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Introduction and Preface

An option gives one the right, but not the obligation, to buy or sell a
security under specified terms. A call option is one that gives the right
to buy, and a put option is one that gives the right to sell the security.
Both types of options will have an exercise price and an exercise time.
In addition, there are two standard conditions under which options oper-
ate: European options can be utilized only at the exercise time, whereas
American options can be utilized at any time up to exercise time. Thus,
for instance, a European call option with exercise price K and exercise
time t gives its holder the right to purchase at time t one share of the
underlying security for the price K, whereas an American call option
gives its holder the right to make the purchase at any time before or at
time t.

A prerequisite for a strong market in options is a computationally effi-
cient way of evaluating, at least approximately, their worth; this was
accomplished for call options (of either American or European type) by
the famous Black–Scholes formula. The formula assumes that prices
of the underlying security follow a geometric Brownian motion. This
means that if S(y) is the price of the security at time y then, for any
price history up to time y, the ratio of the price at a specified future time
t + y to the price at time y has a lognormal distribution with mean and
variance parameters tμ and tσ 2, respectively. That is,

log

(
S(t + y)

S(y)

)

will be a normal random variable with mean tμ and variance tσ 2. Black
and Scholes showed, under the assumption that the prices follow a geo-
metric Brownian motion, that there is a single price for a call option that
does not allow an idealized trader – one who can instantaneously make
trades without any transaction costs – to follow a strategy that will re-
sult in a sure profit in all cases. That is, there will be no certain profit
(i.e., no arbitrage) if and only if the price of the option is as given by
the Black–Scholes formula. In addition, this price depends only on the
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variance parameter σ of the geometric Brownian motion (as well as on
the prevailing interest rate, the underlying price of the security, and the
conditions of the option) and not on the parameter μ. Because the pa-
rameter σ is a measure of the volatility of the security, it is often called
the volatility parameter.

A risk-neutral investor is one who values an investment solely through
the expected present value of its return. If such an investor models a secu-
rity by a geometric Brownian motion that turns all investments involving
buying and selling the security into fair bets, then this investor’s valu-
ation of a call option on this security will be precisely as given by the
Black–Scholes formula. For this reason, the Black–Scholes valuation is
often called a risk-neutral valuation.

Our first objective in this book is to derive and explain the Black–
Scholes formula. Its derivation, however, requires some knowledge of
probability, and this is what the first three chapters are concerned with.
Chapter 1 introduces probability and the probability experiment. Ran-
dom variables – numerical quantities whose values are determined by
the outcome of the probability experiment – are discussed, as are the
concepts of the expected value and variance of a random variable. In
Chapter 2 we introduce normal random variables; these are random vari-
ables whose probabilities are determined by a bell-shaped curve. The
central limit theorem is presented in this chapter. This theorem, prob-
ably the most important theoretical result in probability, states that the
sum of a large number of random variables will approximately be a nor-
mal random variable. In Chapter 3 we introduce the geometric Brownian
motion process; we define it, show how it can be obtained as the limit of
simpler processes, and discuss the justification for its use in modeling
security prices.

With the probability necessities behind us, the second part of the text
begins in Chapter 4 with an introduction to the concept of interest rates
and present values. A key concept underlying the Black–Scholes for-
mula is that of arbitrage, which is the subject of Chapter 5. In this chapter
we show how arbitrage can be used to determine prices in a variety of
situations, including the single-period binomial option model. In Chap-
ter 6 we present the arbitrage theorem and use it to find an expression for
the unique nonarbitrage option cost in the multiperiod binomial model.
In Chapter 7 we use the results of Chapter 6, along with the approxima-
tions of geometric Brownian motion presented in Chapter 4, to obtain a
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simple derivation of the Black–Scholes equation for pricing call options.
Properties of the resultant option cost as a function of its parameters are
derived, as is the delta hedging replication strategy. Additional results
on options are presented in Chapter 8, where we derive option prices
for dividend-paying securities; show how to utilize a multiperiod bino-
mial model to determine an approximation of the risk-neutral price of an
American put option; determine no-arbitrage costs when the security’s
price follows a model that superimposes random jumps on a geomet-
ric Brownian motion; and present different estimators of the volatility
parameter.

In Chapter 9 we note that, in many situations, arbitrage considerations
do not result in a unique cost. We show the importance in such cases
of the investor’s utility function as well as his or her estimates of the
probabilities of the possible outcomes of the investment. The concepts
of mean variance analysis, value and conditional value at risk, and the
capital assets pricing model are introduced.

In Chapter 10 we introduce stochastic order relations. These relations
can be useful in determining which of a class of investments is best with-
out completely specifying the investor’s utility function. For instance,
if the return from one investment is greater than the return from another
investment in the sense of first-order stochastic dominance, then the first
investment is to be preferred for any increasing utility function; whereas
if the first return is greater in the sense of second-order stochastic dom-
inance, then the first investment is to be preferred as long as the utility
function is concave and increasing.

In Chapters 11 and 12 we study some optimization models in finance.
In Chapter 13 we introduce some nonstandard, or “exotic,” options
such as barrier, Asian, and lookback options. We explain how to use
Monte Carlo simulation, implementing variance reduction techniques,
to efficiently determine their geometric Brownian motion risk-neutral
valuations.

The Black–Scholes formula is useful even if one has doubts about the
validity of the underlying geometric Brownian model. For as long as
one accepts that this model is at least approximately valid, its use gives
one an idea about the appropriate price of the option. Thus, if the ac-
tual trading option price is below the formula price then it would seem
that the option is underpriced in relation to the security itself, thus lead-
ing one to consider a strategy of buying options and selling the security
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(with the reverse being suggested when the trading option price is above
the formula price). In Chapter 14 we show that real data cannot aways
be fit by a geometric Brownian motion model, and that more general
models may need to be considered. In the case of commodity prices,
there is a strong belief by many traders in the concept of mean price re-
version: that the market prices of certain commodities have tendencies
to revert to fixed values. In Chapter 15 we present a model, more general
than geometric Brownian motion, that can be used to model the price
flow of such a commodity.

New to This Edition

Whereas the third edition contains changes in almost all previous chap-
ters, the major changes in the new edition are as follows.

• Chapter 3 on Brownian Motion and Geometric Brownian Motion has
been completely rewritten. Among other things the new chapter gives
an elementary derivation of the distribution of the maximum variable
of a Brownian motion process with drift, as well as an elementary
proof of the Cameron–Martin theorem.

• Section 7.5.2 has been reworked, clarifying the argument leading to a
simple derivation of the partial derivatives of the Black–Scholes call
option pricing formula.

• Section 7.6 on European Put Options is new. It presents monotonicity
and convexity results concerning the risk-neutral price of a European
put option.

• Chapter 10 on Stochastic Order Relations is new. This chapter presents
first- and second-order stochastic dominance, as well as likelihood ra-
tio orderings. Among other things, it is shown (in Section 10.5.1) that
a normal random variable decreases, in the second-order stochastic
dominance sense, as its variance increases.

• The old Chapter 10 is now Chapter 11.
• Chapter 12 on Stochastic Dynamic Programming is new.
• The old Chapter 11 is now Chapter 13. New within this chapter is Sec-

tion 13.9, which presents continuous time approximations of barrier
and lookback options.

• The old Chapter 12 is now Chapter 14.

• The old Chapter 13 is now Chapter 15.
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One technical point that should be mentioned is that we use the nota-
tion log(x) to represent the natural logarithm of x . That is, the logarithm
has base e, where e is defined by

e = lim
n→∞(1 + 1/n)n

and is approximately given by 2.71828 . . . .

We would like to thank Professors Ilan Adler and Shmuel Oren for some
enlightening conversations, Mr. Kyle Lin for his many useful comments,
and Mr. Nahoya Takezawa for his general comments and for doing the
numerical work needed in the final chapters. We would also like to thank
Professors Anthony Quas, Daniel Naiman, and Agostino Capponi for
helpful comments concerning the previous edition.





1. Probability

1.1 Probabilities and Events

Consider an experiment and let S, called the sample space, be the set
of all possible outcomes of the experiment. If there are m possible out-
comes of the experiment then we will generally number them 1 through
m, and so S = {1, 2, .. ., m}. However, when dealing with specific ex-
amples, we will usually give more descriptive names to the outcomes.

Example 1.1a (i) Let the experiment consist of flipping a coin, and let
the outcome be the side that lands face up. Thus, the sample space of
this experiment is

S = {h, t},
where the outcome is h if the coin shows heads and t if it shows tails.

(ii) If the experiment consists of rolling a pair of dice – with the out-
come being the pair (i, j), where i is the value that appears on the first
die and j the value on the second – then the sample space consists of
the following 36 outcomes:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).

(iii) If the experiment consists of a race of r horses numbered 1, 2, 3,
.. ., r, and the outcome is the order of finish of these horses, then the
sample space is

S = {all orderings of the numbers 1, 2, 3, .. ., r}.
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For instance, if r = 4 then the outcome is (1, 4, 2, 3) if the number 1
horse comes in first, number 4 comes in second, number 2 comes in
third, and number 3 comes in fourth.

Consider once again an experiment with the sample space S = {1, 2, .. .,

m}. We will now suppose that there are numbers p1, .. ., pm with

pi ≥ 0, i = 1, .. ., m, and
m∑

i=1

pi = 1

and such that pi is the probability that i is the outcome of the experi-
ment.

Example 1.1b In Example 1.1a(i), the coin is said to be fair or un-
biased if it is equally likely to land on heads as on tails. Thus, for a fair
coin we would have that

ph = pt = 1/2.

If the coin were biased and heads were twice as likely to appear as tails,
then we would have

ph = 2/3, pt = 1/3.

If an unbiased pair of dice were rolled in Example 1.1a(ii), then all pos-
sible outcomes would be equally likely and so

p(i, j) = 1/36, 1 ≤ i ≤ 6, 1 ≤ j ≤ 6.

If r = 3 in Example 1.1a(iii), then we suppose that we are given the six
nonnegative numbers that sum to 1:

p1,2,3, p1,3,2, p2,1,3, p2,3,1, p3,1,2, p3,2,1,

where pi, j,k represents the probability that horse i comes in first, horse
j second, and horse k third.

Any set of possible outcomes of the experiment is called an event. That
is, an event is a subset of S, the set of all possible outcomes. For any
event A, we say that A occurs whenever the outcome of the experiment
is a point in A. If we let P(A) denote the probability that event A oc-
curs, then we can determine it by using the equation

P(A) =
∑
i∈ A

pi . (1.1)
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Note that this implies

P(S) =
∑

i

pi = 1. (1.2)

In words, the probability that the outcome of the experiment is in the
sample space is equal to 1 – which, since S consists of all possible out-
comes of the experiment, is the desired result.

Example 1.1c Suppose the experiment consists of rolling a pair of fair
dice. If A is the event that the sum of the dice is equal to 7, then

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)}
and

P(A) = 6/36 = 1/6.

If we let B be the event that the sum is 8, then

P(B) = p(2,6) + p(3,5) + p(4,4) + p(5,3) + p(6,2) = 5/36.

If, in a horse race between three horses, we let A denote the event that
horse number 1 wins, then A = {(1, 2, 3), (1, 3, 2)} and

P(A) = p1,2,3 + p1,3,2.

For any event A, we let Ac, called the complement of A, be the event
containing all those outcomes in S that are not in A. That is, Ac occurs
if and only if A does not. Since

1 =
∑

i

pi

=
∑
i∈ A

pi +
∑
i∈ Ac

pi

= P(A) + P(Ac),

we see that
P(Ac) = 1 − P(A). (1.3)

That is, the probability that the outcome is not in A is 1 minus the prob-
ability that it is in A. The complement of the sample space S is the null
event ∅, which contains no outcomes. Since ∅ = Sc, we obtain from
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Equations (1.2) and (1.3) that

P(∅) = 0.

For any events A and B we define A∪ B, called the union of A and B, as
the event consisting of all outcomes that are in A, or in B, or in both A
and B. Also, we define their intersection AB (sometimes written A∩ B)

as the event consisting of all outcomes that are both in A and in B.

Example 1.1d Let the experiment consist of rolling a pair of dice. If
A is the event that the sum is 10 and B is the event that both dice land
on even numbers greater than 3, then

A = {(4, 6), (5, 5), (6, 4)}, B = {(4, 4), (4, 6), (6, 4), (6, 6)}.
Therefore,

A ∪ B = {(4, 4), (4, 6), (5, 5), (6, 4), (6, 6)},
AB = {(4, 6), (6, 4)}.

For any events A and B, we can write

P(A ∪ B) =
∑

i∈ A∪B

pi ,

P(A) =
∑
i∈ A

pi ,

P(B) =
∑
i∈B

pi .

Since every outcome in both A and B is counted twice in P(A) + P(B)

and only once in P(A ∪ B), we obtain the following result, often called
the addition theorem of probability.

Proposition 1.1.1

P(A ∪ B) = P(A) + P(B) − P(AB).

Thus, the probability that the outcome of the experiment is either in A
or in B equals the probability that it is in A, plus the probability that it
is in B, minus the probability that it is in both A and B.
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Example 1.1e Suppose the probabilities that the Dow-Jones stock in-
dex increases today is .54, that it increases tomorrow is .54, and that it
increases both days is .28. What is the probability that it does not in-
crease on either day?

Solution. Let A be the event that the index increases today, and let B
be the event that it increases tomorrow. Then the probability that it in-
creases on at least one of these days is

P(A ∪ B) = P(A) + P(B) − P(AB)

= .54 + .54 − .28 = .80.

Therefore, the probability that it increases on neither day is 1 − .80 =
.20.

If AB = ∅, we say that A and B are mutually exclusive or disjoint.
That is, events are mutually exclusive if they cannot both occur. Since
P(∅) = 0, it follows from Proposition 1.1.1 that, when A and B are mu-
tually exclusive,

P(A ∪ B) = P(A) + P(B).

1.2 Conditional Probability

Suppose that each of two teams is to produce an item, and that the two
items produced will be rated as either acceptable or unacceptable. The
sample space of this experiment will then consist of the following four
outcomes:

S = {(a, a), (a, u), (u, a), (u, u)},

where (a, u) means, for instance, that the first team produced an accept-
able item and the second team an unacceptable one. Suppose that the
probabilities of these outcomes are as follows:

P(a, a) = .54,

P(a, u) = .28,

P(u, a) = .14,

P(u, u) = .04.
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If we are given the information that exactly one of the items produced
was acceptable, what is the probability that it was the one produced by
the first team? To determine this probability, consider the following rea-
soning. Given that there was exactly one acceptable item produced, it
follows that the outcome of the experiment was either (a, u) or (u, a).

Since the outcome (a, u) was initially twice as likely as the outcome
(u, a), it should remain twice as likely given the information that one of
them occurred. Therefore, the probability that the outcome was (a, u)

is 2/3, whereas the probability that it was (u, a) is 1/3.

Let A = {(a, u), (a, a)} denote the event that the item produced by the
first team is acceptable, and let B = {(a, u), (u, a)} be the event that ex-
actly one of the produced items is acceptable. The probability that the
item produced by the first team was acceptable given that exactly one of
the produced items was acceptable is called the conditional probability
of A given that B has occurred; this is denoted as

P(A|B).

A general formula for P(A|B) is obtained by an argument similar to
the one given in the preceding. Namely, if the event B occurs then,
in order for the event A to occur, it is necessary that the occurrence
be a point in both A and B; that is, it must be in AB. Now, since
we know that B has occurred, it follows that B can be thought of as
the new sample space, and hence the probability that the event AB oc-
curs will equal the probability of AB relative to the probability of B.

That is,

P(A|B) = P(AB)

P(B)
. (1.4)

Example 1.2a A coin is flipped twice. Assuming that all four points
in the sample space S = {(h, h), (h, t), (t, h), (t, t)} are equally likely,
what is the conditional probability that both flips land on heads, given
that

(a) the first flip lands on heads, and
(b) at least one of the flips lands on heads?

Solution. Let A = {(h, h)} be the event that both flips land on heads;
let B = {(h, h), (h, t)} be the event that the first flip lands on heads; and
let C = {(h, h), (h, t), (t, h)} be the event that at least one of the flips



Conditional Probability 7

lands on heads. We have the following solutions:

P(A|B) = P(AB)

P(B)

= P({(h, h)})
P({(h, h), (h, t)})

= 1/4

2/4

= 1/2

and

P(A|C ) = P(AC )

P(C )

= P({(h, h)})
P({(h, h), (h, t), (t, h)})

= 1/4

3/4

= 1/3.

Many people are initially surprised that the answers to parts (a) and (b)
are not identical. To understand why the answers are different, note first
that – conditional on the first flip landing on heads – the second one is
still equally likely to land on either heads or tails, and so the probability
in part (a) is 1/2. On the other hand, knowing that at least one of the flips
lands on heads is equivalent to knowing that the outcome is not (t, t).
Thus, given that at least one of the flips lands on heads, there remain
three equally likely possibilities, namely (h, h), (h, t), (t, h), showing
that the answer to part (b) is 1/3.

It follows from Equation (1.4) that

P(AB) = P(B)P(A|B). (1.5)

That is, the probability that both A and B occur is the probability that
B occurs multiplied by the conditional probability that A occurs given
that B occurred; this result is often called the multiplication theorem of
probability.

Example 1.2b Suppose that two balls are to be withdrawn, without re-
placement, from an urn that contains 9 blue and 7 yellow balls. If each
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ball drawn is equally likely to be any of the balls in the urn at the time,
what is the probability that both balls are blue?

Solution. Let B1 and B2 denote, respectively, the events that the first
and second balls withdrawn are blue. Now, given that the first ball with-
drawn is blue, the second ball is equally likely to be any of the remaining
15 balls, of which 8 are blue. Therefore, P(B2|B1) = 8/15. As P(B1) =
9/16, we see that

P(B1B2) = 9

16

8

15
= 3

10
.

The conditional probability of A given that B has occurred is not gener-
ally equal to the unconditional probability of A. In other words, knowing
that the outcome of the experment is an element of B generally changes
the probability that it is an element of A. (What if A and B are mutu-
ally exclusive?) In the special case where P(A|B) is equal to P(A), we
say that A is independent of B. Since

P(A|B) = P(AB)

P(B)
,

we see that A is independent of B if

P(AB) = P(A)P(B). (1.6)

The relation in (1.6) is symmetric in A and B. Thus it follows that, when-
ever A is independent of B, B is also independent of A – that is, A and
B are independent events.

Example 1.2c Suppose that, with probability .52, the closing price of
a stock is at least as high as the close on the previous day, and that the
results for succesive days are independent. Find the probability that the
closing price goes down in each of the next four days, but not on the
following day.

Solution. Let Ai be the event that the closing price goes down on day
i. Then, by independence, we have

P(A1 A2 A3 A4 Ac
5) = P(A1)P(A2)P(A3)P(A4)P(Ac

5)

= (.48)4(.52) = .0276.
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1.3 Random Variables and Expected Values

Numerical quantities whose values are determined by the outcome of
the experiment are known as random variables. For instance, the sum
obtained when rolling dice, or the number of heads that result in a series
of coin flips, are random variables. Since the value of a random variable
is determined by the outcome of the experiment, we can assign proba-
bilities to each of its possible values.

Example 1.3a Let the random variable X denote the sum when a pair
of fair dice are rolled. The possible values of X are 2, 3, .. .,12, and
they have the following probabilities:

P{X = 2} = P{(1,1)} = 1/36,

P{X = 3} = P{(1, 2), (2,1)} = 2/36,

P{X = 4} = P{(1, 3), (2, 2), (3,1)} = 3/36,

P{X = 5} = P{(1, 4), (2, 3), (3, 2), (4,1)} = 4/36,

P{X = 6} = P{(1, 5), (2, 4), (3, 3), (4, 2), (5,1)} = 5/36,

P{X = 7} = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)} = 6/36,

P{X = 8} = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5/36,

P{X = 9} = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 4/36,

P{X = 10} = P{(4, 6), (5, 5), (6, 4)} = 3/36,

P{X = 11} = P{(5, 6), (6, 5)} = 2/36,

P{X = 12} = P{(6, 6)} = 1/36.

If X is a random variable whose possible values are x1, x2, .. ., xn, then
the set of probabilities P{X = xj } ( j = 1, .. ., n) is called the proba-
bility distribution of the random variable. Since X must assume one of
these values, it follows that

n∑
j=1

P{X = xj } = 1.

Definition If X is a random variable whose possible values are x1, x2,

.. ., xn, then the expected value of X, denoted by E[X ], is defined by
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E[X ] =
n∑

j=1

xj P{X = xj }.

Alternative names for E[X ] are the expectation or the mean of X.

In words, E[X ] is a weighted average of the possible values of X,

where the weight given to a value is equal to the probability that X as-
sumes that value.

Example 1.3b Let the random variable X denote the amount that we
win when we make a certain bet. Find E[X ] if there is a 60% chance
that we lose 1, a 20% chance that we win 1, and a 20% chance that we
win 2.

Solution.
E[X ] = −1(.6) + 1(.2) + 2(.2) = 0.

Thus, the expected amount that is won on this bet is equal to 0. A bet
whose expected winnings is equal to 0 is called a fair bet.

Example 1.3c A random variable X, which is equal to 1 with proba-
bility p and to 0 with probability 1− p, is said to be a Bernoulli random
variable with parameter p. Its expected value is

E[X ] = 1( p) + 0(1 − p) = p.

A useful and easily established result is that, for constants a and b,

E[aX + b] = aE[X ] + b. (1.7)

To verify Equation (1.7), let Y = aX + b. Since Y will equal axj + b
when X = xj, it follows that

E[Y ] =
n∑

j=1

(axj + b)P{X = xj }

=
n∑

j=1

axj P{X = xj } +
n∑

j=1

bP{X = xj }

= a
n∑

j=1

xj P{X = xj } + b
n∑

j=1

P{X = xj }

= aE[X ] + b.
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An important result is that the expected value of a sum of random vari-
ables is equal to the sum of their expected values.

Proposition 1.3.1 For random variables X1, .. ., Xk,

E

[ k∑
j=1

Xj

]
=

k∑
j=1

E[Xj ].

Example 1.3d Consider n independent trials, each of which is a suc-
cess with probability p. The random variable X, equal to the total num-
ber of successes that occur, is called a binomial random variable with
parameters n and p. To determine the probability distribution of X , con-
sider any sequence of trial outcomes s, s, . . . , f – meaning that the first
trial is a success, the second a success, . . . , and the nth trial a failure –
that results in i successes and n − i failures. By independence, its prob-
ability of occurrence is p · p · · · (1 − p) = pi (1 − p)n−i . Because there
are

(n
i

) = n!
(n−i)!i! such sequences consisting of i values s and n − i val-

ues f , it follows that

P(X = i) =
(

n

i

)
pi (1 − p)n−i , i = 0, . . . , n

Although we could compute the expected value of X by using the pre-
ceding to write

E[X ] =
n∑

i=0

i P(X = i) =
n∑

i=0

i

(
n

i

)
pi (1 − p)n−i

and then attempt to simplify the preceding, it is easier to compute E[X ]
by using the representation

X =
n∑

j=1

Xj,

where Xj is defined to equal 1 if trial j is a success and to equal 0 other-
wise. Using Proposition 1.3.1, we obtain that

E[X ] =
n∑

j=1

E[Xj ] = np,

where the final equality used the result of Example 1.3c.
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The following result will be used in Chapter 3.

Proposition 1.3.2 Consider n independent trials, each of which is a
success with probability p. Then, given that there is a total of i suc-
cesses in the n trials, each of the

(n
i

)
subsets of i trials is equally likely

to be the set of trials that resulted in successes.

Proof. To verify the preceding, let T be any subset of size i of the set
{1, . . . , n}, and let A be the event that all of the trials in T were suc-
cesses. Letting X be the number of successes in the n trials, then

P(A|X = i) = P(A, X = i)

P(X = i)

Now, P(A, X = i) is the probability that all trials in T are successes
and all trials not in T are failures. Consequently, on using the indepen-
dence of the trials, we obtain from the preceding that

P(A|X = i) = pi (1 − p)n−i(n
i

)
pi (1 − p)n−i

= 1(n
i

)
which proves the result.

The random variables X1, .. ., Xn are said to be independent if probabil-
ities concerning any subset of them are unchanged by information as to
the values of the others.

Example 1.3e Suppose that k balls are to be randomly chosen from a
set of N balls, of which n are red. If we let Xi equal 1 if the i th ball cho-
sen is red and 0 if it is black, then X1, .. ., Xn would be independent if
each selected ball is replaced before the next selection is made, but they
would not be independent if each selection is made without replacing
previously selected balls. (Why not?)

Whereas the average of the possible values of X is indicated by its ex-
pected value, its spread is measured by its variance.

Definition The variance of X, denoted by Var(X ), is defined by

Var(X ) = E[(X − E[X ])2].
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In other words, the variance measures the average square of the differ-
ence between X and its expected value.

Example 1.3f Find Var(X ) when X is a Bernoulli random variable
with parameter p.

Solution. Because E[X ] = p (as shown in Example 1.3c), we see that

(X − E[X ])2 =
{

(1 − p)2 with probability p

p2 with probability 1 − p.

Hence,
Var(X ) = E[(X − E[X ])2]

= (1 − p)2p + p2(1 − p)

= p − p2.

If a and b are constants, then

Var(aX + b) = E[(aX + b − E[aX + b])2]

= E[(aX − aE[X ])2] (by Equation (1.7))

= E[a2(X − E[X ])2]

= a2 Var(X ). (1.8)

Although it is not generally true that the variance of the sum of random
variables is equal to the sum of their variances, this is the case when the
random variables are independent.

Proposition 1.3.2 If X1, .. ., Xk are independent random variables,
then

Var

( k∑
j=1

Xj

)
=

k∑
j=1

Var(Xj ).

Example 1.3g Find the variance of X, a binomial random variable with
parameters n and p.

Solution. Recalling that X represents the number of successes in n in-
dependent trials (each of which is a success with probability p), we can
represent it as

X =
n∑

j=1

Xj,
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where Xj is defined to equal 1 if trial j is a success and 0 otherwise.
Hence,

Var(X ) =
n∑

j=1

Var(Xj ) (by Proposition 1.3.2)

=
n∑

j=1

p(1 − p) (by Example 1.3f)

= np(1 − p).

The square root of the variance is called the standard deviation. As we
shall see, a random variable tends to lie within a few standard deviations
of its expected value.

1.4 Covariance and Correlation

The covariance of any two random variables X and Y, denoted by
Cov(X, Y ), is defined by

Cov(X, Y ) = E[(X − E[X ])(Y − E[Y ])].

Upon multiplying the terms within the expectation, and then taking ex-
pectation term by term, it can be shown that

Cov(X, Y ) = E[XY ] − E[X ]E[Y ].

A positive value of the covariance indicates that X and Y both tend to
be large at the same time, whereas a negative value indicates that when
one is large the other tends to be small. (Independent random variables
have covariance equal to 0.)

Example 1.4a Let X and Y both be Bernoulli random variables. That
is, each takes on either the value 0 or 1. Using the identity

Cov(X, Y ) = E[XY ] − E[X ]E[Y ]

and noting that XY will equal 1 or 0 depending upon whether both X
and Y are equal to 1, we obtain that

Cov(X, Y ) = P{X = 1, Y = 1} − P{X = 1}P{Y = 1}.
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From this, we see that

Cov(X, Y ) > 0 ⇐⇒ P{X = 1, Y = 1} > P{X = 1}P{Y = 1}

⇐⇒ P{X = 1, Y = 1}
P{X = 1} > P{Y = 1}

⇐⇒ P{Y = 1 | X = 1} > P{Y = 1}.

That is, the covariance of X and Y is positive if the outcome that X = 1
makes it more likely that Y = 1 (which, as is easily seen, also implies
the reverse).

The following properties of covariance are easily established. For ran-
dom variables X and Y, and constant c:

Cov(X, Y ) = Cov(Y, X ),

Cov(X, X ) = Var(X ),

Cov(cX, Y ) = c Cov(X, Y ),

Cov(c, Y ) = 0.

Covariance, like expected value, satisfies a linearity property – namely,

Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). (1.9)

Equation (1.9) is proven as follows:

Cov(X1 + X2, Y ) = E[(X1 + X2)Y ] − E[X1 + X2]E[Y ]

= E[X1Y + X2Y ] − (E[X1] + E[X2])E[Y ]

= E[X1Y ] − E[X1]E[Y ] + E[X2Y ] − E[X2]E[Y ]

= Cov(X1, Y ) + Cov(X2, Y ).

Equation (1.9) is easily generalized to yield the following useful iden-
tity:

Cov

( n∑
i=1

Xi ,

m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi , Yj ). (1.10)

Equation (1.10) yields a useful formula for the variance of the sum of
random variables:
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Var

( n∑
i=1

Xi

)
= Cov

( n∑
i=1

Xi ,

n∑
j=1

Xj

)

=
n∑

i=1

n∑
j=1

Cov(Xi , Xj )

=
n∑

i=1

Cov(Xi , Xi ) +
n∑

i=1

∑
j 
=i

Cov(Xi , Xj )

=
n∑

i=1

Var(Xi ) +
n∑

i=1

∑
j 
=i

Cov(Xi , Xj ).
(1.11)

The degree to which large values of X tend to be associated with large
values of Y is measured by the correlation between X and Y, denoted
as ρ(X, Y ) and defined by

ρ(X, Y ) = Cov(X, Y )√
Var(X ) Var(Y )

.

It can be shown that
−1 ≤ ρ(X, Y ) ≤ 1.

If X and Y are linearly related by the equation

Y = a + bX,

then ρ(X, Y ) will equal 1 when b is positive and −1 when b is negative.

1.5 Conditional Expectation

For random variables X and Y , we define the conditional expectation of
X given that Y = y by

E[X |Y = y] =
∑

x

x P(X = x |Y = y)

That is, the conditional expectation of X given that Y = y is, like the
ordinary expectation of X , a weighted average of the possible values of
X; but now the value x is weighted not by the unconditional probabil-
ity that X = x , but by its conditional probability given the information
that Y = y.
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An important property of conditional expectation is that the expected
value of X is a weighted average of the conditional expectation of X
given that Y = y. That is, we have the following:

Proposition 1.5.1

E[X ] =
∑

y

E[X |Y = y]P(Y = y)

Proof.∑
y

E[X |Y = y]P(Y = y) =
∑

y

∑
x

x P(X = x |Y = y)P(Y = y)

=
∑

y

∑
x

x P(X = x, Y = y)

=
∑

x

x
∑

y

P(X = x, Y = y)

=
∑

x

x P(X = x)

= E[X ]

Let E[X |Y ] be that function of the random variable Y which, when
Y = y, is defined to equal E[X |Y = y]. Using that the expected value
of any function of Y , say h(Y ), can be expressed as (see Exercise 1.20)

E[h(Y )] =
∑

y

h(y)P(Y = y)

it follows that

E[E[X |Y ]] =
∑

y

E[X |Y = y]P(Y = y)

Hence, the preceding proposition can be written as

E[X ] = E[E[X |Y ]]

1.6 Exercises

Exercise 1.1 When typing a report, a certain typist makes i errors with
probability pi (i ≥ 0), where

p0 = .20, p1 = .35, p2 = .25, p3 = .15.
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What is the probability that the typist makes

(a) at least four errors;
(b) at most two errors?

Exercise 1.2 A family picnic scheduled for tomorrow will be post-
poned if it is either cloudy or rainy. If the probability that it will be
cloudy is .40, the probability that it will be rainy is .30, and the proba-
bility that it will be both rainy and cloudy is .20, what is the probabilty
that the picnic will not be postponed?

Exercise 1.3 If two people are randomly chosen from a group of eight
women and six men, what is the probability that

(a) both are women;
(b) both are men;
(c) one is a man and the other a woman?

Exercise 1.4 A club has 120 members, of whom 35 play chess, 58 play
bridge, and 27 play both chess and bridge. If a member of the club is
randomly chosen, what is the conditional probability that she

(a) plays chess given that she plays bridge;
(b) plays bridge given that she plays chess?

Exercise 1.5 Cystic fibrosis (CF) is a genetically caused disease. A
child that receives a CF gene from each of its parents will develop the
disease either as a teenager or before, and will not live to adulthood. A
child that receives either zero or one CF gene will not develop the dis-
ease. If an individual has a CF gene, then each of his or her children
will independently receive that gene with probability 1/2.

(a) If both parents possess the CF gene, what is the probability that their
child will develop cystic fibrosis?

(b) What is the probability that a 30-year old who does not have cys-
tic fibrosis, but whose sibling died of that disease, possesses a CF
gene?

Exercise 1.6 Two cards are randomly selected from a deck of 52 play-
ing cards. What is the conditional probability they are both aces, given
that they are of different suits?
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Exercise 1.7 If A and B are independent, show that so are

(a) A and Bc;
(b) Ac and Bc.

Exercise 1.8 A gambling book recommends the following strategy for
the game of roulette. It recommends that the gambler bet 1 on red. If
red appears (which has probability 18/38 of occurring) then the gam-
bler should take his profit of 1 and quit. If the gambler loses this bet, he
should then make a second bet of size 2 and then quit. Let X denote the
gambler’s winnings.

(a) Find P{X > 0}.
(b) Find E[X ].

Exercise 1.9 Four buses carrying 152 students from the same school
arrive at a football stadium. The buses carry (respectively) 39, 33, 46,
and 34 students. One of the 152 students is randomly chosen. Let X
denote the number of students who were on the bus of the selected stu-
dent. One of the four bus drivers is also randomly chosen. Let Y be the
number of students who were on that driver’s bus.

(a) Which do you think is larger, E[X ] or E[Y ]?
(b) Find E[X ] and E[Y ].

Exercise 1.10 Two players play a tennis match, which ends when one
of the players has won two sets. Suppose that each set is equally likely
to be won by either player, and that the results from different sets are
independent. Find (a) the expected value and (b) the variance of the
number of sets played.

Exercise 1.11 Verify that

Var(X ) = E[X2] − (E[X ])2.

Hint: Starting with the definition

Var(X ) = E[(X − E[X ])2],

square the expression on the right side; then use the fact that the ex-
pected value of a sum of random variables is equal to the sum of their
expectations.
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Exercise 1.12 A lawyer must decide whether to charge a fixed fee of
$5,000 or take a contingency fee of $25,000 if she wins the case (and 0
if she loses). She estimates that her probability of winning is .30. De-
termine the mean and standard deviation of her fee if

(a) she takes the fixed fee;
(b) she takes the contingency fee.

Exercise 1.13 Let X1, .. ., Xn be independent random variables, all
having the same distribution with expected value μ and variance σ 2.

The random variable X̄ , defined as the arithmetic average of these
variables, is called the sample mean. That is, the sample mean is
given by

X̄ =
∑n

i=1 Xi

n
.

(a) Show that E[X̄ ] = μ.

(b) Show that Var(X̄ ) = σ 2/n.

The random variable S2, defined by

S2 =
∑n

i=1(Xi − X̄ )2

n − 1
,

is called the sample variance.

(c) Show that
∑n

i=1(Xi − X̄ )2 = ∑n
i=1 X2

i − n X̄2.

(d) Show that E[S2] = σ 2.

Exercise 1.14 Verify that

Cov(X, Y ) = E[XY ] − E[X ]E[Y ].

Exercise 1.15 Prove:

(a) Cov(X, Y ) = Cov(Y, X );
(b) Cov(X, X ) = Var(X );
(c) Cov(cX, Y ) = c Cov(X, Y );
(d) Cov(c, Y ) = 0.

Exercise 1.16 If U and V are independent random variables, both hav-
ing variance 1, find Cov(X, Y ) when

X = aU + bV, Y = cU + dV.
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Exercise 1.17 If Cov(Xi , Xj ) = i j, find

(a) Cov(X1 + X2, X3 + X4);
(b) Cov(X1 + X2 + X3, X2 + X3 + X4).

Exercise 1.18 Suppose that – in any given time period – a certain stock
is equally likely to go up 1 unit or down 1 unit, and that the outcomes
of different periods are independent. Let X be the amount the stock
goes up (either 1 or −1) in the first period, and let Y be the cumulative
amount it goes up in the first three periods. Find the correlation between
X and Y.

Exercise 1.19 Can you construct a pair of random variables such that
Var(X ) = Var(Y ) = 1 and Cov(X, Y ) = 2?

Exercise 1.20 If Y is a random variable and h a function, then h(Y )

is also a random variable. If the set of distinct possible values of h(Y )

are {hi , i ≥ 1}, then by the definition of expected value, we have that
E[h(Y )] = ∑

i hi P(h(Y ) = hi ). On the other hand, because h(Y ) is
equal to h(y) when Y = y, it is intuitive that

E[h(Y )] =
∑

y

h(y)P(Y = y)

Verify that the preceding equation is valid.

Exercise 1.21 The distribution function F(x) of the random variable
X is defined by

F(x) = P(X ≤ x)

If X takes on one of the values 1, 2, . . . , and F is a known function, how
would you obtain P(X = i)?

REFERENCE
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2. Normal Random Variables

2.1 Continuous Random Variables

Whereas the possible values of the random variables considered in the
previous chapter constituted sets of discrete values, there exist random
variables whose set of possible values is instead a continuous region.
These continuous random variables can take on any value within some
interval. For example, such random variables as the time it takes to com-
plete an assignment, or the weight of a randomly chosen individual, are
usually considered to be continuous.

Every continuous random variable X has a function f associated with
it. This function, called the probability density function of X, deter-
mines the probabilities associated with X in the following manner. For
any numbers a < b, the area under f between a and b is equal to the
probability that X assumes a value between a and b. That is,

P{a ≤ X ≤ b} = area under f between a and b.

Figure 2.1 presents a probability density function.

2.2 Normal Random Variables

A very important type of continuous random variable is the normal ran-
dom variable. The probability density function of a normal random
variable X is determined by two parameters, denoted by μ and σ, and
is given by the formula

f (x) = 1√
2πσ

e−(x−μ)2/2σ 2
, −∞ < x < ∞.

A plot of the normal probability density function gives a bell-shaped
curve that is symmetric about the value μ, and with a variability that is
measured by σ. The larger the value of σ, the more spread there is in f.
Figure 2.2 presents three different normal probability density functions.
Note how the curve flattens out as σ increases.
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Figure 2.1: Probability Density Function of X

Figure 2.2: Three Normal Probability Density Functions

It can be shown that the parameters μ and σ 2 are equal to the expected
value and to the variance of X, respectively. That is,

μ = E[X ], σ 2 = Var(X ).
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A normal random variable having mean 0 and variance 1 is called a
standard normal random variable. Let Z be a standard normal random
variable. The function �(x), defined for all real numbers x by

�(x) = P{Z ≤ x},

is called the standard normal distribution function. Thus �(x), the
probability that a standard normal random variable is less than or equal
to x, is equal to the area under the standard normal density function

f (x) = 1√
2π

e−x2/2, −∞ < x < ∞,

between −∞ and x . Table 2.1 specifies values of �(x) when x > 0.

Probabilities for negative x can be obtained by using the symmetry of
the standard normal density about 0 to conclude (see Figure 2.3) that

P{Z < −x} = P{Z > x}

or, equivalently, that

�(−x) = 1 − �(x).

Example 2.2a Let Z be a standard normal random variable. For a <

b, express P{a < Z ≤ b} in terms of �.

Solution. Since

P{Z ≤ b} = P{Z ≤ a} + P{a < Z ≤ b},

we see that

P{a < Z ≤ b} = �(b) − �(a).

Example 2.2b Tabulated values of �(x) show that, to four decimal
places,

P{|Z | ≤ 1} = P{−1 ≤ Z ≤ 1} = .6826,

P{|Z | ≤ 2} = P{−2 ≤ Z ≤ 2} = .9544,

P{|Z | ≤ 3} = P{−3 ≤ Z ≤ 3} = .9974.
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Table 2.1: �(x) = P{Z ≤ x}
x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

When greater accuracy than that provided by Table 2.1 is needed, the
following approximation to �(x), accurate to six decimal places, can
be used: For x > 0,

�(x) ≈ 1 − 1√
2π

e−x2/2(a1 y + a2 y2 + a3 y3 + a4 y4 + a5 y5),
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Figure 2.3: P{Z < −x} = P{Z > x}

where

y = 1

1 + .2316419x
,

a1 = .319381530,

a2 = −.356563782,

a3 = 1.781477937,

a4 = −1.821255978,

a5 = 1.330274429,

and

�(−x) = 1 − �(x).

2.3 Properties of Normal Random Variables

An important property of normal random variables is that if X is a nor-
mal random variable then so is aX +b, when a and b are constants. This
property enables us to transform any normal random variable X into a
standard normal random variable. For suppose X is normal with mean
μ and variance σ 2. Then, since (from Equations (1.7) and (1.8))

Z = X − μ

σ
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has expected value 0 and variance 1, it follows that Z is a standard nor-
mal random variable. As a result, we can compute probabilities for any
normal random variable in terms of the standard normal distribution
function �.

Example 2.3a IQ examination scores for sixth-graders are normally
distributed with mean value 100 and standard deviation 14.2. What is the
probability that a randomly chosen sixth-grader has an IQ score greater
than 130?

Solution. Let X be the score of a randomly chosen sixth-grader. Then,

P{X > 130} = P

{
X − 100

14.2
>

130 − 100

14.2

}

= P

{
X − 100

14.2
> 2.113

}

= 1 − �(2.113)

= .017.

Example 2.3b Let X be a normal random variable with mean μ and
standard deviation σ. Then, since

|X − μ| ≤ aσ

is equivalent to ∣∣∣∣ X − μ

σ

∣∣∣∣ ≤ a,

it follows from Example 2.2b that 68.26% of the time a normal random
variable will be within one standard deviation of its mean; 95.44% of the
time it will be within two standard deviations of its mean; and 99.74%
of the time it will be within three standard deviations of its mean.

Another important property of normal random variables is that the sum
of independent normal random variables is also a normal random vari-
able. That is, if X1 and X2 are independent normal random variables
with means μ1 and μ2 and with standard deviations σ1 and σ2, then
X1 + X2 is normal with mean

E[X1 + X2] = E[X1] + E[X2] = μ1 + μ2
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and variance

Var(X1 + X2) = Var(X1) + Var(X2) = σ 2
1 + σ 2

2 .

Example 2.3c The annual rainfall in Cleveland, Ohio, is normally dis-
tributed with mean 40.14 inches and standard deviation 8.7 inches. Find
the probabiity that the sum of the next two years’ rainfall exceeds 84
inches.

Solution. Let Xi denote the rainfall in year i (i = 1, 2). Then, assuming
that the rainfalls in successive years can be assumed to be independent, it
follows that X1 + X2 is normal with mean 80.28 and variance 2(8.7)2 =
151.38. Therefore, with Z denoting a standard normal random variable,

P{X1 + X2 > 84} = P

{
Z >

84 − 80.28√
151.38

}

= P{Z > .3023}
≈ .3812.

The random variable Y is said to be a lognormal random variable with
parameters μ and σ if log(Y ) is a normal random variable with mean μ

and variance σ 2. That is, Y is lognormal if it can be expressed as

Y = e X ,

where X is a normal random variable. The mean and variance of a log-
normal random variable are as follows:

E[Y ] = eμ+σ 2/2,

Var(Y ) = e2μ+2σ 2 − e2μ+σ 2 = e2μ+σ 2
(eσ 2 − 1).

Example 2.3d Starting at some fixed time, let S(n) denote the price
of a certain security at the end of n additional weeks, n ≥ 1. A popu-
lar model for the evolution of these prices assumes that the price ratios
S(n)/S(n − 1) for n ≥ 1 are independent and identically distributed
(i.i.d.) lognormal random variables. Assuming this model, with lognor-
mal parameters μ = .0165 and σ = .0730, what is the probability that

(a) the price of the security increases over each of the next two weeks;
(b) the price at the end of two weeks is higher than it is today?
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Solution. Let Z be a standard normal random variable. To solve part
(a), we use that log(x) increases in x to conclude that x > 1 if and only
if log(x) > log(1) = 0. As a result, we have

P

{
S(1)

S(0)
> 1

}
= P

{
log

(
S(1)

S(0)

)
> 0

}

= P

{
Z >

−.0165

.0730

}

= P{Z > −.2260}
= P{Z < .2260}
≈ .5894.

Therefore, the probability that the price is up after one week is .5894.
Since the successive price ratios are independent, the probability that
the price increases over each of the next two weeks is (.5894)2 = .3474.

To solve part (b), reason as follows:

P

{
S(2)

S(0)
> 1

}
= P

{
S(2)

S(1)

S(1)

S(0)
> 1

}

= P

{
log

(
S(2)

S(1)

)
+ log

(
S(1)

S(0)

)
> 0

}

= P

{
Z >

−.0330

.0730
√

2

}

= P{Z > −.31965}
= P{Z < .31965}
≈ .6254,

where we have used that log
( S(2)

S(1)

) + log
( S(1)

S(0)

)
, being the sum of in-

dependent normal random variables with a common mean .0165 and a
common standard deviation .0730, is itself a normal random variable
with mean .0330 and variance 2(.0730)2.

2.4 The Central Limit Theorem

The ubiquity of normal random variables is explained by the central limit
theorem, probably the most important theoretical result in probability.
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This theorem states that the sum of a large number of independent ran-
dom variables, all having the same probability distribution, will itself be
approximately a normal random variable.

For a more precise statement of the central limit theorem, suppose
that X1, X2, .. . is a sequence of i.i.d. random variables, each with ex-
pected value μ and variance σ 2, and let

Sn =
n∑

i=1

Xi .

Central Limit Theorem For large n, Sn will approximately be a
normal random variable with expected value nμ and variance nσ 2.

As a result, for any x we have

P

{
Sn − nμ

σ
√

n
≤ x

}
≈ �(x),

with the approximation becoming exact as n becomes larger and larger.

Suppose that X is a binomial random variable with parameters n and
p. Since X represents the number of successes in n independent trials,
each of which is a success with probability p, it can be expressed as

X =
n∑

i=1

Xi ,

where Xi is 1 if trial i is a success and is 0 otherwise. Since (from Sec-
tion 1.3)

E[Xi ] = p and Var(Xi ) = p(1 − p),

it follows from the central limit theorem that, when n is large, X will
approximately have a normal distribution with mean np and variance
np(1 − p).

Example 2.4a A fair coin is tossed 100 times. What is the probability
that heads appears fewer than 40 times?

Solution. If X denotes the number of heads, then X is a binomial ran-
dom variable with parameters n = 100 and p = 1/2. Since np = 50
we have np(1 − p) = 25, and so
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P{X < 40} = P

{
X − 50√

25
<

40 − 50√
25

}

= P

{
X − 50√

25
< −2

}

≈ �(−2)

= .0228.

A computer program for computing binomial probabilities gives the ex-
act solution .0176, and so the preceding is not quite as acccurate as we
might like. However, we could improve the approximation by noting
that, since X is an integral-valued random variable, the event that X <

40 is equivalent to the event that X < 39 + c for any c, 0 < c ≤ 1.
Consequently, a better approximation may be obtained by writing the
desired probability as P{X < 39.5}. This gives

P{X < 39.5} = P

{
X − 50√

25
<

39.5 − 50√
25

}

= P

{
X − 50√

25
< −2.1

}

≈ �(−2.1)

= .0179,

which is indeed a better approximation.

2.5 Exercises

Exercise 2.1 For a standard normal random variable Z , find:

(a) P{Z < −.66};
(b) P{|Z | < 1.64};
(c) P{|Z | > 2.20}.

Exercise 2.2 Find the value of x when Z is a standard normal random
variable and

P{−2 < Z < −1} = P{1 < Z < x}.
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Exercise 2.3 Argue (a picture is acceptable) that

P{|Z | > x} = 2P{Z > x},
where x > 0 and Z is a standard normal random variable.

Exercise 2.4 Let X be a normal random variable having expected value
μ and variance σ 2, and let Y = a+bX. Find values a, b (a �= 0) that give
Y the same distribution as X. Then, using these values, find Cov(X, Y ).

Exercise 2.5 The systolic blood pressure of male adults is normally
distributed with a mean of 127.7 and a standard deviation of 19.2.

(a) Specify an interval in which the blood pressures of approximately
68% of the adult male population fall.

(b) Specify an interval in which the blood pressures of approximately
95% of the adult male population fall.

(c) Specify an interval in which the blood pressures of approximately
99.7% of the adult male population fall.

Exercise 2.6 Suppose that the amount of time that a certain battery
functions is a normal random variable with mean 400 hours and stan-
dard deviation 50 hours. Suppose that an individual owns two such
batteries, one of which is to be used as a spare to replace the other when
it fails.

(a) What is the probability that the total life of the batteries will exceed
760 hours?

(b) What is the probability that the second battery will outlive the first
by at least 25 hours?

(c) What is the probability that the longer-lasting battery will outlive
the other by at least 25 hours?

Exercise 2.7 The time it takes to develop a photographic print is a ran-
dom variable with mean 18 seconds and standard deviation 1 second.
Approximate the probability that the total amount of time that it takes
to process 100 prints is

(a) more than 1,710 seconds;
(b) between 1,690 and 1,710 seconds.
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Exercise 2.8 Frequent fliers of a certain airline fly a random number
of miles each year, having mean and standard deviation of 25,000 and
12,000 miles, respectively. If 30 such people are randomly chosen, ap-
proximate the probability that the average of their mileages for this year
will

(a) exceed 25,000;
(b) be between 23,000 and 27,000.

Exercise 2.9 A model for the movement of a stock supposes that, if
the present price of the stock is s, then – after one time period – it will
either be us with probability p or ds with probability 1 − p. Assuming
that successive movements are independent, approximate the probabil-
ity that the stock’s price will be up at least 30% after the next 1,000 time
periods if u = 1.012, d = .990, and p = .52.

Exercise 2.10 In each time period, a certain stock either goes down 1
with probability .39, remains the same with probability .20, or goes up
1 with probability .41. Asuming that the changes in successive time pe-
riods are independent, approximate the probability that, after 700 time
periods, the stock will be up more than 10 from where it started.
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3. Brownian Motion and Geometric
Brownian Motion

3.1 Brownian Motion

A Brownian motion is a collection of random variables X (t), t ≥ 0 that
satisfy certain properties that we will momentarily present. We imagine
that we are observing some process as it evolves over time. The index
parameter t represents time, and X (t) is interpreted as the state of the
process at time t . Here is a formal definition.

Definition The collection of random variables X (t), t ≥ 0 is said to be
a Brownian motion with drift parameter μ and variance parameter σ 2 if
the following hold:

(a) X (0) is a given constant.
(b) For all positive y and t , the random variable X (t + y) − X (y) is in-

dependent of the the process values up to time y and has a normal
distribution with mean μt and variance tσ 2.

Assumption (b) says that, for any history of the process up to the present
time y, the change in the value of the process over the next t time units
is a normal random with mean μt and variance tσ 2. Because any fu-
ture value X (t + y) is equal to the present value X (y) plus the change
in value X (t + y) − X (y), the assumption implies that it is only the
present value of the process, and not any past values, that determines
probabilities about future values.

An important property of Brownian motion is that X (t) will, with
probability 1, be a continuous function of t . Althought this is a mathe-
matically deep result, it is not difficult to see why it might be true. To
prove that X (t) is continuous, we must show that

lim
h→0

(X (t + h) − X (t)) = 0

However, because the random variable X (t + h) − X (t) has mean μh
and variance hσ 2, it converges as h → 0 to a random variable with mean



Brownian Motion as a Limit of Simpler Models 35

0 and variance 0. That is, it converges to the constant 0, thus arguing
for continuity.

Although X (t) will, with probability 1, be a continuous function of
t , it possesses the startling property of being nowhere differentiable.
To see why this might be the case, note that X (t+h)−X (t)

h has mean
μ and variance σ 2/h. Because the variance of this ratio is converg-
ing to infinity as h → 0, it is not surprising that the ratio does not
converge.

3.2 Brownian Motion as a Limit of Simpler Models

Let � be a small increment of time, and consider a process such that
every � time units the value of the process either increases by the amount
σ
√

� with probability p or decreases by the amount σ
√

� with proba-
bility 1 − p, where

p = 1

2

(
1 + μ

σ

√
�

)

and where the successive changes in value are independent.
Thus, we are supposing that the process values change only at times

that are integral multiples of �, and that at each change point the value
of the process either increases or decreases by the amount σ

√
�, with

the change being an increase with probability p = 1
2 (1 + μ

σ

√
�).

As we take � smaller and smaller, so that changes occur more and
more frequently (though by amounts that become smaller and smaller),
the process becomes a Brownian motion with drift parameter μ and
variance parameter σ 2. Consequently, Brownian motion can be approx-
imated by a relatively simple process that either increases or decreases
by a fixed amount at regularly specified times.

We now verify that the preceding model becomes Brownian motion as
we let � become smaller and smaller. To begin, let

Xi =
{

1, if the change at time i� is an increase
−1, if the change at time i� is a decrease

Hence, if X (0) is the process value at time 0, then its value after n
changes is

X (n�) = X (0) + σ
√

� (X1 + . . . + Xn)



36 Brownian Motion and Geometric Brownian Motion

Because there would have been n = t/� changes by time t , this gives
that

X (t) − X (0) = σ
√

�

t/�∑
i=1

Xi

Because the Xi , i = 1, . . . , t/�, are independent, and as � goes to 0
there are more and more terms in the summation

∑t/�
i=1 Xi , the central

limit theorem suggests that this sum converges to a normal random vari-
able. Consequently, as � goes to 0, the process value at time t becomes
a normal random variable. To compute its mean and variance, note first
that

E[Xi ] = 1(p) − 1(1 − p) = 2p − 1 = μ

σ

√
�

and
Var(Xi ) = E

[
X2

i

] − (E[Xi ])
2 = 1 − (2p − 1)2

Hence,

E[X (t) − X (0)] = E

[
σ
√

�

t/�∑
i=1

Xi

]

= σ
√

�

t/�∑
i=1

E[Xi ]

= σ
√

�
t

�

μ

σ

√
�

= μt

Furthermore,

Var(X (t) − X (0)) = Var

(
σ
√

�

t/�∑
i=1

Xi

)

= σ 2�

t/�∑
i=1

Var(Xi ) (by independence)

= σ 2t [1 − (2p − 1)2]

Because p → 1/2 as � → 0, the preceding shows that

Var(X (t) − X (0)) → tσ 2 as � → 0
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Consequently, as � gets smaller and smaller, X (t) − X (0) converges to
a normal random variable with mean μt and variance tσ 2. In addition,
because successive process changes are independent and each has the
same probability of being an increase, it follows that X (t + y) − X (y)

has the same distribution as does X (t) − X (0) and is, in addition, in-
dependent of earlier process changes before time y. Hence, it follows
that as � goes to 0, the collection of process values over time becomes
a Brownian motion process with drift parameter μ and variance param-
eter σ 2.

An important result about Brownian motion is that, conditional on the
value of the process at time t, the joint distribution of the process values
up to time t does not depend on the value of the drift parameter. This
result is easily proven by using the approximating processes, as we now
show.

Theorem 3.2.1 Given that X (t) = x, the conditional probability law
of the collection of prices X (y), 0 ≤ y ≤ t , is the same for all values
of μ.

Proof. Let s = X (0) be the price at time 0. Now, consider the approxi-
mating model where the price changes every � time units by an amount
equal, in absolute value, to c ≡ σ

√
�, and note that c does not depend

on μ. By time t , there would have been t/� changes. Hence, given that
the price has increased from time 0 to time t by the amount x − s, it
follows that, of the t/� changes, there have been a total of t

2�
+ x−s

2c
positive changes and a total of t

2�
− x−s

2c negative changes. (This fol-
lows because if the preceding were so, then, of the first t/� changes,
there would have been x−s

c more positive than negative changes, and
so the price would have increased by c( x−s

c ) = x − s.) Because each
change is, independently, a positive change with the same probability
p, it follows, conditional on there being a total of t

2�
+ x−s

2c positive
changes out of the first t/� changes, that all possible choices of the
changes that were positive are equally likely. (That is, if a coin having
probability p is flipped m times, then, given that k heads resulted, the
subset of trials that resulted in heads is equally likely to be any of the(m

k

)
subsets of size k.) Thus, even though p depends on μ, the condi-

tional distribution of the history of prices up to time t , given that X (t) =
x , does not depend on μ. (It does, however, depend on σ because c, the
size of a change, depends on σ , and so if σ changed, then so would the
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number of the t/� changes that would have had to be positive for S(t)
to equal x .) Letting � go to 0 now completes the proof.

The Brownian motion process has a distinguished scientific pedigree.
It is named after the English botanist Robert Brown, who first

described (in 1827) the unusual motion exhibited by a small particle
that is totally immersed in a liquid or gas. The first explanation of this
motion was given by Albert Einstein in 1905. He showed mathemati-
cally that Brownian motion could be explained by assuming that the im-
mersed particle was continually being subjected to bombardment by the
molecules of the surrounding medium. A mathematically concise defi-
nition, as well as an elucidation of some of the mathematical properties
of Brownian motion, was given by the American applied mathematician
Norbert Wiener in a series of papers originating in 1918.

Interestingly, Brownian motion was independently introduced in 1900
by the French mathematician Bachelier, who used it in his doctoral dis-
sertation to model the price movements of stocks and commodities.
However, Brownian motion appears to have two major flaws when used
to model stock or commodity prices. First, since the price of a stock is a
normal random variable, it can theoretically become negative. Second,
the assumption that a price difference over an interval of fixed length has
the same normal distribution no matter what the price at the beginning of
the interval does not seem totally reasonable. For instance, many peo-
ple might not think that the probability a stock presently selling at $20
would drop to $15 (a loss of 25%) in one month would be the same as
the probability that when the stock is at $10 it would drop to $5 (a loss
of 50%) in one month.

A process often used to model the price of a security as it evolves over
time is the geometric Brownian motion process.

3.3 Geometric Brownian Motion

Definition Let X (t), t ≥ 0 be a Brownian motion process with drift
parameter μ and variance parameter σ 2, and let

S(t) = eX (t), t ≥ 0

The process S(t), t ≥ 0, is said to be be a geometric Brownian mo-
tion process with drift parameter μ and variance parameter σ 2.

Let S(t), t ≥ 0 be a geometric Brownian motion process with drift
parameter μ and variance parameter σ 2. Because log(S(t)), t ≥ 0, is
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Brownian motion and log(S(t + y)) − log(S(y)) = log(
S(t+y)

S(y)
) , it fol-

lows from the Brownian motion definition that for all positive y and t ,

log

(
S(t + y)

S(y)

)

is independent of the process values up to time y and has a normal dis-
tribution with mean μt and variance tσ 2.

When used to model the price of a security over time, the geometric
Brownian motion process possesses neither of the flaws of the Brown-
ian motion process. Because it is the logarithm of the stock’s price that
is assumed to be normal random variable, the model does not allow for
negative stock prices. Furthermore, because it is ratios, rather than dif-
ferences, of prices separated by a fixed amount of time that have the
same distribution, the geometric Brownian motion makes what many
feel is the more reasonable assumption that it is the percentage, rather
than the absolute, change in price whose probabilities do not depend on
the current price.

Remarks:

• When geometric Brownian motion is used to model the price of a se-
curity over time, it is common to call σ the volatility parameter.

• If S(0) = s, then we can write

S(t) = seX (t), t ≥ 0

where X (t), t ≥ 0, is a Brownian motion process with X (0) = 0.

• If X is a normal random variable, then it can be shown that

E[eX ] = exp{E[X ] + Var(X)/2}
Hence, if S(t), t ≥ 0, is a geometric Brownian motion process with
drift μ and volatility σ having S(0) = s, then

E[S(t)] = seμt+tσ 2/2 = se(μ+σ 2/2)t

Thus, under geometric Brownian motion, the expected price of a se-
curity grows at rate μ + σ 2/2. As a result, μ + σ 2/2 is often called
the rate of the geometric Brownian motion. Consequently, a geomet-
ric Brownian motion with rate parameter μr and volatility σ would
have drift parameter μr − σ 2/2.
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3.3.1 Geometric Brownian Motion as a Limit
of Simpler Models

Let S(t), t ≥ 0 be a geometric Brownian motion process with drift
parameter μ and volatility parameter σ . Because X (t) = log(S(t)),
t ≥ 0, is Brownian motion, we can use its approximating process to ob-
tain an approximating process for geometric Brownian motion. Using
that S(y+�)

S(y)
= eX (y+�)−X (y), we see that

S(y + �) = S(y)eX (y+�)−X (y)

From the preceding it follows that we can approximate geometric
Brownian motion by a model for the price of a security in which price
changes occur only at times that are integral multiples of �. Moreover,
whenever a change occurs, it results in the price of the security being
multiplied either by the factor u with probability p or by the factor d
with probability 1 − p, where

u = eσ
√

�, d = e−σ
√

�

and
p = 1

2

(
1 + μ

σ

√
�

)

As � goes to 0, the preceding model becomes geometric Brownian mo-
tion. Consequently, geometric Brownian motion can be approximated
by a relatively simple process that goes either up or down by fixed fac-
tors at regularly spaced times.

