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Preface

A rather large amount of material has been accumulated in the field during the
past nearly two decades since the publication of the first edition by the present
senior author in 1997. The new material may be divided into three groups. The
first contains mainly experimental results successively obtained for static, transport,
and dynamical properties, the second deals with ring polymers (including circular
DNA) studied both experimentally and theoretically with the use of Monte Carlo
simulation, and the third concerns such simulations on excluded-volume effects,
including those in polyelectrolytes. These results and some additional descriptions
were included in the chapters (except Chaps. 4 and 10) of the present edition, whose
Chap. 9 was newly added. This work was done under joint authorship with Professor
T. Yoshizaki. On that occasion, the authors also attempted their efforts to correct
errors in the first edition as much as possible.

Finally, it is a pleasure to acknowledge the assistance of Dr. D. Ida who prepared
newly some of the tables and figures and of the author and subject indexes and
corrected some of the errors.

Kyoto, Japan Hiromi Yamakawa
September 2015
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Preface to the First Edition

This book is intended to give a comprehensive and systematic description of the
statistical-mechanical, transport, and dynamic theories of dilute-solution properties
of both flexible and semiflexible polymers, including oligomers. This description
was developed on the basis of the “helical wormlike chain” model along with an
analysis of extensive experimental data. Chapter 2 and the fundamental parts of
Chaps. 3, 4, 6, and 9 are based on the author’s lecture notes for courses in polymer
statistical mechanics given at the Graduate School of Kyoto University in 1978
through 1994. Much of the material in the book arises from his research reported
since the time of publication (1971) of his earlier book, Modern Theory of Polymer
Solutions.

The accomplishment of this research was made possible by the collaboration
of his students, postdoctoral students, and other collaborators, especially F. Abe,
Y. Einaga, M. Fujii, W. Gobush, T. Konishi, K. Nagasaka, M. Osa, N. Sawatari,
J. Shimada, W. H. Stockmayer, Y. Takaeda, and T. Yoshizaki. Professor W. H. Stock-
mayer gave the author an opportunity to stay in Hanover in 1971/1972, and indeed
the research in this book was started at that time. Professor T. Norisuye, who is
not a collaborator of the author but his colleague, kindly provided him with the
unpublished material on the third virial coefficient dealt with in Chap. 8.

The author is indebted to Dr. J. Shimada for his careful checking of the
mathematical equations in the manuscript. Finally, it is a pleasure to acknowledge
the assistance of Prof. T. Yoshizaki and Mr. M. Osa who prepared some of the
tables and figures and also translated the manuscript into the compuscript with Miss
M. Fukui.

Kyoto, Japan Hiromi Yamakawa
January 1997
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Chapter 1
Introduction

1.1 Historical Survey

A first stage in the study of polymer solution science ended with the worldwide
acceptance of the concept of the excluded-volume effect in the mid 1950s shortly
after the publication of the celebrated book by Flory [1] in 1953. In the next
stage, activity was centered mainly in the study of dilute solution behavior of
flexible polymers within the Flory framework which consists of that concept for
the Gaussian chain and the universality of its � state without that effect. The
theoretical developments were then made by an application of orthodox but rather
classical techniques in statistical mechanics for many-body problems with a more
rigorous consideration of chain connectivity, thus all leading except for a few cases
to the so-called two-parameter (TP) theory, which predicts that all dilute solution
properties may be expressed in terms of the unperturbed (�) dimension of the
chain and its total effective excluded volume. The results derived until the late
1960s are summarized in Yamakawa’s 1971 book [2] along with a comparison
with experimental data. In the meantime, on the other hand, an experimental
determination of the (asymptotic) unperturbed chain dimension for a wide variety of
long flexible polymers [3] brought about great advances in its theoretical evaluation
for arbitrary chain length on the basis of the rotational isomeric state (RIS) model
[4], and all related properties are sophisticatedly treated in Flory’s second (1969)
book [5].

Subsequently, the advances in the field have been diversified in many directions.
The foremost of these is a new powerful theoretical approach to the excluded-
volume problems by an application of the scaling concepts and renormalization
group theory, which began in the early 1970s when the analogy between many-body
problems in the Gaussian chain and magnetic systems was discovered [6, 7]. These
techniques enable us to derive asymptotic forms for various molecular properties as
functions of chain length (or molecular weight) for long enough chains. The basic
scaling ideas and their applications to polymer problems are plainly explained by
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2 1 Introduction

de Gennes [8] in his renowned third book, while the details of the methods and
results of the polymer renormalization group theory are described in the review
article by Oono [9] and also in the books by Freed [10] and by des Cloizeaux and
Jannink [11].

At about the same time there occurred new developments in the dynamics of
polymer constrained systems in two directions. One concerns dilute solutions, and
the other concentrated solutions and melts. In particular, there have been significant
advances in the latter. Although the single-chain dynamics was first formulated by
Kirkwood [12] in 1949 for realistic chains with rigid constraints on bond lengths and
bond angles, dynamical properties related to global chain motions in dilute solution
have long been discussed on the basis of the Gaussian (spring-bead) chain [2, 13–
16]. However, the study of the constrained-chain dynamics was initiated by Fixman
and Kovac [17] in 1974 in order to treat local properties, and much progress in actual
calculations has been made possible by slight coarse-graining of the conventional
bond chain [18, 19] (see below).

In condensed or many-chain systems, on the other hand, intermolecular con-
straints, that is, entanglement effects play an important role, and the chain motion in
such an environment is very difficult to treat by considering intermolecular forces
of the ordinary dispersion type. Indeed, this had been for long one of the unsolved
problems in polymer science until 1971 when a breakthrough was brought about
by de Gennes [8, 20], who introduced the concept of the reptation in a tube, the
concept of the tube itself being originally due to Edwards [21]. In their book, Doi
and Edwards [22] summarize comprehensively the successful applications of the
tube model to viscoelastic properties of concentrated solutions and melts of long
flexible polymers.

Necessarily, if the chain length is decreased, the (static) chain stiffness becomes
an important factor even for ordinary flexible chain polymers as well as for typical
stiff or semiflexible macromolecules such as DNA and ˛-helical polypeptides. The
stiffness arises from the structural constraints mentioned above and hindrances to
internal rotations in the chain. The RIS model or its equivalents on the atomic
level must then be the best to consider this effect, and therefore to mimic the
equilibrium conformational behavior of real chains of arbitrary length. However,
for many equilibrium and steady-state transport problems on such stiff chains, the
structural details are not amenable to mathematical treatments, and moreover, are
often unnecessary to consider. Some coarse-graining may then be introduced to
replace these discrete chains by continuous models, although the discreteness must
be, to some extent, retained in the study of the dynamics, especially of local chain
motions, as mentioned below.

The foremost of these continuous models is the wormlike chain proposed by
Kratky and Porod (KP) [23] in 1949. Since the mid-1960s there has been renewal of
activity in studying this model and some new aspects have evolved. The theoretical
developments thus made for the KP chain and its numerous modifications are
reviewed by Freed [24] and critically by Yamakawa [2, 18, 25, 26].

One of these modifications is the helical wormlike (HW) chain [18, 19, 27, 28]
proposed in 1976, which is the subject of the present book. It is a generalization of
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the KP chain and includes the latter as a special case. In fact, in the early 1970s,
a comparison of the KP chain with the RIS model proved that the application
of the former to flexible chains is limited to only very symmetric chains such as
polymethylene. This was the motivation of the generalization. Now the HW chain
may describe equilibrium conformational and steady-state transport properties of all
kinds of real chains, both flexible and stiff, on the bond length or somewhat longer
scales, thus bridging a gap between them and the KP chain. When the excluded-
volume effect and steady-state transport properties are treated, beads are arrayed
touching one after another on the chain contour (touched-bead model) or a cylinder
whose axis coincides with the contour is considered (cylinder model), as the case
may be [19]. For the study of the dynamics, however, the discreteness must be
recovered to give a kind of coarse-grained bond chain, as mentioned above. This
was done by modeling the real chain by a (discrete) chain of rigid bodies (motional
units), each corresponding to the monomer unit and each center being located on
the (continuous) HW chain contour. This is the dynamic HW model [18, 19, 29].

Also on the experimental side, since the mid-1970s there have been obtained
many important and exciting results in various branches of the field, including
those mentioned above. Some are presented in the book edited by Nagasawa [30]
and also reviewed in the most recent book by Fujita [31]. For convenience, we
confine ourselves here to dilute solution problems, in particular a few noteworthy
topics. Most important is the fact that accurate measurements demonstrated that
the TP theory for perturbed flexible polymers is not always valid even for fairly
large molecular weights, especially in good solvents [31]. This must be regarded as
arising from effects of chain stiffness. In this connection, it is important to note that
the renormalization group approach still leads essentially to the TP theory. Further,
since the mid-1980s precise measurements have been extended to the oligomer
region [32–35]. These have been made possible because well-characterized samples,
including oligomers, have become available owing to the progress in polymer
synthesis and characterization techniques such as ionic polymerization, GPC, and
NMR and also because new experimental tools such as neutron and dynamic light
scattering methods have been added to the classical ones such as static light and
small-angle X-ray scattering.

As a result, on the one hand it has been confirmed that strictly, the TP theory
is valid only in the asymptotic limit of large molecular weight [35], and on the
other hand it has been shown that for (unperturbed) flexible chains neither the
characteristic ratio [5] nor the Kuhn segment length is in general a measure of
chain stiffness [34]. All of these and other recent findings indicate that the Flory
framework, including the RIS description of the unperturbed chain conformation,
breaks down. They may probably be due to chain stiffness and may therefore be
explained by adopting the HW model. It must also be mentioned that since the mid-
1970s there have been carried out extensive accurate measurements of equilibrium
conformational and transport properties of typical stiff chains such as DNA, poly(n-
alkyl isocyanate)s, and polysaccharides to determine their stiffness mainly on the
basis of the KP model [31, 36].
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Now the renormalization (coarse-graining and scaling) process works for long
flexible (Gaussian) chains and leads to the universality as represented by the
asymptotic forms (exponent and prefactor) for their physical properties. The theory
of this type in principle fails to take into account possible effects of chain stiffness.
As is well established for flexible polymers, the behavior of the unperturbed
chain dimension reaches already its Gaussian limit at molecular weights smaller
than about 105. It is also true that the exponent laws for the chain dimension,
intrinsic viscosity, and other properties in � and good solvents hold over a wide
range of molecular weight for typical flexible polymers such as polystyrene and
polyisobutylene, though no longer for many cases at the present time. These facts
have misled many polymer scientists to the view that universality is the very
essential and fundamental feature of the polymer behavior. However, the recent
experimental findings mentioned above show that the effect of chain stiffness on
the excluded-volume effect remains rather appreciable even for molecular weights
larger than 105, up to about 106, so that the TP theory, including the renormalization
group theory, breaks down even for molecular weights ordinarily of interest. A large
part of the range in which the Gaussian chain theory breaks down may be covered
much more easily by the HW chain than by any other model on the atomic level, for
instance, the RIS model. The situation is schematically depicted in Fig. 1.1.

And now, turning to the present situation of the field, it is important to note that
since the late 1990s there have been made many advances in the study of many-body
and some other problems using computer simulation. This approach proves to be a
very useful tool complementary to (analytical) theory and experiment, in particular
in the study of effects of excluded volume and chain stiffness [37–39], including
the latter for ring polymers. The foremost of derived conclusions is the alternation
of the Flory (preconceived) concept of the unperturbed � state [40]. Such a line
is just an emblem of the incoming of the new era of information technology such
as represented by the widely spread use of personal computers in our daily life in
society.

Finally, it might be of no little significance to have a brief future view of the
field (polymer solution science). The field called “complex fluids,” which was once
in fashion more than 20 years ago [41–43], has lately been remodeled into the one
called “soft matter” [44], in which macromolecules or polymeric substances seem
to occupy a considerable place [45]. At the present time, what kind of key concept
common to the latter field comes out is not yet clear, nor is which it as a whole heads
for. But the subject of aqueous polymer solutions may probably be one of those
growing as far as polymer solution science itself is concerned. Researches on this
subject might possibly break a road to a deeper understanding of vital phenomena.
In aqueous solutions, pair potentials (of mean force) between segments constituting
polymer chains are considered to depend on orientation and clustering of water
molecules, and therefore their shape and magnitude may depend on temperature
more complicatedly than those usually considered in the field, as supposed from
the study of, for instance, the second virial coefficient of methane in water [46].
A direct or indirect consideration of structures of solvent molecules, which is, of
course, beyond the scope of this book, also needs necessarily help of Monte Carlo,
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flexible

stiff

C

C

reduction

HW

CS

(renormalization)

Gaussian

HW

Fig. 1.1 Coarse-graining (C) and scaling (S) processes of a flexible or stiff chain and the ranges
of application of the HW and Gaussian chain models

Brownian dynamics, or molecular dynamics simulations [47–49]. Such simulations
in general then enable us to treat virtual observables, that is, quantities which cannot
be directly obtained from ordinary experiments. The good examples are averaged
intermolecular potentials [38] and bond correlation functions [39, 50], which were
already treated. Not only real but also virtual observables will provide a large
amount of valuable information and thus serve to deepen understanding of the
various physical or physicochemical processes in polymer solutions.

1.2 Scope

The book is intended to formulate the HW chain model, including the KP chain as
a special case, to treat almost all static, transport, and dynamical properties of both
flexible and stiff polymers in dilute solution on the small to large length and time
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scales. A comprehensive description of the statistical-mechanical, hydrodynamic,
and dynamic theories developed for them on the basis of this model is given along
with a comparison with other models for some cases. The theoretical methods
and derivation are described as simply as possible but without loss of the lowest
rigor. There are also given analyses of recent experimental data by use of these
theories for flexible polymers over a wide range of molecular weight, including
the oligomer region, and for stiff polymers, including biological macromolecules
such as DNA. In particular, one of the purposes of the book is to show that a
new theory of the excluded-volume effects for the HW chain in dilute solution
may give an explanation of recent extensive experimental results which indicate
that the TP theory breaks down. The book contains a reasonable number of
theoretical equations, tables, and figures, enough to provide an understanding of the
basic theories and to facilitate their applications to experimental data for polymer
molecular characterization. For the latter purpose, computer-aided forms are also
given for some of the theoretical expressions, along with necessary numerical tables
(in the text and Appendixes A–E). Use of familiar terminology which already
appeared in the present senior author’s earlier book, Modern Theory of Polymer
Solutions (MTPS) [2], is made without explanation except for those cases in which
redefinition or reconsideration is needed.

In Chap. 2, which is also an introduction to the following two chapters, a brief
survey is made of several fundamental discrete and continuous models for polymer
chains in a form convenient for later developments. Chapters 3 and 4 deal rather
in detail with the statistical mechanics of the KP and HW chains, respectively. The
Fokker–Planck diffusion equations for various distribution functions are derived by
analogy with certain quantum particles with the use of path integrals. An operational
method for effectively computing the moments is presented. In particular, in Chap. 4
various approximations to the distribution functions for the HW chain are given
for practical use and adaptation to real chains is discussed in detail. In Chap. 3
there are also given some fundamentals necessary for occasional treatments of
ring polymers (as the KP chain) in later chapters. In Chaps. 5 and 6 equilibrium
conformational and steady-state transport properties of unperturbed chains without
excluded volume are treated, respectively. The former includes the mean-square
radius of gyration, scattering function, mean-square optical anisotropy, and so forth,
and the later includes the intrinsic viscosity and translational friction and diffusion
coefficients. In Chap. 7, which may digress from the subject of the book, there
are some interesting applications of the model to circular DNA, in particular to
the statistical and transport behavior of its topoisomers. Chapter 8 presents the
treatments of excluded-volume effects, that is, various radius expansion factors
and the second and third virial coefficients within the new framework mentioned
above. In Chap. 9 investigations of the intra- and intermolecular excluded-volume
problems are further pursued by the use of Monte Carlo simulations of both flexible
and semiflexible polymers, including polyelectrolytes. In particular, it is pointed out
that the Flory concept of the unperturbed state should be altered.

The final two chapters are devoted to dynamics, where discreteness is introduced
in the chain to give the dynamic HW model. Chapter 10 begins with a general
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discussion of the dynamics of constrained chains. Then the diffusion equations
describing the time evolution of the distribution functions for this model are
derived in the classical diffusion (Smoluchowski) limit, and relevant eigenvalue
problems and time-correlation functions are formulated. A coarse-grained dynamic
HW model is also presented to treat global chain motions of somewhat shorter
wavelengths than those treated by the spring-bead model. In Chap. 11 there are
treated various dynamical properties of unperturbed flexible and semiflexible
polymers. They include local properties such as dielectric and nuclear magnetic
relaxation, fluorescence depolarization, and dynamic depolarized light scattering,
and also global ones such as the first cumulant of the dynamic structure factor, and
so forth.
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Chapter 2
Models for Polymer Chains

In this chapter a brief description is given of several fundamental models for
polymer chains, both discrete and continuous, the latter being obtained as a contin-
uous limit of the former under certain conditions. The unperturbed chains without
excluded volume are considered throughout the chapter but all basic equations are
valid for both unperturbed and perturbed chains unless otherwise noted. Thus the
symbol h� � � i is used without the subscript 0 to denote an conformational average
even in the unperturbed state, for simplicity.

2.1 Discrete Models

2.1.1 Average Chain Dimensions

Consider a single chain composed of nC 1 identical main chain atoms, say carbon
atoms, which are joined successively by single bonds and which are numbered 0, 1,
2, � � � , n from one end to the other. Let ri be the vector position of the ith carbon
atom (i D 0, 1, � � � , n) in the instantaneous configuration of the chain, as depicted in
Fig. 2.1. The vector li defined by

li D ri � ri�1 .i D 1; 2; � � � ; n/ (2.1)

is called the ith bond vector, whose magnitude li is the bond length. The angle �i

(i D 1, 2, � � � , n � 1) between the vectors li and liC1 is the supplement of the ith
bond angle. The angle between the two planes containing li�1 and li, and li and liC1,
respectively, defines the internal rotation angle �i (i D 2, � � � , n � 1) about the ith
bond, which is chosen to be zero when li�1 and liC1 are situated in the trans position
with respect to each other. For the present purpose, both li and �i may be fixed at
constant values (except for hypothetical cases), ignoring atomic vibrations. This is

© Springer-Verlag Berlin Heidelberg 2016
H. Yamakawa, T. Yoshizaki, Helical Wormlike Chains in Polymer Solutions,
DOI 10.1007/978-3-662-48716-7_2

9



10 2 Models for Polymer Chains

Fig. 2.1 Instantaneous
configurations of a discrete
chain and its various
configurational quantities
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the discrete model. In what follows, we assume that li D l and �i D � for all i, for
simplicity.

Now the end-to-end vector R D rn � r0 of the chain is the resultant of n bond
vectors, that is,

R D
nX

iD1
li ; (2.2)

so that the mean-square end-to-end distance hR2i as a measure of the average chain
dimension is given by

hR2i D
nX

iD1

nX

jD1
hli � lji

D nl2 C 2
XX

1�i<j�n

hli � lji : (2.3)

Further, if Si is the vector distance of the ith carbon atom from the center of mass
(C.M.) of the chain, the radius of gyration S is defined by

S2 D 1

nC 1
nX

iD0
S 2

i : (2.4)

Assume that an equal mass is centered at each carbon atom, and by definition, we
have

nX

iD0
Si D 0 : (2.5)
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If Rij D Sj � Si is the vector distance between the ith and jth carbon atoms, then we
obtain the well-known formula for the mean-square radius of gyration hS2i, which
is another measure of the average chain dimension,

hS2i D 1

.nC 1/2
XX

0�i<j�n

hR 2
ij i : (2.6)

The simple derivation of Eq. (2.6) is given in the earlier book (MTPS) [1].
Note that Eqs. (2.3) and (2.6) are valid for both unperturbed and perturbed chains.

2.1.2 Random-Flight Chains: The Gaussian Chain

The simplest hypothetical discrete model is obtained by setting hli � lji D 0 for
i ¤ j in Eqs. (2.3); thus it has no correlations between any two bonds even with the
uniform distribution of � in its possible range from 0 to � , so that

hR2i D nl2 : (2.7)

This is the random-flight chain or the freely jointed chain; it is also called the
random-coil model [2]. For this chain hR2i is proportional to n.

Now suppose that the initial (0th) carbon atom is fixed at the origin of a Cartesian
coordinate system and let P.R/dR then be the probability of finding the terminal
(nth) carbon atom in the volume element dR D dxdydz at R.x; y; z/. In the
asymptotic limit of large n the distribution function P.R/ of R for this chain is
found to be [1, 3, 4]

P.R/ D
�

3

2�nl2

�3=2
exp

�
� 3R2

2nl2

�
: (2.8)

That is, in this limit the random-flight chain becomes the Gaussian chain. As is
readily seen from Eq. (2.8), the latter chain has the same second moment hR2i D nl2

as the former for arbitrary n. For the Gaussian chain we also have the well-known
relation [1, 5]

hS2i D 1

6
hR2i : (2.9)

2.1.3 Freely Rotating Chains

Next we consider a model in which both l and � are fixed but in which the
distribution of �i is uniform in its range from �� to � . This model is called the
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freely rotating chain. In this case it is easy to show that hli � liC1i D l2 cos � (i D 1,
� � � , n�1) and in general hli � lji D l2 cosj�i � (i < j). On performing the summations
in the second line of Eqs. (2.3) after substitution of this result, we obtain [6–8]

hR2i D nl2
1C cos �

1� cos �
� 2l2 cos �

1 � cosn �

.1 � cos �/2
: (2.10)

For this case, if 0 < � < �=2, hR2i=n increases monotonically with increasing n
and approaches the constant l2.1C cos �/=.1 � cos �/; that is [2],

hR2i D nl2
1C cos �

1� cos �
for n� 1 : (2.11)

From Eq. (2.6) with Eq. (2.10), we also obtain [9, 10]

hS2i D l2

6

1C cos �

1 � cos �
nC l2

6

1 � 6 cos � � cos2 �

.1 � cos �/2

C l2

6

�1C 7 cos� C 7 cos2 � � cos3 �

.1 � cos �/3
1

nC 1

� 2l2 cos2 �

.1 � cos �/4
1 � cosnC1 �
.nC 1/2 : (2.12)

Similarly, we can calculate the average hR � u0i with u0 D l1=l being the unit
vector in the direction of the first bond l1 as follows,

hR � u0i D l�1
nX

iD1
hl1 � lii D l

1 � cosn �

1 � cos �
: (2.13)

The scalar product R � u0 is the projection of R in the direction of l1, as depicted in
Fig. 2.2. If we assume again that 0 < � < �=2, we have

lim
n!1hR � u0i D

l

1 � cos �
: (2.14)

Fig. 2.2 Persistence of the
component of li in the
direction u0 D l1=l of the first
bond in a freely rotating chain

0 R ·u0

R

u0

θ

θ
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The quantity on the left-hand side of Eq. (2.14) is called the persistence length [11,
12], and we denote it by q. The origin of this term is that the situation is similar
to that encountered in the kinetic theory of gases, in which the component of the
velocity u of a particle in its initial direction u0 persists after collisions. We have
q > l for the freely rotating chain and q D l for the random-flight chain. Thus q is
often used as a measure of chain stiffness but this is not always correct [13, 14] (see
also below).

2.1.4 Chains with Coupled Rotations: The Rotational Isomeric
State Model

In the real chain with fixed bond lengths and bond angles there are hindrances to
internal rotations and �i is not uniformly distributed. In this case the chain has
a potential energy E.f�n�2g/ as a function of all .n � 2/ internal rotation angles
f�n�2g D �2, � � � , �n�1, so that the average hli � lji in Eqs. (2.3) must be calculated
statistical-mechanically with the Boltzmann factor or the chain conformational
partition function Z,

Z D
Z

expŒ�E.f�n�2g/=kBT�df�n�2g ; (2.15)

where kB is the Boltzmann constant, T is the absolute temperature, and df�n�2g D
d�2 � � � d�n�1.

For illustration, we consider the simplest of such chains with coupled rotations,
that is, the one only with the rotational potential E1 about each bond and the
correlation E2 between rotations about two successive bonds. In fact, higher-order
neighbor interactions of this kind may be neglected in many cases. The total
rotational potential E may then be written in the form

E.f�n�2g/ D
n�1X

iD2
Ei.�i�1; �i/ ; (2.16)

where

Ei.�i�1; �i/ D E1i.�i/C E2i.�i�1; �i/ (2.17)

with E22 D 0. In particular, a hypothetical chain with Ei D E1i is called the
chain with independent rotations. The potential E1i may be regarded as close to the
potential E.�/ about the central C–C bond in n-butane, which has three minima
corresponding to the three stable conformations or rotational isomers: trans (t)
(� ' 0ı), gaucheC (gC) (� ' 120ı), and gauche� (g�) (� ' �120ı), as
illustratively shown in Fig. 2.3. On the other hand, E2i becomes very large for the
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Fig. 2.3 Internal-rotational
potential of n-butane. The
dashed lines represent the
RIS approximation
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conformation .�i�1; �i/ D(gC, g�) or (g�, gC). This is the so-called pentane effect
[15, 16].

With such potentials, however, the mathematical treatments become very diffi-
cult. It is therefore convenient to introduce an assumption such that �i takes only
the three or more discrete values corresponding to the potential minima, t, gC, g�,
and so on, thus approximating E1i by a finite set of discrete levels or sharp square-
well potentials at those �i, as shown in the dashed lines in Fig. 2.3 [17, 18]. This is
the rotational isomeric state (RIS) model. Equation (2.15) with Eq. (2.16) may then
be reduced to

Z D
X

f�n�2g

n�1Y

iD2
u�	;i ; (2.18)

where

u�	;i D expŒ�Ei.�; 	/=kBT� (2.19)

with �, 	 D t, gC, g�, � � � . Thus the problem becomes equivalent to that of the
one-dimensional Ising model [19–23].

The results for hR2i are often given for the characteristic ratio Cn defined by [23]

Cn D hR2i=nl2 : (2.20)

In Fig. 2.4 values of Cn so calculated are plotted against log n for polymethylene
(PM), poly(dimethylsiloxane) (PDMS), isotactic polystyrene (i-PS), and syndiotac-
tic poly(methyl methacrylate) (s-PMMA), for illustration.



2.2 Continuous Models 15

Fig. 2.4 Characteristic ratio
Cn for typical flexible
polymers
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2.2 Continuous Models

For a discrete chain of n bonds, each of length l, we define the total contour length
L and the contour distance s (0 � s � L) of the ith carbon atom from the initial (0th)
one along the chain by the equations

L D nl ; s D li ; (2.21)

respectively. We let n ! 1 and l ! 0 at constant L (and i ! 1 at constant s) in
such a way that the discrete chain contour becomes a continuous and differentiable
space curve. This is the continuous model which is mainly considered in this book.
It is specified by certain additional conditions imposed in the limiting process [11,
13, 14, 24].

In any case we can define the unit vector u.s/ tangent to the curve at the contour
point s, that is,

u.s/ D dr.s/
ds

(2.22)

with ri D r.s/ being the radius vector, as depicted in Fig. 2.5. Equation (2.22) is
the continuous limit of li=l with li being given by Eq. (2.1). The end-to-end vector
R may then be expressed in terms of u as

R D r.L/ � r.0/ D
Z L

0

u.s/ds (2.23)

as the continuous limit of Eq. (2.2), so that we have

hR2i D
Z L

0

Z L

0

hu.s1/ � u.s2/ids1ds2 (2.24)
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Fig. 2.5 Instantaneous
configurations of a
continuous chain and its
configurational quantities
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as the continuous limit of Eqs. (2.3). If R.s1; s2/ is the vector distance between the
contour points s1 and s2 (s1 � s2), Eq. (2.6) becomes

hS2i D 1

L2

Z L

0

ds1

Z L

s1

ds2hR2.s1; s2/i : (2.25)

For the unperturbed chain there holds the relation hR2.s1; s2/i D hR2.s/i with s D
s2 � s1 [1], and therefore Eq. (2.25) reduces to

hS2i D 1

L2

Z L

0

.L � s/hR2.s/ids: (2.26)

Necessarily, we have, for the continuous chain above,

u2.s/ D 1 for 0 � s � L : (2.27)

Indeed, this relation is satisfied by the Kratky–Porod (KP) wormlike chain [11] and
also the helical wormlike (HW) chain [13, 14] treated in this book. In anticipation of
the results we here note only that the former is obtained as a continuous limit of the
freely rotating chain, while the latter is obtained from a discrete chain with coupled
rotations by some coarse-graining, followed by the continuous-limiting process.
However, in order to make the model more tractable, the constraint of Eq. (2.27)
is often relaxed, thereby leading to various modifications [13, 25, 26] of the former.
Further, we note that for the continuous chain the Kuhn segment length AK and the
persistence length q are defined by

AK D lim
L!1.hR

2i=L/ ; (2.28)

q D lim
L!1hR � u0i (2.29)

with u0 D u.0/, which in general satisfy the relation

AK D 2q; (2.30)
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but that neither AK nor q is a measure of chain stiffness except for the KP chain
[13, 14].

Finally, we consider a continuous Gaussian chain and give some fundamentals
related to it. Its hR2i must be given by

hR2i D lL : (2.31)

This is rather the defining equation for the “bond length” l for the chain of total
contour length L. It is evident that the above-mentioned continuous limit of the
random-flight chain cannot be taken to obtain this continuous chain when hR2i and
L are given. Its rigorous treatment requires an elaborate maneuver [25, 27]. Thus we
follow instead a simple fashion to regard L merely as a continuous variable for very
large n in the discrete random-flight chain, as usually done [1, 4, 28]. This suffices
for the present purpose (see also Appendix 1 in Chap. 3). It is then convenient to
rewrite Eq. (2.8) as

P.RIL/ D
�

3

2�lL

�3=2
exp

�
�3R2

2lL

�
: (2.32)

This P.RIL/ is the solution of the differential equation

�
@

@L
� l

6
r 2

R

�
P.RIL/ D 0 (2.33)

subject to the boundary condition

P.RI 0/ D ı.R/; (2.34)

where r 2
R is the Laplacian operator with respect to R and ı.R/ is a three-

dimensional Dirac delta function.
Now we introduce the Green function G.RIL/ defined by

G.RIL/ D P.RIL/ for L > 0

D 0 for L < 0; (2.35)

where P.RIL/ is given by Eq. (2.32). Equation (2.33) with Eq. (2.34) may then be
reduced to

�
@

@L
� l

6
r 2

R

�
G.RIL/ D ı.L/ı.R/: (2.36)
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If we integrate both sides of Eq. (2.36) over L from �
 to 
 with 
 being positive
and small, then the left-hand side becomes

Z 


�

@G.RIL/
@L

dL D G.RI 
/; (2.37)

and the right-hand side becomes ı.R/, so that we have

lim
L!C0G.RIL/ D ı.R/: (2.38)

Thus the solution of Eq. (2.36) is indeed that of Eq. (2.33) subject to the boundary
condition of Eq. (2.34). If L is regarded as “time,” Eq. (2.33) or (2.36) is just the
diffusion equation associated with the random process (position) r.s/ of a Brownian
particle with diffusion coefficient l=6 at a long time.

Note that for this chain the bond correlation function hu.s1/ � u.s2/i is formally
given by

hu.s1/ � u.s2/i D lı.s1 � s2/ ; (2.39)

because substitution of this equation into Eq. (2.24) recovers Eq. (2.31).
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Chapter 3
Chain Statistics: Wormlike Chains

This chapter presents the foundation of the statistical mechanics of the KP wormlike
chain. In particular, there is a detailed description of the formulation of the model
and the theoretical methods which can also be applied to the statistical mechanics
of the HW chain developed in the next chapter. Its static and transport properties are
treated in later chapters as special cases of those of the HW chain. The unperturbed
chain without excluded volume is considered throughout the chapter.

3.1 Definition of the Model

Consider the freely rotating chain composed of n bonds with bond length l and
bond angle � � � . Its persistence length q, which we set equal to .2�/�1, is given
by Eq. (2.14),

q � 1

2�
D l

1 � cos �
; (3.1)

so that

cos � D 1 � 2�l D 1 � 2�L

n
: (3.2)

The KP chain is defined as a limiting continuous chain formed from this discrete
chain by letting n!1, l! 0, and � ! 0 under the restriction that L D nl and �
remain constant [1].

Now, for the freely rotating chain a function of n, l, and � may thus be considered
that of n, L, and �, and therefore any dimensional quantity for the KP chain may be
obtained by taking the limit of n ! 1 at constant L and � in that quantity as a
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function of n, L, and � for the former. Thus, if we note that

lim
n!1
�!0

cosn � D lim
n!1

�
1 � 2�L

n

�n

D e�2�L ; (3.3)

then for the KP chain we have, from Eqs. (2.13) and (2.10) [2],

hR � u0i D 1

2�
.1 � e�2�L/ ; (3.4)

hR2i D L

�
� 1

2�2
.1 � e�2�L/ : (3.5)

We note that since we have dhR2i D 2hR � uidL from Eq. (2.24), Eq. (3.5) may also
be obtained by integration of 2hR � u0i over L [1]. Substituting Eq. (3.5) with L D s
into Eq. (2.26) and performing the integration, we also obtain [3]

hS2i D L

6�
� 1

4�2
C 1

4�3L
� 1

8�4L2
.1 � e�2�L/ : (3.6)

In the limits of �L! 0 (rigid rod) and of �L!1 (random coil), we have, from
Eqs. (3.5) and (3.6),

hR2i D 12hS2i D L2 for �L! 0 ; (3.7)

hR2i D 6hS2i D L

�
for �L!1 : (3.8)

As shown in Fig. 3.1, the dimensionless ratios �hR2i=L and 6�hS2i=L increase
monotonically from 0 to 1 as �L is increased from 0 to 1, and thus the KP
model is an interpolation from the two extremes, rigid-rod limit and random-coil
limit. It is therefore a good model for most typical stiff polymers, and also mimics
those flexible polymers for which the characteristic ratio Cn defined by Eq. (2.20)
increases monotonically with increasing n and levels off to its asymptotic value
C1, since �hR2i=L corresponds to Cn=C1 if L is properly converted to n. As
easily recognized, however, even when the behavior of the chain contour or of
Cn can be explained by this model, it is impossible to assign, for instance, local
dipole moments and polarizabilities to it unless they are parallel to and cylindrically
symmetric about the chain contour, respectively.

For the KP chain the Kuhn segment length AK defined by Eq. (2.28) and the
persistence length q defined by Eq. (2.29), which is naturally the same as that of the
original freely rotating chain, are obtained from Eqs. (3.4) and (3.5) as

AK D 2q D ��1 : (3.9)
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Fig. 3.1 �hR2i=L and
6�hS2i=L plotted against
log�L for the KP chain

210−1

1.0

0.8

0.6

0.4

0.2

0

log λL
λ〈

R2 〉/L

6λ
〈S

2 〉/ L

In the next section � is defined from a different point of view, and then the parameter
��1 (having the dimension of length) in general proves to be a measure of (static)
chain stiffness and is referred to as the stiffness parameter; the stiffer the chain, the
larger the parameter ��1. Thus, for the KP chain both AK and q are just measures
of chain stiffness. Of course, it is easy to understand from the above discussion that
for this model ��1 represents the chain stiffness.

3.2 Diffusion Equations

3.2.1 Green Functions

We can define a conditional distribution function P.R;u;u0IL/=P.u0/ of the radius
vector r.L/ D R and the unit tangent vector u.L/ D u at the terminal end of the KP
chain of contour length L when r.0/ D 0 and u.0/ D u0 at the initial end. This is
the Green function G.R;u;L j 0;u0; 0/, which we simply denote by G.R;u j u0IL/
and which is normalized as

Z
G.R;u j u0IL/dRdu D 1 ; (3.10)

where du D sin �d�d� with u D .1; �; �/ in spherical polar coordinates. The
characteristic function I.k;u j u0IL/, that is, the Fourier transform of G with respect
to R is defined by

I.k;u j u0IL/ D
Z

G.R;u j u0IL/ exp.ik � R/dR (3.11)

with i the imaginary unit, so that

G.u j u0IL/ D
Z

G.R;u j u0IL/dR D I.0;u j u0IL/ : (3.12)
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Similarly, the distribution functions G.R j u0IL/, G.R;uIL/, and G.RIL/ may be
obtained as

G.R j u0IL/ D
Z

G.R;u j u0IL/du ; (3.13)

G.R;uIL/ D .4�/�1
Z

G.R;u j u0IL/du0 ; (3.14)

G.RIL/ D .4�/�1
Z

G.R;u j u0IL/dudu0 : (3.15)

Note that G.RIL/ may also be obtained by averaging G.R j u0IL/ over the
orientation of R since the former is a function only of jRj D R. The corresponding
characteristic functions I.k j u0IL/, I.k;uIL/, and I.kIL/ may readily be written
down. The distribution function dependent on R may be obtained by Fourier
inversion of its characteristic function; for example,

G.R;u j u0IL/ D .2�/�3
Z

I.k;u j u0IL/ exp.�ik � R/dk : (3.16)

The Green functions G.R;u j u0IL/ and G.u j u0IL/ satisfy the Fokker–Planck
equations, which are of the diffusion type.

3.2.2 Fokker–Planck Equations

As in the case of the Gaussian chain considered in Sect. 2.2, r.s/ and also u.s/ may
be regarded as Markov random processes on the proper “time” scale of s (or L).
We disregard temporarily the boundary conditions simply to put G.R;u j u0IL/ D
P.R;uIL/. Then it satisfies the Markov integral equation [4, 5]

P.R;uILC l/ D
Z

P.R ��R;u ��uIL/

�‰.�R; �u jR��R;u ��uI l/d.�R/d.�u/ ; (3.17)

where ‰.�R; �u jR;uI l/ is the transition probability of R and u from (R, u) to
(RC �R, u C �u) (by �R and �u) in “time” l. For sufficiently small l, we have
�R D l�u, so that ‰ may be written in the form

‰ D ı.�R� l�u/ .�u j u��uI l/ ; (3.18)
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where  is the transition probability only of u. Then Eq. (3.17) reduces to

P.R;uILC l/ D
Z

P.R � lu;u ��uIL/ .�u j u ��uI l/d.�u/ : (3.19)

If we expand P and  on both sides of Eq. (3.19) in Taylor series following a
standard procedure [4, 5], we obtain the Fokker–Planck equation

@P

@L
C u � rRP D �ru � .a.1/P/C 1

2
ruru W .a.2/P/ (3.20)

with

a.1/ D lim
l!0

l�1h�ui1 ; (3.21)

a.2/ D lim
l!0

l�1
˝
.�u/.�u/

˛
1
; (3.22)

where rR and ru are the gradient operators with respect to R and u, respectively,
and h� � � i1 denotes an average over  .�u j uI l/. Note that a.1/ and a.2/ are vector
and tensor moments, respectively.

Now, if we put li=l D ui (unit bond vector) and let � ! 0 in the freely rotating
chain, then ui ��ui with �ui D uiC1 � ui becomes u ��u, which vanishes; that is,
�u is perpendicular to u, as depicted in Fig. 3.2. Since  is symmetric about u, we
then have h�ui1 D 0, so that

a.1/ D 0 : (3.23)

If we expand cos � around � D 0, we obtain, from the first of Eqs. (3.2),

�2 ! 4�l : (3.24)

As seen from Fig. 3.2, on the other hand, we have

j�uij ! � : (3.25)

Fig. 3.2 Unit bond (tangent)
vector ui and its change �ui

in (the continuous limit of)
the freely rotating chain

θ
Δui

ui+1

ui
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From Eqs. (3.24) and (3.25), we have

lim
l!0

l�1
˝
.�u/2

˛
1
D lim

l!0
�!0

l�1�2 D 4� : (3.26)

Further, in a Cartesian coordinate system (x0, y0, z0) with the z0 axis in the direction
of u, we have

˝
.�u0/.�u0/

˛
1
D 1

2

˝
.�u/2

˛
1

0

@
1 0 0

0 1 0

0 0 0

1

A : (3.27)

Since ruru W .a.2/P/ is invariant to rotation of the coordinate system, we obtain,
from Eqs. (3.22), (3.26), and (3.27),

1

2
ruru W .a.2/P/ D �r 2

u0

P D �r 2
u P : (3.28)

Substitution of Eqs. (3.23) and (3.28) into Eq. (3.20) leads to

@P

@L
D �r 2

u P � u � rRP ; (3.29)

where the Laplacian operator r 2
u in spherical polar coordinates is given by

r 2
u D

1

sin �

@

@�
sin �

@

@�
C 1

sin2 �

@2

@�2
; (3.30)

since we have the constraint of Eq. (2.27), u2 D 1. Equation (3.29) is the differential
equation first derived by Hermans and Ullman [6]. A differential equation for
P.RIL/, or G.R j u0IL/, was derived by Daniels [7] before them, but we do not
treat it here.

Thus the Green function G.R;u j u0IL/ of Eq. (3.29) satisfies the differential
equation

�
@

@L
� �r 2

u C u � rR

�
G.R;u j u0IL/ D ı.L/ı.R/ı.u� u0/ : (3.31)

Taking the Fourier transform of both sides of Eq. (3.31), we obtain

�
@

@L
� �r 2

u � ik � u
�

I.k;u j u0IL/ D ı.L/ı.u� u0/ ; (3.32)
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and therefore also
�
@

@L
� �r 2

u

�
G.u j u0IL/ D ı.L/ı.u� u0/ : (3.33)

These are the basic starting equations in the statistical mechanics of the KP chain.

3.2.3 Path Integrals and Formal Solutions

It is seen that Eq. (3.32) is just the “Schrödinger” equation (in units of „ D h=2�
with h the Planck constant) for the “quantum-mechanical amplitude” or “kernel” I
for a rigid electric dipole u in an electric field k, and Eq. (3.33) is that for I for a free
rigid dipole with k D 0. The kernel (wave function) may be written in the Feynman
path integral form [8, 9], a short sketch of which is given in Appendix 1. Thus, in
the present case, the characteristic function I.k;u j u0IL/may be expressed in terms
of the path integral over all possible paths (configurations) u.s/ from u.0/ D u0 to
u.L/ D u as follows,

I.k;u j u0IL/ D
Z u.L/Du

u.0/Du0

exp

�
i
Z L

0

Lds

�
D�u.s/� (3.34)

(in units of „) with L being the “Lagrangian” given by

L D iU=kBT C k � u ; (3.35)

where

U D 1

2
˛
� Pu.s/�2 (3.36)

with

˛ D kBT=2� : (3.37)

In Eq. (3.36), the over dot denotes the derivative with respect to s. The first term
on the right-hand side of Eq. (3.35) is the “kinetic energy” of the “particle” (rigid
dipole), and the second term is the negative of its “potential energy.” Such an
analogy with the formalism in quantum mechanics was first used by Saito et al. [10].

Now Eq. (3.34) may be given a statistical-mechanical interpretation. The U given
by Eq. (3.36) is just the bending energy, per unit length, of an elastic wire with
bending force constant ˛ [11], and therefore the total potential energy E of the KP
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chain as the wire is given by

E D
Z L

0

Uds D ˛

2

Z L

0

Pu2ds : (3.38)

The Green function G.R;u j u0IL/ may be expressed as the sum of the Boltzmann
factor exp.�E=kBT/ over all possible configurations, and hence as its path integral
over u.s/ from u.0/ D u0 to u.L/ D u subject to the condition of Eq. (2.23), that is,

Z L

0

uds D R : (3.39)

Thus it may be written in the form

G.R;u ju0IL/ D
Z u.L/Du

u.0/Du0
ı

�
R �

Z L

0

uds

�
exp

�
� 1

kBT

Z L

0

Uds

�
D�u.s/� :

(3.40)

Taking the Fourier transform of both sides of Eq. (3.40), we obtain Eq. (3.34). The
treatment of the KP chain as the elastic wire with bending energy was first made
by Bresler and Frenkel [12], Landau and Lifshitz [13], Harris and Hearst [14], and
also Saito et al. [10]. The parameter ��1 is now proportional to the bending force
constant relative to the thermal energy, and Eq. (3.37) is its general definition for the
continuous models treated in this book.

Next we obtain the formal solution of Eq. (3.32) in a series form [15, 16]. Treating
the potential energy part�k�u of the LagrangianL of the “dipole” as a perturbation,
we can readily obtain, from Eq. (3.34), an integral equation for the kernel [8] as in
collision theory [17]. The result is

I.k;u j u0IL/ D G.u j u0IL/C ik �
Z L

0

Z
u1G.u j u1IL � s1/

�I.k;u1 j u0I s1/ds1du1 : (3.41)

Thus G.u j u0IL/ is the “free-particle” Green function. (In the present case, it is the
free rigid dipole or dumbbell rotor.) An integral equation for I.k;uIL/ may also be
obtained by integrating both sides of Eq. (3.41) over u0 and dividing them by 4� , but
the result is omitted. The formal solution of Eq. (3.41), which is equivalent to that of
Eq. (3.32), may be obtained by iteration if the free-particle Green function is known.
In what follows, all lengths are measured in units of ��1 unless otherwise noted,
for simplicity, so that, for instance, �L is replaced by (reduced) L. The solution of
Eq. (3.33) for the free-particle Green function is well known and is given by

G.u j u0IL/ D
1X

lD0
exp

��l.lC 1/L�
lX

mD�l

Ym
l .�; �/Y

�m
l .�0; �0/ ; (3.42)
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where Ym
l is the normalized spherical harmonics and u0 D .1, �0, �0) in spherical

polar coordinates. This solution and the definition of Ym
l adopted in this book are

given in Appendix 2. Note that the known part of the integral equation for I.k;uIL/
is then .4�/�1=2Y00 .�; �/:

If we choose u0 to be in the direction of the z axis of a Cartesian coordinate
system .u0 D ez/, both I.k;u j u0IL/ and I.k;uIL/, which we simply denote by
I.L/, may be expanded in terms of Ym

l .�; �/,

I.L/ D
1X

lD0

lX

mD�l

Km
l .L/Y

m
l .�; �/ ; (3.43)

where Km
l .L/ stands for Km

l .k j u0IL/ or Km
l .kIL/, as the case may be. Further, if

ek D k=k is the unit vector in the direction of k with ek D .1, 
, !) in spherical
polar coordinates, we have, from Eq. (3.142),

ek � u1 D 4�

3

1X

mD�1
Ym
1 .
; !/Y

�m
1 .�1; �1/ : (3.44)

Substitution of Eqs. (3.43) and (3.44) into Eq. (3.41) [and the corresponding equa-
tion for I.k;uIL/� and integration over u1 leads to the integral equations for Km

l .L/,

Km
l D f m

l C iNk fl � LKm
l ; (3.45)

where the asterisk indicates a convolution integration,

f � g D
Z L

0

f .L � s/g.s/ds ; (3.46)

and

Nk D
�
2�

3

�1=2
k ; (3.47)

fl D exp
��l.lC 1/L�; (3.48)

f m
l D

�
2lC 1
4�

�1=2
ım0 fl for Km

l D Km
l .k j u0IL/

D .4�/�1=2ıl0ım0 f0 for Km
l D Km

l .kIL/ (3.49)

with ılm being the Kronecker delta. In Eq. (3.45), L is an operator (not the
Lagrangian) defined by

L D 21=2Y01 .a01 C a0�1/C Y11 .a
1
1 � a1�1/C Y�1

1 .a�1
1 � a�1�1/ ; (3.50)
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where the arguments of Ym
l are 
 and !; and a	� (� D ˙1; 	 D 0,˙1) are creation

and annihilation operators which operate on fl as

a	� fl D flC� ; (3.51)

and on Km
l and f m

l as

a0� f m
l D Ajmj

lC.1=2/.��1/ f m
lC� ;

(3.52)
a	� f m

l D Œ2h.	m/� 1�E��	Œm�.	=2/.��1/�
lC.1=2/.��1/ f mC	

lC� .	 6D 0/

with h being a unit step function such that h.x/ D 1 for x 	 0 and h.x/ D 0 for
x < 0, and with

Am
l D

�
.lC mC 1/.l� mC 1/

.2lC 1/.2lC 3/
�1=2

;

(3.53)

Em
l D

�
.l � mC 1/.l�mC 2/
.2lC 1/.2lC 3/

�1=2
:

The solution for Km
l may then be expressed as

Km
l D

1X

nD0
.iNk/n. fl � L/n f m

l : (3.54)

In particular, integration of Eq. (3.43) with Eq. (3.54) over u leads to

I.k j u0IL/ D .4�/1=2
1X

nD0
.iNk/n. f0 � L/n f 00 ; (3.55)

I.kIL/ D .4�/1=2
1X

mD0
.�1/m Nk2m. f0 � L/2m f 00 ; (3.56)

where f 00 in Eqs. (3.55) and (3.56) are given by the first and second lines of
Eqs. (3.49), respectively. Equations (3.43), (3.55), and (3.56) are the desired results
for I. By Fourier inversion of them, the corresponding distribution functions G may
in principle be obtained. As seen later, however, the results are very complicated.
This arises from the constraint of u2 D 1, and therefore various modifications of the
KP chain were presented by relaxing this constraint. They are briefly discussed in
Appendix 3. Naturally, however, they do not give all of the exact moments hR2i and
hS2i and also those derived in the next section for the KP chain, and thus we do not
pursue them further in later chapters.
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3.3 Moments

By the continuous limiting process from the freely rotating chain, the moment hR4i
for the KP chain may be evaluated as well as hR � u0i and hR2i [2]. However, the
evaluation of higher moments becomes extremely difficult. Thus, from Eq. (3.29),
Hermans and Ullman [6] derived a recurrence formula for h.R � u0/k�mR2mi,
from which the first three of hR2mi were readily obtained [6, 18]. With this
formula, however, the analytical evaluation still becomes extremely laborious as
m is increased, and therefore Nagai [19] evaluated from it numerically hR2mi as
a function of L for m � 20 by the use of a computer. On the other hand, from
Eqs. (3.55) and (3.56), we can derive formal expressions for the moments [15, 16],
from which they can be operationally and hence more efficiently evaluated by
the use of a computer. This operational method may, of course, also be used for
the evaluation of the distribution functions from Eqs. (3.55) and (3.56) or their
alternatives, as done in the next section.

3.3.1 h.R � u0/ni

The characteristic function I.k j u0IL/ may be expanded in terms of the moments
h.R � ek/

ni as in Eq. (4.13) of MTPS [20]; that is,

I.k j u0IL/ D
1X

nD0

1

nŠ

˝
.R � ek/

n
˛
.ik/n ; (3.57)

where

˝
.R � ek/

n
˛ D

Z
.R � ek/

nG.R j u0IL/dR : (3.58)

Thus, in order to obtain the equivalent expansion from Eq. (3.55), we expand
. f0 � L/n f0 to have

I.k j u0IL/ D
1X

nD0
.ik/n

X

q�n

.2qC 1/1=2
X

paths
.0!q/

X

	

.�1/x

� 2�.n�n0/C	
� �0���q.L/ cosn0
 sin.n�n0/
 ; (3.59)

where

C	
� D . f 0q /

�1a	n
�n

a	n�1
�n�1
� � � a	2�2a	1�1 f 00 ; (3.60)

�0���q.L/ D f0 � f1 � fl2 � � � � � fln�1 � fq ; (3.61)
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lj D
jX

iD1
�i 	 0 .l0 D 0; l1 D �1 D 1; ln D q/ ; (3.62)

nX

iD1
	i D 0 : (3.63)

In Eq. (3.59), n0 and x are the numbers of a0� and a	�1.	 6D 0/ in C	
�, respectively,

the third sum is taken over all possible paths .01l2 � � � ln�1q/ from 0 to q, and the
fourth sum is taken over 	1; � � � ; 	n compatible with Eq. (3.63). If n is even, n0 is
even and q D 0, 2, 4, � � � , n; and if n is odd, n0 is odd and q D 1, 3, 5, � � � , n. Note
that Eq. (3.63) must hold because of the first of Eqs. (3.49) and that C	

� is a constant
independent of L. Note also that if one of the paths is given, the corresponding
values of �1, � � � , �n are determined uniquely since �j D lj� lj�1, so that Eq. (3.59)
does not involve the sum over �. The paths .01l2 � � � ln�1q/ may be conveniently
represented by stone-fence diagrams in an .i; li/-plane, as shown in Fig. 3.3, where
one .0 ! 0/ path I (010121010) and two .0 ! 4/ paths II (012343234) and III
(012345454) for n D 8 are depicted as examples. The diagram is equivalent to the
two-dimensional representation of one-dimensional random walks with a reflecting
barrier at the origin [4].

Now, if we choose k to be in the direction of u0, that is, 
 D 0, then we obtain
the expansion of Eq. (3.57) for I.kju0I L/ in terms of

˝
.R � u0/n

˛
with

˝
.R � u0/n

˛ D nŠ
X

q�n

.2qC 1/1=2
X

paths
.0!q/

C0
� �0���q.L/ ; (3.64)

Fig. 3.3 Stone-fence
diagram. One (0 ! 0) path I
(010121010) and two
(0 ! 4) paths II (012343234)
and III (012345454) for
n D 8 are depicted as
examples, I being also a
(0 ! 0) one for m D 4

876543210
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where only the paths from 0 to q with 	i D 0 for all i make contribution since
n D n0. We note that if pi.L/ are the residues of the function Q. p/,

Q. p/ D eLp

p
nY

jD1

�
pC lj.lj C 1/

�
; (3.65)

then �0���q.L/ may be expressed as

�0���q.L/ D
X

i

pi.L/ : (3.66)

Equation (3.64) with Eq. (3.66) is the desired formal expression for h.R � u0/ni.

3.3.2 hR2mi

The characteristic function I.kIL/ may be expanded in terms of the moments hR2mi
as in Eq. (4.17) of MTPS; that is,

I.kIL/ D
1X

mD0

.�1/m
.2mC 1/ŠhR

2mik2m ; (3.67)

where

hR2mi D
Z

R2mG.RIL/dR : (3.68)

By expanding . f0 �L/2m f 00 as in Eq. (3.59), Eq. (3.56) may be reduced to Eq. (3.67)
with

hR2mi D .2mC 1/Š
X

paths
.0!0/

C0
� �0���0.L/ ; (3.69)

where only the paths from 0 to 0 with 	i D 0 for all i, the number of which is equal
to .2m/Š=mŠ.mC 1/Š, make contribution because of the second of Eqs. (3.49), and
C0
� is explicitly given by

C0
� D

2mY

jD1
A0lj�1C.1=2/.�j�1/ (3.70)

with �1 D 1 and �2m D �1. In Fig. 3.3, the path I is a .0! 0/ one for m D 4. If xj

is the number of the factors with li D j in the denominator of Eq. (3.65), the formula
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for residues gives

�0���0.L/ D
mX

jD0
xj 6D0

1

.xj � 1/Š

(
dxj�1

dpxj�1

�
pC j. jC 1/�xj eLp

mY

iD0

�
pC i.iC 1/�xj

)

pD�j. jC1/
: (3.71)

Thus hR2mi may be finally written in the form

hR2mi D
mX

jD0

mX

iDj

A.m/ij Li�j exp
��j. jC 1/L� ; (3.72)

where A.m/ij are numerical coefficients independent of L and may be expressed in
terms of C0

� and xj, the result being omitted. For m D 1 � 3, Eq. (3.72) gives the
results mentioned above [1, 2, 6, 18].

The coefficients A.m/ij for m � 11 may be evaluated efficiently by the use of
a computer; it consists of generating all possible .0 ! 0/ paths and counting the
number xj [21]. Their values thus obtained for m � 5 are given as fractional numbers
in Appendix A. Nagai’s results for m � 6 [19] are in good agreement with the exact
values from Eq. (3.72) (to order 10�5) for all values of L, but those for higher m are
much less accurate, especially at small L.

3.4 Distribution Functions

3.4.1 Asymptotic Behavior: Daniels-Type Distributions

The correction to the Gaussian distribution G for large L may be expanded in
inverse powers of L to give the so-called Daniels-type distribution function. Daniels
[7] first solved the differential equation for G.R j u0IL/ to derive its asymptotic
expansion of this kind to terms of O.L�3=2/. Many years later, Gobush et al. [22]
attempted to solve the differential equation for the Laplace transform QI.k;u j u0I p/
of I.k;u j u0IL/ with respect to L by an application of operational techniques
developed by Prigogine and co-workers [23, 24] in attacking the Liouville equation,
and obtained the expansion of G.R;u j u0IL/ to terms of O.L�2/.

We begin by reformulating the Gobush expansion along the line of the preceding
sections. This is convenient for a comparison with the expansion of Eq. (3.43) with
Eq. (3.54) and also facilitates computer calculations of the expansion coefficients of
the distribution function. We again choose u0 to be in the direction of the z axis of
a Cartesian coordinate system .u0 D ez/ and express u and k as u D .1, � , �) and
k D .k, 
, � �  ), respectively, in spherical polar coordinates. (All lengths are still
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measured in units of ��1.) We define an operator L by

L D L0 C ıL ; (3.73)

where L0 D r 2
u and ıL is given by

ıL D ik � u � ikı NL ; (3.74)

so that the left-hand side of Eq. (3.32) becomes .@=@L � L/I. The solution for the
Laplace transform QI. p/,

QI.k;u j u0I p/ D
Z 1

0

I.k;u j u0IL/ exp.�pL/dL ; (3.75)

may then be expanded as follows [22],

QI. p/ D
1X

nD0

1X

lD0
.ik/n

�
2lC 1
4�

�1=2
Q.ı NLQ/nY0l .�; �/ ; (3.76)

where

Q D �.L0 � p/�1 : (3.77)

In the present notation, the operator ı NL may be written as

ıL D .cos
/.a01 C a0�1/C
1

2
.sin
/

�
.a11 � a1�1/C .a�1

1 � a�1�1/
�
: (3.78)

The operators a	� act on fl and gm
l (instead of f m

l ) in the same way as in Eqs. (3.51)
and (3.52), where gm

l is defined by

gm
l D flY

m
l .�;  / : (3.79)

Then Laplace inversion of Eq. (3.76) leads to

I.k;u j u0IL/ D
1X

nD0

1X

lD0
.ik/n

�
2lC 1
4�

�1=2
. fl � ı NL/ng0l : (3.80)

The structure of the cascade of the successive a	� operations involved in Eq. (3.80)
seems different from that in Eq. (3.43) with Eq. (3.54), but both are equivalent. This
may be observed more explicitly by considering I.k j u0IL/. From Eq. (3.80), we
have

I.k j u0IL/ D
1X

nD0

1X

lD0
.ik/n.2lC 1/1=2

Z
g00. fl � ı NL/ng0l du : (3.81)
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It can be seen that if the integrand of Eq. (3.81) is expanded, there is one-to-one
correspondence between the terms in Eqs. (3.59) and (3.81); each path of the stone-
fence diagram in the latter is just the reversal of the corresponding .0 ! l/ path in
the former.

Similarly, Eq. (3.76) gives

I.kIL/ D
1X

mD0
.�1/mk2m.g00/

�1. f0 � ı NL/2mg00 ; (3.82)

where only the paths from 0 to 0 with 	i D 0 for all i make contribution as
in Eq. (3.67) with Eq. (3.69) if . f0 � ı NL/2mg00 is expanded. Of course, Eqs. (3.67)
[or (3.56)] and (3.82) are equivalent.

Thus, by Fourier inversion of any of these I, we can obtain the correspond-
ing Daniels-type distribution function G. However, it is convenient to obtain
G.R;u j u0IL/ by inversion of Eq. (3.80), from which the other G may readily be
derived. If we express R and u as R D .R, �, ˚) and u D .1, � , ' C ˚),
respectively, in spherical polar coordinates (with u0 D ez), the result may be written
in the form [22]

G.R;u j u0IL/ D .4�/�1=2
�

3

2�L

�3=2
exp

�
�3R2

2L

�

�
1X

lD0

lX

mD�l

Ym
l .�; '/F

jmj
l .R; �/ : (3.83)

An approximation such that terms of Fjmj
l are retained to O.L�s/ is referred to as the

sth Daniels approximation with s being a positive integer. [Note that R2 is of O.L/.]
The second Daniels approximation to F00 is given by

F00.R; �/ D F.R/C
�
3R

2L
� 25R

16L2
C 153R3

40L3
� 99R5

80L4

�
P1.cos�/

C
�

R2

2L2
� 67R2

60L3
C 961R4

560L4
� 33R6

80L5

�
P2.cos�/

C 3R3

40L3
P3.cos�/C 9R4

1400L4
P4.cos�/C � � � ; (3.84)

where Pl is the Legendre polynomial (see Appendix 2) and F.R/ is given by

F.R/ D 1 � 5

8L
C 2R2

L2
� 33R4

40L3
� 79

640L2
� 329R2

240L3
C 6799R4

1600L4

�3441R6

1400L5
C 1089R8

3200L6
: (3.85)
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Note that F00 is the function given by Daniels [7] (with oversight of the P3 term) to
O.L�3=2/.

Although the other Fjmj
l have also been obtained in the second Daniels approxi-

mation [22], we give them in the first approximation, for simplicity:

F01.R; �/ D
p
3

2

�
� 1
2L
C R2

2L2
C R

L
P1.cos�/C R2

L2
P2.cos�/C � � �

�
;

F11.R; �/ D
p
6

4
R sin�

�
1

L
C 3R

2L2
P1.cos�/C � � �

�
;

F02.R; �/ D
p
5

10

R2

L2
P2.cos�/C � � � ; (3.86)

F12.R; �/ D
p
30

20

R2

L2
sin�P1.cos�/C � � � ;

F22.R; �/ D
p
30

60

R2

L2
Œ1 � P2.cos�/C � � � � :

(We note that in the original paper [22] the exponent 2 of L in the second term of F01
is missing and the coefficient 298/105 in F22 should be replaced by 19/15.)

From Eq. (3.83), we obtain for the other distribution functions

G.R j u0IL/ D
�

3

2�L

�3=2
exp

�
�3R2

2L

�
F00.R; �/ ; (3.87)

G.RIL/ D
�

3

2�L

�3=2
exp

�
�3R2

2L

�
F.R/ : (3.88)

In the sth Daniels approximation, F.R/ may in general be written in the form

F.R/ D 1C
sX

iD1

2iX

jD0

Cji

Li

�
R2

L

�j

; (3.89)

where Cji are numerical coefficients independent of R and L. These coefficients have
been evaluated for s � 10 by the use of a computer, generating necessary paths [25],
but the results are not reproduced. However, note that Cji for j � 4 and i � 2 have
already appeared in Eq. (3.85).
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We readily obtain the ring-closure probability G.0IL/ from Eq. (3.88) and can
also evaluate the moment hR�1i (mean reciprocal of the end-to-end distance) by the
use of the same equation, both in the sth Daniels approximation, as follows,

G.0IL/ D
�

3

2�L

�3=2
F.0/

D
�

3

2�L

�3=2�
1C

sX

iD1

C0i

Li

�
; (3.90)

hR�1i D
�
6

�L

�1=2�
1C

sX

iD1

2iX

jD0
jŠ

�
2

3

�j Cji

Li

�
: (3.91)

These quantities also serve to examine the convergence of the Daniels approxima-
tion.

Now, in general, the correction to the Gaussian distribution G.RIL/ for L!1
may also be expanded in terms of the moments hR2mi [26], or of Hermite polyno-
mials [27, 28]. This gives the so-called moment-based distribution function of R. Its
sth approximation involves the moments hR2miwith m � s, and its convergence may
also be examined by the use of G.0IL/ and hR�1i obtained from this G.RIL/ with
the moments given by Eq. (3.72), although the explicit expressions for them are not
reproduced. Figures 3.4 and 3.5 show plots of G.0IL/ against L in the sth Daniels
approximations with s � 10 and in the sth Hermite polynomial approximations
with s � 11, respectively. Figure 3.6 shows plots of LhR�1i against the degree s
of approximation in the Daniels and Hermite polynomial approximations for the
indicated values of L. It is seen that the Daniels approximation is convergent for
L>
 3, while the convergence of the Hermite polynomial approximation is much
worse, it being convergent only for L>
 10. However, this is not always the case

Fig. 3.4 Ring-closure
probability G.0I L/ plotted
against (reduced) L for the
KP chain in the sth Daniels
approximations
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Fig. 3.5 Ring-closure probability G.0I L/ plotted against (reduced) L for the KP chain in the sth
Hermite polynomial approximations
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Fig. 3.6 LhR�1i plotted against the degree s of approximation for the KP chain in the Daniels
(a) and Hermite polynomial (b) approximations for the indicated values of (reduced) L

with the HW chain, and the moment-based distribution functions are considered in
detail in the next chapter. Of course, both approximations are divergent near the rod
limit of L! 0, and this region must be treated in a different way.

3.4.2 Near the Rod Limit

A possible method of obtaining the distribution functions valid near the rod limit
of L ! 0 may be the use of the WKB approximation, in which the Schrödinger
equation (3.32) is solved in the “classical” limit of k ! 1 (corresponding to
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the limit of „ ! 0). If we let k approach infinity and suppress the Laplacian in
Eq. (3.32), it gives the distribution function for the rod that is a delta function. If we
adopt the path integral approach, this limit is obtained from the “classical” path Nu.s/
which satisfies the extremum condition

ı

Z L

0

Lds D 0 ; (3.92)

where L is the Lagrangian given by Eq. (3.35) with Eq. (3.36) (see Appendix 1).
Then the WKB approximation consists of taking into account the deviation of the
“potential energy” part�k �u of L from its classical value to second order [8]. Thus
Eq. (3.34) is reduced to the form

I.k;u j u0IL/ D f .k;L/ exp

�
i
Z L

0

NLds

�
; (3.93)

where NL is the classical value of L with u D Nu and f .k;L/ is the normalization
factor.

The result thus found by Fourier inversion of Eq. (3.93) is [29]

G.R;u j u0IL/ D
�

3

4�2L4

��
1C 2

3
L

��
45

4�L3�2

�1=2

� exp

�
� �

2

4L
� 3

L3

�
x � 1

2
L� cos�

�2
� 3

L3

�
y � 1

2
L� sin �

�2

� 45

4L3�2

�
z � LC 1

6
L�2

�2��
1 � 15

2L�2

�
z � LC 1

6
L�2

�
C � � �

�

(3.94)

(in units of ��1), where R D .x, y, z) in Cartesian coordinates and u D .1, � , �) in
spherical polar coordinates with u0 D ez. It is impossible to integrate this G over u
and u0 to obtain analytical expressions for G.R j u0IL/ and G.RIL/. However, it is
seen that Eq. (3.94) gives

lim
L!0

G.R j u0IL/ D ı.x/ı.y/ı.z� L/ : (3.95)

This is the distribution function of R for the rigid rod of length L oriented in the
direction of the z axis.
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The distribution function given by Eq. (3.94) yields the correct first-order
corrections to the rod limits of all the moments,

˝
.R � u0/n

˛ D hzni D Ln
�
1 � nLCO.L2/� ;

hR2mi D L2m
�
1 � 2

3
mLCO.L2/� ; (3.96)

hR�1i D 1

L

�
1C 1

3
LCO.L2/� :

Note that the third of Eqs. (3.96) was first obtained by Hearst and Stockmayer [30]
by a different method.

If we confine ourselves to G.RIL/, higher-order approximations, although
formal, may be easily obtained, as done by Norisuye et al. [31]. Substitution of
the expansion of hR2mi in powers of L into Eq. (3.67) and summation leads to

I.kIL/ D j0.z/C z

3
j1.z/LC z

90

�
6j1.z/ � 7z j0.z/

�
L2

C z

1890

�
.24 � 31z2/j1.z/C 34z j0.z/

�
L3

C z

37800

�
.212z2 C 120/j1.z/C z.127z2 � 320/j0.z/

�
L4

C z

3742200

�
.2555z4 � 8136z2 C 4320/j1.z/

�4z.3053z2 � 1620/j0.z/
�
L5 C � � � (3.97)

with

z D Lk ; (3.98)

where jl.z/ is the spherical Bessel function of the first kind. By Fourier inversion of
Eq. (3.97), we obtain

G.RIL/ D h0.L/

4�L2
ı.R � L/C 1

4�R

1X

nD1
hn.L/ı

.n/.R � L/ ; (3.99)

where

h0 D 1C L

3
C L2

15
C 4L3

315
C L4

315
C 4L5

3465
C � � � ;

h1 D h0 � 1 ;

h2 D 7L3

90

�
1 � L

49
C 9L2

245
C 46L3

8085
C � � �

�
;

(3.100)
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h3 D 31L5

1890

�
1 � 53L

155
C 226L2

1705
C � � �

�
;

h4 D 127L7

37800

�
1 � 1073L

1397
C � � �

�
;

h5 D 73L9

106920
C � � � :

Note that the nth derivative of the delta function, ı.n/.x/ D dnı.x/=dxn, is defined by

Z 1

�1
f .x/ı.n/.x/dx D .�1/nf .n/.0/ ; (3.101)

where f .x/ is a function whose nth derivative is continuous.
In the limit of L! 0, Eq. (3.99) reduces to

lim
L!0

G.RIL/ D 1

4�L2
ı.R� L/ : (3.102)

This is the distribution function of R for the rigid rod of length L without orientation.
By the use of Eq. (3.99), hR�1i is evaluated to be

hR�1i D h0.L/

L
: (3.103)

It is interesting to note that Eq. (3.103) is formally obtained from the expansion of
hR2mi in powers of L by putting m D �1=2.

Now it is evident that neither Eq. (3.94) nor Eq. (3.99) can yet give the correct
ring-closure probability G.0IL/, although the rod limits of the moments and the
corrections to them have been correctly evaluated. The evaluation of G.0IL/ still
requires a different approach, which is considered in relation to the problems of
circular DNA in Chap. 7. Further, in the next chapter there are presented a simple
and more powerful method for evaluating the moments and characteristic function
of the distribution function G.RIL/ [or generally G.R; � j�0IL/] near the rod limit
for any model and also a method of interpolation from this limit and the Daniels
approximation. We also note that we can construct approximately distribution
functions for KP wormlike rings since we have derived the two expansions of
those for linear chains from the random-coil and rod limits. The results are given
in Appendix 4.
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3.5 Discrete Version of the Wormlike Chain

The approximate distribution functions constructed systematically so far are very
useful to treat ordinary conformational properties of the KP wormlike chain.
However, there are some problems of special sorts for which we cannot make
full use of them and must then resort to Monte Carlo simulations by the use
of a discrete version of the KP wormlike chain such as the following one
proposed by Frank-Kamenetskii et al. [32]. In fact, such problems are considered
in Sects. 5.2.5, 7.2.3, 8.5.2, and 9.3.

The discrete chain is composed of nC 1 points, that is, n� 1 junction points and
the two terminal ones, successively connected by n bonds of length l. Let li (i D 1,
2, � � � , n) be the ith bond vector from the ith to the .iC 1/th point. The configuration
of the chain may then be specified by the set flng D .l1, l2, � � � , ln) apart from its
position in an external Cartesian coordinate system. Let O�i (i D 2, 3, � � � , n) be the
angle between li�1 and li. The total potential energy E of the discrete chain may be
written in terms of O�i as follows,

E.flng/ D ˛

2

nX

iD2
O� 2
i ; (3.104)

where ˛ is the bending force constant. Note that E so defined is a discrete version
of the total potential energy of the (continuous) KP chain given by Eq. (3.38) with
O� 2
i in place of Pu2. The stiffness parameter ��1 of the chain should be related to ˛

not by Eq. (3.37) but by

��1 D l
1C hcos O�i
1 � hcos O�i ; (3.105)

where hcos O�i is defined by

hcos O�i D
Z �

0

e�˛ O�2=2kBT cos O� sin O� d O�
�Z �

0

e�˛ O�2=2kBT sin O� d O� : (3.106)

The discrete chain so defined becomes identical to the KP chain of total contour
length L and of stiffness parameter ��1 in the limit of n!1 under the conditions
of Eq. (3.105) with Eq. (3.106) and of nl D L. Note that in the limit of ˛ ! 0, ��1
becomes equal to l and the discrete chain reduces to the freely jointed chain.

We note that in the case of the KP wormlike ring, its discrete version is
constructed in such a way that the .n C 1/th point and ln are first cut off from the
linear chain, then the nth point is linked to the first one by a new bond vector ln of
length l, and finally the term ˛ O� 2

1 =2 with O�1 the angle between ln and l1 is added to
the right-hand side of Eq. (3.104).
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Appendix 1: Path Integrals

In this appendix we give a short sketch of the path integral formalism following
Feynman and Hibbs [8]. Consider a particle of mass m in a potential V.R; t/ as a
function of its position R and time t. The Green function G.R2; t2 jR1; t1/ of the
Schrödinger equation satisfies the differential equation

�
@

@t2
� i„
2m
r 2
2 C

i

„V

�
G.R2; t2 jR1; t1/ D ı.t2 � t1/ı.R2 � R1/ ; (3.107)

where r 2
2 is the Laplacian operator with respect to R2 and V D V.R2; t2/.

The function G is the quantum-mechanical amplitude or kernel, and jGj2 is the
probability density that the particle which was at R1 at time t1 arrives at R2 at time t2.

For simplicity, we consider the Green function G.xb; tb j xa; ta/ � G.b j a/ for the
quantal motion from a to b (instead of from 1 to 2) in one dimension. The coordinate
x.t/ of the particle is a function of t with the boundary conditions

x.ta/ D xa ; x.tb/ D xb : (3.108)

The function x.t/ may be represented by a curve in an .x; t/-plane, and it is called
the path x.t/ from a to b.

In classical mechanics, the classical path Nx.t/ is only possible path and is
determined by the minimization of the action integral S (the principle of least
action),

ıS D 0 (3.109)

subject to ıx.ta/ D ıx.tb/ D 0, where

S D
Z tb

ta

L.Px; x; t/dt (3.110)

with L the Lagrangian,

L D 1

2
mPx 2 � V.x; t/ ; (3.111)

the over dot indicating the derivative with respect to t as usual. Equation (3.109) with
Eqs. (3.110) and (3.111) (the variational principle) gives the Lagrange equation of
motion (Euler’s equation in mathematics), and Nx.t/ is its solution with the boundary
conditions given by Eqs. (3.108).
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Fig. 3.7 Paths x.t/ from a to
b in the one-dimensional case
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In quantal motions, various paths other than Nx.t/ may be realized. Then we
postulate that G.b j a/ is given by

G.b j a/ D const:
X

all paths
.a!b/

exp

	
i

„S
�
x.t/

�

; (3.112)

where S
�
x.t/

�
indicates that S is a functional of x.t/. The sum in Eq. (3.112) may be

reduced to the path integral (functional integral) form. Divide the interval Œta; tb� into
N intervals of width 
 with x.tj/ D xj (j D 0, 1, � � � , N; t0 D ta, tN D tb, x0 D xa,
xN D xb), as shown in Fig. 3.7. Equation (3.112) may then be rewritten as

G.b j a/ D lim

!0

C�N
Z

exp

�
i

„S.b j a/
�N�1Y

jD1
dxj ; (3.113)

where C�N is the normalization constant and S.b j a/ D S
�
x.t/

�
. As shown later, the

limit in Eq. (3.113) exists if C is chosen to be

C D
�
2�i„


m

�1=2
: (3.114)

For convenience, we write Eq. (3.113) as

G.b j a/ D
Z x.tb/Dxb

x.ta/Dxa

exp

�
i

„S.b j a/
�
DŒx.t/� : (3.115)

This is the path integral representation of G.
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Now the problem is to show that the G given by Eq. (3.115) satisfies the
Schrödinger equation. From Eq. (3.110), we have

S.b j a/ D S.b j c/C S.c j a/ ; (3.116)

so that G.b j a/may be expressed as a convolution integral,

G.b j a/ D
Z 1

�1
G.b j c/G.c j a/dxc : (3.117)

Continuing this process, we arrive at the expression

G.b j a/ D
Z

G.b jN � 1/G.N � 1 jN � 2/ � � �G.1 j a/
N�1Y

jD1
dxj : (3.118)

By a comparison of Eq. (3.113) with Eq. (3.118), we have

G. jC 1 j j/ D C�1 exp

�
i


„ L
�
�xj



; xj; tj

��
(3.119)

with �xj D xjC1 � xj. Since G is the wave function, we put G.x; t j x��x; t� 
/ D
 .x; t/ to have, from Eq. (3.117),

 .x; t C 
/ D
Z 1

�1
 .x ��x; t/G.x j x ��xI 
/d.�x/ ; (3.120)

where G is given, from Eq. (3.119) with Eq. (3.111), by

G.x j x ��xI 
/ D C�1 exp

�
im.�x/2

2„

��
1 � i


„ V.x; t/

�
: (3.121)

Equation (3.120) is of the same form as the Markov integral equation, and therefore
a differential equation satisfied by  may be derived from it in a manner similar to
that used in the derivation of the Fokker–Planck equation. If we note that

Z 1

�1
x2me�ax2dx D .2m � 1/ŠŠ

2m

�
�

a2mC1

�1=2
for Re a 	 0 ; (3.122)

where Re indicates the real part, then we obtain, from Eq. (3.120) with Eqs. (3.121)
and (3.114),

i„@ 
@t
D � „

2

2m

@2 

@x2
C V.x; t/ : (3.123)

This is just the Schrödinger equation for the system under consideration.
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Finally, we show two applications of this formalism to polymer chains. We first
consider the Gaussian chain of total contour length L whose bond probability �i is
given by the Gaussian function, Eq. (5.35) of MTPS [20]. The distribution function
P.frnC1g/ for the entire chain may then be given by

P.frnC1g/ D
nY

iD1
�i.ri � ri�1/

D exp.�E=kBT/ ; (3.124)

where E is the total potential (configurational) energy and is given by

E D 3kBT

2

nX

iD1

�
ri � ri�1

l

�2
; (3.125)

where a constant term has been omitted and l is the root-mean-square bond length.
In the continuous limit, Eq. (3.125) may be written in the form

E D 3kBT

2l

Z L

0

Pr2ds : (3.126)

The Green function G.RIL/ of the end-to-end distance R is the sum of the
Boltzmann factor exp.�E=kBT/ over all possible configurations or paths r.s/
subject to r.0/ D 0 and r.L/ D R, so that it may be written in the path integral
form

G.RIL/ D
Z r.L/DR

r.0/D0
exp

�
� 3
2l

Z L

0

Pr2ds

�
D�r.s/� : (3.127)

Thus, if we put formally im=2„ ! �3=2l and V ! 0 (regarding t as L), the
Schrödinger equation (3.107) becomes Eq. (2.36).

The second example is the KP chain. In this case, suppose that the path integral
representation of the characteristic function I.k;u j u0IL/ is given by Eq. (3.34) with
Eq. (3.35). Then, if we put „ ! 1, i=2m ! �, V ! �k � u, and R2 ! u (with
jR2j D 1), Eq. (3.107) becomes Eq. (3.32).

Appendix 2: Spherical Harmonics and the Free-Particle Green
Function

Throughout this book it is sufficient to choose the spherical harmonics Ym
l .�; �/

(l D 0, 1, 2, � � � ; m D �l, �lC 1, � � � , l) to be

Ym
l .�; �/ D

�
2lC 1
4�

.l � jmj/Š

.lC jmj/Š
�1=2

Pjmj
l .cos �/eim� (3.128)
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without the phase factor, where Pm
l .x/ is the associated Legendre function,

Pm
l .x/ D .1 � x2/m=2

dm

dxm
Pl.x/ .jxj � 1/ (3.129)

with Pl.x/ being the Legendre polynomial,

Pl.x/ D 1

2llŠ

dl

dxl
.x2 � 1/l .jxj � 1/ : (3.130)

We therefore have the complex conjugation

Ym�
l D Y�m

l ; (3.131)

and also the orthonormality and closure relations

Z
Ym�

l Ym0

l0 du D
Z 2�

0

d�
Z �

0

sin �d� Ym�
l .�; �/Ym0

l0 .�; �/

D ıll0ımm0 ; (3.132)

1X

lD0

lX

mD�l

Ym�
l .�; �/Ym

l .�
0; �0/ D 1

sin �
ı.��� 0/ı.���0/ D ı.u�u0/ ; (3.133)

where ılm and ı are the Kronecker delta and a Dirac delta function, respectively. We
note that Pm

l and Pl have the orthonormality properties,

Z 1

�1
Pm

l .x/P
m
l0 .x/dx D 2

2lC 1
.lC m/Š

.l �m/Š
ıll0 ; (3.134)

Z 1

�1
Pl.x/Pl0.x/dx D 2

2lC 1ıll0 : (3.135)

Now we find the solution of Eq. (3.33). We expand the free-particle Green
function G.u j u0IL/ in terms of Ym

l as

G.u j u0IL/ D
1X

lD0

lX

mD�l

Cm
l .u0IL/Ym

l .�; �/ : (3.136)

The spherical harmonics are the eigenfunctions of the Laplacian operator r 2
u [33],

that is

r 2
u Ym

l D �l.lC 1/Ym
l : (3.137)
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From Eqs. (3.33) (for L > 0), (3.136), and (3.137), we obtain the solution for Cm
l ,

Cm
l .u0IL/ D Am

l .u0/ exp
���l.lC 1/L� : (3.138)

From Eqs. (3.33) and (3.133), we have the boundary condition

G.u j u0I 0/ D ı.u� u0/ D
1X

lD0

lX

mD�l

Ym�
l .�0; �0/Y

m
l .�; �/ ; (3.139)

so that, from Eqs. (3.136) and (3.139),

Cm
l .u0I 0/ D Am

l .u0/ D Ym�
l .�0; �0/ : (3.140)

Substitution of Eq. (3.138) with Eq. (3.140) into Eq. (3.136) leads to Eq. (3.42) (in
units of ��1).

Finally, we note that the bond correlation function hu.s1/ � u.s2/i (s1 < s2) may
be evaluated by the use of Eq. (3.42) as follows,

˝
u.s1/ � u.s2/

˛ D ˝
u0.0/ � u.s2 � s1/

˛

D
Z

cos � G.u j u0I s2 � s1/du

D exp
��2.s2 � s1/

�
; (3.141)

where u0 has been chosen to be in the direction of the z axis of a Cartesian coordinate
system. Substitution of the third line of Eqs. (3.141) into Eq. (2.24) and integration
leads to Eq. (3.5).

We also note that if ˛ is the angle between the unit vectors u1 and u2, that is,
u1 � u2 D cos˛ D P1.cos˛/ with ui D .1, �i, �i), then there hold the relations

Pl.cos˛/ D 4�

2lC 1
lX

mD�l

Ym�
l .�1; �1/Y

m
l .�2; �2/ ; (3.142)

exp.ir1 � r2/ D
1X

lD0
.2lC 1/iljl.r1r2/Pl.cos˛/ ; (3.143)

where ri D riui and jl is the spherical Bessel function of the first kind.
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Appendix 3: Modified Wormlike Chains

Since it is impossible to find the exact solution of Eq. (3.31) or (3.32) in a closed
form, various attempts have been made to relax the constraint of Eq. (2.27), u2 D
1. In this appendix we briefly discuss these modified wormlike chains [16]. The
unnormalized and unconditional characteristic function I.k;u;u0IL/ for them may
be written in the path integral form of Eq. (3.34) with the Lagrangian,

L D i

kBT

�
1

2
˛ Pu2 C U0

�
C k � u ; (3.144)

where U0 is an additional true potential energy of the chain associated with the
relaxation of the constraint, so that �.iU0=kBT C k � u/ is the “potential energy” of
the “particle.” Then the Schrödinger equation is of the form

�
@

@L
� 1

2˛
r 2

u C
1

kBT
V � ik � u

�
I.k;u;u0IL/ D ı.L/ı.u� u0/ ; (3.145)

where V is determined from U0. Note that Eqs. (3.144) and (3.145) (and hence also
r 2

u ) are no longer subject to the condition u2 D 1.
Harris and Hearst (HH) [14] permitted Rouse-type stretching [20, 34] as well as

bending of the chain, so that their U0 and V are given by

U0.HH/ D V.HH/ D 1

2
ˇu2 (3.146)

with ˇ the stretching force constant. For this model, ˛ is equated to 3kBT=4�, and
ˇ is determined as a function of L and �; and L should be regarded as the contour
length in the unstretched state. Equation (3.145) with V D V.HH/ was first derived by
Freed [9], and therefore his model is the same as that of Harris and Hearst except for
the equations determining ˛ and ˇ. This model becomes invalid for high stiffness;
near the rod limit, it cannot give correctly the KP wormlike moments other than
hR2i. In particular, the contour length increases indefinitely if an external force is
applied and increased. Thus Noda and Hearst [35] attempted to remedy this defect
by forcing ˇ to depend on, for instance, rate of shear.

Fixman and Kovac (FK) [36] considered a more general modification by
introducing an external potential �R � f acting on the end-to-end vector R, so that

U0.FK/ D V.FK/ D 1

2
ˇu2 � f � u : (3.147)

For this model, ˛ is still equated to 3kBT=4�, and ˇ is determined as a function
of L, �, and also the force f so that L and hRi do not increase indefinitely with f .
When f D 0, this model reduces to the HH model. Now Eq. (3.145) with V D V.FK/

is just the Schrödinger equation for a harmonic oscillator in an external force field
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k � if, and its solution is well known [8]. Thus we readily have for the normalized
but unconditional characteristic function I.k;u;u0IL/ for finite f

I.k;u;u0I f;L/ D P.u;u0I f;L/ exp

	
�Lk2

2ˇ

�
1 � 1

a
tanh a

�

Cik �
�

L

ˇ

�
1 � 1

a
tanh a

�
fC L

2a
.tanh a/.uC u0/

�

; (3.148)

where

P.u;u0I f;L/ D
�

b

�

�3
exp

	
� b

sinh 2a

�
.cosh 2a/.u2 C u 2

0 /� 2u � u0
�

C L

2a
.tanh a/f � .uC u0/� L

2aˇ
.tanh a/f2



; (3.149)

a D L

2

�
ˇ

˛

�1=2
;

(3.150)

b D 1

2
.˛ˇ/1=2 :

When f D 0, the I given by Eq. (3.148) is identical to that of Freed [9] except for
the normalization constant. By Fourier inversion of Eq. (3.148), we obtain for the
normalized trivariate distribution function P.R;u;u0I f;L/

P.R;u;u0I f;L/ D P.u;u0I f;L/
�

ˇ

2�L.1 � a�1 tanh a/

�3=2

� exp

	
� ˇ

2L.1 � a�1 tanh a/

�
R � L

2a
.tanh a/.uC u0/

�L

ˇ

�
1 � 1

a
tanh a

�
f
�2


: (3.151)

The distribution function P.R;u;u0IL/ given by Eq. (3.151) with f D 0 may
also be obtained from the formulation of Harris and Hearst. If the radius vector
r.s/ is expanded in terms of the eigenfunctions  i for the equation of motion and
if 
i are the expansion coefficients, then the instantaneous distribution function for
the entire free HH chain may be expressed as a product of Gaussian distributions
of 
i [14]. From this, we can therefore derive the trivariate Gaussian distribution
P.R;u;u0IL/ by the use of the Wang–Uhlenbeck theorem [20]. Thus it is explicitly
recognized that the Freed model is exactly equivalent to the HH model. However,
their expressions for the moments, for example, hR2i as functions of ˛ and ˇ are
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different from each other. This arises from the fact that Freed regarded erroneously
the above P.R;u;u0IL/ as the conditional distribution P.R;u j u0IL/ and evaluated
averages with P.R;u;u0IL/P.u0IL/.

Tagami (T) [37] assumed G.R;u j u0IL/ to be the same as the Green function for
a free Brownian particle with R the position and u the velocity. Then the Fokker–
Planck equation satisfied by this G and also its closed-form solution are well known
[4]. The Lagrangian of this system was already given by Saito and co-workers [38,
39], and we have

U0.T/ D 1

2
ˇu2 C .˛ˇ/1=2u �

�
du
ds

�
;

(3.152)

V.T/ D �
�
ˇ

˛

�1=2
ru � u

with ˛ D 3kBT=4� and ˇ D �kBT. It is seen that the stretching energy is still of the
Rouse type but that there is coupling between bending and stretching. However, it
is not clear what physical property of the real chain this coupling reflects. We also
note that this model gives the correct rod limits of the moments, but not the correct
first-order corrections to these limits (see Sect. 3.3.2).

Further, we consider three other models, which are somewhat different from the
above modified wormlike chains in nature. In all of these, the minimum of the
stretching energy is located at u D 0. However, Saito, Takahashi, and Yunoki (STY)
[10] instead introduced the stretching energy whose minimum is at juj D 1, so that

U0.STY/ D V.STY/ D 1

2
ˇ.juj � 1/2 : (3.153)

Although the determination of ˛ and ˇ is not yet explicit, we must have ˛ D
kBT=2� for ˇ ! 1 since this chain reduces to the KP chain in this limit. Its
mathematical treatment is not necessarily easier than that of the latter. Soda [40]
also considered the potential given by Eq. (3.153) but imposed the constraint on
the bond angle (supplement) � instead of on cos � as done in all other models.
The differential equation for the distribution function that results is nonlinear and is
much less tractable than Eq. (3.31).

Finally, we discuss the model of Winkler, Reineker, and Harnau (WRH) [41],
who introduced an end effect into the HH chain in such a way that

U0.WRH/ D U0.HH/ C U0
0 (3.154)

with

U0
0 D ˇ0

�
ı.s/C ı.L� s/

�
u2 ; (3.155)
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where ˇ0 is another stretching force constant. We then have

V.WRH/ D U0.HH/ D V.HH/ ; (3.156)

and ˛ D 3kBT=4�, ˇ D 3�kBT, and ˇ0 D 3kBT=2, so that the differential equation
for I is exactly the same as that of Harris and Hearst, that is, Eq. (3.145) with V D
V.HH/. Thus a trick for the end effect U0

0, which has no physical meaning, must
be made in the HH distribution function, thereby leading accidentally to the exact
KP wormlike moments hR2i and hS2i. It is pertinent to note here that their wrong
statement [41] concerning the above analysis [16] of the Freed model arises from
their misunderstanding of it.

Appendix 4: Wormlike Rings

In this appendix we give some fundamentals for the treatments of ring polymers.
For convenience, we begin by making a brief explanation of the type of (innate)
knot of a given ring polymer chain (contour). It is well known that its equilibrium
conformational properties are more or less affected by this type [42, 43]. In Fig. 3.8
are illustrated the simplest five knots [44, 45]. The knot of a ring polymer introduced
in its synthesis is a kind of topological constraint and is preserved unless a chemical
bond in its backbone is once broken and then reconnected. We note that there
is another kind of topological constraint for ring polymers having both bending
and torsional energies, which is considered in the treatments of circular DNA in
Chap. 7. While recent advances in chromatography technique make it possible to
separate ring polymers of the trivial knot from those of nontrivial knots [46], an
ordinary sample of ring polymers commonly prepared may in general be regarded
as a mixture of ring polymers with all kinds of knots (topological isomers). Then the
equilibrium conformational properties of such a sample as a whole may be described
by a chain model without the topological constraint such as the usual (phantom) KP
wormlike ring.

01

(trivial)
31

(trefoil)
41

(figure eight)
51 52

Fig. 3.8 Illustration of ring polymers with different types of knots. The index xy attached to each
type is in the Alexander and Briggs notation [44, 45] with x its minimum crossing number and y
the serial reference number, and the terms in parentheses are the respective common names
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1

2

R

s

L−s

u0

u

Fig. 3.9 The distance R.s/ between the contour points 1 and 2 on a KP wormlike ring and the unit
tangent vectors u0 and u there

Now we derive approximately distribution functions and moments for (phantom)
KP wormlike rings [47]. Consider two contour points 1 and 2 separated by the
contour distance s on the KP ring of total contour length L. We define a conditional
distribution function P.R;u j u0I s;L/ of both the vector distance R between the
points 1 and 2 and the unit tangent u at the point 2 with the unit tangent vector
u0 at the point 1 fixed. Note that this P is not the Green function. (All lengths are
measured in units of ��1.) As seen from Fig. 3.9, P may be expressed in the form

P.R;u j u0I s;L/ D CG.R;u j u0I s/G.R;�u j � u0IL � s/ ; (3.157)

where C D ŒG.0;u0 j u0IL/��1 is the normalization constant and G are the Green
functions for the linear chain. We first consider two limiting cases: (1) s � 1 and
L � s� 1 and (2) s� 1 and L � s� 1.

In the first case, we use the first Daniels approximations to the two G in
Eq. (3.157). Integrating P over u and u0, we then obtain for the distribution function
P.RI s;L/ of R

P.RI s;L/ D
�

3L

2�s.L � s/

�3=2�
1 � 11

8L

��1
exp

�
� 3LR2

2s.L � s/

�

�
�
1 � 5

8s
� 5

8.L� s/
C 2R2

s2
C 2R2

.L � s/2

� 3R2

2s.L� s/
� 33R4

40s3
� 33R4

40.L� s/3
C � � �

�
: (3.158)
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Note that the characteristic function I.kI s;L/, that is, the Fourier transform of
P.RI s;L/ is given by [48]

I.kI s;L/ D exp

�
� s.L � s/k2

6L

��
1C k2

12
� 11s.L� s/k2

36L2

�11s4.L � s/k4

1080L4
� 11s.L� s/4k4

1080L4
C � � �

�
: (3.159)

In the second case, we use the WKB approximation to G.R;u j u0I s/ and the
first Daniels approximation to the other G. We choose u0 to be in the direction of
the z axis of a Cartesian coordinate system and express R and u as R D .x, y, z)
and u D .1, � , �) in Cartesian and spherical polar coordinates, respectively. Since
�2 D O.s/, we expand cos � and sin � in the first Daniels G.R;�u j � u0IL� s/ in
powers of � and retain terms to O.�2/. Then P.R;u j u0I s;L/ may be expressed as

P.R;u j u0I s;L/ D C0.s;L/
�
3

�s3

��
45

4�s3�2

�1=2

� exp

�
��

2

4s
� 3

s3

�
x � 1

2
s� cos�

�2

� 3
s3

�
y � 1

2
s� sin �

�2
� 45

4s3�2

�
z � sC 1

6
s�2
�2�

�
�
1 � 15

2s�2

�
z � sC 1

6
s�2
�
C � � �

�

�
�
1 � 11

8.L� s/
� 2z

L � s
C 3�2

8.L� s/
C � � �

�
(3.160)

with C0.s;L/ the normalization constant. For this case, it is impossible to integrate
P over u and u0 to obtain an analytical expression for P.RI s;L/. We note that the
distribution function P.R;u j u0I s;L/ for s � 1 and L � s � 1 may be obtained
from Eq. (3.160) by exchanging s for L � s.

By the use of Eqs. (3.158) and (3.160), we obtain for the mean-square distance
hR2.s/i between the two points on the ring in the two limiting cases

hR2.s/i D s.L � s/

L
� 1
2
C 11s.L� s/

6L2
for s� 1 and L � s� 1

D s2
�
1 � 2

3
sC � � �

�
for s� 1 and L � s� 1 :

(3.161)
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From a comparison of the second line of Eqs. (3.161) with the second of Eqs. (3.96),
it is seen that the first-order correction to the rigid-ring limit of hR2.s/i is the same
as that to the rigid-rod limit.

Now we join the two hR2.s/i given by Eqs. (3.161) to complete an approximate
expression for hR2.s/i following the procedure of Hearst and Stockmayer [30].
That is

hR2.s/i D s.L � s/

L
� 1
2
C 11s.L� s/

6L2
for ˛ < s � L

2

D s2
�
1 � 2

3
sC k2s

2 C k3s
3

�
for 0 � s � ˛ ; (3.162)

where ˛, k2, and k3 are determined as functions of L in such a way that the two
hR2.s/i given by Eqs. (3.162) have the same value and the same first and second
derivatives at s D ˛. The results are

˛ D 1:81892� 6:53529
L

C 13:6768

L2
� 10:1456

L3
; (3.163)

and

k2 D 1

˛

�
4

3
� 3
˛
� 5

2˛3
C 1

˛2

�
1C 11

6L

��
4 � 3˛

L

��
;

(3.164)

k3 D 1

˛2

�
�1
2
C 5

4˛
C 3

4˛3
� 1

4˛2

�
1C 11

6L

��
6 � 5˛

L

��
:

Substitution of Eqs. (3.162) into Eq. (2.26), which is valid also for a ring, and
integration leads to

hS2i D
�
1C 11

6L

��
L

12
� ˛

2

2L
C ˛3

3L2

�
� 1
4
C ˛

2L

C˛
3

L

�
1

3
� ˛
6
C k2
5
˛2 C k3

6
˛3
�
: (3.165)

We note that Eqs. (3.162) and (3.165) are valid for L 	 3:480 and that Eq. (3.165)
gives the correct first-order correction to the random-coil limit of hS2i,

hS2i D L

12

�
1 � 7

6L
C � � �

�
for L� 1 : (3.166)

In fact, however, Eq. (3.165) is applicable only for relatively large L, as is evident
from the derivation.



References 57

In the rigid-ring limit of L! 0, hS2i may be directly evaluated to be

lim
L!0
hS2i D L2

4�2
: (3.167)

The correction to the rigid-ring limit above must be evaluated in a different way in
order to join it to the hS2i given by Eq. (3.165) or (3.166) (see Chap. 7).

References

1. O. Kratky, G. Porod, Rec. Trav. Chem. 68, 1106 (1949)
2. G. Porod, J. Polym. Sci. 10, 157 (1953)
3. H. Benoit, P. Doty, J. Phys. Chem. 57, 958 (1953)
4. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)
5. S.A. Rice, P. Gray, Statistical Mechanics of Simple Liquids (Interscience, New York, 1965)
6. J.J. Hermans, R. Ullman, Physica 18, 951 (1952)
7. H.E. Daniels, Proc. R. Soc. (Edinb.) A63, 290 (1952)
8. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York,

1965)
9. K.F. Freed, J. Chem. Phys. 54, 1453 (1971); Adv. Chem. Phys. 22, 1 (1972)

10. N. Saito, K. Takahashi, Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 (1967)
11. See, for example, L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley, Reading,

1959)
12. S.E. Bresler, Ya.I. Frenkel, Acta Phys. -Chim. USSR 11, 485 (1939)
13. L.D. Landau, E.M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, 1958)
14. R.A. Harris, J.E. Hearst, J. Chem. Phys. 44, 2595 (1966)
15. H. Yamakawa, J. Chem. Phys. 59, 3811 (1973)
16. H. Yamakawa, Pure Appl. Chem. 46, 135 (1976)
17. See, for example, L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)
18. S. Heine, O. Kratky, G. Porod, P.J. Schmitz, Makromol. Chem. 44–46, 682 (1961)
19. K. Nagai, Polym. J. 4, 35 (1973)
20. H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971). Its

electronic edition is available online at the URL: http://hdl.handle.net/2433/50527
21. H. Yamakawa, M. Fujii, Macromolecules 7, 649 (1974)
22. W. Gobush, H. Yamakawa, W.H. Stockmayer, W.S. Magee, J. Chem. Phys. 57, 2839 (1972)
23. I. Prigogine, Non-equilibrium Statistical Mechanics (Interscience, New York, 1962)
24. See also R.M. Mazo, Statistical Mechanical Theories of Transport Processes (Pergamon,

Oxford, 1967)
25. J. Shimada, M. Fujii, H. Yamakawa, J. Polym. Sci. Polym. Phys. Ed. 12, 2075 (1974)
26. K. Nagai, J. Chem. Phys. 38, 924 (1963)
27. R.L. Jernigan, P.J. Flory, J. Chem. Phys. 50, 4185 (1969)
28. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969)
29. H. Yamakawa, M. Fujii, J. Chem. Phys. 59, 6641 (1973)
30. J.E. Hearst, W.H. Stockmayer, J. Chem. Phys. 37, 1425 (1962)
31. T. Norisuye, H. Murakami, H. Fujita, Macromolecules 11, 966 (1978)
32. M.D. Frank-Kamenetskii, A.V. Lukashin, V.V. Anshelevich, A.V. Vologodskii, J. Biomol.

Struct. Dyn. 2, 1005 (1985)
33. See, for example, A. Messiah, Quantum Mechanics, vol. I (North-Holland, Amsterdam, 1972)
34. P.E. Rouse Jr., J. Chem. Phys. 21, 1272 (1953)

http://hdl.handle.net/2433/50527


58 3 Chain Statistics: Wormlike Chains

35. I. Noda, J.E. Hearst, J. Chem. Phys. 54, 2342 (1971)
36. M. Fixman, J. Kovac, J. Chem. Phys. 58, 1564 (1973)
37. Y. Tagami, Macromolecules 2, 8 (1969)
38. N. Saito, M. Namiki, Prog. Theor. Phys. (Kyoto) 16, 71 (1956)
39. H. Hoshikawa, N. Saito, K. Nagayama, Polym. J. 7, 79 (1975)
40. K. Soda, J. Phys. Soc. Jpn. 35, 866 (1973); J. Chem. Phys. 95, 9337 (1991)
41. R.G. Winkler, P. Reineker, L. Harnau, J. Chem. Phys. 101, 8119 (1994)
42. J. des Cloizeaux, J. Phys. Lett. 42, L-433 (1981)
43. N.T. Moore, R.C. Lua, A.Y. Grosberg, Proc. Natl. Acad. Sci. U. S. A. 101, 13431 (2004)
44. J.W. Alexander, G.B. Briggs, Ann. Math. Ser. 2 28, 562 (1927)
45. C.C. Adams, The Knot Book (Freeman, New York, 1994)
46. Y. Ohta, M. Nakamura, Y. Matsushita, A. Takano, Polymer 53, 466 (2012)
47. M. Fujii, H. Yamakawa, Macromolecules 8, 792 (1975)
48. R. Tsubouchi, D. Ida, T. Yoshizaki, H. Yamakawa, Macromolecules 47, 1449 (2014)



Chapter 4
Chain Statistics: Helical Wormlike Chains

As mentioned in Chap. 3, the KP model [1] may be applicable not only to stiff
polymers but also to ordinary flexible polymers if the characteristic ratio Cn

increases monotonically to its coil-limiting value C1 as the number of skeletal
bonds n in the chain is increased. For symmetric chains such as polymethylene,
polyoxymethylene, and polyoxyethylene there is indeed good agreement between
values of hR2i as a function of n for the KP and RIS models if the contour length
L of the former is properly converted to n [2, 3]. However, Cn increases to C1
more rapidly than expected from the KP model for poly(dimethylsiloxane) [4],
while it decreases to C1 with increasing n for poly-DL-alanine [5] or even exhibits a
maximum in the case of, for instance, syndiotactic poly(methyl methacrylate) [6], as
already seen in Fig. 2.4. Such breakdown of the KP model is probably due to the fact
that these real chains with different skeletal bond angles possess locally preferred
helical conformations. Further, as anticipated in Chap. 3, it is impossible to assign
local vectors and tensors to the KP chain unless they are parallel to and cylindrically
symmetric about its contour, respectively.

These circumstances make us recognize a need to extend it to a more general
elastic wire model that can resolve them. The HW model is one thus presented
[7–10]. It has both bending and torsional energies and its chain contour becomes
a regular helix at the minimum zero of its total elastic (potential) energy. In this
chapter the foundation of the statistical mechanics of the unperturbed HW chain is
presented along with some related topics.

4.1 Formulation of the Model

We consider an elastic wire of fixed length L with both bending and torsional
energies and affix a localized Cartesian coordinate system (�, �, �) to it at the contour
point s .0 � s � L/ following Landau and Lifshitz [11], where the unit vector e� in
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Fig. 4.1 Localized Cartesian
coordinate systems (�, �, �)
affixed to the HW chain

s

s+Δs

ξ

η

ζ ξ ′

η ′

ζ ′

the direction of the � axis is chosen to coincide with the unit vector u.s/ tangential
to the contour with the unit vectors e� and e� being in the directions of the principal
axes of inertia of its cross section at s, as depicted in Fig. 4.1. (In its application to a
given real chain these axes can be affixed to the latter in a definite manner, as shown
later.)

The localized coordinate system (� 0, �0, � 0) at s C �s is obtained by an
infinitesimal rotation�� D .��� , ���, ���) of the (�, �, �) system at s; that is,

e�0 D e� C�� � e� .� D �; �; �/ ; (4.1)

or in matrix notation,

0

@
e�0

e�0

e�0

1

A D
0

@
1 ��� ����

���� 1 ���

��� ���� 1

1

A

0

@
e�
e�
e�

1

A : (4.2)

The deformed state of the wire may be determined by the “angular velocity” vector
!.s/ D .!� , !�, !�) defined by

! D lim
�s!0

��

�s
: (4.3)

The HW chain is then defined as the wire whose elastic (potential) energy U per
unit contour length is given by

U D 1

2
˛
�
! 2
� C .!� � �0/2

�C 1

2
ˇ.!� � �0/2 ; (4.4)

where ˛ and ˇ are the bending and torsional force constants, respectively, and are
related to each other by the equation

ˇ D ˛.1C �/�1 (4.5)
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with � being Poisson’s ratio ranging from 0 to 0.5, and �0 and �0 are constants
independent of s. The U given by Eq. (4.4) is seen to become a minimum of zero
in the deformed state ! D .0, �0, �0). Then the chain contour as a differentiable
space curve becomes a regular helix, as shown below. This is just the requirement
for the HW model. However, the definition of the HW model by Eq. (4.4) requires
some comments. The fact is that the Bugl–Fujita potential [12] was first adopted [7]
as the one of the chain having both bending a torsional energies but with relaxation
of a certain (unphysical) constraint inherent in it (see Appendix 1). The model that
resulted was then shown to have eventually the potential given by Eq. (4.4) [13].

Now Pu.s/ is the curvature vector of the chain contour as a differentiable space
curve, so that the unit curvature vector n.s/ is given by

n D Pu
j Puj ; (4.6)

where the over dot denotes the derivative with respect to s as usual. According
to differential geometry [14], the form of a space curve is determined by the
(differential-geometrical) curvature �.s/ and torsion �.s/ defined by

� D jPuj ; (4.7)

� D .u � n/ � Pn : (4.8)

Note that u � n is usually called the unit binormal vector.
For further developments it is convenient to introduce the Euler angles � D .� ,

�,  ) (0 � � � � , 0 � � � 2� , 0 �  � 2�) defining the orientation of the
localized coordinate system (�, �, �) with respect to an external Cartesian coordinate
system (x, y, z). That is, the former system is obtained by rotation of the latter by the
angles� as follows: first rotate the (x, y, z) system by an angle � about the z axis to
obtain a system (x0, y0, z0) with z D z0, then rotate this system by an angle � about
the y0 axis to obtain a system (x00, y00, z00) with y0 D y00, and finally rotate this system
by an angle  about the z00 axis to obtain the system (�, �, �/ D .x000, y000, z000) with
z00 D z000, as shown in Fig. 4.2. We then have

e� � u D .1; �; �/ ;
e� � a D e� cos C e� sin ; (4.9)

e� � b D �e� sin C e� cos 

with b D u � a, where in the first of Eqs. (4.9) u has been expressed in spherical
polar coordinates, and e� and e� are the unit vectors in the directions of the x00 and
y00 (D y0) axes, respectively. The components of ! may also be expressed in terms
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Fig. 4.2 Euler angles
� D .� , �,  ) defining the
orientation of the localized
coordinate system (�, �, �)
with respect to an external
Cartesian coordinate system
(x, y, z)
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Fig. 4.3 Various unit vectors
and rotation angles at s. n and
u � n are the unit curvature
and unit binormal vectors,
respectively
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of the Euler angles as follows [15],

!� D P� sin � P� sin � cos ;

!� D P� cos C P� sin � sin ; (4.10)

!� D P� cos � C P :

In order to express � and � readily in terms of these components, we rotate the
(�, �, �) system by an angle  0.s/ about the � axis to obtain a system (�0, �0, �0)
with e� D e�0 , as depicted in Fig. 4.3. We then have, from Eqs. (4.10),

!�0 D !� cos 0 C !� sin 0 ;

!�0 D �!� sin 0 C !� cos 0 ; (4.11)

!�0 D !� C P 0 :

If  0 is chosen so that !�0 D 0, then �u is in the direction of e�0 because of no
rotation about e�0 . We therefore have e�0 D n and e�0 D u � n, and also �u D
���0e�0 and �n � e�0 D ���0 . Thus we obtain, from Eqs. (4.7) and (4.8), � D !�0
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and � D !�0 , and then, from Eqs. (4.11) with !�0 D 0,

� D .! 2
� C ! 2

� /
1=2 ; (4.12)

� D !� � d

ds
tan�1

�
!�

!�

�
: (4.13)

From Eqs. (4.12) and (4.13), we have � D �0 and � D �0 at ! D .0, �0, �0). The
space curve specified by � D �0 and � D �0 is a regular helix whose radius � and
pitch h are given by [14]

� D �0

� 2
0 C � 20

;

(4.14)

h D 2��0

� 2
0 C � 20

;

the helix being right-handed for �0 > 0 and left-handed for �0 < 0. This helix, which
is taken by the HW chain contour at the minimum zero of its potential energy, is
referred to as the characteristic helix. It is schematically depicted in Fig. 4.4(a). We
note that the HW chain which has the potential U given by Eq. (4.4) is not the only
one that becomes a regular helix at the minimum zero of U but that the U given by
Eq. (4.4) is of the simplest form of the potentials of those chains (see Appendix 1).

In the particular case of �0 D 0, Eq. (4.4) reduces to

U D 1

2
˛ Pu2 C 1

2
ˇ.!� � �0/2 ; (4.15)
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Fig. 4.4 Characteristic helix and the localized coordinate systems affixed to it
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where the first term on the right-hand side is just the bending energy of the KP chain.
As seen from Eqs. (4.14), the characteristic helix then becomes a straight line. The
chain defined by Eq. (4.15) is referred to as the generalized KP chain. It is then
convenient to classify it into two types: one (type 1) with �0 6D 0 (KP1) and the
other (type 2) with �0 D 0 (KP2). Their characteristic helices (rods) are depicted
in Figs. 4.4(b) and (c), respectively. The original KP chain is defined as the chain
with the U given by Eq. (4.15) with ˇ D 0. All these chains with �0 D 0, both
original and generalized (KP1 and KP2), are referred to simply as the KP chain
unless necessary to specify.

Finally, it is pertinent to add some discussion of the meaning of the unit vectors
e� D a and e� D b. It is true that e�0 and e�0 are the unit curvature and unit binormal
vectors, respectively. Now, from Eq. (4.2), we have �u D e�0 � e� D ���e� �
���e�, so that

Pu D !�a � !�b : (4.16)

If we average both sides of Eq. (4.16) (at constant a and b), we obtain

a D � �1
0 h Pui ; (4.17)

since we have, from Eq. (4.4), h!�i D 0 and h!�i D �0. Thus a has the meaning of
the unit mean curvature vector, so that b (D u�a) is the unit mean binormal vector.

4.2 Diffusion Equations

4.2.1 Path Integrals and Fokker–Planck Equations

We can define the Green function G.R;u; a j u0; a0IL/, that is, the conditional
distribution function of the radius vector r.L/ D R, the unit tangent vector u.L/ D
u, and the unit mean curvature vector a.L/ D a at the terminal end of the HW chain
of contour length L when r.0/ D 0, u.0/ D u0, and a.0/ D a0 at the initial end.
We simply denote it by G.R; � j�0IL/ with � D .� , �,  ) being the Euler angles,
since u and a uniquely determine the orientation � of the system (u, a, b) with
b D u � a. It is normalized as

Z
G.R; � j�0IL/dRd� D 1 (4.18)

with d� D duda D sin �d�d�d . Similarly, we can define the distribution
functions G.� j�0IL/, G.RIL/, and so forth, corresponding to the cases of the
KP chain. Further, the characteristic function I.k; � j�0IL/ is defined by

I.k; � j�0IL/ D
Z

G.R; � j�0IL/ exp.ik � R/dR : (4.19)
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Now, as in Eq. (3.40), G.R; � j�0IL/ may be expressed in terms of the path
integral over the paths u.s/ and a.s/, which we simply denote by �.s/, subject to
the condition of Eq. (3.39) as follows,

G.R; � j�0IL/ D
Z �.L/D�

�.0/D�0
ı

�
R �

Z L

0

uds

�

� exp

�
� 1

kBT

Z L

0

Uds

�
D��.s/� ; (4.20)

where U is given by Eq. (4.4). Taking the Fourier transform of both sides of
Eq. (4.20), we then obtain

I.k; � j�0I L/ D
Z �.L/D�

�.0/D�0
exp

�
i
Z L

0

Lds

�
D��.s/� ; (4.21)

where L is the “Lagrangian” given by

L D K � V C k � u (4.22)

with

K D i

4�

�
! 2
� C ! 2

� C .1C �/�1! 2
�

�
; (4.23)

V D i

4�

�
2�0!� C 2.1C �/�1�0!� � � 2

0 � .1C �/�1� 20
�
: (4.24)

In Eqs. (4.23) and (4.24) we have used Eqs. (3.37) and (4.5). It is seen that the I
given by Eq. (4.21) with Eqs. (4.22)–(4.24) is just the quantum-mechanical kernel
for a symmetric top with the kinetic energy K and the angular-velocity-dependent
potential energy V in a gravitational field k. Thus we can derive the “Schrödinger”
equation for I.

The “angular momenta” p� and the “Hamiltonian” H are defined by

p� D @L
@!�

; (4.25)

H D
X

�

!�p� � L : (4.26)

From Eqs. (4.22)–(4.26), we have

H D �i� Œ p 2
� C p 2

� C .1C �/p 2
� �C �0p� C �0p� � k � u : (4.27)



66 4 Chain Statistics: Helical Wormlike Chains

If we introduce the quantization,

p� D �i
@

@��

(4.28)

in units of „, then we obtain the “Schrödinger” equation,

i
@I

@L
D HI ; (4.29)

or
�
@

@L
CA � ik � u

�
I.k; � j�0IL/ D ı.L/ı.���0/ ; (4.30)

where

A D �0L� C �0L� � ��L 2
� � �L2 (4.31)

with L D .L� , L�, L�) and

L� D @

@��

: (4.32)

By Fourier inversion of Eq. (4.30), we find the Fokker–Planck equations satisfied
by G,

�
@

@L
CAC u � rR

�
G.R; � j�0IL/ D ı.L/ı.R/ı.���0/ ; (4.33)

�
@

@L
CA

�
G.� j�0IL/ D ı.L/ı.���0/ : (4.34)

In Eq. (4.34) G.� j�0IL/ D I.0;� j�0IL/ is the “free-particle” Green function
and is also obtained by integration of G.R; � j�0IL/ over R. The components of L,
which is the “angular momentum” operator for a rigid body in units of �i„ [16, 17],
may be expressed in terms of the Euler angles as

L� D sin 
@

@�
� cos 

sin �

@

@�
C cot � cos 

@

@ 
;

L� D cos 
@

@�
C sin 

sin �

@

@�
� cot � sin 

@

@ 
; (4.35)

L� D @

@ 
:
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We note that the coefficients of the differential operators on the right-hand sides
of Eqs. (4.35), for example, @�=@�� D sin , can be obtained by inversion of
Eqs. (4.10) with Eq. (4.3).

It is straightforward to generalize Eq. (4.4) for U and hence Eq. (4.31) for the
diffusion operator A in order to consider more general elastic wire models, as
shown in Appendix 1. However, it is almost impossible to apply them to real
chains, since their model parameters are too many to determine unambiguously from
experiment. The HW model may be a necessary and sufficient generalization of the
KP model. Then there arises an interesting question: from what discrete chains can
these continuous chains, in particular, the HW chain, be obtained by the continuous
limiting process? This problem is considered in Appendix 2.

4.2.2 The Free-Particle Green Function

We solve the diffusion equation (4.34) to find the free-particle Green function
G.� j�0IL/ [18]. For this purpose it is convenient to choose as the basis functions
the (normalized) Wigner functions Dmj

l .�/ of the Euler angles� [16, 17]. They are
the mj elements hlmjR.�/jlji of the lth rank rotation matrix with R.�/ being the
operator of the finite rotation � of the coordinate system and are explicitly defined
in Appendix 3. In the remainder of this chapter all lengths are measured in units of
��1 unless otherwise noted, for simplicity. Then, for instance, ��1�0 and ��1�0 are
replaced by (reduced) �0 and �0, respectively.

Now the solution of Eq. (4.34) may be expanded in the form

G.� j�0IL/ D
1X

lD0

lX

mD�l

lX

jD�l

lX

j0D�l

g jj0

l .L/Dmj
l .�/Dmj0�

l .�0/ ; (4.36)

where g jj0

l .L/ are the expansion coefficients to be determined, the asterisk indicates
the complex conjugate, and the boundary condition is given, from the closure
relation of Eq. (4.259), by

G.� j�0I 0/ D ı.� ��0/

D
1X

lD0

lX

mD�l

lX

jD�l

Dmj
l .�/Dmj�

l .�0/ : (4.37)
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The coefficients g jj0

l may be determined by substitution of Eqs. (4.31), (4.36),
and (4.37) into Eq. (4.34), noting that the components L� of L operate on Dmj

l as
follows [17],

L�Dmj
l D

1

2
ic j

lDm. jC1/
l C 1

2
ic�j

l Dm. j�1/
l ;

L�Dmj
l D �

1

2
c j

lDm. jC1/
l C 1

2
c�j

l Dm. j�1/
l ; (4.38)

L�Dmj
l D ijDmj

l ;

together with the first of Eqs. (4.266), where i is the imaginary unit and c j
l is

defined by

c j
l D

�
.l� j/.lC jC 1/�1=2 : (4.39)

If Qg jj0

l is the Laplace transform of g jj0

l ,

Qg jj0

l . p/ D
Z 1

0

g jj0

l .L/ exp.�pL/dL ; (4.40)

then Qg jj0

l satisfy the equations

ı jj0 D
�

pC l.lC 1/C ij�0 C � j2
�Qg jj0

l

C1
2
�0c

j
l Qg. jC1/j0

l � 1
2
�0c

�j
l Qg. j�1/j0

l .j jj; j j0j � l/ : (4.41)

If we introduce a .2lC1/� .2lC1/matrix Al. p/ whose elements Al;jj0 (j jj, j j0j � l)
are given by

Al;jj0 D pC l.lC 1/C ij�0 C � j2 for j0 D j

D 1

2
�0c

j
l for j0 D jC 1

D �1
2
�0c

�j
l for j0 D j � 1

D 0 otherwise ; (4.42)
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then the solution of Eq. (4.41) is

Qg jj0

l . p/ D Aj0j
l . p/

lY

jD�l

.pC zl;j/

; (4.43)

where Aj0j
l is the cofactor of the element Al;j0j and �zl;j are the 2l C 1 roots of the

algebraic equation of degree 2lC 1,

jAl. p/j D 0 (4.44)

with jAlj being the determinant of Al. In the particular case of � D 0, zl;j is given
by [19]

zl;j D l.lC 1/C ij.� 2
0 C � 20 /1=2 .j jj � lI � D 0/ : (4.45)

By Laplace inversion of Eq. (4.43), we then find g jj0

l as a sum of residues of eLp Qg jj0

l .

