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PREFACE

In 1995, we organised an inlernational workshop on activity-based analysis. Afler a slow slart in the
1980s, the interesi in activity-based models seemed 10 increase rapidly and several individual
scholars and groups had just started building their new models. The 1993 conference saw Bowman
and Ben Akiva's nested logit model, Pendyala and Kitamura’s Amos model, the first micro-
simulation models, using representative activity-travel schedules, Kwan’s constrained-based
GISICAS and several other examples of prototype models and analyses. Results were reported in
Citema and Timmermans (eds.) Activity-Based Approaches fo Travel Analysis, Pergamon, which
was published in 1997.

Now, after a decade. a lot has happened. Some of the models mentioned above have now been used
in practice. Conventional nested logit models have been gradualiy replaced by more flexible
structures. Bhat has introduced such an advanced econometric system for iravel demand analysis.
Several other micro-simulation models have been developed and some of these have already been
applied in practice. Whereas in 1995, rule-based systems were only briefly mentioned, Arentze and
Timmermans® Albatross system provides evidence that multi-agent, rule-based systems offer a
viable alternative to the more commonly used utility-maximizing models. In addition to these and
many other modeling efforts, new technology has provided new opportunities to collect the data
required [or activity-based analysis. In additional to the collection of conventional activily-travel

diary data, interest in collecting data about scheduling and re-scheduling behaviour has increased.

In other words, many of the original ideas associated with activity-based analysis have matured, and
hence the timing seemed right to organise another conference. This volume contains seme selected
papers that were originally presented at this conference, which took place in Maastricht, The
Netherlands, May 28-31, 2004, All these papers went through a review process before being

accepted for this volume.

Theo Arentze {Cindhoven University of Technology) and Geert Wets (LUC) joined me in
organising this conference. Kai Axhausen (E1TH, IATBR), Chandra Bhat (University of lexas at
Austin, TRB Commission A1C102)). Kostas Goulias {UCSB, TRB Task[orce on Moving Activily-
Based Models to Practice) and Ram Pendyala (University of South Florida, TRB Commission
A1C104) served on the advisory committee.



xvili Progress in acrivitv-based analysis

The papers included in the volume indicate that indeed much progress has been made in the field of
activity-based analysis and modelling, The first models are now heing applicd in practice, In
addition, and perhaps more importantly, several of the chapters in this book evidence that new
topics are being addressed, holding much promise and excitement for the near future,

[larey Timmermans
Ediror

Eindhoven University of Technology
Lrban Planning Group

Eindhoven

February 2005
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ACTIVITY-BASED APPROACHES: MODELS, DATA
AND APPLICATIONS

Harey JP. Tinmermans, Eindhoven University of Technology, Eindhoven, The Netherfands

The rapidly growing interest in activity-based models and analysis in transportation research and
planning can be viewed as an attempt of increasing the degree of complexity in our representation
ol the links between individval and household behaviour, characteristics ol the urban environments,
the transportation system, and the more general policy context. Several experiences with the
application ol convenlional, simpler models of (ransporl demand stimulated this trend. For example,
the prediction of “leave-your-car-at-home-for-the-work-commute™ policies turned out to be biased
because other household members started to use the car that was left at home for trips they used to
made on foot or by bike, leading to an overprediction of policy success. Similarly, while
teleworking seemed a good remedy for reducing mobility, sometimes the effects were less positive
or even negalive because individuals and households were [orced or given an opportunily to
reschedule their activities and related travel patterns. These and other examples illustrate that
predictions of travel demand, based on an analysis of single day travel patterns may be seriously
biased because there are various kinds ol direet and indireet effects between houschold members,

times of days, days of the week, and activity types.

Over the last decades, transportation research has therefore seen a gradual shift from trip-based, via
tour-based to activity-based models, Many operational models are based on the well-know utility-
maximising, nested logit {discrete choice) framework, adding additional nests to the specification of
the model, and extending the number of variables. Other scholars argued that such algebraic models
have some inherent limitations in capturing the kind of complexity that is necessary, and developed

computational process and {agent-based) micro-simulation models.