3.4 ∗The Maximum Variable

Let X (v), v ≥ 0, be a Brownian motion process with drift parameter μ

and variance parameter σ 2. Suppose that X (0) = 0, so that the process
starts at state 0. Now, define

M(t) = max
0≤v≤t

X (v)

to be the maximal value of the Brownian motion up to time t . In this
section we derive first the conditional distribution of M(t) given the
value of X (t) and then use this to derive the unconditional distribution
of M(t).
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Theorem 3.4.1 For y > x

P(M(t) ≥ y|X (t) = x) = e−2y(y−x)/tσ 2
, y ≥ 0

Proof. Because X (0) = 0, it follows that M(t) ≥ 0, and so the result is
true when y = 0 (as both sides are equal to 1 in this case). So suppose
that y > 0. First note that it follows from Theorem 3.1.1 that P(M(t) ≥
y|X (t) = x) does not depend on the value of μ. So let us take μ = 0.

Now, let Ty denote the first time that the Brownian motion reaches the
value y, and note that it follows from the continuity property of Brown-
ian motion that the event that M(t) ≥ y is equivalent to the event that
Ty ≤ t. (This is true because before the process can exceed the positive
value y it must, by continuity, first pass through that value.) Let h be a
small positive number for which y > x + h. Then

P(M(t) ≥ y, x ≤ X (t) ≤ x + h)

= P(Ty ≤ t, x ≤ X (t) ≤ x + h)

= P(x ≤ X (t) ≤ x + h|Ty ≤ t)P(Ty ≤ t) (3.1)

Now, given Ty ≤ t , the event x ≤ X (t) ≤ x + h will occur if, after hit-
ting y, the additional amount X (t) − X (Ty) = X (t) − y by which the
process changes by time t is between x − y and x + h − y. Because the
distribution of this additional change is symmetric about 0 (since μ =
0 and the distribution of a normal random variable is symmetric about
its mean), it follows that the additional change is just as likely to be be-
tween −(x + h − y) and −(x − y) as it is to be between x − y and
x + h − y. Consequently,

P(x ≤ X (t) ≤ x + h|Ty ≤ t)

= P(x − y ≤ X (t) − y ≤ x + h − y|Ty ≤ t)

= P(−(x + h − y) ≤ X (t) − y ≤ −(x − y)|Ty ≤ t)

The preceding, in conjunction with Equation (3.1), gives

P(M(t) ≥ y, x ≤ X (t) ≤ x + h)

= P(2y − x − h ≤ X (t) ≤ 2y − x |Ty ≤ t)P(Ty ≤ t)

= P(2y − x − h ≤ X (t) ≤ 2y − x, Ty ≤ t)

= P(2y − x − h ≤ X (t) ≤ 2y − x)
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The final equation following because the assumption y > x + h yields
that 2y − x − h > y, and so, by the continuity of Brownian motion,
2y − x − h ≤ X (t) implies that Ty ≤ t. Hence,

P(M(t) ≥ y|x ≤ X (t) ≤ x + h) = P(2y − x − h ≤ X (t) ≤ 2y − x)

P(x ≤ X (t) ≤ x + h)

≈ fX (t)(2y − x) h

fX (t)(x) h
(for h small)

where fX (t), the density function of X (t), is the density of a normal ran-
dom variable with mean 0 and variance tσ 2. On letting h → 0 in the
preceding, we obtain that

P(M(t) ≥ y|X (t) = x) = fX (t)(2y − x)

fX (t)(x)

= e−(2y−x)2/2tσ 2

e−x2/2tσ 2

= e−2y(y−x)/tσ 2

With Z being a standard normal distribution function, let

�̄(x) = 1 − �(x) = P(Z > x)

We now have

Corollary 3.4.1 For y ≥ 0

P(M(t) ≥ y) = e2yμ/σ 2
�̄

(
μt + y

σ
√

t

)
+ �̄

(
y − μt

σ
√

t

)

Proof. Conditioning on X (t), and using Theorem 3.4.1 gives

P(M(t) ≥ y) =
∫ ∞

−∞
P(M(t) ≥ y|X (t) = x) fX (t)(x)dx

=
∫ y

−∞
P(M(t) ≥ y|X (t) = x) fX (t)(x)dx

+
∫ ∞

y
P(M(t) ≥ y|X (t) = x) fX (t)(x)dx

=
∫ y

−∞
e−2y(y−x)/tσ 2

fX (t)(x)dx +
∫ ∞

y
fX (t)(x)dx
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Using the fact that fX (t) is the density function of a normal random
variable with mean μt and variance tσ 2, the proof is completed by sim-
plifying the right side of the preceding:

P(M(t) ≥ y)

=
∫ y

−∞
e−2y(y−x)/tσ 2 1√

2π tσ 2
e−(x−μt)2/2tσ 2

dx + P(X (t) > y)

= 1√
2π t σ

e−2y2/tσ 2
e−μ2t2/2tσ 2

×
∫ y

−∞
exp

{
− 1

2tσ 2

(
x2 − 2μt x − 4yx

)}
dx + P(X (t) > y)

= 1√
2π t σ

e−(4y2+μ2t2)/2tσ 2

×
∫ y

−∞
exp

{
− 1

2tσ 2

(
x2 − 2x(μt + 2y)

)}
dx + P(X (t) > y)

Now,

x2 − 2x(μt + 2y) = (x − (μt + 2y))2 − (μt + 2y)2

giving that

P(M(t) ≥ y) = e−(4y2+μ2t2−(μt+2y)2)/2tσ 2 1√
2π t σ

×
∫ y

−∞
e−(x−μt−2y)2/2tσ 2

dx + P(X (t) > y)

Letting Z be a standard normal random variable, we obtain on making
the change of variable

w = x − μt − 2y

σ
√

t
, dx = σ

√
t dw

P(M(t) ≥ y) = e2yμ/σ 2 1√
2π

∫ −μt−y
σ
√

t

−∞
e−w2/2dw

+ P

(
X (t) − μt

σ
√

t
>

y − μt

σ
√

t

)

= e2yμ/σ 2
P

(
Z <

−μt − y

σ
√

t

)
+ P

(
Z >

y − μt

σ
√

t

)

= e2yμ/σ 2
P

(
Z >

μt + y

σ
√

t

)
+ P

(
Z >

y − μt

σ
√

t

)
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and the proof is complete.

In the proof of Theorem 3.4.1 we let Ty denote the first time the Brown-
ian motion is equal to y. That is,

Ty =
{ ∞, if X (t) 
= y for all t ≥ 0

min(t : X (t) = y), otherwise

In addition, as previously noted, it follows from the continuity of Brown-
ian motion paths that, for y > 0, the process would have hit y by time
t if and only if the maximum of the process by time t is at least y. That
is,

Ty ≤ t ⇔ M(t) ≥ y

Hence, Corollary 3.4.1 yields that

P(Ty ≤ t) = e2yμ/σ 2
�̄

(
y + μt

σ
√

t

)
+ �̄

(
y − μt

σ
√

t

)

If we let Mμ,σ (t) denote a random variable having the distribution of
the maximum value up to time t of a Brownian motion process that starts
at 0 and has drift parameter μ and variance parameter σ 2, then the dis-
tribution of Mμ,σ (t) is given by Corollary 3.4.1. Now suppose we want
the distribution of

M∗(t) = min
0≤v≤t

X (v)

Using that −X (v), v ≥ 0, is a Brownian motion process with drift pa-
rameter −μ and variance parameter σ 2, we obtain for y > 0

P(M∗(t) ≤ −y) = P( min
0≤v≤t

X (v) ≤ −y)

= P(− max
0≤v≤t

−X (v) ≤ −y)

= P( max
0≤v≤t

−X (v) ≥ y)

= P(M−μ,σ (t) ≥ y)

= e−2yμ/σ 2
�̄

(−μt + y

σ
√

t

)
+ �̄

(
y + μt

σ
√

t

)

where the final equality used Corollary 3.4.1.
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3.5 The Cameron-Martin Theorem

For an underlying Brownian motion process with variance parameter
σ 2, let us use the notation Eμ to denote that we are taking expectations
under the assumption that the drift parameter is μ. Thus, for instance,
E0 would signify that the expectation is taken under the assumption that
the drift parameter of the Brownian motion process is 0. The following
is known as the Cameron-Martin theorem. (It is a special case of a more
general result, known as Girsanov’s theorem.)

Theorem 3.5.1 Let W be a random variable whose value is determined
by the history of the Brownian motion up to time t. That is, the value
of W is determined by a knowledge of the values of X (s), 0 ≤ s ≤ t .
Then,

Eμ[W ] = e−μ2t/2σ 2
E0[W eμX (t)/σ 2

]

Proof. Conditioning on X (t), which is normal with mean μt and vari-
ance tσ 2, yields

Eμ[W ] =
∫ ∞

−∞
Eμ[W |X (t) = x]

1√
2π tσ 2

e−(x−μt)2/2tσ 2
dx

=
∫ ∞

−∞
E0[W |X (t) = x]

1√
2π tσ 2

e−(x−μt)2/2tσ 2
dx

=
∫ ∞

−∞
E0[W |X (t) = x]

1√
2π tσ 2

e−x2/2tσ 2
e(2μx−μ2t)/2σ 2

dx

(3.2)

where the second equality follows from Theorem 3.1.1, which states
that, given X (t) = x , the conditional distribution of the process up to
time t (and thus the conditional distribution of W ) is the same for all
values μ. Now, if we define

Y = e−μ2t/2σ 2
eμX (t)/σ 2 = e(2μX (t)−μ2t)/2σ 2

then

E0[W Y ] =
∫ ∞

−∞
E0[W Y |X (t) = x]

1√
2π tσ 2

e−x2/2tσ 2
dx
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But, given that X (t) = x , the random variable Y is equal to the constant
e(2μx−μ2t)/2σ 2

, and so the preceding yields

E0[W Y ] =
∫ ∞

−∞
e(2μx−μ2t)/2σ 2

E0[W |X (t) = x]
1√

2π tσ 2
e−x2/2tσ 2

dx

= Eμ[W ]

where the final equality used (3.2).

3.6 Exercises

Exercise 3.1 If X (t), t ≥ 0 is a Brownian motion process with drift
parameter μ and variance parameter σ 2 for which X (0) = 0, show that
−X (t), t ≥ 0 is a Brownian motion process with drift parameter −μ

and variance parameter σ 2.

Exercise 3.2 Let X (t), t ≥ 0 be a Brownian motion process with drift
parameter μ = 3 and variance parameter σ 2 = 9. If X (0) = 10, find

(a) E[X (2)];
(b) Var(X (2));
(c) P(X (2) > 20);
(d) P(X (.5) > 10).

Exercise 3.3 Let � = 0.1 in the approximation model to the Brown-
ian motion process of the preceding problem. For this approximation
model, find

(a) E[X (1)];
(b) Var(X (1));
(c) P(X (.5) > 10).

Exercise 3.4 Let S(t), t ≥ 0 be a geometric Brownian motion process
with drift parameter μ = 0.1 and volatility parameter σ = 0.2. Find

(a) P(S(1) > S(0));
(b) P(S(2) > S(1) > S(0));
(c) P(S(3) < S(1) > S(0)).

Exercise 3.5 Repeat Exercise 3.4 when the volatility parameter is 0.4.
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Exercise 3.6 Let S(t), t ≥ 0 be a geometric Brownian motion process
with drift parameter μ and volatility parameter σ . Assuming that
S(0) = s, find Var(S(t)). Hint: Use the identity

Var(X) = E[X2] − (E[X ])2

Exercise 3.7 Let {X (t), t ≥ 0} be a Brownian motion process with
drift parameter μ and variance parameter σ 2. Assume that X (0) = 0,

and let Ty be the first time that the process is equal to y. For y > 0,
show that

P(Ty < ∞) =
{

1, if μ ≥ 0

e2yμ/σ 2
, if μ < 0

Let M = max0<t<∞ X (t) be the maximal value ever attained by the
process, and conclude from the preceding that, when μ < 0, M has an
exponential distribution with rate −2μ/σ 2.

Exercise 3.8 Let S(v), v ≥ 0 be a geometric Brownian motion process
with drift parameter μ and volatility parameter σ , having S(0) = s. Find
P(max0≤v≤t S(v) ≥ y).

Exercise 3.9 Find P(max0≤v≤1 S(v) < 1.2 S(0)) when S(v), v ≥ 0,

is geometric Brownian motion with drift .1 and volatility .3.



4. Interest Rates and
Present Value Analysis

4.1 Interest Rates

If you borrow the amount P (called the principal), which must be re-
paid after a time T along with simple interest at rate r per time T, then
the amount to be repaid at time T is

P + rP = P(1 + r).

That is, you must repay both the principal P and the interest, equal to
the principal times the interest rate. For instance, if you borrow $100 to
be repaid after one year with a simple interest rate of 5% per year (i.e.,
r = .05), then you will have to repay $105 at the end of the year.

Example 4.1a Suppose that you borrow the amount P, to be repaid
after one year along with interest at a rate r per year compounded semi-
annually. What does this mean? How much is owed in a year?

Solution. In order to solve this example, you must realize that having
your interest compounded semiannually means that after half a year you
are to be charged simple interest at the rate of r/2 per half-year, and that
interest is then added on to your principal, which is again charged inter-
est at rate r/2 for the second half-year period. In other words, after six
months you owe

P(1 + r/2).

This is then regarded as the new principal for another six-month loan at
interest rate r/2; hence, at the end of the year you will owe

P(1 + r/2)(1 + r/2) = P(1 + r/2)2.

Example 4.1b If you borrow $1,000 for one year at an interest rate of
8% per year compounded quarterly, how much do you owe at the end of
the year?
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Solution. An interest rate of 8% that is compounded quarterly is equiv-
alent to paying simple interest at 2% per quarter-year, with each succes-
sive quarter charging interest not only on the original principal but also
on the interest that has accrued up to that point. Thus, after one quarter
you owe

1,000(1 + .02);
after two quarters you owe

1,000(1 + .02)(1 + .02) = 1,000(1 + .02)2;
after three quarters you owe

1,000(1 + .02)2(1 + .02) = 1,000(1 + .02)3;
and after four quarters you owe

1,000(1 + .02)3(1 + .02) = 1,000(1 + .02)4 = $1,082.40.

Example 4.1c Many credit-card companies charge interest at a yearly
rate of 18% compounded monthly. If the amount P is charged at the be-
ginning of a year, how much is owed at the end of the year if no previous
payments have been made?

Solution. Such a compounding is equivalent to paying simple interest
every month at a rate of 18/12 = 1.5% per month, with the accrued in-
terest then added to the principal owed during the next month. Hence,
after one year you will owe

P(1 + .015)12 = 1.1956P.

If the interest rate r is compounded then, as we have seen in Examples
4.1b and 4.1c, the amount of interest actually paid is greater than if we
were paying simple interest at rate r. The reason, of course, is that in
compounding we are being charged interest on the interest that has al-
ready been computed in previous compoundings. In these cases, we call
r the nominal interest rate, and we define the effective interest rate, call
it reff, by

reff = amount repaid at the end of a year − P

P
.
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For instance, if the loan is for one year at a nominal interest rate r that is
to be compounded quarterly, then the effective interest rate for the year
is

reff = (1 + r/4)4 − 1.

Thus, in Example 4.1b the effective interest rate is 8.24% whereas in
Example 4.1c it is 19.56%. Since

P(1 + reff) = amount repaid at the end of a year,

the payment made in a one-year loan with compound interest is the same
as if the loan called for simple interest at rate reff per year.

Example 4.1d The Doubling Rule If you put funds into an account
that pays interest at rate r compounded annually, how many years does
it take for your funds to double?

Solution. Since your initial deposit of D will be worth D(1 + r)n after
n years, we need to find the value of n such that

(1 + r)n = 2.

Now,

(1 + r)n =
(

1 + nr

n

)n

≈ enr ,

where the approximation is fairly precise provided that n is not too small.
Therefore,

enr ≈ 2,

implying that

n ≈ log(2)

r
= .693

r
.

Thus, it will take n years for your funds to double when

n ≈ .7

r
.

For instance, if the interest rate is 1% (r = .01) then it will take approx-
imately 70 years for your funds to double; if r = .02, it will take about
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35 years; if r = .03, it will take about 23 1
3 years; if r = .05, it will take

about 14 years; if r = .07, it will take about 10 years; and if r = .10, it
will take about 7 years.

As a check on the preceding approximations, note that (to three–
decimal-place accuracy):

(1.01)70 = 2.007,

(1.02)35 = 2.000,

(1.03)23.33 = 1.993,

(1.05)14 = 1.980,

(1.07)10 = 1.967,

(1.10)7 = 1.949.

Suppose now that we borrow the principal P for one year at a nominal
interest rate of r per year, compounded continuously. Now, how much
is owed at the end of the year? Of course, to answer this we must first
decide on an appropriate definition of “continuous” compounding. To
do so, note that if the loan is compounded at n equal intervals in the year,
then the amount owed at the end of the year is P(1+ r/n)n. As it is rea-
sonable to suppose that continuous compounding refers to the limit of
this process as n grows larger and larger, the amount owed at time 1 is

P lim
n→∞(1 + r/n)n = Per .

Example 4.1e If a bank offers interest at a nominal rate of 5% com-
pounded continuously, what is the effective interest rate per year?

Solution. The effective interest rate is

reff = Pe .05 − P

P
= e .05 − 1 ≈ .05127.

That is, the effective interest rate is 5.127% per year.

If the amount P is borrowed for t years at a nominal interest rate of r
per year compounded continuously, then the amount owed at time t is
Pert . This follows because if interest is compounded n times during the
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year, then there would have been nt compoundings by time t, giving a
debt level of P(1+ r/n)nt . Consequently, under continuous compound-
ing the debt at time t would be

P lim
n→∞

(
1 + r

n

)nt

= P

(
lim

n→∞

(
1 + r

n

)n)t

= Pert .

It follows from the preceding that continuous compounded interest at
rate r per unit time can be interpreted as being a continuous compound-
ing of a nominal interest rate of r t per (unit of time) t.

4.2 Present Value Analysis

Suppose that one can both borrow and loan money at a nominal rate
r per period that is compounded periodically. Under these conditions,
what is the present worth of a payment of v dollars that will be made
at the end of period i? Since a bank loan of v(1 + r)−i would require a
payoff of v at period i, it follows that the present value of a payoff of v

to be made at time period i is v(1 + r)−i .

The concept of present value enables us to compare different income
streams to see which is preferable.

Example 4.2a Suppose that you are to receive payments (in thousands
of dollars) at the end of each of the next five years. Which of the fol-
lowing three payment sequences is preferable?

A. 12, 14, 16, 18, 20;
B. 16, 16, 15, 15, 15;
C. 20, 16, 14, 12, 10.

Solution. If the nominal interest rate is r compounded yearly, then the
present value of the sequence of payments xi (i = 1, 2, 3, 4, 5) is

5∑
i=1

(1 + r)−ixi ;

the sequence having the largest present value is preferred. It thus fol-
lows that the superior sequence of payments depends on the interest rate.
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Table 4.1: Present Values

Payment Sequence

r A B C

.1 59.21 58.60 56.33

.2 45.70 46.39 45.69

.3 36.49 37.89 38.12

If r is small, then the sequence A is best since its sum of payments is
the highest. For a somewhat larger value of r, the sequence B would be
best because – although the total of its payments (77) is less than that of
A (80) – its earlier payments are larger than are those of A. For an even
larger value of r, the sequence C, whose earlier payments are higher
than those of either A or B, would be best. Table 4.1 gives the present
values of these payment streams for three different values of r.

It should be noted that the payment sequences can be compared ac-
cording to their values at any specified time. For instance, to compare
them in terms of their time-5 values, we would determine which se-
quence of payments yields the largest value of

5∑
i=1

(1 + r)5−ixi = (1 + r)5
5∑

i=1

(1 + r)−ixi .

Consequently, we obtain the same preference ordering as a function of
interest rate as before.

Remark. Let the given interest rate be r, compounded yearly. Any cash
flow stream a = a1, a2, .. ., an that returns you ai dollars at the end of
year i (for each i = 1, .. ., n) can be replicated by depositing

PV(a) = a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n

in a bank at time 0 and then making the successive withdrawals a1, a2,

.. ., an. To verify this claim, note that withdrawing a1 at the end of year 1
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would leave you with

(1 + r)

[
a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n

]
− a1

= a2

(1 + r)
+ · · · + an

(1 + r)n−1

on deposit. Thus, after withdrawing a2 at the end of year 2 you would
have

(1+ r)

[
a2

1 + r
+ · · · + an

(1 + r)n−1

]
− a2 = a3

(1 + r)
+ · · · + an

(1 + r)n−2
.

Continuing, it follows that withdrawing ai at the end of year i (i < n)

would leave you with

ai+1

(1 + r)
+ · · · + an

(1 + r)n−i

on deposit. Consequently, you would have an/(1 + r) on deposit after
withdrawing an−1, and this is just enough to cover your next withdrawal
of an at the end of the following year.

In a similar manner, the cash flow sequence a1, a2, .. ., an can be trans-
formed into the initial capital PV(a) by borrowing this amount from a
bank and then using the cash flow to pay off this debt. Therefore, any
cash flow sequence is equivalent to an initial reception of the present
value of the cash flow sequence, thus showing that one cash flow se-
quence is preferable to another whenever the former has a larger present
value than the latter.

Example 4.2b A company needs a certain type of machine for the next
five years. They presently own such a machine, which is now worth
$6,000 but will lose $2,000 in value in each of the next three years, after
which it will be worthless and unuseable. The (beginning-of-the-year)
value of its yearly operating cost is $9,000, with this amount expected
to increase by $2,000 in each subsequent year that it is used. A new ma-
chine can be purchased at the beginning of any year for a fixed cost of
$22,000. The lifetime of a new machine is six years, and its value de-
creases by $3,000 in each of its first two years of use and then by $4,000
in each following year. The operating cost of a new machine is $6,000
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in its first year, with an increase of $1,000 in each subsequent year. If the
interest rate is 10%, when should the company purchase a new machine?

Solution. The company can purchase a new machine at the beginning
of year 1, 2, 3, or 4, with the following six-year cash flows (in units of
$1,000) as a result:

• buy at beginning of year 1: 22, 7, 8, 9, 10, −4;
• buy at beginning of year 2: 9, 24, 7, 8, 9, −8;
• buy at beginning of year 3: 9, 11, 26, 7, 8, −12;
• buy at beginning of year 4: 9, 11, 13, 28, 7, −16.

To see why this listing is correct, suppose that the company will buy
a new machine at the beginning of year 3. Then its year-1 cost is the
$9,000 operating cost of the old machine; its year-2 cost is the $11,000
operating cost of this machine; its year-3 cost is the $22,000 cost of a
new machine, plus the $6,000 operating cost of this machine, minus the
$2,000 obtained for the replaced machine; its year-4 cost is the $7,000
operating cost; its year-5 cost is the $8,000 operating cost; and its year-6
cost is −$12, 000, the negative of the value of the 3-year-old machine
that it no longer needs. The other cash flow sequences are similarly
argued.

With the yearly interest rate r = .10, the present value of the first
cost-flow sequence is

22 + 7

1.1
+ 8

(1.1)2
+ 9

(1.1)3
+ 10

(1.1)4
− 4

(1.1)5
= 46.083.

The present values of the other cash flows are similarly determined, and
the four present values are

46.083, 43.794, 43.760, 45.627.

Therefore, the company should purchase a new machine two years from
now.

Example 4.2c An individual who plans to retire in 20 years has de-
cided to put an amount A in the bank at the beginning of each of the next
240 months, after which she will withdraw $1,000 at the beginning of
each of the following 360 months. Assuming a nominal yearly interest
rate of of 6% compounded monthly, how large does A need to be?
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Solution. Let r = .06/12 = .005 be the monthly interest rate. With
β = 1

1+r , the present value of all her deposits is

A + Aβ + Aβ2 + · · · + Aβ239 = A
1 − β240

1 − β
.

Similarly, if W is the amount withdrawn in the following 360 months,
then the present value of all these withdrawals is

Wβ240 + Wβ241 + · · · + Wβ599 = Wβ240 1 − β360

1 − β
.

Thus she will be able to fund all withdrawals (and have no money left
in her account) if

A
1 − β240

1 − β
= Wβ240 1 − β360

1 − β
.

With W = 1,000, and β = 1/1.005, this gives

A = 360.99.

That is, saving $361 a month for 240 months will enable her to withdraw
$1,000 a month for the succeeding 360 months.

Remark. In this example we have made use of the algebraic identity

1 + b + b2 + · · · + bn = 1 − bn+1

1 − b
.

We can prove this identity by letting

x = 1 + b + b2 + · · · + bn

and then noting that

x − 1 = b + b2 + · · · + bn

= b(1 + b + · · · + bn−1)

= b(x − bn).

Therefore,
(1 − b)x = 1 − bn+1,

which yields the identity.
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It can be shown by the same technique, or by letting n go to infinity,
that when |b| < 1 we have

1 + b + b2 + · · · = 1

1 − b
.

Example 4.2d A perpetuity entitles its holder to be paid the constant
amount c at the end of each of an infinite sequence of years. That is, it
pays its holder c at the end of year i for each i = 1, 2, .. . . If the inter-
est rate is r, compounded yearly, then what is the present value of such
a cash flow sequence?

Solution. Because such a cash flow could be replicated by initially
putting the principle c/r in the bank and then withdrawing the interest
earned (leaving the principal intact) at the end of each period, whereas
it could not be replicated by putting any smaller amount in the bank, it
would seem that the present value of the infinite flow is c/r. This intu-
ition is easily checked mathematically by

PV = c

1 + r
+ c

(1 + r)2
+ c

(1 + r)3
+ · · ·

= c

1 + r

[
1 + 1

1 + r
+ 1

(1 + r)2
+ · · ·

]

= c

1 + r

1

1 − 1
1+r

= c

r
.

Example 4.2e Suppose you have just spoken to a bank about borrow-
ing $100,000 to purchase a house, and the loan officer has told you that a
$100,000 loan, to be repaid in monthly installments over 15 years with an
interest rate of .6% per month, could be arranged. If the bank charges a
loan initiation fee of $600, a house inspection fee of $400, and 1 “point,”
what is the effective annual interest rate of the loan being offered?

Solution. To begin, let us determine the monthly mortgage payment,
call it A, of such a loan. Since $100,000 is to be repaid in 180 monthly
payments at an interest rate of .6% per month, it follows that

A[α + α2 + · · · + α180 ] = 100,000,
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where α = 1/1.006. Therefore,

A = 100,000(1 − α)

α(1 − α180)
= 910.05.

So if you were actually receiving $100,000 to be repaid in 180 monthly
payments of $910.05, then the effective monthly interest rate would be
.6%. However, taking into account the initiation and inspection fees
involved and the bank charge of 1 point (which means that 1% of the
nominal loan of $100,000 must be paid to the bank when the loan is
received), it follows that you are actually receiving only $98,000. Con-
sequently, the effective monthly interest rate is that value of r such
that

A[β + β2 + · · · + β180 ] = 98,000,

where β = (1 + r)−1. Therefore,

β(1 − β180)

1 − β
= 107.69

or, since 1−β

β
= r,

1 − (
1

1+r

)180

r
= 107.69.

Numerically solving this by trial and error (easily accomplished since
we know that r > .006) yields the solution

r = .00627.

Since (1 + .00627)12 = 1.0779, it follows that what was quoted as a
monthly interest rate of .6% is, in reality, an effective annual interest
rate of approximately 7.8%.

Example 4.2f Suppose that one takes a mortgage loan for the amount
L that is to be paid back over n months with equal payments of A at the
end of each month. The interest rate for the loan is r per month, com-
pounded monthly.

(a) In terms of L , n, and r, what is the value of A?
(b) After payment has been made at the end of month j, how much ad-

ditional loan principal remains?
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(c) How much of the payment during month j is for interest and how
much is for principal reduction? (This is important because some
contracts allow for the loan to be paid back early and because the
interest part of the payment is tax-deductible.)

Solution. The present value of the n monthly payments is

A

1 + r
+ A

(1 + r)2
+ · · · + A

(1 + r)n
= A

1 + r

1 − (
1

1+r

)n

1 − 1
1+r

= A

r
[1 − (1 + r)−n].

Since this must equal the loan amount L , we see that

A = Lr

1 − (1 + r)−n
= L(α − 1)αn

αn − 1
, (4.1)

where
α = 1 + r.

For instance, if the loan is for $100,000 to be paid back over 360 months
at a nominal yearly interest rate of .09 compounded monthly, then r =
.09/12 = .0075 and the monthly payment (in dollars) would be

A = 100,000(.0075)(1.0075)360

(1.0075)360 − 1
= 804.62.

Let Rj denote the remaining amount of principal owed after the pay-
ment at the end of month j ( j = 0, .. ., n). To determine these quantities,
note that if one owes Rj at the end of month j then the amount owed
immediately before the payment at the end of month j +1 is (1+ r)Rj ;
because one then pays the amount A, it follows that

Rj+1 = (1 + r)Rj − A = αRj − A.

Starting with R0 = L , we obtain:

R1 = αL − A;
R2 = αR1 − A

= α(αL − A) − A

= α2L − (1 + α)A;
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R3 = αR2 − A

= α(α2L − (1 + α)A) − A

= α3L − (1 + α + α2)A.

In general, for j = 0, .. ., n we obtain

Rj = α jL − A(1 + α + · · · + α j−1)

= α jL − A
α j − 1

α − 1

= α jL − Lαn(α j − 1)

αn − 1
(from (4.1))

= L(αn − α j )

αn − 1
.

Let Ij and Pj denote the amounts of the payment at the end of month
j that are for interest and for principal reduction, respectively. Then,
since Rj−1 was owed at the end of the previous month, we have

Ij = rRj−1

= L(α − 1)(αn − α j−1)

αn − 1

and

Pj = A − Ij

= L(α − 1)

αn − 1
[αn − (αn − α j−1)]

= L(α − 1)α j−1

αn − 1
.

As a check, note that
n∑

j=1

Pj = L .

It follows that the amount of principal repaid in succeeding months in-
creases by the factor α = 1 + r. For example, in a $100,000 loan for 30
years at a nominal interest rate of 9% per year compounded monthly,
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only $54.62 of the $804.62 paid during the first month goes toward
reducing the principal of the loan; the remainder is interest. In each suc-
ceeding month, the amount of the payment that goes toward the principal
increases by the factor 1.0075.

Consider two cash flow sequences,

b1, b2, .. ., bn and c1, c2, .. ., cn.

Under what conditions is the present value of the first sequence at least
as large as that of the second for every positive interest rate r? Clearly,
bi ≥ ci (i = 1, .. ., n) is a sufficient condition. However, we can obtain
weaker sufficient conditions. Let

Bi =
i∑

j=1

bj and Ci =
i∑

j=1

cj for i = 1, .. ., n;

then it can be shown that the condition

Bi ≥ Ci for each i = 1, .. ., n

suffices. An even weaker sufficient condition is given by the following
proposition.

Proposition 4.2.1 If Bn ≥ Cn and if

k∑
i=1

Bi ≥
k∑

i=1

Ci

for each k = 1, .. ., n, then

n∑
i=1

bi(1 + r)−i ≥
n∑

i=1

ci(1 + r)−i

for every r > 0.

In other words, Proposition 4.2.1 states that the cash flow sequence
b1, .. ., bn will, for every positive interest rate r, have a larger present
value than the cash flow sequence c1, .. ., cn if (i) the total of the b cash
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flows is at least as large as the total of the c cash flows and (ii) for every
k = 1, .. ., n,

kb1 + (k − 1)b2 + · · · + bk ≥ kc1 + (k − 1)c2 + · · · + ck .

4.3 Rate of Return

Consider an investment that, for an initial payment of a (a > 0), returns
the amount b after one period. The rate of return on this investment is
defined to be the interest rate r that makes the present value of the re-
turn equal to the initial payment. That is, the rate of return is that value
r such that

b

1 + r
= a or r = b

a
− 1.

Thus, for example, a $100 investment that returns $150 after one year is
said to have a yearly rate of return of .50.

More generally, consider an investment that, for an initial payment of
a (a > 0), yields a string of nonnegative returns b1, .. ., bn. Here bi is
to be received at the end of period i (i = 1, .. ., n), and bn > 0. We de-
fine the rate of return per period of this investment to be the value of
the interest rate such that the present value of the cash flow sequence is
equal to zero when values are compounded periodically at that interest
rate. That is, if we define the function P by

P(r) = −a +
n∑

i=1

bi(1 + r)−i , (4.2)

then the rate of return per period of the investment is that value r∗ > −1
for which

P(r∗) = 0.

It follows from the assumptions a > 0, bi ≥ 0, and bn > 0 that P(r)
is a strictly decreasing function of r when r > −1, implying (since
limr→−1 P(r) = ∞ and limr→∞ P(r) = −a < 0) that there is a unique
value r∗ satisfying the preceding equation. Moreover, since

P(0) =
n∑

i=1

bi − a,
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Figure 4.1: P(r) = −a + ∑
i≥1 bi(1 + r)−i : (a)

∑
i bi < a; (b)

∑
i bi > a

it follows (see Figure 4.1) that r∗ will be positive if

n∑
i=1

bi > a

and that r∗ will be negative if

n∑
i=1

bi < a.

That is, there is a positive rate of return if the total of the amounts re-
ceived exceeds the initial investment, and there is a negative rate of
return if the reverse holds. Moreover, because of the monotonicity of
P(r), it follows that the cash flow sequence will have a positive present
value when the interest rate is less than r∗ and a negative present value
when the interest rate is greater than r∗.

When an investment’s rate of return is r∗ per period, we often say that
the investment yields a 100r∗ percent rate of return per period.

Example 4.3a Find the rate of return from an investment that, for an
initial payment of 100, yields returns of 60 at the end of each of the first
two periods.
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Solution. The rate of return will be the solution to

100 = 60

1 + r
+ 60

(1 + r)2
.

Letting x = 1/(1 + r), the preceding can be written as

60x2 + 60x − 100 = 0,

which yields that

x = −60 ± √
602 + 4(60)(100)

120
.

Since −1 < r implies that x > 0, we obtain the solution

x =
√

27,600 − 60

120
≈ .8844.

Hence, the rate of return r∗ is such that

1 + r∗ ≈ 1

.8844
≈ 1.131.

That is, the investment yields a rate of return of approximately 13.1%
per period.

The rate of return of investments whose string of payments spans more
than two periods will usually have to be numerically determined. Be-
cause of the monotonicity of P(r), a trial-and-error approach is usually
quite efficient.

Remarks. (1) If we interpret the cash flow sequence by supposing that
b1, .. ., bn represent the successive periodic payments made to a lender
who loans a to a borrower, then the lender’s periodic rate of return r∗ is
exactly the effective interest rate per period paid by the borrower.

(2) The quantity r∗ is also sometimes called the internal rate of return.

Consider now a more general investment cash flow sequence c0, c1, .. .,

cn. Here, if ci ≥ 0 then the amount ci is received by the investor at the
end of period i, and if ci < 0 then the amount −ci must be paid by the
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investor at the end of period i. If we let

P(r) =
n∑

i=0

ci(1 + r)−i

be the present value of this cash flow when the interest rate is r per pe-
riod, then in general there will not necessarily be a unique solution of
the equation

P(r) = 0

in the region r > −1. As a result, the rate-of-return concept is unclear
in the case of more general cash flows than the ones considered here. In
addition, even in cases where we can show that the preceding equation
has a unique solution r∗, it may result that P(r) is not a monotone func-
tion of r; consequently, we could not assert that the investment yields a
positive present value return when the interest rate is on one side of r∗

and a negative present value return when it is on the other side.
One general situation for which we can prove that there is a unique

solution is when the cash flow sequence starts out negative (resp. pos-
itive), eventually becomes positive (negative), and then remains non-
negative (nonpositive) from that point on. In other words, the sequence
c0, c1, .. ., cn has a single sign change. It then follows – upon using
Descartes’ rule of sign, along with the known existence of at least one
solution – that there is a unique solution of the equation P(r) = 0 in the
region r > −1.

4.4 Continuously Varying Interest Rates

Suppose that interest is continuously compounded but with a rate that is
changing in time. Let the present time be time 0, and let r(s) denote the
interest rate at time s. Thus, if you put x in a bank at time s, then the

amount in your account at time s + h ≈ x(1 + r(s)h) (h small).

The quantity r(s) is called the spot or the instantaneous interest rate at
time s.

Let D(t) be the amount that you will have on account at time t if you
deposit 1 at time 0. In order to determine D(t) in terms of the interest
rates r(s), 0 ≤ s ≤ t, note that (for h small) we have

D(s + h) ≈ D(s)(1 + r(s)h)
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or
D(s + h) − D(s) ≈ D(s)r(s)h

or
D(s + h) − D(s)

h
≈ D(s)r(s).

The preceding approximation becomes exact as h becomes smaller and
smaller. Hence, taking the limit as h → 0, it follows that

D ′(s) = D(s)r(s)

or
D ′(s)

D(s)
= r(s),

implying that ∫ t

0

D ′(s)

D(s)
ds =

∫ t

0
r(s) ds

or

log(D(t)) − log(D(0)) =
∫ t

0
r(s) ds.

Since D(0) = 1, we obtain from the preceding equation that

D(t) = exp

{∫ t

0
r(s) ds

}
.

Now let P(t) denote the present (i.e. time-0) value of the amount 1
that is to be received at time t (P(t) would be the cost of a bond that
yields a return of 1 at time t; it would equal e−r t if the interest rate were
always equal to r). Because a deposit of 1/D(t) at time 0 will be worth
1 at time t, we see that

P(t) = 1

D(t)
= exp

{
−

∫ t

0
r(s) ds

}
. (4.3)

Let r̄(t) denote the average of the spot interest rates up to time t; that is,

r̄(t) = 1

t

∫ t

0
r(s) ds.

The function r̄(t), t ≥ 0, is called the yield curve.
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Example 4.4a Find the yield curve and the present value function if

r(s) = 1

1 + s
r1 + s

1 + s
r2.

Solution. Rewriting r(s) as

r(s) = r2 + r1 − r2

1 + s
, s ≥ 0,

shows that the yield curve is given by

r̄(t) = 1

t

∫ t

0

(
r2 + r1 − r2

1 + s

)
ds

= r2 + r1 − r2

t
log(1 + t).

Consequently, the present value function is

P(t) = exp{−tr̄(t)}
= exp{−r2 t} exp{−log((1 + t)r1−r2)}
= exp{−r2 t}(1 + t)r2−r1 .

4.5 Exercises

Exercise 4.1 What is the effective interest rate when the nominal in-
terest rate of 10% is

(a) compounded semiannually;
(b) compounded quarterly;
(c) compounded continuously?

Exercise 4.2 Suppose that you deposit your money in a bank that pays
interest at a nominal rate of 10% per year. How long will it take for your
money to double if the interest is compounded continuously?

Exercise 4.3 If you receive 5% interest compounded yearly, approxi-
mately how many years will it take for your money to quadruple? What
if you were earning only 4%?
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Exercise 4.4 Give a formula that approximates the number of years it
would take for your funds to triple if you received interest at a rate r
compounded yearly.

Exercise 4.5 How much do you need to invest at the beginning of each
of the next 60 months in order to have a value of $100,000 at the end of
60 months, given that the annual nominal interest rate will be fixed at
6% and will be compounded monthly?

Exercise 4.6 The yearly cash flows of an investment are

−1,000, −1,200, 800, 900, 800.

Is this a worthwhile investment for someone who can both borrow and
save money at the yearly interest rate of 6%?

Exercise 4.7 Consider two possible sequences of end-of-year returns:

20, 20, 20, 15, 10, 5 and 10, 10, 15, 20, 20, 20.

Which sequence is preferable if the interest rate, compounded annually,
is: (a) 3%; (b) 5%; (c) 10%?

Exercise 4.8 A five-year $10,000 bond with a 10% coupon rate costs
$10,000 and pays its holder $500 every six months for five years, with
a final additional payment of $10,000 made at the end of those ten pay-
ments. Find its present value if the interest rate is: (a) 6%; (b) 10%;
(c) 12%. Assume the compounding is monthly.

Exercise 4.9 A friend purchased a new sound system that was selling
for $4,200. He agreed to make a down payment of $1,000 and to make
24 monthly payments of $160, beginning one month from the time of
purchase. What is the effective interest rate being paid?

Exercise 4.10 Repeat Example 4.2b, this time assuming that the yearly
interest rate is 20%.

Exercise 4.11 Repeat Example 4.2b, this time assuming that the cost
of a new machine increases by $1,000 each year.

Exercise 4.12 Suppose you have agreed to a bank loan of $120,000,
for which the bank charges no fees but 2 points. The quoted interest rate
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is .5% per month. You are required to pay only the accumulated interest
each month for the next 36 months, at which point you must make a bal-
loon payment of the still-owed $120,000. What is the effective interest
rate of this loan?

Exercise 4.13 You can pay off a loan either by paying the entire amount
of $16,000 now or you can pay $10,000 now and $10,000 at the end of
ten years. Which is preferable when the nominal continuously com-
pounded interest rate is: (a) 2%; (b) 5%; (c) 10%?

Exercise 4.14 A U.S. treasury bond (selling at a par value of $1,000)
that matures at the end of five years is said to have a coupon rate of 6%
if, after paying $1,000, the purchaser receives $30 at the end of each
of the following nine six-month periods and then receives $1,030 at the
end of the the tenth period. That is, the bond pays a simple interest rate
of 3% per six-month period, with the principal repaid at the end of five
years. Assuming a continuously compounded interest rate of 5%, find
the present value of such a stream of cash payments.

Exercise 4.15 Explain why it is reasonable to suppose that (1+ .05/n)n

is an increasing function of n for n = 1, 2, 3, .. . .

Exercise 4.16 A bank pays a nominal interest rate of 6%, continuously
compounded. If 100 is initially deposited, how much interest will be
earned after

(a) 30 days;
(b) 60 days;
(c) 120 days?

Exercise 4.17 Assume continuously compounded interest at rate r. You
plan to borrow 1,000 today, 2,000 one year from today, 3,000 two years
from today, and then pay off all these loans three years from today. How
much will you have to pay?

Exercise 4.18 The nominal interest rate is 5%, compounded yearly.
How much would you have to pay today in order to receive the string
of payments 3, 5, −6, 5, where the i th payment is to be received i years
from now, i = 1, 2, 3, 4. (The payment −6 means that you will have to
pay 6 three years from now.)
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Exercise 4.19 Let r be the nominal interest rate, compounded yearly.
For what values of r is the cash flow stream 20,10 preferable to the cash
flow stream 0, 34?

Exercise 4.20 What is the value of the continuously compounded nom-
inal interest rate r if the present value of 104 to be received after 1 year
is the same as the present value of 110 to be received after 2 years?

Exercise 4.21 Assuming continuously compounded interest at rate r,
what is the present value of a cash flow sequence that returns the amount
A at each of the times s, s + t, s + 2t, .. .?

Exercise 4.22 Let D(t) denote the amount you would have on deposit
at time t if you deposit D at time 0 and interest is continuously com-
pounded at rate r.

(a) Argue that, for h small, D(t + h) ≈ D(t) + rhD(t).
(b) Use (a) to argue that D ′(t) = rD(t).
(c) Use (b) to conclude that D(t) = Dert .

Exercise 4.23 Consider two cash flow streams, where each will return
the i th payment after i years:

100,140,131 and 90,160,120.

Is it possible to tell which cash flow stream is preferable without know-
ing the interest rate?

Exercise 4.24

(a) Find the yearly rate of return of an investment that, for an initial cost
of 100, returns 110 after 2 years;

(b) Find the expected value of the yearly rate of return of an investment
that, for an initial cost of 100, is equally likely to yield either 120 or
100 after 2 years.

Exercise 4.25 A zero coupon rate bond having face value F pays the
bondholder the amount F when the bond matures. Assuming a contin-
uously compounded interest rate of 8%, find the present value of a zero
coupon bond with face value F = 1,000 that matures at the end of ten
years.
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Exercise 4.26 Find the rate of return for an investment that for an ini-
tial payment of 100 returns 40 at the end of 1 year and and additional
70 at the end of 2 years. What would the rate of return be if 70 were
received after 1 year and 40 after 2 years?

Exercise 4.27

(a) Suppose for an initial investment of 1, you receive the nonnegative
cash payments x1, . . . , xn , with xi being received at the end of i
periods. To determine if the rate of return of this investment is
greater than 10 percent per period, is it necessary to first solve the
equation 1 = ∑n

i=1 xi (1 + r)−i for the rate of return r?
(b) For an initial investment of 100, an investor is to receive the amounts

8, 16, 110 at the end of the following three periods. Is the rate of
return above 11 percent?

Exercise 4.28 For an initial investment of 100, an investment yields
returns of Xi at the end of period i for i = 1, 2, where X1 and X2 are
independent normal random variables with mean 60 and variance 25.
What is the probability the rate of return of this investment is greater
than 10 percent?

Exercise 4.29 The inflation rate is defined to be the rate at which prices
as a whole are increasing. For instance, if the yearly inflation rate is 4%
then what cost $100 last year will cost $104 this year. Let ri denote
the inflation rate, and consider an investment whose rate of return is r.
We are often interested in determining the investment’s rate of return
from the point of view of how much the investment increases one’s pur-
chasing power; we call this quantity the investment’s inflation-adjusted
rate of return and denote it as ra. Since the purchasing power of the
amount (1 + r)x one year from now is equivalent to that of the amount
(1 + r)x/(1 + ri ) today, it follows that – with respect to constant pur-
chasing power units – the investment transforms (in one time period) the
amount x into the amount (1+ r)x/(1+ ri ). Consequently, its inflation-
adjusted rate of return is

ra = 1 + r

1 + ri
− 1.

When r and ri are both small, we have the following approximation:

ra ≈ r − ri .
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For instance, if a bank pays a simple interest rate of 5% when the infla-
tion rate is 3%, the inflation-adjusted interest rate is approximately 2%.
What is its exact value?

Exercise 4.30 Consider an investment cash flow sequence c0, c1, .. .,

cn, where ci < 0, i < n, and cn > 0. Show that if

P(r) =
n∑

i=0

ci(1 + r)−i

then, in the region r > −1,

(a) there is a unique solution of P(r) = 0;
(b) P(r) need not be a monotone function of r.

Exercise 4.31 Suppose you can borrow money at an annual interest
rate of 8% but can save money at an annual interest rate of only 5%. If
you start with zero capital and if the yearly cash flows of an investment
are

−1,000, 900, 800, −1,200, 700,

should you invest?

Exercise 4.32 Show that, if r(t) is an nondecreasing function of t, then
so is r̄(t).

Exercise 4.33 Show that the yield curve r̄(t) is a nondecreasing func-
tion of t if and only if

P(αt) ≥ (P(t))α for all 0 ≤ α ≤ 1, t ≥ 0.

Exercise 4.34 Show that

(a) r(t) = − P ′(t)
P(t)

and (b) r̄(t) = − log P(t)

t
.

Exercise 4.35 Plot the spot interest rate function r(t) of Example 4.4a
when

(a) r1 < r2;
(b) r2 < r1.

Reference Note: Proposition 4.2.1 is proven in Adler, Ilan and Sheldon
M. Ross (2001). “A Probabilistic Approach to Identifying Positive Value
Cash Flows,” The Mathematical Scientist, 26.2



5. Pricing Contracts via Arbitrage

5.1 An Example in Options Pricing

Suppose that the nominal interest rate is r, and consider the following
model for pricing an option to purchase a stock at a future time at a fixed
price. Let the present price (in dollars) of the stock be 100 per share,
and suppose we know that, after one time period, its price will be either
200 or 50 (see Figure 5.1). Suppose further that, for any y, at a cost of
Cy you can purchase at time 0 the option to buy y shares of the stock
at time 1 at a price of 150 per share. Thus, for instance, if you purchase
this option and the stock rises to 200, then you would exercise the op-
tion at time 1 and realize a gain of 200 − 150 = 50 for each of the y
options purchased. On the other hand, if the price of the stock at time 1
is 50 then the option would be worthless. In addition to the options, you
may also purchase x shares of the stock at time 0 at a cost of 100x, and
each share would be worth either 200 or 50 at time 1.

We will suppose that both x and y can be positive, negative, or zero.
That is, you can either buy or sell both the stock and the option. For in-
stance, if x were negative then you would be selling −x shares of stock,
yielding you an initial return of −100x, and you would then be responsi-
ble for buying and returning −x shares of the stock at time 1 at a (time-1)
cost of either 200 or 50 per share. (When you sell a stock that you do
not own, we say that you are selling it short.)

We are interested in determining the appropriate value of C, the unit
cost of an option. Specifically, we will show that if r is the one-period
interest rate then, unless C = [100 − 50(1 + r)−1]/3, there is a com-
bination of purchases that will always result in a positive present value
gain. To show this, suppose that at time 0 we

purchase x units of stock

and

purchase y units of options,



74 Pricing Contracts via Arbitrage

Figure 5.1: Possible Stock Prices at Time 1

where x and y (both of which can be either positive or negative) are to be
determined. The cost of this transaction is 100x + Cy. If this amount is
positive, then it should be borrowed from a bank, to be repaid with inter-
est at time 1; if it is negative, then the amount received, −(100x + Cy),

should be put in the bank to be withdrawn at time 1. The value of our
holdings at time 1 depends on the price of the stock at that time and is
given by

value =
{

200x + 50y if the price is 200,
50x if the price is 50.

This formula follows by noting that, if the stock’s price at time 1 is 200,
then the x shares of the stock are worth 200x and the y units of options
to buy the stock at a share price of 150 are worth (200 − 150)y. On the
other hand, if the stock’s price is 50, then the x shares are worth 50x
and the y units of options are worthless. Now, suppose we choose y so
that the value of our holdings at time 1 is the same no matter what the
price of the stock at that time. That is, we choose y so that

200x + 50y = 50x

or
y = −3x .

Note that y has the opposite sign of x; thus, if x > 0 and so x shares of
the stock are purchased at time 0, then 3x units of stock options are also
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sold at that time. Similarly, if x is negative, then −x shares are sold and
−3x units of stock options are purchased at time 0.

Thus, with y = −3x, the

time-1 value of holdings = 50x

no matter what the value of the stock. As a result, if y = −3x it fol-
lows that, after paying off our loan (if 100x + Cy > 0) or withdrawing
our money from the bank (if 100x + Cy < 0), we will have gained the
amount

gain = 50x − (100x + Cy)(1 + r)

= 50x − (100x − 3xC)(1 + r)

= (1 + r)x[3C − 100 + 50(1 + r)−1].

Thus, if 3C = 100 − 50(1+ r)−1, then the gain is 0. On the other hand,
if 3C �= 100 − 50(1 + r)−1, then we can guarantee a positive gain (no
matter what the price of the stock at time 1) by letting x be positive
when 3C > 100 − 50(1 + r)−1 and by letting x be negative when 3C <

100 − 50(1 + r)−1.

For instance, if (1 + r)−1 = .9 and the cost per option is C = 20,

then purchasing one share of the stock and selling three units of options
initially costs us 100 − 3(20) = 40, which is borrowed from the bank.
However, the value of this holding at time 1 is 50 whether the stock price
rises to 200 or falls to 50. Using 40(1 + r) = 44.44 of this amount to
pay our bank loan results in a guaranteed gain of 5.56. Similarly, if the
cost of an option is 15, then selling one share of the stock (x = −1)
and buying three units of options results in an initial gain of 100 − 45 =
55, which is put into a bank to be worth 55(1 + r) = 61.11 at time 1.
Because the value of our holding at time 1 is −50, a guaranteed profit
of 11.11 is attained. A sure-win betting scheme is called an arbitrage.
Thus, for the numbers considered, the only option cost C that does not
result in an arbitrage is C = (100 − 45)/3 = 55/3.

The existence of an arbitrage can often be seen by applying the law of
one price.

Proposition 5.1.1 (The Law of One Price) Consider two investments,
the first of which costs the fixed amount C1 and the second the fixed
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amount C2. If the ( present value) payoff from the first investment is
always identical to that of the second investment, then either C1 = C2

or there is an arbitrage.

The proof of the law of one price is immediate, because if their costs are
unequal then an arbitrage is obtained by buying the cheaper investment
and selling the more expensive one.

To apply the law of one price to our previous example, note that the
payoff at time 1 from the investment of purchasing the call option is

payoff of option =
{

50 if the price is 200,
0 if the price is 50.

Consider now a second investment that calls for purchasing y shares of
the security by borrowing x from the bank – to be repaid (with interest)
at time 1 – and investing 100y − x of your own funds. Thus, the ini-
tial cost of this investment is 100y − x . The payoff at time 1 from this
investment is

payoff of investment =
{

200y − x(1 + r) if the price is 200,
50y − x(1 + r) if the price is 50.

Thus, if we choose x and y so that

200y − x(1 + r) = 50,

50y − x(1 + r) = 0,

then the payoffs from this investment and the option would be identical.
Solving the preceding equations gives the solution

y = 1

3
, x = 50

3(1 + r)
.

Because the cost of the investment when using these values of x and y
is 100y − x = (

100 − 50
1+r

)
/3, it follows from the law of one price that

either this is the cost of the option or there is an arbitage.
It is easy to specify the arbitrage (buy the cheaper investment and sell

the more expensive one) when C, the cost of the option, is unequal to(
100 − 50

1+r

)
/3. Let us now do so.
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Case 1: C <
(
100 − 50

1+r

)
/3.

In this case sell 1/3 share. Of the 100/3 that this yields, use C to pur-
chase an option and put the remainder

(
which is greater than 50

3(1+r)

)
in

the bank.
If the price at time 1 is 200, then your option will be worth 50 and you

will have more than 50/3 in the bank. Consequently you will have more
than enough to meet your obligation of 200/3 (which resulted from your
short selling of 1/3 share.) If the price at time 1 is 50 then you will have
more than 50/3 in the bank, which is more than enough to cover your
obligation of 50/3.

Case 2: C >
(
100 − 50

1+r

)
/3.

In this case, sell the call, borrow 50
3(1+r) from the bank, and use 100/3

of the amount received to purchase 1/3 of a share. (The amount left
over, C − (

100− 50
1+r

)
/3, will be your arbitrage.) If the price at time 1 is

200, use the 200/3 from your 1/3 share to make the payments of 50/3
to the bank and 50 to the call option buyer. If the price at time 1 is 50
then the option you sold is worthless, so use the 50/3 from your 1/3
share to pay the bank.

Remark. It should be noted that we have assumed, and will continue to
do so unless otherwise noted, that there is always a market – in the sense
that any investment can always be either bought or sold.

5.2 Other Examples of Pricing via Arbitrage

The type of option considered in Section 5.1 is known as a call option be-
cause it gives one the option of calling for the stock at a specified price,
known as the exercise or strike price. An American style call option
allows the buyer to exercise the option at any time up to the expiration
time, whereas a European style call option can only be exercised at the
expiration time. Although it might seem that, because of its additional
flexibility, the American style option would be worth more, it turns out
that it is never optimal to exercise a call option early; thus, the two style
options have identical worths. We now prove this claim.

Proposition 5.2.1 One should never exercise an American style call
option before its expiration time t.
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Proof. Suppose that the present price of the stock is S, that you own an
option to buy one share of the stock at a fixed price K, and that the op-
tion expires after an additional time t. If you exercise the option at this
moment, you will realize the amount S − K. However, consider what
would transpire if, instead of exercising the option, you sell the stock
short and then purchase the stock at time t, either by paying the market
price at that time or by exercising your option and paying K, whichever
is less expensive. Under this strategy, you will initially receive S and
will then have to pay the minimum of the market price and the exercise
price K after an additional time t. This is clearly preferable to receiv-
ing S and immediately paying out K.

In addition to call options there are also put options on stocks. These
give their owners the option of putting a stock up for sale at a specified
price. An American style put option allows the owner to put the stock up
for sale – that is, to exercise the option – at any time up to the expiration
time of the option. A European style put option can only be exercised
at its expiration time. Contrary to the situation with call options, it may
be advantageous to exercise a put option before its expiration time, and
so the American style put option may be worth more than the European.
The absence of arbitrage implies a relationship between the price of a
European put option having exercise price K and expiration time t and
the price of a call option on that stock that also has exercise price K and
expiration time t. This is known as the put–call option parity formula
and is as follows.

Proposition 5.2.2 Let C be the price of a call option that enables its
holder to buy one share of a stock at an exercise price K at time t; also,
let P be the price of a European put option that enables its holder to sell
one share of the stock for the amount K at time t. Let S be the price of the
stock at time 0. Then, assuming that interest is continuously discounted
at a nominal rate r, either

S + P − C = Ke−r t

or there is an arbitrage opportunity.

Proof. If
S + P − C < Ke−r t
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then we can effect a sure win by initially buying one share of the stock,
buying one put option, and selling one call option. This initial payout of
S + P − C is borrowed from a bank to be repaid at time t. Let us now
consider the value of our holdings at time t. There are two cases that de-
pend on S(t), the stock’s market price at time t. If S(t) ≤ K, then the
call option we sold is worthless and we can exercise our put option to
sell the stock for the amount K. On the other hand, if S(t) > K then
our put option is worthless and the call option we sold will be exercised,
forcing us to sell our stock for the price K. Thus, in either case we will
realize the amount K at time t. Since K > ert(S + P − C ), we can pay
off our bank loan and realize a positive profit in all cases.

When
S + P − C > Ke−r t ,

we can make a sure profit by reversing the procedure just described.
Namely, we now sell one share of stock, sell one put option, and buy
one call option. We leave the details of the verification to the reader.

The arbitrage principle also determines the relationship between the
present price of a stock and the contracted price to buy the stock at a
specified time in the future. Our next two examples are related to these
forwards contracts.

Example 5.2a Forwards Contracts Let S be the present market price
of a specified stock. In a forwards agreement, one agrees at time 0 to
pay the amount F at time t for one share of the stock that will be deliv-
ered at the time of payment. That is, one contracts a price for the stock,
which is to be delivered and paid for at time t. We will now present an
arbitrage argument to show that if interest is continuously discounted
at the nominal interest rate r, then in order for there to be no arbitrage
opportunity we must have

F = Sert .

To see why this equality must hold, suppose first that instead

F < Sert .

In this case, a sure win is obtained by selling the stock at time 0 with the
understanding that you will buy it back at time t. Put the sale proceeds



80 Pricing Contracts via Arbitrage

S into a bond that matures at time t and, in addition, buy a forwards con-
tract for delivery of one share of the stock at time t. Thus, at time t you
will receive Sert from your bond. From this, you pay F to obtain one
share of the stock, which you then return to settle your obligation. You
thus end with a positive profit of Sert − F. On the other hand, if

F > Sert

then you can guarantee a profit of F − Sert by simultaneously selling a
forwards contract and borrowing S to purchase the stock. At time t you
will receive F for your stock, out of which you repay your loan amount
of Sert .

Remark. Another way to see that F = Sert in the preceding example
is to use the law of one price. Consider the following investments, both
of which result in owning the security at time t.

(1) Put Fe−r t in the bank and purchase a forward contract.
(2) Buy the security.

Thus, by the law of one price, either Fe−r t = S or there is an arbitrage.

When one purchases a share of a stock in the stock market, one is pur-
chasing a share of ownership in the entity that issues the stock. On the
other hand, the commodity market deals with more concrete objects:
agricultural items like oats, corn, or wheat; energy products like crude
oil and natural gas; metals such as gold, silver, or platinum; animal parts
such as hogs, pork-bellies, and beef; and so on. Almost all of the ac-
tivity on the commodities market is involved with contracts for future
purchases and sales of the commodity. Thus, for instance, you could
purchase a contract to buy natural gas in 90 days for a price that is spec-
ified today. (Such a futures contract differs from a forwards contract in
that, although one pays in full when delivery is taken for both, in fu-
tures contracts one settles up on a daily basis depending on the change
of the price of the futures contract on the commodity exchange.) You
could also write a futures contract that obligates you to sell gas at a spec-
ified price at a specified time. Most people who play the commodities
market never have actual contact with the commodity. Rather, people
who buy a futures contract most often sell that contract before the de-
livery date. However, the relationship given in Example 5.2a does not
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hold for futures contracts in the commodity market. For one thing, if
F > Sert and you purchase the commodity (say, crude oil) to sell back
at time t, then you will incur additional costs related to storing and in-
suring the oil. Also when F < Sert , to sell the commodity for today’s
price requires that you be able to deliver it immediately.