Now, multiplying both sides of Eq. (4.36) by Dmj�
l .�/Dmj0

l .�0/ and integrating
over� and �0 with the use of the orthonormality relation of Eq. (4.258), we obtain

g jj0

l .L/ D 8�2hDmj�
l .�/Dmj0

l .�0/i ; (4.46)

where

h� � � i D .8�2/�1
Z
.� � � /G.� j�0IL/d�d�0 : (4.47)

Thus g jj0

l have the meaning of the (time-independent) angular correlation functions.
As seen later, all kinds of equilibrium moments or properties may in principle
be expressed in terms of them, so that they are the fundamental quantities in the
equilibrium statistical mechanics of the HW chain. Their behavior is examined in
detail in Sect. 4.4.

Finally, in the particular case of the KP chain .�0 D 0/, we readily have

g jj0

l .L/ D ı jj0 exp
˚�Œl.lC 1/C ij�0 C � j2�L

�
(KP) : (4.48)

Then, if integration over  is carried out, Eq. (4.33) reduces to Eq. (3.31), the
Fokker–Planck equation for G.R;u j u0IL/, and Eq. (4.36) becomes Eq. (3.42), the
expansion of G.u j u0IL/ in terms of Ym

l with the expansion coefficients g00l .L/ D
exp

��l.lC 1/L�. Thus the HW chain with �0 D 0 is just identical to the original KP
chain only as far as the behavior of the chain contour is concerned.
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4.2.3 Formal Solutions

An integral equation for the characteristic function I.k; � j�0IL/ may be derived
in the same manner as in the derivation of Eq. (3.41) for the KP chain. The result is

I.k; � j�0IL/ D G.� j�0IL/C ik �
Z L

0

Z
u1G.� j�1IL � s1/

�I.k; �1 j�0I s1/ds1d�1 : (4.49)

Integration of both sides of Eq. (4.49) over a0 and division by 2� leads to

I.k; � j u0IL/ D G.� j u0IL/C ik �
Z L

0

Z
u1G.� j�1IL � s1/

�I.k; �1 j u0I s1/ds1d�1 : (4.50)

Further integration over u0 and division by 4� leads to

I.k; �IL/ D G.�IL/C ik �
Z L

0

Z
u1G.� j�1IL � s1/

�I.k; �1I s1/ds1d�1 : (4.51)

We find here the formal solutions of Eqs. (4.50) and (4.51) [18] to derive
operational expressions for the moments h.R �u0/ni and hR2mi in the next section. If
u0 is chosen to be in the direction of the z axis of an external Cartesian coordinate
system .u0 D ez/, the known parts of the integral equations (4.50) and (4.51) may
be written as

G.� j u0IL/ D
1X

lD0

lX

jD�l

clg
j0
l D0j

l .�/ ; (4.52)

G.�IL/ D c0g
00
0 D00

0 .�/ ; (4.53)

where

cl D
�
2lC 1
8�2

�1=2
: (4.54)

Now both I.k; � j u0IL/ and I.k; �IL/, which we simply denote by I.L/, may
be expanded in the form

I.L/ D
X

l;m;j

Kmj
l .L/Dmj

l .�/ ; (4.55)
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where the sums over Dmj
l are taken over l 	 0, jmj � l, and j jj � l unless otherwise

specified, and Kmj
l .L/ stands for Kmj

l .k j u0IL/ or Kmj
l .kIL/, as the case may be. We

express ek D k=k and u1 as ek D .1, 
, !) and u1 D .1, �1, �1) in spherical polar
coordinates. It is then convenient to rewrite Eq. (3.44) as

ek � u1 D 8�2

3

X

m

Dm0
1 .
Q�/Dm0�

1 .�1/ ; (4.56)

where Q� D .
, !, 0), �1 D .�1, �1,  1), and we have used Eq. (4.254). Note that
ek � u1 is independent of  1.

Substitution of Eqs. (4.55) and (4.56) into Eqs. (4.50) and (4.51) with
Eqs. (4.36), (4.52), and (4.53) and integration over �1 with the use of Eqs. (4.257)
and (4.261) leads to the integral equation for Kmj

l .L/,

Kmj
l D f mj

l C iNk
X

j0

g jj0

l � Lj0 K
mj
l ; (4.57)

where the asterisk indicates the convolution integration defined by Eq. (3.46), Nk is
given by

Nk D
�
4�

3

�1=2
k (4.58)

instead of by Eq. (3.47), and f mj
l are given by

f mj
l D clg

j0
l ım0 for Kmj

l D Kmj
l .k j u0IL/

D c0g
00
0 ıl0ım0ıj0 for Kmj

l D Kmj
l .kIL/ (4.59)

with cl being given by Eq. (4.54). In Eq. (4.57) Lj0 is an operator defined by

Lj0 D
1X

	D�1

�
2h.	/� 1�Y	1 .
; !/

1X

�D�1
a	j0
� ; (4.60)

where h is the same unit step function as that in the second of Eqs. (3.52), and a	j
�

(�, 	, j D 0,˙1) are generalized creation and annihilation operators which operate
on g jj0

l as

a	j00
� g jj0

l D gj00j0

lC� ; (4.61)
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and on Kmj
l and f mj

l as

a	j0
� Kmj

l D .�1/m�j0
�
.2lC 1/.2lC 2�C 1/�1=2

�
�

l 1 lC �
�m �	 mC 	

��
l 1 lC �
�j0 0 j0

�
K.mC	/j0

lC� (4.62)

with (:::) being the Wigner 3-j symbol. Its definition and properties are given in
Appendix 3.

Thus the solution for Kmj
l may be expressed as

Kmj
l D

1X

nD0
.iNk/n

�X

j0

g jj0

l � Lj0

�n

f mj
l : (4.63)

Then Eq. (4.55) with Eq. (4.63) gives the desired formal solutions. Integration of the
results over� leads to

I.k j u0IL/ D 23=2�
1X

nD0
.iNk/n

�X

j

g0j
0 � Lj

�n

f 000 ; (4.64)

I.kIL/ D 23=2�
1X

mD0
.�1/m Nk2m

�X

j

g0j
0 � Lj

�2m

f 000 ; (4.65)

where the prime on j has been omitted, and the range of summation over j is
explicitly shown in the next subsection.

4.3 Moments

The moments hR�u0i and hR2i (and hence also hS2i) can readily be obtained [7] from
Eq. (4.33) by the procedure of Hermans and Ullman [20]. In general, however, the
moments h.R � u0/ni and hR2mi may be more efficiently evaluated from operational
expressions for them [18] as in the case of the KP chain.
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4.3.1 h.R � u0/ni

Expanding .� � � /nf 000 in Eq. (4.64), we obtain

I.k j u0IL/ D
1X

nD0
.ik/n

X

q�n

.2qC 1/1=2
X

paths
.0!q/

X

	

X

j

.�1/.1=2/.n�n0/

�2�.1=2/.n�n0/C	j
� �

j
0���q.L/ cosn0
 sin.n�n0/
 ; (4.66)

where

C	j
� D . f 0jn

q /�1a	njn
�n

a	n�1jn�1
�n�1

� � � a	2 j2
�2

a	10�1 f 000 ; (4.67)

�
j
0���q.L/ D g000 � g0j2

l1
� gj2 j3

l2
� � � � � gjn�1jn

ln�1
� gjn0

q (4.68)

with n0 the number of a0j
� in C	j

� and with

lr D
rX

iD1
�i 	 0 .l0 D 0; ln D q/ ; (4.69)

nX

iD1
	i D 0 ; (4.70)

j jrj � min.lr; lr�1/ . j0 D j1 D jnC1 D 0/ : (4.71)

Note that C	j
� is a constant independent of L, that Eq. (4.70) holds because of the

first line of Eqs. (4.59), and that min.a; b/ denotes the smaller of a and b. � j
0���q.L/

may be expressed as a sum of residues pi of the function Q. p/,

Q. p/ D
eLp

nY

rD1
A

jrC1jr
lr

. p/

nY

rD0

lrY

kD�lr

.pC zlr ;k/

; (4.72)

where Aj0j
l . p/ and zl;k have been defined in Eq. (4.43). In Eq. (4.66), the third sum is

taken over all possible paths .0l1l2 � � � ln�1q/ from 0 to q, which are different from
those for the KP chain since the case of �i D 0 may occur in the present case, the
fourth sum is taken over 	1, � � � , 	n compatible with Eq. (4.70), and the fifth sum is
taken over j1, � � � , jn compatible with Eq. (4.71).
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If we choose ek D ez.D u0/, that is, 
 D 0, and compare Eq. (4.66) with
Eq. (3.57), then we obtain

h.R � u0/ni D nŠ
X

q�n

.2qC 1/1=2
X

paths
.0!q/

X

j

C0j
��

j
0���q.L/ ; (4.73)

where only the terms with n D n0, that is, 	i D 0 for all i make contribution, so that
�i is nonzero and the paths are the same as those for the KP chain.

In particular, hR � u0i for � D 0 is given by

hR � u0i D 1

2
c1 � 1

	2
e�2L

	
1

2
� 20 C

� 2
0

r2
Œ2 cos.	L/� 	 sin.	L/�



; (4.74)

where

c1 D 4C � 20
4C � 2

0 C � 20
; (4.75)

	 D .� 2
0 C � 20 /1=2 ; (4.76)

r D .4C 	2/1=2 : (4.77)

4.3.2 hR2mi and hS2i

By expanding .� � � /2mf 000 , Eq. (4.65) may be reduced to Eq. (3.67) with

hR2mi D .2mC 1/Š
X

paths
.0!0/

X

j

C0j
��

j
0���0.L/ ; (4.78)

where the paths are again the same as those for the KP chain. We note that when
�0 D 0, only the terms with ji D 0 for all i make contribution and Eqs. (4.73)
and (4.78) reduce to Eqs. (3.64) and (3.69), respectively. In the calculation of hR2mi,
Eq. (4.72) reduces to

Q. p/ D
eLp

2m�1Y

rD1
A

jrC1jr
lr

. p/

mY

jD0

� jY

kD�j

.pC zj;k/

�xj
; (4.79)
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where xj is the number of the factors with lr D j for a given k in the denominator
of Eq. (4.72). If we assume that all zj;k are different and that the right-hand side of
Eq. (4.79) is already a simple fraction, the formula for residues gives

�
j
0���0.L/ D

mX

jD0
xj 6D0

1

.xj � 1/Š
jX

kD�j

�
dxj�1

dpxj�1 .pC zj;k/
xj Q. p/

�

pD�zj;k

: (4.80)

Thus, on recalling that xj � m � jC 1, hR2mi may be written in the form

hR2mi D
mX

jD0

mX

iDj

jX

kD�j

A.m/ijk Li�j exp.�zj;kL/ ; (4.81)

where A.m/ijk are coefficients independent of L but dependent on �0; �0, and � .
It has been found that hR2mi are rather insensitive to change in � for flexible

chains [18]. Thus, in the remainder of this book, we set � D 0 for these chains, for
simplicity. (In the case of, for instance, circular DNA, we consider the KP1 chain
with � 6D 0.) In the case of � D 0, in Eq. (4.81) zj;k is given by Eq. (4.45) and the

coefficients A.m/ijk (m D 1, 2) as functions of �0 and �0 are given in Appendix B. In
particular, hR2i is given by

hR2i D c1L � � 20
2	2
� 2�

2
0 .4 � 	2/
	2r4

Ce�2L

	2

	
� 20
2
C 2� 2

0

r4
�
.4 � 	2/ cos.	L/� 4	 sin.	L/

�

: (4.82)

From Eqs. (2.26) and (4.82), we then obtain for the mean-square radius of gyra-
tion hS2i

hS2i D � 20
	2
hS2iKP C � 2

0

	2r2

�
rL

3
cos' � cos.2'/C 2

rL
.cos 3'/

� 2

r2L2
cos.4'/C 2e�2L

r2L2
cos.	LC 4'/

�
; (4.83)

where

' D cos�1
�
2

r

�
; (4.84)
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and hS2iKP is the hS2i for the KP chain of the same contour length and is given by
Eq. (3.6), that is,

hS2iKP D L

6
� 1
4
C 1

4L
� 1

8L2
.1 � e�2L/ : (4.85)

It is seen from Eqs. (4.82) and (4.83) that in the limit of L! 0 (at finite �0 <1)
the rod limits of Eqs. (3.7) are still obtained, while in the random-coil limit of L!
1 there hold the relations

hR2i D 6hS2i D c1L for L!1 : (4.86)

If lengths are unreduced, we obtain, from Eqs. (2.28), (2.29), (4.74), and (4.82), for
the Kuhn segment length AK and the persistence length q,

AK D 2q D c1��1 � ��1 ; (4.87)

where the third inequality holds since c1 � 1, as seen from Eq. (4.75), the third
equality holding in the case of the KP chain (�0 D 0 and c1 D 1).

In order to apply the continuous model to a real chain, the total contour
length L of the former must be converted to the number of repeat units (degree
of polymerization) x or the molecular weight M. This is done conveniently by
introducing a shift factor ML as defined by ML D M=(unreduced)L. Thus, in the
case of the HW model for flexible polymers, �0(reduced), �0(reduced), ��1, and ML

may be chosen as the basic model parameters (with � D 0). In this subsection we
compare HW values with RIS values for hR2i, which is in general experimentally
unobservable. (A comparison with experiment is made for hS2i in the next chapter.)

Now we equate the hR2i for the HW and RIS models to each other, so that the
characteristic ratio Cn of the latter .n D 2x/may be related to the hR2i of the former,
which we denote by hR2iHW D fR.LI �0; �0/, by the equation,

Cn D 1

2
.�l/�2ı�1L�1fR.LI �0; �0/ (4.88)

with

log x D log LC log ı ; (4.89)

where l is the bond length and ı D ��1M0=ML with M0 the molecular weight
of the repeat unit. The quantities .�l/�2ı�1 and ı may then be determined from
a best fit of a plot of the quantity on the right-hand side of Eq. (4.88) against
log L for properly chosen values of �0 and �0 to that of Cn against log x. Thus
we may determine the HW model parameters �0, �0, ��1, and ML for a given RIS
chain. Figure 4.5, which corresponds to Fig. 2.4, shows such plots, where the points
represent the RIS values for PM [21], PDMS [21, 22], i-PS [23], and s-PMMA
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Fig. 4.5 Characteristic ratio
Cn plotted against log x with x
the number of repeat units.
The points represent the RIS
values [6, 21–23], and the
curves represent the
corresponding best-fit HW
values

43210
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s-PMMA
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PDMS

log x
C

n
Table 4.1 Values of the HW
model parameters from RIS
values of Cn

Polymer Temp. (ıC) �0 j�0j ��1 (Å) ML (Å�1)

PM 140 0:6 0 14:5 11:5

PDMS 110 1:2 0 16:0 25:0

i-PS 27 8:5 15:0 29:4 43:0

s-PMMA 27 4:2 1:0 60:0 38:0

[6], and the curves represent the corresponding best-fit HW values. The values of
the HW model parameters so determined are given in Table 4.1. A discussion of
the results is deferred to Sect. 4.4.4. We only note that it is difficult to determine
unambiguously these parameters from Cn for the first three polymers in Table 4.1.

4.3.3 Persistence Vector

The persistence vector A of the HW chain is defined as the average of the end-to-
end vector R with the orientation �0 of the initial localized Cartesian coordinate
system (e�0 , e�0 , e�0) fixed [24],

A D hRi�0 : (4.90)

In what follows, we omit the subscript 0 which refers to the initial localized system.
We then express A as

A D h�ie� C h�ie� C h�ie� ; (4.91)

where it is evident that h�i D hR � a0i D �hR � ai, h�i D hR � b0i D hR � bi, and
h�i D hR �u0i D hR �ui. The reason for the nomenclature of A is that the persistence
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length q may also be expressed in terms of A as

q D lim
L!1 A � u0 ; (4.92)

as seen from Eq. (4.91).
For flexible chains .� D 0/ the above components of A (in the initial localized

system) may readily be evaluated to be [24, 25]

h�i D �0

r2
� �0

	r2
e�2L

�
	 cos.	L/C 2 sin.	L/

�
;

h�i D �0�0

2r2
� �0�0

	2
e�2L

	
1

2
� 1

r2
�
2 cos.	L/� 	 sin.	L/

�

; (4.93)

h�i D hR � u0i ;

where hR � u0i is given by Eq. (4.74).
For the RIS model Flory [26, 27] has defined its persistence vector A (a in his

notation) as the mean end-to-end vector hRi1;2 with the first and second bonds fixed,
and used a molecular Cartesian coordinate system (ex, ey, ez) such that the x axis is
taken along the first bond, the y axis is in the plane of the first and second bonds with
its direction chosen at an acute angle with the second bond, and the z axis completes
the right-handed system, as depicted in Fig. 4.6. Thus we express this A as

A D hRi1;2 D hxiex C hyiey C hziez : (4.94)

Now we wish to equate the A for the two models in order to compare them. It
should then be noted that the vector u0 of the HW chain is not necessarily in the
direction of the first bond of the RIS chain (see Fig. 4.6). Therefore, suppose that
the (initial) HW localized coordinate system (e� , e�, e�) is obtained by rotation of
the (initial) RIS model coordinate system (ex, ey, ez) by the Euler angles Q� D . Q� ,
Q�, Q ) [not to be confused with Q� in Eq. (4.56)]. If A.�; �; �/ and A.x; y; z/ are the
column forms of A of the HW chain in the two systems, we have

A.�; �; �/ D Q. Q�/ � A.x; y; z/ ; (4.95)

where Q is the rotational transformation matrix and is given by

Q D

0

B@
c Q�c Q�c Q � s Q�s Q c Q� s Q�c Q C c Q�s Q �s Q�c Q 
�c Q�c Q�s Q � s Q�c Q �c Q� s Q�s Q C c Q�c Q s Q� s Q 

s Q� c Q� s Q� s Q� c Q�

1

CA : (4.96)
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Fig. 4.6 Initial localized
Cartesian coordinate systems
(�, �, �) and (x, y, z) of the
HW chain and the RIS model,
respectively

ξ

η

ζ

x

y

z

a0
b0

u0

RIS

HW

Table 4.2 Values of the HW model parameters from RIS values of A

Polymer Q� (deg) Q� (deg) Q (deg) �0 �0 ��1 (Å) ML (Å�1)

PM 85:3 35:8 340:0 0:5 4:0 15:2 10:1

PDMS 89:4 23:0 270:0 0:8 0:05 15:8 19:6

i-PS 120:1 41:2 230:0 13:5 �16:5 33:5 41:2

s-PMMA 69:6 28:4 67:0 3:7 0:3 54:0 35:7

with s Q� D sin Q� , c Q� D cos Q� , and so on. Thus the components of A.x; y; z/ calculated
from the inverse of Eq. (4.95) by assigning proper values to Q� may be equated to
hxi; hyi, and hzi (of the RIS model).

The comparison is made as follows. The parameters to be determined are �0,
�0, ��1, ML, and Q�. Let A1 be A for an infinitely long chain. We first equate
A1 D jA1j of the HW chain to that of the RIS model, that is,

��1A1;HW D A1;RIS ; (4.97)

where we note that the A of the latter has not been reduced by ��1. A1;HW may
be computed from Eqs. (4.93) for properly chosen values of �0 and �0, so that ��1
may be determined from Eq. (4.97) with the value of A1;RIS. With these values of
�0, �0, ��1, and A1, Q�may then be determined to give the coincidence between the
directions of A1 of the two models and also a best fit of values of the components
of ��1A.x; y; z/ of the HW chain as a function of L to those of hxi, hyi, and hzi of the
RIS model. Finally, ML may be determined, by the use of Eq. (4.89), from a best fit
of values of ��1AHW as a function of L to those of ARIS as a function of x (number
of repeat units), where A D jAj.

In Table 4.2 are given the results of such an analysis made [24] using the RIS
values for PM [28], PDMS [22], i-PS [29], and s-PMMA [29]. For illustration,
Figs. 4.7 and 4.8 show plots of hyi and hzi against hxi for PM and s-PMMA,
respectively. The filled and unfilled circles represent the RIS values of hyi and
hzi, respectively, the attached numbers indicating the values of x, and the curves
represent the corresponding best-fit HW values.
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Fig. 4.7 The components hyi
and hzi of the persistence
vector A plotted against the
component hxi for PM. The
filled and unfilled circles
represent the RIS values [28]
of hyi and hzi, respectively,
the attached numbers
indicating the values of x, and
the curves represent the
corresponding best-fit HW
values
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Fig. 4.8 Persistence vector A
for s-PMMA; see legend for
Fig. 4.7. The RIS values have
been taken from [29]
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For the KP chain, the components h�i and h�i vanish, so that both hyi and hzi are
directly proportional to hxi. It is seen from Fig. 4.7 that for the PM chain, whose �0
is rather small, hyi and hzi are nearly proportional to hxi, it being indeed close to
the KP chain. On the other hand, it is seen from Fig. 4.8 that the s-PMMA chain has
locally helical conformations. Thus it is a typical HW chain, whose Cn as a function
of x (or n) also exhibits salient behavior, it passing through a maximum at some
value of x before reaching C1 (see Fig. 4.5).

4.4 Angular Correlation Functions

In this section we examine in detail the behavior of the angular correlation functions

g jj0

l .L/ for flexible chains .� D 0/ and compare them with the corresponding

functions g jj0

l .x/ properly defined as functions of the number of repeat units x for
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the RIS model [19]. Baram and Gelbart [30] also considered an “angular correlation
function” for the RIS model, but it rather corresponds to the free-particle Green
function, its moments corresponding to the present g jj0

l .x/ defined in the Flory
localized coordinate system.

4.4.1 Explicit Expressions for � D 0

In the particular case of � D 0 we derive an explicit expression for g jj0

l .L/ by
expanding G.� j�0IL/ in terms of the eigenfunctions of the operator A given by
Eq. (4.31), which we denote by ‰mj

l .�/, instead of Dmj
l .�/ as follows,

G.� j�0IL/ D
X

l;m;j

h j
l .L/‰

mj
l .�/‰

mj�
l .�0/ : (4.98)

Thus we first consider the eigenvalue problem for A [31].
We rotate the localized coordinate system (�, �, �) by an angle ˛ about the � axis

to obtain a system (� 0, �0, � 0). Let ��� (� D �, �, �) and ���0 be the components
of the infinitesimal rotation�� in the two systems, respectively. We then have

0

@
���0

���0

���0

1

A D
0

@
1 0 0

0 cos˛ sin ˛
0 � sin ˛ cos˛

1

A

0

@
���

���

���

1

A : (4.99)

The components of the angular momentum operator L in the two systems may
therefore be related to each other as

L� D L�0 ;

L� D cos˛ L�0 � sin ˛ L�0 ; (4.100)

L� D sin˛ L�0 C cos˛ L�0 ;

so that if we set

˛ D � tan�1
�
�0

�0

�
.�� � ˛ � 0/ ; (4.101)

then Eq. (4.31) reduces to

A D 	L�0 � L2 ; (4.102)

where 	 is given by Eq. (4.76).
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Let �0 D .� 0, �0,  0) be the Euler angles defining the orientation of the system
(� 0, �0, � 0) with respect to an external coordinate system. As seen from Eqs. (4.102)
and (4.266), the eigenfunctions of A are just Dmj

l .�
0/ and its eigenvalues are found

to be the zl;j given by Eq. (4.45); that is,

A‰mj
l D zl;j‰

mj
l (4.103)

with ‰mj
l D Dmj

l .�
0/ and with

zl;j D l.lC 1/C ij	 : (4.104)

Since the rotation�0 is equal to the resultant of the two successive rotations� D .� ,
�,  ) and�˛ D .˛, ��=2, �=2), we use Eq. (4.263) to obtain

‰
mj
l .�/ D c �1

l

X

k

Dmk
l .�/Dkj

l .�˛/ ; (4.105)

where cl is given by Eq. (4.54).
Thus Eq. (4.98) may be rewritten as

G.� j�0IL/ D
X

l;m;k

c �2
l hk

l .L/
X

j

Dmj
l .�/D jk

l .�˛/

�
X

j0

Dmj0�
l .�0/Dj0k�

l .�˛/ : (4.106)

From Eq. (4.34) with Eqs. (4.98) and (4.103), we find

h j
l .L/ D exp.�zl;jL/ : (4.107)

By comparing Eq. (4.106) with Eq. (4.36), we obtain

g jj0

l .L/ D c �2
l

X

k

exp.�zl;kL/D jk
l .�˛/Dj0k�

l .�˛/ : (4.108)

This is the desired expression for g jj0

l .L/ [32].

4.4.2 The Rotational Isomeric State Model

For the RIS model we can affix a localized Cartesian coordinate system to its rigid
body part (the “monomer” unit) composed of two adjacent skeletal bonds, the pth
system to the part composed of the .p � 1/th and pth bonds. Let �0 D .�0, �0,
 0) and � D .� , �,  ) be the orientations of the pth and q.D p C n/th systems,
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respectively, with respect to an external coordinate system. If we assume that p� 1

and N � q � 1 with N the total number of skeletal bonds in the chain, we may
ignore end effects to define the Green function G.� j�0I n/.

If�1 is the orientation of the qth system with respect to the pth one, G.� j�0I n/
may be expanded in the form

G.� j�0I n/ D G.�1 j 0I n/
D
X

l;m;j

f mj
l .n/Dmj

l .�1/ ; (4.109)

where � D 0 denotes � D � D  D 0, and the expansion coefficients f mj
l depend

only on n (and the model parameters). Note that G is invariant to rotation of the
external coordinate system. Since the rotation�1 is equal to the resultant of the two
successive rotations ��1

0 and �, where ��1
0 is the inverse of the rotation �0, we

use Eq. (4.263) to have

Dmj
l .�1/ D c �1

l

X

m0

Dmm0

l .��1
0 /Dm0j

l .�/ ; (4.110)

where we have, from Eq. (4.262),

Dmm0

l .��1
0 / D Dm0m�

l .�0/ : (4.111)

Substitution of Eq. (4.110) with Eq. (4.111) into Eq. (4.109) leads to

G.� j�0I n/ D
X

l;m;j;j0

g jj0

l .n/Dmj
l .�/Dmj0�

l .�0/ (4.112)

with

g jj0

l .n/ D c �1
l f j0j

l .n/ : (4.113)

Thus the g jj0

l .n/ given by Eq. (4.113) are the angular correlation functions for the

RIS model corresponding to the g jj0

l .L/ for the HW chain, and Eq. (4.46) holds for

g jj0

l .n/. However, it is important to note that both g jj0

l .L/ and g jj0

l .n/ are invariant
to rotation of the external coordinate system but that the latter depends on the
orientation of the localized coordinate system affixed to the monomer unit with
respect to that monomer unit.

For the evaluation of g jj0

l .n/ it is convenient to use Eq. (4.113), where f mj
l .n/may

be expressed as

f mj
l .n/ D hDmj�

l .�q/i�pD0 (4.114)
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with

h� � � i�pD0 D
Z
.� � � /G.�q j�p D 0I n/d�q : (4.115)

We first evaluate f mj
l .n/ in the Flory localized coordinate system as defined below

and denote the g jj0

l .n/ thus evaluated in this system by hmj
l .n/, for convenience. Then

we transform hmj
l .n/ to g jj0

l .n/ expressed in a different localized coordinate system

appropriate for a comparison with g jj0

l .L/ for the HW chain. We note that the f mj�
l .n/

in the Flory localized system is equivalent to the quantity studied by Baram and
Gelbart [30].

Now, in order to evaluate the average in Eq. (4.114), we define explicitly the kth
localized coordinate system (exk , eyk , ezk) as follows. The zk axis is taken along the
kth bond vector lk, the xk axis is in the plane of lk�1 and lk with its direction chosen
at an acute angle with lk�1, and the yk axis completes the right-handed system, as
depicted in Fig. 4.9. Let O�k be the angle between lk and lkC1 (supplement of the bond
angle) and let O�k be the internal rotation angle about the kth bond with O�k D 0 in the
trans conformation, where we distinguish them from the Euler angles by the over
caret. This system is essentially the same as that employed by Flory and co-workers
[21] except that their (x, y, z) is replaced by (z, x, y). This minor change facilitates
the use of the Wigner D functions; the kth system is obtained by rotation of the
.k � 1/th one by the Euler angles ( O�k�1, O�k�1, �). The present system is referred to
as the Flory system, for convenience.

The qth system may then be obtained from the pth system by the n successive
rotations ( O�k, O�k, �). We therefore use successively Eq. (4.263) and recall the
relation, Eq. (4.256),

Dmj
l .0/ D clımj (4.116)

Fig. 4.9 The Flory localized
coordinate system (xk , yk, zk)
and the system (�k0 , �k0 , �k0 )
associated with the HW chain xk

yk

zk

ζk′

ξk′

ηk′

ψ̂
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to find for Dmj
l .�q/

Dmj
l .�q/ D c�nC1

l

X

fmg

q�1Y

kDp

DmkmkC1

l . O�k; O�k; �/

. mp D m; mq D j/ ; (4.117)

where the sums are taken over mpC1, mpC2, � � � , mq�1 D fmg. Thus the f mj
l .n/ given

by Eq. (4.114) (or its complex conjugate) may be expressed as

f mj�
l .n/ D Z�1 X

f O�N�2g
Dmj

l .�q/ expŒ�E.f O�N�2g/=kBT� ; (4.118)

where Dmj
l .�q/ is given by Eq. (4.117) and Z is the partition function given by

Eq. (2.18), that is,

Z D
X

f O�N�2g
expŒ�E.f O�N�2g/=kBT� : (4.119)

As shown in Appendix 2, the HW chain is a continuous limit of a hypothetical
(discrete) chain of “monomer units,” each composed of two adjacent skeletal bonds,
one localized system (e� , e�, e�) being affixed to one unit. In order to make a
comparison of the RIS model (or a given real chain) with the HW chain, one
localized system should be assigned to one monomer unit defined by two adjacent
skeletal bonds of the former so that the total number of systems affixed to the chain
of N bonds (with N even) is N=2. Then, the Flory system does not necessarily
coincide with the localized system of the HW chain as yet. Indeed, in the analysis
of the persistence vector A the orientation of one with respect to the other has been
determined to give best agreement between its components as functions of chain
length for the two models. In the present case, however, the orientation is, to some
extent, restricted to preserve certain symmetry relations for the HW chain in the RIS
model. The localized system of the RIS model thus determined to coincide with that
of the HW chain is described below, the symmetry relations being derived in the
next subsection.

The N bonds in the RIS model are numbered 1, 2, � � � , N or 0, 1, 2, � � � , N � 1
so that k; p; q, and n are always even; that is, k D 2k0, p D 2p0, q D 2q0, and
n D 2x, for simplicity. The k0th localized system (e�k0

, e�k0

, e�k0

) (k0 D 1, 2, � � � ) of
the RIS model corresponding to the system (e� , e�, e�) of the HW chain is obtained
by rotation of the kth Flory system (exk , eyk , ezk ) by the Euler angles O� D . 1

2
O�k�1, 0,

O ), assuming that jlkj D l for all k (see Fig. 4.9 and also Fig. 4.26). In other words,

e�k0

must be parallel to lk�1 C lk. Let g jj0

l .x; O / be the angular correlation functions
between the p0th and q0.D p0 C x/th systems thus obtained. It may be expressed
in terms of h jj0

l .n/ as follows. If �k0 D .�k0 , �k0 ,  k0 ) is the orientation of the k0th
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system with respect to the external system, we have, from Eq. (4.263),

Dmj
l .�k0/ D c �1

l

X

m0

Dmm0

l .�k/Dm0j
l . O�/ : (4.120)

From Eq. (4.46) for g jj0

l .n/ and Eq. (4.120), we find

g jj0

l .x; O / D exp
��i. j� j0/ O �

X

m

X

m0

dmj
l

� O�
2

�
dm0j0

l

� O�
2

�
hmm0

l .n/ ; (4.121)

where O� D O�p�1 D O�q�1 for the chain under consideration, and dmj
l .�/ is the

�-dependent part of Dmj
l .�/ and is defined by Eq. (4.252). The parameter O is

determined from a comparison of the RIS model with the HW chain.
In what follows, for simplicity, the argument O of g jj0

l .x; O / is omitted unless
necessary to specify, and the localized system affixed to the kth monomer (repeat)
unit is called the kth system (without the prime on k), so that g jj0

l .x/ are the angular
correlation functions between the pth and qth monomer units and are dependent on
p and q as x D q � p (for large p and N � q in the chain of N repeat units). Further,
we note that the restriction of the orientation of the localized system to be affixed to
the RIS model (or the real chain) depends on the physical property to be considered;
it may be somewhat relaxed for the persistence vector A and the orientation need
not be considered for the moments hR2mi.

4.4.3 Symmetry Relations

The angular correlation functions g jj0

l .L/ and g jj0

l .x/ have two kinds of symmetry;
one arises from the reality of the Green function, and the other from its invariance to
reversal of the initial and terminal ends of the chain or the numbering of the bonds.

The first symmetry relation may readily be obtained. The Green function is real,
so that

G� D G : (4.122)

Substitution of Eq. (4.36) or Eq. (4.112) into Eq. (4.122) and use of Eq. (4.257)
leads to

g jj0

l D .�1/jCj0g.�j/.�j0/�
l ; (4.123)

which is valid for both the HW and RIS models.
Next we consider the second symmetry. The contour length of the HW chain may

be measured from either end, and the bonds in the RIS model may be numbered
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from either end. We use the superscripts (C) and (�) to indicate the two senses of
measuring chain length, one being the reverse of the other. The localized system or
orientation (a, b, u) of the HW chain measured in the (C) sense becomes (a, �b,
�u) when measured in the (�) sense. A similar relation also holds for the RIS model
irrespective of the value of O . In other words, the Euler angles � D .� , �,  ) of
the localized systems of both the HW and RIS models measured in the (C) sense
become �.�/ D .� � � , � C � , � ) when measured in the (�) sense. Then the
distribution function is invariant to change of the sense of measuring chain length,
the distribution of the initial orientation being uniform. Therefore, this is also the
case with the conditional distribution function, that is, the Green function, so that
we have the relation for the HW chain,

G.�/.�.�/
0 j�.�/IL/ D G.C/.� j�0IL/ ; (4.124)

and the equivalent relation for G.� j�0I x/ for the RIS model. Let g.˙/jj
0

l .L/ be the
expansion coefficients of G.˙/.� j�0IL/. Since we have, by the use of Eqs. (4.269)
and (4.270), the relation,

Dmj
l .�

.�// D .�1/lDm.�j/
l .�/ ; (4.125)

we find, from Eq. (4.124) for the HW chain and from the equivalent for the RIS
model,

g.C/jj
0

l .L/ D .�1/ jCj0g.�/j
0j

l .L/ .HW/ ; (4.126)

g.C/jj
0

l .x; O / D .�1/ jCj0g.�/j
0j

l .x;� O / .RIS/ : (4.127)

In Eq. (4.127), note that the system .e�k , �e�k , �e�k ) assigned in the (�) sense is
obtained by rotation O�.�/.� O / of the Flory system assigned in the (�) sense when
the system (e�k , e�k , e�k ) in the (C) sense is obtained by rotation O�. O / of the Flory
system in the (C) sense.

For the HW chain, g.C/jj
0

l is identical to g.�/jj
0

l , and therefore we obtain, from
Eqs. (4.123) and (4.126), [with suppression of the superscripts (C) and (�)]

g jj0

l .L/ D g.�j0/.�j/�
l .L/

D .�1/jCj0gj0j
l .L/ .HW/ (4.128)

as the desired two symmetry relations. As seen from Eqs. (4.128), a consideration of
the ranges �l � j0 � 0 and j0 � j � �j0 suffices, so that the number of independent

jj0 components of the lth order angular correlation function g jj0

l is equal to .lC 1/2.
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Further, if Ng jj0

l and NNg jj0

l are the real and imaginary parts of g jj0

l , respectively, that is,

g jj0

l D Ng jj0

l C i NNg jj0

l ; (4.129)

then we have

NNg jj0

l D 0 for �0 D 0 ; (4.130)

as can easily be shown from Eqs. (4.42) and (4.43) with � D 0.
For the RIS model, the further deduction from Eqs. (4.123) and (4.127) requires a

consideration of the stereochemical configuration. Here summarize only the results
[19]. The symmetry relations for g jj0

l .x/ are the same as Eqs. (4.128) except for
NNg jj0

l .x/ for certain stereochemical sequences of asymmetric chains, provided that the
localized system is defined as above with assignment of a proper value of O ranging
from 0 to 2� . Fortunately, however, NNg jj0

l .x/, which are related to the asymmetry of
the chain, have been found numerically to be very small and of minor importance.
In particular, for symmetric chains the symmetry relations are completely the same
as Eqs. (4.128) if we take O D 0 or �; NNg jj0

l .x/ vanishing as in the case of the HW
chain with �0 D 0.

4.4.4 Numerical Results

For the HW model all components g jj0

l .L/ (l 	 1) vanish in the limit of L!1, as
seen from Eq. (4.108). On the other hand, for the RIS model some of the components

g jj0

l .x/ for l 	 2 approach finite values, or zero very slowly, as x becomes infinity,
as pointed out first by Baram and Gelbart [30]. This behavior of the RIS model is
unphysical and is again discussed in the next chapter. Thus we examine numerically
the behavior of only Ng jj0

1 , for which the symmetry relations for the two models
may be the same. (Note that g00l D 1.) We then choose as its four independent

components Ng001 ; Ng0.�1/1 ; Ng1.�1/1 , and Ng.�1/.�1/1 . For the HW chain they are explicitly
given, from Eq. (4.108), by [25]

Ng 00
1 .L/ D

1

	2
e�2L

�
� 2
0 cos.	L/C � 20

�
;

Ng 0.�1/
1 .L/ D �0p

2	
e�2L sin.	L/ ;

(4.131)

Ng 1.�1/
1 .L/ D � 2

0

2	2
e�2L

�
1 � cos.	L/

�
;

Ng .�1/.�1/
1 .L/ D 1

2	2
e�2L

�
� 2
0 C .	2 C � 20 / cos.	L/

�
:
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For the RIS model the corresponding components Ng jj0

1 .x/ may be calculated from
Eq. (4.121) with Eqs. (4.113) and (4.118).

Now we equate the Ng jj0

1 for the two models,

Ng jj0

1 .L/ D Ng jj0

1 .x/ ; (4.132)

where L is related to x by Eq. (4.89). Thus we may determine �0; �0; O , and ı
from best fits of HW values of Ng jj0

1 plotted against log L to the RIS values plotted
against log x. We note that for both the HW and RIS models the mean-square end-
to-end distance hR2i may be expressed in terms of g001 , and the persistence vector

A in terms of g001 and g0.�1/1 . Since g jj0

l is a dimensionless quantity, ��1 and ML

cannot be determined separately from ı. We therefore assume here the values of ML

determined from A [24].
In Table 4.3 are given the values of the HW model parameters so determined

for PM, PDMS, i-PS, s-PS, i-PMMA, and s-PMMA. Among them, the first two are
symmetric chains, and for PDMS the part containing the Si�O and O�Si bonds
has been chosen as the monomer unit. The remaining are asymmetric chains and
the part containing the C�C˛ and C˛�C bonds (with C˛ the ˛ carbon) has been
chosen as the monomer unit. The values of the RIS parameters necessary for the
calculation of Ng jj0

1 .x/ have been taken from [21, 22, 33, 34] (see Table 4.3). We note

that for the above polymers the effect of chain ends on Ng jj0

1 .x/ may be neglected for
p D N � q 	 20.

For illustration, values of Ng jj0

1 C �
jj0

1 with �
jj0

1 being constants are plotted
against log x in Figs. 4.10 and 4.11 for PM and s-PMMA, respectively. The points
and curves represent the RIS and HW values calculated as mentioned above,
respectively. There is good agreement between the values for the two models
except for Ng.�1/.�1/1 , especially for PM. The reason for this is the following. For

Table 4.3 Values of the HW model parameters from RIS values of Ng jj0

1

Polymer O (rad) �0 j�0j ��1 (Å) ML (Å�1)a Ref. (RIS parameters)

PM � 0.3 0 14.5 10.1 [21]

PDMS 0 0.8 0 15.3 19.6 [21, 22]

i-PS 3
2
� 11 15 26.4 41.2 [33]

s-PS 0 0.8 2.3 40.4 38.9 [33]

i-PMMA � 1.7 1.4 32.7 33.5 [34]

s-PMMA � 4.4 0.8 65.6 35.7 [34]
a From RIS values of A
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Fig. 4.10 Ng jj0

1 C �
jj0

1 plotted
against log x for PM with x
the number of repeat units.
The points and curves
represent the RIS and HW
values, respectively, the
numbers in parentheses
indicating the values of (j, j0;

�
jj0

1 )
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Fig. 4.11 Ng jj0
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1 plotted
against log x for s-PMMA;
see legend for Fig. 4.10

1.51.00.50

0.9

0.6

0.3

0

−0.3

(0 ,−1;0.6)

(1 ,−1;0.3)

(0 ,0 ;0)

(−1 ,−1;−0.3)

log x
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a straight rod which is permitted to undergo torsional deformation about its axis, the
component g.�1/.�1/1 is given, from Eq. (4.46), by

Ng.�1/.�1/1 .L/ D hcos. �  0/i ;
.rod/ ; (4.133)

NNg.�1/.�1/1 .L/ D hsin. �  0/i ;

where � D �0 and � D �0. Thus the g.�1/.�1/1 for both models may be regarded
as being closely related to the torsional correlation between two monomer units.
Therefore, the slower decay of this component for the HW chain implies that
its torsional correlation is rather of long range. This is understandable and may
probably be a defect of the elastic wire model.

Now we are in a position to discuss the results in Table 4.3 along with those in
Tables 4.1 and 4.2. We first consider the meaning of the results obtained for O . This
angle determines the direction of the �k axis of the localized system (e�k , e�k , e�k ) of
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eζ = u

eη = b
eξ = a

Fig. 4.12 Localized coordinate system affixed to the monomer unit in the local all-trans sequence
of bonds in a PMMA chain with O D � . The filled circles represent the ˛ carbons, and u is in the
direction of the local axis of the chain fully extended

the RIS model and therefore the direction of the unit mean curvature vector a D e�
of the corresponding HW chain at that point when e�k is chosen to coincide with the
unit tangent vector u D e� of the latter. In the case of PDMS and PMMA the chain
is given a local curvature by the inequality of the two skeletal bond angles with
a sequence of successive trans conformations being preferred [6, 21, 22, 34]. For
example, the ˛ carbons in the local all-trans sequence of bonds in the PMMA chain
are located on a circle (not a straight line), and the direction of e� D a coincides with
that of the curvature vector of this circle toward its center if O D �; u being in the
direction of the local axis of the chain fully extended, as depicted in Fig. 4.12. We
note that in general, O D 3�=2 and 0 for isotactic and syndiotactic monosubstituted
asymmetric chains, respectively, while O D � for both isotactic and syndiotactic
disubstituted asymmetric chains. Thus, in the adaptation of the HW model to a given
real chain, we can determine the orientation of the localized coordinate system of
the former with respect to the monomer unit, and therefore also express definitely,
for instance, the electric dipole moment vector and optical polarizability tensor of
the monomer unit in that system.

As for the HW model parameters �0, �0, ��1, and ML, their values obtained from
different properties (Cn; A, and g jj0

l ) are seen to be rather in good agreement with
each other. This is also the case with other properties, provided that the HW model
is adapted to a real chain on the bond length or somewhat longer scales. In general,
the parameters �0 and �0 describe the preferred local chain conformation, and the
parameter ��1 represents the chain stiffness, as already mentioned (� represents the
degree of thermal fluctuation). Of the polymers listed in Table 4.3, the s-PMMA
chain is the most stiff, while the PM chain is the most flexible, and moreover, close
to the KP chain. The parameter ML is related to the chemical structure of the chain.
The significance of these parameters is further discussed in the next subsection, and
in more detail in later chapters, giving a picture of the chain conformation on the
basis of their values determined from experiment for a given polymer.
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4.5 Helical Nature of the Chain

The HW model may be characterized simply by the behavior of the ratio hR2i=c1L
(D Cn=C1) as a function of the contour length L (or the number of repeat units x).
It is therefore worth while to establish relations between the model parameters �0
and �0 and the behavior of this ratio, assuming that � D 0.

Figure 4.13 shows a (�0, �0)-plane, where we consider only its first quadrant since
�0 is nonnegative and hR2i is an ever function of �0. The diameter 2� and pitch h of
the characteristic helix are equal to each other on the straight line,

�0

��1�0
D 1

�
D h

2�

�
; (4.134)

passing through the origin, as seen from Eqs. (4.14); and 2� > h and 2� < h
below and above it, respectively. If �0 and �0 (and hence the stiffness parameter
��1) become very large, the chain approaches the characteristic helix, so that its
helical nature becomes strong, as illustrated in the figure. In other words, the thermal
fluctuation in the chain conformation from the characteristic helix is small for very
large �0 and �0. (Recall that �0 and �0 are reduced by �.) If �0 becomes very small,
the chain approaches the KP chain irrespective of the value of �0. In the limit of
the KP chain with �0 D 0, the characteristic helix degenerates into the straight line
(rod), the type-1 or -2 rod according to the KP1 or KP2 chain (see Fig. 4.4).

The (�0, �0)-plane may be divided into three domains I, II, and III, as shown in
Fig. 4.13, where the dashed curve a is the boundary between the domains I and II,
and the dot-dashed curve b is the boundary between the domains II and III. The
ratio hR2i=c1L as a function of L exhibits at least one maximum in the domains I
and II, and the first peak (occurring as L is increased) is higher and lower than the
coil-limiting value of unity in I and II, respectively. In the domain III the ratio is an
increasing function of L but exhibits inflection in some cases.

In Table 4.4 are given five sets of values of �0 and �0 as typical examples along
with the domain of each code and the values of c1. Values of hR2i=c1L are plotted

Fig. 4.13 Characteristics of a
(�0, �0)-plane. It is divided
into three domains I, II, and
III according to the type of
the first maximum of
hR2i=c

1

L as a function of L
(see the text)
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Table 4.4 Typical values of
the HW model parameters
and their domains

Code Domain �0 �0 c
1

1 I 2:5 0.5 0.40476

2 I 5:0 1.0 0.16667

3 III 1:0 1.0 0.83333

4 III 3:0 6.0 0.81633

5 II 30:0 8.0 0.07025

Fig. 4.14 hR2i=c
1

L plotted
against log L for the HW
codes of Table 4.4, and also
for the KP chain and the
random coil (C)
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against log L in Fig. 4.14 for these codes. It also includes the values for the KP chain
and the random coil (C). We note that typical HW chains belong to the domain I and
that the cases belonging to the domain II rarely occur for real chains.

4.6 Distribution Functions

The most general distribution function for the HW chain of contour length L is
the Green function G.R; � j�0IL/, which is obtained by Fourier inversion of the
characteristic function I.k; � j�0IL/. In Sect. 4.2.3 we have already obtained the
formal solutions for I.k j u0IL/ and I.kIL/ as its special cases. In this section we
generalize the procedure to find the formal solution for I.k; � j�0IL/ and then
general developments for G.R; � j�0IL/ for the case of � ¤ 0. For the latter
we explore two types of asymptotic expansions: the Daniels-type distributions and
the moment-based distributions [35], as in the case of the KP chain. We note that
G.R j�0IL/ corresponds to the moment-based distribution function considered by
Flory [26, 27] for the RIS model.
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4.6.1 General Developments

The starting equation is the integral equation (4.49) for I.k; � j�0IL/, where u0 is
chosen to be in an arbitrary direction .u0 ¤ ez/. The solution for I may then be
expanded in the form

I.k; � j�0IL/ D
X

Kmm0;jj0

ll0 .kIL/Dmj
l .�/Dm0j0�

l0 .�0/ (4.135)

with

Kmm0;jj0

ll0 D
1X

nD0
.iNk/n

�X

j00

g jj00

l � Lj00

�n

f mm0 ;jj0

ll0 ; (4.136)

where Nk is given by Eq. (4.58) and f mm0;jj0

ll0 is given by

f mm0;jj0

ll0 D g jj0

l ıll0ımm0 : (4.137)

The operator Lj00 is defined by Eq. (4.60), where the operators a	j00
� operate on g jj0

l in

the same way as in Eq. (4.61) and also operate on Kmm0;jj0

ll0 and f mm0;jj0

ll0 to change only
the indices l, m, and j (not l0, m0, and j0) in the same way as in Eq. (4.62).

Now, in order to simplify the operational equation, we rotate the external
coordinate system by the Euler angles Q� D .
, !, 0) to take ek D ez, that
is, 
 D 0 (D !). Then only the terms with 	 D 0 make contribution since
Y	1 .0; !/ D .3=4�/1=2ı	0. In what follows, let Kmm0;jj0

ll0 denote its value in this new
system. It becomes a spherically symmetric function of k such that

Kmm0 ;jj0

ll0 .kIL/ D Kmm;jj0

ll0 .kIL/ımm0 (4.138)

with

Kmm;jj0

ll0 .kIL/ D
X

n�jl�l0 j
.ik/n

X

paths
.l!l0/

X

j

C0j
� .l;m/�

j
l���l0.L/ ; (4.139)

where

C0j
� .l;m/ D . f mm;jnj0

l0l0 /�1a0jn
�n

a0jn�1
�n�1
� � � a0j1

�1
f mm;jj0

ll0 ; (4.140)

�
j

l���l0.L/ D g jj1
l � gj1j2

l1
� gj2 j3

l2
� � � � � gjn�1jn

ln�1
� gjnj0

l0 (4.141)
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with

lr D lC
rX

iD1
�i 	 jmj .l0 D l; ln D l0/ ; (4.142)

	i D 0 ; (4.143)

j jrj � min.lr; lr�1/ : (4.144)

In Eq. (4.139), the second sum is taken over all possible paths .ll1l2 � � � ln�1l0/ from
l to l0 (for which the case of �i D 0 may occur), and the third sum over j1, � � � , jn
compatible with Eq. (4.144).

In the present case of 	 D 0, Eq. (4.62) reduces to

a0j00
� Kmm;jj0

ll0 D Emj00

lC.1=2/.��1/K
mm;j00 j0

.lC�/l0 for � D ˙1

D Fmj00

l Kmm;j00j0

ll0 for � D 0 (4.145)

with

Emj
l D

�
.lC 1C m/.lC 1 � m/.lC 1C j/.lC 1 � j/

.lC 1/2.2lC 1/.2lC 3/
�1=2

; (4.146)

Fmj
l D

mj

l.lC 1/ for l ¤ 0

D 0 for l D 0 : (4.147)

Thus the operation (on a computer) becomes easy in the system with ek D ez.
We perform transformation back into the original system by rotating the ek D ez

system by the Euler angles Q��1. Let �0 D .� 0, �0,  0) be the Euler angles defining
the orientation of the localized coordinate system (e� , e�, e�) in the latter system,
and we have, from Eq. (4.263),

Dmj
l .�

0/ D c �1
l

X

m0

Dmm0

l . Q��1/Dm0j
l .�/ : (4.148)

Equation (4.135) may therefore be rewritten in the form

I.k; � j�0I L/ D
X

li;mi;m;ji

.cl1cl2 /
�1Kmm;j1j2

l1 l2
.kIL/

�Dmm1
l1

. Q��1/Dmm2�
l2

. Q��1/Dm1j1
l1

.�/Dm2 j2�
l2

.�0/ ; (4.149)
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where the sum over m is taken for jmj � min.l1; l2/, and Kmm;j1j2
l1l2

is given by
Eq. (4.139) and is invariant to rotation [l1, l2, j1, and j2 not to be confused with
those in Eqs. (4.142) and (4.144)].

By the use of Eq. (4.260), the product of the first two D functions may be
expanded in terms of Dm3j3

l3
. Further, we have, from Eq. (4.262) with Eq. (4.254),

D0j
l .
Q��1/ D .2�/�1=2.�1/. jCj jj/=2Y�j

l .
; !/ : (4.150)

Equation (4.149) may then be further rewritten in the form

I.k; � j�0IL/ D
X

li;mi;ji

Im1m2;j1 j2
l1l2l3

.kI L/Dm1 j1
l1

.�/

�Dm2 j2�
l2

.�0/Y
m2�m1
l3

.
; !/ (4.151)

with

Im1m2;j1j2
l1 l2l3

.kIL/ D
X

m

.�1/.1=2/.jm1�m2jCm1�m2/Cm�m1
�
4�.2l3 C 1/

�1=2

�
�

l1 l2 l3
m �m 0

��
l1 l2 l3
m1 �m2 m2 �m1

�
Kmm;j1 j2

l1 l2
.kIL/ ; (4.152)

where we have used the selection rules for the 3-j symbol given by Eqs. (4.276)
and (4.277), so that j3 D m1 � m2, and l1, l2, and l3 satisfy the triangular
inequalities. Equation (4.151) with Eq. (4.152) is the desired general development
of the characteristic function.

The Green function G.R; � j�0IL/ is obtained by Fourier inversion of
Eq. (4.151). If we express R as R D .R, �, ˚) in spherical polar coordinates
and use Eq. (3.143) with Eq. (3.142), that is,

exp.�ik � R/ D 4�
X

l;m

.�i/ljl.kR/Ym
l .�;˚/Y

�m
l .
; !/ ; (4.153)

where jl.x/ is the spherical Bessel function of the first kind defined by

jl.x/ D .2x/l
1X

rD0

.�1/r.lC r/Š

rŠ.2lC 2rC 1/Šx
2r ; (4.154)

then we find

G.R; � j�0IL/ D
X

li;mi ;ji

Gm1m2;j1j2
l1l2l3

.RIL/Dm1j1
l1

.�/

�Dm2 j2�
l2

.�0/Y
m2�m1
l3

.�;˚/ (4.155)
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with

Gm1m2;j1j2
l1 l2l3

.RIL/ D .2�2/�1.�i/l3
Z 1

0

k2 jl3 .kR/Im1m2;j1 j2
l1l2 l3

.kIL/dk : (4.156)

Equation (4.155) with Eq. (4.156) is the desired general development of the
distribution function.

In particular, we have

G.R j u0 D ez; a0 D exIL/ D
X

l;m

.2lC 1/1=2

�G0m;0m
0ll .RIL/Ym

l .�;˚/ ; (4.157)

G.R j u0 D ezIL/ D
X

l

.2lC 1/1=2G00;000ll .RIL/Y0l .�;˚/ ; (4.158)

G.RIL/ D .4�/�1=2G00;00000 .RIL/ : (4.159)

4.6.2 Daniels-Type Distributions

The Gobush operator ıL [36] introduced in the evaluation of the Daniels-type
distribution function [37] for the KP chain operates on the basis functions, while
the creation and annihilation operators a	� operate on the coefficients of expansion
in terms of the basis functions. As shown in Sect. 3.4.1, however, ıL may be written
in terms of a	� and the two representations have one-to-one correspondence. Thus
the present formulation [35] follows the latter procedure but is closely related to the
development [38] leading to Eq. (3.83) by the use of ıL written in terms of a	�.

The problem is to expand the G ������ .RIL/ given by Eq. (4.156) in inverse powers
of L, suppressing all exponential terms of order exp.�const:L/. This is the Daniels
approximation to G.R; � j�0IL/. For this purpose, we first consider the expansion
of Kmm;jj0

ll0 .kIL/. As seen from Eqs. (4.43), (4.139), and (4.141), those paths for which

all lrs are positive lead to only the exponential terms in Kmm;jj0

ll0 . In the Daniels
approximation it is therefore sufficient to consider contributions from those paths
for which at least one of the lrs is zero. Then we need only to consider K00;jj0

ll0 with
m D 0 since according to Eq. (4.142) lr > 0 for all r if jmj > 0, so that only the

operators a0j00
� with � D ˙1 (¤ 0) appear, as seen from Eqs. (4.145) and (4.147).

Now we consider the Laplace transforms QK00;jj0

ll0 .kI p/ and Q� j
l���l0. p/ of K00;jj0

ll0 .kIL/
and � j

l���l0.L/, respectively, in Eq. (4.139). The paths from l to l0 may be conveniently
represented by the stone-fence diagrams in an .i; li/-plane as in Fig. 3.3. Under the
conditions above, each of these paths may be decomposed into irreducible paths
(ll1 � � � 0), (0li � � � 0), � � � , (0lj � � � 0), and (0lk � � � ln�1l0). By the term irreducible, we
mean that all of the indices specifying such a path are positive except the initial and
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terminal ones. Then QK00;jj0

ll0 may be written in the form

QK00;jj0

ll0 D
X

n�jl�l0j

X

paths

�0�
k0�1�

k1�2 � � ��km�1�m�
km�T ; (4.160)

where k˛ are nonnegative integers,�T � �mC1, and

�˛ D
�
ı˛;mC1 C .1 � ı˛;mC1/p

�
.ik/s˛

X

j˛

C0j˛
�˛
Q� j˛
l˛
. p/

.0 � ˛ � mC 1/ (4.161)

with s˛ 	 4 for 1 � ˛ � m; and

� D p.ik/2C00
1.�1/ Q� 0

010. p/

D � k2

3pf . p/

�
.pC 2C �/2 C � 20

�
(4.162)

with

f . p/ D .pC 2/�.pC 2C �/2 C � 20
�C � 2

0 .pC 2C �/ : (4.163)

In Eq. (4.161), the sets �˛ , j˛ , and l˛ are associated with the irreducible subpath
�˛, and the arguments of C0j˛

�˛ have been omitted, for simplicity. The factor �0

corresponds to an initial s0-step subpath .l ! 0/, �˛ (1 � ˛ � m) to an s˛.	 4/-
step subpath .0 ! 0/, �T to a terminal smC1-step subpath .0 ! l0/, and � to a
two-step subpath (010). Note that �0 D 1 and s0 D 0 when l D 0, that �T D p�1
and smC1 D 0 when l0 D 0, and that

n D 2
mX

˛D0
k˛ C

mC1X

˛D0
s˛ : (4.164)

In Fig. 4.15 is shown a diagram corresponding to a term in Eq. (4.160) with n D 25,
m D 2, k0 D 1, k1 D 0, k2 D 2, l D 2, l0 D 3, l0 D .210/, l1 D .01232343210/,
l2 D .01210/, and l3 D .0123/, for illustration.

The sums over n and over paths in Eq. (4.160) may be converted to sums over m,
k0, k1, � � � , km (each from 0 to1) and over all possible subpaths �0, �1, � � � , �m,
and�T. We then obtain

QK00;jj0

ll0 D
1X

mD0

1X

rD0

�
mC r

m

�
�r
X

f�˛g
�0�1 � � ��m�T

D .
X

�0

�0/.
X

�T

�T/

1X

mD0
.1 ��/�m�1

mY

˛D1
.
X

�˛

�˛/ ; (4.165)
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Fig. 4.15 Stone-fence
diagram corresponding to a
Daniels term in Eq. (4.160)
with n D 25, m D 2, k0 D 1,
k1 D 0, k2 D 2, l D 2,
l0 D 3, l0 D .210/,
l1 D .01232343210/,
l2 D .01210/, and
l3 D .0123/

242220181614121086420
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Δ0
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i
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where
Q
˛.� � � / � 1 when m D 0. Let �˛.s˛/ be the sum of �˛ over all possible

subpaths�˛ of s˛ steps. It is independent of ˛ for 1 � ˛ � m and is denoted by �.
Further, note that s0 D l C 2r, smC1 D l0 C 2r, and s˛ D 2r C 4 for 1 � ˛ � m,
where r is a nonnegative integer. Thus Eq. (4.165) may be rewritten as

QK00;jj0

ll0 D
� 1X

rD0
�0.lC 2r/

�� 1X

rD0
�T.l

0 C 2r/

�

�
1X

mD0
.1 ��/�m�1

� 1X

rD0
�.2rC 4/

�m

: (4.166)

Now .1 ��/�m�1 may be expanded in powers of p and .pC c1k2=6/�1, where

c1 D 2

f .0/

�
.2C �/2 C � 20

�
; (4.167)

which reduces to Eq. (4.75) if � D 0. The other factors in Eq. (4.166) may be
expanded in powers of p and ik. Then, on retaining terms up to O.L�s/, where s

is a positive integer, QK00;jj0

ll0 may be expanded in the form

QK00;jj0

ll0 .kI p/ D
2s0X

n1D0

Œs0�X

n2D0

2s0X

n3D0
A jj0

ll0;n1n2n3

� pn1.ik/lCl0C2n3

�
pC 1

6
c1k2


n2C1 CO.L�s�1=2/ ; (4.168)

where A������ are coefficients independent of p and k, Œx� is Gauss’ symbol indicating
the largest integer � x, and the sums are taken under the restriction

0 � n1 � n2 C n3 � s0 � s � 1
2
.lC l0/ : (4.169)

Recall that k2 D O.L�1/, p D O.L�1/, and .pC const: k2/�n D O.Ln�1/ [36].
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From Eqs. (4.152) and (4.168), we find Im1m2;j1 j2
l1l2l3

.kIL/. We then note that it is
nonvanishing if l1, l2, and l3 satisfy the triangular inequalities with l1C l2C l3 even,
because of the selection rules for the first 3-j symbol with m D 0 in Eq. (4.152) (see
Appendix 3). Therefore, l1C l2 is even (odd) when l3 is even (odd). Thus, replacing
again l and l0 by l1 and l2, respectively, in Eq. (4.168), we may put l1 C l2 C 2n3 D
l3 C 2n0

3 to change indices from n3 to n0
3. After dropping the prime on n3, we obtain

QIm1m2;j1j2
l1l2l3

.kI p/ D
2s0X

n1D0

Œs0 �X

n2D0

2s0X

n3D0
Bm1m2;j1 j2

l1l2 l3;n1n2n3

� pn1 .ik/l3C2n3

�
pC 1

6
c1k2


n2C1 CO.L�s�1=2/ ; (4.170)

where B������ are coefficients independent of p and k, and the sums are taken under the
restriction

1

2
.l1 C l2 � l3/ � n1 � n2 C n3 � s0 � s � 1

2
l3 : (4.171)

I WWW is found by Laplace inversion of Eq. (4.170); it is given by a sum of residues of
the right-hand side of Eq. (4.170) multiplied by eLp,

Im1m2;j1 j2
l1l2l3

.kIL/ D exp

�
�1
6

c1Lk2
� 2s0X

n1D0

Œs0�X

n2D0
Cm1m2;j1 j2

l1 l2l3;n1n2

�.ik/l3C2n1Ln2 CO.L�s�1=2/ ; (4.172)

where C������ are coefficients independent of k and L, n1 and n2 have been redefined,
and the sums are taken under the restriction

1

2
.l1 C l2 � l3/ � n1 � n2 � s0 � s � 1

2
l3 : (4.173)

Finally, we find Gm1m2;j1 j2
l1 l2l3

.RIL/ from Eqs. (4.156) and (4.172). Then a useful
formula is

Z 1

0

k��1J	.Rk/ exp.�a2k2/dk D 1

2a�

�
1

2
.� � 	/� 1

�
Š

�
R

2a

�	

�L.	/.1=2/.��	/�1
�

R2

4a2

�
exp

�
� R2

4a2

�
; (4.174)
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where � � 	 is even, J	.x/ is the (ordinary) Bessel function of the first kind
defined by

jl.x/ D
� �
2x

�1=2
JlC1=2.x/ ; (4.175)

and L.	/n .x/ is the Laguerre polynomial defined by

L.	/n .x/ D
nX

rD0

�
nC 	
n � r

�
.�x/r

rŠ
: (4.176)

Thus the final result is

Gm1m2;j1 j2
l1l2 l3

.RIL/ D
�

3

2�c1L

�3=2
exp

�
� 3R2

2c1L

�

�
��

R

c1L

�l3 Œs�l3=2�X

n1D.l1Cl2�l3/=2

2n1X

n2D0
Dm1m2;j1j2

l1l2l3;n1n2

�
�

1

c1L

�n1 � R2

c1L

�n2

CO.L�s�1=2/
�
; (4.177)

where D������ are coefficients independent of R and L, and n1 and n2 have been
redefined. In the sth Daniels approximation to the G ������ given by Eq. (4.177), l1, l2,
and l3 satisfy

jl1 � l2j � l3 � l1 C l2 � 2s (4.178)

with l1C l2C l3 even. The coefficients D������ may be computed for given �0, �0, and �
efficiently by the use of a computer.

4.6.3 Moment-Based Distributions

The moment-based distribution function is obtained as a straightforward conse-
quence of the general development [35]. Its leading term is spherical Gaussian,
while that of the moment-based distribution function of the Flory type [26, 27]
is generalized (or ellipsoidal) Gaussian. Of course, both become the Hermite
polynomial expansion [21, 39, 40] when reduced to G.RIL/ as in the case of the
KP chain.
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As seen from Eq. (4.156) with Eq. (4.154), R�l3Gm1m2;j1j2
l1l2l3

.RIL/ may be expanded
in even powers of R. By the use of this fact and Eq. (4.155), G ������ .RIL/may therefore
be expanded in terms of Laguerre polynomials as follows,

Gm1m2;j1j2
l1l2l3

.RIL/ D
�

3

2hR2i
�3=2

exp.��2/

�
1X

nD0
Mm1m2;j1j2

l1l2 l3;n
.L/�l3L.l3C1=2/n .�2/ (4.179)

with

� D
�

3

2hR2i
�1=2

R : (4.180)

L.	/n have the “orthonormality” property

Z 1

0

L.lC1=2/n .�2/L.lC1=2/m .�2/�2lC2e��2d� D N.l/
n ınm (4.181)

with

N.l/
n D

�1=2.2nC 2lC 1/ŠŠ
2nClC2nŠ

: (4.182)

By the use of Eq. (4.181) and also the orthonormality properties of Ym
l and Dmj

l ,
Eqs. (3.132) and (4.258), we find for the expansion coefficients in Eq. (4.179)

Mm1m2;j1j2
l1 l2l3;n

.L/ D
�
8�2

N.l3/
n

�
h�l3L.l3C1=2/n .�2/

�Dm1 j1�
l1

.�/Dm2 j2
l2

.�0/Y
m1�m2
l3

.�;˚/i ; (4.183)

where

h� � � i D .8�2/�1
Z
.� � � /GdRd�d�0 : (4.184)

Now the problem is to evaluate the average in Eq. (4.183). From Eqs. (4.176)
and (4.183), it is seen to be a sum of terms of the form

M D hRl3C2rDm1 j1�
l1

.�/Dm2 j2
l2

.�0/Y
m1�m2
l3

.�;˚/i

� hRD�DYi : (4.185)
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In order to evaluate this average, we consider the average,

M0 � hexp.ik � R/Dm1j1�
l1

.�/Dm2 j2
l2

.�0/i (4.186)

D .8�2/�1
Z

Dm1 j1�
l1

Dm2 j2
l2

Id�d�0 : (4.187)

We have, from Eq. (4.186) with Eq. (4.153),

M0 D 4�
X

l3;m3

il3h jl3 .kR/Dm1j1�
l1

Dm2 j2
l2

Y�m3
l3

.�;˚/iYm3
l3
.
; !/ ; (4.188)

and from Eq. (4.187) with Eq. (4.151),

M0 D .8�2/�1
X

l3

Im1m2;j1j2
l1 l2l3

.kIL/Ym2�m1
l3

.
; !/ : (4.189)

Equating the coefficients of Ym3
l3
.
; !/ in Eqs. (4.188) and (4.189), we obtain for the

average on the right-hand side of Eq. (4.188)

h jl3Dm1j1�
l1

Dm2 j2
l2

Y�m3
l3
i D .32�3il3 /�1Im1m2;j1j2

l1l2l3
.kIL/

for m3 D m2 � m1 (4.190)

D 0 for m3 ¤ m2 �m1 ;

where l1, l2, and l3 satisfy the triangular inequalities.
Thus substitution of Eq. (4.154) into the first line of Eqs. (4.190) leads to

Im1m2;j1j2
l1l2l3

.kIL/ D 32�3 � 2l3
1X

rD0

.l3 C r/Š

rŠ.2l3 C 2rC 1/Š hRD
�DYi.ik/l3C2r : (4.191)

From Eqs. (4.139), (4.152), and (4.191), the evaluation of the moments M D
hRD�DYi is seen to be similar to that of hR2mi. It may be eventually written in
the form

hRD�DYi D
X

i;j;k

Am1m2;j1j2
l1l2l3;r;ijk

Li exp.�zj;kL/ ; (4.192)

where �zj;k are the roots of the algebraic equation (4.44), and the numerical
coefficients A������ may be calculated for given �0, �0, and � by the use of a computer.

Note that g jj0

l , h.R � u0/ni, and hR2mi are special cases of hRD�DYi, which are the
generalized moments of the distribution function G.R; � j�0IL/.

Finally, we briefly mention the moment-based distribution function G.R; � j
�0IL/ of the Flory type for the HW model [35]. Its asymptotic form is a generalized
Gaussian function of R�A with A the persistence vector and it may be expanded in
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terms of Hermite polynomials. In this case there is no efficient method of calculating
the expansion coefficients. However, the distribution functions G.RIL/ derived from
these moment-based G.R; � j�0IL/ are the same, that is, the well-known Hermite
polynomial expansion [21, 39, 40]. It is pertinent to reproduce here the result. It
reads

G.RIL/ D
�

3

2�hR2i
�3=2

exp.��2/
1X

	D0
h2	�

�1H2	C1.�/ ; (4.193)

where

h2	 D 1

22.	C1/.2	 C 1/Š h�
�1H2	C1.�/i ; (4.194)

� is defined by Eq. (4.180), and H	 is the Hermite polynomial defined by

H	.x/ D .�1/	ex2 d	.e�x2 /

dx	
: (4.195)

Note that the G.RIL/ truncated at 	 D s (the sth Hermite polynomial approxima-
tion) involves the moments hR2mi with m � s.

4.6.4 Convergence

We examine the convergence of the two types of asymptotic expansions of the
distribution function, in particular, with respect to the ring-closure probability
G.0IL/ and the mean reciprocal of the end-to-end distance hR�1i, that is, the
convergence of the Daniels and Hermite polynomial expansions of G.RIL/ as in
the case of the KP chain.

The Daniels and Hermite values of G.0IL/ are plotted against L in Figs. 4.16
and 4.17, respectively, for �0 D 5, �0 D 1, and � D 0 (Code 2 of Table 4.4), which is

Fig. 4.16 Daniels values of
the ring-closure probability
G.0I L/ plotted against L for
the HW chain with �0 D 5,
�0 D 1, and � D 0 (Code 2).
The dashed curve represents
the coil-limiting values
.3=2�c
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Fig. 4.17 Hermite values of
G.0I L/ for the HW chain
with �0 D 5, �0 D 1, and
� D 0 (Code 2); see legend
to Fig. 4.16
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Fig. 4.18 LhR�1i plotted
against L for the HW chain
with �0 D 5, �0 D 1, and
� D 0 (Code 2). The solid
and dashed curves represent
the Daniels and Hermite
values, respectively
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a typical HW case (of the strong helical nature). The numbers attached to the curves
indicate the values of the degree s of approximation, and the dashed curve represents
the coil-limiting values .3=2�c1L/3=2. It is seen that both are convergent for L>
 1:5
and divergent for smaller L; G.0IL/ must vanish at L D 0. It is then interesting to
recall that for the KP chain, the Daniels approximation is convergent for L>
 3,
while the convergence of the Hermite polynomial approximation is much worse.
Thus it may be concluded that as the helical nature is increased, the convergence of
the Daniels and Hermite polynomial approximations to G.0IL/ becomes better (in
particular for the latter) and their radii L of convergence become almost the same.

Figure 4.18 shows plots of LhR�1i against L for the same code. The solid
and dashed curves represent the Daniels and Hermite values, respectively, and
the numbers attached to the curves indicate again the values of the degree s of
approximation. Figure 4.19 shows similar plots for �0 D �0 D 1 and � D 0 (Code
3 of Table 4.4), which is rather close to the KP chain. It is again seen that for the
code of the strong helical nature both approximations are convergent for L>
 1:5 and
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Fig. 4.19 LhR�1i for the
HW chain with �0 D �0 D 1

and � D 0 (Code 3); see
legend for Fig. 4.18
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that for the code close to the KP chain the convergence of the Hermite polynomial
approximation is worse. Although both are, of course, divergent for smaller L, it is
interesting to see that as L approaches zero, the Hermite value of LhR�1i becomes
finite; in particular, its third approximation gives LhR�1i ' 1 at L D 0.

4.7 Approximations

Necessarily, the convergence of the asymptotic expansions from the coil limit
considered in the last section is very slow as the rod limit is approached. From
the practical point of view it is therefore necessary to establish more efficient and
useful approximation methods. Thus, in this section, we consider two such methods.
One [41] is a modification of the Hermite (or Laguerre) polynomial approximations
to the distribution functions and also a generalization of the procedure of Fixman
and Skolnick [42]. This is called the weighting function method. The other [41, 43]
is a simple method which gives expansions of, for instance, hR2mi in terms of the
relative deviation 
 of R2 near the rod limit; and thus any moment may be expanded
in powers of contour length L if desired. This is referred to as the 
 method, for
convenience. In later chapters these two approximation methods along with the
second Daniels approximation are used to give values or construct interpolation
formulas for various properties which are valid in a good approximation over the
whole range of L.

4.7.1 Weighting Function Method

The right-hand side of Eq. (4.179) for Gm1m2;j1j2
l1 l2l3

.RIL/ may be regarded as its
expansion in terms of Laguerre polynomials with a Gaussian weighting function,
and therefore it may be generalized to an orthogonal polynomial expansion with an
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arbitrary given weighting function w,

Gm1m2;j1j2
l1 l2l3

.RIL/ D
�

3

2hR2i
�3=2

w.�/
1X

nD0
Mm1m2;j1j2

l1 l2l3;n
.L/�l3h.l3/n .�2/ ; (4.196)

where � is defined by Eq. (4.180) and h.l3/n are certain orthogonal polynomials of
degree n.

A recurrence formula for h.l/n may be derived by a standard method of construct-
ing orthogonal polynomials [44]. The result is

h.l/n .�
2/ D .�n�1�2 C ˇn/h

.l/
n�1.�

2/ � �nh.l/n�2.�
2/ for n 	 1 (4.197)

with h.l/0 � 1 and h.l/�1 � 0 and with

ˇn D 1

nN.l/
n�1

Z 1

0

�
h.l/n�1.�

2/
�2
�2lC4w.�/d� ; (4.198)

�n D .n � 1/N.l/
n�1

nN.l/
n�2

.�1 � 0/ ; (4.199)

N.l/
n ınm D

Z 1

0

h.l/n .�
2/h.l/m .�

2/�2lC2w.�/d� ; (4.200)

where the coefficient of the highest power �2n of h.l/n .�
2/ has been chosen to be

.�1/n=nŠ, for convenience, and Eq. (4.200) gives the “orthonormality” property.
Note that if w.�/ D exp.��2/; h.l/n .�

2/ is the Laguerre polynomial L.lC1=2/n .�2/. By
the use of Eq. (4.200) and the orthonormality properties of Ym

l and Dmj
l , Eqs. (3.132)

and (4.258), we find for the expansion coefficient in Eq. (4.196)

Mm1m2;j1 j2
l1l2l3;n

.L/ D
�
8�2

N.l3/
n

�
h�l3h.l3/n .�2/

�Dm1 j1�
l1

.�/Dm2 j2
l2

.�0/Y
m1�m2
l3

.�;˚/i : (4.201)

The moment in Eq. (4.201) may be evaluated in the same manner as that used in the
evaluation of the moment in Eq. (4.183).

Now we truncate the series in Eq. (4.196) to derive successive approximations.
Suppose that we retain terms of the characteristic function I.k; � j�0IL/ up to
O.k2s/. From Eq. (4.191), it is seen that the terms of I up to O.kl3C2n1 / can give
exactly the coefficients M������.L/ for 0 � n � n1. The desired approximation may
therefore be obtained by truncating the series in Eq. (4.196) at n D Œs � l3=2�, so
that l3 � 2s, with Œx� being Gauss’ symbol. In the particular case of G.RIL/ with
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li D mi D ji D 0, this gives an orthogonal polynomial expansion truncated at n D s,
involving hR2mi with m � s.

By a theorem regarding least-squares polynomial approximations [44], the
coefficients M������.L/ so determined for n � Œs � l3=2� minimize the weighted mean-
square error,

e2 D
Z 1

0

	�
2hR2i
3

�3=2
Gm1m2;j1 j2

l1 l2l3
.RIL/��l3w.�/

��1

�
Œs�l3=2�X

nD0
Mm1m2;j1j2

l1 l2l3;n
.L/hl3

n .�
2/


 2
�2l3C2w.�/d� : (4.202)

In the particular case of li D mi D ji D 0, this corresponds to Eq. (4.2) of [42]. It is
then convenient to rewrite the sth approximation to G ������ .L/ in the form

Gm1m2;j1j2
l1l2l3

.RIL/ D
�

3

2hR2i
�3=2

w.�/
Œs�l3=2�X

nD0
Fm1m2;j1 j2

l1l2l3;n
.L/�l3C2n : (4.203)

The coefficients F ������ .L/ may be determined by the use of the least-squares theorem,
instead of constructing the polynomials from Eq. (4.197); that is, they are the
solutions of the linear simultaneous equations

8�2h�D�DYi D
Œs�l3=2�X

nD0
Fm1m2;j1j2

l1l2l3;n
.L/

Z 1

0

�2.l3CnCn0C1/w.�/d�

for 0 � n0 � Œs � l3=2� ; (4.204)

where h�D�DYi D h�l3C2n0Dm1j1�
l1

Dm2 j2
l2

Ym1�m2
l3

i is equivalent to hRD�DYi and
may be evaluated from Eq. (4.192). Equation (4.155) with Eq. (4.203) gives the
distribution function approximated by the weighting function method. We note that
the corresponding characteristic function cannot in general be found analytically
from the former.

The problem that remains is to choose a suitable weighting function w.�/.
Fixman and Skolnick [42] have chosen the function

wFS.�/ D exp
��a�2 � .b�2/	� ; (4.205)

where the parameters a and b as functions of L (in its application to the HW model)
are determined so that the 0th approximation to G.RIL/, that is, the normalized
weighting function gives the exact hR2i and hR4i, and 	 is an integer ranging from
2 to 5. Koyama [45] has also approximated G.RIL/ by its 0th approximation with

wK.�/ D ��1 exp.�a�2/ sinh.b�/ ; (4.206)
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where the parameters a and b (as functions of L) are determined in the same way as
in Eq. (4.205). For these weighting functions, however, the solutions for a and b do
not exist in the range of hR4i=hR2i2 > 5=3. Indeed, such cases can occur for the HW
model. For example, values of hR6i=hR2i3 are plotted against those of hR4i=hR2i2 in
Fig. 4.20 for the HW chain with �0 D 10, �0 D 2, and � D 0. The numbers attached
to the curves indicate the values of L as an auxiliary variable, and the vertical line
segment is drawn at hR4i=hR2i2 D 5=3.

Thus, in order to remove the difficulty and also to obtain better approximations,
we choose the following two weighting functions

wI.�/ D exp
��a1�

2 � a2� � .b�2/	
�
; (4.207)

wII.�/ D exp
��a1�

2 � a2�
4 � .b�2/	� ; (4.208)

where in both cases 	 is set equal to 5, and a1; a2, and b as functions of L are
determined so that the normalized weighting function gives the exact hR2i; hR4i,
and hR6i. When a2 D 0, both wI and wII agree with wFS. For wI, the solutions for a1,
a2, and b exist over the whole range of L except for the cases in which the pitch h of
the characteristic helix is much smaller than its radius �. The distribution function
G with wI does not fulfil the requirement

@G.RIL/
@R

ˇ̌
ˇ̌
RD0
D 0 ; (4.209)

Fig. 4.20 hR6i=hR2i3 plotted
against hR4i=hR2i2 for the
HW chain with �0 D 10,
�0 D 2, and � D 0. The
numbers attached to the
curves indicate the values of
L, and the vertical line
segment is drawn at
hR4i=hR2i2 D 5=3. The
solutions for the weighting
function wII do not exist in
the ranges of L indicated by
the dashed curves
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which arises from the fact that G.RIL/ is a spherically symmetric function of R and
is analytic at R D 0. However, the effect of this defect may be regarded as small
except on G.0IL/ for some cases and also on the properties related to @G=@R. On
the other hand, wII satisfies Eq. (4.209) but the solutions for its a1; a2, and b exist
only in the limited range of L in some cases. For example, in the case of Fig. 4.20
the solutions for wII do not exist for 0:7<
 L<
 1:05 and 1:35<
L<
 5, which ranges
are indicated by the dashed curves in the figure. Note that in the case of G.RIL/ we
take s 	 3 since there are no correction polynomials for s � 3 if wI or wII is used.

In practice, we determine the constants in w and evaluate the integral on the right-
hand side of Eq. (4.204) following the procedure of Fixman and co-workers [42, 46].
The required integrals are of the form

Z 1

0

�mw.�/d� D b�.mC1/=2Im.c1; c2/ (4.210)

with

Im D
Z 1

0

xm exp.�c1x
2 � c2x

˛ � x2	/dx ; (4.211)

c1 D a1=b ;
(4.212)

c2 D a2=b˛=2 ;

where ˛ D 1 or 4, and 	 D 5. If Im are evaluated by numerical integrations for
0 � m � 2	 � 1, we find Im for m 	 2	 from the recurrence relation

2	ImC2	 D .mC 1/Im � c2˛ImC˛ � 2c1ImC2 for m 	 0 : (4.213)

Then the even moments h�2miw of the normalized weighting function are given by

h�2miw D

Z 1

0

�2mC2w.�/d�
Z 1

0

�2w.�/d�
D I2mC2

bmI2
: (4.214)

The conditions h�2mi D h�2miw for m D 1–3 that determine a1; a2, and b may be
rewritten as

h�2i D 3=2 D I4=bI2 ; (4.215)

h�4i=h�2i2 D I6I2=I 24 ; (4.216)

h�6i=h�2i3 D I8I
2
2 =I 34 : (4.217)
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Thus a1; a2, and b may be determined as follows: (1) we first determine c1 and c2
as the solutions of the nonlinear simultaneous equations (4.216) and (4.217) (which
are found by the Newtonian method), (2) we then determine b from Eq. (4.215), and
(3) finally we determine a1 and a2 from Eqs. (4.212). However, it must be noted that
these parameters cannot be determined accurately for such small L that hR4i=hR2i2
is smaller than about 1.03.

4.7.2 Epsilon Method

We define the relative deviations 
 and ı
m1m2;j1 j2
l1l2l3

of R2 and Rl3Dm1j1�
l1

.�/

�Dm2 j2
l2

.�0/Y
m1�m2
l3

.�;˚/ by

R2 D hR2i0.1C 
/ ; (4.218)

Rl3Dm1 j1�
l1

Dm2 j2
l2

Ym1�m2
l3

D hRl3Dm1j1�
l1

Dm2 j2
l2

Ym1�m2
l3

i0.1C ım1m2;j1 j2
l1l2l3

/ ; (4.219)

respectively, where hAi0 is set equal either to hAi or to its rod-limiting value
according to the convergence of the quantity to be considered.

We then have, from Eqs. (4.218) and (4.219),

h
mi D hR
2mi

hR2i m
0

�
m�1X

rD0

�
m
r

�
h
ri .m 	 1/ ; (4.220)

hıi D hR
l3Xi

hRl3Xi0 � 1 ; (4.221)

hı
mi D hRl3C2mXi
hRl3Xi0hR2im0

�
mX

rD0

�
m
r

�
h
ri

�
m�1X

rD0

�
m
r

�
hı
ri .m 	 1/ ; (4.222)

where we have abbreviated ı������ and D�DY to ı and X, respectively, so that
hRl3C2mXi D hRD�DYi. Thus h
mi (m 	 1) and hı
mi (m 	 0) may be expressed
successively in terms of hR2mi and hRD�DYi. We note that h
i D hıi D 0 for
hAi0 D hAi, while h
i D O.L/ and hıi D O.L/ in the case of the rod-limiting
values for hAi0, but that h
mi D O.Lm/ for m 	 2 and hı
mi D O.LmC1/ for m 	 1
in both cases.
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If we retain terms up to O.Ls/, the generalized moments hRD�DYi may be
expanded in terms of h
ri and hı
ri as follows,

hRD�DYi D hRl3Xi0hR2im0
� mX

rD0

�
m
r

�
h.1C ı/
ri

�
for m � s

D hRl3Xi0hR2im0
� s�1X

rD0

�
m
r

�
h.1C ı/
ri

C
�

m
s

�
h
si CO.LsC1/

�
for m > s : (4.223)

A similar expansion of hRl3CnXi with n being a positive or negative integer may
easily be obtained. Whichever values of hAi0 are assigned, we may expand these
generalized moments along with h
mi and hı
mi in powers of L if we want. In
particular, we have

hR2mi D hR2im0
mX

rD0

�
m
r

�
h
ri for m � s

D hR2im0
� sX

rD0

�
m
r

�
h
ri CO.LsC1/

�
for m > s ; (4.224)

hR�1i D hR2i�1=20

� sX

rD0

.�1/r.2r � 1/ŠŠ
2rrŠ

h
ri CO.LsC1/
�
: (4.225)

Substitution of Eqs. (4.223) into Eq. (4.191) leads to the sth-order expansion
of I ������ ,

Im1m2;j1 j2
l1 l2l3

.kIL/ D 32�3il3hRl3Xi0hR2i�l3=2
0

�
� s�1X

rD0

.�x/r

2rrŠ
h.1C ı/
rijl3Cr.x/C .�x/s

2ssŠ
h
sijl3Cs.x/

�
(4.226)

with

x D hR2i1=20 k ; (4.227)

where we have used Eq. (4.154). In particular, we have

I.kIL/ D .4�/�1=2I00;00000 .kIL/

D
sX

rD0

.�x/r

2rrŠ
h
rijr.x/ : (4.228)
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Now we derive the sth-order expansions in powers of L for the case of � D 0.
The averages h
mi and h.1Cı/
mimay be evaluated from Eqs. (4.220)–(4.222) with
the moments hR2mi and hRD�DYi. The results may then be written in the form

h
mi D
sX

nDm

Emn.�0; �0/L
n ; (4.229)

h.1C ı/
mi D
sX

nDm

Dm1m2;j1 j2
l1l2 l3;mn .�0; �0/L

n ; (4.230)

where we note that E00 D 1 and that D������ are not to be confused with the D������
in Eq. (4.177). For convenience, we consider here only hR2mi, hR�1i, and I.kIL/.
Substitution of Eq. (4.229) into Eqs. (4.224), (4.225), and (4.228) leads to

L�2mhR2mi D 1C
mX

rD1

sX

nDr

�
m
r

�
ErnLn for m � s

D 1C
sX

nD1

nX

rD1

�
m
r

�
ErnLn for m > s ; (4.231)

LhR�1i D 1C
sX

nD1

nX

rD1

.�1/r.2r � 1/ŠŠ
2rrŠ

ErnLn ; (4.232)

I.kIL/ D j0.Lk/C
sX

nD1

nX

rD1

.�1/r
2rrŠ

ErnLn.Lk/rjr.Lk/ ; (4.233)

where in Eq. (4.233) we have assumed hR2i0 D L2 (the rod-limiting value). Note
that the above derivation of Eq. (4.231) is trivial since Eq. (4.229) has in fact been
obtained from Eq. (4.231). The coefficients Emn (1 � m � n � 5) and also those
D00;00

l1l2l3;mn (0 � m < n � 5), which are required later, are given as functions of �0 and
�0 in Appendix C.

As seen from Eqs. (4.231)–(4.233) with the Emn given in Appendix C, the
coefficients of terms linear in L of such quantities are constants independent of
�0 and �0, those of square and cubic terms are functions only of �0, and those
of higher terms are functions of �0 and �0. Thus they include as special cases
the WKB approximations (first-order terms) as given by Eqs. (3.96) [and also by
Eq. (3.97)] and also the expansions given by Eq. (3.97) and Eq. (3.103) with the first
of Eqs. (3.100) for the KP chain. We note that the convergence of the expansion of
I given by Eq. (4.228) with hR2i0 D hR2i is better than that of the expansion with
hR2i0 D L2 or of the expansion given by Eq. (4.233).
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4.7.3 Convergence

We examine the convergence of the weighting function method with respect to
the ring-closure probability G.0IL/ and that of the 
 method with respect to the
mean reciprocal of the end-to-end distance hR�1i and the characteristic function
I.kIL/. For simplicity, the approximations with the weighting functions wI; wII,
and wFS (with 	 D 5) are indicated by WIs, WIIs, and FSs, respectively, and the 

approximations by 
s, where the number s indicates the degree of approximation.
We also consider the Daniels approximations (Ds) and the Hermite polynomial
approximations (Hs) in some cases.

Values of G.0IL/ are plotted against L in Fig. 4.21 for �0 D 5, �0 D 1, and
� D 0 (Code 2 of Table 4.4) and in Fig. 4.22 for �0 D �0 D 1 and � D 0 (Code 3
of Table 4.4), where the D2 and H3 values have already been plotted in Figs. 4.16
and 4.17, respectively. It is seen that the convergence of the weighting function
method is in general much better than that of the Daniels and Hermite polynomial
approximations, and also becomes better as the helical nature is increased (better
for Code 2 than for Code 3). In particular, it is important to note that the weighting
function method can in general give

G.0IL/ D 0 for L� 1 ; (4.234)

as shown in Fig. 4.21, except for codes close to the KP chain such as Code 3.
The 
1 to 
5 values of LhR�1i calculated from Eq. (4.232) are plotted against L in

Fig. 4.23 for Code 2 as an example. Although for this code the convergence is good
for L<
 0:5 (radius of convergence), it cannot be improved appreciably even if s is
increased, since we have assumed j
j < 1. In general, the convergence becomes
poorer as the helical nature is increased. The 
1, 
4, and 
5 values of I.kIL/
calculated from the second line of Eqs. (4.228) with hR2i0 D hR2i at k D 30 for
the same code are plotted against L in Fig. 4.24. For comparison, the H3 values and
the rod-limiting values (R) are also plotted. For this case the radius L of convergence

Fig. 4.21 WI3, WI5, D2, and
H3 values of G.0I L/ plotted
against L for the HW chain
with �0 D 5, �0 D 1, and
� D 0 (Code 2)
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Fig. 4.22 WI3, WI5, WII5,
FS5, D2, and H3 values of
G.0I L/ plotted against L for
the HW chain with
�0 D �0 D 1 and � D 0

(Code 3)
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Fig. 4.23 
s values of
LhR�1i plotted against L for
the HW chain with �0 D 5,
�0 D 1, and � D 0 (Code 2)
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Fig. 4.24 
1, 
4, 
5, and H3
values of I.kI L/ plotted
against L for the HW chain
with �0 D 5, �0 D 1, and
� D 0 (Code 2) at k D 30.
The dotted curve R represents
the rod-limiting values
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is about 0.4, and in general it becomes smaller as k is increased and as the helical
nature is increased. In any case, however, we can join the 
 values to the WI,
WII, or FS values, and then conveniently to the D2 values in order to obtain good
approximations valid over the whole range of L.
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4.8 Some Other Topics

4.8.1 Multivariate Distribution Functions, etc.

We can in general evaluate the multivariate distribution function P.fRpg; �; �0IL/
of fRpg D R1, R2, � � � , Rp, �.L/ D �, and �.0/ D �0 for the HW chain of
contour length L, where Rj is the vector distance between the contour points sj and
sj0 (0 � sj < sj0 � L; j D 1, 2, � � � , p) [31, 47]. This distribution function may be
used to evaluate the moments hS2mi of the radius of gyration and the moments of
inertia tensor of linear [48] and branched [47] chains. However, a comparison with
experiment for these quantities cannot directly be made (except for hS2i), nor are
they used in later chapters. Thus we do not reproduce the results for them.

4.8.2 Temperature Coefficients of hR2i

We consider the temperature coefficient of (unperturbed) hR2i in the coil limit
[49]. We denote it by hR2i.C/. When unreduced, it is given, from Eqs. (4.86) with
Eqs. (4.75) and (4.76), by

hR2i.C/ D .4C � 20 /L
.4C 	2/�2 ; (4.235)

where � is related to the bending force constant ˛ by Eq. (3.37), and the reduced
quantities L, �0, and �0 on the right-hand side are related to the respective unreduced
quantities (primed) by L D �L0, �0 D ��1�0

0, and �0 D ��1� 0
0.

Now, for the elastic wire model the temperature coefficients of L0, �0�1
0 , and � 0�1

0

must be of the same order of magnitude as linear thermal expansion coefficients of
ordinary solids (10�6–10�5 deg�1), so that their dependence on temperature T may
be ignored. Further, we assume that ˛ is independent of T. Then, the only quantity
that depends on T is �, which is proportional to T, and we have

d lnhR2i.C/
dT

D �16� 4�
2
0 C .8C 	2/� 20

.4C � 20 /.4C 	2/
T�1 : (4.236)

For the KP chain .�0 D 0/, therefore, the temperature coefficient defined by the
left-hand side of Eq. (4.236) is always equal to �T�1.

A contour map of the temperature coefficient in a .�0; �0/-plane calculated from
Eq. (4.236) is shown in Fig. 4.25, where the solid and dashed curves are the contour
lines at T D 300 and 400K, respectively, the attached numbers indicating the values
of 103d lnhR2i.C/=dT (in deg�1). Along the heavy solid curve 0, it vanishes at all
temperatures. It is interesting to see from a comparison of Fig. 4.25 with Fig. 4.13
that the temperature coefficient becomes positive for typical HW chains. Here only
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Fig. 4.25 Contour map of
103d lnhR2i.C/=dT (in deg�1)
in a .�0; �0/-plane. The solid
and dashed curves are the
contour lines at T D 300 and
400K, respectively
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note that the observed temperature coefficient is in fact positive for PDMS [50] and
s-PMMA [34, 51], which may be regarded as typical HW chains from their model
parameters determined from experiment, as shown in the next chapter.

Appendix 1: Generalization and Other Related Models

Equation (4.4) for the potential energy U per unit contour length may be generalized
to [13]

U D .4D�/
�1.!� � c�/

2 C .4D�/
�1.!� � c�/

2 C .4D�/
�1.!� � c�/

2 ; (4.237)

where D� and c� (� D �, �, �) are constants independent of s. This potential
becomes a minimum in the state ! D .c� , c�, c�), in which the chain contour is
a regular helix specified by

�0 D .c 2
� C c 2

� /
1=2 ;

(4.238)
�0 D c� ;

as seen from Eqs. (4.12) and (4.13). For this chain we can also define the Green
function G.R; � j�0IL/ D G.R;u; a j u0; a0IL/, where u and a are defined by the
first and second of Eqs. (4.9), respectively, but a and b D u�a are not necessarily the
mean unit curvature and mean unit binormal vectors. The Fokker–Planck equation
for G is still given by Eq. (4.33) but with the diffusion operator

A D c�L� C c�L� C c�L� � kBT.D�L
2
� C D�L

2
� C D�L

2
� / (4.239)

with L� the angular momentum operators given by Eqs. (4.32) and (4.35).
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Now Eq. (4.34) with Eq. (4.239) is just the general, standard equation of
anisotropic diffusion in a convective field (c� , c�, c�) in an � space. The moments
of the infinitesimal rotation vector�� may therefore be readily found to be [52]

h���i D c��s ;
(4.240)

h�����	i D 2kBTD�ı�	�s .�; 	 D �; �; �/ :

This generalized chain reduces to the HW chain if c� D 0, c� D �0, c� D �0,
D� D D� D �=kBT, and D� D �.1C �/=kBT, and the latter reduces to the Bugl–
Fujita (BF) chain [12] if D� ! 0 with the other constants remaining unchanged.
Note that to let the bending force constant about the � axis approach infinity .D� !
0/ with c� D 0 is equivalent to !� D 0. This constraint .!� D 0/ in the BF chain is
unphysical. The moments of �� for these chains are then obtained as

h���i D 0 ;
h���i D �0�s ;

h���i D �0�s ;
.HW and BF/ (4.241)

h.���/
2i D 2��s

h.���/
2i D 2�.1C �/�s ;

h�����	i D 0 for � ¤ 	 ;

and

h.���/
2i D 2��s .HW/

D 0 .BF/ : (4.242)

The moments given by Eqs. (4.240)–(4.242) are used in Appendix 2, where the
continuous limits of discrete chains are considered.

However, the HW chain as a special case of Eq. (4.237) requires some comments.
The necessary and sufficient condition under which the above generalized chain
reduces to the HW chain is D� D D� (an isotropically bending wire or a symmetric
top), the condition c� D 0 being unnecessary. If D� D D� and c� ¤ 0, we rotate the
(�, �, �) system by a constant angle  0 D � tan�1.c�=c�/ about the � axis at every
point s to transform Eq. (4.237) into

U D .4D�/
�1�! 2

�0
C .!�0 � �0/2

�C .4D�/
�1.!�0 � �0/2 (4.243)

in the new system (�0, �0, �0), where �0 and �0 are given by Eqs. (4.238). This is just
the standard form of U given by Eq. (4.4) for the HW chain.
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Equation (4.237) may be further generalized, although formally, to its most
general from [53], as done by Miyake and Hoshino [54, 55], in which e� , one of
the principal axes of inertia, does not necessarily coincide with the unit tangent
vector u, so that

u D l1e� C l2e� C l3e� (4.244)

with li the direction cosines of u in its localized coordinate system (�, �, �).
However, the energy of their original chain [54] becomes a minimum in the state
! D .!l1, !l2, !l3/ D !u, in which the contour is a straight line. Therefore, it has
the KP case but not the regular helix extreme, and is not a helical wormlike chain.

Appendix 2: Corresponding Discrete Chains

We find a hypothetical discrete chain which tends to the generalized continuous
chain defined by Eq. (4.237) and therefore also to the HW and KP chains in the
continuous limit. For this purpose we start from a discrete chain with coupled
rotations. Suppose that its kth monomer unit (k D 1, 2, � � � , x) is composed of
the .i � 1/th and ith skeletal bonds with i D 2k (i D 1, 2, � � � , n D 2x). We affix a
localized Cartesian coordinate system (e�k , e�k , e�k ) to each monomer unit in such a
way that e�k is in the direction of li�1C li � Nlk with li the ith bond vector, e�k is in the
plane of li�1 and li with an acute angle between e�k and li�1, and e�k completes the
right-handed system, as depicted in Fig. 4.26. Suppose that an external coordinate
system agrees with the first localized system, and let the Euler angles�k D . N�k, N�k,
N k) define the orientation of the kth system with respect to the .k� 1/th system. We

then assume that the total potential energy E of the chain is of the form

E D
xX

kD2
Ek.�k/ ; (4.245)

Fig. 4.26 Coarse-grained
discrete chain with coupled
rotations composed of x
bonds of length Nl, which is a
hypothetical chain whose
continuous limit is taken
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where Ek are the same for all k, and also Nlk D Nl, N�k D N� , N�k D N�, and N k D N 
for all k. Thus the chain defined by Eq. (4.245) may be regarded as a coarse-grained
discrete chain with coupled rotations (composed of x bonds of length Nl), and it is the
hypothetical chain whose continuous limit is taken.

Now we take the continuous limit by letting Nl ! 0, N� ! 0, and N� C N ! 0 at
constant xNl D L and under certain additional conditions [13]. Note that the rotation
with N� C N D 0 is an identity transformation at N� D 0. Those conditions are found
as follows. If we retain terms of the first order in N� and N� C N , the transformation
from the .k � 1/th system to the kth system is given by

0

@
e�k

e�k

e�k

1

A D
0

@
1 N� C N � N� cos N 

� N� � N 1 N� sin N 
N� cos N � N� sin N 1

1

A

0

@
e�k�1

e�k�1

e�k�1

1

A : (4.246)

By a comparison of Eq. (4.246) with Eq. (4.2), we may relate N� , N�, and N to
the infinitesimal rotation vector �� of the continuous chain for �s D Nl by the
associations

���  ! N� sin N � ˛� ;
���  ! N� cos N � ˛� ; (4.247)

���  ! N� C N � ˛� :

Thus we obtain, from Eqs. (4.240) and (4.247), the desired additional conditions

h˛�i D c�Nl ;
(4.248)

h˛�˛	i D 2kBTD�ı�	Nl .�; 	 D �; �; �/ :

In particular, the HW chain may be obtained under the additional conditions,

h˛�i D 0 ;
h˛�i D �0l ;
h˛�i D �0l ;

(4.249)
h˛ 2
� i D h˛ 2

� i D 2�l ;

h˛ 2
� i D 2�.1C �/l ;
h˛�˛	i D 0 for � ¤ 	 ;

corresponding to Eqs. (4.241) and (4.242). From the fourth of Eqs. (4.249) with
Eqs. (4.247), we also have for the fluctuation in N�

h N�2i D 4�l : (4.250)



Appendix 3: Wigner D Functions and 3-j Symbols 121

The HW chain may be characterized by the fourth of Eqs. (4.249), that is, the special
correlation h N�2 sin2 N i D h N�2 cos2 N i.

In the particular case of the KP chain that is the HW chain with �0 D 0, the first,
second, and fourth of Eqs. (4.249) require that the distribution of N be uniform.
Then the distribution of N� must also be uniform, although there is coupling between
N� and N , as seen from the third and fifth of Eqs. (4.249). Thus the discrete chain
corresponding to the KP chain is a freely rotating chain (with bond length Nl and
bond angle � � N�) having the same fluctuation in N� as that given by Eq. (4.250) only
as far as the chain contour is concerned (see also Sect. 4.2.2). This is the well-known
result given in Chap. 3.

Finally, we note that Miyake and Hoshino [56] also derived their general
continuous chain as the continuous limit of a discrete chain with independent
rotations (without coupling). This is very interesting, but rather surprising since for
such a discrete chain the characteristic ratio Cn is only a monotonically increasing
function of n [21].

Appendix 3: Wigner D Functions and 3-j Symbols

The normalized Wigner function Dmj
l used in this book is related to the unnormal-

ized function NDmj
l by the relation Dmj

l D cl NDmj
l with cl being given by Eq. (4.54),

and NDmj
l corresponds to Edmonds’ D.l/

jm [16] and Davydov’s Dl
mj [17].

Now Dmj
l .�/ D Dmj

l .�; �;  / is defined by

Dmj
l .�/ D cle

im�dmj
l .�/e

ij (4.251)

with

dmj
l .�/ D

�
.lC j/Š.l� j/Š

.lC m/Š.l� m/Š

�1=2

�
�

cos
1

2
�

�jCm�
sin

1

2
�

�j�m

P. j�m;jCm/
l�j .cos �/ ; (4.252)

where P.˛;ˇ/n .x/ is the Jacobi polynomial defined by

P.˛;ˇ/n .x/ D .�1/n
2nnŠ

.1 � x/�˛.1C x/�ˇ

� dn

dxn

�
.1 � x/˛Cn.1C x/ˇCn

�
.jxj � 1/ : (4.253)
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In particular, we have

Dm0
l .�; �;  / D .2�/�1=2.�1/.mCjmj/=2Ym

l .�; �/ ; (4.254)

D0j
l .�; �;  / D .2�/�1=2.�1/. j�j jj/=2Yj

l .�;  / ; (4.255)

Dmj
l .0; 0; 0/ D clımj : (4.256)

We have the complex conjugation

Dmj�
l D .�1/m�jD.�m/.�j/

l ; (4.257)

and also the orthonormality and closure relations

Z
Dmj�

l Dm0 j0

l0 d� D ıll0ımm0ı jj0 ; (4.258)

1X

lD0

lX

mD�l

lX

jD�l

Dmj�
l .�/Dmj

l .�
0/ D 1

sin �
ı.� � � 0/ı.� � �0/ı. �  0/

D ı.���0/ : (4.259)

The product of two D functions may be expanded in terms of single D functions
as follows,

Dm1j1
l1

Dm2 j2
l2
D 8�2

l1Cl2X

l3Djl1�l2j

l3X

m3D�l3

l3X

j3D�l3

cl1cl2cl3

�
�

l1 l2 l3
m1 m2 m3

��
l1 l2 l3
j1 j2 j3

�
Dm3j3�

l3
; (4.260)

where .WWW/ is the Wigner 3-j symbol, which is defined below. The integral of the
product of three D functions is then found from Eqs. (4.258) and (4.260) to be

Z
Dm1j1

l1
Dm2 j2

l2
Dm3j3

l3
d� D 8�2cl1cl2cl3

�
�

l1 l2 l3
m1 m2 m3

��
l1 l2 l3
j1 j2 j3

�
: (4.261)

If ��1 is the inverse of the rotation �, we have ��1 D .�� , � , ��) or (� ,
� �  , � � �), and thus

Dmj
l .�

�1/ D Djm�
l .�/ : (4.262)
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If � is the resultant of two successive rotations�1 and �2 in this order, we have

Dmj
l .�/ D c �1

l

X

k

Dmk
l .�1/Dkj

l .�2/ : (4.263)

Thus, when the coordinate system is rotated by �1, the D function transforms the
spherical harmonics from Ym

l .�; �/ to Yj
l .�

0; �0/ in the new system as follows,

QYm
l .�; �/ D c �1

l

X

j

Dmj
l .�1/ QYj

l .�
0; �0/ ; (4.264)

where QYm
l D .�1/.mCjmj/=2Ym

l is the spherical harmonics with the phase factor .�1/m
for m > 0. When m D 0, Eq. (4.264) reduces to Eq. (3.142). Further, we note that
the matrix Dmj

l .�/ is unitary, that is,

lX

mD�l

Dmj�
l Dmj0

l D c 2
l ı jj0 : (4.265)

The spherical harmonics Ym
l are the eigenfunctions of r 2

u (squared angular
momentum operator) [see Eq. (3.137)], while Dmj

l are the simultaneous eigenfunc-
tions of L2, Lz D @=@�, and L� ,

L2Dmj
l D �l.lC 1/Dmj

l ;

LzDmj
l D imDmj

l ; (4.266)

L�Dmj
l D ijDmj

l :

We have the symmetries of dmj
l .�/,

dmj
l .��/ D d jm

l .�/ ; (4.267)

dmj
l .� C �/ D .�1/l�jdm.�j/

l .�/ ; (4.268)

dmj
l .� � �/ D .�1/l�jd.�j/m

l .�/ ; (4.269)

dmj
l .�/ D .�1/j�mdjm

l .�/ D .�1/j�md.�m/.�j/
l .�/ : (4.270)

The orthonormality of dmj
l .�/ is found from Eq. (4.265) to be

lX

mD�l

dmj
l .�/d

mj0

l .�/ D ı jj0 : (4.271)
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The explicit expressions for dmj
l .�/ with l D 1 and 2 are:

For l D 1,

d.�1/.�1/1 .�/ D d111 .�/ D
1

2
.1C cos �/ ;

d.�1/11 .�/ D d1.�1/1 .�/ D 1

2
.1 � cos �/ ;

(4.272)

d.�1/01 .�/ D �d0.�1/1 .�/ D d011 .�/ D �d101 .�/ D
1p
2

sin � ;

d001 .�/ D cos � I
For l D 2,

d.�2/.�2/2 .�/ D d222 .�/ D
1

4
.1C cos �/2 ;

d.�2/22 .�/ D d2.�2/2 .�/ D 1

4
.1� cos �/2 ;

d.�2/.�1/2 .�/ D �d.�1/.�2/2 .�/ D d122 .�/ D �d212 .�/ D
1

2
sin � .1C cos �/ ;

d.�2/12 .�/ D �d1.�2/2 .�/ D d.�1/22 .�/ D �d2.�1/2 .�/ D 1

2
sin � .1 � cos �/ ;

d.�2/02 .�/ D d0.�2/2 .�/ D d022 .�/ D d202 .�/ D
p
6

4
sin2 � ; (4.273)

d.�1/.�1/2 .�/ D d112 .�/ D �
1

2
.1C cos �/.1 � 2 cos�/ ;

d.�1/12 .�/ D d1.�1/2 .�/ D 1

2
.1 � cos �/.1C 2 cos�/ ;

d.�1/02 .�/ D �d0.�1/2 .�/ D d012 .�/ D �d102 .�/ D
1p
2

sin � cos � ;

d002 .�/ D �
1

2
.1 � 3 cos2 �/ :

Now the 3-j symbol is defined by
�

l1 l2 l3
m1 m2 m3

�
D .�1/l1�l2�m3 .2l3 C 1/�1=2

� .l1 m1 l2 m2 j l1 l2 l3 � m3/ ; (4.274)
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where .� � � j � � � / is the vector-coupling (Clebsh–Gordan) coefficient defined by

.l1 m1 l2 m2 j l1 l2 l m/ D ım;m1Cm2

�
�

.2lC 1/.l1 C l2 � l/Š.l1 �m1/Š.l2 � m2/Š.lC m/Š.l �m/Š

.l1 C l2 C lC 1/Š.l1 � l2 C l/Š.�l1 C l2 C l/Š.l1 C m1/Š.l2 C m2/Š

�1=2

�
X

n

.�1/nCl1�m1
.l1 C m1 C n/Š.l2 C l� m1 � n/Š

nŠ.l1 � m1 � n/Š.l� m � n/Š.l2 � lC m1 C n/Š
;

(4.275)

where the sum over n is taken so that the arguments in the denominator are
nonnegative. This coefficient has the orthogonality and unitarity properties

X

l;m

.l1 m0
1 l2 m0

2 j l1 l2 l m/.l1 l2 l m j l1 m1 l2 m2/ D ım0

1m1
ım0

2m2 ; (4.276)

X

m1;m2

.l1 l2 l0 m0 j l1 m1 l2 m2/.l1 m1 l2 m2 j l1 l2 l m/ D ıl0lım0mı.l1 l2 l/ ; (4.277)

where ı.l1 l2 l/ D 1 if l D jl1 � l2j, jl1 � l2j C 1, � � � , l1 C l2 � 1, l1 C l2 (triangular
inequalities) and is zero otherwise.

The 3-j symbol is real, and we have the selection rules: the 3-j symbol vanishes
if the following two conditions are not satisfied at the same time,

m1 C m2 C m3 D 0 ; (4.278)

jl1 � l2j � l3 � l1 C l2 ; (4.279)

where Eq. (4.279) is called the triangular inequalities. In other words, Eqs. (4.278)
and (4.279) are the necessary conditions for the nonvanishing of the 3-j symbol. In
the particular case of m1 D m2 D m3 D 0, the 3-j symbol does not vanish if the
triangular inequalities hold with l1 C l2 C l3 being even.

We have the symmetry,

�
l1 l2 l3
m1 m2 m3

�
D .�1/l1Cl2Cl3

�
l1 l2 l3
�m1 �m2 �m3

�
: (4.280)

We have as special cases

�
l l 0

m �m 0

�
D .�1/l�m.2lC 1/�1=2 ; (4.281)
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�
l1 l2 l1 C l2
m1 m2 �m1 � m2

�
D .�1/l1�l2Cm1Cm2

�
�

.2l1/Š.2l2/Š.l1 C l2 C m1 C m2/Š.l1 C l2 � m1 � m2/Š

.2l1 C 2l2 C 1/Š.l1 C m1/Š.l1 � m1/Š.l2 C m2/Š.l2 � m2/Š

�1=2
;

(4.282)

�
l1 l2 l3
l1 �l1 �m m

�
D .�1/�l1Cl2Cm

�
�

.2l1/Š.�l1 C l2 C l3/Š.l1 C l2 Cm/Š.l3 � m/Š

.l1 C l2 C l3 C 1/Š.l1 � l2 C l3/Š.l1 C l2 � l3/Š.�l1 C l2 � m/Š.l3 Cm/Š

�1=2
:

(4.283)

The recurrence relations, Eqs. (3.7.12) and (3.7.13) of Edmonds [16], are also
useful.
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Chapter 5
Equilibrium Properties

This chapter presents the statistical-mechanical treatments of equilibrium confor-
mational or static properties, such as the mean-square radius of gyration, scattering
function, mean-square optical anisotropy, and mean-square electric dipole moment,
of the unperturbed HW chain, including the KP wormlike chain as a special case,
by an application of its chain statistics developed in Chap. 4. A comparison of
theory with experiment is made with experimental data obtained for several flexible
polymers in the � state over a wide range of molecular weight, including the
oligomer region, and also for typical semiflexible polymers (without excluded
volume) in some cases. It must be noted that well-characterized samples have
recently been used for measurements of dilute-solution properties of the former;
they are sufficiently narrow in molecular weight distribution, and have a fixed
stereochemical composition independent of the molecular weight in the case of
asymmetric polymers.

5.1 Mean-Square Radius of Gyration

5.1.1 Basic Equations and Model Parameters

We begin by making a comparison of theory with experiment with respect to the
mean-square radius of gyration hS2i for several flexible and semiflexible polymers
to determine their HW model parameters �0; �0; ��1, and ML (with Poisson’s ratio
� D 0). For this purpose, it is convenient to use the number of repeat units in the
chain (or the degree of polymerization) x instead of its total contour length L.

Equation (4.83) with Eq. (4.89) may then be rewritten as

hS2i
x
D M0�

�1

ML

�
fS.�LI��1�0; ��1�0/

�L

�
(5.1)
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with

log x D log.�L/C log

�
��1ML

M0

�
; (5.2)

where M0 is the molecular weight of the repeat unit and the function fS is given by

fS.LI �0; �0/ D � 20
	2

fS;KP.L/C � 2
0

	2r2

�
rL

3
cos' � cos.2'/C 2

rL
cos.3'/

� 2

r2L2
cos.4'/C 2

r2L2
e�2L cos.	LC 4'/

�
(5.3)

with

	 D .� 2
0 C � 20 /1=2 ; (5.4)

r D .4C 	2/1=2 ; (5.5)

' D cos�1
�
2

r

�
; (5.6)

and with fS;KP being the function fS for the KP chain given by

fS;KP.L/ D L

6
� 1
4
C 1

4L
� 1

8L2
.1 � e�2L/ : (5.7)

In the limit of �L!1, we have

lim
�L!1

�
fS.�L/

�L

�
D 1

6
c1 ; (5.8)

so that

lim
x!1

� hS2i
x

�
�
� hS2i

x

�

1
D M0�

�1c1
6ML

; (5.9)

where

c1 D 4C .��1�0/2

4C .��1�0/2 C .��1�0/2
: (5.10)

Recall that for the KP chain �0 D 0 and c1 D 1.
Figure 5.1 shows double-logarithmic plots of hS2i=x (in Å2) against x for atactic

(a-) PS with the fraction of racemic diads fr D 0:59 in cyclohexane at 34.5 ıC
(�) [1, 2], atactic poly(˛-methylstyrene) (a-P˛MS) with fr D 0:72 in cyclohexane
at 30.5 ıC (�) [3], a-PMMA with fr D 0:79 in acetonitrile at 44.0 ıC (�) [4], i-
PMMA with fr D 0:01 in acetonitrile at 28.0 ıC (�) [5], poly(n-butyl isocyanate)
(PBIC) in tetrahydrofuran (THF) at 40 ıC [6], DNA in 0.2 mol/l NaCl at 25 ıC [7],
and schizophyllan in 0.01 N NaCl at 25 ıC [8], where for DNA x has been chosen to
be the number of base pairs. Among these polymers, the first four are flexible and
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Fig. 5.1 Double-logarithmic plots of hS2i=x (in Å2) against x for a-PS in cyclohexane at 34.5 ıC
(�) [1, 2], a-P˛MS in cyclohexane at 30.5 ıC (�) [3], a-PMMA in acetonitrile at 44.0 ıC (�) [4],
i-PMMA in acetonitrile at 28.0 ıC (�) [5], PBIC in THF at 40 ıC (�) [6], DNA in 0.2 mol/l NaCl
at 25 ıC (�) [7], and schizophyllan in 0.01 N NaOH at 25 ıC (�) [8]. The solid curves represent
the best-fit HW (or KP) theoretical values

Table 5.1 Values of the HW model parameters for typical flexible and semiflexible polymers
from hS2i
Polymer ( fr) Solvent Temp. (ıC) ��1�0 ��1�0 ��1 (Å) ML (Å�1) Ref. (obs.)

a-PS (0.59) Cyclohexane 34.5 3.0 6.0 20.6 35.8 [1, 2]

a-P˛MS (0.72) Cyclohexane 30.5 3.0 0.9 46.8 39.8 [3]

a-PMMA (0.79) Acetonitrile 44.0 4.0 1.1 57.9 36.3 [4]

i-PMMA (0.01) Acetonitrile 28.0 2.5 1.3 38.0 32.5 [5]

PBIC THF 40 0 � � � 1320 55.1 [6]

DNA 0.2 M NaCl 25 0 � � � 1360 195 [7]

Schizophyllan 0.01 N NaOH 25 0 � � � 3000 217 [8]

the other three are semiflexible. The data have been obtained from light scattering
measurements except for fractions of the flexible polymers with hS2i1=2 . 80Å,
for which those have been obtained from small-angle X-ray scattering (SAXS)
measurements. We note that proper corrections for chain thickness (the spatial
distribution of electrons around the chain contour) have been made to the values of
hS2i from the SAXS measurements following the procedure given in Appendix 1.

In the figure the solid curves represent the best-fit HW (or KP) theoretical values
calculated from Eq. (5.1) with Eq. (5.2) with the values of the model parameters
listed in Table 5.1, where we note that the values of ��1�0 and ��1�0 for a-PS
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have been determined from the mean-square optical anisotropy (see Sect. 5.3.3). It
is seen that for both flexible and semiflexible polymers the behavior of hS2i may be
well explained by the HW (or KP) continuous model. The reader is also referred to
the review article by Norisuye [9], in which the values of the KP model parameters
are summarized for a wide variety of semiflexible polymers.

5.1.2 Chain Stiffness and Local Chain Conformations

In general, the (static) stiffness parameter ��1 may be considered smaller and larger
than about 100 Å for flexible and semiflexible (or stiff) polymers, respectively. This
is rather the definition of the chain stiffness from the point of view of the continuous
model. It may also be defined by the behavior of the (unperturbed) ratio hS2i=x; that
is, this ratio becomes independent of x for x & 300 for flexible polymers but levels
off only at much larger x for semiflexible polymers, as seen from Fig. 5.1.

We first give a brief discussion of the results for the model parameters for the
semiflexible polymers given in Table 5.1, for convenience. The value 55.1 Å�1
of ML for PBIC is close to the values 54.5 and 51.1 Å�1 corresponding to the
Troxell–Scheraga [10] and Schmueli–Traub–Rosenheck [11] 83 helices of PBIC,
respectively, indicating that its chain takes preferentially such a helical form in
dilute solution. The values of ML for DNA and schizophyllan correspond to
those for their double and triple helices, respectively. The structures of all these
typical semiflexible or stiff polymer chains, whose ��1 are greater than hundreds
angstroms, are in general very symmetric about their helix axes, so that they may
be well represented by the KP chain whose contour coincides with the helix axis.
The schizophyllan chain has the very large value of ��1 and is the most stiff of the
polymers studied so far [9].

Now we discuss the results for the flexible polymers. The asymptotic ratio
.hS2i=x/1 in Eq. (5.9) is equal to 8:13, 8:05, 6:57, and 9:31 Å2 for a-PS, a-P˛MS,
a-PMMA, and i-PMMA, respectively, and cannot be directly correlated to the chain
stiffness ��1, as seen from Table 5.1. From Eqs. (4.87) and (5.9), it is seen to be
related to the Kuhn segment length AK and the persistence length q by the equations

AK D 2q D c1��1

D 6ML

M0

� hS2i
x

�

1
: (5.11)

For polymer chains having the same ratio ML=M0 the asymptotic ratio .hS2i=x/1
is then proportional to AK and q. (Note that the values of ML=M0 are close to each
other for these three flexible polymers.) Thus neither AK nor q is a measure of chain
stiffness except for the KP chain for which c1 D 1. This is also the case with the
characteristic ratio C1, which is given by
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C1 D 3

l2

� hS2i
x

�

1
(5.12)

with l the bond length if the number of skeletal bonds is equal to 2x. It must be
emphasized that the order of the chain stiffness of the four flexible polymers is as
a-PMMA>a-P˛MS>i-PMMA>a-PS.

