) and
sin(2rwt) are the constant functions 1 and 0, which (trivially) have period p , no matter what
p is. On the other hand (as noted in our review of the sine and cosine functions), when w # 0,
the fundamental period of both cos(2wwt) and sinRQmwt) is Y. Thus, for any of these
functions to have period p, p must be an integral multiple of /,,. So each @ must satisfy
either

k e
w =0 or p = — for any positive integer k

1]

Consequently, the possible values of @ are given by
w = — where k = 0, 1, £2, £3, ...

Using these values for the ®’s, equation (8.1) becomes

f@) = kﬁ:ooAkcos(%t) n i B sin(%t) . (8.2)

95
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These last two summations can be further simplified. Observe that, because the cosine function
iseven and cos(0) =1,

E Ag cos(Lt)
p
k=—00

27(=2)

.+ A cos(

t) + A_jcos (= Dt) + Ap cos(znp(o) )

p
+ ...

)

27 (2) t)

+ Ay cos(2 () ) + Agcos(
p 14

21 (2)

.+ A_zcos< t) + A_ cos(
(2)

+ Alcos(zn(l)t> + Azcos<
p

) +

= Ay + [A +A1]COS<2np(1)[) [A_ 2+A2]cos(2”[f2) ) .

o0
= Ap + Zak cos(ﬁo
=1 b

where ay = A_y + Ay .
In a very similar manner, you can show

o
Z By sm(znk ) Zb sm(znk ) where bp = By — B

k=—o00

?» Exercise 8.1:  Verify the last statement.

With these simplifications equation (8.2) reduces to

() = Ao—i-Zakcos(—t) Zbksm(—t) : (8.3)

8.2 The Coefficients

Notice what happens when we integrate both sides of equation (8.3) over the interval (0, p),

/:0 f®dt = ]:O |:Ao + Zak cos(—t) Zb s1n(27;kt)j| dt (8.42)
= /p Aodt + /p iakcos(@t) dt + /p ib Sm<2nk ) dt
1=0 1=0 p t —

(8.4b)

© 2001 by Chapman & Hall/CRC



The Coefficients 97

= /t: Apdt + Z/ ay cos —t) dr + kz;/t Obkmn(%t) dt

(8.4¢c)

p k
A dt E —t dt E b ( il t) dt
o/f + ak/ cos + k/ sin ,

- (8.4d)

The integrals in the last line are easily evaluated. All except one turn out to be zero. That

exception is
p
dt = p
/tA=0

Thus, equation sequence (8.4) reduces to

P o0 o0
/ fdt = Ag-p + Zak~0 + Zbk'o = pAo ,
1=0 k=1 k=1
from which it immediately follows that
[P
= —/ f@de . (8.5)
P Ji=0

Look at what we just did. We found a formula for Ag by, first, integrating both sides
of equation (8.3) over the interval (0, p) and, then, noting that all but one of the terms in the
resulting series vanished. They vanished because, for every nonzero integer &,

/:Osm<27;k ) dt = /t;cos<2%kt> dt =0 ,

which, you should note, is the same as equation (5.3a) in the orthogonality relations for sines
and cosines (theorem 5.2 on page 54). This is significant because, using the other equations
from that theorem, we can derive formulas for the other coefficients in a manner very similar to
how we derived equation (8.5).

For example, to find a3, the coefficient for the cos(2mw3t) term, multiply both sides of
equation (8.3) by that cosine function and then integrate from 0 to p,

/z:()f(t) cos(?t) dt
/17 |:A0 + Zak COS(—Z‘) Zbk sm(—t)i| (%t) dt  (8.6a)

=0 o

= /:0 Aocos(—t) dt + /t OkX:akcos< ) (?t) dt

(8.6b)
+ /tp()k ]bk sm( t) cos<2”3 )
= /;:0 Aocos<—t dt + kiol tpoak cos )COS(?I) dt .
- 273 .
+ ]; . b sm( t) cos( )
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p = p
= AO/ cos(@t) dt + Zak/ cos(@t) cos<@t> dt
1=0 p =l =0 p p
k 273
b ( T t) (—I) dt
+ Z k/ sin cos »

From theorem 5.2 (the orthogonality relations for sines and cosines), we know that

/:Ocos(zp )dt =0

and that, for each positive integer &,
P 0 if k#3
f cos(@t) cos(@t) at = { , ) #
t=0 p p 5 lf k = 3

p
/ sin(@t> cos(@t> dt =0
t=0 )4 P

Plugging these values back into equation (8.6) gives

© (0 if k#3 e )
/l: feyeos(2e) dr = Ao-o+;ak{§ . k:3}+2bk-o_a3-5

Thus,
2 [? 23
= = t ~“~t) dt
p/tzof()008< p )

Clearly, this derivation can be repeated for all the a;’s, yielding

(8.6d)

and

/ f(t)cos 2ﬂk> for k =1,2,3, ...

It should also come as no surprise that very similar computations lead to
2 [P . (27k
= —/ f(t)Sln(—t> dt for k =1,2,3, ...
P Ji—=0 P

?» Exercise 8.2:  Using the above derivation for a3 as a guide, derive

2 [P . (273
by = = t ZZt)dt
: sz:Of()Sln( )

8.3 Summary

Here is what we just derived: If f is a periodic function with period p, then,

f@) = Ao + Zak cos(—t) Zbk sm(—t) (8.7a)
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where »
Ag = * / F(6) dt (8.7b)
P Ji=0
and, for k=1,2,3,...,
2 [P 2k
= = t “t) dt 8.7
ak p/tzof()“’s< ) (8.7)
and
2 [P . (27k
by = = t “t)dt . 8.7d
‘ p/,=of()sm<p ) (8.7d)

There were, however, a number of “holes” in our derivation. Let’s note a few of them:

1. The entire derivation was based on the assumption that Fourier’s bold conjecture is true.
How do we know this assumption is true and not just wishful thinking?

2. At several points we interchanged the order in which an integration and a summation
were performed. For example, in going from expression (8.4b) to expression (8.6¢), we

assumed
/ Zakcos<—t dt Z/ aj Cos —t) dt
t k=1

0 k=1

Unfortunately, while it is certainly true that an integral of a finite sum of functions equals
the sum of the integrals of the individual functions, it is not always true that the integral of
an infinite summation of functions equals the corresponding summation of the integrals
of the individual functions (see exercise 8.3).

3. Indeed, the fact we have infinite summations (i.e., infinite series) of functions should give
us pause. How can we, at this point, be sure that any of these infinite series converges?

4. Finally, since we made no assumptions regarding the integrability of f , we really cannot
be sure that the integrals in the formulas we derived for the coefficients are well defined.

Because of these problems with our derivation, we cannot claim to have shown that f can
be expressed as indicated by formulas (8.7). In fact, these formulas are valid for many periodic
functions and are “essentially valid” for many others. But there are also functions for which
these[formulas[yield[honsense[(see[¢xercise[$.4).[JCbnsequently,[dletermining[Wwhen[]f[]can[be
expressed as indicated by formula set (8.7) will be an important part of our future discussions.

Additional Exercises

8.3. For each positive integer k , let
Koot 0<t <%

0 otherwise

k@) =

Also, let g1(¢t) = f1(¢t) and, for k =2,3,4, ..., let

g®) = fer1(0) — fr(®)
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8.4.

8.5.

Heuristic Derivation of the Fourier Series Formulas

Show that
1 [ 00 1
/ [ng)} dr # ZU gk(mlr}
=0 | k=1 k=1 [/1=0
by showing that
1 00
/ {ngm] dt =0 ,
=0 | k=1
while

—_

Nk

|:/ gk(t)dt:| = o0
1 =0

Let f be the periodic function

k

1 if 0<1<1

f@ = !
f@—1) in general

Show that Ag , as defined by (8.7b), is infinite when computed using this function.

Recall the trigonometric identity

sin(1) = % - %cos(2t)

This means that f(t) = sin?(¢) is a periodic function that can be expressed as a finite
linear combination of sines and cosines. Thus, Fourier’s conjecture is valid for this
function. Compute Ag and the ai’s and by’s (as defined by formulas (8.7b) through
(8.7d)) for f(t) = sinz(t) and show that, in this case, equation (8.7a) reduces to the
above trigonometric identity.
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The Trigonometric Fourier Series

In the previous chapter we obtained a set of formulas that we suspect will allow us to describe any
“reasonable” periodic function as a (possibly infinite) linear combination of sines and cosines.
Let us now see about actually computing with these formulas.

First, though, a little terminology and notation so that we can conveniently refer to this
important set of formulas.

9.1 Defining the Trigonometric Fourier Series
Terminology and Notation

Let f be a periodic function with period p where p is some positive number. The (trigono-
metric) Fourier series for f is the infinite series

o0
Ay + Z[ak cos(2wit) + by sin(2mw wit)] (9.1a)
k=1
where, for k = 1, 2, 3, ...,
o = £, (9.1b)
p
1 p
Ag = _/ f@yde 9.1c)
P Jo
2 P
ay = ;/ f(t)cosQRmagt) dt (9.1d)
0
and
2 14
by = E/ F@)sinQrawgt) dt . 9.1e)
0

The coefficients in expression (9.1a) (the Ag andthe a;’s and by ’s) are called the (trigono-
metric) Fourier coefficients for f . They are well defined as long as the integrals in formulas
(9.1c¢), (9.1d), and (9.1e) are well defined. To ensure this we will usually assume f is at least
piecewise continuous on R (see page 37).

For brevity, we will denote the Fourier series for f by F.S.[f]l;. Let us agree that,
whenever we encounter an expression like

o
FS.[fll; = Ay + Z[ak cosRmwit) + by sinQRmawgt)]
k=1

101
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102 Trigonometric Fourier Series

then it is understood that Ay and the wy’s, ax’s, and by’s are given by formulas (9.1b) through
(9.1e). While we are at it, we should also note that formulas (9.1d) and (9.1e) could just as well
have been written as

2 [P ok 5 [P ok
= ;/0 f(t)cos<7t) dt and by = ;/0 f(t)sm(Tt) dt

> Example 9.1:  Let f be the saw function from example 5.1 on page 51,

t if 0<t<3

F) = saws(r) = {f(t—?)) in general

Here p =3 and
o =5 for k=1,2,3, ...

Formula (9.1c) becomes

Rk a1 f? 11 aP] 3
_;/o f(t)alt_E/Otdt_g[it‘o]_E

Using formulas (9.1d) and (9. 1e) (and integration by parts) we have

s [P
ap = —/ f(t)cosmawyt) dt
P Jo

3
2w
/ tcos( )dt
0 3
. (2 3 . (2
= 2 imn(ikt)‘ -3 sm(th) dt
3 | 27k 3 =0 27k ) 3

= 3001+ () teoseert) —coson] = 0.

[SSRN )

while

2 [F .
by = —/ f () sinQmwgt) dt
P Jo

3
2| -3 2k \ |3 3 2k
= = —tCOS<LI) + — cos(it> dt
3| 27k 3 =0 27k J, 3

— %[[‘3‘3 —o] + (%)2[sin(2nk)—sin(0)]i| =3

2k km

The trigonometric Fourier series for saw3(t) is then obtained by plugging the above values
into formula (9.1a),

o0
F.S.[saw3]|, = Ap + Z[akcos(Zna)kt)—i-bk sin(2 wit)]
1

k=
= 2k 3 . (onk
+ Z [0 cos( ) ~ sm(Tt)]

k=1

N W
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Defining the Trigonometric Fourier Series 103

3 3 . (2711 ) 3 . (27r2 ) 3 . (27‘[3 )
— — —Ssin{ —1¢ — —Ssin| —t1¢ — —Ssin{ —t — e
2 17 2w 3 3 3

Formulas (9.1a) through (9.1e) are just the formulas naively derived in the previous chapter
for expressing f(¢) as alinear combination of sines and cosines. In that derivation we assumed,
but did not verify, that

f@) = F.S.[fll

So, until we prove this equality and determine which functions are reasonable, we cannot say
that we know this equality holds.'

?» Exercise 9.1:  Convince yourself that the first term in the trigonometric Fourier series for
f, Ao in (9.1), is the mean (or average) value of f(t) over the interval (0, p) .

Dependence on the Period

The formulas defining the trigonometric Fourier series all involve the period p . But any integral
multiple of the fundamental period of a periodic function is a legitimate period for that function.
Does this mean we have a different Fourier series for each possible period? The answer, fortu-
nately, is no. The trigonometric Fourier series for a periodic function does not depend on the
choice of periods used, even though the computations to find the Fourier series do depend on the
actual period chosen. To illustrate this, let us redo example 9.1 using a different choice for p.

> Example 9.2:  Again, let f be the “saw function” with fundamental period 3,

£ ) t if 0<t<3
t) = saws(f) =
: f@—=3) in general

This time let p = 6, twice the fundamental period, and let

0
Ao + Y [@n cosudnt) + by sinQrd,t)] 9.2)

n=1
be the trigonometric Fourier series for f using p = 6. Here then,

6,1:% for n =1,2,3, ...

Care must be taken with the computation of the coefficients. If 0 <t < 3 then f(t) =1¢.
On the other hand, if 3 <t < 6, then, because of the periodicity of f and the fact that here
0<t—3<3,

f@) = fe—-3) =1r-3

So the integrals in formulas (9.1c), (9.1d) and (9.1e) must be split as follows:

6 3 6
Ag = é/o fdt = é[/o tdt + f3 (t—3)dt} , (9.3a)

1 Of course, if the equality didn’t hold for many functions of interest, then this book would be much shorter.
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104 Trigonometric Fourier Series

a = 2 [ rweos(e)

_ %|:/03tcos( ) di + / (1 — 3 cos (22" )dt] . 93b)
/ f@sin(Z1) di
= [y [oova(Eya) o

and

&)
|

The integrals over (3, 6) can be related to the integrals over (0, 3) through the substitution
T =t — 3 and well-known trigonometric identities,

6 3
f(r—3>dt / rde
3 =0
6 2mn 3 2n
(t = 3)cos| —t) dt =/ tcos| =—(t+3)) dr
/ () ar = | res(Fr+3)
= f3 rcos(zn—nrntnn) dt
=0 6
(—1)”/3 tcos(zn—nr) dt
=0 6
6 2mn
(t —3)sin| =1 ) dt =/ T sin
| (%) (
/ tsm(zm

c t+nn) T
—1)/ rsm 2”” dr

and

% ‘L’+3))

Replacing the T with t and inserting the above back into equations (9.3a), (9.3b), and (9.3c)

gives
R e 3 , (3
Aoz6 /tdt+/tdt =g/tdt ,
0 0 0
/3tcos(2ﬂ—nt) dt + (=1)" /3tcos<2”—nt> dt
0 6 0 6
3
[1+(—1)"]§/

0

N
N
I
ENES)
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and

S
B
|

-~ 2 3 2nn 3 . 2mn
= 5 |:/o tsm( G )dt + (—1)”](; tmn(Tt) dt
2 3 . [ 2mn
= [1—}—(—1)”]6/0 ts1n<Tt> dt

These integrals are very similar to those evaluated in example 9.1. Skipping the details of the
computations, we find that

~ 3 _
Ap = E , a, =0 ,
and
2.3 . .
. 3 ——= if niseven
b= 1+ [-2] =4
ni . .
0 if n is odd

Thus, using p =6,

(o0}
F.S.[saw3]|, = Ao + Z [@n cosRr@nt) + by sinRr@,t)]

n=1
2.3 . .
3 0 —= =~ if niseven )
=3 + Z 0- cos(h—nt)—i- nw s1n(2”T"t>
n=1 0 if nis odd
o

Il
N W
[
:’N
]
w2
2.
=
N
[Ne]
o
B
-
N—"

n is even

Since the last summation only involves even values of n, we can simplity it using the sub-
stitution n = 2k with k =1, 2,3, ... to obtain

F.S. [saws]|; = % Z i (hzkt)

3 3 . (2711 ) 3. (271'2 ) 3 . (271’3 )
= - — —sin(=—r) — —sin(==¢) — —sin(=¢) — --- ,
2 17 3 2 3 3 3

which is exactly the same series as obtained in example 9.1.

What happened above happens in general. No matter what period you use in computing the
trigonometric Fourier series, once you simplify your results, you will find that you have the same
series you would have obtained using the fundamental period.> Because this is an important
fact, we’ll state it as a theorem.

Theorem 9.1

Suppose f is a periodic, piecewise continuous function other than a constant function. Let pi
be the fundamental period for f and let p be any other period for f . Then the trigonometric
Fourier series for f computed using formulas (9.1a) through (9.1e) with p = p is identical,
after simplification, to the corresponding Fourier series computed using p = p| .

The proof will be left as an exercise.

2 Remember, the only periodic, piecewise continuous functions without fundamental periods are constant functions
(see exercise 5.12 on page 56). Constant functions will be discussed later in this chapter.
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?» Exercise 9.2: Prove theorem 9.1

a: with the added assumption that p is twice the fundamental period. (Try redoing exam-
ple 9.2 using an arbitrary periodic, piecewise continuous f instead of f(t) = saw3(¢).)

b: assuming p is any integral multiple of the fundamental period.

A Minor Notational Difficulty

It is standard practice to use the same symbol for the variable in the formula for f, f(¢), as
for the variable in the Fourier series for f, F.S.[f]|,. We, for example, have been using ¢ for
both variables. This should seem reasonable since we anticipate being able to show that periodic
functions can be represented by their Fourier series. However, it can lead to somewhat awkward
notation. If we replace the “f” in formula (9.1a) with “f(¢)” we have

FS.[fHO)ll;, = Ao + Z[ak cos(Rmwit) + by sin(RQrwgt)] . 9.4)
k=1

The problem is that the symbol ¢ is now being used for two completely different variables
in the same equation.3 In the “[f(#)]") t is a dummy variable (i.e., an internal variable)
helping to describe the function for which the right-hand side is the Fourier series. Elsewhere in
equation (9.4), ¢ denotes a true variable that can be assigned specific values. Using ¢ for these
two different types of variables is not necessarily wrong, but it can be a little confusing to the
unwary. Just remember, “letting ¢+ = 3 in expression (9.4)” means

o0
FS.[f®lls = Ao + Y _ laxcos2mex3) + by sin2mey3)]
k=1
and not

o0
Ao + Y lag cosmax3) + by sin(2r ey 3)]
k=1

E.S.[f]ls

9.2 Computing the Fourier Coefficients

As example 9.1 shows, the process of computing the Fourier coefficients for a given function
is a fairly straightforward process (provided the integrals are relatively simple). Even so, it can
still be a fairly tedious process, especially when the integrals are not so simple. Let us look at a
few ways to reduce the amount of work required to compute these coefficients.

In all of the following discussion, f denotes some periodic and piecewise continuous
function on R with period p and with

o0
FS.Ifll; = Ao + Z [ay cos(2m wit) + by sin(Qm wyt)]
k=1

3 This may be a good time to re-review the discussion of variables, functions, and operators in chapter 2.
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Very Simple Cases

The computation of the Fourier series for a constant function, a sine function, or a cosine function
is particularly easy, especially if we remember the orthogonality relations for sines and cosines
(theorem 5.2 on page 54).

If f is a constant function, say,

f@) =c for all ¢

where c is some fixed value, then f is automatically a periodic function with period p for any
positive value of p. Computing formula (9.1c) gives

1 [P 1 P
Aoz—/ f(t)dt:—f cdt = c
P Jo pJo

For k = 1, 2, 3, ..., formulas (9.1d) and (9.1e) are also easy to compute. Or we can use
orthogonality relation (5.3a). Either way we get

p p
ay = %f f(t)cosQRmaxt) dt = E/ c~cos(ﬂt> dt =0
P Jo r Jo p

and

p

P p
by = 3/ f(@)sinRrwit) dt = E/ C~Sin(ﬂf) dt =0
rJo P Jo

Thus, if f(t) = ¢ forall ¢, then
o0
FS.[fll, = Ao + Y laxcosQuaxt) + by sin@rawyt)] = c
k=1

Now suppose f is a sine function, say,
f(t) = sin2ryt)

where y is some fixed, positive value. Since the fundamental period of f is p = l/y, f@)
can be written
2 -1
)
P

In this case, formulas (9.1¢), (9.1d), and (9.1e) for the Fourier coefficients are

p 14
Ag = l/ fdr = lf sin(z—nt> dr |
P Jo P Jo 14
14
%/ sin(zn'lt) cos(@o dt
r Jo P P

@) = sin(

) [P
a; = —/ f () cosQRmayt) dt
P Jo

and
2 (? . 2 (P . fom1 )\ . (27
b, = —/ f@)sinrwit) dt = —/ sm( t) sm(—t) dr
P Jo ? Jo p P
which, according to the orthogonality relations for sines and cosines, reduce to
Ag = 0 s a =0 ,
and
b — 2 0 if k#1 )0 if k#£1
R L 1 if k=1
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108 Trigonometric Fourier Series

Thus, if f(t) = sin(2wyt), then

o
F.S.[fll, = Ao + Y _ laxcosQmext) + by sinraxt)]
k=1

3 {(1) ilt ii:}sin(%t) = sin(znp'lt)

k=1

In other words,
F.S.[sin@myn)]|, = sin@myr)

Very similar computations yield
F.S. [cos(2nyt)] |t = cos(2myt)

We have just shown that, whenever f is either a constant function, a sine function, or a
cosine function, then its trigonometric Fourier series is simply f(¢), itself. This should not be
at all surprising considering how we derived the formulas for the Fourier series in chapter 8. In
the future, of course, there will be no real need to explicitly compute the trigonometric Fourier
coefficients for such functions. After all, we have just proven the following lemma:

Lemma 9.2
If f is either a constant function, a sine function, or a cosine function, then

F.S.[fNl, = f(®)
In particular, we should note that

Alternative Intervals for Integration

The integrands in formulas (9.1c), (9.1d), and (9.1e) are all periodic functions with period p.
Thus, as we saw in lemma 5.1 (on page 53), the values of these integrals remain unchanged if
we replace the interval of integration, (0, p), with any other interval of length p. This means
that formulas (9.1c¢), (9.1d), and (9.1e) are completely equivalent to

Ao = l/ fyde 9.1¢")
P Jperiod
a = 2 / f@) cosQrayt) dt (9.1d")
P Jperiod
and
by = 3/ f(@) sinQrawxt) dt ©.1e")
P Jperiod

where it is understood that the integration is done over any convenient interval of length p.
In particular, it will often be convenient to evaluate our integrals over the symmetric interval
(=Ph, Ph).
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T
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~

Figure 9.1: The rectified cosine function |cos(?)].

> Example 9.3:  Consider the rectified cosine function*

f@) = lcos(r)]

This function, graphed in figure 9.1, has fundamental period p = . If —="h <t < Th,
then
f@) = [eos(t)| = cos(r) ,

while if 7/ <t < 7,

f(@) = |cos(t)| = —cos(r)

To evaluate formula (9.1c) we must split the integral,

1 [? 1 7
Ay = ;/O f@®ydtr = ;/O |cos(t)| dt

1 [ [ T
— |:f cos(t) dt + / (—cos(?)) dt]
T 0 T/

But why evaluate two integrals, simple though they may be, when only one integral is required
using (9.1c’) with the interval (=", 7)),

1 [T
Ay = - / fdr = = / lcos(1)] dt
P Jperiod T

_7'[/2

71/2 )
1 1. 2 2
= —/ cos(t) dt = —sin(t) = =
m J 7 T —TT/y T

(We’ll compute the other Fourier coefficients later, in example 9.4.)

Symmetry

If f iseitheraneven or an odd periodic function, then the computation of the Fourier coefficients
can be considerably simplified by making use of some of the observations made in the section
on even and odd functions (pages 49 to 51).

Suppose, for example, f is an odd function. Then, as was discussed in that earlier section,
the integral of f over any symmetric interval must vanish. In particular,

e
Ao = f(ydt =0

—r/y

4 Any function that can be written as |cos(y#)| (or |sin(y?)|), with y being some positive constant, will be called a
rectified cosine (or rectified sine) function.
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We also have, for k=1,2,3,...,

2 (72

ap = = f(@t)cosQmaxt) dt = 0

P —P/y
This is because f(¢) cos(2rwit) , being the product of an odd function (the f) with an even
function (the cosine function), is another odd function. On the other hand, f(¢) sin(2rwwgt) is
an even function since it is the product of an odd function (the f) with another odd function (the
sine function). So,

2 (T2

b, = = f@) sinRrwt) dt
p —p/p

2 P . 4 (2 . (27k
. [2/0 £(1) sinQrant) dt] - ;/0 [0 sm<7t> dt

For convenience, let us summarize the results just obtained.

Theorem 9.3 (Fourier series for odd functions)
Let f be a periodic, piecewise continuous function with period p . If f is an odd function on
R, then its trigonometric Fourier series is given by

FS.[fll, = Y bsinQrext) .
k=1

where, for k =1,2,3, ...,

Pl
wry = 5 and bk = i/ f(l‘)SiH(ﬁt) dt
p P Jo p

If, instead, f had been an even function, then we would have obtained the following
theorem.

Theorem 9.4 (Fourier series for even functions)
Let f be a periodic, piecewise continuous function with period p . If f is an even function on
R, then its trigonometric Fourier series is given by

o0
FS.[fll, = Ao + ) _arcosQraxt)
k=1
where
2 [P
Ay = = f@)dt
P Jo

where, for k =1,2,3, ...,

Pl
k 4 2k

wp = — and ar = — f@) cos(it> dt

p P Jo p

7» Exercise 9.3: Prove theorem 9.4.

> Example 9.4: Let us complete the computation, begun in example 9.3, of the trigonometric
Fourier series for the rectified cosine function

f@) = leos(r)].
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This function is clearly an even periodic function with period p = m (see figure 9.1). Using
the formulas from theorem 9.4, we have, for k = 1,2,3, ...,

k
a)k:—
Y

and, using a well-known trigonometric identity,

4 [T o
ay - |cos(t)| cos —t dt
0

4 [T
= —/ cos(t) cos(2kt) dt
T Jo

4 [
= - / sleos([1 + 2k]r) + cos([1 — 2k1n)] dt

T Jo

o7 1 x
= = [1 ) Sln([l + Zk][) + — S]n([l _ 2k]t)]

27 1 . . T )
= = [] ey sm([l + 2k]5) + T sm([l — 2]{]5)]

The last line can be simplified by observing that
. T Y &4 _ _ 1k
sm([lj:Zk]E) - s1n(5:|:k7r) — cos(+km) = (—1)

Thus,
2 k ] k
ap = = | ——=(— — (-1 = Df——
e e e e e e e
Theorem 9.4 assures us that there are no sine terms in this Fourier series. So, using the above
and the value of Ag computed in example 9.3, we see that the complete trigonometric Fourier

series for f(t) = |cos(t)| is

o0
F.S.[f1l, = Ao + Y _ axcosQmayt)
k=1

E NN}

Z (-1 )k74k2) cos(2kt)

k=1

Linearity

Sometimes the function of interest can be expressed as a finite linear combination of other
periodic, piecewise continuous functions whose Fourier series are already known. When this
happens, we can use a simple relation between the Fourier coefficients of the function of interest
and the corresponding Fourier coefficients for the functions in the linear combination. That
formula is described for the case where f is a linear combination of two functions in the next
lemma.

Lemma 9.5 (linearity)
Let f, g, and h be periodic, piecewise continuous functions, all with period p . Assume that,
for some pair of constants y and A,

f = vg+Arh
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Let the corresponding trigonometric Fourier series for f, g, and h be as follows:

F.S.[fll, = A} +

Nk

[a,{ cosmwyt) + bkf sin(ankt)] ,

x~
Il
-

2

F.S.[gll, = AS + [af cos@maxt) + b{ sinQraxt)] .

k=1
and
[o,0]
F.S.[h)l, = Al + Z[a,’g cos2raxt) + bl sin(ankt)]
k=1
with wy =¥, in each. Then
Al = yAS + a4l (9.52)
and, for k =1,2,3, ...,
al = yad + ral 9.5b
k= YV T A (9.5b)
and
bl = yb{ + A} . (9.5¢)

PROOF: The formulas in the theorem are a direct result of the linearity of the integrals in
formulas (9.1c¢), (9.1d), and (9.1e). For example, to verify equation (9.5a) we simply observe

that
1

14
7/ [yg(@) + Ah(t)] dt
P Jo

1 P
Al = 7/ f(0)di
P Jo
(7 (7 g h
= yf/ g®)ydrt + A—/ h(t)dt = yA; + LA,
P Jo P Jo

Verifying equations (9.5b) and (9.5¢) is just as easy and is left to the interested reader. |

This lemma tells us that each term in the Fourier series of a linear combination of two
suitable functions is simply the corresponding linear combination of the terms of the individual
functions. So, under the assumptions of the above lemma,

F.S.[yg+ih]|,

o0
— AL £2Al) + 3 [(ya,f + aal') cosQmant) + (ybE + Abh) sin(27w)kt)]
k=1

o
=y |:A§ + Z [af cosQmaxt) + b} sin(27twkt)]:|
k=1

o0
+ A |:Ag + Z [a,ﬁ‘ cos(2mrwyit) + bZ sin(2na)kt)]:|
k=1

= y F.S.[gll, + A F.S.[h]],

The next example illustrates a fairly common (and simple) application of this lemma.
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Figure 9.2: The saw function for example 9.5.

> Example 9.5: Consider the function f sketched in figure 9.2. Clearly, f is justthe saw3
function from example 9.1 “lowered by 3 That is,

£ = saws() — 3

So, using the results from example 9.1 and lemma 9.2

F.S.[fll, = F.S. [saW3 — g]‘t

= F.S.[saw3]|; — F.S. [é]

2 11¢
3 X3 2k 3
= - — —sin( —t) — =
2 an (3 ) 2
k=1
i 3 . (2mk
= - k—Sln T[
=1 T

Obviously, the results of lemma 9.5 can be extended to arbitrary finite linear combinations.

Theorem 9.6 (linearity)
Let N be afinite positive integer; let f1, f2, f3,...,and fy all be periodic, piecewise continuous
functions with a common period, and let a1, a2, &3, ..., and ay all be constants. Then

Fs. [Z fn]

N
= > o, F.S.[full,

¢ n=1

n=1

where it is understood that Z,ILV:] a, F.S.[fa]l; denotes the series constructed by adding the
corresponding terms of the individual series.

As an immediate consequence of this theorem and lemma 9.2 we have:

Corollary 9.7

If f can be expressed as a finite linear combination of a constant function with sine and cosine
functions (all with some common period), then that linear combination is the trigonometric
Fourier series for f .

> Example 9.6: Let f(t) = sin?(7) . By a well-known trigonometric identity, we know

. 1 1
sm2(t) = - — —cos2t
2 2
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So
FS.Afll, = 5 — 50052t

Scaling and Shifting

The formulas given in the following theorems are occasionally of value. Their derivations will
be left as exercises.

Theorem 9.8 (scaling)
Let f be a periodic, piecewise continuous function with period p and Fourier series

0
F.S.[fll, = Ao + Y lax cosQmayt) + by sin(2rayt)]
k=1

If g(t) = f(at) for some a > 0, then g is a periodic, piecewise continuous function with
period p = Ply . Moreover, letting @y = k/; =aqwy,

o0
F.S.[gll, = Ao + Z [ax cosQmwyt) + by sin(2mwit)]
k=1

Theorem 9.9
Let f be a periodic, piecewise continuous function with period p and Fourier series

[o)e]
FS.[fll, = Ao + Y _ laxcosQmext) + b sin2rayt)]
k=1

If g(t) = f(—t), then g is a periodic, piecewise continuous function with period p and
trigonometric Fourier series

[o/0]
F.S.[gll, = Ao + Y lax cos(maxt) — by sin(2m 1))
k=1

Theorem 9.10 (half-period shift)
Let f be a periodic, piecewise continuous function with period p and Fourier series

o0
FS.[fll, = Ao + Y laxcosQmeyt) + b sin2rayt)]
k=1
If g(t) = f(t — Ph), then g is a periodic, piecewise continuous function with period p and

F.S.0gll, = Ao + Z[(—l)kak cosrant) + (—=1by sin(ankt)]
k=1

7» Exercise 9.4 a: Prove theorem 9.8.

b: Prove theorem 9.9.

c: Prove theorem 9.10.
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Using Computers and Math Packages

Much of the drudgery in computing Fourier coefficients can be eliminated by letting a computer
do the computations. The use of a good computer “math package” is especially recommended.?
Some of these packages can symbolically evaluate many integrals that few of us would care
to do by hand. When this is possible, we can actually obtain explicit and exact formulas for
all the Fourier coefficients for our function. Even if the integrals are not simple enough to be
done symbolically, these packages can often numerically compute very close approximations
to as many of the coefficients as we need. Of course, some care must be taken with numerical
calculations to ensure the computed answers are within the desired degree of accuracy. In
particular, you should be warned that, when numerically computing integrals involving sin(yt)
and cos(y1), the accuracy of the computations tends to decrease as the value of y increases.®

9.3 Partial Sums and Graphing

Let f be a periodic, piecewise continuous function with trigonometric Fourier series

o0
FS.[fll, = Ao + Y _ laxcosQmeyt) + b sinrayt)]
k=1

It would be nice to verify our suspicion that f(¢) can be represented by its Fourier series
by explicitly summing up the series for all values of ¢ and comparing these values to the
corresponding values of f(#). Unfortunately, it is rarely practical to explicitly sum up an
infinite series.

What is practical is to compare the function f () to various partial sums of the Fourier
series. For each positive integer N , the N™ partial sum (of F.S.[f]) is the function

N
F.S.NIfIl, = Ao + Y lax cosQmaxt) + by sin(2raxt)]
k=1

The 0™ partial sum is defined to be
F.Solf1l; = Ao

Using a computer math package, it is quite easy to compute and graph the N partial sum, even
for quite large values of N . By looking at these graphs and comparing them to the graph of the
original function, we can get an intuitive feel for whether a given function can be represented by
its Fourier series, and, when a function can be so represented, for the number of terms needed
to get a good approximation to the function. These graphs may also give us some indication of
possible problems that may arise.

5 Maple, Mathematica, and Mathcad were three good math packages available when this was written.

6 Takea good course in numerical analysis to learn the reasons for this loss of accuracy. One is that the theoretical “worst
possible error” resulting from using some integration algorithms is related to the maximum of one of the derivatives
of the function being integrated (and, as you can easily check, the larger y is, the larger too is the maximum of any
nontrivial derivative of sin(yt) ). Bad luck can also contribute to this loss of accuracy ~ when y is large, there is a
greater likelihood that two successive iterations of certain algorithms will just use values of ¢ where y¢ is an integral
multiple of 7, and this tricks some algorithms into thinking they have found a good approximation for the integral.
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3>
>
3>

\ 4

S5550)
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3

(a) (b)

Figure9.3: The N th partial sums of (a) the saw function from example 9.1 on page 102,
saw3 (), and (b) the rectified cosine function from examples 9.3 on page 109 and
9.4 on page 110, |cos(t)|. The partial sums have been sketched (with the aid of
Maple V) for N =0, 1, 5, 10, and 25, and have been superimposed on more
faintly drawn graphs of the corresponding saw and rectified cosine functions.

> Example 9.7:  From the computations in examples 9.1, 9.3, and 9.4 (see pages 102, 109,
and 110), we know that the N partial sum of the Fourier series for the saw function saw3(t)
and the rectified cosine function |cos(t)| are

N
F.S.ny[saw3(®)]|, = % - Z isin(ﬁz‘)
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and

F.S.nllcos@)1l, =

tilto

Z — )ki) cos(2kt)

The graphs of these partial sums have been sketched in figure 9.3 using N = 0, 1, 5, 10,
and 25 . These graphs were generated by the Maple V math package (and “processed” for
inclusion in this text using a standard computer graphics package).

Looking at figure 9.3, you can see that the partial sums graphed are fairly good ap-
proximations to the saw and the rectified cosine functions, at least when N > 5. The
approximations to the rectified cosine function are especially good  the graph of 25" par-
tial sum approximation to |cos(¢)| is virtually indistinguishable from the graph of |cos(t)|
(at the size and resolution possible in this text). The approximations to the saw function
are less good  there are discernable “wiggles’, even in the graph of the 25" partial sum
approximation, and “‘strange things” seem to be occurring around the points where the saw
function is discontinuous.

We will spend more time later (chapters 13 and 14) investigating the convergence of the
Fourier series. There we will see just how good (and how bad) we can expect the partial sum
approximations to be, and just why “strange things” should occur in the graphs of some of the
partial sums.

Additional Exercises

9.5. Determine the fundamental frequency and fundamental period for each of the func-
tions below. Then sketch each function’s graph, and find its trigonometric Fourier

series.
0 if —-1<t<0
a. f@t) = 1 if 0<t<l1
f@t—2) in general
t if =3<t<3
b. () = ,
g(t—6) in general
e if 0<t<l1
c. h(t) =
h(t —1) in general
2 if —-1<t<l1
d k() =
k(t —2) in general
e. cosz(t)
f. |sin(?)| (a rectified sine function)
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Figure 9.4: Two and one half periods of (a) evensaw(¢), the even sawtooth function for
exercise 9.6 ¢, and (b) oddsaw(?) , the odd sawtooth function for exercise 9.6 d.

9.6. Determine whether each of the following functions is even or odd. Then graph each
function (if it has not already been graphed), and find its trigonometric Fourier series.
Where appropriate, use the even- or oddness of the function to reduce the number of

integrals you need to compute.

f@ =

b. g(t) =

-1 if —1<t<0

+1 if 0<t<l1
f@t—2) in general

1 if |t <1

0 if 1<t <2
gt —4) in general

c. evensaw(t), the even sawtooth function sketched in figure 9.4a

e. h(t)

£ k(1)

9.7. Express each of the following functions in terms of functions from the previous exercise
using scaling, shifting, linear combinations, etc. Then, using your answers from the
previous exercise, determine the trigonometric Fourier series for each. You should not

oddsaw(¢) , the odd sawtooth function sketched in figure 9.4b

1? if —1<1<1
h(t —2) in general

—? if —1<t<0

+12 if 0<t<l1
k(t —2) in general

compute any integrals for these.

a G(t) =

b. H(t) =

© 2001 by Chapman & Hall/CRC

+1 if |t <1
—1 if 1<]|t]<2

G(t—4) in general
1—¢? if —1<r<1

H(t—2) in general
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Figure 9.5: Two and one half periods of
(a) @(r), the broken sawtooth function for exercise 9.7 d,
(b) ¥q(¢), the scaled even sawtooth function, for exercise 9.7 e,
(c) W, (1), the scaled even sawtooth function for exercise 9.7 f, and
(d) ¥3(1), the shifted even sawtooth function for exercise 9.7 g.

2—2t—3 if —1<t<l1

Kt —-2) in general

c. K@) =

d. @(t), the broken sawtooth function sketched in figure 9.5a

e. W(t), the scaled even sawtooth function sketched in figure 9.5b
f. W,(t), the scaled even sawtooth function sketched in figure 9.5¢
g. Ws(t), the shifted even sawtooth function sketched in figure 9.5d

9.8 a. Using a computer math package such as Maple, Mathematica, or Mathcad, write a
“program” or “worksheet” for graphing a periodic function f along with the N™
partial sum of its trigonometric Fourier series,

N
FSNIfIl, = Ao + Y laxcosQmaxt) + by sinQ@rent)]
k=1

over the interval (—?/,2p). Have the following as the inputs to your program or
worksheet: the function’s period p, a formula for the function over one period (say,
(0, p) or (—Ph, Ph) ), the value of Ay, the formulas for the ay’s and by’s, and the
value of N . (Also, see exercise 5.13.)

b. Use your program/worksheet to graph each of the following functions along with the
Nt partial sums of its Fourier series for N = 0, 1, 2, 10, and 25. Examine your
graphs and answer these two questions:

1. Are the graphs of the N'™ partial sums converging to the graph of the function
as N gets larger?

2. Are there points at which strange things are happening in the graphs of the
N'™ partial sums, especially for the larger values of N ?
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i. The even sawtooth function, evensaw(t) , from exercise 9.6
ii. The odd sawtooth function, oddsaw(t) , from exercise 9.6

iii. The broken sawtooth function from exercise 9.7

iv. The function G(t) from exercise 9.7
v. The function H(t) from exercise 9.7

vi. The function K (t) from exercise 9.7

9.9 a. Modify your program/worksheet from exercise 9.8 so that it also numerically evaluates
the “first N Fourier coefficients (i.e., Ay and the a;’s and by’s fork =1 to N ),
lists those coefficients, and then graphs both the function and, using the coefficients
just computed, the corresponding N partial sum of the trigonometric Fourier series.

Here, the inputs should just be the function’s period p , a formula for the function
over one period (say, (0, p) or (—?h, Ph) ), and the value of N .

b. Use your program/worksheet to graph each of the following functions and the N™
partial sums of its Fourier series for N = 0, 1, 10, and 25 .

) P?A—-0> if 0<r<l1
i f@) = .
fae-=1 in general
. Vel if -1<t<l1
ii. g(t) =
gt —2) in general
0 if —1<t<0
iii. h(t) = NG if 0<t<l1
h(t —2) in general
i V1—1t2 if |t] <1
iv. k(t) =
k(t—2) in general
V1—12 if |t] <1
v. 1(t) = 0 if 1<lt] <3
I(t—=3) in general
0 if 2 <t<0
vi. ¢(t) = 1 — cos(?) if 0<t<2m
¢t —4m) in general
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Fourier Series over Finite Intervals
(Sine and Cosine Series)

In practice, the functions of interest are often only defined over finite intervals, not the entire
real line. For example, if f(¢) is the temperature at time ¢ of the coffee in a person’s cup, then
f () is only defined for ¢ < ¢t < B where « is the time the coffee is poured into the cup, and
B is the time the cup is finally emptied.!

For the rest of this chapter L will denote
some positive real number, and f will denote
some piecewise continuous function that is de-
fined only on the interval (0, L) (asillustrated in
figure 10.1). Asinchapter 8, our interest is in de- 6
riving an expression for f which is a (possibly ‘ \\/
infinite) linear combination of sines and cosines.
This time, however, we are only interested in this
expression describing the given function over the
interval (0, L) .

The basic idea behind all the derivations in this chapter is simple. Take any periodic function
f (defined on the entire real line) that equals the given function f on (0, L) . If, as we suspect,
the trigonometric Fourier series for f describes f over the entire real line, then this series must
also describe f over the interval (0, }) (where f(t) = f(r) ). Thus, we should be able to use
the trigonometric Fourier series for f* as a “Fourier series” for f* over the interval (0, L) .

Any periodic function f thatequals f over the original domain of f, (0, L), is called a
periodic extension of f . In fact, many different periodic extensions can be constructed for any
given f . This means that we can derive many different “Fourier series” for any given f over
(0, L) . In what follows, we will derive three of the more important Fourier series for functions
on a finite interval.

\ 4

N~
ﬂ

Figure 10.1: A function f(¢) defined
only on the interval (0, L) .

10.1 The Basic Fourier Series
The simplest approach is to simply let f be the periodic extension of f having period p = L,

() if 0<t<lL

Foy =1 ,
f@—1L) in general

We’ll call this the basic periodic extension of f (see figure 10.2).

1 Or, for some of us, when the cup gets its annual cleaning.

121
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N\ N N
N\

JL\/ 2L \/ T

Figure 10.2: The basic periodic extension f(r) of the function graphed in figure 10.1.

For convenience, let us denote by T.F.S.[f] tllg “Fourier series” for f over (0, L)
obtained by using the trigonometric Fourier series for f . In other words, for 0 <t < L,

T.F.S.[f1l, = F.5.[f]],

Remember,
o0
FS.[f]l, = Ao + Y laxcosQ@maxt) + by sin@rayt)]
k=1
where
k
wr = —
p
1 [P =
Ay = —/ f@de
P Jo
P
a; = %/ f(t)cos(@t) dr
P Jo p
and

2 (P~ . (omk
b, = = t “_t)dt
) p/o fuysin(* )

Since p =L and f(t) = f(t) when 0 <t < L, the above can be rewritten as

o0
TFS.[fll, = Ao + Z[ak cos(2mwit) + by sin(Qmwwyt)] (10.1a)
k=1
where .
o =7 (10.1b)
1 L
Ao = L rwar (10.1¢)
L Jo
o 2k
a =7 f(t)cos(Tt> dr (10.1d)
and
2 L 2wk
by = Z/o £ sm(Tt> dr . (10.1¢)

Observe that, although }? was used to derive formulas (10.1a) through (10.1e), it does
not explicitly appear in them. So, if we are simply computing 7.F.S.[f], there is no need to
actually determine the extension, f . On the other hand, we will find knowing f is useful when
we finally deal with questions concerning the convergence of the series.
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> Example 10.1: Let L =2 and f(t) = 2. Using formulas (10.1b) through (10.1e), we
have (omitting some details of the computations)

o = K _ K
k_L_Z?
L 2
4
Aozl/f(t)dt:l/tzdtz—,
L Jy 2 Jo 3
L 2
— 2k _— 2 (@) R
ak_L/O f(t)cos(Lt)dt_2/0tcoszt dt = = 27
and
L 2
-2 in( X -2 2-%) =t
bk_L./o f(t)31n<Lt)dt_2/(;tsm(2tdt— =~

So, for this function,
o0
T.F.S.[fll, = Ao + Y_laxcosQmaxt) + by sin(2waxt)]
k=1

4 Xr 4 4
=3 + ;[m cos(kmt) — Esm(knt)]

10.2 The Fourier Sine Series

A somewhat simpler Fourier series for f over (0, L) can be derived by first generating the
odd extension of f (see figure 10.3) and then taking the simplest periodic extension of this odd
function (see figure 10.4).

To be more precise, define f, to be the odd functionon (—L, L) equaling f over (0, L),
f@) if O0<t<L
fo(t) = )
—f(=1) if —L<t<0

Since f, is defined on (—L, L), the simplest periodic extension of f, must have a period
p = 2L . Accordingly, here we define our periodic extension f, by

= —f(=1) if -L<t<0

o t lf L t I "
f() (l 2L) m gelleral

f@®) if 0<tr<L
f,(t —2L) in general }

AN S
_V \4\/ L T

Figure 10.3: The odd extension f,(¢) of the function graphed in figure 10.1.
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Figure 1 0.4:[]The@ddlﬁ)eriodic@xtension[[fE(t)[bf]ﬂhe@unction@raphedﬁlﬁl]ﬁ gure[]0.1[(kke
alpb[figure[10.3).

Clearly, on is an odd periodic function. According to theorem 9.3 on page 110,

o0
FS. (5], = > besin@raxt) (10.2a)
k=1
where wy = */, and
/ 7(t) sin —t) dt (10.2b)

The above Fourier series is generally referred to as the (Fourier) sine series for f on
(0, L), and the by’s are generally called the (Fourier) sine coefficients for f .

Let us denote the series just derived by F.S.S.[f] rather than F.S. []/‘;] Note that,
because p = 2L and f;(t) = f(t) when 0 <t < L,

k
2nwp = 2n— = —
2L L

%/Op/z ﬁ(t)sin(%t) dt = %/OL f(t)sin(kL—”t) dt

Thus, formula set (10.2) can be rewritten as

and

FSSIfll = Y b sin("L_”t) (10.32)
k=1
where
L
2 /0 f(t)sin("L_”t) ar . (10.3b)

As in the previous section, the extension ﬁ was needed to derive the formulas for the sine
series and will be used when we discuss convergence, but it is not needed for simply computing
the sine series of f over (0, L) . For that, formulas (10.3a) and (10.3b) suffice.

> Example 10.2: Let L =2 and f(t) = t>. Plugging this into formula (10.3b), we have
(again, omitting some computational details)

L
by = %/0 f(t)sin("L_”t) dt

= %/()thsin(%rl) dt = 2(%)3 [(—1)k_1] - %
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This gives us the Fourier sine coefficients for t> over (0,2). For the corresponding sine
series we then have

F.S.S.[f1l,

ki_o;bk sin(l%t)
= L@ [ -] - ()

k=1

10.3 The Fourier Cosine Series

The (Fourier) cosine series for f over (0, L) is given by

FCS.Ifll, = Ao + Y a cos(’%’r) (10.4a)
k=1
where
1 L
= _ f f(t)dt (10.4b)
L Jo
and
_ 2" (1) ) dr (10.4¢)
= < ; f cos(T) . .4C

The Ag and the a ’s are called the (Fourier) cosine coefficients for f .

The cosine series for f is just the trigonometric Fourier series for this function’s even
periodic extension ﬁ (see figure 10.5). Its derivation is very similar to the derivation of the
sine series in the previous section. Of course, instead of using the odd extension, f,, we use
the even extension of f,

fy = { £ @) %f 0<t<L
f(=1) if —L<t<0

The details are left as an exercise.

?» Exercise 10.1:  Using the derivation of the sine series from the previous section as a guide,
derive the cosine series for f over (0, L).

AAAAK

2L\/ T

Figure 10.5: The even periodic extension J/‘;(t) of the function graphed in figure 10.1.
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> Example 10.3: Let L =2 and f(t) = 2. Plugging this into formulas (10.4b) and (10.4c)
yields

and

L 2
2 km 2 2 kw N 16
ay = Zfo f(t)cos(Tt) dt = 5/0 t cos(TI) dt = = (=1 o)

This gives us the Fourier cosine coefficients for t> over (0, 2) . For the corresponding cosine
series we then have

o0
Ag + Z ag cos(%t)

k=1

16 k
+ 2 Dk 2 el
k—l( D kn? COS( 2 t)

F.C.S.[f1l,

W &

10.4 Using These Series
Computing with These Series

Keep in mind that the three “Fourier series” derived in this chapter are all trigonometric Fourier
series for some periodic extension of the function originally given on just the interval (0, L).
Consequently, much of the discussion in the previous chapter concerning trigonometric Fourier
series for periodic functions also applies to the series derived in this chapter (as well as to
any other similarly derived Fourier series). For example, it is an immediate consequence of
lemma 9.5 on page 111 on linearity that, if f and g are two piecewise continuous functions on
the interval (0, L) with sine series

o0 o0
. [k . (km
F.S.S.If1 = b,{sm(fnt) and  F.S.S.[gll, = ) b sm(ft> ,
k=1 k=1
then, for any pair of constants y and A,

FSS.[vf+xr]|, = i[yb,{—i—kbf] sin(’%rt)
I=1

On the other hand, there are portions of the commentary in the previous chapter that have
little or no relevance to the computation of the series being discussed here. Consider, for example,
the discussion of trigonometric Fourier series for odd or even periodic functions. That discussion
was very relevant to the derivation of the formulas for the sine and cosine series. However, it
makes no sense to refer to a function defined on just (0, L) as being either even or odd. So that
discussion of Fourier series for odd and even functions gives us no real advice on computing the
sine and cosine series using the formulas already derived (i.e., formula sets (10.3) and (10.4)).

The reader should have little difficulty in identifying, as the need arises, which portions of
the previous chapter are relevant in computing the coefficients for the sort of Fourier series we
are discussing now. That being the case, let’s go to another topic.
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Which Series Do I Use?

Because each of the Fourier series derived in this chapter is the trigonometric Fourier series for
a periodic function equaling the original function f over the interval (0, L), Fourier’s bold
conjecture suggests that

ft) = T.F.S.[fll, = F.S.S.[fll, = F.C.S.[f]l, for 0 <t < L

So, according to Fourier’s bold conjecture, f can be represented by each of these three different
series (as well as by any other similarly derived series). But if this is true, we are left with a
significant practical question: Which of these series should be used in any given application?
Not too surprisingly, the answer depends on the application at hand and the sort of additional
conditions f must satisfy. In fact, determining which is the “best Fourier series” can be a
significant part of the mathematics required for solving a given problem. We’ll look more
into this issue in chapter 16 where we will use sine and cosine series to solve some problems
in thermodynamics and mechanics. Meanwhile, some idea of criteria that might be useful in
choosing the appropriate series can be gleaned from the next exercise.

?» Exercise 10.2:  Suppose f is uniformly continuous on (0, L) and f(0) = f(L) = 0.
Which of the three series discussed in this chapter would be the “obvious” choice to represent
f () on the interval (0, L) ? (Hint: For which of these series are all the terms automatically
zerowhent =0 and t =L ?)

Additional Exercises

10.3. For this problem, let f(¢t) =1 if 0 <t < 1, and be undefined otherwise.

a. Sketch the graph of f (defined only on (0, 1) !), and, on separate coordinate systems,
sketch the graph of each of the following extensions of f :

i. the basic periodic extension, f ii. the odd periodic extension, f,

iii. the even periodic extension, ﬁ
b. Find T.F.S.[f]|, ., the trigonometric Fourier series for f over (0, 1).
c. Find F.S.S.[f]|,, the Fourier sine series for f over (0, 1).
d. Find F.C.S.[f]l|,, the Fourier cosine series for f over (0,1).

10.4. Repeat problem 10.3 using the function f(t) =t when 0 < t < 1 (with f(t)
undefined otherwise).

10.5. Find the Fourier sine series for each of the following functions over the indicated

interval:
a. g(r) = 1> over (0,3) b. h(t) = sin(2r) over (0,7)
10.6. Find the Fourier cosine series for each of the following functions over the indicated
interval:
a. g(t) = t2 over ©,3) b. h(t) = sin(2t) over (0,7)
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10.7 a.

10.8 a.

ii.

iii.

iv.

10.9 a.

Sine and Cosine Fourier Series

Using a computer math package such as Maple, Mathematica, or Mathcad, write a
“program” or “worksheet” for graphing a function f over an interval (0, L) along
with the N partial sum of its Fourier sine series over that interval,

N
F.SSlfl, = Y b sin(’%”t> . (10.5)

k=1

The inputs to this program/worksheet should be the interval’s length L , a formula for
the function over the interval, the formulas for the by ’s, and the value of N . (Also,
see exercise 9.8 on page 119.)

Use your program/worksheet to graph each function from problem 10.5, above, over
the given interval along with the N partial sums of its Fourier sine series for N = 0,
1,2, 10, and 25 . Examine your graphs and answer the following two questions:

1. Do the graphs of the N'™ partial sums appear to be converging to the graph of
the function as N gets larger?

2. Are there points at which strange things are happening in the graphs of the
N partial sums, especially for the larger values of N ?

Modity your program/worksheet from exercise 10.7, above, so that it also numerically
evaluates the “first N’ Fourier sine coefficients (i.e., the by’s for k =1 to N ), lists
those coefficients, and then graphs the function and the corresponding N'™ partial
sum of the Fourier sine series. Here, your inputs should be the interval’s length L, a
formula for the function over the interval, and the value of N . (See, also, problem 9.9
on page 120.)

Use your program/worksheet to graph each of the following functions and the N ™
partial sum of its Fourier sine series over the given interval for N = 0, 1, 10, and 25 .
Examine the graphs and answer the two questions given in exercise 10.7 b.

f@) = t—1* over (0,1)

gt) =1 over (0,1)

h(t) = sin(t) over (0,7h)

t if O0<t<l1
k() = over (0,2)
0 if 1<tr<?2

Redo all of exercise 10.7, above, with the words “sine series” replaced by “cosine
series” and with formula (10.5) replaced by

N
k
F.CS.NIfll; = Ao + kZ_;“kC"S(Tnt>

Then modity your cosine series program/worksheet so that it also numerically eval-
uates the “first N” Fourier cosine coefficients (i.e., Ag and the a;’s for k =1 to
N ), lists the coefficients, and then graphs the function and the corresponding N ™
partial sum of the Fourier cosine series.

Using your cosine series program, redo problem 10.8 b (computing the partial sums
of the cosine series instead of the sine series).

© 2001 by Chapman & Hall/CRC



11

Inner Products, Norms,
and Orthogonality

We’ve derived several “Fourier series” (including the trigonometric Fourier series, the Fourier
cosine series, and the Fourier sine series), and we will be discussing yet another Fourier series
(the exponential Fourier series) in the next chapter. That’s a lot of series, with a lot of different
formulas to learn. Fortunately, there is a fairly general framework for describing all of these (and
other) Fourier series. This framework is based on an operation with pairs of functions analogous
to the dot product operation in vector analysis. Using this, and other ideas from vector analysis,
we can then easily describe all Fourier series and derive a single simple formula for computing
“the components of a function” relative to any suitable set of base functions.

Throughout this chapter, we will be considering functions defined on some interval (o, §) .
The functions may be complex valued. To ensure that all the integrals in this chapter are well
defined, let us go ahead and assume that («, 8) is a finite interval and that all the functions
mentioned in this chapter are piecewise continuous. !

11.1 Inner Products

Let f and g be two piecewise continuous functions on the finite interval («, 8). The inner
product of f with g (over («, B))is denoted by ( f|g) and defined by

B
(flg) =/ f(Og*@)dt

(where g*(¢) is the complex conjugate of g(¢)). If g is a real-valued function, then g* = g
and the above is just

B
(flg) :/ fgh)de

> Example 11.1:  The inner product of 3t with sin(2w¢t) over (0, 1) is

1
(3t | sin2rr) ) = / 3tsinrr)dt = ——-
0 21

1 Actually, any conditions ensuring the existence of the integrals appearing here would suffice.

129
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?» Exercise 11.1: ~ Show that the inner product of t2 with 9+ i8¢ over (0,1) is

(£2]9+i8t) = 3—2i

At this point, the inner product ( f|g) can be viewed as just shorthand for a particular
integral involving the two functions f and g over the interval («, 8). On occasion, we may
neglect to explicitly state this interval. When this happens, just remember that («, B) is always
“the interval of current interest” In particular:

1. If we are discussing “functions that are periodic with period p” then («, 8) is any
interval of length p,say (0, p) or (=P, Ph).

2. If we are discussing “functions that are defined over the interval (0, L)” where L is
some finite length, then (o, ) is (0, L).

Some of the important properties of inner products are summarized in the next theorem.
These properties will allow us to use the inner product in much the same way as the dot product
is used for vectors in space.

Theorem 11.1 (properties of the inner product)
Suppose a and b are two (possibly complex) constants, and f, g, and h are piecewise
continuous functions on the finite interval («, ). Then

L (af+bglh) =a(flh)+ b(glh),

2. (flag+bh) =a"(flg) + b (flh),

3. (glf)y=(flg),
and
4. (f|f) = 0,with ( f| f) = 0 ifandonly if f vanishes on (c, B) .

PROOF:  Verifying these properties is easy. For the first,

B
(af +bg|h) / laf(¢) 4 bg(t))h*(¢) dt

B
/ [af (O™ (1) + bg ()™ (1)) dt

B B
a/ f@O* @) dr + b/ gOR*(t) dt

a(flh) + b(glh)

For the second,

B
(flag+bh) = / FO)lag() + bhOT* dt

o

B
= / f®la*g™(®) +b*h* (1)l dt
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B B
a*f fg e + b*/ FOR* () dt

=a*(flh)+b(glh)

The third comes from the observation that

B B
/ g fr(ydt = / [g*(@®) f(O)]* dt

B * B *
= [/ g*(t)f(t)dt] = [/ f(t)g*(t)dt}

Cutting out the middle and rewriting the left- and right-hand sides of this in terms of inner
products leaves us with

(gl f)=(flg)
Finally, since ff* =|f>=>0,

B B
CF1F) =f £ 20 di =/ FOPdr

which, clearly, is zero if f vanishes on (&, 8) and is positive otherwise. I

11.2 The Norm of a Function

Recall that the norm of a vector v is given by |v|]| = 4/v - v. Likewise, for a function f, the

norm || f|| is defined by
= verir)

which is just shorthand for

B 15 B 1
Il = [/ f(t)f*(t)dt} = U 1f () dt}

Notice that property 4 for the inner product assures us that || f|| > 0 and that || f|| > 0 whenever
the piecewise continuous function f(¢) is nonzero somewhere on (¢, B) .

> Example 11.2:  The norm of f(t) =3t +1i over (0,1) is

1 2
[/ (3t+i)(3t—i)dt]
0
1 1/2 1 1/2
[/ (9t2+1)dti| - |:3t3+t’ ] =2
0 t=0

Be careful to not confuse | f||, the norm of f, with | f|, the absolute value of f. The
norm is a single number. In the above example, || f|| = 2. On the other hand, | f| is a function
on («, B) . In the above example,

F@O = Bt +il = Vo2 +1

IFI =113 + £l
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In fact, you should observe that the norm of a function | f| is actually a measure of the average
value of the magnitude of the function |f(¢)| over the interval («, 8). Thus, in a sense, the
statement “ || f|| is small” is equivalent to the statement “ f is very close to being zero on most,
if not all, of (c, B).” We will use this later when comparing two functions.

?» Exercise 11.2:  Let (a, 8) = (0, p) where p is any finite positive value. Show that
a: 11> = p.
b: |lcosQrayt)|?> = Ph where wyp =%, and k =1,2,... .
c: |sinQragt)||> = Ph where wy =%, and k=1,2, ... .

(Hint: You can use the orthogonality relations for sines and cosines.)

11.3 Orthogonal Sets of Functions

Recall that a pair of vectors u and v is orthogonal if and only if w-v = 0. Likewise, we will
say that a pair of functions f and g is orthogonal (over («, 8)) if and only if

(flg)=0

> Example 11.3:  The two functions f(¢t) =t and g(t) = 3t — 2 form an orthogonal pair
over (0, 1) since
1 1 1
(t|3t—2) = / (3t —2)dt = / [3t2 —2t]dt = t3—t2‘o =0
0 0

On the other hand, f(t) =t and h(t) = 6t — 2 is not an orthogonal pair of functions over
(0, 1) since

1 1 1
(t]66—2) = / (6t —2)dt = / [6:2 —2(]dt = 2t3—t2‘0 —1£0
0 0

More generally, we will say that a ser of functions

{1, d2, #3, ...}

is orthogonal (over («, B)) if and only if every distinct pair in the set is orthogonal, that is, if
and only if
(k| pn) = 0  whenever k #n

Note that, because of the symmetry in the inner product (property 3), if (¢ |¢, ) = O then
(@n | @) = 0. Thus, to show that {¢1, ¢, ¢3, ...} is orthogonal, we need only show that

(k1 dn) =0 whenever k <n

One example is of particular interest to us. It is the set of functions used to construct the
trigonometric Fourier series for any periodic function with period p,
{1, cosQmrwt) , sinmrwit) , cosQRmwst) , sin(Qrwyt) , (L)
cosmwst) , sinRrwst) , ...} ’

where w =¥/ ». Let us verify that this is an orthogonal set by confirming that the inner product
of every distinct pair in this set is zero:
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The inner product of 1 with each cosine in the set:

(1] cosmawgt) )

P
/ 1. cosQRmawyt) dt
0

p
/ cos(ﬂt) dt = 0
0 p

(We can skip the details of the integration here since this was one of the integrals in the
orthogonality relations for sines and cosines!)

The inner product of 1 with each sine in the set:

P
(1]sinRragt) ) = / 1-sin(2rwgt) dt
0

p
= / sin(ﬁt) dt =0
0 p

(Again, we can skip the details of the integration here since this was one of the integrals
in the orthogonality relations for sines and cosines!)

The inner product of each cosine in the set with every other cosine in the set (i.e.,
(cos(rwit) | cosrwy,t) )

where k and n are two different positive integers):

P
(cosCrawyt) | cosRrawyt) ) = f cos(2m wyit) cos(2m wy,t) dt
0

p
f cos(ﬁt) cos(zn—"t) dt = 0
0 p p

(Again, this was one of the integrals in the orthogonality relations for sines and cosines!)

Is it possible that every inner product we need to check above corresponds to an integral from
the orthogonality relations for sines and cosines? Absolutely! That’s why they were called the
orthogonality relations. We’ll leave the final confirmation of this (and the final confirmation that
the above set is orthogonal) as an exercise.

?» Exercise 11.3:  Use the orthogonality relations for sines and cosines to show that each of
the following inner products is zero when n and k are positive integers:

a: (cosmawgt) | sin(Qrwy,t) )
b: (sinQmrwgt) | sinQRrw,t)) where k #£n
Also, convince yourself that this, along with the above “computations’; confirms that the set

in line (11.1) is orthogonal.

For completeness, orthonormality should be briefly discussed. A set of functions (or vec-
tors) {¢1, @2, P3, ...} is said to be orthonormal if and only if both of the following hold:

1. The set is an orthogonal set.

2. ¢kl = 1 for each ¢y in the set.
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If {¢1, ¢2, @3, ...} is any orthogonal set of nonzero functions, then a corresponding
orthonormal set {1, ¥, ¥3, ...} can be constructed by “normalizing” each ¢ . That is, we
define each vy by

P (1)
Ur(t) = ——
llxl
In vector analysis it is fairly standard practice to normalize a given orthogonal basis. It does
make the formulas for dot products and norms simpler. In Fourier analysis, however, it is fairly
standard to not normalize an orthogonal set of functions. Frankly, in practice, it is often just as
easy (if not easier) to use your original (non-normalized) orthogonal set of functions.?

11.4 Orthogonal Function Expansions

Now suppose

{d1, 2, P3, ...}

is some orthogonal set of functions on an interval (o, §) . Suppose, further, that f is a function
on (o, B) which can be expressed as a (possibly infinite) linear combination of the ¢;’s, say,

fO =) ant) . (11.2)
k

We can derive (somewhat naively) a formula for the coefficients, the c4’s, much the same way
we derived the formulas for the coefficients in the trigonometric Fourier series. For example, to
find c3, first take the inner product of each side of equation (11.2) with ¢3,

(fles) =<ch¢k
k

Property 1 for inner products tells us that, so long as the summation has a finite number of terms,

<ch¢k ¢3> = > al¢nlds)
x k

Assuming this formula also holds for summations with infinitely many terms® and using the
orthogonality of the ¢,’s (and the definition of the norm), equation (11.3) becomes

0 if k#3
<f|¢3>=ch<¢k|¢3>=ch{ ts }=c3||¢3||2
k

b3 > . (11.3)

T lgsll> if k=3

Dividing through by 3% gives
ey = (flé¢3)
3112

Of course, there is nothing special about c3. The above derivation works equally well for

any of the ¢;’s and gives us the following “quasi-theorem”:*

2 This, of course, is the author’s opinion.

3 This assumption is one reason our derivation is heuristic and not rigorous.

4Im calling this a quasi-theorem both to distinguish it from results we obtain rigorously, and because we are still a
little unclear on just what “ f(¢) = > ; cx ¢x(t) on (o, ) ” means when we have infinitely many ¢ ’s.
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Quasi-theorem on orthogonal expansions

Let {¢1, ¢2, ¢3, ...} be an orthogonal set of functions on an interval (o, ), and let f be a
function on («, B). If f can be represented as a (possibly infinite) linear combination of the
¢ ’s, that is, if there are constants ci, ¢2, ¢3, ... such that

fO =Y ap®)  on (a.p) , (11.4)
k
then, for each k,
(flék)
= =5 115
YW (115)

The summation in expression (11.4) is often called the (generalized) Fourier series for
f (with respect to the ¢’s) and the corresponding ci’s are called the (generalized) Fourier
coefficients of f (with respect to the ¢¢’s). Don’t forget, however, that our derivation was not
completely rigorous; so, we cannot be absolutely certain this quasi-theorem is always valid.