One of the most popular types of forward contracts involves currency
exchanges, the topic of our next example.

Example 5.2b The September 4, 1998, edition of the New York Times
gives the following listing for the price of a German mark (or DM):

• today: .5777;
• 90-day forward: .5808.

In other words, you can purchase 1 DM today at the price of $.5777. In
addition, you can sign a contract to purchase 1 DM in 90 days at a price,
to be paid on delivery, of $.5808. Why are these prices different?

Solution. One might suppose that the difference is caused by the mar-
ket’s expectation of the worth in 90 days of the German DM relative to
the U.S. dollar, but it turns out that the entire price differential is due to
the different interest rates in Germany and in the United States. Suppose
that interest in both countries is continuously compounded at nominal
yearly rates: ru in the United States and rg in Germany. Let S denote the
present price of 1 DM, and let F be the price for a forwards contract to
be delivered at time t. (This example considers the special case where
S = .5777, F = .5808, and t = 90/365.) We now argue that, in order
for there not to be an arbitrage opportunity, we must have

F = Se(ru−rg)t .

To see why, consider two ways to obtain 1 DM at time t.

(1) Put Fe−ru t in a U.S. bank and buy a forward contract to purchase
1 DM at time t .

(2) Purchase e−rgt marks and put them in a German bank.

Note that the first investment, which costs Fe−ru t , and the second, which
costs Se−rgt , both yield 1 DM at time t. Therefore, by the law of one
price, either Fe−ru t = Se−rgt or there is an arbitrage.
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When Fe−ru t < Se−rgt , an arbitrage is obtained by borrowing 1 DM
from a German bank, selling it for S U.S. dollars, and then putting that
amount in a U.S. bank. At the same time, buy a forward contract to pur-
chase ergt marks at time t. At time t, you will have Serut dollars. Use
Fergt of this amount to pay the forward contract for ergt marks; then give
these marks to the German bank to pay off your loan. Since Serut >

Fergt , you have a positive amount remaining.
When Fe−ru t > Se−rgt , an arbitrage is obtained by borrowing Se−rgt

dollars from a U.S. bank and then using them to purchase e−rgt marks,
which are put in a German bank. Simultaneously, sell a forward con-
tract for the purchase of 1 DM at time t. At time t, take out your 1 DM
from the German bank and give it to the buyer of the forward contract,
who will pay you F. Because Se−rgteru t (the amount you must pay the
U.S. bank to settle your loan) is less than F, you have an arbitrage.

The following is an obvious generalization of the law of one price.

Proposition 5.2.3 (The Generalized Law of One Price) Consider two
investments, the first of which costs the fixed amount C1 and the second
the fixed amount C2. If C1 < C2 and the ( present value) payoff from
the first investment is always at least as large as that from the second
investment, then there is an abitrage.

The arbitrage is clearly obtained by simultaneously buying investment 1
and selling investment 2.

Before applying the generalized law of one price, we need the follow-
ing definition.

Definition A function f (x) is said to be convex if, for for all x and y
and 0 < λ < 1,

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

For a geometric interpretation of convexity, note that λ f (x)+(1−λ) f (y)

is a point on the straight line between f (x) and f (y) that is as much
weighted toward f (x) as is the point λx + (1 − λ)y on the straight line
between x and y weighted toward x . Consequently, convexity can be in-
terpreted as stating that the straight line segment connecting two points
on the curve f (x) always lies above (or on) the curve (Figure 5.2).
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Figure 5.2: A Convex Function

Proposition 5.2.4 Let C(K, t) be the cost of a call option on a speci-
fied security that has strike price K and expiration time t.

(a) For fixed expiration time t, C(K, t) is a convex and nonincreasing
function of K.

(b) For s > 0, C(K, t) − C(K + s, t) ≤ se−r t .

Proof. If S(t) denotes the price of the security at time t, then the payoff
at time t from a (K, t) call option is

payoff of option =
{

S(t) − K if S(t) ≥ K,

0 if S(t) < K.

That is,

payoff of option = (S(t) − K )+,
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Figure 5.3: The Function (S(t) − K )+

where x+ (called the positive part of x) is defined to equal x when x ≥
0 and to equal 0 when x < 0. For fixed S(t), a plot of the payoff func-
tion (S(t) − K )+ (see Figure 5.3) indicates that it is a convex function
of K.

To show that C(K, t) is a convex function of K, suppose that

K = λK1 + (1 − λ)K2 for 0 < λ < 1.

Now consider two investments:

(1) purchase a (K, t) call option;
(2) purchase λ (K1, t) call options and 1 − λ (K2, t) call options.

Because the payoff at time t from investment (1) is (S(t)− K )+ whereas
that from investment (2) is λ(S(t) − K1)

+ + (1 − λ)(S(t) − K2)
+, it

follows from the convexity of the function (S(t) − K )+ that the pay-
off from investment (2) is at least as large as that from investment (1).
Consequently, by the generalized law of one price, either the cost of
investment (2) is at least as large as that of investment (1) or there is an
arbitrage. That is, either

C(K, t) ≤ λC(K1, t) + (1 − λ)C(K2, t)

or there is an arbitrage. Hence, convexity is established. The proof that
C(K, t) is nonincreasing in K is left as an exercise.

To prove part (b), note that if C(K, t) > C(K + s, t) + se−r t then
an arbitrage is possible by selling a call with strike price K and ex-
ercise time t , buy a (K + s, t) call, and put the remaining amount
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C(K , t) − C(K + s, t) ≥ se−r t in the Bank. Because the payoff of
the call with strike price K can exceed that of the one with price K + s
by at most s, this combination of buying one call and selling the other
always yields a positive profit.

Remark. Part (b) of Proposition 5.2.4 is equivalent to the statement that

∂

∂K
C(K, t) ≥ −e−r t . (5.1)

To see why they are equivalent, note that (b) implies

C(K + s, t) − C(K, t) ≥ −se−r t for s > 0.

Dividing both sides of this inequality by s and letting s go to 0 then yields
the result. To show that the inequality (5.1) implies Proposition 5.2.4(b),
suppose (5.1) holds. Then

∫ K+s

K

∂

∂x
C(x, t) dx ≥

∫ K+s

K
−e−r t dx,

showing that
C(K + s, t) − C(K, t) ≥ −se−r t ,

which is part (b).

Our next example uses the generalized law of one price to show that an
option on an index – defined as a weighted sum of the prices of a col-
lection of specified securities – will never be more expensive than the
costs of a corresponding collection of options on the individual securi-
ties. This result is sometimes called the option portfolio property.

Example 5.2c Consider a collection of n securities, and for j =
1, .. ., n let Sj(y) denote the price of security j at a time y in the fu-
ture. For fixed positive constants wj, let

I(y) =
∑
j=1

wj Sj(y).

That is, I(y) is the market value at time y of a portfolio of the securi-
ties, where the portfolio consists of wj shares of security j. Let a (Kj, t)
call option on security j refer to a call option having strike price Kj and
expiration time t, and let Cj ( j = 1, .. ., n) denote the costs of these
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options. Also, let C be the cost of a call option on the index I that has
strike price

∑n
j=1wj K j and expiration time t. We now show that the

payoff of the call option on the index is always less than or equal to the
sum of the payoffs from buying wj (Kj, t) call options on security j for
each j = 1, .. ., n:

index option payoff at time t

=
(

I(t) −
n∑

j=1

wj K j

)+

=
( n∑

j=1

wj Sj(t) −
n∑

j=1

wj K j

)+

=
( n∑

j=1

wj(Sj(t) − Kj )

)+

≤
( n∑

j=1

(wj(Sj(t) − Kj ))
+
)+

(because x ≤ x+)

=
( n∑

j=1

wj(Sj(t) − Kj )
+
)+

=
n∑

j=1

wj(Sj(t) − Kj )
+

=
n∑

j=1

wj · [payoff from (Kj, t) call option].

Consequently, by the generalized law of one price, we have that either
C ≤ ∑n

j=1wj Cj or there is an arbitrage.

5.3 Exercises

Exercise 5.1 Suppose you pay 10 to buy a European (K = 100, t = 2)

call option on a given security. Assuming a continuously compounded
nominal annual interest rate of 6 percent, find the present value of your
return from this investment if the price of the security at time 2 is

(a) 110;
(b) 98.
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Exercise 5.2 Suppose you pay 5 to buy a European (K = 100,

t = 1/2) put option on a given security. Assuming a nominal annual in-
terest rate of 6 percent, compounded monthly, find the present value of
your return from this investment if

(a) S(1/2) = 102;
(b) S(1/2) = 98.

Exercise 5.3 Suppose it is known that the price of a certain security
after one period will be one of the m values s1, .. ., sm . What should be
the cost of an option to purchase the security at time 1 for the price K
when K < min si ?

Exercise 5.4 Let C be the price of a call option to purchase a security
whose present price is S. Argue that C ≤ S.

Exercise 5.5 Let C be the cost of a call option to purchase a security at
time t for the price K. Let S be the current price of the security, and let
r be the interest rate. State and prove an inequality involving the quan-
tities C, S, and Ke−r t .

Exercise 5.6 The current price of a security is 30. Given an interest
rate of 5%, compounded continuously, find a lower bound for the price
of a call option that expires in four months and has a strike price of 28.

Exercise 5.7 Let P be the price of a put option to sell a security, whose
present price is S, for the amount K. Which of the following are neces-
sarily true?

(a) P ≤ S.

(b) P ≤ K.

Exercise 5.8 Let P be the price of a put option to sell a security, whose
present price is S, for the amount K. Argue that

P ≥ Ke−r t − S,

where t is the exercise time and r is the interest rate.

Exercise 5.9 With regard to Proposition 5.2.2, verify that the strategy
of selling one share of stock, selling one put option, and buying one call
option always results in a positive win if S + P − C > Ke−r t .
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Exercise 5.10 Use the law of one price to prove the put–call option
parity formula.

Exercise 5.11 The current price of a security is s. Suppose that its pos-
sible prices at time t are s1 or s2. Consider a K , t European put option
on this security, and suppose that K > s1 > s2.

(a) If you buy the put and the security, what is your return at time t?
(b) What is the no-arbitrage cost of the put?

Exercise 5.12 A digital (K , t) call option gives its holder 1 at expira-
tion time t if S(t) ≥ K , or 0 if S(t) < K . A digital (K , t) put option
gives its holder 1 at expiration time t if S(t) < k, or 0 if S(t) ≥ K . Let
C1 and C2 be the costs of such digital call and put options on the same
security. Derive a put-call parity relationship between C1 and C2.

Exercise 5.13 A European call and put option on the same security
both expire in three months, both have a strike price of 20, and both sell
for the price 3. If the nominal continuously compounded interest rate is
10% and the stock price is currently 25, identify an arbitrage.

Exercise 5.14 Let Ca and Pa be the costs of American call and put op-
tions (respectively) on the same security, both having the same strike
price K and exercise time t. If S is the present price of the security, give
either an identity or an inequality that relates the quantities Ca, Pa, K,

and e−r t . Briefly explain.

Exercise 5.15 Consider two put options on the same security, both of
which have expiration t. Suppose the exercise prices of the two puts are
K1 and K2, where K1 > K2. Argue that

K1 − K2 ≥ P1 − P2,

where Pi is the price of the put with strike Ki , i = 1, 2.

Exercise 5.16 Explain why the price of an American put option hav-
ing exercise time t cannot be less than the price of a second put option
on the same security that is identical to the first option except that its
exercise time is earlier.
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Exercise 5.17 Say whether each of the following statements is always
true, always false, or sometimes true and sometimes false. Assume that,
aside from what is mentioned, all other parameters remain fixed. Give
brief explanations for your answers.

(a) The price of a European call option is nondecreasing in its expira-
tion time.

(b) The price of a forward contract on a foreign currency is nondecreas-
ing in its maturity date.

(c) The price of a European put option is nondecreasing in its expira-
tion time.

Exercise 5.18 Your financial adviser has suggested that you buy both
a European put and a European call on the same security, with both op-
tions expiring in three months, and both having a strike price equal to
the present price of the security.

(a) Under what conditions would such an investment strategy seem rea-
sonable?

(b) Plot the return at time t = 1/4 from this strategy as a function of the
price of the security at that time.

Exercise 5.19 If a stock is selling for a price s immediately before it
pays a dividend d (i.e., the amount d per share is paid to every share-
holder), then what should its price be immediately after the dividend is
paid?

Exercise 5.20 Let S(t) be the price of a given security at time t. All of
the following options have exercise time t and, unless stated otherwise,
exercise price K. Give the payoff at time t that is earned by an investor
who:

(a) owns one call and one put option;
(b) owns one call having exercise price K1 and has sold one put having

exercise price K2;
(c) owns two calls and has sold short one share of the security;
(d) owns one share of the security and has sold one call.

Exercise 5.21 Argue that the price of a European call option is non-
increasing in its strike price.
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Exercise 5.22 Suppose that you simultaneously buy a call option with
strike price 100 and write (i.e., sell) a call option with strike price 105 on
the same security, with both options having the same expiration time.

(a) Is your initial cost positive or negative?
(b) Plot your return at expiration time as a function of the price of the

security at that time.

Exercise 5.23 Consider two call options on a security whose present
price is 110. Suppose that both call options have the same expiration
time; one has strike price 100 and costs 20, whereas the other has strike
price 110 and costs C. Assuming that an arbitrage is not possible, give
a lower bound on C.

Exercise 5.24 Let P(K, t) denote the cost of a European put option
with strike K and expiration time t. Prove that P(K, t) is convex in K
for fixed t, or explain why it is not necessarily true.

Exercise 5.25 Can the proof given in the text for the cost of a call
option be modified to show that the cost of an American put option is
convex in its strike price?

Exercise 5.26 A (K1, t1, K2, t2) double call option is one that can be
exercised either at time t1 with strike price K1 or at time t2 (t2 > t1)
with strike price K2. Argue that you would never exercise at time t1 if
K1 > e−r(t2−t1)K2.

Exercise 5.27 In a capped call option, the return is capped at a certain
specified value A. That is, if the option has strike price K and expiration
time t, then the payoff at time t is

min(A, (S(t) − K )+),

where S(t) is the price of the security at time t. Show that an equivalent
way of defining such an option is to let

max(K, S(t) − A)

be the strike price when the call is exercised at time t.
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Exercise 5.28 Argue that an American capped call option should be
exercised early only when the price of the security is at least K + A.

Exercise 5.29 A function f (x) is said to be concave if, for all x, y and
0 < λ < 1,

f (λx + (1 − λ)y) ≥ λ f (x) + (1 − λ) f (y).

(a) Give a geometrical interpretation of when a function is concave.
(b) Argue that f (x) is concave if and only if g(x) = − f (x) is convex.

Exercise 5.30 Consider two investments, where investment i, i = 1, 2,

costs Ci and yields the return Xi after 1 year, where X1 and X2 are ran-
dom variables. Suppose C1 > C2. Are the following statements neces-
sarily true?

(a) If E[X1] < E[X2], then there is an arbitrage.
(b) If P{X2 > X1} > 0, then there is an arbitrage.
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6. The Arbitrage Theorem

6.1 The Arbitrage Theorem

Consider an experiment whose set of possible outcomes is {1, 2, .. ., m},
and suppose that n wagers concerning this experiment are available. If
the amount x is bet on wager i, then xri( j) is received if the outcome
of the experiment is j ( j = 1, .. ., m). In other words, ri(·) is the return
function for a unit bet on wager i. The amount bet on a wager is allowed
to be positive, negative, or zero.

A betting strategy is a vector x = (x1, x2, .. ., xn), with the interpre-
tation that x1 is bet on wager 1, x2 is bet on wager 2, .. ., xn is bet on
wager n. If the outcome of the experiment is j, then the return from the
betting strategy x is given by

return from x =
n∑

i=1

xiri( j).

The following result, known as the arbitrage theorem, states that either
there exists a probability vector p = ( p1, p2, .. ., pm) on the set of pos-
sible outcomes of the experiment under which the expected return of
each wager is equal to zero, or else there exists a betting strategy that
yields a positive win for each outcome of the experiment.

Theorem 6.1.1 (The Arbitrage Theorem) Exactly one of the following
is true: Either

(a) there is a probability vector p = ( p1, p2, ..., pm) for which

m∑
j=1

pjri( j) = 0 for all i = 1, ..., n,

or else
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(b) there is a betting strategy x = (x1, x2, ..., xn) for which

n∑
i=1

xiri( j) > 0 for all j = 1, ..., m.

Proof. See Section 6.3.

If X is the outcome of the experiment, then the arbitrage theorem states
that either there is a set of probabilities ( p1, p2, .. ., pm) such that if

P{X = j} = pj for all j = 1, .. ., m

then
E[ri(X )] = 0 for all i = 1, .. ., n,

or else there is a betting strategy that leads to a sure win. In other words,
either there is a probability vector on the outcomes of the experiment
that results in all bets being fair, or else there is a betting scheme that
guarantees a win.

Definition Probabilities on the set of outcomes of the experiment that
result in all bets being fair are called risk-neutral probabilities.

Example 6.1a In some situations, the only type of wagers allowed are
ones that choose one of the outcomes i (i = 1, .. ., m) and then bet that
i is the outcome of the experiment. The return from such a bet is often
quoted in terms of odds. If the odds against outcome i are oi (often
expressed as “oi to 1”), then a one-unit bet will return either oi if i is
the outcome of the experiment or −1 if i is not the outcome. That is,
a one-unit bet on i will either win oi or lose 1. The return function for
such a bet is given by

ri( j) =
{

oi if j = i,
−1 if j �= i.

Suppose that the odds o1, o2, .. ., om are quoted. In order for there not to
be a sure win, there must be a probability vector p = ( p1, p2, .. ., pm)

such that, for each i (i = 1, .. ., m),

0 = Ep[ri(X )] = oi pi − (1 − pi ).
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That is, we must have

pi = 1

1 + oi
.

Since the pi must sum to 1, this means that the condition for there not
to be an arbitrage is that

m∑
i=1

1

1 + oi
= 1.

That is, if
∑m

i=1(1+oi )
−1 �= 1, then a sure win is possible. For instance,

suppose there are three possible outcomes and the quoted odds are as
follows.

Outcome Odds

1 1
2 2
3 3

That is, the odds against outcome 1 are 1 to 1; they are 2 to 1 against
outcome 2; and they are 3 to 1 against outcome 3. Since

1

2
+ 1

3
+ 1

4
= 13

12
�= 1,

a sure win is possible. One possibility is to bet −1 on outcome 1 (so you
either win 1 if the outcome is not 1 or you lose 1 if the outcome is 1) and
bet −.7 on outcome 2 (so you either win .7 if the outcome is not 2 or
you lose 1.4 if it is 2), and −.5 on outcome 3 (so you either win .5 if the
outcome is not 3 or you lose 1.5 if it is 3). If the experiment results in
outcome 1, you win −1 + .7 + .5 = .2; if it results in outcome 2, you
win 1−1.4 + .5 = .1; if it results in outcome 3, you win 1+ .7 −1.5 =
.2. Hence, in all cases you win a positive amount.

Example 6.1b Let us reconsider the option pricing example of Sec-
tion 5.1, where the initial price of a stock is 100 and the price after one
period is assumed to be either 200 or 50. At a cost of C per share, we
can purchase at time 0 the option to buy the stock at time 1 for the price
of 150. For what value of C is no sure win possible?
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Solution. In the context of this section, the outcome of the experiment
is the value of the stock at time 1; thus, there are two possible outcomes.
There are also two different wagers: to buy (or sell) the stock, and to
buy (or sell) the option. By the arbitrage theorem, there will be no sure
win if there are probabilities ( p,1 − p) on the outcomes that make the
expected present value return equal to zero for both wagers.

The present value return from purchasing one share of the stock is

return =
{

200(1 + r)−1 − 100 if the price is 200 at time 1,

50(1 + r)−1 − 100 if the price is 50 at time 1.

Hence, if p is the probability that the price is 200 at time 1, then

E[return] = p

[
200

1 + r
− 100

]
+ (1 − p)

[
50

1 + r
− 100

]

= p
150

1 + r
+ 50

1 + r
− 100.

Setting this equal to zero yields that

p = 1 + 2r

3
.

Therefore, the only probability vector ( p,1− p) that results in a zero ex-
pected return for the wager of purchasing the stock has p = (1+ 2r)/3.

In addition, the present value return from purchasing one option is

return =
{

50(1 + r)−1 − C if the price is 200 at time 1,
−C if the price is 50 at time 1.

Hence, when p = (1 + 2r)/3, the expected return of purchasing one
option is

E[return] = 1 + 2r

3

50

1 + r
− C.

It thus follows from the arbitrage theorem that the only value of C for
which there will not be a sure win is

C = 1 + 2r

3

50

1 + r
;

that is, when

C = 50 + 100r

3(1 + r)
,

which is in accord with the result of Section 5.1.
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6.2 The Multiperiod Binomial Model

Let us now consider a stock option scenario in which there are n periods
and where the nominal interest rate is r per period. Let S(0) be the ini-
tial price of the stock, and for i = 1, .. ., n let S(i) be its price at i time
periods later. Suppose that S(i) is either uS(i − 1) or dS(i − 1), where
d < 1+r < u. That is, going from one time period to the next, the price
either goes up by the factor u or down by the factor d. Furthermore, sup-
pose that at time 0 an option may be purchased that enables one to buy
the stock after n periods have passed for the amount K. In addition, the
stock may be purchased and sold anytime within these n time periods.

Let Xi equal 1 if the stock’s price goes up by the factor u from period
i −1 to i, and let it equal 0 if that price goes down by the factor d. That
is,

Xi =
{

1 if S(i) = uS(i − 1),
0 if S(i) = dS(i − 1).

The outcome of the experiment can now be regarded as the value of the
vector (X1, X2, .. ., Xn). It follows from the arbitrage theorem that, in
order for there not to be an arbitrage opportunity, there must be proba-
bilities on these outcomes that make all bets fair. That is, there must be
a set of probabilities

P{X1 = x1, .. ., Xn = xn}, xi = 0,1, i = 1, .. ., n,

that make all bets fair.
Now consider the following type of bet: First choose a value of i (i =

1, .. ., n) and a vector (x1, .. ., xi−1) of zeros and ones, and then observe
the first i − 1 changes. If Xj = xj for each j = 1, .. ., i − 1, immedi-
ately buy one unit of stock and then sell it back the next period. If the
stock is purchased, then its cost at time i −1 is S(i −1); the time-(i −1)
value of the amount obtained when it is then sold at time i is either
(1 + r)−1uS(i − 1) if the stock goes up or (1 + r)−1dS(i − 1) if it goes
down. Therefore, if we let

α = P{X1 = x1, .. ., Xi−1 = xi−1}
denote the probability that the stock is purchased, and let

p = P{Xi = 1 | X1 = x1, .. ., Xi−1 = xi−1}
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denote the probability that a purchased stock goes up the next period,
then the expected gain on this bet (in time-(i − 1) units) is

α[ p(1 + r)−1uS(i − 1) + (1 − p)(1 + r)−1dS(i − 1) − S(i − 1)].

Consequently, the expected gain on this bet will be zero, provided that

pu

1 + r
+ (1 − p)d

1 + r
= 1

or, equivalently, that

p = 1 + r − d

u − d
.

In other words, the only probability vector that results in an expected
gain of zero for this type of bet has

P{Xi = 1 | X1 = x1, .. ., Xi−1 = xi−1} = 1 + r − d

u − d
.

Since x1, .. ., xn are arbitrary, this implies that the only probability vec-
tor on the set of outcomes that results in all these bets being fair is the
one that takes X1, .. ., Xn to be independent random variables with

P{Xi = 1} = p = 1 − P{Xi = 0}, i = 1, .. ., n, (6.1)

where

p = 1 + r − d

u − d
. (6.2)

It can be shown that, with these probabilities, any bet on buying stock
will have zero expected gain. Thus, it follows from the arbitrage theo-
rem that either the cost of the option must be equal to the expectation
of the present (i.e., the time-0) value of owning it using the preceding
probabilities, or else there will be an arbitrage opportunity. So, to deter-
mine the no-arbitrage cost, assume that the Xi are independent 0-or-1
random variables whose common probability p of being equal to 1 is
given by Equation (6.2). Letting Y denote their sum, it follows that Y
is just the number of the Xi that are equal to 1, and thus Y is a binomial
random variable with parameters n and p. Now, in going from period
to period, the stock’s price is its old price multiplied either by u or by
d. At time n, the price would have gone up Y times and down n − Y
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times, so it follows that the stock’s price after n periods can be expressed
as

S(n) = uYd n−YS(0),

where Y = ∑n
i=1 Xi is, as previously noted, a binomial random vari-

able with parameters n and p. The value of owning the option after n
periods have elapsed is (S(n) − K )+, which is defined to equal either
S(n) − K (when this quantity is nonnegative) or zero (when it is nega-
tive). Therefore, the present (time-0) value of owning the option is

(1 + r)−n(S(n) − K )+

and so the expectation of the present value of owning the option is

(1 + r)−n E[(S(n) − K )+ ] = (1 + r)−n E[(S(0)uYd n−Y − K )+ ].

Thus, the only option cost C that does not result in an arbitrage is

C = (1 + r)−n E[(S(0)uYd n−Y − K )+ ]. (6.3)

Remark. Although Equation (6.3) could be streamlined for computa-
tional convenience, the expression as given is sufficient for our main
purpose: determining the unique no-arbitrage option cost when the un-
derlying security follows a geometric Brownian motion. This is accom-
plished in our next chapter, where we derive the famous Black–Scholes
formula.

6.3 Proof of the Arbitrage Theorem

In order to prove the arbitrage theorem, we first present the duality theo-
rem of linear programming as follows. Suppose that, for given constants
ci , bj, and ai, j (i = 1, .. ., n, j = 1, .. ., m), we want to choose values
x1, .. ., xn that will

maximize
n∑

i=1

ci xi

subject to
n∑

i=1

ai, j xi ≤ bj, j = 1, 2, .. ., m.



Proof of the Arbitrage Theorem 99

This problem is called a primal linear program. Every primal linear
program has a dual problem, and the dual of the preceding linear pro-
gram is to choose values y1, .. ., ym that

minimize
m∑

j=1

bj yj

subject to
m∑

j=1

ai, j yj = ci , i = 1, .. ., n,

yj ≥ 0, j = 1, .. ., m.

A linear program is said to be feasible if there are variables (x1, .. ., xn

in the primal linear program or y1, .. ., ym in the dual) that satisfy the
constraints. The key theoretical result of linear programming is the du-
ality theorem, which we state without proof.

Proposition 6.3.1 (Duality Theorem of Linear Programming) If a
primal and its dual linear program are both feasible, then they both
have optimal solutions and the maximal value of the primal is equal to
the minimal value of the dual. If either problem is infeasible, then the
other does not have an optimal solution.

A consequence of the duality theorem is the arbitrage theorem. Recall
that the arbitrage theorem refers to a situation in which there are n wa-
gers with payoffs that are determined by the result of an experiment
having possible outcomes 1, 2, .. ., m. Specifically, if you bet wager i at
level x, then you win the amount xri( j) if the outcome of the experi-
ment is j. A betting strategy is a vector x = (x1, .. ., xn), where each
xi can be positive or negative (or zero), and with the interpretation that
you simultaneously bet wager i at level xi for each i = 1, .. ., n. If the
outcome of the experiment is j, then your winnings from the betting
strategy x are

n∑
i=1

xiri( j).

Proposition 6.3.2 (Arbitrage Theorem) Exactly one of the following
is true: Either
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(i) there exists a probability vector p = ( p1, .. ., pm) for which

m∑
j=1

pjri( j) = 0 for all i = 1, .. ., n;

or
(ii) there exists a betting strategy x = (x1, .. ., xn) such that

n∑
i=1

xiri( j) > 0 for all j = 1, .. ., m.

That is, either there exists a probability vector under which all wagers
have expected gain equal to zero, or else there is a betting strategy that
always results in a positive win.

Proof. Let xn+1 denote an amount that the gambler can be sure of win-
ning, and consider the problem of maximizing this amount. If the gam-
bler uses the betting strategy (x1, .. ., xn) then she will win

∑n
i=1 xiri( j)

if the outcome of the experiment is j. Hence, she will want to choose
her betting strategy (x1, .. ., xn) and xn+1 so as to

maximize xn+1

subject to
n∑

i=1

xiri( j) ≥ xn+1, j = 1, .. ., m.

Letting
ai, j = −ri( j), i = 1, .. ., n, an+1, j = 1,

we can rewrite the preceding as follows:

maximize xn+1

subject to
n+1∑
i=1

ai, j xi ≤ 0, j = 1, .. ., m.

Note that the preceding linear program has c1 = c2 = · · · = cn = 0,

cn+1 = 1, and upper-bound constraint values all equal to zero (i.e., all
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bj = 0). Consequently, its dual program is to choose variables y1, .. ., ym

so as to
minimize 0

subject to
m∑

j=1

ai, j yj = 0, i = 1, .. ., n,

m∑
j=1

an+1, j yj = 1,

yj ≥ 0, j = 1, .. ., m.

Using the definitions of the quantities ai, j gives that this dual linear pro-
gram can be written as

minimize 0

subject to
m∑

j=1

ri( j)yj = 0, i = 1, .. ., n,

m∑
j=1

yj = 1,

yj ≥ 0, j = 1, .. ., m.

Observe that this dual will be feasible, and its minimal value will be
zero, if and only if there is a probability vector (y1, .. ., ym) under which
all wagers have expected return 0. The primal problem is feasible be-
cause xi = 0 (i = 1, .. ., n + 1) satisfies its constraints, so it follows
from the duality theorem that if the dual problem is also feasible then
the optimal value of the primal is zero and hence no sure win is possi-
ble. On the other hand, if the dual is infeasible then it follows from the
duality theorem that there is no optimal solution of the primal. But this
implies that zero is not the optimal solution, and thus there is a betting
scheme whose minimal return is positive. (The reason there is no pri-
mal optimal solution when the dual is infeasible is because the primal is
unbounded in this case. That is, if there is a betting scheme x that gives
a guaranteed return of at least v > 0, then cx gives a guaranteed return
of at least cv.)
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6.4 Exercises

Exercise 6.1 Consider an experiment with three possible outcomes and
odds as follows.

Outcome Odds

1 1
2 2
3 5

Is there a betting scheme that results in a sure win?

Exercise 6.2 Consider an experiment with four possible outcomes, and
suppose that the quoted odds for the first three of these outcomes are as
follows.

Outcome Odds

1 2
2 3
3 4

What must be the odds against outcome 4 if there is to be no possi-
ble arbitrage when one is allowed to bet both for and against any of the
outcomes?

Exercise 6.3 An experiment can result in any of the outcomes 1, 2,
or 3.

(a) If there are two different wagers, with

r1(1) = 4, r1(2) = 8, r1(3) = −10

r2(1) = 6, r2(2) = 12, r2(3) = −16

is an arbitrage possible?
(b) If there are three different wagers, with

r1(1) = 6, r1(2) = −3, r1(3) = 0

r2(1) = −2, r2(2) = 0, r2(3) = 6

r3(1) = 10, r3(2) = 10, r3(3) = x
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what must x equal if there is no arbitrage? For both parts, assume
that you can simultaneously place wagers at any desired levels.

Exercise 6.4 Suppose, in Exercise 6.1, that one may also choose
any pair of outcomes i �= j and bet that the outcome will be either i or j.
What should the odds be on these three bets if an arbitrage opportunity
is to be avoided?

Exercise 6.5 In Example 6.1a, show that if
m∑

i=1

1

1 + oi
�= 1

then the betting scheme

xi = (1 + oi )
−1

1 − ∑m
i=1(1 + oi )−1

, i = 1, .. ., m,

will always yield a gain of exactly 1.

Exercise 6.6 In Example 6.1b, suppose one also has the option of pur-
chasing a put option that allows its holder to put the stock for sale at the
end of one period for a price of 150. Determine the value of P, the cost
of the put, if there is to be no arbitrage; then show that the resulting call
and put prices satisfy the put–call option parity formula (Proposition
5.2.2).

Exercise 6.7 Suppose that, in each period, the cost of a security either
goes up by a factor of 2 or goes down by a factor of 1/2 (i.e., u = 2, d =
1/2). If the initial price of the security is 100, determine the no-arbitrage
cost of a call option to purchase the security at the end of two periods
for a price of 150.

Exercise 6.8 Suppose, in Example 6.1b, that there are three possible
prices for the security at time 1: 50, 100, or 200. (That is, allow for
the possibility that the security’s price remains unchanged.) Use the
arbitrage theorem to find an interval for which there is no arbitrage if C
lies in that interval.

A betting strategy x such that (using the notation of Section 6.1)

n∑
i=1

xiri( j) ≥ 0, j = 1, .. ., m,
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with strict inequality for at least one j, is said to be a weak arbitrage
strategy. That is, whereas an arbitrage is present if there is a strategy that
results in a positive gain for every outcome, a weak arbitrage is present
if there is a strategy that never results in a loss and results in a positive
gain for at least one outcome. (An arbitrage can be thought of as a free
lunch, whereas a weak arbitrage is a free lottery ticket.) It can be shown
that there will be no weak arbitrage if and only if there is a probability
vector p, all of whose components are positive, such that

m∑
j=1

pjri( j) = 0, i = 1, .. ., n.

In other words, there will be no weak arbitrage if there is a probability
vector that gives positive weight to each possible outcome and makes
all bets fair.

Exercise 6.9 In Exercise 6.8, show that a weak arbitrage is possible if
the cost of the option is equal to either endpoint of the interval deter-
mined.

Exercise 6.10 For the model of Section 6.2 with n = 1, show how an
option can be replicated by a combination of borrowing and buying the
security.

Exercise 6.11 The price of a security in each time period is its price in
the previous time period multiplied either by u = 1.25 or by d = .8.

The initial price of the security is 100. Consider the following “exotic”
European call option that expires after five periods and has a strike price
of 100. What makes this option exotic is that it becomes alive only if
the price after two periods is strictly less than 100. That is, it becomes
alive only if the price decreases in the first two periods. The final payoff
of this option is

payoff at time 5 = I(S(5) − 100)+,

where I = 1 if S(2) < 100 and I = 0 if S(2) ≥ 100. Suppose the inter-
est rate per period is r = .1.

(a) What is the no-arbitrage cost (at time 0) of this option?
(b) Is the cost of part (a) unique? Briefly explain.
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(c) If each price change is equally likely to be an up or a down move-
ment, what is the expected amount that an option holder receives at
the time of expiration?

Exercise 6.12 Suppose the price of a security changes from period to
period in such a manner that the price during period i is the price during
period i − 1 multiplied either by u = 1.1 or by d = 1/u, i ≥ 1. Sup-
pose the price of the security in period 0 is 50. Aside from buying and
selling the security, suppose one can also pay C in period 0 and receive
either 100 in period 3 if the price in period 3 is at least 52, or 0 in period
3 if the price in that period is less than 52. Assuming an interest rate of
r = 0.05, determine C if no arbitrage is possible.
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7. The Black–Scholes Formula

7.1 Introduction

In this chapter we derive the celebrated Black–Scholes formula, which
gives – under the assumption that the price of a security evolves ac-
cording to a geometric Brownian motion – the unique no-arbitrage cost
of a call option on this security. Section 7.2 gives the derivation of the
no-arbitrage cost, which is a function of five variables, and Section 7.3
discusses some of the properties of this function. Section 7.4 gives the
strategy that can, in theory, be used to obtain an abitrage when the cost
of the security is not as specified by the formula. Section 7.5, which
is more theoretical than other sections of the text, presents simplified
derivations of (1) the computational form of the Black–Scholes formula
and (2) the partial derivatives of the no-arbitrage cost with respect to
each of its five parameters.

7.2 The Black–Scholes Formula

Consider a call option having strike price K and expiration time t. That
is, the option allows one to purchase a single unit of an underlying secu-
rity at time t for the price K. Suppose further that the nominal interest
rate is r, compounded continuously, and also that the price of the secu-
rity follows a geometric Brownian motion with drift parameter μ and
volatility parameter σ. Under these assumptions, we will find the unique
cost of the option that does not give rise to an arbitrage.

To begin, let S(y) denote the price of the security at time y. Because
{S(y), 0 ≤ y ≤ t} follows a geometric Brownian motion with volatil-
ity parameter σ and drift parameter μ, the n-stage approximation of this
model supposes that, every t/n time units, the price changes; its new
value is equal to its old value multiplied either by the factor

u = eσ
√

t/n with probability
1

2

(
1 + μ

σ

√
t/n

)
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or by the factor

d = e−σ
√

t/n with probability
1

2

(
1 − μ

σ

√
t/n

)
.

Thus, the n-stage approximation model is an n-stage binomial model in
which the price at each time interval t/n either goes up by a multiplica-
tive factor u or down by a multiplicative factor d. Therefore, if we let

Xi =
{

1 if S(it/n) = uS((i − 1)t/n),

0 if S(it/n) = dS((i − 1)t/n),

then it follows from the results of Section 6.2 that the only probability
law on X1, .. ., Xn that makes all security buying bets fair in the n-stage
approximation model is the one that takes the Xi to be independent with

p ≡ P{Xi = 1}

= 1 + r t/n − d

u − d

= 1 − e−σ
√

t/n + r t/n

eσ
√

t/n − e−σ
√

t/n
.

Using the first three terms of the Taylor series expansion about 0 of the
function e x shows that

e−σ
√

t/n ≈ 1 − σ
√

t/n + σ 2 t/2n,

eσ
√

t/n ≈ 1 + σ
√

t/n + σ 2 t/2n.

Therefore,

p ≈ σ
√

t/n − σ 2 t/2n + r t/n

2σ
√

t/n

= 1

2
+ r

√
t/n

2σ
− σ

√
t/n

4

= 1

2

(
1 + r − σ 2/2

σ

√
t/n

)
.

That is, the unique risk-neutral probabilities on the n-stage approxima-
tion model result from supposing that, in each period, the price either
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goes up by the factor eσ
√

t/n with probability p or goes down by the
factor e−σ

√
t/n with probability 1 − p. But, from Section 3.2, it follows

that as n → ∞ this risk-neutral probability law converges to geometric
Brownian motion with drift coefficient r − σ 2/2 and volatility parame-
ter σ. Because the n-stage approximation model becomes the geometric
Brownian motion as n becomes larger, it is reasonable to suppose (and
can be rigorously proven) that this risk-neutral geometric Brownian mo-
tion is the only probability law on the evolution of prices over time that
makes all security buying bets fair. (In other words, we have just argued
that if the underlying price of a security follows a geometric Brownian
motion with volatility parameter σ, then the only probability law on the
sequence of prices that results in all security buying bets being fair is
that of a geometric Brownian motion with drift parameter r − σ 2/2 and
volatility parameter σ.) Consequently, by the arbitrage theorem, either
options are priced to be fair bets according to the risk-neutral geometric
Brownian motion probability law or else there will be an arbitrage.

Now, under the risk-neutral geometric Brownian motion, S(t)/S(0)

is a lognormal random variable with mean parameter (r − σ 2/2)t and
variance parameter σ 2 t. Hence C, the unique no-arbitrage cost of a call
option to purchase the security at time t for the specified price K, is

C = e−r tE[(S(t) − K )+ ]

= e−r tE[(S(0)eW − K )+ ], (7.1)

where W is a normal random variable with mean (r − σ 2/2)t and vari-
ance σ 2 t.

The right side of Equation (7.1) can be explicitly evaluated (see Sec-
tion 7.4 for the derivation) to give the following expression, known as
the Black–Scholes option pricing formula:

C = S(0)�(ω) − Ke−r t�(ω − σ
√

t ), (7.2)

where

ω = r t + σ 2 t/2 − log(K/S(0))

σ
√

t

and where �(x) is the standard normal distribution function.

Example 7.1a Suppose that a security is presently selling for a price
of 30, the nominal interest rate is 8% (with the unit of time being one
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year), and the security’s volatility is .20. Find the no-arbitrage cost of a
call option that expires in three months and has a strike price of 34.

Solution. The parameters are

t = .25, r = .08, σ = .20, K = 34, S(0) = 30,

so we have

ω = .02 + .005 − log(34/30)

(.2)(.5)
≈ −1.0016.

Therefore,

C = 30�(−1.0016) − 34e−.02�(−1.1016)

= 30(.15827) − 34(.9802)(.13532)

≈ .2383.

The appropriate price of the option is thus 24 cents.

Remarks. 1. Another way to derive the no-arbitrage option cost C is to
consider the unique no-arbitrage cost of an option in the n-period ap-
proximation model and then let n go to infinity.

2. Let C(s, t, K ) be the no-arbitrage cost of an option having strike
price K and exercise time t when the initial price of the security is s.
That is, C(s, t, K ) is the C of the Black–Scholes formula having S(0) =
s. If the price of the underlying security at time y (0 < y < t) is S(y) =
sy, then C(sy, t − y, K ) is the unique no-arbitrage cost of the option at
time y. This is because, at time y, the option will expire after an addi-
tional time t − y with the same exercise price K, and for the next t − y
units of time the security will follow a geometric Brownian motion with
initial value sy.

3. It follows from the put–call option parity formula given in Propo-
sition 5.2.2 that the no-arbitrage cost of a European put option with
initial price s, strike price K, and exercise time t – call it P(s, t, K ) –
is given by

P(s, t, K ) = C(s, t, K ) + Ke−r t − s,

where C(s, t, K ) is the no-arbitrage cost of a call option on the same
stock.
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4. Because the risk-neutral geometric Brownian motion depends only
on σ and not on μ, it follows that the no-arbitrage cost of the option
depends on the underlying Brownian motion only through its volatility
parameter σ and not its drift parameter.

5. The no-arbitrage option cost is unchanged if the security’s price
over time is assumed to follow a geometric Brownian motion with a
fixed volatility σ but with a drift that varies over time. Because the
n-stage approximation model for the price history up to time t of the
time-varying drift process is still a binomial up–down model with u =
eσ

√
t/n and d = e−σ

√
t/n, it has the same unique risk-neutral probabil-

ity law as when the drift parameter is unchanging, and thus it will give
rise to the same unique no-arbitrage option cost. (The only way that
a changing drift parameter would affect our derivation of the Black–
Scholes formula is by leading to different probabilities for up moves in
the different time periods, but these probabilities have no effect on the
the risk-neutral probabilities.)

7.3 Properties of the Black–Scholes Option Cost

The no-arbitrage option cost C = C(s, t, K, σ, r) is a function of five
variables: the security’s initial price s; the expiration time t of the op-
tion; the strike price K ; the security’s volatility parameter σ ; and the
interest rate r. To see what happens to the cost as a function of each of
these variables, we use Equation (7.1):

C(s, t, K, σ, r) = e−r tE[(seW − K )+ ],

where W is a normal random variable with mean (r − σ 2/2)t and vari-
ance σ 2 t.

Properties of C = C(s, t, K, σ, r)
1. C is an increasing, convex function of s.
This means that if the other four variables remain the same, then the

no-arbitrage cost of the option is an increasing function of the security’s
initial price as well as a convex function of the security’s initial price.
These results (the first of which is very intuitive) follow from Equation
(7.1). To see why, first note (see Figure 7.1) that, for any positive con-
stant a, the function e−r t(sa − K )+ is an increasing, convex function
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Figure 7.1: The Increasing, Convex Function f (s) = e−r t(sa − K )+

Figure 7.2: The Decreasing, Convex Function f (K ) = e−r t(a − K )+

of s. Consequently, because the probability distribution of W does not
depend on s, the quantity e−r t(seW − K )+ is, for all W, increasing and
convex in s, and thus so is its expected value.

2. C is a decreasing, convex function of K.

This follows from the fact that e−r t(seW − K )+ is, for all W, decreas-
ing and convex in K (see Figure 7.2), and thus so is its expectation.
(This is in agreement with the more general arbitrage argument made
in Section 5.2, which did not assume a model for the security’s price
evolution.)

3. C is increasing in t.
Although a mathematical argument can be given (see Section 7.4),

a simpler and more intuitive argument is obtained by noting that it is
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immediate that the option cost would be increasing in t if the option
were an American call option (for any additional time to exercise could
not hurt, since one could always elect not to use it). Because the value
of a European call option is the same as that of an American call option
(Proposition 5.2.1), the result follows.

4. C is increasing in σ.

Because an option holder will greatly benefit from very large prices
at the exercise time, while any additional price decrease below the ex-
ercise price will not cause any additional loss, this result seems at first
sight to be quite intuitive. However, it is more subtle than it appears,
because an increase in σ results not only in an increase in the variance
of the logarithm of the final price under the risk-neutral valuation but
also in a decrease in the mean (since E[log(S(t)/S(0))] = (r −σ 2/2)t).
Nevertheless, the result is true and will be shown mathematically in Sec-
tion 7.4.

5. C is increasing in r.
To verify this property, note that we can express W, a normal random

variable with mean (r − σ 2/2)t and variance tσ 2, as

W = r t − σ 2 t/2 + σ
√

t Z ,

where Z is a standard normal random variable with mean 0 and vari-
ance 1. Hence, from Equation (7.1) we have that

C = E[(se−σ 2 t/2+σ
√

t Z − Ke−r t)+ ].

The result now follows because (se−σ 2 t/2+σ
√

t Z − Ke−r t)+, and thus its
expected value, is increasing in r. Indeed, it follows from the preced-
ing that, under the no-arbitrage geometric Brownian motion model, the
only effect of an increased interest rate is that it reduces the present value
of the amount to be paid if the option is exercised, thus increasing the
value of the option.

The rate of change in the value of the call option as a function of a change
in the price of the underlying security is described by the quantity delta,
denoted as �. Formally, if C(s, t, K, σ, r) is the Black–Scholes cost
valuation of the option, then � is its partial derivative with respect to s;
that is,

� = ∂

∂s
C(s, t, K, σ, r).
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In Section 7.4 we will show that

� = �(ω)

where, as given in Equation (7.2),

ω = r t + σ 2 t/2 − log(K/S(0))

σ
√

t
.

Delta can be used to construct investment portfolios that hedge against
risk. For instance, suppose that an investor feels that a call option is
underpriced and consequently buys the call. To protect himself against
a decrease in its price, he can simultaneously sell a certain number of
shares of the security. To determine how many shares he should sell,
note that if the price of the security decreases by the small amount h
then the worth of the option will decrease by the amount h�, implying
that the investor would be covered if he sold � shares of the security.
Therefore, a reasonable hedge might be to sell � shares of the security
for each option purchased. This heuristic argument will be made pre-
cise in the next section, where we present the delta hedging arbitrage
strategy – a strategy that can, in theory, be used to construct an arbitrage
if a call option is not priced according to the Black–Scholes formula.

7.4 The Delta Hedging Arbitrage Strategy

In this section we show how the payoff from an option can be replicated
by a fixed initial payment (divided into an initial purchasing of shares and
an initial bank deposit, where either might be negative) and a continual
readjustment of funds. We first present it for the finite-stage approxi-
mation model and then for the geometric Brownian motion model for
the security’s price evolution.

To begin, consider a security whose initial price is s and suppose that,
after each time period, its price changes either by the multiple u or by
the multiple d. Let us determine the amount of money x that you must
have at time 0 in order to meet a payment, at time 1, of a if the price of
the stock is us at time 1 or of b if the price at time 1 is ds. To determine
x, and the investment that enables you to meet the payment, suppose
that you purchase y shares of the stock and then either put the remain-
ing x − ys in the bank if x − ys ≥ 0 or borrow ys − x from the bank
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if x − ys < 0. Then, for the initial cost of x, you will have a return at
time 1 given by

return at time 1 =
{

yus + (x − ys)(1 + r) if S(1) = us,
yds + (x − ys)(1 + r) if S(1) = ds,

where S(1) is the price of the security at time 1 and r is the interest rate
per period. Thus, if we choose x and y such that

yus + (x − ys)(1 + r) = a,

yds + (x − ys)(1 + r) = b,

then after taking our money out of the bank (or meeting our loan pay-
ment) we will have the desired amount. Subtracting the second equation
from the first gives that

y = a − b

s(u − d )
.

Substituting the preceding expression for y into the first equation yields

a − b

u − d
[u − (1 + r)] + x(1 + r) = a

or

x = 1

1 + r

(
a

[
1 − u − (1 + r)

u − d

]
+ b

u − 1 − r

u − d

)

= 1

1 + r

(
a

1 + r − d

u − d
+ b

u − 1 − r

u − d

)

= p
a

1 + r
+ (1 − p)

b

1 + r
,

where

p = 1 + r − d

u − d
.

In other words, the amount of money that is needed at time 0 is equal
to the expected present value, under the risk-neutral probabilities, of the
payoff at time 1. Moreover, the investment strategy calls for purchas-
ing of y = a−b

s(u−d )
shares of the security and putting the remainder in the

bank.
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Remark. If a > b, as it would be if the payoff at time 1 results from
paying the holder of a call option, then y > 0 and so a positive amount
of the security is purchased; if a < b, as it would be if the payoff at
time 1 results from paying the holder of a put option, then y < 0 and so
−y shares of the security are sold short.

Now consider the problem of determining how much money is needed
at time 0 to meet a payoff at time 2 of xi, 2 if the price of the security at
time 2 is uid 2−is (i = 0,1, 2). To solve this problem, let us first deter-
mine, for each possible price of the security at time 1, the amount that
is needed at time 1 to meet the payment at time 2. If the price at time 1
is us, then the amount needed at time 2 would be either x2, 2 if the price
at time 2 is u2s or x1, 2 if the price is uds. Thus, it follows from our pre-
ceding analysis that if the price at time 1 is us then we would, at time 1,
need the amount

x1, 1 = p
x2, 2

1 + r
+ (1 − p)

x1, 2

1 + r
,

and the strategy is to purchase

y1, 1 = x2, 2 − x1, 2

us(u − d )

shares of the security and put the remainder in the bank. Similarly, if
the price at time 1 is ds, then to meet the final payment at time 2 we
would, at time 1, need the amount

x0, 1 = p
x1, 2

1 + r
+ (1 − p)

x0, 2

1 + r
,

and the strategy is to purchase

y0, 1 = x1, 2 − x0, 2

ds(u − d )

shares of the security and put the remainder in the bank. Now, at time 0
we need to have enough to invest so as to be able to have either x1, 1 or
x0, 1 at time 1, depending on whether the price of the security is us or ds
at that time. Consequently, at time 0 we need the amount

x0, 0 = p
x1, 1

1 + r
+ (1 − p)

x0, 1

1 + r

= p2 x2, 2

(1 + r)2
+ 2p(1 − p)

x1, 2

(1 + r)2
+ (1 − p)2 x0, 2

(1 + r)2
.
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That is, once again the amount needed is the expected present value,
under the risk-neutral probabilities, of the final payoff. The strategy is
to purchase

y0, 0 = x1, 1 − x0, 1

s(u − d )

shares of the security and put the remainder in the bank.
The preceding is easily generalized to an n-period problem, where the

payoff at the end of period n is xi, n if the price at that time is uid n−is. The
amount xi, j needed at time j, given that the price of the security at that
time is uid j−is, is equal to the conditional expected time- j value of the
final payoff, where the expected value is computed under the assump-
tion that the successive changes in price are governed by the risk-neutral
probabilities. (That is, the successive changes are independent, with
each new price equal to the previous period’s price multiplied either
by the factor u with probability p or by the factor d with probability
1 − p.)

If the payoff results from paying the holder of a call option that has
strike price K and expiration time n, then the payoff at time
n is

xi, n = (uid n−is − K )+, i = 0, .. ., n,

when the price of the security at time n is uid n−is. Because our invest-
ment strategy replicates the payoff from this option, it follows from the
law of one price (as well as from the arbitrage theorem) that x0, 0, the
initial amount needed, is equal to the unique no-arbitrage cost of the
option. Moreover, xi, j, the amount needed at time j when the price at
that time is suid j−i , is the unique no-arbitrage cost of the option at that
time and price. To effect an arbitrage when C, the cost of the option
at time 0, is larger than x0, 0, we can sell the option, use x0, 0 from this
sale to meet the option payoff at time n, and walk away with a positive
profit of C − x0, 0. Now, suppose that C < x0, 0. Because the investment
procedure we developed transforms an initial fortune of x0, 0 into a time-
n fortune of xi, n if the price of the security at that time is uid n−is
(i = 0, .. ., n), it follows that by reversing the procedure (changing
buying into selling, and vice versa) we can transform an initial debt
of x0, 0 into a time-n debt of xi, n when the price at time n is suid n−i .

Consequently, when C < x0, 0, we can make an arbitrage by borrowing
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the amount x0, 0, using C of this amount to buy the option, and then us-
ing the investment procedure to transform the initial debt into a time-n
debt whose amount is exactly that of the return from the option. Hence,
in either case we can gain |C − x0, 0| at time 0; we then follow an in-
vestment strategy that guarantees we have no additional losses or gains.
In other words, after taking our profit, our strategy hedges all future
risks.

Let us now determine the hedging strategy for a call option with strike
price K when the price of the security follows a geometric Brownian
motion with volatility σ. To begin, consider the finite-period approx-
imation, where each h time units the price of the security either in-
creases by the factor eσ

√
h or decreases by the factor e−σ

√
h. Suppose

the present price of the stock is s and the call option expires after an
additional time t. Because the price after an additional time h is either
seσ

√
h or se−σ

√
h, it follows that the amount we will need in the next

period to utilize the hedging strategy is either C(seσ
√

h, t − h) if the
price is seσ

√
h or C(se−σ

√
h, t − h) if the price is se−σ

√
h, where C(s, t)

is the no-arbitrage cost of the call option with strike price K when
the current price of the security is s and the option expires after an
additional time t. (This notation suppresses the dependence of C on
K, r, and σ.) Consequently, when the price of the security is s and
time t remains before the option expires, the hedging strategy calls for
owning

C(seσ
√

h, t − h) − C(se−σ
√

h, t − h)

seσ
√

h − se−σ
√

h

shares of the security.
To determine, under geometric Brownian motion, the number of shares

of the security that should be owned when the price of the security is s
and the call option expires after an additional time t, we need to let h
go to zero in the preceding expression. Thus, we need to determine

lim
h→0

C(seσ
√

h, t − h) − C(se−σ
√

h, t − h)

seσ
√

h − se−σ
√

h

= lim
a→0

C(seσa, t − a2) − C(se−σa, t − a2)

seσa − se−σa
.
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However, calculus (L’Hôpital’s rule along with the chain rule for differ-
entiating a function of two variables) yields

lim
a→0

C(seσa, t − a2) − C(se−σa, t − a2)

seσa − se−σa

= lim
a→0

sσeσa ∂
∂y C(y, t)|y=seσa + sσe−σa ∂

∂y C(y, t)|y=se−σa

sσeσa + sσe−σa

= ∂

∂y
C(y, t)|y=s

= ∂

∂s
C(s, t).

Therefore, the return from a call option having strike price K and exer-
cise time T can be replicated by an investment strategy that requires an
investment capital of C(S(0), T, K ) and then calls for owning exactly
∂
∂s C(s, t, K ) shares of the security when its current price is s and time
t remains before the option expires, with the absolute value of your re-
maining capital at that time being either in the bank (if your remaining
capital is positive) or borrowed (if it is negative).

Suppose the market price of the (K, T ) call option is greater than
C(S(0), T, K ); then an arbitrage can be made by selling the option and
using C(S(0), T, K ) from this sale along with the preceding strategy to
replicate the return from the option. When the market cost C is less than
C(S(0), T, K ), an arbitrage is obtained by doing the reverse. Namely,
borrow C(S(0), T, K ) and use C of this amount to buy a (K, T ) call
option (what remains will be yours to keep); then maintain a short po-
sition of ∂

∂s C(s, t, K ) shares of the security when its current price is s
and time t remains before the option expires. The invested money from
these short positions, along with your call option, will cover your loan
of C(S(0), T, K ) and also pay off your final short position.

7.5 Some Derivations

In Section 7.5.1 we give the derivation of Equation (7.2), the computa-
tional form of the Black–Scholes formula. In Section 7.5.2 we derive
the partial derivative of C(s, t, K, σ, r) with respect to each of the quan-
tities s, t, K, σ, and r.
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7.5.1 The Black–Scholes Formula

Let

C(s, t, K, σ, r) = E[e−r t(S(t) − K )+ ]

be the risk-neutral cost of a call option with strike price K and expira-
tion time t when the interest rate is r and the underlying security, whose
initial price is s, follows a geometric Brownian motion with volatility
parameter σ. To derive the Black–Scholes option pricing formula as
well as the partial derivatives of C, we will use the fact that, under the
risk-neutral probabilities, S(t) can be expressed as

S(t) = s exp{(r − σ 2/2)t + σ
√

t Z }, (7.3)

where Z is a standard normal random variable.
Let I be the indicator random variable for the event that the option

finishes in the money. That is,

I =
{

1 if S(t) > K,

0 if S(t) ≤ K.
(7.4)

We will use the following lemmas.

Lemma 7.5.1 Using the representations (7.3) and (7.4),

I =
{

1 if Z > σ
√

t − ω,

0 otherwise,

where

ω = r t + σ 2 t/2 − log(K/s)

σ
√

t
.

Proof.

S(t) > K ⇐⇒ exp{(r − σ 2/2)t + σ
√

t Z } > K/s

⇐⇒ Z >
log(K/s) − (r − σ 2/2)t

σ
√

t

⇐⇒ Z > σ
√

t − ω.
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Lemma 7.5.2

E[I ] = P{S(t) > K } = �(ω − σ
√

t ),

where � is the standard normal distribution function.

Proof. It follows from its definition that

E[I ] = P{S(t) > K }
= P{Z > σ

√
t − ω} (from Lemma 7.5.1)

= P{Z < ω − σ
√

t }
= �(ω − σ

√
t ).

Lemma 7.5.3

e−r tE[IS(t)] = s�(ω).

Proof. With c = σ
√

t − ω, it follows from the representation (7.3) and
Lemma 7.5.1 that

E[IS(t)] =
∫ ∞

c
s exp{(r − σ 2/2)t + σ

√
t x} 1√

2π
e−x 2/2 dx

= 1√
2π

s exp{(r − σ 2/2)t}
∫ ∞

c
exp{−(x 2 − 2σ

√
t x)/2} dx

= 1√
2π

sert
∫ ∞

c
exp{−(x − σ

√
t )2/2} dx

= sert 1√
2π

∫ ∞

−ω

e−y2/2 dy (by letting y = x − σ
√

t )

= sertP{Z > −ω}
= sert�(ω).

Theorem 7.5.1 (The Black–Scholes Pricing Formula)

C(s, t, K, σ, r) = s�(ω) − Ke−r t�(ω − σ
√

t ).
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Proof.

C(s, t, K, σ, r) = e−r tE[(S(t) − K )+ ]

= e−r tE[I(S(t) − K )]

= e−r tE[I(S(t)] − Ke−r tE[I ],

and the result follows from Lemmas 7.5.2 and 7.5.3.

7.5.2 The Partial Derivatives

Let Z be a normal random variable with mean 0 and variance 1, and let
W = (r − σ 2/2)t + σ

√
t Z . Thus, W is normal with mean (r − σ 2/2)t

and variance tσ 2.

The Black-Scholes call option formula can be written as

C = C(s, t, K , σ, r) = E[e−r t I (seW − K )]

where
I =

{
1, if seW > K
0, if seW ≤ K

is the indicator of the event that seW > K . Now,

e−r t I (seW − K ) =
{

e−r t(seW − K ), if seW > K
0, if seW ≤ K

As the preceding is, for given Z , a differentiable function of the param-
eters s, t, K , σ, r , we see that for x equal to any one of these variables,

∂

∂x
e−r t I (seW − K ) =

{ ∂
∂x e−r t(seW − K ), if seW > K

0, if seW ≤ K

That is,
∂

∂x
e−r t I (seW − K ) = I

∂

∂x
e−r t(seW − K )

Using that the partial derivative and the expectation operation can be in-
terchanged, the preceding gives that

∂C

∂x
= ∂

∂x
E

[
e−r t I

(
seW − K

)]

= E

[
∂

∂x
e−r t I

(
seW − K

)]

= E

[
I

∂

∂x
e−r t

(
seW − K

)]
(7.5)
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We will now derive the partial derivatives of C with respect to K, s,
and r.

Proposition 7.5.1
∂C

∂K
= −e−r t�(ω − σ

√
t ).

Proof. Because S(t) does not depend on K,

∂

∂K
e−r t(S(t) − K ) = −e−r t .

Using Equation (7.5), this gives

∂C

∂K
= E[−Ie−r t ]

= −e−r tE[I ]

= −e−r t�(ω − σ
√

t ),

where the final equality used Lemma 7.5.2.

As noted previously, ∂C
∂s is called delta.

Proposition 7.5.2
∂C

∂s
= �(ω).