The trend towards increased complexity and detail also led to a need for better and more detailed
data. Although some aclivity-based models have been estimaled using convenlional wavel surveys,
activity-travel diaries ave required if the model also takes into account the duration of the activity
and possible substitution between in-home and out-of-home activities. If, in addition, the focus
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shifts from long-term, equilibrium forecasts to short-term dynamics, there is also the need for data
about behavioural change and activity-travel rescheduling behaviour. To the extent that the models
simulate continuous actlivily-lravel pailerns, as opposed to broader time-ol-day effects, dala are
required on a much more refined time scale. New technology, such as cellular phones and global
positioning systems, provided researchers with alternative ways ol colleeting such data. The attempt
of improving behavioural realism also led to data collection efforts to capture activity scheduling

and rescheduling processes.

Although the level of sophistication in data collection, analysis and modelling of travel patterns has
certainly increased, there is no a priori guarantce that indeed the accuracy of our forccasts will
improve. Moreover, like people, transport planners also show some reluctance to change,
sometimes for good reasons. Hence, before activity-based approaches become standard practice in
transportation planning, academics will have to show that their new set ol toys indeed improve the
accuracy of travel forecasts, or allow policy-makers to address issues that cannot be addressed by

conventional four-step approaches.

MODELS

The tendency of incorporating increased complexity in activity-hased models can be detected in
several aspects of these models. [n the first chapter of this volume, Pendvala and Ye address the
issue of jointly modelling several dimensions of activity and travel behaviour in simultaneous
cquations frameworks in an attempt to overcome the sequential choice mechanism implicd in the
traditional four-step travel demand modelling process. Based on previous model estimation efforts,
the chapler documents the nature of the joint relationship between activity episode scheduling and
duration, trip chaining and mode choice, and activity episode scheduling and mode choice. The
results of the model estimation suggest that there are distinct relationships among these variables

and that these relationships vary by market segment.

An element of increased complexity concerns the incerporation of uncertainty in activity scheduling
decisions. Operational activity-based models typically implicitly or explicitly assume that
individuals maximise their utility on the basis of perfect and full information, which of course is not
a very realistic assumption. In Chapter 2, Karfsirém exploves the applicability of a dynamic
programming approach bascd on micro-economic utility to incorporate uncertainty in activity
scheduling decisions. The model is formulated and the results of a computational experiment,
showing the potential value of the suggested approach, are reported. Questions still open 1o future
research concern the problem whether the approach can also be applied to complex schedules and
whether the model can be generalised to household decision-making.
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On of the common approaches in activity-based modelling of travel demand has been to extract
Lypical activity profiles from data and use these in a micro-simulation 1o predict activity patterns in
a new area or for some future point in time. The next two chapters in this volume report progress in
this rescarch tradition, First, in Chapter 3, Pribvl and Gowlias propose a madel that simulates
individual’s daily activity-travel patterns, incorporating the interactions among members of
particular household. Cluster analysis is used to classify activity patterns. Decision trees,
particularly the CHAID algorithm, are used to lake into account the personal and houschold
characteristics. The model is evaluated using data trom the Centre County, Pennsylvania that were
collected during the Fall of 2002 and Spring of 2003.

Whereas the focus in Chapter 3 is on incorporating interactions among househeld members, in
Chapter 4, Janssens, Wets, Brijy ond Varhoof develop an approach for capturing sequential
information and dependencies that are present in activity patterns. This information is used to
gencrate a skeleton of activities and transport modes that is used for simulating time and location
information. The suggested approaches for generating these facets are heuristic in nature and easy
to comprehend. It is shown that the simulation results of the different facets are satisfactory and that
the heuristic framework developed, when further elaborated and generalized to multiple facets, is a

viable candidate for extracting activity profiles that can be used in micro-simulation approaches.