11.5 The Schwarz Inequality for Inner Products”

Recall that, if u and v are a pair of two- or three-dimensional vectors and 6 is the angle between
them, then
lu-v|l = fulllv]|cos(®)] < [ull[lv]

Given the previous sections, you may suspect that we are going to define “the angle between
two functions” Well, we aren’t. Even if we could define such an “angle”, we would find little or
no use for it. On the other hand, we will find use for the inner product analog to the inequality
[w-v| < |u|l |lv]l. That analog is described in the next theorem.

Theorem 11.2 (Schwarz inequality for inner products)
Let f and g be two piecewise continuous functions on the finite interval (c, 8) . Then

ICF g < IfIllgl - (11.6)

Inequality (11.6) is usually referred to as the Schwarz inequality (for inner products). It
is also commonly known as the Cauchy—Schwarz inequality, and less commonly known as the
Cauchy—Buniakowsky—Schwarz inequality. And if this discussion seems familiar, then you are
probably recalling the discussion we had on the Schwarz inequality for finite summations starting
on page 30 or the discussion of the Schwarz inequality for infinite series starting on page 45. All
of these Schwarz inequalities are, in fact, different manifestations of the same basic mathematical
principle. That’s why they have virtually the same name, and why we can use virtually the same
proof for each.

PROOF (of theorem 11.2): ~ We start rewriting inequality (11.6) in integral form,

B 1 B 1
< (/ |f<r>|2dt> (/ lg()I? dr) : (11.7)

* The material in this and the following section will not be needed until near the end of chapter 13.

B
/ fg* ) dt
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Suppose we can show that

B B 2o 0B 2
/ FOllg0)] di < (/ |f<r>|2dr> (f 80P dr) . L)

Then inequality (11.7) (and, hence, also inequality (11.6)) follows immediately by combining
the above inequality with the fact that

B B B
/ fg @ dt| < / |f(g* )| dt = / | f(O]1g@)] dt

So we only need to verify that inequality (11.8) holds.
Consider, first, the trivial case where either || f| or ||g|l is zero; that is, either

B B
f If(®)1>dt =0  or / lg@®)* dt = 0

Then either f or g vanishes everywhere on the interval (c, 8). Thus, for this case,

B B
/ |f||g|dx=/0dx=0 ,
o o

and inequality (11.8) reduces to the obviously true statement that 0 < 0.
Now consider the case where || f| and | g|| are both nonzero. For convenience, let

A= |fl and B = |gl

Then 5 ,
A2 =/ foPd . B =/ gOP di
o o
and
0 < BIf)—Alg@®))*> for a<t<§p
Thus,

o
A

P 2
< f BIf ()]~ Algn)))’ dt

B
[ [B1s0r - 248150115001 + 4*150)F]

B B B
BZ/ FOR dt — 2AB/ FOllg] di + A2/ g dt

o

B
= B?A% — 2AB/ | f )] 1g(®)| dt + A*B?

o

B
2AB [AB - / If(t)llg(t)ldt}

Dividing through by 2A B, which is a positive quantity, and slightly rearranging the resulting
inequality gives

g g "2 op /2
/ FOllg®) di < AB = (/ |f(r)|2dr> (/ 802 dt) . 1
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11.6 Bessel’'s Inequality

Recall that, if {i, j, k} is the standard basis for the space of three-dimensional vectors, and
u=uii+urj+uszk and v=uvi+vj+urk ,
then the formulas for the vector dot product and vector norm can be written as
_ 2 _ 2 2 2
u-vV = ujvg +upvy +u3v3 and Ivl© = [vi]” + |v2|” + |v3]

We can easily derive similar formulas for inner products and norms of functions which are
finite linear combinations of functions from an orthogonal set of functions. Let {¢1, ¢2, @3, . . .}
be any orthogonal set of piecewise continuous functions on an interval (o, ), and let f and
g be two finite linear combination of these ¢;’s, say,

N
f@&) = ch¢k(t) and  g(t) = Y dix(t)
k=1

where N is some finite positive integer. Then, using the basic properties of inner products and
the orthogonality of the ¢;’s,

(flg)

N
< D ek dx
k=1

N
D dun >
n=1

N
dy Pn >
n=1

d ¢k|¢n ))

N
= < Pk
k=1

Mz

N

x~
I
_

n

N N 2 .
_ « gkl if n=k
_Zc"<zd”l 0o i n;ék}) :

=~

n=1

which is more simply written as

N
(flg) =D adilel® . (11.9)
k=1
From this we also see that
N N
IFIP = CF1) =D e lgel® = D lexl® Iwll® (11.10)
k=1 k=1

(Note that, if the set {¢1, ¢2, ¢3, ...} is an orthornormal set, then the above formulas reduce
to

N N
(flg) =) adi and |f1* =) lal
k=1 k=1

In practice, however, our sets will be orthogonal but not orthonormal.)

Before we try to extend these formulas to cases where f and g are infinite linear combi-
nations of the ¢y’s, we should investigate the convergence of the Fourier series more closely.
The following formula for the “norm of the error” will be helpful.
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Lemma 11.3

Assume {¢1, ¢2, ..., N} is a finite orthogonal set of piecewise continuous functions on a finite
interval (o, B), and let f be any piecewise continuous function on (¢, ). For k =1,2, ...,

and N, let ¢ be the corresponding generalized Fourier coefficient,

_ (flox)
llx 1%

Then,

N 2 N
Hf =Y ad| =117 = D Il gl
k=1 k=1

PROOF:  For convenience, let Sy be the partial sum

N
Sn(t) = Y e u(0)
k=1

Observe that
N 2
Hf = ad| = If—Swl?
k=1
=(f—=SnvIf—=Sn)
= (fIf)=(fISv) = (Snlf)+ (SwiISy)
Now
(LY = IfIP
N N
(f1Sy) = <f ch¢k> = > i (flen)
k=1 k=1
N N
= Y (e llel?) = Yl lgel®
k=1 k=1

N * N
(Sv1f) = (fISN) = (ZW ||¢k||2) = > lalled?
k=1 k=1

and, using equation (11.10) (with Sy replacing f),

N N
D e ¢n> = > lal® gl
n=1 k=1

N
<SN|SN>=<ch¢k
k=1

So equation (11.11) becomes

Hf - g;ck@c

2

N
2 2 2
AP = lerl gkl
k=1
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N N N
2 2 2 2 2 2 2
AP = Y lerlPlgnl® = >l lgell> + D lexl® el
k=1 k=1 k=1
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An immediate, and useful, consequence is Bessel’s inequality.

Theorem 11.4 (Bessel’s inequality, general series version)

Assume that {¢1, ¢2, ¢3, ...} is an infinite, orthogonal set of piecewise continuous functions on
a finite interval (o, B). Let f be any piecewise continuous function on («, B), and, for each
positive integer k, let cx be the corresponding generalized Fourier coefficient,

_ (flox)
llpx 1

Then
N
> el llgrl® < 11£17
k=1

for every positive integer N . Moreover, the infinite series Z,fil ekl 1l converges and

o

2002 2
> ekl lgell* < 11 £l
=1

PROOF: Let N be any positive integer. Observe that, using the identity from the previous

lemma,
N
‘f — Dt
k=1

Subtracting the summation from the left- and right-hand sides gives

2 N
0 < = 1£17 = > lexl® loell?
k=1

N

2 2 2
E lexl” el < I FI
k=1

proving the first claim of the theorem.

This also tells us that every partial sum of Z,‘ﬁl |ck |2 |k ||2 is bounded by the finite value
| £11?. Since this series has only nonnegative terms, we know (see theorem 4.4 on page 43) this
series must converge and that

00 N

2 2 : 2 2 2
lallee* = lim > el Igd® < 1£17 . |
k=1 N=oor o

Let us see what Bessel’s inequality tells us about the trigonometric Fourier series:

> Example 11.4 (Fourier series and Bessel’s inequality):  Let f be any periodic, piecewise
continuous function with period p and

o
FS.[fll, = Ao + > [ak cosQmawyt) + by sinraxt)]
k=1

(where wy =*/,). Earlier, we saw that

{1, cosRmwit) , sin(Qmrwit), cosRmwyt) , sinRmwyt) , ...}
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is an orthogonal set of functions on any interval of length p. By the computations from
Exercise 11.2 we have

28
Ao I + D [laxl? llcos@reoxn) |2 + [bi 2 lsin 2 eogt) 2]
k=1

X 2 2
_ 2 2 2 p” 2 p”
= Aol p* + Z[mu -+ b 2 ]
k=1
Bessel’s inequality (theorem 11.4) assures us that this series converges and that

S 2 2
Aol® p* + Z[|ak|“’7+|bk|2 ’ﬂ < 1717
k=1

It is worth noting that, since this series converges, the terms of this series must approach zero
as k — oo. That is, we must have

2 2
lim |a|?2- =0  and lim |5x)? 2 =0 ,
k—o00 4 k— o0 4
which, of course, means that the Fourier coefficients, themselves, must vanish as k — oo,

lim ap = 0 and lim by = 0 . (11.12)
k—00 k—o00

You should realize that neither the convergence of

e 2 2
2 2 2p 2p
|[Aol” p~ + kg_l |:|ak| T+ bl T]

in the previous example nor the vanishing of the coefficients as k — oo allows us to decisively
conclude that the Fourier series

o
Ay + Z [ak cosCmwit) + by sin(2m wyt)]
k=1

converges for any given value of 7. But they should, at least, strengthen our suspicion that the
Fourier series will converge.

Take another look at the last set of limits in the last example. Recalling the definition of the
trigonometric Fourier coefficients, we see that equation set (11.12) immediately implies that’

. 2 . . (2mk

lim / f@® cos(ikt) dt =0 and lim f@) sm(Lt> dt =0
kk_é %0 period p kk_é%o period p
whenever f is a periodic, piecewise continuous function with period p. This is a particular
case of a famous result called the Riemann—Lebesgue lemma. A fairly general version is given
in the next theorem.

Theorem 11.5 (a general Riemann-Lebesgue lemma)

Let f be any piecewise continuous function on a finite interval («, ), and let {¢1, ¢2, ¢3, ...}
be any infinite orthogonal set of piecewise continuous functions on («, ) . Assume that, for
some finite constant C and every positive integer k ,

ol < C

5 Z denotes the set of integers. The “k € Z” in the limits simply emphasizes that we are only using integer values
for k in this limit.
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Then P
klim/ fOer@)det = 0

The proof, which is quite easy, is left as an exercise.

?» Exercise 11.4:  Prove theorem 11.5 using theorem 11.4, the ideas indicated in example
11.4, and the above discussion.

Additional Exercises

11.5. The interval for this exercise is (0, L) for some arbitrary positive number L .

a. Show that the following set of functions is orthogonal over (0, L) :

{Sin(%t), sin(%”t), sin(%”t), }

b. Compute ||sin(kL—”t) || where k is any positive integer.

c. Let f be any piecewise continuous function on (0, L), and let

- k
. T
Z by sin ( T t)
k=1
be the Fourier sine series for f over (0, L) as defined in chapter 10.

i. Verify that
bk=M for Kk =1,2,3, ...
fin(t0)

ii. Verify Bessel’s inequality for the sine series,

L > L
LYl 5/0 F )P dr
k=1

11.6. The interval for this exercise is (0, L) for some arbitrary positive number L .

a. Show that the following set of functions is orthogonal over (0, L) :
{ 1, cos(ft> , cos(z—nt) , cos(ﬁt) Y e }
L L L

Compute ||cos(kL—”t) || where k is any positive integer.

b. Compute ||1].

d. Let f be any piecewise continuous function on (0, L), and let

o0
Ay + Zak cos(%t)
k=1

be the Fourier cosine series for f over (0, L) as defined in chapter 10.

© 2001 by Chapman & Hall/CRC



142 Inner Products, Norms, and Orthogonality

i. Verify that
_ (fw 1)
1112

ay = <f(t) ‘ Cos(kfnt)> for k =1,2,3,...

Jeos ()
cos| —t
L

ii. Verify Bessel’s inequality for the cosine series,

) L
L
L1Aol + 3D |l < /0 |f @)1 dt
k=1

and

11.7. Assume that all functions in this exercise are periodic with period p > 0, and let wy
denote ¥/, for each integer k.

a. Show that the following is an orthogonal set on any interval of length p :

2rw_ot i2mrw_1t i2rnwot i2rnwit  i2mwst  i2mwst
[...,e 2t e e ot e e 2t e 3,...]

b. Compute |e?™!|| for k =0, +1,+2, +3, ... .
(Much more will be done with this orthogonal set in the next chapter.)

11.8. In the following, we will construct an orthogonal set of polynomials on (0, 1) .

a. Find all possible values of a and b so that

¢1(t) =1 and ¢2(t) = a+ bt
is an orthogonal pair of functions on (0, 1) .

b. Find all possible values of a, b, and ¢ so that {¢1, ¢2, ¢3} is an orthogonal set of
functions on (0, 1) , where

o) =1 ,  ¢ot) = 1—=2t and  ¢3(t) = a+bt+ct?

c. Atthis point it should be clear that we could continue, thereby constructing an orthog-
onal set of functions {¢1, ¢2, ¢3, ...} on (0,1) where each ¢i(t) is a polynomial
of degree k —1.° Assume that f(t) is a function on (0, 1) and that, on this interval,

fO =) cidrt)
k=1

i. Based on the material naively derived in this chapter, what is the formula for c1 ?
(Use the ¢1 from the previous exercise.)

ii. What is the value of c; when f(t) = sin(xt) ?

11.9. Show that the Schwarz inequality, inequality (11.6), becomes an equality whenever one
function is a constant multiple of the other. (Later — see theorem 25.7 on page 400 —
it will be shown that the converse holds; that is, if both sides of the Schwarz inequality
equal each other, then one function is a constant multiple of the other.)

6 It should also be clear that continuing would be a lot of work. A better approach would have been to use the
“Gram—Schmidt” orthogonalization procedure from linear algebra.
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The Complex Exponential Fourier Series

In chapter 9 we defined the trigonometric Fourier series for a periodic, piecewise continuous
function. That was an infinite series of the form

o0
Ag + Z [ax cos(2m wyt) 4 by sin(2w wit)]
k=1
Dealing with this series can be somewhat tedious. Typically, for example, the constant term, the
cosine terms, and the sine terms must be computed separately.

In this chapter we will derive an alternative — the complex exponential Fourier series —
which, basically, is just the trigonometric series rewritten in terms of complex exponentials. This
may not seem to be much of an improvement, especially since it will require complex-valued
functions in computations that, up to this point, have only involved real-valued functions. In
the long run, however, we will find that the advantages of using complex exponentials instead
of sines and cosines greatly outweigh the disadvantages of having to deal with complex-valued
functions.!

12.1 Derivation

Let f be a periodic, piecewise continuous function with period p and trigonometric Fourier
series

o
F.S.[fll, = Ao + Y [ax cosQmawyt) + by sinraxt)] . (12.1)
k=1
Using
i27 wit —i2mwyit P2mwrt _ ,—i2mwit
cosRmwt) = ¢ +26 and sin(rwgt) = ¢ 2,6 ,
1
let us rewrite formula (12.1) in terms of complex exponentials:
1S 127 wit —i2mwit 2wt _ ,—i2mwit
e +e e e
FS.[fll, = Ao + ];[ak 5 + by - ]

o0
= Ay + Z [Ck 2Tt 4 p, e—i2nwkt]
k=1

1 This may be a good time to review chapter 6, Elementary Complex Analysis, especially the section on the complex
exponential.
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00 00
— A() + ch ethwkt + ZDk e*lZﬂwkt
k=1 k=1

o0 o
D DT 4 Ag 4+ Y G (12.2)
k=1 k=1

where the Cy’s and Dy ’s are constants that could easily (but won’t) be computed from the ay’s
and by’s. At this point, remember that

wp = — for Kk =1,2,3,...
Let’s take a not-so-bold step and agree that
wp = — for k = 0, £1, £2, £3, ...

For even more convenience, we can rename our coefficients by letting

Crk if k=1,273,...
ck = Ag if k=0
D_y if k= -1, -2, -3, ...

Observe that, because wg =0,

Ag = Age = ¢oelFTet (12.3)
Also, for k = 1,2,3,...,
2wt = —Znﬁt = 27 <_k>t = 2mw_pt
p p
So, using the index substitution n = —k followed by a renaming of the internal variable n as
k again,
o0 . o . —0oQ . —0o0 .
ZDk e—lZ?‘[wkl‘ — ZDk elZ?Ta)_kt — Z D_, elZﬂwnt — Z Cr ethw,,t . (12.4)
k=1 k=1 n=—1 k=—1

Thus, we can rewrite formula (12.2) as

F.S. [f]'t = Z Ck elZT[wkt + co 6127Tw0t + ch elznwkt ,
k=00 k=1

or, even more concisely, as

FS.[f]l, = i cpel2Tokt (12.5)

k=—o00

The formulas for the c’s can be rigorously derived by first finding the relation between
them and the corresponding trigonometric Fourier coefficients and then using the formulas for
computing those coefficients (formulas (9.1c), (9.1d) and (9.1e) on page 101). On the other
hand, if the set of /27! ’s is an orthogonal set of functions, then we should be able to derive
formulas for the c;’s more easily using the more general formula from the quasi-theorem on
orthogonal function expansions on page 135. This is the approach we will take.
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First, observe that, if g is any periodic, piecewise continuous function with period p, and
if n is any integer, then the inner product of g with e!27@n jg

<g(t) ‘ eiannt > — /(;Pg(t) (eiZJTwnt)* dt = \/(;pg(t) e—ian,,t dt

In particular, if £ and n are two different integers, then

. . p . ,
<612nwkt ‘ ethwnt ) — f ethwkt e—thw,,t dt
0

)4 .
= f exp(Mt) dt
0 p

_ p i2m(k —n) ) p
= 2ntk—n eXp( v i
_ p _

B i27'r(k—n)[1 1]

=0

This verifies that the set of e/2"“** ’s is an orthogonal set. Thus, according to the quasi-theorem
on orthogonal function expansions on page 135, each ¢ is given by

< f | ei2nwkt >

= — 1 12.6
* |ei2ment H2 (12.6)
Equivalently,
p .
ck = %/ f(t) e 2Rt gy (12.7)
0
since
127wyt _ P —i2m wyt
fle = f)e dt
0
and

Hei2nwktH2 _ /p el 2Tkt pmi2mant gy /pldt =p
0 0

Because the derivation of the quasi-theorem on orthogonal function expansions was not
completely rigorous, there should be some concern that formulas (12.6) and (12.7) may not be
correct. They are correct. The reader can either trust the author or, even better, do exercise 12.2
on page 149.

12.2 Notation and Terminology

Using the formulas just derived in the previous section, we can formally define the complex
exponential Fourier series.

Let f be a periodic function with period p . The (complex exponential) Fourier series for
f,denoted by F.S.[f], is the infinite series

F.S.[fll, = i cy e/ 2Tk (12.8a)

k=—o00
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where, for £k = 0, +1, +£2, £3, ...,

W =

K (12.8b)
p
and

1 [? —i2mwyt
-1 / Feye2mont gy (12.8¢)
0

The ci’s are called the (complex exponential) Fourier coefficients of f .

As before, to ensure that the integrals are well defined, f will usually be required to be
piecewise continuous on R.

Compare the next example to example 9.1. It illustrates that fewer computations are often
needed to find the the complex exponential Fourier series of a function than are needed to find
the corresponding trigonometric Fourier series.

> Example 12.1 (the saw function, again):  Let’s compute the complex exponential Fourier
series for the saw function with fundamental period 3,

£ © t if 0<t<3
= S =
s f@—=3) in general

Here p=3. For k =0,+£1,+2,+3, ..., formulas (12.8b) and (12.8c) become

and

1 3 i
cp = _/ t€7127rwkt dt =
3Jo

3 .
/ texp(—lznkt> dt
0 3

Using integration by parts, we see that, for k # 0,

1| -3 2k \ |2 3 (3 2k
= = — t —_— — t) dt
=3 |:i2nk eXp( 3 )t:o * i271k/0 eXp( 3 ) }
11-3-3 3 N\2T —iznk 0]
) |:127Tk —0- (i27tk) [e —°

3i
2k

[SSEIE

Because the above formula for ¢y involves division by k , it is not valid when k = 0. So ¢
must be computed separately. Since wg =0 and ¢¥ =1,

3 3
1 —i 1 3
co = 3/ t e i2noot gy 5/ tdt = >
0 0

Thus, with w; = k/3,
00

2 : 3i tZJkat

k;éO

ES.[f1l;

SNV}
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12.3 Computing the Coefficients

All the comments made in chapter 9 regarding the computation of the trigonometric Fourier
coefficients apply, suitably rephrased, to the computation of the complex exponential Fourier
coefficients. In particular, if f is any periodic, piecewise continuous function with period p
and Fourier series

o
FS[f]'t — Z ckeiZn’a)kt ,

k=—00
then:

1. (independence of period) If p1 and p; are any two periods for f , then the complex ex-
ponential Fourier series for f computed using p = p1 is identical, after simplification,
to the complex exponential Fourier series computed using p = p> .

2. (alternate intervals of integration) Formula (12.8c) is completely equivalent to

= 1 / f)ye it qp (12.8¢")
P Jperiod

where it is understood that the integration can be done over any interval of length p .
3. (symmetry) If f is an even function, then
Ck = C_k for k=1,2,3,... ;
while if f is an odd function, then co = 0 and
Ck = —C_j for k=1,2 3, ...

(Notes: (1) See exercise 12.2 c. (2) To be honest, these particular formulas are seldom
of much value in computing coefficients.)

4. (linearity) If f = ag+ Bh where o and B are constants, and g and h are periodic,
piecewise continuous functions each with period p and having Fourier series

0 00
F.S. [gll, = Z Sk el 2T ent and F.S.[h]l, = Z ;;k ol 2mwxt
k=—0c0 I

(with wy =¥/, in each), then
ck = Bk +Phy  for k=1,2,3,...

5. If f is a finite linear combination of complex exponential functions having a common
period, then that linear combination is the complex exponential Fourier series of f .

6. (scaling) If g(t) = f(at) for some o > 0, then

oo
FS.[gll, = ) cpe?mem

k=—o00
7. If g(t) = f(—t), then
o0
FS.[gll, = > cye . (12.9)
k=—o00
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12.4 Partial Sums

Let f be a periodic function with

o0
F.S. [f]'t — Z Ck eiZ?Ta)kt

k=—o00

Since this is a two-sided infinite series (see page 45), we will be interested in the general (M, N)™
partial sum

N
FSunlfll, = ) cxe>™
k=M

where M and N are any two integers with M < N . Now, if

o0
Ao + Y [ag cosQmaxt) + be sin2raxt)]
k=1

is the corresponding trigonometric Fourier series for f, then it is easily verified that co = Ag
and that, for each positive integer k,

Cg &FFOH 4 o 2T — g cosQRrant) + by sin(Qmwgt)

“Summing these equalities up’, with k£ going from O to any finite positive interger N , gives

N N
Z cp & = Ag + Z[akcos(ankt)+bk sinrawxt)] = F.S.N[f]l;
k=—N k=1

Thus, the N'" partial sum for the trigonometric Fourier series is identical to the N symmetric
partial sum for the complex exponential series. For this reason, we will occasionally have a
particular interest in the N™ symmetric partial sum for the complex exponential series.

Formally, any complex exponential Fourier series can be converted to the corresponding
trigonometric series by expressing the complex exponentials in terms of sines and cosines.
Likewise, as indicated in the derivation at the beginning of this chapter, any trigonometric series
can be converted into the corresponding complex exponential series. So it certainly looks as if
these two types of Fourier series are really the same series written in slightly different forms (a
fact that we’ve already indicated by using the same notation, F.S.[f], for both series). The
only possible difference between the two lies in the slightly different partial sums used to find
the sum of each series. For the complex exponential series,

Z Ck elZﬂwkt — llm Z Ch elZT[wkt ,
k=00 M S5 k=M

while for the trigonometric series,

o
Ao + ) [ax cosQmaxt) + by sin(2raxt)]
k=1

N
= lim [Ao + Z [ax cos(Qm wyt) + by sin(ankt)]]
N—o0 =l

In the next chapter we will confirm that, in practice, this difference between the two series is not
significant.
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Additional Exercises

12.1 a. By rewriting the sines and cosines in terms of exponentials, convert

s 2 2k
1 ———cos2mwit) — sin(2m wy t
+,;[k2+1 (emat) k2 +1 ( wk)}

to the corresponding complex exponential Fourier series.
b. By rewriting the complex exponentials in terms of sines and cosines, convert

00 .

Z ik eiankt
k2 +4

k=—00

to the corresponding trigonometric Fourier series.

12.2. Let f be a periodic, piecewise continuous function with period p, trigonometric
Fourier series

o0
Ao + Y [ax cosQmaxt) + by sinraxt)]
k=1

and complex exponential Fourier series

o0 .
Z Cr ezankt
k=—o00

(with w = k/P in both series).

a. Using the formulas for the coefficients (and not the results from chapter 11), show

that
Ag = ¢

and that, for k =1,2,3, ...,
Cg TR 4 o 2T — g cosQRrant) + by sin(2Qrwgt)

(Suggestion: Use some symbol other than t as the variable of integration in the
integrals defining the coefficients.)

b. Show that, for every nonnegative integer N ,
N N ‘
Ay + Z [ax cosRQmaxt) + by sinQRraxt)] = Z c & TR
k=1 k=—N
c. Show that, if f is an even function, then
Ck = C_j for k=1,23,... ;

while, if f is an odd function, then cy = 0 and

Ck = —C_j for k=1,2,3,...
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(a)

Figure 12.1: Two and one half periods of (a) evensaw(¢) , the even sawtooth function for
exercise 12.3 ¢, and (b) oddsaw(¢), the odd sawtooth function for exercise
12.3d.

12.3. Compute the complex exponential Fourier series for each of the following functions.
(Most of these functions are being recycled from exercises in chapter 9. Do not,
however, convert the answers for those problems to obtain the Fourier series for the fol-
lowing. Instead, compute the coefficients using equation set (12.8) on page 145.)

0 if —1<t<0
a. f@) = 1 if 0<t<1
fit—=2) in general
e if 0<t<l1
b. g(t) =

git—1) in general
c. evensaw(t), the even sawtooth function sketched in figure 12.1a
d. oddsaw(?), the odd sawtooth function, sketched in figure 12.1b
e. sin’(t)
f. |sin(27t)|
+1 if 0<]t] <1

g f@ = -1 if 1<|t] <2
fe—4) in general

t? if -1<t<l1
h. f(1) =

f@t—2) in general

12.4. (Bessel’s inequality for complex exponential series) Let f be a periodic, piecewise
continuous function with period p and complex exponential Fourier series

0 .
Z Ck ezZmukt
k=—o00

Using the general version of Bessel’s inequality (theorem 11.4, page 139), show that
Z,fi_oo |ck|2 is a convergent series and that

o0

D el < 1f |f@)1? dt

0 period
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12.5. Let f and g be piecewise continuous, periodic functions with period p , and let
0 . o )
FS.(fllo = Y fee™™  and  FS.[gll, = ) gke™™™
k=—o0 k=—00

a. Assume that f = F.S.[f], and derive the relation

o0
FS[fg]lt — Z ckeiankt
k=—0o0

where, for each integer k

[o/0]
k= Z fn&k—n (12.10)
N=—00

Your derivation need not be completely rigorous. Go ahead and assume that any
“integrals of summations” equal the corresponding “summations of integrals’; and
don’t worry about the convergence of the series. (We’ll make the derivation rigorous
in exercise 13.15 on page 175.)

b. Using the Bessel’s inequality from problem 12.4 and the Schwarz inequality for
infinite series (theorem 4.8 on page 45), verify that the infinite series in equation
(12.10) converges absolutely.
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Convergence and Fourier’s Conjecture

Our initial derivation of the formulas for the Fourier series was based on the conjecture (“Fourier’s
bold conjecture”) that any “reasonable” periodic function can be represented by an infinite linear
combination of sines and cosines. However, the only evidence I've given you of this conjecture’s
validity has been a few pictures and the fact that, if it weren’t true, then this book probably would
not have been written.

It is time we look at our conjecture more carefully. After all, if we plan to use Fourier series
in real applications, we really should know how well any “reasonable” function of interest can
be represented by its Fourier series. How accurately, for example, will any particular partial
sum approximate the function? Where can problems arise? And just what does it mean for a
function to be “reasonable”?

To help answer these questions we will discuss three types of convergence for infinite series
— pointwise, uniform, and norm. All three types are important in Fourier analysis and play
significant roles in applications.

Unfortunately, some of the important results to be discussed here are not so easily and simply
derived. Their proofs and derivations are somewhat lengthy and require much more cleverness
than has been needed thus far. Including such proofs and derivations here would make for a
very long chapter and may, frankly, hamper the flow of our discussions. Omitting them from
the book, however, would be unforgivable. They are important to fully understanding the results
presented; they contain truly interesting analysis, and besides, they aren’t really that difficult.
So, as a compromise, we’ll devote the next chapter to these particular proofs and derivations.!

13.1 Pointwise Convergence
The Basic Theorems on Pointwise Convergence

Suppose we have a periodic, piecewise continuous function f and its Fourier series
0 .
FS[fll, = Y. ae . (13.1)
k=—00

Remember, the sum of such an infinite series is actually the double limit of the partial sums,

Ck ezankt — lim Ck ethwkt
2 g

1 Before continuing, you may want to quickly skim through the review material on infinite series starting on page 41.
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Two questions immediately arise. The first is Does the above infinite series even make sense for
each possible value of t ? In other words, if ¢y is any given value of ¢, then can we be sure that
the series in formula (13.1) converges for ¢t = ¢ ; that is, can we be sure that

N .
lim Ck elZﬂwktO
M——o0
Nooo k=M

exists (as a finite number)? If so, then the Fourier series, F.S.[ f], is truly a function, and we
can ask our second (and more interesting) question: Are f and F.S.[f] the same function?
More precisely, is it true that

N
LA D e = f)
N—oo k=M

for all values of #p (or at least for all values of ¢y at which f is continuous)?
Both of these questions are addressed in the following theorem. Its proof is one of those
relegated to the next chapter (pages 177 to 183).

Theorem 13.1 (basic theorem on pointwise convergence)
Let f be a periodic, piecewise continuous function with

o0
FS[f]'t — Z Ch elZ?kat
k=—00
Assume further that f is piecewise smooth on an interval (a, D), and let ty be any point in that
interval. Then:

1. If f(¢) is continuous at t =ty , then F.S.[f]|,, converges and

> .
Z Ck ezZmukto — f(tO)
k=—00
2. If f(t) has ajump discontinuity at t = ty, then

N
lim Z cp 2Tt — ;[ lim f(z) + lim+ f(r)]
T

N—oo -
k=N ato r%to

Theorem 13.1 assures us that the complex exponential Fourier series for a periodic, piece-
wise continuous function does pretty well what we expected it to do, at least over intervals where
the function is continuous and piecewise smooth. At each point in such an interval the series
converges exactly to the value of the function at that point (so we say that the Fourier series
converges pointwise to the function over such intervals). Nor does this series behave that badly
at those points where f has jump discontinuities. At these points we at least have symmetric
convergence of the series to the average of the left- and right-hand limits of the function at that
point. Graphically, this is the midpoint of the jump.

Similar results can be derived for the trigonometric Fourier series of f,

o0
Ao + ) [ag cosQmaxt) + by sinraxt)] (13.2)
k=1

In particular, the next theorem is an immediate consequence of theorem 13.1 and the fact that

N

N
D ke = Ag + Y [ax cos(2maxt) + by sin(2mayt)]
k=N k=1

for every positive integer N (see the discussion of partial sums starting on page 148).
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Theorem 13.2 (pointwise convergence for trigonometric series)

Let f be a periodic, piecewise continuous function. Assume further that f is piecewise smooth
on an interval (a, b), and let ty be any point in that interval. Then the trigonometric Fourier
series for f,

o
Ao + Y [axcosmant) + by sinQmaxt)] (13.3)
k=1

converges fort = o . Moreover:

1. If f is continuous at ty, then

o0
Ao + Y [ax cosmaxto) + br sin@raxto)] = f(to)
k=1

2. If f isnot continuous at ty, then

Ao + Y lax cosQmaxto) + by sinQRrwxl)] = 2[ lim f(r)+ lim f(T):|

=1 Tty r—>t0

(A slight refinement of this theorem is given in exercise 13.7 at the end of this chapter.)

Pointwise Convergence and Fourier’s Conjecture

As long as f is a piecewise smooth, periodic function, theorems 13.1 and 13.2 assure us that
the trigonometric Fourier series and complex exponential Fourier series of f both converge at
each point where f is continuous. These theorems further assure us that, at each such point ¢,
the sums of both series equal the value f(¢). Consequently, we should view the function f,
its trigonometric Fourier series, and its complex exponential Fourier series as being the same
piecewise continuous function on the entire real line (see page 10), confirming Fourier’s bold
conjecture for the case where the function is piecewise smooth and periodic. This is an important
(and famous) observation, which we might as well state as a theorem.

Theorem 13.3 (on Fourier’s bold conjecture, version 1)

Let f be a periodic, piecewise smooth function on R, and let F.S.[f] be either the trigono-
metric or complex exponential Fourier series for f. Then F.S.[f] converges at every point
where f is continuous, and

f = F.S.[f]

as piecewise continuous functions.?

> Example 13.1 (the saw function):  Inexamples 9.1 and 12.1 we found that the saw function

t if 0<t<3
saws(t) =
fit—-3) in general
has trigonometric Fourier series
3 o 3 . (omk
S =) sin(Eh) (13.4)
k=1

2 That is, f@)=F.S.[f]l; atevery ¢t where f is continuous (see lemma 3.4 on page 21).
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and complex exponential Fourier series
3 — 3
2 + Z Z;k el 2mwrt (13.5)
k=—00
k#

where wy = /3. This function is certainly piecewise smooth on the entire real line and is
continuous at every t except where t is an integral multiple of 3. So, theorem 13.3 assures
us that these two series converge for every t not equal to an integral multiple of 3, and that,
as piecewise continuous functions,

SO

k=1

saws(t) =

N W
N W

00 ;
Z 127rwkt
e

In particular, since 5 is not an integral multiple of 3 and

saw3(5) = saw3(5 —3) = saw3z(2) = 2 ,
we have

3 = 3 . (2mk

B Z —sm(—~5> = sawz(5) =
and

3 i 3
>+ TS = saw3(5) =
2 o 2k

k0
On the other hand, saw3(¢) has a jump discontinuity at t = 0 and

1 . . 1 3
3 [tgrg_ saw3(t) + leIg+ SaW3(‘L')j| = 5[34—0] =3

According to theorem 13.2, the trigonometric Fourier series for saws(t) does converge at
t =0, and

\SNIRON)

o0
~ - E —sin(—O) = 1|:lim saw3(t) + lim saW3(r):| =
2 T—0— =0t

(which, in this case, is pretty obvious). We also know from theorem 13.1 that the complex
exponential Fourier series converges symmetrically at t = 0, and

N

3 . 3 oweo L[ . 3

~Z + lim — Y = — | lim saw3(t) + lim saws(r)| = =

2 N%ook;N 2k 2 | t—0- 3 t—0t 3(®) 2
k0

(which is also pretty obvious once you look a little more closely at these symmetric partial
sums). However, there is no assurance that the complex exponential Fourier series converges
in a more general sense at t = 0. In fact, plugging t = 0 into the complex exponential
Fourier series gives

3 > 3 3 3 3 w1

2 O Si2may0 2 - = ) -

2 + k_ZOOZTrke 2 + Z 27Tk 2 + 27 Z k
k#
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But

>
k=—00 k
k#0

is[the[two-side[llarmonic[dties[dhid[does[Hot[¢onverge[ih[the[thore[general[dense[(sec[dxample
4.2[¢n[page[47).

Clearly then, periodic functions that are piecewise smooth on the entire real line can be
considered as “reasonable” functions for Fourier analysis. As the next example illustrates, many
functions which are “nearly” piecewise smooth can also be represented by their Fourier series.

> Example 13.2:  Let
\/m if —-m<t<m
f@ = {

f(t—2m) in general

The graph of this function is sketched in figure 13.1. This is clearly an even, continuous,
periodic function with period 27 . Its trigonometric Fourier series and complex exponential
Fourier series are
o o
Ay + Zak cos(kt) and Z cx ekt (13.6)
k=1 k=—00
where

T 2
A0=CO=;/(; «/;dtz—ﬁ

3

The other coefficients are given by
2 (7 1 [7 ;
ay = —/ V't cos(kt) dt and cr = —/ Vie Ttk qr |
e 0 b/ 0

which we’ll not attempt to explicitly compute. At t = 0 (and, by periodicity, at t = n2x
for n = £1, £2, £3, .. .) the derivative of f blows up,

1
lim f'(t) = lim — = oo
t—0t f @) t—0t 2\/17

So this function is not piecewise smooth on any interval containing an integral multiple of
27 , and theorem 13.3 does not apply.

But look at what happens when t is not an integral multiple of 2m , say t = 2. On the
interval (1,3) this function is piecewise smooth (in fact, f(t) = «/t, which is uniformly
smoothon (1, 3) ). So, theorems 13.1 and 13.2 tell us that both of the series given in line (13.6)

Figure 13.1: Graph of the “periodic square root function” of example 13.2.
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converge for t = 2 and that

Ao + ) akcosk2) = f(2) = V2
k=1
and

Z cpe®? = fQ = V2

k=—o00

More generally, if ty is any point other than an integral multiple of 2w, and « is
the distance between ty and the closest integral multiple of 2m , then f will be piecewise
smooth on the interval (ty — %, ty + *»). Theorems 13.1 and 13.2 then assure us that the
two series given in line (13.6) converge for t = ty and equal f(tp). Since there are only
a finite number of integral multiples of 2w on any finite interval, we can view this f, its
trigonometric Fourier series, and its complex exponential Fourier series as all being the same
function, and we can write

f) = Ao + ) _aycos(kt) and  f(1) = Y ce™
k=—00

k=1

with the understanding that these equalities hold explicitly for all values of t other than
integral multiples of 27 .

Using the ideas illustrated in this last example, it is fairly easy to prove the following
generalization of theorem 13.3.

Theorem 13.4 (on Fourier’s bold conjecture, version 2)

Let f be a piecewise continuous, periodic function on R, and let F.S.[f] be either the
trigonometric or complex exponential Fourier series for f . Assume further that, on each finite
interval, f is smooth at all but a finite number (possibly zero) of points. Then, on each finite
interval, F.S.[f]|, convergesto f(¢) atall but a finite number of points, and so, f = F.S.[f]
as piecewise continuous functions on R.

For the rest of our discussion of classical Fourier series (part II of this text), we will usually
restrict ourselves to periodic functions that satisfy the conditions stated in theorem 13.3 or, at
worst, in theorem 13.4. By these theorems then, we know that the functions of interest to us
can be represented by both the trigonometric Fourier series and the complex exponential Fourier
series, and that these two representations are essentially the same. In view of this we will,
henceforth, treat the two series as simply being two different ways of describing the same series,
and we will use whichever version — trigonometric or complex exponential — seems most
convenient at the time.

The above restriction is not much of a restriction in most applications. To see this, just
try sketching the graph of a periodic, piecewise continuous function that does not satisfy the
smoothness conditions stated in theorem 13.4. It is possible to construct such a function. It is
even possible to show that, for some of these functions, the associated trigonometric Fourier
series diverges at certain points. Perhaps most surprising of all is the fact that even these strange
functions can, in a sense, still be represented by their Fourier series. We will discuss this further
in section 13.3 (and, in a more generalized setting, in chapter 36). And if you are interested in
seeing one of those functions whose trigonometric Fourier series diverges at certain points, take
a look at the first few chapters of Korner’s book on Fourier Analysis (reference [9]).
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13.2 Uniform and Nonuniform Approximations
The Error in a Partial Sum Approximation

Knowing that a given periodic function f can be represented by its Fourier series allows us, in
theory, to replace f with either its complex exponential or trigonometric Fourier series,

o0 o0
Z cp TRt or Ay + Z[ak cos(2mwyt) + by sinQrayt)]
k=—00 k=1

respectively. This can be a very powerful tool in certain applications.

On the other hand, adding up the infinitely many terms of a Fourier series is rarely practical
(even with the best computers), and so, in practice, we may have to approximate f(¢) using a
partial sum of its Fourier series,

N Ne N,
Z cp €7kt or Ao + Z ay cosQrwgt) + Z by, sin(2mw wyt)
k=M k=1 k=1

For these partial sums to be useful, the limits in these summations — N, M, N., and N
— must be chosen so that the error in using the partial sum in place of the original function is
tolerably small. Of course, the question is now

How do we determine these limits so that the resulting errors are as small as desired?

This is the question we now will address.

For convenience, we will concentrate on the error in using partial sums for complex ex-
ponential series. Corresponding results for trigonometric series can then be derived using the
relations between the two versions of Fourier series.

In what follows, f denotes some periodic function,

o0
F.S. [f]'t — Z Ck eiankt ,

k=—o00

and M and N are a pair of integers with M < N . Remember, the corresponding (M, N yth

partial sum is
N

F~S~MN [f]'t — Z Ck eiZmukt
k=M

Let Epn(¢) denote the magnitude of the error in using this partial sum in place of f(¢),

N
Eun() = |f(t)—F.S.MN [f]|t| = f(t) _ cheiZkat
k=M

Observe that Epn () varies as ¢ varies. If f is, say, piecewise smooth, then theorem 13.1
assures us that, for each individual t at which f is continuous,

lim Epyy(@) = 0
N—o00
M——oc0

Thus, if € > 0 is the maximum error we will tolerate and #( is a point at which f is continuous,
then there is an M, and an N, suchthat E sy (fo) < € wheneverboth M < M. and N > N¢.
This does not mean, however, that the error will be less than € at other points.

© 2001 by Chapman & Hall/CRC



160 Convergence and Fourier’s Conjecture

Ideally, of course, we would like to know both of the following:

1. There is a pair of integers M, and N, for each and every € > 0 suchthat Epn(t) < €
for every real value t whenever M < M, and N, < N .

2. How to determine that M, and N, for any given € > 0.

If the first of these two statements is true for every € > 0, then (and only then) we will say
that the F.S.pn [f]’s uniformly approximate f (or, equivalently, that F.S.[f] converges
uniformly to f). Thus, if f is uniformly approximated by the F.S.yn [f]’s, then, no matter
how small we choose ¢ > 0, we can always find a partial sum F.S.ysy [ f] which differs from
f by less than € at every point on the real line.

Note that saying “ F.S.[ f] uniformly convergesto f” is completely equivalent to saying
that there is a doubly indexed set of numbers, call them €,s5’s, such that

Eyn(@) < eyn forall ¢ in R
and satisfying

lim € MN = 0
i

Think of each €y as describing the largest possible error in using F.S.pn [ f]l; to compute
the value f(¢).> Where practical, we will confirm uniform convergence by constructing such a
set of epyn’s.

Finally, let me emphasize something implicit in our terminology. If the Fourier series for
a function converges uniformly to that function, then that series converges pointwise to that
function on the entire real line. That is,

N
lim Z cr €T = f(r) foreach ¢t in R
N—o0

M——co k=M
Moreover, by knowing that the convergence is uniform, we also know that the maximum error
in using

N
Z cp e TRt to compute f@
k=M

must decrease to zero as M and N approach —oo and oo, respectively. While this is certainly
the preferred situation, it is not, as we will soon see, always possible.

Continuity and Uniform Approximations

Notice that each partial sum,

N
FSMN [f]'t — ch elZﬂwkt ,
k=M

being a finite linear combination of continuous functions, must itself be a continuous function.
Because of this, it is easy to show that these partial sums cannot uniformly approximate f if f
is not a continuous function. In fact, if f has a jump discontinuity, then, for each partial sum
F.S.yn [f], there must be an interval (ay, by) on which the error E sy (¢) is nearly half the
magnitude of the jump or greater.

To see why, consider the problem of approximating a discontinuous function f with any
continuous function S, as illustrated (with real-valued functions) in figure 13.2. In the figure
you can see that, if #y is a point at which f has a discontinuity with jump jg, and if S closely

3 More precisely, each €psy is a computable upper bound on the largest possible error.
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3
T >

ty T

Figure 13.2: A continuous approximation S(¢) to a discontinuous function f(¢) having a
jump at fg .

approximates f on, say, the left side of the discontinuity, then S, being continuous, would
require a nontrivial interval on the right side of #p to move up (or down) by the amount which f
“jumped” Over that interval S would no longer be close to f . In particular, if S(¢) is within
I/, of f(t) for every t less than fy, then there must be a nonzero interval to the right of the
jump over which the values of S(¢) will not yet be within, say, 9/ of f(z).*

These observations lead to the following little lemma, whose complete proof will be left as
an exercise for those who need further convincing.

Lemma 13.5

Let f and S be two functions on the real line with f being piecewise continuous and S being
continuous. Assume f has a nontrivial discontinuity with a jump of jo at some point ty. Then
there is a nontrivial interval (a, b) such that

1. f is continuous over (a, b) , and

2. |f@)—=S®| > %|j0| forevery t in (a,b).

?» Exercise 13.1:  Rigorously prove lemma 13.5.

The case of greatest interest to us is where S = F.S.yn [f]. If f has a nontrivial
discontinuity with jump jop, then this little lemma tells us that, for any choice of M and N,
there is an interval over which Epn(f) > /4. Thus, the F.S.pn [f]’s do not uniformly
approximate f. Conversely, if the F.S.pn[f]’s do approximate f uniformly, then f must
be continuous on the entire real line (otherwise, according to the above, the F.S.pn [ f]’s could
not approximate f uniformly!).

These observations are important enough to formalize as a theorem.

Theorem 13.6

Let f beaperiodic, piecewise continuous function. Ifthe F.S.yy [ f]’s uniformly approximate
f, then f must be a continuous function on the entire real line. Conversely, if f is not a
continuous function on the entire real line, then the F.S.pn [ f]’s do not uniformly approximate
f . Moreover, if f has a jump of jy at ty, then, for each pair of integers M and N with
M < N, there is an interval containing to or with ty as an endpoint over which

[f@ = FSaun [f1l] > 5ol

4 There is nothing magic about Yy Any positive number below 175 can be used.
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Along these lines, here is part of a theorem regarding uniform convergence that will be
proven after we discuss Fourier series of derivatives (see theorem 15.6 on page 200). It confirms
that Fourier series of continuous, periodic functions can be expected to converge uniformly.

Theorem 13.7 (continuity and uniform convergence for exponential series)
Let f be a piecewise smooth and periodic function with period p. If f is also continuous,
then its Fourier series

o0

Z Cr ei 27wyt

k=—00

converges uniformly to f . Moreover, for any real value t and any pair of integers M and N
with M <0 <N,

<

[;+L}B
RV I

1 | ’ |2 1/2
B=_—|p f @ dt>
2w ( period

These theorems do not say F.S.[f] uniformly converges to f whenever f is simply a
continuous (but not piecewise smooth) periodic function. In fact, there are continuous periodic
functions that are not uniformly approximated by their Fourier partial sums.> Fortunately, such
functions are difficult to construct and do not commonly arise in applications.

The analogs to theorems 13.6 and 13.7 for trigonometric Fourier series are:

N
‘f(t) _ Z Ck elZ?Ta)kt
k=M

where

Theorem 13.8
Let f be a periodic, piecewise continuous function with trigonometric Fourier series

o0
Ao + Y _lag cosmaxt) + by sin2mwyt)]
k=1

If there is a finite integer N for each € > 0 such that

< €

N
'f(t) — Ay — Z[ak cos(2mwyt) + by sin(2mw wit)]
k=1

for every real value t and every integer N > N, then f is continuous on the entire real line.
Conversely, if f has a nonzero jump of jo at to, then, for any positive integer N , there is an
interval containing ty or with ty as an endpoint over which

N
‘f(t) — Ag — Z[ak cos(2r wyt) + by sin(2mw wyt)]
k=1

> Lol
4]0

Theorem 13.9 (continuity and uniform convergence for trigonometric series)
Let f be a continuous and piecewise smooth periodic function with period p . Then its trigono-
metric Fourier series

o0
Ay + Z[ak cos(2rwit) + by sin(2mw wgt)]
k=1

5 See chapter 18 of Koérner’s Fourier Analysis (reference [9]).
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converges uniformly to f . Moreover, for any real value of ¢t and any positive integer N ,

N

F@) = Ao = > lax cos(2mwyt) + by sin(2m wyt)]
k=1

1/2
1 ’
B = —(p/ |f<t>|2dt)
T period

?» Exercise 13.2:  Assume theorem 13.7 holds and prove theorem 13.9.

B
< —
VN

where

Approximations for Discontinuous Functions

Let us now consider a discontinuous, piecewise smooth, periodic function f. We now know
that, while f can be represented by its Fourier series, it cannot be uniformly approximated
by the partial sums of its Fourier series. Since such functions are often used in applications, it
seems prudent to further discuss the behavior of their partial sum approximations both in the
neighborhoods of the discontinuities and over intervals not containing discontinuities.

Behavior Near Discontinuities
Gibbs Phenomenon

If we look closely at the graph of a Fourier partial sum approximation to a discontinuous (but
piecewise smooth) function f, we see something strange occurring: Not only is the graph of
the partial sum approximation not uniformly close to the graph of f, it “oscillates wildly” about
the graph of f in the neighborhood of any discontinuity. Looking more closely, we can further
see that, on either side of the discontinuity, there is a “hump” in the graph of the partial sum
approximation that goes above or below the graph of f by roughly 9% of the magnitude of the
jump at the discontinuity. This phenomenon is known as Gibbs phenomenon or ringing.

The Gibbs phenomenon is particularly well illustrated in figure 13.3 by the graphs of the
square wave function

0 if —7m<t<0

f@ = 1 if 0<t<m
f(t—2m) in general

|
l
\J A VA

|
|

Figure 13.3: Gibbs phenomenon in the graphs of the (a) 10t and (b) 25th partial sum
approximation to the Fourier series for a square wave function (sketched faintly
in each).
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1A' v >
th—p ) h+p h+2p T

Figure 13.4: Graphs of a shifted and scaled saw function and a partial sum approximation to
its Fourier series.

and the corresponding partial sums F.S.1o[ f] and F.S.»5[ f]. Figure 13.3 also illustrates the
fact that,as N gets larger, the interval over which the Gibbs phenomenon is significant becomes
smaller. Still, the magnitude of the oscillations remains fairly constant.

A rather detailed analysis of Gibbs phenomenon can be carried out for the shifted and scaled
saw function
Jo J—O(t—to) if fp<t<to+p
ho(t) = = saw,(t —ty) = p

P ho(t — p) in general

where Jo, p, and fy are any constants with 7y real and p > 0. This function, along with an
N'™ symmetric partial sum of its Fourier series,

N
FS.ylholl, = Y e
k=—N

is sketched in figure 13.4. Note that 4 is continuous everywhere except at ¢ = ¢ty + Kp where
K is any integer, and that at these discontinuities the function has a jump of —Jj.

The details of the analysis of Gibbs phenomenon for this function (along with some ad-
ditional discussion of Gibbs phenomenon for this function) are given in the next chapter. It is
shown there (in proving lemma 14.8 on page 193) that the relative maximums and minimums
of F.S.y[holl; (i.e., the peaks and valleys of the wiggles in figure 13.4) occur at the points
to 4+ tn.m Where

% if m is even
INm = , (1373)
P if m is odd
2N +2
m = 0, £1, £2, +£3, ..., =My , (13.7b)
and
N-—-1 if N iseven
MN = (1370)
N if N is odd
Moreover, letting
_ 1 1 mr sin(t)d (13.7d)
Ym = 5 - 0 7 T, .

then, for each nonzero integer m ,

) —¥YmJo if m<O
lim [F.S.N[h0]|,0+,Nm - ho(to+t,v,m)] - , . (13.7¢)
N—>o0 ' YinJo if 0<m
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The largest of these y;,’s is y1, which is approximately 0.09. It is equation (13.7¢) that
tells us, when N is relatively large, that the “wiggle” in the graph of F.S.y[ho] closest to each
discontinuity will either overshoot or undershoot the graph of /¢ by roughly 9% of the height
of the jump of the discontinuity.

Similar behavior occurs with the corresponding partial sum approximations of any periodic,
piecewise smooth function. In fact, given the above and previous results discussed in this chapter,
it is surprisingly easy to prove the next theorem.

Theorem 13.10
Let f be a periodic, piecewise smooth function with period p and

&)
FS[f]'t — Z Ck ei27‘[a)kt

k=—oc0

If f hasajump of jo at ty, then

N . .
[ — if m<0
lim E o pi2man(totinm) flto+tvm | = Ym Jo .
Voo == Ym Jo if 0<m

where the ty »,’s and y,,’s are as defined in equations (13.7a) and (13.7d).

?» Exercise 13.3 (proof of theorem 13.10) a: Assume that f has only one discontinuity in
the interval 0 <t < p. Let ty be the point in that interval at which f is discontinuous,
Jo the corresponding jump in f, and hg the shifted and scaled saw function described
above. Show that g = f + hg is a continuous, piecewise smooth, periodic function.

b: Assume theorem 13.7 on page 162 holds as well as equation (13.7¢). Show that the claim
in theorem 13.10 holds for the case where f has only one discontinuity in the interval
0<t<plb

c: Now prove theorem 13.10.

Behavior Away from Discontinuities
Limited Uniform Approximation

While the partial Fourier sums cannot uniformly approximate discontinuous functions, you may
have noticed that the graphs of partial sum approximations do closely approximate the given
discontinuous functions over intervals away from any discontinuities (see, for example, figures
13.3 and 13.4). For the scaled and shifted saw function mentioned above,

ho(t) = %Osawp(t—to) s

this will be confirmed in the next chapter, where we will show (lemma 14.7 on page 193) that, if

o0
FS.Tholl, = ) cxe™

k=—o00

6 One should always be suspicious of those who use a theorem to derive a result before proving that theorem. There is
a distinct danger that they will later prove that theorem using the result derived assuming the theorem holds — thus
verifying only the vacuous claim that something is true if that “something” is true. Fortunately, the only result from
this chapter used in the proof of theorem 13.7 (what we are assuming) is theorem 13.1, the basic theorem on pointwise
convergence.
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and M and N are two integers with M < 0 < N, then

N
ho(t) — Z Ck ezZna)kt
k=M

1 1
= [1—2M+1+2N]B(D)

where D is the distance between ¢ and the point closest to ¢ at which /¢ is discontinuous, and

1

1 1

B(D) = ol | -~ 5+ ——F— (50)
TSI\ —
p

|
¥}

Note that, as ¢ approaches a point at which k¢ is discontinous, D — 0 and B(D) — oo.

The computations leading to the above results are, admittedly, somewhat tedious. That is
why they are in the next chapter and not here. But, as with Gibbs phenomenon, it is fairly easy
to take the results derived for the saw function and results discussed (but not yet proven) earlier
in this chapter (notably, theorem 13.7 on page 162) to derive a much more general theorem .

Theorem 13.11

Suppose f is a periodic, piecewise smooth function with period p, and t is any fixed real
value. Let K be the number of points in the half-closed interval [t — P/, t 4+ P/>) at which f is
discontinuous, and let t1, t5, . . ., tx be those points of discontinuity with j; denoting the jump
in f at ty . Then, for any pair of integers M and N with M <0 <N,

K
1 1 1 1
EMN(t) =< I:W_’_W]BO + [m+H—2N]I;BK(t)

2 \"2
1
By = — p/ dt
2 ( period
. 1 1 1
Bi(t) = |jil ;—*2"‘

and, for k=1,2,...,K,
T rrsin(% 13 —tkl)

where

K
o+ =3
P4

?» Exercise 13.4:  Prove theorem 13.11 assuming theorem 13.7 holds. (Hint: See exercise
13.3 on page 165.)

2> Exercise 13.5:  In the following, let

[e e
F.S.[saw1]];, = Z cy €Tkt

k=—00
a: Verity that
i .
o if k#0
ck = .
= if k=0
2

b: Use the error estimate in theorem 13.11 to show that, if N is any positive integer and
Iy <t <3, then
2
142N

<

N
sawq(t) — Z cp €Tk
k=N
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c¢: What should N be to ensure that

N
Z cx €77 approximates  sawy (f)
k=—N

with an error of less than Y199 on the interval (1/4, 3/4) ?

13.3 Convergence in Norm"

Let f be a periodic, piecewise continuous function with period p and Fourier series

o0
FS[fll, = ) ee™

k=—o00

We will say this Fourier series converges in norm (or converges in energy) to f if and only if

N
. 127 it _
Jim Hf(t) - che A= . (13.8)
M——o0 k=M
This last equation, of course, can be written as
lim [Eyy®)] = 0 (13.9)
N—o0

M——0

where E )y is the corresponding error,

N
Eun(t) = f() — Y cpe™™*
k=M

Recalling the definition of the norm, we can see that equations (13.8) and (13.8) are completely
equivalent to

N 2
lim ) — cheﬂ”wkf dt = 0 (13.10)
]\/][V:—ogo period k=M
and to
lim / [Eyn@®)? dt = 0 . (13.11)
]\fIV—_:—oo period

In words, these equations are saying:

The average value of the square of the error in replacing f(¢) by

N .
Z Cr é 27 wit
k=M

approaches 0 as M and N approach —oo and oo, respectively.

* This continues the discussion on norms begun in chapter 11. It may be a good idea to quickly review that material.
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It should now be apparent as to why convergence in the norm is often referred to as mean-squared
convergence.

Let’s consider the particular case where f is continuous and piecewise smooth, as well as
periodic. Theorem 13.7 tells us (or will tell us once we prove it) that there is a finite value B
such that

1 1
Eyn ()] < [W + W]B

for every real value ¢ and all integers M and N with M <0 < N . Thus,

2
1 1
lim / [Eyny O dt < lim [——F—}B dt
Ay—?—ogo period 1\/11\[:380 period | LV [M] VN
2
1 1
= i ——+—|B =0 ,
N H:«/|M| + W] p

M——oc0

proving the following lemma.

Lemma 13.12
The (complex exponential) Fourier series for a continuous, piecewise smooth, periodic function
converges in norm to that function.

That we can show convergence in the norm when we already have uniform convergence
should not surprise you. You may even suspect that the results discussed above concerning
Gibbs phenomenon and “almost uniform convergence” can be used to show that the statement of
lemma 13.12 remains true if the word “continuous” is removed. You would be correct. In fact,
we can go even further and show that the Fourier series of any piecewise continuous, periodic
function converges in norm to that function, even when that function is not piecewise smooth.

To see how we might prove the more general claim, go back to the “norm of the error”
equation in lemma 11.3 on page 138. In this situation, with M and N being any two integers
satisfying M < N , that equation becomes

N
Hf(t) o Z Ck eiZJkat
k=M

2

N
— ||f||2 _ Z |Ck|2 || ei27'ra)kt||2
k=M

N
1P = p D lel® (13.12)
k=M

Thus, the Fourier series of f converges in norm to f,

N 2
li _ i27 wit —
Jm |0 = Y ac 0.
M——o0 k=M
if and only if
v -
i 2 2|
Jim [Ilfll P Y lel 0
M——o0 k=M -
But

N e’}
lim | fI? — leel?| = IFI7 — |ck|?
[ F-r2, w=r2

M——c0
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Combining the last two statements gives us the following lemma.

Lemma 13.13
Let f be a periodic, piecewise continuous function with

o
FS[f“t — Z Ckeiankt
k=—00

Then the Fourier series for f converges in norm to f if and only if
o0
p Y lal* = IfI1* . (13.13)
k=—00

Equation (13.13) is known as Bessel’s equality (for Fourier series).” To show that this
equality holds under very general circumstances, it helps to first show that “Parseval’s equality’,
described below, holds under very general circumstances.

Lemma 13.14 (Parseval’s equality)
Let f and g be two piecewise continuous, periodic functions with the same period p and with
Fourier series

o o0
FS.[fll, = > fid™  and  FS.[gll, = Y g™
k=—00

k=—00

Assume, in addition, that g is continuous and piecewise smooth. Then

(0.¢]
1. Z fkgi converges absolutely, and

k=—00
2. (flg)=1p ). he
k=—0o0

The last equality is known as Parseval’s equality (for Fourier series).

PROOF: From Bessel’s inequality (see exercise 12.4 on page 150) we already know that

= 1 = 1
DoIAP = U and Tl < el
k=—00

k=—00

This and the Schwarz inequality for summations (theorem 4.8 on page 45) give us

> sl D I fellgd
k=—00

k=—o0

/2

o 1/2 o 1
(Z |fk|2) (Z |gk|2) < lfiiigl
k=—00 k=—o0

which verifies the absolute convergence claimed in the lemma.

IA

7 Do not call it Bessel’s equation; that is something quite different.
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Now, for each pair of integers M and N with M <0 < N, let

N
Eun(t) = g(t) — Y gre™™
k=M

From lemma 13.12 we know that ||[Eyn]|| — 0 as (M, N) — (—o00, o0). From that and the
Schwarz inequality for inner products (theorem 11.2 on page 135) we have

Nli_r)noo I f1Emn )| < Nh_r)noo IFIIEMnI = 0 . (13.14)
M——o0 M——o0
But
N *
(f1Eun) = / ) (g(r) - nge‘z”“”") dt
period k=M
N .
= f g wde — Y g f f@)e e de
period k=M period
N
=(flg) - 8k pfi
k=M
Thus,
N
(flg) = (fI1Eun)+ pY. frgh
k=M
and, using equation (13.14),
N 00
(flg) = lim [<f|EMN> +pikg;:} =0+p Yy figr - |
M:))_ogo k=M k=—00

Using tools that we will develop independently for Fourier transforms, we will be able to
show that the additional assumptions made on g in the above lemma are totally unnecessary.
That will give us the following theorem (proven in a set of exercises in section 26.5).

Theorem 13.15 (Parseval’s equality)
Let f and g be two piecewise continuous, periodic functions with the same period p, and let

o o0
FS.[fll, = Y fid?™* and  FS.[gll, = Y ge®™
k=—o00 k=—00

Then

o0
1. Z fxg; converges absolutely, and

k=—00
2 (flg)=1p ) he
k=—00

Letting g = f gives us Bessel’s equality.
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Corollary 13.16 (Bessel’s equality)
Let f be a piecewise continuous, periodic function with Fourier series

o0
FS[f]'t — Z ckeiankt

k=—o00

o0
2
p Y. lal
k=—00

As an immediate corollary to this and lemma 13.13, we have the following major theorem
for Fourier analysis.

Then

Il £1I?

Theorem 13.17 (norm convergence)
The (complex exponential) Fourier series for a piecewise continuous, periodic function converges
in norm to that function.

13.4 The Sine and Cosine Series

After making the obvious modifications, we can apply all the results discussed thus far in this
chapter to the various “Fourier series” discussed in chapter 10 for functions just defined on finite
intervals. Consider, for example, a function f on a finite interval (0, L) and its Fourier sine
series

F.S.S.[f]l, = Zbk sm(—t) (13.15)
(see section 10.2 starting on page 123). Remember, this series is the trigonometric Fourier series
of the odd periodic extension of f,
f@) if O0<t<L
) =1 —f(=b if —L <t<0
]";(t —2L) in general

Assuming f is piecewise smooth on (0, L) and continuous at a point #o in (0, L), then it
certainly follows that f, is piecewise smooth on the entire real line and is continuous at #. The
basic theorem on pointwise convergence for trigonometric series, theorem 13.2 on page 155, then
assures us that trigonometric Fourier series for fo — which is the series given in line (13.15)
— converges and equals fo(to) Thus, by the definition of fg s

f() = ﬁ(to) = Zbksin(kL—nto)
k=1

Continuing along these lines, we can easily obtain the next theorem.

Theorem 13.18 (pointwise convergence of sine series)
Let f be a piecewise smooth function on a finite interval (0, L) . Then the sine series of f on

©, L)
> busin(21)
k=1 L
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172 Convergence and Fourier’s Conjecture

converges for each t in (0, L). Moreover:

1. Ifty isapointin (0,L) at which f is continuous, then

i by Sin(kL—nto) = f(to)
k=1

2. If ty is apoint in (0, L) at which f is not continuous, then

Zbksin(%”to) - %[ lim f(6) + lim f(t):|
=1 t—1]

t—1,

The analogous theorem for the cosine series, below, is just as easily verified.

Theorem 13.19 (pointwise convergence of cosine series)
Let f be a piecewise smooth function on a finite interval (0, L) . Then the cosine series of f

on (0,L)
= km
Ao + Zak cos(Tt)
k=1

converges for each t in (0, L). Moreover:

1. Ifty isapointin (0,L) at which f is continuous, then
(0.¢]
Ao + Zakcos(kL—nto) = f(tp)
k=1
2. If ty is apoint in (0, L) at which f is not continuous, then

Ag + Zak cos(kL—nto) = ;I:tl—lf%r f@ + lim f(f)]

k=1 t—>t0

In a similar fashion we can obtain analogs to the other results discussed in this chapter for
the various “Fourier series” of functions on a finite interval. Two that will be of some interest, the
sine and cosine series versions of theorem 13.9 on page 162, will be described later in chapter 15
(see page 209). One other of interest is stated below. It follows from the results concerning norm
convergence and Bessel’s equality (corollary 13.16 and theorem 13.17 in the previous section).
I’ll leave the details of its verification to you.

Theorem 13.20 (Bessel’s equality for sine and cosine series)
Let f be a piecewise continuous function on a finite interval (0, L) with sine and cosine series

o0 o0
. [(km km
Zbk sm(Tt) and Ag + Zak cos(Tt) ,
k=1 k=1
respectively. Then each of these series converges in norm to f . Moreover

o0 o0
1 1
IFI? = SLY 16l = L1Ao® + 3L ) lakl?
k=1 k=1
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Additional Exercises

13.6. Consider the Fourier series for each of the functions below at each the following points:
t=0 , t=Y% , t=1, t=2 and t="%
In each case:

1. Ifthe function is continuous at the given point, find the value of its Fourier series
at that point.

2. Ifthe function is not continuous at the given point, find the value of its trigono-
metric Fourier series at that point. (Equivalently, find the value to which its
complex exponential Fourier series symmetrically converges.)

Use the results from this chapter! Do not attempt to actually “add up” the infinite series!