It is seen from Fig. 4.13 and the values of ��1�0 and ��1�0 in Table 5.1 that the
a-PMMA chain is of the strongest helical nature of the above four flexible polymers
and the a-PS chain is of the weakest. Indeed, for a-PMMA and also a-P˛MS, the
ratio hS2i=x as a function of x passes through a maximum at x ' 50 before reaching
its asymptotic value for large x, as seen from Fig. 5.1. We note that this maximum
cannot be explained by any type of RIS models for a-PMMA with fr D 0:79 (having
hydrogen atoms at both terminal ends) [4], although the RIS values (of Cn) exhibit
it for s-PMMA, as shown in Fig. 4.5 (see also Sect. 5.2.2).

According to the HW model, a flexible polymer chain in dilute solution may be
pictured as a regular helix (that is, the characteristic helix) disturbed (or destroyed)
by thermal fluctuations or a random coil retaining more or less helical portions. The
shape of the characteristic helix may be determined as a space curve by the radius �
and pitch h, which are given by Eqs. (4.14),

� D
�

��1�0
.��1�0/2 C .��1�0/2

�
��1 ;

(5.13)

h D 2�
�

��1�0
.��1�0/2 C .��1�0/2

�
��1 ;

and the degree of disturbance (thermal fluctuation) may be represented by the
parameter �, so that the regular helical structure is destroyed to a lesser extent in
the chain with larger stiffness ��1. In general, the chain of strong helical nature
has large � (compared to h) and large ��1, and thus retains rather large and clearly
distinguishable helical portions in dilute solution. Note that the chain with vanishing
� (the KP chain) has no helical nature irrespective of the value of ��1 and that the
chain with small ��1 is not of strong helical nature irrespective of the shape of its
characteristic helix.

In Table 5.2 are given the values of � and h calculated for the above four
flexible polymers from Eqs. (5.13) with the values of ��1�0, ��1�0, and ��1 given

Table 5.2 Values of the
characteristic helix
parameters

Polymer ( fr) Solvent Temp. (ıC) � (Å) h (Å)

a-PS (0.59) Cyclohexane 34.5 1.37 17.3
a-P˛MS (0.72) Cyclohexane 30.5 14.3 27.0
a-PMMA (0.79) Acetonitrile 44.0 13.5 23.3
i-PMMA (0.01) Acetonitrile 28.0 12.0 39.1
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a-PS (fr = 0.59) a-PαMS (fr = 0.72) a-PMMA (fr = 0.79) i-PMMA (fr = 0.01)

ρ

h

Fig. 5.2 Illustration of the characteristic helices for a-PS, a-P˛MS, a-PMMA, and i-PMMA

in Table 5.1. With those values, their characteristic helices are illustratively drawn
in Fig. 5.2. These shapes and the values of ��1 make us easily understand their
degrees of helical nature. The values of � and h for the a-P˛MS chain are nearly
equal to those for the a-PMMA chain, indicating that the characteristic helices for
both chains are similar to each other in size and shape. However, ��1 is smaller for
the former than for the latter. The characteristic helix for the i-PMMA chain is more
extended than those for the a-P˛MS and a-PMMA chains, and ��1 is smaller for
the former than for the latter two. Furthermore, the characteristic helix for the a-PS
chain is much more extended (closer to a straight line) than that for the i-PMMA
chain, and the former has the smallest value of ��1 of these four polymers. From
these observations, it may be concluded that the order of the strength of helical
nature of the four polymers is as a-PMMA > a-P˛MS > i-PMMA > a-PS.

5.1.3 HW Monte Carlo Chains

The difference in local chain conformation between flexible polymers may be
visualized by generating instantaneous configurations of the contour of the HW
chain, that is, HW Monte Carlo chains [4]. For this purpose, we divide the HW
chain of contour length L into N identical parts, each of contour length �s D L=N,
to consider its discrete analog. For the case of ��s� 1, the bond vector ap ( p D 1,
2, � � � , N) as defined as the vector distance between the contour points . p�1/�s and
p�s may be assumed to be of length�s and in the direction of the vector tangential
to the contour or the � axis of the localized Cartesian coordinate system (�, �, �)
affixed at the contour point . p � 1/�s. Let � Q�p ( p D 1, 2, � � � , N � 1) be the
infinitesimal rotation vector by which the localized coordinate system at the contour
point p�s is obtained from the one at the contour point . p�1/�s, let� Q�p� ,� Q�p�,
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and � Q�p� be the Cartesian components of � Q�p expressed in the latter system, and
let � Q�p D .j� Q�pj, �p, �p) in spherical polar coordinates in that system.

The transformation from the latter to the former system may then be represented
by the transformation matrix Tp defined by

Tp D A�1.�p; �p/ � R.j� Q�pj/ � A.�p; �p/ ; (5.14)

where the rotation matrices A.�; �/ and R. / are given by

A.�; �/ D
0

@
cos � cos� cos � sin � � sin �
� sin � cos� 0

sin � cos� sin � sin � cos �

1

A ; (5.15)

R. / D
0

@
cos sin 0

� sin cos 0

0 0 1

1

A : (5.16)

By the use of the transformation matrices Tp thus defined, the pth bond vector ap

( p D 2, 3, � � � , N) expressed in the localized system at the contour point 0 may be
written as

ap D T �1
1 � T �1

2 � � �T �1
p�1 � a ; (5.17)

where a is the pth bond vector ap in the . p�1/th system, so that a is a1 D .0; 0; �s/
in the 0th system.

An instantaneous configuration of this entire (discrete) HW chain may be
generated by joining the bond vectors ap successively, so that we have only to
generate a set of N�1 infinitesimal rotation vectors� Q�p ( p D 1, 2, � � � , N�1). The
potential energy U of the (continuous) HW chain per unit contour length is given
by Eq. (4.4) with ˛ D ˇ when � D 0. Therefore, if we assume that the “angular
velocity” vector ! takes the constant value � Q�p=�s between the contour points
. p�1/�s and p�s for ��s� 1, the potential energy Up for the rotation� Q�p may
be written in the form

Up D kBT

4��s

�
.� Q�p�/

2 C .� Q�p� � �0�s/2 C .� Q�p� � �0�s/2
�
; (5.18)

where Eq. (3.37) has been used. We can then readily generate � Q�p by the
introduction of the Boltzmann factor exp.�Up=kBT/ as the equilibrium probability
distribution function of� Q�p. For the generation of the chain, ��s must be taken to
be as small as possible, say 0.02.

In Fig. 5.3 are depicted representative instantaneous contours of the a-PS, a-
P˛MS, a-PMMA, and i-PMMA chains so obtained for x D 500, where their radii
of gyration S are just equal to the respective values of hS2i1=2. The shaded sphere
has the radius S, which is equal to 63.2, 63.6, 57.4, and 67.8 Å for a-PS, a-P˛MS,
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a-PS ( fr = 0.59 ) a-PαMS ( fr = 0.72 ) a-PMMA ( fr = 0.79 ) i-PMMA ( fr = 0.01 )

Fig. 5.3 Representative instantaneous contours of HW Monte Carlo chains corresponding to a-PS,
a-P˛MS, a-PMMA, and i-PMMA with x D 500 such that their radii of gyration S are just equal to
their respective hS2i1=2

a-PMMA, and i-PMMA, respectively, and is nearly proportional to .hS2i=x/1=21 .
The a-PS chain seems just the random-flight chain. On the other hand, several
helical portions are clearly observed in the pictures for a-P˛MS and a-PMMA,
for example, in the right-bottom part of that for the latter chain, which tends to
retain such portions more significantly and therefore to take more compact global
conformations, as was expected from the discussion in the last subsection, while
such portions do not appear for i-PMMA. Thus the i-PMMA chain tends to take
more extended conformations than the a-P˛MS and a-PMMA chains, so that the
ratio .hS2i=x/1 is larger for the former despite the fact that ��1 is smaller for the
former. However, the chain contour of i-PMMA is still rather smooth compared to
that of a-PS. This is due to the fact that ��1 is larger for the former than for the
latter. It is because of this chain stiffness that the ratio .hS2i=x/1 is even larger for
i-PMMA than for a-PS. (Note that the ratio is smaller for a-PMMA than for a-PS
because of the strong helical nature of the former.)

The HW chain takes account of both chain stiffness and local chain conforma-
tions in a satisfactory manner.

5.2 Scattering Function

5.2.1 Scattering Function for the Chain Contour

We first evaluate the scattering function P.kIL/ for the HW chain of contour
length L in the continuous-point-scatterer approximation such that the scatterers are
uniformly and continuously distributed on the chain contour. From Eq. (5.206) with
Eq. (5.208), it is then given by

P.kIL/ D L�2
�ˇ̌
ˇ̌
Z L

0

exp
�
ik � r.s/�ds

ˇ̌
ˇ̌
2�

D 2L�2
Z L

0

.L� s/I.kI s/ds ; (5.19)
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where i is the imaginary unit, r.s/ is the radius vector of the contour point s, I.kI s/
is the characteristic function for the chain of contour length s, and k is the scattering
vector whose magnitude k is given by

k D .4�= Q�/ sin.�=2/ (5.20)

with Q� the wavelength in the medium and � the scattering angle. Note that Q� is
equal to the wavelength �0 in vacuum in the case of SAXS and small-angle neutron
scattering (SANS). In what follows, all lengths are measured in units of ��1 unless
otherwise noted.

In order to evaluate P.kIL/ from the second line of Eqs. (5.19), we adopt two
approximation methods for the evaluation of I, that is, the weighting function
method and the 
 method given in Sects. 4.7.1 and 4.7.2, respectively. In the first
method, the characteristic function I.kIL/ may be evaluated, although numerically,
from the Fourier transform of the distribution function G.RIL/ of the end-to-end
vector R,

I.kIL/ D
Z

G.RIL/ exp.ik � R/dR

D 4�k�1
Z 1

0

R sin.kR/G.RIL/dR ; (5.21)

where G.RIL/ is approximated by

G.RIL/ D
�

3

2hR2i
�3=2

w.�/
sX

nD0
Mn.L/�

2n (5.22)

with

� D
�

3

2hR2i
�1=2

R : (5.23)

For the weighting function w.�/, we adopt the function wI.�/ given by Eq. (4.207),

w.�/ D exp
��a1�

2 � a2� � .b�2/5
�
: (5.24)

The coefficients a1; a2, and b in Eq. (5.24) are first determined so that the
normalized weighting function gives the exact moments hR2i, hR4i, and hR6i, and
then Mn D .4�/�1F00;00

000;n (n D 0–s; s 	 3) in Eq. (5.22) are determined from
Eq. (4.204), that is, in such a way that the G.RIL/ given by Eq. (5.22) with this w
gives the exact moments hR2mi (m D 0–s). Note that when a2 D b D 0, Eq. (5.22)
gives the Hermite polynomial expansion of G.RIL/.
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For very small L, the second method is used, and then I.kIL/ is approximately
given by Eq. (4.228),

I.kIL/ D
sX

mD0

.�x/m

2mmŠ
h
mijm.x/ ; (5.25)

where jm.x/ is the spherical Bessel function of the first kind. If hR2i0 is chosen to be
hR2i in Eq. (4.220), we have

x D hR2i1=2k ; (5.26)

h
mi D hR
2mi
hR2im �

m�1X

rD0

�
m
r

�
h
ri (5.27)

with 
 D R2=hR2i � 1, so that h
mi (m 	 1) may be expressed successively in terms
of hR2ri (r D 1–m). The required moments hR2mi may be evaluated from Eq. (4.81)
(for � D 0).

It has been found that if k is not very large, accurate values of I.kIL/ may be
obtained over the whole range of L using the values from the 
 method for L smaller
than some small value and from the weighting function method for L larger than
that value, both for the degree of approximation s equal to 5, for all those values of
�0 and �0 for which the latter method has the solution [12]. The integration in the
second line of Eqs. (5.19) must then be carried out numerically to find P.kIL/.

For the particular case of the KP chain, we give an interpolation formula for
P.kIL/ constructed on the basis of the numerical results [12]. It may be well
approximated by

P.kIL/ D P0.kIL/� .kIL/ : (5.28)

P0.kIL/ is given by

P0.kIL/ D
�
1 � 
.kIL/�P.C�/.kIL/C 
.kIL/P.R/.kIL/ ; (5.29)

where P.C�/.kIL/ is the Debye scattering function for the random coil (Gaussian
chain) [13] having the same mean-square radius of gyration hS2i as that of the KP
chain under consideration,

P.C�/.kIL/ D 2u�2.e�u C u � 1/ (5.30)

with

u D hS2ik2 ; (5.31)
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P.R/.kIL/ is the scattering function for the rod [13, 14],

P.R/.kI L/ D 2v�2�vSi.v/C cos v � 1� (5.32)

with

v D Lk ; (5.33)

and with Si.v/ being the sine integral

Si.v/ D
Z v

0

t�1 sin tdt ; (5.34)

and 
.kIL/ is defined by


 D exp.���5/ (5.35)

with

� D �hS2ik=2L : (5.36)

In Eq. (5.28), � .kIL/ is given by

� .kIL/ D 1C .1 � 
/
5X

iD2
Ai�

i C 

2X

iD0
Bi�

�i (5.37)

with

Ai D
2X

jD0
a1;ijL

�je�10=L C
2X

jD1
a2;ijL

je�2L ; (5.38)

Bi D
2X

jD0
b1;ijL

�j C
2X

jD1
b2;ijL

je�2L ; (5.39)

where a1;ij, a2;ij, b1;ij, and b2;ij are numerical coefficients and their values are given
in Table 5.3. The application of Eq. (5.28) with Eqs. (5.29)–(5.39) for the KP chain
is limited to the range of k . 10.

For the HW chain, including the KP chain, of very small L, P.kIL/ may be
evaluated analytically, although in a series form, as given in Sect. 5.3.5.

For convenience, we define a function F.kIL/ by

F.kIL/ D Lk2P.kIL/ : (5.40)
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Table 5.3 Values of ak;ij and bk;ij in Eqs. (5.38) and (5.39)

i j a1;ij a2;ij b1;ij b2;ij
0 0 � � � � � � 1.3489 � � �
0 1 � � � � � � 1.6527 (1) 1.3544 (1)

0 2 � � � � � � �6.5909 (1) 6.0772 (1)

1 0 � � � � � � �2.0350 � � �
1 1 � � � � � � �3.0016 (1) 3.2504 (1)

1 2 � � � � � � 1.1290 (2) �1.3836 (2)

2 0 1.7207 (�1)a � � � 1.3744 � � �
2 1 �7.0881 3.3157 (�1) 1.2268 (1) �5.1258 (1)

2 2 1.9577 (1) �1.0692 �4.6316 (1) 7.2212 (1)

3 0 7.7459 (�2) � � � � � � � � �
3 1 4.8101 �3.9383 � � � � � �
3 2 �2.0099 (2) 1.1279 (1) � � � � � �
4 0 9.6330 (�1) � � � � � � � � �
4 1 2.6450 (1) 1.2608 (1) � � � � � �
4 2 4.0647 (2) �3.8021 (1) � � � � � �
5 0 �1.1307 � � � � � � � � �
5 1 �2.3971 (1) �9.7252 � � � � � �
5 2 �2.2471 (2) 3.3515 (1) � � � � � �

aa(n) means a � 10n

Note that F.kIL/ corresponds to the quantity (Kratky function) often plotted in
SAXS and SANS experiments. In the following we examine the behavior of the
scattering function F.kIL/ thus calculated as a function of k.

Values of F.kIL/ for two typical HW chains with �0 D 2:5 and �0 D 0:5 (Code 1
of Table 4.4) and with �0 D 5:0 and �0 D 1:0 (Code 2 of Table 4.4) and also the
KP chain in the range of convergence are represented by the solid curves 1, 2, and
KP in Figs. 5.4 and 5.5 for L D 80 and 104, respectively. The dashed curves C(2)
and C(KP) represent the values of F.C�/ calculated from Eq. (5.40) with Eq. (5.30)
for the random coils having the same hS2i as those of Code 2 and the KP chain,
respectively, and the dotted curves R represent the values of F.R/ calculated from
Eq. (5.40) with Eq. (5.32) with the respective values of L. For the typical HW chains,
F.kIL/ exhibits a maximum and a minimum.

All the solid curves in Figs. 5.4 and 5.5 are seen to approach straight lines
asymptotically as k is increased. Indeed, we have

F.kIL/ �! �kC C.L/ for k!1 (5.41)
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Fig. 5.4 Plots of F.kI L/ against k for L D 80. The solid curves 1, 2, and KP represent the values
for HW Code 1 (�0 D 2:5 and �0 D 0:5), HW Code 2 (�0 D 5:0 and �0 D 1:0), and the KP chain,
respectively. The dashed curves C(2) and C(KP) represent the values of F.C�/ for the random coils
having the same hS2i as those of Code 2 and the KP chain, respectively, and the dotted curve R the
values of F.R/ for the rod
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Fig. 5.5 Plots of F.kI L/ against k for L D 104; see legend for Fig. 5.4

with

C .L/ D �2L�1 .rod/ ; (5.42)

C .1/ D 2

3
.KP/ ; (5.43)

where Eq. (5.43) is due to des Cloizeaux [15]. We note that it is impossible to
evaluate C.L/ analytically for the KP and HW chains of finite L and that for the
random coil we have

lim
k!1 F.C/.kIL/ D lim

L!1 F.C/.kIL/ D 12c �11 ; (5.44)
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where F.C/ is equal to F.C�/ with hS2i D c1L=6. On the other hand, we have [16]

F.0I1/ � lim
k!0

�
lim

L!1 F.kIL/� D 12c �11 ; (5.45)

so that F.0I1/ D F.C/.1IL/, and F.0I1/ D 12 for the KP chain.
Finally, mention must be made of earlier investigations of the scattering function

for the KP chain. The KP chain statistics has been introduced approximately by
Peterlin [17], Heine et al. [18], and Koyama [19]. The evaluation has been carried
out numerically by des Cloizeaux [15] for the infinitely long chain for k � 8.
His results for F almost agree with the corresponding values shown in Fig. 5.5 for
L D 104 in the range of k 	 0:5. For the KP chain, it may therefore be concluded that
F.kIL/ increases monotonically with increasing k for all values of L (see Figs. 5.4
and 5.5). In other words, it does not exhibit even a plateau in the transition range
of k from random coil to rod. Some of earlier theories [18, 19] happen to predict
the existence of the plateau region for the KP chain because of the approximations
involved. If it is observed experimentally, it should be explained by the HW model.
The exact evaluation has also been carried out for limited values of L in the light-
scattering range [19–22] (see also Sect. 5.3.5). In particular, we note that Sharp
and Bloomfield [20] have derived the first Daniels approximation to the scattering
function [12].

5.2.2 Comparison with the RIS Model

As seen in the last subsection, for typical HW codes the theory can predict the
first maximum and minimum but not the second ones in the Kratky function such
as observed by Kirste and Wunderlich [23–25] in their SAXS experiment for s-
PMMA. However, Yoon and Flory [26] have carried out Monte Carlo calculations
on the basis of the RIS model to show the existence of such oscillation for s-PMMA,
taking the ˛-carbon atoms as the scatterers. As already noted, on the other hand, the
RIS model can predict the maximum in hS2i=x for s-PMMA but not for a-PMMA
with fr D 0:79 [4]. Thus we examine the dependence on fr of the Kratky function
on the basis of the RIS model.

For this purpose, we adopt only the three-state RIS model [27] for PMMA chains,
assuming as before that both terminal ends are hydrogen atoms [4], for convenience.
Following the procedure of Yoon and Flory [26], we evaluate the characteristic
function for a part of the RIS chain by the Monte Carlo method if the number of
repeat units x in that part is smaller than or equal to 30, and by the eighth-order
Hermite polynomial approximation otherwise. The scattering function P.kI x/ is
then given by

P.kI x/ D P1.kI x/C P2.kI x/ (5.46)
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Fig. 5.6 Plots of xk2P1.kI x/
against k for the three-state
RIS model for PMMA with
x D 1000 at 300 K for the
indicated values of fr
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with

P1.kI x/ D x�1 C 2x�2
30X

jD1
.x � j/

�
sin.krj/

krj

�

MC

; (5.47)

P2.kI x/ D 2x�2
x�1X

jD31
.x � j/I.kI j/ ; (5.48)

where rj is the distance between two ˛-carbon atoms connected by 2j successive
skeletal bonds, h� � � iMC denotes a Monte Carlo average, and I.kI j/ is the character-
istic function. We note that P2 makes no contribution to P in the range of large k.
Thus, for the examination of the behavior of P in such a k region, we consider only
P1, for simplicity.

Figure 5.6 shows plots of xk2P1 against k for the three-state model for PMMA
with x D 1000 for fr D 1:0, 0:9, and 0.8 at 300 K [28]. Note that fr D 1 for s-
PMMA. It is seen that the amplitude of the oscillation of the (Kratky) plot in the
range of large k becomes small as fr is decreased but that the weak oscillation still
exists even for fr D 0:8 in contrast to the corresponding case of the HW chain (close
to Code 2 in Figs. 5.4 and 5.5). The second maximum and minimum (oscillation)
in the Kratky function indicate the “crystal-like” behavior of the chain, and their
occurrence should rather be regarded as a defect of the RIS model, for which some
components of the angular correlation function g jj0

l .x/ do not vanish in the limit of
x ! 1, as pointed out by Baram and Gelbart [29] and mentioned in Sect. 4.4.4. It
is believed that both of the RIS theory prediction and the experiment by Kirste and
Wunderlich are wrong. Their experiment is further discussed in Sect. 5.2.4. We note
that the oscillation does not appear even if the point scatterers are discretely arrayed
on the HW chain contour [28].
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5.2.3 Effects of Chain Thickness

In SAXS and SANS experiments, the scatterers are atomic electrons and hydrogen
nuclei distributed around the chain contour, respectively, and then the scattering
function directly observed, which we denote by Ps.kIL/, contains effects of the
spatial distribution of scatterers, that is, effects of chain thickness (see Appendix 1).
We evaluate Ps, assuming two types of scatterer distribution [28]. One is a uniform
scatterer distribution within a flexible cylinder of contour length L having a uniform
circular cross section of diameter d whose center is on the HW chain contour
(cylinder model), and the other is an assembly of N identical (touched) oblate
spheroids of principal diameters db and �db (0 < � � 1) in which the scatterers
are uniformly distributed (touched-spheroid model). All lengths are measured in
units of ��1.

(a) Cylinder Model

For this case, Ps.kIL/ is given, from Eq. (5.206) with Eq. (5.209), by

Ps.kIL/ D 2L�2
Z L

0

.L � s/Is.kI s/ds (5.49)

with

Is.kIL/ D
�
4

�d2

�2�Z

C0

dNr0
Z

C
dNr exp

�
ik � .RC Nr � Nr0/

��
; (5.50)

where R D R.L/ is the end-to-end vector distance of the chain of contour length
L, Nr0 (or Nr) is the vector distance from the initial (or terminal) contour point to
an arbitrary point in the normal cross section at that point, and the integrations are
carried out over the respective cross sections. The equilibrium average h� � � i is given
by Eq. (4.184),

h� � � i D .8�2/�1
Z
.� � � /G.R; � j�0IL/dRd�d�0 ; (5.51)

where G is the Green function defined in Sect. 4.2.1.
Before making further developments, it is convenient to consider the case of rigid

rods. In this case Is.kIL/ may be evaluated to be [30]

Is.kIL/ D j0.Lk/
1X

n0D0

�
Fn0 .dk/

�2 C
1X

nD1
.�1/n.4nC 1/j2n.Lk/

�
1X

n0;nLD0

�
.4n0 C 1/.4nL C 1/

�1=2

�
�
2n 2n0 2nL

0 0 0

�2
Fn0 .dk/FnL.dk/ .rod/ ; (5.52)
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where .WWW/ is the Wigner 3-j symbol, and Fn.dk/ is a function of dk and is defined by

Fn.dk/ D .�1/n
�

8

�1=2d2

�Z

C0

j2n.Nr0k/Y02n

�
�

2
; �0

�
dNr0

D 1

2
.4nC 1/1=2 .2n � 1/ŠŠ

.2n/ŠŠ

�
1X

mD0

.�1/m� .1
2
/

.mC nC 1/mŠ � .mC 2nC 3
2
/

�
dk

4

�2.mCn/

(5.53)

with � the gamma function and with Nr0 D .Nr0, �=2, �0) in spherical polar
coordinates in the localized coordinate system at the contour point 0. In Eq. (5.52),
we note that j0.Lk/ is just equal to the characteristic function I.kIL/ for the rigid rod
of length L and that the sum of

�
Fn0 .dk/

�2
over n0 is equal to the scattering function

for the circular disk of diameter d.
Values of .Lk/2Ps.kIL/ calculated as a function of dk for the rigid rod from

Eq. (5.49) with Eq. (5.52) for L=d D 100 are represented by the solid curve in
Fig. 5.7. [Note that the dimensionless quantity .Lk/2Ps is a function of dk and L=d.]
The dotted curve represents the values for the rigid rod with vanishing d, that is, its
contour. [Note that .Lk/2Ps for this rod with d D 0 is a function of Lk D 100dk,
that is, dk.] It is seen that the scattering function for the rod with finite d becomes
much smaller than that for the rod with vanishing d in the range of large dk because
of the additional interference due to the spatial distribution of scatterers around the
contour.

8642

1500

1000

500

0

dk

(k
L)

2 P s
(k

;L
)

Fig. 5.7 Plots of .Lk/2Ps.kI L/ against dk for the rigid rod. The solid curve represents the exact
values for the rod of L=d D 100 having finite thickness, and the dotted curve for the corresponding
rod with vanishing thickness. The dot-dashed and dashed curves represent the approximate values
for the same rod with finite thickness calculated from Eq. (5.54) for the conventional method and
from Eq. (5.49) with Eq. (5.52) only with the j0 term, respectively
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We also examine the behavior of the scattering function Ps obtained by the
conventional method for the correction for chain thickness. It is given by [25, 31]

Ps.kIL/ D P.kIL/ exp

�
� 1
16

d2k2
�
: (5.54)

The factor exp.�d2k2=16/ represents approximately the additional interference
mentioned above. In Fig. 5.7, the dot-dashed curve represents the values calculated
from Eq. (5.54) with Eq. (5.32) for the contour scattering function P.kIL/ for the
rod. For the rigid rod Eq. (5.54) is seen to give a good approximation to Ps in the
range of dk . 3.

For the flexible chain, however, the orientational correlation between the two
normal cross sections at two contour points diminishes rapidly as the contour
distance between them is increased, so that the effect of the additional interference
may be considered to become smaller than that for the rigid rod. Thus we neglect
this correlation, for simplicity. In the case of the rigid rod this approximation gives
the values represented by the dashed curve in Fig. 5.7, which have been calculated
from Eqs. (5.49) and (5.52) with neglect of all terms other than the first . j0/ term
on the right-hand side of Eq. (5.52). This is, of course, not a good approximation
for the rigid rod, for which the orientational correlation never vanishes even if it is
infinitely long. We further neglect the correlation between the end-to-end distance
R and the orientation �. This approximation causes no serious errors for flexible
chains except for very small L. Then we have for the desired expression for Is.kIL/

Is.kIL/ D I.kIL/
1X

nD0
g002n.L/

�
Fn.dk/

�2
; (5.55)

where I.kIL/ is the characteristic function, g jj0

l .L/ is the angular correlation function
given by Eq. (4.108) (for � D 0), and we note that g000 D 1.

We have examined the convergence of the sum on the right-hand side of
Eq. (5.55) and found that the summands with n 	 2may be neglected in the ordinary
range of k in which SAXS and SANS measurements are carried out. Thus we have
for the final explicit expression for Is.kIL/ [30]

Is.kIL/ D I.kIL/˚�F0.dk/
�2 C g002 .L/

�
F1.dk/

�2�
; (5.56)

where

g002 .L/ D e�6L

"
3� 4

0

4	4
cos.2	L/C 3� 2

0 �
2
0

	4
cos.	L/C 1

4

�
3� 20
	2
� 1

�2#
; (5.57)

F0.x/ D 8x�2�1 � cos.x=2/
�
; (5.58)

F1.x/ D 4
p
5x�3˚x

�
cos.x=2/� 1�� 6�sin.x=2/� x=2

��
: (5.59)
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(b) Touched-Spheroid Model

For this case, Ps.kIL/ is given, from Eq. (5.206) with Eq. (5.210), by

Ps.kIL/ D N�1Is.kI 0/C 2N�2
N�1X

jD1
.N � j/Is.kI j�db/ (5.60)

with

Is.kIL/ D
�

6

��d 3
b

�2�Z

V1

dNr1
Z

VN

dNrN exp
�
ik � .RC NrN � Nr1/

��
; (5.61)

where R D R.L/ with L D .N � 1/�db, Nrj (j D 1, N) is the vector distance from
the center of the jth spheroid to an arbitrary point within it, and the integrations are
carried out within the respective spheroids.

In the same approximations as those in the case of the cylinder model, Is.kIL/
may be given by Eq. (5.56) with Fn.dbk/ in place of Fn.dk/, where Fn.dbk/ is defined
by

Fn.dbk/ D .�1/n
�

12

�1=2�d 3
b

�Z

V1

j2n.kNr1/Y02n.�1; �1/dNr1 (5.62)

with Nr1 D .Nr1, �1, �1) in spherical polar coordinates in the localized coordinate
system at the contour point 0. The required Fn are explicitly given by

F0.x/ D 24

�x3

Z 1

0

�
xf .y/

�2
j1
�
xf .y/

�
dy ; (5.63)

F1.x/ D �12
p
5

�x3

Z 1

0

.3y2 � 1/f�4 sin
�
xf .y/

�C xf .y/ cos
�
xf .y/

�

C3Si
�
xf .y/

�gdy ; (5.64)

where Si.v/ is the sine integral given by Eq. (5.34) and f .y/ is given by

f .y/ D 1

2

�
1C .��2 � 1/y2��1=2 : (5.65)

The integrations in Eqs. (5.63) and (5.64) must be carried out numerically.
In the particular case of � D 1; Fn vanish for n 	 1 and F0 is given by

F0.dbk/ D 12.dbk/�3
�
2 sin.dbk=2/� dbk cos.dbk=2/

�
.� D 1/ : (5.66)

Note that the square of this F0 is just the scattering function for the sphere of
diameter db. Then Eq. (5.60) is the exact expression for the scattering function for
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the touched-sphere (bead) model, and Ps.kIL/ is simply factored into .F0/2 and the
contour scattering function P.kIL/ given by Eq. (5.60) with Is.kI 0/ D 1 and Is D I
for j 	 1; that is,

Ps.kIL/ D P.kIL/�F0.dbk/
�2

.� D 1/ : (5.67)

This is the relation derived by Burchard and Kajiwara [32].

(c) Numerical Results

Finally, we give numerical results for the Kratky function Fs.kIL/ defined by
Eq. (5.40) with Ps in place of P for the two models. Before doing this, we consider
the relation between them. If we introduce the requirement that the coefficients of
k2 in the expansions of Ps given by Eq. (5.211) for them be identical to each other
(for very large L), the squared radius of gyration .2C �2/d 2

b =20 of the spheroid is
identical to the one d2=8 of the circular cross section of the cylinder. Then db may
be related to d by the equation

db D
�

5

2.2C �2/
�1=2

d : (5.68)

In what follows, we use instead of db the diameter d from this relation for the
touched-spheroid model, for convenience. In an application of this model to a real
polymer chain, we replace the repeat unit of the latter by one spheroid such that its
principal diameter �db is identical to the contour length per repeat unit, the number
of spheroids N being equal to that of repeat units x. With the value of �db evaluated
and that of d properly assigned for a given real polymer, the parameter � is then
calculated from Eq. (5.68), and therefore db is also determined. For comparison, we
also consider the touched-sphere (bead) model of (approximately) the same contour
length such that its bead diameter db is given by Eq. (5.68) with � D 1 for a given
value of d.

Figure 5.8 shows plots of Fs.kIL/ against k for the a-PMMA chain with fr D 0:79
and N D 1000 for the indicated values of d. With the values of its ��1 and ML

given in Table 5.1, the value of �db is evaluated to be 0.0476, and then we have
L D 47:55. The solid curves represent the values for the cylinder model, and
the dashed and dotted curves represent the values for the corresponding touched-
spheroid and touched-sphere (bead) models, respectively. Numerical results have
also been obtained for other values of N and for the a-PS chain [28]. From these
results, the following two rather obvious but important facts may be pointed out.
First, in the range of small and intermediate k (dk . 7), the directly observed
Kratky function Fs (with finite chain thickness) is almost independent of the model
for the scatterer distribution but depends on the local conformation of the chain
contour. Second, for larger k (dk & 7), Fs (or its decay) depends strongly on the
local scatterer distribution, so that it is dangerous to construct the contour Kratky
function F from Fs there, as has often been done by the use of an approximate
formula for the chain-thickness correction.
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Fig. 5.8 Plots of Fs.kI L/
against k for a-PMMA
(�0 D 4:0 and �0 D 1:1) with
N D 1000 and �db D 0:0476

for the indicated values of d.
The solid, dashed, and dotted
curves represent the values
for the cylinder,
touched-spheroid, and
touched-sphere models,
respectively
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5.2.4 Comparison with Experiment

In this subsection we make a comparison of theory with experiment with respect
to the Kratky function Fs.k/ mainly with SAXS data obtained for a-PS, a-P˛MS,
a-PMMA, i-PMMA, and s-PMMA by the use of a point-focussing camera (together
with a Kratky U-slit camera in the range of small k) [33–37]. In this case, Fs is
defined by

Fs.k/ D Mk2Ps.k/ (5.69)

with M the polymer molecular weight. For convenience, the theoretical values
for the above polymers (except for s-PMMA) are calculated from Eq. (5.69) with
Eqs. (5.49) and (5.56) for the cylinder model, using the values of the model
parameters given in Table 5.1. The diameter d as an adjustable parameter is
determined from a best fit of the theoretical values to the data.

Figure 5.9 shows plots of Fs.k/ against k for four fractions of a-PS ( fr D 0:59)
with the indicated values of M in cyclohexane at 34.5 ıC [33]. For comparison, it
also includes SANS data (filled circles) obtained by Huber et al. [38] for a fraction of
a-PS with M D 1:07 � 104 in cyclohexane-d12 at 35 ıC. The solid curves represent
the best-fit HW theoretical values. The values of d thus determined by the curve
fitting to the SAXS data are 6.8, 12.2, 13.7, and 13.9 Å for the fractions with the
lowest to highest molecular weights, respectively, and its value from the SANS data
is 9.9 Å. Agreement between theory and experiment is rather good in the range of
k . 0:25Å�1 but becomes poor for larger k, indicating that the details of distribution
of electrons or hydrogen nuclei as the scatterers around the chain contour must there
be taken into account. The diameter d from the SAXS data increases somewhat with
increasing M for M . 1:0 � 104, but the reason for this is not clear. We note that
the value of d from the apparent mean-square radius of gyration hS2is is 9.4 Å (see
Appendix 1). Further, note that the value 9.9 Å above from the SANS data is smaller
than the value 13.7 Å from the SAXS data for the fraction with almost the same M
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Fig. 5.9 Plots of Fs.k/
against k for a-PS with the
indicated values of M;�,
SAXS data in cyclohexane at
34.5 ıC [33];�, SANS data
in cyclohexane-d12 at 35 ıC
[38]. The solid curves
represent the best-fit HW
theoretical values calculated
with the values of the model
parameters given in Table 5.1
and proper values of d (see
the text). The data points and
theoretical curves for samples
with the three highest M are
shifted upward by 40, 80, and
120 Å�2 with increasing M,
respectively
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(D 1:01� 104). This disagreement may be regarded as arising from the fact that for
PS the distribution of electrons as the scatterers around the chain contour in SAXS
is broader than that of hydrogen nuclei as those in SANS.

The behavior of Fs.k/ as a function of k for a-P˛MS of rather strong helical
nature is different from that for a-PS of weak helical nature shown in Fig. 5.9 [34].
We omit its detailed description since it is rather similar to that for a-PMMA of
strong helical nature shown below, although neither the maximum nor minimum in
Fs.k/ is observed in contrast to the case of a-PMMA.

Figure 5.10 shows similar plots for four fractions of a-PMMA ( fr D 0:79) in
acetonitrile at 44.0 ıC [35]. It also includes SANS data (filled circles) obtained
by Dettenmaier et al. [39] for a fraction of a-PMMA ( fr D 0:78) with M '
2:5 � 105 in the bulk. The values of d from the SAXS and SANS data are 2.8
and 11.3 Å, respectively. In this case, agreement between theory and experiment is
only semiquantitative. It is however important to see that for M & 3 � 103, the
observed Kratky plot exhibits the maximum and minimum but not the second ones
(or oscillation) such as observed by Kirste and Wunderlich [23–25], being consistent
with the HW theory prediction. We believe that the desmeared SAXS data obtained
by them (with a Kratky U-slit camera) are not correct for large k. The value 11.3 Å
of d from the SANS data is remarkably larger than the value 2.8 Å from the SAXS
data and even the value 8.2 Å from hS2is (see Appendix 1). This is due to the fact that
the scatterers (electrons) are distributed in rather small regions around the ˛ carbon
atoms and the ester groups in SAXS, while they are the hydrogen nuclei in SANS.

Figure 5.11 also shows similar plots for four fractions of i-PMMA ( fr D 0:01) in
acetonitrile at 28.0 ıC [36]. It also includes SANS data (filled circles) obtained by
O’Reilly et al. [40] for a fraction of i-PMMA ( fr D 0:03) with M D 1:20 � 105 in
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Fig. 5.10 Plots of Fs.k/
against k for a-PMMA with
the indicated values of M;�,
SAXS data in acetonitrile at
44.0 ıC [35];�, SANS data
in the bulk [39]; see legend
for Fig. 5.9
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the bulk and corrected by Vacatello et al. [41]. The value of d from the SAXS data
is 3.0 Å, which is close to the corresponding value 2.8 Å above for a-PMMA in the
same � solvent, and the value from the SANS data is 13.7 Å, which is also close
to the corresponding value 11.3 Å above for a-PMMA in the bulk. In this case the
theory may accidentally well explain the experimental results over the whole range
of k examined. As was expected, the SAXS data do not exhibit the maximum and
minimum since the helical nature of the i-PMMA chain is weaker than that of the
a-PMMA chain.

For comparison, the SAXS data and the corresponding theoretical values for
the above a-PS, a-PMMA, and i-PMMA fractions with M ' 104 are plotted
in Fig. 5.12. It also includes data for a fraction of a-P˛MS ( fr D 0:72) with
M D 7:97 � 103 in cyclohexane at 30.5 ıC (�) [34] and those for a fraction of
s-PMMA ( fr D 0:92) with M D 3:76 � 104 in acetonitrile at 44.0 ıC (�) [37],
although the theoretical values have not been calculated for s-PMMA since the
values of its model parameters have not been determined. The theoretical values
for a-P˛MS have been calculated with the value 6.4 Å of d. It is important to see
that the Kratky plot does not exhibit the second maximum and minimum even for
s-PMMA. The behavior of Fs in the range of k . 0:2Å�1 may be considered to
reflect the local chain conformation since the effect of electron distribution is rather
small there. It may therefore be concluded that the HW theory may in fact well
explain the observed differences in Fs in such a range of k. As for this range, we
note that the difference in the observed height of the so-called plateau in the Kratky
plot, which strictly cannot be observed for a-PMMA, between a-PS and a-PMMA
cannot be explained by the Gaussian chain model. For this model, the height is equal



152 5 Equilibrium Properties

1.00.80.60.40.20

200

160

120

80

40

0

M = 9.87×104

1.20×105

1.07×104

3.12×103

1.01×103

k (Å−1)

F s
(k

)
(Å

−
2 )

Fig. 5.11 Plots of Fs.k/ against k for i-PMMA with the indicated values of M;�, SAXS data in
acetonitrile at 28.0 ıC [36];�, SANS data in the bulk [40]; see legend for Fig. 5.9
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Fig. 5.12 Plots of Fs.k/ against k with SAXS data for a-PS (�), a-P˛MS (�), a-PMMA (�), and
i-PMMA (�) with M ' 104 in the respective � solvents [33–36], and s-PMMA ( fr D 0:92) with
M D 3:76 � 104 in acetonitrile at 44.0 ıC (�) [37]. The solid curves represent the best-fit HW
theoretical values for a-PS, a-P˛MS, a-PMMA, and i-PMMA
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to 2M=hS2i, as seen from Eq. (5.30) or Eqs. (5.44). However, these a-PS and a-
PMMA fractions have almost the same hS2i=M [1, 4].

5.2.5 Ring Polymers

As pointed out by Burchard and Schmidt [42] on the basis of the theoretical
expression for the scattering function P.k/ derived by Casassa [43],

P.k/ D .2=hS2ik2/1=2 e�hS2ik2=2
Z .hS2ik2=2/1=2

0

ex2dx ; (5.70)

the Kratky plot for the Gaussian ring exhibits a maximum at hS2i 1=2k ' 2. Such
behavior characteristic of ring polymers may serve to estimate values of the model
parameters. In the case of the HW or KP rings, however, it is rather difficult to
construct an approximate expression for P.k/ along the same line as in the case of
the linear HW (including KP) chain described in Sect. 5.2.1.We therefore restrict
ourselves to P.k/ only for the KP ring in the first Daniels approximation, which
may readily be calculated by carrying out numerically the integration over s in the
second line of Eqs. (5.19) with Eq. (3.159).

Figure 5.13 shows plots of hS2i1=2F.k/ against hS2i1=2k, where F.k/ is the
function defined by Eq. (5.40) (corresponding to the Kratky function). The solid
curves represent the theoretical values in the first Daniels approximation for the KP
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Fig. 5.13 Plots of hS2i1=2F.k/ against hS2i1=2k for the KP rings of the indicated values of L. The
solid curves represent the KP theoretical values in the first Daniels approximation and the dotted
curve represents the theoretical values for the Gaussian ring. The dashed and dot-dashed curves
represent the Monte Carlo values for the mixed and trivial-knot ensembles, respectively, of the
discrete KP chains (see the text)
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rings of the indicated values of L, where we have used values of hS2i calculated from
Eq. (3.166) in the same approximation. The dotted curve represents the theoretical
values for the Gaussian ring of L D 200 calculated from Eq. (5.40) with Eq. (5.70).
For comparison, the figure also includes the Monte Carlo values obtained for the
discrete version of the KP ring of 200 bonds of length l defined in Sect. 3.5 with
the point scatterer at each junction point [30]. The dashed and dot-dashed curves
represent the Monte Carlo values for the mixture of the discrete KP rings of all kinds
of knots (mixed ensemble), that is, for the phantom discrete KP ring, and the values
for the discrete KP rings only of the trivial knot (trivial-knot ensemble), respectively
(see Appendix 4 in Chap. 3), where a trivial-knot ensemble has been constructed by
extracting rings of the trivial knot from a mixed ensemble by the use of the criterion
of the Alexander polynomial [44, 45] following the procedure of Vologodskii et al.
[46]. The value of the (reduced) total contour length L of each discrete KP ring has
been calculated by dividing 200l by ��1 defined by Eq. (3.105) and the discrete KP
ring of L D 200 corresponds to the freely joined ring. We note that the topological
constraints are not considered in the theories for the KP and Gaussian rings, so that
the theoretical values correspond to the Monte Carlo ones for the mixed ensemble.
It is seen that the first Daniels approximation may well reproduce the Monte Carlo
values for the mixed ensemble for L & 10 and in the range of hS2i1=2k . 3, in
which the peak characteristic of the KP ring appears. It may then be concluded that
the approximate formula in the first Daniels approximation is of use for the mixed
ensemble in the range of L & 10 and hS2i1=2k . 3. We note that the effect of chain
thickness in that range of hS2i1=2k is negligibly small if any [30]. It is interesting to
note further that the difference between the two ensembles in the height of the peak
becomes smaller with decreasing L and unrecognizable for L . 10. This is natural,
considering from the fact that the fraction of configurations with nontrivial knots in
the mixed ensemble decreases with decreasing L.

Figure 5.14 shows plots of F.k/ against k with the SANS data obtained by
Hadziioannou et al. [47] for a ring a-PS sample with Mw D 4:50 � 104 in
cyclohexane-d12 at 33 ıC (near �), where F.k/ is the Kratky function defined by
Eq. (5.69). The solid curve represents the best-fit theoretical values calculated from

Fig. 5.14 Plots of F.k/
against k with SANS data by
Hadziioannou et al. [47] for
ring a-PS with
Mw D 4:50� 104 in
cyclohexane-d12 at 33 ıC.
The solid curve represents the
best-fit KP theoretical values
in the first Daniels
approximation (without
consideration of chain
thickness)
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Eq. (5.69) with Eqs. (5.19) and (3.159) (without consideration of chain thickness)
along with �L D 61:0. The value of ��1 calculated from the above-mentioned
values of Mw and �L and the value 35.8 Å�1 of ML given in Table 5.1 is 20.6 Å, and
this value happens to agree with the one given in the same table determined from an
analysis for linear a-PS on the basis of the HW chain. It is seen that there is good
agreement between theory and experiment in the range where the theory in the first
Daniels approximation is applicable (hS2i1=2k . 3).

5.3 Anisotropic Light Scattering: Mean-Square Optical
Anisotropy

5.3.1 Basic Equations

The chain we have considered in the last section is the one having optically isotropic
scatterers in the light-scattering case. In this section we treat anisotropic light
scattering on the basis of the HW chain which has the excess local polarizability
tensors ˛.s/ and Q̨ .s/ (over the mean polarizability of the solvent) per unit contour
length at the contour point s (0 � s � L), expressed in the localized and external
Cartesian coordinate systems, respectively, where˛.s/ is assumed to be independent
of s [48]. All lengths are measured in units of ��1 unless otherwise noted.

Now we consider the excess intensity Ifi of scattered light with wave vector kf

and polarization nf for the case of monochromatic plane-polarized incident light
with the intensity I 0i , wave vector ki, and polarization ni, where the subscripts i and
f refer to “initial” (incident) and “final” (scattered), respectively, and the polarization
is defined as the unit vector in the direction of the electric field of light. If �0 is the
wavelength of light in vacuum and r is the distance from the center of the system
(the single HW chain) to the detector, the ratio of Ifi to I 0i is given by [49]

Ifi

I 0i
D 16�4. N̨L/2Ffi

� 4
0 r2

; (5.71)

where N̨ is the (excess) mean local polarizability per unit contour length and is
given by

N̨ D 1

3
Tr˛ (5.72)
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with Tr indicating the trace, and Ffi is given by

Ffi D . N̨L/�2
�ˇ̌
ˇ̌
Z L

0

˛fi.s/ exp
�
ik � r.s/�ds

ˇ̌
ˇ̌
2�

D . N̨L/�2
Z L

0

ds1

Z L

0

ds2 h˛fi.s1/˛fi.s2/ exp
�
ik � R.s1; s2/

�i
(5.73)

with

˛fi.s/ D nf � Q̨ .s/ � ni ; (5.74)

k D kf � ki ; (5.75)

and with R.s1; s2/ D r.s2/ � r.s1/ being the vector distance between the contour
points s1 and s2. (Note that k is the scattering vector as before.)

The average in the second line of Eqs. (5.73) is given by Eq. (5.51) (with s D
js1 � s2j in place of L), so that it may readily be reduced to

Ffi D .2� N̨L/�2
Z L

0

ds .L � s/
Z

d�d�0 ˛fi.s/˛fi.0/I.k; � j�0I s/ ; (5.76)

where I.k; � j�0I s/ is the characteristic function for the chain of contour length s.
In order to proceed to carry out evaluation, we adopt a specific scattering

geometry, as depicted in Fig. 5.15. Suppose that the scatterer (the chain) is located
at the origin of the external Cartesian coordinate system (ex, ey, ez), and take
the xz plane as the scattering plane spanned by ki and kf with kf � ex > 0, k
being in the positive direction of the z axis. This choice of the z axis proves very

Fig. 5.15 Scattering
geometry (see the text)
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convenient in later developments. Let ni (nf) be parallel to a vector obtained by
rotation of ey by an angle �!i (�!f) about ki (kf). The scattering system may
then be completely determined by the scattering angle � and the angles !i and
!f. In particular, we use the symbols v (V) and h (H) to indicate that ni (nf) is
vertical and horizontal, respectively, with respect to the scattering plane, and also
q (Q) to indicate that !i (!f) D �=4. For example, IHv denotes the horizontal
component of the scattered intensity for the case of vertically polarized incident
light. The important components Ifi (with ˛fi) discussed later are the following five:
Vv (!i D !f D 0), Hv (!i D 0, !f D �=2), Vh (!i D �=2, !f D 0), Hh
(!i D !f D �=2), and Qq (!i D !f D �=4).

If I.N/fi is the excess intensity of light scattered by N molecules in the scattering
volume V , the reduced component Rfi experimentally determined is defined by

Rfi D I.N/fi r2

I 0i V
: (5.77)

At infinite dilution .I.N/fi D NIfi/, it is related to Ffi by the equations

Rfi D 16�4NAc. N̨L/2Ffi

� 4
0 M

D 2KMcFfi (5.78)

with

K D 2�2 Qn 2
0

NA�
4
0

�
@Qn
@c

�2
; (5.79)

where NA is the Avogadro constant, c (D MN=NAV) the polymer mass concentra-
tion, Qn0 the refractive index of the solvent, and @Qn=@c the refractive index increment.
Thus we have five components Rfi corresponding to the five Ffi.

Further, we introduce two other Rfi, which are often measured. One is the reduced
intensity RUv of the unpolarized scattered light for the case of I 0i D I 0v , and the
other is the reduced intensity RUu of the unpolarized scattered light for the case of
unpolarized incident light with the intensity I 0 D I 0v C I 0h (I 0v D I 0h ). At infinite
dilution, we have

RUv D 2KMcFUv (5.80)

with

FUv D FVv C FHv ; (5.81)
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and

RUu � R� D NIUur2

I 0V.1C cos2 �/

D KMcFUu (5.82)

with

FUu D FVv C 2FHv C FHh

1C cos2 �
: (5.83)

We note that for isotropic scatterers FVv, FHh= cos2 � , 4FQq=.1C cos �/2, FUv, and
FUu become identical to the isotropic scattering function P.k/ (at infinite dilution).

5.3.2 Components of the Scattered Intensity

We evaluate the scattered components Ffi. The evaluation consists of two main
steps: (1) to express ˛fi in terms of the polarizability ˛ expressed in the localized
coordinate system and its orientation � with respect to the external coordinate
system and (2) to express Ffi in terms of the expansion coefficients of the
characteristic function.

For the first purpose, we first express ˛fi in terms of the polarizability tensor
Q̨ D . Q̨�	/ (�, 	 D x, y, z) expressed in the external system. The components of ni

and nf in this system are

ni D .�Ossi; ci;�Ocsi/ ;

nf D .Ossf; cf;�Ocsf/ ; (5.84)

where Os D sin.�=2/, Oc D cos.�=2/, si D sin!i, ci D cos!i, sf D sin!f, and
cf D cos!f. We then have

˛fi D Q̨ W A (5.85)

with

A D
0

@
�Os2sisf �Ossicf OsOcsisf

Oscisf cicf �Occisf

�OsOcsisf �Ocsicf Oc2sisf

1

A : (5.86)
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In order to carry out the integrations over� and�0 in Eq. (5.76), it is convenient
to introduce the spherical (irreducible) components Q̨ml (˛m

l ) (l D 0, 1, 2; m D 0,
˙1, ˙2) of the tensor Q̨ (˛) [49], which are defined in terms of the Cartesian
components Q̨�	 (˛�0	0) as in Eqs. (5.216) of Appendix 2 and which satisfy the
relation given by Eq. (5.218), where ˛�0	0 (�0, 	0 D �, �, �) are the components
expressed in the localized system (e� , e�, e�). The reason for this is that Q̨ml may be
transformed to ˛m

l by the same transformation rule as the spherical harmonics, that
is, by Eq. (5.220). For molecules which do not absorb light and which are optically
inactive, the polarizability tensor is real and symmetric in any coordinate system, so
that Q̨m1 D ˛m

1 D 0 (m D 0, ˙1). The following development is, of course, limited
to this case.

With these spherical tensors, the five components ˛fi introduced in the last
subsection may be written, from Eqs. (5.85), (5.86), and (5.216), in the matrix form

0
BBBBB@

˛Vv

˛Vh

˛Hv

˛Hh

˛Qq

1
CCCCCA
D

0
BBBBBB@

1p
3
� 1p

6
0 0 � 1

2
� 1
2

0 0 � iOc
2
� iOc
2

iOs
2

� iOs
2

0 0 � iOc
2
� iOc
2
� iOs
2

iOs
2

2Oc2�1p
3

1COc2p
6

0 0 � Os2
2
� Os2
2

Oc2p
3

Oc2
2
p
6
� iOc
2
� iOc
2
� 1COs2

4
� 1COs2

4

1
CCCCCCA

0
BBBBBBB@

Q̨00
Q̨02
Q̨12
Q̨�12
Q̨22
Q̨�22

1
CCCCCCCA

: (5.87)

For arbitrary !i and !f, ˛fi may also be expressed in terms of Q̨ml if we use Eq. (5.87)
and the relation

˛fi D cos!i cos!f˛Vv C sin!i cos!f˛Vh

C cos!i sin!f˛Hv C sin!i sin!f˛Hh ; (5.88)

which can be easily verified from Eqs. (5.85) and (5.86) in the external system. Thus
Eq. (5.87) or (5.88) with Eqs. (5.216) and (5.220) (with ˛ in place of T) is the desired
expression for ˛fi in terms of ˛m

l or ˛�0	0 .
Now, according to Nagai’s theorem [50], Ffi for arbitrary !i and !f may

be expressed generally as a linear combination of four independent scattered
components. In order to prove it in a simpler way and to proceed to the second
step, it is convenient to introduce “correlation functions” defined by

hA; Bi D
Z

A�.s/B.0/I.k; � j�0I s/d�d�0 ; (5.89)

where A and B stand for Q̨ml or ˛fi, and the asterisk indicates the complex conjugate
as usual. If we use Eq. (4.151) with Eqs. (4.258) and (5.220) in Eq. (5.89) and note

that k D kez, so that 
 D 0 and Ym2�m1
l3

.0; !/ D �
.2l3 C 1/=4�

�1=2
ım1m2 , then
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we obtain

h Q̨m1l1
; Q̨m2l2
i D .4�/�1=2ım1m2 .cl1cl2 /

�1
l1Cl2X

l3Djl1�l2j
.2l3 C 1/1=2

�
X

j j1j�l1

X

jj2j�l2

˛
j1�
l1
˛

j2
l2
Im1m2;j1j2

l1l2l3
.kI s/ : (5.90)

As shown in Appendix 3, we have, by the use of Eqs. (5.87), (5.88), and (5.90),

Ffi D cos!i cos!f cos.!i C !f/FVv C sin2.!i � !f/FHv

� sin!i sin!f cos.!i C !f/FHh C sin 2!i sin 2!fFQq : (5.91)

This is Nagai’s theorem.
The second problem is to express the four independent components on the right-

hand side of Eq. (5.91) in terms of I ������ .kI s/. It is seen that these components may be
written in terms of h˛Vv; ˛Vvi, h˛Hv; ˛Hvi, h˛Hh; ˛Hhi, and h˛Qq; ˛Qqi, respectively,
and therefore of h Q̨m1l1

; Q̨m2l2
i. Then, from Eqs. (5.87) and (5.90), they are seen to

contribute to Ffi as h Q̨m1l1
; Q̨m1l2
i C h Q̨�m1

l1
; Q̨�m1

l2
i. If we use the relations

I.�m1/.�m1/;j1j2
l1 l2l3

.kIL/ D .�1/l1Cl2Cl3Im1m1;j1j2
l1 l2l3

.kIL/ ; (5.92)

Im1m1;j1j2
l1 l2l3

.kIL/ D .�1/m1
�

l1 l2 l3
m1 �m1 0

�

�
�

l1 l2 l3
0 0 0

��1
I00;j1 j2

l1 l2l3
.kIL/ ; (5.93)

where Eq. (5.93) is valid for l1 C l2 C l3 even, then we find

h Q̨m1l1
; Q̨m1l2
i C h Q̨�m1

l1
; Q̨�m1

l2
i D .�1/m1

� N̨2
�1=2cl1cl2

� l1Cl2X

l3Djl1�l2j
.2l3 C 1/1=2

�
�

l1 l2 l3
m1 �m1 0

��
l1 l2 l3
0 0 0

��1
Il1l2l3 .kI s/ ; (5.94)

where

Il1l2l3 .kI s/ D
X

jj1j�l1

X

jj2j�l2

Ǫ j1�l1
Ǫ j2l2 I00;j1 j2

l1l2 l3
.kI s/ (5.95)

with Ǫml D ˛m
l = N̨ . We note that Eqs. (5.92) and (5.93) have been obtained from

Eq. (4.152), Eq. (4.278) having also been used for the former, and that Eq. (5.94)
with Eq. (5.95) is also valid for any chain other than the HW chain if s is properly
interpreted.
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Before proceeding further, we make two remarks on Il1l2l3 .kI s/. First, the only
required ones are I000, I202, I022, I220, I222, and I224. Second, these Il1l2 l3 are real,
as seen below. As in Sect. 4.4.3, we can derive a symmetry relation for the function
G ������.RIL/ in Eq. (4.155) from the reality of G.R; � j�0IL/. The result is

Gm1m2;j1j2
l1l2l3

.RIL/ D .�1/m1Cm2Cj1Cj2

�G.�m1/.�m2/;.�j1/.�j2/�
l1 l2l3

.RIL/ : (5.96)

From Eqs. (4.156) and (5.96), we find the corresponding symmetry relation for
I ������ .kIL/,

Im1m2;j1 j2
l1l2l3

.kIL/ D .�1/m1Cm2Cj1Cj2Cl3

�I.�m1/.�m2/;.�j1/.�j2/�
l1l2 l3

.kIL/ : (5.97)

From Eqs. (5.95), (5.97), and (5.218), Il1l2 l3 are seen to be real.
Now we introduce vectors F and Z,

FT D .FVv;FHv;FHh;FQq/ ; (5.98)

ZT D
�

Z000;
p
2 QZ202; 1

5
Z220;

1p
5

Z222;Z224

�
(5.99)

with

QZ202 D 1

2
.Z202 C Z022/ ; (5.100)

where the superscript T indicates the transpose, and Zl1l2l3 is defined by

Zl1 l2l3 .kIL/ D ��1=2L�2
Z L

0

.L� s/Il1 l2l3 .kI s/ds : (5.101)

The four components Ffi may then be written in the matrix form

F DW � Z ; (5.102)

where W is the 4 � 5 matrix given by

W D

0

BBB@

1
3

� 1
3

2
3

� 1
3

3
20

0 0 1
2

�1C3c
8

� 3C5c
40

c2

3

c.3Cc/
6

3Cc2

6
3C6c�c2

12
19C10cC3c2

80
.1Cc/2

12

.1Cc/2

24
13C2cCc2

24
�7C16c�c2

48
�21�34cC3c2

320

1

CCCA (5.103)

with c D cos � .
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Thus the four components Ffi may be expressed generally as linear combinations
of the five fundamental quantities, that is, the components of Z. Among these, Z000
is related to the isotropic scattering function P.kIL/ (that is the ordinary scattering
function the chain would have if it were optically isotropic) by the equation,

P.kIL/ D 1

3
Z000.kIL/ : (5.104)

However, it is important to see that we cannot in general determine the five
components of Z inversely from the four observed components of F at arbitrary
� ; it is mathematically impossible unless a specific model is assumed, as pointed
out by Nagai [50], although his fundamental quantities are different from Z.

For the HW chain, Eq. (5.95) may be simplified. As in Sect. 4.4.3, we can derive
a second symmetry relation for G ������.RIL/. The Green function is invariant to the
reversal of the initial and terminal ends of the chain; that is,

G.R;u; a j u0; a0IL/ D G.�R;�u0; a0 j � u; aIL/ ; (5.105)

so that

Gm1m2;j1j2
l1l2l3

.RIL/ D .�1/m1Cm2Cj1Cj2Cl1Cl2Cl3

�G.�m2/.�m1/;j2j1
l2 l1l3

.RIL/ : (5.106)

From Eqs. (4.156) and (5.106), we obtain

Im1m2;j1j2
l1 l2l3

.kIL/ D .�1/m1Cm2Cj1Cj2Cl1Cl2Cl3

�I.�m2/.�m1/;j2j1
l2 l1l3

.kIL/ : (5.107)

By the use of Eqs. (5.97), (5.107), and (5.218), we find for the required Il1 l2l3 .kI s/
for the HW chain

I000 D . Ǫ 00/2I00;00000 ; (5.108)

I202 D I022
D
X

jD0;2
fjRe. Ǫ j�

2 Ǫ 00/Re.I00;j0202 / � 2Im. Ǫ 1�2 Ǫ 00/Im.I00;10202 / ; (5.109)

I22l D
2X

j2D0

X

jj1j�j2
. j1Cj2Deven/

fj1j2Re. Ǫ j1�
2 Ǫ j2

2 /Re.I00; j1j2
22l /

�
2X

j2D0

X

jj1j�j2
. j1Cj2Dodd/

fj1j2Im. Ǫ j1�
2 Ǫ j2

2 /Im.I00; j1j2
22l / : (5.110)
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where Re and Im indicate the real and imaginary parts, respectively, and fj and fj1j2
are defined by

fj D 2

1C ıj0
; (5.111)

fj1j2 D
4

.1C ıj1j2 /.1C ıj1;�j2 /
: (5.112)

Note that QZ202 D Z202 D Z022 for the HW chain.
Finally, we consider the two extreme cases of the HW chain, that is, random

coils and rods. In the true coil limit, the anisotropic parts of Ffi may be neglected
compared to the isotropic part .Z000/, the former being of O.L�1/ in relation to
the latter. Indeed, if we make order of magnitude estimates of Zl1l2l3 .kIL/ in the
important range of k D O.L�1=2/ from Eqs. (5.95) and (5.101) with Eq. (4.191),
as in Sect. 4.6.2 (Daniels-type distributions), then we have Z000 D O.1/, Z202 D
O.L�1/, Z220 D O.L�1/, Z222 D O.L�2/, and Z224 D O.L�2/. Therefore, the
coil limit considered here is that region near the true limit in which the anisotropic
correction terms of O.L�1/must be retained. In this region we may neglect Z222 and
Z224 to obtain Ffi to terms of O.L�1/ from Eq. (5.102). In particular, we have for the
polarized and depolarized components

FVv D 1

3
Z000 �

p
2

3
Z202 C 2

15
Z220 ; (5.113)

FHv D 1

10
Z220 : (5.114)

We note that the results obtained by Horn [51] and by Utiyama and Kurata [52]
for the Gaussian chain without correlations between orientations of the scatterers
(beads) contain only Z000 and Z220, the other components of Z vanishing, and that
Tagami’s results [53] for the same model are incorrect, her FHv being proportional
to the Debye function.

As for rods, we have two types of rods (R1 and R2) as the rod limits (�! 0) of
the KP1 and KP2 chains, as depicted in Figs. 4.4(b) and (c), respectively. For optical
(and electrical) problems, we may further consider a third type of the KP chain
(KP3) and the corresponding rod (R3) such that it has vanishing �0 and arbitrary
�0 and that its local polarizability tensors are cylindrically symmetric about the
chain contour .e�/. The scattered components for the most general R1 rod have
been evaluated [48], but the results are not reproduced because of their length. We
also note only that a special case of the R2 rod and the R3 rod have been treated by
Tagami [53] and by Horn et al. [54], respectively.
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5.3.3 Mean-Square Optical Anisotropy

The independent scattered components Ffi at � D 0 are related to the mean-square
optical anisotropy h� 2i. At k D 0 (� D 0), there is no interference between the
scattered waves, and we obtain, from Eqs. (5.73),

Ffi D h.nf � � � ni/
2i ; (5.115)

where � is the polarizability tensor of the entire chain in the external system and is
given by

� D
Z L

0

Q̨ .s/ds : (5.116)

Now, from Eq. (4.191), it is seen that at k D 0, the I00;j1 j2
l1 l2l3

that contribute to

Ffi are only I00;00000 and I00;j1 j2
220 . We then find, from Eqs. (5.95) and (5.101), that

the nonvanishing components of Z are Z000 and Z220, and obtain, from Eqs. (5.102)
and (5.103) with this Z,

FVv D FHh D FQq D 1

3
Z000 C 2

15
Z220

D 1C 4

45
. N̨L/�2h� 2i ; (5.117)

FHv D 1

10
Z220 � 1

15
. N̨L/�2h� 2i : (5.118)

The second equality of Eqs. (5.118) comprises the present definition of h� 2i. If �i

(i D 1, 2, 3) are the principal values of � D .��	/ (�, 	 D x, y, z), it may in general
be written, from Eqs. (5.115) and (5.118), in the form

h� 2i D 1

2
h.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2i

D
D1
2

�
.�xx � �yy/

2 C .�yy � �zz/
2 C .�zz � �xx/

2
�

C 3.�xy
2 C �yz

2 C �zx
2/
E
: (5.119)

Note that Eqs. (5.117)–(5.119) are valid for any chain.
For the HW chain, we have, from Eqs. (4.36), (4.151), and (5.93),

I00;j1 j2
ll0 .0IL/ D .4�/1=2gj1j2

l .L/ : (5.120)
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Thus we find

h� 2i D 3
2X

j2D0

X

jj1j�j2
. j1Cj2Deven/

fj1 j2Re.˛ j1�
2 ˛

j2
2 /
NXj1j2
2 .L/

�3
2X

j2D0

X

jj1j�j2
. j1Cj2Dodd/

fj1j2 Im.˛
j1�
2 ˛

j2
2 /
NNXj1j2
2 .L/ ; (5.121)

where fj1 j2 is given by Eq. (5.112), and NXj1j2
2 and NNXj1j2

2 are the real and imaginary
parts, respectively, of the function Xj1j2

2 .L/ defined by

Xj1j2
l .L/ D

Z L

0

.L � s/gj1j2
l .s/ds : (5.122)

By the use of Eq. (4.108) for g jj0

l (for the chain with Poisson’s ratio � D 0),
Eq. (5.121) may be reduced to

h� 2i D L
2X

jD0
Cj.˛; 	

�1�0; 	�1�0/ fj.L; 	/ ; (5.123)

where 	 is given by Eq. (5.4), and Cj and fj are given by

C0.˛; x; y/ D 1

2

�
2˛�� � ˛�� � ˛�� C 3x2.˛�� � ˛��/C 6xy˛��

�2
;

C1.˛; x; y/ D 6
�
xy.˛�� � ˛��/C .2y2 � 1/˛��

�2

C6.x˛�� C y˛��/
2 ; (5.124)

C2.˛; x; y/ D 3

2
.˛�� � y2˛�� � x2˛�� C 2xy˛��/

2

C6.y˛�� C x˛��/
2 ;

fj.L; 	/ D 1

.36C j2	2/L

˚
6.36C j2	2/L � 36C j2	2

Ce�6L
�
.36 � j2	2/ cos.j	L/� 12j	 sin.j	L/

��
: (5.125)
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For the KP2 and KP3 chains, Eq. (5.123) may be further reduced to

h� 2i D 1

3
� 2

L

�
L � 1

6
C 1

6
e�6L

�
(KP2, KP3) ; (5.126)

where � 2
L is the squared local anisotropy per unit length and is given by

� 2
L D lim

L!0

� h� 2i
L2

�

D 1

2

�
.˛1 � ˛2/2 C .˛2 � ˛3/2 C .˛3 � ˛1/2

�
(5.127)

with ˛i (i D 1, 2, 3) being the principal values of ˛. Equation (5.127) with ˛1 D ˛2
is the result derived by Nagai [55] and by Arpin et al. [56] for the KP3 chain.

For a comparison of theory with experiment, it is convenient to use the
polarizability tensor ˛0 of the repeat unit instead of ˛ and also the number of repeat
units x instead of L. Then ˛ and h� 2i (unreduced) are given by

˛ D .ML=M0/˛0 ; (5.128)

h� 2i
x
D ��1ML

M0

2X

jD0
Cj.˛0; 	

�1�0; 	�1�0/fj.�L; ��1	/ ; (5.129)

where x is related to L by Eq. (5.2) and M0 is the molecular weight of the repeat unit.
Now we make a comparison of theory with experiment for h� 2i for a-PS, a-

P˛MS, a-PMMA, i-PMMA, and poly(n-hexyl isocyanate) (PHIC). We then assume
that isotactic and syndiotactic sequences are randomly distributed in the atactic
chain, so that ˛0 for it is given by

˛0 D .1� fr/˛0;i C fr˛0;s ; (5.130)

where ˛0;i and ˛0;s are ˛0 for the isotactic ( fr D 0) and syndiotactic ( fr D 1) chains,
respectively.

For the calculation of theoretical values of h� 2i from Eq. (5.129), the com-
ponents of ˛0;� (� D i, s) in the localized coordinate system (�, �, �) must be
evaluated. For this purpose, it is necessary to affix this system to the monomer unit
of a given chain, corresponding to that of the HW chain. This has already been done
for PS, a-P˛MS, and PMMA in Sect. 4.4.3, taking as the monomer unit the part of
the chain containing the C–C˛ and C˛–C bonds, as shown in Fig. 5.16. That is, the
localized coordinate system (e�k , e�k , e�k ) affixed to the kth monomer unit containing
the . j � 1/th and jth skeletal bonds ( j D 2k) corresponds to the system (e� , e�, e�)
of the HW chain as follows: e�k is parallel to lj�1 C lj with lj the jth bond vector,
and e�k is defined by rotation of e0 by the angle O about the �k axis, where e0 is the
unit vector in the plane of lj�1 and lj with e0 � e�k D 0, its positive direction being
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Fig. 5.16 Localized Cartesian coordinate systems for PS, P˛MS, and PMMA (see the text)

chosen at an acute angle with lj�1. The values of O for the i- and s-PS and PMMA
chains are given in Table 4.3, and that for the a-P˛MS chain is set equal to the one
for PMMA. For convenience, in Fig. 5.16, the (j � 1)th and jth bonds are d- and
l-chiral, respectively, according to the Flory convention [57], so that the sequence of
bonds in the monomer unit displayed is represented by djl, where the vertical line
indicates the location of the ˛ carbon atom.

The components of ˛0;� may then be evaluated by the use of the values of the
bond polarizabilities and group polarizability tensors (and also those for methyl
acetate or methyl isobutyrate) determined by Flory and co-workers [58–61] with
the use of the procedure of Carlson and Flory [62], assuming their additivity. Then,
in the case of PS we average ˛0;� over internal rotation angles on the basis of the
RIS model, while in the cases of P˛MS and PMMA we use ˛0;� for the all-trans
conformation because of the predominance of the tt conformation [63], and assume
that the plane of the ester group is perpendicular to the plane of the C–C˛ and C˛–C
bonds and that the ester group occupies the two possible states in the former plane
with equal probability, for simplicity. Further, all the ˛0;� so evaluated are multiplied
by the factor

p
1:94 to obtain good agreement between theory and experiment for

h� 2i for a-PS. This means that the polarizabilities determined by the procedure of
Carlson and Flory are too small by this factor. Thus the values of the (traceless) ˛0;�
we adopt are

˛0;� D
0

@
1:64 �1:96 0

�1:96 1:84 0

0 0 �3:48

1

AÅ
3

for i-PS

D
0

@
1:82 ˙2:03 0

˙2:03 1:75 0

0 0 �3:57

1

AÅ
3

for s-PS ; (5.131)
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˛0;� D
0

@
1:40 ˙1:57 0

˙1:57 2:47 0

0 0 �3:87

1

AÅ
3

for i-P˛MS

D
0

@
1:40 0 0

0 2:47 0

0 0 �3:87

1

AÅ
3

for s-P˛MS ; (5.132)

˛0;� D
0

@
0:581 ˙0:266 0

˙0:266 0:712 0

0 0 �1:293

1

AÅ
3

for i-PMMA

D
0

@
0:581 0 0

0 0:712 0

0 0 �1:293

1

AÅ
3

for s-PMMA ; (5.133)

where the upper and lower signs of the �� and �� components are taken for the bond
chiralities djl and ljd, respectively, in Fig. 5.16 and the like, and for s-P˛MS and s-
PMMA these components have been put equal to zero on the average since their sign
changes alternately along the chain. Note that for i- and s-PSs and i-PMMA either
sign of these components may be taken and that the traceless ˛0 contributes to h� 2i,
as seen from Eqs. (5.124) and (5.128). For the a-P˛MS chain with fr D 0:72 and the
a-PMMA chain with fr D 0:79, we assume ˛0 D ˛0;s, for simplicity.

As for the PHIC chain, it may be represented by the KP3 chain mentioned in
the last subsection, and therefore its h� 2i is calculated from Eq. (5.126) with a
proper value of � 2

L which in this case becomes the squared difference between the
polarizabilities, per unit contour length, parallel and perpendicular to the contour.

Figure 5.17 shows double-logarithmic plots of h� 2i=x (in Å6) against x with
data obtained from anisotropic light scattering measurements with a Fabry–Perot
interferometer (with corrections for effects of the internal field) for a-PS ( fr D 0:59)
[64, 65], a-P˛MS ( fr D 0:72) [66], a-PMMA ( fr D 0:79) [65], and i-PMMA
( fr D 0:01) [67] in the respective � solvents given in Table 5.1, and also for
cumene (the monomer of PS) and methyl isobutyrate (the monomer of PMMA)
in the corresponding solvents. The figure also includes the data obtained from
conventional anisotropic light-scattering measurements for PHIC in n-hexane at
25.0 ıC [68]. The solid curves except for the one associated with PHIC represent
the respective HW theoretical values calculated from Eq. (5.129) with Eq. (5.130)
with the values of the model parameters given in Table 5.1 and those of ˛0 given
above, where we have used ��1 D 22:7Å and ML D 37:1Å�1 for a-PS (somewhat
different from those in Table 5.1) and replaced ˛0 commonly by 0:73˛0 for both
a- and i-PMMAs to obtain good agreement between theory and experiment for
.h� 2i=x/1. The necessity of this replacement of ˛0 indicates that the values of
the polarizability tensor for the ester group estimated from those for methyl acetate
or methyl isobutyrate may be somewhat altered in the PMMA chains. At any rate,
there is rather good agreement between theory and experiment in all cases for x & 6,
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Fig. 5.17 Double-logarithmic plots of h� 2i=x (in Å6) against x for a-PS (�) and cumene (�) in
cyclohexane at 34.5 ıC [64, 65], a-P˛MS (�) in cyclohexane at 30.5 ıC [66], a-PMMA (�) and
methyl isobutyrate (�) in acetonitrile at 44.0 ıC [65], i-PMMA (�) and methyl isobutyrate (�) in
acetonitrile at 28.0 ıC [67], and PHIC (�) in n-hexane at 25.0 ıC [68]. The solid curves represent
the HW theoretical values calculated with the values of the model parameters given in Table 5.1
and those of ˛0 given by Eq. (5.130) with Eqs. (5.131)–(5.133) (see the text)

especially with respect to the rate of increase in h� 2i=x with increasing x. The
disagreement for smaller x may probably be mainly due to effects of chain ends. The
solid curve associated with PHIC represents the KP theoretical values calculated
from Eq. (5.126) with �L D 1:12 Å2 along with the values of the KP model
parameters given in Table 6.3. Good agreement between theory and experiment is
seen for PHIC.

5.3.4 Isotropic Scattering Function

We consider the problem of determining the isotropic scattering function P.�/
[D P.k/� as a function of � from observed independent scattered components [48].
As already mentioned, it is in general impossible to express Z000, and therefore
P.�/, in terms of the four independent scattered components by solving Eq. (5.102)
with respect to the five components of Z. It is then inevitable to introduce an
approximation in order to establish a procedure for the determination of P.�/. Thus
we consider two kinds of those linear combinations R�.j/ (j D 1, 2) of the reduced
scattered components Rfi which are approximations to R� , so that at infinite dilution,
the corresponding approximate isotropic scattering functions P.j/.�/ are given by

P.j/.�/ D R�.j/=KMc : (5.134)
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Now, Z224 is of order k4, and the other components of Z are of order unity or
k2. [Note that Zl1l2l3 D O.kl3 /.] Therefore, we first neglect Z224 in Eq. (5.102) and
solve it to find an approximation to Z000. The approximate P.�/ so obtained from
Eq. (5.104) is denoted by P.1/.�/. Then R�.1/ is given by

R�.1/ D r � QW � QR ; (5.135)

QRT D .RVv;RHv;RHh;RQq/ ; (5.136)

r D
�
�1
6
;�1
9
;
1

2
;
1

6

�
; (5.137)

QW D 1

s2.1C c/

0

BB@

�c.1C c/2 2s2 �.1C c/2 4c.1C c/
2c.1C c/ �2.1 � c/2 2.1C c/ �8c
.1C c/2 �2s2 .1C c/2 �4c.1C c/
�2.1C c/2 �4.1 � c/2 �2.1C c/2 8.1C c2/

1

CCA (5.138)

with s D sin � and c D cos � . Thus R�.1/ may be expressed as a linear
combination of the four independent scattered components Rfi. P.1/.�/ gives the
correct coefficient of k2 or sin2.�=2/ with P.1/.0/ D 1 if Rfi are truncated at k2.
Indeed, this is the basis of Nagai’s procedure [50] for the determination of P.�/.
However, it is important to note that the k4 term of the neglected Z224 contributes
to the coefficient of sin2.�=2/ because of QW, so that the corresponding coefficient
in P.1/.�/ is no longer correct. It can be shown that the difference R� � R�.1/,
and therefore R�.1/ itself, are finite determinate over the whole range of � . From
Eqs. (5.135)–(5.138), however, it is seen that the coefficients of RVv, RHh, and RQq

in R�.1/ are singular at � D 0, and so are all the coefficients at � D � . Extrapolation
to � D 0 from R�.1/ thus determined at finite � may therefore involve appreciable
errors, as pointed out by Nagai [50].

A second approximation consists of constructing a linear combination of three
of the four independent Rfi by neglecting Z222 and Z224, which are small compared
to the other three components of Z in the coil limit, as shown in Sect. 5.3.2. Then
there are three possible linear combinations of this kind. Among these, a linear
combination of RVv, RHv, and RQq, which we denote by R�.2/, is the only one that is
finite determinate and has the nonsingular coefficients at � D 0. It reads

R�.2/ D 1

6
RVv � 5C 2 cos � C cos2 �

3.1C cos �/2
RHv C 4

3.1C cos �/2
RQq : (5.139)

This gives correctly P.2/.0/ D 1, although the coefficient of sin2.�=2/ is, of course,
approximate. In this connection, we note that the procedure proposed by Utiyama
and Kurata [52] for the Gaussian chain is equivalent to neglecting Z202; Z222, and
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Z224 to obtain

R�.UK/ D 1

2
RVv � 2

3
RHv : (5.140)

This also gives P.UK/.0/ D 1, the coefficient of sin2.�=2/ being approximate except
for the Gaussian chain.

In the numerical examination that follows, we assume that ˛ is diagonal, so that
the spherical tensors ˛m

l are real, for simplicity. It is then convenient to use the
dimensionless parameters 
1 and 
2 defined by


1 D
�
˛�� � 1

2
.˛�� C ˛��/

��
N̨ ;

(5.141)


2 D .˛�� � ˛��/= N̨
with ˛�� D ˛1, ˛�� D ˛2, and ˛�� D ˛3. If ˛ is cylindrically symmetric about
e� D u (˛1 D ˛2), we have 
2 D 0 and need only I00;00l1 l2l3

in Eqs. (5.108)–(5.110).

These I00;00l1 l2l3
may be evaluated by the Laguerre polynomial expansion method rather

than the weighting function method since k is rather small for light scattering [48].
We first make brief mention of the theoretical error in P.j/.�/ examined. It is in

general large for the KP chain, or codes close to it, with large 
1 and 
2, and for small
L and Q�. In the experimentally important ranges P�1.�/ & 1:1 and sin2.�=2/ .
0:75, the error in P �1

.j/ �1 (j D 1, 2) does not exceed 1 % except for the KP chain; for

the KP chain it does not exceed 1 % for L & 1, Q� & 1, and � 2
L = N̨ 2 . 4, and 2 % for

L & 2, Q� & 4, and � 2
L = N̨ 2 . 25. As an example of the cases of large error, values

of P �1
.2/ .�/ and P�1.�/ as functions of sin2.�=2/ for the KP3 chain with 
1 D 5

and 
2 D 0 for L D 1 and Q� D 2 are represented by the dashed curve 2 and the
solid curve close to it, respectively, in Fig. 5.18, values of P �1

.1/ being intermediate

Fig. 5.18 Deviations of
P �1
.2/ .�/ and P �1

.UK/.�/ from

P�1.�/ as functions of
sin2.�=2/ for the KP3 chain
with 
1 D 5 and 
2 D 0 for
L D 1 and Q� D 2 (upper
three curves) and for L D 10

and Q� D 4 (lower two
curves). The solid curves
represent the values of
P�1.�/
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Fig. 5.19 Simulation of
experimental values of
P �1
.1/ .�/ and P �1

.2/ .�/ for the
KP3 chain with 
1 D 5 and

2 D 0 for L D 8 and Q� D 4.
The solid curves represent the
theoretical values of P�1.�/,
and the dashed lines indicate
their initial slopes
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P (
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between them. Necessarily, for this case the deviation of P �1
.UK/ (upper dot-dashed

curve UK) from P�1 is very large. The lower solid and dot-dashed curves represent
the corresponding values for the same chain for L D 10 and Q� D 4. In this case the
values of P �1

.j/ (j D 1, 2) agree with P�1 within the thickness of the curve, while

P �1
.UK/ still differs appreciably from P�1. For larger L, the difference between P �1

.UK/

and P�1 becomes, of course, small. However, the effects themselves are negligibly
small for large L or in the coil limit.

Finally, we give results of an examination of the amplification of experimental
errors in Rfi which is caused by the singularities of their coefficients in R�.j/
(j D 1, 2). For this purpose, “experimental” values of Rfi have been simulated by
multiplying the theoretical Rfi by random numbers normally distributed with a mean
of unity and a standard deviation of 0.05. “Experimental” values of P �1

.1/ and P �1
.2/ so

obtained are represented by the unfilled and filled circles, respectively, in Fig. 5.19
for the same KP3 chain as above for L D 8 and Q� D 4. The solid curves represent the
theoretical values of P�1, their initial slopes being indicated by the dashed lines. As
was expected, the amplification of experimental errors is remarkable near � D 0 in
the first procedure, and near � D � in both; there is no defect for sin2.�=2/ . 0:75

in the second procedure. Note that these results are independent of 
1 and 
2.

5.3.5 Near the Rod Limit

The procedure presented in the last subsection is not very accurate near the rod limit,
especially for the KP chain. Thus we derive analytical expressions for the scattered
components near this limit to obtain accurate numerical results which suggest a
more accurate method of analyzing experimental data for very stiff polymers [69].

For simplicity, we consider the chain having cylindrically symmetric polarizabil-
ities .
2 D 0/, for which only the I00;00l1 l2l3

contribute to the scattered components, as

already mentioned. Then the only required I ������ are I00;00000 , I00;00202 , and I00;0022l (l D 0,
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2, 4). All lengths are measured in units of ��1 as before. Evaluation is carried out
by an application of the 
 method given in Sect. 4.7.2, assuming that � D 0, and
assigning the rod-limiting values to hR2i0 and hRl3Xi0 in Eqs. (4.220)–(4.222); that
is, hR2i0 D L2 and

hRl3D00�
l1 D00

l2 Y0l3i0 D .2�/1=2cl1cl2cl3

�
l1 l2 l3
0 0 0

�2
Ll3 ; (5.142)

where cl is given by Eq. (4.54), and Eq. (5.142) has been derived from Eqs. (4.152)
and (4.191). Then the sth-order expansion of I.kIL/ is given by Eq. (4.233), and that
of I00;00l1l2l3

.kIL/ may be written, from Eq. (4.226) with Eqs. (4.229) and (4.230), as

I00;00l1l2l3
.kIL/ D .�1/l3=2�4�.2l1 C 1/.2l2 C 1/.2l3 C 1/

�1=2

�
�

l1 l2 l3
0 0 0

�2 sX

nD0

nX

rD0

.�1/r
2rrŠ

D00;00
l1l2l3;rnLn.Lk/rjl3Cr.Lk/ ; (5.143)

where D������ are given in Appendix C. Note that D00;00
l1 l2l3;mm D Emm with E00 D 1 and

that D00;00
000;mn D Emn, where Emn are also given in Appendix C. Equation (5.95) also

reduces to

Il1l2 l3 .kI s/ D Ǫ 0l1 Ǫ 0l2I00;00l1 l2l3
.kI s/ : (5.144)

Now we consider only the three components FVv, FHv, and FHh. They may be
written in the form

F DW0 � Z ; (5.145)

where

FT D .FVv;FHv;FHh/ ; (5.146)

W0 is the 3 � 5 matrix given by Eq. (5.103) without the fourth row, and Z is
given by Eq. (5.99). After the integration over s in Eq. (5.101) with Eq. (5.144), the
components of Z are given by

Zl1l2l3 .kIL/ D Ǫ 0l1 Ǫ 0l2
sX

nD0
LnZl1l2l3;n.Lk/ ; (5.147)
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where

Zl1l2l3;n.x/ D .�1/l3=2
�
.2l1 C 1/.2l2 C 1/.2l3 C 1/

�1=2
�

l1 l2 l3
0 0 0

�2

� x�.nC2/
nX

rD0

.�1/r
2r�1rŠ

D00;00
l1l2 l3;rnJnCr

l3Cr.x/ (5.148)

with

Jm
l .x/ D

Z x

0

.x � v/vmjl.v/dv : (5.149)

The function Jm
l .x/may be evaluated analytically but we do not reproduce the results

[69] because of their length.
It has been shown that the convergence of Eq. (5.147) is not very good. Its better

alternative is obtained by expanding the reciprocal of the sum over n in Eq. (5.147)
in powers of L as follows,

Zl1l2l3 .kIL/ D Ǫ 0l1 Ǫ 0l2L2Zl1l2l3;0.Lk/

�
1C

sX

nD1
Ln NZl1l2l3;n.Lk/

��1
(5.150)

with

NZ1 D �Z�1
0 Z1 ;

NZ2 D �Z�1
0 Z2 C .Z�1

0 Z1/
2 ;

NZ3 D �Z�1
0 Z3 C 2Z�2

0 Z1Z2 � .Z�1
0 Z1/

3 ;
(5.151)NZ4 D �Z�1

0 Z4 C Z�2
0 .Z

2
2 C 2Z1Z3/ � 3Z�3

0 Z 2
1 Z2 C .Z�1

0 Z1/
4 ;

NZ5 D �Z�1
0 Z5 C 2Z�2

0 .Z1Z4 C Z2Z3/� 3Z�3
0 Z1.Z

2
2 C Z1Z3/

C4Z�4
0 Z31Z2 � .Z�1

0 Z1/
5 ;

where we have abbreviated Zl1l2l3;n and NZl1l2l3;n to Zn and NZn, respectively.
In particular, the isotropic scattering function P.kIL/ is obtained, from

Eqs. (5.104) and (5.147), as

P.kIL/ D
sX

nD0
LnPn.Lk/ ; (5.152)

and, from Eqs. (5.104) and (5.150), as

P.kIL/ D P0.Lk/

�
1C

sX

nD1
Ln NPn.Lk/

��1
(5.153)
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(with s D 5), where Pn.x/ in Eq. (5.152) (not to be confused with the Legendre
polynomial) are given by

Pn.x/ D 2x�2J00.x/ for n D 0

D x�.nC2/
nX

rD1

.�1/r
2r�1rŠ

ErnJnCr
r .x/ for n 	 1 ; (5.154)

and NPn.x/ in Eq. (5.153) are given by Eqs. (5.151) with Pn and NPn in place of Zn

and NZn, respectively. Note that P0.Lk/ in Eqs. (5.152) and (5.153) is just the P.kIL/
for the rod. Koyama [19] and Norisuye et al. [22] have evaluated P.kIL/ to terms
of O.L/ and O.L5/, respectively, for the KP chain. Equations (5.152) and (5.153)
include their results as special cases. [The term �256 of P3 in Eqs. (26) of [22]
should be replaced by �256x.]

The numerical results [69] show that the difference between the values of RVv for
the HW chain and the R3 rod is very small for small L and k, and is also smaller (for
RVv) than for RUv. This suggests that in order to determine hS2i experimentally,
we should measure the Vv component rather than the Uv so that we may use
approximately the equation for the R3 rod [69].

5.4 Electrical Properties

5.4.1 Mean-Square Electric Dipole Moment

The mean-square electric dipole moment h�2i is one of the electrical properties
closely related to the equilibrium conformational behavior of polymer chains, in
particular, to the mean-square end-to-end distance hR2i. We evaluate it by affixing
local permanent electric dipole moment vectors to the HW chain [70]. Let m.s/ and
Qm.s/ be those vectors per unit length at the contour point s (0 � s � L), expressed

in the localized and external Cartesian coordinate systems, respectively. We assume
that m.s/ is also independent of s. All lengths are measured in units of ��1 unless
otherwise noted.

Now the instantaneous dipole moment� of the entire chain in the external system
is given by

� D
Z L

0

Qm.s/ds ; (5.155)

so that h�2i is given by

h�2i D 2
Z L

0

.L � s/h Qm.s/ � Qm.0/ids ; (5.156)
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where the average in the integrand may be evaluated with the Green function
G.� j�0I s/ for the chain of contour length s as

h Qm.s/ � Qm.0/i D .8�2/�1
Z
Qm.s/ � Qm.0/G.� j�0I s/d�d�0 : (5.157)

As in the case of the polarizability tensor, it is convenient to introduce the
spherical components Qm.j/ (m.j/) (j D 0, ˙1) of the vector Qm (m) [71], which are
defined in terms of the Cartesian components Qm� (m�0) (� D x, y, z; �0 D �, �, �)
as in Eqs. (5.215) of Appendix 2 and which satisfy the relation given by Eq. (5.217),
since Qm.j/ may be transformed to m.j/ by Eq. (5.219). With Qm.j/, the scalar product in
the integrand of Eq. (5.157) may then be written in the form

Qm.s/ � Qm.0/ D
1X

jD�1
Qm.j/�.s/ Qm.j/.0/ : (5.158)

Thus we obtain, from Eqs. (5.156) and (5.157) with Eqs. (4.36), (5.158), and (5.219),

h�2i D 2� Nm00 NX001 .L/ � 2 Nm11 NX.�1/11 .L/

�2 Nm.�1/1 NX111 .L/ � 4 NNm01 NNX011 .L/
�
; (5.159)

where Nm j1j2 and NNm j1j2 are the real and imaginary parts, respectively, of the quantity
m j1j2 defined by

m j1j2 D m. j1/m. j2/ ; (5.160)

NX j1j2
1 and NNX j1j2

1 are those of the function Xj1j2
1 .L/ defined by Eq. (5.122), and we have

used Eqs. (4.128) for the symmetry relations for g jj0

l .

By the use of Eq. (4.108) for g jj0

l (for the chain with Poisson’s ratio � D 0),
Eq. (5.159) may be reduced to

h�2i D 2m2	�2� O� 20 Nv10.L/C O� 2
0 Nv11.L/

�
; (5.161)

where 	 is given by Eq. (5.4), O�0 and O�0 are defined by

O�0 D .	2 � O� 20 /1=2 ; (5.162)

O�0 D m�1.�0m� C �0m�/ (5.163)

with m D jmj, so that 	 D . O� 2
0 C O� 20 /1=2, and Nvlk is the real part of the function

vlk.L/ defined by

vlk.L/ D z�2.zL � 1C e�zL/ (5.164)
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with

z D l.lC 1/C ik	 ; (5.165)

that is,

Nv1j.L/ D 1

.4C j2	2/2
˚
2.4C j2	2/L � 4C j2	2

Ce�2L
�
.4 � j2	2/ cos.j	L/ � 4j	 sin.j	L/

��
: (5.166)

Equation (4.82) for hR2i may then be rewritten in the form

hR2i D 2	�2�� 20 Nv10.L/C � 2
0 Nv11.L/

�
: (5.167)

Comparing Eq. (5.161) with Eq. (5.167), we find

h�2i D m2h OR2i D m2fR.LI O�0; O�0/ ; (5.168)

where h OR2i is the mean-square end-to-end distance of the HW chain of contour
length L such that the curvature and torsion of its characteristic helix are equal to
O�0 and O�0, respectively. Note that for the chain having type-A dipoles [72] along its
contour (m� D m� D 0), we have O�0 D �0 and O�0 D �0, and therefore h OR2i D hR2i.
For the KP2 chain and R2 rod, Eq. (5.168) may be further reduced to

h�2i D m2hR2i D m2

�
L � 1

2
C 1

2
e�2L

�
(KP2) ; (5.169)

h�2i D m2L2 (R2) : (5.170)

It is important to note that Eqs. (5.169) and (5.170) are valid even for the chain
whose dipoles are not of type A.

For a comparison of theory with experiment, it is convenient to write h�2i
(unreduced), from Eq. (5.168), as

h�2i
x
D .��1m/2

�
��1ML

M0

��1� f�.�LI��1�0; ��1�0; ��1m/
�L

�
; (5.171)

where x is the number of repeat units, M0 is its molecular weight, and f� is given by

f�.�LI��1�0; ��1�0; ��1m/ D fR.�LI��1 O�0; ��1 O�0/ (5.172)

with fR being given by Eq. (4.82),

fR.LI �0; �0/ D c1L � � 20
2	2
� 2�

2
0 .4 � 	2/
	2r4

C e�2L

	2

	
1

2
� 20

C2�
2
0

r4
�
.4 � 	2/ cos.	L/� 4	 sin.	L/

�

: (5.173)
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Fig. 5.20 Localized Cartesian coordinate system and the local electric dipole moment vector m
for PDMS (see the text)
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Fig. 5.21 Double-logarithmic plots of h�2i=x (in D2) against x for PDMS in cyclohexane at
25.0 ıC (�) [73], PBIC in CCl4 at 22.9 ıC (�) [74], and PHIC in toluene at 25.0 ıC (�) [75].
The solid curves represent the best-fit HW (or KP) theoretical values calculated with the values of
the model parameters given in Table 5.4

Now we make a comparison of theory with experiment, taking as examples
PDMS, PBIC, and PHIC. The PDMS chain has type-B dipoles [72] perpendicular to
its contour and this local dipole moment vector m may be attached unambiguously
in the localized coordinate system, which is affixed to the monomer unit containing
the Si–O and O–Si bonds, as mentioned in Sect. 4.4.3 and depicted in Fig. 5.20.
That is, the � axis is taken along a line passing through the two successive Si atoms,
the � axis is in the plane of the Si–O and O–Si bonds with its positive direction
chosen at an acute angle with the Si!O bond ( O D 0), and the � axis completes
the right-handed system. Then the vector m is in the negative direction of the � axis,
so that m� D �m and m� D m� D 0. On the other hand, the PBIC and PHIC chains,
which are typical semiflexible chains, may be treated as the KP chain having type-A
dipoles.

Figure 5.21 shows double-logarithmic plots of h�2i=x (in D2) against x for PDMS
in cyclohexane at 25.0 ıC [73], PBIC in carbon tetrachloride (CCl4) at 22.9 ıC
[74], and PHIC in toluene at 25.0 ıC [75]. The excluded-volume effect on h�2i
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Table 5.4 Values of the HW model parameters from electrical properties

Polymer Solvent Temp. (ıC) ��1�0 ��1�0 ��1 (Å) ML (Å�1) m0 (D) Obs. (Ref.)

PDMS Cyclohexane 25.0 2.6 0 18.0 (25.0)a 0.29 h�2i ([73])

PBIC CCl4 22.9 0 � � � 1440 (55.1)b 1.25 h�2i ([74])

CCl4 Room temp. 0 � � � 1440 (55.1)b � � � AED ([10])

PHIC Toluene 25.0 0 � � � 740 (74.0)b 2.46 h�2i ([75])
aFrom RIS values of Cn (see Table 4.1)
bFrom hS2i

of the chain having type-B dipoles may be regarded as negligibly small if any.
Thus theoretical values of h�2i for all these three polymers may be calculated from
Eq. (5.171) with values of ��1�0, ��1�0, ��1ML, and ��1m D m0.�

�1ML=M0/,
where m0 is the permanent electric dipole moment of the repeat unit. Note therefore
that ��1 and ML cannot be separately determined from h�2i, although it is possible
for m0. The solid curves in Fig. 5.21 represent the best-fit HW (or KP) theoretical
values thus calculated with the values of the model parameters given in Table 5.4,
where we have put ��1�0 D 0 for PDMS, corresponding to Table 4.3, and assumed
the values of ML as noted in order to determine ��1, for convenience. From the
obtained values of �0 and �0 (reduced) in the .�0; �0/-plane of Fig. 4.13, the PDMS
chain is seen to be a typical HW chain. Indeed, both experimental and theoretical
values of h�2i=x exhibit a maximum, and also the temperature coefficient of hR2i
is positive, as mentioned in Sect. 4.8.2. As for the semiflexible polymer PBIC, the
value of ��1 from h�2i is rather consistent with that from hS2i in Table 5.1, although
it may depend somewhat on solvent.

Finally, it is pertinent to make a remark on h�2i of a- and i-PMMAs [76]. The
PMMA chain seems to have the type-B dipoles as in the case of the PDMS chain if
we simply assume that the plane of the side ester group is perpendicular to the plane
of the C–C˛ and C˛–C bonds, as done in Sect. 5.3.3. Strictly speaking, however,
the orientation of the group is not independent of the main-chain conformation, as
pointed out by Vacatello and Flory [77] and Sundararajan [27] in their determination
of the statistical weight matrix of the RIS model for PMMA. Somewhat detailed
consideration of this point and also of the fact that the local electric dipole moment
vectors of the initiating and terminating repeat units are different from those of
intermediate ones is required for an analysis on the basis of the HW model.

5.4.2 Electric Birefringence

A second electrical property we consider is electric birefringence [70]. Let ˛.s/ and
Q̨ .s/ be the local optical polarizability tensors per unit contour length of the chain
expressed in the localized and external Cartesian coordinate systems, respectively,
as before, and let ˛0.s/ and Q̨ 0.s/ be the corresponding polarizability tensors. An
equation similar to Eq. (5.116) for the optical polarizability tensor � of the entire
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chain holds for the corresponding static polarizability tensor � 0 in the external
system (ex, ey, ez).

Then the molecular distribution function P under the influence of an applied
static electric field E D Eez is given by

P D C.E/ exp
��.U � �zE � 1

2
� 0

zzE
2/=kBT

�
; (5.174)

where U is the intramolecular potential energy and �z is the z component of the
electric dipole moment �. The principal axes of the � averaged with P, which we
denote by h�iE, are in the directions of ex, ey, and ez, its x and y principal values
being equal to each other. The required quantity is the difference�� between the z
and x principal values. It is given by [78, 79]

�� D h�zz � �xxiE

D E2

2kBT

�
�.D/

kBT
C�.P/

�
CO.E3/ (5.175)

with

�.D/ D ˝
.�zz � �xx/�

2
z

˛
; (5.176)

�.P/ D ˝
.�zz � �xx/�

0
zz

˛
; (5.177)

where h� � � i denotes an equilibrium average (at E D 0) as before. Nagai and
Ishikawa [78] and Flory [79] have further reduced Eqs. (5.176) and (5.177) to

�.D/ D 1

15

�
3h� � � � �i � h�2Tr�i� ; (5.178)

�.P/ D 1

15

�
3hTr .� � � 0/i � h.Tr�/.Tr� 0/i� : (5.179)

For the HW chain, however, it is more efficient to start from Eqs. (5.176) and (5.177)
with the use of the spherical tensors.

From Eqs. (5.116), (5.155), (5.176), and (5.177),�.D/ and�.P/ may be written as

�.D/ D 2

Z L

0

ds.L � s/
Z s

0

dth� Q̨ .0/ Qmz.t/ Qmz.s/

C Qmz.0/� Q̨ .t/ Qmz.s/C Qmz.0/ Qmz.t/� Q̨ .s/i ; (5.180)

�.P/ D
Z L

0

.L� s/
�h� Q̨ .s/ Q̨ 0zz.0/i C h� Q̨ .0/ Q̨ 0zz.s/i

�
ds (5.181)

with

� Q̨ .s/ D Q̨zz.s/� Q̨xx.s/ : (5.182)
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�.P/ is closely related to the mean-square optical anisotropy h� 2i; indeed, when
˛ D ˛0, we have

�.P/ D 2

15
h� 2i : (5.183)

We omit the details of the evaluation of the integrals in Eqs. (5.180) and (5.181),
which is straightforward, and give only some of the final results [70], for simplicity.
In the particular case of the HW chain having type-A dipoles and polarizability
tensors ˛ and ˛0 cylindrically symmetric about e� D u (HWA0), we have

�.D/ D .�˛/m2

15	4.16C 	2/
˚
	2� 20 .32 � � 2

0 C 2� 20 / Nv10

C	2� 2
0 .32C 3� 20 / Nv11

C�
2
0

	
.	4 � 9	2� 20 � 48	2 � 144� 20 /NNv11

�.� 2
0 � 2� 20 /.	2� 20 � 8� 2

0 C 16� 20 / Nv20
�3� 2

0 �
2
0

�
.32C 	2/ Nv21 C 4	 NNv21

�

�6� 40 .4 Nv22 C 	 NNv22/
�.16C 	2/.� 2

0 � 2� 20 /.2� 20 Nv110 � � 2
0 Nv111/

�
.HWA0/ ; (5.184)

�.P/ D .�˛/.�˛0/
15	4

�
.� 2
0 � 2� 20 /2 Nv20

C12� 2
0 �

2
0 Nv21 C 3� 4

0 Nv22
�

.HWA0/ ; (5.185)

where �˛ D ˛�� � ˛�� (˛�� D ˛��) and �˛0 D ˛0
�� � ˛0

�� (˛0
�� D ˛0

��); and Nvlk and
NNvlk are the real and imaginary parts of the function vlk.L/ defined by Eq. (5.164), and
Nv1lk and NNv1lk are those of the function v1lk.L/ defined by

v1lk.L/ D z�3�zL � 2C .zLC 2/e�zL
�

(5.186)

with z being given by Eq. (5.165).
For the KP2 chain, we have for �.D/

�.D/ D �.D/
L

�
6

5
L � 13

18
C 3

4
e�2L C 1

2
Le�2L � 1

36
e�6L

�
.KP2/ ; (5.187)
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where�.D/
L is the local �.D/ per unit (reduced) length and is in general given by

�
.D/
L D lim

L!0

�
�.D/

L3

�

D 1

15

˚p
6˛02m

.0/m.0/ Cp6˛02m.1/m.�1/

�6p2ReŒ˛12m.0/m.�1/�C 6ReŒ˛22m.�1/m.�1/�
�

D 1

15
Œ3.m � ˛ �m/� m2Tr˛� : (5.188)

We note that the third equality of Eqs. (5.188) has been obtained from Eq. (5.178)
and that in the case of type-A dipoles the second equality of Eqs. (5.188) reduces to

�
.D/
L D

p
6

15
˛02m2 .A/ : (5.189)

For the KP3 chain, we have for �.D/

�.D/ D 2�˛

15

	
m 2
� . Nv10 � Nv20 C 2 Nv110/ � .m 2

� C m 2
� /

�
�
2.4 Nv11 � 4 Nv20 � j�0j NNv11/

16C � 20
C Nv111

�

.KP3/ ; (5.190)

where �˛ is the same as that in Eq. (5.184). Recall that the optical anisotropy for
the KP3 chain is independent of �0.

For the KPj chain (j D 1, 2, 3) having type-A dipoles (KPA), �.D/ is given by
Eq. (5.187) with Eq. (5.189) irrespective of the values of �0 and ˛.

For the KP2 and KP3 chains, we have for�.P/

�.P/ D 1

3
�
.P/
L

�
L � 1

6
C 1

6
e�6L

�
.KP2; KP3/ ; (5.191)

where�.P/
L is the local �.P/ per unit (reduced) length and is in general given by

�
.P/
L D lim

L!0

�
�.P/

L2

�

D 1

5

�
˛02˛

00
2 C 2Re.˛1�2 ˛01

2 /C 2Re.˛2�2 ˛02
2 /
�

D 1

15

�
3Tr .˛ � ˛0/� .Tr˛/.Tr˛0/

�
: (5.192)

We note that for the KP2 and KP3 chains�.P/ and h� 2i have the same dependence
on L, as seen from Eqs. (5.126) and (5.191), and that the third line of Eqs. (5.192)
has been obtained from Eq. (5.179).

For the KPA chain,�.P/ is given by Eq. (5.191).
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We note that for all types of rods having type-A dipoles (RA) we have �.D/ D
�
.D/
L L3 and �.P/ D �

.P/
L L2, which agree with the results derived by Benoit [80] for

the R3A rod, and also that in the coil limit�.D/ and�.P/ are proportional to L, being
consistent with the results obtained by Peterlin and Stuart [81] for the freely jointed
chain and by Stockmayer and Baur [82] for the spring-bead model.

Finally, we make brief mention of the Kerr constant K experimentally deter-
mined. It is defined by

K D lim
c!0
E!0

�
�Qn
Qn0cE2

�
; (5.193)

where �Qn is the difference between the refractive indices of the solution of
concentration c in the z and x directions and is given by

�Qn D 2�NAc��

Qn0M : (5.194)

We then have, from Eqs. (5.175), (5.193), and (5.194),

K D Q

M

�
�.D/

kBT
C�.P/

�
(5.195)

with

Q D �NA

Qn 2
0 kBT

: (5.196)

The right-hand side of Eq. (5.196) must be multiplied by a proper factor if effects of
the internal field are taken into account.

5.4.3 Electric Dichroism

The theory of electric birefringence in the last subsection may be translated into
the theory of electric linear dichroism by regarding the local optical polarizability
tensor ˛.s/ as the local dichroic tensor [83]. Let �0j.s/ be the local electric dipole
transition moment per unit contour length of the chain for the electronic transition
0 ! j between the ground and jth excited states. The local dichroic tensor ˛.s/ is
defined by

˛.s/ D �0j.s/�0j.s/ ; (5.197)

so that � and ˛m
l in the last subsection are also to be reinterpreted according to

Eq. (5.197). Then the molecular extinction coefficient 
	 for the plane-polarized
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light with polarization e	 (	 D x, y, z) in the applied static electric field E is given by


	 D f h�		iE ; (5.198)

where f is a proportionality constant and the average is taken with the P given by
Eq. (5.174). From Eq. (5.198) with the first line of Eqs. (5.175), we have for the
electric dichroism�


�
 D 
z � 
x D f�� : (5.199)

Since the molecular extinction coefficient N
 for E D 0 is given by

N
 D 1

3
f Tr h�i D f N̨L ; (5.200)

we obtain, from Eqs. (5.199) and (5.200) with the second line of Eqs. (5.175),

�


N
 D AEDE2 CO.E3/ (5.201)

with

AED D 1

2kBT N̨L
�
�.D/

kBT
C�.P/

�
; (5.202)

where�.D/ and�.P/ are given by the equations in the last subsection with the above
reinterpretation. Note that the right-hand side of Eq. (5.202) must be multiplied by
a proper factor if effects of the internal field are taken into account.

We make a comparison of theory with experiment for AED in the case of the KPA
chain for which �.P/ may be neglected. Equation (5.202) may then be rewritten in
the form

.kBT/2AED D 1

18
.��1m/2
1fED.�L/ ; (5.203)

where 
1 is given by the first of Eqs. (5.141) and fED is given, from Eqs. (5.187)
and (5.202), by

fED.L/ D 1 � 13

15L
C 9

10L
e�2L C 3

5
e�2L � 1

30
e�6L .KP2/ : (5.204)

Figure 5.22 shows double-logarithmic plots of .kBT/2AED (in D2) against x for PBIC
in CCl4 at room temperature, the data being due to Troxell and Scheraga [10]. The
solid curve represents the best-fit KPA theoretical values calculated from Eq. (5.203)
with Eq. (5.204) with the values of the model parameters given in Table 5.4 along
with m0 D 1:25 D and 
1 D 2:60. It is interesting to see that the values of ��1
obtained from AED and h�2i agree with each other.
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Fig. 5.22
Double-logarithmic plots of
.kBT/2AED (in D2) against x
for PBIC in CCl4 at room
temperature [10]. The solid
curve represents the best-fit
KPA theoretical values
calculated with the values of
the model parameters given in
Table 5.4 along with
m0 D 1:25 D and 
1 D 2:60
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Appendix 1: Chain-Thickness Correction for the Apparent
Mean-Square Radius of Gyration

The reciprocal of the excess reduced scattered intensity R� for dilute solutions of
mass concentration c may be expanded in the form [33, 84]

Kc

R�
D 1

MPs.k/
C 2A2Q.k/cC � � � ; (5.205)

where K is the optical constant, M is the polymer molecular weight, Ps.k/ is
the scattering function as a function of the magnitude k of the scattering vector
k given by Eq. (5.20), A2 is the second virial coefficient, and Q.k/ represents
the intermolecular interference. The function Ps contains effects of the spatial
distribution of scatterers (electrons or hydrogen nuclei), that is, effects of chain
thickness in the case of small-angle X-ray or neutron scattering. In general, it may
be written in the form [1]

Ps.kIL/ D
�ˇ̌
ˇ̌
Z
�.r/ exp.ik � r/dr

ˇ̌
ˇ̌
2�
; (5.206)

where we have explicitly indicated that Ps.k/ also depends on the contour length L
of the chain, h� � � i denotes an equilibrium average over chain conformations, i is the
imaginary unit, and �.r/ is the excess scatterer density at vector position r and is
normalized as

Z
�.r/dr D 1 : (5.207)
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In the case for which the scatterers are distributed on the chain contour, �.r/ is
given by

�.r/ D L�1
Z L

0

ı
�
r � r.s/

�
ds ; (5.208)

where ı.r/ is a three-dimensional Dirac delta function and r.s/ is the radius vector
of the contour point s (0 � s � L) of the chain. Then Eq. (5.206) with Eq. (5.208)
gives the contour scattering function P.kIL/ (without effects of chain thickness).

In the case of a cylinder model for which the scatterers are uniformly distributed
within a (flexible) cylinder having a uniform cross section of area ac whose center
of mass is on the chain contour, �.r/ is given by

�.r/ D .Lac/
�1
Z L

0

ds
Z

CS

ıŒr � r.s/ � Nrs�dNrs ; (5.209)

where Nrs is the vector distance from the contour point s to an arbitrary point in the
normal cross section at that point and the second integration is carried out over the
cross section.

In the case of a touched-subbody model for which the scatterers are uniformly
distributed in each of N identical touched subbodies of volume vs whose centers of
mass are on the chain contour, �.r/ is given by

�.r/ D .Nvs/
�1

NX

jD1

Z

Vj

ı.r � rj � Nrj/dNrj ; (5.210)

where rj is the vector position of the center of mass of the jth subbody, Nrj is the vector
distance from rj to an arbitrary point within the jth subbody, and the integration is
carried out within it.

The scattering function Ps may be expanded in the form

Ps.kIL/ D 1 � 1
3
hS2isk2 CO.k4/ : (5.211)

This is the defining equation for the apparent mean-square radius of gyration hS2is
for the chain. It is related to the mean-square radius of gyration hS2i for the chain
contour by the equation

hS2is D hS2i C S 2
c ; (5.212)
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where Sc is the radius of gyration for the cross section (cylinder model) or subbody
(touched-subbody model) and is given by

S 2
c D

1

8
d2 (cylinder) ; (5.213)

S 2
c D

3

20
d 2

b (bead) (5.214)

for the cylinder of diameter d and the sphere (bead) of diameter db, respectively.
For the cylinder model, d has been calculated to be 9.2, 8.2, and 8.1 Å for a-PS,
a-PMMA, and i-PMMA, respectively, from the partial specific volume [1, 4, 5]. For
a-PS, however, the value 9.4 Å of d has been adopted in Eq. (5.212) [1].

Appendix 2: Spherical Vectors and Tensors

The spherical (irreducible) components r.j/ (j D 0,˙1) of a vector r D .x, y, z) are
defined in terms of the Cartesian components x, y, and z by [71]

r.˙1/ D � 1p
2
.x˙ iy/ ;

(5.215)
r.0/ D z :

The spherical components Tm
l (l D 0, 1, 2; m D 0,˙1,˙2) of a tensor T D .T�	/

(�, 	 D x, y, z) are defined in terms of the Cartesian components T�	 by

T00 D
1p
3
.Txx C Tyy C Tzz/ ;

T01 D
1

2
.Txy � Tyx/ ;

T˙1
1 D �

1

2
p
2

�
.Tyz � Tzy/˙ i.Tzx � Txz/

�
;

(5.216)

T02 D
1p
6

�
3Tzz � .Txx C Tyy C Tzz/

�
;

T˙1
2 D �

1

2

�
.Tzx C Txz/˙ i.Tzy C Tyz/

�
;

T˙2
2 D

1

2

�
.Txx � Tyy/˙ i.Txy C Tyx/

�
:
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We note that the third and fifth of Eqs. (7.4.1) of [49] and all related equations are
incorrect.

We have the symmetry relations

r.�j/ D .�1/jr.j/� ; (5.217)

T�m
l D .�1/mTm�

l ; (5.218)

where the asterisk indicates the complex conjugate.
We have the same transformation rule as Eq. (4.264), that is,

Qr.j/ D c �1
1

1X

j0D�1
Djj0

1 .�/r
.j0/ ; (5.219)

QTm
l D c �1

l

lX

jD�l

Dmj
l .�/T

j
l ; (5.220)

where the components Qr.j/ and QTm
l are transformed to the components r.j/ and Tm

l ,
respectively, expressed in a new Cartesian coordinate system obtained by rotation
� of a coordinate system in which the former components are defined, Dmj

l are the
normalized Wigner D functions, and cl is given by Eq. (4.54).

Appendix 3: Proof of Nagai’s Theorem

We introduce temporarily quantities ˇ.˙/ defined by

ˇ.˙/ D ˛Vh ˙ ˛Hv : (5.221)

We have h Q̨m1l1
; Q̨m2l2
i D 0 for m1 ¤ m2, as seen from Eq. (5.90), and therefore we

obtain, from Eqs. (5.87) and (5.221), the relations,

h˛Vv; ˇ
.C/i D h˛Hh; ˇ

.C/i D hˇ.�/; ˇ.C/i D 0 ;
(5.222)

hˇ.C/; ˛Vvi D hˇ.C/; ˛Hhi D hˇ.C/; ˇ.�/i D 0 ;

and also

h˛Vv; ˇ
.�/i C hˇ.�/; ˛Vvi D 0 ;

(5.223)
h˛Hh; ˇ

.�/i C hˇ.�/; ˛Hhi D 0 :
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We may express h˛fi; ˛fii in terms of its components h˛Vv, ˛Vvi and so on by the use
of Eq. (5.88) with ˇ.C/ and ˇ.�/ instead of ˛Vh and ˛Hv. Then, if we use Eqs. (5.222)
and (5.223) and change ˇ.C/ and ˇ.�/ back to ˛Vh and ˛Hv, we find

h˛fi; ˛fii D c 2
i c 2

f h˛Vv; ˛Vvi C s 2i s 2f h˛Hh; ˛Hhi C 1

2
.c 2

i s 2f C s 2i c 2
f /

��h˛Vh; ˛Vhi C h˛Hv; ˛Hvi

C cisicfsf

�h˛Vv; ˛Hhi
Ch˛Hh; ˛Vvi C h˛Vh; ˛Hvi C h˛Hv; ˛Vhi



: (5.224)

If we set !i D 0 and !f D �=2 in Eq. (5.224), we obtain the relation

h˛Vh; ˛Vhi D h˛Hv; ˛Hvi : (5.225)

If !i0 and !f0 are certain values of !i and !f for which the last term on the right-
hand side of Eq. (5.224) does not vanish, this term may be expressed as a linear
combination of h˛Vv; ˛Vvi, h˛Hv; ˛Hvi (D h˛Vh; ˛Vhi), h˛Hh; ˛Hhi, and h˛f0i0 ; ˛f0 i0i.
Therefore, it turns out that h˛fi; ˛fii for arbitrary !i and !f may be expressed as a
linear combination of h˛Vv; ˛Vvi, h˛Hv; ˛Hvi, h˛Hh; ˛Hhi, and h˛f0i0 ; ˛f0 i0i. Thus Ffi

may be expressed as a linear combination of FVv, FHv (D FVh), FHh, and Ff0 i0 . If
we choose as the fourth component Ff0i0 D FQq with !i0 D !f0 D �=4, we obtain
Eq. (5.91).
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Chapter 6
Transport Properties

This chapter deals with the classical hydrodynamic theory of steady-state transport
properties, such as the translational friction and diffusion coefficients and intrinsic
viscosity, of the unperturbed HW chain, including the KP wormlike chain as a
special case, on the basis of the cylinder and touched-bead models. An analysis
of experimental data is made from various points of view, which are based on the
present theory, especially for flexible polymers. In the same spirit as that in Chap. 5,
use is then made of experimental data obtained for several flexible polymers in the�
state over a wide range of molecular weight, including the oligomer region, and also
for typical semiflexible polymers. As a result, it is pointed out that there still remain
several unsolved problems for flexible polymers even in the unperturbed state. It is
convenient to begin by giving a general consideration of some aspects of polymer
hydrodynamics which leads to the adoption of the present hydrodynamic models.