Proof. Using the representation of Equation (7.3), we see that

∂

∂s
e−r t(S(t) − K ) = e−r t ∂S(t)

∂s
= S(t)

s
e−r t .

Hence, by Equation (7.5),

∂C

∂s
= e−r t

s
E[IS(t)]

= �(ω),

where the final equality used Lemma 7.5.3.

The partial derivative of C with respect to r is called rho.
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Proposition 7.5.3

∂C

∂r
= Kte−r t�(ω − σ

√
t ).

Proof.

∂

∂r
[e−r t(S(t) − K )] = −te−r t(S(t) − K ) + e−r t ∂S(t)

∂r

= −te−r t(S(t) − K ) + e−r ttS(t) (from (7.3))

= Kte−r t .

Therefore, by Equation (7.5) and Lemma 7.5.2,

∂C

∂r
= Kte−r tE[I ] = Kte−r t�(ω − σ

√
t ).

In order to determine the other partial derivatives, we need an additional
lemma, whose proof is similar to that of Lemma 7.5.3.

Lemma 7.5.4 With S(t) as given by Equation (7.3),

e−r tE[IS(t)Z ] = s(�′(ω) + σ
√

t�(ω)).

Proof. With c = σ
√

t − ω, it follows from Lemma 7.5.1 that

E[IZ S(t)]

=
∫ ∞

c
xs exp{(r − σ 2/2)t + σ

√
t x} 1√

2π
e−x 2/2 dx

= 1√
2π

s exp{(r − σ 2/2)t}
∫ ∞

c
x exp{−(x 2 − 2σ

√
t x)/2} dx

= 1√
2π

sert
∫ ∞

c
x exp{−(x − σ

√
t )2/2} dx

= 1√
2π

sert
∫ ∞

−ω

(y + σ
√

t )e−y2/2 dy (by letting y = x − σ
√

t )

= sert

[ ∫ ∞

−ω

1√
2π

ye−y2/2 dy + σ
√

t
1√
2π

∫ ∞

−ω

e−y2/2 dy

]

= sert

[
1√
2π

e−ω2/2 + σ
√

t�(ω)

]
.
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The partial derivative of C with respect to σ is called vega.

Proposition 7.5.4
∂C

∂σ
= s

√
t�′(ω).

Proof. Equation (7.3) yields that

∂

∂σ
[e−r t(S(t) − K )] = e−r tS(t)(−tσ + √

t Z ).

Hence, by Equation (7.5),

∂C

∂σ
= E[e−r tIS(t)(−tσ + √

t Z )]

= −tσe−r tE[IS(t)] + √
te−r tE[IS(t)Z ]

= −tσs�(ω) + s
√

t(�′(ω) + σ
√

t�(ω))

= s
√

t�′(ω),

where the next-to-last equality used Lemmas 7.5.3 and 7.5.4.

The negative of the partial derivative of C with respect to t is called theta.

Proposition 7.5.5

∂C

∂t
= σ

2
√

t
s�′(ω) + Kre−r t�(ω − σ

√
t ).

Proof.

∂

∂t
[e−r t(S(t) − K )] = e−r t ∂S(t)

∂t
− re−r tS(t) + Kre−r t

= e−r tS(t)

(
r − σ 2

2
+ σ

2
√

t
Z

)

− re−r tS(t) + Kre−r t

= e−r tS(t)

(−σ 2

2
+ σ

2
√

t
Z

)
+ Kre−r t .
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Therefore, using Equation (7.5),

∂C

∂t
= −e−r tE[IS(t)]

σ 2

2
+ e−r tE[IZ S(t)]

σ

2
√

t
+ Kre−r tE[I ]

= −s�(ω)
σ 2

2
+ σ

2
√

t
s(�′(ω) + σ

√
t�(ω))

+ Kre−r t�(ω − σ
√

t )

= σ

2
√

t
s�′(ω) + Kre−r t�(ω − σ

√
t ).

Remark. To calculate vega and theta, use that �′(x) is the standard nor-
mal density function given by

�′(x) = 1√
2π

e−x 2/2.

The following corollary uses the partial derivatives to present a more
analytic proof of the results of Section 7.2.

Corollary 7.5.1 C(s, t, K, σ, r) is

(a) decreasing and convex in K ;
(b) increasing and convex in s;
(c) increasing, but neither convex nor concave, in r, σ, and t.

Proof. (a) From Proposition 7.5.1, we have ∂C
∂K < 0, and

∂ 2C

∂K 2
= −e−r t�′(ω − σ

√
t )

∂ω

∂K

= e−r t�′(ω − σ
√

t )
1

Kσ
√

t
> 0.

(b) It follows from Proposition 7.5.2 that ∂C
∂s > 0, and

∂ 2C

∂s2
= �′(ω)

∂ω

∂s

= �′(ω)
1

sσ
√

t
(7.6)

> 0.
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(c) It follows from Propositions 7.5.3, 7.5.4, and 7.5.5 that, for x =
r, σ, t,

∂C

∂x
> 0,

which proves the monotonicity. Because each of the second derivatives
can be shown to be sometimes positive and sometimes negative, it fol-
lows that C is neither convex nor concave in r, σ, or t.

Remarks. The results that C(s, t, K, σ, r) is decreasing and convex in
K and increasing in t would be true no matter what model we assumed
for the price evolution of the security. The results that C(s, t, K, σ, r) is
increasing and convex in s, increasing in r, and increasing in σ depend
on the assumption that the price evolution follows a geometric Brown-
ian motion with volatility parameter σ. The second partial derivative of
C with respect to s, whose value is given by Equation (7.6), is called
gamma.

7.6 European Put Options

The put call option parity formula, in conjunction with the Black-Scholes
equation, yields the unique no arbitrage cost of a European (K , t) put
option:

P(s, t, K , r, σ ) = C(s, t, K , r, σ ) + K e−r t − s (7.7)

Whereas the preceding is useful for computational purposes, to deter-
mine monotonicity and convexity properties of P = P(s, t, K , r, σ ) it
is also useful to use that P(s, t, K , r, σ ) must equal the expected return
from the put under the risk neutral geometric Brownian motion process.
Consequently, with Z being a standard normal random variable,

P(s, t, K , r, σ ) = e−r t E[(K − se(r− σ2
2 )t+σ

√
t Z )+]

= E[(K e−r t − se− σ2
2 t+σ

√
t Z )+]

Now, for a fixed value of Z , the function (K e−r t − se− σ2
2 t+σ

√
t Z )+ is

1. Decreasing and convex in s. (This follows because (a − bs)+ is, for
b > 0, decreasing and convex in s.)
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2. Decreasing and convex in r. (This follows because (ae−r t − b)+ is,
for a > 0, decreasing and convex in r .)

3. Increasing and convex in K . (This follows because (aK −b)+ is, for
a > 0, increasing and convex in K .)

Because the preceding properties remain true when we take expecta-
tions, we see that

• P(s, t, K , r, σ ) is decreasing and convex in s.
• P(s, t, K , r, σ ) is decreasing and convex in r .
• P(s, t, K , r, σ ) is increasing and convex in K .

Moreover, because C(s, t, K , r, σ ) is increasing in σ , it follows from
(7.7) that

• P(s, t, K , r, σ ) is increasing in σ.

Finally,

• P(s, t, K , r, σ ) is not necessarily increasing or decreasing in t .

The partial derivatives of P(s, t, K , r, σ ) can be obtained by us-
ing (7.6) in conjunction with the corresponding partial derivatives of
C(s, t, K , r, σ ).

7.7 Exercises

Unless otherwise mentioned, the unit of time should be taken as one
year.

Exercise 7.1 If the volatility of a stock is .33, find the standard devia-
tion of

(a) log
( Sd (n)

Sd (n−1)

)
,

(b) log
( Sm(n)

Sm(n−1)

)
,

where Sd(n) and Sm(n) are the prices of the security at the end of day n
and month n (respectively).

Exercise 7.2 The prices of a certain security follow a geometric Brown-
ian motion with parameters μ = .12 and σ = .24. If the security’s price
is presently 40, what is the probability that a call option, having four
months until its expiration time and with a strike price of K = 42, will
be exercised? (A security whose price at the time of expiration of a call
option is above the strike price is said to finish in the money.)
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Exercise 7.3 If the interest rate is 8%, what is the risk-neutral valua-
tion of the call option specified in Exercise 7.2?

Exercise 7.4 What is the risk-neutral valuation of a six-month Euro-
pean put option to sell a security for a price of 100 when the current price
is 105, the interest rate is 10%, and the volatility of the security is .30?

Exercise 7.5 A security’s price follows geometric Brownian motion
with drift parameter .06 and volatility parameter .3.

(a) What is the probability that the price of the security in six months
is less than 90% of what it is today?

(b) Consider a newly instituted investment that, for an initial cost of A,

returns you 100 in six months if the price at that time is less than
90% of what it initially was but returns you 0 otherwise. What must
be the value of A in order for this investment’s introduction not to
allow an arbitrage? Assume r = .05.

Exercise 7.6 The price of a certain security follows a geometric Brown-
ian motion with drift parameter μ = .05 and volatility parameter σ =
.3. The present price of the security is 95.

(a) If the interest rate is 4%, find the no-arbitrage cost of a call option
that expires in three months and has exercise price 100.

(b) What is the probability that the call option in part (a) is worthless at
the time of expiration?

(c) Suppose that a new type of investment on the security is being traded.
This investment returns 50 at the end of one year if the price six
months after purchasing the investment is at least 105 and the price
one year after purchase is at least as much as the price was after six
months. Determine the no-arbitrage cost of this investment.

Exercise 7.7 A European cash-or-nothing call pays its holder a fixed
amount F if the price at expiration time is larger than K and pays 0
otherwise. Find the risk-neutral valuation of such a call – one that ex-
pires in six month’s time and has F = 100 and K = 40 – if the present
price of the security is 38, its volatility is .32, and the interest rate is 6%.

Exercise 7.8 If the drift parameter of the geometric Brownian motion
is 0, find the expected payoff of the asset-or-nothing call in Exercise 7.7.
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Exercise 7.9 To determine the probability that a European call option
finishes in the money (see Exercise 7.2), is it enough to specify the five
parameters K, S(0), r, t, and σ? Explain your answer; if it is “no,” what
else is needed?

Exercise 7.10 The price of a security follows a geometric Brownian
motion with drift parameter 0.05 and volatility parameter 0.4. The cur-
rent price of the security is 100. A new investment that is being marketed
costs 10; after 1 year the investment will pay 5 if S(1) < 95, will pay
x if S(1) > 110, and will pay 0 otherwise. The nominal interest rate is
6 percent, continuously compounded.

(a) What must be the value of x if this new investment, which can be
bought or sold at any level, is not to give rise to an arbitrage?

(b) What is the probability that S(1) < 95?

Exercise 7.11 The price of a traded security follows a geometric
Brownian motion with drift 0.06 and volatility 0.4. Its current price
is 40. A brokerage firm is offering, at cost C , an investment that will
pay 100 at the end of 1 year either if the price of the security at 6 months
is at least 42 or if the price of the security at 1 year is at least 5 percent
above its price at 6 months. That is, the payoff occurs if either S(0.5) ≥
42 or S(1) > 1.05 S(0.5). The continuously compounded interest rate
is 0.06.

(a) If this investment is not to give rise to an arbitrage, what is C?
(b) What is the probability the investment makes money for its buyer?

Exercise 7.12 The price of a traded security follows a geometric
Brownian motion with drift 0.04 and volatility 0.2. Its current price
is 40. A brokerage firm is offering, at cost 10, an investment that will
pay 100 at the end of 1 year if S(1) > (1 + x)40. That is, there is a pay-
off of 100 if the price increases by at least 100x percent. Assume that
the continuously compounded interest rate is 0.02, and that the new in-
vestment can be bought or sold.

(a) If this investment is not to give rise to an arbitrage, what is x?
(b) What is the probability that the investment makes money for its

buyer?

Exercise 7.13 A European asset or nothing option that expires at time
t pays its holder the asset value S(t) at time t if S(t) > K and pays 0
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otherwise. Determine the no-arbitrage cost of such an option as a func-
tion of the parameters s, t, K , r, σ .

Exercise 7.14 What should be the cost of a call option if the strike price
is equal to zero?

Exercise 7.15 What should the cost of a call option become as the ex-
ercise time becomes larger and larger? Explain your reasoning (or do
the mathematics).

Exercise 7.16 What should the cost of a (K, t) call option become as
the volatility becomes smaller and smaller?

Exercise 7.17 Show, by plotting the curve, that f (r) = (ae−r t − b)+

is, for a > 0, decreasing and convex in r .

Exercise 7.18 Is the function g(r) = (a − be−r t)+ concave in r when
b > 0? Is it convex?
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8. Additional Results on Options

8.1 Introduction

In this chapter we look at some extensions of the basic call option model.
In Section 8.2 we consider European call options on dividend-paying
securities under three different scenarios for how the dividend is paid.
In Section 8.2.1 we suppose that the dividend for each share owned is
paid continuously in time at a rate equal to a fixed fraction of the price
of the security. In Sections 8.2.2 and 8.2.3 we suppose that the divi-
dend is to be paid at a specified time, with the amount paid equal to a
fixed fraction of the price of the security (Section 8.2.2) or to a fixed
amount (Section 8.2.3). In Section 8.3 we show how to determine the
no-arbitrage price of an American put option. In Section 8.4 we intro-
duce a model that allows for the possibilities of jumps in the price of a
security. This model supposes that the security’s price changes accord-
ing to a geometric Brownian motion, with the exception that at random
times the price is assumed to change by a random multiplicative fac-
tor. In Section 8.4.1 we derive an exact formula for the no-arbitrage
cost of a call option when the multiplicative jumps have a lognormal
probability distribution. In Section 8.4.2 we suppose that the multi-
plicative jumps have an arbitrary probability distribution; we show that
the no-arbitrage cost is always at least as large as the Black–Scholes
formula when there are no jumps, and we then present an approxima-
tion for the no-arbitrage cost. In Section 8.5 we describe a variety of
different techniques for estimating the volatility parameter. Section 8.6
consists of comments regarding the results obtained in this and the pre-
vious chapter.

8.2 Call Options on Dividend-Paying Securities

In this section we determine the no-arbitrage price for a European call
option on a stock that pays a dividend. We consider three cases that cor-
respond to different types of dividend payments.
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8.2.1 The Dividend for Each Share of the Security Is
Paid Continuously in Time at a Rate Equal to a
Fixed Fraction f of the Price of the Security

For instance, if the stock’s price is presently S, then in the next dt time
units the dividend payment per share of stock owned will be approxi-
mately f S dt when dt is small.

To begin, we need a model for the evolution of the price of the se-
curity over time. One way to obtain a reasonable model is to suppose
that all dividends are reinvested in the purchase of additional shares of
the stock. Thus, we would be continuously adding additional shares at
the rate f times the number of shares we presently own. Consequently,
our number of shares is growing by a continuously compounded rate f.
Therefore, if we purchased a single share at time 0, then at time t we
would have e f t shares with a total market value of

M(t) = e f tS(t).

It seems reasonable to suppose that M(t) follows a geometric Brownian
motion with volatility given by, say, σ. The risk-neutral probabilities on
M(t) are those of a geometric Brownian motion with volatility σ and
drift r −σ 2/2. Consequently, for there not to be an arbitrage, all options
must be priced to be fair bets under the assumption that e f yS(y) (y ≥
0) follows such a risk-neutral geometric Brownian motion.

Consider a European option to purchase the security at time t for the
price K. Under the risk-neutral probabilities on M(t), we have

S(t)

S(0)
= e− f t M(t)

M(0)
= e− f teW,

where W is a normal random variable with mean (r − σ 2/2)t and vari-
ance tσ 2. Thus, under the risk-neutral probabilities,

S(t) = S(0)e− f teW .

Therefore, by the arbitrage theorem, we see that if S(0) = s then the

no-arbitrage cost of (K, t) option = e−r tE[(S(t) − K )+ ]

= e−r tE[(se− f teW − K )+ ]

= C(se− f t , t, K, σ, r),
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where C(s, t, K, σ, r) is the Black–Scholes formula. In other words,
the no-arbitrage cost of the European (K, t) call option, when the initial
price is s, is exactly what its cost would be if there were no dividends
but the inital price were se− f t .

8.2.2 For Each Share Owned, a Single Payment of f S(td)

Is Made at Time td

It is usual to suppose that, at the moment the dividend is paid, the price
of a share instantaneously decreases by the amount of the dividend. (If
one assumes that the price never drops by at least the amount of the divi-
dend, then buying immediately before and selling immediately after the
payment of the dividend would result in an arbitrage; hence, there must
be some possibility of a drop in price of at least the amount of the div-
idend, and the usual assumption – which is roughly in agreement with
actual data – is that the price decreases by exactly the dividend paid.) Be-
cause of this downward price jump at the moment at which the dividend
is paid, it is clear that we cannot model the price of the security as a geo-
metric Brownian motion (which has no discontinuities). However, if we
again suppose that the dividend payment at time td is used to purchase
additional shares, then we can model the market value of our shares by a
geometric Brownian motion. Because the price of a share immediately
after the dividend is paid is S(td)− f S(td) = (1− f )S(td), the dividend
f S(td) from a single share can be used to purchase f/(1− f ) additional
shares. Hence, starting with a single share at time 0, the market value
of our portfolio at time y, call it M(y), is

M(y) =
{

S(y) if y < td,
1

1− f S(y) if y ≥ td .

Let us take as our model that M(y) (y ≥ 0) follows a geometric Brown-
ian motion with volatility parameter σ. The risk-neutral probabilities for
this process are that of a geometric Brownian motion with volatility pa-
rameter σ and drift parameter r − σ 2/2. For y < td, M(y) = S(y);
thus, when t < td, the unique no-arbitrage cost of a (K, t) option on the
security is just the usual Black–Scholes cost. For t > td, note that

S(t)

S(0)
= (1 − f )

M(t)

M(0)
, t > td .
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Thus, under the risk-neutral probabilities,

1

1 − f

S(t)

S(0)
= M(t)

M(0)
= eW, t > td,

where W is a normal random variable with mean (r − σ 2/2)t and vari-
ance tσ 2. Thus, again under the risk-neutral probabilities,

S(t) = (1 − f )S(0)eW, t > td .

When t > td, it follows by the arbitrage theorem that the unique no-
arbitrage cost of a European (K, t) call option, when the initial price of
the security is s, is exactly what its cost would be if there were no divi-
dends but the inital price of the security were s(1 − f ). That is, for t >

td, the

no-arbitrage cost of (K, t) option = e−r tE[(S(t) − K )+ ]

= e−r tE[(s(1 − f )eW − K )+ ]

= C(s(1 − f ), t, K, σ, r),

where C(s, t, K, σ, r) is the Black–Scholes formula.

8.2.3 For Each Share Owned, a Fixed Amount D Is
to Be Paid at Time td

As in the previous cases, we must first determine an appropriate model
for S(y) (y ≥ 0), the price evolution of the security. To begin, note
that the known dividend payment D to be made to shareholders at the
known time td necessitates that the price of the security at time y < td

must be at least De−r(td−y). This is true because, if S(y) < De−r(td−y)

for some y < td, then an arbitrage can be effected by borrowing S(y)

at time y and using this amount to purchase the security; the security is
held through time td and the loan is paid off immediately after the divi-
dend is received. Consequently, we cannot model S(y) (0 ≤ y ≤ td) as
a geometric Brownian motion.

To model the price evolution up to time td, it is best to separate the
price of the security into two parts of which one is riskless and results
from the fixed payment at time td . That is, let

S∗(y) = S(y) − De−r(td−y), y < td,
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and write
S(y) = De−r(td−y) + S∗(y), y < td .

It is reasonable to model S∗(y), y < td, as a geometric Brownian mo-
tion, with its volatility parameter denoted by σ. Because the riskless
part of the price is increasing at rate r, it is intuitive that risk-neutral
probabilities would result when the drift parameter of S∗(y), y < td, is
r − σ 2/2. To check that this assumption on the drift would result in all
bets being fair, note that under it the expected present value return from
purchasing the security at time 0 and then selling at time t < td is

e−r tE[S(t)] = e−r tDe−r(td−t) + e−r tE[S∗(t)]

= De−r td + S∗(0)

= S(0).

Suppose now that we want to find the no-arbitrage cost of a European
call option with strike price K and expiration time t < td when the ini-
tial price of the security is s. If K < De−r(td−t), then the option will
definitely be exercised (because S(t) ≥ De−r(td−t)). Consequently, pur-
chasing the option in this case is equivalent to purchasing the security.
By the law of one price, the cost of the option plus the present value of
the strike price must therefore equal the cost of the security. That is, if
t < td and K < De−r(td−t) then the

no-arbitrage cost of option = s − Ke−r t .

Suppose now that the option expires at time t < td and its strike price
K satisfies K ≥ De−r(td−t). Because S∗(y) is geometric Brownian mo-
tion, we can use the risk-neutral representation

S∗(t) = S∗(0)eW = (s − De−r td )eW,

where W is a normal random variable with mean (r − σ 2/2)t and vari-
ance tσ 2. The arbitrage theorem yields that the

no-arbitrage cost of option = e−r tE[(S(t) − K )+ ]

= e−r tE[(S∗(t) + De−r(td−t) − K )+ ]

= e−r tE[((s − De−r td )eW

− (K − De−r(td−t)))+ ]

= C(s − De−r td , t, K − De−r(td−t), σ, r).
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In other words, if the dividend is to be paid after the expiration date of the
option, then the no-arbitrage cost of the option is given by the Black–
Scholes formula for a call option on a security whose initial price is
s − De−r td and whose strike price is K − De−r(td−t).

Now consider a European call option with strike price K that expires
at time t > td . Suppose the initial price of the security is s. Because the
price of the security will immediately drop by the dividend amount D
at time td, we have that

S(t) = S∗(t), t ≥ td .

Hence, assuming that the volatility of the geometric Brownian motion
process S∗(y) remains unchanged after time td, we see that the risk-
neutral cost of a (K, t) call option is

e−r tE[(S(t) − K )+ ] = e−r tE[(S∗(t) − K )+ ]

= e−r tE[(S∗(0)eW − K )+ ]

= e−r tE[((s − De−r td )eW − K )+ ].

Because the right side of the preceding equation is the Black–Scholes
cost of a call option with strike price K and expiration time t, when the
initial price of the security is s − De−r td we obtain that the

risk-neutral cost of option = C(s − De−r td , t, K, σ, r).

In other words, if the dividend is to be paid during the life of the option,
then the no-arbitrage cost of the option is given by the Black–Scholes
formula – except that the initial price of the security is reduced by the
present value of the dividend.

8.3 Pricing American Put Options

There is no difficulty in determining the risk-neutral prices of European
put options. The put–call option parity formula gives that

P(s, t, K, σ, r) = C(s, t, K, σ, r) + Ke−r t − s,

where P(s, t, K, σ, r) is the risk-neutral price of a European put hav-
ing strike price K at exercise time t, given that the price at time 0 is
s, the volatility of the stock is σ, and the interest rate is r, and where
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C(s, t, K, σ, r) is the corresponding risk-neutral price for the call op-
tion. However, because early exercise is sometimes beneficial, the risk-
neutral pricing of American put options is not so straightforward. We
will now present an efficient technique for obtaining accurate approxi-
mations of these prices.

The risk-neutral price of an American put option is the expected present
value of owning the option under the assumption that the prices of the un-
derlying security change in accordance with the risk-neutral geometric
Brownian motion and that the owner utilizes an optimal policy in deter-
mining when, if ever, to exercise that option. To approximate this price,
we approximate the risk-neutral geometric Brownian motion process by
a multiperiod binomial process as follows. Choose a number n and, with
t equal to the exercise time of the option, let tk = kt/n (k = 0,1, .. ., n).

Now suppose that:

(1) the option can only be exercised at one of the times tk (k = 0,1,
.. ., n); and

(2) if S(tk) is the price of the security at time tk, then

S(tk+1) =
{

uS(tk) with probability p,

dS(tk) with probability 1 − p,

where
u = eσ

√
t/n, d = e−σ

√
t/n,

p = 1 + r t/n − d

u − d
.

The first two possible price movements of this process are indicated in
Figure 8.1.

We know from Section 7.1 that the preceding discrete time approxi-
mation becomes the risk-neutral geometric Brownian motion process as
n becomes larger and larger; in addition, because the price curve under
geometric Brownian motion can be shown to be continuous, it is intu-
itive (and can be verified) that the expected loss incurred in allowing the
option only to be exercised at one of the times tk goes to 0 as n becomes
larger. Hence, by choosing n reasonably large, the risk-neutral price of
the American option can be accurately approximated by the expected
present value return from the option, assuming that both conditions (1)
and (2) hold and also that an optimal policy is employed in determin-
ing when to exercise the option. We now show how to determine this
expected return.
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Figure 8.1: Possible Prices of the Discrete Approximation Model

To start, note that if i of the first k price movements were increases
and k − i were decreases, then the price at time tk would be

S(tk) = uid k−is.

Since i must be one of the values 0,1, .. ., k, it follows that there are
k +1 possible prices of the security at time tk . Now, let Vk(i) denote the
time-tk expected return from the put, given that the put has not been ex-
ercised before time tk, that the price at time tk is S(tk) = uid k−is, and
that an optimal policy will be followed from time tk onward.

To determine V0(0), the expected present value return of owning the
put, we work backwards. That is, first we determine Vn(i) for each of
its n +1 possible values of i; then we determine Vn−1(i) for each of its n
possible values of i; then Vn−2(i) for each of its n −1 possible values of
i; and so on. To accomplish this task, note first that, because the option
expires at time tn,

Vn(i) = max(K − uid n−is, 0), (8.0)

which determines all the values Vn(i), i = 0, .. ., n. Now let

β = e−r t/n;
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suppose we are at time tk, the put has not yet been exercised, and the
price of the stock is uid k−is. If we exercise the option at this point, then
we will receive K − uid k−is. On the other hand, if we do not exercise
then the price at time tk+1 will be either ui+1d k−is with probability p
or uid k−i+1s with probability 1 − p. If it is ui+1d k−is and we employ
an optimal policy from that time on, then the time-tk expected return
from the put is βVk+1(i + 1); similarly, the expected return if the price
decreases is βVk+1(i). Hence, because the price will increase with prob-
ability p or decrease with probability 1− p, it follows that the expected
time-tk return if we do not exercise but then continue optimally is

pβVk+1(i + 1) + (1 − p)βVk+1(i).

Because K − uid k−is is the return if we exercise and because the pre-
ceding is the maximal expected return if we do not exercise, it follows
that the maximal possible expected return is the larger of these two. That
is, for k = 0, .. ., n − 1,

Vk(i) = max(K − uid k−is, βpVk+1(i + 1) + β(1 − p)Vk+1(i)),

i = 0, .. ., k. (8.1)

To obtain the approximation, we first use Equation (8.0) to determine
the values of Vn(i); we then use Equation (8.1) with k = n − 1 to ob-
tain the values Vn−1(i); we then use Equation (8.1) with k = n − 2 to
obtain the values Vn−2(i); and so on until we have the desired value
of V0(0), the approximation of the risk-neutral price of the American
put option. Although computationally messy when done by hand, this
procedure is easily programmed and can also be done with a spread-
sheet.

Remarks. 1. The computations can be simplified by noting that ud = 1
and also by making use of the following results, which can be shown to
hold.

(a) If the put is worthless at time tk when the price of the security is x,

then it is also worthless at time tk when the price of the security is
greater than x . That is,

Vk(i) = 0 �⇒ Vk( j) = 0 if j > i.
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(b) If it is optimal to exercise the put option at time tk when the price is
x, then it is also optimal to exercise it at time tk when the price of
the security is less than x . That is,

Vk(i) = K − uid k−is �⇒ Vk( j) = K − u jd k− js if j < i.

2. Although we defined β as e−r t/n, we could just as well have defined
it to equal 1

1+r t/n .

3. The method employed to determine the values Vk(i) is known as dy-
namic programming. We will also utilize this technique in Chapter 10,
which deals with optimization models in finance.

Example 8.3a Suppose we want to price an American put option hav-
ing the following parameters:

s = 9, t = .25, K = 10, σ = .3, r = .06.

To illustrate the procedure, suppose we let n = 5 (which is much too
small for an accurate approximation). With the preceding parameters,
we have that

u = e .3
√

.05 = 1.0694,

d = e−.3
√

.05 = 0.9351,

p = 0.5056,

1 − p = 0.4944,

β = e−r t/n = 0.997.

The possible prices of the security at time t5 are:

9d 5 = 6.435,

9ud 4 = 7.359,

9u2d 3 = 8.416,

9u3d 2 = 9.625,

9uid 5−i > 10 (i = 4, 5).
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Hence,

V5(0) = 3.565,

V5(1) = 2.641,

V5(2) = 1.584,

V5(3) = 0.375,

V5(i) = 0 (i = 4, 5).

Since 9u2d 2 = 9, Equation (8.1) gives

V4(2) = max(1, βpV5(3) + β(1 − p)V5(2)) = 1,

which shows that it is optimal to exercise the option at time t4 when the
price is 9. From Remark 1(b) it follows that the option should also be
exercised at this time at any lower price, so

V4(1) = 10 − 9ud 3 = 2.130

and
V4(0) = 10 − 9d 4 = 3.119.

As 9u3d = 10.293, Equation (8.1) gives

V4(3) = βpV5(4) + β(1 − p)V5(3) = 0.181.

Similarly,
V4(4) = βpV5(5) + β(1 − p)V5(4) = 0.

Continuing, we obtain

V3(0) = max(2.641, βpV4(1) + β(1 − p)V4(0)) = 2.641,

V3(1) = max(1.584, βpV4(2) + β(1 − p)V4(1)) = 1.584,

V3(2) = max(0.375, βpV4(3) + β(1 − p)V4(2)) = 0.584,

V3(3) = βpV4(4) + β(1 − p)V4(3) = 0.089.

Similarly,

V2(0) = max(2.130, βpV3(1) + β(1 − p)V3(0)) = 2.130,

V2(1) = max(1, βpV3(2) + β(1 − p)V3(1)) = 1.075,

V2(2) = βpV3(3) + β(1 − p)V3(2) = 0.333,
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and

V1(0) = max(1.584, βpV2(1) + β(1 − p)V2(0)) = 1.592,

V1(1) = max(0.375, βpV2(2) + β(1 − p)V2(1)) = 0.698,

which gives the result

V0(0) = max(1, βpV1(1) + β(1 − p)V1(0)) = 1.137.

That is, the risk-neutral price of the put option is approximately 1.137.
(The exact answer, to three decimal places, is 1.126, indicating a very
respectable approximation given the small value of n that was used.)

8.4 Adding Jumps to Geometric Brownian Motion

One of the drawbacks of using geometric Brownian motion as a model
for a security’s price over time is that it does not allow for the possi-
bility of a discontinuous price jump in either the up or down direction.
(Under geometric Brownian motion, the probability of having a jump
would, in theory, equal 0.) Because such jumps do occur in practice, it is
advantageous to consider a model for price evolution that superimposes
random jumps on a geometric Brownian motion. We now consider such
a model.

Let us begin by considering the times at which the jumps occur. We
will suppose, for some positive constant λ, that in any time interval of
length h there will be a jump with probability approximately equal to
λh when h is very small. Moreover, we will assume that this probabil-
ity is unchanged by any information about earlier jumps. If we let N(t)
denote the number of jumps that occur by time t then, under the preced-
ing assumptions, N(t), t ≥ 0, is called a Poisson process, and it can be
shown that

P{N(t) = n} = e−λt (λt)n

n!
, n = 0,1, .. . .

Let us also suppose that, when the i th jump occurs, the price of the
security is multiplied by the amount Ji , where J1, J2, .. . are indepen-
dent random variables having a common specified probability distribu-
tion. Further, this sequence is assumed to be independent of the times
at which the jumps occur.
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To complete our description of the price evolution, let S(t) denote the
price of the security at time t, and suppose that

S(t) = S∗(t)
N(t)∏
i=1

Ji , t ≥ 0,

where S∗(t), t ≥ 0, is a geometric Brownian motion, say with volatil-
ity parameter σ and drift parameter μ, that is independent of the Ji and
of the times at which the jumps occur, and where

∏N(t)
i=1 Ji is defined to

equal 1 when N(t) = 0.

To find the risk-neutral probabilities for the price evolution, let

J(t) =
N(t)∏
i=1

Ji .

It will be shown in Section 8.7 that

E[J(t)] = e−λt(1−E[J ]), (8.2)

where E[J ] = E[Ji ] is the expected value of a multiplicative jump. Be-
cause S∗(t), t ≥ 0, is a geometric Brownian motion with parameters μ

and σ, we have
E[S∗(t)] = S∗(0)e(μ+σ 2/2)t .

Therefore,

E[S(t)] = E[S∗(t)J(t)]

= E[S∗(t)]E[J(t)] (by independence)

= S∗(0)e(μ+σ 2/2−λ(1−E[J ])t .

Consequently, security-buying bets will be fair bets (i.e., E[S(t)] =
S(0)ert) provided that

μ + σ 2/2 − λ(1 − E[J ]) = r.

In other words, risk-neutral probabilities for the security’s price evolu-
tion will result when μ, the drift parameter of the geometric Brownian
motion S∗(t), t ≥ 0, is given by

μ = r − σ 2/2 + λ − λE[J ].
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By the arbitrage theorem, if all options are priced to be fair bets with
respect to the preceding risk-neutral probabilities, then no arbitrage is
possible. For instance, the no-arbitrage cost of a European call option
having strike price K and expiration time t is given by

no-arbitrage cost = E[e−r t(S(t) − K )+ ]

= e−r tE[(J(t)S∗(t) − K )+ ]

= e−r tE[(J(t)seW − K )+ ], (8.3)

where s = S∗(0) is the initial price of the security and W is a normal
random variable with mean (r − σ 2/2 + λ − λE[J ])t and variance tσ 2.

In Section 8.4.1 we explicitly evaluate Equation (8.3) when the Ji

are lognormal random variables, and in Section 8.4.2 we derive an
approximation in the case of a general jump distribution. As always,
C(s, t, K, σ, r) will be the Black–Scholes formula.

8.4.1 When the Jump Distribution Is Lognormal

If the jumps Ji have a lognormal distribution with mean parameter μ0

and variance parameter σ 2
0 , then

E[J ] = exp{μ0 + σ 2
0 /2}.

If we let
Xi = log(Ji ), i ≥ 1,

then the Xi are independent normal random variables with mean μ0 and
variance σ 2

0 . Also,

J(t) =
N(t)∏
i=1

Ji =
N(t)∏
i=1

e Xi = exp

{ N(t)∑
i=1

Xi

}
.

Consequently, using Equation (8.3), we see that the no-arbitrage cost of
a European call option having strike price K and expiration time t is

no-arbitrage cost = e−r tE

[(
s exp

{
W +

N(t)∑
i=1

Xi

}
− K

)+]
, (8.4)

where s is the initial price of the security. Now suppose that there were a
total of n jumps by time t. That is, suppose it were known that N(t) = n.
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Then W + ∑N(t)
i=1 Xi would be a normal random variable with mean and

variance given by

E

[
W +

N(t)∑
i=1

Xi | N(t) = n

]
= (r − σ 2/2 + λ − λE[J ])t + nμ0,

Var

(
W +

N(t)∑
i=1

Xi | N(t) = n

)
= tσ 2 + nσ 2

0 .

Therefore, if we let
σ 2(n) = σ 2 + nσ 2

0 /t

and let

r(n) = r − σ 2/2 + λ − λE[J ] + nμ0

t
+ σ 2(n)/2

= r + λ − λE[J ] + n

t
(μ0 + σ 2

0 /2)

= r + λ − λE[J ] + n

t
log(E[J ]), (8.5)

then it follows, when N(t) = n, that W + ∑N(t)
i=1 Xi is a normal ran-

dom variable with variance tσ 2(n) and mean (r(n) − σ 2(n)/2)t. But
this implies that, when N(t) = n,

e−r(n)tE

[(
s exp

{
W +

N(t)∑
i=1

Xi

}
− K

)+
| N(t) = n

]

= C(s, t, K, σ(n), r(n)).

Multiplying both sides of the preceding equation by e(r(n)−r)t gives

e−r tE

[(
s exp

{
W +

N(t)∑
i=1

Xi

}
− K

)+
| N(t) = n

]

= e(r(n)−r)tC(s, t, K, σ(n), r(n)).

Equation (8.4) shows that the preceding expression is the desired ex-
pected value if we are given that there are n jumps by time t. Conse-
quently, it is reasonable (and can be shown to be correct) that the uncon-
ditional expected value should be a weighted average of these quantities,
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with the weight given to the quantity indexed by n equal to the proba-
bility that N(t) = n. That is,

no-arbitrage cost

=
∞∑

n=0

e−λt (λt)n

n!
e(r(n)−r)tC(s, t, K, σ(n), r(n))

=
∞∑

n=0

e−λtE[J ](E[J ])n (λt)n

n!
C(s, t, K, σ(n), r(n)) (from (8.5))

=
∞∑

n=0

e−λtE[J ] (λtE[J ])n

n!
C(s, t, K, σ(n), r(n)).

Summing up, we have proved the following.

Theorem 8.4.1 If the jumps have a lognormal distribution with mean
parameter μ0 and variance parameter σ 2

0 , then the no-arbitrage cost of
a European call option having strike price K and expiration time t is as
follows:

no-arbitrage cost =
∞∑

n=0

e−λtE[J ] (λtE[J ])n

n!
C(s, t, K, σ(n), r(n)),

where
σ 2(n) = σ 2 + nσ 2

0 /t,

r(n) = r + λ(1 − E[J ]) + n

t
log(E[J ]),

and
E[J ] = exp{μ0 + σ 2

0 /2}.

Remark. Although Theorem 8.4.1 involves an infinite series, in most
applications λ – the rate at which jumps occur – will be quite small and
thus the sum will converge rapidly.

8.4.2 When the Jump Distribution Is General

We start with Equation (8.3), which states that the no-arbitrage cost of
a European call option having strike price K and expiration time t is as
follows:

no-arbitrage cost = e−r tE[(J(t)seW − K )+ ],
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where s is the price of the security at time 0 and W is a normal random
variable with mean (r −σ 2/2 +λ−λE[J ])t and variance tσ 2. If we let

W ∗ = W − λt(1 − E[J ])

and

st = seλt(1−E[J ]) = s

E[J(t)]
,

then we can write

no-arbitrage cost = E[e−r t(st J(t)eW ∗ − K )+ ].

Because W ∗ is a normal random variable with mean (r − σ 2/2)t and
variance tσ 2, it follows that

no-arbitrage cost = E[C(st J(t), t, K, σ, r)]. (8.6)

Because C(s, t, K, σ, r) is a convex function of s, it follows from a re-
sult known as Jensen’s inequality (see Section 9.2) that

E[C(st J(t), t, K, σ, r)] ≥ C(E[st J(t)], t, K, σ, r) = C(s, t, K, σ, r),

thus showing that the no-arbitrage cost in the jump model is not less than
it is in the same model excluding jumps. (Actually, it will be strictly
larger in the jump model provided that P{Ji = 1} 	= 1.)

An approximation for the no-arbitrage cost can be obtained by regard-
ing C(x) = C(x, t, K, σ, r) solely as a function of x (by keeping the
other variables fixed), expanding it in a Taylor series about some value
x0, and then ignoring all terms beyond the third to obtain

C(x) ≈ C(x0) + C ′(x0)(x − x0) + C ′′(x0)(x − x0)
2/2.

Therefore, for any nonnegative random variable X, we have

C(X ) ≈ C(x0) + C ′(x0)(X − x0) + C ′′(x0)(X − x0)
2/2.

Letting x0 = E[X ] and taking expectations of both sides of the preced-
ing yields that

E[C(X )] ≈ C(E[X ]) + C ′′(E[X ]) Var(X )/2.
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Therefore, letting
X = st J(t), E[X ] = s

gives that

E[C(st J(t))] ≈ C(s) + C ′′(s)s2
t Var(J(t))/2.

It can now be shown (see Section 8.7) that

Var(J(t)) = e−λt(1−E[J 2]) − e−2λt(1−E[J ]), (8.7)

where J has the probability distribution of the Ji . Therefore, using the
formula derived in Section 7.5 for C ′′(s) (which is called gamma in
that section) leads to the approximation given in the following theorem,
which sums up the results of this subsection.

Theorem 8.4.2 Assuming a general distribution for the size of a jump,
the

no-arbitrage option cost = E[C(st J(t), t, K, σ, r)]

≥ C(s, t, K, σ, r).

Moreover,

no-arbitrage option cost

≈ C(s, t, K, σ, r) + s2
t [e−λt(1−E[J 2]) − e−2λt(1−E[J ])]

1

2sσ
√

2πt
e−ω2/2

= C(s, t, K, σ, r) + s2(eλt(1−2E[J ]+E[J 2]) − 1)
1

2sσ
√

2πt
e−ω2/2,

where
st = seλt(1−E[J ])

and

ω = r t + σ 2 t/2 − log(K/s)

σ
√

t
.

8.5 Estimating the Volatility Parameter

Whereas four of the five parameters needed to evaluate the Black–
Scholes formula – namely, s, t, K, and r – are known quantities, the
value of σ has to be estimated. One approach is to use historical data.
Section 8.5.1 gives the standard approach for estimating a population
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variance; Section 8.5.2 applies the standard approach to obtain an esti-
mator of σ based on closing prices of the security over successive days;
Section 8.5.3 gives an improved estimator based on both daily closing
and opening prices; and Section 8.5.4 gives a more sophisticated esti-
mator that uses daily high and low prices as well as daily opening and
closing prices.

8.5.1 Estimating a Population Mean and Variance

Suppose that X1, .. ., Xn are independent random variables having a
common probability distribution with mean μ0 and variance σ 2

0 . The
average of these data values,

X̄ =
∑n

i=1 Xi

n
,

is the usual estimator of the mean. Because

σ 2
0 = Var(Xi ) = E[(Xi − μ0)

2],

it would appear that σ 2
0 could be estimated by

∑n
i=1(Xi − μ0)

2

n
.

However, this estimator cannot be directly utilized when the mean μ0

is unknown. To use it, we must first replace the unknown μ0 by its esti-
mator X̄ . If we then replace n by n − 1, we obtain the sample variance
S2, defined by

S2 =
∑n

i=1(Xi − X̄ )2

n − 1
.

The sample variance is the standard estimator of the variance σ 2
0 . It is

an unbiased estimator of σ 2
0 , meaning that

E[S2] = σ 2
0 .

(It is because we wanted the estimator to be unbiased that we changed
its denominator from n to n − 1.) The effectiveness of S2 as an estima-
tor of the variance can be measured by its mean square error (MSE),
defined as

MSE = E[(S2 − σ 2
0 )2]

= Var(S2).
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When the Xi come from a normal distribution, it can be shown that

Var(S2) = 2σ 4
0

n − 1
. (8.8)

8.5.2 The Standard Estimator of Volatility

Suppose that we want to estimate σ using t time units of historical data,
which we will suppose run from time 0 to time t. That is, suppose that
the present time is t and that we have the historical price data S(y),

0 ≤ y ≤ t. Fix a positive integer n, let � = t/n, and define the random
variables

X1 = log

(
S(�)

S(0)

)
,

X2 = log

(
S(2�)

S(�)

)
,

X3 = log

(
S(3�)

S(2�)

)
,

...

Xn = log

(
S(n�)

S((n − 1)�)

)
.

Under the assumption that the price evolution follows a geometric
Brownian motion with parameters μ and σ, it follows that X1, .. ., Xn are
independent normal random variables with mean �μ and variance �σ 2.

From Section 8.5.1, it follows that we can use
∑n

i=1(Xi − X̄ )2/(n − 1)
to estimate �σ 2. Therefore, we can estimate σ 2 by

σ̂ 2 = 1

�

∑n
i=1(Xi − X̄ )2

n − 1
.

Moreover, it follows from Equation (8.8) that

Var(σ̂ 2) = 1

�2

2(�σ 2)2

n − 1
= 2σ 4

n − 1
. (8.9)

It follows from Equation (8.9) that we can use price data history over
any time interval to obtain an arbitrarily precise estimator of σ 2. That is,
breaking up the time interval into a large number of subintervals results
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in an unbiased estimator of σ 2 having an arbitrarily small variance. The
difficulty with this approach, however, is that it strongly depends on
the assumption that the logarithms of price ratios S(i�)/S((i − 1)�) are
independent with a common distribution, even when the time lag � is
arbitrarily small. Indeed, even assuming that a security’s price history
resembles a geometric Brownian motion process, it is unlikely to look
like one under a microscope. That is, while successive daily closing
prices might appear to be consistent with a geometric Brownian mo-
tion, it is unlikely that this would be true for hourly (or more frequent)
prices. For this reason we recommend that the preceding procedure be
used with � equal to one day. Because the unit of time is one year and
there are approximately 252 trading days in a year, � = 1/252.

To use this method to estimate σ, consider n successive daily closing
prices C1, .. ., Cn, where Ci is the closing price on trading day i. Let C0

be the closing price of the security immediately before these n days, and
set

Xi = log

(
Ci

Ci−1

)
= log(Ci ) − log(Ci−1).

The sample variance of these data values,

S2 =
∑n

i=1(Xi − X̄ )2

n − 1
,

can be taken as the estimator of σ 2/252; S
√

252 can be used to esti-
mate σ.

Remark. If μ and σ are the drift and volatility parameters of the geo-
metric Brownian motion, then

E

[
log

(
Ci

Ci−1

)]
= μ

252
,

√
Var

(
log

(
Ci

Ci−1

))
= σ√

252
.

Because μ will typically have a value close to 0 whereas σ is typi-
cally greater than .2, it follows that the mean of Xi = log(Ci/Ci−1) is
negligible with respect to its standard deviation. Therefore, we could
approximate μ by 0 and, with very small loss of efficiency, use

∑n
i=1 X 2

i

n
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as the estimator of σ 2/252. It is important to note that this estimator
can be used even when the geometric Brownian motion has a time-
varying drift parameter. (Recall that the Black–Scholes formula yields
the unique no-arbitrage cost even in the case of a time-varying drift
parameter.)

8.5.3 Using Opening and Closing Data

Let Ci denote the (closing) price of a security at the end of trading
day i. Under the assumption that the security’s price follows a geomet-
ric Brownian motion, log(Ci/Ci−1) is a normal random variable whose
mean is approximately 0 and whose variance is σ 2/252. Letting Oi be
the opening price of the security at the beginning of trading day i, we
can write

log

(
Ci

Ci−1

)
= log

(
Ci

Oi

Oi

Ci−1

)

= log

(
Ci

Oi

)
+ log

(
Oi

Ci−1

)
.

Assuming that Ci/Oi and Oi/Ci−1 are independent – that is, assuming
that the ratio price change during a trading day is independent of the
ratio price change that occurred while the market was closed – it follows
that

Var(log(Ci/Ci−1)) = Var(log(Ci/Oi )) + Var(log(Oi/Ci−1))

= Var(C ∗
i − O∗

i ) + Var(O∗
i − C ∗

i−1), (8.10)

where
C ∗

j = log(Cj ), O∗
j = log(Oj ).

Because C ∗
i − O∗

i and O∗
i − C ∗

i−1 both have a mean of approximately
0, we can estimate σ 2/252 = Var(log(Ci/Ci−1)) by∑n

i=1(C
∗
i − O∗

i )2

n
+

∑n
i=1(O∗

i − C ∗
i−1)

2

n
.

This yields the estimator σ̂ of the volatility parameter σ :

σ̂ =
√√√√252

n

n∑
i=1

[(C ∗
i − O∗

i )2 + (O∗
i − C ∗

i−1)
2] . (8.11)
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Equation (8.11) should be a better estimator of σ than is the standard
estimator described in Section 8.5.2.

8.5.4 Using Opening, Closing, and High–Low Data

Following the notation introduced in Section 8.5.3, let X ∗ = log(X ) for
any value X.

Let H(t) be the highest price and L(t) the lowest price of a security
over an interval of length t. That is,

H(t) = max
0≤y≤t

S(y),

L(t) = min
0≤y≤t

S(y).

Assuming that the security’s price follows geometric Brownian motion
with drift 0 and volatility σ, it can be shown that

E[(H ∗(t) − L∗(t))2] = 2.773 Var

(
log

(
S(t)

S(0)

))
.

Now let Oi and Ci be the opening and closing prices on trading day i,
and let Hi and Li be the high and the low prices during that day. Be-
cause E[log(Ci/Oi )] ≈ 0, we can approximate the price history during
a trading day as a geometric Brownian motion process with drift param-
eter 0. Therefore, using the preceding identity, we see that

E[(H ∗
i − L∗

i )
2] ≈ 2.773 Var(log(Ci/Oi )).

Thus, using n days’ worth of data, we can estimate Var(log(Ci/Oi )) by
the estimator

E1 = 1

2.773

∑n
i=1(H ∗

i − L∗
i )

2

n

= .361

n

n∑
i=1

(H ∗
i − L∗

i )
2.

However, Var(log(Ci/Oi )) = Var(C ∗
i − O∗

i ) can also be estimated by

E2 = 1

n

n∑
i=1

(C ∗
i − O∗

i )2.
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Any linear combination of these estimators of the form

αE1 + (1 − α)E2

can also be used to estimate Var(log(Ci/Oi )). The best estimator
of this type (i.e., the one whose variance is smallest) can be shown
to result when α = .5/.361 = 1.39. That is, the best estimator of
Var(log(Ci/Oi )) is

E = .5

.361
E1 − .39E2

= 1

n

n∑
i=1

[.5(H ∗
i − L∗

i )
2 − .39(C ∗

i − O∗
i )2]. (8.12)

Because we can estimate Var(log(Oi/Ci−1)) = Var(O∗
i − C ∗

i−1) by
1
n

∑n
i=1(O∗

i − C ∗
i−1)

2, it follows that

E + 1

n

n∑
i=1

(O∗
i − C ∗

i−1)
2

= 1

n

n∑
i=1

[.5(H ∗
i − L∗

i )
2 − .39(C ∗

i − O∗
i )2 + (O∗

i − C ∗
i−1)

2]

is an estimator of

Var(log(Ci/Oi )) + Var(log(Oi/Ci−1)) = Var(log(Ci/Ci−1))

= σ 2/252.

Consequently, we can estimate the volatility parameter σ by

σ̂ =
√√√√252

n

n∑
i=1

[.5(H ∗
i − L∗

i )
2 − .39(C ∗

i − O∗
i )2 + (O∗

i − C ∗
i−1)

2] .

(8.13)

Remark. The estimator of σ given in Equation (8.13) has not previ-
ously appeared in the literature. The approach presented here built on
the work of Garman and Klass (see reference [2]), who derived the es-
timator of Var(log(Ci/Oi )) given by Equation (8.12). In their further
analysis, however, Garman and Klass assume not only that the security’s
price follows a geometric Brownian motion when the market is open but
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also that it follows the same (although now unobservable) geometric
Brownian motion while the market is closed. Based on this assumption,
they supposed that

Var(C ∗
i − O∗

i ) = 1 − f

252
σ 2,

Var(O∗
i − C ∗

i−1) = f

252
σ 2,

where f is the fraction of the day that the market is closed. However, this
assumption – that the security’s price when the market is closed changes
according to the same probability law as when it is open – seems quite
doubtful. Therefore, we have chosen to make the much weaker assump-
tion that the ratio price changes Oi/Ci−1 are independent of all prices
up to market closure on day i − 1.

8.6 Some Comments

8.6.1 When the Option Cost Differs from the
Black–Scholes Formula

Suppose now that we have estimated the value of σ and inserted that
value into the Black–Scholes formula to obtain C(s, t, K, σ, r). What if
the market price of the option is unequal to C(s, t, K, σ, r)? Practically
speaking, is there really a strategy that yields us a sure win?

Unfortunately, the answer to this question is “probably not.” For one
thing, the arbitrage strategy when the actual trading price for the op-
tion differs from that given by the Black–Scholes formula requires that
one continuously trade (buy or sell) the underlying security. Not only is
this physically impossible, but even if discretely approximated it might
(in practice) result in large transaction costs that could easily exceed
the gain of the arbitrage. A second reason for our answer is that even
if we are willing to accept that our estimate of the historical value of σ

is very precise, it is possible that its value might change over the op-
tion’s life. Indeed, perhaps one reason that the market price differs from
the formula is because “the market” believes that the stock’s volatility
over the life of the option will not be the same as it was historically.
Indeed, it has been suggested that – rather than using historical data to
estimate a security’s volatility – a more accurate estimate can often be
obtained by finding the value of σ that, along with the other parameters
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(s, t, K, and r) of the option, makes the Black–Scholes valuation equal
to the actual market cost of the option. However, one difficulty with this
implied volatility is that different options on the same security, having
either different expiration times or strike prices or both, will often give
rise to different implied volatility estimates of σ. A common occurrence
is that implied volatilities derived from far out-of-the-money call op-
tions (i.e., ones in which the present market price is far below the strike
price) are larger than ones derived from at-the-money options (where the
present price is near the strike price). With respect to the Black–Scholes
valuation based on estimating σ via historical data, these comments sug-
gest that out-of-the-money call options tend to be overpriced with re-
spect to at-the-money call options. A third (even more basic) reason why
there is probably no way to guarantee a win is that the assumption that
the underlying security follows a geometric Brownian motion is only an
approximation to reality, and – even ignoring transaction costs – the ex-
istence of an arbitrage strategy relies on this assumption. Indeed many
traders would argue against the geometric Brownian motion assumption
that future price changes are independent of past prices, claiming to the
contrary that past prices are often an indication of an upward or down-
ward trend in future prices.

8.6.2 When the Interest Rate Changes

We have previously shown that the option cost is an increasing function
of the interest rate. Does this imply that the cost of an option should
increase if the central bank announces an increase in the interest rate
(say, on U.S. treasuries) and should decrease if the bank anounces a
decrease in the interest rate? The answer is yes, provided that the secu-
rity’s volatility remains the same. However, one should be careful about
making the assumption that a security’s volatility will remain unchanged
when there is a change in interest rates. An increase in interest rates of-
ten has the effect of causing some investors to switch from stocks to
either bonds or investments having a fixed return rate, with the reverse
resulting when there is a decrease in interest rates; such actions will
probably result in a change in the volatility of a security.

8.6.3 Final Comments

If you believe that geometric Brownian motion is a reasonable (albeit
approximate) model, then the Black–Scholes formula gives a reasonable
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option price. If this price is significantly above (below) the market price,
then a strategy involving buying (selling) options and selling (buying)
the underlying security can be devised. Such a strategy, although not
yielding a certain win, can often yield a gain that has a positive expected
value along with a small variance.

Under the assumption that the security’s price over time follows a geo-
metric Brownian motion with parameters μ and σ, one can often devise
strategies that have positive expected gains and relatively small risks
even when the cost of the option is as given by the Black–Scholes for-
mula. For suppose that, based on an estimation using empirical data,
you believe that the parameter μ is unequal to the risk-neutral value
r − σ 2/2. If

μ > r − σ 2/2

then both buying the security and buying the call option will result in
positive expected present value gains. Although you cannot avoid all
risks (since no arbitrage is possible), a low-risk strategy with a posi-
tive expected gain can be effected either by (a) introducing a risk-averse
utility function and then finding a strategy that maximizes the expected
utility or (b) finding a strategy that has a reasonably large expected gain
along with a reasonably small variance. Such strategies would either buy
some security shares and sell some calls, or the reverse. Similarly, if

μ < r − σ 2/2

then both buying the security and buying the call option have negative
expected present value gains, and again we can search for a low-risk,
positive expectation strategy that sells one and buys the other. These
types of problems are considered in the following chapter, which also
introduces utility functions and their uses.

It is our opinion that the geometric Brownian motion model of the
prices of a security over time can often be substantially improved upon,
and that – rather than blindly assuming such a model – one could some-
times do better by using historical data to fit a more general model. If
successful, the improved model can give more accurate option prices,
resulting in more efficient strategies. The final two chapters of this book
deal with these more general models. In Chapter 12 we show that geo-
metric Brownian motion is not consistent with actual data on crude oil
prices; an improved model is presented that allows tomorrow’s closing
price to depend not only on today’s closing price but also on yesterday’s,
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and a risk-neutral option price valuation based on this model is indicated.
In Chapter 13 we show that a generalization of the geometric Brownian
motion model results in an autoregressive model that can be used when
modeling a security whose prices have a mean reverting quality.

8.7 Appendix

For the model of Section 8.4, we need to derive E[J m(t)] for m = 1, 2.

Observe that

J m(t) =
N(t)∏
i=1

J m
i .

Consequently, given that N(t) = n, we have

E[J m(t) | N(t) = n]

= E

[ N(t)∏
i=1

J m
i | N(t) = n

]

= E

[ n∏
i=1

J m
i | N(t) = n

]

= E

[ n∏
i=1

J m
i

]
(by the independence of the Ji and N(t))

= (E[J m])n (by the independence of the Ji ).

Therefore,

E[J m(t)] =
∞∑

n=0

E[J m(t) | N(t) = n]P{N(t) = n}

=
∞∑

n=0

(E[J m])ne−λt(λt)n/n!

=
∞∑

n=0

e−λt(λtE[J m])n/n!

= e−λt(1−E[J m ]).
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As a result,
E[J(t)] = e−λt(1−E[J ])

and

Var(J(t)) = E[J 2(t)] − (E[J(t)])2 = e−λt(1−E[J 2]) − e−2λt(1−E[J ]).

8.8 Exercises

Exercise 8.1 Does the put–call option parity formula for European call
and put options remain valid when the security pays dividends?

Exercise 8.2 For the model of Section 8.2.1, under the risk-neutral
probabilities, what process does the security’s price over time follow?

Exercise 8.3 Find the no-arbitrage cost of a European (K, t) call op-
tion on a security that, at times tdi (i = 1, 2), pays f S(tdi ) as dividends,
where td1 < td2 < t.

Exercise 8.4 Consider an American (K, t) call option on a security that
pays a dividend at time td, where td < t. Argue that the call is exercised
either immediately before time td or at the expiration time t .

Exercise 8.5 Consider a European (K, t) call option whose return at
expiration time is capped by the amount B. That is, the payoff at t is

min((S(t) − K )+, B).

Explain how you can use the Black–Scholes formula to find the no-
arbitrage cost of this option.

Hint: Express the payoff in terms of the payoffs from two plain (un-
capped) European call options.

Exercise 8.6 The current price of a security is s. Consider an invest-
ment whose cost is s and whose payoff at time 1 is, for a specified choice
of β satisfying 0 < β < er − 1, given by

return =
{

(1 + β)s if S(1) ≤ (1 + β)s,
(1 + β)s + α(S(1) − (1 + β)s) if S(1) ≥ (1 + β)s.
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Determine the value of α if this investment (whose payoff is both un-
capped and always greater than the initial cost of the investment) is not
to give rise to an arbitrage.

Exercise 8.7 The following investment is being offered on a security
whose current price is s. For an initial cost of s and for the value β of
your choice (provided that 0 < β < er − 1), your return after one year
is given by

return =
⎧⎨
⎩

(1 + β)s if S(1) ≤ (1 + β)s,
S(1) if (1 + β)s ≤ S(1) ≤ K,

K if S(1) > K,

where S(1) is the price of the security at the end of one year. In other
words, at the price of capping your maximum return at time 1 you are
guaranteed that your return at time 1 is at least 1 + β times your origi-
nal payment. Show that this investment (which can be bought or sold)
does not give rise to an arbitrage when K is such that

C(s,1, K, σ, r) = C(s,1, s(1 + β), σ, r) + s(1 + β)e−r − s,

where C(s, t, K, σ, r) is the Black–Scholes formula.

Exercise 8.8 Show that, for f < r,

C(se− f t , t, K, σ, r) = e− f tC(s, t, K, σ, r − f ).

Exercise 8.9 An option on an option, sometimes called a compound
option, is specified by the parameter pairs (K1, t1) and (K, t), where
t1 < t. The holder of such a compound option has the right to purchase,
for the amount K1, a (K, t) call option on a specified security. This op-
tion to purchase the (K, t) call option can be exercised any time up to
time t1.

(a) Argue that the option to purchase the (K, t) call option would never
be exercised before its expiration time t1.

(b) Argue that the option to purchase the (K, t) call option should be
exercised if and only if S(t1) ≥ x, where x is the solution of

K1 = C(x, t − t1, K, σ, r),
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C(s, t, K, σ, r) is the Black–Scholes formula, and S(t1) is the price
of the security at time t1.

(c) Argue that there is a unique value x that satisfies the preceding iden-
tity.