0 if —1<t<0
f@) = 1 if 0<t<l1
fit—2) in general

®

e if 0<t<l1

b. g(t) = ,

gt —1) in general
c. The even sawtooth function sketched in figure 13.5
d. |sin(2mt)|
+1 if 0<|t]<1
e. h(t) = -1 if 1<t <2
f@t—4) in general

t? if —-1<t<l1
f. k) =
ft—-2) in general
0 if —1<t<0
g 1@t = 2 if 0<t<1

f(it—=2) in general

Y

-2 2 4 T

Figure 13.5: Two and one half periods of the even saw function for exercise 13.6 c.
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174 Convergence and Fourier’s Conjecture

13.7. Let f be a periodic, piecewise smooth function with trigonometric Fourier series

o
Ay + Z [ak cosCmwit) + by sin(2m wyt)]
k=1

Assume further that f is piecewise smooth on an interval (a, b), and let ty be any
point in (a, b) . Using either of the theorems on pointwise convergence (theorem 13.1
or 13.2) verify that

o0 o0
ay cos(2m wyt) and by sin(2m wyt)
k=1 k=1

both converge, and that

o0 o0 oo
[ak cosRmrwit) + by sin2rwit)] = Z ap cosLrwyt) + Z by sin(2mw wyt)
k=1 k=1 k=1

(You might start by considering the functions

o) = SUF@+ f(=01  and o) = S1f@©) = f(=0)]
and their Fourier series.)

13.8. For each function listed in exercise 13.6, decide whether the corresponding Fourier
series does or does not converge uniformly to the function.

13.9. In exercises 9.8 and 9.9 you generated the graphs of several partial sums of the trigono-
metric Fourier series for various functions. Re-examine those graphs and do the fol-
lowing:

1. Visually identify those functions whose partial sums are uniformly converging
to the function.

2. Identify graphs exhibiting the Gibbs phenomenon. In particular, locate the
“over- and undershoots” closest to the discontinuities.

13.10. Let f be a periodic and piecewise continuous function with period p and

o8
FS[f]'t — Z Ck ei27lwkt

k=—o00

The mean error in using the (M, N)™ partial sum is

N
L[ Ewn@lde where  Eny0) = f@) = 3 ceo
P Jperiod k=M

a. Verify that / |[Eqny @) dt = (|Eynl|1).
period
b. Assume the theorem on norm convergence, theorem 13.17, holds. Use that theorem,
the Schwarz inequality for inner products, and the result from the previous part of
this exercise to verify that the mean error in using the (M, N) partial sum goes to
zeroas M and N approach —oo and oo, respectively.
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13.11. For this problem, if 0 <t < 2, then f(t) =t. Otherwise, f(t) is not defined.
a. Consider the sine series for f over (0, 2).
i. To what values does this sine series converge when t = 0 and when t =2 7?
ii. Does this sine series converge pointwise to f(¢t) when 0 <t <27?
iii. Does this sine series converge uniformly to f over the interval (0, 2) ?
b. Consider the cosine series for f over (0, 2).
i. To what values does this cosine series converge when t =0 and when t =27
ii. Does this cosine series converge pointwise to f(¢t) when 0 <t <27
iii. Does this cosine series converge uniformly to f over the interval (0, 2) ?
13.12. Repeat problem 13.11, above, using the function f(t) =t(2—1t) if 0 <t < 2 (and
undefined otherwise).
13.13. Using results discussed in this chapter for periodic functions:
a. Finish proving theorem 13.18 on page 171.
b. Prove theorem 13.20 on page 172.

13.14. Let f(t) be a piecewise smooth function on a finite interval (0, L) .

a. When will we have Gibbs phenomenon occurring at t = 0 in the partial sums for the
sine series of f ?

b. When will we have Gibbs phenomenon occurring at t = 0 in the partial sums for the
cosine series of f ?

13.15. In problem 12.5 on page 151 you derived (somewhat naively) that, if f and g are
piecewise continuous, periodic functions with period p , and

© o
FS.[fl, = Z i el 2Txt and F.S.[g]l, = Z g 2Tt

k=—o00 k=—o0

then
o0

F.S.[fglly = Y cxe?™ (13.16a)

k=—00

where, for each integer k

o0
k=Y fuBkn - (13.16b)
N=—00

a. Rigorously prove that equation set (13.16) holds assuming that f is continuous and
piecewise smooth.

b. Use theorem 13.17 on norm convergence to show that equation set (13.16) holds even
when f is not continuous and piecewise smooth.
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Convergence and Fourier’s Conjecture:
The Proofs

As promised, here we will go into the details of verifying the basic theorem on pointwise
convergence. In addition, as also promised, we will carefully examine the behavior of the partial
sums of the Fourier series of certain saw functions both on intervals away from the discontinuities
(to verify “nearly uniform convergence”) and on intervals containing points of discontinuity (to
study Gibbs phenomenon).

14.1 Basic Theorem on Pointwise Convergence

Our first big goal is to prove the following theorem (which is the same as theorem 13.1 on
page 13.1).

Theorem 14.1 (basic theorem on pointwise convergence)
Let f be a periodic, piecewise continuous function with

&
FS[f]l[ — Z Ckeiankt
k=—o0

Assume, further, that f is piecewise smooth on an interval («, ), and let ty be any point in
that interval. Then:

1. If f(¢) is continuous at t = tq, then

N
lim ch 2T — £ (1)

N—o0
M——oc0 k=M

2. If f(t) has ajump discontinuity at t = ty, then

N
lim cp 2T = %[ lim f(r) + lim f(r)]
—-N

N—o00
k= T—>1, T,

Some of the lemmas that we will develop to help prove this theorem will also be used later
to more closely examine the convergence of the Fourier series for a simple saw function.

177
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178 Convergence Theorems

Preliminary Lemmas

A number of “little facts” will be needed. To avoid having to stop in the middle of the main
proof to develop them, we will describe these little facts in the following sequence of lemmas
and corollaries.

The first is based on the partial sum formula for the geometric series (equation (4.11) on
page 43),

N M _ yN+1
doxt = % (14.1)
k=M -

where M and N are any two integers with M < N and X is any complex number other than
1 or 0 . Do observe, however, that since the left-hand side is continuous at X = 1, the apparent
discontinuity at X = 1 on the right-hand side of equation (14.1) is clearly trivial.

Replacing X with e™/7* in equation (14.1) yields the following lemma.

Lemma 14.2
If y is any nonzero number, and M and N are any two integers with M < N , then
N —iMyx _ o—i(N+1yx
Y et = € - (14.2)
1—e—ivx
k=M

whenever yx is not an integral multiple of 2w .

Again, because the left-hand side of equation (14.2) is clearly continuous, any apparent
discontinuity in the right-hand side when yx is any integral multiple of 27 is trivial.

?» Exercise 14.1: Let N be a positive integer and y and « real values. Derive the following
sequence of formulas:

N ) sin(y[N + 3]s

> et = —( v+ 1) , (14.3a)

— sin(%yt)
N . .

cosQakt) = Sn2N ’;?"‘(t)t)_ sinf@) (14.3b)
= in (o
and

N
3 sinQak) = 2 _z:?ls(gzz)N + Lat) (14.3¢)
k=1

(Start by letting M = —N in equation (14.2) and then multiplying both the numerator and
denominator by exp(i%1).)

The claims in the next lemma are easily verified by simply evaluating the indicated integrals
term by term.

Lemma 14.3
Let p> 0,andlet M and N be integers with M < 0 < N . Then, letting y = 27T/p,

N
[ 3 ere] ar =
=7p
—Ph k=M
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and

[NpXl GRS XS CRS
&YXl dx = f &Yl dxy = £
=Pl | k=—N 0 Lk=—nN 2

?» Exercise 14.2: Prove lemma 14.3.

The next lemma is yet another version of the Riemann—Lebesgue lemma. This particular
version is a simple corollary of the more general version on page 140.

Lemma 14.4 (Riemann—Lebesgue lemma)
Let p > 0, and assume g is a piecewise continuous function on the interval (—?/2, P1) . Then,

letting y = 27T/P,
Py

lim gx)e Kr¥ax = 0
K—=+o00 —p/
Kez

The Dirichlet Kernel

Let p > 0,andlet M and N be any two integers with M < N . The corresponding Dirichlet
kernel is the function Dy x given by

N
1 —i2T wgx
Dynkx) = = e Tk 14.4
pkgM (14.4)

where, as usual, wy = ky p. Letting y = 2/ v, the above can be rewritten as

N
1 )
Dyykx) = — ) et
Ly

From lemma 14.2 we know that

e~ iMyx _ ,—i(N+1)yx e ZTwMX _ o—i2TWN 41X
Dy nix) = » [1 — e—iyx] = ; [1 — e—i27rw1x] S (14.5)
and from lemma 14.3 it follows that, provided M <0 < N,
P/Z
Dyn)dx = 1 (14.6)
and
0 Pl 1
D_N,N(x) dx = / D_N,N(x) dx = - . (14.7)
A 0 2

Our interest in the Dirichlet kernel comes from the fact that, if f is any periodic, piecewise
continuous function with

o0
FS[f:H; — Z CkeiZJ‘[wkt ,

k=—o00

then each partial sum of this series can be expressed as an integral of a translation of f multiplied
by the corresponding Dirichlet kernel. To see this, first observe that, for any integer k and real
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value fg,
) to+P/ ) )
Ck elZ?Ta)kt() — <l\/ f(r)e—ZZHwk‘L' dT> elZn’a)kto
P Jy—rp
10+Ph . Ph i
— l/ f(t)efﬂnw/{(rfto) dt = l f(t0+x)6712nw/<x dx
P Jiy—rh P Jpj
So,
N N Ph
. 1 _:
Z Ck ezankto — Z 2 f(tO +Xx)e 127 wgx dx
=M i=m P J=rn
Ph N '
= / =Y fltg +x)e TR dx
-/ p =M
Py . N .
= Fo+x) (= > e | dx
-/ P =M
In other words,
N _ Ph
Z cp &k — / f(to+x)Dy.y(x)dx . (14.8)
k=M =Pl

The next two lemmas will help reduce the analysis of the pointwise convergence of a Fourier
series to a corresponding analysis of a particular integral.

Lemma 14.5
Let f be a periodic, piecewise continuous function with

o0
FS[f]'t — Z ckeiZn’wkt

k=—o00

Let tg be any point on the real line at which f(¢) is continuous. Then for any pair of integers
M and N with M <0 < N,

N _ P
> aein — [ (g4 - flDux e dr + ()
k=M

.

Lemma 14.6
Let f be a periodic, piecewise continuous function with

o0
FS[f]'[ — Z ckeiZn’wkt

k=—00

Let ty be any point on the real line and let f,” and fO+ be the values
fo = lim f(o+x) and fof = lim f(to+x)
x—0~ x—0t

Then, for any positive integer N ,

N .
Z Ck etZﬂwkto — /
k=—N

P/y
0+ = oDy dx + 5[f5 + ']
2
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here (see figure 14.1
v ¢ &l ) y=fo+x)_Y

fo if x<0

fox) =
f0+ if x>0
y = fox)
| >
The proofs of these two lemmas are X
similar and will be combined. Figure 14.1: f and fp.

PROOF (of lemmas 14.5 and 14.6):  Let f0+ , fo and fo(x) be as in lemma 14.6. Then

p/z p/z
) flto+x)Dy n(x)dx = /p/ [fto+x) — fox) + fo(x)]1Dy N (x)dx
- -2

p/z
/ LF (o + %) — foGO)1Dar.y (x) dx
T (14.9)

1703

+ fo(x)Duy v (x) dx
—ph

If f is continuous at ¢, then f,” = f (&) = f0+ and fo(x) = f(t) forall x . With this
and equality (14.6), equation (14.9) becomes

Pl Pl
f(to +x)Dyyy (x) dx = / [F(to+ %) — f(t0)1Dar.y (x) dx
—Ph )

+ f() Dy n(x)dx
—ph

P/2
= [0 - faDuaerdr + @
-/
This proves lemma 14.5.

Whether or not f is continuous at #y, if M = —N, then, by the definition of fp(x) and
equality (14.6), equation (14.9) simplifies as follows:

P/2 P/2
flo+x)D_nynEx)dx = / [fto+x)— fox)]D_nN N(x)dx
~Ph Pl

0 Ph
+ f fyD_nN@x)dx + o D_n N (x)dx
,p/z 0

p/Z
- f [F(to+ %) — fox)1D—y.y(x)dx

—/y

+ 5l + ] |
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Proof of the Main Theorem

Let f and fp be as in the main theorem (theorem 14.1 on page 177). Thatis, f is a periodic,
piecewise continuous function on R thatis piecewise smooth on some interval («, 8) containing
the point # . For convenience, let us use the notation introduced in lemma 14.6,

fy = lim f(o+x) ., ff = lim f(n+x)
x—=0~ x—0t
and
fo if x<0

fox) =
’ fof if x>0

(Again, note that f;", f0+ and fo(x) all reduce to f(tp) if f is continuous at #y.) Let M
and N be integers with M < 0 < N, Dy y the corresponding Dirichlet’s kernel for f, and

o0
FS.[fll = ) ce™™

k=—o00

Lemma 14.5 assures us that, if f is continuous at ¢, then

N . P
3 o ef2monn — / [f(to +2) — fo) 1Dy, v @) dx + f(tg) (14.10)
k=M —Ph

and lemma 14.6 assures us that, whether or not f is continuous at fg,

N .
Z cketha)kto :/
k=—N

125
@0+ = foGeD-y.y () dx + Wfe+ 151 s
2

Comparing these equations to the claims in theorem 14.1, we find that the proof of theorem 14.1
will be complete once we have shown that

P/y
lim [fto+x)— fo)IDyn(x)dx =0 . (14.12)

N—o00 _
M——00 P

We can quickly simplify our problem. First, observe that, using equation (14.5),

p/2
/ [F(to+ %) — o) Das.n () dx

_p/2

17/2 e
f LF (o +3) — foo)] [

—iMyx _ ,—i(N+Dyx
X
—p)

p [1 — e*"Vx]

G iM 1 [ i (N+1
f'/ gx)e M dx — ;/ g(x)e FNFDYx gy

p _p/z —P/z
where £ Y~ fo)
_ 2m _ tho+x)— folx
Yy = 3 and gx) = B R

Thus, to show equation (14.12) holds, it will suffice to show that

Ph .
lim / gx)e K gy = 0
K—+o0 -/

© 2001 by Chapman & Hall/CRC



Basic Theorem on Pointwise Convergence 183

But this last equality follows immediately from the Riemann—Lebesgue lemma (lemma 14.4)
provided g is piecewise continuous on (—72/, /).
So all that we now need to show is that

fto+x) — folx)

1 —eirx

gx) =

is piecewise continuous on (—%/2, P/) .
Since the denominator just above,

_ 2 )
1—e 'V = 1—cos(—nx)—zsm(—ﬂx) ,
p p

is nonzero and continuous at every x with —P <x < 0 or 0 < x < P/, it should be clear
that
lim g(x) and lim g(x)

x— =P/t x—P~

exist and are finite, and that the only discontinuities in g(x) can be either at x = 0 or at one
of the finite number of points at which f(#p 4+ x) has a jump discontinuity. Further, except
possibly at x = 0, the resulting discontinuities in g must clearly be jump discontinuities.

All that remains to verifying the piecewise continuity of g on (—%/, /2) is showing that
the possible discontinuity at x = 0 is no worse than a jump discontinuity. In other words, we
merely need to verify that the left- and right-hand limits of g exist as finite numbers.

Naively taking the right-hand limit gives

_ +_ e+
lim g(x) = lim fo+x) f() _ fo fo
x—>0t

x>0t l—e-ivx T 10 7

which is indeterminate. Fortunately, because f is piecewise smooth on an interval containing
to , I’Hopital’s rule can be applied. Doing so,

to+x) — fo
lim g(x) = lim S+~ fy
x—0F x—0t 1—e™t¥>

. 4(fto+x)— f3f]
x—0F j—x[l — e ivx]

/
= tim 290D L op g +x)

x—0t i)/e_i)’x a iy x—0t

Likewise,

. 1 ..

lim g(x) = — lim f'(¢p +x)

x—>0~" ly x—0—
Since f(t) is piecewise smooth on an interval about g, the left- and right-hand limits of f’(¢)
at t = fo exist as finite numbers. Hence, by the above, so do the left- and right-hand limits of
gx) atx =0.
And that completes our proof of theorem 14.1. |
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14.2 Convergence for a Particular Saw Function

Let us examine the error in using the partial sum approximation for a particular discontinuous
function, namely,
1 L if O<t<m
h(t) = —sawr(t) = T . (14.13)
T .
h(t —m) in general

(There are two reasons to choose this function: First, the convergence of its Fourier series is
relatively easy to analyze. Second, the results of this analysis can be applied to describing the
errors arising when more general functions are approximated by corresponding partial sums.)

The function /&, sketched in figure 14.2, is clearly piecewise smooth and periodic with
period 7. It is continuous everywhere except at integral multiples of 7 where it has a jump
of —1. Its complex exponential and trigonometric Fourier series are easily computed, and are,
respectively,

Z cp TRt and -+ Zbk sin(27 wit)
2
k=—00 k=1
where
i .
sk L k#EO 1 k
Ccp = ) s by = T and wp = —
5 if k=0 T T

There are two parts to this study. The first is to show that, while the partial sums cannot
uniformly approximate s over the entire real line, they do uniformly approximate # over
certain intervals not containing points at which / is discontinuous. The second part is to closely
examine the Gibbs phenomenon around the discontinuities. In both parts we will need to derive,
as accurately as practical, a usable formula for the error in using the (M, N)™ partial Fourier
sum for &,

N
Eyn(@) = ‘h(t) DI T (14.14)
k=M

where M and N are any two integers with M < 0 < N and ¢ is a point on the real line
other than an integral multiple of 7 . We will then use the derived formula to see how this error
dependson M, N ,and ¢.

el |

b4 Z;Tv T

\ 4

Figure 14.2: Graph of / superimposed on a partial sum for its Fourier series.
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Limited Uniform Approximation

Let M and N be any two integers with M < 0 < N ;let ¢ be any point on the real line other
than an integral multiple of 7 , and let E sy (¢) be as above. From lemma 14.5 it easily follows
that

7/
Eyn() = ' / T+~ HOID v ) d
77[2

where D,y is the corresponding Dirichlet kernel. By formula (14.5) and the fact that wy = ¥/z,
this is the same as

T/ e
Eun@) = ‘/ / (At +x) —h(t)][
_7'[2

—i2Mx _ ,—i2(N+1)x
- dx
T [1 — e—sz]

IA

Mm@l + [In+1(0)] (14.15)

where, for any integer K,

"2t x) —h()
‘1 t — — 7 7 —ZZKXd
K@) /_% A K

To further simplify our computations, let us observe that

h(t +x) —h(t) er h(t+x)—h(t)

b4 [1 - e_izx] eix 127 sin(x)
Thus,
T/
1) = 1 [ ht4x)—h@) S 1-2K)x g

i2m A sin(x)

(14.16)

Some of the details in the following computations will depend on the interval in which ¢
lies. We will first assume

0 <t < (14.17)

(SR

With these assumptions on ¢ you can easily verify that

1 1 if “Th<x<-—t

0 if —t<x<7h
and that formula (14.16) for {x can be rewritten as the sum of two relatively simple integrals,
—t

Ig() = - " x ey, + = b a-20r 4y (14.18)
i2m? _ny, Sin(x) 2 J s, sin(x) ' ’

Though “relatively simple’; these are still not integrals we can easily evaluate. Observe,
however, that each is of the form

b
/ u(x)el(lfzK)X d.x
a

So if u is a uniformly smooth function on (a, b), then the integration by parts formula can be
used in the following “clever” way:

b
i(1-2K)x

u(x)e

b
/ u(x)ei(l—ZK)x d.x

a

. b
. i u/(x)el(l—ZK)x dx
a 1-2K J,

1-2K
1 . b
( u(x)el(l—zK)x

b
+/ |u’(x)|dx) . (14.19)

|
)
Lal
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From this, it should be easy to derive an upper bound on the integral which goes to zero as
K — +o00.
For the first integral on the right-hand side of equation (14.18) we have

Clearly, this function is continuous and has a continuous derivative everywhere the sine function
is nonzero. For —7/, < x < 7/, the sine function vanishes only at x = 0. However, using
I’Hoépital’s rule,

. . X . 1
Iim u(x) = lim — = lim =
x—0+ x—0% sin(x) x—0% cos(x)
and
lim '(x) = lim sin(x) — x cos(x) — im —Xx cos(x) — 0
x—0% x—0% sinz(x) x—0%t 2c0s(x)

So, for this choice of u, any discontinuity in u or u’ at 0 is removable. Thus, u is uniformly
smooth on (—7/,”/), and the computations indicated in (14.19) are valid when (a,b) =
(="h, ™). Since

b

u(x)el (12K b — X 12K — T2K-1 L T2K Kty
a sin(x) _yy 2 2 >
inequality (14.19) becomes
T/ ) T/
V Y GUR2K0x gl < ! (71 + / |u' ()| dx) ) (14.20)
_n/z sm(x) |1 — 2K| _71/2

After a few observations we will be able to explicitly evaluate the above integral of ‘u’ (x)| .
The first observation is that, for 0 < x < 7/,

d . .
Tn [sin(x) — x cos(x)] = xsin(x) > 0

This tells us that sin(x) —x cos(x) is an increasing function on (0, 7/2) . Thus, for 0 < x < 7/,
sin(x) —x cos(x) > sin(0) —0cos(0) = 0 ,

which, in turn, assures us that, for 0 < x < 7/,

, _ sin(x) — x cos(x)
wix) = sinz(x)

In other words, u’ = |u/ | on (0, *4) . Also, observe that ‘u’ ‘ is an even function,

sin(—x) — (—x) cos(—x)

W'(—0)| = = |u'()|

. ‘_ sin(x) — x cos(x)

sinz(—x) sinz(x)

So

T/y 1) o4 X
/ |u'(x)| dx = 2/ u'(x)dx = 2/ —|: - :| dx
_) 0 o dx | sin(x)

Plugging this into inequality (14.20) gives

-2(-1)

L
P x ook | o =2 (14.21)
_njy SinGo) = 1-2K]
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A useful bound for the other integral on the right-hand side of formula (14.18) is more
easily derived. This derivation starts with the observation that 0 is not in (—"/, —t) (because
we are assuming ¢ > 0). So there should be no question that inequality (14.19) holds when

1
sin(x)

ulx) = and (a,b) = (="h, —t)

For this case inequality (14.19) becomes

—t (11— —t —t
‘/ L giaamx gl o1 6‘(1. 2K n / cos(s)
_n, sin(x) |1 —2K]| sin(x) 7y, 7)) sinZ(x)
1 AQK-t  iQK-1)% -1 |7
T o2k \| sinn | -1 Sin(x) | _x),
1 1 1
= 1-2K] (sin(t) +1+ sin(f) 1)
-z (14.22)
|1 — 2K sin(t)
Combining formula (14.18) with inequalities (14.21) and (14.22) gives
T—1 1
Ik (@) <
MOl = 55k T 2= 2k sm0
Equivalently,
B(t)
Mk O] =< 2K (14.23a)
where
1 1 1
B(t) = - = sin(0) (14.23b)
From this and inequality (14.15) it follows that
1 1
Ewn(®) = |55 + 53w | BO (1429

atleastwhen 0 <t <" and M <0 < N .
We’ll leave the derivation of the error bounds for other values of ¢ as exercises.

?» Exercise 14.3:  “Redo” the above computations under the assumption that —"/ <t < 0

(and M < 0 < N ), and show that, in this case,
1 1

— | B
1-2M + 1+2N] (D

where B is as given by formula (14.23b). (Suggestion: Start by deriving the corresponding
formula for h(t +x) — h(t).)

Evn® = [

2> Exercise 14.4:  Let t be any real value other than an integral multiple of 7 , and let E pr N
be as above (i.c., as defined in equation (14.14) with M < 0 < N ). Using periodicity,
inequality (14.24), and the results of the previous exercise, show that

1 1
Eun@) < [71_2M+71+2N]B(D)

where B is as given by formula (14.23b) and D is the distance from ¢ to the nearest integral
multiple of .
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Gibbs Phenomenon

Let N be any positive integer and, for convenience, let’s use Sy instead of F.S.y[%] to denote
the N'™ partial sum of the trigonometric series for #,

N

1 1 .
Sv() = FSylhll, = 5 - ];Esm(Zkt)

The graph of Sy (see figure 14.2) contains very distinctive “wiggles” that are particularly large
near the points of discontinuity. Our goals here are to determine

1. the locations of the peaks and valleys of these wiggles (more precisely, the locations of
the local maximums and minimums of Sy ),
2. how these locations vary as N gets large,
and
3. the difference between i (¢) and Sy (¢) at these locations, at least for large values of N .

Locating the Wiggles

Since Sy is a finite sum of smooth functions on the entire real line, all of its local maximums
and minimums occur at points where its derivative,

a1 &1 2 ¥
/ _ I P - _Z
Sy'(t) = 7 |:2 E p 51n(2kt):| - kE=1 cos(2kt)

k=1

is zero. Clearly, none of these local maximums or minimums occur at an integral multiple of 7 .
Thanks to one of the formulas from exercise 14.1 (page 178), if ¢ is not an integral multiple

of 7, we know that
sin(t) — sin([2N + 1]¢)

7 sin(t)

SN'(1) =

(14.25)

So, to find all values of ¢ for which Sy'(f) = 0, it suffices to find all values of ¢, other than
integral multiples of 7, satisfying

sin(¢) — sin([2N +1]t) = 0

This last equation is easily solved if we view it as

sin(¢) = sin(x) (14.26a)

where

x = 2N+ 1t . (14.26b)
From figure 14.3 it should be clear that, for each ¢ in the interval (0, "5), the values of x
satisfying equation (14.26a) are xg, Xx+1, X+2, ... Where

mm +t if m is even

Xm =
mi —t if m is odd

With these values for x , equation (14.26b) becomes
mm 4+t if m is even

2N + 1)t =
mm —t if m is odd
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y = sin(¢) /\

2

\4

T—i
2r+t 3w —t \X

y = sin(x)

Figure 14.3: Values of x where sin(¢) = sin(x) for a given ¢ in (0, 7/2).

Solving for ¢ (and recalling our current assumption that 0 < ¢t < 7/, we find that

mim . .
N if m is even
t = INm = o . _ (14.27)
W3 if m is odd
where m =1,2,..., My and
N -1 if N iseven
My =

N if N is odd

These points (the ¢y ,’s) are the locations of the local maximums and minimums of / on the
interval (0, /).

2> Exercise 14.5:  Let ty , be asabove. Using the second derivative test and equation (14.25),
show that Sy has a local minimum at ty , when m is odd, and has a local maximum at
IN.m when m is even.

7» Exercise 14.6: Show that formula (14.27) with m = —My, ..., —2, —1 gives the
locations of the local maximums and minimum on the interval (—"/,0).

Because Sy is periodic with period 7 , the above results assure us that, for any integer K,
the local maximums and minimums of Sy on (Kw — "/, Km +7/h) occurat t = K +ty
where m = %1, £2, £3, ..., £My, and the ty_,’s are as given by formula (14.27). Note
that

1. of these points, Km +tx 1 and Km + ¢y, _1 are the two points which are closest to the
discontinuity,
and

2. for any fixed choice of m, Kmw +ty,, — Km as m — 00.
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Limiting Height of the Wiggles

Again, let us first consider the wiggles in just the interval (0, 7). At each of the ty s, the
difference between A and the N partial sum approximation Sy is

1 1
— 2ktN ) — —In,
/; = m) = —tnm

N =

SNUNm) — htnm) =

Since we are interested in the value of this expression for particular choices of m and large
values of N, let us see what happens as N goes to infinity (while holding m fixed). Because
tN.m — 0 as N — oo, we see that

N

1 : 1
5 - ngnoozgsm(zkm,m) : (14.28)

Jim [SNUnm) — h(nm)] = 2

Now, for every integer N larger than m, and every positive integer k, let tpx = kAT
where

mim . .
w if m is even
At = 2tN,m =
mr if m is odd
N+1
Observe that
Mo 1 1
;k— n(2kty m) = ;;Esm(kmmr = —Ry (14.29)
where

ul sin(ty)
Ry =) —Fa
k=1 Tk

But Ry isjust a Riemann sum for

/TN sin(t) de
0 T
Since 1) =0- At =0 and
mm if m is even
W= A= ST if m s 0dd
we clearly have
Jim Ry = /0 " Si“t(’) dr . (14.30)

Thus, after combining equations (14.28), (14.29), and (14.30), we have

T T

mm .
lim [Sy(tvm) — htym)] = r_ 1/ sin(r) ’
N—oo > A

which, for future reference, we will write as

lim [SN(tN,m) — h(tN,m)] = Vm (14.31a)
N—oo
where
1 1 ™ sin(z)
Ym = 5 = ;/0 . dt . (14.31b)
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This last integral is not an integral that can be explicitly evaluated by elementary means (at least,
not by any elementary means known by this author), but approximations to this integral can
easily be found for specific values of m using standard numerical integration methods (such as
found in many computer math packages). Using any of these methods, it can be shown that

yi = lim [Sy(n1) — h(ty1)] ~ —0.0895
N—oo

2

y, = lim [SN(IN,z) — h(l‘N’z)] 0.0486
N—oo
y3 = lim [Sy(n3) — h(ty3)] ~ —0.0331
N—oo
and
ya = lim [Sy(in4) — h(ty4)] ~ 0.0250
N—oo

all with an absolute error of less than 0.00005. Thus, over (0, 7/») with N large, the first
wiggle in the graph of Sy undershoots the graph of & by about .09 units; the second wiggle
undershoots the graph of / by about .05 units; the third wiggle undershoots the graph of # by
about .03, and the fourth wiggle overshoots the graph of # by about .025 units.

More generally (see exercise 14.7), it can be shown that the yy’s form an alternating
sequence that “steadily approaches” zero. More precisely,

Ym = (=D" |yl , lyil > ly2l > ly3l > ... > 0
and
lim y, = 0

m—o0

7> Exercise 14.7:  In the following y,, is as given in formula (14.31b). Also, let ag = '/
and, for each positive integer k ,

km .
4 = l/ Isin@I
TJk-Dr T
a: Show that
m
ym = Y (—Dfay  for m=1,23, ..
k=0

(Thus, each y,, is a partial sum of an alternating series.)
b: Verity that

a > agy1 > 0 foreach k >1 and lim a = 0
k— 00

(This guarantees the conditional convergence of the alternating series Z,fio(—l)kak —
see the alternating series test on page 44.)

c: Using methods from complex analysis (or methods we will develop later — see exer-
cise 26.19 on page 434), it can be shown that

mm .
lim Sn@) g = T
m—o0 [ T 2
Using this, confirm that
o0
. _ _ k _
lim_y, = I;( D = 0
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d: Now, using the results discussed in the above exercises, properties of “alternating series
with decreasing terms’; and, possibly, induction, verify that

Ym = (=D" |yml and yil > ly2l > lysl > ... > 0

It should come as no surprise that similar results can be derived concerning the limiting
heights of the other wiggles of Sy . We’ll leave the derivations of these results as exercises.

2> Exercise 14.8:  Let m be a negative integer, and let ty ,, and y,, be as in formulas (14.27)
and (14.31b), respectively. Show that

Nli—r>noo [SN(tN,m) - h(tN,m)] = VYm

?» Exercise 14.9: Let K and m be any two integers with m # 0. Show that

Vi if m>0

lim [Sy (K7 +tnm) — (KT +tym)] = '
N—oo —Vm if m<0

Local Error in the Partial Sum Approximation

We should note that the points where Sy has local maximums and minimums are not quite the
same as the points where the difference between Sy and £ is locally a maximum or minimum.
These points are found by determining where the derivative of

En(t) = Sn(t) — h(n)

is zero or does not exist.

It turns out that an analysis similar to that just carried out for Sy can be carried out for
&y . In fact, in some ways, the corresponding analysis for &y is simpler. We will leave this
analysis as an exercise.

7» Exercise 14.10: Let &y be as above.

a: Show that, for each positive integer N , the maximum and minimum values of &y on
(0, ™/2) occur at the points
mm

T = here =1,2,3,..., N
Nmo=oN+1 W "

b: Verify that, on (—"/>,0) and for each positive integer N , the maximum and minimum
values of &y occur at the points

mm
2N +1

TNm = where m=1,2,3, ..., N
c: Confirm that, for every nonzero integer m ,

Jim [SN(nm) — RN m)] = Vm

where y,, is given by formula (14.31b).

d: Show that |y1| does not give the maximum error in using Sy for h on (0,7/5).
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14.3 Convergence for Arbitrary Saw Functions

The results obtained in the previous section for

. L if 0<t<un
h(t) = — Sawy ) = 4
h(t —m) in general

can be easily be converted to analogous results for similar functions by scaling and translation.
These results (which were referred to in the previous chapter) are summarized in the following
lemmas. In each case p, f9,and Jp are constants with 79 real and 0 < p. The corresponding
shifted and scaled saw function A is given by

ho(t) = %sawp(t—to)
Lemma 14.7

For any pair of integers M and N with M < 0 < N, and any real value t such that t — t¢ is
not an integral multiple of p,

1
1—2M+1+2N

[ho®) = FSptholl,| < | |BD)

where D is the distance from t — ty to the integral multiple of p closest to t — ty, and

1

B(D) = |Jol M

_1+
2

Q=

?» Exercise 14.11:  Prove lemma 14.7 using the results from exercise 14.4.

Lemma 14.8
Let K and N be any two integers with N positive. The local maximums and minimums of
F.S.nlho]l on (Kp — P/, Kp + Ph) all occur at the points Kp + ty ,, where

i 4 if m is even
2N
tN,m = mp 5
if m is odd
2N +2
m = =£1, £2, £3, ..., My ,

and
N -1 if N is even
My =
N if N is odd

Moreover, for each of these m’s,

li [FS [Ao]] — ho(Kp +t )| = I i =
m WD, ollk o(Kp , ] = .
N N PHIN m N.m J ; -

where

mm -
VYm = L. l/ sin(r) dt
0

2 T T
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The formulafor y,,’s inlemma 14.8 is the same as formula (14.31b). Thus, if N isrelatively
large, the wiggle in the graph of F.S.y[ho] closest to each discontinuity will either overshoot
or undershoot the graph of %y by roughly 9% of the height of the jump at the discontinuity.

Lemma 14.9

Let K and N be any two integers with N positive. The local maximums and minimums of
F.S.n[hol —ho on (Kp —Ph, Kp) and (Kp, Kp + P/) all occur at the points Kp + Tn m
where m = £1, £2, 43, ..., and N, and

mp
2N +1

IN.m =
Moreover, for each of these m’s

—¥YmJo if m<0

lim [F.S. ol — ho(Kp + v, )] =
N—oo L 2 VIOTKp TN P EN.m yudo  if O <m

where y,, is as in lemma 14.8.
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Derivatives and Integrals
of Fourier Series

There are two good reasons for considering the differentiation and integration of Fourier series.
One is that derivatives and integrals of Fourier series often arise in applications. In the next
chapter, for example, we will use Fourier series to solve differential equations describing flow
of heat in a rod and vibrations in a string. The other reason is that I have already quoted some
results from this chapter concerning the convergence of the Fourier series of a smooth function
(see page 162). So we had better develop those results.

15.1 Differentiation of Fourier Series

Let f be a piecewise smooth periodic function. Since, as piecewise continuous functions,

f@O) = FS.[fll, = Y e |

k=—00
we certainly have
d o0
/ _ 12w wit
1) = —
fo = - > cre
k=—00

at all points at which f is differentiable. Now, it is very tempting to assume
d < i2m ot o d
— cp e T = —cp TR
k Z dt k

dt k=—00 k=—00

but, as our next example shows, this is not always true.

> Example 15.1 (what can go wrong): Let f be the simple saw function with period 1,

£y = © = t if 0<t<l1
- e = fae—-1 in general

The Fourier series for this function is easily found to be

o0

1 U ionke
> T > 2k’

k=—00
k#0

195
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A

/\/\/\/\ﬁ v/\V/\/\/\/\/\/\VAV

—
3

\Y

v/\V/\/\/\/\/\/\VAV

! !

Figure 15.1: Graph of Sjg from example 15.1 (with vertical axis compressed).

Clearly,

=1

, 1 if 0<t<1
f(t)={ ,

f'(t = 1) in general

Since the Fourier series of a constant function is simply that constant,

d |1 = 1 ;

15t » ﬁe’z’f’“ =f)=FS.[f]=1. (15.1)
k=—00
k0

On the other hand, differentiating each term of the Fourier series for f gives

dri N d T i >
i2mwkt i2mkt
21z Z = = — 15.2
at [2] * k_X_:OO at [ane ] k_z_:ooe | (152
k#0 k£0

which certainly does not look like the same series we ended up with in equation (15.1) (i.e.,
the one-term series “1 7).

The properly suspicious may wonder if the series in line (15.2) is just a very complicated
expression for 1. We will show that this is not the case in exercise 15.5. Meanwhile, as an
illustration of just how strange this series is, the graph of its 10™ (symmetric) partial sum,

10
i) = = Y &,
k=-10
k#0

has been sketched in figure 15.1.
Let us look more carefully at the problem of computing the Fourier series of the derivative
of a fairly arbitrary periodic function f with period p. To ensure that F.S.[f], f’, and

F.S. [ f’ ] are all well defined, let us assume, at the very least, that f is piecewise smooth.
Thus, f’ is at least piecewise continuous. Now,

s 0
FS.[fll, = Y «e®™™ and  FS.[f], = Y die>

k=—o00 k=—o00
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where wy = %,,,

1 p —i2mant 1 P / —i2mwyt
a =—[ fe dt . and dx = - [ ft)e dt
P Jo P Jo

If f isalso a continuous function on the real line, then we can use integration by parts (theorem
4.2 on page 40) as follows:
p .
dk — l / f/(t) e—lZJkat dt
P Jo

. pr
—i2mwit

= f@Q)e T —
r© ’

/0 " ro [—iZna)ke_iZ”‘”"t] dt

- [ F(pre~izrop _ f(O)eO] + i2nokck (15.3)
Because of the periodicity (and continuity) of f,
f(p)e—iZJkap _ f(o)eo — f(o)e—iZJTk _ f(o) =0

So, in this case, equation (15.3) simplifies to

dp = 2nwgcr (15.4a)
or, equivalently,
4 = e (15.4b)
p

This result is important enough to restate as a lemma.

Lemma 15.1 (Fourier series of a derivative)
Assume f is a periodic, continuous, piecewise smooth function with period p and

o0
FS[f]'t — Z Ck eiZTL’wkt

k=—o00

Then

o0 o0

F.S. [f/:Ht = Z i27twkckei2”w"t = 12_7[ Z kckeiankt

k=—00 p k=—00

The assumption in lemma 15.1 that f is piecewise smooth ensures the piecewise continuity
of f’. From this we know the terms of the Fourier series for f’ are well defined. However, this
still does not ensure the convergence of this series nor that it equals f’. Glancing back at the
main theorem on convergence (theorem 13.1, page 154), we find we can ensure this convergence
and equality by requiring f’ to be piecewise smooth. Doing so and making the observation that

d , ) .
E [Ck ethwkt:I — l27ra)kck ezZmukt

gives our main theorem on the differentiation of Fourier series.

Theorem 15.2 (differentiation of Fourier series)
Let f be a periodic, continuous, piecewise smooth function with period p and

[ee)
FS[f“t — Z Cr eiZJkat

k=—o00
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If f is also piecewise smooth, then

&)

Z ka eiankt

k=—o00

converges for each ¢ at which f’ is continuous, and, as piecewise continuous functions,

00

d i 2
ro =y &laerm] = = Z ey e/

k=—00
Compare the next example with the example that started this section (example 15.1).
> Example 15.2: Let f be the even sawtooth function from exercise 12.3 on page 150,

t if 0<t<l1
f@ = —t if —-1<t<0
fit—=2) in general

(see figure 12.1a on page 150). From that exercise we know

(= 1) -1 zknt

1
SO =5+ ) g

k=—00
k£0

The even sawtooth function is certainly continuous and piecewise smooth, and its derivative,

1 if 0<t<l1
@) = —1 if —1<1<0
) in general

is piecewise smooth. So theorem 15.2 can be invoked and tells us

, d [1] o~ d [(=DF =1
H=—|= ) S
Fo =gz * k;oo ait | k2n2 ¢
k#0
I N Ve SO i GV e
k2m2 km
k=—00 k=—00
k#0 k#0

In terms of trigonometric Fourier series, lemma 15.1 and theorem 15.2 become:

Lemma 15.3 (Fourier series of a derivative)
Assume f is a periodic, continuous, piecewise smooth function with period p and

o
FS.[fll, = Ao + Z[ak cos(2r wit) + by sin(2r wit)]
k=1
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Then

Fs[f] =S

[—27 wray sin(2rw wit) + 27w wi by cos2r wit)]
k=1

o
275 [—kag sin(aoxt) + kb cos2raxt)]
p k=1

Theorem 15.4 (differentiation of trigonometric series)
Let f be a periodic, continuous, piecewise smooth function with period p and

o0
FS.[f]l, = Ao + Z[akcos(Zna)kt)—}—bk sin(2r wit)]
k=1

If f' is also piecewise smooth, then

o0
Z [—kak sin(2mw wgt) + kby cos(2m awgt)]
k=1

converges for each t at which f' is continuous, and, as piecewise continuous functions,

00

'@ = Z [—27 wray sin(2r wit) + 2w wi by cosm wit)]

= 3 [—kak sin(2mw wgt) + kby cos(2m awgt)]
k=1

199

Of course, as long as our function is sufficiently smooth, we can use the above to find
the Fourier series for higher order derivatives. Here is what we obtain when we can repeat

theorem 15.2 “m — 1 times’”

Corollary 15.5 (higher order differentiation of the exponential series)
Let f be a periodic, continuous function with period p and Fourier series

0 .
Z Cx ezankt
k=—o00

Assume further that, for some positive integer m , f is (m—1)-times differentiable, and f "~

is continuous and piecewise smooth. Then

o0

Z kka ei27rwkt

k=—00

converges for each t at which f™ is continuous, and, as piecewise continuous functions,

N d™ i2 27 \" i2
™ = Z dt—m[c;ce‘ ”“”"] = (—) Z k"M cp e “T k!
P
k=—o00

k=—o00
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200 Derivatives and Integrals of Fourier Series

15.2 Differentiability and Convergence

Equation (15.4b) leads to some useful observations concerning the Fourier coefficients of suitably
smooth periodic functions and their derivatives. So, again, let f be periodic, continuous, and
piecewise smooth (as in lemma 15.1) with

00

o0
FS.[fll, = Z cy e 2ment and F.S. [f/:”t _ Z dy /27
k=—

=—00 k=—00

Remember, wy = k/p.
The first observation is that
i2m -0
dy = cg =0
p

So the constant term in the Fourier series for f’ (which is also the mean value of f’ over any
period) is zero.
Taking the magnitude of each side of equation (15.4b) and solving for cx gives

_r
ekl = 2w ldi| (15.5)

telling us that the c;’s must shrink to zero faster than the di’s as k — +o0.
Combining this last equation with the observation that

l/ f/(t) e—i27rwkt dt
P Jperiod

l /
P Jperiod

lek] <

ldi| =

1

dt = = "ol dt
p-/;;eriod}f()|

! /

More refined arguments involving equation (15.5) lead to the more useful bound on the
error described in the next theorem.

f/(t) e—i27rwkt

IA

gives the crude estimate

Theorem 15.6 (continuity and uniform convergence for exponential series)
Let f be a periodic function with period p and

o
FS.[fll = ) ce™

k=—o00

Assume, further, that f is piecewise smooth and continuous, and for convenience, let
1/2
1 2
B = (p/ |f' @] dt>
T period

1. The series Y je._ o, Ck converges absolutely with

Then:

—N-1 B [’} B
Y lal < —  and Y dal £ =  for N=1,2,3, ...
k=—o00 VN k=N+1 VN
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2. The Fourier series for f converges uniformly to f . Moreover, for any real value ¢t and
any pair of positive integers M and N ,

‘f(t) _ Z Cx ezankt

e i)
- lvm T UN

Observe that the claimed bounds in this theorem automatically imply the claimed absolute
and uniform convergence of the series. So all we need to verify are those upper bounds. For
simplicity, we’ll break the proof into two pieces: the proof of the bounds in the first part (in which
we’ll use equation (15.5), Bessel’s inequality, and the Schwarz inequality for summations), and
the proof of the bounds in the second piece (which uses the basic theorem on convergence and
the bounds from the first part).

PROOF (first part of theorem 15.6):  Because the two bounds in this part can be obtained by
virtually identical arguments, it will suffice to verify just the first bound.
Let N be any positive integer. As noted in the discussion just before the theorem,

lekl = W'dﬂ for k==£1, £2, £3, ...

where dj is the k" Fourier coefficient for f’. From this and the Schwarz inequality (see
theorem 4.8 on page 45) we get

o o0
Do lal = Y sl
k=N+1 k=N+1
x x Y 00 kb
-2 3 g = 2( 3 A) (3 e
= il = o) | X ) . a50)
7 Ik iy k=N+1
Now, by the integral test (theorem 4.6, page 44),
o0 [ele]
Yasf wt=y
k=N+ N X N
And, by Bessel’s inequality (see exercise 12.4, page 150),
o 2
D 1kl < Z ldi* < —/ FEGINE
k=N+1 k=—o00 period

Plugging these inequalities into equation (15.6) gives

1
00 » 1 15 1 ) ) )
:Z el = 2 (<) (Z/pmd‘f“)‘ dt) ,

which, by the definition of B and a little algebra, can be written as

o0

g
ﬂ\

as claimed in the first part of the theorem. |
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202 Derivatives and Integrals of Fourier Series

PROOF (second part of theorem 15.6): Because f is continuous and piecewise smooth,
the basic theorem on convergence (theorem 13.1 on page 154) assures us that f(¢) equals its
Fourier series for every choice of ¢. So,

N
f(t) _ Z Cr eiZHwkt

Z Ck ethwkt _ Z Cr ethwkt
k=—M

k=—M k=—0o0

—M-1 ) 00 )

— Z Ck ethwkt + Z Cr elZJTa)kt
k=—00 k=N+1
-M-1 ) 00 )

< Z ‘Ck ethwkt + Z ‘ckeﬂnwkt
k=—o0 k=N+1
-M-1 00

= Y lal+ > lal
k=—00 k=N+1

Replacing the two summations in the last line with the corresponding upper bounds described
in the first part of the theorem then yields the claimed bound,

ZN i2 B B 1 1 I
f‘ _ L2TT it = _ — - - B
® & _MCke = vM VN |:«/M «/Nil ’

Stronger results can be obtained when the function is known to be even smoother. As an
exercise, you should verify the following by using corollary 15.5 and the ideas described in the
above proof.

Theorem 15.7 (smoothness and uniform convergence for exponential series)
Let f be a periodic function with period p and

o0
FS[f]'t — Z CkeiZJ'[wkt

k=—00

Let m be a positive integer, and assume f is m-times differentiable and f™ is piecewise

continuous. Let :
)
pP\" 1 (m) ‘2
= (£ _— t)| dt
(271) <p(2m—1) o

period
Then:
1. The series Y po . ck converges absolutely with
—N-1 00
B B
Yolal £ —= ad > lal £ ———
W N2m—1 Plarvarl VN2m—1

for each positive integer N .

2. The Fourier series for f converges uniformly to f . Moreover, for any real value t and
any pair of positive integers M and N ,

N
f(t) _ Z Ckezerwkt
k=—M

- 1 n 1 B
| VMm2m-1 N N2m—1
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?» Exercise 15.1:  Prove theorem 15.7.

The corresponding theorem for the trigonometric Fourier series is given below. It, of course,
follows immediately from the above theorem and the fact that

N

N
Ay + Z[ak cos(2m wyt) + by sinRrwit)] = Z cp /2Tt
k=1 et

where the left- and right-hand sides are the two Fourier series for some periodic function.

Theorem 15.8 (uniform convergence for trigonometric series)
Let f be a periodic function with period p and

o0
FS.[fll, = Ao + > _laxcos(2meyt) + by sin2mwyt)]
k=1

Let m be a positive integer, and assume f is m-times differentiable and f™ is piecewise

continuous. Let
m
B = (i) v
2w p@2m —1)

1
f(m)(ﬂ’z dt> ’

period
Then:

1. The series Y peq ax and Y _pe by both converge absolutely with

o0

2B 2B
E < == E < =7
|ak| - N2m—1 and |bk| - N2m—1

k=N+1
for each positive integer N .

2. The Fourier series for f converges uniformly to f . Moreover, for any real value t and
any positive integer N ,

N
2B
t) — Ay — [ar cosQRrwgt) + by sinRrwkt)]| < ——
f 0 1;21 k k k k T

The last few theorems have described how a very smooth function must have a “rapidly
converging” Fourier series. Conversely, it can be shown that a function given by a rapidly
converging Fourier series must be a very smooth function. We will discuss “rapidly converging
series” in general in the next chapter. One immediate consequence of that discussion will be the
following theorem.

Theorem 15.9
Assume Y po_ . ck is an absolutely convergent infinite series of complex numbers, and, for
each real value t , let

f(t) — Z Cx ei2ﬂwkt

k=—o00

where wy = k/p and p is some fixed positive number. Then f is a continuous and periodic
function with period p whose complex exponential Fourier series is given by the above series.
That is, for each integer k

1 _:
= —/ f(t) e 2Tk gy
P Jperiod
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204 Derivatives and Integrals of Fourier Series

Moreover, if
o0

Z |k”ck| < 00

k=—00

for some positive integer n, then f is n-times differentiable, f™ is continuous, and

o
f = Y al2re)” T for m=1,2,....n

k=—00

15.3 Integrating Periodic Functions and Fourier Series

What if we wanted to integrate the Fourier series of some periodic function f ? Say, for the
sake of discussion, we wished to integrate

00
FS.(flle = Y cpe?or
k=—00

(with w = k/p) from v = a to T = t. We may be tempted to assume the integration can be
done term by term,

[ oo ‘ © et
/ Z cx 2T | dr = Z / cr €T gt (15.7)
a h——o0 V@

k=—o00
Now if k # 0,
t : c . t c . .
Cr el?.ﬂwk‘l' dt = : k elZﬂwkT — .kp [etZﬂwkt _ezanka] ,
a 127wy a i2rk
while if k =0,

t t
/ cx & dr = / codt = colt —a]
a a

So equation (15.7) expands to

t o [e8)
@27 | dr = colt —a CkP |:ei2nwkt N eianka]
lé [ E k ol 1+ E Tk

k=—00 =—00
k0
o P oGP
— t — ethwkt _ elZT[wka
colt —al + _Zoo i27k k;oo i27k
k0 k£0
Take a look at our last equation. Letting
- CkP i CkP
Iy = — kP pi2mena and I, = for k=41, £2, £3, ... ,
0 2 ok T ik
k=—00
k#0
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the above equation becomes

t 00 ) 00 )
/ [Z ckeﬂ”wkf} dr = colt —al + Y I . (15.8)
a

k=—00 k=—00

which is NOT a Fourier series unless ¢y = 0. This should be expected; integrals of periodic
functions are not necessarily periodic. If this is not obvious, consider

t
gt) = / f(mydr

Instead of having g(t 4 p) = g(¢), we have
t4p
[ s
a

t t+p
= / f(mdr +/ f(mdr = g() +/ f(mdr
a t period

g+ p)

So g is periodic if and only if
/ f(r)ydt =0
period

Recalling that our cq is the above integral divided by p, we also see that this previous sentence
can be rephrased as “So g is periodic if and only if ¢g = 0.” That is why we should not expect
the right-hand side of equation (15.8) to be a Fourier series unless ¢y = 0.

The main question now is whether an integral of a Fourier series can be computed by
simply integrating its terms (as we naively assumed in equation (15.7)). The convergence of the
term-by-term integrated series (the right-hand side of equation (15.8)) may also be a concern,
though the observant reader may have already realized that the integration adds a Y factor to
each term, helping to ensure the convergence of this series.

Answering our questions is fairly easy. Yes, we can safely integrate Fourier series term by
term provided f is at least piecewise continuous. (This is in marked contrast to the situation
with differentiating Fourier series.) To be a little more explicit, we have the following:

Theorem 15.10 (integration of Fourier series)
Assume f is a periodic, piecewise continuous function with period p and

o0
FS[f]'t — Z Ckeiankt

k=—00
Then, for each real value T,
i kP ol 2Tkt
s 2wk
k#0

converges absolutely, and, for each pair of real numbers a and ¢,

t o0 t ) 00 -
/ f(‘L') dr = Z / Ck elankr dr = colt —al + Z T ethukt
a a

k=—00 k=—o0
where
o
FO = — Z .Ckipeiznwka and Fk = .Ckp for k = :l:l, :|:2, Zl:3,
— 2wk 2wk
k£0
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206 Derivatives and Integrals of Fourier Series

Furthermore,

t
/ f(r)ydrt — colt —al

is a continuous, piecewise smooth, periodic function of t with Fourier series

o0
Z Fk ei27rwkt
k=—00

PROOF:  Verifying this theorem is fairly straightforward if we start with the function

t
h(t) = f f@dr — colt —al

Because /4 is the sum of an simple polynomial and the integral of a piecewise continuous
function, 7 must be continuous and piecewise smooth with

t
f f(x)ydt = h(t) + colt — a) and K@) = fi©) — co
a
Its periodicity is also easily verified.
?» Exercise 15.2:  Verity that h(t + p) = h(¢) .

Now let ﬁ( be the k™M Fourier coefficient of /. Theorem 15.6 tells us that, for each real
value ¢,

o0
h(t) = F.S.[h]l, = Y Tie?™

k=—o00

and that this series converges absolutely. R
To finish the proof, we need to confirm that each Iy equals I} . That is left for you.

?» Exercise 15.3: Let f, h, the c;’s, the I'}’s, and the ﬁ ’s be as above.

a: Verify that h(a) = 0, and, using this, show that

00
1’:0 _ _ Z ﬁeianka
k=—00

k£0

b: Using the integral formula for the Fourier coefficients of f and h, the relation between
h' and f, and integration by parts, verify that

cx = i2maxl  for k=41, 2, £3, ...

c: Using the above, finish verifying the claims of theorem 15.10. |

Let’s consider integrating the saw function that we tried (unsuccessfully) to differentiate in
example 15.1 at the beginning of this chapter.
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> Example 15.3:  Recall that

F.S. [saw1]|,

1
2

207

00 .
l i2mkt
— e

* Z 2k

k=—00
k#0

Theorem 15.10 assures us that, for every real value t ,

¢
/ saw1(t)dt
0

t

1
f—dr+
02 k

1 = 1 ; ;
L I:elzn’kt _ ethk-O:I
2 k;m (2mk)?

00 t )
s ethkr dt

> [,

=—00

k£0

k0
1 = 1 ok = 1
= —t + é wkt
2 k;w (2mk)? k;oo (2mk)?
k#0 k#0

Note that Theorem 15.10 also tells us that the two series in the last line above form the
Fourier series for the periodic function

t
h(t) = / sawi(t)dt — 1t
0 2

Let’s look at this function. Its periodis p = 1, and for t between 0 and 1,

t t
h(t) = / sawy (1) dr — ~t = / rdr — 1 = 12 _ L
0 2 0 2 2 2
So
2 Y i o<i<1
ht) = { 2 2 ,
h(t —1) in general

which can also be written as

B = 380) — 35w
where
l2
gt —1

What is of particular note here is that we can now easily find the Fourier series for g from
the Fourier series for h and sawq :

F.S.[gll, = F.S.[2h + saw1]|,

it 0<t<1

gt) = _
in general

2F.S.[h]l, + F.S.[saw]]

t

> 1 o 1 1 >
_ Z i2mkt Z L Z P27kt
2 2
W @rk) (L @nk) 2 G 2k
k#0 k#0 k#0
o o0 .
_ |1 _ 1 Z 1 Z Lt ink ok
2 272 k2 2(k)?
=—00 k=—00
k#0 k#0
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The trigonometric series version of theorem 15.10 is:

Theorem 15.11 (integration of trigonometric Fourier series)
Let f be a periodic, piecewise continuous function with period p and

FS.[f]l, = Ao + Z[akcos(Zna)kt)—}—bk sin(2r wyt)]

k=1
Then, for any real number 7,
o 1 o 1
Z —ay sin(2w wg T) and Z —by cos(Rm wiT)
k=1 k k=1 k

converge absolutely, and, given any pair of real numbers ¢ and a,

t
/ f(r)ydr

t o0 t
/ Agdt + Z/ [ak cosRmwyt) 4 by sin2rwgt)] dt
a k=1v4

o
Aolt —al + Ty + 237 L [ay sinrant) — by cos@raxd)]
2 et k
where

o
Iy = L Z % [—ax sin2rwia) + by cosmwya)]

15.4 Sine and Cosine Series

Results similar to those already derived in this chapter can be obtained for the various “Fourier
series” discussed in chapter 10 for functions over a finite interval (0,L). You simply apply
theorems already derived here to the corresponding periodic extensions.

Suppose, for example, we have the sine series

F.SS.[f]l, = ibk sin("L_”t)
k=1

for some function f which is continuous, piecewise smooth, and has a piecewise smooth
derivative on (0, L) . Remember, on (0, L)

f@) = fo) = FS.[foll, = Zbksin<kL—”t)
k=1

where f, is the odd periodic extension of f .

Clearly, since f and f’ are piecewise smoothon (0, L), f, mustbe piecewise smooth on
the entire real line and have a piecewise smooth derivative. Furthermore, since f is continuous
on (0,L), f, can have discontinuities only at integral multiples of L . So if (and only if)

lim f(z) =0 and lim f(r) =0 ,
t—07t

t—L—
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then f, must be continuous on the real line (see figure 10.4 on page 123), and theorem 15.4

assures us that
= km
Z 7 — by sm(—t)
k=1

converges to fo'(¢) for every real value 7. Consequently,
o d k o kT k
1 _ ’ _ a .k _ K [k
fo = fil = ];dtkam(Lt) ; Thesin(*Te)  for 0<r<L

and we have proven the theorem which follows.

Theorem 15.12 (differentiation of the sine series)
Let f be a continuous, piecewise smooth function on a finite interval (0, L) with sine series

F.S.S.[f]l, = S by sin( 7
1; ksm<L )

If f’ is also piecewise smooth on (0, L), and

lim f(t) =0 and lim f(#) =0 ,
t—0t

t—L—

then Z,fil kby cos(2m wyt) converges for each ¢ at which f’ is continuous, and, as piecewise
continuous functions,

ro = 3 Gsin(e) = 3 Sbeeos )
k=1

Next is the analogous theorem for the cosine series. It’s slightly simpler because jump
discontinuities are not introduced at integral multiples of L when we extend f in an even
periodic manner (see figure 10.5 on page 125).

Theorem 15.13 (differentiation of the cosine series)
Let f be a continuous, piecewise smooth function on a finite interval (0, L) with cosine series

F.CS.[f]l, = Ay + iak cos(’%”t)
k=1

If f’ is also piecewise smooth on (0, L), then Z,fil kby sin(2mw wit) converges for each t at
which f’ is continuous, and, as piecewise continuous functions,

'@ = d—A + id—a cos(lﬁt) = —ik—ﬂb sin(k—”t)
—a’ kzldr" L)~ L T

The next two theorems are derived from theorem 15.8 on page 203.

Theorem 15.14 (uniform convergence of the sine series)
Let f be a continuous, piecewise smooth function on a finite interval (0, L) with sine series

FSS.[fll, = ) bisin@rayt)
k=1
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If
lim f(t) =0 and lim f(t) =0 ,
t—07t t—L—

then Y ;2| by converges absolutely, and, for each 0 < t < L and positive integer N ,

1/2
B 2 L / 2
|f(t)y — F.SS.N[f]l| < i where B = - <L/O FHG] dt)

Theorem 15.15 (uniform convergence of the cosine series)
Let f be a continuous, piecewise smooth function on a finite interval (0, L) with cosine series

o0
F.CS.[f]l, = Ao + Zakcos(ankt)
k=1

Then Y 72, ax converges absolutely, and, for each 0 < t < L and positive integer N ,

1/2
B 2 L ’ 2
|f() — F.CSNIfl] < i where B = —(L/O |f @] dt)

e

?» Exercise 15.4:  Derive the two theorems above using theorem 15.8.

Additional Exercises

15.5. Here we will look more closely at the partial sums of the series in line (15.2) from
exercise 15.1 on page 195, and we will verify that this series does not converge pointwise
to 1 on the real line. For convenience, let Sy denote the NI partial sum of the series
in line (15.2)

SN(t) - _ Z ei2nkt

The following problems can be simplified by the observation that, using formula (14.3a)
on page 178,
N sin( 27 [N + l]t
SN(t):l_ ZelZUklzl_ ( 2)
= sin(rt)
a. Graph Sy (t) for —1 <t <35 and N = 5,10, 20, and 50 with the vertical scale
adjusted so that you can clearly see the downward pointing “spikes” at t = 0 and
t = 1. (Use a computer math package. You may use the results of the next exercise
to work around the trivial discontinuitiesat t =0 and t = 1.)

b. Show that Sy (0) = —2N . This shows that, instead of convergingto 1 as N — oo,
the series in (15.2) diverges to —oo for t = 0. (Remember to remove any trivial
discontinuities!)
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(@) (b)

Figure 15.2: Two and one half periods of (a) evensaw(¢), the even sawtooth function for
exercises 15.6 c and 15.9 b, and (b) oddsaw(¢), the odd sawtooth function for
exercises 15.6 d and 15.9 c.

c. Graph Sy(t) over (=',%,) for N = 5, 10, 20, and 50. Adjust the vertical scale
so that you can clearly see the smaller wiggles between the spikes (you may have to
“cut off” the spikes). Note that the wiggles in the graph of Sy over this interval do
not decrease in size. (Again, use a computer math package.)

d. Show that
0 if N iseven

Sn(0.5) =
v { 2 if N isodd

Thus, the series in formula (15.2) on page 196 does not even converge at t = 5.
Instead, its partial sums oscillate between 0 and 2.

e. Find other values of t for which the series in formula (15.2) does not converge.

15.6. The complex exponential Fourier series for each of the functions below was computed
in exercise 12.3 (see page 150). For each of these functions:

1. Find a formula (or set of formulas) for the derivative of the given function, and
sketch the graph of the derivative.

2.  Findthe complex exponential Fourier series for the derivative. Use theorem 15.2

when possible.
0 if —1<t<0
a. f@) = 1 if 0<t<l1

fe—=2) in general

¢ if 0<t<l1
b. g(t) =

gt —1) in general
c. evensaw(t), the even sawtooth function sketched in figure 15.2a
d. oddsaw(¢), the odd sawtooth function sketched in figure 15.2b
e. |[sin(2mt)|

£ fo) ¢ if —1<t<1
. t) =
f@t—2) in general
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15.7. Assume f is a periodic, piecewise smooth function with period p . Let

0 o0
EFS.[fll; = Z cx @27 and F.S.[f']\t _ Z dy /27 xt

k=—o00 k=—o00

Let =P/ < ty < P/, and suppose f has a jump discontinuity at ty with jump jo .
Suppose, further, that f(t) is continuous at every other point between —¥/, and Pl
including the endpoints —?/; and P/». Derive a formula involving jo which relate
each dy to the corresponding cj .

15.8. Let g be as in exercise 15.3 on page 207, and let Iy denote the constant term in the
Fourier series for g .

a. What is the series formula for Iy obtained in exercise 15.3?
b. Compute Iy using the integral formula for the Fourier coefficients.
c. Compare the answers to the previous two parts of this exercise and show that
= = —
=k 6

15.9. Find the “Fourier series-like” formula of

t
gt) = /0 f(D)yde

for each of following choices of f . For which of these f’s is the corresponding g
periodic and the series formula obtained the actual Fourier series for g ? (Note: The
Fourier series for each f was computed in exercise 12.3.)
0 if -1<t<0
. f@) = 1 if 0<t<1
fit—=2) in general

&

b. f(t) = evensaw(t) (see figure 15.2a.)

c. f(t) = oddsaw(¢) (see figure 15.2b.)
+1 if 0<lJt] <1
d f@) = -1 if 1<|t]<?2

f@t—4) in general
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Applications

The use of Fourier series in applications and some of the issues that may arise in such use can be
nicely illustrated by solving any of a number of classical problems. We will consider two: a heat
flow problem and a vibrating string problem. The first, determining the temperature distribution
throughout some heat conducting rod, is basically the same problem Fourier first solved using
“Fourier series” The second is the problem of modeling the motion of an elastic string stretched
between two points, a problem undoubtedly of interest to all guitar and banjo players.

Since the main goal is to illustrate the use of Fourier series and to examine some of the prob-
lems in their use, we will limit ourselves to relatively simple versions of these two problems. You
should be aware, however, that the two problems examined here are just elementary prototypes
for much wider classes of problems in a wide variety of subjects, including thermodynamics,
diffusion processes, vibrational analysis, acoustics, electromagnetics, and optics.

16.1 The Heat Flow Problem

Setting Up the Problem

Here is the problem: We have a heat conducting rod of length L , and we want to know how
the temperature at different points in the rod varies with time. To keep our discussion relatively
simple, we assume the rod is one-dimensional, uniform, positioned along the X—axis with

endpoints at x = 0 and x = L, and with the endpoints being kept at a temperature of 0
degrees (Fahrenheit, Celsius, Kelvin — the actual scale is irrelevant for us). Let

u(x,t) = temperature of the rod’s material at horizontal position x and time ¢.
The endpoint conditions can then be written as
u(,t) =0 and u(lL,t) =0 forall ¢
Let’s also assume the rod’s initial temperature distribution is known; that is, we assume
ux,0) = fx)

where f is some known function on (0, L) . Let us further assume that f is at least piecewise
smooth on the interval.

If this were a text on thermodynamics or partial differential equations, we would now derive
the heat equation. But this isn’t such a text, so we’ll simply assume that, at every point in the
rod,

u 32u
Z ok
at dx2

213

© 2001 by Chapman & Hall/CRC



214 Applications

where « is some positive constant describing the thermal properties of the rod’s material. This
is the famous heat equation derived by Fourier.!

Our goal is to find a usable formula for u(x, ¢) . Since it only makes sense to talk about the
temperature where the rod exists, x must be between 0 and L . Gathering all the assumptions
from above, we find that u(x, ) must satisfy the following system of equations:

2
o for 0<x<L (16.1a)
at dx2
u@,t) =0 and ulL,t) =0 (16.1b)
ux,0) = f(x) for 0<x <L (16.1¢c)

Implicit in this is the requirement that u(x, ) be a sufficiently smooth function of x and ¢ for
the above equations to make sense. Remember, « is a positive constant, and f is a known
piecewise smooth function on (0, L) . At this point we have no reason to place any limits on
t other than it must be real valued. So, for now, we will assume no other limits on ¢. Later,
however, we will need to modify that assumption.?