6.1 General Consideration of Polymer Hydrodynamics

As is well known, the transport theory of dilute polymer solutions is based on the
idea that polymer molecules as sources of excess energy dissipation exert frictional
forces on the solvent medium which is regarded as a continuous viscous fluid.
Within the framework of classical hydrodynamics, the motion of the fluid with
(shear) viscosity coefficient �0 in steady flow may be described by the linearized
Navier–Stokes equation (Stokes equation)

�0r2v.r/� rp.r/C f.r/ D 0 (6.1)

with

r � v.r/ D 0 (6.2)

© Springer-Verlag Berlin Heidelberg 2016
H. Yamakawa, T. Yoshizaki, Helical Wormlike Chains in Polymer Solutions,
DOI 10.1007/978-3-662-48716-7_6

193



194 6 Transport Properties

for incompressible fluids, where v.r/ and p.r/ are the velocity and pressure of the
fluid at the point r in a Cartesian coordinate system, respectively, and f.r/ is the
force density, that is, the frictional force exerted on the fluid per unit volume at the
same point. The fundamental solution of Eq. (6.1) with Eq. (6.2) is given by [1, 2]

v.r/ D
Z

T.r � r0/ � f.r0/dr0 ; (6.3)

where T.r/ is the Green function usually called the Oseen hydrodynamic interaction
tensor and given by

T.r/ D 1

8��0r
.IC erer/ (6.4)

with I the unit tensor and er the unit vector in the direction of r.
In the case for which a point force F is exerted at the origin of the coordinate

system, f.r/ is given by

f.r/ D Fı.r/ (6.5)

with ı.r/ being a Dirac delta function, and therefore we have, from Eqs. (6.3) and
(6.5),

v.r/ D T.r/ � F : (6.6)

This is the basic equation in the well-known Kirkwood procedure [1, 3, 4] of
polymer transport theory for bead models, in which the segments (beads) consti-
tuting the polymer chain are treated as point sources of friction. The solutions of
linear coupled equations determining the frictional forces from Eq. (6.6) possess
the Zwanzig singularities [5, 6] which lead to unphysical behavior of the transport
properties, for example, negative translational diffusion coefficients of a rigid rod
[6]. Such mathematical singularities always occur irrespective of the preaveraging or
nonpreaveraging of the Oseen tensor T, but they can be removed from the physically
possible range of hydrodynamic interaction strength except in the case of rigid rods
if the Stokes diameter of the (spherical) bead is assumed [7]. Thus the occurrence
of the physical singularities is related to a particular spatial distribution of beads.

For finite bead models Rotne and Prager [8] applied a variational method to
derive a correction to the Oseen tensor which gives an upper bound to the true
positive definite diffusion tensor. It reads

Tm.r/ D T.r/C 1

16��0r

�
db

r

�2�
1

3
I � erer

�
; (6.7)

where T.r/ is the Oseen tensor given by Eq. (6.4) and db is the diameter of the
bead. This modified Oseen tensor Tm may be derived by distributing point forces
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uniformly on the surface of the spherical bead [9] and is precisely the first-order
correction in the case of translational motion [10]. Indeed, the use of Eq. (6.6)
with Tm in place of T removes the physical singularities for the translational
diffusion coefficient of rigid rods [11]. It must however be noted that the use of
the Oseen tensor, when preaveraged, also removes them accidentally [11]. Further,
the modified Oseen tensor becomes identical to the Oseen tensor if preaveraged,
as seen from Eq. (6.7). Even under these circumstances, the use of the former
without preaveraging must be much better than the use of the latter for rigid discrete
models composed of a rather small number of beads. Indeed, there have been many
investigations of this kind [12, 13], including those of complex, rigid, biological
macromolecules.

Now it is well known that in the extreme the number of beads in the chain is equal
to one, the translational friction coefficient evaluated by the Kirkwood procedure
takes the Stokes law value correctly, while it cannot give the Einstein intrinsic
viscosity of the single bead. This is also the case with the use of the modified Oseen
tensor. This defect may be removed by treating the polymer chain as a body of
finite volume whose surface exerts the frictional force f per unit area and satisfies
the nonslip boundary condition, as done by Edwards and co-workers [14, 15]. [Note
that the finite volume of the body may be, to some extent, taken into account by
Eq. (6.7).] In this case the fluid velocity v produced is given by Eq. (6.3) instead
of by Eq. (6.6), although the integral in Eq. (6.3) must be replaced by the surface
integral. In this chapter we consider two types of such polymer hydrodynamic
models: cylinder models and touched-bead models. Necessarily, the results may
be expressed in terms of dimensional parameters defining the body and also the
basic (HW or KP) model parameters and may also be applied to short chains or the
oligomer region.

For earlier theories for the KP chain following the Kirkwood procedure, the
reader is referred to MTPS [1].

6.2 Hydrodynamic Models

6.2.1 Cylinder Model

For cylinder models the exact application of the present procedure mentioned in the
last section is limited to short rigid cylinders. It requires an introduction of several
mathematical approximations even in the limit of long Gaussian cylinders [15].
For long cylinders we therefore adopt an alternative, approximate but equivalent
method, that is, the Oseen–Burgers (OB) procedure [16], which is less familiar in
the polymer field but which was applied long ago to rigid, cylindrical bodies [16–
18].

Consider a cylinder of length L and diameter d (L � d) whose axis as the
chain contour obeys HW (or KP) statistics, and suppose that it is immersed in a
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Fig. 6.1 Cylinder model for
an evaluation of steady-state
transport coefficients by the
Oseen–Burgers procedure
(see the text)

O

x

y

z s1

s2

u

r̂

R(s1, s2)

r(s1) = S(s1)

solvent having an unperturbed velocity field v0 [19–23]. We replace the cylinder by
a distribution f.s/ of the frictional force (exerted on the fluid) per unit length along
the cylinder axis as a function of the contour distance s from one end (0 � s � L).
As depicted in Fig. 6.1, let Or be the normal radius vector from the contour point
s1, whose radius vector is r.s1/ in an external Cartesian coordinate system, to an
arbitrary point on the cylinder surface, so that

jOrj D Or D 1

2
d ; (6.8)

Or � u D 0 (6.9)

with u the unit vector tangential to the axis at the point s1, and let R.s1; s2/ D
r.s2/ � r.s1/ be the vector distance between the contour points s1 and s2.

For an instantaneous configuration, the velocity v.Or/ of the solvent at the point Or
on the cylinder surface relative to the velocity U.Or/ of the cylinder at Or may then be
expressed, from Eq. (6.3), as

v.Or/ D v0.Or/ �U.Or/C
Z L

0

T.R � Or/ � f.s2/ds2 : (6.10)

The OB procedure requires a nonslip boundary condition on the average, that is, that
the values of v.Or/ averaged over a normal cross section of the cylinder vanish for all
values of s1,

˝
v.Or/˛Or D 0 for 0 � s1 � L ; (6.11)

where h� � � iOr denotes the average over Or, assuming its uniform distribution subject
to the conditions given by Eqs. (6.8) and (6.9). Since the unperturbed flow field
is assumed to be non-existent (translational diffusion) or linear in space (shear
viscosity) and since the velocity U.Or/ is derived from the translational or angular
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velocity of the cylinder, we have

˝
v0.Or/˛Or D v0.s1/ ; (6.12)
˝
U.Or/˛Or D U.s1/ ; (6.13)

so that Eq. (6.10) reduces to

U.s1/ � v0.s1/ D
Z L

0

˝
T.R � Or/˛Or � f.s2/ds2 : (6.14)

Now it is known that for spheroids (ellipsoids of revolution) exact expressions for
the translational and rotatory diffusion coefficients D and Dr and intrinsic viscosity
Œ�� can be obtained from Eqs. (6.1) and (6.2) with the nonslip boundary condition.
For a prolate spheroid of major axis L and minor axis d, the asymptotic factors,
ln.L=d/ C const:, (along with the prefactors) involved in the exact D, Dr and Œ��
for L=d � 1 are coincident with those obtained from Eq. (6.14), where in this case
Or is not a constant but depends on s1 [24]. This gives grounds for the application
of the OB procedure to the long cylinder. In the present case, however, further
developments require the preaveraging of the Oseen tensor in Eq. (6.14). Then it
reduces to

U.s1/� v0.s1/ D 1

6��0

Z L

0

K.s1; s2/f.s2/ds2 (6.15)

with

K.s1; s2/ D K.sI d/
D ˝jR � Orj�1˛ ; (6.16)

where s D js1 � s2j and h� � � i denotes the averages over Or and chain configurations.
The problem is to evaluate the kernel K in the integral equation (6.15) determin-

ing the frictional force f. In what follows, all lengths are measured as before in units
of ��1. For convenience, we consider the kernel K.LI d/ with s1 D 0 and s2 D L. It
may be evaluated from

K.LI d/ D .2�/�1
Z

d R
Z 0

dOrjR � Orj�1G.R j u0 D ezIL/ ; (6.17)

where the integration over Or is carried out under the conditions of Eqs. (6.8) and (6.9)
with u D u0 and G is the conditional distribution function given by Eq. (4.158).
If we note that the Oseen tensor may be expressed as the inverse of its Fourier
transform [15],

T.r/ D .8�3�0/�1
Z

k�2.I � ekek/ exp.�ik � r/d k (6.18)
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with ek the unit vector in the direction of k, then K.LI d/ may also be written in the
form [19]

K.LI d/ D 2��1
Z 1

0

˝
exp

�
ik � .R � Or/�˛ dk

D ��1
Z 1

0

Z �

0

J0.Ork sin
/I.k j u0 D ezIL/ sin
dkd
 ; (6.19)

where k D .k; 
; !/ in spherical polar coordinates, I is the characteristic function,
and J0 is the zeroth-order Bessel function of the first kind defined by

J0.x/ D 2

�

Z 1

0

cos xt

.1 � t2/1=2
dt : (6.20)

It is convenient to evaluate K.LI d/ in different approximations in three ranges
of L: L � �1, �1 < L � �2, and L > �2. We adopt an equation obtained
in the second Daniels approximation from the second line of Eqs. (6.19) with the
I00;000ll .kIL/ given by Eq. (4.172) for L > �2, an approximate expression, which can
reproduce the values obtained by the weighting function method from Eq. (6.17)
with jR � Orj�1 being expressed in terms of the Legendre polynomials Pl.cos˛/
given by Eq. (3.142) with ˛ the angle between R and Or, for �1 < L � �2, and
an approximate 
3 equation (for d D 0) from the 
 method for L � �1. These
three functions are joined at L D �1 and �2 following the procedure of Hearst and
Stockmayer [25] as in Eq. (3.162).

The approximate interpolation formula for K.LI d/ so obtained is given by [26]

K.LI d/ D
�

6

�c1L

�1=2 2X

iD0

iX

jD0
Bijd

2j.c1L/�i

Ch.�2 � L/.c1L/�1=2
qX

iD0

2X

jD0
Cijd

2j.L � �2/iC3 for L > �1

D .L2 C 1

4
d2/�1=2

�
1C

5X

iD1
fi0L

i C
3X

iD1

2X

jD1
fijd

2jLi

�
for L � �1

(6.21)

with

B00 D 1 ; B11 D �1
8
; B22 D 63

4480
; f10 D 1

3
; (6.22)

where c1 is given by Eq. (4.75); h.x/ is a unit step function defined by h.x/ D 1 for
x 	 0 and h.x/ D 0 for x < 0; fi0 (i D 1–3) are the coefficients of Li in Eq. (4.232);
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and B10, B20, B21, Cij, fi0 (i D 4, 5), fij (i D 1–3; j D 1, 2), �1, �2 and q are constants
independent of L and d but dependent on the HW model parameters �0 and �0 and
are to be determined numerically. From the practical point of view, however, we do
not give the numerical results, since the cylinder model is mainly applied to typical
semiflexible polymers, which may be represented by the KP chain in most cases.

In the particular case of the KP chain, for which �0 D 0 and c1 D 1, we have
[19]

�1 D �2 D 2:278 ;
B10 D � 1

40
; B20 D � 73

4480
; B21 D 21

320
; Cij D 0 ;

f20 D 0:1130 ; f30 D �0:02447 ; f40 D f50 D 0 ; (6.23)

f11 D 0:04080 ; f21 D �0:04736 ; f31 D 0:009666 ;
f12 D 0:004898 ; f22 D �0:002270 ; f32 D 0:0002060 .KP/ :

We note that the values of f20 and f30 in Eqs. (6.23) do not agree with those in
Eq. (4.232) with �0 D 0.

Finally, we make a preliminary remark on the treatment in the range of small L, in
which end effects must be taken into account. We assume that as L is decreased, the
HW cylinder becomes a spheroid-cylinder, that is, a straight cylinder with oblate,
spherical, or prolate hemispheroid caps at the ends such that its total length is L and
the length of the intermediate cylinder part is L � 
d, so that 
 is the ratio of the
principal diameters of the end spheroid, as depicted in Fig. 6.2 [27]. Its transport
coefficients (for arbitrary L) are evaluated in Appendix 1. Extrapolation to them is
made properly from the OB solutions obtained for the HW cylinder for L=d� 1.

Fig. 6.2 Three types of
spheroid-cylinders. The
hemispheroids at the ends are
(a) oblate (pancake shaped),
(b) spherical, and (c) prolate
(cigar shaped). The case (b) is
a (prolate) spherocylinder

L

εd

d

0 < ε < 1

(a)

ε = 1

(b)

ε > 1

(c)
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6.2.2 Touched-Bead Model

Consider a chain composed of N identical spherical beads of diameter db whose
centers are located on the HW (or KP) chain contour of total length L. The contour
distance between the centers of two adjacent beads is set equal to the bead diameter,
so that Ndb D L. [Note that this relation between N and L is different from that in
Sect. 5.2.3 (b).] Strictly speaking, two adjacent beads do not touch each other but
slightly overlap since the contour distance between their centers is larger than the
straight distance. However, the difference between these two distances is negligibly
small, and therefore we call this model the touched-bead model.

Now suppose that the chain is immersed in the solvent having the unperturbed
flow field v0 as in the case of the cylinder model. Let ri be the vector position of
the center of the ith bead (i D 1, 2, � � � , N) and let Ori be the radius vector from
its center to an arbitrary point on its surface, so that jOrij D Ori D db=2, as depicted
in Fig. 6.3. Under the nonslip boundary condition on the surface of each bead, the
velocity Ui.Ori/ of the point Ori of the ith bead may be expressed, from Eq. (6.3), as
[28]

Ui.Ori/� v0.Ori/ D
Z

Si

T.Or0
i � Ori/ � fi.Or0

i/dOr0
i

C
NX

jD1
¤i

Z

Sj

T.Rij � Ori C Orj/ � fj.Orj/dOrj ; (6.24)

where Rij D rj � ri is the vector distance between the centers of the ith and jth
beads, fi.Ori/ is the frictional force exerted on the fluid by the unit area at Ori of the
surface of the ith bead, and the integration is carried out over its surface (Si).

Fig. 6.3 Touched-bead
model for an evaluation of
steady-state transport
coefficients (see the text)

O

x

y

z
riˆ

rjˆ

Rij

j

i+1

i

i−1

ri = Si
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Equation (6.24) is the coupled integral equations determining fi. In order to make
its solution accessible, we expand the tensor T.Rij� OriCOrj/ in Eq. (6.24) in a Taylor
series around Orj � Ori D 0 and neglect terms of O.R �n

ij / (n 	 2). This is equivalent
to replacing this tensor by T.Rij/. Then, if the Oseen tensor T.Rij/ is preaveraged,
Eq. (6.24) reduces to

Ui.Ori/� v0.Ori/ D
Z

Si

T.Or0
i � Ori/ � fi.Or0

i/dOr0
i

C 1

6��0

NX

jD1
¤i

hR �1
ij iFj (6.25)

with

hR �1
ij i D

˝
R�1.ji � jjdb/

˛
; (6.26)

Fi D
Z

Si

fi.Ori/dOri ; (6.27)

where Fi is the total frictional force exerted by the ith bead on the fluid.
We can construct an interpolation formula for the kernel

˝
R�1.L/

˛ D K.LI 0/ in a
manner similar to that in the case of K.LI d/ with finite d but as a function of L, �0,
and �0 covering almost all important ranges of �0 and �0. If all lengths are measured
in units of ��1, the result may be written in the form [29]

˝
R�1.L/

˛ D
� ˝

R2.L/
˛
KP˝

R2.L/
˛
�1=2

KKP.LI 0/
�
1C � 2

0 � .L/
�
; (6.28)

where
˝
R2.L/

˛
is the mean-square end-to-end distance given by Eq. (4.83),

˝
R2.L/

˛
KP

is its KP value, and KKP.LI 0/ is the KP kernel given by Eq. (6.21) with c1 D
1 and d D 0 and with Eqs. (6.22) and (6.23). In Eq. (6.28), � .L/ may be well
approximated by

� .L/ D exp

�
�2

L

� 2X

kD1

Ak

Lk
C exp

�
�
�
2C 3

4
	

�
L

� 7X

kD3
AkLk (6.29)

with

A1 D 3

r2.4C � 20 /
� 3

10.9C 	2/.36C 	2/

�
�
1C 101C � 2

0

4C � 20
C 3.160C 7� 2

0 /

.4C � 20 /2
�
; (6.30)
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Ak D
�
1C ık2

�
1

r2
� 1

�� 7X

iD0

6X

jD0
ak

ij 	
i

�
�0

	

�2j

.k D 2 � 7/ ; (6.31)

where 	 and r are given by Eqs. (4.76) and (4.77), respectively; and ak
ij are numerical

constants independent of L, �0, and �0 and their values are given in Appendix D. The
application of Eq. (6.28) is limited to the following ranges of �0 and �0 W 	 . 6 for
0 � �0=	 � 0:2 and 	 � 8 for 0:2 � �0=	 � 1. We note that Eq. (6.28) gives the
exact linear term in Eq. (4.232) for L � 1 and the first Daniels approximation for
L� 1.

6.3 Translational Friction Coefficient

6.3.1 Cylinder Model

Suppose that the center of mass of the HW cylinder possesses the translational
velocity U in the vanishing unperturbed flow field,

v0 D 0 : (6.32)

In what follows, all lengths are measured in units of ��1. If we take the configura-
tional average of both sides of Eq. (6.15) and note that

˝
U.s1/

˛ D U for all values of
s1, then we have

Z L

0

K.s1; s2/
˝
f.s2/

˛
ds2 D 6��0U : (6.33)

The mean total frictional force hFi is given by

hFi D
Z L

0

˝
f.s/

˛
ds D „U ; (6.34)

where„ is the translational friction coefficient of the cylinder.
Now, if we use the Kirkwood–Riseman (KR) approximation [1, 3],

˝
f.s/

˛ D
L�1hFi, in the integral equation (6.33) to solve it analytically, we obtain [19, 22]

L�2„
Z L

0

Z L

0

K.s1; s2/ds1ds2 D 6��0 ; (6.35)

and therefore

3��0L

„
� fD.LI �0; �0; d/

D L�1
Z L

0

.L � s/K.sI d/ds : (6.36)
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Then, if we assume the Einstein relation D D kBT=„, the translational diffusion
coefficient D (in the long-time limit) and sedimentation coefficient s may be
expressed in terms of the function fD defined by the first line of Eqs. (6.36) as

D D
�

kBT

3��0L

�
fD ; (6.37)

s D M.1 � Nv�0/D
NAkBT

D
�

M.1 � Nv�0/
3��0NAL

�
fD ; (6.38)

where NA is the Avogadro constant, M is the polymer molecular weight, Nv is
its partial specific volume, and �0 is the mass density of the solvent. Note that
the Einstein relation does not hold for the exact D and „ for rigid, nonspherical
molecules [11, 30] (see also Appendix 1), and therefore that Eq. (6.37) and the
second of Eqs. (6.38) in general are not exactly valid, although the first of Eqs. (6.38)
is correct.

The function fD may be evaluated straightforwardly by substitution of Eqs. (6.21)
with L D s into the second line of Eqs. (6.36) and integration. However, the result
is semianalytical, and moreover, not convenient for practical use because of its
complexity. We therefore reconstruct an approximate but simpler and completely
analytical interpolation formula for fD on the basis of its values calculated. The
result may be written in the form [22]

fD D fD;a-KP�D.LI �0; �0; d/ ; (6.39)

where fD;a-KP is the function fD for the associated KP chain that is the KP chain
whose Kuhn segment length is equal to c1, and is given by

fD;a-KP D fD;KP.c
�11 LI c �11 d/ (6.40)

with fD;KP.LI d/ the function fD for the KP chain.
The function fD;KP evaluated directly by the use of the KP kernel K.sI d/ given by

Eqs. (6.21) with Eqs. (6.22) and (6.23) in the second line of Eqs. (6.36) is not very
complicated and is given by

fD;KP.LI d/ D F1.LI OL; d/C h.L� �1/F2.LI d/ (6.41)

with

F1 D
3X

iD0
fi0 OLi

�
Ii

�
d
OL
�
�
OL
L

IiC1
�

d
OL
��

C
3X

iD1

2X

jD1
fij OLid2j

�
Ii

�
d
OL
�
�
OL
L

IiC1
�

d
OL
��
; (6.42)
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F2 D
�
6

�

�1=2 2X

iD0

iX

jD0
Bijd

2j

	
L1=2�i

�
i� 1

2


 �
i� 3

2




C
�

1

i� 1
2

� �1�
i � 3

2



L

�
�
1=2�i
1



; (6.43)

where f00 D 1; �1 D 2:278, and

OL D L for L � �1
D �1 for L > �1 ; (6.44)

I0.x/ D � ln xC ln 2C ln
�
1C �1C 1

4
x2

1=2�

;

I1.x/ D
�
1C 1

4
x2

1=2 � 1

2
x ;

I2.x/ D 1
2

�
1C 1

4
x2

1=2 � 1

8
x2I0.x/ ; (6.45)

I3.x/ D 1
3

�
1C 1

4
x2

1=2 � 1

6
x2I1.x/ ;

I4.x/ D 1
4

�
1 � 3

8
x2

�
1C 1

4
x2

1=2 C 3

128
x4I0.x/ :

A good approximation to the function�D in Eq. (6.39), which must become unity
in the limits of L D 0 and1, is of the form

�D D 1C
�

A1
L1=2
C A2

L

��
1 � .1C �L/e��L

�C A3Le��L (6.46)

with

� D 0:3C 0:4	 ; (6.47)

Ai D
3X

k;lD0

� 2X

jD0
akl

ij dj C akl
i3 ln d

�
	 l cos.k��0=	/ ; (6.48)

where 	 is given by Eq. (4.76) and akl
ij are numerical constants independent of L, �0,

�0, and d with akl
12 � 0. As already noted, the cylinder model is mainly used for the

KP chain, and we do not give the numerical results for akl
ij .

As shown in Appendix 1, the end effects on fD are rather small; the fD;KP given
by Eq. (6.41) may be smoothly joined to that for the spheroid-cylinder in the range
of small L (L=d < 5).

Now we consider two extreme cases: long rigid rods and Gaussian cylinders. The
rod limit, which we indicate by the subscript (R), may be obtained by letting L! 0

and d! 0 at constant L=d � p. Thus we have, from Eq. (6.39),
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lim
p!1 lim

L;d!0
.const:p/

fD D lim
p!1 fD;.R/ � fD;.R�/

D ln pC 2 ln 2� 1CO.p�1/ : (6.49)

It is important to note that this asymptotic form is exactly correct; it happens to
agree with the result derived by the OB procedure with the non-preaveraged Oseen
tensor [24] (see Appendix 1).

The Gaussian cylinder with hR2i D c1L, which we indicate by the subscript (G),
may be obtained by letting L!1 in the kernel given by Eq. (6.19). Then we have

I.G/.k j u0 D ezIL/ D exp

�
�1
6

c1Lk2
�
; (6.50)

K.G/.LI d/ D 2

d
erf

��
3d2

8c1L

�1=2�
; (6.51)

where erf.x/ is the error function defined by

erf.x/ D 2��1=2
Z x

0

exp.�t2/dt : (6.52)

Substitution of Eq. (6.51) with L D s into the second line of Eqs. (6.36) and
integration leads to

fD;.G/ D
�
6L

c1

�1=2��
1

4x
C xC 1

3
x3
�

erf.x/

C 1

6�1=2
.5C 2x2/ exp.�x2/� x � 1

3
x3
�

D 4

3

�
6

�c1

�1=2
L1=2

�
1 � 3�

1=2

4
xC x2 � �

1=2

4
x3 C � � �

�
(6.53)

with

x2 D 3d2

8c1L
: (6.54)

We note that although Edwards and Oliver [15] derived an expansion similar to
the second of Eqs. (6.53), their numerical coefficients involve several mathematical
errors.

The random-coil limit, which we indicate by the subscript (C), is obtained by
letting further L!1,

lim
L!1 fD;.G/ � fD;.C/ D 4

3

�
6

�c1

�1=2
L1=2 ; (6.55)
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Fig. 6.4 Semi-logarithmic
plots of fD against p for the
KP cylinder model for the
indicated values of d. The
dotted line R represents the
values for the
spheroid-cylinder with 
 D 1

(prolate spherocylinder)
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Fig. 6.5 Double-logarithmic
plots of fD against L for the
KP cylinder model for the
indicated values of d. The
dashed curves represent the
values for the Gaussian
cylinder for d D 0:01 and 1.0
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so that we have

„.C/ D 9

4

��
6

�1=2
��0.c1L/1=2 : (6.56)

Equation (6.56) is equivalent to the KR equation in the nondraining limit [1, 3]. Note
that it may be directly obtained from the second line of Eqs. (6.36) with K.sI d/ D
.6=�c1s/1=2.

Finally, we examine numerically the behavior of fD. Values of fD calculated from
Eq. (6.41) for the KP chain are plotted against log p in Fig. 6.4 for the indicated
values of d. The dotted line R represents the values calculated from Eq. (6.192) for
the spheroid-cylinder with 
 D 1 (prolate spherocylinder). It is seen that all the
solid curves come in smooth contact with the dotted line at small p, as noted above.
Figure 6.5 shows double-logarithmic plots of fD against L. The solid curves represent
the values for the KP chain for the indicated values of d, and the dashed curves
represent the values calculated from the first of Eqs. (6.53) for the Gaussian cylinder.
The KP chain is seen to be almost identical to the Gaussian chain at d ' 1:0. For
the HW chain, we give numerical results on the basis of the touched-bead model in
the next subsection.



6.3 Translational Friction Coefficient 207

6.3.2 Touched-Bead Model

If we take the configurational average of both sides of Eq. (6.25), we have

8��0U D
Z

Si

Ki.Ori; Or0
i/ �
˝
fi.Or0

i/
˛
dOr0

i C
4

3

NX

jD1
¤i

hR �1
ij ihFji ; (6.57)

where we have put v0 D 0 and hUii D U as before, and the tensor Ki is defined by

Ki.Ori; Or0
i/ D 8��0T.Or0

i � Ori/ : (6.58)

Now we define the inverse K�1
i by

ı.2/.Ori � Or0
i/ D

Z

Si

K �1
i .Ori; Or00

i / �Ki.Or00
i ; Or0

i/dOr00
i

D
Z

Si

Ki.Ori; Or00
i / �K �1

i .Or00
i ; Or0

i/dOr00
i (6.59)

with ı.2/.r/ being a two-dimensional Dirac delta function. As in the first of
Eqs. (6.161), the translational friction constant � (D 3��0db) [1] of the bead may
then be expressed as

�I D 8��0
Z

Si

dOri

Z

Si

dOr0
i K �1

i .Ori; Or0
i/ : (6.60)

Thus, multiplying both sides of Eq. (6.57) by K �1
i .Or00

i ; Ori/ from the left and
integrating over Or00

i and Ori, we obtain

hFii C �

6��0

NX

jD1
¤i

hR �1
ij ihFji D �U : (6.61)

This is just the KR equation determining the frictional forces hFii in the case of
translational friction [1, 3]. The mean total frictional force hFi is given by

hFi D
NX

iD1
hFii D „U : (6.62)

If we use the KR approximation [1, 3], hFii D N�1hFi, in Eq. (6.61), we readily
have for the translational diffusion coefficient D (D kBT=„)

D D kBT

N�

�
1C �

6��0N

NX

iD1

NX

jD1
i¤j

hR �1
ij i

�
; (6.63)
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Fig. 6.6 Double-logarithmic
plots of fD against L for the
HW touched-bead model for
the indicated values of �0 and
for �0 D 0 and db D 0:15.
The dashed curve represents
the values for the KP cylinder
with d D 0:891db
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so that [31]

fD.LI �0; �0; db/ D 1C db

L

N�1X

kD1
.L � kdb/

˝
R�1.kdb/

˛
; (6.64)

where N D L=db and
˝
R�1.L/

˛
is given by Eq. (6.28), all lengths being measured in

units of ��1. Equation (6.63) is the well-known Kirkwood formula [1, 4, 32].
Figure 6.6 shows double-logarithmic plots of fD against L for the indicated values

of �0 and for �0 D 0 and db D 0:15 as typical cases corresponding to flexible
polymers. The solid curves represent the values calculated from Eq. (6.64) for the
touched-bead model. For comparison, in the case of �0 D 0 the values calculated
from Eq. (6.41) with the relation d D 0:891db (db D 0:15) for the corresponding
KP cylinder model are represented by the dashed curve. This relation between d
and db has been obtained from a comparison between theoretical values of fD for
the touched-bead rod and the straight cylinder with hemisphere caps at the ends
[24]. Even with this relation, the values of fD for the two models are seen to differ
appreciably from each other for small L for such flexible chains. For these, the
touched-bead model is recommended. It is interesting to see that as �0 (helical
nature) is increased, the plot changes from inverse S-shaped to S-shaped curves
apart from the range of small L, all the slopes being, of course, equal to 1=2 in the
limit of L!1.

6.4 Intrinsic Viscosity

6.4.1 Cylinder Model

Suppose that the HW cylinder is immersed in the solvent having the unperturbed
flow field,

v0.r/ D 
0exey � r ; (6.65)
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where 
0 is the velocity gradient and the molecular center of mass is fixed at the
origin of the Cartesian coordinate system (ex, ey, ez), so that the radius vector r.s/
of the contour point s is identical to its vector distance S.s/ from the center of mass,
as depicted in Fig. 6.1. Then the cylinder rotates around the z axis with the angular
velocity ! D �.
0=2/ez, and the velocity U.s1/ of the contour point s1 is given by

U.s1/� v0.s1/ D �
0m � S.s1/ (6.66)

with

m D 1

2
.exey C eyex/ ; (6.67)

so that Eq. (6.15) becomes

6��0
0m � S.s1/ D �
Z L

0

K.s1; s2/f.s2/ds2 : (6.68)

The intrinsic viscosity Œ�� may then be expressed in the form

Œ�� D � NA

M�0
0
m W

Z L

0

˝
f.s/S.s/

˛
ds : (6.69)

In what follows, all lengths are measured in units of ��1. If we define a function
'.s1; s2/ by

'.s1; s2/ D � 1

�0
0
m W ˝f.s1/S.s2/

˛
; (6.70)

Eq. (6.69) may be rewritten as

Œ�� D NA

M

Z L

0

'.s; s/ds : (6.71)

If we multiply both sides of Eq. (6.68) by S.s3/ and take the configurational average,
we obtain the integral equation for ',

Z L

0

K.s1; s3/ '.s3; s2/ds3 D �
˝
S.s1/ � S.s2/

˛
; (6.72)

where we have exchanged s2 for s3.
Now it is convenient to change variables from s1, s2, and s3 to x, y, and �,

respectively, as follows,

x D 2s1
L
� 1 ; (6.73)
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and so on, and put

 .x; y/ D 1

2
'.s1; s2/ ; (6.74)

g.x; y/ D �

L

˝
S.s1/ � S.s2/

˛
: (6.75)

Then Eqs. (6.71) and (6.72) reduce to

Œ�� D NAL

M

Z 1

�1
 .x; x/dx ; (6.76)

Z 1

�1
K.x; �/ .�; y/d� D g.x; y/ ; (6.77)

where K.x; y/ D K.sI d/ with s D js1 � s2j D .L=2/jx� yj.
The average in Eq. (6.75) may be evaluated from

˝
S.s1/ � S.s2/

˛ D 1

2L

�Z L

0

˝
R2.s1; s2/

˛
ds1 C

Z L

0

˝
R2.s1; s2/

˛
ds2

�

�1
2

˝
R2.s1; s2/

˛ � hS2i ; (6.78)

where
˝
R2.s1; s2/

˛
is given by Eq. (4.82) with L D s, and hS2i is the mean-square

radius of gyration of the chain of contour length L and is given by Eq. (4.83). Thus
we obtain, from Eqs. (6.75) and (6.78),

g.x; y/ D � 20
	2

gKP.x; y/C �� 2
0

2	2r2

�
x2 C y2 � 2jx � yj C 2

3

�

� �
L2

Re

	
2c

z
e�zL=2

�
cosh.zLx=2/C cosh.zLy=2/

�

CcLe�zLjx�yj=2 � 2c

z

�
1C 1

zL
.1 � e�zL/

�

(6.79)

with

c D � 2
0

	2r4
.4 � 	2 � 4i	/ ; (6.80)

z D 2C i	 ; (6.81)

where 	 and r are given by Eqs. (4.76) and (4.77), respectively, z is the z1;1 given by
Eq. (4.45), Re indicates the real part, and gKP is the g function for the KP chain and
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is given by

gKP.x; y/ D �

8L2

	
L2
�

x2 C y2 � 2jx � yj C 2

3

�
� 2Le�Ljx�yj

�2e�L
�
cosh.Lx/C cosh.Ly/

�C 2C 1

L
.1 � e�2L/



: (6.82)

Now we consider the rod limit as in Eqs. (6.49) for fD. We then have

K.R/.LI d/ D
�

L2 C 1

4
d2
��1=2

; (6.83)

g.R/.x; y/ D �L

4
xy : (6.84)

If we expand the solution  .x; y/ of the integral equation (6.77) with Eqs. (6.83)
and (6.84) in terms of the Legendre polynomials Pl.x/, we can obtain its asymptotic
solution in the limit of p!1 [20]. Thus we have

Œ��.R�/ D �NAL3

24M

�
ln pC 2 ln 2 � 7

3
CO.p�1/

��1
: (6.85)

If we use the nonpreaveraged Oseen tensor, Eq. (6.85) is replaced by [33]

Œ��.R�/ D 2�NAL3

45M

�
ln pC 2 ln 2 � 25

12
CO.p�1/

��1
; (6.86)

where the numerical prefactor 2/45 is originally due to Kirkwood and Auer [34] and
Ullman [35] (see also Appendix 1).

For the Gaussian cylinder, on the other hand, the kernel K.G/ is given by
Eq. (6.51) and the corresponding g.G/ is given by

g.G/.x; y/ D �c1
8

�
x2 C y2 � 2jx� yj C 2

3

�
: (6.87)

Then we obtain, from Eqs. (6.76) and (6.77) with Eqs. (6.51) and (6.87), for the coil
limit Œ��.C/

lim
L!1Œ��.G/ � Œ��.C/ D ˚1

.c1L/3=2

M
(6.88)

with ˚1 D 2:862 � 1023 (mol�1). The second of Eqs. (6.88) is equivalent to the
KR equation in the nondraining limit [1, 3]. This value of ˚1 is originally due to
Auer and Gardner [36], who used a Gegenbauer polynomial expansion method to
find the asymptotic solution, the value of their TA being incorrect. Note that the
second of Eqs. (6.88) may be directly obtained by the use of the kernel K.LI d/ D
.6=�c1L/1=2 instead of Eq. (6.51).
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Table 6.1 Values of ˛ij and ˇij in Eq. (6.90)

d i ˛i0 ˛i1 ˛i2 ˇi0 ˇi1

Œ0; 0:1�a 1 3:230981 �143:7458 �1906:263 2:463404 �1422:067
2 �22:46149 1347:079 19387:400 �5:318869 13868:57

3 54:81690 �3235:401 �49357:06 15:41744 �34447:63
4 �32:91952 2306:793 36732:64 �8:516339 25198:11

Œ0:1; 1:0� 1 6:407860 �25:43785 23:33518 3:651970 �25:73698
2 �115:0086 561:0286 �462:8501 �33:69143 523:6108

3 318:0792 �1625:451 1451:374 92:13427 �1508:112
4 �144:5268 661:6760 �1057:731 �42:41552 211:6622

a [a, b] means that a � d � b

For intermediate values of L, values of Œ�� must be found by solving numerically
the integral equation (6.77). On the basis of the numerical results, we may then
construct approximate interpolation formulas. However, it must be noted that for
rather large d (
 1) corresponding to flexible polymers, the solution cannot be
obtained for small L but is limited to the range of large L because of the nature
of the kernel [20, 23].

We first consider the KP chain, for convenience. For L 	 � D 2:278, the
numerical results for Œ��KP may be represented by [20, 23]

Œ��KP D ˚1
L3=2

M

�
1 �

4X

iD1
CiL

�i=2

��1
for L 	 � (6.89)

with

Ci D
2X

jD0
˛ijd

j C
1X

jD0
ˇijd

2j ln d ; (6.90)

where˚1 D 2:870�1023 (slightly different from the Auer–Gardner value); and ˛ij

and ˇij are numerical constants independent of L and d and their values are given in
Table 6.1. We note that Eq. (6.89) with Eq. (6.90) is applicable for L 	 2:278 when
d � 0:2 and for L1=2=d & 30 when 0:2 < d < 1:0.

For L < � , we write Œ��KP in the form

Œ��KP D Œ��Rf .L/ for L < � ; (6.91)

where Œ��R is the intrinsic viscosity of the spheroid-cylinder such that its asymptotic
form is given by Eq. (6.85) instead of by Eq. (6.86). Thus an interpolation formula
for Œ��R is constructed to give the OB solution Œ��.R/ from Eq. (6.76) for p 	 100 and
to become Eq. (6.202) for the spheroid-cylinder for p < 100. The result reads [23]

Œ��R D �NAL3

24M
F.pI 
/ (6.92)
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with

F.pI 
/�1 D ln pC 2 ln 2 � 7
3
C 0:548250.ln p/�1

�11:1231p�1 for p 	 100

D 15

16
F�.pI 
/�1 for 
 � p < 100 ; (6.93)

where F� is given by Eq. (6.203) for 0:6 � 
 � 1:3. From the numerical solutions
for Œ��KP for L < � and d � 0:1 [20], the function f in Eq. (6.91) has been found to
be almost independent of d and 
 and may be approximated by

f .L/ D 1 �
5X

jD1
CjL

j (6.94)

with

C1 D 0:321593 ; C2 D 0:0466384 ; C3 D �0:106466 ;
(6.95)

C4 D 0:0379317 ; C5 D �0:00399576 :
We note that Eqs. (6.89) and (6.91) are joined smoothly at L D � for d � 0:2,
although the latter has been constructed for d � 0:1.

Thus, as in the case of fD, an interpolation formula for Œ�� for the HW cylinder
may be written in the form [23]

Œ�� D Œ��a-KP��.LI �0; �0; d/ ; (6.96)

where Œ��a-KP is the intrinsic viscosity of the associated KP chain and is given by

Œ��a-KP D c 31 Œ��KP.c
�11 LI c �11 d/ : (6.97)

Note that for Œ��a-KP the ranges of L R � for Œ��KP must be replaced by those of
L R �c1. A good approximation to the function ��, which must become unity in
the limits of L D 0 and1, is of the form

�� D 1 C
�

A1
L1=2
C A2

L

��
1 � .1C �L/e��L

�

C A3L
�3=2

�
1 �

�
1C �LC 1

2
�2L2

�
e��L

�
C A4Le��L ; (6.98)

where � is given by Eq. (6.47), and Ai is of the same form as the Ai given by
Eq. (6.48), the results for the numerical constants akl

ij involved not being given. We
note that the range of application of Eq. (6.96) is limited to d . 0:08, although for
larger d there are numerical solutions for large L.

Finally, we examine numerically the behavior of Œ��. Figure 6.7 shows double-
logarithmic plots of MŒ��=M0Œ��Ep against p, where Œ��E is the Einstein intrinsic
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Fig. 6.7 Double-logarithmic
plots of MŒ��=M0Œ��Ep
against p for the KP cylinder
model for the indicated values
of d (see the text). The dotted
curves R represent the values
for the spheroid-cylinders
with the indicated values of 
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viscosity [1] of a rigid sphere of diameter d and is given by

Œ��E D 5

12
�NA

�
d3

M0

�
(6.99)

with M0 its molecular weight. The solid curves represent the values calculated from
Eqs. (6.89) and (6.91) for the KP chain with 
 D 1 for the indicated values of d. The
dotted curves R represent the values calculated from Eq. (6.92) for the spheroid-
cylinder with 
 D 0:6; 1:0, and 1.3, which differ appreciably from each other only
for p . 5. Figure 6.8 shows double-logarithmic plots of MŒ��=˚1L against L. The
solid curves represent the values for the KP chain for the indicated values of d,
and the dashed curves represent the values numerically obtained for the Gaussian
cylinder. The KP chain is seen to be almost identical to the Gaussian chain at d '
1:0 as in the case of fD plotted in Fig. 6.5.
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6.4.2 Touched-Bead Model

In the unperturbed flow field v0 given by Eq. (6.65), the velocity Ui.Ori/ of the point
Ori of the ith bead is given by

Ui.Ori/ � v0.Ori/ D �
0m � .Si C Ori/ ; (6.100)

where the vector position ri of the center of the ith bead is identical to its vector
distance Si from the center of mass, as depicted in Fig. 6.3. Thus Eq. (6.25) becomes

�8��0
0m � .Si C Ori/ D
Z

Si

Ki.Ori; Or0
i/ � fi.Or0

i/dOr0
i C

4

3

NX

jD1
¤i

hR �1
ij iFj :

(6.101)

As shown in Appendix 2, Œ�� may then be expressed in the form

Œ�� D � NA

M�0
0

NX

iD1

�
m W hFiSii Cm W

�Z

Si

fi.Ori/OridOri

��
: (6.102)

Now, multiplying both sides of Eq. (6.101) by K �1
i .Or00

i ; Ori/ from the left and
integrating over Ori, we find [28]

fi.Ori/ D �8��0
Z

Si

K �1
i .Ori; Or0

i/Or0
idOr0

i W 
0m

�8��0
Z

Si

K �1
i .Ori; Or0

i/dOr0
i

�
�

0m � Si C 1

6��0

NX

jD1
¤i

hR �1
ij iFj

�
: (6.103)

Integration of both sides of Eq. (6.103) over Ori leads to

Fi C �

6��0

NX

jD1
¤i

hR �1
ij iFj D ��0�i W 
0m � �
0m � Si ; (6.104)

where we have used Eq. (6.60) and �i is the shear force triadic [37], which is given
in the present notation by

�i D 8�
Z

Si

dOri

Z

Si

dOr0
iK

�1
i .Ori; Or0

i/Or0
i : (6.105)
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According to Brenner [37], �i vanishes for spherically isotropic bodies. Then, if we
multiply both sides of Eq. (6.104) by Sj from the right and average them over chain
configurations, we obtain

hFiSji C �

6��0

NX

kD1¤i

hR �1
ik ihFkSji D ��
0m � hSiSji : (6.106)

Thus the first term in the square brackets of Eq. (6.102) gives the KR intrinsic
viscosity [1, 3].

Next we evaluate the second term in the square brackets of Eq. (6.102). Multi-
plying both sides of Eq. (6.103) by Ori from the left, integrating over Ori, and making
a double-dot product of the result and the symmetric tensor m, we obtain

�m W
Z

Si

fi.Ori/OridOri D 8��0m W
Z

Si

dOri

Z

Si

dOr0
i OriK �1

i .Ori; Or0
i/Or0

i W 
0m ; (6.107)

where we have put fi Ori D Orifi since fi Ori is a symmetric tensor, and used again the
relation �i D 0. The right-hand side of Eq. (6.107), which we denote by � , is given
by

� D �m W
Z

Si

f0i .Ori/OridOri ; (6.108)

where f0i is the solution of the integral equation [38],

Z

Si

Ki.Ori; Or0
i/ � f0i .Or0

i/dOr0
i D �8��0
0m � Ori : (6.109)

Therefore, f0i is given by the first term on the right-hand side of Eq. (6.103) and
represents the frictional force distribution on the surface of the single isolated bead
under the nonslip boundary condition when it rotates around its center with the
angular velocity�.
0=2/ez in the flow field given by Eq. (6.65), so that � represents
the increment of the xy component of the stress tensor due to the single Einstein
sphere,

� D 5

12
�d 3

b �0
0 : (6.110)

Thus Œ�� may be expressed in the form [28]

Œ�� D Œ��.KR/ C Œ��E ; (6.111)
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where Œ��.KR/ and Œ��E are the KR and Einstein intrinsic viscosities [1] given by

Œ��.KR/ D NA

M

NX

iD1
'ii ; (6.112)

Œ��E D 5

12
�NA

�
d 3

b

M0

�
; (6.113)

respectively [compare Eq. (6.113) with Eq. (6.99)]. In Eq. (6.112), 'ij is defined by

'ij D � 1

�0
0
m W hFiSji ; (6.114)

and is the solution of the linear coupled equations obtained from Eq. (6.106); that
is,

'ij C 1

2
db

NX

kD1¤i

hR �1
ik i'kj D 1

2
�dbhSi � Sji : (6.115)

In what follows, all lengths are measured in units of ��1. Then hR �1
ij i is given by

Eq. (6.26) and hSi � Sji is given by

hSi � Sji D Ndb

�
g

�
2i� 1

N
� 1; 2j� 1

N
� 1

�
; (6.116)

where g.x; y/ is given by Eq. (6.79).
Now we construct interpolation formulas for the KR intrinsic viscosities Œ��.KR/

of the KP and HW chains. The former may be written in the form

Œ��
.KR/
KP D 63=2˚1

hS2i 3=2KP

M
�KP.LI db/ ; (6.117)

where ˚1 D 2:870 � 1023, and hS2iKP is the mean-square radius of gyration of the
KP chain of total contour length L D Ndb and is given by Eq. (4.85). We evaluate
the function �KP by the use of values of Œ��.KR/ calculated from Eq. (6.112) with the
numerical solutions of Eq. (6.115) for various values of db ranging from 0.01 to 0.8,
where the number of beads N is limited to 2–1000, so that the contour length L is
limited to small values for small db. For larger L, therefore, we adopt the values of
Œ��KP of the KP cylinder model having the cylinder diameter d properly chosen as
those of Œ��.KR/

KP of the KP touched-bead model. (Recall that for large L the solutions

for the cylinder model can be obtained.) It has been found that the values of Œ��.KR/
KP

obtained numerically from Eq. (6.112) are joined smoothly to those of Œ��KP of the
KP cylinder model calculated from Eqs. (6.89) and (6.91) at N.D L=db/ ' 1000 for
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Table 6.2 Values of ˛ij and ˇij in Eq. (6.119)

i ˛i0 ˛i1 ˛i2 ˇi0 ˇi1

0 �9:6291 1:6198 .2/ 1:1316 .2/ �1:5358 9:4913 .2/

1 �2:3491 �1:4420 .2/ �2:0502 .3/ �2:3605 �3:4732 .3/
2 5:4811 .1/a �4:8402 .2/ 4:1942 .3/ 1:0550 .1/ 4:0771 .3/

3 �6:2255 .1/ 7:8877 .2/ �2:6846 .3/ �1:1528 .1/ �1:1290 .3/
4 3:0814 .�1/ �4:5617 1:5182 �1:9421 �3:1301
5 �5:1619 1:6758 .1/ �4:0308 5:1951 .�1/ 1:2811 .1/

6 2:9298 �1:3380 .1/ �2:6757 1:1938 .�1/ �9:9978
7 �6:2856 .�1/ 1:6070 7:4332 �8:2021 .�2/ �2:8832

a a(n) means a � 10n

0:01 � db � 0:8 if we choose d D 0:74db [28]. A good approximation to � �1
KP so

obtained is of the form

� �1
KP D 1C e�5L

3X

iD0
CiL

i=2 C e�1=4L
7X

iD4
CiL

�.i�3/=2 (6.118)

with

Ci D
2X

jD0
˛ijd

j
b C

1X

jD0
ˇijd

2j
b ln db ; (6.119)

where ˛ij and ˇij are numerical constants independent of L and db and their values
are given in Table 6.2. We note that Eq. (6.117) with Eqs. (6.118) and (6.119) is
applicable for 0:01 � db � 0:8, and for the integral values of L=db when 2 �
L=db � 1000 and for all values of L=db when L=db 	 1000.

For the case of the HW touched-bead model, Œ��.KR/ may be written in the form

Œ��.KR/ D
� hS2i
hS2iKP

�3=2
Œ��

.KR/
KP � .KR/

� .LI �0; �0; db/ : (6.120)

A good approximation to the function � .KR/
� constructed similarly but by proper

extrapolations to L D1 in some cases is of the form

� .KR/
� D 1C � 2

0

�
e�	L=10

2X

iD1
AiL

i C e�12=	L
6X

iD3
AiL

�.i�2/=2
�

(6.121)

with

Ai D
3X

k;lD0

� 2X

jD0
akl

ij d j
b C

4X

jD3
akl

ij d 2.j�2/
b ln db

�
	 l cos.k��0=	/ ; (6.122)
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Fig. 6.9 Double-logarithmic
plots of MŒ��=˚

1

L against L
for the HW touched-bead
model for the indicated values
of �0 and for �0 D 0 and
db D 0:15. The solid and
dashed curves represent the
values with and without the
contribution of the Einstein
intrinsic viscosity Œ��E,
respectively
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where akl
ij are numerical constants independent of L, �0, �0, and db and their values

are given in Appendix E. The ranges of �0 and �0 in which Eq. (6.120) with
Eqs. (6.121) and (6.122) is applicable are such that �0 and �0 satisfy the conditions,
	 < 8; �0 � 7; �0 	 �0 � 5:5; �0 C �0 > 0:5; �0 D 0:5i, and �0 D j with i
the positive integer and j the nonnegative integer; and the range of db is limited to
0:01 � db � 0:8 for �0 > 2�0, to 0:01 � db � 0:6 for �0 < 2�0 and �0 � 4, to
0:01 � db � 0:4 for 4 < �0 � 5, and to 0:01 � db � 0:2 for �0 > 5.

Figure 6.9 shows double-logarithmic plots of MŒ��=˚1L against L for the indi-
cated values of �0 and for �0 D 0 and db D 0:15 as typical cases corresponding to
flexible polymers. The solid curves represent the values calculated from Eq. (6.111)
with Eqs. (6.113) and (6.120) for the touched-bead model. The dashed curves
represent the corresponding values of Œ��.KR/ (without Œ��E). It is seen that the
contribution of Œ��E is very important in the oligomer region and that as �0 (helical
nature) is increased, the plot changes from S-shaped to inverse S-shaped curves
apart from the range of small L in contrast to the case of fD plotted in Fig. 6.6, all
the slopes becoming equal to 1=2 in the limit of L!1.

6.5 Analysis of Experimental Data

6.5.1 Basic Equations and Model Parameters

We begin by making a comparison of theory with experiment for several flexible and
semiflexible polymers to determine their HW model parameters. For convenience,
we first analyze data for the intrinsic viscosity Œ��, using the molecular weight M
instead of the total contour length L as usual. As already noted, we then adopt the
HW (or KP) touched-bead model for flexible polymers and the KP cylinder model
for semiflexible polymers, and write Œ�� in the form

Œ�� D .�2ML/
�1f�.�LI��1�0; ��1�0; �db/ .HW/

D .�2ML/
�1f�.�LI�d/ .KP/ (6.123)
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with

log M D log.�L/C log.��1ML/ ; (6.124)

where L D Ndb for the touched-bead model. The function f� is defined by

f�.�L/ D ��1MLŒ N�� ; (6.125)

where Œ N�� is the intrinsic viscosity measured in units of .��1/3 and is given by
Eq. (6.111) for the HW model and by Eqs. (6.89) and (6.91) for the KP model. In
the limit of �L!1, we have

lim
�L!1

�
f�.�L/

.�L/1=2

�
D c 3=21 ˚1 ; (6.126)

where c1 D 1 for the KP chain and ˚1 D 2:870 � 1023 (mol�1).
Figure 6.10 shows double-logarithmic plots of Œ�� (in dL/g) against M for a-

PS ( fr D 0:59) in cyclohexane at 34.5 ıC (�) [39–42], a-P˛MS (fr D 0:72) in
cyclohexane at 30.5 ıC (�) [43], a-PMMA (fr D 0:79) in acetonitrile at 44.0 ıC
(�) [41, 44, 45], i-PMMA (fr D 0:01) in acetonitrile at 28.0 ıC (�) [46, 47],
polyisobutylene (PIB) in isoamyl isovalerate (IAIV) at 25.0 ıC (�) [41, 48], PDMS
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Fig. 6.10 Double-logarithmic plots of Œ�� (in dL/g) against M for a-PS in cyclohexane at 34.5 ıC
(�) [39–42], a-P˛MS in cyclohexane at 30.5 ıC (�) [43], a-PMMA in acetonitrile at 44.0 ıC
(�) [41, 44, 45], i-PMMA in acetonitrile at 28.0 ıC (�) [46, 47], PIB in IAIV at 25.0 ıC (	)
[41, 48], PDMS in MEK at 20.0 ıC (
) [49], PHIC in n-butyl chloride at 25 ıC (�) [50], PHIC
in n-hexane at 25 ıC (�)[51], DNA in 0.2 mol/l NaCl at 25 ıC (�) [52–54], and schizophyllan in
water at 25 ıC (�) [55]. The solid curves represent the best-fit HW or KP theoretical values, each
dashed line segment connecting the HW values for N D 1 and 2
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in methyl ethyl ketone (MEK) at 20.0 ıC (�) [49], PHIC in n-butyl chloride at 25 ıC
[50], PHIC in n-hexane at 25 ıC [51], DNA in 0.2 mol/l NaCl at 25 ıC [52–54], and
schizophyllan in water at 25 ıC [55]. In the figure the solid curves represent the
best-fit HW and KP theoretical values calculated from the first and second lines of
Eqs. (6.123) for the flexible and semiflexible polymers, respectively, with the values
of the model parameters listed in Table 6.3, where in the figure each dashed line
segment connects the HW values for N D 1 and 2, and we have assumed 
 D 1 for
the KP chain (cylinder). For the table we note that we have used the values of ��1�0
and ��1�0 determined from equilibrium properties for a-PS and PDMS since all the
parameters cannot be determined unambiguously, and that for the same reason, we
have assumed that the PIB chain takes the 83 helix in dilute solution as well as in the
crystalline state [56], so that it may be represented by the KP (touched-bead) chain
with ML D 24:1Å�1, taking the helix axis as its contour.

Table 6.3 Values of the HW model parameters for typical flexible and semiflexible polymers from
Œ�� and D

Polymer Temp. ��1 ML db (d)

(fr) Solvent (ıC) ��1�0 ��1�0 (Å) (Å�1) (Å) Obs. (Ref.)

a-PS
(0.59)

Cyclohexane 34.5 (3.0)a (6.0)a 23.5 42.6 10.1 Œ�� [39–42]

(3.0)a (6.0)a 27.0 35.0 9.5 D [31, 41]

a-P˛MS
(0.72)

Cyclohexane 30.5 3.0 1.2 43.0 42.3 10.3 Œ�� [43]

(3.0)b (1.2)b 56.2 38.0 10.7 D [43]

a-PMMA
(0.79)

Acetonitrile 44.0 4.5 2.0 45.0 38.6 7.2 Œ��

[41, 44, 45]

(4.5)b (2.0)b 65.0 35.0 9.0 D [41, 57, 58]

i-PMMA
(0.01)

Acetonitrile 28.0 2.5 2.0 32.6 38.6 8.2 Œ�� [46, 47]

(2.5)b (2.0)b 45.5 33.0 9.1 D [46, 58]

PIB IAIV, Benzene 25.0 0 � � � 12.7 24.1 6.4 Œ�� [41, 48]

IAIV 0 � � � 18.7 24.1 6.9 D [41, 60]

PDMS MEK 20.0 (2.6)c (0)c 28.0 20.6 2.0 Œ�� [49]

Bromo-
cyclohexane

29.5 (2.6)c (0)c 25.5 20.6 2.0 Œ�� [41, 49]
(2.6)c (0)c 31.0 18.0 1.6 D [41, 49]

PHIC n-Butyl
chloride

25 0 � � � 700 76.0 (15) Œ�� [50]

n-Hexane 25 0 � � � 840 71.5 (16) Œ�� [51]

0 � � � 840 71.5 (25) s [51]

DNA 0.2 mol/l NaCl 25 0 � � � 1200 195 (15) Œ�� [52–54]

0 � � � 1200 195 (25) s [52–54, 59]

Schizo-
phyllan

Water 25 0 � � � 4000 215 (26) Œ��; s [55]

a From h� 2i (Table 5.1)
b From Œ��
c From h�2i (see Sect. 5.4.1)
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Before discussing the results for Œ��, we analyze data for the translational
diffusion coefficient D (or the sedimentation coefficient s). Corresponding to
Eqs. (6.123), we write D in the form

�0MD

kBT
D
�

ML

3�

�
fD.�LI��1�0; ��1�0; �db/ .HW/

D
�

ML

3�

�
fD.�LI�d/ .KP/; (6.127)

where fD is given by Eq. (6.64) for the HW model and by Eq. (6.41) for the KP
model. In the limit of �L!1, we have

lim
�L!1

�
fD.�L/

.�L/1=2

�
D
p
6

2
c �1=21 �1 ; (6.128)

where �1 is equal to the Kirkwood value 1.505 [3, 4, 32] (see the next subsection).
Figure 6.11 shows double-logarithmic plots of �0MD=kBT (in cm�1) against M

for a-PS in cyclohexane at 34.5 ıC (�) [31, 41], a-P˛MS (fr D 0:72) in cyclohexane
at 30.5 ıC (�) [43], a-PMMA in acetonitrile at 44.0 ıC (�) [41, 57, 58], and
PDMS in bromocyclohexane at 29.5 ıC (�) [41, 49], and semi-logarithmic plots
of �0MD=kBT against M for PHIC in n-hexane at 25 ıC [51], DNA in 0.2 mol/l
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Fig. 6.11 Double-logarithmic plots of �0MD=kBT (in cm�1) against M for a-PS in cyclohexane
at 34.5 ıC (�) [31, 41], a-P˛MS in cyclohexane at 30.5 ıC (�) [43], a-PMMA in acetonitrile at
44.0 ıC (�) [41, 57, 58], and PDMS in bromocyclohexane at 29.5 ıC (
) [41, 49], and semi-
logarithmic plots of �0MD=kBT (in cm�1) against M for PHIC in n-hexane at 25 ıC (�) [51],
DNA in 0.2 mol/l NaCl at 25 ıC (�) [52–54, 59], and schizophyllan in water at 25 ıC (�) [55].
The solid curves represent the best-fit HW or KP theoretical values, each dashed line segment
connecting the HW values for N D 1 and 2
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NaCl at 25 ıC [52–54, 59], and schizophyllan in water at 25 ıC [55], where the
values of D for the semiflexible polymers have been calculated from s using the
first of Eqs. (6.38). In the figure the solid curves represent the best-fit HW and
KP theoretical values calculated from the first and second lines of Eqs. (6.127) for
the flexible and semiflexible polymers, respectively, with the values of the model
parameters listed in Table 6.3, where in the figure each dashed line segment connects
the HW values for N D 1 and 2. Note that we have used the values of ��1�0 and
��1�0 determined from the equilibrium properties for a-PS and PDMS and from Œ��

for a-P˛MS and a-PMMA. A similar analysis has also been made for i-PMMA in
acetonitrile at 28.0 ıC (�) [46, 58] and PIB in IAIV at 25.0 ıC (�) [41, 60], the
values of the model parameters determined being given in Table 6.3.

Now we are in a position to discuss the above results of analysis of Œ�� and D. In
general, there is seen to be rather good agreement between theory and experiment
over a wide range of M. The most important fact that is observed in Fig. 6.10 is that
for flexible polymers the exponent law for the relation between Œ�� and M, that is,
the Houwink–Mark–Sakurada relation holds only in a limited range of M, although
the exponent becomes asymptotically equal to 1/2 for large M. In particular, it is
interesting to see that for a-PMMA and also for a-P˛MS the double-logarithmic
plot of Œ�� against M follows an inverse S-shaped curve, exhibiting the asymptotic
behavior only for M & 105, as also predicted by the theory, that for PDMS the plot
does not exhibit the asymptotic behavior in the range of M examined, and that for
PIB and PDMS Œ�� decreases sharply with decreasing M for small M, especially for
the latter for M . 104. As seen from Fig. 6.11, on the other hand, the deviation
of the double-logarithmic plot of MD against M from the asymptotic relation (with
slope 1/2) for flexible polymers is rather small, but for a-PMMA the plot clearly
follows an S-shaped curve corresponding to the plot of Œ��. Such behavior of Œ��
and D of a-PMMA is characteristic of the chain of strong helical nature. It is seen
from Table 6.3 that for flexible polymers the values of ��1 determined from Œ�� are
somewhat smaller than those from D, while the values of ML determined from Œ��

are somewhat larger than those from D. This is due to the disagreement between
the theoretical and experimental values of ˚1 and �1, which may be regarded as
arising from the preaveraging of the Oseen tensor (see the next subsection). On
the other hand, the values of db obtained may be reasonable except for PDMS,
considering the chemical structures of the chains. For PIB and PDMS, a further
analysis of experimental data is made in later subsections.

For the semiflexible polymers, agreement between the values of both ��1 and
ML from Œ�� and s is not very bad. The reason for this is that the equations for the
KP cylinder model for small �L (or M) have been obtained so as to be completely
(for D) or almost (for Œ��) free from the preaveraging approximation (see also the
next subsection). It is interesting to note that the values of ML obtained for DNA
and schizophyllan are just those corresponding to their double and triple helices,
respectively. For PHIC and DNA, however, the values of d obtained from Œ�� are seen
to be appreciably smaller than those from s. This may probably be due to the fact that
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the rough surface of the real semiflexible polymer chain has been replaced by the
smooth cylinder surface [24]. For a similar analysis of Œ�� and s for a wider variety
of semiflexible polymers, the reader is referred to the review article by Norisuye
[61].

6.5.2 Reduced Hydrodynamic Volume and Radius

The reduced hydrodynamic volume ˚ and radius ��1 may be defined by

˚ D VH

hS2i3=2 ; (6.129)

��1 D RH

hS2i1=2 ; (6.130)

so that �˚ D VH=RHhS2i, where VH and RH are the hydrodynamic (molar) volume
and radius defined by

VH D 6�3=2MŒ�� ; (6.131)

RH D kBT

6��0D
: (6.132)

Note that ˚ is just the Flory–Fox factor [1] and that ˚ and � become ˚1 and �1,
respectively, in the limit of M ! 1. (It is unfortunate that the reduced radius is
usually defined by the reciprocal of � instead of by �.)

Figure 6.12 shows as examples double-logarithmic plots of ˚ and ��1 against
M for a-PS in cyclohexane at 34.5 ıC (�) [31, 39, 41], a-PMMA in acetonitrile at
44.0 ıC (�) [44, 57, 62], and PHIC in n-hexane at 25 ıC [51]. The solid curves
represent the HW or KP theoretical values calculated from Eqs. (6.129) and (6.130)
with Eqs. (6.131) and (6.132) with the values of the model parameters given in
Table 6.3, where the theoretical values have been multiplied by the constant ratios of
the experimental to theoretical ˚1 and � �11 , respectively, for the flexible polymers
because of the appreciable differences between their theoretical and experimental
values (see below). It is interesting to see that both experimentally and theoretically,
˚ and ��1 increase with decreasing M for small M, and in particular, they exhibit
a minimum for PHIC. More important is the fact that even in the limit of M !1,
the values of ˚1 and � �11 for a-PMMA are definitely different from those for a-PS,
indicating that ˚ and � are not necessarily universal constants in contradiction to
the Flory view [1].

The experimental values of ˚1 and �1 (with polydispersity corrections) for the
five flexible polymers in Fig 6.10 are summarized in Table 6.4 [41, 46]. It is seen
that the former can never be regarded as a universal constant, being also clearly
dependent on solvent for a-PMMA, and that they are appreciably smaller than the
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Fig. 6.12 Double-logarithmic plots of ˚ and ��1 against M for a-PS in cyclohexane at 34.5 ıC
(�) [31, 39, 41], a-PMMA in acetonitrile at 44.0 ıC (�) [44, 57, 62], and PHIC in n-hexane at
25 ıC (�) [51]. The solid curves represent the HW or KP theoretical values (see the text)

Table 6.4 Values of ˚
1

and �
1

for flexible polymers

Temp. 10�23˚
1

�
1

Polymer (fr) Solvent (ıC) (mol�1) �
1

(calc)

a-PS (0.59) Cyclohexane 34:5 2.79˙0.08 1.26˙0.01 1:35

trans-Decaline 21:0 2.75˙0.09 1.27˙0.01 1:35

a-P˛MS (0.72) Cyclohexane 30:5 2.79˙0.09 1.26˙0.02 1:34

a-PMMA (0.79) Acetonitrile 44:0 2.34˙0.06 1.29˙0.02 1:34

n-Butyl chloride 40:8 2.60˙0.06 1.24˙0.02 1:34

i-PMMA (0.01) Acetonitrile 28:0 2.58˙0.11 1.25˙0.02 1:34

PIB IAIV 25:0 2.71˙0.06 1.27˙0.01 1:36

PDMS Bromocyclohexane 29:5 2.79˙0.04 1.28˙0.02 1:37

Kirkwood values 2:87� 1023 (exactly 2:862� 1023) of ˚1 [3, 36] and 1.505 of �1
[3, 4, 32] (even the Zimm value 1.479 of �1 [63]), respectively, as has often been
pointed out for flexible polymers [61]. If ˚1 depends on solvent as in the case of a-
PMMA, some consideration is required in an analysis of experimental data since any
existent theory of Œ�� cannot explain this fact (see below). Thus we use a maneuver to
remove the difficulty (for flexible polymers). It consists of introducing empirically a
constant prefactor C� into the right-hand side of the first line of Eqs. (6.123) as [44]

Œ�� D C�.�
2ML/

�1f� (6.133)

in order to take into account the difference between observed values of ˚1 in two
or more � solvents. For a-PMMA, for example, C� is set equal to unity and 1.11
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(D 2:60=2:34, the ratio of ˚1) in acetonitrile and n-butyl chloride, respectively.
Then we obtain the value 7.9 Å (instead of 7.2 Å) for db for a-PMMA in n-butyl
chloride at 40.8 ıC (�), the values of the other model parameters being the same as
those in acetonitrile at 44.0 ıC (�) (in Table 6.3) [44].

Thus it is pertinent to give here a brief survey of theoretical investigations of ˚1
and �1 performed since the earlier theories. Fixman and Pyun [1, 64, 65] evaluated
long ago ˚1 for the Gaussian chain (spring-bead model) by perturbation theory
with the use of the nonpreaveraged Oseen tensor or with fluctuating hydrodynamic
interaction (HI) and showed its decrease below the Kirkwood value. In 1980, Zimm
[66] carried out Monte Carlo evaluation of Œ�� and D similarly for the Gaussian
chain with fluctuating HI in the rigid-body ensemble approximation and found that
the Kirkwood values of ˚1 and �1 are about 12 and 13 % too high, respectively.
Subsequently, Fixman [67, 68] derived the decrease in �1 below the Kirkwood
value, depending on the local structure and hence the stiffness of the chain, by
introducing constraints on bond lengths and bond angles, or equivalently internal
friction, in the chain with fluctuating HI. As shown in Appendix 1 in Chap. 10, a
similar result can be obtained on the basis of the HW chain with partially fluctuating
(orientation-dependent) HI [69]. The values of �1 so calculated are given in the last
column of Table 6.4. It is seen that they are smaller than the Kirkwood and Zimm
values [3, 63], being consistent with the experimental values. However, the non-
universality of �1 is rather small compared to that of ˚1 both experimentally and
theoretically. For stiff polymers (with very large ��1), the above HW theory gives
the Zimm value 1.479 of �1 and this is consistent with experimental results [69]. As
for ˚1, on the other hand, even the HW model fails to explain its non-universality
for flexible polymers and also its small values .
1:5 � 1023/ for semiflexible
polymers [61]. Although it requires further theoretical investigations, the observed
˚1 for a-PMMA and semiflexible polymers may not be considered to have reached
its true asymptotic limit [41].

Finally, it is interesting to examine the dependence of ˚1 and �1 on the global
chain conformation. Figure 6.13 illustrates the conformational change from a long
rigid rod to a rigid sphere through a random coil with the values of their ˚1,
�1, and N �1

A ˚1�1. For the rigid rod, these values have been calculated from
Eqs. (6.37), (6.49), and (6.86) with the relation hS2i D L2=12, and for the sphere,
they have been calculated from the Einstein and Stokes equations with the relation
hS2i D 3d 2

b =20. As for the intermediate values, the lower bound of ˚1 and the
upper bound of �1 correspond to semiflexible polymers, while the upper bound
of ˚1 and the lower bound of �1 correspond to flexible polymers. It is seen that
the changes in ˚1, �1, and ˚1�1 are consistent with the conformational change
above, the change in the product˚1�1 being rather insensitive.
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Fig. 6.13 Conformational change from a long rigid rod to a rigid sphere through a random coil
with the values of their ˚
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Fig. 6.14 Plots of Œ�� against x for PIB in IAIV at 25.0 ıC (�) and in benzene at 25.0 ıC (	) [48]
and for PDMS in MEK at 20.0 ıC (�) and in bromocyclohexane at 29.5 ıC (
) [49]. The solid
curves connect the data points smoothly

6.5.3 Negative Intrinsic Viscosity

The values of Œ�� of PIB and PDMS for very small M in the oligomer region have
not been plotted in Fig. 6.10. The reason for this is that they become negative in
that region. Figure 6.14 shows plots of Œ�� against the number of repeat units x for
PIB in IAIV at 25.0 ıC (�) and in benzene at 25.0 ıC (�) [48] and for PDMS in
MEK at 20.0 ıC (�) and in bromocyclohexane at 29.5 ıC (�) [49]. The solid curves
connect the data points smoothly. Such negative intrinsic viscosities have also been
observed for certain oligomers, for example, n-alkane in benzene [70] and butadiene
oligomers in Aroclor 1248 and/or 1254 [71]. In fact, the negative Œ�� was discovered
a long time ago for a variety of binary simple liquid mixtures, for example, for
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benzene in ethanol (at 25 ıC) [72] and CCl4 in tetrachloroethylene (at 25 ıC) [73].
It means a decrease in the solution viscosity below that of the solvent by an addition
of a solute, and this may be regarded as arising from specific interactions between
solute and solvent molecules such that a liquid structure of some kind existing in
the solvent is destroyed in the vicinity of a solute molecule.

Now all polymer transport theories have been developed so far within the
framework of classical hydrodynamics and none of them can treat such effects of
specific interactions on Œ��. Necessarily, they give the positive Œ��E of the polymer
bead in Eq. (6.111). Thus we must remove the contributions of specific interactions
from raw data for Œ�� so that the corrected Œ�� is at least positive for all possible
values of M to be fit for an analysis by the use of the present theory of Œ��. For this
purpose, we rewrite Eq. (6.111) empirically in the form [48]

Œ�� D Œ��.KR/ C Œ��E C �� ; (6.134)

where �� is an empirical additional nonpositive term. If we assume that this
modification applies only to the term Œ��E (not to Œ��.KR/), following Fixman [74],
then �� must be independent of M, so that

lim
M!1

�
��

Œ��

�
D 0 : (6.135)

As seen from Fig. 6.14, the difference between the values of Œ�� of each polymer
in the two� solvents is almost independent of x for x & 5. (For smaller x, effects of
chain ends are remarkable.) Let the subscripts (1) and (2) indicate the two solvents,
where we assume that Œ��.1/ > Œ��.2/ at a given M. In the present cases (PIB and
PDMS) [48, 49], the difference Œ��� �� may be regarded as independent of solvent,
and therefore the difference Œ��.1/� Œ��.2/, which is nearly independent of x for x & 5

and which we denote by ��, may be given by

�� � Œ��.1/ � Œ��.2/ D ��
.1/ � ��

.2/ : (6.136)

From the results in Fig. 6.14, we then have �� D 0:0078 and 0:0115dL/g for PIB
and PDMS, respectively. In the analysis displayed in Fig. 6.10, we have assumed
that ��

.1/ D 0. If this assumption is still adopted, we have �� D �0:0078 and
�0:0115 dL/g for PIB in benzene and PDMS in bromocyclohexane, respectively.
For these two systems, the data for Œ�� � �� may then be analyzed by the use of
Eq. (6.111) as before. Thus we obtain the results for them given in Table 6.3.

The negative intrinsic viscosity or the parameter �� is discussed in relation to
the high-frequency dynamic intrinsic viscosity in Chap. 11. However, a molecular-
theoretical interpretation of �� itself is one of the problems in the future.
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6.5.4 Draining Effect

Figure 6.15 shows plots of .Œ�� � ��/=M1=2 and �0M1=2D=kBT against M1=2 for a-
PS in cyclohexane at 34.5 ıC (�) [31, 39–42] and PDMS in bromocyclohexane at
29.5 ıC (�) [41, 49]. The solid curves connect the data points smoothly, and the
vertical line segments with shadows indicate the values of M above which the HW
theoretical values of hS2i=M become almost independent of M for the respective
polymers. It is seen that for PDMS, .Œ��� ��/=M1=2 decreases and M1=2D increases
with decreasing M even in the range of M where the static properties such as
hS2i exhibit the Gaussian chain behavior in the unperturbed state. This anomalous
behavior should be regarded as the so-called “draining effect” [1]. By the term
draining effect, we simply mean that for unperturbed flexible polymers the ratio
Œ��=M1=2 decreases from its constant limiting value (for large M) with decreasing
M.

The analysis of such data by the use of the HW transport theory leads inevitably
to remarkably small values of db, as given in Table 6.3. The smallness of db suggests
that the nonslip boundary condition on the bead surface may break down for PDMS.
This indicates that its intermolecular interactions are rather small, thus possibly
leading to its low glass transition temperature and bulk modulus. However, the
individual PDMS chain is not so flexible as expected from these bulk properties,
since the value of its ��1 is almost the same as that for a-PS, as seen from Table 6.3.
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Fig. 6.15 Plots of .Œ�� � ��/=M1=2 and �0M1=2D=kBT against M1=2 for a-PS in cyclohexane
at 34.5 ıC (with �� D 0) (�) [31, 39–42] and PDMS in bromocyclohexane at 29.5 ıC (with
�� D �0:0115 dL/g) (
) [41, 49]. The solid curves connect the data points smoothly. The HW
theoretical values of hS2i=M are almost independent of M to the right of the respective vertical line
segments
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6.6 Ring Polymers

In this section we evaluate the translational friction coefficient „ and intrinsic
viscosity Œ�� for ring polymers by an application of the OB procedure to the cylinder
model of the (phantom) KP ring [75]. The results are applied to circular DNA.

6.6.1 Translational Friction Coefficient

For the KP cylinder ring the second line of Eqs. (6.36) for the function fD becomes

fD D
Z L=2

0

K.sIL; d/ds ; (6.137)

where we have used the relation K.s/ D K.L � s/ for rings. Following the same
procedure as that used for the KP linear cylinder, we approximate K.s/ (with all
lengths in units of ��1) by

K.sIL; d/ D
�

6L

�s.L � s/

�1=2�
1� L.1C 5d2/

40s.L� s/
� 11

120L

�
for � < s � L

2

D
�

s2 C 1

4
d2
��1=2�

1C
3X

iD1
fi.L; d/s

i

�
for 0 � s � �

(6.138)

with

� D
3X

kD0
�kL�k ; (6.139)

fi D
3X

kD0

2X

jD0
fijkd2jL�k ; (6.140)

where �k and fijk are numerical constants independent of L and d and their values
are given in Table 6.5. We note that Eqs. (6.138) are valid for L 	 3:480 (in fact
for relatively large L) and that Eqs. (6.138) with d D 0 for K.sIL; 0/ D hR�1i have
been derived by the use of Eqs. (3.158) and (3.160).
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Table 6.5 Values of �k and fijk in Eqs. (6.139) and (6.140)

k

0 1 2 3

�k 2:18559 �4:67985 .�1/ 4:91581 .�1/ �1:50334 .1/
f10k 3:33333 .�1/a 0 0 0

f11k �4:50040 .�2/ �2:75430 .�1/ 1:19325 �5:59657
f12k �2:20160 .�2/ �8:22244 .�2/ 4:57470 .�1/ 2:97966

f20k 1:19083 .�1/ 5:30304 .�1/ 9:99369 .�1/ �4:99560
f21k 5:18804 .�3/ 1:40740 .�1/ �2:39261 9:30255

f22k 1:58136 .�2/ 7:54396 .�2/ �6:20245 .�1/ 3:39914

f30k �2:65957 .�2/ �1:49946 .�2/ �6:88179 .�1/ 4:85298

f31k 9:15166 .�4/ �5:33328 .�2/ 1:03760 �4:61578
f32k �2:97808 .�3/ �1:87217 .�2/ 1:93592 .�1/ �9:82380 .�1/

a a(n) means a � 10n

Substitution of Eqs. (6.138) into Eq. (6.137) and integration leads to

fD D
�
6L

�

�1=2��
1 � 11

120L

�
sin�1

�
L � 2�

L

�
� .L � 2�/.1C 5d2/

20L�1=2.L � �/1=2
�

C ln

�
2� C .4�2 C d2/1=2

d

�
C f1

��
�2 C 1

4
d2
�1=2
� 1
2

d

�

C1
2

f2

	
�

�
�2 C 1

4
d2
�1=2
� 1
4

d2 ln

�
2� C .4�2 C d2/1=2

d

�


C1
3

f3

�
�2 � 1

2
d2
��
�2 C 1

4
d2
�1=2

for L 	 3:480 : (6.141)

In the coil limit of L!1, we have, from Eq. (6.141),

fD;.C/ D 1

2
.6�/1=2L1=2 ; (6.142)

so that

„.C/ D .6�/1=2�0L1=2 : (6.143)

This is identical to the KR value in the nondraining limit obtained by
Bloomfield and Zimm [76] and by Fukatsu and Kurata [77]. We note that
fD;.C/.ring/=fD;.C/.linear/ D 3�=8.

Next we consider the rigid-ring limit of fD, which we indicate by the subscript
(R). The kernel may then be given by

K.R/.sILI d/ D
�
�

L

��
sin2

�
�s

L

�
C
�
�

2p

�2��1=2�
1CO.p�2/

�
; (6.144)
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where p D L=d as before, and we note that the contribution of neglected terms in
Eq. (6.144) to fD;.R/ does not exceed 1 % for p 	 10. Substitution of Eq. (6.144) into
Eq. (6.137) and integration leads to

fD;.R/ D
�

4p2

4p2 C �2
�1=2

K

��
4p2

4p2 C �2
�1=2�

; (6.145)

where K.k/ is the complete elliptic integral of the first kind defined by

K.k/ D
Z �=2

0

.1 � k2 sin2 �/�1=2d� : (6.146)

We then have, from Eq. (6.145),

fD;.R�/ � lim
p!1 fD;.R/

D ln pC ln

�
8

�

�
CO.p�1/ : (6.147)

This is to be compared with the second line of Eqs. (6.49) for the rigid rod in the
same limit. If we avoid the preaveraging of the Oseen tensor, the leading term
of fD;.R�/ appearing in the translational diffusion coefficient D and sedimentation
coefficient s for the rigid ring is replaced by .11=12/ ln p [17, 30, 78, 79], the
remaining terms also being altered.

6.6.2 Intrinsic Viscosity

In the integral equation (6.77) the kernel K.x; �/ is given by Eqs. (6.138) with 2s D
Ljx � �j and the g function is given by

g.x; y/ D �

L

�
hS2i � 1

2

�
R2
�

L

2
jx � yj

���
; (6.148)

where hS2i and
˝
R2.s/

˛
are given by Eqs. (3.165) and (3.161), respectively. The

numerical results obtained from Eq. (6.76) may then be expressed in the form

Œ�� D ˚1
L3=2

M

�
1C

4X

iD1
CiL

�i=2

��1
for L 	 3:480 (6.149)

with ˚1 being equal to the value 1:854 � 1023 obtained from the exact asymptotic
solution [76, 77, 80] and with
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Ci D
4X

jD0
˛ijd

j C
2X

jD0
ˇijd

2j ln d ; (6.150)

where ˛ij and ˇij are numerical constants independent of L and d and
their values are given in Tables 6.6a and 6.6b, respectively. Thus we have
Œ��.C/.ring/=Œ��.C/.linear/ D 0:648 in the limit of L!1.

Finally, we consider the rigid-ring limit of Œ��. The kernel is given by Eq. (6.144)
and the g function is given by

g.R/.x; y/ D
�

L

4�

�
cos.�jx � yj/ : (6.151)

If we expand the solution  .x; y/ of the integral equation (6.77) with Eqs. (6.144)
and (6.151) in a Fourier series, we can obtain its asymptotic solution in the limit of
p!1 [75]. Thus we have

Œ��.R�/ D NAL3

8�M

�
ln pC ln

�
8

�

�
� 2CO.p�1/

��1
: (6.152)

Table 6.6a Values of ˛ij in Eq. (6.150)

d i ˛i0 ˛i1 ˛i2 ˛i3 ˛i4

Œ0:001; 0:1�a 1 0.809231 �40.8202 �483.899 � � � � � �
2 �13.7690 380.429 5197.48 � � � � � �
3 35.0883 �1079.70 �14530.3 � � � � � �
4 �28.6643 927.876 12010.0 � � � � � �

Œ0:1; 1:0� 1 �2.17381 �11.3578 249.523 �729.371 489.172

2 112.769 �851.870 �21390.1 56909.8 �34787.5

3 �1680.23 24753.1 498848 �1314310 792477

4 7043.32 �142907 �2883470 7668650 �4648720
a [a, b] means that a � d � b

Table 6.6b Values of ˇij in
Eq. (6.150)

d i ˇi0 ˇi1 ˇi2

Œ0:001; 0:1�a 1 �2.53944 �339.266 � � �
2 0.818816 3517.90 � � �
3 �1.44344 �9855.73 � � �
4 0.571812 8221.82 � � �

Œ0:1; 1:0� 1 �3.58885 74.3257 �335.732

2 41.8243 �9944.26 22067.0

3 �526.628 244353 497280

4 2177.01 �1407520 2937180
a [a, b] means that a � d � b
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Fig. 6.16
Double-logarithmic plots of
fD and Œ�� (in dL/g) against M
for circular DNA [81–88].
The solid and dashed curves
represent the KP theoretical
values for ring and linear
chains, respectively (see the
text)
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If we avoid the preaveraging of the Oseen tensor, Eq. (6.152) is replaced by [75]

Œ��.R�/ D 17NAL3

120�M

�
ln pC ln

�
8

�

�
� 144
85
CO.p�1/

��1
: (6.153)

Thus the ratio Œ��.R�/.ring/=Œ��.R�/ (linear) is equal to 3=� and 51=16� in the
preaveraging and nonpreaveraging cases, respectively.

6.6.3 Application to DNA

In this subsection we make a comparison of theory with experiment using exper-
imental data for the sedimentation coefficient s [81–88] and intrinsic viscosity
Œ�� [86, 87] obtained for nicked (untwisted) circular DNA (see also Sect. 7.3).
Figure 6.16 shows double-logarithmic plots of fD (from s) and Œ�� (in dL/g) against
M. The solid curves represent the theoretical values calculated from Eqs. (6.141)
and (6.149) for circular DNA with the values of the model parameters given in
Table 6.3 for linear DNA. For comparison, the corresponding theoretical values for
linear DNA are represented by the dashed curves. There is seen to be rather good
agreement between theory and experiment.

The problems of twisted circular DNA (DNA topoisomers) are considered in the
next chapter.

Appendix 1: Transport Coefficients of Spheroid-Cylinders

In this appendix we evaluate the translational and rotatory friction (or diffusion)
coefficients and intrinsic viscosity of the spheroid-cylinder defined in Sect. 6.2.1 and
depicted in Fig. 6.2 [27]. We introduce external (ex, ey, ez) and molecular (e1, e2, e3)
Cartesian coordinate systems, choosing the center of mass of the body as the origin
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of the latter. The superscript (e) is used to indicate vectors and tensors expressed in
the external system, and no superscript is used for those in the molecular system.
The spatial configuration of the body may be determined by the vector position
R.e/

c � Rc D .xc, yc, zc) of the center of mass in the external system and the
Euler angles � D .˛, ˇ, � ) defining the orientation of the molecular system with
respect to the external system. The matrix transforming the external coordinates to
the molecular coordinates, which we denote by A, is then identical to the matrix Q
given by Eq. (4.96) with (˛, ˇ, � ) in place of ( Q� , Q�, Q ).

Now let Uc be the instantaneous velocity of the center of mass of the body, let
� be its instantaneous angular velocity, and let v0 be the unperturbed flow field of
a solvent. Under the nonslip boundary condition, the frictional force f.r/ exerted by
the unit area at r of the surface of the body satisfies the integral equation

8��0
�
Uc C� � r1 � v0.r1/

� D
Z

S
K.r1; r2/ � f.r2/dr2 ; (6.154)

where r1 and r2 are the vector positions of two arbitrary points on the surface of the
body, K.r1; r2/ is defined by

K.r1; r2/ D 8��0T.r1 � r2/ (6.155)

as in Eq. (6.58), and the integration in Eq. (6.154) is carried out over the surface of
the body. If we define the inverse K�1.r1; r2/ by

ı.2/.r1 � r2/I D
Z

S
K�1.r1; r3/ �K.r3; r2/dr3

D
Z

S
K.r1; r3/ �K�1.r3; r2/dr3 (6.156)

with ı.2/.r/ a two-dimensional Dirac delta function and with I the unit tensor as in
Eqs. (6.59), then the formal solution of Eq. (6.154) is obtained as

f.r1/ D 8��0
Z

S
K�1.r1; r2/ �

�
Uc C� � r2 � v0.r2/

�
dr2 : (6.157)

We first put v0 D 0 to consider the translational and rotatory friction tensors of
the body, which we denote by „ and „c;r, respectively. The total frictional force F
and torque Tc (about the center of mass) exerted by the body on the solvent are then
given by

F D „ � Uc D
Z

S
f.r/dr ; (6.158)

Tc D „c;r �� D
Z

S
r � f.r/dr D

Z

S
Bc.r/T � f.r/dr ; (6.159)
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where the superscript T indicates the transpose and the tensor Bc is given by

Bc.r/ D
0

@
0 r3 �r2
�r3 0 r1
r2 �r1 0

1

A (6.160)

with r D r1e1 C r2e2 C r3e3. If we substitute Eq. (6.157) into Eqs. (6.158) and
(6.159), we find

„ D 8��0
Z

S

Z

S
K�1.r1; r2/dr1dr2 D 8��0

Z

S
‰1.r/dr ; (6.161)

„c;r D 8��0

Z

S

Z

S
Bc.r1/T �K�1.r1; r2/ � Bc.r2/dr1dr2

D 8��0

Z

S
Bc.r/T �‰2.r/dr ; (6.162)

where the tensors ‰1 and ‰2 are the solutions of the integral equations

Z

S
K.r1; r2/ �‰1.r2/dr2 D I ; (6.163)

Z

S
K.r1; r2/ �‰2.r2/dr2 D Bc.r1/ : (6.164)

Now, if we take e3 along the axis of revolution of the body, then„ and „c;r and
hence the translational diffusion tensor Dc D kBT„�1 (of the center of mass) and
rotatory diffusion tensor Dr D kBT„ �1

c;r are diagonalized. We denote their principal
values by„j, „r;j, Dj, and Dr;j, respectively, so that

Dj D kBT

„j
; (6.165)

Dr;j D kBT

„r;j
(6.166)

with D1 D D2 and Dr;1 D Dr;2 (and „1 D „2 and „r;1 D „r;2). The mean
translational diffusion coefficient D averaged over the orientation of the body is
given by

D D 1

3
Tr D.e/

c D
1

3
Tr Dc D 1

3
kBT.2„ �1

1 C„ �1
3 / : (6.167)
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Next we consider the intrinsic viscosity Œ��. The unperturbed flow field v0 given
by Eq. (6.65) may be expressed in the molecular coordinate system as follows,

v0.r/ D 
0A � exey � AT � r : (6.168)

We may then put Uc D 0, so that

� � r � v0.r/ D �
0m � r (6.169)

with

m D 1

2
A � .exey C eyex/ � AT ; (6.170)

since the body rotates about the z axis with the angular velocity �
0=2 in the limit
of 
0 D 0 [27]. Thus Eq. (6.157) becomes

f.r1/ D �8��0
0
Z

S
K�1.r1; r2/ �m � r2dr2 : (6.171)

As shown in Appendix 2, Œ�� of the body may be expressed in terms of the surface
integral as

Œ�� D � NA

M�0
0

Z

S
ex �

˝
AT � f.r/r � A˛ � eydr D 8�NA

M

Z

S
‰.r/dr (6.172)

with

‰.r1/ D
Z

S
ex �

˝
AT �K�1.r1; r2/ �m � r2r1 � A

˛ � eydr2 : (6.173)

The orientational average in Eq. (6.173) may be evaluated by expanding the
matrices A and m in terms of the Wigner functions Dmj

l .˛; ˇ; �/ [89]. The function
‰ may then be expressed as

‰.r/ D 1

3
.� 11r1 �  12r2 C 2 13r3/C . 22r3 C  23r2/C . 31r3 C  33r1/
C. 41r2 C  42r1/C . 51r1 �  52r2/ ; (6.174)

where r D .r1, r2, r3), and the vectors  j D . j1,  j2,  j3) (j D 1–5) are the
solutions of the integral equations

Z

S
K.r1; r2/ � j.r2/dr2 D 1

5
mj � r1 (6.175)
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with

m1 D �e1e1 � e2e2 C 2e3e3 ;

m2 D e2e3 C e3e2 ; m3 D e3e1 C e1e3 ; (6.176)

m4 D e1e2 C e2e1 ; m5 D e1e1 � e2e2 ;

We find exact numerical solutions of all the integral equations above for small
p D L=d and also solutions in the OB approximation (with the non-preaveraged
Oseen tensor) for large p. We first consider the latter. General expressions for the
transport coefficients of the spheroid-cylinder in the OB approximation may be
derived by replacing the integrals over the surface by those over the contour distance
s (�L=2 � s � L=2), where ‰1, ‰2, and  j (j D 1–5) are then functions of s with
r1 D r2 D 0 and r3 D s.

Then the function fD defined by Eq. (6.37) may be expressed as [27]

fD D 1

4

�
2F �1

1 C F �1
2



; (6.177)

where

Fj D
Z 1

�1
‰1j.x/dx (6.178)

with x D 2s=L. In Eq. (6.178), ‰1j (j D 1, 2) are the solutions of the integral
equations

Z 1

�1
Kj.x1; x2/‰1j.x2/dx2 D 1 ; (6.179)

where Kj.x1; x2/ (j D 1, 2) are given by

K1 D 2p2.x1 � x2/2 C 3Œ1 � h.x1/�

dŒp2.x1 � x2/2 C 1 � h.x1/�3=2
; (6.180)

K2 D 4p2.x1 � x2/2 C 2Œ1 � h.x1/�

dŒp2.x1 � x2/2 C 1 � h.x1/�3=2
; (6.181)

with p D L=d and with

h.x/ D 0 for 0 � jxj < 1 � 

p

D
�
1 � p.1� jxj/




�2
for 1� 


p
< jxj � 1 : (6.182)



Appendix 1: Transport Coefficients of Spheroid-Cylinders 239

In the limit of p ! 1 (with h D 
 D 0), Eq. (6.177) becomes the second line
of Eqs. (6.49) [24] if we find the asymptotic solution of Eq. (6.179) by a Legendre
polynomial expansion method [20].

The rotatory diffusion coefficient Dr;1 and intrinsic viscosity Œ�� may be
expressed as [33]

Dr;1 D 3kBT

��0L3Fr
; (6.183)

Œ�� D �NAL3

90M
.3Fr C F�

1

/ ; (6.184)

where

Fr D 3
Z 1

�1
x‰21.x/dx ; (6.185)

F�
1

D 6
Z 1

�1
x‰22.x/dx (6.186)

with ‰2j (j D 1, 2) the solutions of the integral equations

Z 1

�1
Kj.x1; x2/‰2j.x2/dx2 D x1 : (6.187)

In the OB approximation we have„r;3 D 0 from Eqs. (6.162) since r1 D r2 D 0, so
that the rotation of the cylinder about its axis cannot be considered. In the limit of
p!1, we find [33] by the Legendre polynomial expansion method

F�1
r D ln pC 2 ln 2 � 11

6
CO.p�1/ ; (6.188)

F �1
�

1

D ln pC 2 ln 2 � 17
6
CO.p�1/ ; (6.189)

so that Eq. (6.184) becomes Eq. (6.86).
In the following, we complete expressions for fD, Dr;1, and Œ��.

(a) Translational Diffusion Coefficient

As mentioned above and in Sect. 6.3.1, the OB approximation along with the
preaveraging of the Oseen tensor and with the KR approximation [3] as in Eq. (6.35)
can give the correct asymptotic result for fD as given by Eq. (6.49). We therefore
evaluate fD in this way from

fD D 1

2
L
Z 1

�1

Z 1

�1
K.x1; x2/dx1dx2 (6.190)
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with

K.x1; x2/ D
˚
.x1 � x2/

2 C �1 � h.x1/
�
p�2��1=2

: (6.191)

The result reads

fD D sinh�1.2p� 
/ � 

p

sinh�1 
 � 1

2p

˚�
.2p� 
/2 C 1�1=2 � .
2 C 1/1=2�

� 

2p

ln
�
2.p � 
/˚2p� 
 C �.2p� 
/2 C 1�1=2�C 1

�

C 


2p
ln
�
4p.p� 
/C 1�C f 0

D (6.192)

with

f 0
D D




2p.
2 � 1/1=2
	

 ln

�

2 C .
4 � 1/1=2�C .2p� 
/

� ln

ˇ̌
ˇ̌
.2p � 
/ � .
2 � 1/1=2Œ.2p � 
/2 C 1�1=2

2pŒ.
2 � 1/1=2 � 
�C 1
ˇ̌
ˇ̌



for 
 > 1

D 1

2p

˚
2p� �.2p � 1/2 C 1�1=2 Cp2� for 
 D 1

D 


2p.1� 
2/1=2
�
2
 tan�1

�
1 � 
2
1C 
2

�1=2
C .2p� 
/

�
	

sin�1 
.2p � 
/
Œ4p.p � 
/C 1�1=2 C sin�1 1 � 2p


Œ4p.p� 
/C 1�1=2

�

for 
 < 1 :

(6.193)

Equation (6.192) with Eqs. (6.193) is the desired result and reduces to the result of
Norisuye et al. [90] when 
 D 1 (prolate spherocylinder), and to the well-known
result [91, 92] for the spheroid when 
 D p. The latter, which we denote by fD;.SD/,
is given by

fD;.SD/ D 
F.
/ (6.194)

with

F.
/ D 1

.
2 � 1/1=2 cosh�1 
 for 
 > 1

D 1 for 
 D 1
D 1

.1 � 
2/1=2 cos�1 
 for 
 < 1 : (6.195)
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Fig. 6.17 Double-logarithmic plots of fD against p. The solid, dot-dashed, and dotted curves
represent the values calculated from Eq. (6.192) for the spheroid-cylinders, spheroid (
 D p),
and cylinder (
 D 0), respectively, and the unfilled and filled circles represent the exact numerical
solutions. The dashed curve B represents the values by Broersma [18] for cylinders

Figure 6.17 shows double-logarithmic plots of fD against p. The solid and dot-
dashed curves represent the values calculated from Eq. (6.192) for the spheroid-
cylinders with 
 D 0:5 and 1.0 and from Eq. (6.194) for the spheroid (
 D p),
respectively, and the unfilled (
 ¤ p) and filled (
 D p) circles represent the exact
numerical solutions. The former values are seen to agree well with the latter. Thus
we may adopt Eq. (6.192) with Eqs. (6.193) as a useful interpolation formula for fD
for the spheroid-cylinder. When 
 D 0, Eq. (6.192) gives the fD;.R/ from Eq. (6.39),
and the values for this limiting case are represented by the dotted curve. It is seen
that the end effects may be ignored for p & 5. For comparison, the values calculated
from the Broersma equation [18], which are not very different from those from his
new version [93], are represented by the dashed curve B. Indeed, his solution of
the integral equation is not exact, although asymptotically correct in the limit of
p!1.

(b) Rotatory Diffusion Coefficient

We construct an interpolation formula for Dr;1 on the basis of the exact numerical
solutions and the OB asymptotic solution above. The result for Fr D Fr.p; 
/ in
Eq. (6.183) reads

Fr.p; 
/
�1 D ln pC 2 ln 2 � 11

6
C ar0.
/

ln.1C p/
C

6X

iD1
ari.
/ p�i=4 (6.196)

with

ar0.
/ D
�
ln.1C 
/�

�
fr.
/

�1 � ln 
 � 2 ln 2C 11

6
�

6X

iD1
ari.
/ 


�i=4

�
;

(6.197)



242 6 Transport Properties

Table 6.7 Values of arij in
Eq. (6.198)

i ari0 ari1 ari2

1 2:23068 20:8613 �10:0473
2 �13:8396 �96:9314 48:1626

3 33:9241 288:840 �148:672
4 �29:0266 �411:528 221:719

5 8:13792 299:915 �167:783
6 1:26984 �82:2022 47:6616

ari.
/ D
2X

jD0
arij 


j ; (6.198)

fr.
/
�1 D Fr.
; 
/

�1 D ��0d3
3

3kBT
Dr;1;.SD/ ; (6.199)

where arij are numerical constants and their values are given in Table 6.7; and
Dr;1;.SD/ is the rotatory diffusion coefficient Dr;1 of the spheroid and is given by
[91, 92]

��0d3Dr;1;.SD/

kBT
D 3

2.
4 � 1/
�
.2
2 � 1/F � 
� for 
 ¤ 1

D 1 for 
 D 1 (6.200)

with F being given by Eqs. (6.195). Note that at 
 D p, Eq. (6.183) with Eq. (6.196)
gives the exact solution given by Eqs. (6.200) for the spheroid. The range of
application of Eq. (6.196) is limited to 0:6 . 
 . 1:3. We note that Dr;3;.SD/ is
given by [91, 92]

��0d3Dr;3;.SD/

kBT
D 3

2.
2 � 1/.
 � F/ for 
 ¤ 1

D 1 for 
 D 1 ; (6.201)

Figure 6.18 shows double-logarithmic plots of Dr;.S/=Dr;1 against p, where Dr;.S/

is the rotatory diffusion coefficient of the Stokes sphere and is equal to Dr;1;.SD/

with 
 D 1. The solid and dot-dashed curves represent the values calculated from
Eq. (6.183) with Eq. (6.196) for the spheroid-cylinders with 
 D 0:63 and 1.0 and
from Eqs. (6.200) for the spheroid .
 D p/, respectively, and the unfilled .
 ¤ p/
and filled .
 D p/ circles represent the exact numerical solutions. It is seen that the
former values agree well with the latter, and that the end effects are rather small even
for small p. In the figure are also shown the values calculated from the Broersma
equation [18], which is also correct only for large p. (Note that they are not very
different from the values from his new version [93].)



Appendix 1: Transport Coefficients of Spheroid-Cylinders 243

10.50−0.5

2

1

0

B

ε = p

ε = 1.0
0.63

log p

lo
g 

(D
r,

(S
)/

D
r,

1)

Fig. 6.18 Double-logarithmic plots of Dr;.S/=Dr;1 against p (see the text). The solid and dot-dashed
curves represent the values calculated from Eq. (6.183) with Eq. (6.196) for the spheroid-cylinders
and spheroid (
 D p), respectively, and the unfilled and filled circles represent the exact numerical
solutions. The dashed curve B represents the values by Broersma [18] for cylinders

(c) Intrinsic Viscosity

As in the case of Dr;1, we construct an interpolation formula for Œ�� on the basis
of the exact numerical solutions and the OB asymptotic solution above (with the
nonpreaveraged Oseen tensor). The result reads

Œ�� D 2�NAL3

45M
F�.p; 
/ (6.202)

with

F�.p; 
/
�1 D ln pC 2 ln 2 � 25

12
C a�0.
/

ln.1C p/
C

5X

iD1
a�i.
/ p�i=4 ;

(6.203)

a�0.
/ D
�
ln.1C 
/�

�
f�.
/

�1 � ln 
 � 2 ln 2C 25

12
�

5X

iD1
a�i.
/ 


�i=4

�
;

(6.204)

a�i.
/ D
2X

jD0
a�ij 


j ; (6.205)

f�.
/ D F�.
; 
/ D 45M

2�NAd3
3
Œ��.SD/ ; (6.206)
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where a�ij are numerical constants and their values are given in Table 6.8; and Œ��.SD/

is the intrinsic viscosity of the spheroid and is given by [94, 95]

Œ��.SD/ D �NAd3

30M

.
2 � 1/2

	
2Œ�.4
2 � 1/FC 2
3 C 
�

3
.3FC 2
3 � 5
/Œ.2
2 C 1/F � 3
�

C 28

3
.3F C 2
3 � 5
/ C
4

.
2 C 1/.�3
F C 
2 C 2/

C 2.
2 � 1/

.
2 C 1/Œ.2
2 � 1/F � 
�



for 
 ¤ 1

D 5�NAd3

12M
for 
 D 1 (6.207)

with F being given by Eqs. (6.195). Note that at 
 D p, Eq. (6.202) gives the exact
solution given by Eqs. (6.207) for the spheroid. We also note that the derivation of
the first of Eqs. (6.207) by Simha [94] is not correct, although his result happens
to be correct, as shown by Saito [95], the second being originally due to Einstein
[1, 96]. The range of application of Eq. (6.202) is limited to 0:6 . 
 . 1:3.

Figure 6.19 shows double-logarithmic plots of MŒ��=M0Œ��Ep against p, where
Œ��E is given by Eq. (6.99). The solid and dot-dashed curves represent the values
calculated from Eq. (6.202) for the spheroid-cylinders with the indicated values of

 and from Eqs. (6.207) for the spheroid .
 D p/, respectively, and the unfilled

Table 6.8 Values of a�ij in
Eq. (6.A.52)

i a�i0 a�i1 a�i2

1 5:94814 �4:90678 2:56381

2 �22:7705 14:6631 �7:24894
3 42:5200 �25:8741 11:4158

4 �25:8372 15:2681 �4:32430
5 7:48088 �4:22595 0:298512

Fig. 6.19
Double-logarithmic plots of
MŒ��=M0Œ��Ep against p (see
the text). The solid and
dot-dashed curves represent
the values calculated from
Eq. (6.202) for the
spheroid-cylinders and
spheroid (
 D p),
respectively, and the unfilled
and filled circles represent the
exact numerical solutions
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.
 ¤ p/ and filled .
 D p/ circles represent the exact numerical solutions. It is seen
that the end effects on Œ�� are more remarkable than those on D and Dr;1.

Finally, we note that in the case of cylinders we have found that the values of Œ��
with the nonpreaveraged and preaveraged Oseen tensors agree with each other to
within 1 % for 60 . p . 150 [27]. This fact has been used in the construction of the
interpolation formula for Œ��R given by Eq. (6.92).

Appendix 2: Excess Stress Tensor for the Touched-Bead Model

In this appendix we derive an expression for the excess stress tensor due to
an addition of a single touched-bead (or generally subbody) model chain to an
incompressible fluid with viscosity coefficient �0 [38]. In the unperturbed flow field
v0 given by Eq. (6.65) with 
0 the velocity gradient, the intrinsic viscosity Œ�� may
be written in the form

Œ�� D NA

M�0
0
h� 0

xyi D
NA

M�0
0
m W h� 0i ; (6.208)

where m is given by Eq. (6.67), and � 0
xy is the xy component of the excess stress

tensor � 0 for the single chain.
Now the equation of motion for the (incompressible) fluid in steady flow may be

written in the form [1]

r � � .r/C f.r/ D 0 ; (6.209)

where f.r/ is the force density due to the external (frictional) force exerted on the
fluid (per unit volume) at a point r, and � is the stress tensor given by

� .r/ D �p.r/IC �0
˚rv.r/C �rv.r/

�T�
(6.210)

with v.r/ the fluid velocity, p the pressure, I the unit tensor, and the superscript
T indicating the transpose. Note that substitution of Eq. (6.210) with Eq. (6.2) into
Eq. (6.209) leads to Eq. (6.1). In the present case of the single chain composed of N
beads (subbodies), f.r/ is given by

f.r/ D
NX

jD1

Z

Sj

ı.r � rj � Orj/fj.Orj/dOrj ; (6.211)

where rj is the vector position of the center of the jth bead, Orj is the radius vector
from its center to an arbitrary point on its surface, fj.Orj/ is the frictional force exerted
by the unit area at Orj on the fluid, and the integration is carried out over its surface
(Sj) (see Fig. 6.3).
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The stress tensor � may be written as a sum of the stress tensor � 0 of the pure
fluid and the excess stress tensor � 0 due to the force density f; that is, � D � 0C � 0.
Equation (6.209) may therefore be rewritten as

r � � 0 D 0 ; (6.212)

r � � 0 C f D 0 : (6.213)

We take the Fourier transform of both sides of Eq. (6.213),

ik � Q� 0.k/C Qf.k/ D 0 ; (6.214)

where

Q� 0.k/ D
Z
� 0.r/ exp.ik � r/dr ; (6.215)

Qf.k/ D
Z

f.r/ exp.ik � r/dr

D
NX

jD1

Z

Sj

fj.Orj/ exp
�
ik � .rj C Orj/

�
dOrj : (6.216)

Let Rc be the vector position of the center of mass of the chain, and let Sj be the
vector distance from it to the center of the jth bead. We have rj D Rc C Sj, and the
second line of Eqs. (6.216) may be rewritten as

Qf.k/ D exp.ik � Rc/

NX

jD1
Fj C ik � exp.ik � Rc/

�
NX

jD1

Z

Sj

	Z 1

0

exp
�
i�k � .Sj C Orj/

�
d�



.Sj C Orj/fj.Orj/dOrj ; (6.217)

where Fj is the total frictional force exerted by the jth bead and is given by
Eq. (6.27). Under the condition of ordinary viscosity measurements, there is not
any external force other than shear flow field, so that the total frictional force (sum
of Fj) must vanish. We then obtain from Eqs. (6.214) and (6.217)

Q� 0.k/ D � exp.ik � Rc/

NX

jD1

Z

Sj

	Z 1

0

exp
�
i�k � .Sj C Orj/

�
d�




�.Sj C Orj/fj.Orj/dOrj : (6.218)
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Finally, we take the configurational average of both sides of Eq. (6.218), noting
that Rc is distributed uniformly in the fluid and that the average over Rc may be
taken independently of the other variables. We then obtain

h Q� 0.k/i D �.2�/3ı.k/
NX

jD1

�
hSjFji C

�Z

Sj

Orjfj.Orj/dOrj

��
: (6.219)

Thus, by Fourier inversion of Eq. (6.219), we obtain

h� 0i D �
NX

jD1

�
hFjSji C

�Z

Si

fj.Orj/OrjdOrj

��
: (6.220)

Substitution of Eq. (6.220) into the second of Eqs. (6.208) leads to Eq. (6.102). In
the case of a single rigid body, it also reduces to the first of Eqs. (6.172).
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Chapter 7
Applications to Circular DNA

In this chapter the statistical-mechanical and transport theories of the HW chain
developed so far are applied to some interesting problems of circular DNA such as
cyclization of linear DNA and analysis of circular DNA topoisomers (topological
isomers) or supercoiled forms. These problems may be treated theoretically by
modeling duplex DNA as the KP1 chain [or sometimes the (original) KP chain],
which is a spacial case of the HW chain. From the statistical-mechanical standpoint,
all kinds of ring-closure probabilities for these KP chains, which do not necessarily
concern DNA problems, are also considered in this chapter. Relevant experimental
data are analyzed by the use of the present theories in order to determine the stiffness
parameter (Kuhn segment length) and torsional force constant of duplex DNA.
However, all aspects of the problem of the supercoiling of DNA are not discussed
since it is beyond the scope of this book.

7.1 Ring-Closure Probabilities

7.1.1 Definitions

Closed circular duplex DNA molecules are formed by covalently joining the
(cohesive) ends of the linear molecules. The efficiency of this cyclization reaction
may be described by the ring-closure probability with the end orientations specified,
or the Jacobson–Stockmayer (J) factor [1], as defined as the ratio of equilibrium
constants for cyclization and bimolecular association. For the evaluation of the J
factor and also all related DNA problems, we may represent duplex DNA by a
special case of the HW chain with �0 D 0 and �0 ¤ 0, that is, the KP1 chain,
affixing a localized Cartesian coordinate system [e�.s/, e�.s/, e�.s/] to the chain
at the contour (helix axis) point s with e� pointing to one of the sugar phosphate
backbones [see Fig. 4.4(b)]. Then the parameter �0 is equal to the twist rate of the

© Springer-Verlag Berlin Heidelberg 2016
H. Yamakawa, T. Yoshizaki, Helical Wormlike Chains in Polymer Solutions,
DOI 10.1007/978-3-662-48716-7_7

251



252 7 Applications to Circular DNA

linear DNA in its undeformed state (at the minimum of energy) with the pitch of its
strand helix equal to 2�=�0. We adopt the stiffness parameter ��1 (equal to the Kuhn
segment length and twice the persistence length for �0 D 0) and Poisson’s ratio � (or
the torsional force constant ˇ) as the two other parameters that are required to define
the model (KP1 chain) completely. It must be noted that similar elastic models were
adopted by Fuller [2], Benham [3], Le Bret [4], and Tanaka and Takahashi [5] in the
study of the supercoiling of DNA and by Barkley and Zimm [6] in the study of its
dynamics.

Now we consider the Green function G.R; � j�0IL/ for the chain of total
contour length L defined in Sect. 4.2.1, where R is the end-to-end vector distance,
� D �.L/, and �0 D �.0/ with �.s/ D Œ�.s/, �.s/,  .s/] (0 � � � � ,
0 � � � 2� , 0 �  � 2�) being the Euler angles defining the orientation of the
localized coordinate system at s (0 � s � L) with respect to an external coordinate
system. Following the Jacobson–Stockmayer theory [1] and its extension [7, 8], the
J factor (in molecules per unit volume) may be related to the ring-closure probability
with the end orientations specified G.0; �0 j�0IL/ as

J D 8�2G.0; �0 j�0IL/ : (7.1)

However, the reaction product is not a homogeneous species but rather a mixture
of topological isomers, that is, topoisomers of closed circular DNA with different
linking numbers [9], as illustrated in Fig. 7.1. The linking number, which is an
integer and which we denote by N, is defined as the number of complete revolutions
made by one strand about the (trivial-knot) DNA axis when the axis is constrained to
lie in a plane [2, 9, 10], or the number of rotations the localized coordinate system
at s completes about the contour (of the closed DNA in a plane) as s is changed
from 0 to L. The number N is a topological parameter and is independent of chain
configuration (or deformation).

We can then consider the N-dependent ring-closure probability G.0; �0 j
�0IN;L/, so that

G.0; �0 j�0IL/ D
1X

ND�1
G.0; �0 j�0IN;L/ : (7.2)

Fig. 7.1 Illustration of the
formation of closed circular
DNA topoisomers with
different linking numbers

+ + + ⋅⋅⋅

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎬ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
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It is clear that this G depends on N as j�Nj, where

�N D N � �0L
2�
� N � N : (7.3)

Note that N D �0L=2� is equal to the number of helix turns in the linear DNA
fragment of length L in its undeformed state, so that�N is not necessarily an integer.
Its meaning is the following: if the linear chain, which is initially in the undeformed
state, is deformed so that its contour is always confined in a plane, we must twist
one end by �N turns with respect to the other in order to join them to obtain the
closed DNA with the linking number N. We also note that N is equal to nbp=n0 with
nbp D L=lbp, where nbp is the number of base pairs in the DNA fragment, lbp is
the distance between them, and n0 is the helix repeat, that is, the number of base
pairs per helix turn. In this book we assume the following values: lbp D 3:4Å and
n0 D 10:46.

7.1.2 Linking-Number-Dependent Ring-Closure Probability

We begin by considering the N-dependent ring-closure probability G.0; �0 j�0I
N;L/ for small L. It may be effectively evaluated by replacing the continuous chain
by an equivalent discrete chain composed of nC1 segments, extrapolation to n D 1
being made at the final stage [11]. For the continuous KP1 chain, its total potential
energy E is given, from Eq. (4.4) with �0 D 0 or Eq. (4.15), by

E D 1

2

Z L

0

�
˛.! 2

� C ! 2
� /C ˇ.!� � �0/2

�
ds ; (7.4)

where ˛ and ˇ are related to the parameters ��1 and � by Eqs. (3.37) and (4.5),
respectively. In what follows, all lengths are measured in units of ��1 and kBT is
chosen to be unity unless otherwise noted.

Now we consider the discrete chain. Its nC 1 segments are numbered 0, 1, � � � ,
n, each having length L=n except for the end ones of length L=2n. We can affix
a localized coordinate system (e�p , e�p , e�p) to the pth segment (p D 0, 1, � � � , n)
corresponding to the system [e�.s/, e�.s/, e�.s/] at s D pL=n of the continuous chain
and denote the associated Euler angles by �p D .�p, �p,  p). The total potential
energy E.�1; � � � ; �n/ (in units of kBT) of the discrete chain with �0 fixed may be
written, from Eqs. (7.4) and (4.10), as

E
�f�ng


 D
nX

pD1
u.�p�1;�p/ ; (7.5)
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where f�ng D �1, � � � , �n, and

u.�p�1;�p/ D u.0/.�p�1;�p/ � 1

2 sin2 �p�1

�
L

n

�
(7.6)

with

u.0/.�p�1;�p/ D n

4L

	
.��p/

2 C .��p/
2 sin2

�
1

2
.�p C �p�1/

�


C n

4.1C �/L
	
��p cos

�
1

2
.�p C �p�1/

�
C� p � �0L

n


 2
: (7.7)

We note here that �p should rather be determined successively from �0 with given
��p D �p � �p�1 D .��p, ��p, � p/ D .�p � �p�1, �p � �p�1,  p �  p�1)
(p D 1, � � � , n), so that �1 < �p, �p,  p < 1, and also that we have added to
u.0/ the infinitesimally small potential given by the second term on the right-hand
side of Eq. (7.6) in order to make it possible to evaluate the configuration integral
over f�ng.

The partition function Z is then given by

Z D
Z

exp
��E.f�ng/

�
df�ng (7.8)

with df�ng D d�1 � � � d�n and d�p D j sin �pjd�pd�pd p. If we change
variables from �p to ��0

p D .�� 0
p, ��0

p, � 0
p/ D Œ��p, ��p sin.�p�1 C 1

2
��p/,

��p cos.�p�1 C 1
2
��p/ C � p � �0L=n�, we can carry out successively the

integrations over�n, �n�1, � � � , �1 in this order to find

Z D
�
4�L

n

�3n=2

.1C �/n=2
�
1� 1

4
LCO.L2/

�
: (7.9)

Now we proceed to evaluate the ring-closure probability G.0; �0 j�0IN; n/ for
the discrete chain, which tends to G.0; �0 j�0IN;L/ for the continuous chain in
the limit of n ! 1 at constant L. It is evident that G is symmetric about the
initial unit tangent vector u0, and therefore we may remove the degree of freedom
of rotation about it. Suppose that the joint of the closed chain is fixed at the origin
of the external coordinate system (ex, ey, ez) so that e�0 D u0 coincides with ex, as
depicted in Fig. 7.2. Let Lh be the distance of the center M of the .n=2/th segment
from the x axis, assuming that n is even, let ˚M (0 � ˚M � 2�/ be the rotation
angle of M about the x axis, where ˚M D 0 when M lies in the xy plane, and
let G.0; �0 j�0I h; ˚M;N; n/ be the ring-closure probability with h and ˚M also
specified. We change ˚M in such a way that E and hence this G remain unchanged.
Then e�0 and e�0 must change with ˚M, but we have
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Fig. 7.2 Removal of the
degree of freedom of rotation
of the closed ring about
u0 D e�0 , which is placed to
coincide with ex (see the text)

O

x

y

z

ξ0

η0

ζ0

ΦM

M

(M)

Lh RM

G.0; �0 j�0IN; n/ D
Z 1

0

dh
Z 2�

0

d˚MLh G.0; �0 j�0I h; ˚M;N; n/

D 2�L
Z 1

0

dh h G.0; �0 j�0I h; 0;N; n/ : (7.10)

Thus we may consider only the configurations such that M lies in the xy plane with
e�0 D ex. At this stage, we reaffix all localized coordinate systems so that e�0 D �ez

and e�0 D ey. This does not alter E and G. The new situation is indicated by the
dashed lines in Fig. 7.2. Thus we reinterpret the second line of Eqs. (7.10) in this
fashion. Further, we note that if RM is the z component of the radial vector of M,
then ˚M D 0 is equivalent to RM D 0.

It is easy to see that h, RM, and the components Rx, Ry, and Rz of R in the external
coordinate system are functions of f�ng D �1, � � � , �n with �p D .�p; �p/. When
the fluctuation around the most probable configuration at the minimum of energy is
small for small L, G.0; �0 j�0I h; 0;N; n/ may be expressed as

G.0; �0 j�0I h; 0;N; n/ D Z�1
Z

e�Edf�n�1g=dRdRMdh ; (7.11)

where df�n�1g D d�1 � � � d�n�1 and the integration is carried out over f�n�1g
with the boundary conditions �0 D .�=2, 0, 0) and �n D .�=2, 2� , 2�N) [see
also Eq. (7.16) below] and subject to the constraints

R˛
�f�ng


 D 0 .˛ D x; y; z;M/ ; (7.12)

h
�f�ng


 D h : (7.13)

If we remove the constraints of Eq. (7.12) by introducing Fourier representations of
Dirac delta functions [12], we obtain, from Eqs. (7.10) and (7.11),
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G.0; �0 j�0IN; n/ D .2�/�3LZ�1
Z

h
�f�ng



exp

�
�E
�f�ng




Ci
X

˛

k˛R˛
�f�ng


�
dkdf�n�1g (7.14)

with i the imaginary unit and with dk D dkxdkydkzdkM. The evaluation of this
integral consists of three steps: (1) determination of the most probable (closed)
configuration {��

n }, (2) expansion of E, R˛ and h in terms of fluctuations in {�n}
around {��

n }, and (3) integration over k and these fluctuations. Note that N may
then be specified only for the most probable configuration.