As a particular type of micro-simulation approach, agent-based simulation is rapidly gaining
interesi in transportation research. The following three chaplers provide examples of multi-agent
systems, illustrating their potential. In Chapter 5, Balner, Raney and Nagel propose in the context
of route choice behaviour to a truly agent-bused representation of the tralTic systerm and the
assignment process, in which each person remains individually identifiable throughout the whale
simulation process. This approach allows a completely consistent modelling of the behavioural
processes related to transportation. Their models allows to call arbitrary “strategy generation”
modules, which are able o use individualized (or aggregated} performance to update plans of each
agent, which can be fed back into a traffic micro-simulation. They demonstrate, besides the use of a
routing module, a time allocation module, which makes travellers adjust the timing of all their
aclivities, L.e. nol just departure time, throughout the day. Validation and sensitivily lests are

discussed.

Rindsfiiser and Kiiigl discuss in Chapter 6 the application of the Sesam multi-agent platform to the
activity scheduling problem. The implementation of *“I'he Scheduling Agent™ as a single agent,
organising an individual activity program in a multi-agent simulation sysiem is based on the
concept of time-dependent gathering and evaluation of information about dynamic environmental
[caturcs and the agents’ own altributes lollowed by the agents® decisions. With every time step
during the simulation run the attributes of all agents (including a world with resources — also
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modelled as classes of single agents) are updated, based on specific model assumptions. During the
simulation ¢very new day starts with the day-dependent habitual program chosen to be exceuted.
During a simulated day each agent continuously evaluates his situation {status of the environment,
status of his own attributes, etc.). Then, the agent has some options to act (operate), based on
several rules and assumptions as well as on a few models of individual behaviour. The realised

agents’ behaviour results in an observable activity sequence (pattern).

Another interesting application is described in Chapter 7, where Rossetti and Liv report on the use
ol cognilive agents (o support the activity-based analysis of demand generation in urban iraffic
networks. Demand is reparded as the result of the cognitive process carried out by each individual
o[ the population. The approach proposed allows for the diversity of aclivily parameters thal may
influence daily journey decision-making. Preliminary experiments aim at demonstrating the
potential of the cognitive model in designing and implementing activity-based travel demand.
Emphasis is given to analysing scheduled delay at aclivily destinations accounting for arrival time
constraints, while different selection behaviours for departure time are simulated within a
[ramework that combines a multi-agent demand model with the microscopic represcntation of the
movement. Simulation results show that drivers are more likely to meet activity arrival constraints
with an absolute earliness-lateness tolerance window than when tolerance thresholds are relative to

travel time.

The relationship between departure time and traffic flows is modelled by Herthorn and Wagner. An
application of their model is deseribed in Chapter 8. An activity-based microscopic travel demand
model is presented in which travel demand is derived from observed diary data. The data are used to
generate activity pafterns with variable start times and durations for the different episodes. The
spatial environment of the travellers is deseribed by the positions of locations where activities can
be performed. Based on these data and on travel times for the different modes, the destinations for
trips are determmed together with the travel modes. The flexibility of start times is uscd to adapt the
schedules to the travel times that result from the actual destination and mode choice. The travel
demand model generates trip tables for a traffic flow simulation to compute travel times. Using
these in another run of the travel demand simulation, a feedback loop is established. The ceffect of
the feedback between travel demand and tratfic network performance is investigated in a case study
tor the City of Cologne. Travel demand and mode choice predicted by the mode] are discussed in a

scenario in which one of the bridges over the River Rhine in the eity centre is closed.

Progress in aclivily-based modelling is alse reflected in recent advances in integrated land use
transportation modelling. In Chapter 9, Mifler discusses the theoretical underpinning of the [LUTE
system. It has very interesting features. Activity agendas are formulated around projects, which

keep together a series ol relaled activities, required (o accomplish a particular goal. The household



Activity-based approaches xxii

is the central decision-making unit, implying that links between activities can be modelled in an
integrated fashion. The concept of stress is proposed to model dynamics in activity scheduling.
Finally, heuristics arc assumed 1o model activity scheduling behaviour, This is accomplished by a
model called TASHA. In Chapter 10, Roorda and Miller report the results of empirical analyses,
conducted to find rules for activity rescheduling decisions in response to scheduling conflicts that
cant be used as input to this model. Although further rescarch is needed, the results suggest that such

an approach is promising.