A Formal Solution

Solving this problem starts with the rather bold assumption that it has a solution. Supposing
this, let us try to find a suitable “Fourier series” representation for this solution u(x, ¢). There
doesn’t seem to be any periodicity in this problem, but the values of x are limited to the finite
interval from x = 0 to x = L. This suggests that, for each fixed value of 7, we represent
u(x, t) using one of the “Fourier series” from chapter 10, say, the sine series, letting

ulx,t) = ibksin(kL—nx> ,
k=1

or the cosine series, letting

o0
u(x,t) = Ag + Zakcos(;—nx)

k=1

In each case, the representation must change as ¢ changes. This means that the by’s in the sine
series and the Ay and a;’s in the cosine series will have to be treated as functions of ¢, and not
as constants.

To further narrow our choices, let’s note what happens when we plug x =0 and x = L
into the sine series representation for u(x, t):

o0 o0 o0
u(0,1) = Zbksin<kL—”O) Y besin@) = > b0 =0
k=1 k=1 k=1

and . . .
u(l.t) = Zbksin(kfﬂL) = bisinkr) = Y b0 =0
k=1 k=1 k=1

These equations match the endpoint conditions in equation set (16.1b). Also, for equations (16.1a)
and (16.1b) to make sense, u(x, t) should be at least a continuous and piecewise smooth function

1 Each person reading this should go through the derivation of the heat equation at least once in their life. Reasonable
derivations can be found in most introductory texts on partial differential equations.

2 Part of “solving” many a problem is determining just what the problem is, and what can or should be considered as
“known” at the onset. Here, for example, we “know” we can find u(x, ¢) for all time ¢. We are wrong.

© 2001 by Chapman & Hall/CRC



The Heat Flow Problem 215

of x on (0, L) with

lim u(x,t) = 0 and lim u(x,t) = 0
x—07t x—L~
Under these conditions, theorem 15.14 on page 209 assures us that the partial sums of the above
sine series will uniformly approximate u(x, ¢) for 0 < x < L and a fixed value of ¢.
So let us choose the sine series to represent u(x, t) . Also, to emphasize their dependence
on ¢ and to avoid some confusion later, let’s denote the k™ coefficient by ¢y (¢), instead of by .
With these choices, we have

u(x, ) = im(t) sin("L_”x) (16.2)
k=1

where the ¢’s are functions to be determined.

The next step is to plug this representation for « into the heat equation. We will ignore the
warnings given at the beginning of chapter 15 and naively compute the derivatives in the heat
equation by differentiating the terms in the series,

ou 3 = . (km
% = §Z¢k(t)51n(fx)
k=1

= i%[‘f’k(t)sin(i—ﬂx)] = id)k’(t)sin(kL_ﬂx)
k=1 2
and
gi_g - ;ﬂ_zgfﬁk(t)sm(_x)
- igi_z [¢k(t)sin(kL_7Tx>]

= Swo[- () ()] = -3 (5 oosn(5)

With these expressions for the derivatives, equation (16.1a) becomes

lid’k’(t)sin(k;x) + Kg);(/zr)%k(t)sin(?x) =0

Letting

this can be written more concisely as

= k

> [¢k’(t) + k2/\¢>k(t)] sin(f”x) =0

k=1

Look at this last equation. For each value of ¢, the left-hand side looks like a sine series

which, according to the equation, equals O for all x in (0, L). Surely, this is only possible
if each coefficient is 0. Here, though, the coefficients are expressions involving the ¢;’s. So
each of these expressions must equal 0. This gives us bunch of differential equations,

doy

-t Kagp =0  for k=1,2,3,... . (16.3)
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These differential equations are easy to solve. Each is nothing more than

dy
o T = 0

with y = ¢ and y = k*A — one of the simplest first order linear equations around. You
should have no problem confirming that its general solution is y = Be™' where B is an
arbitrary constant. Hence,

o) = Bre M for k=1,2,3, ...

where the By’s are yet unknown constants.
With these formulas for the ¢;’s, formula (16.2) becomes

o0
u(x,t) = ZBk eKM sin(%x) . (16.4)
k=1

In deriving this expression for u(x, ¢) , we assumed u(x, ¢) exists and satisfies the heat equation
(equation (16.1a)) and the endpoint conditions in equation set (16.1b). All that remains is
to further refine our expression so it also satisfies the initial condition of equation (16.1c),
u(x,0) = f(x). Using the above formula for u(x, ¢) in this equation, we get

f(x) = ux,0 = ZBk ek ’wsm< ) ZBk sm(—x)
for 0 < x < L. Cutting out the middle yields
- k
. b/
fx) = I;Bkmn(fx) for 0<x<L |,

which, by an amazing coincidence, looks exactly as if we are representing our known function
f by its Fourier sine series. Surely then, each By must be the corresponding Fourier sine

coefficient for f,
L
2 . (km
= Z/o fx) sm(—L x) dx

That finishes our derivation. If the solution exists and our (occasionally naive) suppositions
are valid, then our heat flow problem (equation set (16.1)) is solved by

ulx,t) = Z Bie™ s1n< T x) (16.5a)

where

2
b
» = K(z) (16.5b)
and
2 L km

= Z/O fx) sm(Tx) dx for k=1,2,3,... . (16.5¢)

This set of formulas is often called a formal solution to the heat equation problem because we
obtained it through a process of formal manipulations which seemed reasonable, but were not
all rigorously justified.
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> Example 16.1:  Consider solving our heat flow problem when L = w, x = In2, and the
rod is initially a constant temperature throughout, say,

f(x) = 100

Here: /| =1, formula (16.5b) simplifies to

A= K(%)Z =In2 ,

and

—k%t
e N o Rl _ (elnz) = 2¥ for k=1,2,3,...
Formula (16.5¢) yields
L
2 . (km

g
- 3/ 100 sin(kx) dx = @[1 - (-1)’“]
T Jo km

Hence, according to formula (16.5a), the formal solution to this heat flow problem is

o0
2y .
u(x,t) = ZBke_k M sm(kL—nx)
k=1

i 2= nF 2  singn
k=1

— 40 (1>tsin(x) + @(1)3215in(3x) + 400 (1)52t sin(5x)
T oo \2 3t \2 57 \2

400 (1\7" . 400 (1\9 .
+ —<§) sin(7x) + <§) sin(9x) + ---

T 91

Validity and Properties of the Formal Solution

The question remains as to whether formula set (16.5) is a valid solution to our heat flow problem.
There are several parts to this question: Does the series converge for all values of x and ¢ of
interest? If so, is the resulting function suitably smooth for the expressions in equation set (16.1)
to make sense, and if so, does this function satisfy those equations?

Unfortunately, we cannot completely address these questions using the theory developed
thus far. Until now, all of our infinite series have been generated from “known” functions. Here
though, the function of interest (our solution) is given by an infinite series; so we need to develop
some material regarding whether such a function is well defined, continuous, differentiable, etc.
We also need to confirm that, if it is differentiable, then it can be differentiated by differentiating
the series term by term. We will develop this material rigorously in section 16.3 and apply it to
validating the above solution formula in section 16.4.

Partial answers to these questions, along with some insight, can be gained by examining
the terms of our series,

By e KM sin(kL—ﬂx> for k=1,2,3, ...
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Remember A > 0 and

| Bi|

%/OL fx) sin(kL—ﬂx) dx

%AL|f(x)|‘sin<k%x>‘ dx < %/{)L|f(x)|dx

So, letting
2

L
A= f/o £ (o)l dx

we see that
‘Bke_ K22 sm(?x)‘ < Ae_kz)‘t for k=1,2,3, ...

If ¢ is also positive, then each e~¥** shrinks to 0 very rapidly as k — oo . This ensures that
the series formula for u(x, t) converges absolutely. Consequently, we are assured that u(x, ¢),
as defined by formula set (16.5), is well defined when 0 <x <L and 0 <¢.

In section 16.3 we will also see that these exponentially decreasing terms ensure that, as
longas ¢ > 0, u(x, t) is an infinitely smooth function of both x and ¢ whose partial derivatives
can all be computed by differentiating the series term by term. This will allow us to rigorously
confirm our formal solution to be a valid solution to our heat flow problem (and a very nice one,
at that) when ¢ > 0.

On the other hand, if ¢+ < 0, then e*kz)" = ek2)‘|’| — o0 as k — oo. Thus, unless the
By’s shrink to 0 extremely rapidly as k — oo, the terms of our series solution will blow up,
and the series itself diverges whenever ¢ < 0.

In short:

The series formula given by formula set (16.5) succeeds beautitully as a solution to
our heat flow problem for t > 0 and, typically, fails miserably for t < 0.

There is something else worth noting about our series solution: Each term in that series,

ulx,t) = ZBke sm( 7 x) .

rapidly shrinks to 0 as ¢ — oo. From this it can readily be shown that the maximum and
minimum temperatures in the rod must be approaching 0 degrees fairly quickly as ¢ gets large.

?» Exercise 16.1:  Let u(x, t) be the infinite series solution found in above example 16.1.

a: Verity that

400 1\
lu(x,t)] < 7,;(5) when t>0 . (16.6)

b: Using the above and the formula for computing the sum of a geometric series, show that
t
lu(x, t)] < 800 (1) when t>1
T \2

c: Assuming u(x,t) is the temperature distribution in a rod, what does the above tell you
about the maximum temperature in the rod when t = 17?7 when t =2 ? when t = 10 ?
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?» Exercise 16.2:  Again, let u(x,t) be the infinite series solution found in example 16.1,
above. This time, consider this infinite series when t = —1.

a: Write out this series.
b: Verify that this series does not converge to anything when x = /5.

c: Show that this series cannot be the sine series for any piecewise continuous function
on (0, ). (Remember, if it were the sine series for such a function, then the coefficients
would be bounded.)

Uniqueness of the Solution

There is one more question we should ask regarding our series solution: If it is a solution, is it
the only possible solution, or have we just found one possible way the temperature might vary?

To a great extent, we can answer this question by redoing our derivation a little more carefully
and by applying some of the results concerning integrals of functions with two variables from
chapter 7. To see this, suppose u(x, t) is any solution to our heat flow problem that it is valid
for 0 <x <L and a <t < b (with a < 0 < b so that the initial condition makes sense).
Because part of being a solution means that u(x, ¢) is a sufficiently smooth function of x and
t , for the equations in the heat flow problem (equation set (16.1)) to make sense, it is reasonable
to assume u(x, t) is twice differentiable with respect to x , differentiable with respect to ¢, and

that

9 92
e ) e and Ju
ox

u(-xv t) s axz E

are all uniformly continuous functions of x and ¢ . The pointwise convergence theorem for sine
series (theorem 13.18 on page 171) then assures us that, for each x in (0,L) and ¢ in (a, b),

w6y = Y i) sin(l%x)
k=1

where

L
o) = Lz/o u(x,t)sin(kfﬂx> dx

Using some of the results from chapter 7, the fact that u(x, t) satisfies equations (16.1a) and
(16.1b), and integration by parts, we find that each ¢y is a smooth function, and

L
(1) = %[3/0 u(x, ) sin(’ﬂx) dx] = oo = Adit) (16.7)

L L

where, as before,
2
)\' =K <£)
L

(see exercise 16.3, below). Solving this differential equation gives us

o) = Bre M for k=1,2,3, ...
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with the Bj’s being undetermined constants. Then using the above two formulas for ¢y,

L

Bk = }E}I(])(pk(l) = t]LI)I(])% ) u(x,t)sin(kfﬂx) dx
L
= %/ lim u(x,t)sin(k—”x) dx
L 0 t—0 L

_ %/OL u(x,O)sin("L_”x) dx = %/OL £ sin(kTﬂx) dx

Putting this all together, we find that we have rigorously rederived the formulas in set (16.5) as
formulas describing any given solution to our heat flow problem. Consequently, any solution
to our heat flow problem that satisfies the smoothness conditions assumed above must be given
by formula set (16.5). (This doesn’t mean there might not be other formulas describing this
function, only that no formula can describe a different function satisfying our problem.)

?» Exercise 16.3:  Verify equation (16.7) by doing all the computations indicated by the “- - - ”]

16.2 The Vibrating String Problem
Setting Up the Problem

Envision an elastic string (such as you might find on any guitar or banjo) stretched between two
fixed points on the X—axis, say, from x = 0 to x = L (with L > 0). For simplicity, we’ll
assume the string only moves vertically, and we will let

u(x,t) = vertical position at time ¢ of the portion of string located at horizontal
position x .

Because the ends of the string are fixed at x = 0 and x = L, u(x,¢) is only defined for
0 <x < L, and we have the endpoint conditions

u@,t) =0 and ull,t) =0

After making a few idealizations and applying a little physics, it can be shown that

3%u 2 9%u
a2 ax2

where ¢ is some positive constant (the reason for using c¢? instead of ¢ will be clear later).?
This is the basic (one-dimensional) wave equation.*
We will assume the initial shape of the string is given by the graph of some known function
fon (0,L),
ux,0 = f(x) for 0<x <L

3 More precisely, ¢ = ,/%/, where t and p are, respectively, the tension in and the linear density of the string when
the stretched string is at rest.

4 Another famous equation whose derivation we are skipping. Look it up in any decent introductory book on partial
differential equations.
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For most (unbroken) strings we would expect f to be continuous and piecewise smooth. In
addition, since the string is fastened at the endpoints, we should have f(0) =0 and f(L) =0.

As it turns out, this is not quite enough to completely specify u(x, t) . An additional initial
condition is necessary. We will take that condition to be

ou
at 1(x,0)

=0 for 0<x <L

In other words, we assume the string is not moving at time ¢ = 0. This would be the case, for
example, if we held the string in some fixed shape until releasing it at t = 0.

Gathering all the above equations together, we find that u(x, ) must satisfy the following
system of equations:

32u 282u
87 — C 3x—2 = 0 for O <x <L (1683)
u,t) =0 and u(ll,t) =0 (16.8b)
ux,0) = f(x) for 0<x <L (16.8¢c)
ou
— =0 for 0<x<L (16.8d)
at 1(x,0)

Again, there is an implicit requirement that u(x, ¢) be a sufficiently smooth function for the above
equations to make sense. Keep in mind that ¢ is a positive constant and f is a known uniformly
continuous and piecewise smooth function on (0, L) satisfying f(0) =0 = f(L). (Later we
will realize that f’ must also be piecewise smooth.) While it is reasonable to be interested in
the solving this problem just for # > 0, such a restriction on ¢ turns out to be mathematically
unnecessary. So we will assume the above equations are valid for —co < ¢t < 00.

A Formal Solution

The process of finding a solution to our vibrating string problem is very similar to the process we
went through to solve our heat flow problem. As then, we begin by supposing a solution u(x, ¢)
exists, and, as with our heat flow problem, the end conditions (equation set (16.8b)) suggest that
u(x,t) should be represented by a Fourier sine series on 0 < x < L with the coefficients being
functions of time,

w(x, ) = i@((t) sin(’%”x) . (16.9)
k=1

As we noted with the heat flow problem, this formula equals O when x =0 or x = L.
Naively differentiating, we get

2u 92 i ©si <kn ) _ i "(ysi (kn )
a2 92 k_1¢k S\ X)) = et G- () sin{ 7-x
and

2% = izgm(t)sin(lzrx) = _g¢k(t) (kL—ﬂ)zsin(anx)

With these expressions for the derivatives, equation (16.8a) becomes

g:cbk”(t)sin(’;”x) + czgm(r) </€Ll)zsin</;—”x) =0 ,
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which is written more concisely as

i[m”(r) + (kv)2¢k(t)] sin(’%”x> — 0

k=1

using, for lexicographic convenience,

This time each ¢y must satisfy the second order linear differential equation

d*¢y 2

— + (kv =0

2 (kv)“ o
Again, we have a simple differential equation that should be familiar to anyone who has had an
elementary course in differential equations. Its solution is

¢r(t) = Agsin(kvt) + By cos(kvt)

where Ay and By are constants yet to be determined.
With this formula for the ¢x’s, equation (16.9) becomes

u(x,t) = Z[Ak sin(kvt) + By cos(kvt)]sin(ll—nx) . (16.10)
k=1

The Ay’s and By’s will be determined by the initial conditions, equations (16.8c) and (16.8d).
For the second initial condition, we will need the partial of u with respect to ¢, which we might
as well (naively) compute here:

Ju ) N : . (km
= =3 [Agsin(kvt) + By cos(kvt)] sin(
ot ot — (L )
- k
= Z[Akkv cos(kvt) — Bkkvsin(kvt)]sin(%x> . (16.11)
k=1

Combining formula (16.10) for u(x, t) with the first initial condition gives us

f@) = u(x,0) = 3 [Agsin(kv0) + Bkcos(kvO)]sin("le)
k=1

o
= Y Ac-0 + Bk-l]sin(kfﬂx>
k=1

for x in (0, L). Thus, we have
°° k
flo) = ZBksin(Tnx> for 0<x<IL
k=1

which looks remarkably like an equation we obtained while solving our heat flow problem. As
before, we are compelled to conclude that the By’s are the Fourier sine coefficients for f . That
is,

2 L . (km
Bo=17 | f(x)sm(Tx) dx  for k=1,2,3, ...
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The second initial condition, along with formula (16.11), yields

ou
ot

I
M2

o [Ackv cos(kv0) — Bkkvsin(kv())]sin("L_”x)

x~
I
—_

I
M2

[Ackv-1 — Bykv - 0] sin(kfﬂx)

=~
Il
_

o0
= Arkv sin(kL—nx> for O0<x<L ,
k=1

strongly suggesting that
Ay =0 for k=1,2,3,...

Our derivation is complete. If our vibrating string problem (equation set (16.8)) has a
solution and our (occasionally naive) computations are valid, then that solution is given by

o
ke . (km
u(e, 1) = Y By cos —t) sm(—x (16.12a)
= <L L )
where
L
2 . (km
By = Z/o f(x)sm(fx) dx  for k=1,2,3, ... . (16.12b)

Once again, we have derived a “formal solution’; that is, a formula obtained through formal
(naive) manipulations which we hope can be rigorously verified later.

> Example 16.2: Consider solving our vibrating

string problem assuming L = 1 and ¢ = 3, and K
starting with the middle point of the string pulled
up a distance of ', (see figure 16.1). That is,
u(x,0) = f(x) with | | >
0 ) 1 X
fx) = { X it 0<x<' . Figure 16.1: The initial shape of the
1—x it h<x<1 string in example 16.2.

With these choices, equation (16.12b) is

%/OL fx) sin(kL—nx) dx

1/2 1
/ xsin(kmrx) dx + (1 — x)sin(kmrx) dx
0 I

- ) R

By
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Thus, according to formula (16.12a), the solution to this vibrating string problem is

ux,t) = gsin(%) (%)zcos(k?mt)sin(knx)

=1 (%)2 cos(3mt)sin(rx) + 0 (%)2 cos(2 - 3mt) sin(2wx)

+ (=1 (%)2 cos(3-3mt)sin(3rx) + 0 (%)2 cos(4 - 3mt) sin(4mx)

An Alternate Solution Formula and Validating Our Solution

Formula set (16.12) can be converted to a much simpler form once we recall a well-known
trigonometric identity for the product of the sine and cosine functions. That identity with
formula (16.12a) yields

o0

ulx,t) = By, sin Iﬂx cos kc—”t
P L L

o0
1[ . [kn ke . (km kem
= By = [sm(—x —t) sm(—x - —t)]
kZ—l k3 Xttt L L

This, of course, is the same as

u(x, ) = % [i By sin("L—”(x +ct)) + in sin("L_”(x - ct)):| (16.13)
k=1 k=1

provided the two infinite series converge.
Recall now, both that the Bj’s are the Fourier sine coefficients for f, and that the sine
series for f is just the trigonometric series for the odd periodic extension of f,

f(s) if 0<s<L
fols) = —f(s) if —L <s<0
f(s—2L) in general
If you check, you’ll find that our assumptions for f guarantee that its odd periodic extension
is continuous and piecewise smooth on the entire real line. The basic theorem on pointwise

convergence (page 154) assures us that the Fourier series for f, converges to f,(s) for every
s on the real line. In other words, we can safely write

o
fols) = FS.[f]l, = I;Bksin("L_”s) forall —oo <s < o0

This means equation (16.13) simplifies to
u(x, 1) = %[fg(x Tet) + folx —eb)] (16.14)

for every 0 < x < L and real value ¢.
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Equation (16.14) holds whenever u(x, t) is given by equation set (16.12) and f is a
continuous, piecewise smooth function on (0, L) with f(0) = 0 = f(L). Conversely, by
reversing the above steps, we can clearly derive equation set (16.12) from formula (16.14). Thus,
formula (16.14) and formula set (16.12) are equivalent, and we can verify that both describe a
valid solution to our vibrating string problem by confirming that either one is a valid solution.
Naturally, it is formula (16.14) that we will verify.

The confirmation is straightforward. Since f, is continuous, u(x, t), as defined by for-
mula (16.14), is clearly a well-defined, continuous function of x and ¢. Letting t+ = 0 and
0<x<L,weget

u@,0) = S fo@+0) + fx=0] = J[f&) + f®] = f&)

verifying that the initial condition of equation (16.8d) is satisfied. To verify the other initial
condition in equation (16.8d), we first observe that, by the chain rule,

Z—L: = % [%fo(x +ct) + %fo(x - ct)]
= (R G +en) (o) + (£ —en) (=0)]

= S[f" e = £ —en)]

Plugging ¢ = 0 then gives

ou
ot

=3[0 = f"W] =0

(x,0)

To see that the required endpoint conditions are satisfied (i.e., thatu(0,¢) =0 =u(L,t)),
first observe that, because f,, is an odd function and is periodic with period 2L ,

fo(_Ct) = _fo(Ct)

and
f(L—ct)y = f(L—ct—2L) = f(=L —ct) = —f(L +ct)
Thus,
w00 = J[fo0+et) + fo0—en] = S[folet) = folen)] = 0
and

[folL +ct) — fo(L +ct)] = 0

N =

u(l,6) = S[foll +ct) + foll —c)] =

Confirming that u(x, t) satisfies the wave equation (equation (16.8a)) is a simple matter of
computing the appropriate derivatives. Assuming f,(s) is twice differentiable at s = x + ct
and s = x — ct, and using the chain rule, we find that

2
8—fo(x tct) = f,(xxct) ,
dx2
while
52
szl e = [f"x+en)] (£o)* = Af,/ (x £ct)
Hence,
9u 21 ” ” 282”
8?ZCE[fg(x+Ct)+fg(x_Ct)]:Cax—z 5
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verifying that the wave equation is satisfied at every (x, ¢) suchthat f,(s) is twice differentiable
ats=x+ct and s =x —ct.

There is a slight technical difficulty here. When we set up our problem, we saw no reason
to assume anything about the second derivative of f . On the other hand, requiring f to be,
say, “piecewise twice differentiable” on (0, L) would hardly be much of a practical restriction.
Besides, assuming the wave equation and initial condition both hold, we see that

92u

2
-2 = cz%u(x,O) = A" (x)

(x,0) X

x.,0) x2

So if f” is not reasonably well defined on (0, L), neither is the initial acceleration throughout
the string.
All this suggests that we modify our requirements on our initial condition to

f is a continuous, piecewise smooth function on (0, L) with a piecewise smooth
first derivative and satisfying f(0) =0= f(L).

Consider it done.
With these modified requirements, the second derivative of the odd periodic extension of
f, fo, is certainly a well-defined, piecewise continuous function on the real line, and the
computations done two paragraphs or so ago confirm that, as piecewise continuous functions,
92u 23214 .

C
ar2 9x2

for 0 <x < L and —oo < t < oo. This completes our verification that u(x, ¢), as given by
either formula set (16.12) or formula (16.14), is a solution to our vibrating string problem.

Do these formulas describe the only solution? Yes. It can be shown (using methods outside
the scope of this text) that the general solution to the wave equation is given by

ux,t) = gx+ct) + h(x —ct) (16.15)

where g and /& are arbitrary piecewise smooth functions on R with piecewise smooth deriva-
tives. If you impose the endpoint conditions and the initial conditions of our vibrating string
problem and solve for g and & you get

g(s) = h(s) = %fo(s) forall s in R

from whence then follows formula (16.14) for the solution.

?» Exercise 16.4:  Using equation (16.15) convince yourself that the motion of a vibrating
string can be described as the superposition of two fixed shapes, one traveling to the left with
speed ¢ and the other traveling to the right with speed c . (For obvious reasons, these two
“traveling shapes” are more commonly referred to as traveling waves. )

Harmonics of a Vibrating String

One advantage of the Fourier series solution to our vibrating string problem is that it allows us to
analyze the sound produced by such a string by looking at the components of the series solution.
For convenience, let’s rewrite that solution as

ulx,t) = ZBk up(x,t)
k=1
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(a) (b) (c)

Figure 16.2: The (a) first harmonic, (b) second harmonic, and (c) third harmonic for a
vibrating string of length L sketched at various times as functions of x .

where
kem

2L

The individual uy’s are often referred to as the modes of vibration or the harmonics, with u
being the first or “fundamental” mode/harmonic. The graphs of the first three harmonics —
ui(x,t), upy(x,t),and usz(x,t) — have been sketched as functions of x for various values of
¢t in figure 16.2. Notice that uy (x, t) is nothing more than a sine function of x being scaled by
a sinusoid function of time with frequency v . It is that vy which determines the pitch of the
sound resulting from that mode of vibration. The magnitude of By, of course, helps determine
the “loudness” of the sound due to the k" harmonic, with the perceived loudness increasing as
By increases. (However, the relation between By and the apparent loudness is not linear and is
strongly influenced by the ability of the ear to perceive different pitches.)

In theory, one can produce a “pure tone” corresponding to any one of these frequencies (say
v3 ) by imposing just the right initial condition (namely, u(x, 0) = u3(x, 0)). In practice, this
is very difficult, and the sound heard is usually a combination of the sounds corresponding to
many of the harmonics. Typically, most of the sound heard is due to the fundamental harmonic,
because, typically, people pluck strings in such a manner that the first harmonic is the dominant
term in the series solution. For example, whether in a violin or a banjo, v is approximately
440 cycles/second for a string tuned to A above middle C. The other harmonics provide the
“overtones” that modify the sound we hear and help us distinguish between a vibrating violin
string and a vibrating banjo string.

up(x,t) = sin(lCL—nx> cos(2m vit) and vy =

> Example 16.3: In exercise 16.2 we obtained
2 2
ux,t) =1 (;) cos(3mt)sin(rx) + 0 (%) cos(2 - 3mt) sin(2mx)

+ (-1 (%)2 cos(3-3mt)sin(3rx) + 0 (%)2 cos(4 - 3mt) sin(4mx)

as a solution to a vibrating string problem. From this we see that the first four harmonics for
this string are

ui(x,t) = sin(mwx)cos(2mwvit) , ur(x,t) = sin(2mwx)cosmvrt)
uz(x,t) = sin(3wx)cos(2mwvst) and uqg(x,t) = sin(4mx) cos(2mwvyt)
where 3 0
Vo= 3 , v, = 3 s V3 = 3 and vy = 6
The fundamental harmonic frequency is vi = “/», and the other harmonic frequencies are

integral multiples of the fundamental. In this case, the first harmonic is certainly the dominant
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component of the above solution. However, if the the units on t are seconds, then the first
harmonic frequency of 3> cycles per second is somewhat below what most people can hear,
and so, as far as most people are concerned, the first harmonic will not contribute significantly
to the sound heard from this vibrating string.

16.3 Functions Defined by Infinite Series

In previous chapters, we mainly discussed infinite series that were generated (as Fourier series)
from known functions. In this chapter we suddenly find ourselves interested in defining functions
using known series of functions. Let’s consider this situation for a little bit.

Strongly Convergent Series

Often we are fortunate enough to be dealing with infinite series of functions in which the terms
of the series are bounded by numbers that, themselves, are terms of an absolutely convergent
series. We will call such infinite series of functions “strongly convergent”> To be more precise
and, perhaps, a little more clear, suppose we have an interval (a, b) and a sequence of functions
on this interval, say, V1, ¥2, ¥3, . ... The corresponding infinite series of functions

D Yis)
k=1

will be called strongly convergent on (a, b) if and only if there is a sequence of nonnegative
real numbers I, I, I3, ... such that both of the following hold:

1. |Yx(s)| < Iy forall s in (a,b) and k =1,2,3,....
o0

2. Y Ik < .
k=1

!> Example 16.4: Plugging in t = 1 into the series obtained in example 16.1 on page 217
gives the following infinite series of functions on (0, ) :

(0.¢]
y o2 [1 - (—1)"] 27 sin(kx)
="
This is a strongly convergent series of functions on (0, ) . To see that, let

Yr(x) = % [1 — (-1)"] 27K sintkx)  for k=1,2,3, ...

For each of these Y ’s and every x in (0, ), we clearly have

200
km

[1 _ (_1)"] 2K sin(kx)‘ < I with Ie = 47%0 <1)k

Wl = | >

5 We could also refer to these series as being “uniformly absolutely convergent” Though linguistically awkward, it’s
certainly a more accurate description.

© 2001 by Chapman & Hall/CRC



Functions[Defined[By[Infinité[Seriek[] 229

Since |1/2‘ <[lLIWwe[¢an[@ise[fhe[geometric[$EFies[formula(see[¢xample[4.1[dn[page[42)[fo
“add up” all these I} ’s, obtaining

— <~ 400 (1\K 400
I; = —(—)=—<oo

k=1

Thus

o
200 [1 — (—1)"] 2k sin(kx)
km
k=1
satisfies the requirements for being strongly convergent on (0, i) .

?» Exercise 16.5:  Letting x = /> in the series obtained in example 16.1 on page 217 gives
the following infinite series of functions on (0, ) :

k=1
a: Show this is a strongly convergent series of functions on (1, c0) .
b: Show this is a strongly convergent series of functions on any interval (T, co) where T

is a fixed positive number.

Certainly, if Z,fozl Yk (s) is strongly convergent on some interval, then Z,fil Yi(s) is an
absolutely convergent series of numbers for each s in the interval. Consequently,

h(s) = ) Yils)
k=1

is a well-defined function on the interval. It also turns out that when the v ’s are “sufficiently
nice”; sois &, and & can be integrated and differentiated by integrating and differentiating the
Y ’s. That is the gist of the following theorem.

Theorem 16.1 (strongly convergent series)
Suppose h is given by a strongly convergent series of continuous functions on the interval (a, b)

h(s) = > W(s) . (16.16)
k=1

Then all of the following hold:

1. h is continuous on (a, b) with
o0
lim h(s) = Y Yua(so)  foreach s in (a,b)
§—>50 =1

2. Let (o, B) be any finite subinterval of (a, b) . If each v is uniformly continuous on
(o, B), then so is h . Moreover,

lim h(s) = D ya(@) and  lim h(s) = D yu(B)
s—>a =1 s> k=1
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3. h is uniformly continuous on (a, b) if each ¢y is uniformly continuous on (a, b) .

4. If g is a bounded, piecewise continuous function on (a, b), and so and s are any two
points in (a, b) , then

> / g(0)Yi(0)do
k=150
converges, and
/g(o)h(o)do = Zf g@)Yr(o)do . (16.17)
S0 k=150

5. Ifeach vy is a smooth function on (a, b) , and Z,fi 1 ViK' (s) Is also strongly convergent
on (a,b), then h is a smooth function on (a, b) with

H(s) = Y v ()
k=1

6. Suppose each Yy is an n't order differentiable function on (a,b) with ¥ being
continuous for each integer k and some fixed integer n . If

o0

Yowds) . Y e, . and Y ™)
k=1 k=1

k=1

are all strongly convergent on (a, b) , then h is n-times differentiable on (a, b), h®
is continuous on (a, b) with

o
K™ (s) = > ™)  for m=1,2,....n
k=1

The proof of this theorem is relatively straightforward, though a little tedious. For conven-
ience, we’ll break it into several parts starting with a “part 0” in which we derive some results
that will be useful throughout the rest of the proof.

PROOF (theorem 16.1, part 0): By the definition of strong convergence we can assume there

are nonnegative real numbers I'1, I, I3, ... such that
|[Yr(s)| < Iy for each positive integer k and each s in (a, b) (16.18)
and
oo
oI < oo . (16.19)
k=1

Now, for any s in (a, b) and any positive integer N,

N 00 N 00 00
h(s) = Y v = Y () — D ()| = | D )| < Y 1)l
k=1 k=1 k=1 k=N+1 k=N+1

Combining this with inequality (16.18) gives us

N

h(s) — Y i(s)

k=1

o0
< Y Ik

k=N+1
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We will find it more convenient to write this last inequality as

N
h(s) = > Yu(s)| < EN) (16.20)

k=1

where

o0
E(N) = Z I, for N=1,23,...
k=N+1

Keep in mind that, because of the convergence of the series in line (16.19), the infinite series on
the right-hand side of our last formula converges and approaches 0 as N — oco. Thus,

lim E(N) =0 . (16.21)
N—o00
PROOF (theorem 16.1, parts 1, 2, and 3): To prove part 1, it suffices to show that, for each
so in (a, b) and each € > 0, there is a corresponding As such that
|h(sg) — h(s)| < € whenever |sg —s| < As

and where A(sp) and h(s) are computed using formula (16.16).
Solet s9 and € > 0 be chosen. Because equation (16.21) holds, we can choose an integer
N¢ sothat E(N,.) < /3. For convenience, let

Ne
he(s) = ) Yis)
k=1

and observe that, by inequality (16.20) and our choice of N,

Ne
h(s) = Y vu(s)

k=1

lh(s) — he()l =

< E(N,) < §

for each s in (a,b). Observe also, that 4., being a finite sum of continuous functions, is a
continuous function. So there is a As > 0 such that

lhe(sg) — he(s)] < whenever |sg —s| < As

WM

Consequently, whenever [sg — s| < As,
[h(so) — h(s)| = |h(s0) — he(so) + he(so) — h(s) + he(s) — he(s)]

I[A(s0) — he(s0)] + [he(so) — he(s)] — [h(s) — he(s)]|

< |h(s0) — he(so)l + lhe(s0) — he(s)| + [h(s) — he(s)]
€ € €
= € 5

completing the proof of the first part.

To prove part 2 we simply repeat the above, replacing sqg with o and B, and restricting
s to being between « and B. And, after adding the observation that the above As can be
chosen independently of sg when the i’s are uniformly continuous, these same arguments
also confirm the uniform continuity claimed in part 3. |
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PROOF (theorem 16.1, part4): ~ Since we’ve just shown % to be continuous, we know gh is
piecewise continuous and the integral on the left-hand side of equation (16.17) is well defined.
Also, since “an integral of a finite sum is the corresponding sum of the integrals”,

s s N N
/ g(o)h(o)do = / g(o) [me + h(o) — Zwk(cr)] do
S S k=1 k=1

0 0

N s s N
> [ s@mrdo + [ g [h(o) = Zwk(cr)] do
k=175 50 =1

for every positive integer N . So

0 S0

s N s
/ g@)h(o)do = lim 3° / g(@) k(o) do
B k=l (16.22)

s N
+ lim f g(0) [h(a) — Zwk(a)} do
N—oo 50 =1

Consider the last limit in the last line above. Since g is bounded, we can let B denote
some finite value such that

lg(e)] < B whenever a <o < b

Using this and inequality (16.20), we have

Ky N s N
/ g(o) [h(a) - Zx/m(a)} do| < f 8(@)I|h(e) — > Yi(o)| do
S0 k=1 S0 k=1
N
< / BE(N)do
50
< BE(N)[s —so] ,
which, because E(N) — 0 as N — oo, means that
s N
lim / g() |h(o) — Zwk(o) do =0
N—oo 50 =1
Plugging this back into equation (16.22) we finally get
s N s
h(o)do = li d 0
/ g(@)h(o) do Ngnotos g@)Wk(0)do + 0
k=150
confirming both the convergence of the series of integrals and equation (16.17). |

PROOF (theorem 16.1, parts 5 and 6):  Because part 6 clearly follows by applying the results
from part 16.1 n times, we will just prove part 5.
The first part of the theorem tells us that

gls) = Y i)
k=1
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is a continuous function on (a, b) . From part 4 we know

/ go)do = > | ¥/ (0)do

0 k=1 Y50

D Wk (s) — Yrls0)]
k=1

D Wkls) — Y yrlso) = h(s) — h(so)
k=1 k=1

So,

N

h(s) = h(so) + / glo)do
50
and

We) = Ghoo + & [ g@rds = g = S we) i
S0 k=1

Applications to Fourier Series

The results described in the previous subsection can be applied to any Fourier series whose
coefficients are terms in an absolutely convergent series. Theorem 15.9 on page 203, for example,
is an immediate corollary of the theorem on strongly convergent series in the previous subsection.
So is the following, which will be of particular interest to us in validating the series solution
obtained in section 16.1.

Theorem 16.2 (strongly convergent sine series)
Suppose ;2 by is an absolutely convergent infinite series of complex numbers and L is some
positive value. Let f be defined on (0, L) by

o
f@ =Y b sin("le)
k=1
Then f is a uniformly continuous function on (0, L) with

lin(}+ f(x) =0 and lim f(x) =0

x—>L~

Moreover:
1. f is a uniformly continuous function on (0, L) with

lin(}+ fx) =0 and lim f(x) =0

x—L~

2. The above series is the Fourier sine series for f . That is,

L
by = %/O f(t)sin("Lix) dx  for k=1,2,3, ...
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o0
DO Kb| < oo

k=1

for some positive integer n , then f is n-times differentiable, ™ is continuous, and

N k
f(’")(x) = E bkd—m sin(fnx) for m=1,2,...,n
X
k=1

2> Exercise 16.6:  Confirm the claims of the above theorem using the theorem on strongly
convergent series (theorem 16.1 on page 229).

?» Exercise 16.7:  Write out the corresponding “strongly convergent cosine series” theorem.

Convergence of a Parameterized Series

The next result will be useful in computing the limit of a function given by a series that is not
strongly convergent. It is a subtle result, and we will prove it by employing a remarkably clever
construction usually attributed to the early nineteenth-century mathematician Niels Abel.

Lemma 16.3
Let ¢1, ¢2, @3, ... be a sequence of functions on [0, 1) such that, for k =1,2,3,...,

lim ¢r(t) = 1
t—0t

and
1 < ¢r(®) < k1) forall t in (0, 1)

Suppose further that a1, a3, as, ... is a sequence of numbers such that Z,fil aj converges, as
does®

o0
> ax¢u(t)  foreach t in (0, 1)
k=1
Then
o0 o0
lim Zakcbk(t) = Zak
=0t =1

PROOF: We need to show that, for any given € > 0, there is a corresponding At > 0 such

that
o0 o0
ar — Y ar i)
k=1 k=1

So let € > 0 be chosen.
Since Z,f; ay is convergent, there is an integer N = N, such that

00 M
D a = )
k=1 k=1

6 1n fact, we could show that this series converges for each ¢ in (0, 1) if Z,c(’ozl ay converges, but we won’t need that
fact and it would make the proof longer.

< € whenever 0 <t < At

o0

> a

k=M+1

< Z whenever M >N . (16.23)
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Now, for each integer k greater than N, let
k
A = Z aj
j=N+1
Note that Ay4+1 =any+1 and,for k=N +2, N +3, N +4,...,
ar + A1 = Ag

and
k o) 00
A = | D0 aj| = | > aj = ) q
J=N+1 j=N+1 j=k+1
s > € € €
S-Zaj_f_lzajgz_{_zzi. (16.24)
Jj=N+1 j=k+1
Here is the clever bit: Let 0 < ¢ < 1 and observe that, for M > N,
M M
Z ak ¢k(t) = any1dN+1(0) + Z (ax + Ak—1 — Ax—1) k(1)
k=N+1 k=N+2
M
= Antidn() + Y (Ax— A1) (0)

For the sake of brevity, let ¥ denote ¢4 (¢). Then, expanding out the last formula and re-
arranging a few terms, we find that

M M
YO @k = Avpvva + Y (Ax— Ar)Yi
k=N+1 k=N+2

= ANp1¥Ny1 + Ang2 —ANsDYN2
+ (ANy3 —ANDYN3 + - + Ay —Ay—1)¥u

= Ant1(UNt1 —¥Yn42) + Avpa(Uni2 — YN g3)
+ ANp3(UNg3 —VUnga) + - + A (-1 —Ym) + Auvm

M-1

= Au¥m + ) AWk — Yig1)

k=N+1

This, along with inequality (16.24), gives

M M—-1
Y av| < lAmllyml + D 1Akl [k — vl
k=N+1 k=N+1
e M—-1
< |¥ml + 2[ > |1/fk_1/fk+l|j| . (16.25)
k=N+1

Remember, 0 < ¢p41(t) < ¢r(t) < 1 for each positive integer k, and ¥ is just shorthand for
(). So |Ym| = ym and

Wk — Vi1l = 10k (@) — Gr1 (D] = o) — P11 (8) = Yk — Vi1
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Plugging this into inequality (16.25) gives us

M ¢ M-1
> @] < E[W + ) (W—Wﬂ]
k=N+1 k=N+1

But, since

N-1
D Wk — Y1) = Wit — ¥ng2) + vz — Unsa)
k=1

+ WUN3—VUNta) + -+ (U1 — Y]

= YN+1 — VM
and Yy4+1 = dn+1(¢) < 1, our last inequality reduces to
M € € €
3 @] < S [Wnt — Ym) + Y] < S¥wp < S
k=N+1 2 2 2

Thus, after letting M — oo, we have

o0

> ag(n)

k=N+1

foreach ¢ in (0, 1)

=

Finally, consider

N N N
Doar = Y adet) = Y all — gr(0)]
k=1 k=1 k=1
Since this is a finite sum and ¢ (t) — 1 as t — 0" for each positive integer k,
N N
lim > a1 —ge0] = Y a lim [1=¢(0)] = 0
t—0+ =1 e t—0t

This means there is a At > 0 such that

N
D all — i ()]
k=1

€
< 2 whenever 0 <t < At

Applications

(16.26)

(16.27)

Combining this with inequalities (16.23) and (16.26), we discover that, whenever 0 < ¢t < At,

o0

dar = Y ardi(t)
k=1 k=1

k=N+1 k=N+1
N 00 00
< D oall =gl + | Y @] +
k=1 k=N+1 k=N+1
< € + € + € — ¢
— 4 2 4 =
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16.4 Verifying the Heat Flow Problem Solution

Let’s now verify that a solution to the heat flow problem of the first section for positive time is
given by

0
u(x,t) = ZBk e kM sin(kL—”x) (16.28a)
k=1
where
2
=« (%) (16.28b)
and
2 L km
Br = f/o f(x)sm(fx) dx  for k=1,2,3, ... . (16.28¢)

Remember, L and « are positive constants and f is a known piecewise continuous function
on the interval (0, L).

We start by deriving some convenient upper bounds on the terms of the above series. For
reasons that will soon be obvious, we will restrict ourselves to values of ¢ greater than 7" where
T is some positive value (however, because T can be any positive value, our results will still
hold for any ¢ > 0). It will also be convenient to let

R = exp(—%kT) . (16.29)

Observe that, because T and A are positive, we know 0 < R < 1 and (see example 4.1 on
page 42)

e R
> RF = < 00 . (16.30)
ot 1-R

Consider the By’s. These are the Fourier sine coefficients of f . Consequently, letting

5 L
A= Z/o £ @)l dx

we must clearly have

E/OL f(x)sin("le) dx

Next, consider the exponential factor in each term of formula (16.28a). In fact, anticipating
future needs, let’s consider the expression

| Byl =

< A for k=1,2 3, ...

Kle ™  for k=12 3., ...

assuming n is some fixed nonnegative integer (and ¢ > T ). If y is any positive number and
k is any positive integer, then k%>y¢ > ky T, and so,

—k2 _
ekytfekyT

Also, the maximum of x”e™*?T onthe interval [1, oo) is easily found using elementary calculus

to be .
(i) et 1<
C. — yT yT
=
e vt it L o<1
yT
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7> Exercise 16.8:  Using elementary calculus, verify the above claim that x"e™**T < C,, .

In particular now, let y = *,. Then

k
2
ke kAt < ke kAT knefkyTefkyT < CnefkyT Cn I:efyT:I

which can be written more simply as
kn e—kz)»l < C Rk
— n
using the R defined above in line (16.29).
So that we can apply the results from the previous sections, we will now consider the series

solution assuming ¢ is fixed. That is, we will let # be formula (16.28a) with ¢ > T treated as
a constant. For convenience, let’s write this as

h(x) = ) ya(x)  where  yy(x) = Bi e kM sin(kL_”x)
k=1

By the bounds derived above for the By’s and the exponentials, we see that
a0l = |Bee™sin(¥x)| < AcoR*

But, as noted in inequality (16.30),

o0 o0
ZACan - ACOZR" < o
k=1 k=1

This tells us that the series defining % is a strongly convergent series of uniformly continuous
functions (of x ) on (0, L) . Moreover, each v is clearly infinitely differentiable and, for each
positive integer n , we have

an
ax"

_k2 ka \"
B k=it (_)
|Bk| e 7

A\ n k2 7\" k
A(T) ke < () R

0| =

_k2 . (k
Bie k“at s1n<fnx)

IA

IA

From this it follows that

Do) L, > e L, Y W@, Y P
k=1 k=1 k=1 k=1

are all strongly convergent series of uniformly continuous, differentiable functions on (0, L).
The theorem on strongly convergent series (theorem 16.1 on page 229) informs us that £ must
then be uniformly continuous and infinitely differentiable on (0, L) . But A(x) = u(x, t) foran
arbitrary positive ¢. So we’ve just verified that u(x, ¢) is a uniformly continuous and infinitely
differentiable function of x on (0, L) for each # > 0. Moreover, from part 2 of theorem 16.1,
we get

o0

o0
w©0,0) = h0) = lim h(x) = 3 Bre *M sin(’ﬂo) =Y Be .0 =0
x—0*t L k=1

k=1
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and

w(L,t) = h(L) = lim h(x) = inef Cargin(M11) = ZB g _
k=1

x—L~

Thus, the endpoint conditions of equations (16.1b) are satisfied. In addition, from part 6 of
theorem 16.1, we know

2

Tu 0 = K = YW
k=1

)
d _ k
= E 8_2 k“sm(;x)
k=1 %%

= kr\2 k2 km
—Z(T) Bie tsin(fx) . (16.31)
k=1

If we hold x fixed and let ¢ vary over (T, o0), then arguments very similar to those
described above lead us to conclude that u(x, t), as defined by formula (16.28a), is an infinitely
smooth function of ¢ on (T, oo) for each x in (0, L) with

—u(x t) = Z — By e KM sm( ) ZB k*ne " sm( x) (16.32)

foreach 0 < x < L and T < t < co. Since this holds for any T > 0, u(x,t) must be an
infinitely smooth function of ¢ on (0, oo) for each 0 < x < L. Consequently, u(x,t) is a
“smooth enough” function of x and ¢ for the derivatives in the heat equation to make sense
when 0 < x < L and O < ¢. Furthermore, after recalling the formula for A and using formula
(16.31), we find that (16.32) can be written as

%u(x,t) = —ZBka ( ) e L 51n(kL7r )

= kt\2 i . [k 92
= —K By, (—) e s1n( x) = K—Zu(x,t)
= L L 3x
or, equivalently, as
ou 82u
R —_— K_ —_— 5
at dx2

confirming that our formula for u(x, ¢) satisfies the heat equation whenever 0 < x < L and
O0<t.
Finally, to verify that the initial condition given in equation (16.1c) holds, let x be any
fixed point in (0, L) and consider
o0
> axdit)
k=1

where
ar = By sin(kL—ﬂx> and () = ek

This summation is just the formula for u(x, ) written to match the notation in lemma 16.3 on
page 234. It is easily verified that the lemma applies and assures us that

o0 o0 o0
. . . [kn
Iim u(x,t) = lim a t) = a 0) = B s1n<—x
Jim ute,) = JHm Yo b6 = 3 ao©) = 3 Bysin )
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Applications

And since the By’s are the Fourier sine coefficients of f,and f is piecewise smoothon (0, L),
this last equation is just

u(x,0) = tEI(I)l+u(x,t) = f(x)

for every x at which f is continuous, confirming that (16.1c) holds and, thus, completing our
verification that formula set (16.5) on page 216 satisfies our heat flow problem for all positive
time ¢.

There are several points worth noting:

Strictly speaking, the initial condition we verified was that u(xg, 0) = f(xo) for each
xo at which f is continuous. By being a little more careful with the analysis and using
the “nearly uniform” convergence of the Fourier series discussed in chapter 13, you can
actually verify that
lim u(x,t) = f(xp)

t—0F

X—>X0
for each x¢ at which f is continuous. (Whether you care to verify this, of course, is
another matter.)

A lot of work went into proving lemma 16.3 simply so we could verify that u(x,0) =
f(x). We could have avoided all that labor if we had assumed f was also uniformly
continuous on (0, L) with f(0) =0 = f(L). Theorem 15.7 on page 202 would have
then guaranteed the absolute convergence of Y - By . That alone would have ensured
the strong convergence of our series solution as a series of functions of ¢ on (0, c0), and
would have allowed us to conclude that u(x, 0) = f(x) without recourse to lemma 16.3.
The disadvantage would have been that our results would not have applied to perfectly
reasonable cases such as in example 16.1 on page 217.

On the other hand, if you are satisfied with “u(x,0) = f(x) in norm’, then the require-
ment that f be piecewise smooth can be relaxed to “ f is piecewise continuous” Then,
using Bessel’s equality and lemma 16.3, you get

t i 2
lim u(x,t) — fx)> dx = L im E B 2<1—e_k2M) =0
z—>o+/(; Ju ) f( )| 2,>0+k ]| l

Additional Exercises

16.9.

16.10.

Consider the series solution to the heat flow problem of exercise 16.1 on page 217.
Using the first 25 terms of this solution, sketch the temperature distribution throughout
therodat t =0, t = Y9, t =1, and t = 10. (Use the computer math package you
used for sketching partial sums to sine series in exercise 10.7 on page 128.)

Using the formal solution derived in the first section of this chapter, find the solution to
the heat flow problem described in equation set (16.1) on page 214 assuming L = 2,
xk =3, and

a. f(x)=S5sin(mx) b. f(x)=x
Which of these solutions will be valid for all t and which will just be valid for t > 0 ?
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16.11. If the endpoints of our heat conducting rod are insulated instead of being kept at 0 de-
grees, then the temperature distribution u(x, t) satisfies the following set of equations:

3 32
—M—K—uzo for 0<x<L,0<t
ot 9x2
9 d
ou =0 and il =0 for 0<t
ax (0,0 dx 1(0,0)

ux,0) = fx) for 0<x <L

where « and L are positive constants, and f is piecewise smooth on (0, L) .

a. Why, in this case, would it be better to represent u(x, t) using a cosine series,
= k
g
) = GO + D) cos(Tx)

instead of the sine series used for the problem in the first section of this chapter?
b. Derive the formal series solution for this heat flow problem.

c. Find the solution to this problem assuming « =2, L =3, and

1 if 0<x <3

0 if 3h<x<3

o- |

and sketch the temperature distribution (using the first 25 terms of your series solution)
fort=0,t="Y9,¢t=1,and ¢t =10.

d. What happens to the solution found in the last part as t — oo ? Sketch the temperature

2

distribution “at t = 00 ”.

e. What can be said about the differentiability of the solution derived above in the first
part of this exercise?

16.12. If our heat conducting rod contains sources of heat, and we start with the rod at 0
degrees and keep the endpoints at 0 degrees, then the temperature distribution u(x, t)
satisfies the following set of equations:

ou 0%u

Py Kax—zzf(x) for O0<x<L,0<t
u@,1) =0 and u(L,t) =0 for 0<t
ux,0 =0 for 0<x <L
Again, k and L are positive constants, and f is piecewise smooth on (0, L).

a. Derive the formal series solution to this problem assuming that a solution exists.
(Hint: Start with formula (16.2).)

b. Find the solution to this problem assuming k =4, L = 3, and

1 if 1<x<?2
fx) = ,

0 otherwise

and sketch the temperature distribution (using the first 25 terms of your series solution)
fort=0,t=Y90,t=1,and t =10.
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c. What happens to the solution found in the last part as t — oo ? Sketch the temperature

2

distribution “at t = 00 ”.
d. What can be said about the differentiability of the solution derived above in the first
part of this exercise?

16.13. Find the formal solution u(x, t) to the following “vibrating string” problem:

32u 2 32u

c R—
ar2 9x2

u@,t) =0 and u(lL,t) =0

=0 for 0<x <L

u(x,0) =0 for 0<x <L

ou

3t o) = f(x) for 0<x <L

where L and c are positive constants and f is piecewise smooth on (0, L) .

16.14. A more realistic model for the vibrating string that takes into account the dampening
of the vibrations due to air resistance is partially given by the equations
2 3214

u
+2ﬂ¥—cax—2_0 for 0<x<L ,

3%u
a2
u@,t) =0 and ulL,t) =0
where L, B and c are positive constants with 8 being much smaller than ¢ (assume
BL < cm for the following).

a. Derive, as completely as possible, the formal series solution to the above system
of equations. Because no initial conditions are given, your answer should contain
arbitrary constants.

b. How rapidly do the vibrations die out?

c. How does “B ” term modity the frequencies at which the individual terms of the
solution vibrate?
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17

Heuristic Derivation of the Classical
Fourier Transform

In the previous chapters we developed some very useful tools for dealing with periodic functions
on the real line. The question now is whether we can extend the basic concepts already developed
and obtain comparable tools for dealing with nonperiodic functions on the real line. Obviously,
the answer is yes (otherwise, this would be a much shorter text), and judging from the above
title, this must be the chapter where that extension is done.

What we will actually derive, with limited concern for rigor, are the two integral formulas
on which the Fourier transforms are based, along with a fundamental relation between these two
formulas. The basic idea behind the derivation is straightforward. We will take our nonperiodic
function f and, for each p > 0, compute the Fourier series for a periodic function f, having
period p and equaling f over the interval (—7/, P). Then we will see what happens as
p— 0.

Part of our derivation requires that we recognize a certain limit of a summation as being an
integral over the real line. To prepare for that, we will first look at Riemann sums over the entire
real line.

17.1 Riemann Sums over the Entire Real Line

In chapter 4 we discussed computing the integral of a function over a finite interval using a
sequence of Riemann sums.! Though rarely done, a similar approach can be used to evaluate

/OO g(x)dx

where g(x) is, say, a continuous function on R. To ensure that the areas and infinite series
arising in the following discussion are well defined and finite, we will assume g(x) vanishes
“sufficiently rapidly” as x — £oo. (Just what is “sufficiently rapid’; however, will not concern
us at this time.)

Let us first assume g is a real-valued function. That way, f_oooo g(x) dx can be viewed as
the net area between the graph of g and the X—axis. For each Ax > 0, we should be able to
approximate this net area using the net area enclosed by the rectangles indicated in figure 17.1.

1 This may be a good time to quickly review the subsection on well-defined integrals starting on page 37.

245
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e W}

’ i ‘ X1 X1 X2 X3 Xk Xk+1 X

Ax

Figure 17.1: The graph of a real-valued function g and the rectangles for a Riemann sum
(0.¢]

approximation of / g(x)dx.
o

We construct this approximation by

1. first partitioning the entire real line into an infinite number of subintervals

, (x—1,x0) , (x0,x1) , (x1,x2) , (x2,%x3) ,
where

xr = kAx for k=0, £1, £2, ... ,

2. then observing that

Xk+1
/ gx)dx ~ g(xp)Ax for k=0, £1, £2, ... ,
X,

k

3. and, finally, adding up these approximations, getting

o0 0 Xk+1 o
[ swax = > [Tewdx ~ Y g ax
00 ke —oo VX

- k k=—o00

This gives us the infinite series ) po . g(xx)Ax as a “Riemann sum” approximation for

ffooo g(x)dx . It is certainly reasonable to expect this approximation to improve as Ax — 0.
More precisely, we should expect

o0 &
dx = li Ax . 171
f g A;rgok;mgm) x (17.1)

This assumes, of course, that the infinite series Z,fi_oo g(xx) Ax converges for each Ax > 0.
If, instead, g is complex valued with real and imaginary parts # and v,

gx) = u(x)+iv(x)

then, since u and v are real-valued functions, equation (17.1) can be used to find the corre-
sponding integrals of u# and v. Thus,

/ g(x)dx / u(x)dx+i/ v(x)dx

—o0 —0Q —0Q
o0 o0
= lim ulxpg) Ax + i lim v(xg) Ax
Ax—0t k;oo 2 Ax—0t k;oo 2
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&)

= [lim k;oo[um) +iv(xx)]Ax

[e¢)
= lim g(xr) Ax
Ax—0t, =
So we should also expect equation (17.1) to be valid whenever g is a complex-valued function
on R.

Keep in mind that we have not proven the validity of equation (17.1). To do that, we need
to verify that all the various infinite series involved converge, and that the error between the
approximations and the integral goes to zero as Ax — 0. All we have done is to derive an
equation (equation (17.1)) that we can reasonably suspect as being valid when the function g
is “nice enough” Consequently, in the next section, when we get an expression of the form

00

lim glxp)Ax

4
Ax—0 oo

where x; = kAx , we will feel reasonably confident — but not absolutely certain — that this
expression can be replaced with
o
f g(x)dx
—00

Naturally, whatever results we derive using this substitution will have to be rigorously justified,
eventually.

17.2 The Derivation

Let f be some “sufficiently nice” function defined on the entire real line. We will not assume
f is periodic, but, to simplify our derivation, we will assume the following:

1. f(¢) is smooth on the entire real line.
2. All the following integrals and infinite series involving f are well defined and finite.

For each p > 0, let f, be the corresponding periodic function with period p and which
equals f over the interval (—Ph, /),

T B B
fp—p) in general

(see figure 17.2). Clearly, f, is a periodic, piecewise smooth function which is continuous at
every point between —#/, and ?/,. Thus, forall —%, <t < P/,

o0
fO = fp0) = FS.[fp]l, = D ae®* 17.2)
k=—00
where, for each integer k,
Pl _
o = & and ¢ = - fo(t) e 27kt gy
p P J_p,
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248
A
| |
| |
| |
| |
Figure 17.2: Graphs of a smooth function f on R (thin curve) and a periodic approximation
fp (thicker curve).
Letting

1
Aw = =
p

and using the fact that f(¢) = f,(¢) when —P/ <t < P/, we can rewrite the formulas for wy
and ¢ as
Pl

Wi = k Aw and Ck = Aw f(t)e*iZTra)/{t dt
—Phy

Let us now define a function F, by

Ph 2wt
Fp(w) = f@e = hde
—P)
and observe that the above formula for c¢; can be written as

c = AwFp(wy) . (17.3)

Combining equations (17.3) and (17.2) gives us

o0
fO) = > Fplwp) e Aw  for —g <t < g . (17.4)

k=—00

Looking back over our definitions, it should be clear that, as p — oo,

(13 p p”
—§<t<§ - “—00 <t < 0”7 ,

Hht — f@© ,

Aw — 0 ,

and
Fp(w) — F(w)

where ~
F(w) = / f(ye 2™t gr (17.5)
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In taking the limit of equation (17.4), let us use the fact that Aw — 0 as p — oo, and
take the limits as p — oo and Aw — 0 separately:

p—>00

o0
fO = lim Y Fy(op) e Aw
k=—00

o
= lim § Fp(wy) e Aw
p—)OO
Aw—>0k=—00

o0

= lim Y lim Fp(w) > Aw
Aw—>0k_70017—>°°

o0
= lim F(wp) €27 A . (17.6)

Aw—0 [

Comparing this last limit to the limit in equation (17.1) on page 246 (with x = w and g(x) =
F (x) !?™*!), we see that this last limit is simply a Riemann sum formula for the integral

S .
f F(w)6127'[wtdw
—00
Thus, according to equation (17.1), equation (17.6) can be written as

f() = / F)e?™™dw for —oc0 <t < 00 . (17.7)

—00

17.3 Summary

Our goal was to extend the basic formulas for Fourier series to cases where the functions of
interest are not periodic. What we obtained were formulas (17.5) and (17.7). And if you
consider how formula (17.7) is related to formula (17.5), you will realize that we have actually
derived (provided our many assumptions are valid) the following:

If f is a “reasonably nice” function on R, and if F is the function constructed
from f by

F(w) = / - fye 2 @ qr (17.8)

then the original function f can be recovered from F through the formula
0 .
o) = / Fw) ¥ dow . (17.9)
—00

The two integrals in these formulas are called the Fourier integrals and will be the basis for
much of the rest of our study. It is worth remembering that the first integral came directly from
the formula for the Fourier coefficients for a periodic function, while the second came directly
from the formula for reconstructing a periodic function from its Fourier coefficients (i.e., its
Fourier series representation).
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Also, don’t forget that our derivation was not rigorous. We made many assumptions,
including the nebulous “ f is ‘reasonably nice’.” To help pin down the meaning of “reasonably
nice’, we will introduce the concept of “absolute integrability” in the next chapter. After that,
we will be able to properly start our development of the Fourier transform.

By the way, one of the things we will discover is that the derivation in this chapter is not
only nonrigorous — it is misleading. Relatively few functions of interest are as “nice” as this
derivation requires. Certainly, we do not want to restrict ourselves to only smooth functions that
vanish “sufficiently rapidly” on the real line! Determining how to deal with these “less than

sufficiently nice” functions will be one of our big challenges.

© 2001 by Chapman & Hall/CRC



18

Integrals on Infinite Intervals

Throughout the rest of this book, a large part of our work will involve integrals over infinite
intervals (usually the entire real line). While we could treat such integrals as limits of “infinite
Riemann summations’; as in the previous chapter, it is much more natural (and easier) to view
them as limits of integrals over finite subintervals. For example, if our interval is (—o0, 00),
then
00 b
/ f(x)dx = lim fx)dx
—00 b— o0

a
a——0o0

This requires, of course, that f ab f (x) dx exists for every finite interval (a, b) and that the above
double limit exists.

Since these integrals will be so fundamental to our work, we had better discuss a few issues
that could cause problems if we are not careful. The most pressing of these is determining when
we can safely assume our integrals “make sense”

?» Exercise 18.1:  Why does ffooo cos(x) dx not make sense?

18.1 Absolutely Integrable Functions
Definition

A function f is said to be absolutely integrable over an interval («, 8) if and only if we can
legitimately write

B
/ f@)ldx < o (18.1)

This inequality certainly holds if («, B) is a finite interval and f is piecewise continuous on the
interval. On the other hand, if («, B) is, say, (—o00, co) and the continuity of f is unknown,
then, for inequality (18.1) to hold, we must have both

b
1. / | f(x)| dx being a well-defined integral for each finite subinterval (a, b), and
a

2. the double limit b
lim / | f(x)| dx
b—oo J,

o

a——

existing as a finite value.

251
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Ry /
\
R_

(a) (b)

|
I
I
Ry |
|
I
|

Figure 18.1: (a) The graph of some real-valued function f and (b) the graph of its absolute
value.

For the next several chapters we will mainly be considering piecewise continuous functions on

the real line; so the “well definition” of f ab | f(x)| dx will not be an issue. The finiteness of the
above double limit, however, will be an important consideration.

Geometric Significance

It may be helpful to briefly review what absolute integrability means geometrically when f is
a real-valued, piecewise continuous function over an interval («, 8). Recall that

B
/ f(x)dx = “netarea” of the region enclosed by x = o, x = 8, the graphof f(x),
o and the X-axis

= Areaof region Ry — Area of region R_
where (see figure 18.1a)

R4+ = theregion where @ < x < $ and which is bounded above by the graph
of f(x) and bounded below by the X—axis

and

R_ = theregionwhere o < x < B and which is bounded above by the X—axis
and bounded below by the graph of f(x)

Since

Jx) if fx)>0
—fx) if f(x) <0

it should be clear (see figure 18.1b) that | f| is also piecewise continuous on (¢, §) and that

[f)] =

B
/ |f(x)| dx = Areaofregion Ry + Area of region R_
o

= total area of the region enclosed by x = «, x = B, the graph of f(x),
and the X—axis
So f being absolutely integrable over («, 8) is equivalent to the above total area being finite.
The situation is especially simple if («, 8) is a finite interval. From the above it should
be clear that, whenever f is a real-valued, piecewise continuous function on a finite interval

(@, B):

1. The integrals f f f(x)dx and faﬂ | f(x)| dx , being integrals of piecewise continuous
functions over a finite interval, automatically exist and are finite.
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2. Hence, f isautomatically absolutely integrable on (e, ) .

3. Moreover,

B
f f(x)dx| = |Areaofregion Ry — Areaofregion R_ |
o
< Areaof region R4+ + Areaof region R_
B
= f |f ()] dx
o
The situation is less simple if (¢, 8) is an infinite interval (i.e., « = —oo and/or 8 = c0).

Then the above total area can be infinite, and thus f might not be absolutely integrable over the
interval.

For f to be absolutely integrable on an infinite interval (¢, B), the areas of regions R
and R_ must be well defined and finite. Think about this for a moment; it means that, in some
sense, f(x) must “shrink to zero fairly rapidly as x gets large” This is illustrated, for example,
in exercise 18.10 at the end of this chapter.! Of course, if the areas of regions R, and R_ are
well defined and finite, then the integral of f over («, ), being

B
/ f(x)dx = Areaofregion R, — Areaofregion R_ ,
o
is well defined and finite. Moreover, we still have

B
/ fx)dx

= |Area of region Ry — Area of region R_ |

IA

Area of region Ry + Area of region R_
B
[ iswiax
o

On the other hand, if this real-valued, piecewise continuous function f is not absolutely
integrable over an infinite interval («, B), then the area of R or R_ (or both) must be infinite.
In this case, the only way

B b
/ fx)ydx = algr}x f(x)dx

b—pva

can converge to a finite number is for the areas of the regions above and below the X—axis to
just happen to “cancel out” each other as the limits are computed. This is a very unstable type of
convergence and can be grossly affected by any manipulation that affects how these cancellations
occur.? This is illustrated in exercises 18.14 and 18.15.

Some Examples

> Example 18.1 (the rectangle function):  The rectangle function over the interval (a, b),
denoted by rect(q p) , is given by
1 if a<x<b

rect(y py(x) = {

0 otherwise

1 However, f(x) does not have to steadily shrink to zero or even be bounded! That is illustrated in exercise 18.16.

2 We could say that such integrals are conditionally integrable. Recall the distinction between absolutely convergent
and conditionally convergent infinite series, as well as the difficulties with conditionally convergent series. The
situation here with integrals is completely analogous.