(d) Argue that the unique no-arbitrage cost of this compound option can
be expressed as

no-arbitrage cost of compound option

= e−r t1 E[C(seW, t − t1, K, σ, r)I(seW > x)],

where: s = S(0) is the initial price of the security; x is the value
specified in part (b); W is a normal random variable with mean
(r − σ 2/2)t1 and variance σ 2 t1; I(seW > x) is defined to equal 1
if seW > x and to equal 0 otherwise; and C(s, t, K, σ, r) is the
Black–Scholes formula. (The no-arbitrage cost can be simplified to
an expression involving bivariate normal probabilities.)

Exercise 8.10 A (K1, t1, K2, t2) double call option is one that can be
exercised either at time t1 with strike price K1 or at time t2 (t2 > t1)
with strike price K2.

(a) Argue that you would never exercise at time t1 if K1 > e−r(t2−t1)K2.

(b) Assume that K1 < e−r(t2−t1)K2. Argue that there is a value x such
that the option should be exercised at time t1 if S(t1) > x and not
exercised if S(t1) < x .

Exercise 8.11 Continue Figure 8.1 so that it gives the possible price
patterns for times t0, t1, t2, t3, t4.

Exercise 8.12 Using the notation of Section 8.3, which of the follow-
ing statements do you think are true? Explain your reasoning.

(a) Vk(i) is nondecreasing in k for fixed i.
(b) Vk(i) is nonincreasing in k for fixed i.
(c) Vk(i) is nondecreasing in i for fixed k.

(d) Vk(i) is nonincreasing in i for fixed k.

Exercise 8.13 Give the risk-neutral price of a European put option
whose parameters are as given in Example 8.3a.
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Exercise 8.14 Derive an approximation to the risk-neutral price of an
American put option having parameters

s = 10, t = .25, K = 10, σ = .3, r = .06.

Exercise 8.15 An American asset-or-nothing call option (with param-
eters K, F and expiration time t) can be exercised any time up to t. If
the security’s price when the option is exercised is K or higher, then the
amount F is returned; if the security’s price when the option is exer-
cised is less than K, then nothing is returned. Explain how you can use
the multiperiod binomial model to approximate the risk-neutral price of
an American asset-or-nothing call option.

Exercise 8.16 Derive an approximation to the risk-neutral price of an
American asset-or-nothing call option when

s = 10, t = .25, K = 11, F = 20, σ = .3, r = .06.

Exercise 8.17 Table 8.1 (pp. 150–151) presents data concerning the
stock prices of Microsoft from August 13 to November 1, 2001.

(a) Use this table and the estimator of Section 8.5.2 to estimate σ.

(b) Use the estimator of Section 8.5.3 to estimate σ.

(c) Use the estimator of Section 8.5.4 to estimate σ.
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Table 8.1

Date Open High Low Close Volume

12-Nov-01 64.7 66.44 63.65 65.79 28,876,400
09-Nov-01 64.34 65.65 63.91 65.21 24,006,800
08-Nov-01 64.46 66.06 63.66 64.42 37,113,900
07-Nov-01 64.22 65.05 64.03 64.25 29,449,500
06-Nov-01 62.7 64.94 62.16 64.78 34,306,000
05-Nov-01 61.86 64.03 61.75 63.27 33,200,800
02-Nov-01 61.93 63.02 60.51 61.4 41,680,000
01-Nov-01 60.08 62.25 59.6 61.84 54,835,600
31-Oct-01 59.3 60.73 58.1 58.15 32,350,000
30-Oct-01 58.92 59.54 58.19 58.88 28,697,800
29-Oct-01 62.1 62.2 59.54 59.64 27,564,700
26-Oct-01 62.32 63.63 62.08 62.2 32,254,700
25-Oct-01 60.61 62.6 59.57 62.56 37,659,100
24-Oct-01 60.5 61.62 59.62 61.32 39,570,700
23-Oct-01 60.47 61.44 59.4 60.43 40,162,500
22-Oct-01 57.9 60.18 57.47 60.16 36,161,800
19-Oct-01 57.4 58.01 55.63 57.9 45,609,800
18-Oct-01 56.34 57.58 55.5 56.75 39,174,000
17-Oct-01 59.12 59.3 55.98 56.03 36,855,300
16-Oct-01 57.87 58.91 57.21 58.45 33,084,500
15-Oct-01 55.9 58.5 55.85 58.06 34,218,500
12-Oct-01 55.7 56.64 54.55 56.38 31,653,500
11-Oct-01 55.76 56.84 54.59 56.32 41,871,300
10-Oct-01 53.6 55.75 53.0 55.51 43,174,600
09-Oct-01 57.5 57.57 54.19 54.56 49,738,800
08-Oct-01 56.8 58.65 56.74 58.04 30,302,900
05-Oct-01 56.16 58.0 54.94 57.72 40,422,200
04-Oct-01 56.92 58.4 56.21 56.44 50,889,000
03-Oct-01 52.48 56.93 52.4 56.23 48,599,600
02-Oct-01 51.63 53.55 51.56 53.05 40,430,400
01-Oct-01 50.94 52.5 50.41 51.79 34,999,800
28-Sep-01 49.62 51.59 48.98 51.17 58,320,600
27-Sep-01 50.1 50.68 48.0 49.96 40,595,600
26-Sep-01 51.51 51.8 49.55 50.27 29,262,200
25-Sep-01 52.27 53.0 50.16 51.3 42,470,300
24-Sep-01 50.65 52.45 49.87 52.01 42,790,100
21-Sep-01 47.92 50.6 47.5 49.71 92,488,300
20-Sep-01 52.35 52.61 50.67 50.76 58,991,600
19-Sep-01 54.46 54.7 50.6 53.87 63,475,100
18-Sep-01 53.41 55.0 53.17 54.32 41,591,300
17-Sep-01 54.02 55.1 52.8 52.91 63,751,000
10-Sep-01 54.92 57.95 54.7 57.58 42,235,900
07-Sep-01 56.11 57.36 55.31 55.4 44,931,900
06-Sep-01 56.56 58.39 55.9 56.02 56,178,400
05-Sep-01 56.18 58.39 55.39 57.74 44,735,300
04-Sep-01 57.19 59.08 56.07 56.1 33,594,600

(cont.)
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Table 8.1 (cont.)

Date Open High Low Close Volume

31-Aug-01 56.85 58.06 56.3 57.05 28,950,400
30-Aug-01 59.04 59.66 56.52 56.94 48,816,000
29-Aug-01 61.05 61.3 59.54 60.25 24,085,000
28-Aug-01 62.34 62.95 60.58 60.74 23,711,400
27-Aug-01 61.9 63.36 61.57 62.31 22,281,400
24-Aug-01 59.6 62.28 59.23 62.05 31,699,500
23-Aug-01 60.67 61.53 59.0 59.12 25,906,600
22-Aug-01 61.13 61.15 59.08 60.66 39,053,600
21-Aug-01 62.7 63.2 60.71 60.78 23,555,900
20-Aug-01 61.66 62.75 61.1 62.7 24,185,600
17-Aug-01 63.78 64.13 61.5 61.88 26,117,100
16-Aug-01 62.84 64.71 62.7 64.62 21,952,800
15-Aug-01 64.71 65.05 63.2 63.2 19,751,500
14-Aug-01 65.75 66.09 64.45 64.69 18,240,600
13-Aug-01 65.24 65.99 64.75 65.83 16,337,700



9. Valuing by Expected Utility

9.1 Limitations of Arbitrage Pricing

Although arbitrage can be a powerful tool in determining the appropri-
ate cost of an investment, it is more the exception than the rule that it will
result in a unique cost. Indeed, as the following example indicates, a
unique no-arbitrage option cost will not even result in simple one-period
option problems if there are more than two possible next-period security
prices.

Example 9.1a Consider the call option example given in Section 5.1.
Again, let the initial price of the security be 100, but now suppose that
the price at time 1 can be any of the values 50, 200, and 100. That is,
we now allow for the possibility that the price of the stock at time 1 is
unchanged from its initial price (see Figure 9.1). As in Section 5.1, sup-
pose that we want to price an option to purchase the stock at time 1 for
the fixed price of 150.

For simplicity, let the interest rate r equal zero. The arbitrage theorem
states that there will be no guaranteed win if there are nonnegative num-
bers p50, p100, p200 that (a) sum to 1 and (b) are such that the expected
gains if one purchases either the stock or the option are zero when pi

is the probability that the stock’s price at time 1 is i (i = 50,100, 200).

Letting Gs denote the gain at time 1 from buying one share of the stock,
and letting S(1) be the price of that stock at time 1, we have

Gs =
⎧⎨
⎩

100 if S(1) = 200,

0 if S(1) = 100,

−50 if S(1) = 50.

Hence,

E[Gs] = 100p200 − 50p50.
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Figure 9.1: Possible Stock Prices at Time 1

Also, if c is the cost of the option, then the gain from purchasing one
option is

Go =
{

50 − c if S(1) = 200,

−c if S(1) = 100 or S(1) = 50.

Therefore,

E[Go] = (50 − c)p200 − c( p50 + p100)

= 50p200 − c.

Equating both E[Gs] and E[Go] to zero shows that the conditions for
the absence of arbitrage are that there exist probabilities and a cost c
such that

p200 = 1
2 p50 and c = 50p200.

Since the leftmost of the preceding equalities implies that p200 ≤ 1/3,
it follows that for any value of c satisfying 0 ≤ c ≤ 50/3 we can find
probabilities that make both buying the stock and buying the option fair
bets. Therefore, no arbitrage is possible for any option cost in the inter-
val [0, 50/3].

9.2 Valuing Investments by Expected Utility

Suppose that you must choose one of two possible investments, each of
which can result in any of n consequences, denoted C1, .. ., Cn. Suppose
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that if the first investment is chosen then consequence i will result
with probability pi (i = 1, .. ., n), whereas if the second one is cho-
sen then consequence i will result with probability qi (i = 1, .. ., n),

where
∑n

i=1 pi = ∑n
i=1 qi = 1. The following approach can be used to

determine which investment to choose.
We begin by assigning numerical values to the different consequences

as follows. First, identify the least and the most desirable consequence,
call them c and C respectively; give the consequence c the value 0 and
give C the value 1. Now consider any of the other n − 2 consequences,
say Ci . To value this consequence, imagine that you are given the choice
between either receiving Ci or taking part in a random experiment that
earns you either consequence C with probability u or consequence c
with probability 1 − u. Clearly your choice will depend on the value of
u. If u = 1 then the experiment is certain to result in consequence C;
since C is the most desirable consequence, you will clearly prefer the
experiment to receiving Ci . On the other hand, if u = 0 then the ex-
periment will result in the least desirable consequence, namely c, and
so in this case you will clearly prefer the consequence Ci to the ex-
periment. Now, as u decreases from 1 down to 0, it seems reasonable
that your choice will at some point switch from the experiment to the
certain return of Ci , and at that critical switch point you will be indif-
ferent between the two alternatives. Take that indifference probability
u as the value of the consequence Ci . In other words, the value of Ci is
that probability u such that you are indifferent between either receiving
the consequence Ci or taking part in an experiment that returns conse-
quence C with probability u or consequence c with probability 1 − u.

We call this indifference probability the utility of the consequence Ci ,

and we designate it as u(Ci ).

In order to determine which investment is superior, we must eval-
uate each one. Consider the first one, which results in consequence
Ci with probability pi (i = 1, .. ., n). We can think of the result of
this investment as being determined by a two-stage experiment. In the
first stage, one of the values 1, .. ., n is chosen according to the prob-
abilities p1, .. ., pn; if value i is chosen, you receive consequence Ci .

However, since Ci is equivalent to obtaining consequence C with prob-
ability u(Ci ) or consequence c with probability 1−u(Ci), it follows that
the result of the two-stage experiment is equivalent to an experiment in
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which either consequence C or c is obtained, with C being obtained with
probability

n∑
i=1

pi u(Ci ).

Similarly, the result of choosing the second investment is equivalent to
taking part in an experiment in which either consequence C or c is ob-
tained, with C being obtained with probability

n∑
i=1

qi u(Ci ).

Since C is preferable to c, it follows that the first investment is prefer-
able to the second if

n∑
i=1

pi u(Ci ) >

n∑
i=1

qi u(Ci ).

In other words, the value of an investment can be measured by the ex-
pected value of the utility of its consequence, and the investment with
the largest expected utility is most preferable.

In many investments, the consequences correspond to the investor re-
ceiving a certain amount of money. In this case, we let the dollar amount
represent the consequence; thus, u(x) is the investor’s utility of receiving
the amount x . We call u(x) a utility function. Thus, if an investor must
choose between two investments, of which the first returns an amount X
and the second an amount Y, then the investor should choose the first if

E[u(X )] > E[u(Y )]

and the second if the inequality is reversed, where u is the utility func-
tion of that investor. Because the possible monetary returns from an
investment often constitute an infinite set, it is convenient to drop the
requirement that u(x) be between 0 and 1.

Whereas an investor’s utility function is specific to that investor, a
general property usually assumed of utility functions is that u(x) is a
nondecreasing function of x . In addition, a common (but not universal)
feature for most investors is that, if they expect to receive x, then the
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Figure 9.2: A Concave Function

extra utility gained if they are given an additional amount � is nonin-
creasing in x; that is, for fixed � > 0, their utility function satisfies

u(x + �) − u(x) is nonincreasing in x .

A utility function that satisfies this condition is called concave. It can
be shown that the condition of concavity is equivalent to

u′′(x) ≤ 0.

That is, a function is concave if and only if its second derivative is non-
positive. Figure 9.2 gives the curve of a concave function; such a curve
always has the property that the line segment connecting any two of its
points always lies below the curve.

An investor with a concave utility function is said to be risk-averse.
This terminology is used because of the following, known as Jensen’s
inequality, which states that if u is a concave function then, for any ran-
dom variable X,

E[u(X )] ≤ u(E[X ]).

Hence, letting X be the return from an investment, it follows from
Jensen’s inequality that any investor with a concave utility function
would prefer the certain return of E[X ] to receiving a random return
with this mean.
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We now give a proof of

Jensen’s Inequality If U is concave then

E[U (X)] ≤ U (E[X ])

Proof of Jensen’s Inequality. The Taylor series formula with remainder
of U (x) expanded about μ = E[X ] gives, for some value of τ between
x and μ, that

U (x) = U (μ) + U ′(μ)(x − μ) + U ′′(τ )(x − μ)2/2

But U being concave implies that U ′′ ≤ 0, showing that

U (x) ≤ U (μ) + U ′(μ)(x − μ)

Consequently,
U (X) ≤ U (μ) + U ′(μ)(X − μ)

Now take expectations of both sides to obtain the result:

E[U (X)] ≤ U (μ) + U ′(μ)E[X − μ] = U (μ)

An investor with a linear utility function

u(x) = a + bx, b > 0,

is said to be risk-neutral or risk-indifferent. For such a utility function,

E[u(X )] = a + bE[X ]

and so it follows that a risk-neutral investor will value an investment
only through its expected return.

A commonly assumed utility function is the log utility function

u(x) = log(x);
see Figure 9.3. Because log(x) is a concave function, an investor with a
log utility function is risk-averse. This is a particularly important utility
function because it can be mathematically proven in a variety of situa-
tions that an investor faced with an infinite sequence of investments can
maximize long-term rate of return by adopting a log utility function and
then maximizing the expected utility in each period.



Valuing Investments by Expected Utility 171

Figure 9.3: A Log Utility Function

To understand why this is true, suppose that the result of each invest-
ment is to multiply the investor’s wealth by a random amount X. That
is, if Wn denotes the investor’s wealth after the nth investment and if Xn

is the nth multiplication factor, then

Wn = XnWn−1, n ≥ 1.

With W0 denoting the investor’s initial wealth, the preceding implies
that

Wn = XnWn−1

= Xn Xn−1Wn−2

= Xn Xn−1Xn−2Wn−3

...

= Xn Xn−1 · · · X1W0.

If we let Rn denote the rate of return (per investment) from the n invest-
ments, then

Wn

(1 + Rn)n
= W0
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or

(1 + Rn)
n = Wn

W0
= X1 · · · Xn.

Taking logarithms yields that

log(1 + Rn) =
∑n

i=1 log(Xi )

n
.

Now, if the Xi are independent with a common probability distribution,
then it follows from a probability theorem known as the strong law of
large numbers that the average of the values log(Xi ), i = 1, .. ., n, con-
verges to E[log(Xi )] as n grows larger and larger. Consequently,

log(1 + Rn) → E[log(X )] as n → ∞.

Therefore, if one has some choice as to the investment – that is, some
choice as to the probabilities of the multiplying factors Xi – then the
long-run rate of return is maximized by choosing the investment that
yields the largest value of E[log(X )].

Moreover, because Wn = W0 X1 · · · Xn, it follows that

log(Wn) = log(W0) +
n∑

i=1

log(Xi ).

Hence,
E[log(Wn)] = log(W0) + nE[log(X)]

which shows that maximizing E[log(X)] is equivalent to maximizing
the expectation of the log of the final wealth.

The following example shows how much a log utility investor should
invest in a favorable gamble.

Example 9.2a An investor with capital x can invest any amount be-
tween 0 and x; if y is invested then y is either won or lost, with respective
probabilities p and 1− p. If p > 1/2, how much should be invested by
an investor having a log utility function?

Solution. Suppose the amount αx is invested, where 0 ≤ α ≤ 1. Then
the investor’s final fortune, call it X, will be either x + αx or x − αx
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with respective probabilities p and 1− p. Hence, the expected utility of
this final fortune is

p log((1 + α)x) + (1 − p) log((1 − α)x)

= p log(1 + α) + p log(x) + (1 − p) log(1 − α) + (1 − p) log(x)

= log(x) + p log(1 + α) + (1 − p) log(1 − α).

To find the optimal value of α, we differentiate

p log(1 + α) + (1 − p) log(1 − α)

to obtain

d

dα
( p log(1 + α) + (1 − p) log(1 − α)) = p

1 + α
− 1 − p

1 − α
.

Setting this equal to zero yields

p − αp = 1 − p + α − αp or α = 2p − 1.

Hence, the investor should always invest 100(2p − 1) percent of her
present fortune. For instance, if the probability of winning is .6 then the
investor should invest 20% of her fortune; if it is .7, she should invest
40%. (When p ≤ 1/2, it is easy to verify that the optimal amount to in-
vest is 0.)

Our next example adds a time factor to the previous one.

Example 9.2b Suppose in Example 9.2a that, whereas the investment
αx must be immediately paid, the payoff of 2αx (if it occurs) does not
take place until after one period has elapsed. Suppose further that what-
ever amount is not invested can be put in a bank to earn interest at a rate
of r per period. Now, how much should be invested?

Solution. An investor who invests αx and puts the remaining (1 − α)x
in the bank will, after one period, have (1 + r)(1 − α)x in the bank,
and the investment will be worth either 2αx (with probability p) or 0
(with probability 1 − p). Hence, the expected value of the utility of his
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fortune is

p log((1 + r)(1 − α)x + 2αx) + (1 − p) log((1 + r)(1 − α)x)

= log(x) + p log(1 + r + α − αr)

+ (1 − p) log(1 + r) + (1 − p) log(1 − α).

Hence, once again the optimal fraction of one’s fortune to invest does
not depend on the amount of that fortune. Differentiating the previous
equation yields

d

dα
(expected utility) = p(1 − r)

1 + r + α − αr
− 1 − p

1 − α
.

Setting this equal to zero and solving yields that the optimal value of α

is given by

α = p(1 − r) − (1 − p)(1 + r)

1 − r
= 2p − 1 − r

1 − r
.

For instance, if p = .6 and r = .05 then, although the expected rate of
return on the investment is 20% (whereas the bank pays only 5%), the
optimal fraction of money to be invested is

α = .15

.95
≈ .158.

That is, the investor should invest approximately 15.8% of his capital
and put the remainder in the bank.

Another commonly used utility function is the exponential utility func-
tion

u(x) = 1 − e−bx , b > 0.

The exponential is also a risk-averse utility function (see Figure 9.4).

9.3 The Portfolio Selection Problem

Suppose one has the positive amount w to be invested among n differ-
ent securities. If the amount a is invested in security i (i = 1, .. ., n)

then, after one period, that investment returns aXi , where Xi is a non-
negative random variable. In other words, if we let Ri be the the rate of
return from investment i, then

a = aXi

1 + Ri
or Ri = Xi − 1.
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Figure 9.4: An Exponential Utility Function

If wi is invested in each security i = 1, .. ., n, then the end-of-period
wealth is

W =
n∑

i=1

wi Xi .

The vector w1, .. .,wn is called a portfolio. The problem of determining
the portfolio that maximizes the expected utility of one’s end-of-period
wealth can be expressed mathematically as follows:

choose w1, .. .,wn satisfying

wi ≥ 0, i = 1, .. ., n,

n∑
i=1

wi = w,

to

maximize E[U(W )],

where U is the investor’s utility function for the end-of-period wealth.
To make the preceding problem more tractable, we shall make the as-

sumption that the end-of-period wealth W can be thought of as being a
normal random variable. Provided that one invests in many securities
that are not too highly correlated, this would appear to be, by the central
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limit theorem, a reasonable approximation. (It would also be exactly
true if the Xi , i = 1, .. ., n, have what is known as a multivariate normal
distribution.)

Suppose now that the investor has an exponential utility function

U(x) = 1 − e−bx , b > 0,

and so the utility function is concave. If Z is a normal random variable,
then e Z is lognormal and has expected value

E[e Z ] = exp{E[Z ] + Var(Z )/2}.
Hence, as −bW is normal with mean −bE[W ] and variance b2 Var(W ),

it follows that

E[U(W )] = 1 − E[e−bW ] = 1 − exp{−bE[W ] + b2 Var(W )/2}.
Therefore, the investor’s expected utility will be maximized by choos-
ing a portfolio that

maximizes E[W ] − b Var(W )/2.

Observe how this implies that, if two portfolios give rise to random
end-of-period wealths W1 and W2 such that W1 has a larger mean and a
smaller variance than does W2, then the first portfolio results in a larger
expected utility than does the second. That is,

E[W1] ≥ E[W2] & Var(W1) ≤ Var(W2)

�⇒ E[U(W1)] ≥ E[U(W2)]. (9.1)

In fact, provided that all end-of-period fortunes are normal random vari-
ables, (9.1) remains valid even when the utility function is not expo-
nential, provided that it is a nondecreasing and concave function. Con-
sequently, if one investment portfolio offers a risk-averse investor an
expected return that is at least as large as that offered by a second in-
vestment portfolio and with a variance that is no greater than that of the
second portfolio, then the investor would prefer the first portfolio.

Let us now compute, for a given portfolio, the mean and variance of
W. With security i’s rate of return Ri = Xi − 1, let

ri = E[Ri ], v2
i = Var(Ri ).
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Then, since

W =
n∑

i=1

wi(1 + Ri ) = w +
n∑

i=1

wi Ri ,

we have that

E[W ] = w +
n∑

i=1

E[wi Ri ]

= w +
n∑

i=1

wi ri ; (9.2)

Var(W ) = Var

( n∑
i=1

wi Ri

)

=
n∑

i=1

Var(wi Ri )

+
n∑

i=1

∑
j 
=i

Cov(wi Ri ,wj Rj ) (by Equation (1.11))

=
n∑

i=1

w2
i v2

i +
n∑

i=1

∑
j 
=i

wiwj c(i, j), (9.3)

where

c(i, j) = Cov(Ri , Rj ).

Example 9.3a An important case which results in W having a normal
distribution is the case where R1, . . . , Rn has a multivariate normal dis-
tribution, defined as follows.

Definition Let Z1, . . . , Zm be independent standard normal random
variables. If for some constants μi , i = 1, . . . , n and ai j , i = 1, . . . , n,

j = 1, . . . , m,

X1 = μ1 + a11 Z1 + a12 Z2 + · · · + a1m Zm

X2 = μ2 + a21 Z1 + a22 Z2 + · · · + a2m Zm

..

Xi = μi + ai1 Z1 + ai2 Z2 + · · · + aim Zm

..

Xn = μn + an1 Z1 + an2 Z2 + · · · + anm Zm

we say that (X1, . . . , Xn) has a multivariate normal distribution.
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Because any linear combination
∑n

i=1 wi Xi is also a linear combination
of the independent normal random variables Z1, . . . , Zm , it follows that∑n

i=1 wi Xi is a normal random variable.

Example 9.3b Suppose you are thinking about investing your fortune
of 100 in two securities whose rates of return have the following ex-
pected values and standard deviations:

r1 = .15, v1 = .20; r2 = .18, v2 = .25.

If the correlation between the rates of return is ρ = −.4, find the opti-
mal portfolio when employing the utility function

U(x) = 1 − e−.005x .

Solution. If w1 = y and w2 = 100 − y, then from Equation (9.2) we
obtain

E[W ] = 100 + .15y + .18(100 − y) = 118 − .03y.

Also, since c(1, 2) = ρv1v2 = −.02, Equation (9.3) gives

Var(W ) = y2(.04) + (100 − y)2(.0625) − 2y(100 − y)(.02)

= .1425y2 − 16.5y + 625.

We should therefore choose y to maximize

118 − .03y − .005(.1425y2 − 16.5y + 625)/2

or, equivalently, to maximize

.01125y − .0007125y2/2.

Simple calculus shows that this will be maximized when

y = .01125

.0007125
= 15.789.

That is, the maximal expected utility of the end-of-period wealth is ob-
tained by investing 15.789 in investment 1 and 84.211 in investment 2.
Substituting the value y = 15.789 into the previous equations gives
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E[W ] = 117.526 and Var(W ) = 400.006, with the maximal expected
utility being

1 − exp{−.005(117.526 + .005(400.006)/2)} = .4416.

This can be contrasted with the expected utility of .3904 obtained when
all 100 is invested in security 1 or the expected utility of .4413 when all
100 is invested in security 2.

Example 9.3c Suppose only two securities are under consideration,
both with normally distributed returns that have same expected rate of
return. Then, since every portfolio will yield the same expected value, it
follows that the best portfolio for any concave utility function is the one
whose end-of-period wealth has minimal variance. If αw is invested in
security 1 and (1 − α)w is invested in security 2, then with c = c(1, 2)

we have

Var(W ) = α2w2v2
1 + (1 − α)2w2v2

2 + 2α(1 − α)w2c

= w2[α2v2
1 + (1 − α)2v2

2 + 2cα(1 − α)].

Thus, the optimal portfolio is obtained by choosing the value of α that
minimizes α2v2

1 + (1 − α)2v2
2 + 2cα(1 − α). Differentiating this quan-

tity and setting the derivative equal to zero yields

2αv2
1 − 2(1 − α)v2

2 + 2c − 4cα = 0.

Solving for α gives the optimal fraction to invest in security 1:

α = v2
2 − c

v2
1 + v2

2 − 2c
.

For instance, suppose the standard deviations of the rate of returns are
v1 = .20 and v2 = .30, and that the correlation between the two rates of
return is ρ = .30. Then, as c = ρv1v2 = .018, we obtain that the opti-
mal fraction of one’s investment capital to be used to purchase security 1
is

α = .09 − .018

.04 + .09 − .036
= 72/94 ≈ .766.

That is, 76.6% of one’s capital should be used to purchase security 1 and
23.4% to purchase security 2.
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If the rates of returns are independent, then c = 0 and the optimal
fraction to invest in security 1 is

α = v2
2

v2
1 + v2

2

= 1/v2
1

1/v2
1 + 1/v2

2

.

In this case, the optimal percentage of capital to invest in a security is
determined by a weighted average, where the weight given to a security
is inversely proportional to the variance of its rate of return. This result
also remains true when there are n securities whose rates of return are
uncorrelated and have equal means. Under these conditions, the optimal
fraction of one’s capital to invest in security i is

1/v2
i∑n

j=1 1/v2
j

.

Determining a portfolio that maximizes the expected utility of one’s
end-of-period wealth can be computationally quite demanding. Often
a reasonable approximation can be obtained when the utility function
U(x) satisfies the condition that its second derivative is a nondecreasing
function – that is, when

U ′′(x) is nondecreasing in x . (9.4)

It is easily checked that the utility functions

U(x) = x a, 0 < a < 1,

U(x) = 1 − e−bx , b > 0,

U(x) = log(x)

all satisfy the condition of Equation (9.4).
We can approximate U(W ) by using the first three terms of its Taylor

series expansion about the point μ = E[W ]. That is, we use the approx-
imation

U(W ) ≈ U(μ) + U ′(μ)(W − μ) + U ′′(μ)(W − μ)2/2.

Taking expectations gives that

E[U(W )] ≈ U(μ) + U ′(μ)E[W − μ] + U ′′(μ)E[(W − μ)2]/2

= U(μ) + U ′′(μ)v2/2,
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where v2 = Var(W ) and where we have used that

E[W − μ] = E[W ] − μ = μ − μ = 0.

Therefore, a reasonable approximation to the optimal portfolio is given
by the portfolio that maximizes

U(E[W ]) + U ′′(E[W ]) Var(W )/2. (9.5)

If U is a nondecreasing, concave function that also satisfies condition
(9.4), then expression (9.5) will have the desired property of being both
increasing in E[W ] and decreasing in Var(W ).

Utility functions of the form U(x) = x a or U(x) = log(x) have the
property that there is a vector

α∗
1, .. ., α

∗
n, α∗

i ≥ 0,

n∑
i=1

α∗
i = 1,

such that the optimal portfolio under a specified one of these utility func-
tions is wα∗

1, .. .,wα∗
n for every initial wealth w. That is, for these utility

functions, the optimal proportion of one’s wealth w that should be in-
vested in security i does not depend on w. To verify this, note that

W = w

n∑
i=1

αi Xi

for any portfolio wα1, .. .,wαn. Hence, if U(x) = x a then

E[U(W )] = E[W a]

= E

[
wa

( n∑
i=1

αi Xi

)a ]

= waE

[( n∑
i=1

αi Xi

)a ]

and so the optimal αi (i = 1, .. ., n) do not depend on w. (The argument
for U(x) = log(x) is left as an exercise.)

An important feature of the approximation criterion (9.5) is that, when
U(x) = x a (0 < a < 1), the portfolio that maximizes (9.5) also has the
property that the percentage of wealth it invests in each security does
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not depend on w. This follows since equations (9.2) and (9.3) show that,
for the portfolio wi = αiw (i = 1, .. ., n),

E[W ] = wA, Var(W ) = w2B,

where

A = 1 +
n∑

i=1

αi ri ,

B =
n∑

i=1

α2
i v

2
i +

n∑
i=1

∑
j 
=i

αiαj c(i, j).

Thus, since

U ′′(x) = a(a − 1)x a−2,

we see that

U(E[W ]) + U ′′(E[W ]) Var(W )/2

= waAa + a(a − 1)wa−2Aa−2w2B/2

= wa[Aa + a(a − 1)Aa−2B/2].

Therefore, the investment percentages that maximize (9.5) do not de-
pend on w.

Example 9.3d Let us reconsider Example 9.3b, this time using the
utility function

U(x) = √
x .

Then, with α1 = α and α2 = 1 − α we have

A = 1 + .15α + .18(1 − α),

B = .04α2 + .0625(1 − α)2 − 2(.02)α(1 − α),

and we must choose the value of α that maximizes

f (α) = A1/2 − A−3/2B/8.

The solution can be obtained by setting the derivative equal to zero and
then solving this equation numerically.
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Suppose now that we can invest a positive or negative amount in any
investment and, in addition, that all investments are financed by borrow-
ing money at a fixed rate of r per period. If wi is invested in investment
i (i = 1, .. ., n), then the return from this portfolio after one period is

R(w) =
n∑

i=1

wi(1 + Ri ) − (1 + r)
n∑

i=1

wi =
n∑

i=1

wi(Ri − r).

(If s = ∑
i wi , then s is borrowed from the bank if s > 0 and −s is

deposited in the bank if s < 0.) Let

r(w) = E[R(w)], V(w) = Var(R(w))

and note that

r(aw) = ar(w), V(aw) = a2V(w),

where aw = (aw1, .. ., awn). Now, let w∗ be such that r(w∗) = 1 and

V(w∗) = min
w :r(w)=1

V(w).

That is, among all portfolios w whose expected return is 1, the variance
of the portfolio’s return is minimized under w∗.

We now show that for any b > 0, among all portfolios whose ex-
pected return is b, the variance of the portfolio’s return is minimized
under bw∗. To verify this, suppose that r(y) = b. But then

r

(
1

b
y
)

= 1

b
r(y) = 1,

which implies (by the definition of w∗) that

V(bw∗) = b2V(w∗) ≤ b2V

(
1

b
y
)

= V(y),

which completes the verification. Hence, portfolios that minimize the
variance of the return are constant multiples of a particular portfolio.
This is called the portfolio separation theorem because, when analyz-
ing the portfolio decision problem from a mean variance viewpoint, the
theorem enables us to separate the portfolio decision problem into a de-
termination of the relative amounts to invest in each investment and the
choice of the scalar multiple.
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9.3.1 Estimating Covariances

In order to create good portfolios, we must first use historical data
to estimate the values of ri = E[Ri ], v2

i = Var(Ri ), and c(i, j) =
Cov(Ri , Rj ) for all i and j. The means ri and variances v2

i can be es-
timated, as was shown in Section 8.5, by using the sample mean and
sample variance of historical rates of return for security i. To estimate
the covariance c(i, j) for a fixed pair i and j, suppose we have historical
data that covers m periods and let ri,k and rj,k denote (respectively) the
rates of return of security i and of security j for period k, k = 1, .. ., m.

Then, the usual estimator of

Cov(Ri , Rj ) = E[(Ri − ri )(Rj − rj )]

is ∑m
k=1(ri,k − r̄i )(rj,k − r̄j )

m − 1
,

where r̄i and r̄ j are the sample means

r̄i =
∑m

k=1 ri,k

m
, r̄ j =

∑m
k=1 rj,k

m
.

9.4 Value at Risk and Conditional Value at Risk

Let G denote the present value gain from an investment. (If the invest-
ment calls for an initial payment of c and returns X after one period,
then G = X

1+r − c.) The value at risk (VAR) of an investment is the
value v such that there is only a 1-percent chance that the loss from the
investment will be greater than v. Because −G is the loss, the value at
risk is the value v such that

P{−G > v} = .01.

The VAR criterion for choosing among different investments, which se-
lects the investment having the smallest VAR, has become popular in
recent years.

Example 9.4a Suppose that the gain G from an investment is a nor-
mal random variable with mean μ and standard deviation σ. Because
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−G is normal with mean −μ and standard deviation σ, the VAR of this
investment is the value of v such that

.01 = P{−G > v}

= P

{−G + μ

σ
>

v + μ

σ

}

= P

{
Z >

v + μ

σ

}
,

where Z is a standard normal random variable. But from Table 2.1 we
see that P{Z > 2.33} = .01. Therefore,

2.33 = v + μ

σ

or

VAR = −μ + 2.33σ.

Consequently, among investments whose gains are normally distrib-
uted, the VAR criterion would select the one having the largest value of
μ − 2.33σ.

Remark. The critical value .01 used to define the VAR is the one usu-
ally employed because it sets an upper limit to the possible loss that is
unlikely to be exceeded. However, an investor might also want to con-
sider other critical values when using the VAR criterion.

The VAR gives a value that has only a 1-percent chance of being ex-
ceeded by the loss from an investment. However, rather than choosing
the investment having the smallest VAR, it has been suggested that it is
better to consider the conditional expected loss, given that it exceeds the
VAR. In other words, if the 1-percent event occurs and there is a large
loss, then the amount lost will not be the VAR but will be some larger
quantity. The conditional expected loss, given that it exceeds the VAR,
is called the conditional value at risk or CVAR, and the CVAR criterion
is to choose the investment having the smallest CVAR.
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Example 9.4b If the gain G from an investment is a normal ran-
dom variable with mean μ and standard deviation σ, then the CVAR
is given by

CVAR = E[−G | −G > VAR]

= E[−G | −G > −μ + 2.33σ]

= E

[
−G | −G + μ

σ
> 2.33

]

= E

[
σ

(−G + μ

σ

)
− μ | −G + μ

σ
> 2.33

]

= σE

[−G + μ

σ
| −G + μ

σ
> 2.33

]
− μ

= σE[Z | Z > 2.33] − μ,

where Z is a standard normal. It can be shown that, for a standard nor-
mal random variable Z ,

E[Z | Z > a] = 1√
2π P{Z ≥ a}e−a2/2. (9.6)

Hence we obtain that

CVAR = σ
100√

2π
exp{−(2.33)2/2} − μ = 2.64σ − μ.

Therefore, the CVAR, which attempts to maximize μ − 2.64σ, gives a
little more weight to the variance than does the VAR.

To verify Equation (9.6), use that the conditional density of Z given that
Z > a is

fZ |Z>a(x) = 1√
2π

e−x2/2

P(Z > a)
, x > a

This gives

E[Z |Z > a] = 1√
2π P(Z > a)

∫ ∞

a
xe−x2/2dx

= 1√
2π P(Z > a)

e−a2/2
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9.5 The Capital Assets Pricing Model

The Capital Assets Pricing Model (CAPM) attempts to relate Ri , the
one-period rate of return of a specified security i, to Rm, the one-period
rate of return of the entire market (as measured, say, by the Standard
and Poor’s index of 500 stocks). If rf is the risk-free interest rate (usu-
ally taken to be the current rate of a U.S. Treasury bill) then the model
assumes that, for some constant βi ,

Ri = rf + βi(Rm − rf ) + ei ,

where ei is a normal random variable with mean 0 that is assumed to be
independent of Rm . Letting the expected values of Ri and Rm be ri and
rm (resp.), the CAPM model (which treats rf as a constant) implies that

ri = rf + βi(rm − rf )

or, equivalently, that

ri − rf = βi(rm − rf ).

That is, the difference between the expected rate of return of the security
and the risk-free interest rate is assumed to equal βi times the difference
between the expected rate of return of the market and the risk-free in-
terest rate. Thus, for instance, if βi = 1 (resp. 1

2 or 2) then the expected
amount by which the rate of return of security i exceeds rf is the same
as (resp. one-half or twice) the expected amount by which the overall
market’s rate of return exceeds rf . The quantity βi is known as the beta
of security i.

Using the linearity property of covariances – along with the result that
the covariance of a random variable and a constant is 0 – we obtain from
the CAPM that

Cov(Ri , Rm) = βi Cov(Rm, Rm) + Cov(ei , Rm)

= βi Var(Rm) (since ei and Rm are independent).

Therefore, letting v2
m = Var(Rm), we see that

βi = Cov(Ri , Rm)

v2
m

.
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Example 9.5a Suppose that the current risk-free interest rate is 6% and
that the expected value and standard deviation of the market rate of re-
turn are .10 and .20, respectively. If the covariance of the rate of return
of a given stock and the market’s rate of return is .05, what is the ex-
pected rate of return of that stock?

Solution. Since

β = .05

(.20)2
= 1.25,

it follows (assuming the validity of the CAPM) that

ri = .06 + 1.25(.10 − .06) = .11.

That is, the stock’s expected rate of return is 11%.

If we let v2
i = Var(Ri ) then under the CAPM it follows, using the as-

sumed independence of Rm and ei , that

v2
i = β2

i v
2
m + Var(ei ).

If we think of the variance of a security’s rate of return as constituting
the risk of that security, then the foregoing equation states that the risk
of a security is the sum of two terms: the first term, β2

i v
2
m, is called the

systematic risk and is due to the combination of the security’s beta and
the inherent risk in the market; the second term, Var(ei ), is called the
specific risk and is due to the specific stock being considered.

9.6 Rates of Return: Single-Period and Geometric
Brownian Motion

Let Si(t) be the price of security i at time t (t ≥ 0), and assume that
these prices follow a geometric Brownian motion with drift parameter
μi and volatility parameter σi . If Ri is the one-period rate of return for
security i, then

Si(1)

1 + Ri
= Si(0)

or, equivalently,

Ri = Si(1)

Si(0)
− 1.
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Since Si(1)/Si(0) has the same probability distribution as e X when X is
a normal random variable with mean μi and variance σ 2

i , it follows that

ri = E[Ri ] = E

[
Si(1)

Si(0)

]
− 1

= E[e X ] − 1

= exp{μi + σ 2
i /2} − 1.

Also,

v2
i = Var(Ri ) = Var

(
Si(1)

Si(0)

)

= Var(e X )

= E[e2X ] − (E[e X ])2

= exp{2μi + 2σ 2
i } − (exp{μi + σ 2

i /2})2

= exp{2μi + 2σ 2
i } − exp{2μi + σ 2

i },

where the next-to-last equality used the fact that 2X is normal with mean
2μi and variance 4σ 2

i to determine E[e2X ].
Thus, the expected one-period rate of return is exp{μi + σ 2

i /2} − 1;
note that this is not the expected value of the average spot rate of return
by time 1. For if we let R̄i(t) be the average spot rate of return by time
t (i.e., the yield curve), then

Si(t)

Si(0)
= etR̄i(t),

implying that

R̄i(t) = 1

t
log

(
Si(t)

Si(0)

)
.

Since log(Si(t)/Si(0)) is a normal random variable with mean μi t and
variance tσ 2

i , it follows that R̄i(t) is a normal random variable with

E[R̄i(t)] = μi , Var(R̄i(t)) = σ 2
i /t.

Thus, the expected value and variance of the one-period yield function
for geometric Brownian motion are its parameters μi and σ 2

i .
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9.7 Exercises

Exercise 9.1 The utility function of an investor is u(x) = 1 − e−x .

The investor must choose one of two investments. If his fortune after
investment 1 is a random variable with density function f1(x) = e−x ,

x > 0, and his fortune after investment 2 is a random variable with
density function f2(x) = 1/2, 0 < x < 2, which investment should
he choose?

Exercise 9.2 If an individual invests the amount a, then the return from
that investment is a X , where

P(X = −1) = 0.4, P(X = 0.2) = 0.5, P(X = 2.5) = 0.1

What is the optimal value of a for a risk-averse individual?

Exercise 9.3 In Example 9.2a, show that if p ≤ 1/2 then the optimal
amount to invest is 0.

Exercise 9.4 In Example 9.2b, show that if p ≤ 1/2 then the optimal
amount to invest is 0.

Exercise 9.5 Suppose in Example 9.3b that ρ = 0. What is the opti-
mal portfolio?

Exercise 9.6 Suppose in Example 9.3b that r1 = .16. Determine the
maximal expected utility and compare it with (a) the expected utility
obtained when everything is invested in security 1 and (b) the expected
utility obtained when everything is invested in security 2.

Exercise 9.7 Show that the percentage of one’s wealth that should be
invested in each security when attempting to maximize E[log(W )] does
not depend on the amount of initial wealth.

Exercise 9.8 Verify that U ′′(x) is nondecreasing in x when x > 0 and
when

(a) U(x) = x a, 0 < a < 1;
(b) U(x) = 1 − e−bx , b > 0;
(c) U(x) = log(x).
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Exercise 9.9 Does the percentage of one’s wealth to be invested in each
security when attempting to maximize the approximation (9.5) depend
on initial wealth when U(x) = log(x)?

Exercise 9.10 Use the approximation to E[U(W )] given by (9.5) to de-
termine the optimal amounts to invest in each security in Example 9.3a
when using the utility function U(x) = 1 − e−.005x . Compare your re-
sults with those obtained in that example.

Exercise 9.11 Suppose we want to choose a portfolio with the objec-
tive of maximizing the probability that our end-of-period wealth be at
least g, where g > w. Assuming that W is normal, the optimal portfolio
will be the one that maximizes what function of E[W ] and Var(W )?

Exercise 9.12 Find the optimal portfolio in Example 9.3b if your ob-
jective is to maximize the probability that your end-of-period wealth be
at least: (a) 110; (b) 115; (c) 120; (d) 125. Assume normality.

Exercise 9.13 Find the solution of Example 9.3d.

Exercise 9.14 If the beta of a stock is .80, what is the expected rate of
return of that stock if the expected value of the market’s rate of return
is .07 and the risk-free interest rate is 5%? What if the risk-free interest
rate is 10%? Assume the CAPM.

Exercise 9.15 If βi is the beta of stock i for i = 1, .. ., k, what would
be the beta of a portfolio in which αi is the fraction of one’s capital that
is used to purchase stock i (i = 1, .. ., k)?

Exercise 9.16 A single-factor model supposes that Ri , the one-period
rate of return of a specified security, can be expressed as

Ri = ai + bi F + ei ,

where F is a random variable (called the “factor”), ei is a normal ran-
dom variable with mean 0 that is independent of F, and ai and bi are
constants that depend on the security. Show that the CAPM is a single-
factor model, and identify ai , bi , and F.
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Exercise 9.17 Let X1 and X2 be independent normal random variables,
both with mean 1 and variance 1. Investor A has a strictly concave util-
ity function.

(a) Is it possible to tell whether A would prefer a final fortune of 2 or a
final fortune of X1 + X2?

(b) Is it possible to tell whether A would prefer a final fortune of 2X1

or a final fortune of X1 + X2?
(c) Is it possible to tell whether A would prefer a final fortune of 3X1

or a final fortune of X1 + X2?
(d) If A’s utility function is u(x) = 1 − e−x , which final fortune in part

(c) is preferable?

Exercise 9.18 If X1, . . . , Xn has the multivariate normal distribution
with parameters as given in Example 9.3a, show that

Cov(Xi , X j ) =
n∑

r=1

air ajr
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10. Stochastic Order Relations

10.1 First-Order Stochastic Dominance

Of random variables X and Y , we say that X stochastically dominates
Y, (or equivalently, that X is stochastically larger than Y ), written as
X ≥st Y, if for all t

P(X > t) ≥ P(Y > t)

That is, X ≥st Y if for evey constant t , it is at least as likely that X will
exceed t as it is that Y will.

Remark. Because a probability is always a continuous function on
events, an equivalent definition would be that X ≥st Y if P(X ≥ t) ≥
P(Y ≥ t) for all t .

The following proposition gives an equivalent condition.

Proposition 10.1.1 X ≥st Y if and only if E[h(X)] ≥ E[h(Y )] for all
increasing functions h.

Our proof uses two lemmas.

Lemma 10.1.1 If X is a nonnegative random variable, then

E[X ] =
∫ ∞

0
P(X > t) dt

Proof. For t > 0, define the random variable I (t) by

I (t) =
{

1, if t < X
0, if t ≥ X
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Now, ∫ ∞

0
I (t) dt =

∫ X

0
I (t) dt +

∫ ∞

X
I (t) dt = X

Consequently,

E[X ] = E

[∫ ∞

0
I (t) dt

]
=

∫ ∞

0
E[I (t)] dt =

∫ ∞

0
P(X > t) dt

Lemma 10.1.2 If X ≥st Y ; then E[X ] ≥ E[Y ].

Proof. Suppose first that X and Y are nonnegative random variables.
Then Lemma 10.1.1 and the stochastic dominance definition give

E[X ] =
∫ ∞

0
P(X > t) dt ≥

∫ ∞

0
P(Y > t) dt = E[Y ]

Hence, the result is true when the random variables are nonnegative.
To prove the result in general, note that any number a can be expressed

as the difference of its positive and negative parts:

a = a+ − a−

where

a+ = max(a, 0), a− = max(−a, 0)

The preceding follows because if a ≥ 0, then a+ = a and a− = 0;
whereas if a < 0, then a+ = 0 and a− = −a. So, assume that X ≥st

Y and express X and Y as the difference of their positive and negative
parts:

X = X+ − X−, Y = Y + − Y −

Now, for any t ≥ 0,

P(X+ > t) = P(X > t)

≥ P(Y > t) (because X ≥st Y )

= P(Y + > t)
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and

P(X− > t) = P(−X > t)

= P(X < −t)

≤ P(Y < −t) (because X ≥st Y )

= P(−Y > t)

= P(Y − > t)

Hence, X+ ≥st Y + and X− ≤st Y −. As these random variables are
all nonnegative, we have that E[X+] ≥ E[Y +] and that E[X−] ≤
E[Y −]. The result now follows because

E[X ] = E[X+] − E[X−] ≥ E[Y +] − E[Y −] = E[Y ]

We are now ready to prove Proposition 10.1.1.

Proof of Proposition 10.1.1 Suppose that X ≥st Y and that h is a in-
creasing function. To show that E[h(X)] ≥ E[h(Y )], we first show that
h(X) ≥st h(Y ). Now, for any t , because h is increasing it follows that
there is some value – call it h−1(t) – such that the event that h(X) > t is
equivalent either to the event that X ≥ h−1(t) or to the event that X >

h−1(t). (If there is a unique value y such that h(y) = t , then the latter
case holds and y = h−1(t).) Assuming the latter case, we have

P(h(X) > t) = P(X > h−1(t))

≥ P(Y > h−1(t))

= P(h(Y ) > t)

Because a similar argument would hold if h(X) > t were equivalent to
X ≥ h−1(t), it follows that h(X) ≥st h(Y ). Lemma 10.1.2 now gives
that E[h(X)] ≥ E[h(Y )].

To go the other way, assume that E[h(X)] ≥ E[h(Y )] for all increas-
ing functions h. Now, for fixed t , define the function ht by

ht(x) =
{

0, if x ≤ t
1, if x > t
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Then ht(x) is increasing, and so

E[ht(X)] ≥ E[ht(Y )]

But E[ht(X)] = P(X > t) and E[ht(Y )] = P(Y > t), thus showing
that X ≥st Y.

10.2 Using Coupling to Show Stochastic Dominance

One way to show that X ≥st Y is to find random variables X ′ and Y ′

such that X ′ has the same distribution as X and Y ′ has the same dis-
tribution as Y , which are such that it is always the case that X ′ ≥ Y ′.
For assume that we have found such random variables. Then, because
Y ′ > t implies that X ′ > t , it follows that

P(Y ′ > t) ≤ P(X ′ > t)

which, because P(X ′ > t) = P(X > t) and P(Y ′ > t) = P(Y > t),
proves that X ≥st Y . This approach to establishing that one random
variable is stochastically larger than another is called coupling.

Example 10.2a Show that a Poisson random variable is stochastically
increasing in its mean. That is, show that a Poisson random variable
with mean λ1 + λ2 is stochastically larger than a Poisson random vari-
able with mean λ1 when λi > 0, i = 1, 2.

Solution. For a Poisson random variable X with mean λ,

P(X ≥ j) =
∞∑

i= j

e−λλi/ i!

However, it is not easy to directly verify that the preceding is an increas-
ing function of λ for any j . An easier solution is obtained by coupling.
Let X1 and X2 be independent Poisson random variables, with Xi hav-
ing mean λi , i = 1, 2. Then, using that the sum of independent Poisson
random variables is also Poisson, it follows that X1 + X2 is Poisson with
mean λ1 + λ2. Because X1 + X2 ≥ X1, the result follows.

It turns out that if X ≥st Y , then it is always possible to find random
variables X ′ and Y ′ such that X ′ has the same distribution as X , Y ′ has
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the same distribution as Y , and X ′ ≥ Y ′. We give a proof of this result
when X and Y are continuous random variables. We start with a lemma
of independent interest.

Lemma 10.2.1 If F is a continuous distribution function and U a uni-
form (0, 1) random variable, then the random variable F−1(U ) has
distribution function F, where F−1(u) is defined to be that value such
that F(F−1(u)) = u.

Proof. Because a distribution function is increasing, it follows that the
inequalities a ≤ x and F(a) ≤ F(x) are equivalent. Hence,

P(F−1(U ) ≤ x) = P(F(F−1(U )) ≤ F(x))

= P(U ≤ F(x))

= F(x)

Proposition 10.2.1 If X ≥st Y , then there are random variables X ′

having the same distribution as X, and Y ′ having the same distribution
as Y , such that X ′ ≥ Y ′.

Solution. Assume that X and Y are continuous, with respective dis-
tribution functions F and G, and that X ≥st Y. Because X ≥st Y means
that F(x) ≤ G(x) for all x, it follows that

F(G−1(u)) ≤ G(G−1(u)) = u = F(F−1(u))

Because F is increasing, the preceding shows that G−1(u) ≤ F−1(u).

Now, let U be a uniform (0, 1) random variable and set X ′ = F−1(U )

and Y ′ = G−1(U ). The preceding gives that X ′ ≥ Y ′, and the result fol-
lows from Lemma 10.2.1.

The following is a useful result, which is easily established by a coup-
ling argument.

Theorem 10.2.1 Let X1, . . . , Xn and Y1, . . . , Yn be vectors of in-
dependent random variables, and suppose that Xi ≥st Yi for each
i = 1, . . . , n. Show that g(X1, . . . , Xn) ≥st g(Y1, . . . , Yn) when-
ever g(x1, . . . , xn) is increasing in each component.
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Proof. Let g(x1, . . . , xn) be an increasing function. Let Fi be the dis-
tribution function of Xi and let Gi be the distribution function of Yi , for
i = 1, . . . , n. Let U1, . . . , Un be independent uniform (0, 1) random
variables, and set

X ′
i = F−1

i (Ui ) , Y ′
i = G−1

i (Ui ) , i = 1, . . . , n

Because X ′
i ≥ Y ′

i for all i , it follows that g(X ′
1, . . . , X ′

n) ≥ g(Y ′
1, . . . ,

Y ′
n). The result now follows because g(X ′

1, . . . , X ′
n) has the same dis-

tribution as g(X1, . . . , Xn) and g(Y ′
1, . . . , Y ′

n) has the same distribution
as g(Y1, . . . , Yn).

10.3 Likelihood Ratio Ordering

Assume that the random variables X and Y are continuous random vari-
ables, with X having density function f and Y having density function
g. We say that X is likelihood ratio larger than Y if f (x)

g(x)
is increasing

in x over the region where either f (x) or g(x) is greater than 0.
Similarly, if X and Y are discrete random variables, we say that X is

likelihood ratio larger than Y if P(X=x)

P(Y=x)
is increasing in x over the re-

gion where either P(X = x) or P(Y = x) is greater than 0.
We now show that likelihood ratio ordering is stronger than stochastic

order.

Proposition 10.3.1 If X is likelihood ratio larger than Y , then X is
stochastically larger than Y .

Proof. Suppose X and Y have respective probability density (or mass)
functions f and g, and suppose that f (x)

g(x)
↑ x . For any a, we need to

show that ∫
x>a

f (x)dx ≥
∫

x>a
g(x)dx

(The preceding integrals should be interpreted as sums when X and Y
are discrete.) There are two cases:

Case 1: f (a) ≥ g(a)

Here, if x > a then f (x)

g(x)
≥ f (a)

g(a)
≥ 1. Hence, f (x) ≥ g(x) when x ≥ a,

giving the result.
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Case 2: f (a) < g(a)

Here, if x ≤ a then f (x)

g(x)
≤ f (a)

g(a)
< 1, giving that

∫
x≤a f (x) dx <∫

x≤a g(x) dx, which implies the result on subtracting both sides of this
inequality from 1.

Example 10.3a Let X be a random variable with density function f (x).

The density function ft given by

ft(x) = Cetx f (x)

where C−1 = ∫
ety f (y)dy, is said to be a tilted density with regard to

f . Because
ft(x)

f (x)
= etx∫

ety f (y)dy

is increasing in x when t > 0 and decreasing when t < 0, it follows that
a random variable Xt having density function ft is likelihood ratio (and
thus also stochastically) larger than X when t > 0 and likelihood ratio
(and thus also stochastically) smaller when t < 0.

10.4 A Single-Period Investment Problem

Consider a situation in which one has an initial fortune w and must
decide on an amount y, 0 ≤ y ≤ w, to invest. Suppose that an invest-
ment of size y returns the amount y X + (1 + r)(w − y) at the end of
one period, where X is a nonnegative random variable having a known
distribution and r is a specified interest rate earned by the uninvested
amount. Furthermore, suppose that, for a given increasing, concave util-
ity function u, the objective is to maximize the expected utility of the
end-of-period wealth. That is, with β = 1 + r , the objective is to find

M = max
0≤y≤w

E[u(y X + β(w − y))]

Now, suppose that X is a continuous random variable having density
function f . Then

M = max
0≤y≤w

E[u((X − β)y + βw)]

= max
0≤y≤w

∫ ∞

−∞
u((x − β)y + βw) f (x) dx
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Differentiating the term inside the maximum yields that

d

dy

∫ ∞

0
u((x − β)y + βw) f (x) dx

=
∫ ∞

0
u′((x − β)y + βw)(x − β) f (x) dx

=
∫ ∞

0
h(y, x) f (x) dx

where

h(y, x) = u′((x − β)y + βw)(x − β)

Setting the preceding derivative equal to 0 shows that the maximizing
value of y, call if yf , is such that

∫ ∞

0
h(yf , x) f (x) dx = 0 (10.1)

The following properties of h(y, x) will be needed in the sequel.

Lemma 10.4.1 For fixed x, h(y, x) is decreasing in y. In addition,

h(y, x) ≤ 0 if x ≤ β

h(y, x) ≥ 0 if x ≥ β

Proof.

Case 1: x ≤ β

That h(x, y) ↓ y follows in this case by the the following string of im-
plications:

x ≤ β ⇒ (x − β)y + βw ↓ y

⇒ u′((x − β)y + βw) ↑ y (because u concave ⇒ u′(v) ↓ v)

⇒ h(y, x) = (x − β) u′((x − β)y + βw) ↓ y

Also, h(y, x) ≤ 0 because x − β ≤ 0 and u′ ≥ 0 (because u is increas-
ing).
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Case 2: x ≥ β

x ≥ β ⇒ (x − β)y + βw ↑ y

⇒ u′((x − β)y + βw) ↓ y (because u′(v) ↓ v)

⇒ h(y, x) = (x − β) u′((x − β)y + βw) ↓ y

Moreover, h(y, x), being the product of two nonnegative factors, is
nonnegative.

Now consider two scenarios for an investor with initial wealth w: one
where the multiplicative random variable is X1 and and the second where
the multiplicative random variable is X2, where X1 has density func-
tion f and X2 has density function g. Under what conditions on f and
g would the optimal amount invested in the first scenario always be at
least as large as the optimal amount invested in the second scenario for
every increasing, concave utility function? That is, when is yf ≥ yg?
Although one might initially guess that it would be sufficient for X1 to
be stochastically larger than X2, that this is not the case is shown by the
following example.

Example 10.4a Suppose the utility function is

u(x) =
{

x, if x ≤ 100
100, if x > 100

If we suppose that

P(X1 = 4) = P(X1 = 0) = 1/2

whereas
P(X2 = 3) = P(X2 = 0) = 1/2

then it is easy to check that X1 is stochastically larger than X2. Further,
suppose that the initial wealth is w = 30 and that the interest rate is
r = 0. Because the utility function is flat at values of 100 or larger, the
optimal amount to invest in the X1 factor problem cannot exceed 70/3
because investing more than 70/3 would yield the same utility value (of
100) as investing 70/3 if X1 = 4 and a smaller utility if X1 = 0. On the
other hand, it is easy to check that the optimal amount to invest in the
X2 factor problem is 30.
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Thus we see from Example 10.1 that having a stochastically larger in-
vestment return factor does not necessarily imply that a larger amount
should be invested. This result is, however, true when the investment
returns are likelihood ratio ordered.

Theorem 10.4.1 If f and g are density functions of nonnegative ran-
dom variables, for which f (x)

g(x)
increases in x, then yf ≥ yg. That is,

when f is a likelihood ratio ordered larger density than g, then the op-
timal amount to invest when the multiplicative factor has density f is
larger than when it has density g.

Proof. From Equation (10.1), the optimal amount to invest when X has
density g, namely, yg, satisfies

∫ ∞

0
h(yg, x)g(x) dx = 0

We want to show that if f (x)

g(x)
↑ x , then yf ≥ yg, where yf is such that

∫ ∞

0
h(yf , x) f (x) dx = 0

Because h(y, x) is decreasing in y (Lemma 10.4.1), it follows that the in-
equality yf ≥ yg is equivalent to the inequality

∫ ∞
0 h(yg, x) f (x) dx ≥∫ ∞

0 h(yf , x) f (x) dx . Thus, it suffices to prove that

∫ ∞

0
h(yg, x) f (x) dx ≥ 0

Now,

∫ ∞

0
h(yg, x) f (x) dx =

∫ β

0
h(yg, x) f (x) dx +

∫ ∞

β

h(yg, x) f (x) dx

If x ≤ β, then f (x)

g(x)
≤ f (β)

g(β)
, giving that f (x) ≤ f (β)

g(β)
g(x). Also, if x ≤

β, then, from Lemma 10.4.1, h(yg, x) ≤ 0. Hence,

∫ β

0
h(yg, x) f (x) dx ≥ f (β)

g(β)

∫ β

0
h(yg, x)g(x) dx (10.2)
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If x ≥ β, then f (x)

g(x)
≥ f (β)

g(β)
and, by Lemma 10.4.1, h(yg, x) ≥ 0. Hence,

∫ ∞

β

h(yg, x) f (x) dx ≥ f (β)

g(β)

∫ ∞

β

h(yg, x)g(x) dx (10.3)

Thus, by (10.2) and (10.3), we obtain
∫ ∞

0
h(yg, x) f (x) dx ≥ f (β)

g(β)

∫ ∞

0
h(yg, x)g(x) dx = 0

and the result is proven.