[ntra-household interactions has long been recognized to constitute an important aspect in
modelling activity-travel patterns. Although there has been some quantitative analyses of such
interactions, only recently a rapidly growing body of rescarch on various aspects of modelling intra-
household interactions and group decision making mechanisms as well as first attempts to
incorporate intra-household interactions in regional travel demand models can be observed. In this
volume, two chapters address this problem. First, in Chapter 11, Fosvsha, Gliche, Peterson and
Koppelman propose a general [ramework for incorporaling intra-household interactions in regional
travel demand models. The proposed approach distinguishes between three prineipal levels of intra-
household interactions: Coordinated principal daily patiern types, Episodic joint activity and (ravel,
and Intra-houschold allocation of maintenance activitics. Model structures are discussed, with
emphasis on the advantages of the simultaneous approach relative to the sequential method, as well
as implications [or practical applications, In Chapter 12, Zhang, Fujiwara, Timmermans and
Borgers compare the results of two of their models (a multilinear model and an iso-elastic model) in
a study ol household time allocation in small towns in Japan. Both models have a high goodness-ol-
fit. The interpretation of the estimated parameters between the two models however would suggest

differences in relative influence of household members,

Chapter 13 is also concerned with modelling time allocation, but in this case of individuals. Nepal,
Fukuda and Yai apply the latent class time allocation [ramework, suggested by Ben Akiva and his
co-workers to estimate the value of activity time. The parameters of the latent variables turned out
to be highly significant, and the estimates of the values of activity time for different activities were
realistic. The [indings suggest that this model, which incorporates latent determinants of lime
allocation in a traditional activity time allocation maodel, is valuable not only for modelling activity

time allocation, but also in caleulating the value of activity time.

In Chapter 14, Goulias and Kim argue that the formulation and specification of activity analysis
models require better understanding of time allocation behaviour that goes bevond the more recent
within househiold analyses. In addition, since very little is known about perceived selfish and
altruistic behaviour, we need analyses that explain how these affeet travel behaviowr and time
allocation. They report the results of analyses, using the CentreSIM survey, a two-day time
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use/activity diary of more than 1400 persons. In particular, they analysed answers to with whom
and for whom questions to identify differences within a day and among the different days of a
week, accounting for person and household characteristics. Significant differences between solo and
joint participation and between sclf-serving and altruistic behaviour were observed among the
persons that work in different ways (part time and full time). among the different school age
children, and among persons that may appear to have reasons to stay home,

DATA

The sceond set of chapters in this volume is concerned with aspeets of data collection. Chapter 15
represents the shift from models to data collection. Nishii, Sasaki, Kitamura and Kondo discuss
three activity-travel diarics colleeted in Japan, and illustrate the richness of such data lor analysis
and modelling. Especially, the analysis of time use offers answers to questions that are impossible
to addresses with traditional travel surveys, focusing on trip characteristics,

As indicated before, developments in activity-based modelling have led to an increased interest in
collection data of deeision processes underlying the organisation of activities in time and spaee. Tn
Chapter 16, Lee-Gossefin argues that an appreciation of those decision processes requires
observations at the individual and household levels, with due regard to interactions beyond the
houschold, within social networks and with a wide range of other sources of activity opportunity
and constraint. He discusses OPFAST, an instrument package developed and implemented in a
longitudinal panel survey in Quebee City, Canada. Tt was designed to be complementary to the use
of the method known as CIIASE in an overall strategy involving a parallel panel survey in Toronto.
Ditferent methods were used for subsequent waves, and these are briefly deseribed. OPFAST places
particular emphasis on recording respondents’ perceptions of the flexibility available to them in
organising their activities in time and space. Initial inferences are made from the implemented panel
surveys about advantages, difficultics and costs. Tt is concluded that there 15 a case for combined
strategies using both CLIASE and OPFAST.