© 2001 by Chapman & Hall/CRC



254 Integrals on Infinite Intervals

Since this is a nonnegative function, |rect(, p) (x)| =rect(q,p)(x). If a and b are finite, then

9] a b o)
/ |rect(q,p)(x)] dx = / Odx + / ldx + / 0dx = b—a <
00 ) a b

This shows that rect(, p) Is absolutely integrable over R whenever a and b are finite.
On the other hand, if b = 00, then

oo a oo
/ |rect(a,oo)(x)‘ dx = / 0dx + / ldx = o0
—0o0 —0o0 a
So rect(y,00) IS not absolutely integrable on R.

> Example 18.2:  Consider e~ tib)x step(x) , where a and b are two real numbers with
a > 0 and step is the step function,

o) . ) 1 if 0<x
step(x) = rect,o0)(x) =
P ©.00) 0  if x<0
Noting that

|e(—a+ib)x| — |e—axeibx| — |e—ax| |eibx| — ¢ % .1 ,
we see that

00 ) 0 00 )
/ |e(—a+tb)x step(x)| dx / 0dx + / |e(—a+zb)x| dx
—00 —00 0

o0
=/ e “dx
0

o0
— leax
a 0
. -1 _ -1 _g4.
= lim —e ™™ — e @0 — = |
x>0 a a a

which is finite. So e(~9+ib)x step(x) , with a > 0 and b real, is absolutely integrable on the
real line.

2> Exercise 18.2:  Show that e“ ¥ step(x), with a > 0 and b real, is not absolutely
integrable on the real line.

> Example 18.3:  Consider the sine function over the entire real line. Rather than trying to
compute
(0.¢]
/ [sin(x)| dx ,
—00

just look at the graph of |sin(x)| (figure 18.2). Since the total area under this graph is certainly
not finite, it is clear that the sine function is not absolutely integrable over the entire real line.

?» Exercise 18.3:  Convince yourself that no periodic, piecewise continuous function (other
than the zero function) can be absolutely integrable over R.
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Figure 18.2: Graph of |sin(x)].

18.2 The Set of Absolutely Integrable Functions

We will often need to assume that our functions are both piecewise continuous and absolutely
integrable on an interval (e, 8) .3 To help avoid constantly rewriting “piecewise continuous and
absolutely integrable on the interval («, 8)’; let us agree to denote by A[(«, B)] the set of all
functions that are both piecewise continuous and absolutely integrable on the interval («, 8),

Al(a, B)] = {f : f is piecewise continuous on (&, §) and faﬁ [f(x) dx < oo}

This will allow us to use the phrase “ f is in A[(c, B)]” as shorthand for the phrase “ f is
piecewise continuous and absolutely integrable on the interval («, 8).”
If no interval (¢, B) is explicitly given, then (c, 8) should be assumed to be the entire real
line. That is,
A = A[R] = A[(—00, 00)]

18.3 Many Useful Facts

The following lemmas give a number of useful little facts concerning absolutely integrable
functions. All of them will be used one way or another later on.

By the way, we are not going to rederive all those elementary formulas that follow im-
mediately from treating an integral over an infinite interval as a limit of integrals over finite
subintervals. For example, if a and b are any pair of constants and

/OO fx)dx and /OO g(x)dx

—00
are known to be well-defined finite integrals (i.e., the limits

b b

lim fx)dx and lim
b—oco J, b—00
a——00 a——00

g(x)dx

a

31t is the assumption of absolute integrability that is most important. The assumption of piecewise continuity in
most of the following lemmas can be replaced by just about any other assumption ensuring the existence of the
necessary integrals over finite intervals. In particular, those acquainted with the Lebesgue theory of integration should
try replacing any assumption of a function being “piecewise continuous” with the more general assumption of the
function being “bounded and measurable on each finite subinterval”
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exist and are finite), then I will assume you realize that f fooo [af (x)+bg(x)]dx isawell-defined
finite integral with

/ [af (x) +bgx)]dx = af fx)dx + b/ gx)dx

—00 —00

Tests for Absolute Integrability

The basic way of testing whether a given function f is absolutely integrable on («, 8) is to

simply evaluate
B
[ irwias
o

and see if you get a finite number. Often, however, it is easier to use one of the following lemmas.

The first lemma is simply the reiteration of the fact that, if f is piecewise continuous on
a finite interval (c, B), then so is |f], and thus, the integral of |f| over («, B) exists and is
finite.

Lemma 18.1
If a function is piecewise continuous on a finite interval, then that function is absolutely integrable
on that interval.

The next two lemmas give the integral analogs of two tests for the convergence of infinite
series: the bounded partial sums test on page 43 and the comparison test on page 43. Since the
following can be proven in much the same way as the corresponding infinite series versions, and
since the proofs of the infinite series versions can be found in most calculus texts, we’ll leave
the proofs as exercises for the interested reader.

Lemma 18.2 (bounded integrals test)
Let f be a function defined on an interval («, ), and suppose there is a finite constant M
such that, for every interval (a,b) with o <a <b < 8, fab | f(x)| dx exists and

b
/ [fGo)dx < M
a
Then f is absolutely integrable on (o, B) .

Lemma 18.3 (comparison test)
Let f and g be two piecewise continuous functions on the interval («, ), and assume that,
on this interval,

fl = 18]

B B
/ 0ol dx _/ 800l dx

Then

A

and consequently:
1. If g isin A[(x, B)], thensois f.

2. If f isnotin Al(x, B)], then neitheris g .
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?7» Exercise 18.4: Prove

a: lemma 18.2. b: lemma 18.3.

> Example 18.4:  Consider the piecewise continuous function
f(x) = sin(bx) e™*" step(x)

where a and b are two positive real numbers. From example 18.2 we know

o
/ |e_”x step(x)’ dx < oo
—00

This and the fact that g(x) = e~%* step(x) is piecewise continuous, means that g isin A.
Clearly, also,

—ax —ax

‘sin(bx)e step(x)| < |e step(x)‘ forr —o0 < x < ®©

So the comparison test (lemma 18.3) assures us that

o0

o0
/ |sin(bx)e_”x step(x)| dx < f |e_’”‘ step(x)‘ dx < oo
—o0

Thus sin(bx) e~ step(x) isin A .

The next can be thought of as a “limit comparison™ test, and uses the observation that, when
a>1and X >0,

o0
1 . 1 1 1
/ —adx = lim — =0 + — <
x X x—00 (1 — o)x@—1 (1—a)xo-l (¢ — X1

Lemma 18.4 (a limit comparison test)
Let f be a piecewise continuous function on R. If there is a real constant o > 1 such that

lim |x|* f(x) =0 ,
x—F00
then f isin A.
PROOF: Because |x|* f(x) — 0 as x — oo, there must be a finite positive X such that
Ix|“ f(x) <1  whenever X < |x|

Now define
fx) if x| <X
glx) =

|7 if X < x|

Observe that | f(x)| < |g(x)| for every x in R. So, using the comparison test,

o o0
/ Gl dx < / 1800 dx
—00 —00
-X X 00
=/ lx|~% dx +/ | f(x)| dx +/ x “dx
—00 —-X X
1 X 1
—m+/_xlf(x)|dx+m<oo. I

© 2001 by Chapman & Hall/CRC



258 Integrals on Infinite Intervals

> Example 18.5 (Gaussian functions): Consider f(x) = e~ 7" where y IS any positive
real number. Using L’Hopital’s rule and the fact that e™* — 0 as s — oo, we see that

2 —yx?
. . X . 2x . e’V

lim |x?|f(x)] = lim = lim > = lim
x—£o00 xX—£00 pVX x—>300 2y xe¥* x—>Foo ¥y

=0

Thus, according to lemma 18.4 (with o« = 2), e 7 isin A.

> Exercise 18.5:  Show that x"e™"*" isin A if y > 0 and n is a nonnegative integer.

2> Exercise 18.6:  Verify that
1

a? + 4 2x2

is absolutely integrable whenever a is a nonzero real number.

The next lemma can often simplify the task of verifying whether a given complex-valued
function is or is not absolutely integrable.

Lemma 18.5
Let u and v be, respectively, the real and imaginary parts of a complex-valued function f on
an interval («, 8). Then f isin A[(x, B8)] if and only if both u and v are in A[(a, B)].

PROOF:  First of all, we already know that f is piecewise continuous if and only if both u
and v are piecewise continuous. So all we need to show is that f is absolutely integrable if
and only if both # and v are absolutely integrable.

Suppose f is absolutely integrable on (o, ). Then, since u and v are the real and
imaginary parts of f,

lu@)l < [f )l and ()| = [fx)]
for every x in («, B) (see inequality set (6.1) on page 58). So,

B
/|u(x)|dx

B
/|v(x)|dx

On the other hand, the triangle inequality assures us that

IA

B
f If (0l dx < oo

and

IA

B
f [f(x)dx < o0

[f] = lu(x) +ive)] < [u@)] + vl

for every x in (a, B). So, if u and v are absolutely integrable on («, §), then

B B
/ 0] dx 5/ [0 ()] + [ ()] dx

B B
/ lu(x)| dx +/ lv(x)| dx < oo . I

o

7» Exercise 18.7:  Show that .

1+4+i2mx

is not absolutely integrable on the real line.
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Absolute Integrability and the Integral

The next lemma extends the observations made in the previous section concerning the geometric
significance of absolute integrability when f is real valued.

Lemma 18.6
If f isin A[(«x, B)], then ff f(x)dx exists and is finite. Moreover,

B
/ fx)dx

PROOF: We’ve already seen in the previous section that this lemma’s claim holds when f is
real valued.

Suppose, now, that f is complex valued with real and imaginary parts # and v, respec-
tively. Lemma 18.5 assures us that these two real-valued functions (u and v) are absolutely
integrable on («, B). Hence, since u and v are real valued, we know

B B
/ u(x)dx and / v(x)dx

exist and are finite real values. Clearly then, so is the corresponding integral of f . In fact,

B
< / Gl dx (18.2)

B B B B
/ fx)dx = / [u(x) +iv(x)]dx =/ u(x)dx + i/ v(x)dx

o

Finally, recall that inequality (18.2) has already been verified for the case where («, ) is
a finite interval (in section 6.2 starting on page 59). Thus, if (¢, 8) is, say, (—o0, 00), then

00 b
’/ fx)dx| = blim / fx)dx
b 00
< dim [ 17 dx =/ fol dx

confirming inequality (18.2) when («, B8) is (—00, 00) . Obviously, similar computations will
confirm the inequality when (o, 8) is any other infinite interval. |

Constructing Absolutely Integrable Functions

In our work we will find ourselves manipulating absolutely integrable functions. The following
lemmas will assure us that the results of many of our manipulations will also be absolutely
integrable.

Lemma 18.7
Suppose f isin A, andlet y be any fixed nonzero real number. Then the functions given by
f(x —y) and f(yx) arein A.

PROOF: As noted in chapter 3, f(x — y) and f(yx) are piecewise continuous functions
of x whenever f(x) is. Hence we need only show the absolute integrability, which is easily
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verified using the well-known substitutions ¢ = x — y and t = yx, and the fact that f is
absolutely integrable on R:

/ (e — )] dx =f (o) do < oo

and ~ -
/ Foolde = L[ ip@ide < oo 1

> Example 18.6: Let

(a+ib)x

glx) = e step(—x) and fx) = elma—ibx step(x)

where a and b are two real numbers with a > 0 and step is the step function (from
exercise 18.2 on page 254). Observe that, with y = —1,

glx) = 7T step(—x) = f(—x) = flyx)
Since f was shown to be in A in example 18.2 on page 254, lemma 18.7 assures us that g

isalsoin A .

Lemma 18.8
Any linear combination of functions in A[(«, B)] is also in A[(«x, B)] (ie., Al(x, B)] is a
linear space of functions).

PROOF: Let f be any linear combination of functions in A[(c, )], say,

f=ah+af+--+cnfn

where N is some positive integer, the cx’s are constants, and the fi’s are functions in
Al(e, B)]. Being a linear combination of piecewise continuous functions on («, ), f must
also be piecewise continuous on (¢, 8) . And, using the triangle inequality, we see that

A

p p
/ | f(x)] dx _/ [let i)+ le2 ()| + -+ + len fv )] | dx

B B B
|C1|/ | fio)] dx + |Cz|/ |20l dx + -+ + |CN|/ | fn ()| dx

<o . |
> Example 18.7: Let o > 0. Observe that

e** if x<0
ekl — = e step(—x) + e ** step(x)
e if 0<x

From examples 18.2 and 18.6 we know that e®* step(—x) and e~ **step(x) are in A.
Lemma 18.8 then assures us that their sum, e~ js alsoin A .

Lemma 18.9
Let f bein A[(a, B)], and assume g is a bounded, piecewise continuous function on (¢, 8) .
Then the product fg isin A[(x, B)].
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PROOF:  Since g is bounded, there is a finite value M such that
lgx)| < M for « <x < B

Thus, because f is assumed to be absolutely integrable,

B B
/ [f(x)gx)| dx < M/ |f(x)| dx < oo

This, and the fact that products of piecewise continuous functions are piecewise continuous, tells
us that fg isin A[(a, B)]. i

The following corollary will be of special interest to us.

Corollary 18.10
Let « be any real number. If f isin A, then so are the functions

f(x) eiZnax and f(x) e—i27rocx

A Limit Lemma

The last lemma will be used on occasion in some proofs. It helps describe how an absolutely
integrable function f(x) on R must “shrink to zero” as x — $o00.

Lemma 18.11
Suppose f isin A. Foreach € > 0, there is then a finite positive length {. such that

[Twias <t o [ ireonar < Je
b

—0Q
and

00 b
0 sf f (o)l dx —f ool dx < e

whenever a < —L. and [, <b.

PROOF:  Because of the way we define integrals on infinite intervals,
[} [} b

lim f [f(x)|dx = lim [/ [f(x) dx — / [ ()] dx] =0

b—o0 Jp b—oo | Jo 0
This means that, for each positive value p, there is a finite positive number B, such that

o
/ [fGo)ldx < p whenever B, < b
b
Likewise, for each p > 0, there is a finite positive number A, such that

a
f [feo)dx < p whenever a < —A,
o
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Consequently,

o
A

00 b
_/ )] dx —/ f )] dx

=/ |f(x)|dX+/b [ f)dx < p+p = 2p

—00

whenever a < —A, and B, < b. These inequalities then immediately give the inequalities of
the lemma after taking £. to be the larger of A, and B, with p = . i

18.4 Functions with Two Variables™

With the obvious modifications, the basic ideas and results just developed can be extended to
apply to functions of two (or more) variables. This, in turn, will allow us to extend many of the
results involving integrals of functions over bounded intervals and rectangles from chapter 7 to
corresponding results involving integrals of functions over unbounded intervals and rectangles.*
These results are mainly concerned with the continuity and differentiation of certain integrals,
and the interchanging of the order of integration in double integrals on unbounded rectangles.
They will be of special interest to us because many of the most useful formulas and properties
in the theory and application of Fourier transforms can be derived as special cases of the more
general results discussed here. Proving them here, in fairly general form, will save us from
proving several variations of each later on.

Basic Extensions

If f(x,y) is a function of two variables on an unbounded region R, then the double integral
of f over R is defined by

/f f(x,y)dA = lim /f f(x,y)dA
R ab—:>_ogo tRabcd

cC—>—00
d— 00
where R,pcq denotes the intersection of R with the rectangle (a, b) x (c, d) . This requires,
of course, that the above integral over R,pcq exists for all intervals (a, b) and (c, d), and that
the quadruple limit exists.
A function of two variables f(x, y) is absolutely integrable over a region R of the plane

if and only if
J[ 1renaa
R

exists and is finite. Geometrically, f is absolutely integrable if and only if the total volume of
the solid region above R in the plane and below the surface z = | f(x, y)| is finite.

The set of all piecewise continuous, absolutely integrable functions over R will be denoted
by A[R].

* The material in this section, as in chapter 7, will not be needed for a while. It probably won’t hurt if you delay reading
it until we start referring to it.
4 Before starting this section, you may want to review at least the first part of chapter 7.
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Analogs to all the lemmas previously developed in this chapter for functions of one variable
can also be derived for functions of two variables. We’ll list a few, and let the reader convince
him- or herself of their validity.

Lemma 18.12
Any piecewise continuous function on a bounded region is also absolutely integrable on that
region.

Lemma 18.13
Let f be a piecewise continuous function on some region R, and suppose there is a finite
constant M such that, for every bounded subregion Rg of R,

/f |fx,)IdA = M
Ro
Then f is absolutely integrable on R .

Lemma 18.14
Let f and g be two piecewise continuous functions on a region R , and assume that, on this
region,

[l = 1gx, y

/f Gyl dA < // g0 ) dA
R R

1. If gisin A[R],sois f.

Then

A

and thus:

2. If f isnotin A[R], neitheris g.

Lemma 18.15
Any linear combination of functions in A[R] is a function in A[R], as is the product of any
function in A[R] with any bounded, piecewise continuous function on R .

Lemma 18.16
If f isin A[R] for some region R, then ffﬁ f(x,y)dA exists and is finite. Moreover,

‘/f ey dA| < // £ (e )] dA
R R
Lemma 18.17

Let f be in A[R] for some region R . For each ¢ > 0, there is a finite positive length £
such that, whenever a < —f., ¢ < —L., be <b,and L. <d,

0 < /f Gy dA — /[ foay) dA < e |
R Rabed

where R,pcq IS the intersection of R with the rectangle (a, b) x (c, d).

© 2001 by Chapman & Hall/CRC



264 Integrals on Infinite Intervals

Functions on Unbounded Rectangles

Most, if not all, of our functions of two variables will be defined over rectangles in the plane. Since
we’ve already discussed piecewise continuous functions on bounded rectangles in chapter 7, we
will spend the rest of this chapter seeing how the discussion and results from that chapter
extend when the rectangles are unbounded. In particular, our development of Fourier transforms
will be greatly simplified by using the results developed here concerning the continuity and
differentiation of functions of the form

v =f fory)dy

as well as the results developed here concerning the interchanging of the order of integration.

Unfortunately, while our discussion in the next section will parallel that in sections 7.2
and 7.3, the conditions we will have to impose on f(x, y) will not be as simple as imposed in
those earlier sections (mainly, piecewise continuity). This is because “infinities” can easily be
introduced when integrating piecewise continuous functions over infinite intervals. This can even
happen when the function being integrated is absolutely integrable on R? (see exercise 18.18
at the end of the chapter). To help ensure this does not happen, we will often insist that our
functions satisfy some sort of “uniform absolute integrability” requirement.

So let’s see what “uniform absolute integrability” is.

Uniform Absolute Integrability on Strips

Arectangle R = (a, b) x (c, d) will be called a (thin) strip if one of these intervals is finite and
the other is infinite. Since it will simplify the exposition, we will limit the following discussion
to strips of the form (a, b) x (—o00, 00), although it should be obvious that similar results apply
for functions defined on other thin strips.

It should be noted that, when R is the strip (a, b) x (—00, 00) , the definition of the integral
of f over R reduces to

// f(x,y)dA = lim /f fx,y)dA
R Cd_:)_ogo Red

where R4 denotes the bounded rectangle R,y = (a,b) x (c,d).
A slightly stronger version of “absolute integrability” will be needed to ensure that

/ Fory)dy

is “well behaved” as a function of x . Accordingly, we define f(x, y) to be uniformly absolutely
integrable on the strip R = (a, b) x (—o0, co) if and only if there is a piecewise continuous
and absolutely integrable function fy of one variable on (—o0, co) such that, on R,

f G, = o)l

If fo is such a function, then, from the discussion in chapter 7 (see, specifically, theorem 7.11
on page 84), we know that, for every finite interval (c, d),

d b d
//ﬁ o] dA =f / o) dxdy = (b—a)/ o)l dy
cd c a c
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So, if f is a piecewise continuous function on the strip and | f(x, y)| < |fo(y)|, then

/ fro) dA = lim /f £ (x. y)] dA
R C—>OO cd

im, m_[[ 1wl da
Red

= Cl}il’zloo(b—a)/ | fo)| dy

d— o0

I
5

_ (b—a)/ o)l dy < oo

Thus, any uniformly absolutely integrable function on a strip is also just plain absolutely inte-
grable on the strip.

Single Integrals of Functions with Two Variables
Continuity of Functions Defined by Integrals

Our first theorem requiring uniform absolute integrability is an analog to theorem 7.7 on the
continuity of a single integral of a function with two variables (see page 81). The necessity of
this requirement (or something similar) is illustrated in exercise 18.17 at the end of this chapter.

Theorem 18.18

Let (a, b) be a finite interval, and let f(x,y) be piecewise continuous and uniformly absolutely
integrable on the strip (a, b) x (—o00, 00) . Assume further that, on each bounded subrectangle
R of this strip, all the discontinuities of f in R are contained in a finite number of straight
lines. Then

v =f fory)dy

is a piecewise continuous function on (a, b) . Moreover, if a < x9 < b and x = x¢ is not a
line of discontinuity for f, then  is continuous at xo and

tim v = [t feay = [ reona

X—>X(0 —00

As an immediate corollary we have:

Corollary 18.19
Let

[, y) = gh(y)v(Ax + By)p(x, y)
where g, h, and v are all piecewise continuous functions on the real line, ¢ is a continuous
function on the entire plane, and A and B are any two nonzero real numbers. Assume further

that, for each point xy at which g is continuous, there is an interval (a, b) containing xo such
that f is uniformly absolutely integrable on the strip (a, b) x (—oo, oo) . Then

e =/ fery)dy
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is a well-defined and piecewise continuous function on the entire real line. Furthermore, if x
is any real value at which g is continuous, then

[e¢]

lim f(x,y)dy =/ f(xo,y)dy

x—>xg J_

PROOF (of theorem 18.18): Because f is assumed to be uniformly absolutely integrable,
there is an absolutely integrable function fy on R such that

[fC, ] < oyl

for all (x, y) in the strip on which f is continuous. In particular, if x¢ is any fixed point in
(a, b), then
[ f(x0, I = [fo

This, along with lemma 18.3 and the fact that, by our assumptions, f can only have a finite
number of discontinuities on the line x = x¢ in any bounded rectangle, assures us that f(xg, y)
is a piecewise continuous, absolutely integrable function of y on the real line. So

(0.¢]
voo) = [ foandy
—0o0
is well defined and finite at any point x¢ in (a, b).
To show the claimed continuity of i, let xo be any point in (@, b) not on a line of

discontinuity for f. Pick any finite positive value €, and let fy be as above. It will suffice to
show there is a corresponding Ax such that

[v(x) — Y(xo)| < € whenever |x —xg] < Ax
Since fo isin A, there is a positive value £ such that
- 1 * 1
/ lfo)ldy < ze  and / foldy = ze€
oo 13
(see lemma 18.11 on page 261). Let
L
e = [ rwdy

From lemma 7.7 on page 81 we know v, is continuous at xq, and that
]
tim ye) = veco) = [ faody
X—>X0 )

Thus, there is a Ax > 0 such that, whenever x is within Ax of xg,

Vi) = el < ge

But also, for each x in (a, b),

[V (x) — de(x)l

00 L
‘/ o yydy — /lf(x,y)dy

—! 00
‘/ f(x,y>dy+/[ fxoy)dy
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A

—L 00
_/ £ Gyl dy +/l £ Gyl dy

IA
o=

-1 00
[ _monas + [Tiaondy < 1+

o]

Hence, whenever |x — xp| < Ax,

[V (x) — ¥(xo)l [ (x) — g (x) + g (x) — e (xo) + Yy (x0) — ¥ (xo)]
W (x) — Y@ + [Ye(x) — Ye(xo)l + [¥re(xo) — ¥ (x0)]

1 1 1
- € —€ —€
3 + 3 + 3

= € . I

A

IA

Differentiating Functions Defined by Integrals

The next theorem is easy to prove. Simply take the proof of theorem 7.9 on page 82 and replace
the finite interval (c, d) with the infinite interval (—oo, 0o0) and replace all references to theo-
rem 7.11 and corollary 7.8 with references to theorem 18.22 and theorem 18.18, respectively.’

Theorem 18.20
Assume f(x,y) and 3/, are both well-defined, piecewise continuous functions on a strip
R = (a, b) x (=00, 00) . Suppose, turther, all of the following:
1. For every point xo in (a, b), there is a finite subinterval (a, 13) of (a, b) such that
(@) a<xg<b,and
() f(x,y) and /s, are both uniformly absolutely integrable on the strip (a, b) x
(—00, ).

2. For each bounded rectangle Rg of R,

(a) all the discontinuities of f over R are contained in a finite number of lines of
the form y = constant, and

(b) all the discontinuities of %//y, over R are contained in a finite number of straight
lines, none of which are of the form x = constant .

Then ~
Vo) =/ £ y)dy

is a smooth function on (a, b) . Furthermore, on this interval,

v = 5 remay = [

—00

]

Iy dy
X

The following is an immediate corollary of the last theorem. It will be especially useful
when discussing derivatives of Fourier transforms and convolutions.

5 As far as proving the results in these few sections, the logical order would be to prove theorem 18.18 first, then
theorem 18.22, and finally theorem 18.20. For purposes of exposition, however, it seems more reasonable to present
theorem 18.20 before theorem 18.22.
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Corollary 18.21

Let h be a piecewise continuous function on the real line, v a continuous and piecewise smooth
function on (—o0, 00), and ¢(x, y) a continuous function on R?> whose partial with respect
to x is also a well-defined continuous function on R?. Let A and B be any two nonzero real
values, and define f by

fx,y) = h(y)v(Ax + By)o(x, y)

Further assume that, for each value of x , there is a corresponding interval (a, b) containing x
such that both f and %7/5, are uniformly absolutely integrable on the strip (a, b) x (—00, 00).
Then

e =/ fory)dy

is a smooth function on the real line and
o0

v = [ send = [ e

oo

Double Integrals

A little more care needs to be taken with double integrals over R? than is necessary with double
integrals over bounded rectangles. For example, it is quite possible to have

/ / f(w)dxdy#/ / Fxoy)dydx

even though both iterated double integrals are well defined and finite (an example is given in
exercise 18.19). Of course, if this is the case, then “the” double integral of f over R? cannot
be called well defined.

General conditions ensuring that the above does not happen are given in the next two
theorems.®

Theorem 18.22

Let f(x,y) be a piecewise continuous and uniformly absolutely integrable function on a strip
R = (a,b) x (—oo, 00) . Assume further that, for every finite interval (c, d), all the disconti-
nuities of f(x,y) on the rectangle (a, b) x (c,d) are contained in a finite number of straight
lines, none of which are of the form x = xqo. Then

o0
v = [ rwnd
—00
is a well-defined, uniformly continuous function on the interval (a, D),

b
o) =/ fr,y)dx

is a well-defined, piecewise continuous, and absolutely integrable function on the entire real
line, and

00 b b 00
/ f o y)dxdy = //Qf(x,y)dA _ // Fx.y)ydydx
—0 Ja g a J—oo

6 Those acquainted with the Lebesgue theory should compare these theorems to Fubini’s theorem.
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This theorem can be proven via a relatively straightforward application of the corresponding
theorem for double integrals over bounded rectangles (theorem 7.11 on page 84) along with
theorem 18.18 and lemma 18.17. We’ll leave the details for the interested reader (exercise 18.8,
below).

Using corollary 18.19 instead of theorem 18.18 gives:

Theorem 18.23
Let

FOx,y) = g)h(y)v(Ax + By)g(x, y)

where g, h, and v are all piecewise continuous functions on the real line, ¢ is a continuous
function on the entire plane, and A and B are any two nonzero real numbers. Assume, further,
that f is absolutely integrable on R? and is uniformly absolutely integrable on every strip of the
form (a, b) x (—00, 00) and on every strip of the form (—oo, 00) X (c, d) . Then, the integrals

/f(x,y)dx and ff(x,wdy

define piecewise continuous, absolutely integrable functions on the real line, and

/ / f(x,y)dxdy=/qu(x,y)dA=/ / Fx,y)dy dx
—00 —00 b —o0 —00

Less general, but more easily recognized, conditions ensuring the validity of the last equation
are described in the following corollary.

Corollary 18.24
Let

fx,y) = gx)h(y)v(Ax + By)p(x, y)

where g, h, and v are all piecewise continuous functions on the real line, ¢ is a continuous
and bounded function on the entire plane, and A and B are any two nonzero real numbers.
Assume, further, that any one of the following sets of conditions holds:

1. gand h arein A, and v is bounded.
2. gandv arein A, and both v and h are bounded.

3. h and v arein A, and both v and g are bounded.
4. There is a bounded region R such that f(x,y) =0 whenever (x,y) isnotin Ry .

Then f is absolutely integrable on R?, the integrals

/f(x,y)dx and /f(x,y)dy

define piecewise continuous, absolutely integrable functions on the real line, and
o o o0 [e )
| [ rewardy = [[ swyaa = [ [ peyayar
—00 J —00 R —o0 J—00

?» Exercise 18.8 a: Prove theorem 18.22.
b: Prove theorem 18.23.
c: Prove corollary 18.24 using theorem 18.23.
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Additional Exercises

18.9.[] By[domputing|the[dppropriate[integrals,[determine[Which[¢f[the[following[is[dbsolutely
integrable[¢ver[R[ And[Which[is[iot.

1 X 1
. b. —— A
13580 13580 ¢ JiGo8

18.10.[] Let[]f, () =[k _V{ltep (3F-0) [here[ stepllis[The[$f¢p[function[{see[¢xample[]8.2[¢n
page[254)[and[}/[]is a[fleal[¢onstant.

a.[]SketchhelEraphs[piTlf, @ or(y =[Py =0y =0%ay =Dy = —'og
y = —1[Jand y = =2[]

b.[] Determine[3[][fhe[Values[f] /[ Jfor[Which[]f, (k) [Is[@bsolutely[integrable[¢n[fhe[feal

line.

18.11.[]Let[f, () =[x rect(o,1) (W) [Where[fect (o, 1) (i) [Is[the rectangle function over (0, 1)
(see[¢xample[]8.1[¢n[page[253)[dnd[}/[]is[d[feal[¢onstant.

a. Sketch the graphs of g,(x) fory =2, y =1, y = h,y =0,y =-,
y=—1l,and y = -2.

b. Determine all the values of y for which g, (x) is absolutely integrable on the real
line.

(Notice that f(x) = x77 rect,1)(x) is not bounded — and hence, is not piecewise
continuous — on the interval (0,1) if y > 0. This exercise demonstrates that a
function does not have to be piecewise continuous to be absolutely integrable.)

18.12. Let @ > 0. For each of the following functions, determine all the real values of y for
which the given function isin A .

a. xVe “¥step(x) b. x?e** step(—x)

_ _ 2
c. xVe oMl d xVe ¥

18.13. Using the lemmas and work already done, determine which of the following functions
are absolutely integrable over the real line and which are not.

sin(xz) 1+ el

P N b. ——

1+x2 1+x2

1 . 2
m da S1nc (Zﬂx)
18.14. Let
00 1 00
k k
fx) = kE—o(_l) k+1reCt<k,k+1) and  g(x) = kE—o(_l) rectk k41

a. Sketch the graphs of f, |f|, and g.

b. Show that f is not absolutely integrable over the real line. (Suggestion: Evaluate
/ fooo | f(x)| dx , and compare the result to the harmonic series — see exercise 4.3 on

page 44.)
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c. Show that, even though it is not absolutely integrable, f is “integrable” over the real
line in the sense that

00 b
/ fx)dx = blim / fx)dx

a—

exists and is finite. (Again, you might start by evaluating the integral. Then compare
the result to the alternating harmonic series — see exercise 4.4 on page 44.)

d. Note that g is a bounded, piecewise continuous function on R. Show that, even
though g is bounded and f is “integrable” (as described above), their product, fg,
is not “integrable’’ That is, show that

li
b—

a——

[e'e) b
/ fx)gkx)dx = II;O/ f(x)gx)dx = oo

Why does this not contradict lemma 18.9?

18.15. Repeat the previous problem using

sin(mwx) x

f(x) = sinc(mx) = and gx) = €7

X

(Notes: (1) For some, this may be a challenging problem. (2) Remember, to show fg
is not integrable, it suffices to show that the imaginary part of fg is not integrable.)

18.16. Let

o0

fx) = krect g x-2)(x)
k=1

Sketch the graph of f and verity that this function is not bounded but is absolutely
integrable on the real line. (So a function f can be absolutely integrable on the real
line even though f(x) does not steadily shrink to zero as x — £00.)

18.17. Let R be the region in the XY —plane bounded by the curves

1
= — and =1+ — ,
y y x|

and let
6(y—i)(y—i—1) if (x,y) isin R
f&.y) =
0 otherwise
a. Sketch the region R .
b. Sketch, as a function of y, the graph of z = f(x,y) assuming
i x>0. ii. x <0. iii. x=0.

(These graphs should convince you that f(x,y) is a continuous and absolutely inte-
grable function of y for each real x .)

c. Verify that f is continuous and bounded on R .
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d. By computing the appropriate integrals and limits, show that

li
x—0

m/ fx.y)dy #/ lim x, ) dy

even though all the limits and integrals in this expression are well defined and finite.

e. Why does this inequality not violate theorem 18.18 on page 2657

18.18. Let R be the region in the XY —plane bounded by the curves
x =1 , x = —1 , y = — and y=0,

and let i be the function on the real line given by

o) =/ fory)dy

where
1 if (x,y) isin R

0 otherwise

fx,y) = {

a. Sketch the region R .

b. Show that f(x,y) is absolutely integrable on R?. (Thus, since f is also obviously
piecewise continuous on R?, we know f is in A[[R{Z] .)

c. Evaluate ffooo f(x,y)dy to obtain a formula for ¥ (x) .

d. What happens to ¥ (x) when “x = 07? (This shows that  is not piecewise
continuous and, hence, is not in A[R].)

18.19 a. By explicitly computing the integrals, verify that

/ / f(x,ymxdy;é/ / Foeoy) dy dx

Fy) = (x—y)e 2 step(y)

when

You may use the fact that

b 2
/ e S ds =1

—00

(For a derivation of this last equation, either look in your old calculus book or look
ahead to the first few pages of chapter 23.)

b. Why does this inequality not violate either theorem 18.23 or corollary 18.24?

c. Isthis f(x,y) absolutely integrable on R? ?
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The Fourier Integral Transforms

We are now ready for the first official set of definitions for the Fourier transforms. These defini-
tions are directly inspired by formulas (17.8) and (17.9) on page 249 and require the computation
of integrals over R. Accordingly, we will refer to these transforms as the Fourier integral trans-
forms. Also, to ensure our integrals are well defined, we will only use these definitions for
the Fourier transforms of functions in A, the set of piecewise continuous, absolutely integrable
functions on the entire real line, R." This will not be completely satisfactory. Many functions of
interest are not absolutely integrable. Consequently, one of our goals will later be to intelligently
extend the basic definitions given in this chapter so that we can deal with interesting functions
that are not absolutely integrable.

Words of warning to those who have already seen the Fourier transform in applications:
Different disciplines have different conventions and notation for the Fourier transforms. Don’t be
surprised if the formulas we are about to give for the Fourier transforms look a little strange, and
if one theorem (the principle of near-equivalence) appears to disagree with your interpretation
of the transforms. In fact, there is no real conflict, and we will later discuss some of the standard
conventions and notation used in applications. For now, however, it may be best just to forget
everything you thought you knew about Fourier transforms.

19.1 Definitions, Notation, and Terminology

Let ¢ be any function in A, the set of piecewise continuous, absolutely integrable functions on
the real line. The (direct) Fourier integral transform of ¢, denoted by F7[¢], is the function
on the real line given by

Flolle = FSWIl, = / o) e dy (19.1)

The Fourier inverse integral transform of ¢, denoted by F 171 [¢]1, is the function on the real
line given by

F N = F O, = / 6() T dy (19.2)

(Remember, corollary 18.10 on page 261 assures us that the product of any function ¢(y) in
A with eT27%Y is a piecewise continuous, absolutely integrable function of y for each real

1 Those acquainted with the Lebesgue theory of integration may want to try replacing “.A” with “.L, the set of
measurable and absolutely integrable functions on R’ in what follows.

273
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274 The Fourier Integral Transforms

value x . So ¥7[¢] and 3’71_1[¢] , as defined by the above integrals, are well-defined functions
on the real line.)

Together, F7[¢] and F, 1_1[qb] are called the Fourier integral transforms of ¢, though, in
common practice, ¥7[¢] is usually “the” Fourier integral transform of ¢ . The integrals on the
right-hand side of formulas (19.1) and (19.2) are called the Fourier integrals and the formulas,
themselves, are often referred to as the integral formulas for the Fourier (integral) transforms.

!> Example 19.1 (transform of the pulse function): Let a > 0. The (symmetric) pulse
function of half-width a, denoted by pulse, and graphed in figure 19.1a, is given by

1 if —a<x<a
pulse,(x) = rect(_qq)(x) = )
0 otherwise

From example 18.1 on page 253, we know pulse, isin A. Its Fourier transform is easily
computed:

00 .
?I[pulsea“x = f pulse, (y) e 2™ dy
o

—a ) a ) 0 )
f 0- e—zZﬂxy dy + / 1. e—LZJTxy dy + / 0- e—zany dy
a

—00 —a

1 » .
— : I:e i2max __ ethax]
—i2mwx

= [eiZnax _ e*i27mx:|
i2mx

We can rewrite this in a somewhat more convenient form after recalling that

iA —iA i
. - 1 A
sin(A) = i and sinc(A) = )
2i A
So,
. _ 1 i2max —i2max
Fi[pulse, ]|, = Brx [6 —e ]
pi2max _ ,—i2mwax _ 2 sin(2wax)
T 2anx 2i - 2max
That is,

?I[pulsea“x = 2asinc(2max)

?» Exercise 19.1: Let a > 0. From example 18.2 on page 254, we know that e~% step(y)

isin A . Show that ’

?I[C_ay step(y)]|x = S iiznx

Also, sketch both e=% step(y) and the real and imaginary parts of its Fourier integral trans-
form.

The process of changing ¢ to Fj[¢] is also referred to as the (direct) Fourier integral
transform and is denoted by %7 . Thus, “the Fourier integral transform” can refer to either a
particular function ¥7[¢] or the process of obtaining ¥7[¢] from any given ¢ in A.
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2af
o~ /
X N4

(a) (b)

>
>

|
Q
S 4 - — —

I %u \/f/a X

Figure 19.1: The graphs of (a) pulse, (x) and (b) its Fourier integral transform,
2a sinc(2rwax) . (These graphs correspond to a =~ 1.)

Likewise, the process of changing ¢ to ¥, [1[¢>] is called the Fourier inverse integral
1

transform and is denoted by F; .

Collectively, 7 and 571_1 are often referred to as the Fourier integral transforms, though
F7 is usually viewed as “the” Fourier integral transform and % 1_1 as “the” Fourier inverse
integral transform. Both are transforms as discussed in the section in chapter 2 on operators and
transforms, and the domain of each is A, the set of piecewise continuous, absolutely integrable
functions on the real line.?

19.2 Near-Equivalence

There is a striking similarity between integrals on the right-hand side of formulas (19.1) and
(19.2). Between them, only the sign in the exponential differs. Let us formalize this observation
and some of its more obvious consequences as the principle of near-equivalence.?

Theorem 19.1 (principle of near-equivalence)
Let ¢ be an absolutely integrable and piecewise continuous function on R (i.e., ¢ isin A).
Then the function ¢ (—y) is also in A . Moreover,

FiloWl = F oW = F ' o], (19.3)
and

F oMl = FiloWMllx = Fld=»]lx - (19.4)

PROOF: That ¢(—y) isin A was verified with the proof of lemma 18.7 on page 259.
The first equality in line (19.3) comes from the observation that

FoD]l, = / $() e T dy

= f o) T dy = F oW,

2 This may be a good time to review that section on operators and transforms starting on page 12. In particular, the
discussion concerning the use of dummy variables in formulas for transforms is especially relevant to the next section.
3 In some texts this is called symmetry.
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Next, using the substitution y = —s and the fact that, in the computations below, the y
and the s are dummy variables, we see that

?I_l[qﬁ()’)“_x — / (p(y)eiZn(fx)ydy
y

=—00

/_ ¢(_S) ei2n(fx)(fs)(_1) dS

=400

— /oo ¢(—S) ei2nxs ds

=—00

=—0Q

= / d(=y) eV dy = F e (=],
Yy

This proves the second equality in line (19.3).
The rest of the proof is left as an exercise. I

?»> Exercise 19.2:  Prove the equalities in line (19.4) of theorem 19.1.

> Example 19.2: Let a > 0. From exercise 19.1 we know

— 1
Fr [e “ step(y)] |x = iiionx
By this and the principle of near-equivalence,
o —1[ ,—ay _ o [,—ay _ 1 _ 1
1 [e step(y)]|x = [e step(y)]|_x T a+i2n(—x)  a—i2nx

?» Exercise 19.3: Let a > 0, and consider the function

f(y) = e step(—y)

Sketch the graph of f, and confirm that f(y) = g(—y) where

g(y) = e Vstep(y)

Using this, the principle of near-equivalence, and the results from either of the last two

exercises, show that
1

F[e® step(-y)]|, = —

Using the principle of near-equivalence, it is easy to derive and prove some simple, but
useful, facts about the transforms of even and odd functions. Suppose, for example, ¢ is an
even function (i.e., ¢(—y) = ¢(y)) in A. The principle of near-equivalence then tells us that

FildWM_y = FiloM1l = FiloWMll,
F oMy = F e = F oM

and

F ol = Filo»ll = FiloM]l_s
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This gives us the following corollary.

Corollary 19.2 (transforms of even functions)
Let ¢ be an even function in A . Then both ¥;[¢] and F, fl[qb] are even functions. Moreover,

F e = Filol

Similar arguments lead to the corresponding corollary for odd functions.

Corollary 19.3 (transforms of odd functions)
Let ¢ be an odd function in A . Then both ¥;[¢] and F I_l[qb] are odd functions. Moreover,

Fi gl = —F1l¢]
?» Exercise 19.4:  Prove corollary 19.3 using the principle of near-equivalence.
?» Exercise 19.5: Let a > 0. Is the pulse function from example 19.1 even or odd? Use

the result of example 19.1 and one of the above corollaries to quickly find the Fourier inverse
integral transform of pulse,, .

19.3 Linearity

In chapter 18 we saw that any linear combination of functions from .4 is another function in
A ; that is, A is a linear space of functions. We will now show that #7 and ¥ fl are linear
transforms on this linear space.

Theorem 19.4 (linearity)
Let ¢ and v be any two functions in A, and let @ and B be any two (possibly complex)
constants. Then the linear combination a¢ + By isin A. Moreover,

Frlag + Byl = aFil¢] + BF[¥]
and

F ' ag+ By = aF; 9] + BF Y]

PROOF:  Since the proofs of these two equations are virtually identical (and almost trivial),
we will just confirm the first.
By the definition and the linearity of integration,

Frlag + BY]

/ [ad(y) + BY ()] e 2™ dy

| feome s i) ay

—00

a / d(y) e TV dy + B / Y(y)e 7 dy

= aF[p] + BFIIV] . i
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> Example 19.3: Let a > 0. From previous examples and exercises we know

1 1

F1 [eay step(—y)]‘x = PR y— P Fi [e—ay Step(y)]‘x = a+i2mx

and
e M = W step(—y) + e Y step(y)

Using these equations and the linearity of the transform,

Fi[em]

= Fi[e” step(—y) + e~ step(y)]|,

X
= Fr[e® step(=y)]|, + Frle”® step(y)]|,
1 1
a—i2mx a+i2mx

a+i2mx n a—i2mx
(a—i2nx)(a+i2mx) (a+i2nx)(a —i2mx)

2a
a? + 4n2x2

?» Exercise 19.6: Let
—e% if y<0

> =
o e if 0<y

where a is any positive number. Show that

Filflly =

Also, sketch the graphs of f and its transform.

—idmx
a? + 472x2

19.4 Invertibility

The astute reader has probably noticed that our notation and terminology suggest that the Fourier
inverse integral transform, ¥ ,_1 , is the inverse transform of the Fourier integral transform, %7 .
That reader even may have recalled something suggesting this relation in the summary at the end
of our derivation of the formulas which inspired the integral transform formulas of this chapter.
Let us quote that summary, with a certain phrase emphasized:

... we have actually derived (provided our many assumptions are valid) the follow-
ing:

If f is a “reasonably nice” function on R, and if F is the function
constructed from f by

F(w) = /OO f(oye 2 et gqr |

then the original function f can be recovered from F through the
formula

o) = /OO F(w) 2™ dw

—00
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Condensing this statement and using the notation developed in this chapter give us:
Provided the many assumptions made in chapter 17 are valid:

If f and F are two “reasonably nice” functions on R with

F = Filf] ,
then
f = FF]

Unfortunately, not only was the above derived with limited concern for rigor, it turns out
that the “many assumptions” made in its derivation are, in general, not valid. In particular, it is
quite possible to have a piecewise continuous, absolutely integrable function f whose Fourier
integral transform, F = [ f], is not absolutely integrable. In that case, we don’t even have
F, I_l[F ] defined. For example, from exercise 19.1 we know that the Fourier integral transform
of

f@) = e ' step(r)
is

which is easily shown not to be in A (see exercise 18.7 on page 258). So this function is not
even in the domain of the Fourier inverse integral transform.

Fortunately, there are some very important functions in A whose integral transforms are
also in A. For these functions we have the following theorem, which is so important that we
will henceforth refer to it as the fundamental theorem on invertibility.

Theorem 19.5 (fundamental theorem on invertibility)

Let f and F be two piecewise continuous, absolutely integrable functions on the real line.
Then*
F=Flfl < FUFl=7Ff

This theorem assures us that our non-rigorously derived claim that

f@o = / - F(®) ™ dw

—00
whenever

F(w) = / - f(t) e 27l gy

is true provided both f and F arein A.
Another useful way to state the fundamental theorem on invertibility is:

Theorem 19.5’ (fundamental theorem on invertibility, alternative version)
Let ¢ be in A and assume that ¥;[¢] and ?’171[¢>] are in A . Then

FUF]] = ¢ and  F[F ] = ¢

?» Exercise 19.7:  Convince yourself that theorems 19.5 and 19.5’ are equivalent.

4 The “«="isa graphic shorthand for “if and only if”
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A good proof of the fundamental theorem on invertibility is nontrivial. Our proof (a good
proof) will require mathematical machinery that will be developed over the next several chapters.
For that reason, we will wait to prove this theorem. We will not wait, however, to use it. The
fundamental theorem on invertibility is just too useful in applications and too important in
developing the theory of Fourier transforms.>

> Example 19.4:  Consider the two functions
fx) = el and F(x) =

Both are continuous and easily shown to be absolutely integrable on the real line (see exercise
18.6 on page 258 and example 18.7). Furthermore, from example 19.3 we know that

File ]

The fundamental theorem on invertibility then tells us that

_ 2
e_lyl = \?71 1 E———
1+ 4n2x2 y

This is certainly an easy way to find this inverse integral transform, much easier than directly
computing the integral in the integral formula,

-1 2 OO 2 i2mxy
il —== = ——5¢€ dx
14 4mx y —oo 1 +4mex

2
x 1 + 472x2

19.5 Other Integral Formulas (A Warning)

Warning!
Not everyone uses the same set of integral formulas for the Fourier integral transforms.

Our choice, equations (19.1) and (19.2), is one of the more commonly used sets of integral

formulas for defining #; and ¥ ,_1 , but it is not the only possible set. For example, many
engineers prefer to define the direct Fourier integral transform by

F1ldll = / $() e dy

To ensure that the corresponding theorem on invertibility holds, they then define the correspond-
ing inverse integral transform by

F0l = & [ omenay

5 Using an unproven theorem to develop a mathematical theory and then using elements of that theory to prove the
theorem is somewhat risky. There is a danger of both wasting time on something that may not be true, and of falsely
verifying the theorem in question by using results based on assuming the theorem is true.

To avoid the circular argument that the fundamental theorem on invertibility is true because we are pretending it
is true, we will carefully avoid using this theorem when deriving results we will later use to prove the theorem. That
won’t be too difficult for us because I know which results we are going to use.
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Among mathematicians,

= smeay

is often favored as the formula for the Fourier integral transform with

[ ixy
m/_ooqﬁ(y)e dy

defining the corresponding Fourier inverse integral transform.
You will also find definitions with the signs in the exponents switched, say,

Filell = / 6™ dy  and  F 9]l = f ¢(y) e P dy

And other variations have surely been used. In general, you can obtain a perfectly valid
“theory of Fourier transforms” by starting with the defining formula

F1dll, = B f () e dy

where A and B are any two nonzero real numbers. The corresponding inverse integral transform
is then

FOl = 25 [ emetay

Whatever your choices of A and B, the basic ideas and manipulations remain the same. The
resulting formulas, of course, are slightly different for different choices of A and B. As
you can imagine, this can cause some difficulties, and care should be exercised when using
formulas, tables, or software from various sources. Be sure either to check that both you and the
other source are basing calculations on the same integral formula for the direct Fourier integral
transform, or that you know how to convert the other source’s formulas to your theory.

?» Exercise 19.8:  Suppose we had used the definitions
Filglle = [ ooe™ay ad  F 0l = - [ omevay
—0oQ —0o0

What then would be the formulas for
a: Fr [e_“y step(y)] |x ? (Compare with the results obtained in exercise 19.1.)

b: the principle of near-equivalence?

19.6 Some Properties of the Transformed Functions

As noted in the section on invertibility, a Fourier integral transform of an absolutely integrable
function might not, itself, be absolutely integrable. In other ways, however, these transforms
turn out to be fairly “nice”. Understanding just how these functions are “nice” will help simplify
some of our discussions later. It will also help us understand some of the limitations of the
classical theory of Fourier transforms.
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The Properties

Let ¢ be a piecewise continuous, absolutely integrable function on the real line (i.e., ¢ is in
A),and let ¥ be either the direct Fourier integral transform of ¢, #7[¢], or the Fourier inverse
integral transform of ¢, ¥ [1[¢>] . We can write this in a shorthand form as

U = FFGll = / 6() T 4y (19.5)

It turns out that the integrability of ¢ forces ¥ to satisfy a number of “pointwise” properties.
Four that will be of interest to us are described in the following theorem.

Theorem 19.6
Let ¥ = ¥,7[¢] where ¢ isin A. Then:

o0
L w0 = / p(y)dy.
—00
2. W is a bounded function. In fact, for each x on the real line,

(o)l 5/ 6| dy

3. ¥ is a continuous function; that is, for every point x( on the real line,

hm Ux) = ¥(xg) . (19.6)

X—X
4. W (x) “vanishes at infinity”. More precisely,

hm U(x) =

x— 100

The first two properties are easily verified. The first is simply formula (19.5) with x = 0.
Verifying the second property is almost as easy:

/_Z ‘(p(y) eiiany

IA

()| = ‘ / ¢(y>ei"2”’Wdy‘ dy

| o ez

The third property, the continuity of ¥ , is worth a bit more discussion. When we rewrite
equation (19.6) using the definition of ¥ , we see that the claim of ¥ being continuous at xg
is equivalent to the claim of

dy =/ 6 dy

lim ¢><y>e*‘2””dy = / ¢(y) e P gy (19.7)

X—>X(

or, equivalently, since the exponential is continuous,

o0 . o0 .
lim / P (y) et2™V gy = / lim ¢(y) e 2™V dy . (19.8)
00 oo X>X0

X—>Xx0 J_

These equations may appear reasonable. This is, however, somewhat deceptive. It is quite
possible to have a continuous function f(x, y) such that

B B
i [* feody £ [ tim o ay

X—>X(
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(see exercise 18.17 on page 271). So the third property, above, assures us that this unfortunate
situation does not happen if f(x,y) = ¢(y)e™¥™* and ¢ isin A.

The proof of ¥’s continuity is a bit more involved than were the proofs of the previous
two properties. It will be discussed a little later in this section.

The statement of the fourth property is known as the Riemann—-Lebesgue lemma.b We
will also delay the proof of this property until later in this section, both because it is somewhat
detailed, and because we will need an inequality derived while proving the continuity of ¥ .
(For a geometric interpretation of the Riemann—Lebesgue lemma, see exercise 19.18 at the end
of this chapter.)

Look at what these properties tell us: If a given function is a Fourier integral transform of
an absolutely integrable function, then that function must be continuous and bounded, and must
vanish at infinity. Conversely, if a given function is not continuous, or is not bounded, or does
not vanish at infinity, then it cannot be a Fourier transform of an absolutely integrable function!
This fact will be important in determining which functions are transformable under the classical
theory of Fourier transforms.

> Example 19.5: The pulse function pulse,(x) is not continuous at x = =*a. Thus,
pulse, (x) cannot be the Fourier integral transform (or Fourier inverse integral transform) of
any absolutely integrable, piecewise continuous function. (Combined with the fundamental
theorem on invertibility, this also tells us that the sinc function is not absolutely integrable on
the real line.)

> Example 19.6: The function x~% is not bounded — it blows up at x = 0. Thus,
x~2 cannot be the Fourier integral transform (or Fourier inverse integral transform) of any

absolutely integrable, piecewise continuous function.

> Example 19.7: The constant function f(x) = 1 does not vanish as x — oo. Thus,
it cannot be the Fourier integral transform (or Fourier inverse integral transform) of any
absolutely integrable, piecewise continuous function.

?» Exercise 19.9: Verify that all the transforms computed previously in this chapter are
bounded, continuous, and vanish at infinity.

2> Exercise 19.10: ~ Which of the following functions cannot be the Fourier integral trans-
form (or Fourier inverse integral transform) of a absolutely integrable, piecewise continuous

function:

2
sin(x) , x> , e* , Inlx| and step(x) ?

?» Exercise 19.11:  To see how transforms of functions from A can truly be “nicer” than the
original functions, come up with

a: an example of a function from A that is not bounded,
b: an example of a function from A that is not continuous, and

c: an example of a function from A that does not vanish at infinity.

6 There are several versions of the Riemann—-Lebesgue lemma, including versions that arise in the study of Fourier
series. See, for example theorem 11.5 on page 140 and lemma 14.4 on page 179.
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Verifying the Continuity

Our goal here is to verify property 3 from theorem 19.6. That is, assuming ¢ isin A, we want
to show that

() = / $() 7 dy

is continuous at each point on the real line.

We should start by observing that if ¢ is zero everywhere on the real line, then ¥ also
vanishes on the real line and, so, is obviously continuous. Accordingly, for the rest of our
discussion we may (and will) assume ¢ is nonzero over some interval. This will ensure that we
don’t divide by zero at one point.

The quickest (legitimate) way to verify that ¥ is continuous would probably be to apply
the theorem on the continuity of an integral with a parameter (corollary 18.19 on page 265).
Instead, we’ll undertake a slightly more detailed analysis that will also give us a bound useful
in proving the Riemann—Lebesgue lemma. That analysis requires an equality and an inequality
that you can easily verify.

?» Exercise 19.12:  Verity that

‘eiiz@ - 1‘ = 2|sin(O®)| whenever © is a real number

?7» Exercise 19.13:  Show that

[sin(®)| < |O] whenever ® is a real number

To confirm the continuity of ¥ on the real line, we need to show that
lim ¥ (s) = ¥(x) for every x in R
S—>X

Letting s = x + Ax this becomes
Iim ¥(x + Ax) = ¥(x) ,
Ax—0

which is the same as
lim |[W(x+Ax) — ¥(x)|] =0
Ax—0

Recall’ that, to confirm this last limit, it suffices to show there is a 8, > 0 for each € > 0 such
that
W(x+ Ax) — Y (x)| < € whenever |Ax| < 8¢

We will show this (and, hence, the continuity of ¥ ) by deriving, via several strings of inequalities,
a fairly explicit formula for & .

So let € be some arbitrary positive value. Using the identity from the first exercise above,
we see that

W (x + Ax) — ¥(x)]

'/OO ¢(y) e:ti2n(x+Ax)y dy _ /OO ¢(y) e:i:iZﬂxy dy’

_ '/_oo ¢(y)e:|:i27rxy I:e:I:i2nAxy . 1] dy’

7 This may be a good time to review A Refresher on Limits starting on page 27.
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IA

fz ‘fﬁ(y) oti2mxy [eﬂzmxy _ 1]‘ dy

_ 2 / 160 IsinGr Ax y)| dy . (19.9)

From lemma 18.11 on page 261 we know there is a finite distance £, such that
e 1 *© 1
[ Tooidy = fewma [ Tieoiay < e
—00 Le

Using this, the inequality from exercise 19.13, and the fact that the sine function is bounded by
1, we get

/ l¢(Y)| [sin(rr Ax y)| dy

—00

—L Le
/ ()] IsinGr Ax )| dy + / 6 IsinGrax )l dy

—0o0

+ /l 60| IsinGr Ax y)| dy

—Le Le 00
5/ 6Ol dy + /e 6| [ Ax v dy +/ 6| dy
1 Le
< g€+ IAxIn/ oWyl dy . (19.10)

€

But, , ,
f€|¢<y>||y| dy < /€|¢><y)|£edy < &/ 60| dy

- - —00

Combining this with inequalities (19.9) and (19.10) gives us

¥ (x + Ax) — ¥(x)]

A

2 f 16O IsinGr Ax y)| dy

—00

IA

1 o
L + laxiznt. [ 6ol dy
—00

00 —1
b0 = te(ont [“wonay)

—00

Thus, setting

we have that, whenever |Ax| < §¢,

Wt 80— Wl < Je o+ axiznt [ 19001 dy

IA

00 -1 00
%e + %e (Zn&/ [2163] dy) 271&/ ()| dy

—0o0 —0o0

1 1
=E€+E€=€. i
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286 The Fourier Integral Transforms

By deriving a formula for . that does not depend on x , we have actually shown that ¥ is
not merely continuous on the real line — it is uniformly continuous. For reference in our proof
of the Riemann—Lebesgue lemma, let us formally re-state what we have just derived.

Lemma 19.7
Assume ¢ is a nontrivial function A, and let

) = / " o) e gy

For each € > 0, let L be any positive value such that

L, o0
/ oI dy < ée and / o) dy < %6
_ .

00 -1
8 = %6 <2n£e/ I ()] dy)

W(x) — Y(x)| < € whenever X — x| < ¢

Also, Iet

Then

Verifying the Riemann-Lebesgue Lemma

Since the fourth property described in theorem 19.6 is, itself, a famous theorem in integration
theory (although traditionally called a lemma), let us state it as such:

Theorem 19.8 (Riemann-Lebesgue lemma)
Let ¢ be absolutely integrable and piecewise continuous on the real line, and let

) = / ¥ o et gy

—0o0

Then
Iim ¥(x) =0

x—+o00

PROOF:  Again, the claim of this theorem is clearly true if ¢ is zero everywhere on the real
line. So, in what follows we may (and will) make the additional assumption that ¢ is nonzero
over some interval.

By the basic definition, it will suffice to show that, for any € > 0, there is a corresponding
distance X, such that

W) < € whenever X. < |x|

We will show this by using the uniform continuity of ¥ derived in the previous section along
with the version of the Riemann—Lebesgue lemma obtained for Fourier series in chapter 14.

We start by letting € be any positive value. Set y = /3, choose £, to be any positive real
number such that

4 1 °° 1
/ pW)ldy = 1y and f poldy = Ly
—0 ZV
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and set

00 -1
e = v (2nt, [ 1001 ay)

Remember, from lemma 19.7, we know
Wx) — @) <y whenever x —x| < 6¢ . (19.11)

Now (this is the clever part) choose any finite real value p large enough that

% <6 and 20, < p . (19.12)

For convenience, let v = Y,. Observe that, by inequality (19.11) and the first inequality in
set (19.12),
WWx) — Y@ < vy whenever x—x < v . (19.13)

Next consider ¥ (kv) for k = 0, £1, £2, .... From the second of the two inequalities in
set (19.12),

IA

—Ph .
/ ‘(b(Y) e:l:lZﬂkl)y dy

o]

—Ph
_ / 6] dy

e¢]

—Ph .
‘/ ¢(y) e:l:lzﬂ’kl)y dy‘
—00

7[}/ 1
[ eonay < by

o0

A

Likewise

/ P e dy| < oy
P/

So,
| (kv)|

00
‘/ ¢(y) ej:ianvy dy‘
—00

—Ph . Pl ,
‘/ ¢(y) e:l:zanvy dy‘ + ' ¢(y) e:ttZJTkuy dy
—00

—P/y

IA

+

o i
¢(y) e:l:zanvy dy‘
1723

P/y

IA

v+ ‘ By dy‘ . (19.14)
-2

But, from the Riemann—Lebesgue lemma for Fourier series (lemma 14.4 on page 179), we also

know that
Pl .
lim ¢(y) e:l:l27[kvy dy =0 ,
k—to00 —pp

which means that there must be a positive integer N,, such that

¢(y) e:l:ianvy dy

p/z
‘ <y whenever N, < |kl

—r/y
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With this and inequality (19.14) we then have
W (kv)| < %y 4+ y < 2y whenever N, < |k| . (19.15)

Finally, set X = N, v, and let x be any real value with |x| > X.. Clearly, if x is
positive, then it must be within v of one of the following points:

Nyv , A+Nyv , @+Nyv , G+Nyywv , ...
while if x is negative, then it must be within v of one of the following points:
—N,v , —(A4+N,)v , —QC+Nyv , (=3+N,)v ,

In other words, there is an integer k with N, < |k| such that [x — kv| < v. Thus, we can
apply both inequalities (19.13) and (19.15), obtaining

W) = [Pkv) + ¥(x) — ¥(kv)l
Wkv)| + [W(x) — ¥k <2y + v ,

IA

which, because y = € and x is any real value with |x| > X, , means that

T(x)| < € whenever X, < |x| . I

Additional Exercises

19.14. In the following, a and b denote real numbers with a > 0.
a. Find % [e(_“+ib)x step(x)] ‘y by computing the appropriate integral.
b. Using your answer to the above, find each of the following:
i Fp [e(_2+i3)x step(x)] ‘5 ii. Fp [e(_z_mx step(x)] ‘5
iii. ¥ [e(_“_ib)x step(x)] ‘y

c. Find each of the following. Do not evaluate any integrals. Instead, use your answers
to the above and near-equivalence.

i 371_1 [e(_”+ib)x step(x)]‘ ii. Fp [e(“”b)x step(—x)]‘
y y
iii. }'1_1 [e“”'ib)x step(—x)]’
y
d. Find each of the following using your answers to the above and linearity.

i ?I [e—alxleibx]

y

ii. F7[e”® cos(bx) step(x) ] |y (Hint: Express the cosine in terms of complex ex-
ponentials.)
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19.15 a. Find each of the following by computing the integral in the integral formula.
i ?I[rect(o,l)(x)“y ii. ¥ [x rect(o,n(x)]!y

b. Verify that rect(_1,0y(x) = rect(o,1)(—x) and find the following using your answers
to the above, near-equivalence, and linearity.

i. .’FI[rect(_l,o)(x)“y ii. }}[xrect(_l,o)(x)“y
i, F; ! [rect1,0 ]|, iv. Fi[(+x0)rect1,0 ]|,
V. ?1[(1 —X) rect(oyl)(x)”y

c. The basic triangle function tri(x) is given by

1+x if —-1<x<0
tri(x) = 1—x if 0<x<1

0 otherwise

i. Sketch the graph of this function.
ii. Express this function in terms of rectangle functions.

iii. Using results from previous problems and properties of the transforms, show that

Frlt]l, = sinc? (ry)

19.16. In the following, ¢ denotes a piecewise continuous, absolutely integrable function on
the real line.

a. Assume ¢ is real valued and even. Show that ¥7[¢] is also real valued and even,
and that

F1ldlle = 2 /0 6 () cos(2rxy) dy

b. Assume ¢ is real valued and odd. Show that ¥7[¢] is imaginary valued and odd,
and that

Filoll, = 2 fo 6 (y)sin(2rxy) dy

19.17. Leta >0,
2a

h — o—alyl d H - =~
0 = e an @) = s

From the work in this and the previous chapter, we know that both of these functions
arein A and that H = F7[h]. Thus, by the fundamental theorem on invertibility,

o0
2a ;
h = F1m, = e S P £l
(}’) I [ ]|y /;OO a2+4712x2

Use this fact in doing the following exercises.

a. Find the following transforms:

. 1 1
i F _
1 |:az2 + 4n2x2:| y

.. 1
ii. | ———=
! |:a2 +47t2x2:| ‘y
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Y

Figure 19.2: The graph of the function f(x) for exercise 19.18.

1 . . .
iii. ¥ [m] ‘ (Hint: Multiply the numerator and denominator by 472 .)
a’ +x
y
b. Evaluate the following integrals:
0 i2mx 0 idmx
i. / 6422 dx ii. / 6722 dx

—oo 1 +4mex —00 9 +4mx

I 1 . * sin(2

iii. / ——55dx iv. / anx)z dx
oo 1+4m2x oo 1 +4m2%x

/ * cos(27x)
—— = dx
oo 1+ 4m2x2
19.18. Let F = ¥, 1—1[ f1ly where f is the function sketched in figure 19.2. Go ahead and
assume f is real valued, continuous, and absolutely integrable.

a. Sketch, as a function of x , the real and imaginary parts of f(x) e 2™ forsome fixed
positive value y (choose y large enough that your graphs contain several “humps”).

b. What happens to the graphs of the real and imaginary parts of f(x)e 2™ as y
gets larger? In particular, what about the areas contained in adjacent “humps” above
and below the X—axis?

c. Develop a geometric (and non-rigorous) argument that F(y) — 0 as y — o0
based on the “near-cancellation of areas in adjacent ‘humps’ in the graphs of the real
and imaginary parts of f(x) e *>™Y * (This is the geometric interpretation of the
Riemann-Lebesgue lemma.)
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Classical Fourier Transforms and
Classically Transformable Functions

We know that
o 1

File™ step(y)]]x = f e step(y) e T dy = T
—0Q0

Now if (1 4 i2mx)~!, the function on the right-hand side of these equations, were absolutely
integrable on the real line, then its integral inverse Fourier transform would be defined by the
integral formula for % 1_1 , and the fundamental theorem on invertibility would assure us that

-1 1 o1 i2mx -
%1 [1+i2nx]‘y - f_oo i € 4% = e step()
But, as you verified in exercise 18.7 on page 258, (1 + i2wx)~! is not absolutely integrable.
So, we cannot invoke the fundamental theorem on invertibility to evaluate its Fourier inverse
integral transform.

In fact, since (14i27x)~! is notabsolutely integrable, its Fourier inverse integral transform
is not even defined.

So why don’t we just

1
define ﬂfl[m]‘y to be e Vstep(y) ?

Basically, that is just what we will do in this chapter. We will extend our definitions for the
Fourier transforms in this and one other rather obvious manner, and we will verify

1. that these extensions are legitimate extensions (i.e., give the same results as the integral
transforms of chapter 19 when used to compute the transforms of functions in A4 ),
and
2. that the properties of linearity, near-equivalence, and invertibility hold using the extended
definitions.