First, the configuration f��
n gmay be determined from the necessary condition for

the extremum that the energy E becomes a minimum with the boundary conditions
above and subject to the constraints of Eq. (7.12); that is,

r�p

�
EC L�2X

˛

�˛R˛

�
D 0 . p D 1; � � � ; n � 1/ (7.15)

at f�ng D f��
n g, where r�p D .@=@�p, @=@�p, @=@ p) and �˛ are (reduced)

Lagrange multipliers. It is evident that one of the possible configurations f��
n g

is the one for which the contour is a circle of radius L=2� and !� is a constant
independent of s. In his study of the supercoiling of closed circular DNA, Le Bret
[4] treated the mechanical problem equivalent to the above variational principle and
showed that this configuration is stable or metastable as far as j�Nj=.1C�/ < 31=2.
For j�Nj=.1 C �/ > 31=2, the circular configuration is never stable but will
spontaneously assume superhelical forms such as the figure-of-eight-shaped (8-
shaped) configuration, as illustrated in Fig. 7.1. Since G must be much smaller for
these configurations, we confine ourselves to the case of circular configurations with
j�Nj=.1C �/ < 31=2, for which

��
p D .��

p ; �
�
p ;  

�
p / D

�
�

2
;
2�p

n
;
2�Np

n

�
(7.16)

with

�˛ D 0 for all ˛ : (7.17)

At f�ng D f��
n g, we then have

E� D �2

L

�
1C .�N/2

1C �
�
; (7.18)

h� D ��1 ; (7.19)

where h� has been extrapolated to n D1, for simplicity.
Next we consider the fluctuations by setting f�ng D f��

n C ı�ng D ��
1 C ı�1,

� � � ,��
nCı�n with��

pCı�p D .��
p Cı�p, ��

p Cı�p,  �
p Cı p). However, in order
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to carry out the integration, it is convenient to change variables further from fı�ng to
fı�0

ng by ı�0
p D .ı� 0

p, ı�0
p, ı 0

p/ D .ı�p, ı�p cos ı�p, ı p). Correspondingly, f�ng
is transformed to fı�0

ng. Then E.f�ng/, R˛.f�ng/, and h.f�ng/ may be expanded
as power series in fı�0

ng or fı�0
ng. We write the results in the form

E D E� C E0.fı�0
ng/C QE.fı�0

ng/ ; (7.20)

R˛ D R˛;0.fı�0
ng/C QR˛.fı�0

ng/ ; (7.21)

h D h� C Qh.fı�0
ng/ ; (7.22)

where E0 and R˛;0 are the main parts of the fluctuations and are given by

E0 D n

4L

nX

pD1

n
.ı�p � ı�p�1/2 C .ı�0

p � ı�0
p�1/2 � 1

4
.���/2.ı�p C ı�p�1/2

C 1

1C �
�
.ı p � ı p�1/2 C 1

4
.���/2.ı�p C ı�p�1/2

����.ı�p C ı�p�1/.ı p � ı p�1/ �� �.ı�p C ı�p�1/.ı�0
p � ı�0

p�1/
�o

(7.23)

with ��� D ��
p � ��

p�1 D 2�=n and � � D  �
p �  �

p�1 � �0L=n D 2��N=n,
and by

Rx;0 D �L

n

nX

pD1
.1 � 1

2
ıpn/ı�

0
p sin ��

p ; Ry;0 D L

n

nX

pD1
.1 � 1

2
ıpn/ı�

0
p cos��

p ;

Rz;0 D �L

n

nX

pD1
.1 � 1

2
ıpn/ı�p ; RM;0 D �L

n

n=2X

pD1
.1 � 1

2
ıp;n=2/ı�p

(7.24)

with ıpn the Kronecker delta. In Eqs. (7.20)–(7.22), QE, QR˛ , and Qh are higher-order
terms, for which we omit explicit expressions.

As seen from Eq. (7.23), E0 is a quadratic form in fı�0
n�1g. If we transform it to

a diagonal form by an orthogonal transformation Q and fı�0
n�1g to new variables

by Q, the required integral over k and fı�0
n�1g becomes a form similar to that often

encountered in random-flight statistics [12] and can readily be evaluated, although
with some devices, the details being omitted. Thus the final result (with n D 1)
may be written in the form

G.0; �0 j�0IN;L/ D C0L
�13=2 exp

	
��

2

L

�
1C .�N/2

1C �
�
C .C1C 1

4
/L



; (7.25)
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Table 7.1 Values of a0j, a.0/1j ,

and a.1/1j in Eqs. (7.26)
and (7.27)

i a0j a.0/1j a.1/1j

0 2:784 0:2639 �0:0383
1 2:113 0:1399 �0:0827
2 0:6558 �0:1131 0:0125

3 1:719 0:6500 �0:2170
4 �2:478 �1:1223 0:3961

5 2:588 1:0320 �0:3991
6 �1:210 �0:4601 0:1899

7 0:2437 0:0829 �0:0367

where C0 and C1 are functions of �N and � but must be determined numerically
by solving numerically the eigenvalue problem for the matrix associated with the
above quadratic form. Good interpolation formulas for C0 and C1 so found for 0 �
j�Nj=.1C �/ � 1:45 are

C0 D 1

.1C �/1=2
7X

jD0
a0j

�
�N

1C �
�2j

; (7.26)

C1 D
7X

jD0

�
a.0/1j C

a.1/1j

1C �
��

�N

1C �
�2j

; (7.27)

where a0j, a.0/1j , and a.1/1j are numerical constants and their values are given in
Table 7.1. For j�Nj=.1C �/ > 1:45, G.0; �0 j�0IN;L/ almost vanishes for L<
 3
(see below), so that we may then put C0 D 0. The range of application of Eq. (7.25)
is limited to L<
 2:5.

In order to examine numerically the behavior of the above G, we introduce the
N-dependent J factor JN.L/ defined by

JN.L/ D 8�2G.0; �0 j�0IN;L/ ; (7.28)

corresponding to Eq. (7.1), for later convenience. Values of JN.L/ calculated from
Eq. (7.28) with Eqs. (7.25)–(7.27) for � D 0 are plotted against L in Fig. 7.3 for the
indicated values of �N. It is seen that JN.L/ exhibits a maximum for 0 � j�Nj<
 1
and that at constant L<
 3, it decreases with increasing j�Nj and becomes negligibly
small for j�Nj>
 1:4. In this connection, recall that the circular configuration is
never stable for j�Nj=.1C �/ > 31=2. We note that as � is increased from 0 to 0.5,
JN with �N D 0 and also its dependence on �N become small. In any case, it may
be concluded that JN only with N D N� and N� ˙ 1 make significant contribution,
where N� is an integer closest to N.

Finally, we must make some remarks on the specification of the linking number.
It is related to the imposition of nonperiodic boundary conditions on the distribution
functions. Evaluation of them with such boundary conditions is possible near the
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Fig. 7.3 Plots of JN against L
for � D 0 and for the
indicated values of �N
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rigid-rod limit [6] and also near the rigid-ring limit as above. However, it is difficult
when large fluctuations are allowed, as seen from the above developments. Indeed,
in Chap. 4, the differential equations satisfied by the Green functions with periodic
boundary conditions have been derived, so that they may be expanded in terms of the
Wigner functions Dmj

l with the nonnegative integers l (see also the next subsection).
Of course, nonperiodic boundary conditions can be imposed in mechanical (not
statistical) problems such as the determination of the most stable configuration
under constraints [3, 4].

7.1.3 Ring-Closure Probability with the End Orientations
Specified

We proceed to evaluate the ring-closure probability G.0; �0 j�0IL/ [11]. It is then
convenient to introduce a parameter (auxillary variable) r (0 � r � 1=2) defined by

r D jN � N�j : (7.29)

Its meaning is the following: if the linear chain, which is initially in the undeformed
state, is deformed so that its contour is always confined in a plane, we must twist or
untwist one end by at least r turns with respect to the other in order to join them so
that � D �0. Since N� is a step function of L, r is a periodic function of L; that is,

r.L/ D jNj � k for k � jNj � kC 1

2

D 1 � jNj C k for kC 1

2
< jNj < kC 1 (7.30)

with k being nonnegative integers. Then the three values N� and N� ˙ 1 of N
mentioned above correspond to �N D r and r ˙ 1, so that the J factor defined
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by Eq. (7.1) may be expressed as

J.L/ D
1X

�N�rD�1
JN.L/ (7.31)

provided that L is small (L<
 2:5).
Next we derive expressions for J.L/ for large L. If we put R D 0 and� D �0 D

.0, 0, 0) in Eq. (4.155) for G.R; � j�0IL/ and use the relations G ������ .0;L/ D 0 for

l3 ¤ 0, Dmj
l .0; 0; 0/ D

�
.2lC 1/=8�2�1=2ımj [Eq. (4.256)], and Y00 D .4�/�1=2 with

Eqs. (4.156), (5.93), and (5.96), we obtain, from Eq. (7.1),

J.L/ D .4�/�1=2
1X

jD0

1X

lDj

.2 � ıj0/.2lC 1/ NG00;jjll0 .0;L/ ; (7.32)

where NG ������ is the real part of G ������ . Then, for the KP1 chain, if we follow the
developments in Sect. 4.6.1, we obtain the interesting relation

G00;jjll0 .RILI �; �0/ D exp
��.� j2 C ij�0/L

�G00;jjll0 .RILI � D �0 D 0/ ; (7.33)

where we have used Eq. (4.48) for g jj0

l .L/ and note that G ������ is real for � D �0 D 0.
Substitution of Eq. (7.33) into Eq. (7.32) leads to

J.L/ D
1X

jD0
Fj.L/ cos.j�0L/ ; (7.34)

where we note that cos.j�0L/ D cos.2�jr/ from Eq. (7.29), and Fj is given by

Fj.L/ D .2� ıj0/.4�/
�1=2 exp.�� j2L/

�
1X

lDj

.2lC 1/G00;jjll0 .0ILI � D �0 D 0/ : (7.35)

We note that if we integrate both sides of Eq. (4.155) over  and  0, divide them
by 2� , and put R D 0 and u D u0 D ez, we obtain for the ring-closure probability
G.0;u0 j u0IL/

G.0;u0 j u0IL/ D .4�/�1F0.L/ : (7.36)

Now, in the Daniels approximation, G ������ is expanded in inverse powers of L,
suppressing all exponential terms of order exp.�const: L/, so that for the KP1 chain
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G00;jjll0 .RIL/may be set equal to zero for j ¤ 0, as seen from Eq. (7.33). We then have

J.L/ D F0.L/ : (7.37)

For the KP chain, we have the Daniels expansion of G.0;u j u0IL/ from Eq. (3.83)
with R D 0. In the second Daniels approximation, it is given by [13, 14]

G.0;u j u0 D ezIL/ D .4�/�1
�

3

2�L

�3=2 �
1 � 5

8L
� 79

640L2

�3
4

�
1

L
� 1

8L2

�
P1.cos �/C 1

12L2
P2.cos �/CO.L�3/

�
; (7.38)

where Pn is the Legendre polynomial and u D .1, � , �) in spherical polar
coordinates. From Eq. (7.37) with Eqs. (7.36) and (7.38) with u D u0, we then
find

J.L/ D
�

3

2�L

�3=2�
1 � 11

8L
C 103

1920L2
CO.L�3/

�
: (7.39)

Thus, in this approximation, J.L/ is independent of � and �0, as is also seen from
Eqs. (7.35) and (7.37).

On the other hand, the sth approximation to G00;jjll0 .RIL/ by the weighting function
method may be written, from Eq. (4.203), in the form

G00;jjll0 .RIL/ D
�

3

2hR2i
�3=2

w.�/
sX

nD0
Mj

l;n.L/ �
2n ; (7.40)

where � is given by Eq. (4.180) and we choose as the weighting function w.�/ the
function wII.�/ given by Eq. (4.208). With values of G ������.0ILI � D �0 D 0/ so
evaluated with s D 6 and for 0 � j � l � 5, interpolation formulas for Fj.L/ are
constructed. The results are

F0.L/ D
3X

kD0
f0kL�k�3=2 ;

F1.L/ D exp
��.2C �/L�

4X

kD0
f1kL�k ; (7.41)

Fj.L/ D 0 for j 	 2
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with

f00 D 0:3346 ; f01 D �0:4810 ; f02 D �0:04212 ; f03 D 0:1495 ;

f10 D �0:1856 ; f11 D 2:353 ; f12 D 2:344 ; f13 D �18:47 ; f14 D 16:37 :
(7.42)

The range of application of Eqs. (7.41) is limited to 2<
L<
 4 (strictly 2:8<
 L<
 4).
For L>
 4, we may use the Daniels approximation, that is, Eq. (7.39), since
there the values by the weighting function method agree well with those from
Eq. (7.39).

Finally, we construct an empirical interpolation formula for J.L/ for intermediate
L. Let L0 be the value of L at which the value of J given by Eq. (7.31) agrees with
that of J given by Eq. (7.34) with Eqs. (7.41), both for a given value of r. (It may
be determined graphically.) Let J1 and J0

1 be the values of the former J and its first
derivative with respect to L at L D L0 � 0:4 � L1, respectively, and let J2 and J0

2 be
those of the latter J and its first derivative at L D L0 C 0:4 � L2, respectively. J0

1

and J0
2 may be calculated from

J0
1 D JN.L1/

1X

�N�rD�1

	
� 13
2L1
C �2

L 2
1

�
1C .�N/2

1C �
�
C C1 C 1

4



; (7.43)

J0
2 D �

3X

kD0

�
3

2
C k

�
f0kL �5=2�k

2 � cos.2�r/

	
.2C �/F1.L2/

C exp
��.2C �/L2

� 4X

kD1
kf1kL �1�k

2



; (7.44)

where in Eq. (7.43), JN.L/ and C1 are given by Eq. (7.28) with Eq. (7.25)
and Eq. (7.27), respectively, and in Eq. (7.44), F1 and fjk are given by the second
of Eqs. (7.41) and Eqs. (7.42), respectively. Then a good interpolation formula for
J.L/ at constant r, which we denote by J.L; r/, is

J.L; r/ D J1 C J0
1.L � L1/� 1:5625

�
3.J1 � J2/C 0:8.2J0

1 C J0
2/
�
.L� L1/

2

C1:9531�2.J1 � J2/C 0:8.J0
1 C J0

2/
�
.L � L1/

3 .L1 < L < L2/ : (7.45)

J.L/ as an explicit function of L in this range may be calculated from Eq. (7.45) with
Eqs. (7.30).

Values of J.L/ so calculated as an explicit function of L with Eqs. (7.30) for
� D 0 and �0 D 5� are represented by the solid curve in Fig. 7.4. The dotted curves
with r D 0 and 0.5 indicate the upper and lower bounds, respectively. It is interesting
to see that J.L/ stays at zero for very small L, then increases oscillating between the
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Fig. 7.4 Plots of J against L
for � D 0 and �0 D 5� (solid
curve). The dashed curve
represents the values of J.1/
and the dotted curves indicate
the upper (r D 0) and lower
(r D 0:5) bounds of J
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bounds, and finally decreases monotonically. This is consistent with experimental
results, as shown later. The oscillation is due to the fact that if the number of base
pairs in the DNA fragment is not an integral multiple of the helix repeat, the need
to twist the DNA helix in order to make the strand ends meet decreases the J factor
significantly in this range.

7.1.4 Other Ring-Closure Probabilities

In this subsection we apply the method developed in Sect. 7.1.2 to the evaluation
of the ring-closure probabilities G.0;u0 j u0IL/ and G.0IL/ (for the KP1 chain) for
small L, which do not necessarily concern DNA problems. (For large L, they have
already been evaluated.) Since both are related only to the behavior of the chain
contour, the final results may be obtained correctly even if we do not consider the
torsional energy from the start as in the case of the (original) KP chain. Therefore,
we drop the term proportional to .1 C �/�1 from the potential energy E of the
discrete chain and denote the rest by EB.f�ng/. We give only the results with a brief
description of the derivation [11].

(a) G.0;u0 j u0IL/
The corresponding G.0;u0 j u0I n/ for the discrete chain may be written in a form
similar to Eq. (7.14) as follows,

G.0;u0 j u0I n/ D .2�/�3LZ �1
B

Z
h
�f�ng



exp

��EB
�f�ng




Ci
X

˛

k˛R˛
�f�ng


�
dkdf�n�1g ; (7.46)

where ZB is the partition function given by

ZB D
Z

exp
��EB.f�ng/

�
df�ng D

�
4�L

n

�n �
1 � 1

4
LCO.L2/

�
(7.47)
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with df�ng D d�1 � � � d�n and d�p D j sin �pjd�pd�p. The most probable (closed)
configuration is a circle of radius L=2�; that is,

��
p D

�
�

2
;
2�p

n

�
(7.48)

with

�˛ D 0 for all ˛ ; (7.49)

so that we have

E�
B D

�2

L
; (7.50)

h� D ��1 : (7.51)

In this case, the prefactor C0 can be evaluated analytically, and we obtain the final
result

G.0;u0 j u0IL/ D �2L�6 exp

�
��

2

L
C 0:514 L

�
; (7.52)

which is valid for L < 1:9.
We define the J factor J.1/.L/ by

J.1/.L/ D 4�G.0;u0 j u0IL/ : (7.53)

For large L, J.1/.L/ is seen to be given, from Eqs. (7.36), (7.37), and (7.53), by

J.1/.L/ D F0.L/ : (7.54)

Equation (7.54) with the first of Eqs. (7.41) is valid for 2:8<
L<
 4. For
L>
 4; J.1/.L/ may be equated to J.L/ given by Eq. (7.39). A good interpolation
formula for J.1/.L/ for intermediate L is

J.1/.L/ D 0:03882C 0:003494 .L� 1:9/� 0:01618 .L� 1:9/2
C0:008601 .L� 1:9/3 .1:9 < L < 2:7/ : (7.55)

Values of J.1/.L/ calculated from Eq. (7.53) with Eq. (7.52) and Eqs. (7.54)
and (7.55) are represented by the dashed curve in Fig. 7.4. It is seen that J.L/
oscillates around J.1/.L/.



7.1 Ring-Closure Probabilities 265

Fig. 7.5 Determination of
the most probable
configuration of the closed
KP chain without the end
orientations specified (see the
text)

x
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(b) G.0IL/
The (angle-independent) ring-closure probability G.0IL/ may be given by

G.0IL/ D
Z

G.0;u j u0IL/du � G.0; j u0IL/ : (7.56)

The corresponding G.0; j u0I n/ for the discrete chain is given by Eq. (7.46) with
df�ng in place of df�n�1g. We solve the associated variational problem for the
continuous chain [14]. For this purpose, we choose u0 and u to be in the xy plane
so that the x axis bisects the angle between u0 and u, as depicted in Fig. 7.5. The
most probable (closed) configuration without the end orientations specified is then
symmetric about the y axis, so that we need only to consider the range of 0 � s �
L=2.

It is clear that

��
p D

�

2
(7.57)

for the most probable (closed) configuration with s D pL=n. If we define the angle
x.s/ by

x D 1

2
.� � �/ (7.58)

for 0 � s � L=2, then the solution of the Euler equation for x [Eq. (7.15) in the
continuous limit] may be obtained as [14]

Z x�

0

.1 � k 2
0 sin2 x/�1=2dx D 2

L
k �1
0 K.k �1

0 /

�
L

2
� s

�
; (7.59)

where k0 is the solution of the equation

K.k �1
0 / D 2E.k �1

0 / ; (7.60)
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and K.k/ and E.k/ are the complete elliptic integrals of the first and second kinds,
respectively, the former being given by Eq. (6.146). The solution ��.s/ D ��

p may
be written, from Eqs. (7.58) and (7.59), in the form

cos��
p D 1 � 2cn2.v j k0/ (7.61)

with

v D 2k �1
0 K.k �1

0 /

�
1

2
� p

n

�
; (7.62)

where cn .v j k0/ is the Jacobian elliptic function (whose parameter is k0) defined by

cn v D cos' ; (7.63)

v D
Z '

0

.1 � k 2
0 sin2 x/�1=2dx D F.' j k0/ (7.64)

with F.' j k/ the incomplete elliptic integral of the first kind. The Lagrange
multipliers in Eq. (7.15) are found to be

�x D �2
�
K.k �1

0 /
�2
;

�y D �z D �M D 0 :
(7.65)

Since the solution of Eq. (7.60) is k0 D 1:100 [14], we have K.k�1
0 / D 2:321,

�x D �10:77, and

E�
B D

7:027

L
; (7.66)

h� D 0:2554 : (7.67)

We note that ��
0 D 0:860 (D 49ı180/, that Lh is the distance of M from the

initial tangent u0 (not from the x axis), and that the most probable configuration
is characterized by the vanishing curvature .d�=ds D 0/ at the chain ends. In this
case, �x does not vanish, and therefore EB;0 and terms involving �x form a quadratic
form. Thus we obtain the final result

G.0IL/ D 28:01 L�5 exp

�
�7:027

L
C 0:492 L

�
: (7.68)

We note that in the earlier evaluation [14], the factor L�1 appears in place of L�5 in
Eq. (7.68) because of the approximate treatment of the fluctuation.
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Fig. 7.6 Plots of J.0/ against
L. The solid curve represents
the values calculated from
Eq. (7.68), the dot-dashed
curve represents the earlier
(YS) values [14], and the
unfilled circles represent the
Monte Carlo values of
Hagerman [15]
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For large L, we obtain, from the first of Eqs. (3.90) with Eq. (3.85),

G.0IL/ D
�

3

2�L

�3=2�
1 � 5

8L
� 79

640L2
CO.L�3/

�
(7.69)

in the second Daniels approximation, corresponding to Eq. (7.39). The values of
G.0IL/ by the weighting function method agree with those from Eq. (7.68) for
2<
L<
 4 and those from Eq. (7.69) for L>
 4 to within 1 %.

Finally, we consider the J factor J.0/.L/ defined by

J.0/.L/ D G.0IL/ : (7.70)

Its values calculated from Eq. (7.68) for L < 4 are represented by the solid
curve in Fig. 7.6. As was expected, J.0/.L/ is larger than J.1/.L/ and J.L/ in the
range displayed. For comparison, the corresponding values in the earlier evaluation
(YS) [14] are represented by the dot-dashed curve, and the Monte Carlo values
of Hagerman [15] are represented by the unfilled circles. The former values are
somewhat overestimated near the peak, while the latter values are rather in good
agreement with those calculated from Eq. (7.68).

7.1.5 Comparison with Experiment

In this subsection we make a comparison of theory with experiment using exper-
imental data obtained by Baldwin and co-workers [16–18] for DNA. Their earlier
data [16] for the J factor as a function of L or nbp (D L=lbp) are difficult to analyze
precisely, the data points being distributed around the curve of J.1/.L/ against L
[11]. Figure 7.7 shows double-logarithmic plots of J (in mol/l) against nbp with
more accurate data subsequently obtained by Shore and Baldwin [17], although in
the narrow range of nbp. The solid curve represents the best-fit theoretical values
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Fig. 7.7 Double-logarithmic
plots of J (in mol/l) against
nbp for DNA. The filled
circles represent the
experimental values of Shore
and Baldwin [17]. The solid
curve represents the best-fit
theoretical values calculated
with ��1 D 900Å and
ˇ D 3:0� 10�19 erg cm, and
the dashed curve represents
those with ��1 D 950Å and
ˇ D 2:4� 10�19 erg cm 2.412.42.392.382.37
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calculated with ��1 D 900Å and � D �0:4, while the dashed curve represents
those with ��1 D 950Å and � D �0:2, ignoring the largest three observed
values. These two sets of estimates of ��1 and � lead to the values 3:0 � 10�19
and 2:4 � 10�19 erg cm of the torsional force constant ˇ, respectively. The above
values of ��1 are somewhat smaller than those from the transport properties (see
Table 6.3). Further, recall that � may be assumed to be zero for flexible chains
(although � ' 0:5 for most of polymeric materials in the bulk). Since we are
considering local elasticity on the atomic or molecular level, the assumption of
� D 0 or < 0 is not necessarily surprising. The same data were analyzed by a
Monte Carlo method by Levene and Crothers [19], who obtained ��1 D 950Å
and ˇ D 3:8 � 10�19 erg cm. For a wide variety of methods of determination and
estimates of ��1 and ˇ for DNA, the reader is referred to the review article by
Hagerman [20].

Next we consider the distribution of topoisomers. The fraction fN of the
topoisomers with the linking number N is given by

fN D JN=J ; (7.71)

where JN is given by Eq. (7.28) with Eq. (7.25) for small L, and N may be assumed
to take the three values N� and N� ˙ 1. These equations are adapted to an analysis
[21] of data obtained by Shore and Baldwin [18] for the topoisomer distribution as a
function of the amount of ethidium bromide (Et) bound, which unwinds the double
helix. If �Et is the angle (in degrees) by which the binding of an Et molecule unwinds
the helix, the binding of 	 Et molecules per base pair will change the number of
helix turns by ı D 	�Etnbp=360. (Note that �Et ' 26ı [9].) We assume that the
DNA double helix with Et bound may then still be regarded as the KP1 chain with
��1 and � remaining unchanged but with the constant torsion Q�0 given by

Q�0L
2�
D �0L

2�
� ı : (7.72)
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Therefore, the fraction QfN of the topoisomers with the linking number N in the
presence of bound Et is given by Eq. (7.71) with Q�0 and QN� in place of �0 and
N�, respectively, where QN� is an integer closest to Q�0L=2� . Under the experimental
conditions of Shore and Baldwin [18], in the absence of bound Et there exists only
one topoisomer with N D N�, while in its presence there exist only two topoisomers
formed by minimal undertwisting and overtwisting. Let hNi0 and hNi be the average
linking numbers in the absence and presence of bound Et, respectively. We then have

hNi0 D N� ; (7.73)

hNi D QN�Qf QN�

C . QN� � 1/Qf QN��1 for Q�0L=2� � QN�

D QN�Qf QN�

C . QN� C 1/Qf QN�C1 for Q�0L=2� > QN� : (7.74)

Figure 7.8 shows plots of hNi0�hNi against ı with the data of Shore and Baldwin
[18] for nbp D 247. The values of ı have been calculated from the equation ı D
7:7 � 10�3nbpcEt, where cEt is the concentration of Et (in �g/mL). The solid curve
represents the best-fit theoretical values calculated from Eqs. (7.73) and (7.74) with
��1 D 900Å and � D �0:5 (ˇ D 3:6 � 10�19 erg cm). It is interesting to see
that hNi0 � hNi changes in steps. Theoretically, it changes one-by-one with every
unit step of ı. This is due to the fact that QJN at ı is equal to QJN�1 at ı C 1, as seen
from Eqs. (7.25) and (7.28) with Eqs. (7.3) and (7.72). However, each observed step
becomes progressively broader. This may be regarded as arising mainly from the
broadening of the topoisomer distribution by a superimposed distribution of the
number of Et molecules bound [18]. The topoisomer distribution for larger L is
considered in the next section.

Fig. 7.8 Plots of hNi0 � hNi
against ı for DNA with
nbp D 247. The filled circles
represent the experimental
values of Shore and Baldwin
[18], and the curve represents
the best-fit theoretical values
calculated with ��1 D 900Å
and ˇ D 3:6� 10�19 erg cm
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7.2 Topoisomer Statistics

7.2.1 Basic Concepts and Equations

In the present and following subsections we treat the distribution of topoisomers
or the N-dependent ring-closure probability G.0; �0 j�0IN;L/, which we simply
denote here by P.NIL/, and also other related quantities for larger L [22, 23]. For
this purpose, we must introduce two new quantities: the twist Tw and the writhe Wr
[9]. The linking number N is then given by the sum of them [2],

N D TwCWr : (7.75)

Now Tw is the contribution from the twisting of the strands about the helix axis
and Wr is that from the bending of the helix axis. Both are dependent on chain
configuration (or deformation) and can vary continuously. In the present notation,
Tw is defined by [2]

Tw D .2�/�1
Z L

0

!�.s/ds : (7.76)

Then Eq. (7.75) is rather the defining equation for Wr. The expression for it suitable
for the present purpose is the one derived by Le Bret [4]; that is,

Wr D �.2�/�1
Z L

0

�
d�

ds

�
cos �dsCWr.z/ ; (7.77)

where Wr.z/ is the directional writhing number in the direction of ez [2]. Wr.z/
takes only integral values and is defined as follows [2]. Suppose that the closed
chain is projected onto the xy plane and traced in a fixed direction. Let u.o/ and
u.u/ be the unit tangent vectors of the overcrossing and undercrossing contours at an
intersection, respectively. Let nr be the number of intersections for which the triple
(u.o/, u.u/, ez) is right-handed, and let nl be the number of those for which the triple
is left-handed. Then Wr.z/ is given by

Wr.z/ D nr � nl : (7.78)

For example, we have Wr.z/ D 0 for a circle confined in the xy plane and
Wr.z/ D 1 (nr D 1 and nl D 0) for the contour depicted in Fig. 7.9, where the
overcrossing contour is continuous and the undercrossing contour is broken. When
the overcrossing and undercrossing contours in Fig. 7.9 are interchanged, Wr.z/
jumps from 1 to �1. Note that as long as the fluctuation in the configuration is small
around a given fixed configuration, Wr.z/ may be regarded as remaining constant
and independent of configuration, and then the expression for Wr becomes very
simple.
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Fig. 7.9 Symmetrical
projections of the most
probable configuration of the
closed curve with Wr D 0:37

and Wr.z/ D 1 onto the xy
and yz planes (see the text)
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z ez
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We then derive a useful general expression for the distribution P.NIL/ written in
terms of Wr. In what follows, all lengths are measured in units of ��1 and kBT is
chosen to be unity as before. For the discrete chain, P.NIL/ may be written in the
form

P.NIL/ D Z�1
Z 0

exp
��E

�f�ng

�

df�n�1g ; (7.79)

where E and Z are given by Eqs. (7.5) and (7.8), respectively, and the prime on the
integration sign indicates that the integration is carried out under the restrictions
that the chain is closed and that the linking number is equal to N (along with the
boundary condition�0 D �n).

We can carry out analytically the integration in Eq. (7.79) over f n�1g associated
with the torsional part, as follows. We first fix the chain contour, that is, f�ng
and determine the most probable configuration f �

n�1g under this restriction. The
condition @E=@ p D 0 (p D 1, � � � , n � 1) for the extremum may be written, from
Eqs. (7.5)–(7.7), as

.�p � �p�1/ cos
�
1
2
.�p C �p�1/

�C  �
p �  �

p�1 D
�0L

n
C c

.p D 1; � � � ; n/ ; (7.80)

where c is a constant independent of p. It is seen from the third of Eqs. (4.10)
that the left-hand side of Eq. (7.80) corresponds to .L=n/!�.s/ at s D pL=n
for the continuous chain. In the most probable configuration, therefore, we have
!�.s/ D �0 C cn=L, so that !�.s/ is independent of s. From Eqs. (7.75) and (7.76),
c is then found to be 2�.�N �Wr/=n. This completes the determination of f �

n�1g
from Eq. (7.80). From Eqs. (7.5)–(7.7) and (7.80), E may then be expressed exactly
(without the infinitesimally small terms added) in terms of the fluctuations fı n�1g
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in f n�1g around f �
n�1g as

E D EB
�f�ng


C �2.�N �Wr/2

.1C �/L C n

4.1C �/L
nX

pD1
.ı p � ı p�1/2 (7.81)

with ı 0 D ı n D 0, where the second and third terms on the right-hand side
of Eq. (7.81) are the minimum of the torsional energy and its fluctuating term,
respectively. By the use of Eq. (7.81), the integration over f n�1g (or fı n�1g) in
Eq. (7.79) can be carried out analytically, and P.NIL/ may be expressed in the form
of a convolution integral

P.NIL/ D 1
�
4�.1C �/L�1=2

Z
P.WrIL/ exp

�
��

2.�N �Wr/2

.1C �/L
�

dWr (7.82)

with P.WrIL/ being the Wr-dependent ring-closure probability (irrespective of the
value of N) given by

P.WrIL/ D Z �1
B

Z 0
exp.�EB/df�n�1g=dWr ; (7.83)

where ZB is given by Eqs. (7.47) and the prime on the integration sign indicates that
the integration is carried out under the restriction that the chain is closed (and its
writhe is equal to Wr).

The convolution form of Eq. (7.82) indicates that the variance
˝
.�N/2

˛
of the

linking number is equal to the sum of the variances of Tw and Wr,

˝
.�N/2

˛ D ˝.�Tw/2
˛C hWr2i ; (7.84)

where�Tw D Tw � N D �N �Wr, and we have, from Eq. (7.82),

˝
.�Tw/2

˛ D .2�2/�1.1C �/L : (7.85)

Finally, we note that for the discrete chain Eq. (7.77) is replaced by

Wr D �.2�/�1
nX

pD1
.�p � �p�1/ cos

�� 1
2
.�p C �p�1/

�CWr.z/ : (7.86)

7.2.2 Distribution of the Writhe

As seen from Eq. (7.82), the evaluation of P.NIL/ is reduced to that of the
distribution of the writhe P.WrIL/. The latter may be written in a form similar to
Eq. (7.14) as follows,
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P.WrIL/ D .2�/�4LZ �1
B

Z
h
�f�ng



exp

	
�EB

�f�ng



Ci
X

˛

k˛R˛
�f�ng


C ikwŒWr
�f�ng


 �Wr�



dkdf�n�1g ; (7.87)

where the sum over ˛ is taken over x, y, z, and M, and dk D dkxdkydkzdkMdkw.
We may evaluate P.WrIL/ only for Wr 	 0, since P.WrIL/ D P.�WrIL/.
However, the evaluation is limited to the following three ranges: (1) Wr ' 0, (2)
0� Wr � 1, and (3) 1 < Wr<
 2. In each case, evaluation is carried out by taking
proper account of the small fluctuations in f�n�1g around f��

n�1g. Thus we finally
construct an empirical interpolation formula valid for all values of Wr. It is then
convenient to write P.WrIL/ in the form

P.WrIL/ D �2L�7 exp

�
��

2

L

�
QP.WrIL/ (7.88)

and derive expressions for QP.WrIL/. Note that LP= QP is just equal to the leading term
of G.0;u0 j u0IL/.

We first consider the range (1). The most probable configuration for Wr D 0 is
clearly a circle of radius L=2� with the bending energy E�

B D �2=L. If only the
fluctuations of first order are retained, the integrations over k˛ (˛ D x, y, z, M)
and f�n�1g in Eq. (7.87) can be carried out analytically, but that over kw must be
numerically treated. It can then be analytically shown that QP.WrI L/ depends on Wr
and L as Wr=L for Wr ' 0. A good interpolation formula so found is

ln QP0.WrIL/ D
6X

jD0
10 jaj

�
Wr

L

�2j

for
Wr

L
� 0:32

D 4:22414� 2p3�2
�

Wr

L

�
for

Wr

L
> 0:32 ; (7.89)

where the subscript 0 on QP indicates that it is valid for Wr ' 0; and aj are numerical
constants and their values are given in Table 7.2.

Table 7.2 Values of aj, bj, cj, and dj in Eqs. (7.89), (7.92) and (7.93)

j aj bj cj dj

0 1:9379 68:381 � � � �0:197997609403
1 �17:412 63:638 8:7456 �0:059664102410
2 26:565 30:812 �0:42137 �0:03384594250
3 �46:347 �47:432 3:7180 0:06596504601

4 55:487 2:6680 �4:0179 �0:0154304201201
5 �37:040 � � � 2:5937 � � �
6 10:218 � � � � � � � � �
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Next we consider the range (2). The most probable configuration for a given
Wr ranging from 0 to 1 was determined by Le Bret [4]; it changes from the circle
with Wr D 0 to the 8-shaped configuration with Wr D 1. Figure 7.9 shows as
an example the most probable configuration with Wr D 0:37 and Wr.z/ D 1

(determined following Le Bret). In this section the most probable configuration with
0 � Wr � 1 is also referred to as the 8-shaped configuration, for convenience.
Further, the contour points A1 and A2 corresponding to the crossing in the xy plane
are called the “nodes” of the 8-shaped configuration.

Before proceeding to make further developments, we must make two remarks.
The first concerns a kind of asymmetry of the shape of the 8-shaped configuration.
When the most probable configuration is an 8-shaped configuration, it is necessary
to constrain h in addition to u0 and RM (D 0) in contrast to the case of the circle.
The imposition of the constraint on h is equivalent to specifying the segment number
Op, or the contour distance Os, of one of the nodes. Thus the integration over f�n�1g
in Eq. (7.87) may be carried out first over f�n�1g with h fixed, and then over h,
where in the latter integration we may change variables from h to Os (0 � Os �
L=2). The second remark concerns the value of Wr.z/. Consider the most probable
configuration for Wr D Wr� (0 � Wr� � 1) and Wr.z/ D 1, and allow the
fluctuations around it under the restriction that the first term on the right-hand side of
Eq. (7.86) is equal to Wr��1. If we consider formally the mathematical fluctuations
in f�n�1g, the chain, which is then phantom, is allowed to cross itself in the course
of the deformation from the most probable configuration. The configurations that
result may then be classified into two types: one with Wr.z/ D 1 and the other
with Wr.z/ D �1 (with the configurations with jWr.z/j 	 2 being ignored). From
Eq. (7.86), we have Wr D Wr� and Wr D Wr� � 2 for the configurations with
Wr.z/ D 1 and Wr.z/ D �1, respectively. In order to evaluate P.Wr D Wr�IL/,
we must therefore inhibit the fluctuations leading to Wr.z/ D �1. We note that
even the small fluctuations may actually lead to the latter case for the phantom
chain with Wr� ' 1, and that the inhibited configurations make contribution to
P.Wr D Wr� � 2IL/ (see below). This requirement may be taken into account,
although only approximately, by imposing the constraint that only the fluctuations
that satisfy e�

12 � R12 > 0 are allowed, where R12 is the vector distance between the
contour points Os (corresponding to A1) and OsC L=2 (corresponding to A2), and e�

12

is the unit vector in the direction of R12 D R�
12 in the most probable configuration.

This constraint can be imposed on the configuration integral by the use of a Fourier
representation of a unit step function.

Thus, considering the above two remarks, we may evaluate P.WrIL/ from
Eq. (7.87) by introducing in the integrand a factor�,

� D .2�/�2
Z L=2

0

dOs
ˇ̌
ˇ̌dh

dOs
ˇ̌
ˇ̌
Z 1

0

da
Z

dkhdka

� exp
˚
ikh
�
h
�f�ng


� h.Os/�C ikaŒe�
12 � R12

�f�ng

 � a�

�
: (7.90)
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If only the fluctuations of first order are retained, we can carry out analytically
all the integrations except over Os, the result being almost independent of Os. Thus,
multiplying it by L=2, we obtain

QP1.WrIL/ D C0.Wr/

	
1 � 1

2
erfc

�
C1.Wr/

L1=2

�

exp

�
��

2

L
g.Wr/

�
(7.91)

with the good interpolation formulas for C0 and C1,

C0.Wr/ D
4X

jD0
bjWrj ; C1.Wr/ D

5X

jD1
cj.1 �Wr/j ; (7.92)

where the subscript 1 on QP indicates that it is valid for 0 � Wr � 1; bj and cj are
numerical constants and their values are given in Table 7.2; erfc.x/ D 1 � erf.x/
is the complementary error function, erf.x/ being given by Eq. (6.52); and g.Wr/ is
the function defined by Le Bret [4] so that �2

�
1C g.Wr/

�
=L is the bending energy

in the most probable configuration for a given Wr, and is given by

g.Wr/ D 2p3Wr � 11
8

Wr2 C
4X

jD0
djWr3Cj (7.93)

with dj being numerical constants whose values are given in Table 7.2. In Eq. (7.91),
the factor .1 � 1

2
erfc/ represents the effect of the constraint e�

12 � R12 > 0. We note
that if this constraint is removed, this factor reduces to 1, and that when Wr D 1, it
is equal to 1

2
[since erfc.0/ D 1], reflecting the fact that the fluctuations leading to

Wr.z/ D 1 and �1 are equally probable.
In the range (3), we may derive an expression for QP.WrIL/ indirectly without

recourse to the most probable configuration. As mentioned above, the configurations
with Wr.z/ D �1 make contribution to P.Wr D Wr� � 2IL/. This is just what we
desire here. The expression for it can readily be derived from the fact that the sum
of P.Wr D Wr�IL/ and P.Wr D Wr� � 2IL/ should be equal to the probability
P.Wr D Wr�IL/ without any restriction on Wr.z/, which is given by Eq. (7.88)
with QP D QP1 given by Eq. (7.91) without the factor .1 � 1

2
erfc/. Thus, if we use

the relations P.WrIL/ D P.�WrIL/ and erfc.�x/ D 2 � erfc.x/ and if we put
2�Wr� D Wr (1 < Wr < 2), then QP.WrIL/ valid for 1 < Wr<
 2, which we denote
by QP0

1.WrIL/, is given by

QP0
1.WrIL/ D QP1.WrIL/ (7.94)

with

C0.Wr/ D C0.2 �Wr/ ; C1.Wr/ D �C1.2 �Wr/ ;

(7.95)

g.Wr/ D g.2 �Wr/ .1 < Wr<
 2/ :
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Fig. 7.10 Plots of
ln QP.WrI L/ against Wr2 for
the indicated values of L. The
values are those from the
interpolation formula,
Eqs. (7.96)
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Finally, we construct an empirical interpolation formula for QP such that it gives

QP0 for Wr ' 0; QP1 for 0� Wr � 1, and QP0
1 for 1 < Wr<
 2. The result reads

QP.WrIL/ D QP0.WrIL/ QP1.WrIL/Q.WrIL/ for 0 � Wr � 1
D QP0.WrIL/ QP0

1.WrIL/Q.WrIL/ for 1 < Wr < 2

D 0 for Wr 	 2 (7.96)

with

Q.WrIL/ D 1

C0.0/
exp

 
2
p
3�2Wr

L

!
: (7.97)

The range of application of Eqs. (7.96) is limited to L<
 5. Values of ln QP calculated
from Eqs. (7.96) with Eq. (7.97) are plotted against Wr2 in Fig. 7.10 for the indicated
values of L. It is seen that the plots are not linear, indicating that the distribution of
Wr is not Gaussian at least in the range of L<
 4. We note that Le Bret [24] and Chen
[25] evaluated the distribution of Wr for (trivial-knot) cyclic, freely jointed chains
of 10–150 bonds by Monte Carlo methods and found that the results are almost
Gaussian.

7.2.3 Moments of the Writhe

The moments hWr2mi of Wr may be evaluated from

hWr2mi D

Z 1

�1
Wr2m QP.WrIL/dWr

Z 1

�1
QP.WrIL/dWr

(7.98)
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with the unnormalized distribution function of Wr. This is a defining equation for
them. We can obtain numerical results, in particular, for hWr2i from Eq. (7.98),
which are valid for L<
 4.

For very small L, however, we can derive the expansion of hWr2mi around L D 0.
If we expand the exponential term in the integrand of Eq. (7.82), then P.NIL/ may
be expressed as an expansion in terms of�N=.1C�/ and .1C�/�1, the expansion
coefficients being expressed in terms of hWr2mi. On the other hand, P.NIL/ given
by Eq. (7.25) may also be written as an expansion in terms of �N=.1 C �/

and .1 C �/�1. From a comparison of these two expansions, hWr2mi may be
obtained. The results so obtained are summarized as follows. The second moment is
given by

hWr2i D 0:00384974 L2
�
1C 0:164 LCO.L2/� ; (7.99)

and the leading terms of the ratios hWr2mi=hWr2im for m D 2 � 5 are 3.7198,
28.599, 377.87, and 7744.6, respectively. These ratios are appreciably larger than
the corresponding values 3, 15, 105, and 945 expected for the (one-dimensional)
Gaussian distribution, indicating that the distribution of Wr for small L is
much broader than the Gaussian distribution having the same hWr2i (see also
Fig. 7.10).

For large L, we evaluate hWr2i by Monte Carlo simulations by the use of the
discrete version of the KP ring defined in Sect. 3.5 [23]. In some problems for ring
polymers, especially for circular DNAs, we must distinguish the rings of the trivial
knot from those of the nontrivial ones. For this sorting operation, we have adopted
the criterion of the Alexander polynomial [26, 27] following Vologodskii et al. [28],
although the criterion cannot reject some nontrivial knots such as the Kinoshita–
Terasaka knot of crossing number 11 [29]. In a Monte Carlo simulation, an ensemble
of the trivial knot (trivial-knot ensemble) has been constructed so that rings of the
trivial knot are extracted from an ensemble of all kinds of knots (mixed ensemble)
that obeys the Boltzmann distribution with the potential energy given by the ring
version of Eq. (3.104). Figure 7.11 shows plots of the fraction xt of samples of the
trivial knot in ensembles of all kinds of knots against log L with Monte Carlo data
for the discrete KP ring [30] and for the freely jointed ring by Moore et al. [31]. It
is seen that xt is almost equal to unity up to L ' 10, indicating that the distinction
between the trivial-knot and mixed ensembles is not necessary for L<
 10 at least,
the situation being consistent with the behavior of the scattering function shown in
Fig. 5.13.

Now hWr2i of the discrete KP ring of the trivial knot for large L may be evaluated
as the equilibrium average of Wr2 by the use of the trivial-knot ensemble. For every
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Fig. 7.11 Plots of xt against
log L with Monte Carlo data
for the discrete KP ring (�)
[30] and the freely jointed
ring (�) [31]
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sample configuration of the discrete KP ring with number n of bonds, Wr may be
calculated from the Le Bret expression [4],

Wr D .2�/�1
nX

pD1

˚
sin�1�sin �p sin.�pC1 � 
p/

�

� sin�1�sin �p sin.�p � 
p/
��CWr.z/ ; (7.100)

where np D .1, �p, 
p) (0 < �p < �=2) in spherical polar coordinates is the
unit vector perpendicular to up and upC1. Note that Eq. (7.100) is an alternative to
Eq. (7.86) suitable for discrete chains and that the former reduces to the latter when
the difference between up and upC1 is small. Figure 7.12 shows plots of hWr2i=L
against log L. The unfilled circles represent the present Monte Carlo values [23]
and the vertical bars without circles represent those of Frank-Kamenetskii et al.
[32], both for the discrete KP ring. For comparison, the figure also includes the
Monte Carlo values of Vologodskii et al. [33], Le Bret [24], and Chen [25] for the
freely jointed ring. We note that all these values were obtained for the trivial-knot
rings without excluded volume. It is seen that the coil-limiting value of hWr2i=L
for the discrete KP ring is appreciably larger than that for the freely jointed chain.
In Fig. 7.12, the solid curve represents the theoretical values numerically calculated
from Eq. (7.98), and it is seen that there is good agreement between the theoretical
and Monte Carlo values for the discrete KP ring for L<
 3. Thus a good interpolation
formula for hWr2i constructed on the basis of these results is

hWr2i D 0:112L3

10:71C L2
exp.�9:882L�2:5/C 0:00385L2 exp.�2L/.1C 1:491L

C8:423L2 � 14:09L3 C 17:55L4 � 5:552L5 C 0:6018L6/ : (7.101)

In Fig. 7.12, the dashed curve represents the values calculated from Eq. (7.101).
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Fig. 7.12 Plots of hWr2i=L against log L with Monte Carlo data; � [23], � [32] for the discrete
KP ring;� [33],� [24],� [25] for the freely jointed ring. The solid and dashed curves represent
the values calculated from Eqs. (7.98) and (7.101), respectively

7.2.4 Distribution of the Linking Number

Values of ln
�
P.NIL/=P.�N D 0IL/� calculated as a function of .�N/2 from

Eq. (7.82) with Eqs. (7.88) and (7.96) for � D �0:3 are represented by the solid
curves in Fig. 7.13 for the indicated values of L. [Recall that P.NIL/ depends on N
as j�Nj.] For comparison, the corresponding values calculated from Eq. (7.25) are
represented by the dashed curves. Recall that this P.NIL/ diverges at j�Nj=.1 C
�/>
 31=2. It is seen that the deviation (of the solid curves) from linearity is small
for L 	 3 and so even for L < 3 provided that j�Nj<
 0:5. In other words, P.NIL/ is
Gaussian in such a range of j�Nj (under ordinary experimental conditions) at least
for L<
 5. For large L, the Monte Carlo results of Le Bret [24] and Chen [25] show
that P.WrIL/ is Gaussian, as already mentioned, so that it follows from Eq. (7.82)
that P.NIL/ must also be Gaussian there. Thus it may be concluded that P.NIL/ is
almost Gaussian for all values of L. This is consistent with the experimental finding
[18, 34–37] for the distribution fN of topoisomers,

fN D const:

�
�K.�N/2

RT

�
; (7.102)

where K is a constant called the apparent twisting coefficient and R is the molar gas
constant.
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Fig. 7.13 Plots of lnŒP.NI L/
=P.�N D 0I L/� against
.�N/2 for � D �0:3 and for
the indicated values of L. The
solid and dashed curves
represent the values
calculated from Eqs. (7.82)
and (7.25), respectively
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Now we consider the dependence of K on L (or nbp). For the Gaussian distribution
fN ; K is related to its variance by the equation

K

RT
D 1

2
˝
.�N/2

˛ ; (7.103)

so that by the use of Eqs. (7.84) and (7.85), we have

nbpK

RT
D �0

�
1C 2�2hWr2i

.1C �/L
��1

; (7.104)

where �0 (unreduced) is given by

�0 D 2�2ˇ

lbpkBT
: (7.105)

Figure 7.14 shows plots of nbpK=RT against nbp. The unfilled and filled circles
represent the experimental values of Shore and Baldwin [18] in 50 mmol/l NaCl
and 10 mmol/l MgCl2 at 20 ıC and those of Horowitz and Wang [37] in 10 mmol/l
MgCl2 at 37 ıC, respectively. Curve 1 represents the best-fit theoretical values
calculated from Eq. (7.104) with Eq. (7.101) for the former data with ��1 D 1350Å
and ˇ D 3:1 � 10�19 erg cm, and curve 2 represents those for the latter with
��1 D 1050Å and ˇ D 3:2 � 10�19 erg cm. It is seen that the theory may explain
well the behavior of K, although the data of the two groups are somewhat different
from each other. In any case, it is important to see that as nbp is increased, nbpK first
decreases and then becomes a constant. This decrease arises from the fluctuation in
the writhe Wr.
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Fig. 7.14 Plots of nbpK=RT
against nbp for DNA;�, in
50 mmol/l NaCl and
10 mmol/l MgCl2 at 20 ıC
[18];�, in 10 mmol/l MgCl2
at 37 ıC [37]. Curve 1
represents the best-fit
theoretical values calculated
for the former data with
��1 D 1350Å and
ˇ D 3:1� 10�19 erg cm, and
curve 2 represents those for
the latter with ��1 D 1050Å
and ˇ D 3:2� 10�19 erg cm
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7.2.5 Mean-Square Radii of Gyration

In this subsection we evaluate the mean-square radius of gyration hS2iN of the KP1
ring with the linking number N fixed and also the mean-square radii of gyration
hS2iWr and hS2i of the KP ring with the writhe Wr fixed and without any restriction,
respectively, by the Monte Carlo method as used for the evaluation of hWr2i [23].

For this purpose, we consider the same discrete chain as that in Sect. 7.2.3.
The distribution function P.f�ng jNIL/ of f�ng for the KP1 ring with the linking
number N is given by

P
�f�ng jNIL


 D const: exp
��E

�f�ng

�
; (7.106)

where E is given by Eq. (7.5) with �0 � �N and �s D L=n but without the
infinitesimally small terms added. Then hS2iN may be evaluated from

hS2iN D
Z

S2
�f�ng



P
�f�ngjNIL



df�ng ; (7.107)

where S2.f�ng/ is the squared radius of gyration for the configuration f�ng. We can
carry out analytically the integration in Eq. (7.107) over f ng as in the derivation of
Eq. (7.82) and obtain

hS2iN D C �1
N

�Z
S2
�f�ng



exp

	
��

2
�
�N �Wr

�f�ng

�2

.1C �/L

�

(7.108)

with

CN D
�
exp

	
��

2
�
�N �Wr

�f�ng

�2

.1C �/L

�
: (7.109)



282 7 Applications to Circular DNA

In Eqs. (7.108) and (7.109), h� � � i on each right-hand side indicates the equilibrium
average by the use of the mixed or trivial-knot ensembles.
hS2iWr is closely related to hS2iN . It can be shown from Eq. (7.108) that

hS2iN D
Z
hS2iWrP.Wr jNIL/ dWr ; (7.110)

where P.WrjNIL/ is the conditional distribution function of Wr for the KP1 ring
with N fixed and is given, from Eq. (7.82) for P.NIL/, by

P.WrjNIL/ D 1
�
4�.1C �/L�1=2

P.WrIL/
P.NIL/

� exp

�
��

2.�N �Wr/2

.1C �/L
�
: (7.111)

We note that P.WrIL/ is defined by Eq. (7.83) for the KP ring. On the other hand,
hS2i may be expressed in terms of hS2iWr as

hS2i D
Z
hS2iWrP.WrIL/ dWr : (7.112)

We note that hS2i is just equal to hS2iN with .1C�/!1, that is, with the vanishing
torsional energy, as seen from Eqs. (7.110)–(7.112).

Before presenting numerical results, we consider the limiting cases. For small
L, we can evaluate analytically hS2iN and hS2i for the discrete chain, followed by
extrapolation to n D 1, as in Sect. 7.1.2. The result for hS2iN so derived from
Eq. (7.107) reads

hS2iN D L2

4�2

�
1 � CSLCO.L2/� ; (7.113)

where CS is a function of �N=.1C �/ � a and is given by

CS.a/ D 0:1140 exp.0:21687 a2 � 0:063708 a4C 0:075371 a6/

.jaj � 1:45/ : (7.114)

As noted above, hS2i is obtained, from Eq. (7.113) with .1C �/!1 (a! 0), as

hS2i D L2

4�2

�
1 � 0:1140 LCO.L2/� : (7.115)

On the other hand, note that for large L, hS2i is given by Eq. (3.166).
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Fig. 7.15 Plots of hS2iWr=hS2i against Wr with Monte Carlo data for the indicated values of L [23].
The dot-dashed curve (L D 0) represents the theoretical values calculated for the most probable
configuration [23] for a given Wr

Now we proceed to the Monte Carlo evaluation. As in the case of hWr2i in
Sect. 7.2.3, values of hS2iWr for Wr D m� may be evaluated as the equilibrium
average of S2 whose Wr lies between

�
m � 1

2



� and

�
m C 1

2



�, where m is an

integer and � is a constant in the range of 0.05–0.25 properly chosen for each
value of L. The averages hS2i may be taken over all the generated configurations.
Figure 7.15 shows plots of the ratio hS2iWr=hS2i against Wr for the indicated values
of L [23]. The dot-dashed curve .L D 0/ represents the theoretical values calculated
for the most probable configuration [4] for a given Wr (with hS2i D hS2iWrD0 for
L D 0). Recall that this configuration changes from the circle with Wr D 0 to the 8-
shaped configuration with Wr D 1. It is seen that as Wr is increased from 0; hS2iWr

decreases rather rapidly for small L and gradually for large L, indicating that the
chain takes an open form for small Wr and a more compact form for large Wr.

Figure 7.16 shows plots of the ratio 12hS2i=L (of hS2i to its coil-limiting value
L=12 for the phantom KP ring) against log L. The unfilled and filled circles represent
the Monte Carlo values for the mixed and trivial-knot ensembles, respectively [23,
30]. The dotted curve represents the values of 12hS2i=L D 3L=�2 for the rigid
ring, and the dot-dashed and dashed curves represent the values calculated from
Eqs. (7.115) and (3.166), respectively. It is seen that for both the mixed and trivial-
knot ensembles the ratio increases monotonically with increasing L. Its values for
them agree well with each other for L<
 10 and are well reproduced by Eqs. (7.115)
for L<
 3, while the former values deviate downward from the latter as L is increased
from about 10 because of the contributions of nontrivial knots, as shown in Fig. 7.11.
The former values for large L are necessarily reproduced by Eq. (3.166) valid for
large L.
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Fig. 7.16 Plots of 12hS2i=L against log L with Monte Carlo data for the mixed (�) and trivial-
knot (�) ensembles [23, 30]. The dotted curve represents the values for the rigid ring, and the
dot-dashed and dashed curves represent the values calculated from Eqs. (7.115) and (3.166),
respectively. The solid curve represents the values calculated from Eqs. (7.116)

An empirical interpolation formula for hS2i constructed for the phantom KP ring
on the basis of the Monte Carlo values along with Eqs. (7.115) and (3.166) is

hS2i D L2

4�2
.1 � 0:1140 L� 0:0055258 L2

C0:0022471 L3 � 0:00013155 L4/ for L � 6

D L

12

�
1 � 7

6L
� 0:025 exp.�0:01 L2/

�
for L > 6 : (7.116)

In Fig. 7.16, the solid curve represents the values calculated from Eqs. (7.116). It
is seen that the interpolation formula well reproduces the Monte Carlo values for
the mixed ensemble over the whole range of L and also those for the trivial-knot
ensemble in the range of L<
 10.

It is seen from Eq. (7.108) that the Monte Carlo values of hS2iN D hS2i�N may
be computed as a continuous function of �N from

hS2i�N D

X

f�ng
Qf�N
�f�ng



S2
�f�ng




X

f�ng
Qf�N
�f�ng


 (7.117)
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Fig. 7.17 Plots of hS2i�N =hS2i�ND0 against �N=L with Monte Carlo data for � D �0:3 and for
the indicated values of L [23]

with

Qf�N D exp

�
��

2.�N �Wr/2

.1C �/L
�
: (7.118)

Values of the ratio hS2i�N=hS2i�ND0 so obtained for � D �0:3 are plotted against
�N=L in Fig. 7.17 for the indicated values of L [23]. The values represented by the
dashed curves (for large �N) are not very accurate. It is seen that hS2i�N decreases
with increasing�N, and that the dependence of hS2i�N=hS2i�ND0 on�N=L is rather
insensitive to change in L for L>
 8, while it is sensitive for smaller L. We note
that the dependence of hS2i�ND0 on L for � D �0:3 is similar to that of hS2i; the
ratio hS2i�ND0=hS2i exceeds unity only slightly, having the maximum value 1.07 at
L ' 6.

Finally, it is important to note that the values of jWrj and j�Nj considered above
are not so large that the chain cannot take the typical interwound form [9].

7.3 Translational Friction Coefficient of Topoisomers

In this section we evaluate the translational friction and sedimentation coefficients,
or the function fD defined by the first line of Eqs. (6.36), for the DNA topoisomer
with the linking number N by an application of the OB procedure to the KP1
cylinder ring [38]. For convenience, the fD function for the KP1 ring with the linking
number N is denoted by fD;N . As in the case of fD (for the KP ring), fD;N may be given
formally by Eq. (6.137), that is,

fD;N D
Z L=2

0

K.sIN;L; d/ ds ; (7.119)
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where the kernel K depends also on N. It may be expressed as

K.sIN;L; d/ D ˝A.R; �;L; d/˛N (7.120)

with

A.R; �;L; d/ D hjR� Orj�1iOr

D 1
�
R2 C 1

4
d2

1=2

1X

mD0

.2m� 1/ŠŠ.4m� 1/ŠŠ
2mmŠ.2m/Š

�
�

Rd sin�

2.R2 C 1
4
d2/

�2m

; (7.121)

where R and Or have the same meaning as those in Eq. (6.14) with R D jRj and jOrj D
d=2, � is the angle between R and u.s1/, and h� � � iN denotes the configurational
average for the KP1 ring with the linking number N.

Now we consider the same discrete KP1 ring as that in the last section with
�s D L=n and s D p�s D .j � i/�s (p D 1, � � � , n). For this discrete chain, the
kernel may be calculated from

K.p�sIN;L; d/ D hAijiN (7.122)

with

Aij D A.Rij; �ij;L; d/ ; (7.123)

where Rij is the vector distance between the centers of the ith and jth segments with
Rij D jRijj, and �ij is the angle between Rij and the direction ui of the ith segment.
As in Eq. (7.117), hAijiN may then be computed by the Monte Carlo method from

hAijiN D

X

f�ng
Qf�N
�f�ng



Aij
�f�ng




X

f�ng
Qf�N
�f�ng


 : (7.124)

Thus Eq. (7.119) for fD;N D fD;�N may be reduced to [38]

fD;�N D C.�s; d/C�s
n=2X

pD1

�
1 � 1

2
ıp1 � 1

2
ıp;n=2



K.p�sIN;L; d/ ;

(7.125)

where C is the contribution from K.s/ in the range of s from 0 to �s (at s ' 0),
the explicit expression being omitted, and n is assumed to be even. Values of the
ratio fD;�N=fD;�ND0 calculated from Eq. (7.125) for � D �0:3 and d D 0:025 are
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Fig. 7.18 Plots of fD;�N

=fD;�ND0 against �N=L for
� D �0:3 and d D 0:025 and
for the indicated values of L.
The values are those from
Eq. (7.125)
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plotted against �N=L in Fig. 7.18 for the indicated values of L, corresponding to
Fig. 7.17. It is seen that fD;�N increases with increasing�N, and that the dependence
of fD;�N=fD;�ND0 on �N=L is rather insensitive to change in L for L>
 8, while it is
sensitive for smaller L. We note that the ratio fD;�N=fD;�ND0 is almost independent
of d in the range of 0:015 � d � 0:03, although fD;�N itself depends on d. Although
the present results are limited to the range of small �N, they are consistent with
the experimental finding [39–41] that as j�Nj is increased from 0, fD;�N (or s�N)
first increases rather rapidly, then exhibits a broad maximum, and finally increases
steadily.

Experimentally, however, the ratio fD;�N=f �
D has been determined, where f �

D is the
fD function for the corresponding nicked (untwisted) DNA that contains one single-
chain scission per molecule. Therefore, the comparison of theory with experiment
requires some comments. The DNA helix has been considered to be essentially
continuous in the nicked DNA; a single-strand break in the DNA has little effect
on the bending of the chain axis [42], and the ends of the strands are aligned across
the nick [17]. We therefore assume that the linking number N of the nicked DNA
fluctuates, taking only integral values. Then the fraction of the ones with the linking
number N may be equated to the fraction fN of the topoisomers with the linking
number N. Thus f �

D may be given by

f �
D D

1X

ND�1
fD;�NfN (7.126)

with

fN D

X

f�ng
Qf�N
�f�ng




1X

ND�1

X

f�ng
Qf�N
�f�ng



: (7.127)



288 7 Applications to Circular DNA

86420

1.4

1.2

1.0

L = 32
16
8

−ΔN / nbp × 103

f D
, Δ

N
/f D

*

Fig. 7.19 Plots of fD;�N=f �

D against ��N=nbp for PM2 DNA of nbp D 10;050 in 3 mol/l CsCl
at 20 ıC (�) [41] and pAB4 DNA of nbp D 7020 in 0.2 mol/l NaCl at 20 ıC (�) [43]. The
solid curves represent the Monte Carlo values corresponding to Fig. 7.18, and the filled triangles
represent those for the discrete KP chain with L D 23:9, d D 0:05, and � D �0:33, which
corresponds to pAB4 DNA [43]

It has been numerically found from Eq. (7.126) that f �
D agrees with fD for the KP

ring to within 0.01 % for L>
 6 [38]. This also justifies the analysis in Sect. 6.6.3,
where the experimental data for f �

D (for L>
 12) have been analyzed regarding the
nicked DNA as the KP ring.

Figure 7.19 shows plots of fD;�N=f �
D against ��N=nbp. The unfilled circles and

triangles represent the experimental values of Wang [41] for PM2 DNA of nbp D
10;050 in 3 mol/l CsCl at 20 ıC and those of Rybenkov et al. [43] for pAB4 DNA
of nbp D 7020 in 0.2 mol/l NaCl at 20 ıC, respectively. The solid (accompanied by
dashed) curves with L D 32, 16, and 8 correspond to those in Fig. 7.18. The filled
triangles represent the Monte Carlo values obtained by Rybenkov et al. [43] for the
discrete KP ring with L D 23:9, d D 0:05, and � D �0:33, which corresponds to
pAB4 DNA, using the Zimm rigid-body ensemble approximation [44] to evaluate
fD;�N for its given configurations.

Finally, brief mention is made of earlier theories. Fukatsu and Kurata [45] and
Bloomfield [46] considered a multiple-ring molecule composed of flexible rings
of equal size linearly connected. However, this is not a realistic model; it has been
pointed out [39, 40] that if the number of rings is assumed to be nearly equal to j�Nj,
the theoretical values of fD;N are considerably larger than the experimental values.
On the other hand, Gray [47] considered a rigid (rodlike) interwound superhelix
to evaluate fD but did not make an analysis of its dependence on �N. Camerini-
Otero and Felsenfeld [48] evaluated fD;N for the same superhelix and showed that it
changes only slowly with�N for relatively large�N, in agreement with experiment
[40]. However, the rigid molecule is not realistic at least for small �N.

For various aspects of the problem of the supercoiling of DNA, the reader is
referred to the review article by Vologodskii and Cozzarelli [49].
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Chapter 8
Excluded-Volume Effects

This chapter deals with the theory of the excluded-volume effects in dilute solution,
such as various kinds of expansion factors and the second and third virial coef-
ficients, developed on the basis of the perturbed HW chain which enables us to
take account of both effects of excluded volume and chain stiffness. Necessarily,
the derived theory is no longer the two-parameter (TP) theory [1], but it may
give an explanation of experimental results [2] obtained in this field since the late
1970s, which all indicate that the TP theory breaks down. There are also some
causes other than chain stiffness that lead to its breakdown. On the experimental
side, it has for long been a difficult task to determine accurately the expansion
factors since it is impossible to determine directly unperturbed chain dimensions
in good solvents. However, this has proved possible by extending the measurement
range to the oligomer region where the excluded-volume effect disappears. Thus an
extensive comparison of the new non-TP theory with experiment is made mainly
using such experimental data recently obtained for several flexible polymers. As for
semiflexible polymers with small excluded volume, some remarks are made without
a detailed analysis.

8.1 End-Distance and Gyration-Radius Expansion Factors

8.1.1 Perturbation Theory

Consider the HW chain of total contour length L on which nC 1 beads (segments)
are arrayed with spacing a between them along the contour, so that L D na [3], and
suppose that there exist excluded-volume interactions between them expressed in
terms of the usual binary-cluster integral ˇ [1]. By an application of the formulation
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for the random-flight chain [1], the mean-square end-to-end distance hR2i for this
(perturbed) HW chain may then be written in the form

hR2i D hR2i0 C ˇ
X

i<j

Z
R2
�
P0.RIL/P0.0ijIL/

�P0.R; 0ijIL/
�
dRC � � � ; (8.1)

where the subscript 0 indicates the unperturbed value (without excluded volume),
0ij means that Rij D 0, P0.R;RijIL/ is the (unperturbed) distribution function of R
(D R0n) and Rij, and so on, with Rij being the vector distance between the ith and
jth beads (i; j D 0, 1, 2, � � � , n), so that P0.RIL/ is identical to the Green function
G.RIL/ introduced in Chap. 4. In what follows, all lengths are measured in units of
��1 and kBT is chosen to be unity unless otherwise noted, and we assume as before
that Poisson’s ratio � is zero for flexible chains. Then hR2i0 is given by Eq. (4.82)
and the conventional excluded-volume parameter z is defined in the limit of n!1
by [1]

z D
�

3

2�hR2i0
�3=2

n2ˇ .n!1/ ; (8.2)

where hR2i0 D c1L in Eq. (8.2) with c1 being given by Eq. (4.75) or (5.10).
Now, if the end-distance expansion factor ˛R is defined as usual by

hR2i D hR2i0˛ 2
R ; (8.3)

the first-order perturbation theory of ˛ 2
R for the HW chain may be written, from

Eqs. (8.1) and (8.3), in the form

˛ 2
R D 1C K.LI �0; �0/zC � � � ; (8.4)

where K.LI �0; �0/ must become equal to 4/3 in the limit of L ! 1 [1], and z is
redefined, from Eq. (8.2), by [3, 4]

z D
�
3

2�

�3=2
BL1=2 (8.5)

with B the excluded-volume strength defined by

B D ˇ

a2c 3=21
: (8.6)

Similarly, the gyration-radius expansion factor ˛S is defined by

hS2i D hS2i0˛ 2
S ; (8.7)
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where hS2i0 is given by Eq. (4.83). Since the first-order perturbation coefficient of
˛ 2

S must be equal to 134/105 in the limit of L!1 [1], we simply assume that

˛ 2
S D 1C

67

70
K.LI �0; �0/zC � � � : (8.8)

If the sums in Eq. (8.1) are replaced by integrals, the coefficient K.LI �0; �0/ as a
function of L (and also �0 and �0), which we simply denote by K.L/, may then be
evaluated from

K.L/ D F.L/

L1=2hR2i0 ; (8.9)

where

F.L/ D
�
2�c1
3

�3=2Z L

0

ds1

Z L

s1

ds2

�
G.0I s/hR2i0

�
Z

R2P0.R; 0s1s2 IL/dR
�

(8.10)

with s1 D ia, s2 D ja, and s D s2 � s1.
In order to evaluate the integral over R in Eq. (8.10), it is convenient to introduce

the trivariate distribution function P0.R1;R2;R12 j�1 D 0IL/ of R1 D r.s1/�r.0/,
R2 D r.L/�r.s2/, and R12 D r.s2/�r.s1/ with�1 D �.s1/ D 0 [5], where r.s/ is
the radius vector of the contour point s (0 � s � L), and�.s/ D Œ�.s/, �.s/, .s/] is
the Euler angles defining the orientation of a localized Cartesian coordinate system
[e�.s/, e�.s/, e�.s/] affixed to the chain at s with respect to an external coordinate
system (ex, ey, ez) as before. This P0 with R12 D 0 may be evaluated from

P0.R1;R2; 0s1s2 j�1IL/ D
Z

G.R1;�1 j�0I s1/G.0; �2 j�1I s/

�G.R2;� j�2IL � s2/d�0d�2d� (8.11)

with �2 D �.s2/, where G.R; � j�0IL/ is given by Eq. (4.155), and
G.0; � j�0IL/ with �0 D 0, which we simply call the angle-dependent ring-
closure probability, is obtained from the former as

G.0; � j 0IL/ D
X

l;j;j0

clh
jj0

l .L/D j0j
l .�/ (8.12)

with cl being given by Eq. (4.54) and with h jj0

l .L/ (not to be confused with the
angular correlation functions in the Flory system in Sect. 4.4.2) being given by

h jj0

l .L/ D .4�/�1=2G00;jj
0

ll0 .0IL/ : (8.13)
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We note that h000 .L/ is equal to the angle-independent ring-closure probability
G.0IL/,

G.0IL/ D h000 .L/ : (8.14)

Carrying out the integrations over�0, �2, and �, we obtain

P0.R1;R2; 0s1s2 j�1IL/ D G.R1I s1/G.0I s/G.R2IL � s2/

C.4�/�1
X

l�1

X

j;j0

.�1/j0.2lC 1/G00;0j0

0ll .R1I s1/

� h jj0

l .s/G00;0j
0ll .R2IL � s2/Pl.cos �/ ; (8.15)

where � is the angle between R1 and R2, and Pl are the Legendre polynomials. In
deriving Eq. (8.15), we have used Eq. (4.258) with D00

0 D .8�2/�1=2, Eq. (5.106),
the relation,

G0m;0j
0ll D .�1/.mCjmj/=2G00;0j

0ll ; (8.16)

[which can be derived from Eqs. (4.152) and (4.156)], and Eqs. (4.159) and (3.142).
By the use of the relation R D R1 C R2, we then have

Z
R2P0.R; 0s1s2 IL/dR D

Z
R2P0.R1;R2; 0s1s2 j�1IL/dR1dR2

D �hR12i0 C hR22i0



h000 .s/C
8�

3

X

j;j0

.�1/j0

�Aj0.s1/Aj.L � s2/h
jj0

1 .s/ (8.17)

with

Aj.L/ D 31=2
Z 1

0

R3G00;0j
011 .RIL/dR

D .�1/. jCjjj/=2hRYj�
1 .�;˚/i�0D0 ; (8.18)

where the second line of Eqs. (8.18) has been derived from Eq. (4.157) by the use
of Eqs. (3.132) and (8.16), and R D .R; �;˚/ in spherical polar coordinates. Thus
Aj may be expressed in terms of the components of the persistence vector. In the
particular case of �0 D 0, the result reads

Aj.L/ D
�
3

4�

�1=2 1X

kD�1
djk

	
1 � expŒ�.2C ik�0/L�

2C ik�0



; (8.19)
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where dj D .djk/ with �1 � k � 1 are the vectors defined by d0 D
�
1
2
; 0; 1

2



and

d˙1 D ˙2�3=2i.1; 0;�1/.
As seen from the second of Eqs. (8.17), we need the components h jj0

l with l D 0

and 1. It can be shown that the symmetry relations for h jj0

l are the same as those for

g jj0

l given by Eqs. (4.128), and then the only required components h jj0

1 are h001 , h0.�1/1 ,

h1.�1/1 , and h.�1/.�1/1 . Thus the problem reduces to an evaluation of the ring-closure
probabilities given by Eqs. (8.12) and (8.14) [5].

8.1.2 Ring-Closure Probabilities and the First-Order
Coefficient

We first evaluate the ring-closure probabilities for the (unperturbed) HW chain for
small L for the special case of �0 ¤ 0 and �0 D 0 by modifying the procedure
developed in Chap. 7 for the KP chain. At the final stage, the results for the first-
order perturbation coefficient K.L/ for other cases, for which the direct evaluation
is difficult, are inferred. We replace the continuous chain by the equivalent discrete
chain composed of nC1 segments as before. For the present case, the total potential
energy E of the former is given by Eq. (7.4) with !� � �0 in place of !� and with
�0 D 0, and that of the latter E.f�ng/ is given by Eq. (7.5) with Eq. (7.6) and with

u.0/.�p�1;�p/ D 1

4Ln
.�0L/

2 C n

4L

�
.��p/

2 C .��p/
2 C .� p/

2

C2��p� p cos
�
1
2
.�p C �p�1/

�

�2�0L
n

n
��p cos

�
1
2
. p C  p�1/

�

C��p sin
�
1
2
.�p C �p�1/

�
sin
�
1
2
. p C  p�1/

�o�
:

(8.20)

The partition function Z is then given by Eq. (7.9) with � D 0.
As in Eq. (7.56) for the KP chain, the angle-independent ring-closure probability

G.0IL/ D G.0; j�0IL/ is the integral of G.0; � j�0IL/ over�, and therefore may
be written in the form

G.0IL/ D Z�1
Z 0

expŒ�E.�n/�df�ng ; (8.21)

where the prime on the integration sign indicates that the integration over f�ng is
carried out under the restriction that R.f�ng/ D .Rx, Ry, Rz/ D 0 with �0 being
fixed. If we remove the constraint R D 0 by introducing a Fourier representation of



296 8 Excluded-Volume Effects

a three-dimensional Dirac delta function, we obtain

G.0IL/ D .2�/�3Z�1
Z

exp

�
�E
�f�ng




Ci
X

˛

k˛R˛
�f�ng


�
dkdf�ng ; (8.22)

where the sum over ˛ is taken over x, y, and z with dk D dkxdkydkz. In the present
case, �0 is fixed in such a way that e�0.D u0/ and e�0 lie in the xy plane (with
�n being unfixed), where the joint of the closed chain is fixed at the origin of the
external coordinate system, and then the point M [the center of the .n=2/th segment]
is no longer symmetrically distributed about u0 for the HW chain with �0 ¤ 0, so
that we cannot impose the constraint RM (the z component of the radius vector of
M) D 0 in Eq. (8.21), or in other words, we cannot reaffix the localized coordinate
systems, as done for the KP chain (see Fig. 7.2).

The integration over f�ng in Eq. (8.22) may be carried out as before over the
fluctuations in f�ng around the most probable configuration f��

n g at the minimum
of energy with R D 0 fixed. When �0 D 0, this configuration must be planar and
can be determined by a slight modification of the previous formulation for the KP
chain with �0 D 0. If we choose u0 and u� to be in the xy plane so that the x
axis bisects the angle between them, as depicted in Fig. 8.1(a), that is, if we choose
�0 D

�
�
2
; ��

0 ;
�
2



, then we have ��

p D
�
�
2
; ��

p ;
�
2



, where we note that ��

0 depends
on L and �0. In this case, the total potential energy E of the continuous chain may
simply be given by

E D 1

2

Z L=2

0

�
d�

ds
� �0

�2
ds ; (8.23)

so that the Euler equation is the same as that for �0 D 0.
We first obtain its solution for a given value of ��

0 , and then determine the value
of ��

0 at which the configuration is most stable for a given value of �0L. There are
two possible cases: ��

0 	 0 and ��
0 < 0, although ��

0 	 0 in the previous case of
�0 D 0. Thus Eq. (7.61) is replaced by

cos��
p D .1 � 2
/

�
1 � 2 cn2 .v j k0/

�
; (8.24)

Fig. 8.1 Typical, most
probable closed
configurations of the HW
chain with �0 D 0. The x axis
bisects the angle between the
unit tangent vectors u0 and
u� at the ends

x

y

0

u0

u∗

φ0
∗

(a) κ0L= 0 (b) κ0L= 2π (c) κ0L= 9.1



8.1 End-Distance and Gyration-Radius Expansion Factors 297

where 
 D 0 for ��
0 	 0 and 
 D 1 for ��

0 < 0, and

v D 2d

�
1

2
� p

n

�
� 2
K.k0/

�p

n

�
(8.25)

with

d D F.ı j k0/ ; (8.26)

ı D �

2
.1 � 
/ � 1

2
��
0 : (8.27)

The parameter k0 may be determined from

1

2

�
dC 
K.k0/

�
.2 � k0

2/ D E.d j k0/C 
E.k0/ ; (8.28)

where E.k0/ and E.d j k0/ are the complete and incomplete elliptic integrals of the
second kind, respectively. For the configuration that satisfies the Euler equation for
a given ��

0 , we have

E D 1

4L

˚
8
�
dC 
K.k0/

�2
.2 � k0/

2 � 4�0L.� � ��
0 /C .�0L/2

�
: (8.29)

The value of ��
0 at which the configuration is most stable for a given �0L may be

determined from @E=@��
0 D 0. Then ��

p and E� for the most probable configuration
are given by Eqs. (8.24) and (8.29), respectively, with this value of ��

0 . We note that
��

p and LE� depend on �0 and L as �0L. In Figs. 8.1 are depicted as examples the
most probable configurations for the indicated three values of �0L, where we note
that ��

0 ' 0 for the case (b).
Good interpolation formulas constructed for the product A D LE� and ��

0 on the
basis of the numerical solutions so obtained are given by

A D LE� D
5X

jD0
a.1/j

�
�0L

10

�j

; (8.30)

��
0 D

5X

jD0
a.2/j

�
�0L

10

�j

; (8.31)

where a.1/j and a.2/j are numerical constants and their values are given in Table 8.1.
The integral in Eq. (8.22) is then convergent only for 0 < �0L<
 9:3, and we obtain
the final result for G.0IL/,

G.0IL/ D C0L
�9=2 exp

�
�A

L
C C1L

�
(8.32)
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Table 8.1 Values of a.k/j in
Eqs. (8.30), (8.31), and (8.33)

j a.1/j a.2/j a.3/j a.4/j

0 7.027 1.720 �0.04963 0.8250

1 �22.83 �2.467 0.04240 1.756

2 19.26 0.4013 �0.1809 �0.8090

3 �1.799 �3.082 0.2189 �0.1076

4 2.154 4.745 �0.1450 0.1881

5 �1.748 �3.091 0.04580 �0.04086

6 � � � � � � �0.005382 � � �

with

C0
�1 D .�0L/

1=2
�
.�0L/

1=2 � 3:05�
6X

jD0
a.3/j .�0L/

j=2 ;

(8.33)

C1
�1 D

5X

jD0
a.4/j .�0L/

j=2 ;

where a.3/j and a.4/j are numerical constants and their values are also given in
Table 8.1. The range of application of Eq. (8.32) with Eqs. (8.33) is limited to
0:3 � �0L � 8:5. We note that interpolation formulas for C0 and C1 for �0L ' 0

or 0.93 cannot be constructed since their values become very large there, and that
Eq. (7.68) for G.0IL/ for the KP chain cannot be obtained from Eq. (8.32) by taking
the limit �0L! 0.

For the evaluation of the angle-dependent ring-closure probability G.0; � j�0IL/
or the components h jj0

1 .L/, it is convenient to introduce the conditional distribution
function G.�n j 0; �0I n/ of �n for the closed discrete chain with �0 fixed, which
is related to G.0; �n j�0I n/ by

G.0; �n j�0I n/ D G.0IL/G.�n j 0; �0I n/: (8.34)

This conditional distribution function with �0 D ��
0 may be approximated by the

Gaussian distribution having the moments of the fluctuation ı�n D �n ���
n with

R D 0 fixed. Then h jj0

1 .L/ may be evaluated from

h jj0

l .L/ D cl
�1
Z

Dj0 j�
l .�n/G.0; �n j 0I n/d�n (8.35)

with Eq. (8.34), where Eq. (8.35) has been obtained from Eq. (8.12). Thus the results
are given by

h jj0

1 .L/ D H jj0.L/G.0IL/ (8.36)
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with

H00.L/ D cos.2��
0 � C�L/ exp

��. f1 C f2/L
�
;

H0.�1/.L/ D �
p
2

2
sin.2��

0 � C�L/ exp
��. f1 C f2/L

�
;

H.˙1/.�1/.L/ D ˙
�
1

4
sin.2��

0 � C�L/ exp
��. f2 C f3/L

�

(8.37)

�
n
exp

��f1.1C g/2L
� � exp

��f1.1 � g/2L
�o

�1
2

cos.2��
0 � C�L/ exp

��. f1g
2 C f2 C f3/L

��

C1
4

exp.�f3L/
n
exp

��f1.1C g/2L
�C exp

��f1.1 � g/2L
�o
;

where ��
0 is given by Eq. (8.31), and

f1
�1 D �g2f3

�1 C
5X

jD0
b.1/j .�0L/

j=2 ;

f2
�1 D

5X

jD0
b.2/j

�
�0L

10

�j

;

(8.38)

f3
�1 D

5X

jD0
b.3/j .�0L/

j=2 ;

g D f3

5X

jD0
b.4/j .�0L/

j=2 ;

C� D
5X

jD0
b.5/j .�0L/

j=2 for 0:3 � �0L � 4

D
5X

jD0
b.6/j .�0L/

j for 4 < �0L � 8:5 : (8.39)

In Eqs. (8.38) and (8.39), b.k/j are numerical constants and their values are given in
Table 8.2.

We note that for the KP chain only the component h001 is required, the other

components h jj0

1 being unnecessary in the evaluation of the expansion factors. It is
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Table 8.2 Values of b
.k/
j in Eqs. (8.38) and (8.39)

j b.1/j b.2/j b.3/j b.4/j b.5/j b.6/j

0 0:9909 4:129 0:8997 1:056 �0.9176 �9.618

1 0:7265 �0.9494 �0.3629 �0.3106 2:625 9:333

2 �0.3687 0:1634 2:649 �0.5967 �3.575 �3.627

3 0:2974 �5.633 �2.297 0:6325 2:497 0:7032

4 �0.1776 8:465 0:8518 �0.2217 �0.8695 �0.06779

5 0:02857 �5.299 �0.1220 0:02285 0:1222 0:002622

given by Eq. (8.36) with Eq. (7.68) and with

H00.L/ D cos.1:720C 0:06104 L/ exp.�0:5077 L/ .KP/ : (8.40)

Next we derive analytical expressions for the ring-closure probabilities valid for
large L and for arbitrary �0 and �0 from the Daniels-type distribution as given by
Eq. (4.177). The results read

G.0IL/ D
�

3

2�c1L

�3=2�
1 �

	
5

8
� 9� 2

0

r2.4C � 20 /
C 3� 2

0

2.9C 	2/.36C 	2/

�
�
1C 101C � 2

0

4C � 20
C 3.160C 7� 2

0 /

.4C � 20 /2
�

1

L
CO.L�2/

�
; (8.41)

h jj0

1 .L/ D
�

3

2�c1L

�3=2�
3.�1/j0C1bjbj0

c1L
CO.L�2/

�
(8.42)

with

b0 D c1
2
p
3
;

(8.43)

b1 D �b��1 D
�0.2 � i�0/

2
p
6 r2

;

where 	 and r are given by Eqs. (4.76) and (4.77), respectively.

Interpolation formulas for G.0IL/ and h jj0

1 .L/ for intermediate L may be con-
structed as in Eq. (7.45) [5], but the results are omitted.

Now, in order to carry out the integrations over s1 and s2 in Eq. (8.10), we
change variables from s1 and s2 to s and s1. Then the integration over s1, which
is of a convolution type, is straightforward, and the remaining integration over s is
carried out partly numerically. Thus the final results for F.L/ and hence K.L/ are
obtained numerically. We first examine the behavior of K.L/ for the special case
of moderately large �0 and �0 D 0. Figure 8.2 shows plots of L1=2K.L/ against
L. The solid curve HW represents the values for the HW chain with �0 D 4 and
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Fig. 8.2 Plots of L1=2K.L/
against L. The solid curve
HW represents the values for
the HW chain with �0 D 4

and �0 D 0. The dot-dashed
and dashed curves represent
the present [5] and earlier
(YS) [3] values for the KP
chain, respectively, and the
dotted curve C the
coil-limiting values

1086420

10

5

0

C

YS

HW

KP

L1/2

L1/
2 K

(L
)

�0 D 0, and the dot-dashed curve KP represents the values for the KP chain, which
we denote by KKP.L/. For comparison, the corresponding values for the latter in
the earlier approximate evaluation (YS) [3] and the coil-limiting values 4L1=2=3
are also represented by the dashed (YS) and dotted (C) curves, respectively. It
is seen that the present and YS values for the KP chain and those for the HW
chain are rather close to each other. This is also the case with the HW chains
with 2:5 � �0 � 6 and �0 D 0. It is also seen that all curves are almost straight
lines for large L, so that the primary effect of chain stiffness is just to reduce the
values of L1=2K.L/ for large L from the coil-limiting values by a constant which is
insensitive to change of the helical nature.

We then consider the behavior of K.L/ for other cases. This is in general very
difficult, but the behavior can be inferred for two special cases: (1) �0 ' 0 (and
any �0) and (2) 1 � �0 <
 �0, both of which lie in domain III of a .�0; �0/-plane of
Fig. 4.13. For the first case, we have c1 ' 1 and �02	�2 ' 0, so that hR2i0 given
by Eq. (4.82) for the HW chain may be approximated by hR2i0;KP for the KP chain.
We may therefore treat the HW chain approximately as the KP chain as far as the
statistics of the chain contour is concerned, and then we have K.L/ ' KKP.L/.

For the second case, 	 is very large, so that in Eq. (4.82) we may neglect terms
of O.	�2/, the factors �02	�2 and �02	�2 being of order unity. Then Eq. (4.82)
reduces to

N�2hR2i0 D N� NL � 1
2

�
1� exp.�2 N� NL/� (8.44)

with NL D .�0=	/L and N� D 	=�0. This means that hR2i0 for the HW chain of
contour length L is approximately equal to that for the KP chain of contour length NL
and with stiffness parameter N��1. Thus we may approximate the HW chain by this
KP chain as far as the statistics of the (coarse-grained) chain contour is concerned.
We introduce the excluded-volume effect into this KP chain. Let Ň and Na be the
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binary-cluster integral and the spacing, respectively, between its beads, all lengths
being measured in units of N��1 (not ��1). Since its reduced total contour length is
equal to N� NL, we obtain, from Eq. (8.4) with Eqs. (8.5) and (8.6), for ˛ 2

R for this KP
chain

˛ 2
R D 1C

�
3

2�

�3=2� Ň
Na2
�

L1=2KKP.L/C � � � ; (8.45)

where we have put N� NL D L with L being the contour length of the original HW
chain. If we compare Eq. (8.45) with Eq. (8.4) for the original HW chain, we obtain
the relations K.L/ D KKP.L/ and ˇ=a2c 3=21 D Ň=Na2.

Thus it has been shown above that the relation K.L/ D KKP.L/ holds for both
the HW chain of strong helical nature and the KP-like chains. It may then be
expected that this relation holds for any �0 and �0. A good interpolation formula
thus constructed for K.L/ for the HW chain is given by [5]

K.L/ D 4

3
� 2:711

L1=2
C 7

6L
for L > 6

D 1

L1=2
exp

�
�6:611

L
C 0:9198C 0:03516 L

�
for L � 6 : (8.46)

It is important to see that the first-order deviation of K.L/ from its coil-limiting
value 4/3 is of order L�1=2, and therefore that as L is increased, K.L/ approaches
more slowly its coil-limiting value than do the ratios hR2i0=L and hS2i0=L. This
suggests that the effects of chain stiffness on ˛R and ˛S remain rather large even for
such large L where hR2i0=L and hS2i0=L reach almost their respective coil-limiting
values c1 and c1=6. Further, note that K.L/ becomes zero extremely rapidly at
small L.

Finally, some comments must be briefly made on other theories. Chen and
Noolandi [6] have evaluated hR2i and hS2i for the KP chain with excluded volume
by an application of the renormalization scaling. However, it can be shown that
their K.L/ is proportional to L3=2 in the limit of L ! 0, so that it approaches
zero gradually compared to the K.L/ given by Eqs. (8.46) [7]. This deficiency is
due to the fact that they have not treated the ring-closure probability. Weill and des
Cloizeaux [8] also considered the fact that the excluded-volume effect vanishes for
very small L, but their theory is still essentially a TP theory [2].

8.1.3 Effects of Chain Stiffness: Quasi-Two-Parameter Scheme

As is well known, the TP theory claims that the expansion factor ˛ (˛R or ˛S) is a
function only of the excluded-volume parameter z, that is,

˛ D ˛.z/ .TP/ : (8.47)
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As shown in the last subsection, however, the consideration of the chain stiffness on
the basis of the HW chain leads to the breakdown of this scheme. Thus we introduce
a parameter Qz defined by

Qz D 3

4
K.L/z ; (8.48)

and assume that ˛ is a function only of Qz, that is,

˛ D ˛.Qz/ .QTP/ ; (8.49)

where the function ˛.Qz/ may be obtained by replacing z by Qz in a TP expression for
˛.z/. This is referred to as the quasi-two-parameter (QTP) scheme; it is sometimes
called the YSS (Yamakawa–Stockmayer–Shimada) scheme, based on their treat-
ments [3–5]. For convenience, the parameter Qz is referred to as the intramolecular
scaled excluded-volume parameter. As seen from Eqs. (8.46) and (8.48), Qz also
slowly approaches its coil-limiting value z as L is increased.

As for TP expressions for ˛, it is reasonable and convenient to adopt the Domb–
Barrett equations [9]. We then have

˛ 2
R D

�
1C 10QzC

�
70�

9
C 10

3

�
Qz2 C 8�3=2Qz3

�2=15
; (8.50)

˛ 2
S D

�
0:933C 0:067 exp.�0:85 Qz� 1:39 Qz2/�˛ 2

R ; (8.51)

where in Eq. (8.51) ˛ 2
R is given by Eq. (8.50). We note that these equations give the

expansions

˛ 2
R D 1C 1:333 Qz� 2:075 Qz2 C � � � ; (8.52)

˛ 2
S D 1C 1:276 Qz� 2:220 Qz2 C � � � ; (8.53)

so that Eq. (8.50) gives the exact second-order perturbation theory of ˛ 2
R , while

Eq. (8.51) gives the second-order coefficient somewhat larger than the exact value
2.082 [1].

Now we evaluate numerically hS2i for RIS chains with excluded volume by
a Monte Carlo method in order to examine the validity of Eq. (8.51) [4]. For
simplicity, we consider the three-state (0ı, 120ı, and �120ı) RIS chain with the
tetrahedral bond angles and with the statistical weight matrices for polymethylene
[10]. The skeletal atoms in the chain of n bonds are numbered 0, 1, 2, � � � , n, where n
is assumed to be even. Suppose that there are excluded-volume interactions between
even-numbered atoms, for convenience. A positive excluded-volume interaction
energy 
 (in units of kBT) is assigned to each of pairs of the 2ith and 2jth atoms
only when j2i � 2jj 	 5 and only when they are located either at the same lattice
site or at nearest-neighbor sites. We assume the bond length equal to 1.53 Å and
the molecular weight 14 of the repeat unit. The generated chain may be represented
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Fig. 8.3 Double-logarithmic plots of 6hS2i=L against L with Monte Carlo data for 
 D 0:2 (�)
and 0.07 (�) [4]. The dashed curve (B D 0) represents the unperturbed KP values calculated
from Eq. (4.85). The solid curves represent the best-fit theoretical values calculated from Eq. (8.7)
with Eqs. (4.85) and (8.51) with the indicated values of B (reduced), and the dotted curve C the
theoretical values similarly calculated with B D 0:23 but with the coil-limiting value 4/3 for K.L/

by the KP chain with or without excluded volume. Thus, from a comparison of the
two chains without excluded volume (
 D 0) with respect to hS2i0, the KP model
parameters ��1 and ML for the former are determined to be 11.5 Å and 11.0 Å�1,
respectively.

Figure 8.3 shows double-logarithmic plots of 6hS2i=L against L with the Monte
Carlo data for 
 D 0:2 (unfilled circles) and 0.07 (filled circles). The dashed curve
(B D 0) represents the unperturbed KP values calculated from Eq. (4.85). The
solid curves represent the best-fit theoretical values calculated from Eq. (8.7) with
Eqs. (4.85), (8.5), (8.46), (8.48), and (8.51) with the indicated values of B (reduced).
There is good agreement between the theoretical and Monte Carlo values. The
dotted curve C represents the theoretical values similarly calculated with B D 0:23

but with the coil-limiting value 4=3 for K.L/ for all values of L. This curve coincides
with the corresponding solid curve for L>
 103, indicating that the effect of chain
stiffness on ˛S remains appreciable up to such large L. Further, it is interesting to see
that the excluded-volume effect appears (the solid curves deviate from the dashed
curve) at L D 3–5.

Finally, we note that corresponding to Eqs. (8.3) and (8.7), the mean-square
electric dipole moment h�2i may be written in the form

h�2i D h�2i0˛ 2
� ; (8.54)

where ˛� is the dipole-moment expansion factor. The perturbation theory of ˛ 2
�

for the HW chain is given in Appendix 1. In particular, the case of type-B
(perpendicular) dipoles is discussed rather in detail. Note that ˛� D ˛R for type-
A (parallel) dipoles.
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8.1.4 Comparison with Experiment

There is a difficulty in determining experimentally the expansion factor ˛S from hS2i
in a given good solvent since it is impossible to determine directly the unperturbed
dimension hS2i0 in that good solvent. (Recall that hS2i0 may in general depend
on solvent and temperature.) However, the (intramolecular) excluded-volume effect
must disappear in the oligomer region (as also seen from Fig. 8.3), so that we have
hS2i D hS2i0 there. Therefore, if we choose the solvent and temperature so that
in the oligomer region hS2i coincides with the unperturbed mean-square radius of
gyration in a proper� solvent (at T D �), which we denote by hS2i�, then the latter
may be regarded as equal to the unperturbed dimension hS2i0 in that good solvent
for all values of the molecular weight M; that is,

hS2i0 D hS2i� : (8.55)

Taking this � solvent as a reference standard, we may then determine ˛S from

˛ 2
S D

hS2i
hS2i� : (8.56)

In this subsection we make a comparison of theory with experiment using those
experimental data for which the experimental requirement of Eq. (8.55) is fulfilled.

We first summarize necessary basic equations, in which lengths are not reduced
by ��1. We adopt as before the Domb–Barrett equation for ˛S,

˛ 2
S D

�
1C 10 QzC

�
70�

9
C 10

3

�
Qz2 C 8�3=2Qz3

�2=15

��0:933C 0:067 exp.�0:85 Qz� 1:39 Qz2/� (8.57)

with

Qz D 3

4
K.�L/z ; (8.58)

where K.L/ is given by Eqs. (8.46) and

z D
�
3

2�

�3=2
.�B/.�L/1=2 : (8.59)

We note that B is given by Eq. (8.6) with ˇ and a unreduced, and L is related to the
number of repeat units (degree of polymerization) x by the equation

L D
�

M0

ML

�
x D ax ; (8.60)

where M0 is the molecular weight of the repeat unit, and in the second of Eqs. (8.60)
it has been taken as a single bead (with a D M0=ML).
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Fig. 8.4 Double-logarithmic plots of hS2i=x (in Å2) against x for a-PS in cyclohexane at 34.5 ıC
(�) (�) and in toluene at 15.0 ıC (�) [7], a-P˛MS in cyclohexane at 30.5 ıC (�) (�) and in
toluene at 25.0 ıC (�) [11], a-PMMA in acetonitrile at 44.0 ıC (�) (�) and in acetone at 25.0 ıC
(�) [12], and i-PMMA in acetonitrile at 28.0 ıC (�) (�) and in acetone at 25.0 ıC (�) [13],
where most of the data in the � solvents have been reproduced from Fig. 5.1. The dashed and
solid curves connect smoothly the data points in the � and good solvents, respectively

Figure 8.4 shows double-logarithmic plots of hS2i=x (in Å2) against x for a-PS in
cyclohexane at 34.5 ıC (�) and in toluene at 15.0 ıC [7], a-P˛MS in cyclohexane
at 30.5 ıC (�) and in toluene at 25.0 ıC [11], a-PMMA in acetonitrile at 44.0 ıC
(�) and in acetone at 25.0 ıC [12], and i-PMMA in acetonitrile at 28.0 ıC (�) and
in acetone at 25.0 ıC [13], where most of the data in the � solvents have been
reproduced from Fig. 5.1. The dashed and solid curves connect smoothly the data
points in the � and good solvents, respectively. It is seen that for each polymer the
values of hS2i in the good solvent agree well with those of hS2i� in the� solvent in
the oligomer region. This indicates that the relation of Eq. (8.55) holds, so that ˛ 2

S
may be calculated from Eq. (8.56) with the experimental values of hS2i and hS2i�.
We note that for these flexible polymers the critical value of �L for the onset of the
excluded-volume effect is 2.0–2.5.

The values of ˛ 2
S thus determined are double-logarithmically plotted against x

in Fig. 8.5 for a-PS in toluene at 15.0 ıC [7] and in benzene at 25.0 ıC [14, 15], a-
P˛MS in toluene at 25.0 ıC [11] and in n-butyl chloride at 25.0 ıC [11], a-PMMA in
acetone at 25.0 ıC [12] and in chloroform at 25.0 ıC [12], and i-PMMA in acetone at
25.0 ıC [13] and in chloroform at 25.0 ıC [13]. Here, the values for a-PS in benzene
at 25.0 ıC have been calculated using trans-decalin at 21.0 ıC (�) as a reference
standard, in which hS2i�=x at large x is 6 % smaller than that in cyclohexane at
34.5 ıC (�) [14]. In the figure the solid curves represent the best-fit QTP theoretical
values calculated from Eq. (8.57) with Eqs. (8.58)–(8.60) with the values of ��1
and ML in Table 5.1 and proper values of the reduced excluded-volume strength
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Fig. 8.5 Double-logarithmic plots of ˛ 2
S against x for a-PS in toluene at 15.0 ıC (�) [7] and in

benzene at 25.0 ıC (�,
) [14, 15], a-P˛MS in toluene at 25.0 ıC (�) [11] and in n-butyl chloride
at 25.0 ıC (�) [11], a-PMMA in acetone at 25.0 ıC (�) [12] and in chloroform at 25.0 ıC (�)
[12], and i-PMMA in acetone at 25.0 ıC (�) [13] and in chloroform at 25.0 ıC (�) [13]. The solid
curves represent the best-fit QTP theory values calculated from Eq. (8.57) (see the text)

Table 8.3 Values of the excluded-volume strength for typical flexible polymers from hS2i
Polymer (fr) Solvent Temp. ( ıC) �-Solvent (�ıC) �B ˇ (Å3) Ref.

a-PS (0.59) Toluene 15.0 Cyclohexane (34.5) 0:26 33 [7]

4-tert-
Butyltoluene

50.0 Cyclohexane (34.5) 0:10 12 [16]

Benzene 25.0 trans-Decalin (21.0) 0:33 40 [14]

MEK 35.0 trans-Decalin (21.0) 0:060 7 [14]

a-P˛MS (0.72) Toluene 25.0 Cyclohexane (30.5) 0:43 36 [11]

4-tert-
Butyltoluene

25.0 Cyclohexane (30.5) 0:12 10 [11]

n-Butyl
chloride

25.0 Cyclohexane (30.5) 0:080 7 [11]

a-PMMA (0.79) Acetone 25.0 Acetonitrile (44.0) 0:22 12 [12]

Chloroform 25.0 Acetonitrile (44.0) 1:15 62 [12]

Nitroethane 30.0 Acetonitrile (44.0) 0:52 28 [12]

i-PMMA (0.01) Acetone 25.0 Acetonitrile (28.0) 0:10 12 [13]

Chloroform 25.0 Acetonitrile (28.0) 0:55 65 [13]

PIB n-Heptane 25.0 IAIV (25.0) 0:090 7 [18]

PDMS Toluene 25.0 Bromo-
cyclohexane (29.5)

0:14 10 [17]

�B, and its values so determined are given in Table 8.3. The values of �B similarly
determined for a-PS in MEK at 35.0 ıC [14] and in 4-tert-butyltoluene at 50.0 ıC
[16], a-P˛MS in 4-tert-butyltoluene at 25.0 ıC [11], a-PMMA in nitroethane at
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30.0 ıC [12], and PDMS in toluene at 25.0 ıC [17] are also given in Table 8.3 along
with the respective reference standards (� solvents). It also includes the value of
�B for PIB in n-heptane at 25.0 ıC determined from an analysis [18] of hS2i in n-
heptane at 25.0 ıC [18, 19] and in IAIV at 25.0 ıC (�) [19], where the HW model
parameters ��1�0, ��1�0, ��1, and ML are determined to be 1.0, 0, 15.3 Å, and
20.9 Å�1, respectively. In the sixth column of the table are given the values of ˇ, per
repeat unit, calculated from Eq. (8.6) with the values of the HW model parameters.
It is interesting to see that the values of ˇ for a- and i-PMMAs in the same solvent
are almost the same, indicating that ˇ is independent of the stereochemical structure
of the polymer chain.

The values of ˛ 2
S in Fig. 8.5 for a-PS in toluene, a-PMMA in acetone and in

chloroform, and i-PMMA in chloroform are double-logarithmically plotted against
z in Fig. 8.6, where values of z have been calculated from Eq. (8.59) with Eqs. (8.60)
with the above values of the parameters. The solid curves represent the QTP theory
values calculated from Eq. (8.57) with Eqs. (8.58) and (8.59) with the values of �B,
and the dotted curve represents the TP theory values calculated from Eq. (8.57) with
Qz D z. There is good agreement between the QTP theoretical and experimental
values. The solid curves (or data points) do not form a single-composite curve but
deviate downward progressively from the dotted curve with decreasing z (or M)
because of the effect of chain stiffness. This effect becomes more significant as �B
is increased, or in other words, as the solvent quality becomes better. It is surprising
to see that the effect on ˛S remains rather large even at z ' 10 or at very large
M ' 106.
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Fig. 8.6 Double-logarithmic plots of ˛ 2
S against z for a-PS in toluene at 15.0 ıC (�) [7], a-PMMA

in acetone at 25.0 ıC (�) [12] and in chloroform at 25.0 ıC (�) [12], and i-PMMA in chloroform
at 25.0 ıC (
) [13]. The solid curves represent the QTP theory values calculated from Eq. (8.57),
and the dotted curve the TP theory values calculated with Qz D z (see the text)
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Fig. 8.7 Double-logarithmic plots of ˛ 2
S against Qz with the same data as those in Fig. 8.5 along

with those for a-PS in MEK at 35.0 ıC (�) [14] and in 4-tert-butyltoluene at 50.0 ıC (�) [16],
a-P˛MS in 4-tert-butyltoluene at 25.0 ıC (�) [11], a-PMMA in nitroethane at 30.0 ıC (�) [12],
PIB in n-heptane at 25.0 ıC (�) [18], and PDMS in toluene at 25.0 ıC (�) [17]. The solid curve
represents the QTP theory values calculated from Eq. (8.57)

Figure 8.7 shows double-logarithmic plots of ˛ 2
S against Qz with the same data

as those in Fig. 8.5 along with those for a-PS in MEK at 35.0 ıC [14] and in
4-tert-butyltoluene at 50.0 ıC [16], a-P˛MS in 4-tert-butyltoluene at 25.0 ıC [11], a-
PMMA in nitroethane at 30.0 ıC [12], PIB in n-heptane at 25.0 ıC [18], and PDMS
in toluene at 25.0 ıC [17], where values of Qz have been calculated from Eq. (8.58)
with the above values of z. The solid curve represents the QTP theory values
calculated from Eq. (8.57). Although it is natural from the procedure of determining
�B that all the data points form a single-composite curve and are fitted by the solid
curve, there is excellent agreement between theory and experiment over the whole
range of Qz or M studied irrespective of the differences in polymer species (chain
stiffness and local chain conformation) and solvent condition. The results imply
that ˛S is a function only of Qz, or in other words, the QTP scheme is valid for ˛S.

Finally, it is pertinent to make some remarks on the excluded-volume effect in
semiflexible polymers. Norisuye and co-workers [20, 21] have found that the critical
value of �L for the onset of the excluded-volume effect for them is 20–50, being
one order of magnitude larger than that for flexible polymers. This is due to the
fact that �B is very small for these semiflexible polymers; for semiflexible polymers
with large �B the critical value of �L is close to that for flexible polymers [21].
In any case, the QTP scheme for ˛S seems valid also for semiflexible polymers,
although hS2i� for them cannot be determined since there is no proper� solvent. It
may rather be considered that this scheme enables us to determine the unperturbed
dimension hS2i0 for semiflexible polymers in good solvents.
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8.2 Viscosity- and Hydrodynamic-Radius Expansion Factors

8.2.1 Effects of Chain Stiffness and Fluctuating
Hydrodynamic Interaction

The viscosity-radius expansion factor ˛� for the intrinsic viscosity Œ�� is defined as
usual by [1]

Œ�� D Œ��0˛ 3
� ; (8.61)

or

VH D VH;0˛
3
� ; (8.62)

where VH is the hydrodynamic (molar) volume defined by Eq. (6.131), and the
subscript 0 indicates the unperturbed value as before. Similarly, the expansion factor
˛H for the hydrodynamic radius RH defined by Eq. (6.132) is defined by

RH D RH;0˛H : (8.63)

Note that ˛H is identical to ˛f in the earlier notation [1].
Now ˛� and ˛H may be written in the form

˛� D ˛.0/� h� ; (8.64)

˛H D ˛.0/H hH ; (8.65)

where h� and hH represent possible effects of fluctuating hydrodynamic interaction

(HI), and ˛
.0/
� and ˛

.0/
H are the respective parts without these effects. In the

conventional TP theory with h� D hH D 1, ˛.0/ (˛.0/� or ˛.0/H ) is a function only
of z, that is,

˛.0/ D ˛.0/.z/ .TP/ ; (8.66)

while in the QTP scheme ˛.0/ and h (h� or hH) must also be functions only of Qz,
that is,

˛.0/ D ˛.0/.Qz/ .QTP/ ; (8.67)

h D h.Qz/ .QTP/ : (8.68)

It is then convenient to adopt the Barrett equations [22, 23] for ˛.0/� and ˛.0/H ,

˛.0/� D .1C 3:8 QzC 1:9 Qz2/0:1 ; (8.69)
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˛
.0/
H D .1C 5:93 QzC 3:59 Qz2/0:1 ; (8.70)

which give the respective, exact first-order perturbation theories in the Kirkwood–
Riseman scheme [24],

.˛.0/� /
3 D 1C 1:14 Qz� � � � ; (8.71)

or

˛.0/� D 1C 0:38 Qz� � � � ; (8.72)

˛
.0/
H D 1C 0:593 Qz� � � � : (8.73)

We note that the original Barrett equation for ˛.0/H , in which the coefficient 5.93
of Qz in Eq. (8.70) is replaced by 6.09, gives the Stockmayer–Albrecht value 0.609
[25] (from the Kirkwood formula) instead of 0.593 for the first-order perturbation
coefficient, and that the Fixman–Pyun scheme [26, 27] gives the value 1.06 [28]
instead of 1.14 for the first-order perturbation coefficient of .˛.0/� /3.

As mentioned in Sect. 6.5.2, the unperturbed reduced hydrodynamic radius
�1;0

�1 in the coil limit may be evaluated on the basis of the HW chain with partially
fluctuating HI [29], the results being given in Table 6.4. Similarly, hH D hH.z/ may
easily be evaluated for Gaussian chains in the uniform-expansion approximation [1],
and then in the QTP scheme we have [30]

hH D 0:88

1 � 0:12 ˛ �0:43
S

; (8.74)

where ˛S D ˛S.Qz/ is given by Eq. (8.57). Equation (8.74) predicts that hH decreases
from unity to 0.88 as Qz (or z) is increased from 0 to 1. As also mentioned
in Sect. 6.5.2, the corresponding theory of the Flory–Fox factor ˚1;0 cannot be
developed; and therefore there is no available theory of h� either.

Before making a comparison of theory with experiment, we evaluate the intrinsic
viscosity Œ�� and translational diffusion coefficient D for the polymethylene-like RIS
chain with excluded volume as considered in Sect. 8.1.3 by Monte Carlo methods
to examine numerically the behavior of ˛� and ˛H [31]. In the present case, suppose
that the chain is composed of n C 1 beads with fluctuating HI between them,
each of Stokes diameter db, as well as with excluded-volume interactions. The
evaluation is carried out in the Zimm rigid-body ensemble approximation [32].
This approximation may be considered to cause no significant errors in the ratios
˛�

3 D Œ��=Œ��0 and ˛H D RH=RH;0. Figure 8.8 shows plots of ˛ (˛� or ˛H)
against Qz with the Monte Carlo data thus obtained for 
 D 0:2 (unfilled symbols)
and 0.05 (filled symbols) and for db=l D 1:0 (large symbols) and 0.5 (small
symbols). For comparison, the data for ˛S are also plotted. Here, we note that B
has been determined to be 0.21 and 0.11 for 
 D 0:2 and 0.05, respectively, as in
Fig. 8.3, and that values of Qz have been calculated from Eq. (8.48). The solid curves
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Fig. 8.8 Plots of ˛ (˛� or ˛H) against Qz with Monte Carlo data; ˛� (�,�) and ˛H (�,�) for

 D 0:2 (unfilled symbols) and 0.05 (filled ones) and for db=l D 1:0 (large symbols) and 0.5
(small ones) [31]. The data for ˛S (from Fig. 8.3) are also plotted. The solid curves represent the
theoretical values of the indicated expansion factors (see the text)

represent the theoretical values of the indicated expansion factors calculated from
Eqs. (8.57), (8.65), (8.69), (8.70), and (8.74). It is seen that the data points for each
expansion factor form a single-composite curve. It is more important to see that the
Monte Carlo values of ˛� agree with the theoretical values from Eq. (8.69) (with
h� D 1), while the Monte Carlo values of ˛H are much smaller than the theoretical
values from Eq. (8.70) and even from Eq. (8.65) with Eqs. (8.70) and (8.74) and are
rather close to the Monte Carlo values of ˛�. The results, although in the range
of small excluded volume, are consistent with those from the experimental data
presented in the next subsection.

8.2.2 Comparison with Experiment

There are at least three cases to be considered in determining experimentally the
expansion factors ˛� and ˛H. We begin by discussing them in order.

A first case is the easiest case for which it can be confirmed that hS2i D hS2i�
and also Œ�� D Œ��� and RH D RH;‚ in the oligomer region, so that Eq. (8.55) and
also the relations

Œ��0 D Œ��� ; (8.75)

RH;0 D RH;‚ ; (8.76)
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hold for all values of M, the Flory–Fox factor ˚� being independent of solvent.
In this case we may determine ˛ 3

� and ˛H from the equations ˛ 3
� D Œ��=Œ��� and

˛H D RH=RH;‚, respectively, and then ˛� and ˛H must be universal functions of
˛S in the QTP scheme (see below). Examples of this case are a-PS [14, 19] and
(perhaps) PIB [18, 19] in some solvents.

A second is the case for which the relations of Eqs. (8.55) and (8.76) approxi-
mately hold but Eq. (8.75) is invalid, that is, Œ��0 ¤ Œ��� , so that ˚0 ¤ ˚�, because
of the dependence on solvent of ˚� (and also ˚0). [Note that ˚0 (˚�) is defined by
Eq. (6.129) with Eq. (6.131) with Œ��0 (Œ���) and hS2i0 (hS2i�).] In this case, if we
define an apparent viscosity-radius expansion factor N̨� by the equation

Œ�� D Œ��� N̨ 3� ; (8.77)

we have

N̨ 3� D C�˛
3
� D C�˛˚˛

3
S ; (8.78)

where C� and ˛˚ are defined by

C� D ˚0=˚� ; (8.79)

˛˚ D ˚=˚0 : (8.80)

In the QTP scheme, both ˛� and ˛˚ must be functions of ˛S, and N̨ 3� must be of the
form

N̨ 3� D C� f .˛S/ .QTP/ ; (8.81)

where f is a function only of ˛S. Note that the coefficient C� is essentially identical
to the constant prefactor in Eq. (6.133) and is to be determined experimentally.
Examples of this case are a- and i-PMMAs [12, 13] (see Sect. 6.5.2).

Figure 8.9 shows double-logarithmic plots of Œ��=M1=2 (Œ�� in dL/g) against M
for a- and i-PMMAs [12, 13]. The symbols have the same meaning as those in
Figs. 8.4 and 8.5. The solid and dashed curves connect the data points smoothly.
It is interesting to see that in the oligomer region (M<
 2 � 103) the values of Œ��
for the two PMMAs coincide with each other in each solvent, indicating that the
average chain dimension in that region and also the hydrodynamic bead diameter db

are independent of the stereochemical composition fr. However, the dependence of
Œ��=M1=2 on M for each PMMA varies depending on solvent in the oligomer region.
This implies that for PMMA db as well as ˚� depends on solvent. For simplicity,
therefore, in the following analysis of ˛� for PMMA we confine ourselves to the
range of large M (>
 104) in which the possible effect of the solvent dependence of
db may be regarded as negligibly small. (The solvent dependence of db is considered
in a third case.)
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Fig. 8.9 Double-logarithmic plots of Œ��=M1=2 ([�] in dL/g) against M for a- and i-PMMAs [12,
13]. The symbols have the same meaning as those in Figs. 8.4 and 8.5. The solid and dashed curves
connect the data points smoothly

Figure 8.10 shows double-logarithmic plots of N̨ 3� determined from Eq. (8.77)
against ˛ 3

S for a-PS in cyclohexane at 36.0–55.0 ıC [15], in toluene at 15.0 ıC
[19], in benzene at 25.0 ıC [14, 15], and in MEK at 35.0 ıC [14], and a-PMMA
in acetone at 25.0 ıC, in nitroethane at 30.0 ıC, and in chloroform at 25.0 ıC [12].
The solid and dashed curves connect smoothly the data points for a-PS and a-
PMMA, respectively. It is seen that the data points (dashed curve) for a-PMMA in
each solvent deviate upward from those (solid curve) for a-PS by a certain constant
independent of ˛ 3

S . This constant may be equated to log C�, as seen from Eq. (8.78)
or (8.81). The values of C� so estimated for a-PMMA from the separations between
the solid and dashed curves are 1.08, 1.11, and 1.25 for the acetone, nitroethane, and
chloroform solutions, respectively. Thus we may determine ˛ 3

� from the equation
˛ 3
� D C��1Œ��=Œ��� with these values of C�. We note that C� D 1 for a-PS since its
˚� (or ˚0) is independent of solvent (see Table 6.4), and that for a-PS the plots of
˛ 3
� against ˛ 3

S form a single-composite curve, as shown in Fig. 8.10, if both ˛� and
˛S are correctly determined [14] (see Table 8.3).

A third case is such that the relations of Eqs. (8.75) and (8.76) hold for large
M along with Eq. (8.55) (for all values of M) but they do not hold in the oligomer
region because of the specific interaction �� between polymer and solvent molecules
(Sect. 6.5.3) and/or the solvent dependence of db as above. (The validity of the above
relations may be verified by the formation of a single-composite curve of double-
logarithmic plots of ˛ 3

� against ˛ 3
S .) An example of this case is PDMS [17].
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Fig. 8.10 Double-logarithmic plots of N̨ 3
� against ˛ 3

S for a-PS in cyclohexane at 36.0–55.0 ıC

(�) [15], in toluene at 15.0 ıC (�) [19], in benzene at 25.0 ıC (�,
) [14, 15], and in MEK at
35.0 ıC (�) [14], and a-PMMA in acetone at 25.0 ıC (�), in nitroethane at 30.0 ıC (�), and in
chloroform at 25.0 ıC (�) [12]. The solid and dashed curves connect smoothly the data points for
a-PS and a-PMMA, respectively
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Fig. 8.11 Double-logarithmic plots of RH=M1=2 (RH in Å) against M for PDMS in toluene at
25.0 ıC (�) [17] and in bromocyclohexane at 29.5 ıC (�) (�) [33]. The solid curve and the
dashed curve (1) connect the respective data points smoothly. The dashed curve (2) represents the
values of RH;0 in toluene used as reference standards to calculate ˛H (see the text)

Figure 8.11 shows double-logarithmic plots of RH=M1=2 (RH in Å) against M
for PDMS in toluene at 25.0 ıC [17] and in bromocyclohexane at 29.5 ıC (�)
[33], where the raw data for D� are the same as those in Fig. 6.11. The solid
curve and the dashed curve (1) connect the respective data points smoothly. Clearly
the difference between the values of RH and RH;‚ in the oligomer region arises
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from the solvent dependence of db, as in the case of Œ�� for PMMA. The problem
is then to determine RH;0 for PDMS in toluene. This may be done by means of the
theory as follows. It may be calculated by multiplying the interpolated (smoothed)
value of RH;‚ [the dashed curve (1)] by the ratio of the unperturbed HW theoretical
value of RH in toluene to that in bromocyclohexane. These theoretical values may
be calculated with the values of the HW model parameter determined from D�

and given in Table 6.3 but with the values of db which give good agreement
between the theoretical and experimental values of RH in the oligomer region in
the respective solvents. The values of db so determined are 2.2 and 1.4 Å in toluene
and bromocyclohexane, respectively. (Note that the latter value of db is somewhat
smaller than that in Table 6.3.) The dashed curve (2) represents the values of RH;0 so
evaluated. We may then determine ˛H in toluene from the equation ˛H D RH=RH;0

with these values of RH;0.
As discussed in Sect. 6.5.3, Œ�� for PDMS in bromocyclohexane becomes nega-

tive in the oligomer region because of the above specific interaction ��. Thus we
must also consider this effect in the determination of ˛�. Figure 8.12 shows plots
of Œ�� against x for PDMS in toluene at 25.0 ıC [17] and in bromocyclohexane
at 29.5 ıC (�) [33], where the latter data have been reproduced from Fig. 6.14.
The light solid and dashed curves connect the respective data points smoothly.
The heavy solid and dashed curves represent the HW theoretical values calculated
with the values of the HW model parameters determined from Œ��� and given in
Table 6.3 and with the above values of db, considering the physical requirement that
the values of db from D� and Œ��� in the same solvent must be the same. For PDMS
in toluene, �� is then found to be �0:0038 dL/g as an average of the differences
between the four values of Œ�� in toluene (unfilled circles) and the corresponding
theoretical values (the corresponding points on the heavy solid curve). As for
PDMS in bromocyclohexane, it is reestimated to be �0:0078 dL/g, this value being
somewhat different from that in Sect. 6.5.3. (This is due to the difference between
the present and previous values of db.)

Values of .Œ�� � ��/=M1=2 (Œ�� in dL/g) calculated with the experimental values
of Œ�� [17, 33] and the values of �� thus determined for PDMS in the two solvents

Fig. 8.12 Plots of Œ�� against
x for PDMS oligomers
[17, 33]. The symbols have
the same meaning as those in
Fig. 8.11. The light solid and
dashed curves connect the
respective data points
smoothly. The heavy solid
and dashed curves represent
the HW theoretical values
(see the text)
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Fig. 8.13 Double-
logarithmic plots of
.Œ��� ��/=M1=2 (Œ�� in dL/g)
for PDMS [17, 33]. The
symbols have the same
meaning as those in Fig. 8.11.
The solid curve and the
dashed curve (1) connect the
respective data points
smoothly. The dashed curve
(2) represents the values of
.Œ��� ��/0 in toluene used as
reference standards to
calculate ˛ 3

� (see the text)
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are double-logarithmically plotted against M in Fig. 8.13, where the symbols have
the same meaning as those in Fig. 8.12. The solid curve and the dashed curve (1)
connect the respective data points smoothly. The dashed curve (2) represents the
values of .Œ�� � ��/0 in toluene evaluated by adopting the same maneuver as that
in the evaluation of RH;0. We may then determine ˛ 3

� in toluene from the equation
˛ 3
� D .Œ�� � ��/=.Œ�� � ��/0 with these values of .Œ�� � ��/0.