10.5 Second-Order Dominance

Whereas X stochastically dominates Y requires that E[h(X)] ≥
E[h(Y )] for all increasing functions h, we often are interested in condi-
tions under which the preceding is required to hold not for all increasing
functions h but only for those increasing functions that are also concave.
That is, we are interested in when a final fortune of X is always prefer-
able to a final fortune of Y provided that the investor has an increasing
concave utility function.

Definition. We say that X second order dominates Y , written as
X ≥icv Y , if

E[h(X)] ≥ E[h(Y )] for all functions h that

are both increasing and concave

Remarks.

1. The notation X ≥icv Y is used because equivalent terminology to X
second-order dominating Y is that X is stochastically larger than Y
in the increasing, concave sense.

2. If X has expected value E[X ], then it follows from Jensen’s inequal-
ity (see Section 9.2) that the constant random variable E[X ] second
order dominates X .

For a specified value of a, let the function ha be defined as follows:

ha(x) =
{

x, if x ≤ a
a, if x > a
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Because ha(x) is an increasing straight line that becomes flat when it
hits a, it is an increasing, concave function. Writing

ha(X) = a − (a − ha(X))

we obtain, on applying Lemma 10.1.1 to the nonnegative random vari-
able a − ha(X), that

E[ha(X)] = a − E[a − ha(X)]

= a −
∫ ∞

0
P(a − ha(X) > t) dt

= a −
∫ ∞

0
P(ha(X) < a − t) dt

= a −
∫ ∞

0
P(X < a − t) dt

= a −
∫ a

−∞
P(X < y) dy

It follows from the preceding that if X second-order stochastically dom-
inates Y then∫ a

−∞
P(X < y) dy ≤

∫ a

−∞
P(Y < y) dy for all a (10.4)

In fact, it can be shown that the preceding is also a sufficient condition
for X ≥icv Y . That is, the following theorem holds.

Theorem 10.5.1 X second-order stochastically dominates Y if and
only if (10.4) holds.

Although the preceding theorem gives a necessary and sufficient con-
dition for one random variable to second-order dominate another, we
will not make use of it in considering second-order dominance among
normal random variables.

10.5.1 Normal Random Variables

This subsection is concerned with showing that a normal random vari-
able is increasing in its mean and decreasing in its variance in the second
order stochastic dominance sense. That is, the following holds.
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Theorem 10.5.2 If Xi , i = 1, 2, are normal random variables with re-
spective means μi and variances σ 2

i , then

μ1 ≥ μ2, σ1 ≤ σ2 ⇒ X1 ≥icv X2

To prove the preceding theorem, we first prove the following proposi-
tion, which is of independent interest. It states that any two increasing
functions of a random variable X have a nonnegative correlation.

Proposition 10.5.1 If f (x) and g(x) are both increasing functions of
x, then for any random variable X

E[ f (X)g(X)] ≥ E[ f (X)]E[g(X)]

If one of f and g is an increasing function and the other is a decreasing
function, then

E[ f (X)g(X)] ≤ E[ f (X)]E[g(X)]

Proof. Let X and Y be independent with the same distribution, and sup-
pose f (x) and g(x) are both increasing functions of x . Then f (X) −
f (Y ) and g(X)−g(Y ) both have the same sign (both being nonnegative
if X ≥ Y and being nonpositive if X ≤ Y ). Consequently,

( f (X) − f (Y ))(g(X) − g(Y )) ≥ 0

or, equivalently,

f (X)g(X) + f (Y )g(Y ) ≥ f (X)g(Y ) + f (Y )g(X)

Taking expectations gives

E[ f (X)g(X)] + E[ f (Y )g(Y )] ≥ E[ f (X)g(Y )] + E[ f (Y )g(X)]

Because X and Y are independent, the preceding yields

E[ f (X)g(X)] + E[ f (Y )g(Y )] ≥ E[ f (X)]E[g(Y )]

+ E[ f (Y )]E[g(X)]

Because X and Y have the same distribution, E[ f (Y )g(Y )] = E[ f (X)

g(X)] and E[ f (Y )] = E[ f (X)], E[g(Y )] = E[g(X)]. Consequently,
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the preceding inequality yields

2E[ f (X)g(X)] ≥ 2E[ f (X)]E[g(X)]

which is the desired result. Also, when f is decreasing and g is increas-
ing, the preceding gives that

E[− f (X)g(X)] ≥ E[− f (X)]E[g(X)]

Multiplying both sides by −1 now shows that

E[ f (X)g(X)] ≤ E[ f (X)]E[g(X)]

which completes the proof.

We will also need the following lemma.

Lemma 10.5.1 If E[X ] = 0 and c ≥ 1 is a constant, then X ≥icv cX.

Proof. Let h be an increasing concave function, and let c ≥ 1. The
Taylor series expansion with remainder of h(cx) about x gives that, for
some w between x and cx,

h(cx) = h(x) + h′(x)(cx − x) + h′′(w)(cx − x)2/2!

≤ h(x) + h′(x)(cx − x)

where the inequality follows because h concave implies that h′′(w) ≤
0. Because the preceding holds for all x , it follows that

h(cX) ≤ h(X) + (c − 1)Xh′(X)

Taking expectations gives

E[h(cX)] ≤ E[h(X)] + (c − 1)E[Xh′(X)]

≤ E[h(X)] + (c − 1)E[X ]E[h′(X)]

= E[h(X)]

where the second inequality follows from Proposition 10.5.1 because
f (x) = x is an increasing function and, because h is concave, h′(x)
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is a decreasing function of x; and the final equality follows because
E[X ] = 0.

We are now ready to prove Theorem 10.5.2.

Proof of Theorem 10.5.2 Assume that μ1 ≥ μ2 and σ1 ≤ σ2. Let Z
be a normal random variable with mean 0 and variance 1. With c =
σ2/σ1 ≥ 1, it follows from Lemma 10.5.1 that σ1 Z ≥icv cσ1 Z = σ2 Z .
Now, let h(x) be a concave and increasing function of x . Then,

E[h(μ1 + σ1 Z)] ≥ E[h(μ2 + σ1 Z)] (because μ1 ≥ μ2 and h

≥ E[h(μ2 + σ2 Z)] is increasing)

where the final inequality follows because g(x) = h(μ2 + x) is a con-
cave, increasing function of x , and σ1 Z ≥icv σ2 Z . The result now
follows because μi + σi Z is a normal random variable with mean μi

and variance σ 2
i .

10.5.2 More on Second-Order Dominance

A useful result about second-order dominance is that if X1, . . . , Xn and
Y1, . . . , Yn are independent random vectors, then if Xi second-order
stochastically dominates Yi for each i , the sum of the Xi second-order
stochastically dominates the sum of the Yi .

Theorem 10.5.3 Let X1, . . . , Xn and Y1, . . . , Yn both be vectors of n
independent random variables. If Xi ≥icv Yi for each i = 1, . . . , n
then

∑n
i=1 Xi ≥icv

∑n
i=1 Yi .

Proof. Let h be an increasing concave function. We need to show that
E[h(

∑n
i=1 Xi )] ≥ E[h(

∑n
i=1 Yi )]. The proof is by induction on n. Be-

cause the result is true when n = 1, assume it is true whenever the
random vectors are of size n − 1. Now consider two vectors of in-
dependent random variables: X1, . . . , Xn and Y1, . . . , Yn . In addition
suppose, without loss of generality, that these vectors are independent
of each other. (It is “without loss of generality” because assuming that
the two vectors are independent of each other does not affect the val-
ues of E[h(

∑n
i=1 Xi )] and E[h(

∑n
i=1 Yi )], and thus a proof assuming
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vector independence is sufficient to prove the result.) To begin, we will
show that

∑n
i=1 Xi ≥icv

∑n−1
i=1 Yi + Xn. To verify this, for any x define

the function hx(a) by hx(a) = h(x +a) and note that hx is an increasing
concave function. Then, we have that

E

[
h

(
n∑

i=1

Xi

) ∣∣∣Xn = x

]

= E

[
h

(
x +

n−1∑
i=1

Xi

) ∣∣∣Xn = x

]

= E

[
h

(
x +

n−1∑
i=1

Xi

)]
by independence

= E

[
hx

(
n−1∑
i=1

Xi

)]

≥ E

[
hx

(
n−1∑
i=1

Yi

)]
by the induction hypothesis

= E

[
h

(
x +

n−1∑
i=1

Yi

)]

= E

[
h

(
x +

n−1∑
i=1

Yi

) ∣∣∣Xn = x

]
by independence

= E

[
h

(
Xn +

n−1∑
i=1

Yi

) ∣∣∣Xn = x

]

Hence,

E

[
h

(
n∑

i=1

Xi

) ∣∣∣Xn

]
≥ E

[
h

(
Xn +

n−1∑
i=1

Yi

) ∣∣∣Xn

]

and it follows, on taking expectations of the preceding, that

E

[
h

(
n∑

i=1

Xi

)]
≥ E

[
h

(
Xn +

n−1∑
i=1

Yi

)]
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Consequently,
∑n

i=1 Xi ≥icv
∑n−1

i=1 Yi + Xn. We now complete the proof
by showing that

∑n−1
i=1 Yi + Xn ≥icv

∑n
i=1 Yi . To do so, note that

E

[
h

(
n−1∑
i=1

Yi + Xn

) ∣∣∣
n−1∑
i=1

Yi = y

]

= E[hy(Xn)] ≥ E[hy(Yn)] = E

[
h

(
n∑

i=1

Yi

) ∣∣∣
n−1∑
i=1

Yi = y

]

where the inequality followed because hy is an increasing, concave func-
tion and the equalities from the independence of the random variables.
But the preceding gives that

E

[
h

(
n−1∑
i=1

Yi + Xn

) ∣∣∣
n−1∑
i=1

Yi

]
≥ E

[
h

(
n∑

i=1

Yi

) ∣∣∣
n−1∑
i=1

Yi

]

Taking expectations of the preceding inequality yields that

E

[
h

(
n−1∑
i=1

Yi + Xn

)]
≥ E

[
h

(
n∑

i=1

Yi

)]

Hence,
∑n−1

i=1 Yi + Xn ≥icv
∑n

i=1 Yi , and the proof is complete.

Remark. Theorem 10.5.3 along with the central limit theorem can be
used to give another proof that a normal random variable decreases in
second-order dominance as its variance increases. For suppose σ2 > σ1.

Let X be equally likely to be plus or minus σ1 and let Y be equally likely
to be plus or minus σ2. Then it is easy to directly verify that X ≥icv Y
by showing that

h(−σ1) + h(σ1) ≥ h(−σ2) + h(σ2)

whenever h is an increasing, concave function. (Because Y has the
same distribution as σ2

σ1
X , the result X ≥icv Y also follows from Lemma

10.5.1.) Now, let Xi , i ≥ 1, be independent random variables all hav-
ing the same distribution as X , and let Yi , i ≥ 1 be independent random
variables all having the same distribution as Y . Then it follows from
Theorem 10.5.3 that

∑n
i=1 Xi ≥icn

∑n
i=1 Yi . Because it is immediate
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that W ≥icv V implies that cW ≥icv cV for any positive constant c, we
see that ∑n

i=1 Xi√
n

≥icv

∑n
i=1 Yi√

n

The result now follows by letting n → ∞, because the term on the left
converges to a normal random variable with mean 0 and variance σ 2

1

and the term on the right converges to a normal random variable with
mean 0 and variance σ 2

2 . (Of course, to make this argument truly rigor-
ous, we would need to show that second-order stochastic dominance is
preserved when going to a limit.)

10.6 Exercises

Exercise 10.1 Suppose that

P(Xi = 1) = pi = 1 − P(Xi = 0), i = 1, 2

If p1 ≥ p2, show that X1 ≥st X2.

Exercise 10.2 Let X (n, p) denote a binomial random variable with pa-
rameters n and p. Show that X (n + 1, p) ≥st X (n, p).

Exercise 10.3 Let X (n, p) denote a binomial random variable with pa-
rameters n and p. If p1 ≥ p2, show that X (n, p1) ≥st X (n, p2).

Exercise 10.4 If Xi is a normal random variable with mean μi and
variance σ 2, for i = 1, 2, show that X1 ≥lr X2 when μ1 ≥ μ2.

Exercise 10.5 Let Xi be an exponential random variable with density
function fi (x) = λi e−λi x , i = 1, 2. If λ1 ≤ λ2, show that X1 ≥lr X2.

Exercise 10.6 Let Xi be a Poisson random variable with mean λi . If
λ1 ≥ λ2, show that X1 ≥lr X2.

Exercise 10.7 Show that E[X ] ≥icv X .

Exercise 10.8 Show that

h(−σ1) + h(σ1) ≥ h(−σ2) + h(σ2)

whenever h is a concave function and σ2 > σ1 > 0.
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Hint. Because h′ is a decreasing function,
∫ σ2

σ1
h′(x) dx ≤∫ −σ1

−σ2
h′(x) dx .

Exercise 10.9 If X ≥icv Y, show that g(X) ≥icv g(Y ) whenever g is
an increasing concave function.
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11. Optimization Models

11.1 Introduction

In this chapter we consider some optimization problems involving one-
time investments not necessarily tied to the movement of a publicly
traded security. Section 11.2 introduces a deterministic optimization
problem where the objective is to determine an efficient algorithm for
finding the optimal investment strategy when a fixed amount of money
is to be invested in integral amounts among n projects, each having its
own return function. Section 11.2.1 presents a dynamic programming
algorithm that can always be used to solve the preceding problem; Sec-
tion 11.2.2 gives a more efficient algorithm that can be employed when
all the project return functions are concave; and Section 11.2.3 ana-
lyzes the special case, known as the knapsack problem, where project
investments are made by purchasing integral numbers of shares, with
each project return being a linear function of the number of shares pur-
chased. Models in which probability is a key factor are considered in
Section 11.3. Section 11.3.1 is concerned with a gambling model having
an unknown win probability, and Section 11.3.2 examines a sequential
investment allocation model where the number of investment opportu-
nities is a random quantity.

11.2 A Deterministic Optimization Model

Suppose that you have m dollars to invest among n projects and that in-
vesting x in project i yields a (present value) return of fi(x), i =1,.. .,n.

The problem is to determine the integer amounts to invest in each project
so as to maximize the sum of the returns. That is, if we let xi denote the
amount to be invested in project i, then our problem (mathematically)
is to

choose nonnegative integers x1, .. ., xn

such that
∑n

i=1 xi = m

to maximize
∑n

i=1 fi(xi ).
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11.2.1 A General Solution Technique Based on
Dynamic Programming

To solve the preceding problem, let Vj(x) denote the maximal possible
sum of returns when we have a total of x to invest in projects 1, .. ., j.
With this notation, Vn(m) represents the maximal value of the problem
posed in Section 11.2. Our determination of Vn(m), and of the opti-
mal investment amounts begins by finding the values of Vj(x) for x =
1, .. ., m, first for j = 1, then for j = 2, and so on up to j = n.

Because the maximal return when x must be invested in project 1 is
f1(x), we have that

V1(x) = f1(x).

Now suppose that x must be invested between projects 1 and 2. If we in-
vest y in project 2 then a total of x − y is available to invest in project 1.
Because the best return from having x − y available to invest in project 1
is V1(x − y), it follows that the maximal sum of returns possible when
the amount y is invested in project 2 is f2(y) + V1(x − y). As the max-
imal sum of returns possible is obtained by maximizing the preceding
over y, we see that

V2(x) = max
0≤y≤x

{ f2(y) + V1(x − y)}.

In general, suppose that x must be invested among projects 1, .. ., j.
If we invest y in project j then a total of x − y is available to invest in
projects 1, .. ., j −1. Because the best return from having x − y available
to invest in projects 1, .. ., j − 1 is Vj−1(x − y), it follows that the max-
imal sum of returns possible when the amount y is invested in project j
is f j(y) + Vj−1(x − y). As the maximal sum of returns possible is ob-
tained by maximizing the preceding over y, we see that

Vj(x) = max
0≤y≤x

{ f j(y) + Vj−1(x − y)}.

If we let yj(x) denote the value (or a value if there is more than one)
of y that maximizes the right side of the preceding equation, then yj(x)

is the optimal amount to invest in project j when you have x to invest
among projects 1, .. ., j.

The value of Vn(m) can now be obtained by first determining V1(x),

then V2(x), V3(x), .. ., Vn−1(x) and finally Vn(m). The optimal amount
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to invest in project n would be given by yn(m); the optimal amount to
invest in project n − 1 would be yn−1(m − yn(m)), and so on.

This solution approach – which views the problem as involving n se-
quential decisions and then analyzes it by determining the optimal last
decision, then the optimal next to last decision, and so on – is called dy-
namic programming. (Dynamic programming was previously used in
Section 8.3 for pricing, and finding, the optimal exercise strategy for an
American put option.)

Example 11.2a Suppose that three investment projects with the fol-
lowing return functions are available:

f1(x) = 10x

1 + x
, x = 0,1, .. .,

f2(x) = √
x, x = 0,1, .. .,

f3(x) = 10(1 − e−x), x = 0,1, .. .,

and that we want to maximize our return when we have 5 to invest. Now,

V1(x) = f1(x) = 10x

1 + x
, y1(x) = x .

Because

V2(x) = max
0≤y≤x

{ f2(y) + V1(x − y)} = max
0≤y≤x

{√
y + 10(x − y)

1 + x − y

}
,

we see that

V2(1) = max{10/2,1} = 5, y2(1) = 0,

V2(2) = max{20/3, 1 + 5,
√

2 } = 20/3, y2(2) = 0,

V2(3) = max{30/4, 1 + 20/3,
√

2 + 5,
√

3 } = 23/3, y2(3) = 1,

V2(4) = max{40/5, 1 + 30/4,
√

2 + 20/3,
√

3 + 5,
√

4 }
= 8.5, y2(4) = 1,

V2(5) = max{50/6, 1 + 8,
√

2 + 7.5,
√

3 + 20/3,
√

4 + 5,
√

5 }
= 9, y2(5) = 1.

Continuing, we have that

V3(x) = max
0≤y≤x

{ f3(y)+V2(x − y)} = max
0≤y≤x

{10(1− e−y)+V2(x − y)}.
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Using that

1 − e−1 = .632, 1 − e−2 = .865, 1 − e−3 = .950,

1 − e−4 = .982, 1 − e−5 = .993,

we obtain

V3(5) = max{9, 6.32 + 8.5, 8.65 + 23/3,

9.50 + 20/3, 9.82 + 5, 9.93} = 16.32,

y3(5) = 2.

Thus, the maximal sum of returns from investing 5 is 16.32; the optimal
amount to invest in project 3 is y3(5) = 2; the optimal amount to invest
in project 2 is y2(3) = 1; and the optimal amount to invest in project 1
is y1(2) = 2.

11.2.2 A Solution Technique for Concave
Return Functions

More efficient algorithms for solving the preceding problem are avail-
able when the return functions satisfy certain conditions. For instance,
suppose that each of the functions fi(x) is concave, where a function
g(i), i = 0,1, .. ., is said to be concave if

g(i + 1) − g(i) is nonincreasing in i.

That is, a return function would be concave if the additional (or mar-
ginal) gain from each additional unit invested becomes smaller as more
has already been invested.

Let us now assume that the functions fi(x), i = 1, .. ., n, are all con-
cave, and again consider the problem of choosing nonnegative integers
x1, .. ., xn, whose sum is m, to maximize

∑n
i=1 fi(xi ). Suppose that

x o
1 , .. ., x o

n is an optimal vector for this problem: a vector of nonnegative
integers that sum to m and with

n∑
i=1

fi(x o
i ) = max

n∑
i=1

fi(xi ),

where the maximum is over all nonnegative integers x1, .. ., xn that sum
to m. Now suppose that we have a total of m +1 to invest. We will argue
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that there is an optimal vector y o
1 , .. ., y o

n with
∑n

i=1 y o
i = m + 1 that

satisfies
y o

i ≥ x o
i , i = 1, .. ., n. (11.1)

To verify (11.1), suppose we have m + 1 to invest and consider any in-
vestment strategy y1, .. ., yn with

∑n
i=1 yi = m + 1 such that, for some

value of k,

yk < x o
k .

Because m + 1 = ∑
i yi >

∑
i x o

i = m, it follows that there must be a
j such that

x o
j < yj .

We will now argue that when you have m + 1 to invest, the investment
strategy that invests yk + 1 in project k, yj − 1 in project j, and yi in
project i for i �= k or j is at least as good as the strategy that invests yi

in project i for each i. To verify that this new investment strategy is at
least as good as the original y-strategy, we need to show that

fk(yk + 1) + f j(yj − 1) ≥ fk(yk) + f j(yj )

or, equivalently, that

fk(yk + 1) − fk(yk) ≥ f j(yj ) − f j(yj − 1). (11.2)

Because x o
1 , .. ., x o

n is optimal when there is m to invest, it follows that

fk(x o
k ) + f j(x o

j ) ≥ fk(x o
k − 1) + f j(x o

j + 1)

or, equivalently, that

fk(x o
k ) − fk(x o

k − 1) ≥ f j(x o
j + 1) − f j(x o

j ). (11.3)

Consequently,

fk(yk + 1) − fk(yk)

≥ fk(x o
k ) − fk(x o

k − 1) (by concavity, since yk + 1 ≤ x o
k )

≥ f j(x o
j + 1) − f j(x o

j ) (by (11.3))

≥ f j(yj ) − f j(yj − 1) (by concavity, since x o
j + 1 ≤ yj ).
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Thus, we have verified the inequality (11.2), which shows that any strat-
egy for investing m + 1 that calls for investing less than x o

k in some
project k can be at least matched by one whose investment in project k is
increased by 1 with a corresponding decrease in some project j whose
investment was greater than x o

j . Repeating this argument shows that, for
any strategy of investing m + 1, we can find another strategy that in-
vests at least x o

i in project i for all i = 1, .. ., n and yields a return that
is at least as large as the original strategy. But this implies that we can
find an optimal strategy y o

1 , .. ., y o
n for investing m + 1 that satisfies the

inequality (11.1).
Because the optimal strategy for investing m + 1 invests at least as

much in each project as does the optimal strategy for investing m, it
follows that the optimal strategy for m + 1 can be found by using the
optimal strategy for m and then investing the extra dollar in that project
whose marginal increase is largest. Therefore, we can find the optimal
investment (when we have m) by first solving the optimal investment
problem when we have 1 to invest, then when we have 2, then 3, and
so on.

Example 11.2b Let us reconsider Example 11.2a, where we have 5 to
invest among three projects whose return functions are

f1(x) = 10x

1 + x
,

f2(x) = √
x,

f3(x) = 10(1 − e−x).

Let xi( j) denote the optimal amount to invest in project i when we have
a total of j to invest. Because

max{ f1(1), f2(1), f3(1)} = max{5,1, 6.32} = 6.32,

we see that

x1(1) = 0, x2(1) = 0, x3(1) = 1.

Since
max

i
{ fi(xi(1) + 1) − fi(xi(1))} = max{5, 1, 8.65 − 6.32} = 5,

we have
x1(2) = 1, x2(2) = 0, x3(2) = 1.
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Because

max
i

{ fi(xi(2) + 1) − fi(xi(2))} = max{20/3 − 5, 1, 8.65 − 6.32}
= 2.33,

it follows that

x1(3) = 1, x2(3) = 0, x3(3) = 2.

Since

max
i

{ fi(xi(3) + 1) − fi(xi(3))} = max{20/3 − 5, 1, 9.50 − 8.65}
= 1.67,

we obtain

x1(4) = 2, x2(4) = 0, x3(4) = 2.

Finally,

max
i

{ fi(xi(4) + 1) − fi(xi(4))} = max{30/4 − 20/3, 1, 9.50 − 8.65}
= 1,

giving that

x1(5) = 2, x2(5) = 1, x3(5) = 2.

The maximal return is thus 6.32 + 5 + 2.33 + 1.67 + 1 = 16.32.

The following algorithm can be used to solve the problem when m is to
be invested among n projects, each of which has a concave return func-
tion. The quantity k will represent the current amount to be invested,
and xi will represent the optimal amount to invest in project i when a
total of k is to be invested.

Algorithm

(1) Set k = 0 and xi = 0, i = 1, .. ., n.

(2) mi = fi(xi + 1) − fi(xi ), i = 1, .. ., n.

(3) k = k + 1.
(4) Let J be such that mJ = max i mi .
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(5) If J = j, then
xj → xj + 1,

mj → f j(xj + 1) − f j(xj ).

(6) If k < m, go to step (3).

Step (5) means that if the value of J is j, then (a) the value of xj should
be increased by 1 and (b) the value of mj should be reset to equal the
difference of f j evaluated at 1 plus the new value of xj and f j evaluated
at the new value of xj .

Remark: When g(x) is defined for all x in an interval, then g is con-
cave if g′(t) is a decreasing function of t (that is, if g′′(t) ≤ 0). Hence,
for g concave ∫ i+1

i
g′(s)ds ≤

∫ i

i−1
g′(s)ds

yielding that

g(i + 1) − g(i) ≤ g(i) − g(i − 1)

which we used as the definition of concavity for g defined on the
integers.

11.2.3 The Knapsack Problem

Suppose one invests in project i by buying an integral number of shares
in that project, with each share costing ci and returning vi . If we let xi

denote the number of shares of project i that are purchased, then the
problem – when one can invest at most m in the n projects – is to

choose nonnegative integers x1, .. ., xn

such that
∑n

i=1 xi ci ≤ m

to maximize
∑n

i=1 vi xi .

We will use a dynamic programming approach to solve this problem.
To begin, let V(x) be the maximal return possible when we have x to in-
vest. If we start by buying one share of project i, then a return vi will be
received and we will be left with a capital of x − ci . Because V(x − ci )
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is the maximal return that can be obtained fom the amount x − ci , it fol-
lows that the maximal return possible if we have x and begin investing
by buying one share of project i is

maximal return if start by purchasing one share of i = vi + V(x − ci ).

Hence V(x), the maximal return that can be obtained from the invest-
ment capital x, satisfies

V(x) = max
i :ci ≤x

{vi + V(x − ci )}. (11.4)

Let i(x) denote the value of i that maximizes the right side of (11.4).
Then, when one has x, it is optimal to purchase one share of project
i(x). Starting with

V(1) = max
i :ci ≤1

vi ,

it is easy to determine the values of V(1) and i(1), which will then en-
able us to use Equation (11.4) to determine V(2) and i(2), and so on.

Remark. This problem is called a knapsack problem because it is math-
ematically equivalent to determining the set of items to be put in a knap-
sack that can carry a total weight of at most m when there are n different
types of items, with each type i item having weight ci and yielding the
value vi .

Example 11.2c Suppose you have 25 to invest among three projects
whose cost and return values are as follows.

Cost Return
Project per share per share

1 5 7
2 9 12
3 15 22
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Then

V(x) = 0, x ≤ 4,

V(x) = 7, i(x) = 1, x = 5, 6, 7, 8,

V(9) = max{7 + V(4), 12 + V(0)} = 12, i(9) = 2,

V(x) = max{7 + V(x − 5), 12 + V(x − 9)} = 14,

i(x) = 1, x = 10,11,12,13,

V(14) = max{7 + V(9), 12 + V(5)} = 19, i(x) = 1 or 2,

V(15) = max{7 + V(10), 12 + V(6), 22 + V(0)} = 22, i(15) = 3,

V(16) = max{7 + V(11), 12 + V(7), 22 + V(1)} = 22, i(16) = 3,

V(17) = max{7 + V(12), 12 + V(8), 22 + V(2)} = 22, i(17) = 3,

V(18) = max{7 + V(13), 12 + V(9), 22 + V(3)} = 24, i(18) = 2,

and so on. Thus, for instance, with 18 it is optimal to first purchase
one share of project i(18) = 2 and then purchase one share of project
i(9) = 2. That is, with 18 it is optimal to purchase two shares of project 2
for a total return of 24.

11.3 Probabilistic Optimization Problems

In this section we consider two optimization problems that are proba-
bilistic in nature. Section 11.3.1 deals with a gambling model that has
been chosen to illustrate the value of information. Section 11.3.2 is
concerned with an investment allocation problem when the number of
investment opportunities is random.

11.3.1 A Gambling Model with Unknown Win Probabilities

Suppose, in Example 9.2a, that an investment’s win probability p is not
fixed but can be one of three possible values: p1 = .45, p2 = .55, or
p3 = .65. Suppose also that it will be p1 with probability 1/4, p2 with
probability 1/2, and p3 with probability 1/4. If an investor does not
have information about which pi has been chosen, then she will take the
win probability to be

p = 1
4 p1 + 1

2 p2 + 1
4 p3 = .55.
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Assuming (as in Example 9.2a) a log utility function, it follows from the
results of that example that the investor will invest 100(2p − 1) = 10%
of her fortune, with the expected utility of her final fortune being

log(x) + .55 log(1.1) + .45 log(.9) = log(x) + .0050 = log(e.0050x),

where x is the investor’s initial fortune.
Suppose now that the investor is able to learn, before making her in-

vestment, which pi is the win probability. If .45 is the win probability,
then the investor will not invest and so the conditional expected utility
of her final fortune will be log(x). If .55 is the win probability, the in-
vestor will do as shown previously, and the conditional expected utility
of her final fortune will be log(x)+ .0050. Finally, if .65 is the win prob-
ability, the investor will invest 30% of her fortune and the conditional
expected utility of her final fortune will be

log(x) + .65 log(1.3) + .35 log(.7) = log(x) + .0456.

Therefore, the expected final utility of an investor who will learn which
pi is the win probability before making her investment is

1
4 log(x) + 1

2 (log(x) + .0050) + 1
4(log(x) + .0456) = log(x) + .0139

= log(e.0139x).

11.3.2 An Investment Allocation Model

An investor has the amount D available to invest. During each of N time
instants, an opportunity to invest will (independently) present itself with
probability p. If the opportunity occurs, the investor must decide how
much of her remaining wealth to invest. If y is invested in an oppor-
tunity then R(y), a specified function of y, is earned at the end of the
problem. Assuming that both the amount invested and the return from
that investment become unavailable for future investment, the problem
is to determine how much to invest at each opportunity so as to max-
imize the expected value of the investor’s final wealth, which is equal
to the sum of all the investment returns and the amount that was never
invested.

To solve this problem, let Wn(x) denote the maximal expected final
wealth when the investor has x to invest and there are n time instants in
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the problem; let Vn(x) denote the maximal expected final wealth when
the investor has x to invest, there are n time instants in the problem,
and an opportunity is at hand. To determine an equation for Vn(x), note
that if y is initially invested then the investor’s maximal expected fi-
nal wealth will be R(y) plus the maximal expected amount that she
can obtain in n − 1 time instants when her investment capital is x − y.

Because this latter quantity is Wn−1(x − y), we see that the maximal
expected final wealth when y is invested is R(y) + Wn−1(x − y). The
investor can now choose y to maximize this sum, so we obtain the
equation

Vn(x) = max
0≤y≤x

{R(y) + Wn−1(x − y)}. (11.5)

When the investor has x to invest and there are n time instants to go,
either an opportunity occurs and the maximal expected final wealth is
Vn(x), or an opportunity does not occur and the maximal expected final
wealth is Wn−1(x). Because each opportunity occurs with probability
p, it follows that

Wn(x) = pVn(x) + (1 − p)Wn−1(x). (11.6)

Starting with W0(x) = x, we can use Equation (11.5) to obtain V1(x)

for all 0 ≤ x ≤ D, then use Equation (11.6) to obtain W1(x) for all 0 ≤
x ≤ D, then use Equation (11.5) to obtain V2(x) for all 0 ≤ x ≤ D,

then use Equation (11.6) to obtain W2(x), and so on. If we let yn(x) be
the value of y that maximizes the right side of Equation (11.5), then the
optimal policy is to invest the amount yn(x) if there are n time instants
remaining, an opportunity is present, and our current investment capital
is x .

Example 11.3a Suppose that we have 10 to invest, there are two time
instants, an opportunity will present itself each instant with probability
p = .7, and

R(y) = y + 10
√

y.

Find the maximal expected final wealth as well as the optimal policy.
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Solution. Starting with W0(x) = x, Equation (11.5) gives

V1(x) = max
0≤y≤x

{y + 10
√

y + x − y}
= x + max

0≤y≤x
{10

√
y }

= x + 10
√

x

and y1(x) = x . Thus,

W1(x) = .7(x + 10
√

x ) + .3x = x + 7
√

x,

yielding that

V2(x) = max
0≤y≤x

{y + 10
√

y + x − y + 7
√

x − y }

= x + max
0≤y≤x

{10
√

y + 7
√

x − y }

= x + √
149x, (11.7)

where calculus gave the final equation as well as the result:

y2(x) = 100

149
x . (11.8)

The preceding now yields

W2(x) = .7(x + √
149x ) + .3(x + 7

√
x ) = x + .7

√
149x + 2.1

√
x .

Thus, starting with 10, the maximal expected final wealth is

W2(10) = 10 + .7
√

1490 + 2.1
√

10 = 43.66.

Hence the optimal policy is to invest 1000
149 = 6.71 if an opportunity

presents itself at the initial time instant and then to invest whatever of
your fortune remains if an opportunity presents itself at the final time
instant.

Provided that R(y) is a nondecreasing concave function, the following
result can be proved.

Theorem 11.3.1 If R(y) is a nondecreasing concave function, then:

(a) Vn(x) and Wn(x) are both nondecreasing concave functions;
(b) yn(x) is a nondecreasing function of x;
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(c) x − yn(x) is a nondecreasing function of x; and
(d) yn(x) is a nonincreasing function of n.

Parts (b) and (c) state, respectively, that the more you have the more you
should invest and that the more you have the more you should conserve.
Part (d) says that the more time you have the less you should invest each
time.

11.4 Exercises

Exercise 11.1 Find the optimal investment strategy when 6 is to be in-
vested between two projects having return functions

f1(x) = 2 log(x + 1), f2(x) = √
x, x = 0,1, .. . .

Exercise 11.2 Find the optimal strategy and the maximal return in Ex-
ample 11.2a when you have 8 to invest. Use the method of Example
11.2a.

Exercise 11.3 Use the method of Example 11.2b to solve the preced-
ing exercise.

Exercise 11.4 The function g(i), i = 0,1, .. ., is said to be convex if

g(i + 1) − g(i) is nondecreasing in i.

Show that, if all return functions are convex, then there is an optimal in-
vestment strategy for the problem of Section 11.2 that invests everything
in a single project.

Exercise 11.5 Consider the problem of choosing nonnegative integers
x1, .. ., xn, whose sum is m = kn, to maximize

f (x1, .. ., xn) =
n∑

i=1

f (xi ),

where f (x) is a specified function for which f (0) = 0.

(a) If f (x) is concave, show that the maximal value is n f (k).

(b) If f (x) is convex, show that the maximal value is f (kn).



226 Optimization Models

Exercise 11.6 Continue with Example 11.2c and find the optimal strat-
egy when you have 25 to invest.

Exercise 11.7 Starting with some initial wealth, you must decide in
each of the following N periods how much of your wealth to invest and
how much to consume. Assume the utility that you attain from con-
suming the amount x during a period is

√
x and that your objective is

to maximize the sum of the utilities you obtain in the N periods. As-
sume also that an investment earns a fixed rate of return r per period.
Let Vn(x) denote the maximal sum of utilities that can be attained when
one’s current fortune is x and n additional periods remain.

(a) What is the value of V1(x)?
(b) Find V2(x).

(c) Derive an equation for Vn(x).

(d) Determine the optimal amounts to invest and to consume when your
fortune is x and you have n periods remaining.

Hint. Let the decision be the fraction of your wealth to consume.

Exercise 11.8 An individual begins processing n jobs at time 0. Job i
takes time xi to process. If the processing of job i is completed at time
t, then the processor earns the return Ri(t). Jobs may be processed in
any order, with the objective being to maximize the sum of the proces-
sor’s returns. For any subset S of jobs, let V(S) be the maximal return
that the processor can receive from the jobs in S when all the jobs not
in S have already been processed. For instance, V({1, 2, .. ., n}) is the
maximal return that can be earned.

(a) Derive an equation that relates V(S) to V evaluated at different sub-
sets of S.

(b) Explain how the result of part (a) can be used to find the optimal
policy.

Exercise 11.9 An investor must choose between one of two possible
investments. In the first investment, she must choose an amount to be at
risk, and she will then either win that amount with probability .6 or lose
it with probability .4. In the second investment, there is a 70-percent
chance that the win probability will be .4 and a 30-percent chance that it



Exercises 227

will be .8. Although the investor must decide on the investment project
before she learns the win probability for the second investment, if she
chooses that investment then she will be told the win probability before
she chooses the amount to risk. Which investment should she choose
and how much should she risk if she has a logarithmic utility function?

Exercise 11.10 Verify Equations (11.7) and (11.8).

Exercise 11.11 Consider a graph with nodes 1, . . . , m and edges (i, j),
i �= j. Suppose that the time it takes to traverse the edge (i, j) depends
on when one begins traveling along that edge. Specifically, suppose the
time is ts(i, j) if one leaves node i at time s. For specified nodes 1 and
m, the problem of interest is to find the path from node 1 to node m that
minimizes the time at which node m is reached when one begins at node
1 at time 0. For instance, if the path 1, i1, . . . , ik = m is used, the the
time at which node m is reached is a1 + . . . + ak , where

a1 = t0(1, i1)

a2 = ta1(i1, i2)

a3 = ta1+a2(i2, i3)

ak = ta1+...+ak−1(ik−1, ik)

Let T ( j) denote the minimal time that node j can be reached if one
starts at node 1 at time 0. Argue that

T ( j) = min
i

{T (i) + tT (i)(i, j)}

Assume that s + ts(i, j) increases in s. That is, if one reaches node i at
time s and then goes directly to node j then the time to arrive at node j
increases in s.



12. Stochastic Dynamic Programming

12.1 The Stochastic Dynamic Programming Problem

In the general stochastic dynamic programming problem, we suppose
that a system is observed at the beginning of each period and its state is
determined. Let S denote the set of all possible states. After observing
the state of the system, an action must be chosen. If the state is x and
action a is chosen, then

(a) a reward r(x, a) is earned; and
(b) the next state, call it Y (x, a), is a random variable whose distribu-

tion depends only on x and a.

Suppose our objective is to maximize the expected sum of rewards that
can be earned over N time periods. To attack this problem, let Vn(x)

denote the maximal expected sum of rewards that can be earned in the
next n time periods given that the current state is x . Now, if we initially
choose action a, then a reward r(x, a) is immediately earned, and the
next state will be Y (x, a). If Y (x, a) = y, then at that point there will
be an additional n − 1 time periods to go, and so the maximal expected
additional return we could earn from then on would be Vn−1(y). Hence,
if the current state is x , then the maximal expected return that could be
earned over the next n time periods if we initially choose action a is

r(x, a) + E[Vn−1(Y (x, a))]

Hence, Vn(x), the overall maximal expected return, satisfies

Vn(x) = max
a

{r(x, a) + E[Vn−1(Y (x, a))]} (12.1)

Starting with V0(x) = 0 the preceding equation can be used to recur-
sively solve for the functions V1(x), then V2(x), and on up to VN (x).

The policy that, when there are n additional time periods to go with the
current state being x, chooses the action (or one of the actions) that max-
imizes the right side of the preceding is an optimal policy. That is, if we
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let an(x) equal the action that maximizes r(x, a) + E[Vn−1(Y (x, a))] ,
written as

an(x) = arg max
a

{r(x, a) + E[Vn−1(Y (x, a))]}, n = 1, . . . , N

then the policy that, for all n and x , chooses action an(x) when the state
is x and there are are n time periods remaining is an optimal policy.

The function Vn(x) is called the optimal value function, and Equation
(12.1) is called the optimality equation.

When S is a subset of the set of all integers, we let Pi,a( j) denote the
probability that the next state is j when the current state is i and action
a is chosen. In this case, the optimality equation can be written

Vn(i) = max
a

⎧⎨
⎩r(i, a) +

∑
j

Pi,a( j)Vn−1( j)

⎫⎬
⎭

When S is a continuous set, we let fx,a(y) be the probability density of
the next state given that the current state is x and action a is chosen. In
this case, the optimality equation can be written

Vn(x) = max
a

{
r(x, a) +

∫
fx,a(y)Vn−1(y)dy

}

In certain problems future costs may be discounted. Specifically, a
cost incurred k time periods in the future may be discounted by the fac-
tor βk . In such cases the optimality equation becomes

Vn(x) = max
a

{r(x, a) + βE[Vn−1(Y (x, a))]}

For instance, if we wanted to maximize the present value of the sum of
rewards, then we would let β = 1

1+r , where r is the interest rate per pe-
riod. The quantity β is called the discount factor and is usually assumed
to satisfy 0 ≤ β ≤ 1.

Example 12.1a Optimal Return from a Call Option

Suppose the following discrete time model for the price movement of
a security: whatever the price history so far, the price of the security
during the following period is its current price multiplied by a random
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variable Y . Assume an interest rate of r > 0 per period, let β = 1
1+r , and

suppose that we want to determine the appropriate value of an American
call option having exercise K and expiring at the end of n additional pe-
riods. Because we are not assuming that Y has only two possible values,
there will not be a unique risk-neutral probability law, and so arbitrage
considerations will not enable us to determine the value of the option.
Moreover, because we shall suppose that the security cannot be sold
short for the market price, there will no longer be an arbitrage argument
against early exercising. To determine the appropriate value of the op-
tion under these conditions, we will suppose that the successive Y ’s are
independent with a common specified distribution, and take as our ob-
jective the determination of the maximal expected present-value return
that can be obtained from the option.

As the dynamic programming state of the system will be the current
price, let us define Vj (x), the optimal value function, to equal the max-
imal expected present-value return from the option given that it has not
yet been exercised, a total of j periods remain before the option expires,
and the current price of the security is x . Now, if the preceding is the
situation and the option is exercised, then a return x − K is earned and
the problem ends; on the other hand, if the option is not exercised, then
the maximal expected present-value return will be E[βVj−1(xY )]. Be-
cause the overall best is the maximum of the best one can obtain under
the different possible actions, we see that the optimality equation is

Vj (x) = max{x − K , βE[Vj−1(xY )]}
with the boundary condition

V0(x) = (x − K )+ = max{x − K , 0}
The policy that, when the current price is x and j periods remain before
the option expires, exercises if Vj (x) = x − K and does not exercise if
Vj (x) > x − K is an optimal policy. (That is, the optimal policy exer-
cises in state x when j periods remain if and only if Vj (x) = x − K .)

We now determine the structure of the optimal policy. Specifically,
we show that if E[Y ] ≥ 1 + r , then the call option should never be ex-
ercised early; whereas if E[Y ] < 1 + r , then there is a nondecreasing
sequence xj , j ≥ 0, such that the policy that exercises when j periods
remain if the current price is at least xj is an optimal policy. To establish
the preceding, we will need some preliminary results.
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Lemma 12.1.1 If E[Y ] ≥ 1 + r , then the policy that only exercises
when no additional time remains and the price is greater than K is an
optimal policy.

Proof. It follows from the optimality equation that Vj (x) ≥ x − K .

Using that βE[Y ] ≥ β(1 + r) = 1, we see that, for j ≥ 1,

βE[Vj−1(xY )] ≥ βE[xY − K ] ≥ x − βK > x − K

Thus, it is never optimal to exercise early.

Lemma 12.1.2 If E[Y ] < 1 + r , then Vj (x) − x is a decreasing func-
tion of x.

Proof. The proof is by induction on j . Because

V0(x) − x = max{−K , −x}
the result is true when j = 0. So, assume that Vj−1(x)− x is decreasing
in x . Then, by the optimality equation,

Vj (x) − x = max{−K , βE[Vj−1(xY )] − x}
= max{−K , β(E[Vj−1(xY ) − x E[Y ]) + βx E[Y ] − x}
= max{−K , βE[Vj−1(xY ) − xY ] + x(βE[Y ] − 1)}

Now, by the induction hypothesis, for any value of Y , Vj−1(xY ) − xY
is decreasing in x , and therefore so is E[Vj−1(xY ) − xY ]. Because
βE[Y ] < 1, it also follows that x(βE[Y ]−1) is decreasing in x . Hence,
βE[Vj−1(xY ) − xY ] + x(βE[Y ] − 1), and thus Vj (x) − x, is decreas-
ing in x , which completes the proof.

Proposition 12.1.1 If E[Y ] < 1 + r , then there is a increasing se-
quence xj , j ≥ 0 such that the policy that exercises when j periods
remain whenever the current price is at least xj is an optimal policy.

Proof. Let xj = min{x : Vj (x) = x − K } be the minimal price at
which it is optimal to exercise when j periods remain. It follows from
Lemma 12.1.2 that for x ′ > xj ,

Vj (x ′) − x ′ ≤ Vj (xj ) − xj = −K
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Because the optimality equation yields that Vj (x ′) ≥ x ′ − K , we see
that

Vj (x ′) = x ′ − K

thus showing that it is optimal to exercise when j stages remain and the
current price is x ′ if and only if x ′ ≥ xj . To show that xj increases in
j , we use that Vj (x) is increasing in j , which follows because having
additional time before the option expires cannot reduce the maximal ex-
pected return. Using this yields that

Vj−1(xj ) ≤ Vj (xj ) = xj − K

Because the optimality equation yields that Vj−1(xj ) ≥ xj − K , the pre-
ceding equation shows that

Vj−1(xj ) = xj − K

Because xj−1 is defined as the smallest value of x for which Vj−1(x) =
x − K , the preceding yields that xj−1 ≤ xj and completes the
proof.

Although we have assumed that r(x, a), the reward earned when ac-
tion a is chosen in state x, is a constant, it sometimes is the case the
reward is a random variable that is independent of all that has previously
occurred. In such cases r(x, a) should be interpreted as the expected
reward earned.

Example 12.1b An urn initially has n red and m blue balls. At each
stage the player may randomly choose a ball from the urn; if the ball is
red, then 1 is earned, and if it is blue, then 1 is lost. The chosen ball is
discarded. At any time the player can decide to stop playing. To maxi-
mize the player’s total expected net return, we analyze this as a dynamic
programming problem with the state equal to the current composition
of the urn. We let V (r, b) denote the maximum expected additional
return given that there are currently r red and b blue balls in the urn.
Now, the expected immediate reward if a ball is chosen in state (r, b) is

r
r+b − b

r+b = r−b
r+b . Because the best one can do after the initial draw is

V (r −1, b) if a red ball is chosen, or V (r, b −1) if a blue ball is chosen,
we see that the optimality equation is

V (r, b) = max

{
0,

r − b

r + b
+ r

r + b
V (r − 1, b) + b

r + b
V (r, b − 1)

}
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Starting with V (r, 0) = r and V (0, b) = 0, the optimality equation can
be utilized to obtain the desired value V (n, m).

In some problems a reward is only earned when the problem ends.

Example 12.1c Suppose you can make up to n bets in sequence. At
each bet you choose a stake amount s, which can be any nonnegative
value less than or equal to your current fortune, and the result of the
bet is that the amount sY is returned to you, where Y is a nonnegative
random variable with a known distribution. Your objective is to max-
imize the expected value of the logarithm of your final fortune after n
bets have taken place. Determine the optimal policy.

Solution. To begin, note that the state is your current fortune. So, let
Vn(x) be the maximal expected logarithm of your final fortune if your
current fortune is x and n bets remain. Also, let the decision be the
fraction of your wealth to stake. Because your fortune after betting the
amount αx is αxY + x − αx = x(αY + 1 − α), and n − 1 bets remain,
the optimality equation becomes

Vn(x) = max
0≤α≤1

E[Vn−1(x(αY + 1 − α))]

Because V0(x) = log(x), the preceding gives that

V1(x) = max
0≤α≤1

E[log(x(αY + 1 − α))]

= log(x) + max
0≤α≤1

E[log(αY + 1 − α)]

= log(x) + C

where
C = max

0≤α≤1
E[log(αY + 1 − α)]

Moreover, if we let

α∗ = arg max
α

E[log(αY + 1 − α)]

be the value of α that maximizes E[log(αY + 1 − α)], then the opti-
mal policy when only one bet can be made is to bet α∗x if your current
wealth is x .
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Now suppose your current fortune is x and two bets remain. Then the
maximal expected logarithm of your final fortune is

V2(x) = max
0≤α≤1

E[V1(x(αY + 1 − α))]

= max
0≤α≤1

E[log(x(αY + 1 − α)) + C]

= log(x) + C + max
0≤α≤1

E[log(αY + 1 − α)]

= log(x) + 2C

and it is once again optimal to stake the fraction α∗ of your total wealth.
Indeed, it is easy to see by using mathematical induction that

Vn(x) = log(x) + nC

and that it is optimal, no matter how many bets remain, to always stake
the fraction α∗ of your total wealth.

12.2 Infinite Time Models

One is often interested in stochastic dynamic programming problems in
which one wants to maximize the total expected reward earned over an
infinite time horizon. That is, if the problem begins at time 0 and if Xn

is the state at time n and An is the action chosen at time n, we are often
interested in choosing the policy π that maximizes

Vπ(x) = Eπ

[ ∞∑
n=0

r(Xn, An)

∣∣∣X0 = x

]

where a policy π is a rule for choosing actions and we use the notation
Eπ to indicate that we are taking the expectation under the assumption
that policy π is employed. Whereas the preceding, being the expected
value of an infinite sum, may not be well defined or necessarily finite,
we will suppose that the nature of the problem is such that it is well de-
fined and finite. For instance, if we suppose that the one stage rewards
r(x, a) are bounded, say |r(x, a)| < M, and assume a discount factor β

for which 0 ≤ β < 1, then the expected total discounted cost of a policy
π would be bounded by M

1−β
.
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If we let
V (x) = max

π
Vπ(x)

then V (x) is the optimal value function, and satisfies the optimality
equation

V (x) = max
a

{r(x, a) + E[V (Y (x, a))]}

Example 12.2a An Optimal Asset Selling Problem Suppose you re-
ceive an offer each day for an asset you desire to sell. When the offer is
received, you must pay a cost c > 0 and then decide whether to accept
or to reject the offer. Assuming that successive offers are independent
with probability mass function pj = P(offer is j), j ≥ 0, the prob-
lem is to determine the policy that maximizes the expected net return.
Because the state is the current offer, let V (i) denote the maximal ad-
ditional net return from here on given that an offer of i has just been
received. Now, if you accept the offer, then you receive the amount
−c + i and the problem ends. On the other hand, if you reject the of-
fer, then you must pay c and wait for the next offer; if the next offer
is j , then your maximal expected return from that point on would be
V ( j). Because the next offer will equal j with probability pj , it fol-
lows that the maximal expected net return if the offer of i is rejected
is −c + ∑

j pj V ( j). Because the maximum expected net return is the
maximum of the maximum in the two cases, we see that the optimality
equation is

V (i) = max

⎧⎨
⎩−c + i, −c +

∑
j

pj V ( j)

⎫⎬
⎭

or, with v = ∑
j pj V ( j),

V (i) = −c + max{i, v}
It follows from the preceding that the optimal policy is to accept offer i
if and only if it is at least v. To determine v, note that

V (i) =
{ −c + v, if i ≤ v

−c + i, if i > v
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Hence,

v =
∑

i

pi V (i)

= − c +
∑
i≤v

vpi +
∑
i>v

i pi

Therefore, using that
∑

i pi = 1, the preceding yields that

v
∑
i>v

pi = −c +
∑
i>v

i pi

or ∑
i>v

(i − v)pi = c

or
c =

∑
i

(i − v)+ pi

Hence, with X being a random variable having the distribution of an
offer, the preceding states that

c = E[(X − v)+] (12.2)

That is, v is that value that makes E[(X − v)+] equal to c. (In most
cases, v will have to be numerically determined.) The optimal policy is
to accept the first offer that is at least v. Also, because v = ∑

i pi V (i)
it follows that v is the maximum expected net return before the initial
offer is received.

In most cases – such as when we have bounded rewards and a discount
factor – the optimal value function V will be the limit of the n stage op-
timal value functions. That is, we would have that

V (x) = lim
n→∞ Vn(x)

This relationship can often be used to prove properties of the optimal
value function by first using mathematical induction to prove that those
properties are true for the optimal n stage returns and then letting n go
to infinity. This is illustrated by our next example.



Infinite Time Models 237

Example 12.2b A Machine Replacement Model Suppose that at the
beginning of each period a machine is evaluated to be in some state
i, i = 0, . . . , M. After the evaluation, one must decide whether to pay
the amount R and replace the machine or leave it alone. If the machine
is replaced, then a new machine, whose state is 0, will be in place at the
beginning of the next period. If a machine in state i is not replaced, then
at the beginning of the next time period that machine will be in state
j with probability Pi, j . Suppose that an operating cost C(i) is incurred
whenever the machine in use is evaluated as being in state i . Assume
a discount factor 0 < β < 1 and that our objective is to minimize the
total expected discounted cost over an infinite time horizon.

If we let V (i) denote the minimal expected discounted cost given that
we start in state i, then the optimality equation is

V (i) = C(i) + min

⎧⎨
⎩R + βV (0), β

∑
j

Pi, j V ( j)

⎫⎬
⎭

which follows because if we replace, then we incur an immediate cost
of C(i) + R, and as the next state would be state 0, the minimal ex-
pected additional cost from then on would be βV (0). On the other hand,
if we do not replace, then our immediate cost is C(i), and the best
we could do if the next state were j would be βV ( j), showing that
the minimal expected total discounted costs if we continue in state i is
C(i) + β

∑
j Pi, j V ( j). Moreover, the policy that replaces a machine in

state i if and only if

β
∑

j

Pi, j V ( j) ≥ R + βV (0)

is an optimal policy.
Suppose we wanted to determine conditions that imply that V (i) is

increasing in i . One condition we might want to assume is that the op-
erating costs C(i) are increasing in i . So, let us make

Assumption 1 C(i + 1) ≥ C(i), i ≥ 0.

However, after some thought it is easy to see that Assumption 1 by it-
self would not imply that V (i) increases in i . For instance, even if we
assume that C(10) < C(11), it might be that state 11 is preferable to
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state 10, because even though it has a higher operating cost than state
10, it may be more likely to get you to a better state. So to rule this out,
we shall suppose that N (i), the next state of a not replaced machine that
is currently in state i , is stochastically increasing in i . That is, we will
make

Assumption 2 Ni+1 ≥st Ni , i ≥ 0.

where Ni+1 ≥st Ni , means that P(Ni+1 ≥ k) ≥ P(Ni ≥ k) for all k,
which can be written as

∑
j≥k Pi+1, j ≥ ∑

j≥k Pi, j for all k. Moreover,
by Proposition 10.1.1 of Section 10.1, Assumption 2 is equivalent to

Assumption 2 E[h(Ni )] increases in i whenever h is an increasing
function.

We now prove the following.

Theorem 12.1.1 Under Assumptions 1 and 2,

(a) V (i) is increasing in i .
(b) For some 0 ≤ i∗ ≤ ∞, the policy that replaces when in state i if

and only if i ≥ i∗ is an optimal policy.

Proof. Let Vn(i) denote the minimal expected discounted costs over an
n-period problem that starts with a machine in state i . Then

Vn(i) = C(i) + min

⎧⎨
⎩R + βVn−1(0), β

∑
j

Pi, j Vn−1( j)

⎫⎬
⎭ , n ≥ 1

(12.3)
We now argue, using mathematical induction, that Vn(i) is increasing in
i for all n. Because V1(i) = C(i), it follows from Assumption 1 that
the result is true when n = 1. So assume that Vn−1(i) is increasing in i ,
and note that by Assumption 2 this implies that E[Vn−1(Ni )] increases
in i . But E[Vn−1(Ni )] = ∑

j Pi, j Vn−1( j). Thus, from (12.3), it follows
on using Assumption 1 that Vn(i) increases in i , which completes the
induction proof. Because V (i) = limn→∞ Vn(i), we see that V (i) in-
creases in i .
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We prove (b) by using that the optimal policy is to replace in state i if
and only if

β
∑

j

Pi, j V( j) ≥ R + βV (0)

which can be written as

E[V (Ni )] ≥ R + βV (0)

β

But E[V (Ni )] is, by part (a) and Assumption 2, an increasing function
of i . Hence, it we let

i∗ = min

{
i : E[V (Ni )] ≥ R + βV (0)

β

}

it follows that E[V (Ni )] ≥ R+βV (0)

β
if and only if i ≥ i∗.

12.3 Optimal Stopping Problems

An optimal stopping problem is a two-action problem. When in state x ,
one can either pay c(x) and continue to the next state Y (x), whose dis-
tribution depends only on x , or one can elect to stop, in which case one
earns a final reward r(x) and the problem ends. Letting V (x) denote the
maximal expected net additional return given that the current state is x ,
the optimality equation is

V (x) = max{r(x), −c(x) + E[V (Y (x))]}
If the state space is the set of integers, then, with Pi, j denoting the prob-
ability of going from state i to state j if one decides not to stop in state
i , we can rewrite the preceding as

V (i) = max

⎧⎨
⎩r(i), −c(i) +

∑
j

Pi, j V ( j)

⎫⎬
⎭

Let Vn(i) denote the maximal expected net return given that the current
state is i and given that one is only allowed to go at most n additional
time periods before stopping. Then, by the usual argument

V0(i) = r(i)
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and

Vn(i) = max

⎧⎨
⎩r(i), −c(i) +

∑
j

Pi, j Vn−1( j)

⎫⎬
⎭

Because having additional time periods before one must stop cannot
hurt, it follows that Vn(i) increases in n, and also that Vn(i) ≤ V (i).

Definition If limn→∞ Vn(i) = V (i), the stopping problem is said to
be stable.

Most, though not all, stopping-rule problems that arise are stable. A suf-
ficient condition for the stopping problem to be stable is the existence
of constants c > 0 and r < ∞ such that

c(x) > c and r(x) < r for all x

A policy that often has good results in optimal stopping problems is
the one-stage lookahead policy, a policy that calls for stopping in state
i if stopping would give a return that is at least as large as the expected
return that would be obtained by continuing for exactly one more period
and then stopping. That is, if we let

B =
⎧⎨
⎩i : r(i) ≥ −c(i) +

∑
j

Pi, j r( j)

⎫⎬
⎭

be the set of states for which immediate stopping (which results in a
final return r(i)) is at least as good as going exactly one more period
and then stopping (which results in an expected additional return of
−c(i) + ∑

j Pi, j r( j)), then the one-stage lookahead policy is the pol-
icy that stops when the current state i is in B and continues when it is
not in B.

We now show for stable optimal stopping problems that if the set of
states B is closed, in the sense that if the current state is in B and one
chooses to continue then the next state will necessarily also be in B, then
the one state lookahead policy is an optimal policy.

Theorem 12.3.1 If the problem is stable and Pi, j = 0 for i ∈ B, j /∈
B, then the one stage lookahead policy is an optimal policy.
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Proof. Note first that it cannot be optimal to stop in state i when i /∈ B.
This is so because better than stopping is to continue exactly one addi-
tional stage and then stop. So we need to prove that it is optimal to stop
in state i when i ∈ B. That is, we must show that

V (i) = r(i), i ∈ B (12.4)

We prove this by showing, by mathematical induction, that for all n

Vn(i) = r(i), i ∈ B

Because V0(i) = r(i), the preceding is true when n = 0. So assume
that Vn−1(i) = r(i) for all i ∈ B. Then, for i ∈ B

Vn(i) = max

⎧⎨
⎩r(i), −c(i) +

∑
j

Pi, j Vn−1( j)

⎫⎬
⎭

= max

⎧⎨
⎩r(i), −c(i) +

∑
j∈B

Pi, j Vn−1( j)

⎫⎬
⎭ (since B is closed)

= max

⎧⎨
⎩r(i), −c(i) +

∑
j∈B

Pi, j r( j)

⎫⎬
⎭ (by the induction

assumption)

= r(i)

where the final equality followed because i ∈ B. Hence, Vn(i) = r(i)
for i ∈ B, which yields (12.4) by stability, completing the proof.

Example 12.3a Consider a burglar each of whose attempted burglar-
ies is successful with probability p. If successful, the amount of loot
earned is j with probability pj , j = 0, . . . , m. If unsuccessful, the bur-
glar is caught and loses everything he has accumulated to that time, and
the problem ends. The burglar’s problem is to decide whether to attempt
another burglary or to stop and enjoy his accumulated loot. Find the op-
timal policy.