Ruiz in Chapter 17 discusses a similar example. [n particular, he describes how the Internet can be
used to collect aclivity-ravel scheduling data in the short and medivm term. A web-based
questionnaire was designed, where respondents were asked to record their scheduling decisions for
otie to four non-consecutive days as they were adopted over time. Respondents were first contacted
by e-mail, in which they were asked 1o participate in the survey. The e-mail provided a hyperlink to
the web-based questionnaire. Participants who entered the website were tirst requested to provide
the data about their demographic and socio-economic characteristics. Second, respondents were
asked to make a plan based on their activities and associated travels for several non-consecutive
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days. Finally, respondents corrected their planned agenda through adding, deleting or modifying
activities and travels in order to describe the real executed schedule. Overall, the results showed the
typical Jow-response rate for an Inlernet survey. The analysis of the data suggested a number of
interesting results concerning to different characteristics of the scheduling process according to the

time horizon,

APPLICATIONS

The final series of chapter discusses applications or specific themes associated with activity-based
analysis. Tirst, In Chapter |18, Fovsha, Brudiev and Bowman review the applications of activity-
based models in the United States. Various types of integrity are viewed as the main advantage of
activity-based models. Applications in Portland, San Franciseo, New York and Columbus are
discussed in light of these potential advantages. [n addition, micro-simulation and a greater level of
detail are identified as strong components of activity-based approaches. Finally, misconceptions and
concerns related to the application of activity-based approaches are highlighted.

Whereas the previous chapter is most of all concerned with utility-maximising models, constrained
models have traditionally been developed in the time geography tradition. In Chapter 19, Ohmori,
Harata and Ohta discuss the development and application of GIS-based activity-travel simulators.
One application was developed especially for the purpose of instructing students in understanding
the theory of space-time prisms/accessibilily and travel behaviour under spatio-temporal
constraints. A second application involved a decision-support system for activity planning using
interactive surveys to collect information about the activity scheduling process of tourists” leisure
activities. These two applications illustrate the uselulness ol geographic information systems for

these types of applications.

Activity-based appreaches are especially useful for particular problems. One of these problems is
the substitution between ravel and in-home activities. The next two chapters of this volume are
both conecrned with teleworking. Hjnethof in Chapter 20 discusses the results of a qualitative study,
which sheds some lights on factors influencing teleworking and underlying motives. Glogger,
Zéngler and Karg, in Chapter 21, report the results of a quantitative analyses. Interestingly, they
conelude that telecommulting does not reduce distances travelled, casting doubl on the effectiveness

of such policies.

Nobis, Lenz and Vanee's contribution, described in Chapter 22, is concerned with the larger issue of
ICT and travel. Their basic idea is that one of the major achievements of recent technelogical

developments, both in transport and communication, is people’s greater spailal and temporal



xxvi Progress in activify-based analvsis

flexibility. Using the data of the first wave of the ‘DLR’s ICT and Mobility Panel’, they explore the
relationship between communication and mobility behaviour. The data show that within all age
groups a high number of trips correlates with high [CT use. Generally, a distinction of ICT devices
should be made as the effect of the particular media can be different. In exploring the questions of
what factors influence travel demand and the nature of the role played by ICT use in this context,
the expectation is contirmed that young and employed men are more likely to have a high travel
demand. However, the influence is considerably less strong than generally assumed. Instead, the use
of [CT, and in particular the mobile phone, turned out to be the strongest influencing factor in a
regression mode!l presented in the paper.

Finally, Chapter 23 addresses behavioural change in car use. Lowkopoulos, Gérling, Jakobsson.
Meland and Fujii outline a conceptual {ramework based on sell-regulation theory with (he purpose
of analyzing adaptations of houschold car use. Changes in car-use options resulting from the
implementation of policies designed to reduce car use are assunied to influence long-lerm, stralegic
choices of car-use reduction or change goals as well as the day-to-day, operational choices of
activity/travel change oplions in order (o atlain these goals. Analyses are reporled of retrospective
survey data on activity/travel changes after the introduction of a toll ring in Trondheim, Norway.
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INTRODUCTION

Understanding joint relationships among multiple endogenous variables has been of much interest
1o rescarchers in the field of activity and travel behaviour modelling (Fujii and Kitamura, 2000;
Golob, 2003). Structural equations models and econemetric simultanecus equations madels have
been developed and presented in the literature with a view to unravelling the joint cansal
relationships among activity and travel behaviour variables. Bhat (1997, 1998, 2001) and Bhat and
Singh (2000) conducted a series of research that aims at integrating ordered/unordered discrete and
continuous cndogenous variables into econometric simultancous cquations modelling frameworks

thus providing the means of studying relationships among mixed variables.