On occasion, we will refer to some formulas derived in chapter 19. To simplify matters,
these formulas are summarized in table 20.1.

291
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292 Classical Fourier Transforms

Table 20.1: Selected Integral Transforms from Chapter 19

A2 F@x) = F[fO)]lx Restrictions See
o [mete e TR
pulse, (y) 2a sinc(2rax) 0<a ex;;lgpéezgil,
e~ step(y) Hﬁ 0<a ex;;z:ezl;:’
oy step(—y) ﬁ 0<a e);zcgi:ezl;;’
eall azﬁﬁ 0<a CX;;I‘;I)61621798.3,
s

20.1 The First Extension
The Set of Integral Transforms

Recall again that A denotes the set of all functions that are piecewise continuous and absolutely
integrable on the entire real line. For convenience, 7 will denote the set of all functions on R
that are Fourier integral transforms of functions from A . That is,

T = {¥: ¥ = F[¢] for some ¢ in A }

This will allow us to say “¥ isin 7 ” as a shorthand for “ ¥ is the Fourier integral transform
of some piecewise continuous, absolutely integrable function on the real line.”

The astute reader probably already realizes that, because of the near-equivalence of the
transforms, 7 is also the set of all Fourier inverse integral transforms of functions in A,

T = {¥: ¥ =F"[¢] forsome ¢ in A}

Thus, we can also use the phrase “ ¥ isin 7 ” as shorthand for “ ¢ is the Fourier inverse integral
transform of some piecewise continuous, absolutely integrable function on the real line.”

Our basic plan is to define, say, the inverse transform of any given ¥ in 7 to be the function
¢ in A such that ¥ = F7[¢]. This plan will work fine so long as there is only one function
¢ for which ¥ = Fj[¢]. If there is a second function ¢ with ¥ = F;[vr], then we have a
problem. Just which function, ¢ or i, do we use as the inverse transform ¥ ? Fortunately, as
our next lemma states, this difficulty does not arise.

Lemma 20.1 (uniqueness of the integral transforms)
Let ¥ be a function in T . Then there is exactly one function f in A such that ¥ = F;[f],
and there is exactly one function g in A such that ¥ = J(’,_l[g] . Moreover, g(x) = f(—x).
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PROOF:  Because of what it means for ¥ to be in 7, there must be at least one function f
in A with ¥ = F7[f]. Let g be the corresponding function given by g(x) = f(—x). By
the principle of near-equivalence (theorem 19.1 on page 275) g is alsoin .A and

v = Ffl = F gl

Thus, there is at least one f in .4 and one g in A suchthat ¥ = F;[f], ¥ = ?I_l[g] , and
8) = f(=x).

What remains is to verify that f isthe only function whose direct Fourier integral transform
is ¥ . Todotthis, let ¢ be any functionin A satisfying ¥ = F;[¢]. By linearity (theorem 19.4),
we know that ¢ — f isin A and that

Frl¢ — f1 = Filol - Flfl =¥ -¥ =0

But the zero function is certainly piecewise continuous and absolutely integrable on the real line.
So the fundamental theorem on invertibility (theorem 19.5 on page 279) assures us that

o0 .
ot =500 = [ 0-eFay =0

—0oQ

Therefore,

¢ =7f

Virtually identical arguments can be used to show that there are no functions in A other
than g whose Fourier inverse integral transform equals ¥ . (Or you can use near-equivalence
and the fact that f is the only function in .A whose Fourier integral transform equals ¥ .) |

Transforms of Integral Transforms

In light of our last lemma, we can now define the Fourier transforms of functions in 7 . Since
integrals are not directly used in these definitions, we will not refer to them as integral transforms,
and we will not include that irritating subscript I in the notation.

Let ¥ be a function in 7 . The (direct) Fourier transform of ¥ , denoted by F[¥], is
defined to be the function in A whose Fourier inverse integral transform equals ¥ . In other
words, we define ¥ [¥] to be the absolutely integrable, piecewise continuous function g that
makes the following mathematical statement true:

o]

?[l}/] = 8 <~ llf(x) = ?’Iil[g:”x — / g(y)eiZTUCydy

Likewise, the inverse Fourier transform of ¥ , denoted by F ~![W¥], is defined to be the function
in A whose direct Fourier integral transform equals ¥ . That is, & ~'[¥] is defined to be the
absolutely integrable, piecewise continuous function f that makes the following mathematical
statement true:

.7:’—1[‘1/] =f < Yx) = Filfll, = K f(y)e—ilnxydy

> Example 20.1:  Because e~ step(y) isin A, and

Fi e stepn)]|, = /

e Y ste e Vdy = ———
00 pO) Y 1—i2nx
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the function (1 —i2nx)~" isin T and

}'[;]‘y = e 7V step(y)

1—i2nx
?» Exercise 20.1:  Verity that

i), -
F [1+i271x , T e sl

There are functions that are in both .4 and 7 . For each such function ¥ we have two
definitions for a direct Fourier transform: the integral transform definition,

OO .
Fw]l, = f W(x)e T dx
—00

and the one developed in this section,

FIW] = ¢  where ¢ is the function in A such that ¥ = F;'[#]

Since ¥ and ¢ are both absolutely integrable, and ¥ = F 1_1[¢] , the fundamental theorem on
invertibility holds and tells us that #;[¥] = ¢ . Thus,

Fl¥] = ¢ = Fl¥]
Likewise, in this case, we can easily verify that
Fwl = 77w

For future reference, let us state this little observation as a lemma.

Lemma 20.2
Let ¥ be a function in both A and T . Then

Flw] = F¥] and FW] = F7 ]

> Example 20.2:  From previous work we know that the functions

2

—_— and e
1+ dm2x2
are both absolutely integrable and that
2
_ —|y|]
1+4n2x2 Fi [e x

By the definition in this section

F! 2
14 4n2x2 y

which is exactly the same as was obtained for

2
F—=
! [1+4n2x2]y

— W

in example 19.4 on page 280.
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Basic Properties

The last lemma above tells us that our new definitions of the Fourier transforms are equivalent
to the old definitions when both definitions can be applied. This is reassuring. Now let’s see if
linearity, near-equivalence, and invertibility hold with our new definition.

First of all, observe that, by the definition of the Fourier transforms on 7, we automatically
have the following invertibility lemma.

Lemma 20.3
Let ¢ bein A, andlet ¥ bein T . Then

v o= Fl¢] = F Y] =¢
and

¢ = Fl¥l = F'ipl=w

Linearity and near-equivalence follow fairly directly from the linearity and near-equivalence
of the integral transforms.

Lemma 20.4
Let ¢ and  be any two functions in T , and let a and b be any two complex numbers. Then
the linear combination a¢ + by isin T . Moreover,

Flag + by]

aF[p] +bF Y] (20.1)
and

Fap +by] = aF o) +bF [yl . (20.2)

PROOF: Let f = F[¢] and g = F[¢¥]. By the definition of transforms of functions in 7,
f and g must be the two functions in A such that ¢ = }‘I_l[f] and ¥ = }‘I_l[g]. Since we
know the integral transforms of functions in .4 are linear, we know that af + bg isin A and
that

ap +by = aF[f1+bF (gl = Faf +bg]

showing that the linear combination a¢ + by, being a Fourier inverse integral transform of a
functionin A, isin 7 . By the definition, the direct Fourier transform of this linear combination
is obtained by “inverting” this last equality. Doing this inversion and using the definitions of f
and g give

Flap + byl = af +bg = aF[$]l +bF[Y] ,

confirming equation (20.1). Equation (20.2) can then be confirmed by virtually identical argu-
ments using f = F ~'[¢] and g = F ~![]. The details will be left as an exercise.

?» Exercise 20.2:  Prove that equation (20.2) holds in the above lemma.

Lemma 20.5
Let ¢(y) be a function in T . Then the function ¢(—y) is also in T . Moreover,
FloWlx = F oWy = F ' $(»], (20.3)
and
F oWk = FloWll_x = FlOEWIl - (20.4)
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PROOF: Let g = F[¢] and f = F ~'[¢]. From the definition of the Fourier transforms of
¢ and lemma 20.1, we know f and g are in A and that

o = FLf®I, .  ¢0) = FgWIl, .

and
gx) = f(—x)

By the definitions of f and g, this last equality can be written as

FloWMll, = F oM, .

verifying the first equality in equation set (20.3).
Using the first equality in the above list and the fact that near-equivalence holds for the
integral transforms, we see that

$(=y) = FFOI_, = FlfD1l,

verifying that ¢ (—y) isin 7 . Moreover, inverting this last line and using the definition of f
gives

F Uy = f(=x) = F YoM,

which verifies the second equality in equation set (20.3).
As was probably expected, verifying equation set (20.4) is left as an exercise. i

?» Exercise 20.3:  Verify the equations in line (20.4) of the above lemma.

20.2 The Set of Classically Transformable Functions

The two function sets A and 7 can be viewed as the two components of the set of all functions
for which the “classical” Fourier transforms can be defined. Accordingly, we will say that a
function ¢ is classically transformable if and only if ¥ can be written

U=+

where ¢, is some function in A and 1, is some functionin 7 .

Several simple observations are worth making at this point. The first is that, by this defi-
nition, any function in A orin 7 is automatically classically transformable. This is because
the zero function is in both A and 7, and thus, can always serve as either ¥, or .. For
example, we know that the function v (x) = e~ step(x) is in .A. This function also satisfies
our definition for being classically transformable since

e step(x) = Y, + Y,
where

Y (x) = e Fstep(x) and Y (x) = 0

A second observation is that the choice of ¥, and ;. is not unique. Consider, for example, the
function ¥ (x) = e~ ™*I. This function is in both A and 7 . This means that we could use the
pair

Y =e ™ and Y0 =0,
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or the pair
Y x) =0 and Y (x) = e W

We could also use the pair

Yx) = te™™ and g (x) = le R

2 2
or even . .
_ 1 x| _ 2kl _
Y (x) = 3¢ + ) and Y (x) = 3¢ T2

since (1 + xz)_1 is also in both A and T .
For the final observation, consider finding the (direct) Fourier transform of any classically
transformable function

U=+

Since v, isin A, its Fourier transform is given by the integral transform Fj [, ]. Since v, is
in 7, its Fourier transform, # [y ], is as defined in the previous section. Technically, we have
not yet defined F ], the Fourier transform of the sum of v, and . , but really, is there any
question as to how we should define F[v]? We should, naturally, assume the Fourier transform
is linear, and define ¥ [¢] by

F[¢] = Fourier transform of ¥, + ¥
= Fourier transform of v, + Fourier transform of v,

Filv] + Flv] . (20.5)

That is our last simple observation of this section.

A few readers may feel uneasy about equation (20.5) because of the many possible choices
for ¥, and v, .I' Can we be sure that the above computation for % [v/] will give the same result
using a different choice for v, and v ? That is, if

V=9t = ¢+

where ¥, , ¥, and ¢,, ¢, are two different pairs of functions with v, and ¢, in A, and
Y- and ¢, in T, are we then certain that computing F[y] by

Flyl = Flu +v] = ] + Flv]

gives the same result as computing ¥ [¢] by

Fl = Flo+¢ ] = Filo] + Fler] 2
Or is there a danger that
Flw] + Flw] # Fle] + Flo,] ? (20.6)

To allay fears in this regard, note that, since

¢A+¢T:w:¢,4+¢r )

we must have

1//,4 - ¢A = ¢T - wr . (207)

Lyg you trust equation (20.5), you can skip to the next section.
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Since the right-hand side of this equation is a linear combination of functions in 7, we have,
using the definition for transforms of functions in 7,

3"[‘157' _WT] = j‘i’[(pT] - ?[Wr] . (20.8)

On the other hand, the left-hand side of equation (20.7), being a linear combination of functions
in A, is another function in .4 . Thus, each side of this equation is a function in both .4 and
T , and we have

Flo, =¥, ) = Flo -] = Flv. — o] = F1[v.] — File] - (20.9)
Combining equations (20.8) and (20.9) gives

ﬁ[w/\] - $I[¢A] = $[¢7_Wr] = $[¢T] - fd[wr]

After cutting out the middle and doing some elementary algebra, this becomes

Filw] + Flv] = F1lw] + Flo]

So inequality (20.6) is not possible, and we are assured that computing F[vy] by
Flwl = Fly+v] = Alu] + Flv]

gives the same result as computing ¥ [y] by

Flyl = Flo +¢,] = Filo] + Fle]

20.3 The Complete Classical Fourier Transforms
Definition
Let ¢ be any classically transformable function. To define the (direct) (classical) Fourier

transform of  and the (classical) Fourier inverse transform of Y, denoted, respectively, by
F[¥] and FI[y], let Y, and ¥, be any pair of functions with v, in A, ¢, in 7, and

lﬁ = 1//A+1/fr
We then define F[v] and & ~'[¥] by
Flvl = Filv] + Fv] (20.10)
and
Fyl = 7 '] + £ '[v] . (20.11)

Remember that F7 [y, ] and F, 1_1[%] are given by the integral formulas from chapter 19,

Fi [I/fA:”x = / I/IA ») efi27'rxy dy
and

7wl = /_Oo Y () e dy
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while F [y, | and F !y, ] are as defined in the first section of this chapter,

F [lﬁr] =g where g is the function in A such that v, = ?I_l[g]
and
F 'y, ] = f  where f isthe functionin A such that ¥, = F;[f]

Together, ¥ [¢] and ¥ ’1[1&] are called the (classical) Fourier transforms of V¥ , though
F[¢] is commonly referred to as “the” (classical) Fourier transform of v . The processes of
changing a classically transformable function ¥ to F[y] andto ¥ _1[1//] are also referred to
as the (classical) Fourier transforms. Naturally, of course, the process of converting ¢ to ¥ [v/]
is called the (classical) (direct) Fourier transform and is denoted by ¥ , while the process of
converting ¥ to F ~[y] is called the (classical) Fourier inverse transform and is denoted by
FL.

It should be clear from our definitions and earlier discussions that the above definitions for
Fly] and F~1[] reduce to earlier definitions when v is in either A or 7 . In particular,
if ¢ is piecewise continuous and absolutely integrable, then, using ¥, = ¥ and ¥, = 0,
equations (20.10) and (20.11) become

Flyllx

Filll, = / () e gy

and

FW, = 7l = /_ by €27 dy

Something else worth noticing is that the right-hand sides of formulas (20.10) and (20.11)
are, themselves, sums of functions in A and 7 . Thus, they are classically transformable
functions. This is a fact which we will use so much (and usually without thinking) that we
should state it as a theorem.

Theorem 20.6
Let Y be a classically transformable function. Then its classical transforms, ¥ [y] and
F-l [v], are also classically transformable functions.

Some Fundamental Properties

Based on past sections, you probably now expect some theorems regarding linearity, near-
equivalence, and invertibility.
Here they are:

Theorem 20.7 (linearity)
Let ¢ and  be any two classically transformable functions, andlet a and b be any two complex
numbers. Then the linear combination a¢ + by is classically transformable. Moreover,

Flap + by = aFlp] +bF[Y] (20.12)

and
Fap +by] = aF ol +bF Y] . (20.13)
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PROOF:  Since ¢ and y are classically transformable, there are functions ¢, and ¥, in A,
and functions ¢, and v, in 7 such that

¢=¢A+¢T and WZWA“—K”T
Clearly then,
ap+by = ¥ + ¥,
where
¥, = a¢, +by, and ¥, = a¢, +by,
which we know tobe in .4 and 7T , respectively, because of the linearity results already discussed
for the transforms of these types of functions (see theorem 19.4 on page 277 and lemma 20.4 on

page 295).
Also by these lemmas and the definition of the classical Fourier transform,

Flag +by]

F[o +%]

= 7w + F[¥]

= Filap, + by, | + Flad, + by |

= aFi[e ] +b0F1[] + aF[¢ ] +bF [V ]
= a(F[o ]+ Fler]) + b(Fi[w ]+ F[v])
= a¥F[¢] + bF[Y]

proving that equation (20.12) holds.
Virtually identical computations (with F ~! replacing ¥ ) show that equation (20.13)
holds.

As the above proof illustrates, these theorems follow pretty directly from the definitions of
the classical transforms and from the corresponding results already proven for the transforms of
functions in A and 7 . We will leave the proofs of the next two as exercises.

Theorem 20.8 (principle of near-equivalence)
Let i be a classically transformable function. Then the function ¥ (—y) is also classically
transformable. Moreover,

Fluvmlly = FvmI_y = F Y], (20.14)

and

F vl = FIVODI_y = FW 0L - (20.15)

?» Exercise 20.4:  Prove theorem 20.8.

Theorem 20.9 (invertibility)
Let ¢ and y be classically transformable functions. Then

v = Flp] < Flyl=¢

Equivalently,
FUFWN = ¢ = 7|7 19
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?7» Exercise 20.5:  Prove theorem 20.9.

Just as with the integral transforms, the principle of near-equivalence for the classical
transforms leads directly to some simple, but occasionally useful, observations concerning even
and odd functions. Suppose, for example 1 is a classically transformable function that is even,
¥ (—x) = ¥ (x) . By the principle of near-equivalence (theorem 20.8):

FWOW_y = FIWE0I = FIVODI, s
Flvmlly = FwEnle = F UMl

and

F vyl = FIWED = FIVOI_,

This proves the first of the following two corollaries.

Corollary 20.10 (transforms of even functions)
Let 1 be an even, classically transformable function. Then both ¥ [¥] and ¥ ‘1[1p] are even
functions. Moreover, ¥ _1[w] = Fly].

Corollary 20.11 (transforms of odd functions)
Let i be an odd, classically transformable function. Then both ¥ [¥] and ¥ ’1[x[f] are odd
functions. Moreover, 57_1[1ﬁ] =—-Flv].

?» Exercise 20.6:  Prove corollary 20.11.

The theorem on invertibility (theorem 20.9) tells us what we have been expecting all along,
namely, that the two Fourier transforms (properly defined) are both invertible and each is the
inverse transform of the other. A minor consequence of this is that we can now use the phrases
“Fourier inverse transform” and “inverse Fourier transform” interchangeably.

For the record we should also mention the following corollary. It is an immediate conse-
quence of the above theorem on invertibility and the lemma on the uniqueness of the integral
transforms (lemma 20.1 on page 292). Though hardly worth much more discussion in itself, it
will be used implicitly in much of what follows.

Corollary 20.12
Assume that either f is classically transformable and that F = ¥[ f] or that F is classically
transformable and that f = F —1[F]. Then all of the following hold:

1. Both f and F are classically transformable.
2. F=¥I[f].
3. f=F"YF].

Moreover,

fisin A <<= FisinT
and

fisinT <= Fisin A
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20.4 What Is and Is Not Classically Transformable?

The extent to which we can invoke the classical theory for the Fourier transforms is largely
determined by the set of classically transformable functions. So, maybe, we should get some
idea as to which functions are classically transformable and which are not.

Let’s start by looking at the set of all classically transformable functions and reviewing some
of the manipulations that can be done with them. From the theorems in the previous section we
know the following:

1. The set of all classically transformable functions is a linear space; that is, every (finite)
linear combination of classically transformable functions is classically transformable.?

2. Thesetof classically transformable functions is “closed under the Fourier transforms” By
this I mean that, whenever  is classically transformable, so are its Fourier transforms,
Fly] and F1[y].

3. The set of classically transformable functions is “closed under reflection”; that is, if
¥ (x) is classically transformable, then so is ¥ (—x) .

In the next chapter, we will also see that

4. The set of classically transformable functions is “closed under translation”; that is, if
¥ (x) is classically transformable and a is any fixed real number, then the corresponding
translation of i by a, ¥ (x — a), is also classically transformable.

5. The set of classically transformable functions is “closed under scaling of the variable”;
that is, if i (x) is classically transformable and a is any fixed, nonzero real number,
then the function ¥ (ax), is also classically transformable.

6. The set of classically transformable functions is “closed under multiplication by com-
plex exponentials, sine functions, and cosine functions” This means that, if ¥ (x) is
classically transformable and a is any fixed real number, then the functions ¥ (x)e'®* ,
¥ (x)sin(ax), and ¥ (x) cos(ax) are all classically transformable.

This list gives us some idea of the sort of manipulations that can be done safely with classically
transformable functions within the classical theory of Fourier analysis. On the other hand, we will
see that the set of classically transformable functions is not closed under either multiplication or
differentiation — the product of two classically transformable functions might not be classically
transformable, and the derivative of a classically transformable function might not be classically
transformable. So, when we attempt to perform these operations, we will need to take some
extra precautions.

Let’s look a little more closely at the functions in the set of classically transformable
functions. Suppose ¥ is any classically transformable function with v, and v/, being functions
in A and T, respectively, such that

lﬁ = 1//A+1/fr

Recall that, since v, isin A, we know v, is piecewise continuous and absolutely integrable
on the entire real line. From theorem 19.6 on page 282 we also know that . , being the Fourier
integral transform of some function in A, must be a bounded and continuous function on the
entire real line which vanishes at 00 . What about the sum, 1, of these two functions?

2 So we could refer to this set as the space of classically transformable functions.
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First of all, since both , and 1, are at least piecewise continuous, we know that v, their
sum, must be piecewise continuous.

We can also see that both v, (x) and v (x) must, in some sense, get small as x — £o0.
In the case of ¥, , we have

/ |wA(s)| ds <00

which, clearly, can only happen if, for any finite positive length £,

x+L
lim / [¥ ()] ds = 0
X

x—+o0

For v, we explicitly have
lim ¢, (x) =0 ,
x—=to00

which also clearly implies that, for every finite positive length £,
X

+4
lim [v, ()| ds = 0

x— =00 X

Thus, for any finite positive length £,

x+£ x+£
Jim [ welds = tim [ ) v 0] ds

X

. +1£ ) x+14
< lim ; |1/fA(S)| ds + xgriloo/x |¢T(s)| ds = 0

x—Fo00

This gives us the following little lemma.

Lemma 20.13
If + is a classically transformable function, then  is piecewise continuous on the entire real
line and, for any finite positive value £ ,

x+1
lim / lW(s) ds = 0 . (20.16)
x—+00 X

This lemma partially characterizes classically transformable functions by describing a con-
dition every classically transformable function must satisfy. It does not tell us, however, that
every piecewise continuous function ¥ on R satisfying equation (20.16) is classically trans-
formable. On the other hand, it does give us a way of showing that many functions are not
classically transformable.

Corollary 20.14 (test for non-transformability)
Let  be a function on the real line. If  is not piecewise continuous, or if there is a finite
positive length £ such that

x+L
lim / W (s)| ds
x—>to00 [,

either does not exist or is not zero, then  is not classically transformable.
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> Example 20.3:  Since

X+

lim |sin(s)| ds = lim “area under |sin(s)| between s =x and s =x+ 7w ”

X—>00 X X—>00

= “area under sin(s) between s =0 and s =7 ”
g
= / sin(s) ds
0
=2 #0 ,

we know that sin(x) is not classically transformable.

7> Exercise 20.7:  Show that ¢!** is not classically transformable for any real or complex
value a .

As a special case of the last corollary, we have

Corollary 20.15
Let  be a function on the real line. If either

lim [ (x)] or lim [ (x)]
X—>00 X—>—00
exists (as a finite or infinite number) and is nonzero, then v is not classically transformable.

> Example 20.4:  Since
lim1=1#0 |,

X—>00

we know that the constant function 1 is not classically transformable.
?» Exercise 20.8:  Show that arctan(x) is not classically transformable.

The fact that exponentials and constant functions are not classically transformable will later
prompt us to further generalize our definitions of the Fourier transform.

20.5 Duration, Bandwidth, and Two Important Sets
of Classically Transformable Functions

The two sets of functions we are about to describe — “the functions with finite duration” and
“the functions with finite bandwidth” — play significant roles in many applications.
Duration and Functions with Finite Duration

In everyday English, the “duration” of something is the length of time something effectively
exists (i.e., is nonzero in some sense). When this something is a function on the real line, we get
the “duration” of that function being the length of the smallest interval over which the function
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is nonzero. More precisely, the duration of a function f on the real line is the value 7o = b—a
where (a, b) is the smallest interval such that

f(x) =0 whenever x <a or b<x

The interval (a, b) will be called the interval of duration for f .

This, of course, assumes there is an interval over which f is nontrivial. If there isn’t (i.e.,
if f is zero everywhere), we’ll just say the duration is zero.

The interval of duration for a function can be infinite. If it is finite and the function is
piecewise continuous, then it is easily verified that the function is absolutely integrable on the
real line and, hence, is classically transformable. As you can well imagine, the set of all piecewise
continuous functions with finite durations is an important set of classically integrable functions.
For one thing, such functions correspond to measurements of processes that are, themselves, of
finite duration.

Often we will not know (or need) the precise interval of duration for a function f , only that
the interval is contained in some other interval of the form [—7, T] where T is some positive
real number. (We’ll also allow T to be O if the duration is 0.) Any such value 7 will be
referred to as a bound on the interval of duration for f . Note, then, that T is a bound on the
interval of duration for f if and only if

fx) =0 whenever T < |x|

For brevity, we may say “T is a duration bound for f” instead of “7T is a bound on the
duration interval for f.”

?» Exercise 20.9:  Give an example of a function with finite duration.

Bandwidth and Finite Bandwidth Functions

The bandwidth of a function is just the duration of the Fourier transform of the function. Nat-
urally, we can only speak of the bandwidth of a transformable function. These functions are
important because, in many applications, there are good reasons to believe that the functions
describing the processes occurring have finite bandwidths. Indeed, in some applications these
functions are more important than the finite duration functions.

Let f be atransformable function with finite bandwidth. We will refer to any nonnegative
real number £2 as being a bandwidth bound for f if and only if £2 is a duration bound for the
Fourier transform of f. In other words, 2 is a bandwidth bound for f if and only if, letting
F=¥[f],

Fw) =0 whenever £2 < |o|

?» Exercise 20.10:  Give an example of a function with finite bandwidth.

Effective Duration and Bandwidth

You may wonder about those functions having both finite duration and finite bandwidth. Don’t
bother. Except for the zero function, there are none. If the duration of a function is finite, then its
bandwidth must be infinite. We’ll prove this later, in exercise 23.13 ¢ on page 370. Conversely,
any function with finite bandwidth must have infinite duration.

What is often possible is to use “effective bounds” on the durations and bandwidths. That
is, instead of attempting to describe absolute bounds on the duration and bandwidth, we define
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values Teir and $2.¢, called, respectively, an effective duration bound and an effective bandwidth
bound, for our function f so that

| f(x)| isnegligibly small whenever Ter < |x|
and, letting F = [ f],
|F(w)| is negligibly small whenever 2.4 < |w|

Precisely what is meant by “negligibly small” depends on the application and on the needs (and
ability) of those interested in that application. We won’t discuss possible criteria for “negligibly
small” at this time (one example is given in exercise 20.19 on page 310). What I will mention,
however, is that there are invariably mathematical restrictions on your ability to choose T and
¢ . 1t turns out that, if you want one of these values to be small, then you must allow the other
to be relatively large. Typically, the relation between these two values can be described by an
inequality of the form
Tett e > C

where C is some constant that depends on your precise definition of Terr and $2.p. The
inequality, itself, is often referred to as an uncertainty principle and the statement of its validity
is often called a bandwidth theorem. The importance of this inequality, naturally, depends on
the application. In quantum mechanics, for example, it is very important, and is the basis for
the Heisenberg uncertainty principle. We’ll try to return to this subject and verify a couple of
important versions of the uncertainty principle after developing sufficient tools.

A Little More on Terminology

In other texts, you will find a number of other terms for functions with finite duration. These
include duration limited and, with particular types of applications, time limited and spatially
limited. Many mathematicians will also refer to these functions as having bounded support.>
Functions with finite bandwidth are also commonly referred to as bandwidth limited functions.
You should also be aware that the terminology usage is not consistent throughout the literature.
In particular, the words “duration” and “bandwidth” are often used by others where we will use
the terms “duration bound” and “bandwidth bound” Usually, though, it is fairly clear from the
context when a particular author is using, say, “duration” to mean what we defined it to mean,
or to mean what we defined as a “bound on the interval of duration”

20.6 More on Terminology, Notation, and Conventions”
Classical?

The “theory of Fourier transforms” being developed in this part of the text is basically the same
theory presented in most traditional introductions to Fourier analysis. It is being referred to as
“classical” both because it is fairly close to what is traditionally presented and, more importantly,
to distinguish it from a more general theory we will develop later. Since it is the only theory we
will be discussing for the next several chapters, and since so much of the discussion will apply
to the more general theory as well, we might as well stop overusing the word “classical” and use
it only when there is a good reason to emphasize that we are discussing the classical theory.

3 The support of a function is the smallest closed set containing all points at which the function is nonzero.
* Warning: The author shamelessly expresses personal opinions in this section.
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Denoting the Transforms

Different workers in different disciplines have different ways of denoting Fourier transforms,
and each one has its disadvantages. In many applications it is convenient to use lower-case
Latin letters — f, g, h, etc. — for the “untransformed” functions (i.e., the functions to be
plugged into F or which pop out of & 1), and the corresponding upper-case Latin letters —
F, G, H, ETC. — for the corresponding transformed functions. Also, in these applications
it is often convenient to use “x” or “t¢” as the variable in the “untransformed” functions, and
“w” (the lower-case Greek letter “omega”) as the variable in the corresponding “transformed”
functions. The lower-case Greek letter “nu’, written “v’, is also often used as a variable,
especially as a substitute for “2mw”. These conventions arose naturally in applications because,
in applications, it often makes sense to distinguish between functions of position or time (often
representing quantities that can be directly measured, such as voltage or illumination intensity)
and corresponding functions of frequencies that are related to the functions of position or time
through the Fourier transform.*

In other situations, the convention of using f(¢) and F(w) to denote a function and its
corresponding direct Fourier transform can be awkward or even misleading. This is especially
true when developing the mathematics of Fourier analysis. Imagine the difficulty in describing
the principle of near-equivalence using this convention! We have had, and will have, many
occasions where a single function can be viewed as both an “untransformed” function and a
“transformed” function. How should such a function be denoted? And which symbol — x, ¢,
or w — should denote the variable? Because of these difficulties many people eschew the afore-
mentioned convention of distinguishing between “untransformed” functions and “transformed”
functions and, as much as possible, avoid direct reference to the variables being used, especially
when they are dummy variables. These folks prefer the notation #[f] and # ~![f] (or even
f and f ) to denote the Fourier transforms of f. They may even go so far as to use Greek
symbols such as ¢ and i to denote functions rather than letters from the Latin alphabet.

This last set of conventions and notation can lead to very elegant writing. Unfortunately,
especially when carried to excess, it does not lend itself well to describing many of the more
mundane formulas we use. As a result, additional notation has to be developed and a good part
of the reader’s time is spent learning this new (but elegant) notation.

?» Exercise20.11:  Describe the principle of near-equivalence without using dummy variables.

We will adopt a pragmatic approach regarding notation. We will use whichever of the
above sets of conventions and notation is convenient at the time. This will not include using f
and f to denote the Fourier transforms of f. We will also feel free to combine and modify
these systems of notation, keeping in mind our discussion of variables, formulas, functions, and
operators in chapter 2. Sometimes, for clarity, we may even express results (or do computations)
twice, using a different set of conventions for each.

Time Domains and Such

In some of the literature you will find references to the “time domain” (or “spatial domain”)
and the “frequency domain” of a function.> Strictly speaking, this terminology is nonsense.
A function has one and only one domain; namely, the set of all numbers that can be plugged

4 The author tries to be tolerant of those who use f instead of w for “frequency’; but those who go so far as to use
[ to denote both a variable and a function in a single expression (e.g., “ F(f) = F[f(x)]| ¢ ) are guilty of abusing
notation and their readers.

St you haven’t seen such references, stop reading this. This discussion is only for those who have seen these phrases.
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into the function. That’s it. If, for example, the function is any of the classically transformable
functions discussed in this chapter, then its domain is the set of all real numbers. Period.

That said, I must admit to using these questionable terms myself in informal conversation
and with the following understanding: We are not talking about a single function. We are really
talking about something which could be called a signal, and which corresponds to an ordered
pair of functions (f, F) with F = F[f]. In practice, both of these functions describe the
same process or phenomenon. The first, f, describes how the process or phenomenon varies as
either time or position varies. It is likely to correspond to something that can be measured, such
as the changing voltage at some point in a circuit. As such, it is appropriate to refer to f as the
“time (or spatial) description of the signal” For brevity, we might even abuse the terminology
a little and refer to f as the “time (or spatial) component of the signal’; though this incorrectly
suggests that f is describing a time or position instead of being described in terms of time or
position. We might even, in a moment of weakness, further abuse the terminology and refer to
f as “the function in the time (or spatial) domain”

The other function, F , describes the same process, but in terms of another variable, which,
because of the physics involved, often corresponds to some sort of frequency. Consequently,
it is often appropriate to refer to F as the “frequency description of the signal”’> Abuse the
terminology a little, and this becomes “ F is the frequency component of the signal”> Abuse it
further, and we have “ F(w) is the function in the frequency domain.”

In this text, any further usage of the phrases “time domain” or “frequency domain” of a
function is hereby forbidden. Your employment of these terms in private conversations will be
left as a matter for your own conscience.

Additional Exercises

20.12. Let a and b denote real constants with a > 0. Using the results from previous exer-
cises and examples (see note below), find the following inverse Fourier transforms:

- _1_¥]’
a. F ' [sincQmaw)]l; b. ¥ La +i2rwll;
- a7 (i)
a—i2nwll; La +ib+i2nwll;
4 ;]‘ —1 _l —i2nw _ ]’
e ¥ [a—}—ib—iZﬂw t b7 - <e 1) !

(You may find table 20.1 on page 292, and exercises 19.14 and 19.15 — see page 288
— helpful in computing these transforms.)

20.13. Let a and b denote real constants with a > 0. Using your answers to the previous ex-
ercise and the principle of near-equivalence, find the following Fourier transforms:

I 1

a. ¥ [sinc(2mwat b. ¥ 7]‘
[sinc( Nle el
1 r 1
a-+ib+i2ntdly, La —i2xt i,
1 r .
¢ Lreatr] e )
a-+ib—i2ntdly, L¢ ®
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20.14. Find the following transforms by factoring out appropriate constants from some of your
answers to the previous exercise. In each case a, b, and c are real with a > 0 and
c>0.

1 1
a-+itdly a-+ib+ictlly
20.15. Findthe following transforms using linearity and near-equivalence along with the entries

in table 20.1 and your answers to the above exercises. In each case a, b, and c are
real with a > 0 and ¢ > 0.

o () .
a—itldly a-+ib—ictlly
e #77[ L ] d. 5&'—1_%]
a+iwll; La +ib+icwdl;
e 7 1] P P,
a—iwll; La +ib—icwll;
1 4 1
L F| ——— h. F'| ————
8 [aercztz} . _a2+czw2} t
20.16. Compute the following transforms:
. 1
a. F[sinc(1070)]l,, b. }*[m]‘w
1 _1[ 1 ]
¢ $[2+i2m]‘w d ¥ 3—i2nwll;

20.17 a. Factor the denominator in each of the following functions and find the partial fraction
expansion for the function.® Then find the Fourier transform of the function using
linearity and some of your answers to previous exercises in this set.
1
6+ i2mt + 422
1
6+ i5mt + 6722
t

(Hint: 6+i2nt +4n2? = (3—i2m)(2—|—i2m)>

ii. (Hint: 6+ i5mt 4+ 6122 = (3—i2nt)2+ i3m))

iii, ——— where a >0
a2 + 4x2¢2
. 1 .. . i
v. —s where a > 0 (It may be easier if you first multiply by /; .)
ac —1
V. ! where a >0
a2+

b. Assume a > 0 and c > 0. Using linearity and your answers to the above, find the
Fourier transform of each of the following:
, t .. 1
* a2+ c2t2 t a? —ic%? e a? +ic%t?
20.18. Identify each of the following functions as being either classically transformable or not
being classically transformable. (In these formulas, assume that a > 0.)

cos(ax) , x2 , x7? , step(x) , x*2step(x—1) ,

1 1 2
and e

e step(x) , e step(x) ,

1—ix =~ 1—x

61f necessary, review “partial fractions” in your old calculus text!
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|
|
|
|
1
—Leff Ter T

Figure 20.1: A function f and its effective duration for problem 20.19.

20.19. Let f and F be two absolutely integrable and nonnegative real-valued functions on
the real line with F = F[f]. Assume further that f(0) # 0 and F(0) # 0. For
such an f we can define the effective duration bound T.g and the effective bandwidth
bound 2. by the equations

]

£(0) Torr = f - f)dt and  F(0) Qe = / Fwdw . (20.17)

(Basically, Teg and $2.¢ are being defined, respectively, as the half widths of the pulse
functions having heights f(0) and F(0) and enclosing the same areas as the graphs
of f(t) and F(w). See figure 20.1. Admittedly, this approach is of limited practical
value.)

a. Verity that the equations in line (20.17) can be written as
fOTer = F(O)  and  F(0) 2er = f(0)
b. Using the results of the previous exercise, verify that
Tefr 2err = 1

(Actually, you should derive TeS2ees = 1.)

c. Using the above definitions, find the effective duration and effective bandwidth for

f@)y=e.
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Some Elementary Identities:
Translation, Scaling, and Conjugation

There are several easily derived identities that can simplify the computation of many transforms
and play significant roles both in applications and in further development of our theory. Some of
these, such as those identities associated with the linearity of the transforms and the principle of
near-equivalence, have already been discussed. In this chapter, we will discuss those identities
involving translation, “modulation’; scaling, and complex conjugation. We will also discuss a
few topics relating to these identities (such as the intelligent use of tables).

For convenience, many of the formulas for transforms we have already computed are listed
in table 21.1.

21.1 Translation
The Translation Identities

The translation identities (also known as the shifting identities) relate the translation ¢ (x — y)
of any classically transformable function ¢ (x) with a product of the transform of the function
and a corresponding complex exponential.

Theorem 21.1 (the translation identities)
Let f and F be any two classically transformable functions with F(w) = F[ f(t)]l,, , and let
y be any fixed real value. Then

fe—y) , Fl-y) , €¥Vf@) and e PVF(w)

are all classically transformable. Moreover,

Flfa—-p)]|, = eF (o) (21.1a)
and
FUFw-p)]|, = 7 f@) . (21.1b)
Equivalently,
—1| —i2nyw _
F [e F(a))]’t — f—y) 21.1¢)
and
r[eﬂﬂyff(t)]’ = Flo—y) . (21.1d)
311
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312 Elementary Identities

Table 21.1: Selected Fourier Transforms from Previous Work

f@) = FUF )], F(®) = F[fO]ly Restrictions See
pulse,, () 20 sinc(2raw) O<a ex;;ngliezéil’
™ siep(1) L — 0<a s o
! step(=) o — :Zna) O<a exg;;ize;él
e <o TRl
" i ” 2e 7Y step(w) 0<a ex;f;§§8;5,
e

Before we prove this theorem, you should look at the claimed equivalence of, say, identi-
ties (21.1a) and (21.1c). This equivalence comes directly from the invertibility of the Fourier
transforms. If this is not obvious, let

gty = ft—y) and  G(w) = e 7VF ()

Assuming these functions are classically transformable, the theorem on invertibility (theo-
rem 20.9 on page 300) assures us that

Flg®]ll, = Glw) <= gt = FHUG ()]l

Replacing g(¢t) and G(w) with their formulas in terms of f and F we see that
Flfae=pll, = e F@) = fu-y = F[Fw)]| . @12
t

In other words, if we can show one of the equations in (21.2) is true, then we automatically
know that the other one is also true. Since these equations are the equations in identities (21.1a)
and (21.1c), this tells us that both (21.1a) and (21.1c) must be true if either one is true. In fact,
we really should view (21.1a) and (21.1c) as being the same identity, just written two different
ways.

Likewise, (21.1b) and (21.1d) are really the same identity, written two different ways.

As you can imagine, this sort of situation will occur several times again in this text. When
it does, it will be assumed that you, the reader, can recognize why “invertibility” implies the
equivalence of two given equations.

© 2001 by Chapman & Hall/CRC



Translation 313

PROOF (of theorem 21.1): We will limit our proof to explicitly showing that the indicated
functions are classically transformable and that identities (21.1a) and (21.1c) hold. Verifying
identities (21.1b) and (21.1d) will be left as an exercise.

For our part of the proof, we need to consider three cases: the case where f isin A, the
case where f isin 7, and the general case where f is any classically transformable function.

First, assume f isin .A. We’ve already noted (in lemma 18.7 on page 259) the fact that
any translation of f by a real value is also in A . Also, since f is absolutely integrable, we
can use the integral formula for its transform,

F() = FIf0]l, = / £ e 2T gy

Using this formula and the substitution x =¢ — y (so t =x + y and dt = dx ), we have

Fra -], = / Flt—y)e 2o gy
t

=—00

o
/ f(x) e i2moGty) g

X=—00

00
/ f(x) e*i2muxefi27rya) dx
x

=—00

— e—i2nyw /OO f(x) e—i27rwx dx = e—iZnwa(w) ,
X=—00
verifying, for this case, that e 7?27 F (w) is classically transformable (in fact, it is in 7") and
that identity (21.1a) holds. By “invertibility” (as discussed just before this proof), we also know
identity (21.1c) holds.
Now assume f isin 7 . Then F mustbein .4 (if this is not obvious, see corollary 20.12
on page 301), and so,
[e ¢
fo) = FIF@I, = f F(x) 2™ d
—00
We already know (corollary 18.10 on page 261) that, since F is in A, so is the product of
F(w) with e7?27Y® S0 we can use the integral formula to find the inverse transform of this
product. Doing so, we obtain

?71 I:efiZUwa(w)iH /oo e*iZ?T}/a)F(a)) eiant dow
t

—00

00
— / F(a))e—ﬂnyw ezant dw

—00
m N

_ / F@)é™ N do = fi—y) ,
—00

verifying, for this case, that f (¢ —y) must be classically transformable (in fact, itisin 7 ) and
that identity (21.1c) holds. By “invertibility’; identity (21.1a) must also hold.
Finally, consider the case where f is any classically transformable function; that is,

f=0L+ 1k

where f, is some function in A and f is some function in 7. Let F, = F[f] and
FE, = F[f;]. Note that

f—-y) = f[t—v) + f[E—y)
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and that
F = FIf]l = Flfi+ ] = FII+Ff,] = E +F

Since f, and f arein A and T , respectively, the previous parts of this proof assure us that
fi@& —vy) and f.(t — y) are classically transformable and that

Flre-v]l, = e E@ ad  F[Le-p]|, = eTE (W)

Thus, being the sum of two classically transformable functions, f(¢# — y) must be classically
transformable. Furthermore,

Flrae=»ll, = Flat-n+fe-nl,
Flhe=ll, + Flre-»ll,

— e*i27T}/wE4(w) + e*iZ?T}/a)FT(w)

— e—i27f)/w [E‘l(w) +FT(CU)]

— eiizanF(a))

So, whenever f is classically transformable, e™>"7® F (w) , being the transform of the classi-
cally transformable function f (¢t — y), is classically transformable, and identity (21.1a) holds.
Moreover, “by invertibility’; so does identity (21.1c).

Since f and F are arbitrary classically transformable functions and y is an arbitrary real
value, we have, in fact, shown that ¥ (t — y) and eT27Yy (w) are classically transformable
for any classically transformable function v . Thus, in particular, F(w — y) and e/>™! f(t)
must be classically transformable.

This completes our part of the proof. |

?» Exercise 21.1:  Verify identities (21.1b) and (21.1d) two ways:

a: Show identities (21.1b) and (21.1d) hold by simply repeating, with suitable modifications,
the computations done in the above proof. Be sure to consider the case where F isin A,
the case where F isin T , and the case where F is the sum of functions from A and T .

b: Show that identities (21.1b) and (21.1d) hold by using identities (21.1a) and (21.1c) and
the principle of near-equivalence.

We will refer to equations (21.1a) through (21.1d) as the translation (or shifting) identities.
Observe that the first one can be written as

Flre-»]l, = 7 FIF O,

Similar observations can be made for each of the identities. Changing our notation slightly, then,
we can see that the translation identities can also be written as

Flyae -], = e#FYl, (21.1a")
Fy@=-p]], = 27'F Y], 1.1b")
Fllerop]| = Flv@l, (2L1c)
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and

Fle o] = Fwol,., (21.1d)

where i is any classically transformable function and y is any fixed real value. (Again, it
should be noted that this list contains redundant information with identities (21.1c ") and (21.1d ")
being completely equivalent to identities (21.1a”) and (21.1b"), respectively.)

Which version of the translation identities you use is matter of preference. We’ll illustrate
the use of both.

> Example 21.1:  Consider computing ?[e‘zt step(t — 3)] . It should be clear that we will
want to use identity (21.1a) with y =3,

FLfE=3]lw

— e—i27T3a)F(a)) — e—iﬁ]Ta)F(w)

?[e‘z’ step(t — 3)] (w (21.3)

To use this formula, we must find the correct formula for the function f and its corresponding

transform. We have
ft—3) = e step(t —3) ,

which is not the formula for f but the formula for the translation of f by 3. To recover the
formula for f from this, we use the substitution x =t — 3,

f(x) — e—2(x+3) step(x) — e—6e—2x step(x)

Now we can find the formula for F = [ f]. Factoring out the constant and using table 21.1
on page 312,

_ [ —6,-2x _ 6| -2« _ 6 1
F(w) = F [e e step(x)]‘w = e °F [e step(x)]‘w =e T ime
Plugging this into equation (21.3) completes our computations:
Fle ¥ stepe=3)]| = e F ()
w
— b (6—6. 1 ) _ 1 —6-i6re
2427w 24+i2nw
> Example 21.2: Again, consider the problem of computing the Fourier transform of
—2f .
e ' step(t — 3) . If we had recognized that
e 2step(t —3) = e e 2 I step(t —3)
then we could have computed the transform using identity (21.1a’) as follows:
?[6_2’ step(t — 3)]‘ = ?[e_ée_z(t_3) step(t — 3)]‘
w w
= e_ﬁj’-‘[e_z(’_3) step(t — 3)]‘
w
= e ° (e_i2”3‘”$'[e_2t step(t)]‘ )
w
_ 6 —i2n3w 1 ) _ 1 —6—ibmw
= ¢ (e 24+ i2rw) 2+i271a)e
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?» Exercise 21.2:  Let o and y be two real numbers with o > 0. Using the appropriate
translation identity and the fact that

1
Fletsep-oll, = o=
(see table 21.1 on page 312), show that
1 .
jp[eat step(y — t)”w = — eaV—ZZynw

> Example 21.3:  Consider the problem of finding the transform of the function

e(—2+i8ﬂ)t Step(t)

Observing that we can rewrite this as the product of a function whose transform we know
with a complex exponential, we can try to use identity (21.1d’),

}‘[e(_2+i8”)t step(t)]‘ = ?[ei2”4te_2t step(t)]‘ = 57[6_2’ step(t)]‘ . (21.4)
w w w—4
From table 21.1 on page 312,

1

2t _
?’[e step(t)]‘y T 242y

This and the sequence of equalities in (21.4) give us

(—2+i8m)t o t]‘ _ [—Zt ¢ t]’ - !
}’[e step(?) " F e~ step(t) - S p—
(Note: By not multiplying out the denominator, we have left our answer in the form of “a
simple translation of a relatively simple function’. In practice, this tends to be the preferred
way to express such functions. It certainly simplifies the graphing of these functions.)

?» Exercise 21.3:  Let o and y be two real numbers with « > 0. Using the appropriate
translation identity and the fact that

1
?[eat S'[ep(—t)] |w == m
(see table 21.1 on page 312), show that
[ @tz _ ] ‘ - 1
s [e P | = @)

Also, sketch the real and imaginary parts of this transform.

The Modulation Identities

It is not at all uncommon to encounter the product of a sine or cosine function with a function
whose transform is already known. Finding the transforms of such products is easy using the
translation identities and the complex exponential formulas for the sine and cosine,

ei2nyx _ e—i27r)/x ei27ryx + e—i27ryx

sinQryx) = — and cosryx) = 3
L
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> Example 21.4:  Consider finding the Fourier transform of
sin(6mt) e 2 step(t)

For convenience, let
f(t) = e step(r)

Then, rewriting the sine function in complex exponential form and using both the linearity of
the transform and translation identity (21.1d), we have

}'[sin(6m) e step(t)]‘ — Flsin@730) fO)]l,,

12713t —12n3t
=¥ [ f (t)}

w
1
2i

ol - el
- zii[p(w —-3) — F(w—(-3))]

= %[F(a)+3) — F(w-23)]

where F = ¥ [ f]. From table 21.1 on page 312 we find that

1

F(y) = ;f[e*” step(t)](y = 51

So .
?[sin(zn&)e*” step(t)]( = LF@+3) - Fw-3)]

i 1 1
2 |:2+i27t(w+3) B 2+i27‘r(a)—3)i|

Look back over the last example. Cleverly embedded is a derivation of the following: For
any classically transformable function f, the product sin(273¢) f(¢) is also transformable and

Fsin(2=3t) fO]l, = %[F(a)+3) — F(w—13)] where F = F[f(1)]

Replacing 3 with y then gives the first identity listed in the following theorem.

Theorem 21.2 (modulation identities)

The product of any classically transformable function with a sine or cosine function is another
classically transformable function. Moreover, if f and F is any pair of classically transformable
functions with F = ¥[f], and if y is any fixed real number, then

Fsin@ryt) fFO]], = E[F(a)—}—y) — Flo—p)] . (21.5a)
Fleos@ryn) 0], = 3 [F@+y) + Flo-»] (21.5b)
F ! [sin@ryw) F)]|, = 5[f(t—y) - fa+»] . (21.5¢)
and
F cos@ryw) F@)]|, = %[f(t—y) + fa+y)] . (21.5d)
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Identities (21.5a) through (21.5d) are called the modulation identities, and the reader can

readily verify that all can be derived directly from the translation identities.

?» Exercise 21.4:  Derive identity (21.5b) from the appropriate translation identity.

7» Exercise 21.5:  Show that

f[cos(znme Step(t)]‘w 2 [2+i2n(w+3) + 2+i271(w—3)]

the following two ways:
a: using the appropriate translation identity as was done in example 21.4.
b: using the modulation identity (21.5b).

By the way, these are called the modulation identities because of the forms of the functions
appearing in the left-hand sides of identities (21.5). They are all expressed as “amplitude
modulations” of sine and cosine functions. That is, each is written as a fixed sine or cosine
function multiplied by some function, and that function is viewed as modulating (i.e., adjusting
or varying) the amplitude of that sine or cosine function. Such expressions arise naturally in
many applications. For example,

f(t) cosRrwt)

could well describe the signal transmitted over time by an AM radio station (remember, ‘AM’
stands for ‘amplitude modulation”). The function f contains the information the station wishes
to communicate — music, news, commercials, etc. — and the value w., called the carrier
frequency, is the frequency to which you tune your radio to hear the station. However, before
you can hear the station, your radio must extract the function f(#) from the signal actually
transmitted. This extraction is actually done (in some radios, at least) by electronic analogs of
the procedures described in the next exercise.

?» Exercise 21.6 (de-modulation):  Let

g(t) = f(t)cosRrat)
where w. is some fixed positive value and f is some function with finite bandwidth (see
page 305). Let §2 be a bandwidth bound for f, and assume 2 < w, .
a: Sketch possible graphs of F(w), F(w+2w.),and F(w —2w.) assuming F = F[f].
Using these graphs, convince yourself that
pulsen (w) F(w) = F(w) for —oc0o<w<o0 |,
while

pulse (w) F(w £ 2w:) = 0 for —o0<w< o0

b: Let
h(t) = g(t) cosQrw.t) and H(w) = F[h]l,

Using a standard trigonometric identity, the modulation identities, and the observations

made above, show that
f = 2F [pulseg () H(w)]
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21.2 Scaling

The scaling identities tell us that the Fourier transform of a function with a “scaled variable” is
an appropriately scaled version of the corresponding transform of the original function. They
will occasionally be helpful in computing transforms, and they are important in understanding
how transforms of functions vary as we make certain changes in the original functions.

Theorem 21.3 (scaling identities)

Any classically transformable function with its variable scaled by a nonzero real number is
another classically transformable function. Moreover, if f and F is any pair of classically
transformable functions with F = ¥[ f], and if y is any real nonzero constant, then

Flron]l, = —F(2) (21.6a)
and
FFyw)]|, = ﬁf(i) : (21.6b)
Equivalently
f“_l[F@)]t = |yl f(yo) (21.6¢)
and
?[f(é)]‘w = YIFyo) . (21.6d)

Do note that the last two identities are redundant given the first two. If that’s not obvious,
let @ = 1/, . The last two identities then become

w

FUF@o), = f(L)  ad  Flfell, = LF(2) .

ot a

which are identical, save for the symbol used, to the first two identities. In fact, the very same
arguments show that the first two identities are, themselves, completely equivalent. For this
reason many texts refer to equation (21.6a) as “the” scaling identity.

We might also observe that identities (21.6a) and (21.6b) can be written as

Fyen]l, = FWOl, (21.6a")
and
F o], = ﬁ?‘l[w«o)]m : 21.6b")

The proof of theorem 21.3 is both straightforward and a good exercise for the reader.

?» Exercise 21.7 a: Derive identity (21.6a) assuming f is absolutely integrable.
b: Show that identity (21.6a) also holds when f isin T .

c: Finish proving theorem 21.3.

> Example 21.5:  Consider finding the Fourier transform of (2 — 3it)~!.
By the scaling identity,

?[2—1311]‘&) - ?[ﬁ}'w = FIfGO]l, = éF(g) (21.7)
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where
1

f@3y = 2=iGn

and  F(y) = F[f®],
We can find the “unscaled” formula for f by using the substitution x = 3¢,

fx) =

2—ix

This is a function listed in table 21.1 on page 312. From that table we get

F(y) = 3’7[2 lix] = 2w e TP step(y) = 2w e M step(y)
—ixdly
So equation (21.7) becomes
f“'[ 1. ]’ = iF(f) = M —dn(e/3) step(g) . (21.8)
2—i3tlly 13 3 3 3

At this point we should observe that

en(?) 1 if 0<% 1 if 0<aw v
step| =) = = = Steplw
P3 0 otherwise 0 otherwise P

So, the equalities in line (21.8) simplify to

= 1 27 _4nw/3
F = — ste
[2—:‘3:]’0) 3¢ p(@)

7» Exercise 21.8:  Show that

F -
o —ift

1 _ 21 2raw/p _
?|:(x+iﬂt:Hw =3 e step(—w)

2n e—2naw/ﬁ
B

step(w)
w
and

whenever o and B are positive real numbers.

21.3 Practical Transform Computing

In practice, few people compute formulas for Fourier transforms from first principles. Typically,
you have a table of known transforms (such as table 21.1) and a list of identities (we hardly have
enough identities, yet, to make a decent list), and you “cleverly” use the identities to convert the
formulas at hand to formulas involving functions appearing on your table of transforms. This
is not a process requiring deep knowledge of Fourier analysis. Instead, what you really need
(aside from reasonable tables) are (1) some competency in “pattern recognition”, (2) moderate
bookkeeping skills, and (3) the wits to avoid inexcusable blunders.

By “competency in ‘pattern recognition’’; I mean the ability to look at a formula and
recognize which identities are likely to help reduce the formula to something involving functions
you know are in your table of transforms. This competency requires practice to develop and
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some — but not that much — understanding of the theory of Fourier transforms. It also helps
to have tables with which you are reasonably familiar.

The bookkeeping skills are needed simply to keep from getting lost or confused in your
calculations. This becomes especially important in calculations involving more than one iden-
tity. Use different symbols for different functions and variables, and write down the formulas
describing how these functions and variables are related to each other. Beginning students,
especially, should avoid reusing symbols in a series of calculations. If you have already used,
say, the symbol “ f ”; and you want to use another identity containing that symbol “ f ”; and there
is the slightest danger of later confusing the two different quantities being represented by “ f
then rewrite that identity with “f” replaced with some other symbol, say, “g” Between the
Latin and Greek alphabets, and your own imagination, there are plenty of symbols available.

In spite of good bookkeeping, errors, sometimes, do hoppen. But some errors are partic-
ularly hard to excuse. They proclaim “This person is so ignorant of the basic concepts that he
or she cannot even read a simple table!” What sort of errors proclaim this? Here are a few with
which this author is sadly familiar:

1. Misuse of dummy variables: Be careful about dummy variable substitutions. Remember,
the expression
FLf O]l
is really shorthand for

the formula for ¥[ f] using the @ as the variable, and with f being the
function whose formula is f (¢)

So, for example, both sides of the equation

2
], =
o 14 47202

are formulas of w, and we can use the substitution w = y — 2 to get the equation

) =
y—2 1+ 472y — 2)2

Neither side, however, is truly a function of ¢, and we canNOT use the substitution
t =x — 2 toclaim

AL - - i
[3) 15) 1+ 4720?

In fact, identity (21.1a") tells us that, instead,

Jf[e—pc—z\]‘ _ e—i2n2a)}v|:e—|x|:H — pibte 2
® 1) 1+ 4n20?

2. Ignoring the stated restrictions: Any reasonable table of transforms or identities will
indicate when each transform formula or identity can be used. Ignoring these restrictions
will usually (but not always) result in errors. Consider, for example, finding the transform
of (=3 +it)~!. According to table 21.1 on page 312,

1 — 2raw _ .
?[a —|—it]‘w = 2rme step(—w)  provided 0<a

and

J‘t'[ ! - ]‘ = 27 e % step(w) provided 0<a
w
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(Mis)using the first identity (with @« = —3, in defiance of the restriction that 0 < o)
gives

1 27(=3 -6
g 2 7(—3)w 2 T W
F [ 3 it]‘w = 2me step(—w) = 2me step(—w)

But these computations cannot be trusted since the restriction that 0 < « was violated.
In fact, the function obtained is wrong. Doing the computation correctly, that is, using
the other identity with o = 3, so the restriction that 0 < « is satisfied, we have

?[—31—|—it]‘w - _T[3—1it]‘w

—2713w

—6mw

= 2me step(w) = —2me step(w)

This result is very different from the one obtained by misusing the first identity. (Sketch
the two functions to see just how big a difference results from the two sign differences.)

Using formulas and functions that are not understood: When you first begin using tables,
there is a good chance that you will encounter functions and formulas that you do not
yet understand. For example, using the tables in the appendix you can easily derive

?’[eiz’”Z sinc(2nt)]‘ = &1 * pulse; (w)
w

The pulse function we know, but, since we have not yet discussed the delta function or
convolution, it is likely that the “§;” and “*” are meaningless symbols to you. If so,
then “§1 * pulse;(w)” just stands for “a group of meaningless symbols’, and you can
hardly say that you have computed the transform.

> Example 21.6:  Let’s find the Fourier transform of

eiﬁnt
2 —5i+it
Since this can be written as
2730 1
24i(t-5
translation identities (21.1a),
Flre=y]|, = e#7F) (21.9)
and (21.1d),
?[eizwtf(t)] ‘w — Flo—y) , (21.10)

seem worth trying. (Here, y is any real value.)

Applying identity (21.10) with y = 3 yields

ei67rt
Fl—
|:2—5i +it:|

; 1
— ?[6127[&_ ]‘
2-5i+itlly

[0)

(21.11)

?v[eiZn'Stf(t)]‘w
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where
1

A

and

(21.12)

1 1

F») = FUON = 37[2—5i—|—it]‘y - 3:|:2+i(t—5)] ,
(Observe that we used y rather than o for the variable in the formula for F . That way,
once we finally find the formula for F(y), we can find the formula for equation (21.13) by
just replacing y with v —3.)

To avoid possible confusion with some of the other equations in these computations,
Iet us rewrite equation (21.9) with the symbols f, F, and y replaced with g, G, and B,
respectively,

Flgt—Pll, = e PG (y)

(So, in our rewritten identity, G = ¥[g] and B is any real number.) We have also replaced
the symbol @ with the symbol y since that is the symbol for the variable in line (21.12).
Using our rewritten identity (with B =5 ), the equations in line (21.12) become

. 1
Fo) = f[m}

y
= Flgt =31,
= eTVG(y) = G (y) (21.13)
where |
gt—=5) = TTiC=) and  G(y) = F[gW]l,

Substituting x for t — 5 in the above formula for g(t — 5) gives us our formula for g,

The transform of this function can be found in table 21.1 on page 312. Keeping in mind that,
here, the symbols for the variables are x and y instead of t and w, table 21.1 tells us that

#lara)
2+ixdly

= 27 ¥ step(—y) = 27 ¥V step(—y)

Gy = Flgll,

This gives us the formula for G (y). Plugging this into equation (21.13) then gives us the
formula for F(y),

F(y) = efi1071yG(y)
_ e—ilOny I:zn e4ny step(—y)] - 27 e(4n—i10n)y step(—y)

Finally, looking back at equation (21.11), we see that the desired transform is simply F(y)
with y =w —3. So

elont 47 —i10 3
Flo || = Flo-3) = 2 W TIIM©=3) ghen(3 — )
w
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21.4 Complex Conjugation and Related Symmetries
Complex Conjugation Identities

The complex conjugation identities are very similar to the identities making up the principle of
near-equivalence. We can derive them easily by observing that

/ ¢*(y) efiany dy — / [¢(y) eiany]* dy _ |:/ o(y) eiany dy]

/ ¢ () €™ dy = / [60re ] ay = [ / ¢<y)ei2mwy]

—00

and

whenever ¢ is a function in A. Recognizing that the integrals on the left- and right-hand
sides of these equations are the integral formulas for the Fourier transforms, we see that these
equations can be rewritten as

Flo*] = (F7'¢])"  and  F[s*] = (FIg])

These equations are the complex conjugation identities, and we have just gone through the first
part of the proof of our next theorem.

*

Theorem 21.4 (complex conjugation identities)
For any classically transformable function v ,

Fly*] = (F'w1)"  and  Fy] = (Fly])" . (21.14)

*

PROOF:  The brief computations done just above (but with ¢ = ¢ ) confirmed that both of
these equations hold when ¢ isin A.

To show that the first equation in line (21.14) holds when ¥ isin 7, let ¢ = F ~'[y/].
That is, ¢ is the function in A such that ¢ = F[¢]. Since we know the conjugation identities
hold for functions in A, we know that

v = (Flel)" = F7[¢7]
Thus,
T — -~ — *
Flv'] = FlF o]l = ¢ = (F'w1)"
verifying the validity of the first equation in line (21.14) when ¢ isin 7T .
So we now know the first equation in line (21.14) holds whenever ¥ is in either A or
in 7 . But, by definition, if i is any classically transformable function, then ¥ = ¥ 4 + ¥

where ¥4 and Y7 arein A and T , respectively. By this, the above, and the linearity of the
transforms and conjugation, we have

Flv*] = Flvi+v7]
= Flval + #lv7]
= Fyal" + Fyr)
= (F ' Wat+yr])" = (F'w1)

Thus, the first equation in line (21.14) holds when  is any classically transformable function.
The verification of the second equation in line (21.14) is very similar and will be left as an
exercise. I
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?» Exercise 21.9:  Complete the proof of the above theorem by verifying that

Fv*] = (Flv1)
whenever:
a: Y isin T .

b: + is classically transformable.

Some Related Symmetries”

We’ve already observed that the Fourier transform of an even transformable function is even,
and that the Fourier transform of an odd transformable function is another odd function. We can
expand on these observations by also looking at the real and imaginary parts of our functions.

Let’s start with an absolutely integrable, piecewise continuous function f having real and
imaginary parts u and v, respectively. Then

FIfll, = f () e 2™ dx

/ [u(y) +iv(y)][cos(2mrxy) + i sin(2mxy)] dy

= f b [u(y) cos(2xy) — v(y) sin(2wxy)] dy

—00

+ i / [u(y)sin(2rxy) + v(y) cos2rxy)] dy

From this, we see that the real and imaginary parts of F = [ f] are given by

Re[F(x)] = f b [u(y) cos(2mxy) — v(y) sin(2wxy)] dy

—00
and

Im[F(x)] = / [u(y) sin(mxy) + v(y) cos(Qmxy)] dy

—00

Observe that, if f is real valued (i.e., u = f and v = 0), then these equations reduce to

Re[F(x)] = /oo u(y)cosexy) dy
and
Im[F(x)] = / u(y)sin(2rxy) dy

With additional assumptions regarding the symmetry of f, these equations reduce further.
Consider, for example, what happens when f is also an even function. Then u(y) cos(2wxy)
is an even function of y, u(y)sin(2wrxy) is an odd function of y, and, as we noted in our
discussion of integrals of even and odd functions in chapter 5,

o]

Re[F (x)] = f

—0o0

u(y)cosmxy) dy = 2/ u(y)cosQexy) dy
0

* To be honest, we will have little future need for the results derived in this subsection, but they are occasionally useful
in certain applications.
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Table 21.2: Symmetry Relations between f and F with F = F[f]

f iseven = F iseven
f isreal valued and even = F is real valued and even
f is imaginary valued and even — F is imaginary valued and even
f isodd = F isodd
f is real valued and odd = F is imaginary valued and odd
f is imaginary valued and odd — F is real valued and odd

and
o0

u(y)sin(2rxy) dy = 0
o0

miF] = [

Since the imaginary part of F is 0,

F(x) = Re[F(x)] = 2/00u(y)cos(2nxy) dy
0

So F must be real valued. Furthermore, because the cosine is an even function, we can easily
verify (again) that F is an even function,

o]

F(—x) = 2/ u(y)cosmr(—x)y) dy = 2/ u(y)cosrxy) dy = F(x)
0 0

In summary, here is what we’ve just shown:

If f is a classically transformable function that is also even, real valued, and
absolutely integrable, then its Fourier transform is an even and real-valued function.

Looking back over our derivation of this statement, it should be clear that a number of other
similarly worded statements, such as

If f is a classically transformable function that is also odd, real valued, and abso-
lutely integrable, then its Fourier transform is an odd and imaginary-valued function

are also true. You may even suspect these statements remain true with the phrase “absolutely
integrable” removed. They do, and you should have little trouble confirming this. So I will
just state a brief theorem and provide a short table summarizing some statements you can easily
prove.

Theorem 21.5
The implications given in table 21.2 are true whenever f and F are classically transformable
functions with F = F[f].

?» Exercise 21.10 (symmetries):  We showed that F = ¥[ f] is even and real valued when
f is an even, real-valued function in A. Now show F is even and real valued when

a: f is an even, real-valued function in T .

b: f is an even, real-valued, classically transformable function.
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Additional Exercises

Unless otherwise indicated, all of the following exercises are to be done using table 21.1 on
page 312 and the identities and properties of the classical Fourier transform developed in this
and the previous chapter. Do not compute these transforms by directly evaluating integrals.