Solution. The state is the total loot so far collected. Now, if the current
total loot is i and the burglar decides to stop, then he receives a reward
i and the problem ends; on the other hand, if he decides to continue,
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then if successful the new state will be i + j with probability pj . Hence,
if V (i) is the burglar’s maximal expected reward given that the current
state is i , then the optimality equation is

V (i) = max

⎧⎨
⎩i, p

∑
j

pj V (i + j)

⎫⎬
⎭

The one-stage lookahead policy calls for stopping in state i if i ∈ B
where

B =
⎧⎨
⎩i : i ≥ p

∑
j

pj (i + j)

⎫⎬
⎭

That is, with μ = ∑
j j pj denoting the expected return from a success-

ful burglary,

B = {i : i ≥ p(i + μ)} =
{

i : i ≥ pμ

1 − p

}

Because the state cannot decrease (unless the burglar is caught and then
no additional decisions are needed), it follows that B is closed, and so
the one-stage lookahead policy that stops when the total loot is at least

pμ

1−p is an optimal policy.

One-stage lookahead results give us an intuitive way of understanding
the asset selling result of Example 12.2a.

Example 12.3b Letting E[X ] be the expected value of a new offer, the
one-stage lookahead policy of Example 12.2a calls for accepting an of-
fer j if j ∈ B, where

B = { j : j ≥ −c + E[X ]}
Because B is not a closed set of states (because successive offers need
not be increasing), the one-stage lookahead policy would not necessar-
ily be an optimal policy. However, suppose we change the problem by
allowing the seller to be able to recall any past offer. That is suppose
that a rejected offer is not lost, but may be accepted at any future time.
In this case, the state after a new offer is observed would be the maxi-
mum offer ever received. Now, if j is the current state, then the selling
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price if we go exactly one more stage is j + (X − j)+ where X is the of-
fer in the final stage. Hence, the set of stopping states of the one-stage
lookahead policy is

B = { j : j ≥ j + E[(X − j)+] − c} = { j : E[(X − j)+] ≤ c}
Because E[(X − j)+] is a decreasing function of j and because the state,
being the maximum offer so far received, cannot decrease, it follows that
B is a closed set of states. Hence, the one-stage lookahead policy is op-
timal in the recall problem. Now, if we let v be such that E[(X −v)+] =
c, then the one-stage lookahead policy in the recall problem is to ac-
cept the first offer that is at least v. However, because this policy can be
employed even when no recall of past offers is allowed, it follows that
it is also an optimal policy when no recall of past offers is allowed. (If
it were not an optimal policy for the no-recall problem, then it would
follow that the maximum expected net return in the no-recall problem
would be strictly larger than in the recall problem, which clearly is not
possible.)

Our next example yields an interesting and surprising result about the
mean number of times two players compete against each other in a
multiple-player tournament in which each game involves two players.

Example 12.3b Consider a tournament involving k players, in which
player i, i = 1, . . . , k, starts with an initial fortune of ni > 0. In each
period, two of the players are chosen to play a game. The game is equally
likely to be won by either player, and the winner of the game receives 1
from the loser. A player whose fortune drops to 0 is eliminated, and the
tournament continues until one player has the entire fortune of

∑k
i=1 ni .

For specified players i and j we are interested in E[Ni, j ], where Ni, j is
the number of games in which i plays j .

To determine the mean number of times that i plays j , we set up a
stopping-rule problem as follows. Suppose that immediately after the
two players have been chosen for a game (and note that we have not yet
specified how the players are chosen), we can either stop and receive a
final reward equal to the product of the current fortunes of players i and
j , or we can continue. If we continue, then we receive a reward of 1 in
that period if the two contestants are i and j , or a reward of 0 if the con-
testants are not i and j . Suppose the current fortunes of i and j are n
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and m. Then stopping at this time will yield a final reward of nm. On
the other hand, if we continue for one additional period and then stop,
we will receive a total reward of nm if i and j are not the competitors in
the current round (because we receive 0 during that period and then nm
when we stop the following period), and we will receive the expected
amount

1 + 1

2
(n + 1)(m − 1) + 1

2
(n − 1)(m + 1) = nm

if i and j are the competitors. Hence, in all cases the return from imme-
diately stopping is exactly the same as the expected return from going
exactly one more period and then stopping. Thus, the one-stage looka-
head policy always calls for stopping, and as its set of stopping states is
thus closed, it follows that it is an optimal policy. But because continuing
on for an additional period and then stopping yields the same expected
return as immediately stopping, it follows that always continuing is also
optimal. But the total return from the policy that always continues is
Ni, j , the number of times that i and j play each other. Because ni nj

is the return from immediately stopping, we see that E[Ni, j ] = ni nj .
Moreover, interestingly enough, this result is true no matter how the
contestants in each round are chosen.

12.4 Exercises

Exercise 12.1 To be successful, you need to build a specified num-
ber of working machines, and you have a specified number of dollars to
accomplish the task. You must spend an integral amount on each ma-
chine, and if you spend j , then the machine will work with probability
p( j), j = 0, 1, . . . , where p(0) = 0. The machines are to be built se-
quentially, and when a machine is completed, you immediately learn
whether or not it works. Let Vk(n) be the maximal probability of be-
ing successful given that you have n to spend and still need k working
machines.

(a) Derive an equation for Vk(n).
(b) Find the optimal policy and maximal probability of being able to

build two working machines when you have 4 dollars, and p(1) =
0.2, p(2) = 0.4, p(3) = 0.6, p(4) = 1.
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Exercise 12.2 In Example 12.1b, find the optimal strategy and the op-
timal value when the urn contains three red and four blue balls.

Exercise 12.3 Complete the proof in Example 12.1c that Vn(x) =
log(x) + nC and that the optimal policy is to always bet the fraction α∗

of your total wealth. Also, show that α∗ = 0 if E[Y ] ≤ 1.

Exercise 12.4 Find the optimal policy in Example 12.4 when there is
discount factor β.

Exercise 12.5 Each time you play a game you either win or lose. Before
playing each game, you must decide how much to invest in that game,
with the amount determining your probability of winning. Specifically,
if you invest x , then you will win that game with probability p(x), where
p(x) is an increasing function of x . Suppose you must invest at least 1
in each game, and that you must continue to play until you have won n
games in a row.

Let Vk denote the minimal expected cost incurred until you have won
k games in a row.

(a) Explain the equation

Vk = min
x≥1

{Vk−1 + x + (1 − p(x))Vk}

(b) Show that Vk, k ≥ 1 are recursively determined by

V1 = min
x≥1

x

p(x)

Vk = min
x≥1

Vk−1 + x

p(x)
, k = 2, . . . , n

(c) In terms of the values Vk, k ≥ 1, what is the optimal policy?

Exercise 12.6 At each stage, one can either pay 1 and receive a coupon
that is equally likely to be any of n types, or one can stop and receive a
final reward of jr if one’s current collection of coupons contains exactly
j distinct types. Thus, for instance, if one stops after having previously
obtained six coupons whose successive types were 2, 4, 2, 5, 4, 3, then
one would have earned a net return of 4r − 6. The objective is to maxi-
mize the expected net return.
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We want to solve this as a dynamic programming problem.

(a) What are the states and actions?
(b) Define the optimal value function and give the optimality equation.
(c) Give the one-stage lookahead policy.
(d) Is the one-stage lookahead policy an optimal policy? Explain.

Now suppose that each coupon obtained is type i with probability
pi ,

∑n
i=1 pi = 1.

(e) Give the states in this case.
(f) Give the one-stage lookahead policy and explain whether it is an

optimal policy.

Exercise 12.7 In Example 12.1b, is the one-stage lookahead policy an
optimal policy? If not optimal, do you think it would be a good policy?
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13. Exotic Options

13.1 Introduction

The options we have so far considered are sometimes called “vanilla”
options to distinguish them from the more exotic options, whose preva-
lence has increased in recent years. Generally speaking, the value of
these options at the exercise time depends not only on the security’s
price at that time but also on the price path leading to it. In this chapter
we introduce three of these exotic-type options – barrier options, Asian
options, and lookback options – and show how to use Monte Carlo simu-
lation methods efficently to determine their geometric Brownian motion
risk-neutral valuations. In the final section of this chapter we present an
explicit formula for the risk-neutral valuation of a “power” call option,
whose payoff when exercised is the amount by which a specified power
of the security’s price at that time exceeds the exercise price.

13.2 Barrier Options

To define a European barrier call option with strike price K and exercise
time t, a barrier value v is specified; depending on the type of barrier
option, the option either becomes alive or is killed when this barrier is
crossed. A down-and-in barrier option becomes alive only if the secu-
rity’s price goes below v before time t, whereas a down-and-out barrier
option is killed if the security’s price goes below v before time t. In
both cases, v is a specified value that is less than the initial price s of
the security. In addition, in most applications, the barrier is considered
to be breached only if an end-of-day price is lower than v; that is, a
price below v that occurs in the middle of a trading day is not consid-
ered to breach the barrier. Now, if one owns both a down-and-in and a
down-and-out call option, both with the same values of K and t, then
exactly one option will be in play at time t (the down-and-in option if
the barrier is breached and the down-and-out otherwise); hence, owning
both is equivalent to owning a vanilla option with exercise time t and
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exercise price K. As a result, if Di(s, t, K ) and Do(s, t, K ) represent,
respectively, the risk-neutral present values of owning the down-and-in
and the down-and-out call options, then

Di(s, t, K ) + Do(s, t, K ) = C(s, t, K ),

where C(s, t, K ) is the Black–Scholes valuation of the call option given
by Equation (7.2). As a result, determining either one of the values
Di(s, t, K ) or Do(s, t, K ) automatically yields the other.

There are also up-and-in and up-and-out barrier call options. The up-
and-in option becomes alive only if the security’s price exceeds a barrier
value v, whereas the up-and-out is killed when that event occurs. For
these options, the barrier value v is greater than the exercise price K.

Since owning both these options (with the same t and K ) is equivalent
to owning a vanilla option, we have

Ui(s, t, K ) + Uo(s, t, K ) = C(s, t, K ),

where Ui and Uo are the geometric Brownian motion risk-neutral valu-
ations of (resp.) the up-and-in and the up-and-out call options, and C is
again the Black–Scholes valuation.

13.3 Asian and Lookback Options

Asian options are options whose value at the time t of exercise is depen-
dent on the average price of the security over at least part of the time
between 0 (when the option was purchased) and the time of exercise. As
these averages are usually in terms of the end-of-day prices, let N de-
note the number of trading days in a year (usually taken equal to 252),
and let

Sd(i) = S(i/N )

denote the security’s price at the end of day i. The most common Asian-
type call option is one in which the exercise time is the end of n trading
days, the strike price is K, and the payoff at the exercise time is

( n∑
i=1

Sd(i)

n
− K

)+
.
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Another Asian option variation is to let the average price be the strike
price; the final value of this call option is thus

(
Sd(n) −

n∑
i=1

Sd(i)

n

)+

when the exercise time is at the end of trading day n.
Another type of exotic option is the lookback option, whose strike

price is the minimum end-of-day price up to the option’s exercise time.
That is, if the exercise time is at the end of n trading days, then the pay-
off at exercise time is

Sd(n) − min
i=1,. . . ,n

Sd(i).

Another lookback option variation is to substitute the maximum end-of-
day price for the final price in the payoff of a call option with strike K .
That is, the payoff at exercise time would be

( max
i=1,... ,n

Sd(i) − K )+

Because their final payoffs depend on the end-of-day price path fol-
lowed, there are no known exact formulas for the risk-neutral valua-
tions of barrier, Asian, or lookback options. However, fast and accurate
approximations are obtainable from efficient Monte Carlo simulation
methods.

13.4 Monte Carlo Simulation

Suppose we want to estimate θ, the expected value of some random vari-
able Y :

θ = E[Y ].

Suppose, in addition, that we are able to genererate the values of inde-
pendent random variables having the same probability distribution as
does Y. Each time we generate a new value, we say that a simulation
“run” is completed. Suppose we perform k simulation runs and so gen-
erate the values of (say) Y1, Y2, .. ., Yk . If we let

Ȳ = 1

k

k∑
i=1

Yi
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be their arithmetic average, then Ȳ can be used as an estimator of θ. Its
expected value and variance are as follows. For the expected value we
have

E[Ȳ ] = 1

k

k∑
i=1

E[Yi ] = θ.

Also, letting
v2 = Var(Y ),

we have that

Var(Ȳ ) = Var

(
1

k

k∑
i=1

Yi

)

= 1

k2
Var

( k∑
i=1

Yi

)

= 1

k2

k∑
i=1

Var(Yi ) (by independence)

= v2/k.

Also, it follows from the central limit theorem that, for large k, X̄ will
have an approximately normal distribution. Hence, as a normal ran-
dom variable tends not to be too many standard deviations (equal to the
square root of its variance) away from its mean, it follows that if v/

√
k

is small then X̄ will tend to be near θ. (For instance, since more than
95% of the time a normal random variable is within two standard devi-
ations of its mean, we can be 95% certain that the generated value of X̄
will be within 2v/

√
k of θ.) Hence, when k is large, X̄ will tend to be

a good estimator of θ. (To know exactly how good, we would use the
generated sample variance to estimate v2.) This approach to estimating
an expected value is known as Monte Carlo simulation.

13.5 Pricing Exotic Options by Simulation

Suppose that the nominal interest rate is r and that the price of a security
follows the risk-neutral geometric Brownian motion; that is, it follows
a geometric Brownian motion with variance parameter σ 2 and drift pa-
rameter μ, where

μ = r − σ 2/2.
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Let Sd(i) denote the price of the security at the end of day i, and let

X(i) = log

(
Sd(i)

Sd(i − 1)

)
.

Successive daily price ratio changes are independent under geometric
Brownian motion, so it follows that X(1), .. ., X(n) are independent nor-
mal random variables, each having mean μ/N and variance σ 2/N (as
before, N denotes the number of trading days in a year). Therefore, by
generating the values of n independent normal random variables having
this mean and variance, we can construct a sequence of n end-of-day
prices that have the same probabilities as ones that evolved from the risk-
neutral geometric Brownian motion model. (Most computer languages
and almost all spreadsheets have built-in utilities for generating the val-
ues of standard normal random variables; multiplying these by σ/

√
N

and then adding μ/N gives the desired normal random variables.)
Suppose we want to find the risk-neutral valuation of a down-and-in

barrier option whose strike price is K, barrier value is v, initial value is
S(0) = s, and exercise time is at the end of trading day n. We begin by
generating n independent normal random variables with mean μ/N and
variance σ 2/N. Set them equal to X(1), .. ., X(n), and then determine
the sequence of end-of-day prices from the equations

Sd(0) = s,

Sd(1) = Sd(0)e X(1),

Sd(2) = Sd(1)e X(2);
...

Sd(i) = Sd(i − 1)e X(i);
...

Sd(n) = Sd(n − 1)e X(n).

In terms of these prices, let I equal 1 if an end-of-day price is ever below
the barrier v, and let it equal 0 otherwise; that is,

I =
{

1 if Sd(i) < v for some i = 1, .. ., n,

0 if Sd(i) ≥ v for all i = 1, .. ., n.



252 Exotic Options

Then, since the down-and-in call option will be alive only if I = 1, it
follows that the time-0 value of its payoff at expiration time n is

payoff of the down-and-in call option = e−rn/NI(Sd(n) − K )+.

Call this payoff Y1. Repeating this procedure an additional k − 1 times
yields Y1, .. ., Yk, a set of k payoff realizations. We can then use their
average as an estimate of the risk-neutral geometric Brownian motion
valuation of the barrier option.

Risk-neutral valuations of Asian and lookback call options are sim-
ilarly obtained. As in the preceding, we first generate the values of
X(1), .. ., X(n) and use them to compute Sd(1), .. ., Sd(n). For an Asian
option, we then let

Y = e−rn/N

( n∑
i=1

Sd(i)

n
− K

)+

if the strike price is fixed at K and the payoff is based on the average
end-of-day price, or we let

Y = e−rn/N

(
Sd(n) −

n∑
i=1

Sd(i)

n

)+

if the average end-of-day price is the strike price. In the case of a look-
back option, we would let

Y = e−rn/N
(
Sd(n) − min

i
Sd(i)

)
.

Repeating this procedure an additional k − 1 times and then taking the
average of the k values of Y yields the Monte Carlo estimate of the
risk-neutral valuation.

13.6 More Efficient Simulation Estimators

In this section we show how the simulation of valuations of Asian and
lookback options can be made more efficient by the use of control and
antithetic variables, and how the valuation simulations of barrier options
can be improved by a combination of the variance reduction simulation
techniques of conditional expectation and importance sampling.
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13.6.1 Control and Antithetic Variables in the Simulation
of Asian and Lookback Option Valuations

Consider the general setup where one plans to use simulation to estimate

θ = E[Y ].

Suppose that, in the course of generating the value of the random vari-
able Y, we also learn the value of a random variable V whose mean value
is known to be μV = E[V ]. Then, rather than using the value of Y as
the estimator, we can use one of the form

Y + c(V − μV ),

where c is a constant to be specified. That this quantity also estimates θ

follows by noting that

E[Y + c(V − μV )] = E[Y ] + cE[V − μV ] = θ + c(μV − μV ) = θ.

The best estimator of this type is obtained by choosing c to be the value
that makes Var(Y + c(V − μV )) as small as possible. Now,

Var(Y + c(V − μV )) = Var(Y + cV )

= Var(Y ) + Var(cV ) + 2 Cov(Y, cV )

= Var(Y ) + c2 Var(V ) + 2c Cov(Y, V ).
(13.1)

If we differentiate Equation (13.1) with respect to c, set the derivative
equal to 0, and solve for c, then it follows that the value of c that mini-
mizes Var(Y + c(V − μV )) is

c∗ = −Cov(Y, V )

Var(V )
.

Substituting this value back into Equation (13.1) yields

Var(Y + c∗(V − μV )) = Var(Y ) − Cov2(Y, V )

Var(V )
. (13.2)

Dividing both sides of this equation by Var(Y ) shows that

Var(Y + c∗(V − μV ))

Var(Y )
= 1 − Corr2(Y, V ),
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where

Corr(Y, V ) = Cov(Y, V )√
Var(Y ) Var(V )

is the correlation between Y and V. Hence, the variance reduction ob-
tained when using the control variable V is 100 Corr2(Y, V ) percent.

The quantities Cov(Y, V ) and Var(V ), which are needed to determine
c∗, are not usually known and must be estimated from the simulated
data. If k simulation runs produce the output Yi and Vi (i = 1, .. ., k)

then, letting

Ȳ =
k∑

i=1

Yi

k
and V̄ =

k∑
i=1

Vi

k

be the sample means, Cov(Y, V ) is estimated by

∑k
i=1(Yi − Ȳ )(Vi − V̄ )

k − 1

and Var(V ) is estimated by the sample variance

∑k
i=1(Vi − V̄ )2

k − 1
.

Combining the preceding estimators gives the estimator of c∗, namely,

ĉ∗ = −
∑k

i=1(Yi − Ȳ )(Vi − V̄ )∑k
i=1(Vi − V̄ )2

,

and produces the following controlled simulation estimator of θ :

1

k

k∑
i=1

(Yi + ĉ∗(Vi − μV )).

Let us now see how control variables can be gainfully employed when
simulating Asian option valuations. Suppose first that the present value
of the final payoff is

Y = e−rn/N

( n∑
i=1

Sd(i)

n
− K

)+
.
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It is clear that Y is strongly positively correlated with

V =
n∑

i=0

Sd(i),

so one possibility is to use V as a control variable. Toward this end, we
must first determine E[V ]. Because

E[Sd(i)] = eri/NS(0)

for a risk-neutral valuation, we see that

E[V ] = E

[ n∑
i=0

Sd(i)

]

=
n∑

i=0

E[Sd(i)]

= S(0)

n∑
i=0

(er/N )i

= S(0)
1 − er(n+1)/N

1 − er/N
.

Another choice of control variable that could be used is the payoff from
a vanilla option with the same strike price and exercise time. That is,
we could let

V = (Sd(n) − K )+

be the control variable.
A different variance reduction technique that can be effectively em-

ployed in this case is to use antithetic variables. This method generates
the data X(1), .. ., X(n) and uses them to compute Y. However, rather
than generating a second set of data, it re-uses the same data with the
following changes:

X(i) �⇒ 2(r − σ 2/2)

N
− X(i).

That is, it lets the new value of X(i) be 2(r − σ 2/2)/N minus its old
value, for each i = 1, .. ., n. (The new value of X(i) will be negatively
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correlated with the old value, but it will still be normal with the same
mean and variance.) The value of Y based on these new values is then
computed, and the estimate from that simulation run is the average of
the two Y values obtained. It can be shown (see [5]) that re-using the
data in this manner will result in a smaller variance than would be ob-
tained by generating a new set of data.

Now let us consider an Asian call option for which the strike price is
the average end-of-day price; that is, the present value of the final pay-
off is

Y = e−rn/N

(
Sd(n) −

n∑
i=1

Sd(i)

n

)+
.

Recall that a simulation run consists of (a) generating X(1), .. ., X(n)

independent normal random variables with mean (r −σ 2/2)/N and vari-
ance σ 2/N, and (b) setting

Sd(i) = S(0)e X(1)+···+X(i), i = 1, .. ., n.

Since the value of Y will be large if the latter values of the the sequence
X(1), X(2), .. ., X(n) are among the largest (and small if the reverse is
true), one could try a control variable of the type

V =
n∑

i=1

wi X(i),

where the weights wi are increasing in i. However, we recommend that
one use all of the variables X(1), X(2), .. ., X(n) as control variables.
That is, from each run one should consider the estimator

Y +
n∑

i=1

ci

(
X(i) − r − σ 2/2

N

)
.

Because the control variables are independent, it is easy to verify (see
Exercise 13.4) that the optimal values of the ci are

ci = −Cov(X(i), Y )

Var(X(i))
, i = 1, .. ., n;

these quantities can be estimated from the output of the simulation runs.
We suggest this same approach in the case of lookback options also:
again, use all of the variables X(1), X(2), .. ., X(n) as control variables.
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13.6.2 Combining Conditional Expectation and
Importance Sampling in the Simulation of
Barrier Option Valuations

In Section 13.5 we presented a simulation approach for determining
the expected value of the risk-neutral payoff under geometric Brownian
motion of a down-and-in barrier call option. The X(i) were generated
and used to calculate the successive end-of-day prices and the resulting
payoff from the option. We can improve upon this approach by not-
ing that, in order for this option to become alive, at least one of the
end-of-day prices must fall below the barrier. Suppose that with the
generated data this first occurs at the end of day j, with the price at
the end of that day being Sd( j) = x < v. At this moment the bar-
rier option becomes alive and its worth is exactly that of an ordinary
vanilla call option, given that the price of the security is x when there
is time (n − j)/N that remains before the option expires. But this im-
plies that the option’s worth is now C(x, (n − j)/N, K ). Consequently,
it seems that we could (a) end the simulation run once an end-of-day
price falls below the barrier, and (b) use the resulting Black–Scholes
valuation as the estimator from this run. As a matter of fact, we can
do this; the resulting estimator, called the conditional expectation esti-
mator, can be shown to have a smaller variance than the one derived in
Section 13.5.

The conditional expectation estimator can be further improved by mak-
ing use of the simulation idea of importance sampling. Since many of
the simulation runs will never have an end-of-day price fall below the
barrier, it would be nice if we could first simulate the data from a set of
probabilities that makes it more likely for an end-of-day price to fall be-
low the barrier and then add a factor to compensate for these different
probabilities. This is exactly what importance sampling does. It gen-
erates the random variables X(1), X(2), .. . from a normal distribution
with mean (r − σ 2/2)/N − b and variance σ 2/N, and it determines the
first time that a resulting end-of-day price falls below the barrier. If the
price first falls below the barrier at time j with price x, then the estima-
tor from that run is

C(x, (n − j)/N, K ) exp

{
jb2 N

2σ 2
+ Nb

σ 2

j∑
i=1

Xi − jb

σ 2

(
r − σ 2

2

)}
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(see [6] for details); if the price never falls below the barrier then the
estimator from that run is 0. The average of these estimators over many
runs is the overall estimator of the value of the option. Of course, in
order to implement this procedure one needs an appropriate choice of b.

Probably the best approach to choosing b is empirical; do some small
simulations in cases of interest, and see which value of b leads to a small
variance. In addition, the choice

b = r − σ 2/2

N
− 2 log

( S(0)

v

) + log
(

K
S(0)

)
n

was shown (in [1]) to work well for a less efficient variation of our
method.

13.7 Options with Nonlinear Payoffs

The standard call option has a payoff that, provided the security’s price
at exercise time is in the money, is a linear function of that price. How-
ever, there are more general options whose payoff is of the form

(
h(S(t)) − K

)+
,

where h is an arbitrary specified function, t is the exercise time, and
K is the strike price. Whereas a simulation or a numerical procedure
based on a multiperiod binomial approximation to geometric Brown-
ian motion is often needed to determine the geometric Brownian motion
risk-neutral valuations of these options, an exact formula can be derived
when h is of the form

h(x) = x α.

Options having nonlinear payoffs (S α(t) − K )+ are called power op-
tions, and α is called the power parameter.

Let Cα(s, t, K, σ, r) be the risk-neutral valuation of a power call op-
tion with power parameter α that expires at time t with an exercise price
K, when the interest rate is r, the underlying security initially has price
s, and the security follows a geometric Brownian motion with volatil-
ity σ. As usual, let C(s, t, K, σ, r) = C1(s, t, K, σ, r) be the Black–
Scholes valuation. Also, let X be a normal random variable with mean
(r − σ 2/2)t and variance σ 2 t. Because e X has the same probability
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distribution as does S(t)/s, it follows that

ertC(s, t, K, σ, r) = E[(S(t) − K )+ ] = E[(se X − K )+ ]. (13.3)

In addition, since (S(t)/s)α = S α(t)/sα has the same distribution as
does eαX , it follows that

E[(S α(t) − K )+ ] = E[(sαeαX − K )+ ]. (13.4)

But since αX is a normal random variable with mean α(r − σ 2/2)t and
variance α2σ 2 t, it follows from Equation (13.3) that if we let rα and σα

be such that

rα − σ 2
α/2 = α(r − σ 2/2) and σ 2

α = α2σ 2

then
erα tC(sα, t, K, σα, rα) = E[(sαeαX − K )+ ].

Hence, from Equation (13.4) we obtain that

e−r tE[(S α(t) − K )+ ]

= e−r terα tC(sα, t, K, ασ, rα)

= exp{(α(r − σ 2/2) + α2σ 2/2 − r)t}C(sα, t, K, ασ, rα)

= exp{(α − 1)(r + ασ 2/2)t}C(sα, t, K, ασ, rα).

That is,

Cα(s, t, K, σ, r) = exp{(α − 1)(r + ασ 2/2)t}C(sα, t, K, ασ, rα),

where
rα = α(r − σ 2/2) + α2σ 2/2.

13.8 Pricing Approximations via Multiperiod
Binomial Models

Multiperiod binomial models can also be used to determine efficiently
the risk-neutral geometric Brownian motion prices of certain exotic op-
tions. For instance, consider the down-and-out barrier call option having
initial price s, strike price K, exercise time t = n/N (where N is the
number of trading days in a year), and barrier value v (v < s). To begin,
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choose an integer j, let m = nj, and let tk = kt/m (k = 0,1, .. ., m).

We will consider each day as consisting of j periods and willl approxi-
mate using an m-period binomial model that supposes

S(tk+1) =
{

uS(tk) with probability p,

dS(tk) with probability 1 − p,

where

u = eσ
√

t/m, d = e−σ
√

t/m,

p = 1 + r t/m − d

u − d
.

If i of the first k price movements are increases and k − i are decreases,
then the price at time tk is

S(tk) = uid k−is.

Letting Vk(i) denote the expected payoff from the barrier call option
given that the option is still alive at time tk and that the price at time tk is
S(tk) = uid k−is, we can approximate the expected present value payoff
of the European barrier call option by e−r t V0(0). The value of V0(0) can
be obtained by working backwards. That is, we start with the identity

Vm(i) = (uid m−is − K )+, i = 0, .. ., m,

to determine the values of Vm(i) and then repeatedly use the following
equation (initially with k = m − 1, and then decreasing its value by 1
after each interation):

Vk(i) = pVk+1(i + 1) + (1 − p)Wk+1(i), (13.5)

where

Wk+1(i) =
{

0 if uid k+1−is < v and j divides k + 1,
Vk+1(i) otherwise.

Note that Wk+1(i) is defined in this fashion because if j divides k + 1
then the period-(k +1) price is an end-of-day price and will thus kill the
option if it is less than the barrier value.

If we wanted the risk-neutral price of a down-and-in call option then
we could use an analogous procedure. Alternatively, we could use the
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preceding to determine the price of a down-and-out call option with the
same parameters and then use the identity

Di(s, t, K ) + Do(s, t, K ) = C(s, t, K ),

where Di , Do, and C refer to the risk-neutral price of (respectively)
a down-and-in call option, a down-and-out call option, and a vanilla
Black–Scholes call option.

Risk-neutral prices of other exotic options can also be approximated
by multiperiod binomial models. However, the computational burden
can be demanding. For instance, consider an Asian option whose strike
price is the average of the end-of-day prices. To recursively determine
the expected value of the final payoff given all that has occurred up to
time tk, we need to specify not only the price at time tk but also the sum
of the end-of-day prices up to that time. That is, in order to approximate
an n-day call option with an n-period binomial model, we would need to
recursively compute the values Vk(i, x) equal to the expected final pay-
off given that the price after k periods is uid k−is and that the sum of the
first k prices is x . Since there can be as many as

(k
i

)
possible sums of the

first k prices when i of them are increases, it can require a great deal of
computation to obtain a good approximation. Generally speaking, we
recommend the use of simulation to estimate the risk-neutral prices of
most path-dependent exotic options.

13.9 Continuous Time Approximations of Barrier
and Lookback Options

The no-arbitrage cost of barrier options, say an up and out barrier option,
can also be approximated by considering a continuous time variation that
declares the option dead if any (not just an end-of-day) price up to ex-
piration time t exceeds the barrier value v. That is, the payoff at time t
is I (S(t) − K )+, where

I =
{

1, if max0≤w≤t S(w) ≤ v

0, if max0≤w≤t S(w) > v

To compute the expected present-value payoff under the risk-neutral
geometric Brownian motion, we use its representation

S(w) = seX (w), w ≥ 0
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where s = S(0) and where X (w), w ≥ 0 is Brownian motion with drift
parameter μr ≡ r − σ 2/2 and variance parameter σ 2 that has X (0) =
0. Hence, letting fX (t) be the density of X (t), a normal random variable
with mean μr t and variance tσ 2, we obtain upon conditioning on X (t)
that

E[I (S(t) − K )+] = E[I (seX (t) − K )+]

=
∫ ∞

−∞
E[I (seX (t) − K )+|X (t) = x] fX (t)(x) dx

Letting M(t) = max0≤w≤t X (w), it follows that I = 1 if seM(t) ≤ v

and is equal to 0 otherwise. Using this and that the payoff of the option
is necessarily 0 if S(t) = seX (t) is not between K and v, we see from
the preceding that

E[I (S(t) − K )+] =
∫ ln(v/s)

ln(K/s)
(sex − K )E[I |X (t) = x] fX (t)(x) dx

=
∫ ln(v/s)

ln(K/s)
(sex − K )P(M(t) ≤ ln(v/s)|X (t) = x)

× 1√
2π t σ

e−(x−tμr )
2/2tσ 2

dx

Using Theorem 3.4.1 of Chapter 3, which gives the conditional distri-
bution of M(t) given the value of X (t), the preceding integral can be
explicitly determined. We leave the details to the interested reader.

Similar analysis to the preceding can be used to obtain explicit expres-
sions for the expected present value returns from lookback options that
use payoffs of the form S(t) − min0≤w≤t S(w) or (max0≤w≤t S(w) −
K )+. The computation in the former case would first condition on X (t)
and would then use the conditional distribution of min0≤w≤t X (w) given
X (t). The computation in the latter case would just use the distribution
of the maximum up to time t of a Brownian motion process.

13.10 Exercises

Exercise 13.1 Consider an American call option that can be exercised
at any time up to time t; however, if it is exercised at time y (where 0 ≤
y ≤ t) then the strike price is Keuy for some specified value of u. That
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is, the payoff if the call is exercised at time y (0 ≤ y ≤ t) is

(S(y) − euyK )+.

Argue that if u ≤ r then the call should never be exercised early, where
r is the interest rate.

Exercise 13.2 A lookback put option that expires after n trading days
has a payoff equal to the maximum end-of-day price achieved by time
n minus the price at time n. That is, the payoff is

max
0≤i≤n

Sd(i) − Sd(n).

Explain how Monte Carlo simulation can be used efficiently to find the
geometric Brownian motion risk-neutral price of such an option.

Exercise 13.3 In Section 13.6.1, it is noted that V = (Sd(n)− K )+ can
be used as a control variate. However, doing so requires that we know
its mean; what is E[V ]?

Exercise 13.4 Let X1, .. ., Xn be independent random variables with
expected values E[Xi ] = μi , and consider the following simulation es-
timator of E[Y ]:

W = Y +
n∑

i=1

ci(Xi − μi ).

(a) Show that

Var(W ) = Var(Y ) +
n∑

i=1

c2
i Var(Xi ) + 2

n∑
i=1

ci Cov(Y, Xi ).

(b) Use calculus to show that the values of c1, .. ., cn that minimize
Var(W ) are

ci = −Cov(Y, Xi )

Var(Xi )
, i = 1, .. ., n.

Exercise 13.5 Perform a Monte Carlo simulation to estimate the risk-
neutral valuation of some exotic option. Do it first without any attempts
at variance reduction and then a second time with some variance reduc-
tion procedure.
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Exercise 13.6 Give the equations that are needed when using a multi-
period binomial model to approximate the risk-neutral price of a down-
and-in barrier call option.

Exercise 13.7 Explain how you can approximate the risk-neutral price
of a down-and-out American call option by using a multiperiod bino-
mial model.

Exercise 13.8 Explain why Equation (13.5) is valid.

REFERENCES

[1] Boyle, P., M. Broadie, and P. Glasserman (1997). “Monte Carlo Meth-
ods for Security Pricing.” Journal of Economic Dynamics and Control 21:
1267–1321.

[2] Conze, A., and R. Viswanathan (1991). “Path Dependent Options: The Case
of Lookback Options.” Journal of Finance 46: 1893–1907.

[3] Goldman, B., H. Sosin, and M. A. Gatto (1979). “Path Dependent Options:
Buy at the Low, Sell at the High.” Journal of Finance 34: 1111–27.

[4] Hull, J. C., and A. White (1998). “The Use of the Control Variate Tech-
nique in Option Pricing.” Journal of Financial and Quantitative Analysis
23: 237–51.

[5] Ross, S. M. (2002). Simulation, 3rd ed. Orlando, FL: Academic Press.
[6] Ross, S. M., and J. G. Shanthikumar (2000). “Pricing Exotic Options:

Monotonicity in Volatility and Efficient Simulations.” Probability in the
Engineering and Informational Sciences 14: 317–26.

[7] Ross, S. M., and S. Ghamami (2010). “Efficient Monte Carlo Barrier Op-
tion Pricing When the Underlying Security Price Follows a Jump-Diffusion
Process.” The Journal of Derivatives 17(3): 45–52.

[8] Rubinstein, M. (1991). “Pay Now, Choose Later.” Risk (February).



14. Beyond Geometric Brownian
Motion Models

14.1 Introduction

As previously noted, a key premise underlying the assumption that the
prices of a security over time follow a geometric Brownian motion (and
hence underlying the Black–Scholes option price formula) is that fu-
ture price changes are independent of past price movements. Many
investors would agree with this premise, although many others would
disagree. Those accepting the premise might argue that it is a conse-
quence of the efficient market hypothesis, which claims that the present
price of a security encompasses all the presently available information –
including past prices – concerning this security. However, critics of
this hypothesis argue that new information is absorbed by different in-
vestors at different rates; thus, past price movements are a reflection
of information that has not yet been universally recognized but will af-
fect future prices. It is our belief that there is no a priori reason why
future price movements should necessarily be independent of past move-
ments; one should therefore look at real data to see if they are consis-
tent with the geometric Brownian motion model. That is, rather than
taking an a priori position, one should let the data decide as much as
possible.

In Section 14.2 we analyze the sequence of nearest-month end-of-day
prices of crude oil from 3 January 1995 to 19 November 1997 (a pe-
riod right before the beginning of the Asian financial crisis that deeply
affected demand and, as a result, led to lower crude prices). As part
of our analysis, we argue that such a price sequence is not consistent
with the assumption that crude prices follow a geometric Brownian mo-
tion. In Section 14.3 we offer a new model that is consistent with the
data as well as intuitively plausible, and we indicate how it may be
used to obtain option prices under (a) the assumption that the future
resembles the past and (b) a risk-neutral valuation based on the new
model.
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Figure 14.1: Successive End-of-Day Nearest-Month Crude Oil Prices

14.2 Crude Oil Data

With day 0 defined to be 3 January 1995, let P(n) denote the nearest-
month price of crude oil (as traded on the New York Mercantile Ex-
change) at the end of the nth trading day from day 0. The values of P(n)

for n = 1, .. .,752 are given in Figure 14.1 (and in Table 14.5, located at
the end of this chapter).

Let
L(n) = log(P(n)),

and define
D(n) = L(n) − L(n − 1).

That is, D(n) for n ≥ 1 are the successive differences in the logarithms
of the end-of-day prices. The values of the D(n) are also given in Ta-
ble 14.5, and Figure 14.2 presents a histogram of those data.
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Figure 14.2: Histogram of Log Differences

Note that, under geometric Brownian motion, the D(n) would be in-
dependent and identically distributed normal random variables; the his-
togram in Figure14.2 is consistent with the hypothesis that the data come
from a normal population. However, a histogram – which breaks up the
range of data values into intervals and then plots the number of data val-
ues that fall in each interval – is not informative about possible depen-
dencies among the data. To consider this possibility, let us classify each
day as being in one of four possible states as follows: the state of day n is

1 if D(n) ≤ −.01,

2 if − .01 < D(n) ≤ 0,

3 if 0 < D(n) ≤ .01,

4 if D(n) > .01.

That is, day n is in state 1 if its end-of-day price represents a loss of
more than 1% (e−.01 ≈ .99005) from the end-of-day price on day n −1;
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Table 14.1

j

i 1 2 3 4 Total

1 55 41 44 36 176
2 44 65 45 60 214
3 26 46 47 49 168
4 52 62 31 48 193

it is in state 2 if the percentage loss is less than 1%; it is in state 3 if the
percentage gain is less than 1% (e .01 ≈ 1.0101); and it is in state 4 if its
end-of-day price represents a gain of more than 1% from the end-of-day
price on day n − 1. Note that, if the price evolution follows a geomet-
ric Brownian motion, then tomorrow’s state will not depend on today’s
state. One way to verify the plausibility of this hypothesis is to see how
many times that a state i day was followed by a state j day for i, j =
1, .. ., 4. Table 14.1 gives this information and shows, for instance, that
26 of the 168 days in state 3 were followed by a state-1 day, 46 were
followed by a state-2 day, and so on.

The implications of Table 14.1 become clearer if we express the data
in terms of percentages, as is done in Table 14.2. Thus, for instance,
a large drop (more than 1%) was followed 31% of the time by another
large drop, 23% of the time by a small drop, 25% of the time by a small
increase, and 21% of the time by a large increase. It is interesting to note
that, whereas a moderate gain was followed by a large drop 15% of the
time, a large gain was followed by a large drop 27% of the time. Un-
der the geometric Brownian motion model, tomorrow’s change would
be unaffected by today’s change and so the theoretically expected per-
centages in Table 14.2 would be the same for all rows. To see how
likely it is that the actual data would have occurred under geometric
Brownian motion, we can employ a standard statistical procedure (test-
ing for independence in a contingency table); using this procedure on
our data results in a p-value equal to .005. This means that if the row
probabilities were equal (as implied by geometric Brownian motion),
then the probability that the resulting data would be as nonsupport-
ive of this hypothesized equality as our actual data is only about 1 in
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Table 14.2

j

i 1 2 3 4

1 31 23 25 21
2 21 30 21 28
3 15 28 28 29
4 27 32 16 25

200. (The value of the test statistics is 23.447, resulting in a p-value
of .00526.)

Let us now break up the data, which consists of 751 D(n) values, into
four groupings: the first group consists of the 176 values (of the log of
tomorrow’s price minus the log of today’s) for which today’s state is 1,
and so on with the other groupings. Figures 14.3–14.6 present the his-
tograms of the data values in each group. Note that each histogram has
(approximately) the bell-shaped form of the normal density function.

Let x̄ i and si be, respectively, the sample mean and sample standard
deviation (equal to the square root of the sample variance) of grouping
i for i = 1, 2, 3, 4. A computation produces the values listed in Ta-
ble 14.3.

Under the geometric Brownian motion model, the four data sets will
all come from the same normal population and hence we could use a
standard statistical test – called a one-way analysis of variance – to test
the hypothesis that all four data sets describe normal random variables
having the same mean and variance. The necessary calculations reveal
that the test statistic (which, when the hypothesis is true, has an F dis-
tribution with 3 numerator and 747 denominator degrees of freedom)
has a value of 4.50, which is quite large. Indeed, if the hypothesis were
true then the probability that the test statistic would have a value at least
this large is less than .001, giving us additional evidence that the crude
oil data does not follow a geometric Brownian motion. (We could also
test the hypothesis that the variances – but not necessarily the means –
are equal by using Bartlett’s test for the equality of variances; using
our data, the test statistic has value 9.59 with a resulting p-value less
than .025.)
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Figure 14.3: Histogram of Post–State-1 Outcomes (n = 176)

Figure 14.4: Histogram of Post–State-2 Outcomes (n = 214)
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Figure 14.5: Histogram of Post–State-3 Outcomes (n = 168)

Figure 14.6: Histogram of Post–State-4 Outcomes (n = 193)
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Table 14.3

i Mean x̄i S.D. si

1 −.0036 .0194
2 .0024 .0188
3 .0025 .0165
4 −.0011 .0208

14.3 Models for the Crude Oil Data

A reasonable model is to suppose that there are four distributions that
determine the difference between the logarithm of tomorrow’s price and
the logarithm of today’s, with the appropriate distribution depending on
today’s state. However, even within this context we still need to decide
if we want a risk-neutral model or one based on the assumption that
the future will tend to follow the past. In the latter case we could use a
model that supposes, if today’s state is i, that the logarithm of the ratio
of tomorrow’s price to today’s price is a normal random variable with
mean x̄ i and standard deviation si , where these quantities are as given in
Table 14.3. However, it is quite possible that a better model is obtained
by forgoing the normality assumption and using instead a “bootstrap”
approach, which supposes that the best approximation to the distribu-
tion of a log ratio from state i is obtained by randomly choosing one of
the ni data values in this grouping (where, in the present situation, n1 =
176, n2 = 214, n3 = 168, and n4 = 193). Whether we assume that
the group data are normal or instead use a bootstrap approach, a Monte
Carlo simulation (see Chapter 11) will be needed to determine the ex-
pected value of owning an option – or even the expected value of a future
price. However, such a simulation is straightforward, and variance re-
duction techniques are available that can reduce the computational time.

A risk-neutral model would appear to be the most appropriate type
for assessing whether a specified option is underpriced or overpriced in
relation to the present price of the security. Such a model is obtained
in the present situation by supposing that, when in state i, the next log
ratio is a normal random variable with standard deviation (i.e. volatility)
si and mean μi , where
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Figure 14.7: Volatility as a Function of State

μi = r/N − s2
i /2;

r is the interest rate, and N (usually taken equal to 252) is the number
of trading days in a year. Again, a simulation would be needed to de-
termine the expected worth of an option.

Whereas we have chosen to define four different states depending on
the ratio of successive end-of-day prices, it is quite possible that a better
model could be obtained by allowing for more states. Indeed, one ap-
proach for obtaining a risk-neutral model is to assess the volatility as a
function of the most recent value of D(n) – by assuming that the volatil-
ity is equal to si when D(n) is the midpoint of region i – and then to use
a general linear interpolation scheme (see Figure 14.7).

Rather than having four different states, we might rather have defined
six states as follows: the state of day n is

1 if D(n) ≤ −.02,

2 if − .02 < D(n) ≤ .01,

3 if − .01 < D(n) ≤ 0,
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Table 14.4

j

i 1 2 3 4 5 6 Total

1 10 12 25 19 12 3 81
2 17 16 16 25 12 9 95
3 18 26 65 45 31 29 214
4 11 15 46 47 30 19 168
5 14 15 39 19 13 10 110
6 12 11 23 12 12 13 83

4 if 0 < D(n) ≤ .01,

5 if .01 < D(n) ≤ .02,

6 if D(n) > .02.

With these states, the number of times that a state-i day was followed
by a state- j day is as given in row i, column j of Table 14.4. The re-
sulting model can then be analyzed in exactly the same manner as was
the four-state model.

14.4 Final Comments

We have seen in this chapter that not all security price data is consistent
with the assumption that its price history follows a geometric Brown-
ian motion. Geometric Brownian motion is a Markov model, which is
one that supposes that a future state of the system (i.e., price of the se-
curity) depends only on the present state and not on any previous states.
However, to many people it seems reasonable that a security’s recent
price history can be somewhat useful in predicting future prices. In this
chapter we have proposed a simple model for end-of-day prices, one
in which the successive ratios of the price on day n to the price on day
n − 1 are assumed to constitute a Markov model. That is, with regard
to the successive ratios of prices, geometric Brownian motion supposes
that they are independent whereas our proposed model allows them to
have a Markov dependence.
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In using the model to value an option, we recommend that one collect
up-to-date data and then model the future under the assumption that it
will follow the past, either by using a bootstrap approach or by assum-
ing normality and using the estimates x̄ i and si . However, if one wants
to determine whether an option is underpriced or overpriced in relation
to the security itself, we recommend using the risk-neutral variant of the
model. This latter model takes r/N − s2

i /2, rather than x̄ i , as the mean
of a log ratio from state i. This risk-neutral model, which allows the
volatility to depend on the most recent daily change, is consistent with
a variant of the efficient market hypothesis which states that the present
price of a security is the “fair price,” in the sense that the expectation of
the present value of a future price is equal to the present price (this is
known as the martingale hypothesis).
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Table 14.5: Nearest-Month Crude Oil Data (dollars)

Date Price Log Difference Date Price Log Difference

1/3/95 17.44
1/4/95 17.48 0.00229095
1/5/95 17.72 0.0136366
1/6/95 17.67 −0.00282566
1/9/95 17.4 −0.0153981
1/10/95 17.37 −0.00172563
1/11/95 17.72 0.0199494
1/12/95 17.72 0
1/13/95 17.52 −0.0113509
1/16/95 17.88 0.0203397
1/17/95 18.32 0.0243106
1/18/95 18.73 0.0221332
1/19/95 18.69 −0.00213789
1/20/95 18.65 −0.00214248
1/23/95 18.1 −0.0299342
1/24/95 18.39 0.0158951
1/25/95 18.39 0
1/26/95 18.24 −0.00819005
1/27/95 17.95 −0.0160269
1/30/95 18.09 0.00776918
1/31/95 18.39 0.0164477
2/1/95 18.52 0.00704419
2/2/95 18.54 0.00107933
2/3/95 18.78 0.0128619
2/6/95 18.59 −0.0101687
2/7/95 18.46 −0.00701757
2/8/95 18.3 −0.00870517
2/9/95 18.24 −0.00328408
2/10/95 18.46 0.0119892
2/13/95 18.27 −0.0103459
2/14/95 18.32 0.00273299
2/15/95 18.42 0.00544367
2/16/95 18.59 0.00918677
2/17/95 18.91 0.0170671

18.91 0
2/21/95 18.86 −0.00264761
2/22/95 18.63 −0.0122701
2/23/95 18.43 −0.0107934
2/24/95 18.69 0.0140088
2/27/95 18.66 −0.00160643
2/28/95 18.49 −0.00915215
3/1/95 18.32 −0.00923669
3/2/95 18.35 0.00163622
3/3/95 18.63 0.0151436
3/6/95 18.59 −0.00214938

3/7/95 18.63 0.00214938
3/8/95 18.33 −0.0162341
3/9/95 18.02 −0.0170568
3/10/95 17.91 −0.00612304
3/13/95 18.19 0.0155128
3/14/95 17.94 −0.0138391
3/15/95 18.11 0.00943142
3/16/95 18.16 0.0027571
3/17/95 18.26 0.0054915
3/20/95 18.56 0.0162959
3/21/95 18.43 −0.00702896
3/22/95 18.96 0.0283517
3/23/95 18.92 −0.00211193
3/24/95 18.78 −0.00742709
3/27/95 19.07 0.0153239
3/28/95 19.05 −0.00104932
3/29/95 19.22 0.0088843
3/30/95 19.15 −0.00364869
3/31/95 19.17 0.00104384
4/3/95 19.03 −0.00732988
4/4/95 19.18 0.00785139
4/5/95 19.56 0.0196186
4/6/95 19.77 0.010679
4/7/95 19.67 −0.005071
4/10/95 19.59 −0.0040754
4/11/95 19.88 0.014695
4/12/95 19.55 −0.0167389
4/13/95 19.15 −0.0206726
4/17/95 19.15 0
4/18/95 19.73 0.0298376
4/19/95 20.05 0.0160888
4/20/95 20.41 0.0177958
4/21/95 20.52 0.00537504
4/24/95 20.41 −0.00537504
4/25/95 20.12 −0.0143106
4/26/95 20.29 0.00841381
4/27/95 20.15 −0.00692387
4/28/95 20.43 0.0138001

20.38 −0.00245038
5/1/95 20.5 0.00587086
5/2/95 20.09 −0.0202027
5/3/95 19.89 −0.0100051
5/4/95 20.29 0.0199111
5/5/95 20.33 0.00196947
5/8/95 20.29 −0.00196947
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

5/9/95 19.61 −0.0340885
5/10/95 19.75 0.00711385
5/11/95 19.41 −0.0173651
5/12/95 19.52 0.00565118
5/15/95 19.9 0.0192802
5/16/95 20.08 0.00900456
5/17/95 19.96 −0.00599402
5/18/95 20 0.002002
5/19/95 20.06 0.00299551
5/22/95 19.81 −0.0125409
5/23/95 19.77 −0.00202122
5/24/95 19.41 −0.0183772
5/25/95 19.26 −0.00775799
5/26/95 18.69 −0.0300418

18.69 0
5/30/95 18.78 0.00480385
5/31/95 18.89 0.00584021
6/1/95 18.9 0.000529241
6/2/95 19.14 0.0126185
6/5/95 19.25 0.00573067
6/6/95 19.06 −0.00991916
6/7/95 19.18 0.00627617
6/8/95 18.91 −0.0141772
6/9/95 18.8 −0.00583401
6/12/95 18.86 0.00318641
6/13/95 18.91 0.00264761
6/14/95 19.05 0.00737622
6/15/95 18.94 −0.00579101
6/16/95 18.84 −0.00529382
6/19/95 18.22 −0.0334624
6/20/95 18.01 −0.0115927
6/21/95 17.46 −0.0310146
6/22/95 17.5 0.00228833
6/23/95 17.49 −0.000571592
6/26/95 17.64 0.00853976
6/27/95 17.77 0.00734259
6/28/95 17.97 0.0111921
6/29/95 17.56 −0.0230801
6/30/95 17.4 −0.00915338

17.4 0
17.4 0

7/5/95 17.18 −0.0127243
7/6/95 17.37 0.0109987
7/7/95 17.14 −0.0133297
7/10/95 17.34 0.0116011

7/11/95 17.32 −0.00115407
7/12/95 17.49 0.00976739
7/13/95 17.25 −0.0138171
7/14/95 17.32 0.00404976
7/17/95 17.2 −0.00695252
7/18/95 17.35 0.00868312
7/19/95 17.33 −0.0011534
7/20/95 17.01 −0.0186377
7/21/95 16.79 −0.0130179
7/24/95 16.88 0.00534602
7/25/95 16.93 0.00295771
7/26/95 17.5 0.0331137
7/27/95 17.49 −0.000571592
7/28/95 17.43 −0.00343643
7/31/95 17.56 0.00743073
8/1/95 17.7 0.00794105
8/2/95 17.78 0.00450959
8/3/95 17.72 −0.00338028
8/4/95 17.71 −0.000564493
8/7/95 17.65 −0.00339367
8/8/95 17.79 0.00790072
8/9/95 17.78 −0.000562272
8/10/95 17.89 0.00616767
8/11/95 17.86 −0.00167832
8/14/95 17.48 −0.0215062
8/15/95 17.47 −0.000572246
8/16/95 17.55 0.00456883
8/17/95 17.66 0.00624825
8/18/95 17.87 0.0118211
8/21/95 18.25 0.0210418
8/22/95 18.54 0.0157655
8/23/95 18 −0.0295588
8/24/95 17.86 −0.00780818
8/25/95 17.86 0
8/28/95 17.82 −0.00224215
8/29/95 17.82 0
8/30/95 17.79 −0.00168492
8/31/95 17.84 0.00280663
9/1/95 18.04 0.0111484

18.04 0
9/5/95 18.58 0.0294942
9/6/95 18.36 −0.0119113
9/7/95 18.27 −0.00491401
9/8/95 18.44 0.00926185
9/11/95 18.47 0.00162558
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

9/12/95 18.64 0.00916202
9/13/95 18.54 −0.00537925
9/14/95 18.85 0.0165824
9/15/95 18.92 0.00370665
9/18/95 18.93 0.000528402
9/19/95 18.95 0.00105597
9/20/95 18.69 −0.0138153
9/21/95 17.56 −0.062365
9/22/95 17.25 −0.0178114
9/25/95 17.47 0.012673
9/26/95 17.33 −0.00804602
9/27/95 17.57 0.0137538
9/28/95 17.76 0.0107558
9/29/95 17.54 −0.0124648
10/2/95 17.64 0.00568506
10/3/95 17.56 −0.00454546
10/4/95 17.3 −0.0149171
10/5/95 16.87 −0.0251696
10/6/95 17.03 0.0094396
10/9/95 17.31 0.0163079
10/10/95 17.42 0.0063346
10/11/95 17.29 −0.00749067
10/12/95 17.12 −0.00988093
10/13/95 17.41 0.0167974
10/16/95 17.59 0.0102858
10/17/95 17.68 0.0051035
10/18/95 17.61 −0.00396713
10/19/95 17.32 −0.016605
10/20/95 17.37 0.00288268
10/23/95 17.21 −0.00925397
10/24/95 17.32 0.00637129
10/25/95 17.32 0
10/26/95 17.58 0.0149
10/27/95 17.54 −0.00227791
10/30/95 17.62 0.00455063
10/31/95 17.64 0.00113443
11/1/95 17.74 0.00565293
11/2/95 17.98 0.0134381
11/3/95 17.94 −0.00222717
11/6/95 17.71 −0.0129034
11/7/95 17.65 −0.00339367
11/8/95 17.82 0.00958564
11/9/95 17.84 0.00112171
11/10/95 17.83 −0.000560695
11/13/95 17.8 −0.00168397

11/14/95 17.82 0.00112296
11/15/95 17.93 0.00615387
11/16/95 18.19 0.0143967
11/17/95 18.57 0.0206754
11/20/95 18.06 −0.0278478
11/21/95 17.97 −0.00499585
11/22/95 17.96 −0.000556638
11/23/95 17.96 0
11/24/95 17.96 0
11/27/95 18.38 0.0231161
11/28/95 18.33 −0.00272406
11/29/95 18.26 −0.00382619
11/30/95 18.18 −0.00439079
12/1/95 18.43 0.0136577
12/4/95 18.63 0.0107934
12/5/95 18.67 0.00214477
12/6/95 18.77 0.00534189
12/7/95 18.73 −0.00213333
12/8/95 18.97 0.0127323
12/11/95 18.66 −0.0164766
12/12/95 18.73 0.00374432
12/13/95 19 0.0143125
12/14/95 19.11 0.00577278
12/15/95 19.51 0.0207154
12/18/95 19.67 0.00816748
12/19/95 19.12 −0.0283597
12/20/95 18.97 −0.00787612
12/21/95 18.96 −0.000527287
12/22/95 19.14 0.00944889
12/25/95 19.14 0
12/26/95 19.27 0.0067691
12/27/95 19.5 0.011865
12/28/95 19.36 −0.00720538
12/29/95 19.55 0.0097662

1/1/96 19.55 0
1/2/96 19.81 0.0132116
1/3/96 19.89 0.00403023
1/4/96 19.91 0.00100503
1/5/96 20.26 0.0174264
1/8/96 20.26 0
1/9/96 19.95 −0.0154194
1/10/96 19.67 −0.0141345
1/11/96 18.79 −0.0457698
1/12/96 18.25 −0.0291597
1/15/96 18.38 0.00709804
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

1/16/96 18.05 −0.0181174
1/17/96 18.52 0.0257055
1/18/96 19.18 0.0350168
1/19/96 18.94 −0.012592
1/22/96 18.62 −0.0170398
1/23/96 18.06 −0.0305367
1/24/96 18.28 0.012108
1/25/96 17.67 −0.0339393
1/26/96 17.73 0.00338983
1/29/96 17.45 −0.0159185
1/30/96 17.56 0.00628394
1/31/96 17.74 0.0101984
2/1/96 17.71 −0.00169253
2/2/96 17.8 0.00506901
2/5/96 17.54 −0.0147145
2/6/96 17.69 0.00851552
2/7/96 17.74 0.00282247
2/8/96 17.76 0.00112676
2/9/96 17.78 0.00112549

2/12/96 17.97 0.0106295
2/13/96 18.91 0.0509872
2/14/96 18.96 0.00264061
2/15/96 19.04 0.00421053
2/16/95 19.16 0.00628274
2/19/96 19.16 0
2/20/96 21.05 0.0940758
2/21/96 19.71 −0.0657744
2/22/96 19.85 0.00707789
2/23/96 19.06 −0.0406121
2/26/96 19.39 0.0171656
2/27/96 19.7 0.0158612
2/28/96 19.29 −0.0210318
2/29/96 19.54 0.0128768
3/1/96 19.44 −0.00513085
3/4/96 19.2 −0.0124225
3/5/96 19.54 0.0175534
3/6/96 20.19 0.0327238
3/7/96 19.81 −0.0190006
3/8/96 19.61 −0.0101472
3/11/96 19.91 0.0151825
3/12/96 20.46 0.0272496
3/13/96 20.58 0.00584797
3/14/96 21.16 0.0277929
3/15/96 21.99 0.0384752
3/18/96 23.27 0.0565772

3/19/96 24.34 0.0449561
3/20/96 23.06 −0.0540216
3/21/96 21.05 −0.091199
3/22/96 21.95 0.0418666
3/25/96 22.4 0.0202938
3/26/96 22.19 −0.00941922
3/27/96 21.79 −0.0181906
3/28/96 21.41 −0.017593
3/29/96 21.47 0.00279851
4/1/96 22.26 0.0361347
4/2/96 22.7 0.0195736
4/3/96 22.27 −0.0191244
4/4/96 22.75 0.0213247
4/5/96 22.75 0
4/8/96 23.03 0.0122326
4/9/96 23.06 0.0013018
4/10/96 24.21 0.0486663
4/11/96 25.34 0.0456184
4/12/96 24.29 −0.0423194
4/15/96 25.06 0.0312082
4/16/96 24.47 −0.0238251
4/17/96 24.67 0.00814005
4/18/96 23.82 −0.0350624
4/19/96 23.95 0.00544276
4/22/96 24.07 0.00499793
4/23/96 22.7 −0.0586013
4/24/96 22.4 −0.013304
4/25/96 22.2 −0.00896867
4/26/96 22.32 0.00539085
4/29/96 22.43 0.00491621
4/30/96 21.2 −0.0563982
5/1/96 20.81 −0.0185675
5/2/96 20.86 0.00239981
5/3/96 21.18 0.0152239
5/6/96 21.04 −0.00663195
5/7/96 21.11 0.00332147
5/8/96 21 −0.00522442
5/9/96 20.68 −0.0153554
5/10/96 21.01 0.0158315
5/13/96 21.36 0.0165215
5/14/96 21.42 0.00280505
5/15/96 21.48 0.0027972
5/16/96 20.78 −0.0331313
5/17/96 20.64 −0.00676005
5/20/96 22.48 0.0853951
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

5/21/96 22.65 0.00753383
5/22/96 21.4 −0.0567689
5/23/96 21.23 −0.00797565
5/24/96 21.32 0.00423032