A similar consideration of �� is necessary in the case of a-P˛MS, for which the
values of Œ�� in the oligomer region (x<
 35) in toluene at 25.0 ıC and also in n-
butyl chloride at 25.0 ıC are smaller by 0.00732 dL/g (independent of x) than that
in cyclohexane at 30.5 ıC (�) shown in Fig. 6.10, although not negative [34]. We
determine ˛ 3

� in both toluene and n-butyl chloride from the equation ˛ 3
� D .Œ�� �

��/=Œ��� with �� D �0:00732 dL/g, assuming that there is no specific interaction
to Œ��� . We note that there seems to be no specific interaction to Œ�� for a-P˛MS in
4-tert-butyltoluene at 25.0 ıC [34].

Now we proceed to make a comparison of theory with experiment for ˛� and
˛H. We first examine the behavior of ˛ 3

� as a function of z. Figure 8.14 shows
double-logarithmic plots of ˛ 3

� against z for a-PS in toluene at 15.0 ıC [19], in
benzene at 25.0 ıC [14, 15], and in MEK at 35.0 ıC [14, 15], a-P˛MS in toluene at
25.0 ıC, in 4-tert-butyltoluene at 25.0 ıC, and in n-butyl chloride at 25.0 ıC [34],
and a-PMMA in acetone at 25.0 ıC, in nitroethane at 30.0 ıC, and in chloroform
at 25.0 ıC [12], where values of z have been calculated as in Fig. 8.6 (with the
values of the HW model parameters and �B determined from hS2i). The solid
curves represent the QTP theory values calculated from Eq. (8.64) with Eq. (8.69)
and h� D 1 with the values of �B, and the dotted curves represent the TP theory
values with Qz D z. There is good agreement between the QTP theoretical and
experimental values except for a-PMMA in chloroform and in nitroethane, for
which the theoretical values deviate downward from the experimental values for
z<
 2:5. This discrepancy may probably be due to an overestimate of experimental
˛ 3
� resulting from the solvent dependence of db mentioned above. However, the

behavior of ˛ 3
� as a function of z is similar to that of ˛ 2

S in Fig. 8.6.
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Fig. 8.14 Double-logarithmic plots of ˛ 3
� against z for a-PS in toluene at 15.0 ıC (�) [19], in

benzene at 25.0 ıC (�,
) [14, 15], and in MEK at 35.0 ıC (�,�) [14, 15], a-P˛MS in toluene at
25.0 ıC (�), in 4-tert-butyltoluene at 25.0 ıC (�), and in n-butyl chloride at 25.0 ıC (�) [34], and
a-PMMA in acetone at 25.0 ıC (�), in nitroethane at 30.0 ıC (�), and in chloroform at 25.0 ıC
(�) [12]. The solid curves represent the QTP theory values calculated from Eq. (8.64) with h� D 1,
and the dotted curves the TP theory values with Qz D z (see the text). The data points and theoretical
curves for a-P˛MS and a-PMMA are shifted upward by 0.2 and 0.4, respectively

Figure 8.15 shows double-logarithmic plots of ˛�3 against Qz with the same data
as those in Fig. 8.14 along with those for i-PMMA in acetone at 25.0 ıC and in
chloroform at 25.0 ıC [13], PIB in n-heptane at 25.0 ıC [18, 19], and PDMS in
toluene at 25.0 ıC [17], where values of Qz have been calculated as in Fig. 8.7. [We
have adopted the values of the HW model parameters: ��1�0 D 1:0, ��1�0 D 0,
��1 D 15:3Å and ML D 20:9Å�1 for PIB from hS2i and hS2i� (see Sect. 8.1.4) and
��1 D 25:5Å and ML D 20:6Å�1 for PDMS from Œ��� (see Table 6.3).] The solid
curve represents the QTP theory values calculated from Eq. (8.64) with Eq. (8.69)
and h� D 1. It is seen that all the data points nearly form a single-composite curve
and are fitted by the solid curve. Thus it may be concluded that ˛� is a function only
of Qz, or in other words, the QTP scheme is valid for ˛� as well as for ˛S, indicating
also that there is no draining effect in ˛�.

Next we examine the behavior of ˛H. Figure 8.16 shows double-logarithmic
plots of ˛H against ˛S for a-PS in toluene at 15.0 ıC [16], in 4-tert-butyltoluene
at 50.0 ıC [16], and in cyclohexane at 44.5 ıC [35], a-P˛MS in toluene at 25.0 ıC,
in 4-tert-butyltoluene at 25.0 ıC, and in n-butyl chloride 25.0 ıC [34], PIB in n-
heptane at 25.0 ıC [36], and cis-polyisoprene (PIP) in cyclohexane at 35.0 ıC
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Fig. 8.15 Double-logarithmic plots of ˛ 3
� against Qz with the same data as those in Fig. 8.14 along

with those for i-PMMA in acetone at 25.0 ıC (�) and in chloroform at 25.0 ıC (�) [13], PIB
in n-heptane at 25.0 ıC (�) [18, 19], and PDMS in toluene at 25.0 ıC (�) [17]. The solid curve
represents the QTP theory values calculated from Eq. (8.64) with h� D 1 (see the text)
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Fig. 8.16 Double-logarithmic plots of ˛H against ˛S for a-PS in toluene at 15.0 ıC (�) [16], in 4-
tert-butyltoluene at 50.0 ıC (�) [16], and in cyclohexane at 44.5 ıC (�) [35], a-P˛MS in toluene
at 25.0 ıC (�), in 4-tert-butyltoluene at 25.0 ıC (�), and in n-butyl chloride 25.0 ıC (�) [34],
PIB in n-heptane at 25.0 ıC (�) [36], and PIP in cyclohexane at 35.0 ıC (�) [37]. The solid curve
represents the theoretical values calculated from Eq. (8.65) with Eq. (8.57), and the dotted curve
those of ˛.0/H calculated from Eq. (8.70) with Eq. (8.57) (see the text)
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Fig. 8.17 Double-logarithmic plots of ˛H against Qz for a-PS in toluene at 15.0 ıC (�) and in 4-
tert-butyltoluene at 50.0 ıC (�) [16], a-P˛MS in toluene at 25.0 ıC (�), in 4-tert-butyltoluene at
25.0 ıC (�), and in n-butyl chloride 25.0 ıC (�) [34], a-PMMA in acetone at 25.0 ıC (�) [38],
i-PMMA in acetone at 25.0 ıC (�) [38], PIB in n-heptane at 25.0 ıC (�) [18, 39], and PDMS
in toluene at 25.0 ıC (�) [17]. The solid curve represents the theoretical values calculated from
Eq. (8.65), the dotted curve those of ˛.0/H calculated from Eq. (8.70), and the dashed curve those of

˛� D ˛
.0/
� calculated from Eq. (8.69) (see the text)

[37]. The solid curve represents the theoretical values calculated from Eq. (8.65)
with Eqs. (8.57), (8.70), and (8.74), and the dotted curve represents those of ˛.0/H
calculated from Eq. (8.70) with Eq. (8.57). It is seen that the data points deviate
downward from the dotted curve and even from the solid curve, indicating that
Eq. (8.74) for hH underestimates the effect of fluctuating HI.

Figure 8.17 shows double-logarithmic plots of ˛H against Qz for a-PS in toluene
at 15.0 ıC and in 4-tert-butyltoluene at 50.0 ıC [16], a-P˛MS in toluene at 25.0 ıC,
in 4-tert-butyltoluene at 25.0 ıC, and in n-butyl chloride 25.0 ıC [34], a-PMMA
in acetone at 25.0 ıC [38], i-PMMA in acetone at 25.0 ıC [38], PIB in n-heptane at
25.0 ıC [18, 39], and PDMS in toluene at 25.0 ıC [17], where we have used the same
values of Qz as those in Fig. 8.15. The solid curve represents the theoretical values
calculated from Eq. (8.65) with Eqs. (8.57), (8.70), and (8.74), and the dotted curve
represents those of ˛.0/H calculated from Eq. (8.70). It is seen that all the data points
are located even below the solid curve but nearly form a single-composite curve
(except for PDMS), indicating that the QTP scheme is valid for ˛H as well as for ˛S

and ˛�. However, it is again surprising to see that the data points closely follow the

dashed curve which represents the theoretical values of ˛� D ˛
.0/
� calculated from

Eq. (8.69), and therefore coincide with the data points for ˛� within experimental
error; and thus the results are consistent with those in Fig. 8.8 for the Monte Carlo
data.
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Fig. 8.18 Plots of ˛H against
Qz for a-PS in cyclohexane
near the � temperature
(�,�,�) [35, 40, 41]. The
solid and dashed straight
lines represent the theoretical
values of ˛H D ˛

.0/
H and

˛� D ˛
.0/
� calculated from

Eqs. (8.73) and (8.72),
respectively
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In order to confirm this near the � temperature, values of ˛H for a-PS in
cyclohexane [35, 40, 41] are plotted against Qz in Fig. 8.18, where values of Qz have
been calculated with the values of �B determined from the second virial coefficient
A2 (see Sect. 8.5.1). The solid and dashed straight lines represent the theoretical
values of ˛H D ˛

.0/
H and ˛� D ˛

.0/
� calculated from Eqs. (8.73) and (8.72),

respectively. Clearly the first-order perturbation theory of ˛.0/H does not fit the

experimental data even for small jQzj, while the corresponding theory of ˛.0/� is seen
to be valid apparently for ˛H as well as for ˛� over a rather wide range of Qz. The
problem that remains is to develop a complete analytical theory of hH.

8.3 Second Virial Coefficient

8.3.1 Perturbation Theory

We begin by developing the perturbation theory of the second virial coefficient A2
[3], adopting the same model as that used to evaluate the expansion factors ˛R and
˛S in Sect. 8.1.1. It may be written in the form [1, 3]

A2 D .NAn2ˇ=2M2/h ; (8.82)

where we have assumed that n� 1, and h is the so-called h function that represents
the correction to the single-contact term .NAn2ˇ=2M2/. In what follows, all lengths
are measured in units of ��1 as usual unless otherwise noted. Since we have the
relation n2ˇ D c 3=21 L2B from Eq. (8.6) with L D na, Eq. (8.82) may then be
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rewritten in the form

A2 D .NAc 3=21 L2B=2M2/h ; (8.83)

with

h D 1 �Q.L/zC � � � ; (8.84)

where the coefficient Q.L/ of the double-contact term must approach its coil-
limiting value 2.865 as L is increased. Even for the HW chain, it may be evaluated
on the basis of the KP chain as in the case of the coefficient K.L/ in ˛R and ˛S.

Now, following the formulation for the random-flight chain [1], Q.L/ may be
evaluated from

Q.L/ D 2L�5=2H.L/ (8.85)

with

H.L/ D
Z L

0

Z L

0

.L � s1/.L � s2/J.s1; s2/ds1ds2 ; (8.86)

J.s1; s2/ D .3=2�/�3=2P0.0y1y2 /x1x2

D .3=2�/�3=2
Z

G.RI s1/G.RI s2/dR ; (8.87)

where si D yi � xi (i D 1; 2), and P0.0y1y2 /x1x2 is the (unperturbed) conditional
probability density that, given an initial contact between the .x1=a/th bead of chain 1
and the .x2=a/th bead of chain 2, there is an additional contact between the .y1=a/th
and .y2=a/th beads. Note that J.s1; s2/ D J.s2; s1/.

By the use of Eq. (3.88) with Eq. (3.85) and also Eq. (3.102), we have, from the
second line of Eqs. (8.87),

J.s1; s2/ D 1

.s1 C s2/3=2

�
1C 1

8.s1 C s2/
C 1223

1920.s1C s2/2
C � � �

�

for s1; s2 � 1 ; (8.88)

lim
s2!0

J.s1; s2/ D 1

s13=2

�
1 � 5

8s1
� 79

640s 21
C � � �

�
for s1 � 1 ; (8.89)

lim
s1;s2!0

J.s1; s2/ D
�
3

2�

��3=2
1

4�s 22
ı.s1 � s2/ : (8.90)
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We then construct an interpolation formula for J.s1; s2/, which is valid for s1 larger
than some small positive value � , from Eqs. (8.88) and (8.89). When � D 0:931,
which value has no great significance, the result is

J.s1; s2/ D
2X

jD0
fi.�/s

�3=2�i
1 for s1 	 � ; (8.91)

where

� D s2=s1 ; (8.92)

fi D ci.1C �/�3=2�i for � 	 �=s1

D
3X

jD0
aij�

j for � < �=s1 (8.93)

with

c0 D 1 ; c1 D 1

8
; c2 D 1223

1920
;

(8.94)

a00 D 1 ; a10 D �5
8
; a20 D � 79

640
:

The remaining coefficients aij are determined as functions of �=s1 so that the two
fis given by the first and second lines of Eqs. (8.93) have the same first and second
derivatives at � D �=s1, but the results [3] are omitted. We note that the double-
contact approximation does not suffice for the complete evaluation of A2 for very
small L [3].

Thus we evaluate H.L/ only for L 	 � . It may then be split into three parts,

H D H0 C H1 C 2H2 for L 	 � ; (8.95)

where H0 is the part of the double integral of Eq. (8.86) for 0 � s1; s2 � � , H1 for
� � s1; s2 � L, and H2 for � � s1 � L and 0 � s2 � � . If we use Eq. (8.91), H1 and
H2 can be evaluated straightforwardly, but the results are omitted. For the evaluation
of H0, we consider a function H.t1; t2IL/ defined by

H.t1; t2IL/ D
Z t1

0

.L � s1/I.s1; t2IL/ds1 (8.96)
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with

I.s1; t2IL/ D
Z t2

0

.L � s2/J.s1; s2/ds2 ; (8.97)

so that

H0 D H.�; � IL/: (8.98)

We can construct an interpolation formula for I.s1; t2 ! 0IL/ from Eqs. (8.89),
(8.90), and (8.97), and then have the limiting form

lim
t2!0

H.�; t2IL/ D
Z �

d
.L� s1/I.s1; t2 ! 0IL/ds1 ; (8.99)

where d is a cutoff parameter. Recalling the symmetry property of J (and
H), we can then have the limiting form, limt1!0 H.t1; � IL/, and therefore
limt1!0 @H.t1; � IL/=@t1. On the other hand, we have, from Eq. (8.96),

@H.t1; � IL/
@t1

D .L� t1/I.t1; � IL/ ; (8.100)

where I.t1; � IL/ for t1 	 � may be evaluated from Eq. (8.97) with Eq. (8.91). We
can then construct an interpolation formula for @H.t1; � IL/=@t1. Thus we obtain

H0 D H.0; � IL/C
Z �

0

@H.t1; � IL/
@t1

dt1 : (8.101)

Summing up all terms in Eq. (8.95) thus evaluated, we obtain H.LI d/ and hence
Q.LI d/. For flexible chains, we may take d D 0:2–0.5. Fortunately, however,
Q.LI d/ is found to be insensitive to change in d in that range. We therefore choose
d D 0:3 for all flexible polymers, for simplicity. Then Q.L/ (for L>
 1) is given in a
very good approximation by [42]

Q.L/ D �128
p
2

15
� 2:531

L1=2
� 2:586

L
C 1:985

L3=2
� 1:984

L2
� 0:9292

L5=2
C 0:1223

L3

C8
5

x5=2 C 2

3
x3=2

�
8C 1

6L

�
C x1=2

�
8 � 13:53

L
C 0:2804

L2

�

� 1

x1=2L

�
0:3333� 5:724

L
C 0:7974

L2

�
� 1

x3=2L2

�
0:3398� 0:7146

L

�

(8.102)



8.3 Second Virial Coefficient 325

with

x D 1C 0:961

L
: (8.103)

It is seen that Q.L/ also approaches slowly its coil-limiting value as L is increased,
the first-order deviation from the latter being of order L�1=2 as in the case of K.L/.

8.3.2 Effects of Chain Stiffness and Local Chain
Conformations

As in the TP theory, the interpenetration function ‰ may be defined by [1]

A2 D 4�3=2NA
hS2i3=2

M2
‰ ; (8.104)

but it is now given, from Eqs. (8.83) and (8.104), by

‰ D
�
6hS2i0
c1L

��3=2
Nzh (8.105)

with

Nz D z=˛ 3
S : (8.106)

We assume that h is a function only of a parameter Oz defined by

Oz D QQz=˛ 3
S (8.107)

with

QQzD
�

Q.L/

2:865

�
z : (8.108)

Corresponding to the intramolecular scaled excluded-volume parameter Qz defined
by Eq. (8.48), the parameter QQz is referred to as the intermolecular scaled excluded-
volume parameter. It is seen that QQz and Oz slowly approach their respective coil-
limiting values z and Nz as L is increased.

Now we determine the functional form of h.Oz/ that may be combined with
Eq. (8.51) or (8.57) for ˛S [42]. This can be done in such a way that in the coil
limit (L! 1) the values of h.Nz/ as a function of z with the ˛S given by Eq. (8.57)
(with Qz D z) are as close as possible to those of the Barrett function h.z/ [43] (with
the intramolecular excluded-volume effect) at any z; that is,

h.Nz/ ' .1C 14:3 zC 57:3 z2/�0:2 : (8.109)
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Replacing Nz by Oz in the function h.Nz/ so found, we obtain the desired function

h.Oz/ D .1C 7:74 OzC 52:3 Oz27=10/�10=27 : (8.110)

We note that in the coil limit the difference between the values of‰ calculated from
Eq. (8.105) with Eq. (8.110) and with the Barrett equation for h does not exceed
3 %. As seen from Eqs. (8.105)–(8.108) and (8.110), h is a function of Qz and QQz, and
Nzh is a function of z, Qz, and QQz, so that neither the TP nor the QTP scheme is valid for
‰ even apart from its prefactor; and moreover, the latter depends on L and also the
HW model parameters �0 and �0. In the coil limit (TP theory) Eq. (8.105) reduces to

‰ D Nzh.z/ .TP/ ; (8.111)

where h.z/ is given by Eq. (8.110) with Oz D Nz (and with QQz D Qz D z). We note
that Nickel [44] and Chen and Noolandi [45] have also developed non-TP theories
of ‰, but the derived equations cannot explain all experimental results for flexible
polymers.

We examine the behavior of‰ taking as examples a-PS and a-PMMA, for which
we assume the values of the HW model parameters given in Table 5.1. Values of ‰
as a function of ˛ 3

S calculated from Eq. (8.105) with Eqs. (8.57), (8.106)–(8.108),
and (8.110) are plotted in Figs. 8.19 and 8.20 for a-PS and a-PMMA, respectively.
The dotted curves represent the TP theory values calculated from Eq. (8.111). The
solid curves represent the values for the case in which L (or M) is changed at
constant B, while the dashed curves represent the values for the case in which B
is changed at constant L (or M). It is seen that the TP theory prediction is obtained
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Fig. 8.19 Plots of the theoretical ‰ against ˛ 3
S for a-PS. The solid and dashed curves represent

the values at constant B and L, respectively. The dotted curve represents the TP theory values
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Fig. 8.20 Plots of the theoretical ‰ against ˛ 3
S for a-PMMA. The curves have the same meaning

as those in Fig. 8.19

as the asymptotic limit of L ! 1 or B ! 0, that for finite L and B, ‰ always
deviate upward from the TP theory prediction, and that the behavior of ‰ depends
remarkably on chain stiffness and local chain conformation.

8.3.3 Effects of Chain Ends

In this subsection we consider possible effects of chain ends on A2, which must
become appreciable as L (or M) is decreased [42]. However, note that the effects
on the expansion factors ˛ must be vanishingly small since the probability densities
for intramolecular contacts between beads (or the excluded-volume effect itself) are
very small for small L because of chain stiffness.

For the present purpose, we consider a chain composed of nC1 beads numbered
0, 1, 2, � � � , j, � � � , n from one end to the other and attach the label “0” to the n � 1
intermediate beads with j D 1, 2, � � � , n � 1, the label “1” to the end bead with
j D 0, and the label “2” to the other end bead with j D n, where the two end beads
are different from the n � 1 intermediate ones and also from each other in species.
For simplicity, we take into account the effects only on the single-contact term A.1/2
for small n. From the general formulation of A2 [1], A.1/2 may then be written in the
form

A.1/2 D .NA=2M2/
X

ˇ2;kl ; (8.112)
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Fig. 8.21 Six kinds of
intermolecular contacts and
binary-cluster integrals ˇ2;kl

(see the text)

0
1
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n
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where ˇ2;kl is the binary-cluster integral for two beads with the labels k and l (D 0,
1, 2), and the sum is taken over all possible sets of such two beads. The latter may
be expressed as

X
ˇ2;kl D �

X

i1

X

i2

Z

i1 i2dRi1i2 ; (8.113)

where 
i1 i2 is the 
 function of the distance Ri1 i2 between the i1th bead of chain 1
and the i2th bead of chain 2 [1]. Then there are six kinds of binary-cluster integrals,
as schematically depicted in Fig. 8.21, where the numerical prefactor of each ˇ2;kl

represents its symmetry factor.
Now we define excess binary-cluster integrals ˇkl by

ˇ2;kl D ˇ2 C ˇkl (8.114)

with

ˇ � ˇ2 � ˇ2;00 : (8.115)

We then have

X
ˇ2;kl D .nC 1/2ˇ C 4.nC 1/ˇ2;1 C 4.ˇ2;2 � 2ˇ2;1/ ; (8.116)

where ˇ2;1 and ˇ2;2 are the effective excess binary-cluster integrals associated with
the chain end beads and defined by

2ˇ2;1 D ˇ01 C ˇ02 ;
(8.117)

4ˇ2;2 D ˇ11 C 2ˇ12 C ˇ22 :
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Thus A2 in general may be written in the form

A2 D A.HW/
2 C A.E/2 ; (8.118)

where A.HW/
2 is the part of A2 without the effects of chain ends, or A2 for the

(fictitious) chain composed of n C 1 identical beads, and A.E/2 represents the

contribution of the effects of chain ends to A2. The first term A.HW/
2 is therefore

given by Eq. (8.83) or (8.104), and the second term A.E/2 is given, from Eq. (8.112)
with Eq. (8.116), by

A.E/2 D a2;1M
�1 C a2;2M

�2 ; (8.119)

where

a2;1 D 2NAˇ2;1=M0 ;

a2;2 D 2NA�ˇ2;2 (8.120)

with M0 the molecular weight of the bead and with

�ˇ2;2 D ˇ2;2 � 2ˇ2;1 : (8.121)

At the � temperature, which is now defined as the temperature at which A2
vanishes for large M, A.HW/

2 and ˇ must vanish, so that A2 at the � temperature,
which we denote by A2;� , is given by

A2;� D A.E/2 : (8.122)

This indicates that A2;� does not vanish except at large M, depending on M.

8.3.4 Effects of Three-Segment Interactions

In the binary-cluster approximation [1] made so far, A.HW/
2 without the effects of

chain ends vanishes at the � temperature at which ˇ2 (D ˇ) vanishes and hR2i=M
and hS2i=M become there respective constants independent of M for large M, and
hence ˛R D ˛S D 1. However, if possible effects of the ternary-cluster integral
(three-segment interaction) ˇ3 [1] are taken into account [46], A.HW/

2 for small M
may in general remain finite even at the � temperature, as pointed out by Cherayil
et al. [47] and by Nakamura et al. [48] on the basis of the random-flight chain within
the framework of the first-order perturbation theory. In this subsection, we consider
this problem along the same line on the basis of the HW chain instead of the random-
flight chain.
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For convenience, we begin by presenting the results of the first-order perturbation
theory of A2 and also ˛R for the random-flight chain. If we retain terms of A2
proportional to n�1=2ˇ2 and n�1=2ˇ3 in addition to those proportional to ˇ2 and ˇ3,
following the procedure in the perturbation theory with consideration of ˇ3 [46],
then A2 may be given by [48]

A2 D NAn2

2M2

�
ˇ � 8

�
3

2�a2

�3=2
ˇ3 n�1=2 C � � �

�
(8.123)

with ˇ the effective binary-cluster integral newly defined by

ˇ D ˇ2 C 4
�

3

2�a2

�3=2
ˇ3 : (8.124)

Recall that for the smoothed-density model, the effective ˇ depends on n, the
result being inconsistent with experiment [46]. The parameter a in Eqs. (8.123)
and (8.124) denotes the effective bond length of the random-flight chain (not the
spacing between beads in the HW bead model) as far as the theoretical results for the
random-flight chain are concerned. We note that the original expression for A2 given
by Nakamura et al. [48] includes an additional cut-off parameter, which should in
principle be put equal to unity for the random-flight chain. Correspondingly, if we
retain terms of ˛ 2

R proportional to ˇ2 and ˇ3 in addition to those proportional to
n1=2ˇ2 and n1=2ˇ3, it may be given by [49]

˛ 2
R D 1C

�
4
3
� 2n�1=2
z � 4�

�
3

2�a2

�3
ˇ3 C � � � ; (8.125)

where z is the conventional excluded-volume parameter defined by Eq. (8.2) with
hR2i0 D na2 but with ˇ defined by Eq. (8.124). It is seen from Eqs. (8.123)
and (8.125) that there remain the residual contributions of ˇ3 both to A2 and ˛ 2

R ,
the former being proportional to n�1=2 (M�1=2) and the latter to n0 (constant).

Now, as in the case of the random-flight chain, A2 for the HW chain (composed of
nC1 identical beads with spacing a between them), that is, A.HW/

2 may be expanded
in terms of ˇ2 and ˇ3 [49]. The result reads

A.HW/
2 D NAL2

2M2a2

	
ˇ

�2
�

3

2�c1

�3=2
a2
�
ˇ3

a3

�
ŒI.1/� I.L/�C � � �



(8.126)

with ˇ the effective binary-cluster integral redefined by

ˇ D ˇ2 C 2
�

3

2�c1

�3=2
a2
�
ˇ3

a3

�
I.1/ ; (8.127)
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where the function I.L/ of L is given by

I.L/ D exp.�6L�1 C 0:3472� 0:087L/ for 0 � L � 3:075
D 0:4149� 0:8027L�1 C 0:01L�1.7:132�2

�0:9315�3 C 0:1057�4 � 0:005745�5/ for 3:075 < L < 7:075

D 1:465� 4L�1=2 C 3:476L�1 � 5
6
L�3=2 for 7:075 � L (8.128)

with � D L � 3:075. The function I.L/ approaches 1.465 and 0 in the limits of
L ! 1 and L ! 0, respectively, so that the factor I.1/ � I.L/ on the right-hand
side of Eq. (8.126) becomes 4L�1=2 in the limit of L!1 and approaches the value
1.465 in the limit of L! 0. As for ˛ 2

R , the result reads

˛ 2
R D 1C K.L/z � C.L/

�
3

2�c1a

�3
ˇ3 C � � � ; (8.129)

where z is given by Eq. (8.5) with Eq. (8.6) with ˇ defined by Eq. (8.127), and the
coefficient C.L/ as a function of L approaches a constant independent of L in the
limit of L!1 and vanishes in the limit of L! 0, although the explicit expression
for it is omitted.

From a comparison of Eqs. (8.126), (8.127), and (8.129) for the HW chain with
Eqs. (8.123), (8.124), and (8.125) for the random-flight chain, it is seen that the
former are essentially the same as the latter except that the residual contribution
of ˇ3 to A.HW/

2 at ˇ D 0 converges to a finite value in the limit of L ! 0

(M ! 0), while the corresponding contribution to A2 at ˇ D 0 for the random-
flight chain diverges in this limit. For both the HW and random-flight chains, the
indication is that even at ˇ D 0, the residual contribution of ˇ3 to A2 exists,
and moreover, ˛ 2

R takes a value different from unity. However, even within the
framework of the present theory which takes account of three-segment interactions,
it seems reasonable to consider that the � temperature (state) is the temperature at
which ˇ (instead of ˇ2) vanishes. In the remainder of this subsection, we examine
whether the behavior of the residual contributions of ˇ3 to A2 and ˛ 2

R in this� state
is or is not consistent with the usual definition of the � temperature that it is the
temperature at which A2 vanishes for very large M and also hR2i=M (or hS2i=M)
becomes there a constant independent of M.

Now the residual contribution A.HW/
2;� of ˇ3 to A.HW/

2 given by Eq. (8.126) at �
(ˇ D 0) may be written in the form

A.HW/
2;� D � 3A03 .L=M/1=2

8�3=2NA.hS2i0=M/ 3=21
ŒI.1/� I.L/� ; (8.130)

where A03 is the third virial coefficient for the HW chain composed of nC1 identical
beads at � given by [50]

A03 D
N 2

A n3ˇ3
3M3

; (8.131)
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and .hS2i0=M/1 is the value of hS2i0=M in the limit of M !1. From Eq. (8.130)
with Eq. (8.128), we have

A.HW/
2;� D � 3A03

2�3=2NA.hS2i0=M/ 3=21
M�1=2 .for large M/

D � 3A03 .L=M/1=2

8�3=2NA.hS2i0=M/ 3=21
I.1/ .for small M/ : (8.132)

Thus A.HW/
2;� and therefore A2;� vanish for very large M.

Next we consider ˛ 2
R . At � (ˇ D 0), Eq. (8.129) becomes

˛ 2
R D 1 �

3A03 C.L/

64�3N 2
A .hS2i0=M/ 31

C � � � (at �) : (8.133)

We note that C.L/ � 4� for the random-flight chain. Since an expression for C.L/
for the HW chain has not explicitly been derived, we tentatively estimate the second
term on the right-hand side of Eq. (8.133), that is, the residual contribution of ˇ3 to
˛ 2

R for the random-flight chain. It may be evaluated to be of order 0.1 from the values
of .hS2i=x/1 given in Sect. 5.1.2 and A03 given in Sect. 8.4.3 for typical flexible
polymers. In the case of the HW chain, for which C.0/ D 0, as mentioned above,
the ratio hS2i�=M of the mean-square radius of gyration to M at � in the limit of
M ! 1 may also be about 10 % smaller than the corresponding “unperturbed”
ratio hS2i0=M for the ideal chain with the vanishing ˇ2 and ˇ3. Then, in a practical
analysis of experimental data on the basis of the HW chain, such a decrease may be
absorbed into the HW model parameters, and an associated increase in the observed
expansion factor ˛S may be absorbed into the effective binary-cluster integral ˇ,
regarding the decreased dimension hS2i0˛ 2

S (at �) as the new hS2i0 D hS2i� for all
M. Thus the analysis of experimental data made so far for single-chain properties in
the QTP scheme is not necessary to change.

In sum, it may be concluded that the effective binary-cluster integral ˇ vanishes
indeed at the � temperature, and that the dilute solution behavior of polymers
may be still explained by the HW theory if only the residual contribution of three-
segment interactions to A2 at � is taken into account, that is, if only Eq. (8.130) is
used instead of the relation, A.HW/

2;� D 0, in the binary-cluster approximation. Then
Eq. (8.122) is replaced by

A2;� D A.HW/
2;� C A.E/2 : (8.134)

We note that such a contribution may be ignored for good-solvent systems, where
the contribution of ˇ to A.HW/

2 becomes dominate.
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8.3.5 Comparison with Experiment

Huber and Stockmayer [51] found experimentally that A2;� does not vanish but
increases with decreasing M for small M for a-PS in cyclohexane, and then this
finding was confirmed by others [52, 53] for a-PS and also for a-PMMA. This
may be regarded as arising from the effects of chain ends. Thus we first make
a comparison of theory with experiment with respect to A.E/2 in � and also good
solvents, for convenience.

Equation (8.119) predicts that A.E/2 M is linear in M�1. Figure 8.22 shows plots

of A.E/2 M against M�1 for a-PS in toluene at 15.0 ıC and in cyclohexane at 34.5 ıC
(�) [49, 54], a-P˛MS in toluene at 25.0 ıC and in cyclohexane at 30.5 ıC (�) [55],
and a-PMMA in acetone at 25.0 ıC and in acetonitrile at 44.0 ıC (�) [49, 56], in
the range of M<
 104. Here, we note that the data for A2 for the oligomers were
obtained from light scattering measurements following the procedure described in
Appendix 2, and that the values of A.E/2 in the good solvents have been obtained

from A.E/2 D A2 � A.HW/
2 , while those in the � solvents have been obtained from

A.E/2 D A2;� �A.HW/
2;� , as mentioned above. The values of A.HW/

2 and A.HW/
2;� necessary

for the evaluation of A.E/2 have been calculated from Eq. (8.104) and Eq. (8.130),
respectively, with the values of the HW model parameters (given in Table 5.1), �B
(given in Table 8.3), .hS2i=x/1 (given in Sect. 5.1.2), and A03 (given in Sect. 8.4.3),
and also with the relation

L D M=ML : (8.135)

The data points for each system are somewhat scattered but can be fitted by a straight
line, and from its intercept and slope, a2;1 and a2;2 and hence ˇ2;1 and ˇ2;2 may be
determined. The results so obtained forˇ2;1 and ˇ2;2 taking the repeat unit as a single
bead (with M0 D 104, 118, and 100 for PS, P˛MS, and PMMA, respectively) are
220 and 270 Å3 for a-PS in toluene [54], 44 and 200 Å3 for a-PS in cyclohexane [49],

Fig. 8.22 Plots of A
.E/
2 M

against M�1 for a-PS in
toluene at 15.0 ıC (�) and in
cyclohexane at 34.5 ıC (�)
(�) [49, 54], a-P˛MS in
toluene at 25.0 ıC (�) and in
cyclohexane at 30.5 ıC (�)
(�) [55], and a-PMMA in
acetone at 25.0 ıC (�) and in
acetonitrile at 44.0 ıC (�)
(�) [49, 56]
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Fig. 8.23 Double-
logarithmic plots of A2 (in
cm3 mol/g2) against M for
a-PS in toluene at 15.0 ıC
(�) [54], a-P˛MS in toluene
at 25.0 ıC (�) [55], and
a-PMMA in acetone at
25.0 ıC (�) [56]. The solid
and dot-dashed curves
represent the theoretical
values of A2
(D A

.HW/
2 C A

.E/
2 ), the dashed

and dotted curves those of
A
.HW/
2 and A

.E/
2 , respectively.

The data points and
theoretical curves for
a-P˛MS and a-PMMA are
shifted upward by 3 and 6,
respectively
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190 and 180 Å3 for a-P˛MS in toluene, 77 and 210 Å3 for a-P˛MS in cyclohexane
[55], 62 and 910 Å3 for a-PMMA in acetone [56], and�19 and 500 Å3 for a-PMMA
in acetonitrile [49], respectively.

Figure 8.23 shows double-logarithmic plots of A2 (in cm3 mol/g2) against M
for a-PS in toluene at 15.0 ıC [54], a-P˛MS in toluene at 25.0 ıC [55], and a-
PMMA in acetone at 25.0 ıC [56]. The solid curves represent the theoretical
values calculated with the values of all the necessary parameters determined, and
the dot-dashed curves represent those with h D 1 (for �L<
 1), for which the

theoretical contributions of A.HW/
2 and A.E/2 are shown by the dashed and dotted

curves, respectively. It is seen that there is rather good agreement between theory
and experiment, and that A.E/2 remains appreciable up to M D 104–105. Further,
it is interesting to see that the theory predicts a maximum of A2 for a-PS and a-
P˛MS at very small M, although this has not been confirmed experimentally. In
this connection, we note that Sotobayashi and Ueberreiter [57] long ago found
experimentally such behavior of A2 for a-PS in naphthalene at 80.4 ıC and obtained
its negative value for the dimer.

Figure 8.24 shows plots of A2;� against log M for a-PS in cyclohexane at 34.5 ıC
(�) [54], a-P˛MS in cyclohexane at 30.5 ıC (�) [55], and a-PMMA in acetonitrile
at 44.0 ıC (�) [56]. The solid, dashed, and dotted curves represent the theoretical
values of A2;� (D A.HW/

2;� CA.E/2 ), A.HW/
2;� , and A.E/2 , respectively, calculated with values

of all the necessary parameters determined. It is seen that all the data points follow
closely the respective theoretical curves as a whole, although strictly, they deviate
slightly upward from the respective theoretical curves in the range of 104 <
M<
 105.
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Fig. 8.24 Plots of A2;�
against log M for a-PS in
cyclohexane at 34.5 ıC (�)
(�) [49, 54], a-P˛MS in
cyclohexane at 30.5 ıC (�)
(�) [55], and a-PMMA in
acetonitrile at 44.0 ıC (�)
(�) [49, 56]. The solid,
dashed, and dotted curves
represent the theoretical
values of A2;�
(D A

.HW/
2;� C A

.E/
2 ), A

.HW/
2;� , and

A.E/2 , respectively. The data
points and theoretical curves
for a-P˛MS and a-PMMA are
shifted upward by 10 � 10�4

and 20 � 10�4 cm3 mol/g2,
respectively
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It is also seen that A.HW/
2;� becomes a constant independent of M for M<
 3 � 103 for

every polymer where the ring closure probability almost vanishes and therefore the
factor I.1/� I.L/ in Eq. (8.130) becomes very close to the asymptotic value I.1/
in the limit of L! 0. It is interesting to see that A2;� for a-PMMA clearly exhibits
a minimum. We also note that Springer et al. [58] obtained data for A2 for a-PMMA
in acetone at 25.0 ıC which exhibit its maximum at M ' 380.

Next we examine the behavior of the interpenetration function ‰. Before doing
this, we must first note that Fujita and co-workers [2, 15, 59, 60] were the first to find
that for flexible polymers in good solvents‰ increases from its asymptotic value for
large M as M is decreased, and that Huber and Stockmayer [51] pointed out that this
may be regarded as arising from chain stiffness. Of course, it should be considered
at the present time that the increase in this apparent ‰ defined by Eq. (8.104) (with
the whole A2) with decreasing M for small M arises from the effects of chain ends
as well as chain stiffness. Since ‰ is now defined for A.HW/

2 , its experimental values
must be calculated from

‰ D A.HW/
2 M2

4�3=2NAhS2i3=2 (8.136)

with experimental values of A.HW/
2 obtained from A.HW/

2 D A2 � A.E/2 with observed

values of A2 and values of A.E/2 calculated for M<
 105 from Eq. (8.119) with values

of ˇ2;1 and ˇ2;2 determined. (Note that A.HW/
2 ' A2 for M>
 105.)
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Fig. 8.25 Plots of ‰ against ˛ 3
S for a-PS; �, in toluene at 15.0 ıC; �, in n-butyl chloride at

15.0 ıC; �, in 4-tert-butyltoluene at 50.0 ıC; �, in cyclohexane (CH) at 55.0 ıC; �, in CH at
50.0 ıC; , in CH at 45.0 ıC; �, in CH at 40.0 ıC [15, 54, 61]; and !, in CH at 42.0 ıC; ", in
CH at 38.0 ıC;#, in CH at 36.0 ıC [15]. Various directions of pips indicate different values of M.
The solid and dashed curves connect smoothly the data points at constant B and M, respectively.
The dotted curve represents the TP theory values

Values of ‰ so determined [15, 54, 56, 61] are plotted against ˛ 3
S in Figs. 8.25

and 8.26 for a-PS and a-PMMA, respectively, as typical examples, where various
types of circles indicate different solvent conditions (different excluded-volume
strength B), and various directions of pips attached to them indicate different values
of M. The solid and dashed curves connect smoothly the data points at constant
B and M, respectively. There is semiquantitative agreement between theory and
experiment, as seen from a comparison of Figs. 8.25 and 8.26 with Figs. 8.19
and 8.20, respectively. In particular, it is interesting to see that as ˛ 3

S (or M)
is decreased in their respective good solvents of almost the same �B, toluene
(�B D 0:26) and acetone (�B D 0:22), for a-PS ‰ increases steeply (at ˛S D 1)
after passing through a maximum and then a minimum at ˛ 3

S ' 1, while for a-
PMMA it decreases monotonically and then drops suddenly after reaching a finite
value at ˛S D 1 (except for the oligomers with very small M). The behavior of ‰
as a function of ˛ 3

S for a-P˛MS is rather similar to that for a-PS [55], and i-PMMA
is intermediate between a-PS and a-PMMA in its behavior [62], but we omit the
results. All these results indicate that ‰ as a function of ˛ 3

S depends strongly on
chain stiffness and local chain conformation through �B and hS2i.
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Fig. 8.26 Plots of ‰ against ˛ 3
S for a-PMMA [56];�, in acetone at 25.0 ıC;�, in chloroform at

25.0 ıC;�, in nitroethane at 30.0 ıC;�, in acetonitrile (AN) at 55.0 ıC;�, in AN at 50.0 ıC;�,
in AN at 47.0 ıC (see legend for Fig. 8.25)

8.4 Third Virial Coefficient

8.4.1 Perturbation Theory for the Random-Flight Chain

For convenience, we begin by considering the random-flight chain. Recently
Norisuye and Nakamura [63] have developed the perturbation theory of the third
virial coefficient A3 for this chain in terms of the ternary-cluster integral ˇ3 as well
as the binary-cluster integral ˇ2. Consider the chain composed of n C 1 identical
beads as before. In the superposition approximation [1], A3 may then be expanded
for n� 1 as

A3 D N 2
A n3

3M3
.ˇ3 � I1ˇ2ˇ3 � I2ˇ

2
3 C J1ˇ

2
2 C J2ˇ

2
2 ˇ3

CJ3ˇ2ˇ
2
3 C J4ˇ

3
3 C � � � / : (8.137)

In Eq. (8.137), the leading term involving a single ˇ3 arises from a single contact
among the i1th bead of chain 1, the i2th bead of chain 2, and i3th bead of chain 3
[47, 64], and J1 had already been evaluated as [1, 65, 66]

J1 D n�3XP0.0k2k3 /i1i2;j1 j3 D �1
�

3

2�a2

�3=2
n3=2 (8.138)
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with �1 D 1:664, where P0.0k2k3 /i1i2;j1 j3 is the (unperturbed) conditional probability
density that when two initial contacts between the i1th and i2th beads, and between
the j1th and j3th beads exist, there also exists an additional contact between the k2th
and k3th beads [1]. [Note that Norisuye and Nakamura’s notation is inappropriate;
their P.0i1j2k3 / is not the probability density.]

Similarly, I1, I2, J2, J3, and J4 (for n � 1) may be straightforwardly evaluated
to be

I1 D 3n�3XP0.0j1j2 /i1i2;i1 i3 D 6C1

�
3

2�a2

�3=2
n1=2 ;

I2 D 6n�3 X

j1<k1

P0.0j1k1 ; 0k1j2 /i1i2;i1i3 D 24C1

�
3

2�a2

�3
n1=2;

J2 D 6n�3 X

j1<k1

P0.0j1k1 ; 0k1j2 /i1i3;i2j3 D 12�1
�

3

2�a2

�3
n3=2;

J3 D 3n�3
�X

i1<j1
k1<l1

P0.0i1j1 ; 0k1l1 ; 0l1j2 /i1i3;i2 j3

C
X

i3<j3
j1<k1

P0.0i3j3 ; 0j1k1 ; 0k1j2 /i2i3;i1k3

C
X

i2<j2
j1<k1

P0.0i2j2 ; 0j1k1 ; 0k1k2 /i2i3;i1j3

�
(8.139)

D 48�1
�

3

2�a2

�9=2
n3=2 ;

J4 D 2n�3
�
3
X

i1<j1
k1<l1
j2<k2

P0.0i1j1 ; 0k1l1 ; 0j2k2 ; 0k2j3 /i1i2;k1i3

C
X

i1<j1
i3<j3
j2<k2

P0.0i1j1 ; 0i3j3 ; 0j2k2 ; 0k2k3 /i1i2;k1i3

�

D 64�1
�

3

2�a2

�6
n3=2 ;

where the sums have been replaced by integrals, which have been evaluated in the
same manner as before [46], and C1 (D 2:865) is the coefficient of the double-
contact term in Eq. (8.84). We note that the intramolecular excluded-volume effect
does not affect I1, I2, J2, J3, and J4.
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From Eq. (8.137) with Eqs. (8.138) and (8.139), we may write A3 in the form

A3 D NA
2n3

3M3

�
ˇ3H1.z/C nˇ2H2.z/

�
(8.140)

with ˇ the effective binary-cluster integral defined by Eq. (8.124) and

H1.z/ D 1 � 6C1zCO.z2/ ; (8.141)

H2.z/ D �1zCO.z2/ ; (8.142)

where z is defined by Eq. (8.2) with hR2i0 D na2 but with the effective ˇ. Recall
that the � temperature is redefined in Sect. 8.3.4 as the temperature at which the
effective ˇ and therefore A2 for large M vanish.

8.4.2 Effects of Chain Stiffness and Three-Segment
Interactions

We consider the HW chain composed of n C 1 beads, where the two end beads
are assumed to be different from the n � 1 identical intermediate ones and also
from each other in species as in Sect. 8.3.3. Throughout this subsection, all lengths
are measured in units of ��1 as before unless otherwise noted. Corresponding to
Eq. (8.118) for A2, A3 in general may then be written, from Eq. (8.140), in the form

A3 D A.HW/

3;.2/ C�A.HW/
3 C A.1/3;.3/ (8.143)

with

A.HW/

3;.2/ D .N 2
A c 31L4B2=3M3/H2.z/ ; (8.144)

�A.HW/
3 D A03ŒH1.z/� 1� ; (8.145)

A.1/3;.3/ D A03 C A.E/3 ; (8.146)

where z is defined by Eq. (8.5) with Eq. (8.6) with ˇ defined by Eq. (8.127), A03 is
defined by Eq. (8.131) and may be rewritten in the form

A03 D
N 2

A c 31L3B3
3M3

(8.147)
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with

B3 D ˇ3

a3c 31
; (8.148)

and A.E/3 represents possible effects of chain ends. Thus A3 at the � temperature, at
which B D z D 0, is given by

A3;� D A.1/3;.3/ : (8.149)

Now it is convenient to introduce a factor g defined by

g � A3=ŒA
.HW/
2 � 2M

D g2 C�g2 C g3 (8.150)

with

g2 D 4H2=3h2 D U.L/zC � � � ; (8.151)

�g2 D 4B3
3LB2h2

�
H1.z/ � 1

�
; (8.152)

g3 D 4B3
3LB2h2

�
1C A.E/3

A03

�
; (8.153)

where h is given by Eq. (8.84), and the coefficient U.L/ approaches its coil-limiting
value 4�1=3 D 2:219 as L is increased. It is seen that �g2 and g3 decrease as L (or
M) is increased; the contribution of �g2 is smaller than that of g3.

The coefficient U.L/ may be evaluated on the basis of the KP chain by a method
similar to that in the case of the coefficient Q.L/ in A2. This has been done by
Norisuye et al. [67] as follows,

U.L/ D 32

3
L�9=2

Z L

0

Z L

0

Z L

0

.L� s1/.L � s2/.L � s3/

�F.s1; s2; s3/ds1ds2ds3 (8.154)

with

F.s1; s2; s3/ D .3=2�/�3=2
Z

G.R1I s1/G.R2I s2/

�G.R2 � R1I s3/dR1dR2 : (8.155)
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For simplicity, we give only the result for L� 1 and d D 0:3, that is,

U.L/ D 2:219
�
1C 3:143

L
� 5:953

L3=2
C � � �

�
: (8.156)

It is seen that the first-order deviation of U.L/ from its coil-limiting value is of order
L�1, so that the effect of chain stiffness on A3 is less significant than that on A2.

Along the same line as in the derivation of the approximate closed expression for
h in Sect. 8.3.2, Norisuye et al. [67] have further proposed an approximate closed
expression for g2. They have first constructed one within the framework of the TP
theory without consideration of chain stiffness, that is,

g2.Nz/ D 2:219 Nz .1C 18 NzC 12:6 Nz2/�0:5 (8.157)

with Nz defined by Eq. (8.106), which gives the correct TP relation g2 D 2:219Nz in
the limit of Nz ! 0 and also the asymptotic value 5/8 for rigid spheres in the limit
of Nz! 1 and which well reproduces the Stockmayer–Casassa theory values [68].
Then the scaled excluded-volume parameter of a new type defined by

Lz D
�

U.L/

2:219

�
Nz (8.158)

has been introduced in order to take account of effects of chain stiffness on g2
on the apparent analogy of the intra- and intermolecular scaled excluded-volume
parameters Qz and QQz defined by Eqs. (8.48) and (8.108), respectively.

For the following reason, however, there seems to be some doubt in the use of the
parameter Lz. From a comparison of Eqs. (8.151) and (8.158) with Eqs. (8.48), (8.53),
and (8.84), it is seen that the scale factor in Lz arises from the zeroth-order term in
the perturbation expansion, while those in Qz and QQz arise from the first-order terms.
Although the expression (8.157) with Lz in place of Nz provides an approximation
for g2, it is then not consistent with the maneuver of replacing z by Qz and QQz in
the expressions for ˛ 2

S and h, respectively. Recall that the first-order deviations
of K.L/ and Q.L/ from their coil-limiting values are of order L�1=2, as seen from
Eqs. (8.46) and (8.102), while that of U.L/ is of order L�1. At any rate, it has been
concluded that the effects of chain stiffness on g2 are rather small if any [67], and
this conclusion itself seems reasonable, considering the fact that the effects of chain
stiffness on A2 and A3 cancel, to some extent, each other in g2. In the following,
therefore, we simply adopt the TP theoretical expression (8.157) for g2 without
consideration of those effects.

Finally, we make a comparison of theory with experiment with respect to the
factor g. Figure 8.27 shows plots of g against ˛ 3

S for a-PS in benzene at 25.0 ıC
[69, 70] and a-P˛MS in toluene at 25.0 ıC, in 4-tert-butyltoluene at 25.0 ıC, and
in n-butyl chloride at 25.0 ıC [71], for M > 105, where the data for A3 were
obtained from light scattering measurements with the use of the Bawn plot [72, 73].
In this range of M, A.E/3 for a-PS and a-P˛MS may be neglected, as seen in the next
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Fig. 8.27 Plots of g against ˛ 3
S for a-PS in benzene at 25.0 ıC (
) [69, 70] and a-P˛MS in toluene

at 25.0 ıC (�), in 4-tert-butyltoluene at 25.0 ıC (�), and in n-butyl chloride at 25.0 ıC (�) [71].
The solid curve represents the theoretical values of g D g2Cg3 with A.E/3 D 0 for a-PS, the dashed
curves, those for a-P˛MS for the indicated values of B, and the dotted curve the TP theory values
of g2 (see the text)

subsection, and �g2 may also be suppressed, as mentioned above. In the figure the
dotted curve represents the values of g2 calculated from Eq. (8.157) with Eqs. (8.51)
and (8.106) with z in place of Qz, which correspond to the TP theory values without
consideration of chain stiffness, as mentioned above. The solid curve represents
the values of g D g2 C g3 (�g2 D 0) for a-PS, and the dashed curves, those
for a-P˛MS for the indicated values of B, the curves for B D 0:12 and 0.080
being not clearly separated from each other. The values of g have been obtained by
adding the above-calculated values of g2 to those of g3 calculated from Eq. (8.153)
(with A.E/3 D 0) with the values of the HW model parameters (given in Table 5.1)
along with those of B (given in Table 8.3) and B3 D 0:038 and 0.060 for a-PS
and a-P˛MS, respectively. We note that the values of B3 have been determined
from Eq. (8.147) with the experimental values of A03 for a-PS in cyclohexane at
34.5 ıC (�) and a-P˛MS in cyclohexane at 30.5 ıC (�) given in the next subsection,
assuming that the solvent dependence of ˇ3 is small. The theoretical curves for a-
PS and for a-P˛MS for the different values of B are clearly separated from each
other as ˛ 3

S is decreased from ca. 3 to 1. In the range of ˛ 3
S in which the data

points are plotted (Mw>
 105), however, the separation of the curves is rather small,
and they form nearly a single-composite curve, being consistent with the above-
mentioned behavior of the experimental data. It is seen that the upward deviation of
the data points from the TP theoretical (dotted) curve for ˛ 3

S
<
 2 is mainly due to

the contribution of g3, that is, the effects of three-segment interactions, indicating
that the effects of chain stiffness on g2 are of minor importance. In this connection,
we note that earlier experimental results A3 D 0 at the � temperature were later
denied for several flexible polymers [48, 73–76].
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8.4.3 Effects of Chain Ends

In this subsection we evaluate the effects of chain ends on A3, that is, the term A.E/3 .
As in the case of A2, we take into account the effects only on single-contact terms
[50]. From the general formulation of A3 [1, 64], A.1/3;.3/ for the present model may
then be written in the form

A.1/3;.3/ D .N 2
A =3M3/

X
ˇ3;klm ; (8.159)

corresponding to Eq. (8.112). In this case there are ten kinds of ternary clusters. We
define excess ternary-cluster integrals ˇklm by

ˇ3;klm D ˇ3 C ˇklm (8.160)

with

ˇ3 � ˇ3;000 : (8.161)

Further, we define effective excess ternary-cluster integrals ˇ3;1, ˇ3;2, and ˇ3;3
associated with the chain end beads by the equations

2ˇ3;1 D ˇ001 C ˇ002 ;
4ˇ3;2 D ˇ011 C 2ˇ012 C ˇ022 ; (8.162)

8ˇ3;3 D ˇ111 C 3ˇ112 C 3ˇ122 C ˇ222 :

Then Eq. (8.159) reduces to Eq. (8.146) with A.E/3 given by

A.E/3 D a3;1M
�1 C a3;2M

�2 C a3;3M
�3 ; (8.163)

where

a3;1 D 2N 2
A ˇ3;1=M0

2 ;

a3;2 D 4N 2
A�ˇ3;2=M0 ; (8.164)

a3;3 D 8

3
NA

2�ˇ3;3

with

�ˇ3;2 D ˇ3;2 � 2ˇ3;1 ;
(8.165)

�ˇ3;3 D ˇ3;3 � 3ˇ3;2 C 3ˇ3;1 :
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Fig. 8.28 Plots of A3;�
against log M for a-PS in
cyclohexane at 34.5 ıC (�,
�) [50, 61], a-P˛MS in
cyclohexane at 30.5 ıC (�)
[71], and a-PMMA in
acetonitrile at 44.0 ıC (�)
[50]. The solid curves
represent the respective
best-fit theoretical values (see
the text)
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We make a comparison of theory with experiment with respect to A3;� D A.1/3;.3/.
Figure 8.28 shows plots of A3;� against log M for a-PS in cyclohexane at 34.5 ıC
[50, 61], a-P˛MS in cyclohexane at 30.5 ıC [71], and a-PMMA in acetonitrile at
44.0 ıC [50], where the data were obtained from light scattering measurements with
the use of the Bawn plot along with the procedure in Appendix 2 for the oligomers.
It is seen that A3;� becomes A03 independent of M for M>
 104 for a-PS and a-P˛MS
and for M>
 105 for a-PMMA. The values of A03 thus determined are 4:7 � 10�4,
5:0�10�4 and 5:8�10�4 cm6 mol/g3, which give ˇ3 (per repeat unit)D 4:4�10�45,
6:8 � 10�45, and 4:8 � 10�45 cm6, for a-PS, a-P˛MS, and a-PMMA, respectively.
The solid curves represent the respective best-fit theoretical values calculated from
Eq. (8.146) with Eq. (8.163) and with these values of A03. The values of ˇ3;1, ˇ3;2,
and ˇ3;3 (per repeat unit) thus obtained are 1:2 � 104, 2:4 � 104, and 3:6 � 104 Å6

for a-PS, 1:3 � 104, 2:7 � 104, and 4:0 � 104 Å6 for a-P˛MS, and 9:1 � 104,
�1:6 � 105, and �2:4 � 105 Å6 for a-PMMA, respectively. It is interesting to see
that both theoretically and experimentally A3;� exhibits a maximum for a-PMMA.

8.5 Some Remarks

8.5.1 Near the	 Temperature

The ˛S given by Eq. (8.57) has a singularity at Qz D �0:1446, and it cannot be applied
to the range of negative Qz far below the � temperature. Similarly, the function h
given by Eq. (8.110) cannot be used for z < 0 since it has a singularity at z D 0.
In the following discussion of ˛S and A2 near the � temperature, therefore, we
tentatively adopt the perturbation theory. As is well known, for ˛S it reads [1]

˛ 2
S D 1C 1:276 Qz� 2:082 Qz2 C � � � : (8.166)
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As for h, if we simply assume that the expansion factor for each of the two chains
in contact is also given by a function only of Qz, then the corresponding expansion of
h may be given, from the conventional TP perturbation theory [1, 77], by [78]

h D 1 � 2:865 QQzC 8:851 QQz2 C 5:077 QzQQz� � � � : (8.167)

Now, the parameter B (excluded-volume strength) may be rather accurately
determined from ˛S in non-� or good solvents, as done in Sect. 8.1.4. Near the
� temperature, however, this determination becomes ambiguous since ˛S is close to
unity; it should then be determined from the single-contact term of A.HW/

2 [79]. For

this purpose, we must determine not only A.HW/
2 but also A.E/2 simultaneously, as seen

from Eq. (8.118). In order to estimate A.E/2 , that is, the coefficients a2;1 and a2;2 in
Eq. (8.119) directly from experimental data for A2, we adopt an alternative manner,
as follows. In the oligomer region (M<
 3�103) where the relation h D 1 holds and

the residual term A.HW/
2;� is almost independent of M, as seen from Fig. 8.24, A.HW/

2

may be considered to be independent of M, so that we have, from Eq. (8.118) with
Eq. (8.119),

.A2;i � A2;j/=.Mi
�1 �Mj

�1/ D a2;1 C a2;2.Mi
�1 CMj

�1/ ; (8.168)

where A2;i and A2;j are the second virial coefficients for different molecular
weights Mi and Mj, respectively. [In Sect. 8.3.5, we have already shown that the

behavior of A.E/2 as a function of M may be satisfactorily described by Eq. (8.119).]
Equation (8.168) indicates that a2;1 and a2;2 may be determined from the intercept
and slope of the plot of the quantity on its left-hand side against Mi

�1 C Mj
�1,

respectively.
Then, Fig. 8.29 shows plots of A2 against M�1 for a-PS in such an oligomer

region in cyclohexane at 15.0, 30.0, 34.5, and 50.0 ıC [79]. From the plots, we can
determine A.HW/

2 with h D 1 at each temperature so that the curve of A2 as a function

of M�1 calculated from Eq. (8.118) with Eq. (8.119) with these values of A.HW/
2 (with

h D 1), a2;1, and a2;2 gives a best fit to the data points. The solid curves in the
figure represent the values so calculated. The intercept of each curve is then equal to
A.HW/
2 (with h D 1), that is, the prefactor (single-contact term) .NAc 3=21 L2B=2M2/

(without A.HW/
2;� ), from which we can determine B at the corresponding temperature.

The results thus obtained for ˇ (in Å3) per repeat unit for a-PS in cyclohexane
[79] and also in methyl acetate [80], a-P˛MS in cyclohexane [81], and a-PMMA in
acetonitrile [82] are given by

ˇ D 65� for � 	 0
D 65� � 610�2 for � < 0

.a-PS in cyclohexane/ ; (8.169)
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Fig. 8.29 Plots of A2 against
M�1 for a-PS in cyclohexane
at the indicated values of T
for the determination of B
from the intercept [79] (see
the text)
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ˇ D 15� for � 	 0
D 15� � 250�2 for � < 0

.a-PS in methyl acetate/ ; (8.170)

ˇ D 66� for � 	 0
D 66� � 830�2 for � < 0 .a-P˛MS/ ; (8.171)

ˇ D 35� .a-PMMA/ (8.172)

with

� D 1 ��=T : (8.173)

We can then calculate z from Eq. (8.5) with Eq. (8.6) (a D M0=ML) and
Eqs. (8.169)–(8.173) for a-PS, a-P˛MS, and a-PMMA in the respective� solvents,
and also calculate A.E/2 (with the above values of a2;1 and a2;2) to obtain experimental

values of A.HW/
2 for all values of M. We note that for a-P˛MS, possible contributions

of A.HW/
2;� (dependent on M) have been considered in the determination of Eq. (8.171)

[81]. Recall that these residual contributions, which are regarded as independent of
T, may be ignored for very large M.

Values of A.HW/
2 M1=2 (A.HW/

2 in cm3 mol/g2) so obtained are plotted against the
above-calculated z in Fig. 8.30 for a-PS (for various values of M) in cyclohexane
near the � temperature [15, 79, 83]. The dashed straight line represents the
theoretical values calculated from [78, 80]

A.HW/
2 M1=2 D 0:294 zh .a-PS/ (8.174)
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Fig. 8.30 Plots of A.HW/
2 M1=2

against z for a-PS in
cyclohexane near the �
temperature (�,�,�)
[15, 79, 83]. Various
directions of pips indicate
different values of M. The
dashed straight line and the
dotted curve represent the
values with h D 1 and the
first-order TP perturbation
theory values, respectively
(see the text)
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with h D 1 (and with neglect of A.HW/
2;� ), and the dotted curve represents the values

calculated from Eq. (8.174) with the first-order TP perturbation theory of h given by
Eq. (8.167) with Qz D QQzD z (that is, h D 1�2:865z). It is seen that all the data points
nearly form a single-composite curve, indicating that the TP scheme is valid for
A.HW/
2 below �, the effect of chain stiffness on A2 being of little significance there.

The single-composite curve, although not explicitly shown, is located between the
dashed and dotted curves and rather close to the latter. From the M independence
of A2 as a function of j� j for a-PS (except for small M < 5 � 103) below �, Fujita
and co-workers [2, 83] claimed that the TP theory of A2 breaks down below �.
However, it is now evident that their deduction is in error; this arises mainly from
their assumption of the first line of Eqs. (8.169) for ˇ below � in the theoretical
calculation of A2. The above independence for a-PS (for M > 5 � 103) is due to a
cancellation of the M dependence of A.HW/

2 by that of A.E/2 . A similar analysis has
been made also for a-PS in methyl acetate [80], a-P˛MS [81], and a-PMMA [82],
for which the TP scheme is still valid for A.HW/

2 below � and for which A2 depends
appreciably on M even there in contrast to the case of a-PS in cyclohexane.

Next we examine the behavior of ˛S below � in relation to the problem of
the so-called coil-to-globule transition [84]. Before doing this, one remark should
be made. It is now known that there are two types of the transition, that is, the
gradual and sharp transitions, and that the former is observed in the stable state of
the test solution, while the latter may be due to the metastable state, as claimed
by Chu’s group [85–87]. Thus the present analysis is confined to the former case.
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Fig. 8.31 Plots of ˛ 2
S against

Qz for a-PS in cyclohexane
near the � temperature
(�,�) [15, 85, 87]. Various
directions of pips indicate
different values of M. The
straight line (1) and the curve
(2) represent the first- and
second-order perturbation
theory values, respectively
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Figure 8.31 shows plots of ˛ 2
S against Qz for a-PS (for M > 106) in cyclohexane

near the � temperature [15, 85, 87], where Qz may be equated to z (because of large
M) and the latter has been calculated above. The straight line (1) and the curve
(2) represent the first- and second-order (TP) perturbation theory values calculated
from Eq. (8.166), respectively. All the data points form a single-composite curve
within experimental error, indicating that the TP scheme is valid for ˛S (for large
M) even below �, as was expected. This conclusion must be correct for the stable
solution of flexible polymers (except for biological macromolecules with specific
intramolecular interactions). The single-composite curve, although not explicitly
shown, is located between the lines (1) and (2) and rather close to the former.

Historically, the phenomenon called the coil-to-globule transition was first
suggested by Stockmayer [65] in 1960, and then Ptitsyn et al. [88] in 1968 were
the first to treat it theoretically by taking account of ˇ3 as well as ˇ2 in the
smoothed-density model [1]. In fact, Orofino and Flory [89] in 1957 had already
presented such a smoothed-density (or mean-field) theory with consideration of both
cluster (segment) interactions. Subsequently, following Ptitsyn, many theoreticians
[84, 90, 91] have pursued this line to treat the coil-to-globule transition. The
corresponding theory of A2 was also developed by Orofino and Flory [89] and by
Tanaka [92]. However, all these treatments lead to a non-TP theory, which cannot
explain the well-established experimental results [48, 73, 78], in contrast to the
above TP (or QTP) theory (Sect. 8.4.1) developed on the basis of the random-flight
(or HW) chain taking account of the chain connectivity and also ˇ3 through the
effective ˇ.
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Fig. 8.32 Plots of ˛ 3
S jQzj against jQzj with the same data as those in Fig. 8.31. The dashed straight

line indicates the initial slope of unity. The solid curves (1) and (2) represent the first- and second-
order perturbation theory values, respectively, and the dot-dashed curve the values calculated from
Eq. (8.175) with z D Qz and y D 0:07

In order to clarify the point further, values of ˛ 3
S jQzj are plotted against jQzj in

Fig. 8.32 with the same data as those in Fig. 8.31 (except for those above �). The
dashed straight line indicates the initial slope of unity, and the solid curves (1) and
(2) correspond to those in Fig. 8.31. The dot-dashed curve represents the values
calculated from the mean-field theory equation [2],

˛ 5
S � ˛ 3

S � y˛ �3
S D 2:60 z (8.175)

with z D Qz and y D 0:07, where y is a parameter proportional to ˇ3. Necessarily,
the data points are located near the solid curve (1), corresponding to the results in
Fig. 8.31. It is important to note that the so-called globule state (plateau region),
˛ 3

S jzj D const: (for ˛S � 1), as predicted by Eq. (8.175) can never be observed for
such stable solutions.

Finally, brief mention is made of A3 near the � temperature. Equation (8.140)
for A3 predicts that for ˇ3 > 0, ˇ3H1 is positive for T < � and decreases with
increasing T if ˇ3 is independent of T, while nˇ2H2 increases with increasing
T, indicating that A3 as a function of T exhibits a positive minimum near the
� temperature. This can be explicitly shown by assuming, for instance, Casassa–
Markovitz-type equations [1] for H1 and H2 [63] and is in fact consistent with the
experimental finding [48, 93].
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8.5.2 Ring Polymers

As pointed out by Vologodskii and co-workers [94, 95], there exists a repulsive force
between a pair of unlinked ring polymers even without excluded volume in solution.
The force is caused by such a topological constraint that a pair of unlinked ring
polymers can never be changed into a pair of linked ones unless a chemical bond in
the backbone of one of the pair is once broken and then reconnected. For (unlinked)
ring polymers in dilute solution at the� temperature, therefore, A2 remains positive
finite because of a kind of intermolecular excluded volume of topological origin. In
this subsection, we consider this problem, paying particular attention to effects of
chain stiffness on A2 on the basis of the KP wormlike ring.

Now we define from A2 the effective volume VE excluded to one ring by the
presence of another by

A2 D 4NAVE=M2 : (8.176)

Since VE may be considered to be proportional to hS2i3=2 in a qualitative sense,
it is, from Eq. (7.116), proportional to L3 and L3=2 in the rigid-ring and random-
coil limits, respectively, for the (phantom) KP ring without the intramolecular
topological constraint (see Appendix 4 in Chap. 3). We note that hS2i is considered
to be proportional to L1:2 and hence VE / L1:8 in the latter limit for the KP ring of
the trivial knot [96, 97]. Then A2 becomes proportional to M in the rigid-ring limit
but to M�1=2 or M�0:2 in the random-coil limit, and in either case it must therefore
have a maximum in the range of the crossover from the rigid ring to the random
coil.

The second virial coefficient A2 may be written in the form

A2 D 2�NA

M2

Z 1

0

	
1 � exp

�
�U12.r/

kBT

�

r2dr ; (8.177)

where U12.r/ is the averaged intermolecular potential (potential of mean force)
between a pair of the KP rings 1 and 2 as a function of the distance r between
their centers of mass, and is given by

U12.r/ D �kBT ln

�
exp

�
�U12.1; 2/

kBT

��

r

: (8.178)

In Eq. (8.178), U12.1; 2/ is the (instantaneous, topological) intermolecular potential
(in the McMillan–Mayer symbolism [1, 98]) given by

U12.1; 2/ D 0 if unlinked

D 1 otherwise, (8.179)
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Fig. 8.33
Double-logarithmic plots of
VE=L2 against L with Monte
Carlo data for the mixed (�)
and trivial-knot (�)
ensembles of the discrete KP
ring [100]. The solid curve
represents the values
calculated from the
interpolation formula (8.181)
and the dotted straight line
with slope unity represents
the theoretical values for the
rigid ring 3210−1
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and h� � � ir indicates the conditional equilibrium average over all configurations of
a pair of the KP rings with r fixed. We abandon an unpromising task to evaluate
A2 analytically on the basis of the (continuous) KP ring, and resort to Monte Carlo
simulations by the use of its discrete version defined in Sect. 3.5. In order to judge
the state of link, unlinked or linked, in the evaluation of U12.1; 2/ for a given
pair, the Gauss linking number [99] has been used, for convenience, although it
cannot distinguish the unlinked state from some linked ones including the so-called
Whitehead link [99]. In this subsection, all lengths are measured in units of ��1
unless otherwise noted.

Figure 8.33 shows double-logarithmic plots of VE=L2 (/ A2) against L. The
unfilled and filled circles represent the Monte Carlo values for the mixed and trivial-
knot ensembles, respectively, of the discrete KP rings of 10 to 1000 bonds with
various values of the bending force constant [100]. The dotted straight line with
slope unity represents the theoretical values for the rigid ring calculated from [96]

VE D L3

24�2
(rigid ring) : (8.180)

It is seen that the data points for each ensembles form a single-composite curve
irrespective of the value of the bending force constant and that as L is increased,
the ratio VE=L2 as a function of L first increases along the dotted straight line in
the range of L<
 0:1, then deviates downward progressively from it, and finally
decreases after passing through a maximum at L ' 5. It is also seen that the values
for the two ensembles agree almost completely with each other for L<
 10, where
the effect of the intramolecular topological constraint is negligibly small if any, as in
the cases of the scattering function shown in Fig. 5.13 and hS2i shown in Fig. 7.16.
We note that the intramolecular topological constraint to keep ring polymers being
of the trivial knot works like the intramolecular excluded volume [96, 97]. Although
in the random-coil limit, the ratio VE=L2 for the mixed and trivial-knot ensembles
is considered to become proportional to L�1=2 and L�0:2, respectively, as mentioned
above, it is difficult to confirm this proportionality from the present data for L � 103.
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It is convenient for an analysis of experimental data for A2 to construct an
empirical interpolation formula for VE on the basis of these data for the mixed
ensemble, which corresponds to an ordinary sample of ring polymers. The desired
formula so obtained for L<
 103 may be given by [100]

VE D L3

24�2

�
e�0:6014L C 0:5700L.1C 0:9630L1=2

�0:7345LC 0:4887L3=2 C 0:07915L2/�1
�3=2

: (8.181)

The solid curve in Fig. 8.33 represents the values calculated from this formula,
which reproduces almost completely the Monte Carlo values.

Figure 8.34 shows double-logarithmic plots of M 2
L A2=4NA�

�1 (D VE=L2)
against M=��1ML (D L). The circles represent the experimental values obtained
by Takano et al. [101] for ring a-PS in cyclohexane at 34.5 ıC (�), and the triangles
represent those by Terao et al. [102] for cyclic amylose tris(n-butylcarbamate) in 2-
propanol at 35 ıC (�), both from light scattering measurements. For the calculation
of the values of M 2

L A2=4NA�
�1 and M=��1ML from experimental values of A2

and M, we have used ��1 D 16:8Å and ML D 35:8Å�1 for the former [49]
and ��1 D 200Å and ML D 145Å�1 for the latter [102]. We note that the
values of ��1 and ML used for ring a-PS have been determined from an analysis
of hS2i for linear a-PS as the KP chain but not as the HW chain, and therefore the
value 16.8 Å of ��1 is somewhat different from that given in Table 5.1. The solid
curve represents the values calculated from the interpolation formula (8.181) (Monte
Carlo values). Agreement between the Monte Carlo and experimental values is only
semiquantitative. Note that the range of M where the experimental data exist is still
far from the random-coil limit.

Fig. 8.34
Double-logarithmic plots of
M 2

L A2=4NA�
�1 against

M=��1ML with experimental
data by Takano et al. [101] for
ring a-PS in cyclohexane at
34.5 ıC (�) and those by
Terao et al. [102] for cyclic
amylose tris
(n-butylcarbamate) in
2-propanol at 35 ıC (�). The
solid curve represents the
values calculated from the
interpolation formula (8.181) 3210−1
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log(M / λ−1ML)
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M
L2 A 2

/4
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8.5.3 Temperature Coefficients of Unperturbed Chain
Dimensions

For perturbed polymer chains with excluded volume, the derivative of the logarithm
of hS2i given by Eq. (8.7) with respect to T may be written in the form

d lnhS2i
dT

D d lnhS2i0
dT

C 2d ln˛S

dT
(8.182)

It is known that the second virial coefficient B2 for gases, which is equivalent to ˇ2,
becomes independent of T in the range of high T (above the Boyle temperature),
and that such behavior may be well explained by a simple molecular model with
the Lennard–Jones 6–12 potential [103]. For polymer chains in dilute solution, the
statistical segments (or repeat units) constituting the chain may be considered to
interact with each other through a potential of mean force roughly of the Lennard–
Jones 6–12 type, that is, a hard repulsive core along with a short-range attractive
tail. It may therefore be assumed that ˇ2 and hence ˛S are independent of T in good
solvents, that is,

d ln˛S

dT
' 0 (in good solvents) (8.183)

For flexible polymers with very large M in good solvents, A2 becomes proportional
to hS2i3=2 [see Eq. (8.104)], and then this assumption may be regarded as reasonable
from their observed slight and similar dependence on T [104].

Under this assumption, the temperature coefficient d lnhR2i0=dT of hR2i0 consid-
ered in Sect. 4.8.2 may then be related directly to d lnhS2i=dT, as follows,

d lnhR2i0
dT

D d lnhS2i0
dT

' d lnhS2i
dT

(8.184)

The evaluation of the coefficient has been made for a-PS and a-P˛MS from analyses
of experimental data for hS2i in toluene as a function of T in the range of temperature
15.0–55.0 ıC to obtain the values�1:74�10�3 and�0:22�10�3 deg�1, respectively
[104]. The values are of the same order of magnitude as the literature ones �1:1 �
10�3 and �0:30 � 10�3 deg�1, respectively, determined by Mays and co-workers
[105, 106] from intrinsic viscosities in several poor solvents in the vicinity of the
respective � temperatures by the use of the Stockmayer–Fixman plot [1]. (Note
that this name of the plot has for long been widely spread use, but that strictly, it
should perhaps be called the Burchard–Stockmayer–Fixman plot [107, 108].) This
also indicates the validity of the above-mentioned assumption on ˇ and ˛S. Both
the experimental values of the coefficient for a-P˛MS are one order of magnitude
smaller than those for a-PS, and it may be said that the coefficient for the former
vanishes within experimental error.
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The values of the coefficient thus evaluated are consistent with the theoretical
ones, �3:2 � 10�3 deg�1 for a-PS and 0:28 � 10�3 deg�1 for a-P˛MS, which have
been calculated from Eq. (4.236) with the values of the HW model parameter (given
in Table 5.1) at 300 K.

Appendix 1: Mean-Square Electric Dipole Moment

Experimentally, Marchal and Benoit [109] first showed that there is no excluded-
volume effect on the mean-square electric dipole moment h�2i for the chain
having type-B (perpendicular) dipoles like polyoxyethyleneglycol and diethoxy
polyethyleneglycol. On the theoretical side, Nagai and Ishikawa [110] and subse-
quently Doi [111] supported this conclusion on the basis of the Gaussian chain,
that is, ˛� D 1 if hR � �i0 D 0 with R the end-to-end vector distance and � the
instantaneous (total) electric dipole moment vector. However, Mattice and Carpenter
[112] have reported a Monte Carlo result in contradiction to the above conclusion
on the basis of the RIS model; that is, ˛� is not equal to unity for the type-B chain
of finite length, and moreover, it does not become unity even in the limit of L!1.
Mansfield [113] has then clarified that their result is due to the non-Gaussian nature
of the chain, although not completely molecular-theoretically.

Thus, in this appendix we evaluate ˛ 2
� (only its first-order perturbation coeffi-

cient) on the basis of the HW chain [114]. All lengths are measured in units of
��1 as usual, and the same notation as that in Sect. 5.4.1 is used. By the use of
Eq. (5.155), h�2i may be written in the form

h�2i D
Z L

0

Z L

0

˝ Qm.t1/ � Qm.t2/
˛
dt1dt2 : (8.185)

Corresponding to Eq. (8.4) with Eqs. (8.9) and (8.10) for ˛ 2
R , the first-order pertur-

bation theory of ˛ 2
� may then be given by

˛ 2
� D 1C K�.L/ zC � � � (8.186)

with

K�.L/ D F�.L/

L1=2h�2i0 ; (8.187)

where

F�.L/ D
�
2�c1
3

�3=2 Z L

0

ds1

Z L

s1

ds2

	
G.0I s/h�2i0

�
Z L

0

dt1

Z L

0

dt2

Z � Qm.t1/ � Qm.t2/
�
P0.�1;�2; 0s1s2 IL/d�1d�2




(8.188)

with �i D �.ti/ (i D 1; 2).
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The asymptotic solution in the limit of L!1 is then found analytically to be

h�2i0 D
�
4m2 C .�0m� C �0m�/

2

4C � 2
0 C � 20

�
LCO.L0/ ; (8.189)

K�.L/ D 4

3

�
4C � 20

4m2 C .�0m� C �0m�/2

��
�0�0m�

4C �02 C m�

�2
CO.L�1=2/ :

(8.190)

For the HW chain having type-A (parallel) dipoles (m� D m� D 0), in the coil limit
K�.L/ is equal to 4/3, and therefore ˛� D ˛R, as seen from Eq. (8.190). For the HW
chain having type-B dipoles (m� D 0), Eq. (8.190) reduces to

K�.L/ D
4� 2

0 �
2
0 m 2

�

3.4m2 C � 2
0 m 2

� /.4C � 20 /
CO.L�1=2/ .B/ : (8.191)

It is seen from Eq. (8.191) that K� ¤ 0 if m� ¤ 0 and �0�0 ¤ 0, so that ˛� then
becomes infinitely large in the limit of L!1. Such dependence of ˛� on L has not
been pointed out by Mattice and Carpenter [112] and by Mansfield [113]. Further,
this does not conflict with the above-mentioned result [110, 111] for the Gaussian
chain since the HW chain does not necessarily satisfy the condition hR � �i0 D 0

even in the case of perpendicular dipoles [114]. It must also be noted that ˛� may
possibly become a constant different from unity because of the term of order L�1=2
in K�.L/ if �0�0 ¤ 0 for the type-B chain. This corresponds to the case pointed out
by Mattice and Carpenter and by Mansfield.

Appendix 2: Determination of the Virial Coefficients
for Oligomers

For an accurate experimental determination of the (osmotic) second and third virial
coefficients A2 and A3 for oligomers, light scattering measurements are preferable.
Then, however, measurements must be carried out generally for optically anisotropic
and rather concentrated solutions, and necessarily several problems are encountered.
In this appendix we resolve them and present a procedure suitable for the present
purpose [115].

We consider a binary solution which in general is optically anisotropic and not
necessarily dilute. Let R�

Uv be the reduced intensity of unpolarized scattered light
for vertically polarized incident light, and let R�

� be the Rayleigh ratio, where the
asterisk indicates the scattering from anisotropic scatterers, it being dropped for
the isotropic scattering. The (isotropic) Rayleigh ratio R�D0 at vanishing scattering
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angle � , which is the first desired quantity, is obtained from

R�D0 D
�
1 � 7

6
�u


R�

Uv ; (8.192)

or

R�D0 D .1C �u/
�1�1 � 7

6
�u


R�
�D�=2 (8.193)

with the observed R�
Uv or R�

�D�=2, where �u is the depolarization ratio as defined as
the ratio IHu=IVu of the horizontal to vertical component of the scattered intensity at
� D �=2 for unpolarized incident light. �u may be determined from [116]

.1C cos2 �/
R�
�

R�
�D�=2

D 1C
�
1 � �u

1C �u

�
cos2 � (8.194)

with the observed R�
� . Note that these equations can readily be derived from the

basic equations for Ifi in Sect. 5.3.2.
Now, according to the fluctuation theory [1, 117, 118], R�D0 may be written in

the form

R�D0 D Rd C�R�D0 (8.195)

with Rd and �R�D0 being the density scattering (the Einstein–Smoluchowski term)
and the composition scattering, respectively, and given by

Rd D 2�2 Qn2kBT

� 4
0 �T

�
@Qn
@p

�2

T;m

; (8.196)

�R�D0 D �2�
2 Qn2kBTV0c

� 4
0

�
@Qn
@c

�2

T;p

��
@�0

@c

�

T;p

; (8.197)

where �0 is the wavelength of the incident light in vacuum, �T the isothermal
compressibility of the solution, Qn the refractive index of the solution, p the pressure,
m the ratio of the solute to solvent mass, V0 the partial molecular volume of the
solvent, c the mass concentration of the solution, and �0 the chemical potential of
the solvent. We note that the molecular-theoretical basis of the term Rd has been
given correctly by Fixman [119], and that the multiple scattering theory developed
by Bullough [120] is in error [115].

We first rewrite Eq. (8.197). Under the osmotic condition, the chemical potential
�00.T; p/ of the pure solvent is equated to �0.T; p C ˘; c/ with ˘ the osmotic
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pressure, so that we have

�00.T; p/ D �0.T; p; c/C
�
@�0

@p

�

T;c

˘

C1
2

�
@2�0

@p2

�

T;c

˘2 C 1

3

�
@3�0

@p3

�

T;c

˘3 C � � � : (8.198)

Differentiation of both sides of Eq. (8.198) with respect to c at constant T and p
leads to

�
@�0

@c

�

T;p

D �V0

�
@˘

@c

�

T;p

�˘
�
@V0
@c

�

T;p

�1
2
˘2

�
@2V0
@p@c

�

T

�˘
�
@V0
@p

�

T;c

�
@˘

@c

�

T;p

(8.199)

�1
3
˘3

�
@3V0
@p2@c

�

T

�˘2

�
@2V0
@p2

�

T;c

�
@˘

@c

�

T;p

C � � � ;

where we have used the relation .@�0=@p/T;c D V0. In general, ˘ and V0 may be
expanded in powers of c as follows,

˘

RT
D 1

M
cC A2c

2 C A3c
3 C � � � ; (8.200)

V0 D V0
0

�
1 � 1

2

�
@v1

@c

�

T;p;0

c2 C � � �
�
; (8.201)

where R is the gas constant, V0
0 the molecular volume of the pure solvent, v1 the

partial specific volume of the solute, and the subscript 0 on the derivative indicates
its value at c D 0.

Substitution of Eq. (8.199) with Eqs. (8.200) and (8.201) into Eq. (8.197) leads to

Kc

�R�D0
D 1

M
C 2A0

2cC 3A0
3c
2 C � � � (8.202)

with

K D 2�2 Qn2
NA�

4
0

�
@Qn
@c

�2

T;p

; (8.203)

A2 D A0
2 C

RT�T;0

2M2
; (8.204)
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A3 D A0
3 C

1

3M

�
@v1

@c

�

T;p;0

C RT�T;0A2
M

C RT

2M2

�
@�T

@c

�

T;0

C .RT/2

3M3

�
�T;0

2 �
�
@�T

@p

�

T;0

�
; (8.205)

where �T;0 is the isothermal compressibility of the pure solvent. Thus the desired
virial coefficients A2 and A3 may be obtained from Eqs. (8.204) and (8.205) with
the observed light-scattering virial coefficients A0

2 and A0
3, which are different from

the former except for large M. We note that Eq. (8.204) is equivalent to a relation
derived by Casassa and Eisenberg [121].

Next we consider the problem of determining Rd at finite concentrations,
although indirectly. For this purpose, we adopt the Lorentz–Lorenz relation between
Qn and the solution density �w [122],

Qn2 � 1
Qn2 C 1 D const: �w ; (8.206)

where we assume that the proportionality constant is independent of p. Equa-
tion (8.206) has been shown to be the best of such relations [115]. Differentiation of
both sides of Eq. (8.206) with respect to p leads to

�T
�1
�
@Qn
@p

�

T;m

D .Qn2 � 1/.Qn2 C 2/
6Qn : (8.207)

Substituting Eq. (8.207) into Eq. (8.196), we obtain

Rd D �T.Qn2 � 1/2.Qn2 C 2/2
�T;0.Qn 2

0 � 1/2.Qn 2
0 C 2/2

Rd;0 ; (8.208)

where Qn0 and Rd;0 are the values of Qn and Rd for the pure solvent, respectively.
Thus we may calculate Rd from Eq. (8.208) with the observed Rd;0, and then

determine�R�D0 from Eq. (8.195) with this Rd and the observed R�D0. Finally, we
may determine M, A2, and A3 from Eq. (8.202) with Eqs. (8.203)–(8.205) by the
use of the Berry square-root plot [123] or the Zimm plot [124] and also the Bawn
plot [72, 73]. For the evaluation of the optical constant K given by Eq. (8.203),
note that we must use values of Qn and .@Qn=@c/T;p at finite concentrations c. For
example, the results obtained for toluene (solute) in cyclohexane (solvent) at 25.0 ıC
are M D 93 ˙ 4 and A2 D 1:5 � 10�3 cm3 mol/g2 (with RT�T;0=2M2 D 1:65 �
10�4 cm3 mol/g2) [115]. (Note that the true M of toluene is 92.)
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Chapter 9
Simulation and More on Excluded-Volume
Effects

As a continuation of the theme pursued in the last chapter, that is, the intra- and
intermolecular excluded-volume effects in dilute solution, this chapter presents
some results of Monte Carlo (MC) simulation of flexible and semiflexible polymer
chains with excluded volume. The freely rotating chain and the discrete version
of the KP wormlike chain introduced in Chaps. 2 and 3, respectively, are adopted
as chain models with the use of the Lennard–Jones 6-12 and Debye–Hückel
electrostatic potentials as pair potentials of mean force between segments. Analysis
of MC data in the QTP scheme is made from various points of view with the help
of some new physical quantities such as the bond correlation function which cannot
be directly observed in usual experiment but are accessible only in MC simulation.
In the analysis, due attention is paid to the determination of the unperturbed chain
dimension or the unperturbed (�) state and also to the range of validity of the QTP
scheme.

9.1 Mean-Square Radius of Gyration

9.1.1 Model and Methods

The backbone of the model chain we first adopt for the MC simulation [1] is the
freely rotating chain defined in Sect. 2.1.3 that is composed of n bonds, each of
length unity, and of n C 1 beads, whose centers are located at the n � 1 junctions
of two successive bonds and at the two terminal ends. The beads are numbered 0,
1, 2, : : : , n from one end to the other, and the ith bond vector li (jlij D 1) connects
the centers of the (i � 1)th and ith beads with its direction from the (i � 1)th to
the ith bead. All the n � 1 bond angle supplements � are fixed at � D 71ı, so that
the configuration of the entire chain may be specified by the set of n � 2 internal
rotation angles f�n�2g D .�2, �3, : : : , �n�1/ apart from its position and orientation

© Springer-Verlag Berlin Heidelberg 2016
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Fig. 9.1 Three kinds of
intramolecular interactions
(contacts) between beads

0

1

n

n − 1

u1-1

u0-1

u0-1

u0-0

in an external Cartesian coordinate system, where �i is the internal rotation angle
around li.

In order to examine the effects of chain ends on hS2i and ˛S, we consider a
rather general case of interactions between beads in which the pair potentials u1-1

between the two end beads, u0-1 between one end and intermediate beads, and u0-0

between intermediate beads are different from each other, as schematically depicted
in Fig. 9.1. For simplicity, we have assumed here that the two end beads are identical
to each other in species (compare with Fig. 8.21). Then the total excluded-volume
potential energy U of the chain as a function of f�n�2g may be given by

U.f�n�2g/ D
n�5X

iD1

n�1X

jDiC4
u0-0.Rij/C

nX

iD4
u0-1.R0i/

C
n�4X

iD0
u0-1.Rin/C u1-1.R0n/ (9.1)

with Rij the distance between the centers of the ith and jth beads. We must note here
that the pairwise decomposability of the potential energy has been assumed, as is
usually done in the field [2]. We also note that in Eq. (9.1) the interactions between
the third-neighbor beads along the chain have been neglected, since they seem to
make the chain locally take the cis conformation to excess. We adopt as the pair
potential u�-�.R/ (of mean force) the cutoff version of the Lennard–Jones (LJ) 6-12
potential given by

u�-�.R/ D 1 for 0 � R < c�-� ��-�

D uLJ
�-�.R/ for c�-� ��-� � R < 3��-�

D 0 for 3��-� � R .�; � D 0; 1/ ; (9.2)

where uLJ
�-�.R/ is the LJ potential [3] given by

uLJ
�-�.R/ D 4
�-�

����-�

R

�12 �
���-�

R

�6�
.�; � D 0; 1/ (9.3)
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with ��-� and 
�-� the collision diameter and the depth of the potential well at the
minimum of uLJ

�-�.R/, respectively. We note that uLJ
�-�.R/ given by Eqs. (9.2) is the LJ

potential cut off at the upper bound 3��-�. The lower bound c�-� ��-� in Eqs. (9.2)
has been introduced for numerical convenience; the factor c�-� is properly chosen

so that the Boltzmann factor e�uLJ
�-�=kBT may be regarded as numerically vanishing

compared to unity. In practice, in double-precision numerical computation, we put

c�-� D
h
2=
�
1C

q
1C 36T�

�-�

�i1=6
(9.4)

so that e�uLJ
�-�=kBT <
 2 � 10�16 for 0 � R < c�-� ��-�, where T�

�-� is the reduced
temperature defined by T�

�-� D kBT=
�-�.
The above-defined MC model has six parameters, that is, the three ��-�’s and

the three 
�-�’s (or T�
�-�’s), in addition to n (and �). In order to reduce the number

of parameters, for convenience, we introduce the Lorentz and Berthelot combining
rules, which relate �0-1 to �0-0 and �1-1, and 
0-1 to 
0-0 and 
1-1, respectively, as
follows [3],

�0-1 D 1

2
.�0-0 C �1-1/ .Lorentz rule/ ; (9.5)


0-1 D .
0-0 
1-1/
1=2 .Berthelot rule/ : (9.6)

Note that we have T�
0-1 D .T�

0-0 T�
1-1/

1=2 from Eq. (9.6). Further, for simplicity, we
put �0-0 D �1-1 D l (D 1). Then the present MC model may be described by the
parameters: n, (�), 
0-0 (or T�

0-0), and 
1-1 (or T�
1-1).

Sample configurations f�n�2g of the freely rotating chain with the potential
U.f�n�2g/ given by Eq. (9.1) have been successively generated from an appropriate
initial configuration by the use of the pivot algorithm [4, 5] with the use of the
METROPOLIS method of importance sampling [6]. In every step, U.f�n�2g/ has
been evaluated by the zippering method [7, 8]. By the use of a set of N sample
configurations f�n�2g so generated, the ensemble average hAi of a given quantity A
as a function of f�n�2g may be evaluated from

hAi D N�1 X

f�n�2g
A.f�n�2g/; (9.7)

where the sum is taken over the N sample configurations.
The mean-square radius of gyration hS2i has been evaluated from Eq. (9.7) with

A D S2, where the squared radius of gyration S2 for each MC sample has been
calculated from

S2 D 1

nC 1
nX

iD0
jri � rCMj2 (9.8)
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with ri the vector position of the center of mass of the ith bead and rCM that of the
sample chain given by

rCM D 1

nC 1
nX

iD0
ri : (9.9)

9.1.2 Analysis of Monte Carlo Data

Figure 9.2 shows double-logarithmic plots of hS2i=n against n at T�
0-0 D T�

1-1 D 3:6,
3.7, 3.72, 3.8, 3.9, 4.0, 5.0, and 8.0. The light solid curve connects smoothly the
data points at each T�. The ratio hS2i=n increases monotonically with increasing n
for T�

0-0 	 3:8, while it has a maximum and decreases with increasing n in the range
of large n for T�

0-0 � 3:6. The (usual) unperturbed � state, where hS2i=n becomes
a constant independent of n in the range of very large n, may therefore exist in
the range of 3:6 < T�

0-0 < 3:8. At T�
0-0 D 3:7 and 3.72, hS2i=n slightly decreases

and increases, respectively, with increasing n for n 	 500. On the basis of these MC
results for hS2i, it may be concluded that the reduced� temperature�� � kBT=�0-0

is 3:72˙ 0:05. It is important to note that the (reduced)� temperature so estimated
has the physical meaning completely different from that of the tricritical point
[9] determined by Meitrovitch and Lim [10] for a self-avoiding walk on a simple
cubic lattice with nearest-neighbor attractive cites and by Rubio et al. [11] for a
MC chain composed of Gaussian bonds and beads with an LJ 6-12 interaction

43210

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

log n

lo
g

(〈
S2 〉/n

)

Fig. 9.2 Double-logarithmic plots of hS2i=n against n for �0-0 D �1-1 D 1 at T�

0-0 D T�

1-1 D 3:6

(�), 3.7 (�), 3.72 (�), 3.8 (�), 3.9 (�), 4.0 (�), 5.0 (�), and 8.0 (
), the light solid curve
connecting smoothly the data points at each T�. The dotted line segments connect the theoretical
values for the ideal freely rotating chain, and the heavy solid curve represents the best-fit KP
theoretical values calculated with ��1 D 3:01 and nL D 1:24 for the data points for n � 50 at
T�

0-0 D T�

1-1 D 3:72 (��)
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potential. We also note that the � temperature has been determined for a MC
chain composed of harmonic bonds and beads with a Morse interaction potential
[12].

For comparison, in Fig. 9.2 are also shown the theoretical values of hS2i=n
calculated from Eq. (2.12) for the ideal freely rotating chain without interactions
between beads with � D 71ı and l D 1, which are connected by the dotted line
segments. It is seen that the asymptotic value of hS2i=n in the limit of n ! 1 for
the MC data at T�

0-0 D 3:72 (��) is appreciably (about 20 %) larger than that for the
ideal chain, indicating that the unperturbed (�) dimension of a polymer chain may
be considerably affected by nonbonded interactions, as pointed out by Bruns [13]
on the basis of his MC results for a self-avoiding walk on a simple cubic lattice with
nearest-neighbor attractive cites.

For later convenience, we here make an analysis of the above MC data at �� on
the basis of the KP chain, for which (unperturbed) hS2i0 as a function of the total
contour length L is given by Eq. (3.6). In a comparison of theory with MC data, L
in Eq. (3.6) may be related to n by nL D n=L, where nL is the number of bonds
per unit contour length and plays the same role as the shift factor ML defined in
Sect. 4.3.1. In Fig. 9.2 the heavy solid curve represents the best-fit KP theoretical
values calculated from Eq. (3.6) with ��1 D 3:01 and nL D 1:24 for the data points
for n 	 50 at ��. We note that ��1 and nL so determined here are dimensionless
since the bond length has been set equal to unity (or all lengths are measured in
units of the bond length). It is seen that the theory reproduces quantitatively the data
points for n 	 50.

It has been shown in Sect. 8.3.5 that the effects on A2 of a chemical difference of
the polymer chain ends becomes remarkably large for small M. On the other hand,
the effects on the expansion factors may be considered to be negligibly small. For
the confirmation of this conjecture, an examination has been made of the effects by
varying the interaction parameter 
1-1 (T�

1-1) with the others remaining constant as
�0-0 D �1-1 D 1 and T�

0-0 D 3:72. The values 2.0 and 8.0 have been assigned to the
interaction (T�

1-1) between the two end beads, which is then strongly attractive and
repulsive, respectively. The interactions between one end and intermediate beads
are then also attractive and repulsive, respectively. It is found that the difference
between the results for a given n at T�

1-1 D 2:0 or 8.0 and at T�
0-0 D T�

1-1 D 3:72

does not exceed 1.2 %, the relative difference decreasing with increasing n. Such a
small difference cannot be detected experimentally, confirming the validity of the
assumption that the effects of chain ends on hS2i and therefore on ˛S are negligibly
small.

Now we proceed to examine the behavior of the gyration radius expansion
factor ˛S defined by Eq. (8.7). Figure 9.3 shows double-logarithmic plots of ˛S

2

against n, where the symbols have the same meaning as those in Fig. 9.2. The plots
correspond to usual experimental plots of ˛S

2 against the degree of polymerization
or the molecular weight. The behavior of the data seems to be similar to that
of real experimental data; that is, the data points at each T�

0-0 follows a curve
rising more steeply for larger T�

0-0 with increasing n. The solid curves represent
the best-fit QTP theory values calculated from Eq. (8.57) with Eqs. (8.46), (8.58),
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Fig. 9.3 Double-logarithmic
plots of ˛S

2 against n. The
symbols have the same
meaning as those in Fig. 9.2.
The solid curves represent the
QTP theory values for the
indicated values of �B (see
the text)
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Fig. 9.4 Double-logarithmic
plots of ˛S

2 against Qz. The
symbols have the same
meaning as those in Fig. 9.2.
The solid curve represents the
QTP theory values (see the
text)
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and (8.59) with the above-mentioned values of ��1 and nL and with the values
of �B D 0:0096, 0.022, 0.035, 0.13, and 0.27 from bottom to top. It is seen
that the MC data points at each T�

0-0 closely follow the corresponding theoretical
curve, indicating that the present MC data may be well explained in the QTP
scheme.

Figure 9.4 shows double-logarithmic plots of ˛ 2
S against Qz with the same MC data

as those in Fig. 9.3, where values of Qz for the MC data points have been calculated
from Eq. (8.58) with Eq. (8.59) with the above values of �B along with the above-
mentioned values of ��1 and nL. The solid curve represents the QTP theory values
calculated from Eq. (8.57). All the data points follow a single-composite curve
and are fitted by the solid curve, as is natural from the results in Fig. 9.3. This
indicates that the present MC model, the freely rotating chain with the LJ 6-12
potential, provides data consistent with experimental ones, so that it may be used
to study the effects of chain stiffness and chain ends on other solution properties of
polymers.
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Fig. 9.5 Plots of ˇ� against
T�. The unfilled circles
represent the values of ˇ� for
a bead in the freely rotating
chain determined from an
analysis of ˛S in the QTP
scheme. The solid curve
represents the values of ˇ�

for an isolated single bead,
and the upper and lower
dashed curves represent the
values of its repulsive-core
and attractive-tail parts,
respectively
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Finally, it is interesting and important to consider here the values of the binary-
cluster integral ˇ of the MC chain at T�

�-� obtained from those of �B in Fig. 9.3.

For convenience, we introduce the reduced binary-cluster integral ˇ� D 3ˇ=4�� 3
�-�

instead of ˇ itself with ��-� the collision diameter introduced in Eqs. (9.1) and (9.2).
Note that 4�� 3

�-�=3 is the volume excluded to one bead by the presence of another
due to the repulsive-core part (��-�) and recall that ��-� D l D 1. The values of
ˇ� are then evaluated to be 0, 0.0044, 0.010, 0.016, 0.060, and 0:13 at T�

0-0.D
T�
1-1/ D 3:72 (��), 3.8, 3.9, 4.0, 5.0, and 8.0, respectively, by dividing ˇ by 4�=3,

where ˇ has been calculated from Eq. (8.6) with the relation a D n�1
L with the

values of �B in Fig. 9.3 and ��1 D 3:01 and nL D 1:24. Naturally, ˇ� vanishes
at ��. Figure 9.5 shows plots of ˇ� so estimated (unfilled circles) against T�
(D T�

�-�).
In Fig. 9.5, the solid curve represents the values of ˇ� for an isolated single bead

having the pair potential u�-�.R/ given by Eq. (9.2) with Eq. (9.3), which have been
calculated from ˇ� D 3ˇ�-�=4��

3
�-� with ˇ�-� defined by

ˇ�-� D 4�
Z 1

0

�
1 � e�u�-�.R/=kBT

�
R2 dR (9.10)

as in Eq. (13.3) with Eq. (13.1) of MTPS [2]. The upper and lower dashed curves
represent the values of the repulsive-core and attractive-tail parts of ˇ�, respectively,
which have been obtained from integrations of 4�

�
1 � e�u�-�.R/=kBT

�
R2 over the

ranges from 0 to ��-� and from ��-� to infinity, respectively. For the isolated
bead, ˇ� vanishes at T� D 3:237 (corresponding to the Boyle temperature).
It is interesting to see that the value of ˇ� in the chain for T�

0-0 > �� is
remarkably smaller in magnitude than that for the isolated bead at the same
T�
0-0. This is consistent with the previous finding that the values of the binary-

cluster integral per repeat unit (monomer) are one order of magnitude smaller
than those for the isolated monomer [14]. The value of ˇ� in the chain may
be considered to become close to that for the isolated single bead as n is
decreased to 1. This suggests that the effects of chain ends on A2 may probably
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exist even for those polymer chains which have end units almost identical to
intermediate ones in chemical structure (without a catalyst fragment at one end)
[15].

9.1.3 Reconsideration of the Unperturbed State

As shown in Fig. 9.1, the asymptotic value of hS2i0=n in the limit of n ! 1 for
the MC data at �� is about 20 % larger than that for the corresponding freely
rotating chain without any interaction between beads. If this asymptotic behavior
of the MC chain is governed by short-range and excluded-volume interactions
between beads which are not very far from each other along the chain, the latter
interactions at �� may be regarded as of “short range” without contradiction to
the prevailing notion that the unperturbed � state of a polymer chain may be
determined only by short-range interactions. Otherwise, such a notion should be
altered.

Now, in the RIS model [16], (higher-order) short-range interactions consist of
those between unbonded atoms and groups associated with its two successive
coupled RISs, and all conformational properties may be determined only by their
statistical weights (along with bond lengths and bond angles). Local conformational
properties may then be considered to be rather well described by several parameters
for such short-range interactions. However, the RIS model (or the above notion) may
possibly break down for a strictly quantitative explanation of global conformational
properties such as the asymptotic value of hS2i0=n or that, C1, of the characteristic
ratio Cn defined by Eq. (2.20) in the limit of n!1. The purpose of this subsection
is to clarify whether the excluded-volume interactions at the � temperature may be
regarded as of short range or not.

For this purpose, we carry out a MC simulation by the use of the model chain
with the same backbone as that used in the preceding subsections but with such
fictitious excluded-volume interactions that the cutoff LJ potentials at �� act only
between the fourth-through (3 C �)th-neighbor beads (� 	 1) along the chain
[17]. If we further assume that the pair potentials between the two end beads and
between intermediate beads are identical to each other, that is, u�-�.R/ D u.R/, for
simplicity, the total (excluded-volume) potential energy U� as a function of f�n�2g
may be given by

U�.f�n�2g/ D
n�4X

iD0

min.n;iC3C�/X

jDiC4
u.Rij/ (9.11)

in place of Eq. (9.1), where u.R/ is given by Eq. (9.2) with Eq. (9.3) with omission
of the subscript �-�.
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Fig. 9.6 Double-logarithmic
plots of hS2i=n against n at
T� D 3:72 (��). The unfilled
circles represent the MC
values for the indicated values
of �, and the filled ones those
for � D 1, the solid curve
connecting smoothly the data
points for each �. The dotted
line segments connect the
theoretical values for the ideal
freely rotating chain
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Figure 9.6 shows double-logarithmic plots of hS2i=n against n at T� D 3:72

(��). The unfilled circles represent the MC values for the indicated values of �,
and the filled ones represent those for the full potential (� D 1), which have been
reproduced from Fig. 9.2. The solid curve connects smoothly the data points for each
�. As in Fig. 9.2, the dotted line segments connect the theoretical values calculated
from Eq. (2.12) with � D 71ı and l D 1 for the ideal freely rotating chain without
any interaction between beads.

For each �, the ratio hS2i=n increases monotonically with increasing n and
approaches its asymptotic value, which we denote by .hS2i=n/1, as in the cases
of � D 1 and also of the ideal chain (dotted line). The values of hS2i=n for
� D 1, for which only the interactions between the fourth-neighbor beads are
taken into account, are seen to be smaller than those for the ideal chain. This may
be regarded as arising from the fact that in this case the attractive tail of the LJ
potential rather than the repulsive core has a dominant effect on the chain dimension
to make it smaller than that of the ideal chain. Such a tendency for � D 1 seems
to be exhibited by any freely rotating chain having the interaction potential with an
attractive tail between beads if the diameter of its repulsive core is not very large
compared to the bond length. Although the asymptotic value .hS2i=n/1 (or C1)
as a function of � increases monotonically with increasing � and approaches the
value of .hS2i=n/1 for � D 1, that is, the value of .hS2i0=n/1 for the real chain,
the approach of .hS2i=n/1 to it is seen to be unexpectedly slow. The interactions
between even up to about 100th-neighbor beads should be taken into account in
order to reproduce nearly the real unperturbed chain dimension. Thus it is concluded
that the excluded-volume interactions at the � temperature are of long range rather
than of short range. In other words, the unperturbed polymer chain dimension as
experimentally observed at the � temperature depends not only on the short-range
interactions but also, to a considerable extent, on the long-range excluded-volume
interactions.

Considering the above situation, we must claim that the value of C1 for the
RIS model, which is determined only by the very local conformational ener-
gies, cannot be directly compared with the corresponding experimental value.
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However, an ad hoc adjustment of the statistical weights has been made in this
model in order to obtain the agreement between the theoretical and experimental
values of C1. Such an easy and expedient way has no longer physical signifi-
cance.

Nevertheless, the RIS model may be considered to provide still useful informa-
tion about local chain conformations and therefore also conformational properties
of short chains or oligomers. A good example is the prediction as to the behavior
of Cn (or hS2i0=n) as a function of n in the range of small n that in some cases
it first increases with increasing n, then passes through a maximum, and finally
decreases to its asymptotic value, while in others it increases monotonically with
increasing n. These are consistent with the experimental findings displayed in
Fig. 5.1.

9.2 Second Virial Coefficient

9.2.1 Model and Methods

The same model chain as that adopted in Sect. 9.1.1 is used for the MC simulation
[18] presented in this section. In what follows, we use the McMillan–Mayer
symbolism [2, 19] to formulate A2 (two-chain problem), for convenience. Then the
ith bead (i D 0, 1, 2, � � � , n) of chain ˛ (˛ D 1, 2) is labeled as i˛ , and the symbol
.˛/ (˛ D 1, 2) denotes all the coordinates (external and internal) of chain ˛. All
the n � 1 bond angle supplements � in each chain are fixed at � D 71ı as before,
so that the configuration of chain ˛ may be specified by the set of n � 2 internal
rotation angles f�.n�2/˛g D .�2˛ , �3˛ , � � � , �.n�1/˛ / along with the vector position
rCM;˛ of its center of mass and the Euler angles �˛ D .�˛, �˛ ,  ˛/ representing
the orientation of the triangle formed by the first two bonds in an external Cartesian
coordinate system, where �i˛ is the internal rotation angle around the ith bond of
chain ˛ connecting beads .i� 1/˛ and i˛ .

The second virial coefficient A2 may then be expressed in the form [2]

A2 D NA

2VM2

Z
F1.1/F1.2/

	
1 � exp

�
�U12.1; 2/

kBT

�

d.1; 2/; (9.12)

where V is the volume of the system, U12.1; 2/ is the intermolecular potential, and
F1.˛/ (˛ D 1, 2) is the one-body (single-chain) distribution function for chain ˛,
which is normalized as

1

V

Z
F1.˛/ d.˛/ D 1 .˛ D 1; 2/ : (9.13)



9.2 Second Virial Coefficient 373

Fig. 9.7 Three kinds of
intermolecular interactions
(contacts) between beads
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The differential volume element d.1; 2/ for the two chains in Eq. (9.12) is defined
by

d.1; 2/ D d.1/ d.2/; (9.14)

and the one d.˛/ for chain ˛ in Eqs. (9.13) and (9.14) may be explicitly written as

d.˛/ D sinn�1 � drCM;˛ d�˛ df�.n�2/˛g .˛ D 1; 2/ (9.15)

with d�˛ D sin �˛d�˛d�˛d ˛ . As schematically depicted in Fig. 9.7 (compare with
Fig. 9.1 and Fig. 8.21), U12.1; 2/ in Eq. (9.12) is assumed to be composed of three
kinds of intermolecular interactions between beads as

U12.1; 2/ D
n�1X

i1D1

n�1X

i2D1
u0-0.Ri1i2 /C

n�1X

i1D1

�
u0-1.Ri102/C u0-1.Ri1n2 /

�

C
n�1X

i2D1

�
u0-1.R01i2 /C u0-1.Rn1i2 /

�C u1-1.R0102/

Cu1-1.R01n2 /C u1-1.Rn102/C u1-1.Rn1n2 / ; (9.16)

where u1-1, u0-1, and u0-0 are the pair potentials (of mean force) between the end
beads, between one end and intermediate beads, and between intermediate beads,
respectively. The summation (or dummy) index i˛ (˛ D 1, 2) in Eq. (9.16) indicates
the i˛th (i˛ D 1, 2, � � � , n � 1) intermediate bead of chain ˛, and the indices 0˛ and
n˛ the two end beads of chain ˛. Further, Ri1i2 represents the distance between the
centers of the i1th intermediate bead of chain 1 and the i2th one of chain 2, Ri102 the
distance between the centers of the i1th intermediate bead of chain 1 and bead 02,
and so on. We note that the pairwise decomposability of the intermolecular potential
energy U12 has been assumed, as done in the single-chain problem in Sect. 9.1.1.
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We use as the pair potential u�-�.R/ (�, � D 0, 1) in Eq. (9.16) the same one as that
introduced in Sect. 9.1.1, and set l D 1 and �0-0 D �1-1 D 1, so that �0-1 D 1 and the
parameters are reduced to 
0-0 and 
1-1. In what follows, the reduced temperatures
T�
�-� � kBT=
�-� (� D 0, 1) are used instead of 
�-� themselves as before.

Now the procedure of evaluating numerically A2 given by Eq. (9.12) is in
principle the same as those used in other MC studies of A2 [20–22]. Equation (9.12)
may be rewritten in the form

A2 D 2�NA

M2

Z 1

0

	
1 � exp

�
�U12.r/

kBT

�

r2 dr ; (9.17)

where U12.r/ is the averaged intermolecular potential as a function of the distance
r D jrj between the centers of mass of the two chains (with r D rCM;2 � rCM;1)
given by

U12.r/ D �kBT ln

�
exp

�
�U12.1; 2/

kBT

��

r

(9.18)

with h� � � ir indicating the conditional average formally defined by

h� � � ir D 1

V

Z
F1.1/F1.2/ � � � d.1; 2/=dr : (9.19)

This is the equilibrium average taken over the configurations of the two chains
with r fixed by the use of the single-chain distribution function F1.˛/ for each
with the intramolecular excluded-volume effect (see Fig. 9.1). This average may
be calculated by the use of a set of chain (sample) configurations generated
properly by MC simulation, as follows. First, a set of Ns sample configurations
are generated by a MC run following the procedure described in Sect. 9.1.1. Next
we randomly sample a pair of chain configurations from the set (of size Ns) and
calculate the intermolecular potential U12.1; 2/=kBT from Eq. (9.16) at given r after
randomizing the orientations of the two configurations in the external coordinate
system. Finally, we adopt as the value of expŒ�U12.r/=kBT� a mean of values of
expŒ�U12.1; 2/=kBT� so obtained for Np sample pairs (of chain configurations).
With the values of expŒ�U12.r/=kBT� so obtained for various values of r, the
quantity A2M2 for given n and at given T�

0-0 and T�
1-1 may then be calculated

from Eq. (9.17) by numerical integration with the use of the trapezoidal rule
formula.

In computing U12.1; 2/=kBT for each pair of sample configurations (chains), we
have used the following algorithm for a speedy calculation of the double sum in
Eq. (9.16). We locate the center of mass of one of the two chains at the origin of
the external coordinate system (x, y, z) and that of the other at (0, 0, r). First, we
prepare a list of those pairs of intermediate beads of different chains for which the
distance between their centers can become smaller than or equal to 3�0-0 when r
varies. It may be done by listing those pairs of beads for which the distance between
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the projections of their centers onto the xy plane is smaller than or equal to 3�0-0.
Then we sum up the pair potentials u0-0 only of those pairs for various values of r.
We note that the zippering method [7, 8] has been used in the above examination in
the xy plane.

9.2.2 Averaged Intermolecular Potential

From a comparison of the right-hand sides of Eqs. (8.104) and (9.17), the (apparent)
interpenetration function ‰ defined by Eq. (8.104), which includes the effects
of chain ends, may be written in terms of the averaged intermolecular potential
U12.r/ as

‰ D 1

2�1=2

Z 1

0

h.�/ �2 d� ; (9.20)

where h.�/ is given by

h.�/ D 1 � exp

�
�U12.�/

kBT

�
(9.21)

with � D r=hS2i1=2 the reduced distance between the centers of mass of the two
chains. We note that the quantity exp

��U12.�/=kBT
�

corresponds to the radial
distribution function for the centers of mass of the MC chains at infinite dilution,
and therefore that the negative of h.�/ instead of h.�/ itself corresponds to the pair
correlation function at infinite dilution (in fact the Mayer f -function) [3]. It is seen
from Eqs. (8.104) and (9.20) that the behavior of A2 is closely related not only to
that of hS2i but also to that of U12.�/ or more directly that of h.�/ �2.

Figure 9.8 shows plots of h.�/�2 against � at reduced temperatures T�
0-0 D T�

1-1 D
8:0. We note that the condition T�

0-0 D 8:0 corresponds to a good-solvent system,

Fig. 9.8 Plots of h.�/ �2

against � at
T�

0-0 D T�

1-1 D 8:0 for the
indicated values of n
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Fig. 9.9 Plots of h.�/ �2

against � at
T�

0-0 D T�

1-1 D 3:72 (��) for
the indicated values of n. The
dashed and dotted line
segments connect the values
for n D 500 and 1000,
respectively
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as seen from Fig. 9.2. The solid line segments connect the present MC values for
the indicated values of n. It is interesting to note that the attractive tails exist and
contribute to A2 for n D 6 and 10.

Figure 9.9 shows similar plots at T�
0-0 D T�

1-1 D 3:72 (��) at which hS2i=n
becomes a constant independent of n in the limit of n ! 1, as seen from Fig. 9.2.
The solid line segments connect the present MC values for the indicated values
of n, and the dashed and dotted line segments connect those for n D 500 and
1000, respectively. In contrast to the picture in the binary-cluster approximation,
in which h.�/ vanishes at ��, there are observed a repulsive core and an attractive
tail in h.�/ �2 over the whole range of n examined. We note that the corresponding
behavior of U12 or its functions at � has been observed in previous MC studies
based on other models [20, 21, 23]. Although it is difficult to conjecture the
asymptotic shape of the plot in the limit of n! 1 only from the present MC data
shown in Fig. 9.9, it may be considered that h.�/ �2 at �� converges to a limiting
function having nonzero values, so that ‰ at �� remains nonvanishing in this limit.
This is consistent with the theoretical result [the first line of Eqs. (8.132)] with
consideration of the residual contribution of the ternary-cluster integral. Although
h.�/ �2 [or U12.�/] is a virtual (not real) observable experimentally unobserved
but obtained only in MC simulation, such quantities may sometimes provide useful
information in addition to that from real observables.

9.2.3 Analysis of Monte Carlo Data

As discussed in Sects. 8.3.3 and 8.3.4 and demonstrated in Sect. 8.3.5, the effects
of chain ends and also the residual contribution of the ternary-cluster integral (at
and around the � temperature) should properly be taken into account in an analysis
of experimental data for A2. In order to sustain firmly this assertion, we make an
analysis of MC data for A2 on the basis of the theory developed in Chap. 8 and also
make a comparison of the MC data with the experimental ones presented there.
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For this purpose, the MC data are desirable to give in real units, although almost
all available literature ones have been given in certain reduced units. Then we rewrite
Eq. (8.104) as

A2 D 4�3=2NA
l3.hS2ilD1=n/3=2

Mb
2 n1=2

‰ ; (9.22)

where l is the real bond length, which, for convenience, has been hitherto chosen
to be unity, hS2ilD1 is the MC value of hS2i evaluated with l D 1 as obtained in
Sect. 9.1, and Mb is the molecular weight per bond. The MC values of A2 in real
units may then be calculated from Eq. (9.22) with the MC values of hS2ilD1=n and
‰ given by Eq. (9.20) if the values of l and Mb in real units are properly chosen. As
shown in Fig. 9.2, the behavior of hS2ilD1=n for the freely rotating chain at �� may
be well represented by the KP chain with ��1=l D 3:01 and lnL D 1:24. With values
of ��1 and ML for a KP-like real polymer chain, we may therefore assign values to
l and also Mb by the use of the relation,

ML D nL Mb : (9.23)

For convenience, we adopt the respective values 16.8 Å and 35.8 Å�1 of ��1 and
ML determined from an analysis of the experimental data for hS2i of a-PS at 34.5 ıC
(�) [24, 25] shown in Fig. 5.1 to obtain l D 5:58 Å and Mb D 1:61� 102, the details
of the analysis (as the KP chain) being omitted.

Figure 9.10 shows double-logarithmic plots of A2 (in cm3 mol/g2) against M (D
nMb) at T�

0-0 D 8:0 (good-solvent system). The unfilled circles, each with center
dot, represent the values calculated from Eq. (9.22) with the values of ‰ obtained
by numerical integration of Eq. (9.20) and those of hS2ilD1=n, and also with the
above-estimated values of l and Mb at T�

1-1 D 20:0, 8.0, and 3.72. The solid curve

Fig. 9.10 Double-
logarithmic plots of A2 (in
cm3 mol/g2) against M at
T�

0-0 D 8:0. The unfilled
circles, each with center dot,
represent the values at
T�

1-1 D 20:0 ($), 8.0 (%),
and 3.72 (&), the solid curve
connecting smoothly the data
points at each T�
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Fig. 9.11 Plots of A2;�
against log M at T�

0-0 D 3:72

(��). The unfilled circles
represent the values at
T�

1-1 D 20:0 ('), 8.0 ((),
and 3.72 ()), the solid curve
connecting smoothly the data
points at each T�
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connects smoothly the data points at each T�
1-1. It is seen that A2 increases with

increasing T�
1-1 for M<
 3 � 104 because of the effects of chain ends.

Figure 9.11 shows plots of A2;� against the logarithm of M at T�
0-0 D 3:72 (��).

The unfilled circles represent the values calculated from Eq. (9.22) with the values of
‰ obtained by numerical integration of Eq. (9.20) and those of hS2ilD1=n, and also
with the above-estimated values of l and Mb at T�

1-1 D 20:0, 8.0, and 3.72. The solid
curve connects smoothly the data points at each T�

1-1. As in the case of T�
0-0 D 8:0

shown in Fig. 9.10, the effects of chain ends become appreciable for M<
 3 � 104,
and A2 increases there with increasing T�

1-1. It is seen that as M is decreased, A2;�
examined first decreases from zero at all T�

1-1 and then increases at T�
1-1 D 20:0 and

8.0. We note that this decrease in A2;� corresponds to the result by Bruns [26] for
lattice chains that the depth of an attractive well for which A2 vanishes increases
with increasing n (or M).