21.11. Using the translation and modulation identities, compute the following:

a. F[pulse;(r —4)] |w

c ?’[eis”tpulseg,(t)]‘w
e #[sraall,
.

i ?—1[ei10nwe—3|w|]

w

t

k Fle™ step(t — 4)]‘
w

[ 1
m Fl———
_34—10t+t2i|

w

1
n |———
_29+4t+t2”w
p. F cos(6nt)e*5|t|]‘
L w

[sin(2r1)
2t

w

b. F[pulse;(t +4)]|,

d F [eii&” pulse3(t)] ‘w

1
A Frrrrerrel
3+idn —i2nw

h. }vl:eilome—Bltl]
7T w

F L

|:3 — i2na)i|

qb=
16 + (t — 3)2

™

t

w

&~

t

O]

(Hint: See the previous problem.)

0. F [e—3f cos(2mt) step(t)] ‘w

q. }'[Sin(6nt) e*5"‘]‘w

s. F cos(;—at) pulse,, (t)]‘ with o > 0  (the truncated cosine in figure 21.1)
L w

21.12. Using scaling (and table 21.1), find the following transforms:

1
a. $[12+i3t]‘w
1

b. | ——
[a2+y2,2

:H where o > 0 and y > 0
w

‘ Y >

o T

Figure 21.1: The truncated cosine function, cos(3=¢) pulse, (t) with o > 0.
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21.13. Find the following transforms using table 21.1, the scaling and/or shifting identities,
and the fundamental properties of Fourier transforms. Where they appear, assume o ,
B ,and y arereal numbers with « > o and y > 0. Plan on using at least two identities

for each.
a F[e i sinc(t—3)]’ b g| @O
L ® 6+3i+it]|,
i6mt 1
c. F ; d Fl——
| 4+ 12i +3it ||, a+ip+iyt]|,
e. F ;
la+if—iyt]],

21.14. In the following, let @ > 0. You will also use the fact, derived in exercise 19.15 on
page 289, that

e—i27rw -1

?[ICCt(O,l)(t)“w =i 2w

a. Find the values of B and b (in terms of « ) such that
rect(o,a) (t) = recto, 1) (Bt) and rect(—q,0) t) = reCt(0,1) (bt)

b. Using the scaling identity and the above, find the following:
i Flrect.q)®)]|, ii.  F[rectq,0®)]|,

21.15. Let —o0 <A < B < .

a. Find the values of « and ty (in terms of A and B ) such that
rect(4 py(t) = pulse, (t — 1)

b. Using the above and the translation identity, find the direct Fourier transform of
rect(A,B)(t) .

c. Use the formula just obtained to compute ¥ [rect(o,l)(t)] |w . Show that the result is
equivalent to the formula given in exercise 21.14, above.

d. Use the formula just obtained to compute ¥ [rect(s ) (t)] |w )

21.16. The translation identities were derived assuming real-valued translations. Occasionally,
it may be tempting to use the translation identities with imaginary translations. The
following shows that this is generally a BAD idea.

. _ 1
a. What is the correct formula for F 1[7]‘ 7
2n +i2nwll;

b. Verify that
1 -1

2 +i2nw | 2m —i2n(w—2i)

and “evaluate” the inverse Fourier transform of this using translation identity 21.1b
on page 311 with — in violation of the stated restriction — o = 2i .

c. Confirm that the result just obtained by (mis)using a translation identity is wrong by
comparing it with the correct formula.!
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A\ \ /S
N

N

(a) (b)

Figure 21.2: Graphs for exercise 21.17 with (a) being the graph of f and (b) being the graph
of F.

21.17. Let f and F be the two real-valued functions sketched in figure 21.2. Assume further
that they are classically transformable with F = F[ f].

a. On the same coordinate system, sketch the graphs of f (at) and its Fourier transform
fora=1,a="',and a = 4. (For a = 1, simply copy the graphs sketched
in figure 21.2. For the other values of a , sketch the appropriately “scaled” function
using the scaling identity to properly scale the graph of the transform.)

b. What happens to the graphs of f(at) and its transform as a — 0 ?

c. On the same coordinate system, sketch the graphs of f(at) and its Fourier transform
fora=1,a=2,and a=4.

d. What happens to the graphs of f(at) and its transform as a — +00 ?

21.18. Let ¢ be any function on the real line, and denote by ¢ and ¢o the corresponding
functions given by

pr) = Jp@ +o(-1)]  and  pox) = 3[(x) — P(—x)]

These two functions, ¢ and ¢o , are called the even part and the odd part of ¢,
respectively.

Verify that the terminology is appropriate by showing that
a. ¢g is an even function.
b. ¢o is an odd function.
¢ ¢=0¢r+do.

21.19. Let f and F be two classically transformable functions with real parts u and R, and
imaginary parts v and I , respectively;

f =u+iv and F = R+il

Let ug, v, Rg,and Ig be the even parts, and up , vo, Ro , and Ip the odd parts
of these functions (as defined in the previous exercise).
a. Assume f isin A.

i. Showthat R = F[ug] and Ry = iF[vo].

1 The classical translation identities can sometimes be safely used with complex-valued translations. Conditions under
which this is so are described in section 23.4 starting on page 365.

© 2001 by Chapman & Hall/CRC



330 Elementary Identities

ii. What are the corresponding formulas for I and Ip (in terms of the Fourier
transforms of ug , up , vg , and/or vg )?

b. Verify that the relations derived in the previous exercises between the parts of f —
U, uo, Vg ,and vo —andthe partsof F — Rg , Ro , Ig , and 19 — also hold

i. when f isin T , and

ii. when f is any classically transformable function.
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Differentiation and Fourier Transforms

One reason the Fourier transform is so important in many applications is that it can convert
expressions involving derivatives of unknown functions to simpler algebraic expressions. We
will derive the main formulas for this conversion immediately below, and then spend most of
the rest of this chapter discussing some of the results that follow directly from these formulas.

22.1 The Differentiation Identities
Initial Derivations

Deriving the main identities of this chapter is fairly straightforward if we use the integral formulas
and make a few “reasonable” assumptions. Later, we will look a little more closely at these
assumptions and derivations.

Two derivations will be presented. Inboth, f and F are classically transformable functions
with F = F[f].

The First Derivation

Since we have indicated that the transform should simplify expressions involving the derivative
of f, let’s start by trying to convert F[f’] to a simple expression involving F . Right off
we are making an assumption, namely, that f’ exists and is classically transformable. By the
properties of classically transformable functions, this means f’ must be piecewise continuous;
hence, f, itself, must be piecewise smooth. Assuming f’ is also absolutely integrable, we
have

f[f/(t)]|w — / f/(t) e—i2mot dt

Seeing the integral of a derivative with another function suggests that we try using the integration
by parts formula (see theorem 4.2 on page 40)

b ’ B p /
/ fgwyde = fngn|, —/ fg' @) de

with g being the exponential and («, 8) being the entire real line, (—oo, oo) . Glancing back
at theorem 4.2 we see that two more assumptions are being made: that f is continuous and that
the integration by parts formula holds when the interval is not finite. Making these assumptions,

331
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we try integration by parts,

f(t) e*iZ?th

Flroll,

Z_Oo _ /j: £(0) [%eﬂ'ant] dt

— f(t) e—iZJTa)t o

/ - f(0) (—i2rw)e 27 4t

t=—00

Since the integration is with respect to ¢, the (—i2ww) can be factored out. Noting, also, that
the resulting integral is the integral formula for the Fourier transform of f (assuming f is
absolutely integrable) gives

f(t) e—iZJTa)t *

FLro], ot ianfoo f(r)e 27l gy

x

— f(t) e—i27‘[a)t
f=—

+ 2nwF (w)
oo

With a little thought it should be clear that, as long as f is “reasonably nice’, then f(¢)
should vanish as ¢+ — Foo. Assuming this (and recalling that the magnitude of the complex
exponential is always 1), we then have

—i2rot|* _ 5 —i2net —i2net _ o _ o _
f)e = lim f(t)e lim f@)e =0 0=0 ,
=—00 =00 ——00

and the last formula above for [ f'] becomes
Flf'®]|, = i2znoF(w) . (22.1)

In any situation where all of the above assumptions hold, the above derivation can be
accepted as a rigorous proof of equation (22.1). For future reference, let us list all the assumptions
made in deriving this equation:

1. f is piecewise smooth and absolutely integrable.
2. f’ is absolutely integrable.

3. f is continuous.

4. The integration by parts formula is valid.

5. Lm f@) =0

t—+o00

We did not list the assumptions that f and f’ are classically transformable, since these assump-
tions are automatically satisfied if the first two assumptions in the list hold. The astute reader
may also complain that the assumption of f being continuous is really part of the assumption
that the integration by parts formula is valid. However, the continuity of f will turn out to be
such an important assumption that it should be explicitly stated.

The Second Derivation

Inverting equation (22.1) and factoring out the constant gives

@) = F U i2noF ()], = i2nF YoF ()], . (22.2)
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It would be nice if we could derive this making a few assumptions concerning F instead of f,
and viewing f as F ~![F]. It turns out that this derivation is even easier than the derivation of
equation (22.1):

f0 = SFF@|
— Z_t _ZF(a)) 2T o (22.3)
_ /_ (:g—t[F(a)) ei2”wf] do (22.4)
= /_ ” F(0) (27 w)e?™ " dw (22.5)
= 27 f_ ” wF () ¥ dw (22.6)
= i2nF HoF ()], - (22.7)

What assumptions were made in this sequence of equations? Obviously, we assumed that the
functions F(w) and wF () are absolutely integrable, and that f = F ~1[F] is differentiable.!
Also, in going from line (22.3) to (22.4), we assumed that we could switch the order in which
we perform “integration with respect to w” and “differentiation with respect to ¢ > Other than
those assumptions, we simply used well-known facts from calculus. Thus, this derivation can
be accepted as a rigorous proof of equation (22.2) under the following assumptions:

1. F is classically transformable.

2. F(w) and oF (w) are absolutely integrable functions on R.

O<D .
3. f@) = f F(w) 7" dr is differentiable.

—00

o]

F(w) e do = / 8—[F(a))e"z’“‘”] do
Y

d o
| o

The Basic Identities

Equations (22.1) and (22.2) are two of the differentiation identities. The following theorem
describes the “most general” situations (within the classical theory) in which they may be used.

Theorem 22.1 (differentiation identities, part I)
Let f and F be two classically transformable functions with F = F[f]. Assume either
that

1. f is continuous and piecewise smooth, and f' is classically transformable,
or that

2. oF(w) is classically transformable.

1 We also assumed oF (w) is classically transformable. This, however, is easily shown to be true if F is classically
transformable and wF (w) is absolutely integrable.
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Then both of the above sets of conditions hold as do the following two equivalent equations:

FIf®]|, = i2noF () (22.8a)

and

FlUoF)]l, = —f'@) . (22.8b)

i2n

A very similar pair of differentiation identities are given in the following theorem.

Theorem 22.2 (differentiation identities, part II)
Let f and F be two classically transformable functions with F = ¥[f]. Assume either
that

1. F is continuous and piecewise smooth, and F' is classically transformable,
or that

2. tf(t) is classically transformable.

Then both of the above sets of conditions hold as do the following two equivalent equations:

FUF )], = —i2ntf@ (22.8¢)

and
FlfO)ly = —5-F'@) . (22.84)
Equations (22.8a) through (22.8d) are the differentiation identities. They can also be written

as
FIr o], = i2roF[fOl, (22.8a")
FloF @]l = o T F F@] (22.8")
FUF (]|, = —i2mtF ' [F)], (22.8¢”)

and
Flefoll, = —éj—w?[f(t)]lw : (22.8d")

Whichever way you write the identities, it is important to remember that they are NOT always
applicable and that theorems 22.1 and 22.2 state when each identity is valid.

The assumptions given in theorems 22.1 and 22.2 are much more general than those in-
dicated in our derivations of the first two differentiation identities. In fact, these theorems are
more general than we can completely prove at this time. What we can rigorously prove now are
the four lemmas on the differential identities given in the next section. Later, in chapter 29, we
will confirm that these lemmas generalize to the theorems above.

We will go ahead and use theorems 22.1 and 22.2 with the understanding that their proofs
will be carefully completed later on. Where convenient or necessary, we will also note when
our computations can be justified by one of the lemmas from the next section.

Before stating the next section, however, let’s look at a few examples of these identities in
action.

> Example 22.1:  Consider finding the Fourier transform of the function

® t if —-1<t<l1
& o otherwise
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This function is clearly classically transformable since it is clearly piecewise continuous and
absolutely integrable. Observe that

1 if -1<t<l1
gt) =t = tpulse(t)
0 otherwise

We already know about the pulse function; its Fourier transform is 2 sinc(2w w) (see table 21.1
on page 312). Since both pulse(t) and t pulse,(t) are absolutely integrable, theorem 22.2
applies and assures us that identity (22.8d) holds (with f = pulse,). Using the alternate
version of this identity (equation (22.8d")),

Flg®ll, = .'F[tpulsel(t)”w
= —%Z—w?[pulsel(t)”w

1 d .
=~ 52 sinc(2r w)

1 d sin(2rw)
i2rdo  mw

_ 1 (mw)(2m) cosLm w) — 7 sin(27m w)
B (rw)?

2w

2w cos(Qrw) — sin(2r w)
i
27202
(Note that, because g(t) = tpulse,(¢) is absolutely integrable, we could also have
found ¥[g] by directly evaluating the integral formula for this transform. You may want to
compute ¥[g] this way and compare the results and work done with the results and work
done in this example. In particular, ask yourself “Which method is easier?”)

?» Exercise 22.1:  Using identity (22.8d) (or (22.8d")), show that

P ime?e if w<0
¥ 2 = c 21w :
1+e21], —ige ¢ if 0<w
In this case the function being transformed is not absolutely integrable, so we must trust
theorem 22.2 to justify the use of this identity here.

> Example 22.2 (a differential equation):  Let us try to solve the differential equation
Z—}; + 3y = pulse;(¢) . (22.9)

We will start by assuming a classically transformable solution y(t) exists, and seeking
its Fourier transform Y = F[y].

Taking the Fourier transform of both sides of the differential equation and using differ-
ential identity (22.8a) along with other properties of the transform, we obtain

d
j:[d_)t] + 3y]‘w = F[pulse; 0], (22.10)
dy )
= }V[E]‘w + 3F[ylly, = 2sincrw) (22.11)
== 2rwY(w) + 3Y(w) = 2sincQrw) . (22.12)
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The last equation is a simple algebraic equation for Y . By simple algebra

[(2rw+3]Y(w) = 2sincrw) . (22.13)
So, ]
Y(w) = 2 smcFZmu)
34+ i2nw

Finally, provided Y really is classically transformable, we can obtain the corresponding
solution to the differential equation by taking the inverse transform,

(22.14)

yt) = FUr), = }‘1[—2““0(2”“’)}

3+i2nw

t

Unfortunately, the evaluation of this transform is currently beyond us and will have to wait
until we discuss convolution (chapter 24).

Do observe that we did not actually show there is a classically transformable solution to the
differential equation in the previous example. Nor did we verify there that our use of differential
identity (22.8a) was actually valid (i.e., that the appropriate assumptions given in theorem 22.1
hold). All that was shown was that, if the differential equation has a classically transformable
solution 'y, and if this solution is “sufficiently nice” (say, continuous, piecewise smooth, and
with a classically transformable derivative), then this solution is

yo = F)), = y—l[w]

34+ i2nrw

t

The next step should be to verify that this does give a solution to the differential equation. One
way to do this is to simply check that the final formula for y(#) gives a suitable continuous
and differentiable function that satisfies the given differential equation. Another approach is
indicated in exercise 22.8 on page 349.

The next example illustrates the importance of verifying the applicability of any differential
identity used, and how the misuse of these identities can lead to nonsense.

> Example 22.3 (misusing a differentiation identity): Let us try to find the Fourier
transform of
2
1412
Blindly using identity (22.8d’),
2
Fl || = F|e! I (22.15)
1+ 1], 1+22], i2m dw 1+,

Plugging in the results of exercise 22.1 and computing the derivatives,

7 2 1 d ime?™® if w<0
1412

i2r dw 2nw

® —ime~ if 0<ow

T in 2w

1 272 if w <0
i2me” if 0<w

— _ge2rlel
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Taking the inverse transform of both sides gives

2

o 71[ 72n|w|i|
T2 - F e . (22.16)
But from table 21.1 on page 312 we find that
Jq—l[ne—anw\] _ 1
t 1+1¢2

Thus, if we can believe both of the last two equations,

2

1
1+ 2 -

t 1412

= —F! [ne‘zn“‘”]

for all real values of t . In particular, using t = 0 we get the dubious equation
0=-1"1!

So what went wrong?
What went wrong was that, in line (22.15), we used the identity

1 d
Fltf®Oll, = _%%*?[f(t)“w
with
o) ¢ p Fo) i if w<0
= —— an w) =
1412 —ige e if 0<w

but without checking that this was a situation in which that identity could be applied. Now,
theorem 22.2 does assure us that this identity is applicable if either

1. F is continuous and piecewise smooth, and F’ is classically transformable,
or
2. tf(t) is classically transformable.
But we can easily verify that neither set of conditions holds here: F is not continuous — it

has a jump discontinuity at = 0. Moreover,

2

t
I = i =1
Am tf(@0) = lim =7 ’

which, according to corollary 20.15 on page 304, is only possible when t f (¢) is not classically
transformable. Consequently, we have no assurance that the identity used is valid here.” In
fact, we have shown rather conclusively that its use was a serious mistake.

?» Exercise 22.2:  Verity that
sin2nw = 2mwsinc2rw) and pulse, (1) = 0

From this, known facts concerning Fourier transforms, and the misuse of one of the differ-
entiation identities derive the obviously false conclusion that

sinrw) = 0 for every real value w

2 Actually, we only need to verify that one of the two sets of conditions does not hold. After all, the theorem states
that if either one of these two sets of conditions holds, then both must hold. Consequently, if one set does not hold,
then the other cannot hold either.
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22.2 Rigorous Derivation of the Differential Identities

Let us start with some general results that will be of interest beyond just proving the lemmas
given in this section.

Absolutely Integrable and Piecewise Smooth Functions

In a sense, the next theorem can be thought of as another Riemann—Lebesgue lemma.

Theorem 22.3
Suppose f is a continuous, piecewise smooth, and classically transformable function on the
real line. Suppose, also, that its derivative, f’, is absolutely integrable on the real line. Then

xlllj]zloo fex) =0

PROOF:  Since f is both continuous and piecewise smooth, we know (see theorem 4.1 on
page 39) that, for any real value of x,

fe) = fO) =/0 f(s)ds

Rearranging slightly and letting x — oo gives

iim fe0 = tim [ seds + f0) = [ Fords + 10
X—> 00 X—>00 0 O

which is a well-defined finite value since f’ is absolutely integrable. Thus, the limit of f(x) as
x — oo exists and is finite. But, from our discussion on “transformability” (see corollary 20.15
on page 304) we know that, if this limit exists and is nonzero, then f cannot be classically
transformable, contradicting our assumption that f is classically transformable. Hence, not
only does lim,_,, f(x) exist, it must be zero.

Virtually identical arguments also confirm that

lim f(x) =0 . |

Extending the theorem on integration by parts over a finite interval (o, 8) (theorem 4.2 on
page 40), to a corresponding theorem on integration by parts over (—oo, co) just requires the
addition of conditions ensuring the existence of the appropriate limits as (¢, ) — (—00, 00) .
The proof of the resulting theorem, stated below, is trivial and left to the interested reader.

Theorem 22.4 (integration by parts)
Let f and g be two continuous and piecewise smooth functions on the real line, and assume
either that

1. the products f’g and fg' are both absolutely integrable on the real line,

or that
2. both limits
lim f(x)gx) and lim f(x)g(x)
X——00 X—>00

exist and are finite, and either the product f’g orthe product fg’ is absolutely integrable
on the real line.
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Then

/ fgxyde / fog@dx  and  f)g)|™

all exist and are finite. Moreover,

/ g dx = f)gw)|™, — f fx)g' (x)dx

The Lemmas on the Differential Identities

Here are the four lemmas on the differential identities that we can rigorously verify at this time.
The first two describe conditions under which our initial derivations of identities (22.8a) and
(22.8b) are valid. The other two describe conditions under which similar computations lead to
identities (22.8c) and (22.8d). Together, they form the starting point for the complete proofs of
theorems 22.1 and 22.2.

By the way, when the fundamental theorem on invertibility is finally proven, that proof will
involve formulas derived using the lemmas below. So we must be careful here not to use the
invertibility of the Fourier transforms in the statements or the proofs of these lemmas.

Lemma 22.5

Let f and F be two classically transformable functions with F = ¥ [ f]. In addition, assume
that f is continuous and piecewise smooth, and that both f and f’ are absolutely integrable.
Then wF (w) is classically transformable and

FIf®]|, = i2nroF ()
PROOF:  First of all, by the assumptions, f’ is classically transformable. In fact, it is in A .
So if the equation in the lemma is valid, then wF (w) must be classically transformable since it is
the Fourier transform of a classically transformable function (in fact, o F (w) will be a function
in 7). So it will suffice to confirm that the above equation is valid. But this equation is exactly

the same as equation (22.1) on page 332, and we have already observed that equation (22.1) is
valid provided

1. f is piecewise smooth and absolutely integrable,
2. f’ is absolutely integrable,

3. f is continuous,

4. the “integration by parts” formula

/OO f/(t) e—iant dt — f(t) e—i2nwt

Z_OO _ /Z £ [%e—ﬂna)t] dt

is valid, and
5 Jim 10) = 0

Verifying that the first three conditions hold is trivial. They are assumptions in the lemma!
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Also, from theorem 22.3, we know that, because the the first three conditions hold,
Jim 10 =
Hence, the fifth of the above conditions holds.

Finally, it is trivial to verify that the assumptions in theorem 22.4 are satisfied when f is
as in our lemma and g(t) = e~*2"“! | assuring us that

/ ” fle ™ dr = / ” fl(tg(t) dt

fign|>™, - / fg' () dt

f f(l) —tZJth] ¢
So the fourth condition holds.
Thus, since all the conditions necessary are satisfied, the equation in lemma 22.5 must be

— f (l) e—zant

valid. |
Lemma 22.6
Let f and F be two classically transformable functions with f = ¥ ~'[F]. Assume, further,

that both F(w) and wF (w) are absolutely integrable. Then f is smooth, f’ is classically
transformable, and

F M oF @], = —f()

PROOF: If we can verify that the equation in this lemma is valid, then we will automatically
know thatboth f and f’ are continuous because they are Fourier inverse transforms of functions
in A . So we merely need to verify the equation, and, from our derivation of equation (22.2) on
page 332, we know the equation in the lemma is valid if

0o .

1. f@) = / F(w) ™™ dw is differentiable, and
—0Q

5 I:F(a))elZﬂwt] d(,()

d % i
2. = F(w) e do = /
dt —0Q —0Q
Verifying that these conditions hold is easy because a more general case has already been
discussed in corollary 18.21 on page 268. Reviewing that corollary (and the material leading
up to that corollary) it should be clear that the above two conditions hold provided F (w) e??*“*
and & [F (w) &7 ‘”’] are bounded by an absolutely integrable function of w. But, for all w

and t

F@) ™| = |F@)

| < |F())
and

a [F(a)) eiZJth] < 27 |wF (w)|

5

- ‘F(w)aneiZ”wt

Fortunately, for the case being considered, F(w) and wF (w) are absolutely integrable functions
of w. So corollary 18.21 applies and assures us that

f@o) = / - F(w) ™ dw

—00
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is differentiable, and

. oo .
F() e dw = / o [F(a)) e’z’”"t] do . |
T

d oo
t | o

The next two lemmas can easily be confirmed using lemmas 22.5 and 22.6 and the principle
of near-equivalence. Those who prefer not to employ near-equivalence can, instead, repeat the
proofs of the previous two lemmas with the roles of f and F switched.

Lemma 22.7

Let f and F be two classically transformable functions with f = ¥ ~![F]. Assume, addi-
tionally, that F is continuous and piecewise smooth, and that both F and F’ are absolutely
integrable. Then tf(t) is classically transformable and

FF ()|, = —i2ntf @)

Lemma 22.8

Let f and F be two classically transformable functions with F = ¥[ f]. Assume, further,
that both f(t) and tf(t) are absolutely integrable. Then F is smooth, F' is classically
transformable, and

FUFOll, = —5-F'(@)

22.3 Higher Order Differential Identities

Applying the theorems and lemmas of the previous section to problems involving higher order
derivatives is completely straightforward. For example, if F = F[f] where f, f’,and f”
are all classically transformable with both f and f’ being continuous and piecewise smooth,
then theorem 22.1 can be invoked twice to obtain the second order version of the first differential
identity (identity (22.8a)),

FUN, = FLU,

i2zre (F[11]],)
= 270 (270 F[f]l,) = (27w)*F(»)
These computations can be repeated as many times as we wish provided the function and
its derivatives are “suitably nice”> We will go ahead and state the theorems for the higher order

differential identities, but don’t think too much of them. They are simply the statements that
theorems 22.1 and 22.2 can be applied repeatedly.

Theorem 22.9 (higher order differentiation identities, part I)
Let n be some positive integer, and let f and F be two classically transformable functions
with F = F[ f]. Assume either that

1. f, f', f",...,and f®=D are all continuous, piecewise smooth, classically trans-
formable functions, and f™ is classically transformable,

or that

2. F(w), oF(w), ®*F(w), ...,and o"F(w) are all classically transformable.
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Then both above sets of conditions hold as do the following two equivalent equations:

F[FP®]|, = (27w)"F(w)

and

Theorem 22.10 (higher order differentiation identities, part II)
Let f and F be two classically transformable functions with F = ¥[f]. Assume either
that

1. F, F',F",...,and F"D are all continuous, piecewise smooth, classically trans-
formable functions, and F"™ is classically transformable,
or that
2. f@),tf@®, tzf(t) , ...,and t" f(¢) are all classically transformable.

Then both above sets of conditions hold as do the following two equivalent equations:

FUFP ]|, = (—i2nt)" f(t)

and

L)n F(")(w)

2w

Flroll, = (-

> Example 22.4:  Let’s try to find the Fourier transform of t>e~" step(t) . Obviously, it would
help if we can use the identity from theorem 22.10

. B _L n )
Fleroll, = ( i27r> Fo(@)
with n =2, f(t) = e " step(t) , and (from, say, table 21.1 on page 312)

1

Fw) = Fle'step®]|, = 70

Veritying that f(t), tf(¢) and 2 f () are classically transformable, here, is easy (see
exercise 18.12 on page 270), so theorem 22.10 assures us that the desired identity holds.
Thus,

}'[tze_’ step(t)]‘w = ?[tzf(t)]‘w

(&) Fo = -]

i2m 472 do? L1+ i2nw

By elementary calculus,

i) = 5 Glis)

do?2 L1+ i2rw] = do \do L1+i270
_d —i2n o 2(32n)?
T do \(Q+i2rw)?2) T (A +i2n0)3

1 2621 2
472 1+ 2703  (1+i2nw)3

Therefore,

F [tze_’ step(t)] ‘w =
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22.4 Anti-Differentiation and Integral Identities

We have used the differentiation identities to compute transforms of derivatives. Conversely,
we can use these same identities to find transforms of functions when the transforms of their
derivatives are already known. After all, identity (22.8a),

FIf®]], = i2noF () ,

can just as easily be written as
1

Flo) = ==

FIroll, - (22.17)

> Example 22.5: Consider finding F = ¥ [f] where f is the triangle function from
problem 19.15 c on page 289,

141t if -1<t<0
f() = rif(t) = y1—¢t if 0<t<1
0 otherwise
This function is certainly absolutely integrable, continuous, and piecewise smooth. While its

derivative,
+1 if —-1<t<0

ffoy=4-1 if 0<t<1 ,

0 otherwise

is not continuous, it is absolutely integrable. What’s more, the transform of ' is very easily
computed using the integral formula,

FLroll,

oo .
/ f/(t) e—zant dt
—00

0 1
— / e*i27ra)l‘ dt — / e*i27ra)l‘ dt
-1 0

ei2mo _ 1 —ei2m cos(Crw) — 1

2ro 27w inw
So, using equation (22.17),

1

i2nw

1 cosrw) — 1 1 — cos(2rw)

Fro]l, = P =

2rw iTw 21202

F(w) =

(For comparison, you should compute F(w) directly, using the integral formula. See, also,
exercise 19.15 ¢ on page 289.)

Since f is the anti-derivative of f’, equation (22.17) can be viewed as a formula for
computing the Fourier transform of an anti-derivative of a function using the presumably known
transform of the function. But remember, anti-derivatives can be expressed as integrals with ap-
propriate limits. So we should be able to derive identities involving integrals from corresponding
differential identities.
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Let’s derive one such identity. Assume g is any classically transformable function with
transform G = ¥[g], and define f by

t
[ = / g(x)dx

where a is a real constant or —oco or 4+oo. (If a = £oo, then we must also assume g is
absolutely integrable.) From elementary calculus we know both that f, being the integral of a
piecewise continuous function, must be continuous and piecewise smooth, and that

@) = g@)

Notice, this means [’ is classically transformable. If f is also classically transformable, then
theorem 22.1 assures us that the first differential identity,

Flf'®]|, = i2znoF(w)
holds for this f . Combining our last two equations gives

1
2w

FII, = —Flgll, = —G@)

2rw 2rw

F(®) =

further assuring us that w~'G () is classically transformable. Moreover, since

>

F@) = FIAOl, = 3*[ / g(x)dx}

w

our previous equation can be written as

t
?’|:f g(x) dx]

This gives us the following theorem.

G(w)
2rw

w

Theorem 22.11 (transform of an integral)
Let a be either some real constant or +oo, and let g and G be classically transformable
functions with G = F[g]. If a = %00, also assume g is absolutely integrable. Assume,
further, that the integral
t
/ gx)dx
a

is a classically transformable function of t . Then w™'G (w) is classically transformable and

t
?[/ g(x) dx]

Starting with the assumption that G (w) and @G (w) are classically transformable leads
to the next theorem.

= G (22.18)

2rw

w

Theorem 22.12 (integral of an inverse transform)
Let g and G be two classically transformable functions with g = ¥ —1[G]. Assume, further,
that ™! G (w) is classically transformable. Then, for any real value a ,

e

w

_ y—l[@](a — o /tg(x)dx . (22.19)

t w
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In general, equation (22.19) is of limited value in finding # ! [w_lG(a))] | , because it

requires a priori knowledge of ¥ _1[w_1G(a))] ‘a . Sometimes, though, this requirement can
be replaced with other conditions on G .

Corollary 22.13
Let g and G be two classically transformable functions with g = ¥ —1[G]. Assume, further,
that =G (w) is piecewise continuous and absolutely integrable. Then

37—1[?]L = i2n ftoo g(x) dx (22.20a)
and
f—l[?](t - —izn/toog(x)dx . (22.20b)

If, in addition, G is an even function, then

?"1[@]‘ = 27 /tg(x)dx . (22.20¢)
t 0

w

The proofs of theorem 22.12 and its corollary will be left as exercises (exercise 22.12 at the
end of this chapter).

The two theorems above really should be viewed as corollaries of theorem 22.1 on page 333,
the first theorem on differential identities. From the second theorem on differential identities,
theorem 22.2 on page 334, we can obtain the following near-equivalent versions of the above.

Theorem 22.14 (inverse transform of an integral)
Let a be either some real constant or 00, and let g and G be classically transformable
functions with g = F[G]. If a = o0, also assume G is absolutely integrable. Assume,

further, that the integral
w
/ G(x)dx
a

is a classically transformable function of . Then t~'g(t) is classically transformable and

f'?‘{/wc(x)dx}

Theorem 22.15 (integral of a transform)
Let g and G be two classically transformable functions with G = ¥[g]. Assume, further,
that t~'g(t) is classically transformable. Then, for any real value a,

52, - 7%

_ _80
i2mt

(22.21)

t

— i / Gydx . (22.22)

Corollary 22.16
Let g and G be two classically transformable functions with G = ¥[g]. Assume, further,
that t~'g(t) is piecewise continuous and absolutely integrable. Then

?[@]‘w — —i2n /w G (x)dx (22.23a)

t —00
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and

?[@]‘w - iZn/OOG(x)dx . (22.23b)

t ®

If, in addition, g is an even function, then

f"[@”w — —i2n /OwG(x)dx . (22.23¢)

We will end this section with an application of one of the identities from the above theorems
and corollaries. Before that, though, a couple of points should be noted:

1. Allthe above integral identities were derived from differential identities in theorems 22.1
and 22.2. In fact, any results derived using these integral identities could also be derived,
with just a little more work, using the corresponding differential identities. (So the
reader with limited time should concentrate more on the differential identities than on
these integral identities.)

2. The requirements assumed for these identities are pretty stringent and are not satisfied by
a great many classically transformable functions. Consider, for example, theorem 22.11
when a = —oo. Then, not only do we need g to be absolutely integrable, but

t
f@ = / gx)dx

must be classically transformable. With a little thought, you should realize that this

requires g to satisfy
o0
/ gx)dx =0 ,

—00

which is not generally the case.

Notice, also, the requirement in theorem 22.12 that both G(w) and w~'G (w) be
classically transformable. But, typically, »~'G(w) is not classically transformable
because it “blows up” at @ = 0 — at least, it “blows up” if G(w) - 0 as w — 0. So,
requiring @~ 'G (w) to be classically transformable also imposes the requirement that
G (w) be continuous at w = 0 with G(0) = 0.3

> Example 22.6: Let o and B be any two positive values, and consider the function

ealtl _ Bl

f&o=————:,

t

which can be written as

f) = @ with g(t) = el — oAl

Since g is the difference of two continuous absolutely integrable functions, it should be
clear that t~'g(t) will be piecewise continuous and absolutely integrable so long as it has,
at worst, a jump discontinuity at t = 0. Now,

g(0) = 0 — A0 — 1 1 =9

3 The reader should recall that, if g isabsolutely integrable, then G = F[g] iscontinuousand G (0) = ffooo gx)dx .
So the two implicit requirements discussed here on g and G are complementary.
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and

lim 8@ _ lim e = e lim A
(>0t t (>0 t 150 t

Using L’Hopital’s rule, then,

t _ ot —pBt
lim 80 _ lim —%¢  + BT _ B —a
t—0t+ t—0 1

Similarly,

lim 80 _ oa—p

t—0-

Thus, t~'g(t) does not “blow up” at t = 0 ; it merely has a jump discontinuity there.
Since g(t) and t~'g(t) are both piecewise continuous and absolutely integrable, we
can use the identities in corollary 22.16. Noting that
g(t) = e—altl _ =Bl

is an even function, we might as well use identity (22.23c), which tells us that

—alt] _ =Bl )
?[L} - #[82) - —i27r/ G (x) dx
t %) 0

t
where (see table 21.1 on page 312)

w

_ _ —altl _ Bl _ 20 _ 28
G(w) - ?[g(t)“a) - ,‘}’[e * e in - a2+4ﬂ2w2 /32—|—4n2u)2

Now, from elementary calculus, we know that

@ 2y 1 2
/ ﬁdx = — arctan(—a)) for y>0
4 +4mrex T Y

- [e—an _ Bl }
t

And so,

@ 2 2
= —i2n/ 5 d — A dx
w 0 Lo?+4n202 B2 + 4n20?
= —i27 [l arctan(z—ﬂa)> _ 1 arctan(z—nwﬂ
b4 o /4 B
= i2 [arctan(%w) — arctan(%w)]

(Note: This shows that the difference between two arctangent functions is classically
transformable. However, an individual arctangent is not. We know this is so because
arctan(x) approaches */» —not 0 —as x — 00.)

?» Exercise 22.3: Let « and 8 be any two positive values. Verify that

—at Bt

[0 = " step(®)

is piecewise continuous and absolutely integrable, and that

Flfol, = %ln<'32+4n2w2> +1i [arctan(%w) - arctan(%w)]

o? + 4n2w?
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Additional Exercises

22.4. Let o > 0 and, using table 21.1 on page 312, the appropriate differentiation identities,
and other basic identities as needed, find the Fourier transform and inverse transform
for each of the following functions.

a. F[te step)]], b. Jqf[tze_“‘ step(t)]‘w
e Flresepo)]| d. F ' [we ™ step(@)]],
e. F[te* step(—1)]|. f ?[tzeo”step(—t)]‘w
g ?[te—“"l]‘w h. f_l[we—a|w\]t

i. }’[tz pulsel(t)]‘w

22.5. Let a > 0. Compute each of the following transforms by expressing the function
being transformed as the derivative of a known function, and then using the appro-
priate differentiation identities, table 21.1 on page 312, and other basic identities as

needed.
?[71. } b. ?[71. }
(@+it?]|, @+ind]|,
e F L d 7| L
(o + iw)? ‘ (o +iw)3

e 7| | es| ]
(@—in?]|, (@—ind]|,

& ?[wiﬂ)z} . " j:[(aszzy}

22.6. In the following, assume o« > 0.

t

a. By now you have computed the Fourier transform of t"e~ % step(¢t) for n = 0,
n =1, and n = 2 (see the above exercises). Go ahead and compute the Fourier
transform of this function for n =3 and n = 4.

b. Determine the general formula for

Fle"e™ step(t)]]w where n = 1,2, 3, ...

c. Let n denote an arbitrary positive integer. Using appropriate identities along with
the answer to the previous part of this exercise, determine the Fourier transform of
each of the following:

i "¢ step(—1) i, 1
(o + i)
1

iii, —————
(a —it)"?
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22.7. There is a classically transformable function y(t) satisfying the differential equation

dy _ il
T + 3y =e¢

a. Taking Fourier transform of both sides of this differential equation, find Y = ¥ [y].

b. Use your answer from the previous exercise (and partial fractions) to find y(¢) .

22.8. Letus reconsider example 22.2 on page 335. We saw that, if a classically transformable
solution y to the given differential equation exists, then y = F ~'[Y] where

2sinc2rw)

Y(w) =
(@) 3+ i2nw

a. Since the sinc function is continuous and 3 + i2mww is never zero for real values
of w, it should be clear that Y is continuous. Show that Y (w) and oY (w) are
classically transformable by showing that

i. Y(w) is absolutely integrable, and

il. wY(w) is the product of a known classically transformable function with a sine
function.

(Hint: It may help to recall the definition of the sinc function.)

b. Now use theorem 22.1 to show all the following (without attempting to compute the
formula for y(t) !):

i. y is continuous and piecewise smooth.
ii. y and y’ are classically transformable.

iii. y(t) satisfies the differential equation in example 22.2.

(Note: For the last one, you simply need to verify that the steps done in example 22.2
to find y can be done in reverse order, i.e., that (22.14) = (22.2) = (22.13)
= ... = (229).)

22.9. Assume that each of the following differential equations has a classically transformable
solution y(t) , and find the Fourier transform of that solution, Y (w) = ¥ [y(#)]l, . Do
not attempt to find y(t) .

d2
a. FZ — 9y = pulse(¢)
b @— d—y+3 = e 'step(t)
Codr? dr yo= p

22.10. Let n be some positive integer, and let f and F be classically transformable functions
with F = F[f]. Assume, further, that f, f', f”,...,and f®~V are all continuous,
piecewise smooth, classically transformable functions, and that ™ is absolutely
integrable.

a. Verify that there is a finite constant M such that

M
|[F(o)] = — for every real value w
w

b. Verifythat F isin A ifn > 1.
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22.11. (A differential identity for discontinuous functions) Let f be a piecewise smooth
and absolutely integrable function whose derivative, f’, is also absolutely integrable.
Assume, further, that f is continuous everywhere on the real line except at one point
ty, at which f has a jump discontinuity with jump jo. Let F = ¥[f], and derive
an equation (similar to identity (22.1) on page 332) relating ¥ [ f ’(t)] |w to F(w) and
Jo-

22.12. Let g and G be as in theorem 22.12 on page 344. Let

Fl) ==~ ad [ = FUF]

a. Using theorem 22.1, show that
f' = i2m g

b. Now prove theorem 22.12.

c. Using properties of transforms of absolutely integrable functions (see theorem 19.6
on page 282), verify the claims of corollary 22.13 on page 345.
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Gaussians and Other Very Rapidly
Decreasing Functions

Most of this chapter is devoted to examining those functions commonly known as Gaussians.
These are functions that naturally arise in many applications. In part, this is because they
describe some of the most commonly expected probability distributions, and consequently, are
used to model such diverse phenomena as the “noise” in electronic and optical devices, the
likelihood of a missile hitting its target, and the distribution of grades in a large class. In
addition, they arise as fundamental solutions to the differential equations describing heat flow
and diffusion problems. We will also find Gaussian functions invaluable in further developing
the mathematics used in everyday applications in science and engineering (and mathematics).
In particular, Gaussian functions make up the “identity sequences” that will play a major role
in confirming the fundamental theorem on invertibility and the more general theorems on the
differential identities in chapter 22, and, in part IV of this text, will serve as the basic “test
functions” on which the generalized theory of functions and transforms will be developed.

Some of the more significant formulas we will derive for Gaussians are also valid, slightly
modified, for other functions that are similar to Gaussians in certain ways. So, after thoroughly
discussing Gaussian functions, we will broaden our discussion to include both those functions
with formulas similar to those for Gaussians and those functions which, like Gaussians, decrease
“very rapidly” as the variable gets large.

23.1 Basic Gaussians
Definition and Some Basics

We will refer to a function g as a Gaussian function (or, more simply, as a Gaussian) if and
only if it can be written as

gx) = Ae—y(x—§)2

where A, y,and ¢ are constants with y > 0.! Both A and ¢ (the “shift”), may be complex.

To simplify matters, let’s first look at Gaussians having zero shift. We will refer to these as
the “basic Gaussians” That is, g is a basic Gaussian function (more simply, a basic Gaussian)
if and only if it can be given by

gx) = Ae "

where A is some (complex) constant and y > 0. The graph of a basic Gaussian — which you
should recognize as the (in)famous “bell curve” — is sketched in figure 23.1.

1 Throughout this chapter, y will always denote a positive constant, whether or not I remember to say so.

351

© 2001 by Chapman & Hall/CRC



352 Gaussian Functions

Figure 23.1: Graph of a basic Gaussian, e=7* for some y>0.

Basic Gaussian functions satisfy a number of properties that we will find useful. Here are
some that you can easily verify:

1. Any basic Gaussian is an even function.

2. If g(x) is a basic Gaussian and a is any nonzero real number, then g with the variable
scaled by a, g(ax), is also a basic Gaussian.

3. Basic Gaussian functions are infinitely smooth. In fact, g(”) (x), the n't derivative of
a basic Gaussian g(x), is simply the product of g(x) with an n'M degree polynomial.
(See exercise 23.1 if this is not obvious.)

4. Basic Gaussian functions and their derivatives shrink to zero very rapidly “near infinity”
More precisely, if g is a basic Gaussian, and » and m are any pair of nonnegative
integers, then

lim x"g(x) = 0  and lim x"g™x) = 0

x—+o00 x— =00

(See example 18.5 and exercise 18.5 starting on page 258.)

5. Basic Gaussian functions and their derivatives are absolutely integrable. In fact, if g
is a basic Gaussian and n and m are any two nonnegative integers, then x” g (x) is
an absolutely integrable function on the entire real line. (Again, see example 18.5 and
exercise 18.5.)

?» Exercise23.1: Assuming y > 0 and g(x) = e v¥’ , verify that g™ (x) , the n'h derivative
of g, is the product of g(x) with an n degree polynomial when

a:n=20,1,2,and 3.

b: n is any nonnegative integer.

Integral of the Basic Gaussian

You will not find a simple formula for the indefinite integral of e~7** . None is known. The
value of the definite integral
o0
/ e 75 ds ,
—00

however, is easily computed via a clever trick. Since this value will be needed, let us compute
it now (assuming, of course, that y > 0).
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For convenience, let I denote the value we are seeking. Clearly,

o0 2 o 2 o 2
I = / e "ds = / e "dx = / e " dy
—0o0 —0o0 —0oQ

The “clever trick” is based on the observation that 1?2, the product of I with itself, can be
expressed as a double integral over the entire XY —plane,

o0 o
</ e v’ dx> </ e dy>
—0Q —0o0
= /oo (/oo e ¥ dx) ey’ dy
—0o0 —0o0
o0 o o0 0
= / (/ eV ey dx) dy = / / e V(P H7) gy dy
—0Q —0o0 —00 v —0Q0

This double integral is easily computed using polar coordinates (r, 8) where

12

x = r cos(9) and y = r sin(0)

Recall that
xz—i—y2 = r? and dxdy = rdrd6

So, converting to polar coordinates and using elementary integration techniques,

27 oo ) oy -
> = / / eV rdrdd = / —df = — . (23.1)
o Jo o v

Taking the square root gives
=+ \/E
Y

But e~ 75 is a positive function on (—o0, 00) ; so
00 2 .
f e Vds =1 = /; . (23.2)
—00

Fourier Transforms of Basic Gaussians

Since the basic Gaussian functions are absolutely integrable, we can write

2 o0 2 ;
?—Ize—yt ] — / eVt e—zZJra)t dt
®

—00

Unfortunately, computing this integral directly is not a trivial task.”> We will compute this integral
indirectly using differential identities from the previous chapter. Some care, however, must be
taken because we will later employ some of the results obtained here to complete the proofs
of theorems 22.1 and 22.2 (on the differential identities). For this reason, we will only use the
lemmas actually proven in the previous chapter (lemmas 22.5 through 22.8, starting on page
339) to justify our use of the differential identities.

2 One standard approach uses contour integration in the complex plane.
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We start our computations by stating our notation:

g) = e’ and  Gw) = r[eﬁﬂ]‘

w

where y is an arbitrary fixed positive real number. Observe that
/ d [ —y2 —yt?
g = E[e 14 ] = 2yte” V" = 2ytg(t)

Since g’(¢) and tg(¢) are continuous and absolutely integrable, we can take the Fourier transform
of each side of this equation, obtaining

Flg®]|, = —2rFlg®]l - (23.3)

Moreover, because g(t), g'(¢),and tg(¢) are all smooth and absolutely integrable, lemma 22.5
on page 339 assures us that wG (w) is classically transformable and

Flgm]|, = 2roG@)

while lemma 22.8 on page 341 assures us both that G'(w) is a smooth function with a classically
transformable derivative, G’, and that

FltgOll, = —5-C'@)

So equation (23.3) becomes

270G () = 2y [—éG/(w)] . (23.4)

Simplifying this last equation and rewriting G’ more explicitly gives

dG

T = —B2w G (w) (23.5)

where, for convenience, we've let 8 = 7 2/y . This is a simple first order ordinary differential
equation that you can easily solve using either separation of variables or integrating factors. We
will just observe that, by the product rule and equation (23.5),
d Buw? 2dG
4 G ] ac
do [e (@) do

Bw P G(w) + P [—B20G ()] = 0

B2weP G (w) + P

But the only way a smooth function can have zero derivative is for that function to be a constant,
say, A . Thus,

P Gw) = A,

which, of course, means that
2
G(w) = Ae P . (23.6)

All that remains to computing G(w) is determining the value of A. Letting @ = 0 in
equation (23.6) and recalling what g denotes, we obtain

o0 i o0 2
A = G0) = / g e 0 g = / e 7 dt
—0o0

—00
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By an amazing stroke of luck, this is the same integral we evaluated a page or two ago. From
that calculation, we know

A =

z
Y
With this, equation (23.6) becomes

Gw) = \/Ee_ﬂ“’z
%

After recalling what G and $ denote (and using the alternative notation for exponentials),
we see that the last equation is

2
5:[6—1/12] - \/gexp<—”7a)2> forevery y >0 . (23.7)
w

While the inverse Fourier transform of g can be found through similar computations, it is
easier to use the fact that, because g is an even function, we know F ~'[g] = F[g]. Applying
this with equation (23.7) yields

2
= /% exp(—%ﬂ) foreach y >0 . (23.8)
t

It is certainly worth noting that the Fourier transform and Fourier inverse transform of a
basic Gaussian function are, themselves, basic Gaussian functions. In particular, letting y =
in equation (23.7) gives us

F1 [eﬂ’wz]

2

?[e—nﬂ]‘ = ¢
w
a most aesthetically pleasing formula!

2> Exercise 23.2:  Let o > 0. Using the above, verify that

—amt? _ T 2
?[6 ] w - ﬁ eXp( Ola) )
and
1| —arw? _ i _rT.2
Flem |, = 5 ee(=50)

(On occasion, these are more convenient to use than identities (23.7) and (23.8).)

Notes on the Derivations

Some of the formulas derived in this and the next section will figure in the final proofs of three
theorems already discussed: the fundamental theorem on invertibility and the two general theo-
rems on the differential identities (theorems 19.5, 22.1, and 22.2). Because of this, we carefully
avoided using those theorems or results derived from those theorems to obtain formulas (23.7)
and (23.8). Instead, we employed identities already shown to be valid when the functions being
transformed are all absolutely integrable (as are the basic Gaussians, their derivatives, and their
products with polynomials). You may want to look back over the above derivation to confirm
this. Alternatively, you may want to verify that formulas (23.7) and (23.8) can be obtained by
directly using the integral formulas for the Fourier transforms, some basic calculus, and some
of the results discussed in section 18.4 regarding the differentiation of fairly general integrals.
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23.2 General Gaussians
Formulas for Gaussians

By our definition, a (general) Gaussian function g is just a basic Gaussian with the variable
shifted by some quantity ¢,

g(x) = Ae VDT (23.9)

Remember, while y must be a fixed positive value, the constants A and ¢ may be complex.3
A fair amount of information can be derived from a little algebra. Let a and b be the real
and imaginary components of ¢ . Then, keeping the real part of the shift in the Gaussian,

V&0 pmyG—asib)? exp(—y[(x —a)?> —i2(x —a)b+ (ib)z])

= exp(—y(x —a)? +i2ybx —i2yab + ybz)

_ e—i2yab+yb2 oi2vbx e—y(x—a)z
That is,
AV . 2
Ae vO—a=ib)® — poiix o=y (x—a) (23.10)
where
B = AeiZvab+yb? and A = 2by

This tells us that any Gaussian function is simply a basic Gaussian shifted along the real axis
and multiplied by a constant and a complex exponential. It also tells us that the formula on
the right-hand side of equation (23.10) can serve just as well as formula (23.9) to describe any
Gaussian. So these two formulas are equivalent, and either can be used in any computations
involving Gaussians.

Other equivalent formulas for Gaussians can easily be derived using the same sort of algebra
that led to equation (23.10). Since we will be needing them off and on for the rest of this text,
we’ll summarize these formulas in the next lemma.

Lemma 23.1 (formulas for a Gaussian function)
If any one of the following statements are true, then all are true.

1. g is a Gaussian function.

2. There is a positive constant y and complex constants A and ¢ such that

gx) = Ae 7O for —co<x<oo . (23.11a)

3. There is a positive constant y , a complex constant B , and real constants a and A such
that ' 2
gx) = Bel’¥eT7x—@ for —oco<x<oo . (23.11b)

4. There is a positive constant y , a complex constant C , and real constants b and p such
that .
gx) = Cet*ev—ib) for —oco<x<oo . (23.11¢)

3 We may be stretching the traditional definitions of Gaussians by allowing complex shifts. Be aware that the graph of
2
e~ 7= ig not the standard bell curve if ¢ is not real.
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5. There is a positive constant y and complex constants D and o , such that

glx) = De* e’ for —o0<x<o0 . (23.11d)

Moreover, the above constants are related by

£ = a+ib , A = 2by , w = 2ay , o = u+ir ,

2_; 2 .
B = Aevb —i2aby s C = Aeg ve —i2aby and D = Ae "¢

2> Exercise 23.3:  Derive formulas (23.11c) and (23.11d) from formula (23.11a), and verify
the relations between the constants claimed in the above lemma.

From these formulas and our previous discussions regarding basic Gaussians, it should be
obvious that, if g is any Gaussian function, and if n» and m are any two nonnegative integers,
then all of the following hold:

1. g(x) withthe variable scaled by any real, nonzero number a, g(ax),isanother Gaussian.

2. The translation of g(x) by any complex number number a, g(x — a), is another
Gaussian.

3. g is infinitely smooth, and the n™ derivative of g is the product of g(x) with some n™

degree polynomial.
4.  g(x) and each of its derivatives shrink to zero very rapidly as x — £oo. That is,

lim x"gx) =0 and lim x"g™x) = 0
XxX— 300 Xx—=F00

5. g(x) andall of its derivatives are absolutely integrable on the real line. In fact, x” g (x)
is absolutely integrable on the real line.

6. The product of g(x) with any other Gaussian function is another Gaussian.

7. The product of g(x) with any exponential function — real or complex — is another
Gaussian.

Transforms of Arbitrary Gaussians

Thanks to some of the equations just derived, the formulas for the Fourier transforms of basic
Gaussian functions can be extended to formulas for the transforms of all Gaussian functions
through straightforward applications of the translation identities.

Solet y, a, and b be fixed real values with y > 0. For the Fourier transform of a
basic Gaussian translated along the real axis by a we have, by equation (23.7) and one of the
translation identities,

}v[efy(tfa)z]‘ — e*i27raw‘rj:v|:efyt2
1)
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Using this, equation (23.10), and another translation identity, we find that

Jq[e—y(t—a—ib)z] — ?[BeiZbyt e—y(t—a)z] ’

w w

- B ?[eizn%te—y(t—a)z]

w

by
T

=B \/%exp(—iZna (w — b%) — %2 (a) — b?y)z> (23.12)

B — efizyabwbz

= BF[er |

w—

where

Equation (23.12) can be simplified a bit after noting that

2 2 2 2,2
—i2ma (a) — b—y) - <a) - b—y) = —i2maw + i2aby — = <w2 20 + b—Z)
b

b4 v b4 y b4

2
= i2aby — )/b2 — 2rn(a+ib)w — T W?
14

eXp(—LZna (w__y)_n_<w__y)> _ pi2aby—yb?, 127T(a+zb)wexp(_77_w2
b Y Y

= —e i2n(a+ib)w exp(_ﬂ_w2> ,
B Y

. . 2
— ze—ZZJT(a—Flb)a) exp _7T_w2
[} Y Y

Letting £ = a 4 ib, this further simplifies to

. 2
= [T i2mée exp(—”wz) (23.13)
w 14 14
where £ is any complex constant.

By the principle of near-equivalence, we also have

_ \/Ze—ﬂné(—t) exp(—”—z(—t)2>
¢ 2 v

. 2
= [T exp(—ﬂtz) (23.14)
Y Y
for any complex constant & .

Observe that each of the two transforms above is a basic Gaussian multiplied by a complex
exponential, which, as we saw earlier, means that these transforms are also Gaussian functions. I
repeat: the Fourier transforms of all Gaussian functions are, themselves, Gaussians. This is not
simply an interesting bit of mathematical trivia. It has consequences in many of the applications
in which Gaussians naturally arise. It is also one of the reasons that the set of Gaussian functions

and equation (23.12) reduces to

?rlie—y(t—a—ib)z]

7 [e—y<z—s>2]

F-1 [e—y<w—s>2]
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will play a major role later, both in some of our more advanced discussions of the classical theory
(such as our proof of the fundamental theorem on invertibility), and in our work extending Fourier
analysis beyond the confines of the classical theory.

Let us end this subsection on computing transforms of Gaussians by reconsidering the
translation identities in chapter 21. Those identities were derived assuming real translations
only. Indeed, they are not generally valid when the shift is complex (recall exercise 21.16 on

page 328). But notice that, letting g(¢) = e’ and G = F [g], equation (23.13) is
Flgt =), = e G) ,

which certainly looks like a translation identity. Here, though, we are allowing the shift, &, to
be a complex value. So there are cases where the translation identities do hold using complex
shifts. In section 23.4 we will try to identify those cases.

?» Exercise 23.4: Let y > 0, and let § be any (possible complex) value. Confirm that

?[eiZnSte—ytz] =\/§exp<—%2(w—é)2) (23.15)
_ [x x? 2 23.16
t_\/;exp(—7(f—$)> (23.16)

a: using invertibility and equations (23.13) and (23.14).

and

?—1 [e—iZJTSwe—ywz]

b: without using invertibility. (Use basic algebra and translation identities from theorem 21.1
on page 311 in a manner similar to our derivation of equations (23.13) and (23.14).)

More Notes on the Derivations (and Proving Invertibility)

As already mentioned, some of the results in this section will play a role in finally proving the
fundamental theorem on invertibility and the general theorems on the differential identities. So,
again, let us briefly review our derivations.

Equations (23.13) and (23.14) were derived using results from the previous section, elemen-
tary algebra, the translation identities from theorem 21.1, and the principle of near-equivalence.
However, the functions being transformed here are all absolutely integrable. So the Fourier trans-
forms here can be written in integral form, and the translation identities and near-equivalence
identities used can be verified easily via elementary calculus. Consequently, we can write equa-
tions (23.13) and (23.14) in integral form,

/OO e VU= pmidnot gy \/;e_n”s‘” exp(—nza)2> (23.17)
—oo ¥ ¥

% P i2not T i2nét 7?2
/ eV 0= ji2mwt g . \/761 T8 exp| =t . (23.18)
oo ¥ ¥

Moreover, we are certain these equations hold even though some of our “Fourier analysis”
theorems (such as the fundamental theorem on invertibility) remain to be proven.

Likewise, by exercise 23.4 b above, we know that equations (23.15) and (23.16) can be
written in integral form,

oo . 2
/ o2kt oyt mi2nwt g T exp(—n—(a) — 5)2) (23.19)

and
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and

o0 . . 2
/ emitmwg—ye? gidnot g, \/E exp<—”_(t—s)2> , (23.20)
o0 Y 4

and that we can verify these equations directly using calculus and algebra.

It is important to realize that we now know the above integral equations hold (for suitable
choices of y, ¢, and w) even though we have not yet proven the fundamental theorem on
invertibility or the two theorems on the differential identities. This means that we can use these
equations in proving those theorems. Since that is the plan, let us formally state the above
observations so we do not have to rethink all this when we finally get around to proving those
theorems.

Theorem 23.2
Let y > 0, and let & be any complex number. Then equations (23.17) and (23.19) hold for
every real w, and equations (23.18) and (23.20) hold for every real t .

If it is still unclear why we know this theorem is valid, do the next exercise.

?» Exercise 23.5: Let y > 0. Using basic algebra, calculus, and results from section 18.4
on differentiating integrals, verify that equation (23.17) holds

a: when € =0.

b: when £ is any complex number.

23.3 Gaussian-Like Functions
Basic Gaussian-Like Functions

Thus far in this chapter, all of our computations have involved functions of the form
glx) = e ¥ where y >0

Many of those computations, however, did not truly require that y be a positive real number.
So let us reconsider those computations using a function of the form

fx) = e

where A is a complex number. We will let ¥ = Re[A] and « = Im[A], sothat A = y 4+ ik and
fx) = e~ X oy [cos(/cxz) —isin(/(xz)]

To ensure that f is absolutely integrable, we will continue to assume y is positive. The graph
of such a function, with « > 0, has been sketched in figure 23.2. Since the formula of f is so
similar to that of a true Gaussian function, we might call f a basic Gaussian-like function.
While we won’t refer to the above f as a Gaussian (unless k¥ = 0), it should be obvious
that this function satisfies properties very similar to those satisfied by the basic Gaussians. For
example, f, as defined above, is certainly an even, infinitely differentiable function on the real

line. Noting that
F@l = [erioe

2
e = eV

i
:‘e rx

>
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(a) (b)

Figure 23.2: Graph of (a) the real part and (b) the imaginary part of e~ i it
y>0and k >0.

it is also clear that f is absolutely integrable (assuming y > 0). And with a little thought, you
should also realize that every derivative of f, as well as every product of f with a polynomial,
is also absolutely integrable.

Integrals of Basic Gaussian-Like Functions

The evaluation of the integral of f over the real line,

o0 o0 5
1 :/ fx)dx = / e dx
—00 —00

will, doubtlessly, be the most difficult part of our work in extending the results of the previous
sections to Gaussian-like functions. True, the same “clever trick” that led to equation 23.1 on
page 353 can be used here just as well to show that

= (23.21)

=T
A y +ik

assuring us that [ is one of the two square roots of 7/, . Unfortunately, the argument that /
must be the positive square root, which we used when A = y, is no longer valid. So, instead,
let’s look at the real and imaginary parts of both I and each of the possible square roots of /)
when A =y +ixk.

Rewriting f in terms of its real and imaginary parts yields

o0 2
[ = / e v [cos(/cxz)—isin(sz)] dx

—0o0

o0 2 o0 2
= / e v cos(/cxz) dx — i/ e 7 Sin(sz) dx

PN —00
So
o0 5 5
Re[l] = / e 7" cos(kx?) dx
—00
and
R 2
Im[I] = —/ e V* sin(/cxz) dx
—00

Take another look at the graphs of f in figure 23.2. In particular, look at the graph of the
imaginary part and notice how each “hump” above the X—axis is smaller than an adjacent hump
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\ 4
\ 4

(a) (b)

Figure 23.3: Relation between 6 and A = y + ik where (a) ¥ > 0 and (b) ¥ < 0. In both
cases y > 0.

below the X—axis. This means (assuming our graph is reasonably accurate) that the “net area”
between the graph of the imaginary partof f and the X—axis must be negative whenever « > 0.
On the other hand, since sin (/cxz) is an odd function of «, this net area will be positive when
k < 0. Thus,

Im[/] < O when « >0

and

Im[/] > O when « <0

(A rigorous verification of these inequalities will be left as an exercise, exercise 23.11.)
To find useful expressions for the square roots of 7/, it helps to observe that, because
y > 0, A can be written in polar form,

A= |A|ei9 where 6 = arctan(g)

This is illustrated in figure 23.3. Also, while we have that figure at hand, we might as well
observe the following relations between the sign of « and 6:

Kk >0 < 0<0<%,

k=0 <<— 06=0 ,
and

Kk <0 <— —%<0<0

We will use these relations in a little bit as well as the observation that

cos(f) = lz—l

Using the polar representation for X, equation (23.21) can be written as

Solving for I, we get
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That is,
1 =1 or I =1
where
| .1 P 1 .. (1
L = |= exp(—z—@) = —[cos(—@) — zsm(—@)]
4] 2 [A| 2 2
and
T .1 T 1 .. (1
L = — /m exp<—z§9) = /m [— cos<§0> + zsm(ze)]
Therefore,

Im[l{] = \/%cos(%@) and Im[I;] = —\/%cos(%@)

From these formulas and the relations between « and 6, we see that

Im[l;] < 0 and Im[l7] > O when 0 < k ,
while
Im[/1] > 0 and Im[/lz] < O when « < 0

Comparing these inequalities with the inequalities originally derived for the imaginary part of

I, we finally see that I must be the first of the two possible square roots, I .
Thus I = I . Replacing I and I; with the formulas they represent then gives us

/Z M g \/%exp(—i%@) - %[cos(%@) - isin(%@)] (23.22)

6= arctan(f)
Y

where

Don’t forget, A = y +ix and y > 0.
An alternative version of equation (23.22) not explicitly involving the 6 can be derived
easily. Using a little basic trigonometry, we see that

o) = /141 _ L v
COS(59> = \/2 + 2005(9) = \/2 + 2

and
in(Lo) = 1.1 = 1_r
sin(30) = sen(),/5 — 5 cos(0) = sgn() /5 — 5=
where
-1 if «k<0
sgn(k) = 0 if «=0

+1 if 0<«k

With these equations and a little algebra, equation (23.22) “reduces” to

/ o g ﬁ@(m i sgn(e) /—|,\|_y) (23.23)

—0o0

still assuming, of course, that A =y +ix and y > 0.
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Finally, it may be of some interest to observe that, after splitting equation (23.23) into its
real and imaginary parts, we have

o0
/ e V¥ cos(kx?) dx = ﬁ,/%(lxl +v)

—00
and
o
72 gin(iex? - L T -
/;Ooe sm(/cx )dx = W 2(|)\| y)

whenever y > 0 and « > 0. (In fact, these equations can be justified when y = 0, even
though the integrands are no longer absolutely integrable.)

Fourier Transforms of Gaussian-Like Functions

Again, let f(x) = e where A = y +ix and y > 0. You can easily verify that the
Fourier transform of f can be obtained through the same sort of computations we used to find
the Fourier transform of the basic Gaussian functions. The result of those computations is

2
?’[e‘“z]‘ = I, exp(—%wz)
w

where I is the integral over the real line of e _ the same integral evaluated just a few

paragraphs ago. From that discussion, we have three equivalent formulas for this constant:

b4 .1
I, = /mexp(—lzé) ,
b4 1 .. (1
I, = m[cos(ie) — lsm<§9)] s
1 .
L= 53 (VIT+y = isen) Vil =)

where, in the first two formulas,

and

0= arctan(g)

2
= I, exp(—n)\tz)

You can also verify that the discussion regarding general Gaussian functions in section 23.2
remains valid if the word “Gaussian” is replaced by “Gaussian-like’; and the values y and ,/7/,
are replaced, respectively, by A and the above defined 7, . In particular, for any complex number

o,
—i2raw n? 2
=e I exp -5

Likewise,
? —1 I:e—)»wzil

o]

w

and
F I:ethocte At ]

2
=1, exp(—)\(a) — oc)2>

w
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Complex Translation and Very Rapidly Decreasing Functions 365

23.4 Complex Translation and Very Rapidly
Decreasing Functions”

At the end of section 23.2 we saw that the translation identities held for Gaussian functions
even when the shift was complex valued. In this section, we will verify that a similar complex
translation identity holds whenever the translation involves the transform of a function that
“vanishes sufficiently rapidly near infinity™

Very Rapidly Decreasing Functions

Let us refer to a function g on the real line as a very rapidly decreasing function if and only if

xgliaooea‘xl lgx)] = 0  foreach a>0 . (23.24)

!> Example 23.1:  From our work in the previous sections it should be clear that any Gaussian
or Gaussian-like function is a very rapidly decreasing function.

?» Exercise 23.6:  Verify that
P(x) = Axle V0’

is a very rapidly decreasing function whenever A and a are fixed complex values, n is a
nonnegative integer, and y > 0.

The functions described in the last exercise will play a particularly important role in devel-
oping the generalized theory for Fourier analysis. You should also realize that there are many
very rapidly decreasing functions that do not involve Gaussians.

2> Exercise 23.7  a: Verify that rect, p) is a very rapidly decreasing function whenever
(a, b) is a finite interval.

b: Verify that every finite duration function is a very rapidly decreasing function.

Observe that, for equation (23.24) to hold, there must be a positive value X, corresponding
to each o such that
eMlgx) < 1 whenever X, < |x|

In turn, this means that, for each o > 0,

lg(x)| < e Wl whenever X, < |x|

In other words, for g to be a very rapidly decreasing function, g(x) must be shrinking to zero
faster than any decreasing exponential function as x — 400 .