21.32 0
5/28/96 21.11 −0.00989874
5/29/96 20.76 −0.0167188
5/30/96 19.94 −0.0403003
5/31/96 19.76 −0.00906807
6/3/96 19.85 0.00454431
6/4/96 20.44 0.0292898
6/5/96 19.72 −0.0358604
6/6/96 20.05 0.0165958
6/7/96 20.28 0.011406
6/10/96 20.25 −0.00148039
6/11/96 20.1 −0.00743498
6/12/96 20.09 −0.000497636
6/13/96 20.01 −0.00399003
6/14/96 20.34 0.0163572
6/17/96 22.14 0.0847965
6/18/96 21.46 −0.0311952
6/19/96 20.76 −0.0331627
6/20/96 20.65 −0.00531274
6/21/96 19.92 −0.0359911
6/24/96 19.98 0.00300752
6/25/96 19.96 −0.0010015
6/26/96 20.65 0.033985
6/27/96 21.02 0.017759
6/28/96 20.92 −0.00476873
7/1/96 21.53 0.0287417
7/2/96 21.13 −0.0187535
7/3/96 21.21 0.00377894
7/4/96 21.21 0
7/5/96 21.21 0
7/8/96 21.27 0.00282486
7/9/96 21.41 0.00656047
7/10/96 21.55 0.00651771
7/11/96 21.95 0.0183913
7/12/96 21.9 −0.0022805
7/15/96 22.48 0.0261394
7/16/96 22.38 −0.00445832
7/17/96 21.8 −0.0262577
7/18/96 21.68 −0.00551979
7/19/96 21 −0.0318677
7/22/96 21.4 0.0188685

7/23/96 21.01 −0.0183924
7/24/96 20.68 −0.0158315
7/25/96 20.74 0.00289715
7/26/96 20.11 −0.030847
7/29/86 20.28 0.00841797
7/30/96 20.33 0.00246245
7/31/96 20.42 0.00441719
8/1/96 21.04 0.0299106
8/2/96 21.34 0.0141579
8/5/96 21.23 −0.00516797
8/6/96 21.13 −0.00472144
8/7/96 21.42 0.0136312
8/8/96 21.55 0.00605075
8/9/96 21.57 0.000927644

8/12/96 22.22 0.0296893
8/13/96 22.37 0.00672799
8/14/96 22.12 −0.0112386
8/15/96 21.9 −0.00999554
8/16/96 22.66 0.0341146
8/19/96 23.26 0.0261339
8/20/96 22.86 −0.0173465
8/21/96 21.72 −0.0511552
8/22/96 22.3 0.0263532
8/23/96 21.96 −0.0153641
8/26/96 21.62 −0.0156038
8/27/96 21.56 −0.00277907
8/28/96 21.71 0.00693324
8/29/96 22.15 0.0200645
8/30/96 22.25 0.00450451
9/2/96 22.25 0
9/3/96 23.4 0.050394
9/4/96 23.24 −0.00686109
9/5/96 23.44 0.00856903
9/6/96 23.85 0.0173403
9/9/96 23.73 −0.00504415
9/10/96 24.12 0.0163013
9/11/96 24.75 0.0257841
9/12/96 25 0.0100503
9/13/96 24.51 −0.0197946
9/16/96 23.19 −0.05536
9/17/96 23.31 0.0051613
9/18/96 23.89 0.0245775
9/19/96 23.54 −0.0147589
9/20/96 23.63 0.00381599
9/23/96 23.37 −0.0110639
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Date Price Log Difference Date Price Log Difference

9/24/96 24.07 0.0295131
9/25/96 24.46 0.0160729
9/26/96 24.16 −0.0123408
9/27/96 24.6 0.0180481
9/30/96 24.38 −0.00898322
10/1/96 24.14 −0.00989291
10/2/96 24.05 −0.00373522
10/3/96 24.81 0.0311118
10/4/96 24.73 −0.00322972
10/7/96 25.24 0.020413
10/8/96 25.54 0.0118158
10/9/96 25.07 −0.0185739
10/10/96 24.26 −0.032843
10/11/96 24.66 0.0163536
10/14/96 25.62 0.0381908
10/15/98 25.42 −0.00783703
10/16/96 25.17 −0.00988346
10/17/96 25.42 0.00988346
10/18/96 25.75 0.0128984
10/21/96 25.92 0.00658024
10/22/96 25.75 −0.00658024
10/23/96 24.86 −0.0351745
10/24/96 24.51 −0.0141789
10/25/96 24.86 0.0141789
10/28/96 24.85 −0.000402334
10/29/96 24.34 −0.0207367
10/30/96 24.28 −0.00246812
10/31/96 23.35 −0.039056
11/1/96 23.03 −0.0137993
11/4/96 22.79 −0.0104759
11/5/96 22.64 −0.00660359
11/6/96 22.69 0.00220605
11/7/96 22.74 0.00220119
11/8/96 23.59 0.0366974
11/11/96 23.37 −0.00936974
11/12/96 23.35 −0.000856164
11/13/96 24.12 0.0324444
11/14/96 24.41 0.0119515
11/15/96 24.17 −0.00988069
11/18/96 23.88 −0.0120709
11/19/96 24.49 0.0252236
11/20/96 23.76 −0.0302614
11/21/96 23.84 0.00336135
11/22/96 23.75 −0.00378231
11/25/96 23.49 −0.0110077

11/26/96 23.62 0.00551901
11/27/96 23.75 0.00548872
11/28/96 23.75 0
11/29/96 23.75 0
12/2/96 24.8 0.0432611
12/3/96 24.93 0.00522824
12/4/96 24.8 −0.00522824
12/5/96 25.58 0.0309671

25.62 0.0015625
12/9/96 25.3 −0.0125689
12/10/96 24.42 −0.0354019
12/11/96 23.38 −0.0435215
12/12/96 23.72 0.0144376
12/13/96 24.47 0.0311293
12/16/96 25.74 0.0505983
12/17/96 25.71 −0.00116618
12/18/96 26.16 0.0173515
12/19/96 26.57 0.0155512
12/20/96 25.08 −0.057712
12/23/96 24.79 −0.0116304
12/24/96 25.1 0.0124275
12/25/96 25.1 0
12/26/96 24.92 −0.00719715
12/27/96 25.22 0.0119666
12/30/96 25.37 0.00593004
12/31/96 25.92 0.0214475

25.92 0
1/2/97 25.69 −0.00891306
1/3/97 25.59 −0.00390016
1/6/97 26.37 0.0300254
1/7/97 26.23 −0.00532321
1/8/97 26.62 0.014759
1/9/97 26.37 −0.00943581
1/10/97 26.09 −0.0106749
1/13/97 25.19 −0.035105
1/14/97 25.11 −0.00318092
1/15/97 25.95 0.0329054
1/16/97 25.52 −0.0167072
1/17/97 25.41 −0.00431966
1/20/97 25.23 −0.00710903
1/21/97 24.8 −0.0171901
1/22/97 24.24 −0.0228395
1/23/97 24.18 −0.00247832
1/24/97 24.05 −0.00539085
1/27/97 23.94 −0.0045843
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

1/28/97 23.9 −0.00167224
1/29/97 24.47 0.0235694
1/30/97 24.87 0.0162144
1/31/97 24.15 −0.0293779
2/3/97 24.15 0
2/4/97 24.02 −0.00539756
2/5/97 23.91 −0.00459004
2/6/97 23.1 −0.0344642
2/7/97 22.23 −0.0383899
2/10/97 22.46 0.0102932
2/11/97 22.42 −0.00178253
2/12/97 21.86 −0.0252949
2/13/97 22.02 0.00729265
2/14/97 22.41 0.0175562
2/17/97 22.41 0
2/18/97 22.52 0.00489652
2/19/97 22.79 0.011918
2/20/97 21.98 −0.0361889
2/21/97 21.39 −0.0272094
2/24/97 20.71 −0.0323068
2/25/97 21 0.0139058
2/26/97 21.11 0.00522442
2/27/97 20.89 −0.0104763
2/28/97 20.3 −0.0286497
3/3/97 20.25 −0.00246609
3/4/97 20.66 0.0200447
3/5/97 20.49 −0.0082625
3/6/97 20.94 0.0217242
3/7/97 21.28 0.0161065
3/10/97 20.49 −0.0378307
3/11/97 20.11 −0.0187198
3/12/97 20.62 0.0250443
3/13/97 20.7 0.00387222
3/14/97 21.29 0.0281038
3/17/97 20.92 −0.0175318
3/18/97 22.06 0.0530604
3/19/97 22.04 −0.00090703
3/20/97 22.32 0.0126242
3/21/97 21.51 −0.0369652
3/24/97 21.06 −0.0211424
3/25/97 20.99 −0.00332937
3/26/97 20.64 −0.0168152
3/27/97 20.7 0.00290276
3/28/97 20.7 0
3/31/97 20.41 −0.0141087

4/1/97 20.28 −0.0063898
4/2/97 19.47 −0.0407604
4/3/97 19.47 0
4/4/97 19.12 −0.0181399
4/7/97 19.23 0.00573665
4/8/97 19.35 0.00622086
4/9/97 19.27 −0.00414294
4/10/97 19.57 0.0154483
4/11/97 19.53 −0.00204604
4/14/97 19.9 0.018768
4/15/97 19.83 −0.00352379
4/16/97 19.35 −0.0245035
4/17/97 19.42 0.00361104
4/18/97 19.91 0.0249187
4/21/97 20.38 0.0233319
4/22/97 19.6 −0.0390245
4/23/97 19.73 0.00661075
4/24/97 20.03 0.0150908
4/25/97 19.99 −0.001999
4/28/97 19.91 −0.00401003
4/29/97 20.44 0.0262716
4/30/97 20.21 −0.0113162
5/1/97 19.91 −0.0149554
5/2/97 19.6 −0.0156926
5/5/97 19.63 0.00152944
5/6/97 19.66 0.00152711
5/7/97 19.62 −0.00203666
5/8/97 20.34 0.0360399
5/9/97 20.43 0.00441502

5/12/97 21.38 0.0454515
5/13/97 21.37 −0.000467836
5/14/97 21.39 0.000935454
5/15/97 21.3 −0.00421645
5/16/97 22.12 0.0377751
5/19/97 21.59 −0.0242519
5/20/97 21.19 −0.0187009
5/21/97 21.86 0.0311291
5/22/97 21.86 0
5/23/97 21.63 −0.0105772
5/26/97 21.63 0
5/27/97 20.79 −0.0396091
5/28/97 20.79 0
5/29/97 20.97 0.00862074
5/30/97 20.88 −0.00430108
6/2/97 21.12 0.0114287
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

6/3/97 20.33 −0.0381228
6/4/97 20.12 −0.0103833
6/5/97 19.66 −0.0231282
6/6/97 18.79 −0.0452613
6/9/97 18.68 −0.00587138
6/10/97 18.67 −0.000535475
6/11/97 18.53 −0.00752692
6/12/97 18.69 0.00859758
6/13/97 18.83 0.00746272
6/16/97 19.01 0.00951381
6/17/97 19.23 0.0115064
6/18/97 18.79 −0.0231467
6/19/97 18.67 −0.00640686
6/20/97 18.55 −0.00644817
6/23/97 19.14 0.0313106
6/24/97 19.03 −0.0057637
6/25/97 19.52 0.0254229
6/26/97 19.09 −0.0222749
6/27/97 19.46 0.0191964
6/30/97 19.8 0.0173209
7/1/97 20.12 0.0160324
7/2/97 20.34 0.010875
7/3/97 19.56 −0.0391027
7/4/97 19.56 0
7/7/97 19.52 −0.00204708
7/8/97 19.73 0.0107007
7/9/97 19.46 −0.0137792
7/10/97 19.22 −0.0124097
7/11/97 19.33 0.00570689
7/14/97 18.99 −0.0177458
7/15/97 19.67 0.0351821
7/16/97 19.65 −0.00101729
7/17/97 19.99 0.0171548
7/18/97 19.27 −0.0366827
7/21/97 19.18 −0.00468141
7/22/97 19.08 −0.0052274
7/23/97 19.63 0.0284183
7/24/97 19.77 0.00710663
7/25/97 19.89 0.00605146
7/28/97 19.81 −0.00403023
7/29/97 19.85 0.00201715
7/30/97 20.3 0.0224169
7/31/97 20.14 −0.007913
8/1/97 20.28 0.00692729
8/4/97 20.75 0.0229111

8/5/97 20.81 0.00288739
8/6/97 20.46 −0.0169619
8/7/97 20.09 −0.0182496
8/8/97 19.54 −0.0277585
8/11/97 19.69 0.00764725
8/12/97 19.99 0.0151213
8/13/97 20.19 0.00995528
8/14/97 20.08 −0.00546314
8/15/97 20.07 −0.000498132
8/18/97 19.91 −0.00800404
8/19/97 20.12 0.0104922
8/20/97 20.06 −0.00298656
8/21/97 19.66 −0.0201417
8/22/97 19.7 0.00203252
8/25/97 19.26 −0.0225882
8/26/97 19.28 0.00103788
8/27/97 19.73 0.023072
8/28/97 19.58 −0.00763168
8/29/97 19.61 0.001531
9/1/97 19.61 0
9/2/97 19.65 0.0020377
9/3/97 19.61 −0.0020377
9/4/97 19.4 −0.0107666
9/5/97 19.63 0.0117859
9/8/97 19.45 −0.00921194
9/9/97 19.42 −0.00154361
9/10/97 19.42 0
9/11/97 19.37 −0.00257799
9/12/97 19.32 −0.00258465
9/15/97 19.27 −0.00259135
9/16/97 19.61 0.0174902
9/17/97 19.42 −0.00973618
9/18/97 19.38 −0.00206186
9/19/97 19.35 −0.00154919
9/22/97 19.6 0.0128371
9/23/97 19.79 0.00964719
9/24/97 19.94 0.007551
9/25/97 20.39 0.0223168
9/26/97 20.87 0.0232681
9/29/97 21.26 0.0185147
9/30/97 21.18 −0.00377003
10/1/97 21.05 −0.00615678
10/2/97 21.77 0.0336323
10/3/97 22.76 0.0444717
10/6/97 21.93 −0.037149
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Table 14.5 (cont.)

Date Price Log Difference Date Price Log Difference

10/7/97 21.96 0.00136705
10/8/97 22.18 0.00996837
10/9/97 22.12 −0.00270881
10/10/97 22.1 −0.000904568
10/13/97 21.32 −0.035932
10/14/97 20.7 −0.0295119
10/15/97 20.57 −0.0063
10/16/97 20.97 0.0192591
10/17/97 20.59 −0.0182873
10/20/97 20.7 0.00532818
10/21/97 20.67 −0.00145033
10/22/97 21.42 0.0356417
10/23/97 21.09 −0.0155261
10/24/97 20.97 −0.00570615
10/27/97 21.07 0.00475738
10/28/97 20.46 −0.0293785

10/29/97 20.71 0.0121449
10/30/97 21.22 0.0243275
10/31/97 21.08 −0.00661941
11/3/97 20.96 −0.00570886
11/4/97 20.7 −0.0124822
11/5/97 20.31 −0.0190203
11/6/97 20.39 0.00393121
11/7/97 20.77 0.0184651
11/10/97 20.4 −0.0179747
11/11/97 20.51 0.00537767
11/12/97 20.49 −0.00097561
11/13/97 20.7 0.0101967
11/14/97 21 0.0143887
11/17/97 20.26 −0.0358739
11/18/97 20.04 −0.0109182
11/19/97 19.8 −0.0120483



15. Autoregressive Models and
Mean Reversion

15.1 The Autoregressive Model

Let Sd(n) be the price of a security at the end of day n. If we also let

L(n) = log(Sd(n)),

then the geometric Brownian motion model implies that

L(n) = a + L(n − 1) + e(n), (15.1)

where e(n), n ≥ 1, is a sequence of independent and identically dis-
tributed normal random variables with mean 0 and variance σ 2/N (with
N = 252 as the number of trading days in a year) and a is equal to μ/N.

As before, μ is the mean (or drift) parameter of the geometric Brownian
motion and σ is the associated volatility parameter.

Looking at Equation (15.1), it is natural to consider fitting a more gen-
eral equation for L(n); namely, the linear regression equation

L(n) = a + bL(n − 1) + e(n), (15.2)

where b is another constant whose value would need to be estimated.
That is, rather than arbitrarily taking b = 1, an improved model might
be obtained by letting b’s value be determined by data. Equation (15.2)
is the classical linear regression model, and the technique for estimating
a, b, and σ is well known. Because the linear regression model given by
Equation (15.2) specifies the log price at time n in terms of the log price
one time period earlier, it is called an autoregressive model of order 1.

The parameters a and b of the autoregressive model given by (15.2) are
estimated from historical data in the following manner. Suppose L(0),

L(1), .. ., L(r) are the logarithms of the end-of-day prices for r succes-
sive days. Then, when a and b are known, the predicted value of L(i)
based on prior log prices is a + bL(i − 1); hence, the usual approach to
estimating a and b is to let them be the values that minimize the sum of
squares of the prediction errors. That is, a and b are chosen to minimize
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r∑
i=1

(L(i) − a − bL(i − 1))2.

There are many standard statistical software packages that can be used
to calculate the minimimizing values and also to estimate σ .

Remark. The model specified by Equation (15.2) is a risk-neutral model
only when a = (r − σ 2/2)/N and b = 1. That is, it is risk-neutral only
when it reduces to the risk-neutral geometric Brownian motion model.
Consequently, no arbitrage is possible when all investments are priced
according to their expected present values when a = (r − σ 2/2)/N
and b = 1. However, an investor who believes that a and b have some
other values can often make an investment that, although not yielding a
sure win, can generate a return with a large expected value and a small
variance when these latter quantities are computed according to the in-
vestor’s estimated values of a and b.

15.2 Valuing Options by Their Expected Return

Assume that the end-of-day log prices follow Equation (15.2) and that
the parameters a, b, σ have been determined, and consider an option
whose exercise time is at the end of n trading days. In order to assess
the expected value of this option’s payoff, we must first determine the
probability distribution of L(n). To accomplish this, start by rewriting
the Equation (15.2) as

L(i) = e(i) + a + bL(i − 1).

Now, continually using the preceding equation – first with i = n, then
with i = n − 1, and so on – yields

L(n) = e(n) + a + bL(n − 1)

= e(n) + a + b[e(n − 1) + a + bL(n − 2)]

= e(n) + be(n − 1) + a + ab + b2L(n − 2)

= e(n) + be(n − 1) + a + ab + b2[e(n − 2) + a + bL(n − 3)]

= e(n) + be(n − 1) + b2e(n − 2)

+ a + ab + ab2 + b3L(n − 3).
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Continuing on in this fashion shows that, for any k < n,

L(n) =
k∑

i=0

bie(n − i) + a
k∑

i=0

bi + bk+1L(n − k − 1).

Hence, with k = n − 1, the preceding equation yields

L(n) =
n−1∑
i=0

bie(n − i) + a
n−1∑
i=0

bi + bnL(0)

=
n−1∑
i=0

bie(n − i) + a(1 − bn)

1 − b
+ bnL(0). (15.3)

Note that bie(n − i) is a normal random variable with mean 0 and vari-
ance b2iσ 2/N. Thus – using that the sum of independent normal random
variables is also a normal random variable – we see that

∑n−1
i=0 bie(n − i)

is a normal random variable with mean

E

[ n−1∑
i=0

bie(n − i)

]
=

n−1∑
i=0

biE[e(n − i)] = 0 (15.4)

and variance

Var

[ n−1∑
i=0

bie(n − i)

]
=

n−1∑
i=0

Var[bie(n − i)]

= σ 2

N

n−1∑
i=0

b2i

= σ 2(1 − b2n)

N(1 − b2)
. (15.5)

Hence, from Equations (15.3), (15.4), and (15.5) we obtain that if the
logarithm of the price at time 0 is L(0) = g, then L(n) is a normal ran-
dom variable with mean m(n) and variance v(n), where

m(n) = a(1 − bn)

1 − b
+ bng (15.6)

and

v(n) = σ 2(1 − b2n)

N(1 − b2)
. (15.7)



288 Autoregressive Models and Mean Reversion

The present value of the payoff of a call option (whose strike price is
K and whose exercise time is at the end of n trading days) is

e−rn/N(Sd(n) − K )+ = e−rn/N(eL(n) − K )+,

where r and N are (respectively) the interest rate and the number of trad-
ing days in a year. Using that L(n) is normal with mean and variance as
given by Equations (15.6) and (15.7), it can be shown that the expected
value of this payoff is

E[e−rn/N(eL(n) − K )+ ]

= e−rn/N
(
em(n)+v(n)/2�(

√
v(n) − h) − K�(−h)

)
, (15.8)

where � is the standard normal distribution function and where

h = log(K ) − m(n)√
v(n)

.

Example 15.2a Assuming that an autoregressive model is appropriate
for the crude oil data from Chapter 12, the estimates of a, b, and σ/

√
N

obtained from a standard statistical package are

a = .0487, b = .9838, σ/
√

N = .01908.

That is, the estimated autoregressive equation is

L(n) = .0487 + .9838L(n − 1) + e(n),

where e(n) is a normal random variable having mean 0 and standard
deviation .01908. Consequently, if the present price is 20, then the log-
arithm of the price at the end of another 50 trading days is a normal
random variable with mean

m(50) = .0487(1 − .983850)

1 − .9838
+ log(20)(.9838)50 = 3.0016

and variance

v(50) = (.0191)2 1 − (.9838)100

1 − (.9838)2
= .0091.

Suppose now that the interest rate is 8% and that we want to determine
the expected present value of the payoff from an option to purchase the
security at the end of 50 trading days at a strike price K = 21. Because
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h = log(21) − 3.0016√
.0091

= .4499,

it follows from Equation (15.8) that the present value of the expected
payoff is

e−.08(50)/252(20.2094�(−.3545) − 21�(−.4499)) = .4442.

That is, the expected present value payoff is 44.42 cents.
It is interesting to compare the preceding result with the geometric

Brownian motion Black–Scholes option cost. Using the notation of
Section 7.2, the data set of the crude oil prices results in the following
estimate of the volatility parameter:

σ = .3032 (σ/
√

N = .01910).

As this gives ω = −.1762 and σ
√

t = .1351, the Black–Scholes cost is

C = 20�(−.1762) − 21e−4/252�(−.3113) = .7911.

Thus the geometric Brownian motion risk-neutral cost valuation of 79
cents is quite a bit more than the expected present value payoff of 44
cents when the autoregressive model is assumed. The primary reason
for this discrepancy is that the variance of the logarithm of the final price
is .01824 under the risk-neutral geometric Brownian motion model but
only .0091 under the autoregresssive model. (The means of the loga-
rithms of the price at exercise time are roughly equal: 3.0025 under the
risk-neutral geometric Brownian motion model and 3.0016 under the
autoregressive model.)

For additional comparisons, a simulation study yielded that the ex-
pected present value of the option payoff under the model of Chapter 12
is 64 cents when the sample means are used as estimators of the mean
drifts versus 81 cents when the risk-neutral means are used.

15.3 Mean Reversion

Many traders believe that the prices of certain securities (often com-
modities) tend to revert to fixed values. That is, when the current price
is less than this value, the price tends to increase; when it is greater,
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it tends to decrease. Although this phenomenon – called mean rever-
sion – cannot be explained by a geometric Brownian motion model, it
is a very simple consequence of the autoregressive model. For consider
the model

L(n) = a + bL(n − 1) + e(n),

which is equivalent to

Sd(n) = ea+e(n)(Sd(n − 1))b.

Since
E[ea+e(n)] = ea+σ 2/2 N

it follows that, if the price of the security at the end of day n − 1 is s,
then the expected price of the security at the end of the next day is

E[Sd(n)] = ea+σ 2/2 Ns b. (15.9)

Now suppose that 0 < b < 1, and let

s∗ = exp

{
a + σ 2/2 N

1 − b

}
.

We will show that if the present price is s then the expected price at the
end of the next day is between s and s∗.

Toward this end, first suppose that s < s∗. That is,

s < exp

{
a + σ 2/2 N

1 − b

}
, (15.10)

which implies that
s1−b < exp{a + σ 2/2 N }

or
s < exp{a + σ 2/2 N }s b = E[Sd(n)]. (15.11)

Moreover, Equation (15.10) also implies that

s b < exp

{
b(a + σ 2/2 N )

1 − b

}

or

s b < exp

{
a + σ 2/2 N

1 − b
− (a + σ 2/2 N )

}
,
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which is equivalent to

E[Sd(n)] = exp{a + σ 2/2 N }s b < exp

{
a + σ 2/2 N

1 − b

}
= s∗. (15.12)

Consequently, from (15.11) and (15.12) we see that, if Sd(n − 1) =
s < s∗, then

s < E[Sd(n)] < s∗.

In a similar manner, it follows that if Sd(n − 1) = s > s∗ then

s∗ < E[Sd(n)] < s.

Therefore, if 0 < b < 1 then, for any current end-of-day price s, the
mean price at the end of the next day is between s and s∗. In other words,
there is a mean reversion to the price s∗.

Example 15.3a For the data of Example 15.2a, the estimated regres-
sion equation is

L(n) = .0487 + .9838L(n − 1) + e(n),

where e(n) is a normal random variable having mean 0 and standard de-
viation .0191. Since the estimated value of b is less than 1, this model
predicts a mean price reversion to the value

s∗ = exp

{
.0487 + (.0191)2/2

1 − .9838

}
= 20.44.

15.4 Exercises

Exercise 15.1 For the model

L(n) = 5 + .8L(n − 1) + e(n),

where e(n) is a normal random variable with mean 0 and variance .2,
find the probability that L(n + 10) > L(n).
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Exercise 15.2 Let L(n) denote the logarithm of the price of a security
at the end of day n, and suppose that

L(n) = 1.2 + .7L(n − 1) + e(n),

where e(n) is a normal random variable with mean 0 and variance .1.
Find the expected present value payoff of a call option that expires in
60 trading days and has strike price 50 when the interest rate is 10% and
the present price of the security is: (a) 48; (b) 50; (c) 52.

Exercise 15.3 Use a statistical package on the first 100 data values for
heating oil (presented in Table 15.1, pp. 241–249) to fit an autoregres-
sive model.

Exercise 15.4 To what value does the expected price of the security in
Exercise 15.2 revert?

Exercise 15.5 For the model of Section 15.3, show that if Sd(n − 1) =
s > s∗ then

s∗ < E[Sd(n)] < s.

Exercise 15.6 For the model of Section 15.3, show that if Sd(n − 1) =
s∗ then

E[Sd(n)] = s∗.
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Table 15.1: Nearest-Month Commodity Prices (dollars)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

03-Jan-95 52.75 49.94
04-Jan-95 53.43 49.64
05-Jan-95 54.51 49.96
06-Jan-95 53.77 49.52
09-Jan-95 53.9 48.33
10-Jan-95 53.66 47.38
11-Jan-95 54.54 47.98
12-Jan-95 54.92 47.85
13-Jan-95 55 46.68
16-Jan-95 56.88 47.35
17-Jan-95 57.8 48.67
18-Jan-95 59.48 49.08
19-Jan-95 58.12 48.28
20-Jan-95 57.4 48.14
23-Jan-95 56.38 47.82
24-Jan-95 57.6 47.87
25-Jan-95 57.25 47.47
26-Jan-95 57.44 47.27
27-Jan-95 56.07 47.27
30-Jan-95 56.21 47.42
31-Jan-95 57.76 46.86
01-Feb-95 56.77 47.8
02-Feb-95 55.95 48.55
03-Feb-95 57.35 49.44
06-Feb-95 57.3 49.2
07-Feb-95 56.99 49.13
08-Feb-95 56.1 47.98
09-Feb-95 55.84 47.65
10-Feb-95 55.64 48.28
13-Feb-95 55.56 47.29
14-Feb-95 56.16 47.5
15-Feb-95 56.22 46.89
16-Feb-95 57.91 46.92
17-Feb-95 58.76 47.72
20-Feb-95 58.76 47.72
21-Feb-95 59.11 47.62
22-Feb-95 59.84 47.89
23-Feb-95 58.36 47.44
24-Feb-95 58.76 47.75
27-Feb-95 58.97 47.19
28-Feb-95 57.58 46.9
01-Mar-95 56.74 46.44
02-Mar-95 55.59 46.52
03-Mar-95 55.94 47.41
06-Mar-95 56.21 46.66

07-Mar-95 56.78 46.36
08-Mar-95 55.83 45.25
09-Mar-95 54.35 45.14
10-Mar-95 52.47 45.25
13-Mar-95 53.81 45.61
14-Mar-95 52.79 44.34
15-Mar-95 54.04 45.14
16-Mar-95 54.93 45.37
17-Mar-95 55.37 46.07
20-Mar-95 56.15 45.85
21-Mar-95 56.15 45.65
22-Mar-95 55.9 47.02
23-Mar-95 57.53 46.56
24-Mar-95 57.82 46.32
27-Mar-95 58.6 47.46
28-Mar-95 58.73 47.46
29-Mar-95 59.99 47.08
30-Mar-95 60.68 47.19
31-Mar-95 59.47 47.06
03-Apr-95 57.44 47.47
04-Apr-95 58.6 47.96
05-Apr-95 60.48 48.01
06-Apr-95 61.68 49.21
07-Apr-95 61.29 49.5
10-Apr-95 61.22 49.28
11-Apr-95 61.59 50.15
12-Apr-95 61.37 49.54
13-Apr-95 60.44 48.79
14-Apr-95 60.44 48.79
17-Apr-95 62.03 50.01
18-Apr-95 63.69 50.19
19-Apr-95 63.15 50.15
20-Apr-95 63.22 50.28
21-Apr-95 63.2 50.64
24-Apr-95 62.21 50.02
25-Apr-95 62.91 50.78
26-Apr-95 63.81 50.45
27-Apr-95 64.96 51.26
28-Apr-95 65.33 51.19
01-May-95 64.15 51.09
02-May-95 63.65 50.95
03-May-95 62.55 50.25
04-May-95 63.59 51.27
05-May-95 63.99 51.34
08-May-95 64.21 51.15
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

09-May-95 62.56 49.14
10-May-95 63.29 49.95
11-May-95 63.28 49.09
12-May-95 63.67 49.54
15-May-95 64.9 49.86
16-May-95 66.3 50.45
17-May-95 66.76 50.4
18-May-95 66.5 50.56
19-May-95 66.34 51.01
22-May-95 66.46 51.29
23-May-95 66.15 52.29
24-May-95 64.93 51.13
25-May-95 65.81 51.25
26-May-95 64.07 48.72
29-May-95 64.07 48.72
30-May-95 63.5 48.56
31-May-95 63 48.47
01-Jun-95 59.78 49.53
02-Jun-95 60.94 49.9
05-Jun-95 61.79 49.6
06-Jun-95 61.39 49.1
07-Jun-95 61.77 48.95
08-Jun-95 60.64 48.65
09-Jun-95 60.8 48.1
12-Jun-95 61.15 48.5
13-Jun-95 60.93 48.53
14-Jun-95 62 49.19
15-Jun-95 61.87 48.88
16-Jun-95 61.5 48.29
19-Jun-95 60.28 47
20-Jun-95 60.15 47.14
21-Jun-95 58.73 46.54
22-Jun-95 58.33 46.65
23-Jun-95 56.98 46.31
26-Jun-95 56.71 46.78
27-Jun-95 57.38 47.23
28-Jun-95 59.59 47.69
29-Jun-95 59.01 46.92
30-Jun-95 59.15 46.72
03-Jul-95 59.15 46.72
04-Jul-95 59.15 46.72
05-Jul-95 54.37 46.51
06-Jul-95 54.74 47.19
07-Jul-95 53.8 46.37
10-Jul-95 54.74 47.1

11-Jul-95 54.19 46.96
12-Jul-95 54.96 47.23
13-Jul-95 54.39 46.68
14-Jul-95 54.54 46.53
17-Jul-95 53.98 46.49
18-Jul-95 53.58 46.98
19-Jul-95 52.69 46.47
20-Jul-95 52.18 46.1
21-Jul-95 52.05 46.14
24-Jul-95 53.26 46.56
25-Jul-95 52.37 46.51
26-Jul-95 52.89 48.62
27-Jul-95 53.69 48.13
28-Jul-95 53.75 48
31-Jul-95 54.08 48.27

01-Aug-95 54.35 48.79
02-Aug-95 54.44 49.44
03-Aug-95 53.93 49.24
04-Aug-95 53.97 49.18
07-Aug-95 54.05 49.32
08-Aug-95 54.38 49.7
09-Aug-95 54.78 49.45
10-Aug-95 55.65 49.55
11-Aug-95 55.72 49.38
14-Aug-95 55.23 48.77
15-Aug-95 54.82 48.74
16-Aug-95 53.92 49.22
17-Aug-95 54.29 49.27
18-Aug-95 54.23 49.7
21-Aug-95 54.46 50.29
22-Aug-95 54.57 50.18
23-Aug-95 55.27 50.5
24-Aug-95 55.86 50.2
25-Aug-95 55.97 49.97
28-Aug-95 55.62 49.8
29-Aug-95 55.51 49.52
30-Aug-95 56.45 49.65
31-Aug-95 56.25 50.15
01-Sep-95 54.25 51.43
04-Sep-95 54.25 51.43
05-Sep-95 56.23 52.97
06-Sep-95 55.32 52.11
07-Sep-95 54.55 51.44
08-Sep-95 54.79 51.83
11-Sep-95 54.92 51.65
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

12-Sep-95 55.74 51.95
13-Sep-95 55.34 51.25
14-Sep-95 56.81 51.8
15-Sep-95 56.63 51.53
18-Sep-95 57.73 51.65
19-Sep-95 57.23 51.37
20-Sep-95 56.39 49.3
21-Sep-95 54.87 48.67
22-Sep-95 53.49 48.09
25-Sep-95 54.01 48.85
26-Sep-95 53.79 48.23
27-Sep-95 54.55 49.02
28-Sep-95 56.05 49.5
29-Sep-95 57.67 48.65
02-Oct-95 52.78 49.26
03-Oct-95 51.93 49.28
04-Oct-95 50.74 48.85
05-Oct-95 48.89 47.97
06-Oct-95 49.15 48.21
09-Oct-95 50.24 48.74
10-Oct-95 50.33 48.67
11-Oct-95 50.48 48.8
12-Oct-95 49.86 48.46
13-Oct-95 50.29 48.92
16-Oct-95 50.7 48.85
17-Oct-95 50.33 48.82
18-Oct-95 49.88 48.42
19-Oct-95 49.36 48.15
20-Oct-95 49.7 48.58
23-Oct-95 49.81 48.94
24-Oct-95 49.87 49.36
25-Oct-95 49.69 49.58
26-Oct-95 50 50.44
27-Oct-95 50.06 50.34
30-Oct-95 50.74 50.59
31-Oct-95 50.83 50.4
01-Nov-95 50.55 50.95
02-Nov-95 51.72 52.04
03-Nov-95 51.51 51.72
06-Nov-95 51.03 51.15
07-Nov-95 51.14 50.99
08-Nov-95 51.42 51.45
09-Nov-95 51.06 51.62
10-Nov-95 50.7 51.63
13-Nov-95 50.3 51.57

14-Nov-95 50.43 51.56
15-Nov-95 51.24 51.71
16-Nov-95 51.55 52.22
17-Nov-95 52.79 52.96
20-Nov-95 52.9 52.73
21-Nov-95 53.12 52.28
22-Nov-95 54.12 52.54
23-Nov-95 54.12 52.54
24-Nov-95 54.12 52.54
27-Nov-95 55.45 53.42
28-Nov-95 56.24 52.95
29-Nov-95 57.45 52.2
30-Nov-95 57.36 51.62
01-Dec-95 53.02 52.67
04-Dec-95 53.56 54.03
05-Dec-95 54 54.22
06-Dec-95 53.89 54.75
07-Dec-95 54.06 55.28
08-Dec-95 54.65 56.59
11-Dec-95 54.69 56.75
12-Dec-95 55.58 56.81
13-Dec-95 57.55 57.69
14-Dec-95 57.86 57.3
15-Dec-95 59.59 57.99
18-Dec-95 59.93 59.11
19-Dec-95 59.26 59.23
20-Dec-95 57.75 59.9
21-Dec-95 56.91 60.01
22-Dec-95 57.59 60.09
25-Dec-95 57.59 60.09
26-Dec-95 58.69 60.5
27-Dec-95 60.26 62.33
28-Dec-95 59.28 60.32
29-Dec-95 58.6 58.63
01-Jan-96 58.6 58.63
02-Jan-96 59.09 59.93
03-Jan-96 58.74 59.44
04-Jan-96 59.44 59.28
05-Jan-96 60.48 60.64
08-Jan-96 60.48 60.64
09-Jan-96 58.65 60.43
10-Jan-96 58.19 59.59
11-Jan-96 54.44 56.16
12-Jan-96 53.1 53.57
15-Jan-96 53.9 53.3
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

16-Jan-96 53.33 52.43
17-Jan-96 54.98 53.13
18-Jan-96 55.21 54.37
19-Jan-96 55.41 54.22
22-Jan-96 54.88 53.67
23-Jan-96 53.66 52.95
24-Jan-96 54.2 52.72
25-Jan-96 52.67 50.51
26-Jan-96 52.97 50.93
29-Jan-96 52.46 51.13
30-Jan-96 53.37 52.28
31-Jan-96 54.1 53.51
01-Feb-96 53.14 52.41
02-Feb-96 53.74 53.26
05-Feb-96 52.06 51.6
06-Feb-96 52.38 51.64
07-Feb-96 52.23 52.46
08-Feb-96 52.44 53.14
09-Feb-96 52.91 53.62
12-Feb-96 53 53.69
13-Feb-96 55.11 56.74
14-Feb-96 55.2 58.21
15-Feb-96 55.44 57
16-Feb-96 55.77 56.87
19-Feb-96 55.77 56.87
20-Feb-96 57.71 56.39
21-Feb-96 59.45 58.84
22-Feb-96 60.04 60.53
23-Feb-96 58.73 60.66
26-Feb-96 59.76 62.85
27-Feb-96 60.31 64.28
28-Feb-96 59.46 59.68
29-Feb-96 59.35 61.81
01-Mar-96 59.75 53.42
04-Mar-96 58.73 52.15
05-Mar-96 59.09 53
06-Mar-96 59.75 54.22
07-Mar-96 59.18 53.78
08-Mar-96 58.75 53.44
11-Mar-96 59.32 55.15
12-Mar-96 60.56 54.83
13-Mar-96 61.61 54.59
14-Mar-96 62.45 55.07
15-Mar-96 62.92 57.87
18-Mar-96 64.31 60.28

19-Mar-96 65.15 62.26
20-Mar-96 64.38 63.12
21-Mar-96 64.03 61.33
22-Mar-96 65.49 62.65
25-Mar-96 67 63.2
26-Mar-96 66.25 64.88
27-Mar-96 65.72 65.93
28-Mar-96 64.44 63.54
29-Mar-96 64.94 62.76
01-Apr-96 66 57.98
02-Apr-96 68.11 59.72
03-Apr-96 67.69 58.22
04-Apr-96 68.76 59.57
05-Apr-96 68.76 59.57
08-Apr-96 69.86 60.19
09-Apr-96 70.52 60.64
10-Apr-96 72.99 62.51
11-Apr-96 74.3 64.02
12-Apr-96 72.17 62.02
15-Apr-96 71.71 62.62
16-Apr-96 69.45 59.54
17-Apr-96 68.12 58.09
18-Apr-96 66.4 55.4
19-Apr-96 67.49 55.72
22-Apr-96 70.19 55.06
23-Apr-96 73.18 57.3
24-Apr-96 74.1 58.2
25-Apr-96 75.61 58.76
26-Apr-96 76.81 59.27
29-Apr-96 77.01 62.28
30-Apr-96 72.39 61.82
01-May-96 67.42 54.16
02-May-96 68.4 53.94
03-May-96 69.92 54.74
06-May-96 68.85 54.56
07-May-96 68.81 54.79
08-May-96 68.37 54.87
09-May-96 67.23 54.56
10-May-96 68.48 54.95
13-May-96 69.11 56.19
14-May-96 68.43 55.32
15-May-96 67.2 54.81
16-May-96 64.2 53
17-May-96 63.03 52.94
20-May-96 66.04 55.24
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

21-May-96 64.95 54.06
22-May-96 64.3 54.99
23-May-96 64.25 54.39
24-May-96 64.72 54.46
27-May-96 64.72 54.46
28-May-96 63.15 54.18
29-May-96 62.36 54.06
30-May-96 59.88 52.09
31-May-96 59.12 50.85
03-Jun-96 58.99 51.25
04-Jun-96 60.69 51.52
05-Jun-96 59.39 50.85
06-Jun-96 60.22 51.04
07-Jun-96 60.91 51.78
10-Jun-96 61.4 51.4
11-Jun-96 60.8 50.79
12-Jun-96 59.68 50.88
13-Jun-96 58.89 50.95
14-Jun-96 59.5 51.55
17-Jun-96 61.21 53.34
18-Jun-96 60.24 52.5
19-Jun-96 57.96 51.12
20-Jun-96 58.68 51.53
21-Jun-96 58.74 51.36
24-Jun-96 58.23 51.3
25-Jun-96 57.46 51.17
26-Jun-96 58.36 52.34
27-Jun-96 59.36 53.64
28-Jun-96 60.03 53.95
01-Jul-96 61.51 55.14
02-Jul-96 60.89 54.28
03-Jul-96 62.47 54.71
04-Jul-96 62.47 54.71
05-Jul-96 62.47 54.71
08-Jul-96 61.68 54.89
09-Jul-96 61.81 55.26
10-Jul-96 63.11 55.59
11-Jul-96 64.59 56.7
12-Jul-96 64 56.62
15-Jul-96 65.56 57.72
16-Jul-96 65.13 57.18
17-Jul-96 63.89 56.32
18-Jul-96 63.87 56.74
19-Jul-96 62.41 56.02
22-Jul-96 62.76 55.85

23-Jul-96 63.08 55.94
24-Jul-96 61.87 55.95
25-Jul-96 61.66 56.25
26-Jul-96 60.16 55.04
29-Jul-96 60.52 55.19
30-Jul-96 61.23 55.65
31-Jul-96 61.8 57.08

01-Aug-96 61.38 57.53
02-Aug-96 62.12 58.71
05-Aug-96 61.31 58.29
06-Aug-96 61.23 57.43
07-Aug-96 62 58.22
08-Aug-96 62.27 58.79
09-Aug-96 61.87 58.49
12-Aug-96 62.89 59.56
13-Aug-96 63.09 60.01
14-Aug-96 62.49 60.41
15-Aug-96 61.96 59.68
16-Aug-96 63.38 61.63
19-Aug-96 65.27 62.58
20-Aug-96 64.01 61.67
21-Aug-96 63.12 60.98
22-Aug-96 63.88 62.48
23-Aug-96 63.22 61.99
26-Aug-96 61.62 61.03
27-Aug-96 61.21 61.13
28-Aug-96 62.33 62.04
29-Aug-96 63.72 63.67
30-Aug-96 62.82 62.82
02-Sep-96 62.82 62.82
03-Sep-96 62.96 65.07
04-Sep-96 62.96 64.21
05-Sep-96 64.41 65.03
06-Sep-96 65.27 66.4
09-Sep-96 64.09 65.95
10-Sep-96 64.85 66.67
11-Sep-96 65.91 68.19
12-Sep-96 65.91 69.17
13-Sep-96 64.6 67.94
16-Sep-96 62.87 65.29
17-Sep-96 62.74 65.59
18-Sep-96 63.06 67.87
19-Sep-96 61.32 66.77
20-Sep-96 61.09 67.42
23-Sep-96 60.07 67.48
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

24-Sep-96 62.83 69.69
25-Sep-96 63.1 71.77
26-Sep-96 62.99 70.9
27-Sep-96 64.6 71.49
30-Sep-96 62.71 71.51
01-Oct-96 62.82 70.76
02-Oct-96 62.42 71.98
03-Oct-96 63.68 74.69
04-Oct-96 63.63 74.43
07-Oct-96 66.34 76.49
08-Oct-96 66.5 76.19
09-Oct-96 65.59 73.97
10-Oct-96 63.52 70.92
11-Oct-96 65.52 71.43
14-Oct-96 67.7 74.07
15-Oct-96 67.08 73.07
16-Oct-96 65.45 71.56
17-Oct-96 66.53 72.29
18-Oct-96 67.94 74.06
21-Oct-96 67.92 73.63
22-Oct-96 69.12 73.45
23-Oct-96 68.16 70.96
24-Oct-96 69.22 70.49
25-Oct-96 70.1 71.72
28-Oct-96 70.3 71.46
29-Oct-96 69.1 69.83
30-Oct-96 70 68.46
31-Oct-96 66.56 66.34
01-Nov-96 64.7 66.6
04-Nov-96 65 65.95
05-Nov-96 64.61 65.42
06-Nov-96 63.63 66.45
07-Nov-96 63.8 66.89
08-Nov-96 65.27 68.93
11-Nov-96 65.02 68.35
12-Nov-96 65.77 68.25
13-Nov-96 68.34 71.2
14-Nov-96 68.92 73.4
15-Nov-96 66.92 72.61
18-Nov-96 65.77 71.85
19-Nov-96 67.39 73.68
20-Nov-96 65.39 72.09
21-Nov-96 67.04 73.85
22-Nov-96 67.8 72.79
25-Nov-96 67.99 72.23

26-Nov-96 69.01 71.24
27-Nov-96 69.35 71.97
28-Nov-96 69.35 71.97
29-Nov-96 69.35 71.97
02-Dec-96 68.12 73.57
03-Dec-96 69.13 74.22
04-Dec-96 68.24 73.57
05-Dec-96 69.68 75.11
06-Dec-96 69.8 74.66
09-Dec-96 68.88 72.13
10-Dec-96 66.86 69.62
11-Dec-96 63.56 66.82
12-Dec-96 64.72 68.67
13-Dec-96 67.04 71.71
16-Dec-96 69.52 74.82
17-Dec-96 69.77 73.54
18-Dec-96 71.17 74.18
19-Dec-96 71.22 73.78
20-Dec-96 70.19 72.97
23-Dec-96 68.9 71.08
24-Dec-96 69.56 71.4
25-Dec-96 69.56 71.4
26-Dec-96 69.51 70.06
27-Dec-96 69.74 70.55
30-Dec-96 69.61 70.57
31-Dec-96 70.67 72.84
01-Jan-97 70.67 72.84
02-Jan-97 71.1 72.11
03-Jan-97 70.7 71.29
06-Jan-97 72.52 73.64
07-Jan-97 72.1 72.49
08-Jan-97 72.19 73.43
09-Jan-97 70.48 73.05
10-Jan-97 70.36 72.15
13-Jan-97 68.09 69.7
14-Jan-97 67.04 69.42
15-Jan-97 68.85 71.42
16-Jan-97 68.69 69.92
17-Jan-97 68.09 68.44
20-Jan-97 67.23 66.94
21-Jan-97 67.44 66.03
22-Jan-97 68.22 66.89
23-Jan-97 68.42 66.35
24-Jan-97 67.75 66.77
27-Jan-97 67.62 67.29
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

28-Jan-97 67.04 66.83
29-Jan-97 68.23 68.84
30-Jan-97 69.82 70.34
31-Jan-97 68.47 68.65
03-Feb-97 68.35 65.28
04-Feb-97 68.31 64.18
05-Feb-97 67.54 63.32
06-Feb-97 65.3 61.45
07-Feb-97 63.06 60.53
10-Feb-97 63.53 61.76
11-Feb-97 63.96 61.86
12-Feb-97 62.89 60.85
13-Feb-97 63.18 59.92
14-Feb-97 64.25 60.81
17-Feb-97 64.25 60.81
18-Feb-97 64.16 59.42
19-Feb-97 64.68 59.59
20-Feb-97 62.78 58.04
21-Feb-97 61.82 57.85
24-Feb-97 60.24 55.47
25-Feb-97 62.23 56.82
26-Feb-97 62.26 56.68
27-Feb-97 62.67 56.03
28-Feb-97 61.65 54.76
03-Mar-97 61.77 53.18
04-Mar-97 62.89 53.34
05-Mar-97 63.33 52.54
06-Mar-97 64.48 53.43
07-Mar-97 65.67 54.08
10-Mar-97 64.36 53.08
11-Mar-97 63.86 52.83
12-Mar-97 64.63 54.08
13-Mar-97 64.23 54.22
14-Mar-97 65.77 55.33
17-Mar-97 65.26 54.3
18-Mar-97 67.48 56.18
19-Mar-97 67.96 56.29
20-Mar-97 67.58 55.94
21-Mar-97 67.64 55.98
24-Mar-97 66.51 55.73
25-Mar-97 66.52 56.83
26-Mar-97 64.82 55.43
27-Mar-97 64.63 56.07
28-Mar-97 64.63 56.07
31-Mar-97 63.68 56.72

01-Apr-97 62.67 53.95
02-Apr-97 60.61 52.52
03-Apr-97 60.9 53.26
04-Apr-97 60.48 53.14
07-Apr-97 60.72 53.13
08-Apr-97 61.17 52.89
09-Apr-97 60.7 53.11
10-Apr-97 61.07 54.86
11-Apr-97 60.88 53.87
14-Apr-97 61.96 54.67
15-Apr-97 61.9 54.85
16-Apr-97 60.38 53.48
17-Apr-97 60.7 54
18-Apr-97 61.49 54.68
21-Apr-97 62.8 55.48
22-Apr-97 61.77 54.83
23-Apr-97 61.74 55.65
24-Apr-97 62.84 55.89
25-Apr-97 62.5 55.9
28-Apr-97 62.34 56.53
29-Apr-97 63.36 58.91
30-Apr-97 63.91 58.07
01-May-97 62.63 54.33
02-May-97 60.52 53.02
05-May-97 60.54 53.05
06-May-97 60.31 53.53
07-May-97 60.92 53.08
08-May-97 62.5 54.38
09-May-97 62.89 54.52
12-May-97 64.47 56.65
13-May-97 64.76 56.48
14-May-97 64.38 56.42
15-May-97 64.04 56.48
16-May-97 65.87 58.47
19-May-97 65.21 57.92
20-May-97 65.39 57.64
21-May-97 66.53 57.55
22-May-97 66.93 57.8
23-May-97 66.92 57.52
26-May-97 66.92 57.52
27-May-97 65.38 55.27
28-May-97 65.8 55.39
29-May-97 65.15 56
30-May-97 63.68 56.49
02-Jun-97 63.68 56.32
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

03-Jun-97 61.44 54.62
04-Jun-97 60.42 54.16
05-Jun-97 59.82 53.32
06-Jun-97 57.13 51.52
09-Jun-97 56.2 51.5
10-Jun-97 56.4 51.65
11-Jun-97 56.54 51.52
12-Jun-97 57.08 51.62
13-Jun-97 57.4 51.64
16-Jun-97 58.03 51.94
17-Jun-97 58.48 52.45
18-Jun-97 56.78 51.44
19-Jun-97 56.09 51.45
20-Jun-97 55.48 51.33
23-Jun-97 55.64 51.92
24-Jun-97 55.68 51.57
25-Jun-97 56.97 52.99
26-Jun-97 56.79 52.02
27-Jun-97 57.91 53.33
30-Jun-97 58.12 53.7
01-Jul-97 58.78 54.84
02-Jul-97 59.29 54.92
03-Jul-97 57.92 52.76
04-Jul-97 57.92 52.76
07-Jul-97 57.94 52.78
08-Jul-97 58.92 53
09-Jul-97 58.23 52.65
10-Jul-97 58.6 52.11
11-Jul-97 59.26 52.35
14-Jul-97 58.35 51.67
15-Jul-97 59.94 52.95
16-Jul-97 60.46 52.68
17-Jul-97 61.89 53.89
18-Jul-97 60.05 52.22
21-Jul-97 60.04 52.35
22-Jul-97 60.02 52.7
23-Jul-97 61.12 53.28
24-Jul-97 62.21 53.39
25-Jul-97 64.03 53.99
28-Jul-97 64.84 54.14
29-Jul-97 66.47 54.31
30-Jul-97 69.9 55.78
31-Jul-97 67.84 55.61

01-Aug-97 65.07 56.56
04-Aug-97 66.74 58.44

05-Aug-97 67.1 58.32
06-Aug-97 66.06 56.98
07-Aug-97 64.33 55.3
08-Aug-97 61.99 54.29
11-Aug-97 61.47 54.36
12-Aug-97 63.71 55.1
13-Aug-97 66.08 56.04
14-Aug-97 66.33 55.87
15-Aug-97 66.81 55.25
18-Aug-97 65.44 55.09
19-Aug-97 67.58 55.71
20-Aug-97 69.64 55.1
21-Aug-97 67.15 53.48
22-Aug-97 67.48 53.41
25-Aug-97 64.5 52.2
26-Aug-97 63.81 52.09
27-Aug-97 66.4 53.26
28-Aug-97 67.51 52.51
29-Aug-97 68.82 51.85
01-Sep-97 68.82 51.85
02-Sep-97 62.79 53.4
03-Sep-97 62.55 53.35
04-Sep-97 59.92 52.54
05-Sep-97 60.12 53.78
08-Sep-97 59.32 53.14
09-Sep-97 59.49 52.83
10-Sep-97 58.33 51.57
11-Sep-97 58.78 52.05
12-Sep-97 58.77 52.58
15-Sep-97 58.22 52.52
16-Sep-97 59.04 53.85
17-Sep-97 58.45 53.35
18-Sep-97 57.25 53.44
19-Sep-97 57.48 53.45
22-Sep-97 58.58 54.73
23-Sep-97 58.36 54.64
24-Sep-97 58.37 55.24
25-Sep-97 59.25 56.51
26-Sep-97 61.34 57.92
29-Sep-97 63.13 59.25
30-Sep-97 62.63 58.77
01-Oct-97 59.9 58.19
02-Oct-97 61.43 59.8
03-Oct-97 62.99 62.01
06-Oct-97 61.3 59.69
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Table 15.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil

07-Oct-97 60.91 59.6
08-Oct-97 61.5 60.16
09-Oct-97 61.18 60.08
10-Oct-97 61.24 59.95
13-Oct-97 59.83 58.27
14-Oct-97 58.88 57.01
15-Oct-97 58.2 56.94
16-Oct-97 59.68 58.01
17-Oct-97 59.31 57.4
20-Oct-97 59.66 57.82
21-Oct-97 59.08 57.64
22-Oct-97 60.79 58.77
23-Oct-97 60.26 58.09
24-Oct-97 59.6 57.03
27-Oct-97 59.95 57.74
28-Oct-97 58.88 56.52
29-Oct-97 60.09 57.19
30-Oct-97 60.67 58.12
31-Oct-97 60.22 57.77
03-Nov-97 59.8 58.78
04-Nov-97 58.96 58.11
05-Nov-97 58.2 57.18
06-Nov-97 59.26 57.43

07-Nov-97 59.95 57.99
10-Nov-97 59.18 57.28
11-Nov-97 59.06 57.82
12-Nov-97 58.62 57.92
13-Nov-97 59.55 58.62
14-Nov-97 60.99 59.54
17-Nov-97 59.44 57.85
18-Nov-97 58.65 57.61
19-Nov-97 58.65 56.67
20-Nov-97 57.22 55.45
21-Nov-97 57.74 55.48
24-Nov-97 58.69 55.6
25-Nov-97 59.08 55.49
26-Nov-97 57.31 53.1
27-Nov-97 57.31 53.1
28-Nov-97 57.31 53.1
01-Dec-97 56.25 52.71
02-Dec-97 56.43 53.25
03-Dec-97 56.55 53.5
04-Dec-97 56.34 53.35
05-Dec-97 56.59 53.38
08-Dec-97 56.96 53.52
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weak arbitrage, 104

Asian call options, 248–9
risk-neutral valuation by simulation,
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asset-or-nothing call option, 129, 162
autoregressive model, 285

mean reversion, 289–91, 292
options valuations under, 286–9
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down-and-in, 247–8; risk-neutral

valuation by simulation, 251–2,
257–8

down-and-out, 247–8; risk-neutral
valuation using a multiperiod
binomial model, 259–60

up-and-in, 248
up-and-out, 248

Bernoulli random variable, 10, 12, 13–14
beta, 187
binomial approximation models, 96–8

for pricing American put options,
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for pricing exotic options, 259–61
binomial random variable, 11, 12–13,
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Black–Scholes option pricing formula,

106–8, 119–21
partial derivatives, 121–15
properties of, 110–2, 125–6

bootstrap approach to data analysis, 272
Brownian motion, 34–5

as a limiting process, 35–7

Cameron-Martin theorem, 45–6
capital assets pricing model, 187–8
capped call option, 90, 159
cash or nothing call option, 128
central limit theorem, 29–31
commodities, 80–1
complement of an event, 3
compound option, 160–1
concave function, 91, 169, 215–9
conditional expectation, 16–17
conditional expectation simulation

estimator, 257
conditional probability, 5–8
conditional value at risk, 185–6
control variables in simulation, 253–6
convex function, 82–4
correlation, 16
coupling, 196
coupon rate, 70
covariance, 14–16

estimating, 184
crude oil data, 266–74
currency exchanges, 81–2

delta, 112–3, 122
delta hedging arbitrage strategy, 113–8
digital call option, 88
discount factor, 229
disjoint events, 5
distribution function, 21
double call option, 90, 161
doubling rule, 50–1
duality theorem of linear programming,

99
dynamic programming, 140, 213–4,

228–46

efficient market hypothesis, 265
European options, xi, 77, 126–7
event, 2
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expiration time, see exercise time
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forwards contracts, 79–80

on currencies, 81–2
futures contracts, 80–1

gambling model, 221–3, 233–4
gamma, 126
geometric Brownian motion, xi, 38–40

drift parameter, 38
with jumps, 142–8
as a limiting process, 40
testing the model, 268–69
with time-varying drift parameter, 110,

152
volatility parameter, xii, 38; estimation

of, 148–55

high–low data, 153–5
histogram, 267

implied volatility, 156
importance sampling in simulation, 257
in-the-money options, 127
independent events, 8
independent random variables, 12
interest rate, 48–72

compound, 48–9
continuously compounded, 51–2
effective, 49
instantaneous, 65
nominal, 49
simple, 48
spot, 65

internal rate of return, 64
intersection of events, 4
investment allocation model, 222–5

Jensen’s inequality, 169–70

knapsack problem, 219–21

law of one price, 75–6
generalized, 82, 86

likelihood ratio ordering, 198–9
linear program, 98–9
linear regression model, 285
lognormal random variable, 28, 144–6
lookback call options, 249

continuous time approximation, 261–2
risk-neutral valuation by simulation,

252, 256
lookback put options, 263

machine replacement problem, 237–9
Markov model, 274
martingale hypothesis, 275
mean, see expected value
mean reversion, 289–91
mean square error of estimator, 149
Monte Carlo simulation, 249–52

pricing exotic options, 250–2
mortgage, 57–61
multiperiod binomial model, 96–8
multiplication theorem of probability, 7
multivariate normal distribution, 177–8

normal random variables, 22–33, 204–7
standard normal, 24

odds, 93–4
one stage lookahead policy, 240
optimal asset selling problem, 235–6,

242–3
optimal return from a call option, 229–32
optimal stoppping problems, 239–44

stable, 240
optimal value function, 229
optimality equation, 229
optimization models, 212–46

deterministic, 212–21
probabilistic, 221–5, 228–46

option, xi, 73–7
call, xi, 77
on dividend-paying securities, 131–6
put, xi, 78

option portfolio property, 85–6
options with nonlinear payoffs, 258

par value, 69
perpetuity, 57
Poisson process, 142
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exponential utility function, 176
mean variance analysis, 176

portfolio separation theorem, 183
power options, 258–9
present value, 52–4
present value function, 66–7, 72
probability, 2
probability density function, 22
probability distribution, 9
put–call option parity formula, 78–9

random variables, 9
continuous, 23

rate of return, 62–5
inflation-adjusted, 71
unit period under geometric Brownian

motion, 188–9
rho, 122–3
risk-averse, 169–70
risk-neutral, xii, 169–70
risk-neutral probabilities, 93
risk-neutral valuations, xii

sample mean, 20
sample space, 1
sample variance, 20
second order dominance, 203–4, 207–10
short selling, 73
singleperiod investment problem,

199–203

standard deviation, 13
standard normal density function, 24
standard normal distribution function,

24–7
stochastic dominance, 193
stochastically larger, see stochastic

dominance
strike price, see exercise price

theta, 124–25

unbiased, 2
unbiased estimator, 149
union of events, 4
utility, 167

expected utility valuation,
165–92

utility function, 168
exponential utility function,

176
linear and risk neutrality (risk

indifference), 169–70
log utility function, 170–2

value at risk, 184–5
vanilla options, 247
variance, 12–13, 15

estimation of, 148–9
vega, 124–5

yield curve, 66, 72
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