Now we are in a position to proceed to an analysis of the MC data for A2
and A2;� presented in Figs. 9.10 and 9.11, respectively, along the same line as in
Sect. 8.3.5. First, we properly evaluate A03 for the MC chain, which is required for

the evaluation of A.E/2 at �� from the observed values of A2;� presented in Fig. 9.11
by the use of Eq. (8.134) with Eq. (8.130). Unfortunately, however, A03 cannot be
directly evaluated from the MC simulation described above, so that we estimate it
indirectly in the following manner. In the limit of M!1, the effects of chain ends
disappear and the apparent interpenetration function‰ given by Eq. (9.20) becomes
identical to the true interpenetration function without the effects. From Eq. (8.104)
with the first line of Eqs. (8.132), the interpenetration function ‰ at � in the limit
of M!1, which we denote by ‰�;1, may then be written in the form

‰�;1 D � 3A03
8�3N 2

A .hS2i0=M/ 31
D �

�
3�

�c1a

�3
ˇ3 : (9.24)

Thus we can evaluate A03 if ‰�;1 is known. Since the MC values of ‰ at
T�
0-0 D T�

1-1 D 3:72 for n D 100–500 have been found to be identical to each
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other within statistical error, we adopt as the value of ‰�;1 the mean �0:0485
of those values, and thus as that of A03 the value 6:97 � 10�4 cm6 mol/g3. The
latter has been calculated from the first of Eqs. (9.24) with the above-obtained
value of ‰�;1 and the value 7:82 � 10�18 cm2 mol/g of .hS2i0=M/1 calculated
from .hS2i0=M/1 D .6�ML/

�1 with the above-mentioned values of ��1 and ML

for a-PS. The value of A03 so evaluated is of the same order of magnitude as the
experimental values 4:7 � 10�4 cm6 mol/g3 for a-PS in cyclohexane at 34.5 ıC (�)
[27], 4:3 � 10�4 cm6 mol/g3 for a-PS in trans-decalin at 21.0 ıC (�), which has
been calculated from Eq. (8.131) with the value 4 � 10�45 cm6 of ˇ3 (per repeat
unit) obtained by Nakamura et al. [28], and 5:8 � 10�4 cm6 mol/g3 for a-PMMA in
acetonitrile at 44.0 ıC (�) [27]. This indicates that the above estimate of A03 from
the MC value of ‰�;1 is reasonable, and also that the present MC model may well
describe real systems.

Next we examine the effects of chain ends revealed by the MC data for A2 and
A2;� , for the latter by the use of the above-evaluated value of A03. Figure 9.12 shows

plots of A.E/2 M against M�1 with the MC data at T�
0-0 D 8:0 and T�

1-1 D 20:0,
8.0, and 3.72 and those at T�

0-0 D 3:72 (��) and T�
1-1 D 20:0, 8.0, and 3.72. The

values of A.E/2 at T�
0-0 D 8:0 have been obtained from A.E/2 D A2 � A.HW/

2 [see

Eq. (8.118)], while those at T�
0-0 D 3:72 (��) have been obtained from A.E/2 D

A2;��A.HW/
2;� [see Eq. (8.134)]. The theoretical values of A.HW/

2 have been calculated
from Eq. (8.83) with the above-mentioned values of ��1 and ML and with the value
0.27 of �B evaluated in Sect. 9.1.2 for the case of T�

0-0 D 8:0. Recall that c1 D 1

for the present case of the KP chain (�0 D 0). The theoretical values of A.HW/
2;�

have been calculated from Eq. (8.130) with Eq. (8.128) with the above-mentioned
values of A03, .hS2i0=M/1, ��1, and ML. The data points for each set of T�

0-0 and
T�
1-1 can be fitted by a straight line, and with values of its intercept a2;1 and slope

a2;2, ˇ2;1 and ˇ2;2 may be calculated from Eqs. (8.120) with Eq. (8.121). The results
so obtained for ˇ2;1 and ˇ2;2 taking the repeat unit as a single bond or a single bead
(with M0 D 161) are 200 and 310 Å3 at T�

0-0 D 8:0 and T�
1-1 D 20:0, 180 and 170 Å3

at T�
0-0 D 8:0 and T�

1-1 D 8:0, 140 and �120Å3 at T�
0-0 D 8:0 and T�

1-1 D 3:72,

Fig. 9.12 Plots of A
.E/
2 M

against M�1. The symbols
have the same meaning as
those in Figs. 9.10 and 9.11
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Fig. 9.13 Double-logarithmic plots of A2 (in cm3 mol/g2) against M with the MC data at T�

0-0 D
T�

1-1 D 8:0 (%) and the experimental data for a-PS in toluene at 15.0 ıC (�) [29]. The solid and

dot-dashed curves represent the theoretical values of A2 (D A
.HW/
2 C A

.E/
2 ), and the dashed and

dotted curves those of A.HW/
2 and A.E/2 , respectively. The heavy and light curves are those for the

MC and experimental data points, respectively

140 and 530 Å3 at T�
0-0 D 3:72 and T�

1-1 D 20:0, 80 and 360 Å3 at T�
0-0 D 3:72 and

T�
1-1 D 8:0, and 14 and 5.7 Å3 at T�

0-0 D 3:72 and T�
1-1 D 3:72, respectively. It is

interesting to note that the values of ˇ2;1 and ˇ2;2 at T�
0-0 D T�

1-1 D 3:72 (for the
chain composed of nC 1 identical beads at ��) are appreciably smaller than those
at other reduced temperatures, indicating that the MC chain at T�

0-0 D T�
1-1 D 3:72

is very close to the fictitious chain without the effects of chain ends in the range of n
studied.

Figure 9.13 shows double-logarithmic plots of A2 (in cm3 mol/g2) against M. The
unfilled circles, each with center dot, which have been reproduced from Fig. 9.10,
represent the MC values at T�

0-0 D T�
1-1 D 8:0, and the filled circles, which

have been reproduced from Fig. 8.23 (unfilled circles), represent the experimental
values for a-PS in toluene at 15.0 ıC [29]. The heavy solid curve represents the
(KP) theoretical values calculated from Eq. (8.118) with Eqs. (8.83) and (8.119)
with �0 D 0, ��1 D 16:8Å, ML D 35:8Å�1, �B D 0:27, ˇ2;1 D 180Å3, and
ˇ2;2 D 170Å3 for the MC chain (for �L>
 1), and the heavy dot-dashed curve
represents those with h D 1 in Eq. (8.83) (for �L<
 1). The heavy dashed and

dotted curves represent the theoretical contributions of A.HW/
2 (for �L>
 1) and A.E/2 ,

respectively, to A2 in Eq. (8.118). The light curves, which have been reproduced
from Fig. 8.23, represent the respective (HW) theoretical values for a-PS. The
dependence of A2 on M for the MC chain at T�

1-1 D 8:0 (and also T�
1-1 D 20:0)

may rather be regarded as close to that for a-PS in the range of M studied, so that
the above-given values of ˇ2;1 and ˇ2;2 for the MC chain happen to be of the same
order of magnitude as the respective values 220 and 270 Å3 determined for a-PS in
toluene in Sect. 8.3.5.
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Fig. 9.14 Plots of A2;� against log M with the MC data at T�

0-0 D 3:72 (��) and T�

1-1 D 20:0 ('),
8.0 ((), and 3.72 ()) and the experimental data for a-PS in cyclohexane at 34.5 ıC (�) [29]. The
solid and dashed curves represent the theoretical values of A2;� (D A.HW/

2;� C A.E/2 ) for the MC data
at each T�

1-1 and the experimental data for a-PS in cyclohexane, respectively, and the dotted curve

those of A
.HW/
2;�

Figure 9.14 shows plots of A2;� against the logarithm of M. The unfilled circles,
which have been reproduced from Fig. 9.11, represent the MC values at T�

0-0 D 3:72
(��), and the filled circles, which have been reproduced from Fig. 8.24, represent
the experimental values for a-PS in cyclohexane at 34.5 ıC (�) [29]. The solid curve
associated with the MC data points at each T�

1-1 represents the theoretical values of

A2;� (D A.HW/
2;� C A.E/2 ) and the dotted curve those of A.HW/

2;� , where the values of

A.HW/
2;� have been calculated from Eq. (8.130) with Eq. (8.128) and those of A.E/2 from

Eq. (8.119) with values of all necessary parameters determined. The dashed curve,
which has been reproduced from Fig. 8.24 (solid curve), represents the theoretical
values for a-PS. It is seen that the theoretical values of A.HW/

2;� are rather close to
the MC values at T�

1-1 D 3:72 (��). The indication is that the present MC chain
composed of n C 1 identical beads at T�

0-0 D �� may be closely identified with
the fictitious chain (without the effects of chain ends) at �, and that the fact that
the residual contribution A.HW/

2;� of ˇ3 to A.HW/
2 remains finite (negative) except for

very large M may be accepted. It is also seen that the dependence of A2;� on M
for the MC chain at T�

1-1 D 8:0 is close to that for a-PS in cyclohexane, so that
the respective values 80 and 360 Å3 of ˇ2;1 and ˇ2;2 for the former determined
above are of the same order of magnitude as the values for the latter mentioned in
Sect. 8.3.5.

Finally, we examine the behavior of the (true) interpenetration function ‰

without the effects of chain ends as a function of ˛S for the MC chain in good-
solvent conditions and compare it with that for a typical real polymer chain.
Figure 9.15 shows plots of ‰ against ˛ 3

S . The unfilled circles, each with center

dot, represent the MC values at T�
0-0 D 8:0. After subtraction of A.E/2 , the MC
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Fig. 9.15 Plots of ‰ against
˛S
3 with the MC data at

T�

0-0 D 8:0 (*) and the
experimental data for a-PS in
toluene at 15.0 ıC (�) [29].
The solid curves connect
smoothly the respective data
points, and the dotted curve
represents the TP theory
values
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value of A.HW/
2 at T�

0-0 D 8:0 becomes almost independent of T�
1-1, so that we have

shown the data points only at T�
1-1 D 8:0 by the symbols without pip. The value

of ˛ 2
S for each data point has been calculated by dividing the value of hS2ilD1=n

at T�
0-0 D T�

1-1 D 8:0 by the value at T�
0-0 D T�

1-1 D 3:72. For comparison, the
experimental values for a-PS in toluene at 15.0 ıC [29] are also shown by the filled
circles, which have been reproduced from Fig. 8.25 (unfilled circles). The solid
curves connect smoothly the respective data points, and the dotted curve represents
the TP theory values calculated from Eq. (8.105) with Eqs. (8.51), (8.106), (8.107),
and (8.110) and with the relations Qz D QQzD z and 6�hS2i0=c1L D 1. It is seen that
as ˛ 3

S is decreased, ‰ decreases monotonically for the MC chain, while it passes
through a maximum and then a minimum for a-PS, and that it deviates upward from
the TP theory values for both cases. These features arise from the differences in
chain stiffness and local chain conformation.

9.3 Polyelectrolytes

9.3.1 Model

As a natural extension of the study of the intramolecular excluded-volume problems
made in Sect. 9.1 on the basis of the freely rotating chain with short-range LJ pair
potentials between segments, in this section we proceed to treat similar problems
for both flexible and semiflexible chains with long-range Debye–Hückel (DH)
electrostatic potentials, that is, polyelectrolyte chains.

Now, in the study of polyelectrolytes, there are at least four points to be
considered. The first concerns values of the binary-cluster integral ˇ between
segments determined from experiment by the use of the TP theory. They are one
or two orders of magnitude smaller than those calculated for an isolated single
segment (bead) using the DH potential, as was shown long ago by Nagasawa and
co-workers [30, 31]. Recall that the same situation discussed rather in detail for
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nonionic polymers with short-range potentials in Sect. 9.1.2 was found at about the
same time [14]. Such differences may be regarded as arising from the fact that the
effective segment (bead) size is in fact nearly equal to or larger than the bond length
between the adjacent ones, while strictly (apart from the chain length dependence),
the TP theory is valid for the limiting case in which the former is so small compared
to the latter that the interaction between (effective) beads is not almost affected by
their neighbors. To resolve this difficulty, Fixman and Skolnick [32] have evaluated
ˇ replacing segments by (charged) rods instead of beads. We should inquire into
this problem in more detail.

Second, we must consider the possible dependence of the unperturbed chain
dimension, or the persistence length q, on added salt concentration c. This has been
discussed with interest mainly in the case of rodlike stiff polymers with negligibly
small excluded volume like DNA and cellulose derivatives [33–36], although it
had earlier been suggested that it may probably arise in flexible polyelectrolyte
chains because of interactions between nearest-neighbor charged segments [37].
The dependence on c of the electrostatic part of q has been evaluated theoretically
from the bending energy of a charged elastic wire or rod [33–36], and MC
investigations on it have also been performed [38]. Further, we must recall that it
has been shown experimentally also for semiflexible and flexible polyelectrolytes
[39, 40]. This seems quite reasonable, considering from the results in Sect. 9.1.3,
which indicate that the excluded-volume interactions may make contribution, to an
unexpectedly large extent, to the unperturbed chain dimension.

Third, in order to discuss experimental values of ˇ and q individually as above, it
is necessary to separate the unperturbed and perturbed parts of the chain dimension
from each other. This is a difficult task in polyelectrolyte solutions, or generally in
good-solvent systems, except for nonionic polymers in � solvents. Then, viscosity
plots, for instance, the Stockmayer–Fixman plot have often been used for this
purpose in the cases of the latter in good solvents [2] and even of polyelectrolytes
[30]. Since this procedure is however not applicable to semiflexible and stiff
polymers, the determination of their ˇ and q has been made in some cases [39, 40]
from a best fit (curve fitting) of experimental values of an observable to the QTP
theory ones, which take account of chain stiffness. Then, some ambiguity involved
in the determination is inevitable. Fortunately, however, in MC simulations, it may
be possible to determine q more directly and rather accurately from the initial decay
rate of the bond correlation function, which is also a virtual observable, as recently
done by Fixman [38].

Finally, we must note that all the above three points of consideration make
sense on the assumption that the TP or QTP scheme is valid. However, it has been
shown both experimentally [39–41] and theoretically [42] that it breaks down for
polyelectrolyte solutions at small c or large Debye length, although the TP scheme
holds asymptotically for infinitely large molecular weights irrespective of values of
c. Their validity must therefore be examined carefully.

For the purpose of clarifying also these points, we adopt here the discrete version
of the KP (dKP) wormlike chain defined in Sect. 3.5, instead of the freely rotating
chain used so far, as the backbone of the model chain for MC simulation [43]. The
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reason for this is that the former is more suitable for extraction of information about
q from MC data. It is composed of n bonds, each of length l, and of n C 1 beads,
whose centers are located at the n � 1 junctions of two successive bonds and at the
two terminal ends. The beads are numbered 0, 1, 2, � � � , n from one end to the other,
and the ith bond vector li (jlij D l) connects the centers of the .i � 1/th and ith
beads with its direction from the .i � 1/th to the ith bead. Apart from its location
and entire orientation, the configuration of the chain may be specified by the set
of n � 1 spherical polar coordinates .l; �i; �i/ of li (i D 2, 3, � � � , n) in an external
Cartesian coordinate system. The angle O�i between li�1 and li may be written in
terms of .l; �i�1; �i�1/ and .l; �i; �i/ as

cos O�i D l�2li�1 � li
D sin �i�1 sin �i

�
cos�i�1 cos�i C sin �i�1 sin �i




C cos �i�1 cos �i : (9.25)

The total potential energy U0 of the unperturbed chain (backbone) without excluded
volume as a function of f O�n�1g D . O�2; O�3; � � � ; O�n/ is given by Eq. (3.104) with U0

in place of E.flng/. Recall that the dKP chain becomes identical to the continuous
(original) KP wormlike chain of total contour length L and of persistence length q
in the limit of n!1 under the conditions of L D nl and

q D l

2

1C hcos O�i
1 � hcos O�i (9.26)

with Eq. (3.106), where the persistence length q has been used in place of ��1 in
Eq. (3.105). Recall also that the dKP chain reduces to the freely jointed chain in the
limit of the bending force constant ˛! 0.

Then the excluded-volume potential energy Ue of the dKP chain as a function of
fln�1g D .l2; l3; � � � ; ln/ may be given by

Ue.fln�1g/ D
n�2X

iD0

nX

jDiC2
u.Rij/ (9.27)

where u is the pair potential between two beads as a function of their separation with
Rij the distance between the centers of the ith and jth beads.

We here consider two types of u. One is the cutoff version of the LJ 6-12 potential
given by Eq. (9.2) with Eq. (9.3) with omission of the subscript �-� (for nonionic
polymers in Sect. 9.3.2), where we put the collision diameter � D l, for simplicity,
as done in Sect. 9.1.1. The other is a hard-core–effective DH (hcDH) electrostatic



9.3 Polyelectrolytes 385

potential given by

u.R/ D 1 for 0 � R < db

D n 2
e e2


0

e�R=lD

R
for db � R (9.28)

(in Gaussian-cgs units) for polyelectrolytes, where db is the (rigid) bead diameter, e
is the elementary charge, ne is the effective number of elementary charges per bead,

0 is the (relative) dielectric constant of the medium (water), and lD is the Debye
length. It is convenient to rewrite u.R/=kBT in the form

u.R/

kBT
D 1 for 0 � R < db

D n 2
e lB
lD

e�R=lD

R=lD
for db � R ; (9.29)

where lB is the Bjerrum length defined by lB D e2=
0kBT. Note that lB D
7:158Å in water at 25 ıC. For an aqueous 1-1 electrolyte solution of molar
salt concentration c (M), which we assume in the present study, lD is given by
lD D .8�NAlBc=1000/�1=2 and is equal to 3:038 c�1=2 Å at 25 ıC. The quantity
ne may be written as

ne D fdn0 ; (9.30)

where n0 is the (average) number of (1-1) ion pairs per bead in the chain (which
simulates a given polymer chain) and fd is the degree of their dissociation.

9.3.2 Determination of the Unperturbed State

As mentioned in the last subsection, we adopt the procedure of determining
the persistence length q (or the unperturbed chain dimension hS2i0) from the
initial decay rate of the bond correlation function for the present model chain
for polyelectrolytes in aqueous solution, that is, the dKP chain with the (long-
range) hcDH potential Ue (along with U0). The reason for this is that not only the
binary-cluster integral ˇ but also q of the chain depend on added salt concentration
c, and then its hypothetical (real and not ideal) unperturbed � state at a given
c cannot be actually realized, so that the simple method adopted in Sect. 9.1.1,
which is rather usual, for the chain with the LJ potential cannot be used to
estimate hS2i0 and hence also ˛S. Also as mentioned in the preceding subsection,
q and ˇ may in principle be determined simultaneously from a best fit of hS2i
(or others) values obtained for an perturbed chain with excluded volume to the
QTP theory ones (combined with the corresponding unperturbed KP theory ones),
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but their values so determined are in general not accurate enough for a further
analysis.

Thus, before proceeding to investigate two (semiflexible and flexible chain)
model cases of aqueous polyelectrolyte solutions, it is pertinent to confirm here
the validity of the present procedure of determining q taking the dKP chain with
the LJ potential as an example of nonionic polymer solutions, for which the QTP
scheme may be expected to work satisfactorily as in the case of the freely rotating
chain with the same potential.

Now we define the mean normalized bond correlation function C.p/ as a function
of the separation p between a pair of bonds li and liCp (i D 1; 2; � � � ; n � p) by

C.p/ D 1

.n � p/l2

n�pX

iD1
hli � liCpi ; (9.31)

where h� � � i means the ensemble average. We note that C.p/ D expŒ�.l=qid/p� for
the ideal chain of persistence length qid without the LJ potential [see the third line
of Eqs. (3.141)].

Figure 9.16 shows plots of ln C.p/ against p for the dKP chain with the LJ
potential for qid=l D 1 and n D 100 at T� D 3:9, 3.97, 4.0, 4.5, 5.0, and 8.0. It is
seen that the MC data points at every T� follow the solid straight line of slope�0:76
for small p and then deviate upward progressively with increasing p, and that the
deviation becomes large with increasing T�. The indication is that the unperturbed
chain dimensions at all T� are identical to each other and ln C.p/ for small p may
be described commonly by

ln C.p/ D � l

q
p (9.32)
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Fig. 9.16 Plots of ln C.p/ against p for the dKP chain with the LJ potential for qid=l D 1 and
n D 100 at T� D 3:9 (�), 3.97 (�), 4.0 (�), 4.5 (+), 5.0 (
), and 8.0 (,). The solid straight
line indicates the best-fit initial slope (q=l D 1:32) and the dotted straight line represents the values
for the ideal dKP chain without the LJ potential
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Fig. 9.17 Double-logarithmic plots of hS2i=nl2 against n for the dKP chain with the LJ potential
for qid=l D 1. The symbols have the same meaning as those in Fig. 9.16. The solid and dashed
curves represent the theoretical values for the dKP and KP chains in the � state, respectively, and
the dotted curve represents the theoretical values for the ideal dKP chain without the LJ potential
(see the text)

with q the observed persistence length for the corresponding (real) unperturbed
chain. Then we obtain q=l D 1:32 from the value �0:76 of the initial slope. For
comparison, the values calculated from C.p/ D expŒ�.l=qid/p� for the ideal dKP
chain with qid=l D 1 are also represented by the dotted straight line. Note that the
value of q=l is 32 % larger than that of qid=l.

Figure 9.17 shows double-logarithmic plots of hS2i=nl2 against n. All the
symbols have the same meaning as those in Fig. 9.16. It is seen that hS2i=nl2

increases monotonically with increasing n for T� 	 4:0, while it decreases after
passing through a maximum (at n ' 300) at T� D 3:9. We may conclude that the
(reduced) � temperature �� (D kBT=
) is 3.97 since hS2i=nl2 seems to become
independent of n for large n at T� D 3:97.

The dotted curve in Fig. 9.17 represents the theoretical values calculated from
Eq. (2.12) for the ideal dKP chain with qid=l D 1 and hence with cos � D hcos O�i D
1=3. Recall that qid is related to hcos O�i by Eq. (9.26). It is seen that the asymptotic
MC value of hS2i=nl2 in the limit of n ! 1 at �� is ca. 30 % larger than that for
the ideal chain.

In the figure, the solid and dashed curves represent the theoretical values
calculated for the dKP and (original) KP chains in the (real) unperturbed � state,
respectively, with the value 1:32 of q=l determined from C.p/. Here, the former
values have been calculated from Eq. (2.12) with cos � D 0:451, and the latter from
Eq. (3.6) with ��1 D 2q and L D nl. The MC values at �� for large n agree
completely with the dKP and KP theory values, indicating that the q=l may be
correctly determined from the initial decay rate of C.p/. We note that neither the
dKP nor KP chain can describe the behavior of the MC values at �� for small n
because of the difference in local chain conformation.
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Fig. 9.18
Double-logarithmic plots of
˛ 2

S against n for the dKP
chain with the LJ potential for
qid=l D 1. The symbols have
the same meaning as those in
Fig. 9.16. The solid curves
represent the QTP theory
values for the indicated
values of B=2q (see the text)
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Figure 9.18 shows double-logarithmic plots of ˛ 2
S against n with the MC values

for n 	 50 calculated from Eq. (8.7) with the hS2i=nl2 values for T� 	 4:0 and the
hS2i0=nl2 values at T� D 3:97 shown in Fig. 9.17. All the symbols have the same
meaning as those in Fig. 9.16. The solid curves represent the best-fit QTP theory
values calculated from Eq. (8.57) with Eqs. (8.46), (8.58), and (8.59) with ��1 D 2q
and L D nl and with the values of B=2q D 0:21, 0.085, 0.047, and 0.0026 from
top to bottom, where B is the excluded-volume strength defined by B D ˇ=l2. The
MC data at each T� closely follow the corresponding theoretical curve, indicating
that the QTP scheme works satisfactorily well also for the dKP chain with the LJ
potential, as was expected.

9.3.3 Persistence Length

Now we are in a position to examine the behavior of the persistence length q for
aqueous polyelectrolyte solutions as a function of c by the use of the procedure
demonstrated in the last subsection, taking sodium (Na) hyaluronate in aqueous
sodium chloride (NaCl) at 25 ıC studied by Hayashi et al. [39] as an example
of a semiflexible polyelectrolyte and poly(sodium 4-styrenesulfonate) (PNaSS) in
aqueous NaCl at 25 ıC studied by Iwamoto et al. [40] as an example of a typical
flexible polyelectrolyte. The values of the KP model parameters, that is, the nonionic
part q0 of q except the electrostatic contribution and the shift factor ML, estimated
by them for these polyelectrolytes, are given in the second and third columns,
respectively, of Table 9.1. There are also given the values of the molecular weight
M0 of the repeat unit in the first column. In anticipation of results, we note that
q0 D qid for the present polyelectrolyte model chains (as shown later). Taking the
repeat unit of Na hyaluronate as a bead of the dKP chain, we set the bond length
l to be 10:0 Å calculated from l D M0=ML with the values M0 and ML given in
Table 9.1. Further, with the values of q0 (D qid) and l, the bending force constant
˛=kBT in units of kBT is calculated to be 3:80 from Eq. (3.106) with Eq. (9.26).
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Table 9.1 Values of the KP model parameters for polyelectrolytes

Polymer (M0) q0 (Å) ML (Å�1) l (Å) ˛=kBT

Na hyaluronate (401) 40 40 10.0 3.80
PNaSS (206) 6.9 88 2.34 2.74

Similarly, the values of l and ˛=kBT for PNaSS have been calculated. The values
of l and ˛=kBT are also given in the fourth and fifth columns, respectively, of the
table.

In order to complete the assignment of values of the model parameters of the
dKP chain corresponding to Na hyaluronate in aqueous NaCl at 25 ıC for given c,
we must further assign a proper value to the effective number ne of elementary
charges per bead in Eq. (9.28) or Eq. (9.29). We note that Eq. (9.30) reduces to
ne D fd with fd the degree of dissociation of (1-1) ion pairs in the polymer chain
under consideration, since the number n0 of (1-1) ion pairs per bead of the dKP
chain is equal to unity in the present case of Na hyaluronate. Here, we must make a
remark on the assignment of ne and therefore fd, that is, the effect of the counterion
condensation [44, 45]. Although fd in general depends not only on the intrinsic linear
charge density n0=l but also on c, interaction potential energy parameters, and so on,
as explicitly shown by Muthukumar [42], we simply follow the Manning theory [45]
of fd, which reads

fd D 1 for � � 1
D ��1 for � > 1 (9.33)

with � D n0lB=l (D lB=l for both Na hyaluronate and PNaSS). Note that � is the
so-called charge parameter, which represents the intrinsic number of elementary
charges per Bjerrum length of the chain at fd D 1. Recalling that lB D 7:158Å at
25 ıC, we have � D lB=l < 1 and therefore fd D 1 or ne D 1 for Na hyaluronate
in aqueous solution at 25 ıC. As for PNaSS in aqueous NaCl at 25 ıC, we have
fd D ��1 D 0:327 (or ne D l=lB D 0:327), since � D lB=l > 1.

First, we determine the values of q at several c for Na hyaluronate and examine
its behavior as a function of c. Figure 9.19 shows plots of ln C.p/ against p for the
dKP chain having the hcDH potential given by Eq. (9.29) with db D 0 in the case
of Na hyaluronate for n D 100 and lD=l D 0:304, 0.430, 0.961, 1.36, 2.15, and
3.04. Recalling that lD D 3:038 c�1=2 Å at 25 ıC, we have lD=l D 0:304 c�1=2 in
the present case of l D 10:0 Å, so that the above lD=l values correspond to c D 1,
0.5, 0.1, 0.05, 0.02, and 0.01 M, respectively. Although the behavior of the MC
data for C.p/ as a function of p for each lD=l is qualitatively the same as that
in the case of the LJ potential, it is seen that the initial decay rates of the plots
are different from each other. We then determine the best-fit initial slopes for the
respective plots, as indicated by the solid straight lines. From the values of the
initial slope, q=l may be evaluated to be 4:01, 4:07, 4:72, 5:30, 6:60, and 8:05 for
lD=l D 0:304, 0.430, 0.961, 1.36, 2.15, and 3.04, respectively, indicating that q
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Fig. 9.19 Plots of ln C.p/ against p for the dKP chain with the DH potential (db D 0) in the case
of Na hyaluronate for n D 100 and lD=l D 0:304 (�), 0.430 (�), 0.961 (�), 1.36 (+), 2.15 (
),
and 3.04 (,). The solid straight lines indicate the respective best-fit initial slopes and the dotted
straight line represents the values for the ideal dKP chain without the DH potential

for the hypothetical (real) unperturbed dKP chain increases with increasing lD=l
or decreasing c. For comparison, the theoretical values calculated from Eq. (9.32)
for the ideal dKP chain of q0=l D 4:00 are represented by the dotted straight
line.

Also for the dKP chain having the hcDH potential with db D l (touched-bead
model) in the case of Na hyaluronate, a similar analysis of C.p/ has been made to
obtain q=l D 4:00, 4:06, 4:09, 4:73, 5:30, 6:65, and 8:10 for lD=l D 0, 0.304, 0.430,
0.961, 1.36, 2.15, and 3.04, respectively. It is found that qid is identical to q0, which
is independent of db (see also below).

Figure 9.20 shows plots of q=q0 against c�1=2 (c in M) and lD=l in the case of Na
hyaluronate in aqueous NaCl at 25 ıC. The unfilled circles and triangles represent
the MC values for the dKP chain with db D l and 0, respectively. It is seen that
the MC values are almost independent of db (for db<
 l) and that q=q0 increases
monotonically with increasing c�1=2 (or lD=l). Further, the MC results may explain
semiquantitatively the behavior of the experimental data obtained by Hayashi et al.
[39], which are shown by the filled circles.

According to Odjik [33] and Skolnick and Fixman [34] (OSF), the persistence
length q may be written as a sum of the nonionic part q0 and the contribution qE

from the electrostatic interactions,

q D q0 C qE ; (9.34)
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Fig. 9.20 Plots of q=q0
against c�1=2 (c in M) and
lD=l in the case of Na
hyaluronate in aqueous NaCl
at 25 ıC. The unfilled symbols
represent the MC values for
the dKP chain with the hcDH
potential with db D l (�) and
0 (�). The filled circles
represent the experimental
values by Hayashi et al. [39]
and the solid curve represents
the OSF theoretical values
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where the latter is given by

qE D n 2
e l

4

lB
l

�
lD
l

�2
(OSF): (9.35)

In Fig. 9.20, the solid curve represents the OSF theoretical values calculated from
Eq. (9.34) with Eq. (9.35) with q0=l D 4:00, ne D 1, and lB=l D 0:716 for
Na hyaluronate. It is seen that both the MC and experimental data follow the
proportionality relation qE / l 2D / c�1 for small c�1=2, as predicted by the OSF
theory, although agreement between the theory and the MC and experimental data
is only qualitative. Although Le Bret [35] and Fixman [36] have also developed
the theories of qE on the basis of the elastic rod with surface charges, we omit
a comparison with them, since their model may be considered to be suitable for
semiflexible polyelectrolytes like DNA having large diameters.

In the same manner as in the above case of Na hyaluronate, we have evaluated
q in the case of PNaSS in aqueous NaCl at 25 ıC. Figure 9.21 shows plots of
q=q0 against c�1=2 (c in M) and lD=l in this case. The unfilled circles and triangles
represent the MC values for the dKP chain with db D l and 0, and the filled circles
represent the experimental values obtained by Iwamoto et al. [40]. The solid curve
represents the OSF theoretical values calculated from Eq. (9.34) with Eq. (9.35) with
q0=l D 2:95, ne D 0:327, and lB=l D 3:05. As in the case of Na hyaluronate,
the MC values are almost independent of db (for db<
 l). They seem to follow the
proportionality relation qE / l 2D / c�1 for small c�1=2 in consistent with the OSF
theory but follow a curve concave downward for large c�1=2 in contrast to the theory.
On the other hand, the experimental values also follow a curve concave downward
but do not seem to approach unity smoothly as c�1=2 is decreased. The reasons for
such differences are discussed later. At any rate, it must also be noted that the OSF
theory is better applicable to stiff polymers (like DNA) than flexible ones.
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Fig. 9.21 Plots of q=q0
against c�1=2 (c in M) and
lD=l in the case of PNaSS in
aqueous NaCl at 25 ıC. The
unfilled symbols represent the
MC values for the dKP chain
with the hcDH potential with
db D l (�) and 0 (�). The
filled circles represent the
experimental values by
Iwamoto et al. [40] and the
solid curve represents the
OSF theoretical values
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9.3.4 Excluded-Volume Strength

Having estimated q properly in the last subsection for the two model MC chains
corresponding to Na hyaluronate and PNaSS, we proceed to consider the major
problem of ˇ or the excluded-volume strength B for them.

Its determination is done in the usual manner, as before. Figure 9.22 shows
double-logarithmic plots of hS2i=nl2 against n for the dKP chain having the DH
potential (with db D 0) in the case of Na hyaluronate. The symbols have the
same meaning as those in Fig. 9.19. It is seen that hS2i=nl2 increases monotonically
with increasing n for every lD=l value and becomes larger with increasing lD=l
at constant n. Such behavior of hS2i=nl2 is qualitatively the same as that in the
case of the LJ potential for T� 	 4:0. The solid curves represent the theoretical
values of hS2i0=nl2 calculated from Eq. (3.6) with ��1 D 2q and with the
corresponding above-determined q=l values (in Fig. 9.19) for the dKP chains in
the (real) unperturbed � state. The MC values for small n are smaller than the
corresponding theoretical values, except for small lD=l, because of the difference in
local chain conformation as in the case of the chain with the LJ potential shown in
Fig. 9.17.

We then evaluate B for the dKP chains shown in Fig. 9.22 from a comparison of
the MC results for ˛ 2

S with the QTP theory. Figure 9.23 shows double-logarithmic
plots of ˛ 2

S against n for the dKP chain having the DH potential (with db D 0) in
the case of Na hyaluronate for n 	 100. All the symbols have the same meaning
as those in Figs. 9.19 and 9.22. The ˛ 2

S values for each lD=l have been calculated
from Eq. (8.7) with the MC values of hS2i=nl2 and the theoretical values of hS2i0=nl2

represented by the solid curves in Fig. 9.22. The solid curves (in Fig. 9.23) represent
the best-fit QTP theory values calculated from Eq. (8.57) with Eqs. (8.46), (8.58),
and (8.59) with the values of B=2q D 0:73, 0.50, 0.32, 0.22, 0.10, and 0.062 from
top to bottom. For large c (>
 0:5 M), the MC values agree satisfactorily with the
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Fig. 9.22
Double-logarithmic plots of
hS2i=nl2 against n for the
dKP chain with the DH
potential (db D 0) in the case
of Na hyaluronate. The
symbols have the same
meaning as those in Fig. 9.19.
The solid curves represent the
theoretical values for the dKP
chains in the � state
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Fig. 9.23 Double-
logarithmic plots of ˛ 2

S
against n for the dKP chain
with the DH potential
(db D 0) in the case of Na
hyaluronate. The symbols
have the same meaning as
those in Fig. 9.19. The solid
curves represent the best-fit
QTP theory values for the
indicated values of B=2q (see
the text)
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corresponding theoretical ones in the range of n studied, while agreement becomes
poor as c is decreased.

Also for the dKP chain having the hcDH potential with db D l (touched-bead
model) in the case of Na hyaluronate, a similar analysis of ˛S has been made to
obtain B=2q D 0:17, 0.17, 0.17, 0.23, 0.32, 0.50, and 0.72 for lD=l D 0, 0.304,
0.430, 0.961, 1.36, 2.15, and 3.04, respectively.

Now we are in a position to examine the behavior of B determined above as a
function of c. Figure 9.24 shows plots of B=l against c�1=2 (c in M) and lD=l in
the case of Na hyaluronate in aqueous NaCl at 25 ıC. All the symbols have the
same meaning as those in Fig. 9.20. The MC values have been calculated from the
above-determined values of q=l and B=2q for each lD=l. The MC results show that
for small c�1=2 (<
 2), B for db D l is larger than that for db D 0 and the former is
almost independent of c�1=2, while the latter increases monotonically from zero with
increasing c�1=2. For larger c�1=2, both almost agree with each other and increase
monotonically with increasing c�1=2. Agreement between the MC and experimental
values is only qualitative.
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Fig. 9.24 Plots of B=l
against c�1=2 (c in M) and
lD=l in the case of Na
hyaluronate in aqueous NaCl
at 25 ıC. The symbols have
the same meaning as those in
Fig. 9.20. The solid curves
represent the FS theoretical
values with d D l (upper) and
0 (lower), and the dotted
curves represent the
theoretical values for the
isolated bead with the
indicated values of db=l
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It is interesting to make a comparison of the above MC results with the theory
by Fixman and Skolnick (FS) [32], who have evaluated ˇ for a (isolated) cylindrical
segment of length l and diameter d with the uniform charge distribution along its
axis, its total charge being nee. According to this theory, B may be written as
a sum of the nonionic part B0 (cylinder excluded volume) and the electrostatic
contribution BE,

B D B0 C BE ; (9.36)

where B0 and BE are explicitly given by

B0 D �

2
d (cylinder) ; (9.37)

BE D 2lD

Z �
2

0

�Z 1
x

sin �

e�t

t
dtC ln

�
x

sin �

�
C �

�
sin2 � d� (cylinder, FS) ;

(9.38)
respectively, with

x D 2�n 2
e

lB
l

lD
l

e�d=lD (9.39)

and � the Euler constant. In Fig. 9.24, the upper and lower solid curves represent the
FS theoretical values calculated from Eq. (9.36) with Eqs. (9.37)–(9.39) for d D l
and 0, respectively, with ne D 1 and lB=l D 0:716. It is seen that for small c�1=2
(<
 2), the FS theoretical values for d D l and 0 are in good agreement with the MC
ones for db D l and 0, respectively. As c�1=2 is increased, the FS values for d D l
and 0 become identical to each other as in the case of the MC results and become
larger than the latter.
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Further, we consider a (isolated rigid) sphere (bead) of diameter db with the point
charge of nee at its center, for which B0 and BE may be given by

B0 D 4�

3

d 3
b

l2
(sphere) ; (9.40)

BE D 4�

l2

Z 1

db

�
1 � exp

�
�n 2

e

lB
lD

e�r=lD

r=lD

��
r2 dr (sphere) ; (9.41)

respectively. In Fig. 9.24, the dotted curves represent the values calculated from
Eq. (9.36) with Eqs. (9.40) and (9.41) with ne D 1 and lB=l D 0:716 for the isolated
sphere with db=l D 0, 0.694, and 1. Note that the curves for db=l D 0 and 0.694 have
been drawn so that the values of B=l in the limit of c!1 (lD D 0), that is, B0=l are
equal to the corresponding MC values for db=l D 0 and 1, respectively. It is clearly
seen that B for the isolated charged sphere (db=l D 1) is remarkably larger than that
of the MC results for db=l D 1 over the whole range of c�1=2, especially for large
c�1=2. This is consistent with the well-known experimental results [30, 31] and also
again the previous finding that the values of ˇ per repeat unit (bead in the chain)
are remarkably smaller than those for the isolated monomer (bead) [14]. Note also
that B0=l for the sphere is appreciably larger than that for the cylinder with d D db,
as seen from Eqs. (9.37) and (9.40) (compare, for instance, the dotted curve with
db=l D 1 with the upper solid curve).

Specifically, in the case of the touched-bead model (db D l), we must assume
db=l D 0:694 (<1) to reproduce the MC value of B0, although the decrease in
BE (arising from long-range interactions) is even then not appreciable. Naturally,
if the bead in the chain becomes smaller (db < l, that is, untouched-bead model),
the relative reduction of db necessary to reproduce the corresponding MC value
of B0 becomes smaller, although the results are not explicitly shown here. In the
limit of the vanishing db in the chain, there is no reduction of db, so that the
two dotted curves degenerate into the single one with db=l D 0, as shown in
Fig. 9.24.

As already discussed, the above-mentioned decrease in B may be regarded as
arising from the confinement of the beads to the chain. It is seen that such an effect
may be, to a great extent, taken into account by the FS cylinder model, almost
completely at small c�1=2. However, their theory still overestimates BE somewhat for
large c�1=2. This may probably be due to no confinement of the cylinders themselves
to the chain.

Finally, in the same manner as in the above case of Na hyaluronate, we have
evaluated B in the case of PNaSS. In this case, that is, for flexible polyelectrolytes,
however, we must note that the QTP theory cannot satisfactorily explain the MC
values of ˛ 2

S even for small lD=l (or large c), so that it is difficult to evaluate B and
q separately and rather accurately in this scheme, which is invalid, especially for
small c. The difference between the MC and experimental data and the OSF theory
in the behavior of q=q0 shown in Fig. 9.21 may be regarded as arising from this
difficulty.
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Fig. 9.25 Plots of B=l
against c�1=2 (c in M) and
lD=l in the case of PNaSS in
aqueous NaCl at 25 ıC. The
symbols have the same
meaning as those in Fig. 9.21.
The solid curves represent the
FS theoretical values with
d D l (upper) and 0 (lower),
and the dotted curves
represent the theoretical
values for the isolated bead
with the indicated values of
db=l
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Figure 9.25 shows plots of B=l against c�1=2 (c in M) and lD=l in the case of
PNaSS in aqueous NaCl at 25 ıC. All the symbols have the same meaning as those
in Fig. 9.21. The upper and lower solid curves represent the FS theoretical values
calculated from Eq. (9.36) with Eqs. (9.37)–(9.39) with ne D 0:327 and lB=l D 3:05
for d D l and 0, respectively, and the dotted curves represent the values calculated
from Eq. (9.36) with Eqs. (9.40) and (9.41) with ne D 0:327 and lB=l D 3:05 for
the isolated sphere with the indicated values of db=l. The behavior of the MC data
is essentially the same as that for Na hyaluronate, and B for the bead in the chain is
remarkably smaller than that for the isolated bead.

It is interesting to see (in Fig. 9.25) that the experimental B value decreases
rapidly with decreasing c�1=2 for small c�1=2 and seems to become even negative,
while the MC and FS theoretical values approach certain positive finite values at
c�1=2 D 0 for db=l D 1 or d=l D 1 and vanish for db=l D 0 or d=l D 0. Note
that the FS theory predicts that BE is proportional to l 2D or c�1 at small c�1=2. The
above anomalous experimental results different from the others (MC and FS) may
probably be due to the so-called “salting-out” effect in aqueous polyelectrolyte
solutions for large c. In this connection, recall that earlier experimental results
[30, 31] show that BE is nearly proportional to lD or c�1=2 over a wide range of c.
(This is also the case with those in Fig. 9.24.) The above effect may also be a source
of the anomalous behavior of the experimental q=q0 for small c�1=2 displayed in
Fig. 9.21. On the theoretical side, the simple Manning description of the effect of
the counterion condensation may also be a source of the discrepancy.

9.4 Picture of Dilute Solution Behavior of Polymers

It is true that the polymer chain dimensions in dilute solution may be described
as a superposition (product) of the unperturbed and perturbed parts. This notion
was first advocated by Flory [46], who considered that the unperturbed dimensions
are governed only by short-range interactions between segments along the chain.
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However, the results of the MC simulations presented so far show that the
unperturbed dimensions may be affected, to an unexpectedly rather large extent,
by long-range excluded-volume interactions between segments, thus leading to the
alternation of his preconceived concept of the unperturbed� state.

For nonionic polymers, it is seen from the results in Chap. 8 and in Sects. 9.1.2
and 9.3.2 that experimental and MC data may be satisfactorily explained by the QTP
theory on the basis of the HW (or KP) chain model if proper values are assigned
to ˇ (or B). The HW chain with values of its model parameters (�0, �0, and ��1)
determined or properly chosen may then mimic the conformational behavior of
any real polymer chain at the � temperature, that is, in the real (experimentally
accessible) unperturbed state, these values reflecting of themselves both effects
of short-range and long-range interactions mentioned above. This is also the case
with the (fictitious) unperturbed dimensions of polymer chains in good-solvent
conditions (in the perturbed sate).

As for ionic polymers, the QTP theory based on the HW (or KP) chain model
(with proper values of ˇ) is still valid if lD is not large and if the dependence on
lD of q (in the fictitious unperturbed state) is properly taken into account. The static
properties of a given polyelectrolyte solution may be characterized by the nonionic
part q0 of q and lD, and the range of validity of the QTP scheme may be considered
to be specified by the dimensionless ratio lD=q0. Roughly speaking, the limit of
validity may be evaluated to be lD=q0 <
 0:2 from the MC results at least for the two
model cases considered in Sect. 9.3, although not conclusive.

In any case, it appears that the equilibrium conformational behavior of polymers
in dilute solution are ruled mainly by the relative magnitudes of hS2i1=2, q0 (or ��1),
and ˇ1=3 (or lD) (and also by the model parameters �0 and �0 describing the local
chain conformation). Then the above statements of nonionic and ionic polymers
lead to the general conclusion that the QTP theory based on the HW chain model is
valid if proper values are assigned to ˇ so that ˇ1=3 is properly small compared to
q0. Further, it may be said that the TP scheme is always valid if hS2i1=2 is infinitely
large compared to q0 and ˇ1=3. Such a situation may be realized asymptotically
for infinitely large molecular weights. Unfortunately, however, it seems difficult to
show concretely the process of approach to this limit (where hS2i1=2 � ˇ1=3) by
the use of a bare microscopic chain model such as the HW (or KP) chain. A kind
of coarse-graining of the model proposed by Krishnaswamy and Fixman [47] might
be useful to overcome the difficulty.
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Chapter 10
Chain Dynamics

This chapter presents the foundation of the dynamics of unperturbed polymer chains
in dilute solution on the basis of dynamic HW chain models within the framework
of linear response theory. It is evident that the original (continuous) HW chain is
not valid as a dynamic model; the discreteness must be, to some extent, recovered
to introduce motional units into the chain. Thus diffusion equations for a time-
dependent distribution function for the (constrained) chain are derived so as to be
suitable for the treatments of its local and also global (to quasi-global) motions. The
eigenvalue problems and time-correlation functions associated with the diffusion
operators are then formulated by introducing several unavoidable approximations.
Their applications to various dynamical properties are made in the next chapter.
It is pertinent and instructive to begin by giving a general consideration of some
aspects of polymer dynamics, followed by a brief description of the dynamics of
conventional constrained bond chains.

10.1 General Consideration of Polymer Dynamics

The development of polymer dynamics is usually made in the classical diffusion
limit, that is, on the Smoluchowski level, considering the time evolution of the
distribution function only in coordinate space (of the phase space) [1–5]. The slow
global motions of a single polymer chain in dilute solution may be well described
by a simple, highly coarse-grained model. Among such models, the Rouse–Zimm
spring-bead model [2–4, 6, 7] has retained a valid place for many years. It yields
the same number of fundamental eigenvalues (relaxation rates) as that of beads
in the chain. However, many more eigenvalues, or in general continuous spectra,
are required to describe all kinds of chain motions, global to local. This must be
a reflection of the chemical structure of the real chain. Its vibrational degrees of
freedom are then classically treated, that is, constrained so that its bond lengths and
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bond angles are fixed at constant values. The adoption of such conventional bond
chains leads to the development of the dynamics of constrained systems (in the
diffusion limit), as initiated by Kirkwood [1]. As is well known, however, its final
solutions are very difficult to obtain. Indeed, the spring-bead model was presented
as a tractable replacement of the Kirkwood chain to avoid its difficulty.

Nevertheless, the Kirkwood approach must be pursued for the present purpose.
The formal and standard procedure of imposing (holonomic) constraints on bond
lengths and bond angles was essentially established by himself [1] and others
[8, 9]. Subsequently, it was reformulated by Fixman and Kovac [10] in a form
more convenient for the actual theoretical evaluation of individual dynamical
properties. However, the evaluation still requires a preaveraging approximation to a
constraining matrix involved in the diffusion operator, which leads to the unphysical
result that the eigenvalues associated with the local motions become negative [11].
This may be regarded as arising from the fact that the approximation destroys, to
some extent, the constraints imposed. On the other hand, it gives the well-known
correct result for the chain without the constraints, that is, the spring-bead (or
Gaussian) chain; or in other words, it has no serious effect on the evaluation of the
eigenvalues associated with the global motions. This suggests that it is necessary
to find an alternative way of introducing constraints which can describe the local
motions even with the preaveraging approximation. However, this is impossible as
far as the conventional bond chain is adopted, since there is only one way for it.

Now the HW chain can mimic the equilibrium conformational and steady-state
transport behavior of individual real chains, both flexible and stiff, on the bond
length or somewhat longer scales, as shown both theoretically and experimentally
in the preceding chapters. Thus it fulfills the above requirement for the description
of the local motions. However, the chain dynamics cannot be developed on the basis
of the continuous HW chain model as it stands. In other words, it is not valid as a
dynamic model unless the discreteness is, to some extent, recovered to introduce
motional units into the chain. This can be done as follows. The two successive
skeletal bonds in the real bond chain may form a rigid body, and therefore it may
be regarded as composed of such rigid body elements, instead of bonds, joined
successively. Indeed, the continuous HW chain may be obtained as a continuous
limit of a discrete chain composed of rigid subbodies, or a coarse-grained discrete
bond chain with coupled rotations, under certain conditions, as shown in Appendix 2
in Chap. 4. Thus we may construct a discrete chain of rigid subbodies and bonds of
fixed length such that its equilibrium distribution obeys HW statistics. This is the
dynamic HW model [12, 13] we adopt in the present and next chapters.

This model has various advantages. It facilitates the actual evaluation of dynam-
ical properties for a given individual real chain, flexible or stiff. In fact, we can
have 3N and 5N (or 6N) eigenvalues for vector and tensor correlations, respectively,
even in a crude approximation, where N is the number of subbodies in the chain,
these being the motional units, each with three rotational degrees of freedom [14].
More important is the fact that the model enables us to introduce the constraints in
it in two possible ways which are suitable for the treatments of the global and local
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motions, respectively [15], although necessarily the latter way leads to the negative
global-mode eigenvalues [16].

Before proceeding to develop the dynamics of the dynamic HW chain, in the
next section we give a brief description of the general formulation of the dynamics
of conventional constrained bond chains along with some further remarks, for
convenience. This may serve to make it easy to understand the later developments
for the dynamic HW model.

10.2 Conventional Bond Chains

10.2.1 General Formulation: The Fixman–Kovac Chain

Consider a conventional bond chain composed of N beads and N � 1 bonds, and
let q D .q1, q2, � � � , q3N) be its generalized coordinates. The subscripts s and h
are used to indicate the unconstrained (soft) and constrained (hard) subspaces of q,
respectively, so that qs D .q1, � � � , qm) and qh D .qmC1, � � � , q3N) denote the soft and
hard coordinates, respectively. In the derivation of the diffusion equation satisfied
by the time t-dependent distribution function ‰.qsI t/ there have been considered
so far three types of constrained bond chains, which are referred to as types 1, 2,
and 10. For the type-1 chain, called also the Kramers chain [17], the constraints
are imposed on the Lagrangian level so that the hard velocities Pqh vanish [18, 19].
[It is in general different from a chain with vanishing hard conjugate momenta
ph D . pmC1, � � � , p3N), which is unphysical since p is the covariant velocity vector.]
For the type-2 chain, which is just the chain mentioned in the last section, the
constraints are imposed on the Smoluchowski level so that the hard drift velocities
uh D hPqhiq vanish [8–10], where h� � � iq denotes an average over p and the solvent
phase variables. A starting equation for the type-1 and -2 chains is the Liouville
equation, while that for the type-10 chain [20] is the Langevin equation without the
inertia term but with constraints.

Now the RIS model in the equilibrium conformational study belongs to the type-
2 chain, and the diffusion equations of this type have been standard in polymer
dynamics. In this subsection we therefore consider the type-2 chain in some detail
[21]. In the diffusion limit, the Liouville equation is reduced to the continuity
equation for the distribution function ‰.qI t/ in the full q space [22–24],

@‰

@t
D �g�1=2rg1=2 � J ; (10.1)

where g is the metric determinant in this space, r D @=@q is the gradient operator,
and J D .J1, � � � , J3N/ D ‰u is the (contravariant) flux vector. Note that this ‰ is
normalized as

Z
‰g1=2dq D 1 : (10.2)
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In the field-free case, u or J may be determined from the force balance equation
[2–4]


 � u D �r.kBT ln‰ C U/C P ; (10.3)

or

J D .kBT/�1D � .�kBTr‰ �‰rU C‰P/ (10.4)

with

D D kBT
�1 ; (10.5)

where U D Us.qs/ is the soft potential energy (not to be confused with the potential
energy per unit contour length), P D �rUh is the constraining force vector, and

 and D are the friction and diffusion tensors, respectively. Note that in the 3N-
dimensional Cartesian space D D kBT.��1I C T/, where � is the translational
friction constant of the bead, I is the unit tensor, and T is the Oseen hydrodynamic
interaction tensor.

Following the Ikeda–Erpenbeck–Kirkwood procedure [8, 9], the soft components
of J may then be obtained from Eq. (10.3) by projection of 
 � u onto the s subspace
with uh D 0 and Ps D 0,

Js D �.Dss �Dsh � D �1
hh � Dhs/ �

�rs‰ C .kBT/�1‰rsU
�

(10.6)

with

Jh D 0 : (10.7)

More conveniently, Eq. (10.6) may be obtained from Eq. (10.4) by projection of J
onto the s and h subspaces and elimination of Ph, following Fixman and Kovac [10].
(Note that P may be suppressed from the outset in the former route but not in the
latter.)

For the type-2 chain with the constraints qh D q0h, ‰.qI t/ may be written in the
form

‰.qI t/ D ı.qh � q0h/ N‰.qsI t/ ; (10.8)

where ı is a Dirac delta function. Then the continuity equation (10.1) with Eq. (10.7)
reduces to

@ N‰
@t
D �g�1=2rsg

1=2 � Js (10.9)
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with Js being given by Eq. (10.6) with‰ D N‰. This is the diffusion equation for the
Fixman–Kovac (type-2) chain. The submatrix Dhh of D is the constraining matrix,
and the prototype diffusion equation without the constraining term Dsh � D �1

hh � Dhs

in Js is just the diffusion equation for the spring-bead (or Gaussian) chain. Thus the
preaveraging of Dhh leads to the breakdown of the constraints, so that the diffusion
equation (10.9) can then describe correctly the global motions but not the local ones
(with the negative local-mode eigenvalues). We note that the constraints qh D q0h
may be considered the so-called “flexible” constraints [25], although with infinitely
large force constants.

10.2.2 Some Further Remarks

First, some remarks should be made on the other types of chains. The diffusion
equation for the type-1 chain was derived by Bird and co-workers [18, 19], although
only in the free-draining case. The result is equivalent to that for the type-2 chain
(with T D 0) except for the metric determinant. In general, the metric determinant
for the type-1 chain depends on the bead masses since the constraints are imposed
on the Lagrangian level. In the case of identical beads, however, it becomes the
metric determinant gs in the s subspace. On the other hand, the diffusion equation
for the type-10 chain, which was derived by Fixman [20] in his Brownian dynamics
simulation study, does not involve the bead masses because of the suppression of the
inertia term, and is equivalent to that for the type-2 chain with gs in place of g. The
(original) Kirkwood chain [1] is also of the type 10, although the constraining term
Dsh � D �1

hh � Dhs was erroneously dropped in his original expression for Js [3, 8]. In
the free-draining case with identical beads, the type-1 and -10 chains are identical.
The diffusion equations for them may be converted to that for the type-2 chain by
addition of the metric potential U0 given by

U0 D kBT ln.g0
s/
1=2 (10.10)

to U, where g0
s is that part of gs which depends on the internal soft coordinates

[20]. The implication is that the simulation of the type-10 chain with this potential
is equivalent to that of type 2. The constraints on the type-1 and -10 chains are the
so-called “rigid” constraints [25].

Next, it is believed that the type-2 chain is the best, as mentioned above.
Indeed, also in the Brownian dynamics simulation (based on the Langevin equation),
Helfand and co-workers [26, 27] adopted chains with flexible constraints, and
Weiner and co-workers [28, 29] used type-10 chains with the metric potential U0
(and with the inertia term). Further, the evaluation of gs required for the type-1 or
-10 chain is a difficult problem for large N [20, 30]. Although for the type-2 chain
there is, of course, a difficulty in inversion of some matrices, it is greatly diminished
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by choosing soft coordinates expressed in an external coordinate system as in the
case of the dynamic HW model (see the following sections). However, it is pertinent
to note that these two types seem almost equivalent to each other for long enough,
ordinary flexible chains [20].

Finally, brief mention must be made of the effects of chain stiffness. Clearly it
arises from the structural constraints on bond lengths and angles along with the
internal potential, as discussed in the preceding chapters. However, there have been
several attempts [31–37] to approach the problem of stiff chain dynamics without
imposition of constraints, some of which have already been shortly discussed in
Appendix 3 in Chap. 3. In this book, we do not, of course, pursue this line.

10.3 Dynamic Helical Wormlike Chains

Consider a chain composed of N identical subbodies (beads), not necessarily
spherical, joined successively with bonds of fixed length a, where their centers are
located nearly on the contour of the continuous HW chain of length L. Suppose
that each subbody has (mean) translational and rotatory friction constants �t (D �)
and �r in a solvent of viscosity coefficient �0. This is the dynamic HW model
[12, 13]. Note that the bond length a is not equal to L=N � �s, which is equal to
the spacing a introduced in Chap. 8. The relation between them is explicitly given
below.

Now we introduce N localized Cartesian coordinate systems (e�p , e�p , e�p ) (p D 1,
� � � , N), the pth one being affixed to the pth subbody with the origin at its center and
with e�p in the direction of the pth bond vector ap (from p to pC1). Let�p D .�p, �p,
 p) (p D 1, � � � , N) be the Euler angles defining the orientation of the pth localized
coordinate system with respect to an external coordinate system. Apart from its
location, the configuration of the chain may be specified by 3N soft coordinates
f�Ng D .�1, � � � , �N).

The total potential energy U0.f�Ng/ of the unperturbed chain without excluded
volume may then be expressed as a sum of pair potentials u.�p; �pC1/,

U0.f�Ng/ D
N�1X

pD1
u.�p; �pC1/ (10.11)

with

u.�p; �pC1/ D �kBT ln G.�pC1 j�pI�s/ ; (10.12)

where G is the (equilibrium) Green function given by Eq. (4.106) (with Poisson’s
ratio � D 0). Thus the equilibrium distribution function ‰eq.f�Ng/ of f�Ng is
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given by

‰eq
�f�Ng


 D e�U0=kBT

Z
e�U0=kBTdf�Ng

D .8�2/�1
N�1Y

pD1
G.�pC1 j�pI�s/ : (10.13)

In what follows, h� � � ieq denotes an equilibrium average evaluated with ‰eq.
The dynamic HW chain is equivalent to a system of N coupled symmetric tops

with constraints such that the rotation axis .�p/ of each one . p/ points to the center
of its successor . p C 1/ with the fixed distance a between them, as depicted in
Fig. 10.1.

The relation between a and �s may be obtained by equating the mean-square
end-to-end distance hR2.N/ieq of the dynamic HW chain to that, hR2.L/ieq, of the
corresponding continuous HW chain in the limit of N !1. The result (in units of
��1) reads

a D .c1�s/1=2
	
1C 2� 20

	2.e2�s � 1/

C2�
2
0

	2

�
e2�s cos.	�s/� 1

e4�s � 2e2�s cos.	�s/C 1
�
�1=2

; (10.14)

where c1 and 	 are given by Eqs. (4.75) and (4.76), respectively. Thus the bond
length a can be uniquely determined as a function of �0; �0, and �s. As already
mentioned, for flexible chains one subbody as a motional unit may be regarded as
corresponding to two successive skeletal bonds of the real chain, that is, the repeat
unit, so that �s is chosen to be equal to M0=ML [see Eqs. (8.60)].

Fig. 10.1 Construction of the
(constrained) dynamic HW
chain (b) from rigid
subbodies (symmetric tops)
without constraints (a)

(a) (b)

ξp
ηp

ζp ap ξp+1

ηp+1

ζp+1

ξp

ηp

ζp

ξp+1

ηp+1

ζp+1

a
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10.4 Diffusion Equations

We derive two representations of the diffusion equation for the dynamic HW
chain having 3.N C 1/ degrees of freedom, that is, three Cartesian coordinates
Rc specifying its location and the N sets of Euler angles f�Ng, by introducing the
constraints in two ways. They are suitable for the treatments of the local and global
motions, respectively. In each case, the derivation may be conveniently made in two
steps, starting from the formulation in full Cartesian coordinate space. The first step
is common to both cases. In what follows, all lengths are measured in units of ��1
and kBT is chosen to be unity.

10.4.1 Space of Bond and Infinitesimal Rotation Vectors

We first consider the chain without constraints such that each of the N subbodies
has six, translational and rotational, degrees of freedom, and add the .N C 1/th
imaginary subbody having only three translational degrees of freedom (with �t but
with �r D 0), so that the magnitude of ap (p D 1, � � � , N) is not always equal to a, nor
does its direction always coincide with the �p axis, as depicted in Fig. 10.1(a) [12].
The addition of the .N C 1/th subbody of this nature to the chain serves to remove
certain annoying asymmetry in the diffusion equation, its effect on the final result
being small for large N. Let rp D .rpx, rpy, rpz) be the vector position of the center
of the pth subbody (p D 1, � � � , N C 1) in the external Cartesian coordinate system
(ex, ey, ez), and let d�p D .d
p� , d
p�, d
p�) be its infinitesimal rotation vector in
the pth localized coordinate system (p D 1, � � � , N) having the orientation �p with
respect to the former. The metric form in this .6N C 3/-dimensional full Cartesian
space .dfrNC1g; df�Ng/ is

.dl/2 D
NC1X

pD1
.drp/

2 C
NX

pD1
.d�p/

2 : (10.15)

The time-dependent distribution function‰.frNC1g; f�NgI t/ for the chain satis-
fies the continuity equation in this space,

@‰

@t
D �

NC1X

pD1
rr

p � Jr
p �

NX

pD1
r
p � J
p ; (10.16)

where rr
p and r
p D .@=@
p� , @=@
p�, @=@
p�) are the gradient operators with

respect to rp and d�p, respectively, and Jr
p and J
p are the fluxes associated with

them, respectively. Note that the fluxes J
p do not appear for conventional bond
chains. If Vp and Wp are the translational and angular velocities of the pth subbody



10.4 Diffusion Equations 407

in the external coordinate system, respectively, Jr
p and J
p may be expressed as

Jr
p D ‰Vp . p D 1; � � � ;N C 1/ ; (10.17)

J
p D ‰Ap �Wp . p D 1; � � � ;N/ ; (10.18)

where Ap D Ap.�p/ is the transformation matrix identical to the Q given by
Eq. (4.96) with (�p, �p,  p) in place of ( Q� , Q�, Q ).

If V0
p is the unperturbed solvent velocity at rp, Vp and Wp may be written in the

form

Vp D V0
p C � �1

t Fp C
NC1X

qD1
¤p

Tpq � Fq . p D 1; � � � ;N C 1/ ; (10.19)

Wp DW0
p C � �1

r Tp . p D 1; � � � ;N/ (10.20)

with

W0
p D

1

2
rr

p �V0
p ; (10.21)

where Fp and Tp are the frictional force and torque, respectively, exerted by the
pth subbody on the solvent, and Tpq D T.Rpq/ with Rpq D rq � rp is the Oseen
hydrodynamic interaction (HI) tensor given by Eq. (6.4). We note that Eqs. (10.19)
and (10.20) take into account correctly the HI between subbodies to terms of
O.R �1

pq /. In what follows, we use the preaveraged Oseen tensor,

hTpqi D .6��0/�1hR �1
pq iI ; (10.22)

where I is the 3 � 3 unit tensor, h� � � i denotes an average taken with ‰, and hTpqi
may be replaced by hTpqieq in the regime of linear response. The effect of fluctuating
HI (on the translational motion) is discussed in Appendix 1. With force balance
equations like Eq. (10.3) for Fp and Ap � Tp, Eq. (10.4) with V0

p and an external
potential Ue.frNC1g; f�Ng/ may then be replaced by

Jr
p D

NC1X

qD1
Dpq

��rr
q‰ �‰rr

qU C‰Pr
q


C‰V0
p ; (10.23)

J
p D � �1
r .�r
p‰ �‰r
p U C‰P
p /C‰Ap �W0

p ; (10.24)
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where

Dpq D ıpq�
�1

t C .1 � ıpq/.6��0/
�1hR �1

pq ieq ; (10.25)

U D U0 CUe ; (10.26)

and Pr
p and P
p are the constraining forces on the pth subbody associated with rp and

d�p, respectively. Equation (10.16) with Eqs. (10.23)–(10.26) gives the diffusion
equation in .dfrNC1g; df�Ng



space.

Now we transform frNC1g to bond coordinates. Since dfrNC1g is separable from
df�Ng in the above diffusion equation, we may consider only the former part. We
put [38]

Rc D
NC1X

pD1
wprp ; (10.27)

ap D rpC1 � rp . p D 1; � � � ;N/ ; (10.28)

where wp are constants independent of the coordinates and satisfy

NC1X

pD1
wp D 1 : (10.29)

We then have the transformation

rr
p D wprc C .1 � ıp1/ra

p�1 � .1� ıp.NC1//ra
p

. p D 1; � � � ;N C 1/ ; (10.30)

where rc and ra
p are the gradient operators with respect to Rc and ap, respectively.

The velocities Vp may be transformed to those, Vc and vp (p D 1, � � � , N), in
.Rc; faNg/ space of bond coordinates by the same contravariant law as Eqs. (10.27)
and (10.28) for rp, and the frictional forces Fp to Fc and fp in this space by the
same covariant law as Eq. (10.30) for rr

p. The constraining forces Pr
p may also be

transformed to pa
p (with Pc D 0) by the same covariant law. (Note that there is not a

constraining force associated with Rc.)
If wp is chosen to give

NC1X

qD1
wp
��Dqp CDq. pC1/


 D 0 . p D 1; � � � ;N/ ; (10.31)

then the desired diffusion equation for ‰.Rc, faNg, f�NgI t/ in
�
Rc, faNg,

df�Ng



space, in which the metric determinant g is also unity, is obtained, from
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Eq. (10.16), as

@‰

@t
D �rc � Jc �

NX

pD1
.ra

p � Ja
p Cr
p � J
p / ; (10.32)

where

Jc D �Dc.rc‰ C‰rcUe/C V0
c‰ ; (10.33)

Ja
p D �

NX

qD1
Bpq.ra

q‰ C‰ra
q U �‰pa

q/C v0p‰ (10.34)

with

Dc D
NC1X

p;qD1
wpwqDpq ; (10.35)

Bpq D 2Dpq �Dp.qC1/ � D. pC1/q : (10.36)

We note that if wp satisfies Eq. (10.31), Rc is the Zimm center of resistance (in the
scheme of preaveraged HI) [7], and that if wp D .N C 1/�1, Rc is the molecular
center of mass (see also Appendix 1).

10.4.2 Space of Euler Angles: Local Motions

In this subsection we derive, from Eq. (10.32), the final representation of the
diffusion equation that is suitable for the description of the local motions [12]. We
express the pth bond vector ap as Q�p D .Qap, Q�p, Q�p) in spherical polar coordinates in
the pth localized Cartesian coordinate system, as depicted in Fig. 10.2. We transform
the Cartesian coordinates (Rc, faNg, df�Ng) to the curvilinear coordinates (Rc,
f Q�Ng, f�Ng) with

�
dap

d�p

�
D Up �

�
d Q�p

d�p

�
; (10.37)

where Up is the transformation matrix but its explicit form is omitted. The metric
determinant g in this space is given by

g D
NY

pD1
gp ; (10.38)
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Fig. 10.2 The pth bond
vector ap expressed as
Q�p D .Qap, Q�p, Q�p) in spherical

polar coordinates in the pth
localized Cartesian
coordinate system

x

y

z

ξp

ηp

ζp

a~p

ap = Θ~p

φ~p

θ~p

where

gp D jU T
p � Upj D Qa 4

p sin2 Q�p sin2 �p (10.39)

with the superscript T indicating the transpose.
The diffusion equation (10.32) may then be transformed to that in (Rc, f Q�Ng,

f�Ng) space,

@‰

@t
D �rc � Jc �

NX

pD1
g �1=2

p .r Q�
p g 1=2

p � J Q�
P Cr�p g 1=2

p � J�p / ; (10.40)

where r Q�
p D .@=@Qap, @=@ Q�p, @=@ Q�p) and r�p D .@=@�p, @=@�p; @=@ p) are the

gradient operators with respect to Q�p and �p, respectively, and J Q�
p and J�p are the

fluxes associated with them, respectively. The fluxes Ja
p and J
p may be transformed

to J Q�
p and J�p by the contravariant law, and the gradient operators ra

p and r
p to r Q�
p

and r�p by the covariant law,

 
J Q�

p

J�p

!
D U �1

p �
 

Ja
p

J
p

!
; (10.41)

 
ra

p

r
p

!
D U �1T

p �
 
r Q�

p

r�p

!
: (10.42)

The constraining forces pa
p and P
p involved in Ja

p and J
p may be transformed to

p Q�
p and P�p by the same covariant law. We impose the constraints Q�p D .a; 0; Q�p/
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(p D 1, � � � , N), considering the constraining forces p Q�
p (p D 1, � � � , N) to make the

fluxes J Q�
p vanish,

J Q�
p D 0 . p D 1; � � � ; N/ : (10.43)

Then the solution for p Q�
p (with P�p D 0) is found from Eqs. (10.41) and (10.43), and

the fluxes J�p are obtained from Eq. (10.41) with Eq. (10.43) and the result for p Q�
p .

Now, setting Q�p D .a; 0; Q�p/, we write the distribution function ‰.Rc,
f Q�Ng; f�NgI t/ in the form like Eq. (10.8),

‰ D ‰0
�f Q�Ng


 N‰�Rc; f�NgI t



(10.44)

with

‰0 D
NY

pD1
.2� Qa 2

p sin Q�p/
�1ı.Qap � a/ı. Q�p/ : (10.45)

The average of any configuration-dependent quantity ˛ may then be calculated from

h˛i D
Z
˛‰g1=2dRc

NY

pD1
d Qapd Q�pd Q�pd�pd�pd p

D
Z
˛ N‰dRcdf�Ng ; (10.46)

where we have used Eq. (10.38) with Eq. (10.39), and note that Q�p D .a; 0; Q�p/ in
N‰. It is also clear that ‰0 may be removed from the diffusion equation at the final
stage as in Eq. (10.9). In what follows, we therefore denote N‰ by ‰.

Thus, from Eq. (10.40) with Eq. (10.43) and the result for J�p , we obtain the
desired diffusion equation for N‰ � ‰.Rc; f�NgI t/ in .Rc; f�Ng/ space,

@‰

@t
D Dcr 2

c ‰ C
NX

p;qD1
Lp �

˚
Mpq � Œ� �1

r .Lq‰ C‰LqU/

�Aq �W0
q‰� �Npq � v0q‰

�Crc � .DcrcUe �V0
c/‰ ; (10.47)

where Lp D .Lp� , Lp�, Lp�) (D r
p ) is the angular momentum operator given by
Eqs. (4.35) with (�p, �p,  p) in place of (� , �,  ), and

Mpq D ıpqI� E T
p � .C�1/pq � Eq ; (10.48)

Npq D E T
p � .C�1/pq : (10.49)
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In Eqs. (10.48) and (10.49), .C�1/pq is the pq element (3 � 3 matrix) of the inverse
of the 3N � 3N matrix C whose pq element is the 3 � 3 matrix Cpq,

Cpq D �rBpqIC ıpqEp � E T
p ; (10.50)

and Ep is the 3 � 3 matrix,

Ep D a.�e�p ; e�p ; 0/

D a

0

@
c�p c�ps p C s�p c p c�p c�p c p � s�ps p 0

c�p s�p s p � c�pc p c�ps�p c p C c�ps p 0

�s�p s p �s�p c p 0

1

A (10.51)

with s�p D sin �p, c�p D cos �p, and so on.
Clearly the above C�1 (or C) is the constraining matrix. If we suppress the

second term on the right-hand side of Eq. (10.48) for Mpq, then Eq. (10.47) gives
the prototype diffusion equation for the unconstrained system, that is, the system of
N coupled rigid subbodies without the constraints, apart from the translational mode
of the chain associated with its center of resistance.

Finally, we introduce the self-adjoint formulation of the diffusion equation. We
factor ‰ into the equilibrium distribution function ‰eq given by the first line of
Eqs. (10.13) and ˚ ,

‰ D ‰eq˚ : (10.52)

In the field-free case (Ue D 0 and V0
p D 0), Eq. (10.47) reduces to

�
@

@t
�Dcr 2

c C L
�
˚ D 0 ; (10.53)

where L is the diffusion operator defined by

L D �� �1
r ‰ �1

eq

NX

p;qD1
Lp‰eq �Mpq � Lq : (10.54)

If the scalar product h˛; ˇi of any two functions ˛ and ˇ of f�Ng is defined with
the weighting function‰eq by

h˛; ˇi D
Z
‰eq˛

�ˇdf�Ng D h˛�ˇieq (10.55)
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with the asterisk indicating the complex conjugate, then the operator L becomes
self-adjoint,

h˛;Lˇi D hL˛; ˇi

D
NX

p;qD1

˝
.Lp˛

�/ � � �1
r Mpq � .Lqˇ/

˛
eq : (10.56)

10.4.3 Space of Euler Angles: Global Motions

In this subsection we derive, from Eq. (10.32), the final representation of the
diffusion equation that is suitable for the description of the global motions [15].
For convenience, consider the field-free case from the start. We express the pth
bond vector ap as �p D .ap, �p, �p) in spherical polar coordinates in the external
coordinate system, and then introduce an intermediate Cartesian coordinate system
whose orientation with respect to the former is determined by the Euler angles (�p,
�p, 0), in order to define the orientation of the pth localized coordinate system
by two sets of the Euler angles (�p, �p, 0) and Q�p D . Q�p, Q�p, Q p) instead of the
single �p, the latter determining the orientation of the pth localized system with
respect to the intermediate one, as depicted in Fig. 10.3. We transform the Cartesian
coordinates (Rc, faNg, df�Ng) to the curvilinear coordinates (Rc, f�Ng, f Q�Ng). The
metric determinant g in this space is given by Eq. (10.38) with

gp D a 4
p sin2 �p sin2 Q�p : (10.57)

Fig. 10.3 The pth localized
Cartesian coordinate system
(heavy lines) and the pth
intermediate Cartesian
coordinate system (dashed
lines) associated with the pth
bond vector ap expresses as
�p D .ap, �p, �p) in spherical
polar coordinates in the
external coordinate system
(see the text)

x
y

z

ap

ξp

ηpζp

θp

φp

θp
~

ψp
~

φp
~
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The diffusion equation (10.32) may then be transformed to that in (Rc; f�Ng,
f Q�Ng) space, corresponding to Eq. (10.40) with J�p D .Ja

p , J�p , J�p ) and J Q�
p D .J Q�

p ,

J
Q�
p , J

Q 
p ). We impose the constraints �p D .a, �p, �p) and Q�p D .0, 0,  p)

(p D 1, � � � , N), by setting

Ja
p D J

Q�
p D J Q�

p D 0 . p D 1; � � � ;N/ : (10.58)

We write the distribution function‰.Rc; f�Ng; f Q�NgI t/ in the form

‰ D ‰0
�faNg; f Q�Ng; f Q�Ng


 N‰�Rc; f�NgI t



(10.59)

with

‰0 D
NY

pD1
.a 2

p sin Q�p/
�1ı.ap � a/ı. Q�p/ı. Q�p/ ; (10.60)

so that the average h˛i may be calculated from the second line of Eqs. (10.46).
Thus we obtain the desired diffusion equation for N‰ � ‰.Rc; f�NgI t/ in

.Rc; f�Ng/ space,

@‰

@t
D Dcr 2

c ‰C
NX

p;qD1
.sin �p/

�1.r�p /T sin �p � OMpq �.r�q ‰C‰r�q U0/ ; (10.61)

where

OMpq D a�2Bpq
OUp � OU T

q C ıpq�
�1

r

0

@
0 0 0

0 0 0

0 0 1

1

A

�a�2�r

NX

r;sD1
OUp � Bpr.C�1/rsBsq � OU T

q (10.62)

with

OUp D

0

B@
c�p c�p c�ps�p �s�p

�s �1
�p

s�p s �1
�p

c�p 0

s �1
�p

c�p s�p �s �1
�p

c�p c�p 0

1

CA (10.63)

and with C being the same as that in Eq. (10.48).
In Eq. (10.62), C still has the meaning of the constraining matrix. The prototype

of the diffusion equation (10.61) without the constraining term, that is, the third term
on the right-hand side of Eq. (10.62), still involves the term proportional to Bpq, that
is, the first term on the right-hand side of Eq. (10.62), so that it can give explicitly the
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Rouse–Zimm eigenvalues in the ground (global) state. Recall that the matrix Bpq, or
its minor modification in the Zimm version [7], always appears in the dynamics of
conventional bond chains [6, 7, 10]. We note that the second term on the right-hand
side of Eq. (10.62) represents the (excited) rotational motion of each subbody about
its � axis and is characteristic of the dynamic HW model. However, it is important
to note that the diffusion equations (10.47) and (10.61) are completely equivalent
to each other (even in the non-field-free case), although the two representations are
different [15].

In this case the diffusion operator L in Eq. (10.53) is given by

L D �‰ �1
eq

NX

p;qD1
.sin �p/

�1.r�p /T‰eq sin �p � OMpq � r�q (10.64)

with

h˛;Lˇi D hL˛; ˇi

D
NX

p;qD1

˝
Œ.r�p /T˛�� � OMpq � .r�q ˇ/

˛
eq : (10.65)

In the second line of Eqs. (10.65), we have the relations

OU T
p � r�p D a�1Ep � Lp

D �e�p Lp� C e�p Lp� : (10.66)

From the second line of Eqs. (10.66) and the definition of the angular momentum
operator given by Eq. (4.32), it is seen that the operator OU T

p � r�p changes infinites-
imally the direction e�p (� up) of the bond vector ap, so that it is just the gradient
operator with respect to up, that is,

OU T
p � r�p D ru

p : (10.67)

The gradient operatorru
p is referred to as the bond vector operator, for convenience.

10.4.4 Approximation to the Constraining Matrix

In order to find solutions of the above diffusion equations, we must preaverage
the constraining matrix C by replacing Cpq by hCpqieq [12, 15]. We have, from
Eqs. (10.51),

hEp � E T
p ieq D 2

3
a2I ; (10.68)
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so that in the preaveraging approximation Cpq is given by

Cpq D CpqI (10.69)

with

Cpq D 2

3
ıpqa2 C �rBpq : (10.70)

For instance, Eq. (10.48) then becomes

Mpq D ıpqI � .C�1/pqE T
p � Eq ; (10.71)

where .C�1/pq is the pq element of the inverse of the N � N matrix C whose pq
element is Cpq.

As mentioned in the last subsection, the physical contents of the two represen-
tations of the diffusion equation derived are exactly the same at the stage before
making the preaveraging approximation in the constraining matrix C common to
them. After the introduction of this approximation, however, they are no longer
equivalent to each other but their physical contents become completely different
from each other, as seen from the difference between the respective prototype
diffusion equations, that is, the diffusion equation for the assembly of rigid
subbodies in Eq. (10.47) and the one for the spring-bead-like model in Eq. (10.61).
The constraints on the direction of ap (or e�p ) and its magnitude ap may be, to some
extent, destroyed by the preaveraging approximation, so that the directions of ap

and e�p may not completely coincide with each other. Considering the fact that the
coordinates �p and �p (in �p) originally represent the direction of e�p in the former
case and that of ap in the latter, it may be mentioned that we are tracing the HW
chain by attaching probes to e�p and ap (with incomplete constraints), respectively.
The difference in the situation is illustratively shown in Fig. 10.4. Thus the diffusion
equations (10.47) and (10.61) with the preaveraged C are suitable for the description

Fig. 10.4 Illustrative
comparison between the
d-HW chain (a) and the
c-HW chain (b). In each
chain, the heavily drawn part
is being traced (see the text)

(a) (b)
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of the local and global (to quasi-global) motions, respectively. The dynamic HW
chains corresponding to these two equations, or Figs. 10.4(a), (b), are referred to as
the discrete HW (d-HW) and coarse-grained HW (c-HW) chains, respectively, for
convenience.

10.4.5 Formal Solutions

All dynamical properties in the regime of linear response may be expressed by a
standard method in terms of relevant time-correlation functions, and therefore of
the formal solutions of eigenvalue problems for the matrix representation of the
diffusion operator L [12].

Let G.f�Ng; t j f�0
Ng; t0/ be the Green function of the linearized diffusion

equation (10.47) or (10.61) without the Dc term in the field-free case. This G
represents the conditional probability density that the chain is found at f�Ng in
the configuration space at time t when it was at f�0

Ng at time t0 (� t), and it satisfies
the differential equation

�
@

@t
C‰eqL‰ �1

eq

�
G
�f�Ng; t j f�0

Ng; t0

 D ı.t � t0/ı

�f�Ng � f�0
Ng



(10.72)

with G D 0 for t < t0, and

ı
�f�Ng � f�0

Ng

 D

NY

pD1
ı.�p ��0

p/ : (10.73)

If we define a function NG.f�Ng; t j f�0
Ng; t0/ by

G
�f�Ng; t j f�0

Ng; t

 D ‰eq

�f�Ng

 NG�f�Ng; t j f�0

Ng; t0


; (10.74)

Eq. (10.72) reduces to

�
@

@t
C L

�
NG�f�Ng; t j f�0

Ng; t0

 D �

‰eq.f�Ng/
��1
ı.t � t0/

� ı�f�Ng � f�0
Ng



(10.75)

with NG D 0 for t < t0.
The formal solution of Eq. (10.75) may be written in the form

NG�f�Ng; t j f�0
Ng; t0


 D exp
��L.t � t0/

��
‰eq.f�Ng/

��1

� ı�f�Ng � f�0
Ng


: (10.76)
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If the scalar product is defined by the first of Eqs. (10.55), the operator L is self-
adjoint and has a complete orthonormal set of eigenfunctions  	 and eigenvalues
�	 with the weight ‰eq, that is,

L 	 D �	 	 ; (10.77)

h �
	  	0ieq D ı		0 : (10.78)

With this set, we have the closure relation

�
‰eq.f�Ng/

��1
ı
�f�Ng � f�0

Ng

 D

X

	

 	
�f�Ng



 �
	

�f�0
Ng


: (10.79)

Substitution of Eq. (10.79) into Eq. (10.76) and use of Eq. (10.77) leads to

NG�f�Ng; t j f�0
Ng; t0


 D
X

	

exp
���	.t � t0/

�

� 	
�f�Ng



 �
	

�f�0
Ng


: (10.80)

Now we express  	 in terms of the Wigner D functions of �p as

 	 D
X

�

Q�	D� ; (10.81)

where

D� D
NX

pD1
Dmpjp

lp
.�p/ (10.82)

with � D .l1, � � � , lN , m1, � � � , mN , j1, � � � , jN). Equation (10.81) gives a
transformation from fD�g to f 	g. Note that it is not unitary since fD�g and f 	g
are orthonormal sets with different weights. In matrix notation, Eq. (10.81) may be
written as

 D QTD : (10.83)

From Eqs. (10.79), (10.80), and (10.83), we have

Q�EQ D 1 ; (10.84)

Q�LQ D � ; (10.85)
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where the dagger indicates the adjoint, 1 and� are diagonal matrices with diagonal
elements 1 and �	 , respectively, and the elements of the self-adjoint matrices E and
L are given by

E��0 D hD �
� D�0ieq ; (10.86)

L��0 D hD �
� LD�0ieq : (10.87)

Finally, we define time-correlation functions C��0.t/ of D� by

C��0.t/ D ˝D �
�

�f�Ng; 0



D�0

�f�Ng; t

˛

eq : (10.88)

With the Green function G given by Eq. (10.74) with Eq. (10.76), C��0.t/ may then
be evaluated in the usual fashion to be

C��0.t/ D hD �
� e�Lt D�0ieq

D
X

	

e��	 t.Q�1�/	�.Q�1/	�0 ; (10.89)

where in the second line we have used Eqs. (10.77), (10.78), and (10.83).

10.5 Eigenvalue Problems and Time-Correlation Functions

10.5.1 Standard Basis Set

The problem is to solve the infinite-dimensional eigenvalue problem given by
Eqs. (10.84) and (10.85). It may be greatly decoupled, or reduced to an infinite
number of eigenvalue problems of much smaller size, by further transforming the
basis set fD�g to a standard basis set [39] which is formed by the eigenfunctions of
the total angular momentum operator of the entire chain [14].

We first note that Dmj
l .�p/ are the simultaneous eigenfunctions of the square L 2

p ,
the z component Lpz, and the �p component Lp� of the angular momentum operator
Lp with the eigenvalues�l.lC 1/, im, and ij, respectively, as given by Eqs. (4.266).
Then we construct from the set fD�g a new set of those basis functions which are
simultaneous eigenfunctions of the square L2 and the z component Lz of the total
angular momentum operator L D L1CL2C� � �CLN , which are linear combinations
of products of Dmpjp

lp
.�p/. For convenience, those basis functions which involve n

D functions of �p1 , �p2 , � � � , and �pn irrespective of the set (p1, � � � , pn/ � Œ pn�

(p1 < p2 < � � � < pn) are referred to as the n-body excitation basis functions. For
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n D 1 and 2, they are given by

DM;j
L;Œ p�.�p/ D .8�2/�.N�1/=2DMj

L .�p/ .n D 1/ ; (10.90)

DM;. j1j2/
L;.l1l2/Œ p1p2�

.�p1 ; �p2 / D .8�2/�.N�2/=2 X

m1;m2

.l1 m1 l2 m2 j l1 l2 L M/

�Dm1 j1
l1

.�p1 /Dm2j2
l2

.�p2 / .n D 2/ ; (10.91)

where L and M are the total angular momentum and magnetic quantum numbers,
respectively, and .� � � j � � � / is the vector-coupling (VC) coefficient defined by
Eq. (4.275). We note that the eigenvalues of L2 and Lz are �L.L C 1/ and iM,
respectively, and that jl1 � l2j � L � l1 C l2 and M D m1 C m2 D �L, �L C 1,
� � � , L for n D 2. The higher excitation basis functions may also be constructed
by an application of the theory for the coupling of angular momentum vectors
[40, 41]. We simply denote these functions by DM

L;� with � D jŒ p� for n D 1,
� D .l1l2/. j1j2/Œ p1p2� for n D 2, and so on.

From the orthonormality of the D functions given by Eq. (4.258) and the unitarity
of the VC coefficients given by Eq. (4.277), DM

L;� are seen to have the orthonormality,

Z
DM�

L;�DM0

L0;� 0

df�Ng D ıLL0ıMM0ı�� 0 : (10.92)

Thus, from the fact that DM
L;� are the simultaneous eigenfunctions of L2 and Lz

and satisfy the orthonormality of Eq. (10.92), it is seen that the set fDM
L;�g is just

a standard basis set in full Hilbert space [39], and therefore the desired set. We note
that the transformation from fD�g to fDM

L;�g is unitary and in fact orthogonal since
the VC coefficient is real.

Now the scalar ‰eq and the scalar operator L are rotationally invariant and com-
mute with the components of the total angular momentum operator L. According
to the theory of angular momentum [39], therefore, the standard representations E
and L of the identity operator and the diffusion operator L with the weight ‰eq are
diagonal in the quantum numbers L and M, and moreover, their diagonal elements
are independent of M (a special case of the Wigner–Eckart theorem). This leads to
.2LC 1/-fold degeneracy with respect to M. The matrix elements E��0 and L��0 in
the new basis set fDM

L;�g may then be written in the form

E��0 D hDM�
L;� DM0

L0 ;� 0

ieq D ıLL0ıMM0 EL;�� 0 ; (10.93)

L��0 D hDM�
L;� LDM0

L0 ;� 0

ieq D ıLL0ıMM0 LL;�� 0 : (10.94)
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Thus the elements EL;�� 0 and LL;�� 0 of the submatrices EL and LL may be evaluated
simply from Eqs. (10.93) and (10.94) at M D M0 D 0. Note also that EL and LL are
self-adjoint, that is, EL D E �

L and LL D L �
L .

We then introduce time-correlation functions C��0.t/ of the standard basis
functions or a standard correlation matrix. It is just the standard representation of
the operator exp.�Lt/, and therefore diagonal in L and M, that is,

C��0.t/ D hDM�
L;� e�Lt DM0

L0 ;� 0

ieq D ıLL0ıMM0 CL;�� 0.t/ ; (10.95)

where the submatrix elements CL;�� 0 .t/ are independent of M and may be evaluated
simply at M D M0 D 0. Further, since L is a self-adjoint operator, the matrices C
and CL are seen to be self-adjoint, that is, CL D C �

L , so that, in particular, CL;�� .t/
are real.

Finally, we reformulate the eigenvalue problem in the standard representation. It
is clear that because of Eqs. (10.93) and (10.94), the original full problem given by
Eqs. (10.84) and (10.85) may be decoupled into those of smaller size for EL and LL,
that is,

Q �
L ELQL D 1L ; (10.96)

Q �
L LLQL D �L ; (10.97)

where QL are diagonalizing matrices and are not unitary, and 1L and�L are diagonal
matrices with diagonal elements 1 and �	 , respectively, the latter being submatrices
of the original �. It is then easy to show that the correlation submatrices CL.t/ are
given by

CL.t/ D Q �1�
L exp.��Lt/Q �1

L : (10.98)

The full standard representations E, L, and C (and also Q) are schematically
shown in Fig. 10.5, where EL, LL, or CL (L D 0, 1, 2, � � � ) appear in the diagonal
blocks (with L D L0), the submatrices in the off-diagonal blocks (with L ¤ L0)
are null matrices, and the M degeneracy has not been shown. In what follows, L.n/
denotes the n-body excitation for a given value of the quantum number L, or the
corresponding subspace of the full Hilbert space. Note that n D 0; 1; 2; � � � ;N for
L D 0, and n D 1; 2; � � � ;N for L ¤ 0. In anticipation of results in the next chapter,
we note that dielectric relaxation is associated with the subblock D in the figure,
nuclear magnetic relaxation and fluorescence depolarization with the subblock X,
dynamic light scattering with the subblock D or X, flow birefringence with the
subblocks X and Y, and dynamic viscosity with the subblocks X, Y, and V.
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Fig. 10.5 The full standard
representations E, L, and C of
the identity operator, the
diffusion operator L, and the
operator e�Lt, respectively
(see the text)
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10.5.2 Crude Subspace Approximation

Although we have reduced the size of the eigenvalue problem, that of the reduced
one is still very large (infinite). We therefore introduce approximations to further
reduce it [14]. In this subsection we first approximately decouple the space (strictly
the subspace of the full Hilbert space) specified by the quantum number L into a
subspace relevant to a given observable and its complementary space, for example,
the subspace 1(1) and its complementary space {1(2), 1(3), � � � , 1(N)} in the case of
dielectric relaxation. In this approximation, EL, LL, and QL become block-diagonal
with the null off-diagonal blocks between these two subspaces, so that the problem
may be solved only in the subblock D, X, or X + Y + V. Then the subspace L.1/
is .2L C 1/N-dimensional except for the M degeneracy (since j D �L, �L C 1,
� � � , L and p D 1, � � � , N in � D jŒ p�), while the subspace L.n/ (2 � n � L) is
infinite dimensional. In this chapter we consider only the L.1/ problem. We note
only that the subspace {2(1), 2(2)} actually relevant to dynamic viscosity (and also
flow birefringence) can be shown to be 6N-dimensional.

In order to obtain the correlation matrix CL.1/.t/ appearing in the subblock D
(L D 1) or X (L D 2), we may solve the eigenvalue problem for the .2LC 1/N �
.2LC 1/N submatrices EL.1/ and LL.1/ in the subspace L.1/, that is,

Q �

L.1/EL.1/QL.1/ D 1L.1/ ; (10.99)

Q �

L.1/LL.1/QL.1/ D �L.1/ ; (10.100)

CL.1/.t/ D Q �1�
L.1/ exp.��L.1/t/Q

�1
L.1/ ; (10.101)
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instead of Eqs. (10.96)–(10.98), respectively. This is a crude subspace approxima-
tion [14]. Higher-order subspace approximations may be obtained if we solve the
eigenvalue problem of somewhat larger size by augmenting the L.1/ subset with
some basis functions suitably chosen from its complementary space. Note that at
t D 0, the CL.1/.0/ given by Eq. (10.101) is exactly correct even in the crude
subspace approximation.

Now we show that the above subspace approximation (with or without augmenta-
tion) is equivalent to neglecting the memory term appearing in the projection of the
full space dynamics onto the subspace L.1/ (with or without augmentation) by the
projection operator method [42, 43]. Since the full Hilbert space has been decoupled
with respect to L and M, we may consider the space specified by L from the start.
Let A.t/ be some dynamical variable, and consider in general a subspace spanned
by 	 basis functions DM

L;�i
(i D 1, � � � , 	). [Note that if A.0/ is confined in the space

L, so also is A.t/.] We define the projection PA onto this subspace by

PA D
	X

i;jD1
DM

L;�i
.E �1

s /�i�jhDM�
L;�j

Aieq ; (10.102)

where the subscript s has been used to indicate the 	� 	 submatrix in this subspace.
If we take A.t/ D exp.�Lt/DM

L;�k
(k D 1, � � � , 	), then following the projection

operator method [42, 43] we find the kinetic equation satisfied by the correlation
submatrix Cs.t/,

@Cs.t/

@t
D �Ls E �1

s Cs.t/C
Z t

0

K.t � t0/Cs.t
0/dt0 (10.103)

with Cs.0/ D Es, where the 	 � 	 memory kernel matrix K D ŒK�i�j.t/� is given by

K�i�j.t/ D
	X

kD1

˝
DM�

L;�i
L expŒ�.1 � P/Lt�.1 � P/LDM

L;�k

˛
eq.E

�1
s /�k�j :

(10.104)

Note that hDM
L;� ieq D 0 for the present case (L ¤ 0). If we neglect the memory term

in Eq. (10.103), we obtain

@Cs.t/

@t
D �Ls E �1

s Cs.t/ (10.105)

with Cs.0/ D Es. When s D L.1/, it is easy to show that the solution of Eq. (10.105)
is identical to the CL.1/.t/ approximated by Eq. (10.101). Thus we have shown the
equivalence. Note that if we take the present full space L as the space s, we have
P D 1 and therefore K D 0, so that CL.t/ exactly obeys Eq. (10.105) with EL and
LL in place of Es and Ls, respectively. In fact, this is consistent with Eq. (10.98).
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Exact solution of Eq. (10.103) with the memory term is equivalent to finding
the exact Cs.t/ by solving the full eigenvalue problem for EL and LL, and is also
impossible. However, it is possible to take account of some interactions between
the subspace and its complementary space by augmentation of the subspace with
a small number of basis functions in the higher-order subspace approximations, as
noted above, and this is equivalent to retaining partly the memory term after the
projection onto the lowest subspace. This problem is treated in Sect. 10.5.4.

10.5.3 Block-Diagonal Approximation

In the last subsection we have shown that the problem is reduced to the 3N-
or 5N-dimensional eigenvalue problem (for L D 1 or 2) in the L.1/ crude
subspace approximation. For large N, therefore, we must introduce an additional
approximation by a further transformation to another standard basis set [14]. The
useful transformation is the one that approximately diagonalizes the matrix B
defined by Eq. (10.36), and therefore also the matrix C defined by Eq. (10.70). For
conventional bond chains, it is well known that B may be diagonalized in a good
approximation with the orthogonal, symmetric matrix Q0

pk [11],

Q0
pk D

�
2

N C 1
�1=2

sin

�
�pk

N C 1
�

. p; k D 1; � � � ;N/ ; (10.106)

which exactly diagonalizes the free-draining matrix B0 equal to B with neglect of
the second term on the right-hand side of Eq. (10.25) (that is, the Rouse matrix
[6] except for the factor ��1

t ). For the dynamic HW model, we also adopt this
approximation, that is,

.Q0BQ0/kk0 D ıkk0� �1
t �B

k ; (10.107)

.Q0CQ0/kk0 D ıkk0a2�C
k ; (10.108)

where

�C
k D

2

3
C
�
�r

a2�t

�
�B

k (10.109)

with �B
k D �t.Q0BQ0/kk. Note that in the coil limit �B

k are just the Rouse–Zimm
eigenvalues in the Hearst version [3, 44]. In fact, it has been numerically shown that
Eq. (10.107) is a good approximation also for the present model [16].

Now we transform the basis functions DM;j
L;Œ p� in the subspace L.1/ to new basis

functions FM;j
L;Œk� not only with Q0 but also with the unnormalized D functions ND
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(as defined in Appendix 3 in Chap. 4) as follows,

FM;j
L;Œk�

�f�Ng

 D

NX

pD1

LX

j0D�L

Q0
pk
NDj0j

L .�˛/D
M;j0

L;Œ p�.�p/ ; (10.110)

where L and M remain unchanged, and �˛ D .˛, ��
2

, �
2

) with ˛ being given by
Eq. (4.101). It is seen that this new basis set is also a standard one in the subspace
{1(1), 2(1), 3(1), � � � }. It is referred to as the standard Fourier basis set (in this
subspace), since Q0 is just a Fourier sine transformation. Thus the standard Fourier
representations of the identity and diffusion operators (with the weight) are also
diagonal in L and M with the diagonal elements being independent of M, so that we
may write them as

hFM;j�
L;Œk� FM0 ;j0

L0 ;Œk0�ieq D ıLL0ıMM0

NE. j;j0/
L;Œk;k0 � ; (10.111)

hFM;j�
L;Œk� LFM0 ;j0

L0 ;Œk0�ieq D ıLL0ıMM0

NL. j;j0/
L;Œk;k0 � ; (10.112)

where we note that the elements NE. j;j0/
L;Œk;k0 � of the submatrix NEL.1/ are the same for the

two dynamic models, d- and c-HW, but the elements NL. j;j0/
L;Œk;k0 � of the submatrix NLL.1/

are different.
The evaluation of these elements is straightforward, but we do not give the

explicit expressions for them because of their length [14, 45]. The results show
that the matrix NEL.1/ is diagonal in j, that for large N both NEL.1/ and NLL.1/ are
approximately diagonal in k, and that in the case of the c-HW chain NLL.1/ can be
made exactly diagonal in k by further introducing the approximation that the Fourier
bond vector operators are orthogonal to the Fourier basis functions, that is [45],

� NX

pD1
Q0

pkru
p

�
FM;j

L;Œk0 �
D ıkk0

� NX

pD1
Q0

pkru
p

�
FM;j

L;Œk� .c-HW/ : (10.113)

Thus the .2L C 1/N-dimensional eigenvalue problem in the L.1/ crude subspace
approximation given by Eqs. (10.99) and (10.100) may be reduced to N eigenvalue
problems for the .2LC 1/ � .2LC 1/ matrices NEL.1/;Œk� and NLL.1/;Œk� (k D 1, � � � , N)

whose jj0 elements are ıjj0 NE. j;j/
L;Œk;k� and NL. j;j0/

L;Œk;k�, respectively,

Q �

L.1/;Œk�
NEL.1/;Œk�QL.1/;Œk� D 1L.1/;Œk� ; (10.114)

Q �

L.1/;Œk�
NLL.1/;Œk�QL.1/;Œk� D �L.1/;Œk� ; (10.115)

where 1L.1/;Œk� and�L.1/;Œk� are .2LC 1/� .2LC 1/ diagonal matrices with diagonal
elements 1 and �

j
L;k (j D �L, �L C 1, � � � , L), respectively, and QL.1/;Œk� is
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a diagonalizing matrix (not unitary). This is referred to as the block-diagonal
approximation.

Since NEL.1/ is diagonal in j, we may reduce the eigenvalue problem given by
Eqs. (10.114) and (10.115) to that for a .2LC 1/ � .2LC 1/ self-adjoint matrix,

QL �
L.1/;Œk�

�
. NEL.1/;Œk�/

�1=2 NLL.1/;Œk�. NEL.1/;Œk�/
�1=2�QL

L.1/;Œk� D �L.1/;Œk� ;

(10.116)

where . NEL.1/;Œk�/
�1=2 is the diagonal matrix with diagonal elements . NE. j;j/

L;Œk;k�/
�1=2, and

QL
L.1/;Œk� is a unitary, diagonalizing matrix. Since the right-hand sides of Eqs. (10.115)

and (10.116) are identical, the above two diagonalizing matrices are related to each
other by

QL.1/;Œk� D . NEL.1/;Œk�/
�1=2QL

L.1/;Œk� : (10.117)

The solutions of the three-dimensional (L D 1) and five-dimensional (L D 2)
eigenvalue problems given by Eq. (10.116) can be analytically obtained, but we do
not give the results [14, 45].

The correlation matrix CL.1/.t/ in the crude subspace and block-diagonal approx-

imations is obtained, from Eq. (10.101) with the elements NE. j;j/
L;Œk;k� and the solution of

Eq. (10.116), �j
L;k and QL

L.1/;Œk�, as follows,

C. j;j0/
L;Œ p;p0�.t/ D

NX

kD1

LX

m;m0;j00D�L

ND jm
L .�˛/ ND j0m0�

L .�˛/Q
0
pkQ0

p0k

�QL;mj00

L;k QL;m0 j00�
L;k

� NE.m;m/L;Œk;k�
NE.m0;m0/

L;Œk;k�


1=2
exp.��j00

L;kt/ ;

(10.118)

where QL;jj0

L;k is the jj0 element of the unitary matrix QL
L.1/;Œk�. In contrast to the

subspace approximation of Eq. (10.101) alone, the CL.1/.0/ given by Eq. (10.118)
is already approximate because of the block-diagonal approximation. For the KP
chain (�0 D 0), both NEL.1/ and NLL.1/ become diagonal in j, so that we need not solve

the eigenvalue problem given by Eqs. (10.114) and (10.115); that is, QL;jj0

L;k D ıjj0 .

Since we then also have NDjj0

L .�˛/ D ıjj0 , Eq. (10.118) reduces to

C. j;j0/
L;Œ p;p0 �

.t/ D ıjj0

NX

kD1
Q0

pkQ0
p0k
NE. j;j/

L;Œk;k� exp.��j
L;kt/ .KP/ (10.119)

with

�
j
L;k D ��j

L;k D
� NE. j;j/

L;Œk;k�


�1 NL. j;j/
L;Œk;k� : (10.120)
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Finally, we must make some general remarks on the above L D 1 eigenvalues
�

j
1;k (j D �1, 0, 1) or branches of the eigenvalue spectrum. Let the j D 0 branch be

the lowest at small k and large N, and the eigenvalues �01;k in this branch must be
just the Rouse–Zimm dielectric relaxation rates. For both the d- and c-HW chains,
they may be written in the form [14, 45]

�01;k D .2�r/
�1�fk � .f 2k � gk/

1=2
�
; (10.121)

but with

g0 < 0 .d-HW/ ; (10.122)

gk / �B
k .k=N � 1/ .c-HW/ ; (10.123)

so that �01;k becomes negative at small wave numbers k for the d-HW chain, while
we have �01;0 D 0 and �01;k > 0 (k 	 1) for the c-HW chain. This unphysical result
for the d-HW chain arises from the preaveraging approximation in the constraining
matrix (even without the block-diagonal approximation), indicating that it cannot
describe correctly the global motions. In the next chapter, therefore, for the d-HW
chain we use �j

1;k � �01;0 as the corrected L D 1 eigenvalues in all branches, for
convenience. On the other hand, the above reasonable result at small wave numbers
for the c-HW chain is due to the orthogonal approximation of Eq. (10.113). It can
be shown that in the case of L D 1 (vector mode), Eq. (10.113) is exactly valid for
the Gaussian (spring) bonds, so that it is indeed a good approximation at small k and
large N for the c-HW chain [45]. In the case of L D 2 (tensor mode), however, it
cannot be valid. Thus, in the next chapter, for the c-HW chain we consider only the
L D 1 problems. We note that even with the orthogonal approximation, �01;0 for the
d-HW chain cannot be made to vanish. As for the block-diagonal approximation,
we further note that it has been numerically shown to be a good approximation also
for the d-HW chain as far as the L D 1 eigenvalues for flexible chains with large N
are concerned [16].

10.5.4 Higher-Order Subspace Approximation

In this subsection we briefly consider the correlation matrix CL.1/.t/ in higher-order
subspace approximations [46, 47], starting from Eq. (10.103) with s D L.1/, where
we note that if the subspace L.1/ is 	s-dimensional, then Cs, Es, Ls, and K are 	s�	s

matrices.
Now we write the matrices EL and LL as

EL D
 

Es 
E �
i


Ei Ec

!
; (10.124)
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and the like, where the subscript c indicates the subspace {L.2/, � � � , L.N/}
complementary to the relevant subspace s D L.1/, and the subscript i indicates the
coupling (interaction) between the two subspaces. The parameter 
 (small number)
has been introduced to treat the interaction as perturbation and perform evaluation
to terms of O.
2/, and it should be set equal to unity at the final stage. The subspace
c is actually infinite dimensional, and in the higher-order subspace approximations
we consider only its finite proper subspace, whose dimension is assumed to be 	c.
In what follows, we redefine the subspace c in Eq. (10.124) in such a way. Then Ec

and Lc are 	c � 	c matrices, and Ei and Li are 	c � 	s matrices. Let Qs and Qc be
the matrices (not unitary) that simultaneously diagonalize Es and Ls, and Ec and Lc,
respectively. The memory kernel matrix K.t/ may then be evaluated to be

K.t/ D 
2Q �1�
s �

�
1 exp.��ct/�1 Q �

s (10.125)

with

�1 D Q �
c LiQs �Q �

c EiQs�s ; (10.126)

where �s D �L.1/ is the diagonal matrix, whose diagonal elements are �j
L;k in the

block-diagonal approximation,�c is a diagonal matrix with diagonal elements �c;	 ,
and the elements of the 	c � 	s matrix �1 are denoted by �1;	j.

For flexible chains the solution thus obtained for CL.1/.t/ in a good approximation
has the following properties: (1) the amplitudes, or QL.1/, remain unchanged, (2)
only the eigenvalues �j

L;k are changed to N�j
L;k, and (3) the subspace c is only a small

part of the subspace L.2/ with �c;	 being the L.2/ eigenvalues. Thus we may write
�c;	 and �1;	j as

�c;	 D �. j1j2/
L;.l1 l2/Œk1k2�

; (10.127)

�1;	j D �1;.Ll1l2k1k2j1j2/ŒLkj� : (10.128)

The changed eigenvalues N�j
L;k (L D 1, 2) may then be expressed as [47]

N�j
L;k D �j

L;k

	
1C

X

	

�
.�

j
L;k/

�1j�1;	jj2 C � �
1;	j �2;	j

�
� �1

c;	


�1
; (10.129)

where

X

	

D
2X

l1D1

l1CLX

l2Dl1

	
ıl1l2

NX

k1;k2D1
k1<k2

�
ık1k2

l1X

j1;j2D�l1
j1<j2

C.1 � ık1k2 /

l1X

j1;j2D�l1

�

C.1 � ıl1l2 /

NX

k1;k2D1

l1X

j1D�l1

l2X

j2D�l2



; (10.130)
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�2;	j D �1;	j

�c;	 � �j
L;k

for
ˇ̌
�c;	 � �j

L;k

ˇ̌ 	 0:2 �j
L;k

D 0 for
ˇ̌
�c;	 � �j

L;k

ˇ̌
< 0:2 �

j
L;k : (10.131)

It must however be noted that the higher-order subspace approximation is not
very good for stiff chains, for which the eigenvalues are evaluated in the crude
subspace approximation (see the next chapter).

Appendix 1: Fluctuating Hydrodynamic Interaction

In this appendix we evaluate the effect of fluctuating hydrodynamic interaction (HI)
on the translational diffusion coefficient D on the basis of the dynamic HW chain
and also the Gaussian (spring-bead) chain with partially fluctuating (orientation-
dependent) HI [48]. In Sect. 6.5.2 we have already given a brief survey of the
theoretical investigations of the effects on D and also the intrinsic viscosity Œ��.

For this purpose, we use a partially preaveraged form T.r/ of the Oseen HI tensor
T.r/ given by Eq. (6.4),

T.r/ D 1

8��0
hr�1ieq.IC erer/ : (10.132)

Note that this tensor has been averaged only over the magnitude r of the vector
distance r retaining its anisotropic part erer, so that it can give correct results in the
case of rigid bodies. It is then convenient to treat as perturbation the deviation of T
from the (isotropic) preaveraged Oseen tensor, which we denote by T.0/.r/I, so that
we rewrite T in the form

T.r/ D T.0/.r/IC 
T.1/.r/ ; (10.133)

where 
 is a small perturbation parameter and T.1/.r/ is the fluctuating part given by

T.1/.r/ D 1

8��0
hr�1ieq

�
erer � 1

3
I


: (10.134)

Evaluation is carried out to terms of O.
2/, and 
 should be set equal to unity at the
final stage of calculations.

We consider the field-free case. By the use of Eqs. (10.27), (10.29), and (10.31),
the diffusion equation for the distribution function ‰.Rc; f�NgI t/ can then be
derived, but we omit the result. Here, the point Rc has no special meaning in the
present case of fluctuating HI. However, we still use it to specify the location of the
chain, and refer to it as the Zimm center of resistance, for convenience.
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Now recall that the (mean) translational diffusion coefficient of the center of mass
has been shown to be dependent on time for the Gaussian chain [49–51] and also the
trumbbell [52]. This is in general the case with the translation diffusion coefficient
D.t/ of any point affixed to the polymer chain; it decreases with increasing t and
becomes a constant D.1/ independent of the point after all internal motions have
relaxed away. Indeed, D.1/ is measured in almost all experiments on D such
as sedimentation and dynamic light scattering. In this connection, we note that
although Fixman [53] has considered the effects of the constraints and therefore
chain stiffness on the basis of the freely rotating chain, his analysis is essentially
limited to D.0/. We may evaluate D.t/ (of Rc) from a kinetic equation for the
distribution function ‰.RcI t/ derived by the projection operator method [42, 43],
as done for the Gaussian chain [51] and the trumbbell [52], where ‰.RcI t/ is
defined by

‰.RcI t/ D
Z
‰.Rc; f�NgI t/df�Ng : (10.135)

Thus, if we apply a projection operator defined by

P D ‰eq

Z
df�Ng ; (10.136)

putting 
 D 1, and if we preaverage the constraining matrix C, then we obtain, from
Eq. (10.135), the length-coarse-grained kinetic equation (considering only terms of
k 2

c in Fourier space kc) satisfied by ‰.RcI t/,

@‰.t/

@t
D D0r 2

c ‰.t/ �
r 21 a4

12.N C 1/
NX

kD1
Sk

Z t

0

Kk.t � s/r 2
c ‰.s/ds ;

(10.137)

where

D0 D D.0/
c �

3r 21 r2a2

2�.N C 1/�t Na2
NX

kD1
Sk.�

C
k /

�1 ; (10.138)

SkI D 2�.N C 1/.�t Na/2
3r 21 a2

NX

p;qD1
Q0

pkQ0
qk

˝
D.1/

c;p � D.1/
c;q

˛
eq ; (10.139)

Kk.t/ D
0X

jD�1

ˇ̌
Rj0
1;k

ˇ̌2
�
�

j
1;k

�B
k

�2
exp.��j

1;kt/ (10.140)



Appendix 1: Fluctuating Hydrodynamic Interaction 431

with

Na D .c1�s/1=2 ; (10.141)

�C
k D

2

3
C r2�

B
k ; (10.142)

R jj0

1;k D .8�2/N=2
1X

mD�1
QL;mj�
1;k

� NE.m;m/1;Œk;k�


1=2 ND j0m�
1 .�˛/ ; (10.143)

and with r1 D �t=3��0a and r2 D �r=a2�t. In Eq. (10.138), D.0/
c is identical to the

Dc given by Eq. (10.35). In Eq. (10.139), Q0
pk is defined by Eq. (10.106) and D.1/

c;p is
defined by

D.1/
c;p D

NC1X

qD1
wq
��D.1/

qp C D.1/

q. pC1/



(10.144)

with

D.1/
pq D .1 � ıpq/T.1/.Rpq/ : (10.145)

In Eq. (10.140), �B
k is defined in Eq. (10.107), and the eigenvalues �j

1;k and coeffi-

cients jRj0
1;kj2 arise from the correlation matrix CL.1/.t/ given by Eq. (10.118). It is

then important to see from Eq. (10.137) with Eq. (10.140) that if the fluctuation in
HI is considered, the translational motion is coupled with the internal modes (all
the Rouse vector modes) that are composed of the j D 0 and �1 branches of the
dielectric eigenvalue spectrum [54] (see also Sect. 11.1).

When we consider the translational diffusion at the initial stage (t D 0), we may
suppress the second term (the memory term) on the right-hand side of Eq. (10.137).
On the other hand, when we consider the diffusion on the time scales sufficiently
long compared to the “dielectric” relaxation times, we may apply the usual time-
coarse-graining procedure. Thus we have, from Eq.(10.137),

@‰.t/

@t
D D.0/r 2

c ‰.t/ .t! 0/ (10.146)

D D.1/r 2
c ‰.t/ .t!1/ ; (10.147)

where D.0/ D D0 and D.1/ is given by

D.1/ D D0 � r 21 a4

12.N C 1/
NX

kD1
Sk

Z 1

0

Kk.t/dt : (10.148)
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In what follows, we consider the case of large N. Then D.0/
c in Eq. (10.138) for

D0 is identical to the Zimm translational diffusion coefficient D.Z/ (at t D 0 and1)
[7],

D.0/
c D D.Z/ D � .5=4/

3�� .3=4/�0hS2i1=2 ; (10.149)

where � is the gamma function, and hS2i D hS2ieq is given by

hS2i D 1

6
N Na2 : (10.150)

Thus we can obtain, from Eqs. (10.138) and (10.148) with Eq. (10.149), for the
translational diffusion coefficients D.0/ and D.1/

D.0/ D D.Z/.1 � ı0/ ; (10.151)

D.1/ D D.Z/.1 � ı0 � ı1/ ; (10.152)

where

ı0 D Ar1r2a.c1N�s/�1=2
NX

kD1
Sk.�

C
k /

�1 ; (10.153)

ı1 D Ar1a.c1N�s/�1=2
NX

kD1
Sk.�

B
k /

�1 (10.154)

with

A D .3=8/1=2� .3=4/ı�� .5=4/ : (10.155)

In Eq. (10.154), we have ignored the j D �1 branch of the eigenvalue spectrum,
which is a minor contribution, with the amplitude of unity for the j D 0 branch,
and put �r�

0
1;k D 3r2�B

k for all k to avoid the negative eigenvalues at small k
[see also Eq. (10.121) with Eq. (10.123)]. Thus the translational motion may be
correctly described, although we have derived the kinetic equation for the d-HW
chain, for simplicity. We use the Gaussian approximation to evaluate the average in
Eq. (10.139).

Now we have for the ratio �1 defined by Eqs. (6.130) and (6.132) with D.1/

�1 D �.Z/1 .1� ı0 � ı1/ ; (10.156)

where the subscript 1 indicates the value for N ! 1, and we note that �.Z/1 D
2� .5=4/=� .3=4/ D 1:479 is the Zimm value of �1 for the center of resistance of
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the Gaussian chain at t D 0 and1 (with preaveraged HI). Note that the Kirkwood
value �.K/1 D 8=3

p
� D 1:505 is the value of �1 for the center of mass of the

Gaussian chain at t D 0 [1, 55]. Clearly the factor 1 � ı0 � ı1 in Eq. (10.152) and
Eq. (10.156) arises from the fluctuation in HI.

For flexible chains, the results of numerical calculations shows that

ı0 ' 0:02 (10.157)

independently of the HW model parameters, while ı1 depends weakly on them,
where we have put r1 D 1. The values of �1 thus calculated from Eq. (10.156) for
several flexible polymers have already been given in Table 6.4. It is seen from the
above analysis that the term ı0 represents the decrease in D (from D.Z/) at t D 0

and arises from the restriction of the chain motions by the constraints, while the
term ı1 represents the additional decrease at t D 1 and arises from the coupling
between the translational and internal motions, especially the long-wavelength
internal motions, through the fluctuating part of the HI. Thus it may be considered
that the preaveraging of the constraining matrix leads to an underestimate of ı0 and
therefore an overestimate of �1 (see Table 6.4).

For stiff chains, which may be represented by the KP chain with �0 D 0 and
c1 D 1, we simply consider the stiff-chain limit of ��1 ! 1 or �s ! 0, so that
we have a D �s from Eq. (10.14). It can then be shown that

ı0 D ı1 D 0 ; (10.158)

�1 D �.Z/1 D 1:479 .��1 !1/ : (10.159)

This value of �1 is to be compared with the experimental values 1.50 for PHIC [56]
and 1.48 for DNA [57, 58].

Finally, we briefly consider the case of the Gaussian (or spring-bead) chain
composed of N C 1 identical beads connected with the effective bond length Na
given by Eq. (10.141). Following the same procedure as above, we can then obtain
Eqs. (10.151), (10.152), and (10.156) but with

ı0 D 0 ; (10.160)

ı1 D Ar1N
�1=2

NX

kD1
Sk.�

B
k /

�1 .Gaussian chain/ (10.161)

with A being given by Eq. (10.155) and with r1 D �t=3��0 Na. Thus ı1 does not
vanish even for the Gaussian chain (without constraints). Equation (10.154) for ı1
(for the HW chain) becomes identical to Eq. (10.161) in the flexible-chain limit of
�s ! 1, since we have, from Eq. (10.14), a D Na D .c1�s/1=2 (�s ! 1). If
we assume that the bead is the Stokes sphere of diameter db, that is, �t D 3��0db,
then we have r1 D db=Na. It has been shown that as db=Na is increased from 0.1
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to 1.0, �1 decreases from 1.412 to 1.294; in particular, �1 D 1:373 for db=Na D
0:3 [48]. It is interesting to note that this value of �1 is somewhat larger than the
corresponding Zimm Monte Carlo value 1.31 obtained for db=Na D 0:27 in the rigid-
body ensemble approximation [59]. This difference may be regarded as arising from
the initial decrease ı0 in D due to the constraints in the latter case of the “rigid”
Gaussian chain. In this connection, we note that Fixman [60] has shown that the
rigid-body ensemble approximation gives the lower bound for �1 for a given model
chain.
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Chapter 11
Dynamical Properties

In this chapter various dynamical properties of unperturbed polymer chains in
dilute solution in the regime of linear response are evaluated by the use of the
time-correlation functions formulated in Chap. 10 on the basis of the dynamic
HW chain. They include dielectric relaxation, nuclear magnetic relaxation, fluo-
rescence depolarization, dynamic light scattering, and so on for both flexible and
semiflexible polymers. Evaluation is carried out for the d-HW chain except for the
first cumulant of the dynamic structure factor, which is evaluated for the c-HW
chain. The eigenvalues are evaluated in the crude and also higher-order subspace
approximations for the flexible d-HW chain but only in the crude approximation
for the stiff d-HW chain and the c-HW chain. All dynamical properties considered
in this chapter concern local chain motions except in the cases of the dielectric
and nuclear magnetic relaxation of semiflexible polymers and the first cumulant.
A comparison of theory with experiment is made rather in detail along with a
discussion of the approximations introduced in Chap. 10.