From these last observations, you should be able to immediately derive the claims made in
the next two lemmas. (Since we will be using these results, you really should give some thought
as to why they follow from the above discussion.)

* Warnings: (1) The material in this section is for the more advanced readers and requires some knowledge of the
theory of analytic functions on the complex plane. See the discussion in chapter 6 beginning on page 65. (2) At
certain points in part IV of this book we will refer back to material developed in this section.

4 Hence the term “very rapidly decreasing function”
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Lemma 23.3

Any very rapidly decreasing, piecewise continuous function is absolutely integrable. Moreover,
if f is such a function and B is any complex number, then f(x)eP* is also a very rapidly
decreasing, piecewise continuous function and, hence, is also absolutely integrable.

Lemma 23.4
The product and all linear combinations of two very rapidly decreasing functions are also very
rapidly decreasing functions.

Transforms of Very Rapidly Decreasing Functions

Now let’s consider the transform of a piecewise continuous, very rapidly decreasing function
f . Since f isin A, its Fourier transform F is given by

F(w) = / f(ye 27 gqp (23.25)

Up to this point, we have been assuming that the  in this integral formula is real to ensure
the integrand is integrable. However, as we noted in lemma 23.3, f(¢) e ?27“! is absolutely
integrable for any complex value of @ . So let us “redefine” F as a function Fg on the entire
complex plane by replacing the  in equation (23.25) with an explicitly complex value,

o0
Fg(x +iy) = / ft)e 2T+ gy (23.26)
—00

(More precisely, Fg is the extension of F to a function on the complex plane.) For now,
we want to distinguish the original function F', which was only defined on the real line, from
its extension Ffg, which is defined on the entire complex plane. But do keep in mind that
Fr(x) = F(x) whenever x is a real value.

If you’ve had a course in complex variables or have recently read the section in chapter 6
on functions of a complex variable (starting on page 65), then you know that it would be nice if
this Fr were analytic on the complex plane. The next lemma assures us that this is so.

Lemma 23.5
If f is a very rapidly decreasing function, and

(o)
Fp(z) = / f(0) e P27 gy foreach z in C
—00
then Ff is analytic on the entire complex plane.

PROOF (partial):  According to the test for analyticity (theorem 6.1 on page 67), it will suffice
to show that the partial derivatives of Fg(x + iy) exist, are continuous on the complex plane,
and satisfy
F F
(e _ e (23.27)
ox ay
A relatively straightforward application of either theorem 18.20 on page 267 or its corollary

verifies that the desired partial derivatives exist, and that

0
8;75 _ %/ f(t)e—iZn(x+iy)tdt
X X —0

o0

/oo 3_ [f(t) efi2n(x+iY)t:| dt = —iZN/ tf(t) e*iZﬂ(x+iy)t dt

—00 dx —00
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and
@ — a_fm f(t) e—i2n(x+iy)t dt
dy 3y J
9 ; ; 00 . .
— / g [f(t) e—1271(x+1y)t] dt = 27_[/ tf(t) e—lZﬂ(x-Hy)t dt
—oo Y o

Comparing these formulas for the partials, we see that equation (23.27) is satisfied for all x +iy .

All that remains is to show that the partials are continuous functions on the complex plane.
That can be done in a manner similar to how we showed that transforms of absolutely integrable
functions are continuous (see the discussion starting on page 284). The details are left to the
interested reader. I

Consider what we now have. We have a very rapidly decreasing function f, its Fourier
transform F defined on the real line, and an extension of F to a function Fg defined and
analytic on the entire complex plane. Finding Fg by computing the integral in equation (23.26)
can be difficult. Suppose, however, we can find some “other” function G that, like Fg, is
analytic on the entire complex plane and reduces to F on the real line. Then

Fr(x) = F(x) = G(x) for —oc0<x <o

But from corollary 6.6 on page 70, we know this is possible only if Fg(z) = G(z) for all
complex values of z. This is good because often G can be found “by inspection” In fact, as
the next example illustrates, we can often find Fg(z) by finding the formula for F(w) using
tables, and then just replacing the w with z.

> Example 23.2: Let f(t) = /7 te=" . Its Fourier transform F can be computed using
the differentiation identities and formula (23.7),

d . _
F(w) = ?[ﬁteilz]‘ = ——fd— [\/7?67”2“’2] = —inlwe ™
w LZTT dw

From our discussion of analytic functions (see example 6.5 on page 68 along with exercise 6.5
on page 69), we know this last formula, with the real variable w replaced by a complex variable
z, gives a function G (z) that is analytic on the complex plane. Obviously then, we also have
G(x) = F(x) for all real values of x . So, as was just discussed, G and Fg must be the
same; that is,

2.2 b 2 :
—in?ze T = / Jrte ™ e gy
o0

for every complex value z .
Let us now go back to our formula for Fg(z),
oo .
Fp(z) = / f(r) e 27 dy
—0oQ

Since z can be any complex number, let z = x — o where x is a real number and « is any
complex number. Doing the substitution, we see that

Fp(x —a) = /oo f(t) e P2t gy

—00

/_oo f(r)etFmat =i2mxt gy — ?[f(t)eﬂﬂw]‘x
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Cutting out the middle leaves us with

>

Fp(x—a) = F| f0e?™]

X

confirming that a version of the translation identity does hold for complex translations, provided
we are talking about translating the transform of a very rapidly decreasing function. Also notice
that, if we view x as a variable and « as a constant, then Fg(x — «), being the transform of an
absolutely integrable function, must itself be a classically transformable function of x . (There
is no reason in general, however, to believe that Fg(x — «) is, itself, a very rapidly decreasing
— or even an absolutely integrable — function of x .)

Summarizing our work above gives us the following theorem.

Theorem 23.6

Suppose f is a very rapidly decreasing, piecewise continuous functionon R. Let F = F[f].
Then there is a single analytic function Fg on the complex plane equaling F on the real line.
Moreover,

Fr=-a) = F[e7 [0
w
for every real value w and complex value o .

By near-equivalence, of course, there is an analogous theorem for inverse Fourier transforms
of very rapidly decreasing functions.

Theorem 23.7

Suppose F is a very rapidly decreasing, piecewise continuous function on R. Let f =
F~I[F]. Then there is a single analytic function fr on the complex plane equaling f on the
real line. Moreover,

fet—a) = 7 [F@e ]|

for every real value t and complex value « .

> Example 23.3:  Consider finding the Fourier transform of /7 te®™ = This function can
be rewritten as _ A 2
&y where  f(1) = Jmwte™
From example 23.2, we know that the extension to the complex plane of F = ¥[f] is
2 n2z?

Fg(z) = —in“ze™

So, applying theorem 23.6,
}“[ﬁ teﬁ’”*’z]( = ?[ei2”<*3"”f(t)](
[0} [0}
= Fp(o —(=30))

— —in?(w+ 3i)e T @+3)?

20,12 fe 2
_ 7T2(3 _ l.(,())e_n (a) —9)6—167'[ w

© 2001 by Chapman & Hall/CRC



Additional Exercises 369

Some Final Comments on Notation and Philosophy

Strictly speaking, (classical) Fourier transforms are functions just on the real line. So, strictly
speaking, the above Ffg is not the Fourier transform of f “on the complex plane” It is the
analytic extension of the Fourier transform of f to a function on the complex plane. It can,
however, be used to find many Fourier transforms. In particular, if we know the Fg for a
given very rapidly decreasing function f, and another function g is related to f by g(t) =
e!27GD! £(¢) , then theorem 23.6 tells us that G = F[g] is given by G (w) = Fg(w — 3i).

That is why we carefully distinguished between Fr and F in our discussion above.

On the other hand, in practice the same basic formula often describes both F and its
extension Ffg , with the only difference being whether the formula’s variable is viewed as an
arbitrary real value or an arbitrary complex value. As a result, it is fairly common practice not to
distinguish explicitly between these two functions, and to use same expression, F(w) (or, even,
F[f1l,), for both with the understanding that the variable,  , indicates either “an arbitrary real
value” or “an arbitrary complex value” depending on the context of the discussion. Since this
practice can simplify discussion, we will also follow it when it is not likely to cause confusion.’

Additional Exercises

23.8. Find each of the following transforms. Wherever it appears, assume that y > 0.
a. ?[e_4t2] b. .’F_l[e_4w2]
w
c. Fle] d. Fler=7]
w L

2 - 2
e f—l[e—y(w—a ] £ 7 [eitmt o9 ]
t L

t

w

w

g }'[sin(lZnt)e_gtz]‘ h F te_Vtz]‘
w

w

il

2
i ?[rz et ]‘ j.

w

_(t + 3)6—477(2‘—5)2]‘

w

k. Sf[eiem e—471(t—5)2]

w

23.9. Find the Fourier transform of each of the following using identities (23.7) and (23.8)
(see page 355), elementary algebra, and the Fourier translation identities. Do not use
the more general Gaussian identities derived in section 23.2.

2
a. et where y >0
(Hint: Write this as a single exponential and then “complete the square”)
b, o0 ot c. o 3—2-60) d. e 9m(t—6i)?

23.10. Redo the previous exercise using the more general identities from section 23.2.

5 Indeed, we have been following this practice. Just look at our discussion of transforms of general Gaussian functions
in the previous section.
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23.11 a. For the following, assume y and k are both positive real numbers.

i. For each nonnegative integer n , rigorously verify that

Xn+1 P onm
/ e V¥ 51n(/<x2) dx > 0 where x, =,/ —
K

Xn

(Suggestion: Simplify the problem using the substitution T = kx> .)

ii. Now show that ~
2 .
f e v 51n(/<x2) dx > 0

—00
b. Using the result of the last part, show that, if y > 0 and x < 0, then

o0 2
/ e 7 sin(/(xz)dx <0

—00

23.12. Let y and k be two positive numbers, and find the following:
a. }’[e‘ytz cos(/ctz)]’ b. }’[e‘ytz sin(/ctz)]’

w w

23.13. For the following, assume f is a piecewise continuous function with finite duration,
andlet F = F[f].

a. Verify that F can be viewed as an analytic function on the complex plane.
b. Show there are constants M and f such that
|F(x+iy)| < MPV!
for all real values x and y. How can M and B be related to the integral of f and
a duration bound T for f?

c. Suppose f also has finite bandwidth. Let §2 be a bandwidth bound for f, and
let xo be any point in the interval (§2, oo). Using the fact that F must be analytic
(noted above) and results regarding analytic functions from section 6.4 (starting on

page 65):
i. Verify that F and all of its (complex) derivatives are 0 at xg .

ii. Verify that f and F must vanish on the entire complex plane. (Hint: Consider
the Taylor series of F at x¢ and the discussion at the end of section 6.4.)

iii. Now confirm the statement “No nontrivial classically transformable function can
have both finite duration and finite bandwidth.”

23.14. Using theorem 23.6 and previously computed transforms, find each of the following
transforms:

a. F [e(”” pulse; (t)] ‘
w
b. F[sinh(67¢) pulse; (1)]|,

c F [667T ! tril(t)]‘ (See exercise 19.15 c on page 289.)
w
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Convolution and Transforms
of Products

Earlier, we obtained

yo) = F-1 |:25inc(27'ra))i|

3+i2nw

t

as a solution to a differential equation (see example 22.2 on page 335). At the time we did not
attempt to further evaluate it, because, well, it just looked too darned hard.
Let us reconsider this formula. It is the product of two relatively simple functions,

F(w) = 2sincRrw) and G(w) =
whose inverse transforms,
f@) = F7UF]l, = pulse;(t) and  g@t) = FUG], = e step(r) ,

can be found by such elementary means as looking them up in table 21.1 on page 312. An
obvious question now arises: Is there a relatively simple formula of f(t) and g(t) that can be
relied on to give the inverse transform of the product F(w)G () ?

The answer to this question is yes, at least for “most practical cases” The formula is the
convolution formula, and this chapter is a study of that formula.

24.1 Derivation of the Convolution Formula

We will derive the convolution formula by attempting to evaluate & ~'[FG]|, in terms of f
and g (where, as usual, f = F ~'[F] and g = F ~![G]). For this derivation, we will assume
both f and G arein A so that we can use the integral formulas for their transforms,

(0.¢] . 00 ‘
F(w) = / f(s)e 75 s and g(r) = f G(w) e dw
oo e
Assuming that the product FG is also absolutely integrable, we then have
o0 .
?—1[F(a))G(a))]|t = / F(0)G () o2t g,

—00

— /'00 [/OO f(s) ei27TSa)ds:| G(w) eiant dw

371
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Thus, o
FF(@)G ], =f / f(9)G(@) e ds dw

Let us further assume that the order of integration of this last double integral can be interchanged.
Then

FUF(0)G ()],

/ / ()G (w) &7 daw ds

= / - f(s) [ / ” G () 270U=9) dco:| ds

But the inner integral in the last line is just the integral for g(r) with t =¢ — s. So the above
reduces to

FUF@G@I, = [ fogt-sds . (24.1)

The integral formula on the right-hand side of this last equation is the convolution formula.
While we’ve derived it as a formula for computing the inverse transform of a product, we will later
discover that it and some other closely related formulas are important tools both for the general
development of the mathematics of Fourier analysis and for solving many specific problems in
engineering and science. Because of this, we are going to take a short break from discussing
“Fourier transforms™ and focus our efforts on understanding this important formula.

However, before turning our attention completely away from Fourier transforms, let us
briefly look back at the assumptions made above in deriving equation (24.1). In addition to
assuming that both f and G are classically transformable and absolutely integrable (i.e., that
both f and G arein .A4), we assumed that

1. the product FG is absolutely integrable, and

2. the order of integration in

/ / ()G (w) ™) ds dw

can be interchanged.

In fact, neither of these two additional assumptions was necessary. For one thing, if f is in
A, then F = F[f] is bounded (see theorem 19.6 on page 282), and thus, being the product
of an absolutely integrable function with a bounded function, FF'G is automatically absolutely
integrable — there was no need to assume it.

The issue of interchanging the order of integration in double integrals such as above was
discussed in more general terms at the end of chapter 18.! The above double integral is just
a special example of the double integrals considered in corollary 18.24 on page 269. Because
f and G are assumed to be absolutely integrable functions on the real line, and e!?"* is a
bounded continuous function, corollary 18.24 assures us that the product f(s)G (w) elZmw(t=s)
is absolutely integrable on the S$2—plane and that

/Oo /oo ()G (w) ei2na)(tfs) dsdw = /00 /OO f(5)G(w) ei27rw(tfs) dods

Again, there was no need to assume this.

Lwe’ll be referring to that discussion several times in this chapter. If you haven’t yet done so, you might want to
review that discussion now.
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So all our derivation of equation (24.1) really required was that both f and G bein A.
As an exercise, you should verify that the roles of f and g canbe switched in the derivation
of equation (24.1).

?» Exercise 24.1:  Re-derive equation (24.1) assuming that both F and g arein A.

24.2 Basic Formulas and Properties of Convolution
Definition

Let f and g be two functions defined on the real line. The convolution of f with g, denoted
by either f x g or f(x) * g(x),is the function given by

f*xgkx) = / f(s)gx —s)ds

provided this integral exists and is finite for all real values of x . This integral is often called the
convolution integral.

!> Example 24.1: If
f(t) = e step(r) and  g@t) = &'

then
f(s) = e > step(s) and  g(x—s) = &0
and
(0.¢]
f*g(x) = / f(s)g(x—s)ds
§=—00
o0
= / 6*25 Step(s) eS(xfs) dS
—00
= X fooe_75ds — X [_16—75 o0 ] _ 165)5
0 7 s=0 7
> Example 24.2:

o
pulse; (x) *sin(x) = / pulse; (s) sin(x — s) ds

—00

1
= / sin(x —s) ds = cos(x —1) — cos(x +1)
-1

?» Exercise 24.2:  Show that, if f(x) = pulse,(x) and g(x) = e>* | then

frglx) = %[63(,(—1-2) — e3("_2)]

As the next example shows, it is quite possible to have a convolution integral that is not
finite. In such cases we will simply say that the corresponding convolution does not exist.
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> Example 24.3:  Attempting to find the convolution of
f@) = et with gt = e

yields
00 'S}
er*e—3x — f 6256—3()6—5‘) ds = e—3x/ eSs ds ,
—00

—0o0

which is not a finite integral. So e* % e™3* does not exist.

We will discuss conditions guaranteeing the existence of a given convolution later. For
now, let me just mention that there are functions f and g such that

frglx) = / f()glx —s)ds

is well defined for some values of x and undefined (or infinite) for other values of x (as
illustrated in exercise 24.22 at the end of this chapter). Our interests, however, will mainly be
with the cases where the integral is well defined and finite for all real values of x . This will
mean that, for every real value of x , we will want the product f(s)g(x —s) to be a piecewise
continuous and absolutely integrable function of s over the real line.

About the Notation

A few words must be said about notation and how, in our desire to use the “standard notation”
commonly found in the literature, we are also perpetuating some rather bad (yet, convenient)
notation.

Consider the two ways we have for indicating the formula of the convolution of pulse, (x)
with e3* . The first way is to write

frglx) = %[e%‘“) — e3(x_2)]
where

f(x) = pulse,(x) and gx) = &*

This is notationally correct, but not nearly as convenient as simply saying
pulse, (x) e = 2 [e3<x+2> - e3<x—2>] : (24.2)

which illustrates how convolution formulas are often described. Observe, however, that the
symbol “x” is being used for two different things. On the left side of this equation x is a
dummy variable used to describe the functions being convolved, while the x on the right-hand
side is a true variable in the final formula for the convolution. In practice, equation (24.2) is
understood to mean that, for example, when x = 1, then the convolution of pulse,(x) with

> is . )
5[63(1+2) _ 63(1—2)] _ g[69_6_3]

On the other hand, naively replacing x with 1 in the left-hand side gives
o
pulse, (1) xedl = 1xe® = / 1-3ds = o
—00

which is certainly not what equation (24.2) was intended to imply!
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The questionable double use of one symbol in equation (24.2) can be easily avoided by
writing the equation as

pulse, (s) x e¥| = %[e:"(xﬂ) _ e3(x72)]
X

Unfortunately, this does not seem to be common practice. So, innocent reader, be aware that,
unless you are explicitly told otherwise, the phrase “the value of f(x) * g(x) when x = x¢ 7,
as well as the notations

fe)xgl, and fOo) * g, ;

=X0
should all be taken to mean

the value obtained by first finding the formula for f * g(x), and then evaluating
this formula with x replaced by xg

and NOT f(xo) * g(x0) .

Alternate Definitions

Be warned that texts using one of the other definitions for the Fourier integral transforms will
often define convolution by as

frglx) = J% /_ Z F()g(x — 5)ds

As with the variations in the Fourier integral formulas, this variation in the definition of convo-
lution affects specific formulas, but not the basic concepts.

You should also be aware that the convolution formula given here is the one appropriate
when using the Fourier transform. When using the Laplace transform, the appropriate definition
is

frglx) = /0 f()glx —s)ds

The difference between this and our convolution formula — the different lower limits in the
integral — is significant. For example, the existence of f x g for a particular choice of functions
may depend on whether we are using the the Laplace transform version or the Fourier transform
version of convolution.

24.3 Algebraic Properties
Basic Algebraic Properties

In computing convolutions we may wonder whether there is a simple relationship between f x g
and g * f that we could use to simplify our computation of, say, f * g given that we already
know g f. Well, by definition

o0

f*g(x)=/ f($)g(x —s)ds  and g*f(x)=/ g(s) f(x — s)ds
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If, in the second integral, we use the change of variables ¢ = x —s (so s = x — o and
ds = —do ), then, keeping in mind that s and o are dummy variables,

gx f(x) = / gs) f(x —s)ds

=—00

= /_ gx—o)f(o)(—1)do

=00

= —f_ flo)gx —o)do

=00

:/ flo)glx —o)do = f*g(x)

So there is a simple relation between f % g and g % f — they are the same. To use a phrase
from algebra, “convolution is commutative”

Commutativity is one of the basic algebraic properties of convolution. For convenience,
this and the other basic algebraic properties of convolution are listed below (using f, g, and
h to denote arbitrary functions on the real line).

1. Convolution is commutative: If f x g exists, so does g = f . Moreover,

frxg =gxf

2. Convolution distributes over addition: If fxg and f xh exist,sodoes fx(g+h).
Moreover,

[rg+h) = (f*g) + (fxh

3. Constants factor out of convolution: For any constant «,

(af)xg = f=(ag) = a(f*g)
provided any one of these convolutions exist.

4. For convolution, the zero function is zero: f «0 = 0

?» Exercise 24.3:  Verify that the second, third, and fourth properties listed above always hold.

The properties listed above suggest a similarity between convolution and multiplication.
Indeed, f g is often referred to as “the convolution product” The analogy between convolution
and multiplication is further reinforced by the fact that the convolution formula was derived as
a Fourier transform of the product of two functions. Some care, however, must be exercised in
treating convolution as a type of multiplication. For example, f x1 # f. Instead,

o0
f*xl = / f(s)ds
—0o0
You may have noted that “associativity” is not in the above list. There is a reason for that.

The Myth of Associativity

Many authors (and instructors) claim that convolution is associative; that is, they claim that given
any three functions f, g, and /4, then, as long as the convolutions exist,

(fxg)xh = fx(g*h)

They are wrong.
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?» Exercise 24.4:  Verify that
(fxg)xh # fx(gxh)

when
2

fx) =1 , gx) = xe™ and h(x) = step(x)

by computing the appropriate convolutions. (Don’t forget to compute the convolutions in the
parentheses first.)

The myth that “convolution is associative” is widely believed because it is often true that

(fxg)xh = fx(g*h)

To see why this is so, and to determine when associativity can be assumed, let us examine the
integrals defining (f % g)*h and f * (g *h).>
For any given real value x,

(f %) h(x) =/ Lf * g(s)Jh(x — 5) ds

=—00

/oo [/oo f(g(s —t)dt] h(x —s)ds
§=—00 t=—00

foo /oo fgls —t)h(x —s)dtds
§=—00 JI=—00

Similar computations (and a simple change of variables) yields

f*rEgxh)x) = foo foo ft)g(s —t)h(x —s)dsdt
t=—00 Js=—00

Thus, the statement that
(f*xg)xh(x) = fx(gxh)(x)

is completely equivalent to the statement that
o0 o0
/ / U, (s, t)ds dt
[=—00 Js=—00

[e's) 00
/ / Y, (s,t)dtds
§=—00 JI=—00

Vs, ) = f(g(s —Dh(x —s)

In other words, the question of whether associativity holds here has the same answer as the
question of whether we can interchange the order of integration of a related double integral.
That issue was discussed in somewhat greater generality at the end of chapter 18. It is not
difficult to show (see exercises 24.13 and 24.14) that theorem 18.23 (page 269) and its corollary
apply directly to the case at hand, and lead to the following theorem and corollary.3

where

Theorem 24.1
Let f, g,and h be piecewise continuous functions on the real line. If, for each real value x,

Vie(s, 1) = f(Og(s — Dh(x =)

2 See also exercise 24.21 on page 394 for additional conditions ensuring associativity.

3 Here, and at a few other places in this chapter, the material from the end of chapter 18 leads to a very general — but
perhaps obscure — theorem, followed by a corollary that is less general, but more easily applied.
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is an absolutely integrable function on the ST —plane and is uniformly absolutely integrable on
every strip of the form (a, b) x (—o00, 00) or (—o00, 00) X (c,d), then

(fxg)xh = fx(gxh)

Corollary 24.2
Let f, g, and h be piecewise continuous functions on the real line. Then

(f*xg)xh = fx(gxh)
if any one of the following sets of conditions holds:
1. g is bounded, and both f and h are absolutely integrable.
2. f and g are bounded, and both g and h are absolutely integrable.

g and h are bounded, and both f and g are absolutely integrable.

There is areal number ¢ suchthat f (o), g(o),and h(o) are all zero whenever o < ¢ 4

There is a real number ¢ such that f(o), g(o), and h(o) are all zero for ¢ < o .

AN

For two of these functions, say f and g, there is a positive constant ¢ such that f (o)
and g(o) are both zero whenever |o| > c.

24.4 Computing Convolutions

“Computing a convolution” can mean one of two things. It may mean “evaluating f * g(x)
for a specific value of x 7 In practice, it is more likely to mean “finding a formula (or set of
formulas) for f = g(x) that is valid for all real values of x ”

Either way, the basic algebraic properties should be used to reduce the work required to
compute the necessary integrals. Where appropriate, use the distributive property to break the
one integral into two or more simpler integrals, and, for each case, decide whether it would be
easier to set up and compute

o o
/ f(s)g(x —s)ds or / g(s)f(x —s)ds
—0oQ —0o0
Both integrals give the same result (remember, f*g = g= f ), but one might occasionally be
easier to set up or evaluate.

Setting up the integral for the actual computation of f % g is usually fairly straightforward
when at least one of the functions is not “piecewise defined” (i.e., when either f(x) or g(x)
is described by a single manageable formula for all real values of x ). If both functions are
piecewise defined, however, then f % g can be expected to also be piecewise defined, and a
certain amount of bookkeeping becomes necessary to keep track of all the various pieces to the
final formulas describing the convolution.

One approach to computing the convolution of two piecewise-defined functions f and g
is outlined below. In this approach, we simplify the bookkeeping by sketching the graphs of

4 Such functions are said to be causal and play an important role in many applications.
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f(s)g(x — s) for certain choices of x . The making of these sketches is partially based on the
observation that

g —s) = g(=(s —x))

This means that the graph of g(x — s), as a function of s, is the translation by x of the graph
of g(—s), which, itself, is the reflection (across s = 0) of the graph of the original function
g(s) . Itis the relative positions of the various “pieces” of the graphs of g(x —s) and f(s) that
determine the intervals for the various formulas describing f * g.

In the following, we refer to the singularities in the functions or their graphs. In practice,
a function “has a singularity at xo” if there is something “unusual” about the function around
xo , with the precise meaning of “unusual” dependent on the interests of those involved. Here,
we are interested in manipulating formulas, so here “ f(x) has a singularity at xo” means that
the formula we are using to compute f(x) changes at x = xq.

The Procedure (Illustrated)

The procedure consists of a series of steps. We will illustrate these steps by finding the formula
for f % g where

0 if s<1
1) = s if 1<s
and
_ 2s? if 0<s<1
8() = 0 otherwise

(Note: This procedure is for computing f g when f and g each has, at most, a finite number
of singularities. Modifications are needed if f or g has an infinite number of singularities.)

Step 1: Sketch the graph of each function (as a function of s), and note where the singularities
of each occur. Also, determine whether you would prefer to compute f % g(x)

o0

as /OO f(s)g(x —s)ds or as / gs)f(x —s)ds

—0oQ
(The choice here is largely a matter of individual preference, which, in turn, is developed from
experience. The author’s experience is that it rarely makes much difference which is chosen.)

The graphs of the functions in our example have been sketched in figure 24.1. The
only singularity of f(s) is at s = 1, while g(s) has singularities at s = 0 and

s=1.
A A
Y Y
2t 2t
|
|
|
1t 1+ l
I |
I |
| |
| > | >
0 1 S 0 1 S

y=f() y =g(s)

Figure 24.1: Step 1 in computing f * g(x) — graphing f(s) and g(s) separately.
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We will proceed computing f * g as ffooo f(s)glx —s)ds.
(If, instead, ffooo g(s)f(x — s)ds is chosen, then the roles of f and g in the
following steps should be interchanged.)

Step 2: Sketch the graph of g(—s) (the reflection of g(s) ), and note where this graph has
singularities.

The graph of g(—s) from our example has been sketched in figure 24.2. The only

singularities in g(—s) areat s = —1 and s = 0.
A
ol Y

| |

| |

| |

| |

I Iy I

| |

| |

| |

| > | ‘ >

-1 0 S x—1 x—=0 S

y=g(=s) y=8kx—ys)

Figure 24.2: Steps 2 and 3 in computing f * g(x) — graphing g(—s) and g(x —s).

Step 3: Sketch the translation of the previous graph by an arbitrary x (this will be the graph of
g(x —s) ), and note where this graph has singularities. Also, at this point, determine the general
set of formulas describing g(x —s) .

The graph of g(x —s) from our example has also been sketched in figure 24.2. The
only singularities in g(x —s) areat s =x —1 and s = x.

Replacing the s with x — s in the set of formulas for g(s) gives us

2(x — 5)? if 0<x—s<1
g(x —s)

0 otherwise

2()c—s)2 if x—1<s<ux
B 0 otherwise

Step4: Superimpose the graphs of f(s) and g(x —s) with x chosen so that all the singularities
of g(x — s) are to the left of all the singularities of f(s). Do not choose a specific value for
x , but do determine the maximum possible value for x here. Then:

a.  Sketch the graph of the product f(s)g(x —s), and note where this product has singu-
larities. (This graph can be rather crude; just be sure you can identify the singularities.)

b.  Using this sketch and the formulas for f(s) and g(x — s), determine the formula for
f(s)g(x —s) over each of the intervals bounded by the singularities just found.

c.  Finally, compute the formula for

frgkx) = / f()glx —s)ds
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o The graphs:
\ pred
A\ = [
‘ \\ e
N - —= glx -
|
\
N | — f©)gx -9
‘ AN
I \ !
| S |
x—1 x—0 1 S

Figure 24.3: Step 4 in computing f * g(x) — superimposing g(x —s) on f(s) to help
obtain f(s)g(x — s) when all singularities of g(x —s) are to the left of all
singularities of f(s).

for this case. Write this formula down some place safe along with the values of x for
which it is valid.

The graphs of f(s), g(x —s), and f(s)g(x —s) from our example have been
sketched in figure 24.3 for the case where x < 1. Clearly, f(s)g(x —s) = 0 for
all values of s. Thus, when x < 1,

f*xgkx) = foo fls)gx —s)ds = /OOOds =0

—00

Step Next: “Slide” the graph of g(x — s) to the right (i.e., increase the value of x ) until a
singularity in the graph of this function “passes” a singularity in the graph of f(s) . Sketch the
resulting graph of g(x — s) with the graph of f(s), and determine the largest x can be before
another pair of singularities “pass each other” Then:

a.  Sketchthe graph of the product f (s)g(x —s) , noting where this product has singularities.
(Again, this graph can be rather crude provided you can identify the singularities.)

b.  Using this sketch and the formulas for f(s) and g(x — s), determine the formula for
f(s)g(x —s) over each of the intervals bounded by the singularities just found.

c.  Finally, compute the formula for
(0.¢]
frem= [ forp-sds
—00

for this case. Write this formula down some place safe along with the values of x for
which it is valid.

The graphs of f(s), g(x —s), and f(s)g(x —s) from our example have been
sketched in figure 24.4 for the case where 1 < x < 2. The singularities in
f(s)g(x —s) areat s =1 and s = x. Using the graph and the above formulas
for f(s) and g(x —s),

0 if s<1
f$)gx —s) = { 2s(x —s)? if 1<s<x
0 if x<s
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o The graphs:
A pred
A\ == S ()
| \ s
ANl _ —
VS gx —s)
N — (gl —s)
| \ A\
[ N
N
x—1 1 x—0 S

Figure 24.4: Step 5 in computing f * g(x) — superimposing g(x —s) on f(s) to help
obtain f(s)g(x — s) when one singularity of g(s) is to the right of one
singularity of f(s).

Thus, for 1 <x <2,

frgkx) = f f)glx —s)ds

1 X e’}
=f 0ds +f 2s(x —s)%ds +f 0ds
—0 1 X

= ... = (%x + %)(Jc—l)3

Subsequent Steps: Repeat “Step Next” until all possible cases have been accounted for (i.e.,
until all the singularities in the graph of g(x — s) are to the right of all the singularities in the

graph of f(s)).

The graphs of f(s), g(x —s), and f(s)g(x —s) from our example have been
sketched in figure 24.5 for the case where 2 < x. The only singularities in
f(s)g(x —s) areat s = x — 1 and s = x. Using the graph and the above

The graphs:

- f(s)

—— glx—s)
— f)gx —s)

Figure 24.5: Step 6 in computing f * g(x) — superimposing g(x —s) on f(s) to help
obtain y = f(s)g(x —s) when all singularities of g(s) are to the right of all
singularities of f(s).
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formulas for f(s) and g(x —s),

0 if s<x-—1
fs)glx —s) = 28()C—S)2 if x—1<s<x
0 if x<s

Thus, for 2 < x,

frgkx) = f f()glx —s)ds

x—1 X 00
= / 0ds + / 25(x—s)2ds + / 0ds
—00 x—1 X

Repeating Step Next is no longer possible since both singularities in the graph of
g(x —s) are now to the right of the one singularity in the graph of f(s).

Last Step: Combining the results of the previous steps, write out the complete set of formulas
for f *xg(x).

By the above steps, the complete set of formulas for f x g(x) is

0 if x<1
Frgl) = (éx+%)(x—1)3 it 1<x<2
%x—% if 2<x

=)

This convolution is sketched in figure 24.

N

\ 4

0 1 2 X

Figure 24.6: Graphing f * g(x).

?» Exercise 24.5:  Show that the convolution of the step function with itself, step xstep, is
the ramp function,

0 if x <0

ramp(x) = if 0<x

Also, sketch the ramp function and explain how it got its name.
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24.5 Existence, Smoothness, and Derivatives
of Convolutions
Existence and Continuity

If you compare the graph of f g in figure 24.6 to the graphs of f and g in figure 24.1, you will
probably notice that, while the graphs of f and g clearly contain jumps, the graph of f % g
appears to be continuous. This illustrates something you should come to expect: Typically,
the convolution of any two piecewise continuous functions will be continuous, provided the
convolution exists.

To get an intuitive feeling for why this is so, let’s consider the case where both f and g
are nonnegative real-valued functions. Then, for each x,

frglx) = / f)gx —s)ds

= “area enclosed by the graph of f(s)g(x —s) and the S—axis

So, for any two real values xo and x1, the difference between f * g(xo) and f * g(x1) will be
the difference in the areas corresponding to the graphs of f(s)g(xo —s) and f(s)g(x1 —s).
But, if you think about it, you should normally expect these two graphs to be rather similar if
xo and x; are close to each other. After all, the graph of g(x; — s) will just be the graph of
g(xo — s) shifted to the left or right by a distance of |x; — xg|. So the corresponding net areas
— and hence, the convolutions f * g(xo) and f % g(x;) — should also be about the same
whenever xog and xj are about the same.

> Example 24.4:  In particular, consider the convolution of the step function with itself,
step xstep(x) . Let 0 < xo < x1 with x| being just a little bit larger than xq . The graphs of
step(s) step(x — ) for x = xo and x = x; have been sketched in figure 24.7. Observe that
these two graphs ditfer only over the interval (xo, x1). Though the difference in the graphs
is significant over this interval, the corresponding area is only that of a rectangle of height
one and width x1 — xg . Thus,

X
step x step(x1) = / lds
0
X0 X1
= / 1ds + / lds
0 X0
A
The graphs:
1 l 1
| | — = step(s) step(xg — s)
| |
: : — step(s) step(x1 — )
| |
| |
0 x X s

Figure 24.7: Graph of step(s) step(xg — s) and step(s) step(x; — s) when 0 < xg < x7 .
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= step * step(xq)

+ [area of rectangle of height 1 and width x1 — xo]
= step*step(xg) + x1 — Xo

So clearly,

lim steps*step(x;) = step s step(xp)
x1—>x(']"

and
lim step*step(xg) = step*step(xy)

XXy

Of course, not only are the intuitive arguments given above that f * g(xg) is close to
f *g(x1) when xq is close to x; rather nonrigorous, they are meaningless if the enclosed areas
are not finite (i.e., if the convolutions do not exist).

These two issues — existence and continuity — were previously (and more rigorously)
discussed in chapter 18 for functions more generally defined by

Yx) = /00 h(x,s)ds

—00

A convolution of two functions,

J*gx) =f fgx —s)ds

is just a special case of this. Employing the results of that discussion, we can easily obtain
(see exercise 24.17 at the end of this chapter) the following theorem describing fairly general
conditions ensuring that a convolution exists and is continuous.

Theorem 24.3

Let f and g be two piecewise continuous functions on R. Then f x g is a well-defined and
continuous function on the real line if, for each real value x , there is a corresponding interval
(a, b) and a corresponding function hq such that

1. a<xy<b,
2. hg isin A, and
3. forevery (x,s) in the strip (a, b) x (—00, 00),

If($)gx =) = |ho(s)l

A few common situations where the conditions in the above theorem can be verified (see
exercise 24.18 at the end of this chapter) are given in the next corollary.

Corollary 24.4
Suppose f and g are two piecewise continuous functions on the real line. Then f*g exists and
is a continuous function on R whenever any one of the following sets of conditions holds:

1. One of the two functions is absolutely integrable, and the other is bounded.

2. One of the two functions vanishes outside of some finite interval.
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3. There is a real number ¢ such that f(o) and g(o) are both zero whenever ¢ < o .

4. There is a real number ¢ such that f(o) and g(o) are both zero whenever ¢ > o .

You may be somewhat surprised, however, to learn that f and g both being in A is not
enough to guarantee that f *x g exists or is continuous (see exercise 24.22 at the end of this
chapter).

Smoothness and Differentiation

The fact that, typically (if it exists), the convolution of two piecewise continuous functions is
continuous is a particular case of a broader observation that, typically (if it exists), the convolution
of any two functions is “smoother” than either of the two functions. For example, if f is
piecewise continuous and g is continuous and piecewise smooth, then f % g, if it exists, can
be expected to be smooth. The formula relating the derivative of f * g to corresponding
convolution of the derivative is easy to derive. Ignoring, for the moment, questions about
integrability, existence, etc.,

(f*g) (x) %/ f(s)gx —s)ds

| Ltrese - snas
oo 9X

o
/ f$)g(x —s)ds = f*g(x)
—00
By “commutativity”, we might then expect that
frg = (fx0) = @xf) =gxf = fxg ,
provided, of course, that f is “suitably differentiable”

To determine when the above derivations are valid let us again turn back to the end of
chapter 18. There we discussed differentiating

Yx) = /OO h(x,s)ds

where /1 was a relatively arbitrary function of two variables. A convolution,

frg) = / F©)gc—s)ds

is just a special case. In particular, corollary 18.21 on page 268 applies, and yields the following
theorem.

Theorem 24.5

Let f and g be two functions on R with f being piecewise continuous and g being both con-
tinuous and piecewise smooth. Assume that, for each xo on the real line, there is a corresponding
finite interval (a, b) and two functions hy and hq such that

1. a<xy<b,

2. both hg and hy are in A, and
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3. forevery (x,s) in the strip (a,b) x (—00, 00),
|f($)gx =) = |ho(s)] and |f$)g'x —9)| < [h1(9)]
Then f x g is a well-defined and smooth function on the real line. Moreover,
(fx9) = fx(g) = (&)*f
A few cases where the conditions given in this last theorem are easily verified are given in

the next corollary.

Corollary 24.6
Let f and g be piecewise continuous functions on R with g also being continuous and
piecewise smooth. Then f x g is a well-defined and smooth function on the real line, and

(f+9) = [*(g) = (&)= f
whenever any one of the following sets of conditions holds:
1. f is absolutely integrable, and both g and g’ are bounded.

f is bounded, and both g and g’ are absolutely integrable.
One of the two functions vanishes outside of some finite interval.

There is a real constant ¢ such that f(o) and g(o) are both zero whenever ¢ < o .

A

There is a real constant ¢ such that f(o) and g(o) are both zero whenever ¢ > o .

It is true (though we won’t prove it) that, under reasonable “integrability conditions’;, the
convolution of two piecewise continuous and piecewise smooth functions is continuous and
piecewise smooth. Without the continuity of g, however, we do NOT have (f*g) = fx(g')!
This is illustrated in the next two exercises.

?» Exercise 24.6:  Compute
e* * step(x) , (e* * step(x))’ and e* *step’(x)
and verify that
(e* * step(x))’ # e* * step’(x)

?» Exercise 24.7: Show that, for every function f in A, the convolution f % step is
continuous and piecewise smooth, and that

(f xstep)’ = f

Extending the above discussion to cases involving second and higher order derivatives is
just a matter of repeatedly applying the above results. For future reference, here are two of the
results that can be derived by repeated applications of theorem 24.5.

Theorem 24.7

Let f be a piecewise continuous function on R, and let g be a smooth function on R whose
derivative is piecewise smooth. Assume that, for each x( on the real line, there is a corresponding
finite interval (a, b) and three functions hg, hi, and h, such that
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1. a<xy<b,
2. ho, hi,and hy are all in A, and

3. forevery (x,s) in the strip (a,b) x (—00, 00),

1f()gx =9 < o)l . |[f&FE—9] < [hi(s)]

and
|f()8"(x —5)| = |ha(s)]

Then f * g is a well-defined and smooth function on the real line whose derivative is smooth.
Moreover,

(f*g)” — f*(g”) — (g”)*f

Theorem 24.8

Let f be a piecewise continuous function on R and g an infinitely smooth function on R.
Assume that, for each x¢ on the real line, there is a corresponding finite interval (a, b) and
functions hgy, h1, hy, ... such that

1. a<xy<b,
2. hg, h1, ha, ... areall in A, and
3. for each nonnegative integer n and every (x, s) in the strip (a,b) x (—00, 00),
7618”0 = 9)] < Iao)
Then f * g is a well-defined, infinitely smooth function on the real line. Moreover,

f*® = f+(g™) = (™)xf for n=1,23,...

24.6 Convolution and Fourier Analysis
Fourier Transforms

By now you may have forgotten just what led to our discussion of convolution. It was our
derivation of equation (24.1) on page 372, which we can now write as

FUFG] = f+xg where f = F7UYF] and g = FG] . (24.3)

From our discussion there and exercise 24.1, we know this equation is valid (and the product
FG is absolutely integrable) whenever both F and g are in A orboth f and G arein A.
Though we didn’t note it then, we should now observe that the same assumptions ensure that,
for each real value ¢, f(s)g(t —s) is the product of a bounded function with an absolutely
integrable function of s. Thus, f(s)g(t —s) is also an absolutely integrable function of s,
assuring us that

frgl) = / F(5)glx —5)ds

is a well-defined, continuous function of x on the entire real line.
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Notice, too, that these same assumptions (both F' and g being in A or both f and G
being in A ) also ensure that the product fg is absolutely integrable and that, for each real
value of w, F(s)G(w — s) is an absolutely integrable function of s. This, in turn, assures us
that F x G is well defined and continuous on the real line. Moreover, after looking back at our
derivation of equation (24.1), it should be clear that a very similar derivation leads to

Flfgl = FxG where F = F[f] and G = ¥F|g] (24.4)

under the same assumptions.

While we’re at it, we should also consider the case where, say, both g and G are in A
(such as, for example, when g is a Gaussian function). Recall that each classically transformable
function f canbe writtenas f = f; + f> where fi isin A and f; isin 7 . This, of course,
means that F = F| + F, where F| = F[fi] isin T and F> = F[f2] isin A. By the
observations just made, you can easily verify that the product of any one of the functions

F , F , fi oo f

with any real translation of either
G or g

is absolutely integrable. Moreover,

FUFG] = F7(F1 + F») G] = F7FG] + F'[RG]

fixg + faxg = (i+f)xg = fx*g

and

Flfgl = FI(h + f2)8]

Flhgl + Flfg]
= Fi*G + F2%¥G = (F1+ F2))xG = FxG

Obviously, similar results can be derived when both f and F arein A.
For future reference, let us officially summarize everything we’ve just verified.

Theorem 24.9 (first theorem on convolution identities)
Let f, g, F,and G be classically transformable functions with F = ¥ [ f] and G = F[g].
Assume that any one of the following holds:

1. Both F and g arein A.
2. Both f and G arein A.
3. Both g and G arein A.
4. Both f and F arein A.
Then all of the following hold:
1. The products fg and FG are absolutely integrable.

2. The convolutions f x g and F % G exist and are classically transformable.

3. Flfgl = FxG and F~'[FG] = fxg.
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We will refer to equations F[fg] = F*G and F "![FG] = f x g as the convolution
identities. It can also be shown that these identities are valid as long as the functions involved
are simply bounded (and classically transformable). The full proof of this will have to wait until
chapter 29 after we develop a little more machinery (namely, the “fundamental identity” and
“identity sequences”), but we will go ahead and state (and use) this important theorem.

Theorem 24.10 (second theorem on convolution identities)
Let f, g, F,and G all be bounded, classically transformable functions with F = [ f] and
G = Fg]. Then

1. the products fg and FG are absolutely integrable;
2. the convolutions f x g and F % G exist and are classically transformable, and

3. Flfgl = FxG and F~[FG] = fxg.

It is possible to have two classically transformable functions whose product or convolution
is not classically transformable (again, see exercise 24.22 at the end of this chapter). In practice,
though, such situations rarely arise.

?»> Exercise 24.8:  Using convolution, show that
0 it t<-—1

71 |:2 sinc(27ta))i|

- . [e3t - 6‘_3] if —1<t<l1
3+i2nw 3

t
1 _ _ .
3¢ 3’[63—6 3] if 1<t

Fourier Series

Suppose we have two piecewise continuous functions f and  with v being absolutely
integrable on R and f being periodic with period p. Remember, f can then be expressed as
its Fourier series,

FS.[fll, = ) fee®™™

k=—o00

where

1 P —i27 wyt
wp = — and fi = ;/ f)e Kt dt
0

Since f is bounded and ¢ is absolutely integrable, the convolution of the two, f % ¢, is a
well-defined function on the real line. In fact, since both f and i are piecewise continuous,
we know f 1 is continuous. Notice also that, because f has period p,

f*¥(x—p) :/ f((x = p)—s)¥(s)ds

/ fx—s—p)(s)ds

/ fx=9)¥@)ds = f+¥x)
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forallreal x. So f % is also periodic with period p and is, itself, describable in terms of its
Fourier series,

fxy@) = FS[f*lp“t = Z Ckeiankt

k=—00

p

1 P —i2mawnt 1 p o —i2mwit
=1 [ revmermora = L (/ f(r—sw(s)ds)e “ dr
0 0 —00

The order of integration in this last double integral can be switched (see theorem 18.22 on
page 268). Doing so, and doing a few other simple manipulations, gives us

1 oo P —i2m wit
= —/ tp(s)/ f@—s)e Kt dt ds
PJ-x 0

_ /oo w(s) e_i2nwks (% /p f(t —s) e—iank(t—S) d[) ds . (245)

But the inner integral is easily seen to be the k' Fourier coefficient for f,
P ‘ —s+p .
l/ flt—s)ye 2mot=) g = l/ f@e 7T dr = f;
P Jo P J_s

Plugging this back into equation (24.5) and letting ¥ = F[¢], we get a particularly simple
formula for the c¢;’s,

o = / Vis) e fids = f, / Wis)e MR ds = fow ()

To summarize:

Theorem 24.11
Let f be a piecewise continuous function with period p and Fourier series

FS.fll = Y fed™™

k=—00

and let i be an absolutely integrable, piecewise continuous function on the real line. Then
the convolution f i is a continuous, periodic function with period p. Moreover, letting
v =¥yl

FS.[fyll, = Y fi®(ap) ™™

k=—o00

Additional Exercises

24.9. Find f % g(x) for each of the following choices of f(x) and g(x), if the convolution
exists. If it does not exist, say so.

a. f(x) = step(x)e ™ ,  glx) = e H
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b. f(x) = step(x)e™> , gkx) = e ¥
¢ f() =stepx)e™ ,  gx) = sin(x)
d. fix) =x*> , gk =x>—4

e. f(x) = pulses(x) , gx) = x*—4
£ f(x) = xpulse;(x) , gx) = x>

g [0 =steplr) . g0 =

h fx) =3x4+4 , g =e*

i f) =", gkx) = e
Jo f) = e ex) = e with 0<B<a

24.10 a. Compute pulse, *sin(x) for arbitrary o > 0.
b. Suppose g is not the zero function, but f x g is the zero function. Is it necessarily
true that f must be the zero function? (Give a reason for your answer!)
24.11. Assume the convolution f x g exists, and let « be any real number. Show that

f@) xgls —a)|, = fxglx—a)

24.12 a. Verity that ' »
f(x)*ezZnax — F(a)ednax

whenever « is a real number, f isin A,and F = F[f].

b. Let«, f,and F be asinthe previous part of this exercise. What additional condition
on f will ensure that f(x) *cos2rax) = F(x)cos(Qmrax).

c. Using results just derived, evaluate the following:

. —_ 2 I X3 —_ 2
ioe ™ % el il. e xcos(2mx)

X

see —_ 2 . . —_ [
ifi. e *sin(2mx) iv. e3Py T

v. [e7 step(x)] * cos(6mx)

24.13. Verity that theorem 24.1 on the associativity of convolution follows from theorem 18.23
on page 269.

24.14. Using corollary 18.24 on page 269, prove corollary 24.2 on the associativity of convo-
Iution for each of the following cases:

a. f and g arein A, and h is bounded.

b. There is a real constant ¢ such that f(o), g(o), and h(c) are all zero whenever
¢ < o . (Hint: Find a triangle outside of which f(t)g(s — t)h(x — s) vanishes.)

c. For two of these functions, say f and g, there is a positive constant c¢ such that
f(o) and g(o) are both zero whenever |o| > c.
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24.15. Let o be afixed positive value and  some other real value. For each of the following,
determine the values of B (relative to « ) for which the indicated convolution exists,
and evaluate the convolution for those values of B .

a. [e_o‘x step(x)] * [e‘ﬂx step(x)] b. [e_‘” step(x)] * [eﬁx step(—x)]
24.16. Evaluate each of the following convolutions if it exists. If it does not exist, say so.
a. pulse, * step(x)

b. ramp xramp(x)

c. 'er step(x)] e rect(g,2) (x)]

dl
d. _ezx step(x)] * [eg" rect(2.3) (x)]
dl

e. 'er step(x)] (3e5x rect(o,z)(x)> - (668x rect(2,3)(x)>]

f :xz pulsel(x)] * [x rect(1,4)(x) ]

24.17. Use corollary 18.19 on page 265 to derive theorem 24.3 on the existence and continuity
of convolution.

24.18. Let f and g be two piecewise continuous functions on the real line. For each case
below, confirm that f x g exists and is continuous by applying theorem 24.3 after first
verifying that, for each point x( of the real line, there is a corresponding interval (a, b)
and a corresponding function ho such that

1. a<xy<b,
2. hg isin A, and
3. forevery (x,s) in the strip (a, b) x (—00, 00),
|f($)g(x =) = |ho(s)]
a. One of the two functions is absolutely integrable, and the other is bounded.

b. One of the two functions vanishes outside of some finite interval.

c. There is a real constant ¢ such that f (o) and g(o) are both zero whenever ¢ < o .

24.19. Using convolution, find each of the following:

- 1 -1 1
\i‘ % bl \i‘ N N
2+in@+in ||, B+ i2rw)(S —i2rw) ||,
c. f—l[w] d. F[sinc@r)|
6+ 2w [ [3)
e. ¥ ! f. F _ where 0 < «
' (9 +4m22) (4 —i2n1) ||, ' (@ —i2n)? ]|,
g F % where 0 < « h. 37_1[6_2"|w| sinc(2nw)]‘
(a2 + 47121,‘2) w t
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24.20.

24.21.

24.22,

Convolution

Using convolution, find a classically transformable solution to each of the following
differential equations:

dy

e 4y = pulse(¢)

2

% — 9y = e lstep(r)

Let f, g, h, F, G, and H be bounded, classically transformable functions with
F =F(f], G = ¥[g], and H = ¥ [h]. Using theorem 24.10 on page 390, show
that the triple convolutions f % (g*h) and (f * g) = h are well defined and that

fx(gxh) = (fxg)*h
For each positive integer n, let f,, be the function

£ 2" if n<x<n+42"2
nx = >

0 otherwise

and define the functions f and g by
f)y =) fux) and  gkx) = f(—x)
n=1

Sketch the graph of f, forn=1,n=2,and 3.
Sketch the graphs of f and g.

From the sketches just done, it should be clear that f and g are piecewise continuous.
Verify that they are also absolutely integrable by verifying that

/ 800 dx = / fooldx = 1

(Hint: You may want to review the discussion of geometric series in example 4.1 on
page 42.)

Show that, even though f and g are both in A, their convolution f % g is not a
well-defined function in A . In particular, show that

f*g0) = o0
Are there any other points at which f * g is infinite?
Show that fxg(%2) = 0.

Show that f * g(x) is finite whenever 0 < x < . What happens to the value of
f*g(x) asx — 0F?
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Correlation, Square-Integrable
Functions, and the Fundamental
Identity of Fourier Analysis

The three main topics in this chapter involve integral formulas that are very similar to the
convolution formula. So you could view this chapter as a continuation of the one on convolution.

The first integral formula will define correlation, an operation often used in applications to
measure certain similarities between two functions. This operation is so much like convolution
that we’ll be able to prove some of the major results regarding correlation by simply referring
to analogous results already proven for convolution.

One thing we will discover is that applications of correlation often involve integrals of
squares of functions. This will naturally lead to a brief discussion of functions whose squares
are absolutely integrable and the derivation of equations analogous to the Parseval and Bessel
equalities derived late in chapter 13 for Fourier series.

Finally, we will discuss an identity that will play a fundamental role in further developing
the mathematics of Fourier analysis. It, too, is closely related to convolution, and will be a major
tool in confirming the one yet unproven theorem on the convolution identities, theorem 24.10.

25.1 Correlation
Cross-Correlation

Let f and g be two functions on the real line. If it exists, the correlation (also called the
cross-correlation) of f with g, denoted by either f xg or f(x) = g(x), is the function given
by!

(0.¢]
frgkx) = / f*s)gls +x)ds . (25.1a)
—00
Letting 0 = s + x, we obtain the equivalent formula
o
frgx) = / f*(oc —x)glo)do . (25.1b)
—00

For f x g(x) to exist for every real value x , the above integrals must be well defined (and
finite) for every such x . Thus, verifying that f % g exists for a given choice of f and g will

1 Warning: The notation used for correlation varies widely from author to author. Some, for example, prefer using
pfg where we are using f *g.

395
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396 Correlation, Square-Integrable Functions, and the Fundamental Identity

usually mean verifying that the product f(s)g(s + x) is a piecewise continuous and absolutely
integrable function of s for each real value x .

Two facts should be readily apparent from the above definitions. One is that correlation
does not commute. In general, f x g # g« f . Instead,

gxf(x) = [frg(=0)]" (25.2)

provided the correlations exist.

?» Exercise 25.1:  Verify equation (25.2).

Another obvious fact is that the operations of correlation and convolution are very similar.
Indeed, comparing the definitions of the two leads to the following lemma.

Lemma 25.1 (relation between correlation and convolution)
Let f and g be two functions on the real line. If either f(x)x g(x) or f*(—x) g(x) exists,
then both exist and

f)xgx) = ff(=x)xgkx) . (25.3)

?» Exercise 25.2:  Prove lemma 25.1.

Because of the relation between correlation and convolution, every result described in
chapter 24 for convolutions can be rephrased as an analogous result for correlations. To keep
this chapter relatively short, we’ll leave to the interested reader the task of compiling a complete
list of all the correlation analogs of results from chapter 24.

Still, we should at least determine the analogs to the Fourier convolution identities (see
page 388). As usual, we start by letting f and g be classically transformable functions with
F = F[f] and G = ¥[g]. Assuming the appropriate Fourier convolution identity holds, we
see that

FIfxgOll, = F[f (=0 xg®)]], = H@)G () (25.4)

where H(w) = F [ f *(—t)] |w . Using near-equivalence and the complex conjugation identities
(theorem 21.4 on page 324), we then find that

Hw) =F[f*n]|, = Froll, = (FIFOl,)" = F@)
With this, equation (25.4) becomes
Flfxg®Oll, = F'(@)G(w)
This equation is one of the correlation identities. The other correlation identities can be obtained

in a similar fashion or using near-equivalence. For reference, here is the complete list of the
correlation identities:

Flfxgl = F'G (25.5a)
FUFG] = fxg . (25.5b)
Flf'g] = FxG (25.5¢)
and
FUF«G) = f*g . (25.5d)
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Explicit conditions under which these identities hold can be derived from the corresponding
theorems[for[¢pinvolution[(theorems[24.9[3hld[24. IO,Beeﬂ)ageB89).@Since@veﬂvilll])eﬁllsinglj]t

soon, we’ll state the analog to the second theorem on the convolution identities, theorem 24.10.

Theorem 25.2 (second theorem on correlation identities)
Let f, g, F,and G all be bounded, classically transformable functions with F = [ f] and
G = ¥[g]. Then

1. the products f*g and F*G are absolutely integrable;
2. the correlations f x g and F x G exist and are classically transformable, and

3. all the correlation identities in equation set (25.5) are valid.

7» Exercise 25.3: ' What’s the first theorem on correlation identities?

Auto-Correlation

It is somewhat interesting to see what happens to the correlation identities when f and g are
the same function. When this is the case,

ff'e = f*f =|f* and F*G = F*F = |F|>

and the correlation identities become

Flf«f]l = [FI* , (25.6a)
}"1[|F|2] - fxf (25.6b)
5—'[|f|2] — F+F , (25.6¢)
and
FUF«F] = |fP? (25.6d)

where, naturally, F = [ f].

It is common to refer to the correlation of a function f with itself, f x f, as the auto-
correlation of f. Accordingly, we will refer to the above identities as the auto-correlation
identities. Explicit conditions under which they are valid are given in the next theorem, which
is simply theorem 25.2 with f = g.

Theorem 25.3 (auto-correlation identities)
Let f and F be bounded, classically transformable functions with F = F[f]. Then
1. |f|2 and |F|* are absolutely integrable functions;
2. the auto-correlations f x f and F x F exist and are classically transformable, and

3. all the auto-correlation identities of equation set (25.6) are valid.

2 Many authors refer to a statement that identities (25.5a) through (25.5d) hold as a Wiener—Khintchine theorem.
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Now suppose f and F are as in the last theorem, and recall that the Fourier transform of
an absolutely integrable function is bounded by the integral of the absolute value of that function
(theorem 19.6 on page 282). Then, for every real value ¢,

o0
Fire]|| = [P do = #1177
t o 0
With two applications of identity (25.6b), this yields,

rxrol = [F1rR]| | = #[FR]| = reso

telling us that the maximum value of | f  f(¢)| mustoccurat £ = 0. In fact, somewhat stronger
results can be derived using a version of the Schwarz inequality that we will discuss in the next
section. Using that inequality, you can easily prove the following theorem (see exercise 25.12).

Theorem 25.4
The auto-correlation of a piecewise continuous function f exists if and only if

foo |f(x)|2dx < 00

—00

Moreover, if the auto-correlation exists (and f is not the zero function), then
[f*f)| < fxf(@0)  whenever x #0

So any auto-correlation of a nontrivial function has its maximum at the origin and only at
the origin. It is this property that makes correlation so useful in many applications. To illustrate
this, here is a brief and highly simplified discussion of the mathematics of radar detection.

> Example 25.1 (a very simplified model of radar range detection):  To detect the distance
between a radar installation and some “target” (an incoming missile, a speeding car, etc.),
the radar device sends out an electromagnetic pulse that, as a function of time t, can be
described as a real-valued, piecewise continuous, and absolutely integrable function f(t).
(This function actually describes what would be detected at the radar site. At any other
location the pulse detected would be given by Af(t — At) with A being the attenuation
factor (a constant between 0 and 1) and At being the length of time it takes the radar pulse
to travel to that location.)

At the same time, the radar installation is also measuring the corresponding electro-
magnetic radiation it receives. Some of this radiation is “noise” (ambient radiation from the
environment, reflections of the radar pulse off nearby trees, etc.) and some is the reflection
of the transmitted pulse off the target. The resulting signal detected is given by

gt) = Af(t—24A1) + n(@)

where A is some attenuation factor, At is the length of time it takes the radar pulse to travel
between the radar site and the target, and n is a real-valued function describing the ambient
noise. Initially, the value of At is not known. That is the information you want to extract
from your measurements.

Part of the difficulty is that the noise, n(t), may be masking the reflected radar pulse,
Af(t —2Ar) . Typically, the exact formula for n(t) cannot be predicted. However, it is also
typical for the random fluctuations in the noise to “average out” to some fixed value 1y over
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any reasonable time period. This means that, if we take the correlation of the noise with our
pulse, we should expect to get

fan() = / FOm@di = / FOmodt = ang

where

o = /OO f@)dt

This assumes the effective duration of f is large enough for the fluctuations in n to “average
out” Assuming so, then taking the correlation of g with f yields

[*g@) = f(O*[Af(—2A1) + n(1)]
Alf@* ft =2A0] + fn@) = A[f(O)* f —2A0] + ano

Now observe that

f@) = f(t —2A1) = /OO f*(s)g(s —2At +t)ds

= /OO FAs)g(s + [t —2Atds = fx f(t —2A1)

Consequently, the correlation of f with g can be expressed as
f*g) = Af*ft—2A0) + 2an9 ,

Since A, a, ng, and At are all constants, the maximum value of | f x g(¢t)| must be at
the same t where f x f(t —2At) is maximum. According to theorem 25.4 this is only
when t — 2At = 0 — that is, when t = 2At . So, if we observe that f x g(t) achieves its
maximum value at some time ty (this can be done electronically), then we know ty = 2At .
Dividing through by 2 gives us At, the time it takes the radar pulse to travel between the
radar site and the target, and multiplying this time by the velocity of the radar pulse (i.e., the
speed of light) gives us the distance from the site to the target.

25.2 Square-Integrable/Finite Energy Functions
Definitions and Basic Facts

A function f on the real line is said to be square integrable (on R) if and only if

f TP d (25.7)

exists and is finite. After, recalling that the norm of f over the interval (—oo, 0c0) is given by

00 1y
£l = [/_ | f o) dx}

(provided the integral is well defined — see chapter 11), we see that it is also appropriate to refer
to square-integrable functions as finite normed functions. Additionally, in some applications,

© 2001 by Chapman & Hall/CRC



400 Correlation, Square-Integrable Functions, and the Fundamental Identity

the energy in the process described by f is given by expression (25.7). So square-integrable
functions are also called finite energy functions.
In chapter 11 we saw that

A

b
< f I (1)g()] dx

b 1/2 b 1/2
(f )2 dx) (/ g2 dx)

whenever f and g are piecewise continuous functions on a finite interval (a, b) (see the
Schwarz inequality, theorem 11.2 on page 135, and its proof). Letting a — —oo and b — oo
gives us yet another version of the Schwarz inequality.

b
/ f0)g" () dx

IA

Lemma 25.5 (Schwarz inequality)
Let f and g be two piecewise continuous, square-integrable functions on the real line. Then
the products fg and fg* are absolutely integrable functions on the real line, and

’/ fx)g*(x)dx

5/ [f(x)g(x)| dx

00 2 o0 2
< (/ |f<x>|2dx> (f |g<x>|2dx)

With this version of the Schwarz inequality, it is easy to confirm that any linear combination
of square-integrable functions is also square integrable.

Corollary 25.6

The set of all piecewise continuous, square-integrable functions on the real line is a linear space;
that is, any linear combination of two piecewise continuous, square-integrable functions on R
is another piecewise continuous, square-integrable function on the real line.

?»> Exercise 25.4:  Prove corollary 25.6.

Recall that the Schwarz inequality can be viewed as a generalization of the inequality
[u-v| < |u||v| where u and v are any two three-dimensional vectors. You may also recall
that |u-v| = |u||v| if and only if one of the two vectors is a constant multiple of the other
(i.e., the angle between the two is 0 or 7 ). An analogous fact, important in many applications
involving correlation, also holds for square-integrable functions (and would have been proven
in earlier discussions of the Schwarz inequality had there been any need for it then).

Theorem 25.7 (Schwarz inequality)
Let f and g be two piecewise continuous, square-integrable functions on the real line. Then
the products fg and fg* are absolutely integrable functions on the real line, and

00 1/2 00 1/2
< (/ |f<x>|2dx) (/ |g<x>|2dx) (25.8)

with equality holding if and only if one of the functions is a constant multiple of the other.

‘/ f(x)g*(x)dx
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PROOF:  From lemma 25.5, we already know inequality (25.8) holds. Also, it readily follows
from exercise 11.9 on page 142 that

00 1 0 1
- (/_ |f<x>|2dx> (/_ |g<x>|2dx> (25.9)

whenever either function is a constant multiple of the other. Consequently, all we need to verify is
that one function is a constant multiple of the other, say g = Af for some constant A , whenever
equation (25.9) holds.

So assume equation (25.9) holds. For convenience, let

1) 1 00 1
A= (/ |f<x>|2dx) and B = (f |g(x)|2dx) ,

and let R and 0 be the magnitude and principal argument for the integral of fg*,

‘/ f)gx)dx

/ " f0g* @ dx = Re

Observe that we only need to consider the case where neither A nor B is the zero function
(otherwise either f or g is automatically “0 times the other”). Also note that, in terms of A,
B, and R, equation (25.9) is

R = AB

Now, using the foresight of the author, let A = ae’’ where = 4/p. Then
If =3gl? = (f =) (f* = 1"g")
= [fP + APIgl? — A" fg" — Af7g
= IfI> + o?lgl* — a[e ™ fg" + &7 f*g]

and thus,

f |f () — Ag(0)|* dx / |f(x>|2dx+a2/ lg(x)|* dx

-« [e‘” f " fogt@dr + & / h f*(x)g(x)dx]
A2 & 2B _ a[e—ie (ei0R> 1 oeif (eieR)*]
= A® + o«’B% — 20R

2
A2 4 (é) B — 2(ﬂ)AB
B B

=0

Cutting out the middle, this last set of equalities is simply

/ fo) — g dx = 0 |

which, clearly, is only possible if f = Ag. I
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Fourier Transforms and Square-Integrable Functions

You should realize that most, if not all, classically transformable functions that commonly
arise in practice are bounded, as are their Fourier transforms. After all, if f is a classically
transformable function, then it is the sum of an absolutely integrable function f4 and the Fourier
transform of an absolutely integrable function. Since Fourier transforms of absolutely integrable
functions are automatically bounded, f can be unbounded only if its absolutely integrable part,
f4, is unbounded. But functions that are both unbounded and absolutely integrable are rather
uncommon in “real world” applications. Indeed, the only such functions we’ve seen were
pathologies to help illustrate where naive intuition might lead us astray (as in exercise 18.16 on
page 271 and exercise 24.22 on page 394).

So what has this to do with square-integrable functions? Well, suppose f is some function
arising from some “real world” application, and you have reason to believe it is classically
transformable. You may not know the formula for f (that happens in the real world), but it is a
pretty safe bet that it and its Fourier transform F are both bounded functions. Now look back at
theorem 25.3 o