11.1 Dielectric Relaxation

11.1.1 Formulation

For flexible chains having parallel (type-A) dipoles, it is well known that their
dielectric relaxation may be conveniently treated using the spring-bead model [1–
4]. For chains having perpendicular (type-B) dipoles, the process is associated with
the local chain motions, and therefore we should have recourse to the dynamic HW
chain. We give the formulation generally applicable to both flexible and stiff chains
having arbitrary dipoles [5].

Now let 
� D 
0 � i
00 be the excess complex dielectric constant as a function
of angular frequency ! of the dilute solution over that of the solvent alone. If the

© Springer-Verlag Berlin Heidelberg 2016
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effect of local fields is ignored, it may be expressed in terms of the dipole correlation
function M.t/ (with t the time) as [6, 7]


� � 
1

0 � 
1

D 1 � i!
Z 1

0

e�i!t

�
M.t/

M.0/

�
dt ; (11.1)

where 
0 and 
1 are the excess limiting low- and high-frequency dielectric
constants, respectively. If�.t/ is the instantaneous, field-free, dipole moment vector
of the entire chain expressed in an external Cartesian coordinate system, M.t/ is
given by

M.t/ D h�.0/ � �.t/ieq : (11.2)

In what follows (in this chapter), we adopt the same dynamic HW chain and notation
as those used in Chap. 10. Further, all lengths are measured in units of ��1 and kBT
is chosen to be unity unless otherwise noted.

Let mp and Qmp be the local electric dipole moment vectors attached to the
pth subbody of the dynamic HW chain, expressed in the pth localized Cartesian
coordinate system (e�p , e�p , e�p ) affixed to it and the external one, respectively, and
we have

� D
NX

pD1
Qmp : (11.3)

We assume that their magnitudes are independent of p so that jmpj D j Qmpj D m.
Further, suppose that the vector mp is permitted to rotate about an axis, making
a constant angle � with the axis, which has constant polar and azimuthal angles
˛ and ˇ (independent of p) in the pth localized coordinate system, as depicted in
Fig. 11.1. Let �p.t/ be the (time-dependent) dihedral angle between the two planes

Fig. 11.1 Local dipole
moment vector mp in the pth
localized Cartesian
coordinate system

ξp

ηp

ζp

α

β

mp

Δ
γp
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containing the rotation axis and e�p , and the rotation axis and mp, respectively. The
pth dipole moment vector expressed in a Cartesian coordinate system having the
orientation defined by the Euler angles (˛, ˇ, �p) with respect to the pth localized
coordinate system is independent of p. If we denote it by Nm, we have Nm D .m sin�,
0, m cos�).

Since the scalar product Qmp.0/ � Qmp0.t/may be expressed in terms of the spherical

components Qm. j/
p ( j D 0, ˙1) of Qmp as in Eq. (5.158), M.t/ may be given, from

Eq. (11.2) with Eq. (11.3), by

M.t/ D
NX

p;p0D1

1X

jD�1

˝ Qm. j/�
p .0/ Qm. j/

p0

.t/
˛
eq : (11.4)

By the use of Eq. (5.219), the component Qm. j/
p may be written as a sum of products

of the Wigner functions D jk1
1 .�p/ and Dk1k2

1 .˛, ˇ, �p) and the spherical components
Nm.k2/ of Nm given by

Nm.˙1/ D � 1p
2

m sin� ;
(11.5)

Nm.0/ D m cos� :

Now, if we assume that there are no correlations between the motion of each
subbody (main-chain motion) and the rotational motion of the dipole moment vector
about the rotation axis in it (side-chain motion) and also between the latter motions
in different subbodies, M.t/ may be eventually expressed in terms of correlation
functions M jj0.t/, M jj0

s .t/, and C jj0

s1 .t/ defined by

M jj0.t/ D .8�2/N
NX

p;p0D1
C. j;j0/
1;Œ p;p0 �.t/ ; (11.6)

M jj0
s .t/ D .8�2/N

NX

pD1
C. j;j0/
1;Œ p;p�.t/ ; (11.7)

C jj0

s1 .t/ D
˝
exp

��ij�p.0/
�

exp
�
ij0�p.t/

�˛
eq : (11.8)

In Eqs. (11.6) and (11.7), C. j;j0/
1;Œ p;p0 �.t/ are the 1(1) correlation functions given by

Eq. (10.118) (for �0 ¤ 0) and may be written in the form

C. j;j0/
1;Œ p;p0�.t/ D .8�2/�N

NX

kD1
Q0

pkQ0
p0k

1X

j00D�1
R j00j�
1;k R j00j0

1;k exp.�� j00

1;kt/ ; (11.9)
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where Q0
pk is given by Eq. (10.106), and R jj0

1;k is given by

R jj0

1;k D .8�2/N=2
1X

mD�1
QL;mj�
1;k . NE.m;m/1;Œk;k�/

1=2 ND j0m�
1 .�˛/ : (11.10)

Taking the sums over p and p0 in Eqs. (11.6) and (11.7), we then obtain

M jj0.t/ D 2

N C 1
X

k odd

cot2
�

k�

2.N C 1/
� 1X

j00D�1
R j00j�
1;k R j00j0

1;k exp.�� j00

1;kt/ ; (11.11)

M jj0
s .t/ D

NX

kD1

1X

j00D�1
R j00j�
1;k R j00j0

1;k exp.�� j00

1;kt/ : (11.12)

For the KP chain .�0 D 0/; C. j;j0/
1;Œ p;p0 �

.t/ is given by Eq. (10.119), so that
Eq. (11.10) reduces to

R jj0

1;k D ıjj0.8�
2/N=2. NE. j;j/

1;Œk;k�/
1=2 .KP/ ; (11.13)

and the eigenvalues � j
1;k are given by Eqs. (10.120). We note that when the torsion

dynamics of stiff chains is treated in later sections, the KP chain with nonvanishing
Poisson’s ratio � is used. (Recall that in Appendix 1 in Chap. 10 we have considered
the KP stiff chain with � D 0 for the treatment of the translational diffusion with
fluctuating hydrodynamic interaction, to which only the Rouse vector modes make
contribution.) All results for this KP chain may then be obtained from those with
� D 0 only if L.L C 1/ is replaced by L.L C 1/C � j2 in NE. j;j/

L;Œk;k� and NL. j;j/
L;Œk;k�. (Note

that we may set � D 0 for j D 0.) Further, we note that the j D ˙1 eigenvalues for
it are degenerate, as seen from Eqs. (10.120).

As for C jj0

s1 .t/, which is associated with the rotational motion of the dipole
moment vector about the rotation axis, it may be regarded as equivalent to that
for a single-axis rotor on the above assumption. Whether its relaxation is due to
stochastic diffusion among a very large number of equilibrium positions [8, 9] or to
random jumps between two or three equivalent equilibrium positions to either of the
two adjacent ones [9, 10], C jj0

s1 .t/ may then be written in the form

C jj0

s1 .t/ D ıjj0 for j D 0
D ıjj0e

�t=�s1 for j D ˙1 (11.14)

with �s1 the corresponding correlation time. Note that the jump rate is equal to
.n�s1/

�1 for the n-state jump process (n D 2, 3).
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Thus we obtain, from Eq. (11.1) with Eq. (11.4), the final result


� � 
1

0 � 
1

D m2

M.0/

	
2 cos2 �

N C 1
X

k odd

1X

jD�1
cot2

�
k�

2.N C 1/
�

A j
1;k

1C i!� j
1;k

C1
2

sin2 �
NX

kD1

1X

jD�1

A j
s1;k

1C i!� j
s1;k



(11.15)

with

�
j
1;k D .�

j
1;k/

�1 ;
(11.16)

�
j

s1;k D .�
j
1;k C � �1

s1 /�1 ;

where the coefficients A j
1;k and A j

s1;k are real, nonnegative, and dependent on ˛, ˇ,

and R jj0

1;k (independent of ˇ for the KP chain), but we omit explicit expressions for
them [5]. Note that M.0/ D h�2ieq, so that the final result is independent of m.
When the dipole moment vectors are affixed rigidly to the subbodies .� D 0/, we
note that if mp is parallel to e�p (˛ D 0), then A j

1;k D 0, and therefore the j D 0 and
�1 branches of the eigenvalue spectrum make contribution to dielectric relaxation,
and that if mp is parallel to e�p (˛ D �=2 and ˇ D 0 or �), then only the j D 1

branch makes contribution. For the KP chain, when � D 0, only the j D 0 or 1
branch makes contribution if mp is parallel or perpendicular to e�p . Further, it is
important to note that the eigenvalues at small k make main contribution (for both
HW and KP) because of the factor cot2

�
k�=2.N C 1/

�
as far as the main-chain

motion is concerned.

11.1.2 Eigenvalue Spectra and Mode Analysis

All numerical results for dielectric relaxation are obtained for the d-HW chain, since
they are similar to those for the c-HW chain in the crude subspace approximation.
It is then convenient to introduce instead of �t and �r the dimensionless parameters
r1 and r2 defined by

r1 D �t=3��0a ;
(11.17)

r2 D �r=a2�t :

As mentioned in Sect. 10.3, for flexible chains the repeat unit (whose molecular
weight is M0) is taken as the subbody, and then a may be calculated from Eq. (10.14)
with �s D M0=ML.
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Fig. 11.2 Plots of Q� j
1;k in the

crude subspace
approximation against Qk for
a-PS (solid curves) and
a-PMMA (dashed curves),
both with r1 D 1, r2 D 10,
and N D 999
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We first examine the behavior of the 1(1) eigenvalues � j
1;k for flexible chains

evaluated in the crude subspace approximation, taking as examples a-PS (with fr D
0:59) and a-PMMA (with fr D 0:79). The values of their HW model parameters
are given in Table 5.1, and we have a D 2:88 and 2.78 Å for a-PS and a-PMMA,
respectively. Figure 11.2 shows plots of the reduced eigenvalues Q� j

1;k � �r�
j
1;k=kBT

(with � j
1;k unreduced) against the reduced wave number Qk � k=.N C 1/ for a-PS

(solid curves) and a-PMMA (dashed curves), both with r1 D 1; r2 D 10, and
N D 999, where the correction for the negative eigenvalues has been made (see the
last paragraph of Sect. 10.5.3). It is seen that an avoided crossing occurs between
the j D 0 and�1 branches of the eigenvalue spectrum at Qk ' 0:18 and 0.03 for a-PS
and a-PMMA, respectively. According to the results of mode analysis [5], the j D 1
branch is of purely local nature, while there is a mixing of global and local modes in
each of the j D 0 and �1 branches. At small Qk, however, the j D 0 branch is mainly
global, while the j D �1 branch is mainly local. Indeed, the �01;k given by the first of
Eqs. (11.16) with small k may be regarded as the Rouse–Zimm dielectric relaxation
times [4].

Next we consider stiff chains. All typical stiff chains such as DNA have helical
structures and may be represented by the KP1 chain (�0 D 0 and �0 ¤ 0). Because
of a structural symmetry about the helix axis (the � axis), their mp may be regarded
as parallel to it; that is, ˛ D � D 0. Then only the j D 0 branch, which is purely
global [5], is active for dielectric relaxation unless the side-chain motion exists, and
moreover, it is independent of �0 and � . However, it is important to note that even
with the correction for the negative eigenvalues mentioned above, a few eigenvalues
�01;k at small k for k 	 1 are still negative for small r2 because of the preaveraging
approximation in the constraining matrix (for the d-HW chain), so that we must
assign a relatively (unreasonably) large value to r2.



11.1 Dielectric Relaxation 443

11.1.3 Comparison with Experiment

We make a comparison of theory with experiment with respect to the frequency
dependences of the excess dielectric dispersion 
0 and loss 
00, and a dielectric
correlation time �D as defined as the reciprocal of the angular frequency !m

corresponding to the maximum loss!00
m associated with the (net) main-chain motion.

Their theoretical values are calculated from Eq. (11.15). The parameter r2 and also
� and �s1 in the presence of side-chain motions are then determined to give good
agreement between theory and experiment, assuming that r1 D 1.

(a) Flexible Polymers

For flexible polymers, we analyze experimental data for polyoxyethylene (POE) [3,
11–13], atactic poly(p-chlorostyrene) (a-PPCS) [14, 15], atactic poly(methyl vinyl
ketone) (a-PMVK) [16], s-PMMA [17], and i-PMMA [17]. For convenience, we
assume the values of the HW model parameters determined from the RIS values for
various equilibrium properties [18] except for s- and i-PMMAs, for which the values
given in Table 5.1 are used, regarding the former as a-PMMA; that is, �0 D 2:4 and
�0 D 0:5 for POE, �0 D 0:8 and �0 D 2:3 for a-PPCS (as s-PS), and �0 D 0:1

and �0 D 2:0 for a-PMVK (as s-PMVK). We have ˛ D 90ı for all these polymers
and ˇ D 180ı except for i-PMMA, for which ˇ D 55ı. (We note that A j

1;k is
independent of the sign of ˇ for ˛ D 90ı.) For these polymers except a-PMVK,
no side-chain motions have been observed, so that we choose � D 0ı except for it.
Theoretical evaluation is carried out for N D 999 in all cases, all the experimental
data above have been obtained for the molecular weight M > 104, in which range
�D is independent of M.

Figure 11.3 shows plots of the reduced dispersion 
0
r � .
0 � 
1/=.
0 � 
1/

and reduced loss 
00
r � 
00=.
0 � 
1/ against log f with f D !=2� (in Hz) for
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Fig. 11.3 Plots of 
0

r and 
00

r against log f ( f in Hz) for a-PMVK in dioxane at 20ıC [16]. The
solid curves represent the theoretical values calculated from Eq. (11.15) in the crude subspace
approximation with r1 D 1, r2 D 7, N D 999, � D 103ı , and kBT�s1=�r D 0:5, and the dashed
curve represents the theoretical values of 
00

r for � D 0ı. The inset shows the corresponding
Cole–Cole plots



444 11 Dynamical Properties

Table 11.1 Values of �D, r2, and d determined from dielectric relaxation for flexible polymers

d (Å)
Temp. �D,obs From chemical

Polymer Solvent (ıC) (ns) r2 From r structures Ref. (�D)

POE Benzene 25 0.013 0.2 (0.3)a 2.5 (3.1)a 4.5 [3, 11, 12]

20 0.019 0.3 (0.4) 3.1 (3.5) � � � [13]

a-PPCS Benzene 25 4.7 42 (65) 16.1 (18.7) 12.0 [14]

25.5 6.6 62 (95) 18.4 (21.3) � � � [15]

a-PMVK Dioxane 20 3.1b 1.2 (7) 4.6 (8.8) 7.5 [16]

s-PMMA Toluene 30 4.1 39 (74) 17.4 (21.7) 9.0 [17]

i-PMMA Toluene 30 1.0 2.5 (6.8) 7.2 (10.5) 9.0 [17]
a The values in parentheses have been obtained in the crude subspace approximation
b Corresponding to the net main-chain motion

a-PMVK in dioxane at 20ıC, the experimental data (circles) being due to Mashimo
et al. [16]. The solid curves represent the theoretical values calculated in the crude
subspace approximation with r2 D 7, � D 103ı, and kBT�s1=�r D 0:5, and the
dashed curve represents the theoretical values of 
00

r for � D 0ı but with the other
parameters remaining unchanged. The inset shows the corresponding Cole–Cole
plots, the circles and curve representing the experimental and theoretical values,
respectively. The loss peaks on the low- and high-frequency sides correspond to
the main-chain and side-chain motions with the correlation times of 2.7 and 1.6 ns,
respectively. However, the correlation time �D associated with the net main-chain
motion is estimated to be 3.2 ns from the maximum of the dashed curve. There
is seen to be rather good agreement between theory and experiment. In general,
however, the observed loss curve is asymmetric about its peak (not of the Debye
type), that is, somewhat broader on the high-frequency side for flexible chains
without side-chain motions [19], indicating that there are several absorptions on
that side. This cannot be well explained by the HW theory even in the higher-order
subspace approximation.

In Table 11.1 are given observed values of �D for the above five polymers and the
values of r2 obtained in the higher-order subspace approximation along with those
in parentheses obtained in the crude approximation [5, 20]. It is then interesting to
estimate the size of the subbody from r2. Clearly the product of r1 and r2 rather than
their individual values (or �r rather than �t) plays an important role as far as the local
motions are concerned [21]. From Eqs. (11.17), we have

r1r2 � r D �r=3��0a
3 : (11.18)

It is reasonable here to regard the subbody as a spheroid having rotation axis of
length a and diameter d. Then �r must be the mean rotatory friction constant and is
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given by

�r D kBT

3

�
2

Dr;1
C 1

Dr;3

�
; (11.19)

where Dr;1 and Dr;3 are the rotatory diffusion coefficients Dr;1;.SD/ and Dr;3;.SD/ of the
spheroid about the transverse axis and rotation axis and are given by Eqs. (6.200)
and (6.201), respectively. Thus we may determine d from the values of a and r since
r is a function of a=d.

In Table 11.1 are also given the values of d so determined along with those
from the chemical structures [5, 20]. It is seen that the values of d determined
in the higher-order subspace approximation are smaller than those in the crude
approximation, corresponding to the respective values of r (or r2), and are closer
to those determined from the chemical structures, as was expected, except for POE
and a-PMVK.

(b) Semiflexible Polymers

For stiff chains (�0 D 0) with parallel dipoles (˛ D � D 0), �D reflects the
global motions (end-over-end rotation, etc.) and its molecular weight M dependence
becomes very important. In this subsection we consider primarily this problem.

As already mentioned, the eigenvalues are always positive (even for the d-HW
chain) in the range of large r2. In this range, �D is almost independent of r2 [5].
Thus we adopt those values of �D as the theoretical ones. This independence is
rather reasonable since the �D associated with the global motions should not depend
on �r (related to r2) but on �t. Then, since r1 D 1, that is, �t D 3��0a, the �D so
evaluated may be regarded as the correlation time for the touched-bead model, each
bead being a Stokes sphere of diameter a. We then replace the bead model by an
equivalent cylinder model of diameter d by the use of the relation d D 0:861a [22].
With values of 2kBT�D=��0d3 so calculated (in the crude subspace approximation)
as a function of p D L=d for the KP cylinder of contour length L (D N�s ' Na) and
diameter d, we may construct an interpolation formula for �D. The result reads [5]

�D D �D;.R/L
�3�LC 1

2
.e�2L � 1/�3=2

� �1C 0:539526 ln.1C L/
�

.L<
 30/ (11.20)

with �D;.R/ D 1=2Dr;1;.R/, where Dr;1;.R/ is the rotatory diffusion coefficient of a
spherocylinder and is given by Eq. (6.183) with Eq. (6.196) with 
 D 1, that is,

�D;.R/ D ��0L3Fr. p/

6kBT
(11.21)
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Fig. 11.4 Double-
logarithmic plots of
2kBT�D=��0d3 against M for
PBLG in m-cresol at 25 ıC
(�) [23] and PHIC in toluene
at 25 ıC (�) [24]. The solid
curves represent the best-fit
theoretical values calculated
from Eq. (11.20), and the
dotted curves represent the
values calculated from
Eq. (11.21) for the
corresponding
spherocylinders (see the text)

654

6

4

2

0

log M
lo

g(
2

k B
Tτ

D
/π

η 0
d 3

)

with

Fr. p/�1 D ln pC 2 ln 2 � 11
6
� 8:25644

ln.1C p/

C13:0447 p�1=4 � 62:6084 p�1=2C 174:0921 p�3=4

�218:8356 p�1C 140:2699 p�5=4 � 33:2708 p�3=2 : (11.22)

Figure 11.4 shows double-logarithmic plots of 2kBT�D=��0d3 against M for
poly(� -benzyl L-glutamate) (PBLG) in m-cresol at 25 ıC and PHIC in toluene at
25 ıC, the experimental data being due to Matsumoto et al. [23] and Takada et al.
[24], respectively. The solid curves represent the best-fit theoretical values calcu-
lated from Eq. (11.20), and the dotted curves represent the values from Eq. (11.21)
for the corresponding spherocylinders. The values of the model parameters thus
determined are ML D 146Å�1 and d D 28Å for PBLG and ��1 D 740Å,
ML D 74:0Å�1, and d D 15Å for PHIC. The results for the latter are to be
compared with those in Table 6.3. (For PBLG, ��1 cannot be determined since the
data are confined to the range of rigid rods.)

Finally, we make a comparison of theory with experiment with respect to the
dispersion and loss curves, taking as an example the above PHIC sample with M D
2:44� 105. Figure 11.5 shows plots of 
0

r and 
00
r against log f (f in Hz) and the inset

shows the corresponding Cole–Cole plots. The solid curves represent the theoretical
values calculated (in the crude subspace approximation) with a D 0:024 and N D
185 (corresponding to the above values of ��1; ML; d, and M) and with r1 D 1

and r2 D 70, and the dashed curve in the inset indicates the Debye curve. The
observed 
00

r is asymmetric and broader on the high-frequency side. The theory can
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Fig. 11.5 Plots of 
0

r and 
00

r
against log f (f in Hz) for the
PHIC sample with
M D 2:44� 105 in Fig. 11.4.
The solid curves represent the
theoretical values calculated
from Eq. (11.15) in the crude
subspace approximation with
a D 0:024, r1 D 1, r2 D 70,
and N D 185 (see the text).
The inset shows the
corresponding Cole–Cole
plots, the dashed curve
indicating the Debye curve
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explain better this fact than in the case of flexible polymers, but the agreement with
experiment is not complete.

11.2 Nuclear Magnetic Relaxation

11.2.1 Formulation

In most nuclear magnetic relaxation experiments for polymers in dilute solution,
1H, 13C, 19F, and 31P are used as the probing nuclei. Then any relaxation mechanism
other than the dipole interaction need not be considered for flexible chains, while
the relaxation due to the anisotropic chemical shift cannot be ignored for some cases
of stiff chains, especially for 31P of DNA.

For the former, for simplicity, we consider only the heteronuclear dipolar
interaction between two unlike spins I and S, with spin I observed and with spin
S irradiated, where spin I represents 13C, 19F, and 31P, and spin S represents 1H,
so that I D S D 1=2. If the internuclear distance r is constant (independent of t),
the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the nuclear
Overhauser enhancement NOE are given by [25–27]

T �1
1 D K2

20r6
�
J0.!S � !I/C 3J1.!I/C 6J2.!S C !I/

�
; (11.23)

T �1
2 D K2

40r6
�
4J0.0/CJ0.!S�!I/C3J1.!I/C6J1.!S/C6J2.!SC!I/

�
; (11.24)

NOE D 1C �S

�I

�
6J2.!S C !I/� J0.!S � !I/

J0.!S � !I/C 3J1.!I/C 6J2.!S C !I/

�
(11.25)
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with

K D „�I�S ; (11.26)

where �I and �S are the gyromagnetic ratios of spins I and S, respectively,!I and !S

are their Larmor angular frequencies, and Jm.!/ (m D 0; 1; 2) is the spectral density
defined by

Jm.!/ D 2Re

�Z 1

0

Gm.t/e
�i!tdt

�
(11.27)

with Re indicating the real part and with Gm.t/ the autocorrelation function. In the
case of the dipolar interaction, Gm.t/ is given by

Gm.t/ D 8�2
˝Dm0�

2 Œ�.0/�Dm0
2 Œ�.t/�

˛
eq ; (11.28)

where �.t/ D Œ�.t/, �.t/, 0] with �.t/ and �.t/ the polar and azimuthal angles,
respectively, defining the instantaneous direction of the internuclear (spin–spin)
vector in an external Cartesian coordinate system.

When there are two or more spins S that contribute to the relaxation of spin I,
the above equations should be modified. If the internuclear distances of all spin
pairs are constant and the same (or different), then T1; T2, and NOE are given
by Eqs. (11.23)–(11.25), respectively, with the sum of spectral densities J.i/m (or
r�6

i J.i/m ) over spin pair i in place of Jm (or r�6Jm). When there is the contribution
of the anisotropic chemical shift to the relaxation of spin I, Eqs. (11.23)–(11.25)
and (11.28) should be further modified, but we omit the explicit results [26, 28–31].

Now we derive an expression for Jm.!/ in the case of the dipolar interaction for
the dynamic HW chain [31]. The electric dipole moment vector mp in Fig. 11.1 may
then be regarded as the internuclear (spin–spin) vector I!S, so that its orientation
in the localized coordinate system may be specified by the angles ˛, ˇ,�, and �p.t/.
In the following, we consider the case for which the only spin I on the pth subbody
is observed. By a slight modification at the final stage, however, we can also obtain
expressions for the case in which N or fewer identical spins I distributed uniformly
or randomly on the N subbodies are observed. The orientation � in Eq. (11.28)
may be represented by the successive rotations �p, (˛, ˇ, �p), and (�, 0, 0) in this
order, so that by the use of Eq. (4.263), Dm0

2 .�/ may be written in terms of the D
functions of these Euler angles. If we assume that the main-chain motion and the
internal-rotational motion of the internuclear vector are independent of each other,

Gm.t/ may then be expressed in terms of the correlation functions C. j;j0/
2;Œ p;p�.t/ and

C jj0

s2 .t/, the latter being formally given by Eq. (11.8). In general, the 2(1) correlation



11.2 Nuclear Magnetic Relaxation 449

function C. j;j0/
2;Œ p;p0 �

.t/, which is given by Eq. (10.118), may be written in the form

C. j;j0/
2;Œ p;p0�

.t/ D .8�2/�N
NX

kD1
Q0

pkQ0
p0k

2X

j00D�2
R j00j�
2;k R j00j0

2;k exp.�� j00

2;kt/ ;

(11.29)

where Q0
pk is given by Eq. (10.106), and R jj0

2;k are given by equations corresponding
to Eqs. (11.10) (�0 ¤ 0) and (11.13) (�0 D 0). Note that for the KP chain, the
eigenvalues � j

2;k and ��j
2;k ( j D 1, 2) are degenerate.

As for the correlation function C jj0

s2 .t/, which is associated with the rotational
motion of the spin–spin vector about the rotation axis, we adopt only the random
jump process. We then have

C jj0

s2 .t/ D ıjj0 for j D 0; ˙2
D ıjj0e

�t=�s2 for j D ˙1 .two states/ ; (11.30)

C jj0

s2 .t/ D ıjj0 for j D 0
D ıjj0e

�t=�s2 for j D ˙1; ˙2 .three states/ (11.31)

with .n�s2/
�1 the jump rate for the n-state jump process (n D 2, 3) [9, 10, 32, 33].

Thus we obtain, from Eq. (11.27) with Eq. (11.28), for Jm.!/

Jm.!/ D 1

2
.3 cos2 � � 1/2

NX

kD1
.Q0

pk/
2

2X

jD�2

A j
2;k�

j
2;k

1C .!� j
2;k/

2

C3
4

sin2 2�
NX

kD1
.Q0

pk/
2

2X

jD�2

A j
s21;k�

j
s21;k

1C .!� j
s21;k/

2

C3
4

sin4 �
NX

kD1
.Q0

pk/
2

2X

jD�2

A j
s22;k�

j
s22;k

1C .!� j
s22;k/

2
(11.32)

with

�
j
2;k D .�

j
2;k/

�1 ;

�
j

s21;k D .�
j
2;k C � �1

s2 /�1 ;
(11.33)

�
j

s22;k D �
j
2;k for two-state jumps

D �
j

s21;k for three-state jumps ;



450 11 Dynamical Properties

where A j
2;k, A j

s21;k, and A j
s22;k are dependent on ˛, ˇ, and R jj0

2;k (independent of ˇ for
the KP chain), but we omit explicit expressions for them [31]. When � D 0, we
note that if the spin–spin vector is parallel to e�p (˛ D 0) or to e�p (˛ D �=2 and
ˇ D 0 or �), then the j D 0, �1, and �2 branches of the eigenvalue spectrum make
contribution. For the KP chain, when � D 0, if the spin–spin vector is parallel to
e�p , then only the j D 0 branch makes contribution as in the dielectric case; but if it
is perpendicular to e�p , then the j D 0 and 2 branches make contribution in contrast
to that case. Note that Gm.!/ and Jm.!/ are independent of m. Further, we note
that for the case of N or fewer identical spins I under observation, that is, under
conventional experimental conditions, the above Jm.!/ may be averaged over p, so
that .Q0

pk/
2 may be replaced by N�1 in Eq. (11.32).

11.2.2 Eigenvalue Spectra and Amplitudes

All numerical results for nuclear magnetic relaxation are also obtained for the d-
HW chain. In contrast to the dielectric case, the 2(1) eigenvalues � j

2;k at all wave
numbers k in general make contribution to magnetic relaxation, and therefore we
examine the behavior of the amplitudes as well as the eigenvalues.

Figure 11.6 shows plots of the reduced eigenvalues Q� j
2;k D �r�

j
2;k=kBT in the

crude subspace approximation against the reduced wave number Qk for a-PS with
r1 D 1; r2 D 10, and N D 499. It is seen that avoided crossings occur between
the j D 0 and �1 branches at Qk ' 0:2, between the j D �1 and �2 branches at
Qk ' 0:4, between the j D 0 and �1 branches at Qk ' 0:5, and between the j D 1 and
2 branches at Qk ' 0:5. According to the results of mode analysis [31], all the five
branches for flexible chains are actually local, provided that N>
 50.

In the case of no internal rotations of the internuclear vector .� D 0/, the
amplitudes are equal to .Q0

pk/
2A j

2;k, and therefore proportional to A j
2;k when averaged

over p, as seen from Eq. (11.32). Suppose that the methine carbons are observed for

Fig. 11.6 Plots of Q� j
2;k in the

crude subspace
approximation against Qk for
a-PS with r1 D 1, r2 D 10,
and N D 499
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Fig. 11.7 Plots of A j
2;k

against Qk for the same a-PS as
that in Fig. 11.6 with
˛ D 90ı and ˇ D 55ı
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the above a-PS. The internuclear vector is then in the direction of C(methine)–H,
and we have ˛ D 90ı and ˇ D 55ı. (We note that A j

2;k is independent of the sign

of ˇ for ˛ D 90ı.) Figure 11.7 shows plots of A j
2;k against Qk for a-PS in this case.

It is seen that all branches except for j D �1 make main contribution to magnetic
relaxation for Qk<
 0:5, and the j D 1 branch for Qk>
 0:5. We note that the branches
that make main contribution depend on the kind of polymer.

As for KP stiff chains (such as DNA), we note that the j D 0 branch is associated
with the end-over-end rotation and bending (global), the j D ˙2 degenerate branch
with the torsional motions (local), and the j D ˙1 degenerate branch with the
coupled (bending and torsional) motions (mixed) [31]. Thus the j D 0 branch is
independent of � and the j D ˙2 branch depends strongly on it. (All eigenvalues in
the j D 0 branch are positive for large r2 as in the dielectric case.)

11.2.3 Spectral Densities

We examine the behavior of the spectral density Jm.!/ averaged over p only for
flexible chains (with �0 ¤ 0). Since it is independent of m, we suppress the subscript
m in this subsection, for simplicity. Figure 11.8 shows double-logarithmic plots
of the reduced spectral density QJ.!/ D kBTJ.!/=�r against the reduced angular
frequency Q! D �r!=kBT. The curve HW represents the values calculated from
Eq. (11.32) with N�1 in place of .Q0

pk/
2 for the above a-PS for the case of the

methine carbons under observation. In general, J.!/ remains constant for small
! and is proportional to !�2 for large !. The vertical line segments attached to
the curve indicate the values of Q! equal to Q� j

2;k corresponding to the maximum and
minimum eigenvalues. (All eigenvalues are distributed between them.) The heavy
part of the curve indicates the intermediate region, which corresponds to the range
of those eigenvalues which make main contribution to J.!/.
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Fig. 11.8 Double-logarithmic plots of QJ.!/ against Q!. The curve HW represents the values
calculated from Eq. (11.32) in the crude subspace approximation for the same a-PS as that in
Fig. 11.7 for the case of the methine carbons under observation. The lower three curves represent
the values of the JS and W models with �rw=kBT D 1. The values of Q! corresponding to the
correlation times or their distribution range are also indicated (see the text)

Next we make a comparison of this J.!/ with those for the Jones–Stockmayer
(JS) three-bond-motion model [34] and the Woessner (W) isotropic trumbling model
[9] in the absence of internal rotations of the internuclear vectors. The JS spectral
density JJS.!/ may then be written in the form

JJS.!/ D 2
sX

kD1

Gk�k

1C .!�k/2
(11.34)

with

� �1
k D 4w sin2

�
.2k � 1/�=4s

�
; (11.35)

Gk D s�1 C 2s�1
sX

qD1
e�.ln 9/q cos

�
.2k � 1/q�=2s

�
: (11.36)

Thus the basic JS model parameters are the number s of the correlation times �k

and the three-bond jump rate w. On the other hand, the spectral density for the W
model (without internal rotations) is given by Eq. (11.34) with s D 1 and Gk D 1,
that is, with a single correlation time. In Fig. 11.8 are included the results for the
JS and W models calculated from Eq. (11.34) with �rw=kBT D 1:0. The unfilled
and filled circles and triangle represent the values of Q! equal to Q� �1

k D �r=kBT�k

for s D 5, 3, and 1, respectively, the eigenvalues being distributed nearly in the
intermediate region. As s is increased, the distribution of correlation times and hence
the intermediate region become wider, in particular, on the low-frequency side. (The
results for the model of Monnerie and co-workers [35, 36] are similar to those for
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the JS model.) It is then important to see that the intermediate region for the HW
chain is narrow compared to that for the JS model, although wider than that for the
W model. Thus it is anticipated that the HW model cannot explain T1; T2, NOE so
consistently as the JS model (see the next subsection). We note that J.!/ for the
flexible HW chain is almost independent of N for N>
 50.

11.2.4 Comparison with Experiment

(a) Flexible Polymers

We first make a comparison of theory with experiment with respect to T1; T2, and
NOE for flexible polymers with the dipolar interaction. Their theoretical values
are calculated from Eqs. (11.23)–(11.25) with Eq. (11.32) with N�1 in place of
.Q0

pk/
2. The parameter r2 and also �s2 in the presence of internal rotations are

determined to give good agreement between theory and experiment for T1. We
analyze experimental data for POE [37], PIB [38], a-PS [39, 40], a-PMVK [16], s-
PMMA [41], a-PMMA [42], and i-PMMA [41, 43]. The carbons under observation
are the methine (CH), methylene (CH2), methyl (CH3), or C3 (C5) carbons, as
indicated in Table 11.2. The values of the HW model parameters are the same as
those in the dielectric case except for PIB and a-PMMA, for which the values given
in Tables 6.3 (from Œ��) and 5.1, respectively, are used. We have ˛ D 90ı for all
these polymers, and ˇ D 55ı in the absence of internal rotations except for s-, a-,
and i-PMMAs, for which ˇ D 50ı. In the presence of internal rotations, we have
ˇ D 125ı and � D 70ı with the three-state jumps for PIB, ˇ D 55ı and � D 60ı
with the two-state jumps for a-PS, and ˇ D 125ı and � D 70ı with the three-state
jumps for s-PMMA.

In Table 11.2 are given observed and calculated values of T1, T2, and NOE
and the values of r2 and Q�s2 D kBT�s2=�r obtained in the higher-order subspace
approximation along with those in parentheses obtained in the crude approximation
[20, 31]. For all these polymers, the values of r2 determined in the former
approximation are smaller than those in the latter, and there is better agreement
between the observed and calculated values of NOE. As for T2, the agreement
cannot be remarkably improved. This is due to the fact that the higher-order
subspace approximation still fails to make the intermediate region of the spectral
density Jm.!/ wider and give Jm.0/ large enough to explain T2. Note that Jm.0/ is
underestimated if the intermediate region is narrow. The values of the diameter d
determined from r2 (r) as in the dielectric case are given in Table 11.3. It is seen
that the values determined in the higher-order subspace approximation are in good
agreement with those from the chemical structures except for PIB.
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The molecular weight dependences of T1 and NOE for flexible polymers are
discussed in connection with that of a correlation time �� for dynamic depolarized
light scattering (optical anisotropy) in Sect. 11.4.

(b) Semiflexible Polymers

In the case of flexible polymers discussed above, tumbling motions of repeat units
are hardly coupled with the entire chain motion, so that their T1, T2, and NOE are
almost independent of M except for very small M in the oligomer region. In the case
of semiflexible polymers, on the other hand, the former motions may be considered
to be coupled with the latter even in the range of rather large M, and therefore
the dependence of T1, T2, and NOE on M must be different from that for flexible
polymers.

Figure 11.9 shows plots of T1, T2, and NOE for 13C1 against Mw for PHIC in
n-hexane at 25 ıC and at !C=2� D 100MHz [44], where C1 is the n-hexyl (side-
chain) carbon atom next to a (main-chain) nitrogen atom. The circles, triangles,
and squares represent the experimental values of T1, T2, and NOE, respectively. As
already mentioned in Sects. 6.5.1 and 11.1.3, the contour of the PHIC chain may
be well represented by the KP chain with the values of the model parameters ��1
and ML given in Table 6.3. If we assume that its backbone takes the Schmueli–
Traub–Rosenheck 83 helix [45], it may be represented by the KP1 chain [see
Fig. 4.4(b)] with �0 D 1:33Å�1 (and � D 0), and the angles ˛ (in Fig. 11.1)
for the two internuclear vectors 13C1!1H may be assigned to be 39ı and 71ı.
We note that ˇ D � D 0ı in this case. In the figure, the heavy solid, dashed,
and dotted curves represent the best-fit theoretical values of T1, T2, and NOE,
respectively, calculated from Eqs. (11.23)–(11.25) and (11.32) with the above
mentioned values of the parameters along with r1 D 1 and r2 D 320 in the
crude subspace approximation. It is seen that the theory gives almost a quantitative
explanation of the experimental results within experimental error. From the value
of r2 so determined, the hydrodynamic diameter d of the (equivalent) KP cylinder
is evaluated to be 19 Å, which is fairly consistent with the values 16 and 25 Å
determined from the intrinsic viscosity and sedimentation coefficient, respectively,
and also with the value 15 Å determined from the dielectric relaxation.

For comparison, the light solid, dashed, and dotted curves in Fig. 11.9 represent
the theoretical values of T1, T2, and NOE, respectively, calculated from the equations
of Woessner [46] for the equivalent, rigid prolate spheroid. It is seen that the
behavior of the present data for PHIC cannot be explained by the completely rigid
spheroid.
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Table 11.3 Values of d
determined from nuclear
magnetic relaxation for
flexible polymers

d (Å)
From chemical

Polymer From r structures

POE 4.8 (5.5)a 4:5

PIB 10.5 (14.5) 6:5

a-PS 11.8–15.5 (18.0–24.8) 11:0

a-PMVK 9.0 (16.8) 7:5

s-PMMA 7.3 (16.9) 9:0

a-PMMA 9.3 (18.8) 9:0

i-PMMA 9.6–10.2 (16.2–16.4) 9:0

a The values in parentheses have been obtained in the
crude subspace approximation

Fig. 11.9 Plots of T1, T2, and
NOE against Mw for the 13C1
atoms for PHIC in n-hexane
at 25 ıC: (�) T1; (�) T2;
(�) NOE [44]. The heavy
solid, dashed, and dotted
curves represent the KP1
theoretical values of T1, T2,
and NOE, respectively, and
the light curves represent the
respective theoretical values
for the rigid prolate spheroid
(see the text)
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11.3 Fluorescence Depolarization

11.3.1 Formulation

Suppose that a sample is excited by an infinitely short flash of plane-polarized light,
incident along the x axis and polarized along the z axis of an external Cartesian
coordinate system (ex, ey, ez), and that the fluorescent light is observed from the
direction of the y axis. The emission anisotropy r.t/ is defined by [47]

r.t/ D Iz.t/ � Ix.t/

Iz.t/C 2Ix.t/
; (11.37)

where Iz and Ix are the z and x components of the fluorescence emission intensity,
respectively. The denominator .Iz C 2Ix/ is equal to the total intensity, which is
proportional to exp.�t=�f/ with �f the fluorescence lifetime. The average anisotropy
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Nr observed in steady-state experiments is given by the ratio of the integrals of the
numerator and denominator of Eq. (11.37) over t from 0 to1, so that we have

Nr D � �1
f

Z 1

0

r.t/e�t=�f dt : (11.38)

Let ma and me be the unit absorption and emission dipole moment vectors,
respectively, of the fluorescent probe incorporated in the polymer chain. Iz and Ix

may be expressed in terms of time-correlation functions as

Iz.t/ D Ce�t=�f
˝
Œez �ma.0/�

2Œez �me.t/�
2
˛
eq ; (11.39)

Ix.t/ D Ce�t=�f
˝
Œex �ma.0/�

2Œex �me.t/�
2
˛
eq ; (11.40)

where C is a constant independent of t. It can then be shown that r.t/ is given by
[48]

r.t/ D 16�

5

2˝D00�
2 Œ�a.0/�D00

2 Œ�e.t/�
˛
eq

D 2˝P2Œcos �a.0/�P2Œcos �e.t/�
˛
eq ; (11.41)

where �a D .�a, �a, 0) [�e D .�e, �e, 0)] with �a (�e) and �a (�e) the polar and
azimuthal angles of ma (me), respectively, in the external coordinate system, and
P2.x/ is the Legendre polynomial. Note that this result is equivalent to those of
Wallach [32] and Szabo [49].

Now suppose that the probe is rigidly attached to the pth subbody of the dynamic
HW chain, and assume that ma and me are parallel to each other, for simplicity. Then
me (D ma) corresponds to the electric dipole moment vector and the internuclear
vector (with � D 0) in Fig. 11.1, and the r.t/ given by Eqs. (11.41) is equal to the
magnetic autocorrelation function G0.t/, as defined by Eq. (11.28), multiplied by
the factor 2/5. Thus we readily find the results for the dynamic HW chain [48],

r.t/ D 2

5

NX

kD1
.Q0

pk/
2

2X

jD�2
A j
2;k exp.�� j

2;kt/ ; (11.42)

Nr D 2

5

NX

kD1
.Q0

pk/
2

2X

jD�2
A j
2;k

�
1C �f

�
j
2;k

��1
; (11.43)

where A j
2;k is the same as that in Eq. (11.32), and �

j
2;k is given by the first of

Eqs. (11.33). For the case of some (a small number of) identical probes distributed
randomly on the N subbodies, .Q0

pk/
2 may be replaced by N�1 in Eqs. (11.42)

and (11.43).
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For DNA as an example of KP stiff chains, it is known that there is an initial, very
rapid, but limited reorientation of the dipole arising from wobbling of a dye within
its intercalation site. If we assume that the wobbling is the fluctuation in the angle
ˇ at constant ˛, then this effect may be taken into account by introducing the factor
exp.�j2ˇ 2

w =2/ in front of A j
2;k in Eqs. (11.42) and (11.43), where ˇw is a fluctuation

width parameter.

11.3.2 Comparison with Experiment

(a) Flexible Polymers

The present theoretical values of r.0/ � r0 is equal to 2/5, but the observed values
are very often smaller. Thus we regard r0 as an adjustable parameter and calculate
theoretical values of r.t/ and Nr from Eqs. (11.42) and (11.43), respectively, with r0
in place of 2/5.

We consider flexible polymers with perpendicular emission dipoles randomly
distributed (with � D 0). Figure 11.10 shows plots of log r.t/ against t for a-PS
with 9,10-diphenyl anthracene side groups (˛ D 90ı and ˇ D 55ı) in ethylacetate–
tripropionin mixtures with the indicated values of �0 at 25 ıC [20, 48]. The shaded
domains bounded by the dashed curves represent the experimental values obtained
by Valeur and Monnerie [50]. The solid curves represent the theoretical values
calculated in the higher-order subspace approximation for r1 D 1, r2 D 80, and

403020100
−3

−2

−1

0

η0 = 0.075 P

η0 = 0.015 P

t (ns)

lo
g

r(
t)

Fig. 11.10 Plots of log r.t/ against t for a-PS with 9,10-diphenyl anthracene side groups (˛ D 90ı

and ˇ D 55ı) in ethylacetate–tripropionin mixtures with the indicated values of �0 at 25 ıC.
The shaded domains bounded by the dashed curves represent the experimental values obtained
by Valeur and Monnerie [50]. The solid curves represent the theoretical values calculated in the
higher-order subspace approximation for r1 D 1, r2 D 80, and N D 199 with r0 D 0:300 and
0.270 for �0 D 0:075 and 0.015 P, respectively, and the dot-dashed curves represent the theoretical
values in the crude approximation for r2 D 300 with r0 D 0:290 and 0.260, respectively (see the
text)
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N D 199 with r0 D 0:300 and 0:270 for �0 D 0:075 and 0.015 P, respectively, and
the dot-dashed curves represent the theoretical values in the crude approximation
for r2 D 300 with r0 D 0:290 and 0:260, respectively. The higher-order and
crude subspace approximations give the values 23.4 and 36.7 Å for the diameter
d, respectively.

As for Nr, we analyze experimental data obtained by North and Soutar [51] for
a-PMMA in toluene at 25 ıC, the dipoles having been incorporated by copoly-
merization with 9-vinyl anthracene (˛ D 90ı and ˇ D 55ı). We then obtain
r2 D 12 (102), and thus d D 11:5 (24.1) Å in the higher-order (crude) subspace
approximation from the observed Nr D 0:0530, r0 D 0:277, and �f D 5:5 ns.

(b) Semiflexible Polymers

We consider as an example of semiflexible polymers DNA with the dyes (ethidium
bromide) randomly distributed. Figure 11.11 shows plots of r.t/ against t for DNA
(of about 104 base pairs) in 0.15 mol/l NaCl at 22 ıC (a) and in 0.01 mol/l NaCl at
23 ıC (b) [48]. The dashed curves represent the experimental values obtained by
Millar et al. [52, 53]. The solid curves represent the theoretical values calculated
in the crude subspace approximation with �0 D 0, �0 D 200, ��1 D 1100Å,
� D �0:3, ML D 195Å�1, and N D 999 for case (a) and �0 D 0, �0 D 270,
��1 D 1500Å, � D �0:3, ML D 195Å�1, and N D 999 for case (b) along with
the indicated values of r2, ˛, and ˇw. With these values, we obtain d D 31:6–
36.2 Å (from r2 D 120–180 and a D 3:4Å), and the values 3:2 � 10�19 and
4:4�10�19 erg cm for the torsional force constantˇ in cases (a) and (b), respectively.
These values of d and ˇ are somewhat larger than those from magnetic relaxation.

Fig. 11.11 Plots of r.t/
against t for DNA in
0.15 mol/l NaCl at 22 ıC (a)
and in 0.01 mol/l NaCl at
23 ıC (b). The dashed curves
represent the experimental
values obtained by Millar
et al. [52, 53]. The solid
curves represent the
theoretical values calculated
from Eq. (11.42) with the
factor exp.�jˇ 2

w =2/ in the
crude subspace
approximation with �0 D 0,
� D �0:3, r1 D 1, and
N D 999 for both cases and
with �0 D 200 and
��1 D 1100 Å for case (a)
and with �0 D 270 and
��1 D 1500 Å for case (b)
along with the indicated
values of r2 , ˛, and ˇw

806040200
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0.3

0.2
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It is seen from Fig. 11.11 that there is rather good agreement between theory and
experiment, but that the theoretical r.t/ relaxes more rapidly than the experimental
one for t>
 40 ns. This defect and also the above results for d arise from the fact that
the d-HW (KP) chain cannot well describe the global, long-wavelength motions
of semiflexible polymers in the cases of fluorescence depolarization as well as
magnetic relaxation (in contrast to the dielectric case).

We note that the range of t in which the present r.t/ obeys the exponential�t1=2

decay law is somewhat narrower than the prediction by Barkley and Zimm [54],
who considered the bending and torsional motions on the basis of a continuous
elastic model and gave an explanation of earlier data obtained by Wahl et al. [55].

11.4 Dynamic Depolarized Light Scattering

11.4.1 Formulation

We consider the scattering by a single dynamic HW chain in dilute solution [56]. Let
˛p and Q̨ p be the excess (local) polarizability tensors (over the mean polarizability
of the solvent alone) of the pth subbody, expressed in the pth localized and external
Cartesian coordinate systems, respectively. In dynamic depolarized light scattering
measurements by the filter method [57], the ratio of the horizontal component IHv

of the excess scattered intensity measured at the scattering angle � to the intensity
I0v of monochromatic, vertically polarized incident light is determined as a function
of the difference�! between the angular frequencies !f and !i of the scattered and
incident light waves,

�! D !f � !i : (11.44)

If �0 is the wavelength of the light in vacuum and r is the distance from the center
of the scattering volume to the detector, the ratio IHv.�!/=I0v may be written in the
form [57]

IHv.�!/

I0v
D 16�4 NFHv.�!/

� 4
0 r2

; (11.45)

corresponding to Eq. (5.71), with

NFHv.�!/ D 1

2�

NX

p;p0D1

Z 1

�1
˝
˛p;Hv.0/˛p0;Hv.t/

� expfik � Œrp0.t/ � rp.0/�g
˛
eqe�i�!tdt ; (11.46)
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where ˛p;Hv.t/ is given by the discrete version of Eq. (5.74), k is the scattering vector
whose magnitude k is given by Eq. (5.20), and rp.t/ is the vector position of the
center of the pth subbody at time t.

It is then convenient to introduce a function J� .�!/ defined by

J� .�!/ D 15 NFHv.�!/ : (11.47)

The total (reduced) intensity is obtained by integrating NFHv.�!/ over �!, so that
we have, from Eqs. (5.118) and (11.47), for the mean-square optical anisotropy h� 2i

h� 2i D
Z 1

�1
J� .�!I k D 0/d.�!/ : (11.48)

Now ˛p;Hv may be expressed in terms of the spherical components Q̨ j
p;2 ( j D 0,

˙1, ˙2) of Q̨ p, which are given by Eqs. (5.216) and are related to the spherical
components ˛ j

2 ( j D 0,˙1, ˙2) of ˛p (which are independent of p) by Eq. (5.220).
Then J� .�!/ includes two kinds of contributions: the orientational fluctuations
of the optically anisotropic subbodies, that is, the product Dmj�

2 .�p; 0/Dm0j
2 .�p0 ; t/

and the density fluctuation of the subbodies in the domain of a linear dimension of
order 2�=k, that is, the factor expf� � � g in Eq. (11.46). For such small k that 2�=k
is much larger than the average chain dimension, the density fluctuation arises from
the translational diffusion of the entire chain over the distance of 2�=k, so that the
relaxation of the product of the D functions may be considered to be much faster
than that of the exponential factor, thereby leading to no correlation between the
two kinds of relaxation. We may then assume that the density correlation function
hexpf� � � gieq does not relax at all during the orientational relaxation. It may therefore
be replaced by its value at t D 0,

˝
expfik � Œrp0.t/ � rp.0/�g

˛
eq ' I.kI jp0 � pj�s/ ; (11.49)

where I.kI s/ is the characteristic function for the (continuous) HW chain of contour
length s. If 2�=k is much larger than the root-mean-square end-to-end distance, we
may put I.kI jp0 � pj�s/ ' 1. In these approximations, Eq. (11.47) with Eq. (11.46)
reduces to

J� .�!/ D 6�.8�2/N�1
NX

p;p0D1

2X

j;j0D�2
˛

j�
2 ˛

j0

2

Z 1

�1
C. j;j0/
2;Œ p;p0 �.t/e

�i�!tdt ; (11.50)

where C. j;j0/
2;Œ p;p0�.t/ is given by Eq. (11.29).

Thus we obtain the final result

J� .�!/ D
X

k odd

2X

jD�2

A j
k�

j
2;k

1C .�!� j
2;k/

2
; (11.51)
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where � j
2;k is given by the first of Eqs. (11.33) and the amplitude A j

k is given by

A j
k D

3

2�.N C 1/ cot2
�

k�

2.N C 1/
�ˇ̌
ˇ̌

2X

j0D�2
˛

j0

2 R jj0

2;k

ˇ̌
ˇ̌
2

: (11.52)

We note that the h� 2i obtained from Eq. (11.48) with Eq. (11.50) or (11.51) is
identical to the one given by Eq. (5.121) for N � 1 [56].

Finally, it is pertinent to make some remarks on the present results in relation
to other theories. The spring-bead model (the coarse-grained bond chain) with the
Kuhn–Grün expression [58] for the spring polarizability tensor is, in principle,
inappropriate for the description of depolarized scattering since it cannot give the
correct h� 2i [56], although it can give the correct result for flow birefringence, as
was derived by Zimm [1]. Ono and Okano [59] adopted this model to predict that
the spectrum of the (forward) depolarized component is an equally weighted sum of
Lorentzians each with a half-width at half-maximum (hwhm) inversely proportional
to the Rouse–Zimm relaxation time [4], and thus their theory must be invalid for real
chains. Recall that for the dynamic HW chain all branches of the 2(1) eigenvalue
spectrum are local. According to the numerical results [56], J� may be actually
written in terms of a small number of eigenvalues� j

2;k at small k which belong to two
branches (for example, j D 0 and �1 for a-PS and j D �1 and �2 for a-PMMA),
one (major) corresponding to the low-frequency modes and the other (minor) to
the high-frequency modes. However, this does not necessarily correspond to the
experimental results obtained by Bauer et al. [60] since their low-frequency modes
are just the Rouse–Zimm modes. We note that the analysis of the low-frequency
modes by Evans [61] on the basis of the Fixman–Kovac chain [62] also leads to the
inclusion of the Rouse–Zimm modes.

11.4.2 Comparison with Experiment

We make a comparison of theory with experiment with respect to a depolarized
scattering correlation time �� as defined as the reciprocal of the hwhm of
J� . Figure 11.12 shows double-logarithmic plots of the ratio �� =�0� against the
number of repeat units x for a-PS in cyclohexane at 34.5 ıC (�) [40], a-P˛MS in
cyclohexane at 30.5 ıC (�) [63], a-PMMA in acetonitrile at 44.0 ıC (�) [42], and i-
PMMA in acetonitrile at 28.0 ıC (�) [43], where �0� is the �� of the monomer at the
given temperature, that is, �0� D 0:00562 ns for a-PS (cumene), �0� D 0:00607 ns for
a-P˛MS (cumene), and �0� D 0:00193 and 0:00236 ns for a- and i-PMMAs (methyl
isobutyrate), respectively. We note that in all cases, the observed J� .�!/ may be
fitted by a single Lorentzian independently of x. The observed �� seems to level off
in the limit of x!1. In contrast to this, the experimental results obtained by Bauer
et al. [60] and by Strehle et al. [64] for a-PS show that �� increases without limit
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with increasing x. The heavy solid, dashed, dot-dashed, and dotted curves represent
the theoretical values evaluated from the reciprocal of the hwhm of J� calculated
from Eq. (11.51) in the higher-order subspace approximation (with the observed
�0� ) for a-PS, a-P˛MS, a-PMMA, and i-PMMA (a D 3:08Å), respectively, all with
r2 D 8 along with the polarizability tensors ˛0 given by Eqs. (5.130)–(5.133). Here,
the theoretical values for x<
 10 have not been calculated because of the breakdown
of the block-diagonal approximation. The theory also predicts that �� levels off.
With the results for r2, we obtain d D 10; 11; 10, and 11 Å for these polymers,
respectively.

For x<
 10, we simply treat the chain (oligomer) as a rigid sphere having
the hydrodynamic radius RH. If we assume that the oligomer as a whole has a
cylindrically symmetric polarizability tensor, for simplicity, then its relaxation time
��;.S/ is equal to .6Dr/

�1 with Dr the rotatory diffusion coefficient and is given by

��;.S/ D 4��0R 3
H=3kBT : (11.53)

It is then reasonable to equate RH to the apparent root-mean square radius of
gyration hS2i 1=2s [40], which may be calculated from Eq. (5.212). In Fig. 11.12, the
light curves represent the respective values calculated from Eq. (11.53) for the rigid
sphere model. They are seen to reproduce satisfactorily the data points for x<
 10.
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Fig. 11.12 Double-logarithmic plots of �� =�0� against x for a-PS in cyclohexane at 34.5 ıC (�)
(�) [40], a-P˛MS in cyclohexane at 30.5 ıC (�) (�) [63], a-PMMA in acetonitrile at 44.0 ıC
(�) (�) [42], and i-PMMA in acetonitrile at 28.0 ıC (�) (�) [43], where �0� is the �� of the
monomer. The heavy solid, dashed, dot-dashed, and dotted curves represent the respective HW
theoretical values calculated from Eq. (11.51) in the higher-order subspace approximation (with
the observed �0� ), and the light curves represent the respective theoretical values calculated from
Eq. (11.53) for the rigid sphere model (see the text)
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We note that Hagerman and Zimm [65] evaluated �� for KP stiff chains by Monte
Carlo methods, but that strictly their expression for the ratio of �� to its value ��;.R/
for rods, which is identical to the ratio �D=�D;.R/ in their approach, is not correct
since they used the Broesma equation for the rotatory diffusion coefficient of rods
(see Appendix 1 in Chap. 6).

11.4.3 Correlation with Nuclear Magnetic Relaxation

In this subsection we show that there is strong correlation between nuclear magnetic
relaxation and depolarized light scattering. For this purpose, an analysis is made
of the dependences on x of T1 and NOE in relation to �� along the same line
as in the last subsection. Figure 11.13 shows plots of nCHT1 and NOE against
log x for the intermediate methine carbon atoms for a-PS in cyclohexane at 40 ıC
(with nCH D 1) [40], where nCH is the number of C–H bonds associated with
the carbon atom under observation. The unfilled and filled circles represent the
experimental values of T1 and NOE, respectively, and the solid curves represent
the theoretical values calculated from Eqs. (11.23) and (11.25) with Eq. (11.32)
in the higher-order subspace approximation with the same values of the model
parameters as those in the last subsection (along with !C=2� D 100MHz,
!H=2� D 400MHz, r D 1:09Å, and �0 D 0:609 cP). The theoretical values are
again limited to the range of x>
 10. In this range, they are almost independent
of x. The theoretical asymptotic value of T1 in the limit of x ! 1 is in good
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Fig. 11.13 Plots of nCHT1 and NOE against log x for the intermediate methine carbon atoms for
a-PS in cyclohexane at 40 ıC (with nCH D 1); �, T1; �, NOE [40]. The solid curves represent
the HW theoretical values calculated from Eqs. (11.23) and (11.25) with Eq. (11.32) in the higher-
order subspace approximation, and the dashed curves represent the values for the rigid sphere
model with Eq. (11.54), instead of with Eq. (11.32), with �M;.S/ equal to ��;.S/. The unfilled and
filled triangles represent the values of T1 and NOE, respectively, for the rigid sphere with �M;.S/

equal to the scaled �� at 40 ıC (see the text)
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agreement with the experimental value, but that of NOE is appreciably larger
than the experimental value (see also Table 11.2). We must note here that the x
dependences of T1 and NOE may depend on the frequency of the spectrometer used
[40, 66].

As in the case of J� , we consider the rigid sphere model, to which a C�H
internuclear vector is affixed. Its T1 and NOE may then be calculated from
Eqs. (11.23) and (11.25) with Jm given by [25]

Jm.!/ D 2�M;.S/

1C .!�M;.S//2
; (11.54)

where �M;.S/ is identical to ��;.S/ given by Eq. (11.53) with RH D hS2i 1=2s . In
Fig. 11.13, values of T1 and NOE so calculated are represented by the respective
dashed curves. The dashed curve for T1 is in good agreement with the data points
for the oligomers as in the case of �� . As mentioned in the last subsection, for the
polymer–solvent systems in Fig. 11.12 J� may be well represented in terms of a
single relaxation time �� (a single Lorentzian) even for large x. It may therefore
be expected that this is also the case with nuclear magnetic relaxation. Thus we
calculate T1 and NOE for the rigid sphere from Eqs. (11.23) and (11.25) with
Eq. (11.54), where we equate �M;.S/ to the (scaled) �� for a-PS in cyclohexane at
40 ıC. Values of T1 and NOE so calculated for all a-PS fractions are represented by
the unfilled and filled triangles, respectively, in Fig. 11.13. They agree well with the
respective experimental values. This indicates that the two relaxation processes may
give equivalent information about the local chain motions.

Figure 11.14 shows similar plots for the intermediate methylene carbon atoms for
a-PMMA in acetonitrile at 44 ıC (with nCH D 2) [42]. The solid curves represent the
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Fig. 11.14 Plots of nCHT1 and NOE against log x for the intermediate methylene carbon atoms for
a-PMMA in acetonitrile at 44 ıC (with nCH D 2); �, T1; �, NOE [42]. The solid and dashed
curves have the same meaning as those in Fig. 11.13. The unfilled and filled triangles represent the
values of T1 and NOE, respectively, for the rigid sphere with �M;.S/ D 0:6 �� (see the text)
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HW theoretical values (with r D 1:09Å and �0 D 0:285 cP) (see also Table 11.2).
The unfilled and filled triangles represent the values for the rigid sphere with a single
relaxation time but with �M;.S/ D 0:6 �� . The disagreement between �M;.S/ and ��
in this case arises from the fact that all the eigenvalues make contribution to T1 and
NOE in contrast to the case of J� and there are differences in amplitudes between
a-PS and a-PMMA, as mentioned in Sect. 11.2.2.

Similar analyses have been made for a-P˛MS [67] and i-PMMA [43], although
we omit their detailed description since the results are rather analogous to the above
ones for a-PS and a-PMMA.

11.5 First Cumulant of the Dynamic Structure Factor

11.5.1 Formulation

We first evaluate the dynamic structure factor S.k; t/ as a function of the magnitude
k of the scattering vector k and time t on the basis of the dynamic HW chain [68].
Suppose that the N subbodies and also the .N C 1/th imaginary one have identical
isotropic polarizabilities. It may be written in the form [57]

S.k; t/ D 1

.N C 1/2
NC1X

p;p0D1

˝
expfik � Œrp0.t/ � rp.0/�g

˛
eq : (11.55)

Note that the static structure factor S.k; 0/ is identical to the scattering function
P.kIL/ considered in Sect. 5.2. In order to carry out evaluation, we introduce the
Gaussian approximation, that is, the approximation that the distribution of the
quantity rp0.t/�rp.0/ is Gaussian. The equilibrium average in Eq. (11.55) may then
be reduced to be

˝
expfik � Œrp0.t/ � rp.0/�

˛
eq D exp

�
�k2

6
hjrp0.t/ � rp.0/j2ieq

�
: (11.56)

This approximation is not bad unless the chain is extremely stiff.
If we neglect the difference between the center of mass and the Zimm center of

resistance Rc, for simplicity, then rp may be written in terms of Rc and the bond
vectors ap as

rp D Rc C
NX

qD1
upqaq ; (11.57)
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where

upq D q

N C 1 � h.q � p/ (11.58)

with h.x/ the unit step function as before. Further, if we assume that the motion of
Rc is independent of those of ap, the average hjrp0.t/� rp.0/j2ieq in Eq. (11.56) may
be written as

˝jrp0.t/ � rp.0/j2
˛
eq D

˝jrp0.0/� rp.0/j2
˛
eq C

˝jRc.t/ �Rc.0/j2
˛
eq

C2
NX

q;q0D1
upqup0q0

�haq0.0/ � aq.0/ieq � haq0.t/ � aq.0/ieq
�
; (11.59)

where the first average hjrp0.0/�rp.0/j2ieq on the right-hand side may be equated to
the mean-square end-to-end distance hR2.s/i of the continuous HW chain of contour
length s D jp � p0j�s, and the second average may be given by

˝jRc.t/ � Rc.0/j2
˛
eq D 6Dt (11.60)

with D being the translational diffusion coefficient of the center of mass in the
approximation of Eq. (11.56).

By the use of the relations between the Cartesian components of ap and the D
functions Dmj

1 .�p/ [5], the time-correlation functions
˝
ap0.t/ � ap.0/

˛
eq in Eq. (11.59)

may be expressed in terms of the 1(1) correlation functions C. j;j0/
1;Œ p;p0 �

.t/ as

˝
ap0.t/ � ap.0/

˛
eq D .8�2/Na2C.0;0/

1;Œ p;p0�.t/ ; (11.61)

where C. j;j0/
1;Œ p;p0�

.t/ is given by Eq. (11.9). Substitution of Eq. (11.56) with
Eqs. (11.59)–(11.61) into Eq. (11.55) leads to

S.k; t/ D 1

.N C 1/2
NC1X

p;p0D1
exp

�
�k2

6

	˝
R2.jp � p0j�s/

˛C 6Dt

C2.8�2/Na2
NX

q;q0D1
upqup0q0

�
C.0;0/

1;Œq;q0 �.0/� C.0;0/

1;Œq;q0 �.t/
�
�

:

(11.62)
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Next we evaluate the first cumulant, that is, the initial decay rate of S.k; t/, which
is defined by

�.k/ D �
�

d ln S.k; t/

dt

�

tD0
: (11.63)

From Eqs. (11.62) and (11.63), the dimensionless quantity �0�.k/=kBTk3 as a func-
tion of the reduced magnitude Nk of the scattering vector may then be expressed as

�0�.k/

kBTk3
D 1

6� Nk
�
�C F.Nk/� ; (11.64)

where � is defined by Eq. (6.130) with Eq. (6.132), and Nk and F.Nk/ are given by

Nk D hS2i1=2k ; (11.65)

F.Nk/ D 2hS2i1=2
3r1r2aS.Nk; 0/

NX

KD1
AK.Nk/

�jR001;Kj2 Q�01;K C jR.�1/01;K j2 Q�.�1/1;K



:

(11.66)

In Eq. (11.66), r1 and r2 are given by Eqs. (11.17), R jj0

1;k are given by Eqs. (11.10)

.�0 ¤ 0/ and (11.13) .�0 D 0/, Q� j
1;k are the reduced 1(1) eigenvalues as before, and

S.Nk; 0/ and AK.Nk/ are given by

S.Nk; 0/ D 1

N C 1 C
2

.N C 1/2
NX

nD1
.N � nC 1/ exp

�
�
Nk2
6

˝
R2.n�s/

˛
˝
S2.L/

˛
�
;

(11.67)

AK.Nk/ D 1

4.N C 1/2 cosec2
�

K�

2.N C 1/
�

�
	
1C 2

N C 1
NX

nD1

�
.N � nC 1/ cos

�
nK�

N C 1
�

�cosec

�
K�

N C 1
�

sin

�
nK�

N C 1
��

exp

�
�
Nk2
6

˝
R2.n�s/

˛
˝
S2.L/

˛
�

;

(11.68)

where hS2.L/i (D hS2i) is the mean-square radius of gyration of the continuous
HW chain of total contour length L. Thus the two branches ( j D 0 and �1) of the
eigenvalue spectrum make contribution to �.k/ for �0 ¤ 0, and only the j D 0

branch does for �0 D 0, as seen from Eq. (11.66).
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Now it is important to see from Eq. (11.64) that the so-called “universal” plot of
�0�.k/=kBTk3 against Nk depends on both � and F.Nk/, and therefore is not universal;
it depends on the kind of polymer. According to the results of numerical calculation
for the c-HW chain in the crude subspace approximation [68], the eigenvalues �01;k
in the j D 0 branch at small wave numbers k make main contribution to �.k/. For
KP stiff chains (�0 D 0), we may adopt the touched-bead model as in the case of the
dielectric correlation time �D (for the d-HW chain) but with r1 D 1 and r2 D 1=3

for the Stokes bead. [Recall that because of the negative eigenvalues, in the cases
of dielectric and magnetic relaxation and fluorescence depolarization for the stiff d-
HW (KP) chain, an unreasonable value much larger than 1/3 had to be assigned
to r2, or a value much smaller than d had to be assigned to a.] The numerical
results also show that the universal plot for the KP chain depends appreciably on
L; in particular, it exhibits no plateau region for small L, the dimensionless quantity
above decreasing monotonically with increasing Nk. We note that in the theoretical
calculation, experimental values (if available) should be used for � in Eq. (11.64)
since they are appreciably different from the Kirkwood or Zimm value and also
dependent on N.

11.5.2 Comparison with Experiment

Figure 11.15 shows plots of �0�.k/=kBTk3 against Nk [68]. The circles represent the
experimental values for an a-PS sample with the molecular weight M D 8:04� 106
in cyclohexane at 34.5 ıC [69], the circles with pips represent those (smoothed)
obtained by Han and Akcasu [70] for a-PS with M D 4:1 � 104–4:4 � 107 in
cyclohexane at 35.0 ıC, the triangles represent those for an a-PMMA sample with
M D 1:31 � 107 in acetonitrile at 44.0 ıC [69], the squares represent those for a
PHIC sample with M D 7:71 � 105 in n-hexane at 25.0 ıC [71], and the diamonds
represent those obtained by Soda and Wada [72] for DNA with L D 2:24�m in
0.15 mol/l NaCl (with 0.015 mol/l trisodium citrate) at 25.0 ıC. The data points for
PHIC and DNA deviate appreciably upward from those for a-PS and a-PMMA.
This deviation arises from the fact that the values 1:945 and 1.64 of � for PHIC and
DNA, respectively, are larger than the values 1:305 and 1:295 for a-PS with M D
8:04 � 106 and a-PMMA, respectively [69]. The solid and dashed curves represent
the theoretical values calculated from Eq. (11.64) with Eqs. (11.66)–(11.68) (for the
c-HW chain) with the values of the HW model parameters given in Table 5.1, r1 D
1, r2 D 10, N C 1 D 104, and � D 1:305 and 1:295 for a-PS and a-PMMA,
respectively. We note that the value 1:305 of � for a-PS in cyclohexane at 34.5 ıC
is somewhat larger than that given in Table 6.4. This difference may be regarded
as arising from the fact that the a-PS sample with M D 8:04 � 106 is broader
in molecular weight distribution than the a-PS samples used for the determination
of � given in Table 6.4. The dot-dashed and dotted curves represent the theoretical
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Fig. 11.15 Plots of �0�.k/=kBTk3 against Nk for a-PS with M D 8:04 � 106 in cyclohexane at
34.5 ıC (�) [69], a-PS with M D 4:1 � 104–4:4 � 107 in cyclohexane at 35.0 ıC by Han and
Akcasu (') [70], a-PMMA with M D 1:31 � 107 in acetonitrile at 44.0 ıC (�) [69], PHIC with
M D 7:71 � 105 in n-hexane at 25.0 ıC (�) [71], and DNA with L D 2:24 �m in 0.15 mol/l
NaCl at 25.0 ıC by Soda and Wada (�) [72]. The solid, dashed, dot-dashed, and dotted curves
represent the theoretical values calculated from Eq. (11.64) for a-PS, a-PMMA, PHIC, and DNA,
respectively (see the text)

values similarly calculated from Eq. (11.64) (for the touched-bead c-KP model) with
��1 D 840Å, db(D a)D 29Å (d D 0:861db D 25Å), N(D L=db)D 371, and
� D 1:945 for PHIC and with ��1 D 1100Å, db D 29Å, N D 772, and � D 1:64

for DNA, respectively. We note that experimental results for a-P˛MS in cyclohexane
at 30.5 ıC and PIB in IAIV at 25.0 ıC are similar to those for a-PS and a-PMMA in
the behavior of �0�.k/=kBTk3 as a function of Nk [73].

It is seen that there is rather good agreement between theory and experiment.
However, it may be fair to mention that this (apparent) agreement is mainly due
to the use of the experimental values of � in the theoretical calculation from
Eq. (11.64), since the preaveraged Oseen tensor has been used in the evaluation
of F.Nk/. Now it is well known that for the spring-bead (Gaussian) chain in the
nondraining limit, the plateau value .1=6�/ of �0�.k/=kBTk3 (in the k3-region of
�) with the preaveraged Oseen tensor [74, 75] is 15 % smaller than that (1/16) with
the nonpreaveraged tensor [75, 76]. [Akcasu and co-workers [76–78] were the first
to evaluate �.k/ over the whole range of k on the basis of the Gaussian chain.]
Considering this fact, the HW theoretical values would become somewhat larger if
the nonpreaveraged Oseen tensor could be used. Then the resultant disagreement
between theory and experiment might be attributed to the experimental difficulty
in the determination of the true initial decay rate as pointed out by Stockmayer
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and co-workers [79, 80]. At any rate, important is the fact that the “universal” plot
is not universal, as seen from Fig. 11.14; the differences in the plot among a-PS,
a-PMMA, PHIC, and DNA are due to those in �, chain stiffness, and local chain
conformation. As for semiflexible chains, we note that Maeda and Fujime [81] and
Harnau et al. [82] evaluated �.k/ on the basis of the Harris–Hearst model [83] and
its improved version [84, 85], respectively, and analyzed some experimental data. In
these, however, the constraint on the contour length is relaxed (see Appendix 3 in
Chap. 3).

Finally, we examine the behavior of �.k/ from a different point of view.
Figure 11.16 shows double-logarithmic plots of ��1�0�.k/=kBTk2 against ��1k
for a-PS with ��1 D 20:6Å [68]. The unfilled circles represent the experimental
values for the sample with M D 8:04 � 106 (in Fig. 11.15), the unfilled circles
with pips represent those by Han and Akcasu for the sample with M D 4:4 � 107
(in Fig. 11.15), and the filled circles represent those by Nicholson et al. [86] (by
the neutron spin-echo method) for a sample with M D 5:5 � 104 in benzene-d6 at
30.0 ıC. The solid curves represent the respective theoretical values, and the dot-
dashed straight line has a slope of unity. [Note that the excluded-volume effect on
F.Nk/ may be expected to be rather small for the last sample.] For small M (the
last sample), it is interesting to see that the experimental data exhibit no k3-region,
being consistent with the theoretical prediction, and that the transition from the k3-
to k2-region in the range of large k occurs at ��1k ' 1.
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Fig. 11.16 Double-logarithmic plots of ��1�0�.k/=kBTk2 against ��1k for a-PS with ��1 D
20:6 Å with experimental data for M D 8:04 � 106 in cyclohexane at 34.5 ıC (�) [69], those by
Han and Akcasu [70] for M D 4:4 � 107 in cyclohexane at 35.0 ıC ('), and those by Nicholson
et al. [86] for M D 5:5�104 in benzene-d6 at 30.0 ıC (�). The solid curves represent the respective
theoretical values calculated from Eq. (11.64), and the dot-dashed straight line has a slope of unity
(see the text)
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11.6 Some Remarks

11.6.1 Elementary Processes of Chain Motions

In the preceding sections of this chapter, it has been shown that the dynamic HW
chain model may give a quantitative or semiquantitative explanation of experimental
results for various dynamical properties of both flexible and semiflexible polymers
in dilute solution. In the case of flexible chains, however, it is difficult to picture
clearly the elementary processes of chain motions in contrast to the case of
conventional bond chains [11, 87]. This is due to the coarse-graining made in
the HW model (even in the d-HW chain). The situation may be manifested if the
activation energy for local chain motions (conformational transitions) is considered.
The simulation [88, 89] and experimental [11, 15, 66, 90] studies show that it is about
10 kJ mol�1, nearly corresponding to the single trans–gauche barrier height. (This
also indicates the nonexistence of the so-called crankshaft motion.) For comparison,
if we consider the dielectric correlation time �D of, for example, a-PPCS on the basis
of the dynamic HW model, the activation energy is estimated to be 3.1 kJ mol�1
from the Arrhenius plot of ln.�D=�0/ against T�1, assuming that ��1 is proportional
to T�1 [20]. The result is only comparable to the value 2.7 kJ mol�1 estimated from
the Rouse–Zimm relaxation times (�D=�0 / T�1).

11.6.2 Dynamic vs. Static Chain Stiffness

In the preceding sections we have considered the dielectric correlation time �D and
the depolarized scattering correlation time �� . We further introduce magnetic and
fluorescence correlation times �M and �F defined by

�M D 1

Gm.0/

Z 1

0

Gm.t/dt D Jm.0/

2Gm.0/
; (11.69)

�F D 1

r.0/

Z 1

0

r.t/dt ; (11.70)

where Gm.t/ is the magnetic autocorrelation function, Jm.!/ is the spectral density,
and r.t/ is the emission anisotropy as before. Note that �M is in general not an
observable (except in the narrowing limit) in contrast to the other correlation times.

Now, for flexible chains, we consider the ratio of the correlation time �X (with
X D D, M, F, � ) to that, �0X , of the isolated single subbody as the spheroid
having rotation axis of length a and diameter d, where we assume that the
chain has perpendicular dipoles or (approximately cylindrically-symmetric) local
polarizabilities. Clearly the ratio may be regarded as a measure of dynamic chain
stiffness. We calculate it using the observed values of �D (in Table 11.1), theoretical
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values of �M computed from Eq. (11.69) in the higher-order subspace approximation
(as in Table 11.2), observed values of �F [48], and the observed values of �� (in
Sect. 11.4.2) along with theoretical values of �0X computed from [5, 31, 48]

�0D D .Dr;1 CDr;3/
�1 ; (11.71)

�0M D �0F D
1

24

�
1

Dr;1
C 9

Dr;1 C 2Dr;3

�
; (11.72)

�0� D
1

6Dr;1
; (11.73)

where Dr;1 and Dr;3 are the same rotatory diffusion coefficients as those in
Eq. (11.19), and the values of d from the chemical structures are used. We
note that Eq. (11.73) can be derived from the depolarized component IHv.t/ /
exp.�6Dr;1t/ [57].

Values of log.�X=�
0
X/ so calculated are plotted against the static stiffness param-

eter ��1 in Fig. 11.17. The unfilled and filled circles, triangle, and squares represent
the values for X D D, M, F, and � , respectively. It is seen that the ratio �X=�

0
X is a

monotonically increasing function of ��1, indicating that there is strong correlation
between them.
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Fig. 11.17 Plots of log.�X =�
0
X/ against ��1 for polymers with perpendicular dipoles or (approx-

imately cylindrically-symmetric) local polarizabilities, where �0X is the �X of the isolated subbody,
and X D D (�), M (�), F (�), and � (�). The polymers are identified by the numbers attached
to the points: (1) POE, (2) PIB, (3) a-PS, (4) a-P˛MS, (5) a-PMVK, (6) s-PMMA, (7) a-PMMA,
and (8) i-PMMA
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11.6.3 Dynamic Intrinsic Viscosity

In this subsection we briefly discuss the dynamic intrinsic viscosity, that is, the real
part Œ�0� of Œ�� D Œ�0� � iŒ�00� [91]. The subspace f2.1/; 2.2/g actually relevant
to viscosity becomes 6N-dimensional if a new basis set, which is a hybrid of the
one- and two-body excitation basis functions, is introduced. Then the eigenvalue
problem may be reduced to N six-dimensional problems. Among the six branches
of the eigenvalue spectrum �J

2.2/;k (J D 1, � � � , 6), one global (J D 1) and two local
(J D 2, 3) branches make contribution to Œ�0�. Thus it may be written in the form

Œ�0� D Œ��glob C Œ��loc C Œ��1 (11.74)

with

Œ��1 D Œ��C C Œ��E C �� ; (11.75)

where Œ��glob is the contribution from the J D 1 (Rouse–Zimm) branch, Œ��loc is that
from the J D 2 and 3 branches (at small wave numbers k), which arises from the
interaction between the global and local modes, Œ��C arises from the constraints and
is independent of the angular frequency !, and Œ��E and �� are the Einstein intrinsic
viscosity and the specific interaction parameter in Eq. (6.134), respectively. Note
that Œ��.KR/ in Eq. (6.134) may now be written in the form

Œ��.KR/ D Œ��glob
0 C Œ��loc

0 C Œ��C ; (11.76)

where the subscript 0 indicates the value at ! D 0.
Now the eigenvalues in the J D 2 and 3 branches are much larger than those

in the J D 1 branch at small k, and therefore Œ��loc still remains finite after Œ��glob

has relaxed away. The high-frequency plateau observed in viscoelastic experiments
[92], the height of which we denote by Œ��P, may then be given by

Œ��P D Œ��loc
0 C Œ��1 : (11.77)

In this connection, we note that Fixman and Evans [93] considered Œ��loc
0 to arise

from the gap structure of the spectrum due to the interaction between the global and
local modes, and that the effect of the constraints leading to Œ��C was also considered
by Doi et al. [94] and by Fixman and Evans [95]. As seen from Eq. (11.77) with
Eq. (11.75), Œ��P may possibly become negative for �� < 0. Indeed, this has been
observed experimentally in some cases [96]. In the case of �� D 0, it has been shown
that there is rather good agreement between theory and experiment for Œ��P [91].

Finally, we note that the mechano-optic coefficient in oscillatory flow birefrin-
gence [97–99] may be expressed in terms of the eigenvalues in the above three
branches of the viscoelastic spectrum and the five (local) branches of the magnetic
one [100].
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11.6.4 Excluded-Volume Effects on the First Cumulant

In this final subsection we take a brief glance at excluded-volume effects on the
first cumulant�.k/ considered in Sect. 11.5. Benmouna and Akcasu [76, 101] were
the first to consider the effects for flexible polymers in good solvents on the basis
of the blob model [102] giving attention to the height of the plateau in the plot
of �0�.k/=kBTk3 against Nk (see Fig. 11.15). Then Tanaka and Stockmayer [103]
carried out the conventional first-order perturbation calculation [4] with the use of
the Akcasu–Gurol formula [77]. A comparison of the Tanaka–Stockmayer theory
with the experimental data for a-PS and a-P˛MS with very large M in the vicinity
of the respective � temperatures shows that the dimensionless coefficient C of the
k4-term in the expansion of �.k/ does not almost depend on excluded volume, as
predicted by the theory, while it overestimates the height of the plateau in the k3-
region of � [104]. The discrepancy may be regarded as arising from the fact that
the theory based on the Gaussian chain model cannot take proper account of effects
of chain stiffness and local chain conformation.
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Appendix A
Coefficients A.m/ij in Eq. (3.72)

A.1/00 D �
1

2
; A.1/10 D 1 ; A.1/11 D

1

2
;

A.2/00 D
107

54
; A.2/10 D �

26

9
; A.2/11 D �2 ;

A.2/20 D
5

3
; A.2/21 D �1 ; A.2/22 D

1

54
;

A.3/00 D �
6143

324
; A.3/10 D

226

9
; A.3/11 D

4743

250
;

A.3/20 D �
259

18
; A.3/21 D

639

50
; A.3/22 D �

1

81
;

A.3/30 D
35

9
; A.3/31 D

21

10
; A.3/32 D �

1

54
;

A.3/33 D
1

4500
;

A.4/00 D
123403

375
; A.4/10 D �

281183

675
; A.4/11 D �

18509371

56250
;

A.4/20 D
3554

15
; A.4/21 D �

151042

625
; A.4/22 D �

59

3087
;

A.4/30 D �
224

3
; A.4/31 D �

7722

125
; A.4/32 D

11

1323
;

A.4/33 D �
2

28125
; A.4/40 D

35

3
; A.4/41 D �

126

25
;
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A.4/42 D
1

63
; A.4/43 D �

1

5625
; A.4/44 D

1

771750
;

A.5/00 D �
164016904

18225
; A.5/10 D

67421951

6075
; A.5/11 D

347266405529

38587500
;

A.5/20 D �
2545708

405
; A.5/21 D

1902126692

275625
; A.5/22 D

1255150

12252303
;

A.5/30 D
169301

81
; A.5/31 D

18269383

8750
; A.5/32 D

2545

21609
;

A.5/33 D �
31

41006250
; A.5/40 D �

22715

54
; A.5/41 D

35541

125
;

A.5/42 D
55

9261
; A.5/43 D

61

911250
; A.5/44 D �

1

3781575
;

A.5/50 D
385

9
; A.5/51 D

693

50
; A.5/52 D �

55

3969
;

A.5/53 D
11

101250
; A.5/54 D �

1

1080450
; A.5/55 D

1

225042300
:



Appendix B
Coefficients A.m/ijk in Eq. (4.81)

The coefficients A.m/ijk in Eq. (4.81) may be written as functions of �0 and �0 in the
form,

A.m/ijk D
mX

nD0
a.m/nijk .	/

�
2n
0 �

2.m�n/
0

	2m

with 	 D .� 2
0 C � 20 /

1=2. We note that the coefficients a.m/nijk have the symmetry

property a.m/nij.�k/ D a.m/n�
ijk with the asterisk indicating the complex conjugate, and

that

a.m/0ijk D A.m/ij for k D 0
D 0 for k 6D 0 ;

where A.m/ij are given in Appendix A. The coefficients a.m/nijk (n 6D 0, k 	 0) for
m D 1 and 2 are given by

a.1/1000 D �
2.4 � 	2/
.4C 	2/2 ; a.1/1100 D

4

4C 	2 ;

a.1/1110 D 0 ; a.1/1111 D
4 � 	2 � 4i	

.4C 	2/2 ;

a.2/1000 D
8875008� 118656	2 � 100768	4 � 8744	6 � 154	8

27.4C 	2/3.36C 	2/2 ;

a.2/1100 D
�29952� 880	2C 20	4
9.4C 	2/2.36C 	2/ ; a.2/1110 D

32C 6	2
.16C 	2/2 ;
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a.2/1111 D
�8448� 208	2 C 32	4 C 	6

4.4C 	2/3.16C 	2/ C i
�1536C 800	2 C 76	4 C 	6

	.4C 	2/3.16C 	2/ ;

a.2/1200 D
40

3.4C 	2/ ; a.2/1210 D
8

16C 	2 ;

a.2/1211 D
4 � 	2 � 4i	

.4C 	2/2 ; a.2/1220 D �
8

27.16C 	2/ ;

a.2/1221 D
36864� 2368	2 � 108	4 � 	6 � 4i	.5376C 152	2C 	4/

4.16C 	2/2.36C 	2/2 ;

a.2/1222 D 0 ;

a.2/2000 D
1109376� 461088	2 � 75272	4C 854	6C 130	8

27.4C 	2/4.9C 	2/2 ;

a.2/2100 D
�14976C 2032	2C 244	4

9.4C 	2/3.9C 	2/ ; a.2/2110 D 0 ;

a.2/2111 D
�65536C 33024	2C 960	4 C 16	6 � 4	8

.4C 	2/4.16C 	2/2

Ci
�24576C 68096	2 � 5824	4 � 448	6 � 28	8

	.4C 	2/4.16C 	4/2 ;

a.2/2200 D
80

3.4C 	2/2 ; a.2/2210 D 0 ;

a.2/2211 D
�4.32� 60	2 C 3	4/C 8i	.36� 11	2/

.4C 	2/3.16C 	2/ ;

a.2/2220 D
32

27.16C 	2/2 ; a.2/2221 D 0 ;

a.2/2222 D
144� 73	2 C 	4 � 14i	.12� 	2/

.9C 	2/2.16C 	2/2 :
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Coefficients Emn.�0; �0/ and D00;00l1l2l3;mn.�0; �0/

E11 D � 23 ; E12 D � 1
12
� 2
0 C 1

3
;

E13 D 1
10
� 2
0 � 2

15
; E14 D 1

360
� 4
0 C 1

360
� 2
0 �

2
0 � 1

15
� 2
0 C 2

45
;

E15 D � 1
252
� 4
0 � 1

252
� 2
0 �

2
0 C 2

63
� 2
0 � 4

315
;

E22 D 28
45
; E23 D 8

45
� 2
0 � 4

5
;

E24 D 1
144
� 4
0 � 23

60
� 2
0 C 73

105
;

E25 D � 11
378
� 4
0 � 5

756
� 2
0 �

2
0 C 899

1890
� 2
0 � 13962835

;

E33 D � 248315 ; E34 D � 233630 � 2
0 C 988

525
;

E35 D � 11
360
� 4
0 C 664

525
� 2
0 � 13314

4725
; E44 D 2032

1575
;

E45 D 1352
1575

� 2
0 � 23264

4725
; E55 D � 2336891

;

D00;00
202;01 D � 83 ; D00;00

202;02 D � 1124 � 2
0 C 13

3
;

D00;00
202;03 D 8

5
� 2
0 � 16

3
;

D00;00
202;04 D 47

720
� 4
0 C 17

720
� 2
0 �

2
0 � 3110� 2

0 C 242
45
;

D00;00
202;05.0; �0/ D � 20845 ; D00;00

202;12 D � 1
12
� 2
0 C 127

45
;

D00;00
202;13 D 17

18
� 2
0 � 736

105
;

D00;00
202;14 D 59

1440
� 4
0 C 1

360
� 2
0 �

2
0 � 1301336

� 2
0 C 817

63
;

D00;00
202;15.0; �0/ D � 555342835

; D00;00
202;23 D 8

45
� 2
0 � 1244

315
;

D00;00
202;24 D 1

144
� 4
0 � 43

21
� 2
0 C 4439

315
; D00;00

202;25.0; �0/ D � 51987214175
;

D00;00
202;34 D � 233630 � 2

0 C 11092
1575

; D00;00
202;35.0; �0/ D � 177743851975

;
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D00;00
202;45.0; �0/ D � 2402912155925

;

D00;00
220;01 D �6 ; D00;00

220;02 D � 32� 2
0 C 18 ;

D00;00
220;03 D 9� 2

0 � 36 ; D00;00
220;04 D 1

2
� 4
0 C 1

8
� 2
0 �

2
0 � 27� 2

0 C 54 ;
D00;00
220;05.0; �0/ D � 3245 ; D00;00

220;12 D � 1
12
� 2
0 C 19

3
;

D00;00
220;13 D 13

5
� 2
0 � 416

15
;

D00;00
220;14 D 23

180
� 4
0 C 1

360
� 2
0 �

2
0 � 55930 � 2

0 C 3548
45
;

D00;00
220;15.0; �0/ D � 15089 ; D00;00

220;23 D 8
45
� 2
0 � 44

5
;

D00;00
220;24 D 1

144
� 4
0 � 311

60
� 2
0 C 5599

105
; D00;00

220;25.0; �0/ D � 5816262835
;

D00;00
220;34 D � 233630� 2

0 C 8128
525

; D00;00
220;35.0; �0/ D � 1951661575

;

D00;00
220;45.0; �0/ D � 1571844725

;

D00;00
222;01 D � 173 ; D00;00

222;02 D � 2924 � 2
0 C 107

6
;

D00;00
222;03 D 309

40
� 2
0 � 124

3
;

D00;00
222;04 D 17

45
� 4
0 C 31

360
� 2
0 �

2
0 � 164360 � 2

0 C 3536
45
;

D00;00
222;05.0; �0/ D � 40606315

; D00;00
222;12 D � 1

12
� 2
0 C 262

45
;

D00;00
222;13 D 79

36
� 2
0 � 2773

105
;

D00;00
222;14 D 149

1440
� 4
0 C 1

360
� 2
0 �

2
0 � 1815112

� 2
0 C 21475

252
;

D00;00
222;15.0; �0/ D � 2505311134

; D00;00
222;23 D 8

45
� 2
0 � 2504

315
;

D00;00
222;24 D 1

144
� 4
0 � 467

105
� 2
0 C 15569

315
; D00;00

222;25.0; �0/ D � 4296532025
;

D00;00
222;34 D � 233630 � 2

0 C 21802
1575

; D00;00
222;35.0; �0/ D � 586178251975

;

D00;00
222;45.0; �0/ D � 4612592155925

;

D00;00
224;01 D �4 ; D00;00

224;02 D � 5
12
� 2
0 C 146

15
;

D00;00
224;03 D 73

30
� 2
0 � 2038

105
;

D00;00
224;04 D 63

64
� 4
0 � 1

120
� 2
0 �

2
0 � 2441280

� 2
0 C 7481

210
;

D00;00
224;05.0; �0/ D � 59303945

; D00;00
224;12 D � 1

12
� 2
0 C 19

5
;

D00;00
224;13 D 91

90
� 2
0 � 4138

315
;

D00;00
224;14 D 3

80
� 4
0 C 1

360
� 2
0 �

2
0 � 148372520

� 2
0 C 173717

4725
;



Appendix C 485

D00;00
224;15.0; �0/ D � 160241617325

; D00;00
224;23 D 8

45
� 2
0 � 172

35
;

D00;00
224;24 D 1

144
� 4
0 � 445

84
� 2
0 C 21949

945
; D00;00

224;25.0; �0/ D � 1810402079
;

D00;00
224;34 D � 233630 � 2

0 C 1452
175

; D00;00
224;35.0; �0/ D � 42442825

;

D00;00
224;45.0; �0/ D � 30300817325

:



Appendix D
Coefficients ak

ij in Eq. (6.31)

i j a2ij a3ij a4ij a5ij a6ij a7ij
0 0 �2:7049 �7:5400.�1/ 6:1401 �6:6199 2:6941 4:1447.�2/
0 1 1:5233.1/a 9:4768.�1/ �2:2437 �5:9720.1/ 9:3801.1/ �4:2218.1/
0 2 �9:3705.1/ 2:0811.1/ �8:8606.1/ 3:6688.2/ �3:3357.2/ 1:0364.2/

0 3 3:4199.2/ �2:0445.2/ 6:7654.2/ �1:0032.3/ �1:2857.2/ 3:7135.2/

0 4 �6:1943.2/ 5:4622.2/ �1:6914.3/ 1:3957.3/ 1:9124.3/ �1:6006.3/
0 5 5:4254.2/ �5:6789.2/ 1:7137.3/ �1:0037.3/ �2:5173.3/ 1:8642.3/

0 6 �1:8490.2/ 2:0504.2/ �6:1311.2/ 3:1010.2/ 9:7025.2/ �6:9619.2/
1 0 9:1142 3:4651 �2:5624.1/ 2:9550.1/ �1:2770.1/ 3:8899.�1/
1 1 �5:3595.1/ �6:9304 2:1913.1/ 2:0709.2/ �3:5688.2/ 1:6667.2/

1 2 3:0376.2/ �3:0288.1/ 1:3036.2/ �1:0721.3/ 1:2051.3/ �4:4621.2/
1 3 �1:0880.3/ 5:4423.2/ �1:5530.3/ 2:2622.3/ 8:0190.2/ �1:1734.3/
1 4 1:9786.3/ �1:6278.3/ 4:4380.3/ �2:4375.3/ �7:5809.3/ 5:4732.3/

1 5 �1:7484.3/ 1:7824.3/ �4:8472.3/ 1:6007.3/ 9:4110.3/ �6:3560.3/
1 6 6:0051.2/ �6:6501.2/ 1:8343.3/ �5:9341.2/ �3:4610.3/ 2:3325.3/

2 0 �1:0953.1/ �5:1542 3:6013.1/ �4:3831.1/ 1:9952.1/ �1:1709
2 1 5:4313.1/ 1:3826.1/ �3:1847.1/ �2:7059.2/ 4:9588.2/ �2:3698.2/
2 2 �2:2099.2/ �3:2259.1/ �4:7715.1/ 1:2764.3/ �1:8389.3/ 7:8458.2/

2 3 6:8539.2/ �3:6187.2/ 1:3094.3/ �2:2413.3/ 1:1757.2/ 6:0981.2/

2 4 �1:1983.3/ 1:4531.3/ �4:4486.3/ 2:2324.3/ 6:9490.3/ �5:0433.3/
2 5 1:0698.3/ �1:7667.3/ 5:3715.3/ �1:9864.3/ �8:7553.3/ 6:0542.3/

2 6 �3:8042.2/ 6:9945.2/ �2:1919.3/ 1:0478.3/ 2:9927.3/ �2:1592.3/
3 0 5:7440 3:4159 �2:2711.1/ 2:9061.1/ �1:3378.1/ 8:6677.�1/
3 1 �1:9872.1/ �1:0809.1/ 1:0667.1/ 1:8760.2/ �3:4288.2/ 1:6405.2/

3 2 �3:7479 5:6583.1/ 7:4575.1/ �9:6990.2/ 1:5440.3/ �6:9034.2/
3 3 1:5736.2/ 3:5420.1/ �8:7510.2/ 2:1083.3/ �1:9366.3/ 5:8246.2/

(continued)
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3 4 �3:5702.2/ �5:2768.2/ 2:9171.3/ �3:1763.3/ �7:4079.1/ 9:8854.2/

3 5 3:0368.2/ 7:8272.2/ �3:6467.3/ 3:4184.3/ 9:2878.2/ �1:5527.3/
3 6 �8:6201.1/ �3:4025.2/ 1:5476.3/ �1:6139.3/ �8:5762.1/ 4:9886.2/

4 0 �1:4876 �1:1070 7:0707 �9:2818 4:0545 �1:1502.�1/
4 1 2:5094 3:7734 2:0359 �7:4027.1/ 1:2920.2/ �6:0976.1/
4 2 3:8402.1/ �2:4593.1/ �6:8657.1/ 4:5264.2/ �7:0566.2/ 3:1418.2/

4 3 �2:0277.2/ 2:4499.1/ 4:4154.2/ �1:2793.3/ 1:5600.3/ �6:0554.2/
4 4 4:0109.2/ 9:9426.1/ �1:2757.3/ 2:3455.3/ �2:0101.3/ 5:8374.2/

4 5 �3:4870.2/ �1:9649.2/ 1:5435.3/ �2:5035.3/ 1:7772.3/ �4:0787.2/
4 6 1:1115.2/ 9:4812.1/ �6:5280.2/ 1:0764.3/ �7:6449.2/ 1:8051.2/

5 0 2:0156.�1/ 1:8587.�1/ �1:1416 1:4900 �5:5695.�1/ �4:5479.�2/
5 1 1:0037.�1/ �6:4465.�1/ �1:5497 1:5971.1/ �2:6405.1/ 1:2233.1/

5 2 �1:1430.1/ 4:6045 2:2698.1/ �1:1165.2/ 1:6633.2/ �7:2814.1/
5 3 5:4302.1/ �6:9392 �1:1903.2/ 3:6679.2/ �4:6797.2/ 1:8802.2/

5 4 �1:0524.2/ �1:1949.1/ 3:1002.2/ �7:1974.2/ 7:7277.2/ �2:7903.2/
5 5 9:1596.1/ 3:0585.1/ �3:6016.2/ 7:5604.2/ �7:3586.2/ 2:4845.2/

5 6 2:9583.1/ �1:5919.1/ 1:4990.2/ �3:1092.2/ 2:9400.2/ �9:7735.1/
6 0 �1:3692.�2/ �1:5546.�2/ 9:1506.�2/ �1:1498.�1/ 3:0642.�2/ 1:1544.�2/
6 1 �4:5337.�2/ 5:2776.�2/ 2:5063.�1/ �1:7173 2:7092 �1:2318
6 2 1:3124 �3:9410.�1/ �3:0626 1:3099.1/ �1:8776.1/ 8:0822

6 3 �5:9817 6:4804.�1/ 1:4823.1/ �4:6670.1/ 5:9690.1/ �2:4081.1/
6 4 1:1478.1/ 9:8534.�1/ �3:6396.1/ 9:4233.1/ �1:0758.2/ 4:0635.1/

6 5 �9:9799 �2:7398 4:1058.1/ �9:8016.1/ 1:0452.2/ �3:7915.1/
6 6 3:2356 1:4718 �1:6848.1/ 3:9416.1/ �4:0848.1/ 1:4602.1/

7 0 3:6668.�4/ 5:1292.�4/ �2:8821.�3/ 3:3886.�3/ �3:7515.�4/ �6:7520.�4/
7 1 2:5887.�3/ �1:6554.�3/ �1:2765.�2/ 7:1257.�2/ �1:0837.�1/ 4:8466.�2/
7 2 �5:3926.�2/ 1:2641.�2/ 1:4489.�1/ �5:7451.�1/ 8:0042.�1/ �3:3976.�1/
7 3 2:4002.�1/ �2:0081.�2/ �6:7528.�1/ 2:1445 �2:7276 1:0976

7 4 �4:5749.�1/ �4:0030.�2/ 1:6025 �4:3922 5:1268 �1:9646
7 5 3:9713.�1/ 1:0440.�1/ �1:7729 4:5412 �5:0238 1:8683

7 6 �1:2890.�1/ �5:6148.�2/ 7:1994.�1/ �1:8035 1:9439 �7:1361.�1/
a a.n/ means a � 10n



Appendix E
Coefficients akl

ij in Eq. (6.122)

j k l akl
1j akl

2j akl
3j akl

4j akl
5j akl

6j

0 0 0 4:3740.�2/ a�5:7005.�3/ 1:5783 �6:1714 9:3510 �2:1546
0 0 1 �2:6683.�2/ 5:0153.�3/�4:8764.�1/ 2:2984 �3:8827 9:4255.�1/
0 0 2 5:4865.�3/�9:9676.�4/ 5:5772.�2/�3:0618.�1/ 5:7135.�1/�1:5618.�1/
0 0 3 �3:5146.�4/ 5:6241.�5/�2:2400.�3/ 1:4108.�2/�2:8824.�2/ 9:0350.�3/
0 1 0 �9:8759.�3/ 9:3855.�3/ 7:9863.�2/�1:6074 6:2428 �5:5149
0 1 1 8:6995.�3/�8:0343.�3/ 1:1442.�1/ 4:2438.�1/�2:8537 2:6941

0 1 2 �1:9806.�3/ 2:0749.�3/�3:3841.�2/�1:5011.�2/ 4:1581.�1/�4:2806.�1/
0 1 3 1:3292.�4/�1:6323.�4/ 2:3114.�3/�1:3467.�3/�2:0080.�2/ 2:2502.�2/
0 2 0 8:2175.�3/�1:3063.�2/�2:7468.�1/ 7:5428.�1/�1:4470 1:7712

0 2 1 �8:0286.�3/ 1:1449.�2/ 1:9329.�1/�6:2368.�1/ 9:0207.�1/�8:7677.�1/
0 2 2 2:1003.�3/�2:8623.�3/�3:8882.�2/ 1:4285.�1/�1:7885.�1/ 1:4077.�1/
0 2 3 �1:6036.�4/ 2:0273.�4/ 2:3772.�3/�9:6046.�3/ 1:1084.�2/�7:2736.�3/
0 3 0 �1:1933.�2/ 8:4024.�3/�2:0610.�1/ 1:9123 �2:7095 9:5591.�1/
0 3 1 8:5897.�3/�7:8143.�3/ 1:2410.�1/�1:0929 1:5158 �5:0654.�1/
0 3 2 �1:8595.�3/ 2:0735.�3/�2:3313.�2/ 2:0051.�1/�2:7595.�1/ 8:8414.�2/
0 3 3 1:1845.�4/�1:6266.�4/ 1:4186.�3/�1:1941.�2/ 1:6443.�2/�5:0939.�3/
1 0 0 3:4750.�1/�8:3845.�2/ 1:1307 3:5292.1/ �8:9519.1/ 5:8430.1/

1 0 1 �2:3098.�1/ 7:2274.�2/�2:9049 �5:7669 3:3006.1/ �2:9224.1/
1 0 2 5:9275.�2/�2:9808.�2/ 7:2091.�1/ 9:6138.�2/�5:1080 5:6318

1 0 3 �4:7492.�3/ 3:3823.�3/�4:1161.�2/�1:1742.�2/ 3:1940.�1/�3:7437.�1/
1 1 0 �9:9003.�2/�1:1472.�2/�1:6532 3:2134.1/ �1:0126.2/ 7:7624.1/

1 1 1 1:1904.�1/ 2:6621.�2/ 1:2605.�1/�1:4103.1/ 5:2055.1/ �4:3340.1/
1 1 2 �3:0261.�2/�1:6424.�2/�2:7407.�2/ 2:9139 �1:0186.1/ 8:7944

1 1 3 1:3699.�3/ 2:4692.�3/ 2:1815.�2/�2:6778.�1/ 7:2290.�1/�6:0322.�1/
1 2 0 �1:0729.�1/ 3:9537.�2/ 7:1921.�1/ 1:1626.1/ �3:8148.1/ 2:8939.1/

(continued)
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1 2 1 1:0803.�1/�4:4421.�2/�6:3187.�1/�4:7301 2:0883.1/ �1:8974.1/
1 2 2 �3:1278.�2/ 1:1258.�2/ 9:4846.�2/ 7:8525.�1/�4:0122 4:1390

1 2 3 2:7356.�3/�5:8429.�4/ 7:6219.�3/�7:8339.�2/ 2:7683.�1/�2:9243.�1/
1 3 0 �1:1283.�1/ 6:4364.�3/ 7:5854 �6:7640.1/ 9:0024.1/ �1:2847.1/
1 3 1 5:3218.�2/ 3:8384.�2/�4:9448 4:2303.1/ �5:5395.1/ 7:5210

1 3 2 �9:9555.�3/�1:9128.�2/ 9:7517.�1/�8:1131 1:0367.1/ �1:1041
1 3 3 1:1307.�3/ 2:0767.�3/�5:9088.�2/ 4:9207.�1/�6:2191.�1/ 4:7344.�2/
2 0 0 �8:7321.�2/�8:2387.�1/ 5:2142 �2:3419.2/ 9:1804.2/ �8:5028.2/
2 0 1 �4:4202.�1/ 8:7523.�1/ 6:7368 2:2585.1/ �3:1183.2/ 3:4289.2/

2 0 2 3:0158.�1/�2:6845.�1/�2:7114 1:4998.1/ 1:9266.1/ �3:6278.1/
2 0 3 �4:0674.�2/ 2:9185.�2/ 3:6072.�1/�2:3310 1:2420 6:5231.�1/
2 1 0 1:6450 �8:3105.�1/ 1:4327.1/ �2:6724.2/ 1:1038.3/ �1:0509.3/
2 1 1 �1:6847 8:2167.�1/ 1:0634.1/ 7:1381 �3:8962.2/ 4:5837.2/

2 1 2 5:6846.�1/�2:5421.�1/�6:7373 3:1702.1/ 1:8997.1/ �5:3356.1/
2 1 3 �6:2738.�2/ 2:9075.�2/ 9:5012.�1/�4:7219 2:7531 1:1859

2 2 0 �1:1464 8:2756.�1/ 1:1256.1/ �2:0060.2/ 5:6208.2/ �3:6057.2/
2 2 1 9:4501.�1/�7:3284.�1/ 3:2532 7:0140.1/ �2:5178.2/ 1:5880.2/

2 2 2 �2:4519.�1/ 2:0333.�1/�3:8184 1:0338 2:6357.1/ �1:6509.1/
2 2 3 1:9771.�2/�1:6959.�2/ 6:0246.�1/�1:4806 1:5466.�1/ 5:0002.�2/
2 3 0 7:5857.�1/ 4:0032.�1/�2:9017.1/ �6:6804 2:3024.2/ �1:9069.2/
2 3 1 �9:4206.�1/�3:6059.�1/ 2:0700.1/ �3:3473.1/ �2:1948.1/ 9:9298

2 3 2 2:6331.�1/ 1:1902.�1/�4:0263 9:1264 �9:9517 1:3157.1/

2 3 3 �1:2637.�2/�1:2501.�2/ 2:6890.�1/�6:4069.�1/ 1:1255 �1:4794
3 0 0 6:5184.�1/�6:2144.�1/ 6:6916 �3:2445.1/ 2:1835.2/ �2:4382.2/
3 0 1 �7:6704.�1/ 6:2903.�1/�4:0015 �7:0646 �4:9882.1/ 6:9552.1/

3 0 2 2:8098.�1/�2:1177.�1/ 4:2592.�1/ 8:7627 �8:4234 2:0351

3 0 3 �3:0253.�2/ 2:3329.�2/ 7:9989.�2/�1:2561 1:7532 �1:0013
3 1 0 4:8598.�1/�3:5124.�1/�1:4982 �4:4677 1:8852.2/ �2:5407.2/
3 1 1 �4:9148.�1/ 3:9521.�1/ 7:8212 �5:7644.1/ �2:4845 7:4645.1/

3 1 2 2:0234.�1/�1:4935.�1/�3:8395 2:7669.1/ �2:7516.1/ 4:3975

3 1 3 �2:8119.�2/ 1:9441.�2/ 5:5524.�1/�3:2869 3:8792 �1:4953
3 2 0 �6:5991.�1/ 3:7925.�1/ 4:8386 �5:1154.1/ 1:2690.2/ �5:8648.1/
3 2 1 5:8571.�1/�3:5870.�1/ 1:7015 1:0476.1/ �3:7466.1/ 2:2645

3 2 2 �1:6411.�1/ 9:9268.�2/�1:9989 4:8801 �3:6094 7:6738

3 2 3 1:4356.�2/�7:6591.�3/ 3:4061.�1/�1:0747 1:1634 �1:0411
3 3 0 7:2831.�2/ 2:8616.�1/�9:9441.�2/�1:1154.2/ 2:0480.2/ �4:5199.1/
3 3 1 �2:6777.�1/�1:6349.�1/ 4:5855.�1/ 5:6364.1/ �7:5629.1/ �2:1635.1/
3 3 2 8:2542.�2/ 3:2414.�2/�3:8354.�2/�9:9394 7:7662 1:1992.1/

3 3 3 �1:2987.�3/�2:4754.�3/ 1:4545.�2/ 5:8013.�1/�2:3605.�1/�1:0952
4 0 0 �5:0646.�1/�2:9893 1:5330.1/ �9:6644.2/ 4:1540.3/ �4:1107.3/
4 0 1 �1:6542 3:1431 2:5105.1/ 1:4837.2/ �1:6212.3/ 1:8403.3/

4 0 2 1:2742 �9:6873.�1/�1:0146.1/ 4:5487.1/ 1:5667.2/ �2:4129.2/
4 0 3 �1:6679.�1/ 1:0564.�1/ 1:3436 �8:2377 �3:2100.�1/ 8:9303

(continued)
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4 1 0 4:7927 �3:1651 7:3469.1/ �1:2451.3/ 4:9249.3/ �4:7293.3/
4 1 1 �5:0663 3:1295 3:0783.1/ 1:4788.2/ �1:9232.3/ 2:2140.3/

4 1 2 1:8082 �9:5242.�1/�2:3998.1/ 1:0003.2/ 1:5901.2/ �3:0079.2/
4 1 3 �2:1016.�1/ 1:0774.�1/ 3:4843 �1:6826.1/ 4:9561 1:1102.1/

4 2 0 �2:1684 3:1140 5:0778.1/ �8:1729.2/ 2:3649.3/ �1:5871.3/
4 2 1 1:5108 �2:7877 8:5505 2:9690.2/ �1:0986.3/ 7:4775.2/

4 2 2 �3:1496.�1/ 7:7728.�1/�1:4006.1/ �5:0408.�1/ 1:2687.2/ �9:3232.1/
4 2 3 1:8133.�2/�6:4934.�2/ 2:2531 �5:4765 �9:3697.�1/ 2:2453

4 3 0 2:9167 1:3875 �9:4950.1/ �3:0581.2/ 1:5824.3/ �1:2009.3/
4 3 1 �4:0135 �1:1704 7:1417.1/ 2:1381.1/ �4:7280.2/ 3:0264.2/

4 3 2 1:2295 3:9572.�1/�1:4168.1/ 9:2382 3:1019.1/ 2:4680

4 3 3 �7:7263.�2/�4:3431.�2/ 9:6412.�1/�1:0662 4:5089.�1/�2:8997
a a.n/ means a � 10n



Glossary of Abbreviations

a- Atactic
c- Coarse-grained (dynamic HW chain)
d- Discrete (dynamic HW chain)
i- Isotactic
s- Syndiotactic

DH Debye–Hückel (electrostatic potential)
dKP Discrete version of KP
DNA Deoxyribonucleic acid
GPC Gel permeation chromatography
hcDH Hard-core–effective DH
HI Hydrodynamic interaction
HW Helical wormlike (chain)
IAIV Isoamyl isovalerate
KP Kratky–Porod (wormlike chain)
KR Kirkwood–Riseman (approximation, equation)
LJ Lennard–Jones (6-12 potential)
MEK Methyl ethyl ketone, 2-Butanone
MTPS Modern Theory of Polymer Solutions
NMR Nuclear magnetic relaxation
NOE Nuclear Overhauser enhancement
OB Oseen–Burgers (procedure)
P˛MS Poly(˛-methylstyrene)
PBIC Poly(n-butyl isocyanate)
PBLG Poly(� -benzyl L-glutamate)
PDMS Poly(dimethylsiloxane)
PHIC Poly(n-hexyl isocyanate)
PIB Polyisobutylene
PIP cis-Polyisoprene
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494 Glossary of Abbreviations

PM Polymethylene
PMMA Poly(methyl methacrylate)
PMVK Poly(methyl vinyl ketone)
PNaSS Poly(sodium 4-styrenesulfonate)
POE Polyoxyethylene
PPCS Poly(p-chlorostyrene)
PS Polystyrene
QTP Quasi-two-parameter (scheme, theory)
RIS Rotational isomeric state (model)
SANS Small-angle neutron scattering
SAXS Small-angle X-ray scattering
THF Tetrahydrofuran
TP Two-parameter (theory)
WKB Wentzel–Kramers–Brillouin (approximation)
YSS Yamakawa–Stockmayer–Shimada (scheme, theory)
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spin-spin relaxation time of, 453, 455

Polystyrene (PS). See Atactic, Isotactic, and
Syndiotactic polystyrenes

Potential energy
of the chain with coupled rotations, 13
of the HW chain, 60
of the KP chain, 27, 28
of the KP1 chain, 253
of the RIS chain, 14

Projection operator method, 423, 430

Quasi-two-parameter (QTP) scheme, 303,
309–313, 318–320, 368, 383, 397

Radius of gyration, 10
Random-coil model, 11
Random-flight chain, 11, 337
Reduced hydrodynamic radius, 224–227
Reduced hydrodynamic volume, 224–227
� factor, 224, 432–434. See also Reduced

hydrodynamic radius
non-universality of, 226

Rigid-body ensemble approximation, 226, 288,
311, 434

Ring polymers, 53
knots of, 53
of nontrivial knots, 53, 277
of the trivial knot, 53, 277

Ring-closure probability, 38, 104, 114
angle-dependent, 293, 298, 299
angle-independent, 265–267, 295–298, 300
with the end orientations specified, 251,

252, 259–263

linking number-dependent, 253–259, 270
writhe-dependent, 272

Rotational isomeric state (RIS) model, 1, 2, 14,
76, 78, 303, 311, 370–372

Rotatory diffusion coefficient
of spheroid-cylinders, 241–243
of spheroids, 197, 242, 445, 473

Rotatory diffusion tensor, 236
Rotatory friction tensor, 235

Scattered intensity, 155, 356
components of, 158–163

near the rod limit, 172–175
reduced, 157

Scattering angle, 137, 157
Scattering function, 136, 185

for Gaussian chains, 138
isotropic, 158, 162

determination of, 169–172
near the rod limit, 174, 175

for the KP chain, 138, 139, 142
for the KP ring, 153, 154
for ring polymers, 153–155
for the RIS chain, 142, 143
for rods, 139

Scattering vector, 137, 156
Schizophyllan

HW model parameters of, 131, 221
intrinsic viscosity of, 220, 221
mean-square radius of gyration of, 130,

131
sedimentation coefficient of, 221
translational diffusion coefficient of, 222,

223
Second virial coefficient, 185, 321

determination of, for oligomers, 355–358
effects of chain ends on, 327–329
effects of chain stiffness on, 325–327
effects of local chain confomations on,

325–327
effects of three-segment interactions on,

329–332
for the KP ring, 351, 352
for ring polymers, 350–352
perturbation theory of, 321–325, 330–332

Sedimentation coefficient, of the cylinder
model, 202–206

Semiflexible polymers, definition of, 132
Shear force triadic, 215
Shift factor, 76, 367
Small-angle neutron scattering (SANS), 137,

144, 149–152, 154, 185
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Small-angle X-ray scattering (SAXS), 131,
137, 144, 149–152, 185

Sodium hyaluronate
excluded-volume strength of, 393, 394
KP model parameters of, 388, 389
persistence length of, 390, 391

Spectral density, 448, 451–453, 465
Jones–Stockmayer, 452

Spherical harmonics, 29, 47
Spherical tensor, 159, 187
Spherical vector, 176, 187
Spheroid-cylinder, 199
Spin-lattice relaxation time, 447
Spin-spin relaxation time, 447
Spring-bead model, 183, 399, 462
Standard basis set, 419
Standard Fourier basis set, 425
Stiffness parameter, 23, 132. See also Chain

stiffness
Stone-fence diagram, 32, 97–99
Subspace approximation

crude, 422, 423
higher-order, 423, 427

Syndiotactic poly(methyl methacrylate)
(s-PMMA)

angular correlation functions for, 89, 90
characteristic ratio of, 14, 15, 76, 77
dielectric correlation time of, 444
dynamic chain stiffness of, 473
Kratky function of, 151, 152
nuclear Overhauser enhancement of,

453, 455
persistence vector of, 79, 80
spin-lattice relaxation time of, 453, 455
spin-spin relaxation time of, 453, 455

Syndiotactic polystyrene (s-PS), angular
correlation functions for, 89

Ternary-cluster integral, 329, 337
residual contribution of, 331

Third virial coefficient, 337
determination of, for oligomers, 355–358
effects of chain ends on, 343, 344
effects of chain stiffness on, 339–342
effects of three-segment interactions on,

339–342
Three-segment interaction, 329, 337

effects of, 329–332, 339–342
Time-correlation function, 417, 419, 421, 439,

448, 499
Topoisomers. See DNA topoisomers
Topological interaction, 350
Torsional force constant, 60

Touched-bead model
excess stress tensor for, 245–247
for scatterer distribution, 147, 148
for transport coefficients, 195, 200–202

Touched-spheroid model
for polymer dynamics, 444
for scatterer distribution, 148, 149

Touched-subbody model, for scatterer
distribution, 186

Transition probability, 24
Translational diffusion coefficient, 193,

429–434
of the cylinder model, 202–206

for Gaussian chains, 205, 206
for the KP chain, 203, 204, 206
for rigid rods, 204, 205

Einstein relation for, 203
of the KP cylinder ring, 230–232
of spheroid-cylinders, 206, 239–241
of spheroids, 197, 240
of the touched-bead model, 207, 208

Kirkwood formula for, 207, 208
Translational diffusion tensor, 236
Translational friction coefficient, 195

of the cylinder model, 202
of the KP cylinder ring, 230–232
of the touched-bead model, 207, 208

Translational friction tensor, 235
Trumbbell, 430
Twist, 270
Twist rate, 251
Two-parameter (TP) theory, 1, 3, 302, 308,

325–327, 382, 383, 397

Unit binormal vector, 61
Unit curvature vector, 61
Unit mean binormal vector, 64
Unit mean curvature vector, 64
Unit tangent vector, 15

Vector-coupling coefficient, 125, 420

Wave vector, 155
Weighting function method, 106–111

convergence of, 114, 115
weighting function in, 107–109

Wigner function, 67, 121
Wigner 3-j symbol, 72, 124
WKB approximation, 39, 40, 113
Wormlike chain. See Kratky–Porod (KP)

wormlike chain
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Writhe, 270
distribution of, 272–276
moments of, 276–279

Yamakawa–Stockmayer–Shimada (YSS)
scheme. See Quasi-two-parameter
scheme
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