Based on much of the work in the recent past on joint estimation of simultaneous equations tmodels
while accommodating [lexible crror covariance structures, the authors have fwriher studied the joint
relationships among several activity and travel variables involving unordered discrete variables and
conlinuous variables. This chapler presents a series of juint econometric model formulations, in
which discrete and continuous endogenous variables are included. The modelling methods
presented in this paper directly contribute to a deeper understanding of the joint simultaneous

relationships and mutual interactions among several activity and (ravel variables. In particular, the
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authors usc a variety ol approaches to infer the nature ol the relationships between the [ollowing
pairs of variables: (i) Maintenance activity timing and activity episode duration: (ii) Non-work
activity/trip timing and mode choice, and (iii) Activity sequencing (trip chaining) and mode choice.

The joint nature of maintenance activity timing and episcde duration may be considered in two
ways. On the one hand. the timing of an activity may dictate its duration. For example, if an activity
is being pursued in the peak period, then it may be of a shorter duration. On the other hand, the
duration of activity may dictate its timing. For example, activities of longer duration may be
undertaken during off-peak periods. There are then twoe possible causal relationships linking activity

timing and duration.

Similarly, there are two possible causal structures linking non-woerk activity timing and mode
choice. On the one hand, the timing of an activity may dictate the mode chosen tor travelling to that
activity. A non-work trip in the off-peak period may be undertaken by automobile because there is
litthe congestion and transit service may be limited, On the other hand, the mode chosen may dictate
the timing of a non-work activity. For example, the choice of the automobile may lead to an activity

being undertaken in the off-peak period, say, Lo avoid congestion.

Finally, one can also postulate two possible cauvsal structures between the complexity of trip
chaining (or aciivily sequencing) and mode choice. On the one hand, the complexity of the trip
chain or activity sequence may mativate the sclection of the automohile as the mode of transport.
On the other hand, the selection of the automobile as the mode of transport may motivate the
undertaking of complex tours and trip chains. Thus, there are two possible causal structures between
the complexity of trip chaining and mode choice.

The preceding discussion illustrates the need for a deeper understanding of the causal relationships
underlying activity and travel characteristics, In the absence of such an understanding, activity-
based travel modelling systems cannot accurately portray and reflect joint relationships among
endogenous variables., Consequently, forecasts and policy impacts estimated from such models may

be highly erroneous.

[t must be noled that there is considerable uncertainty with respect to the extent to which causal
relationships can be interred from quantitative travel survey data using ceonometric and statistical
modelling methods. A true understanding of causal relationships and decision processes can be
probably be best obtained using qualitative research methods that probe behavioural processes and
provide detailed process data. As such, the results documented in this paper are subjeet to lurther

research and validation using more detailed process-oriented methodelogies.
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The remainder of this chapter is organized as follows. The next scetion deseribes the modelling
methodelogies employed in this paper. The third section describes the data sets used for model
estimation. Mode| estimation results are presented in the fourth section while coneluding remarks
are furnished in the final section of the paper.

MODELLING METHODOLOGIES

This scction presents the modelling methodologies that can be employed in the context of
examining joint relationships among endogenous variables.

Discrete-Continuous Econometric Modelling Framework

An application to the analysis between activity timing and activity episede duration is presented
here. The presentation tollows that in Pendyala and Bhat (2004).

Let i be an index for time of day of activity participation (i = 1, 2,..., /} and let ¢ be an index for
observations (g — 1, 2,..., (). Consider the lollowing equation system:

& = = B -
I‘:}.’ - ﬁf‘"qr’ + /a’aq +&'("F'

(thH
a, =0k, +6D, +,

£~ Li.d. Gumbel(0,1), &~ N(0,5"}.

where I‘qi* is the indirect {latent) utility associated with the i time of day for the q"‘ observation, 1,
is a vector ol the time of day dummy variables of Tength T, § is a column veetor of cocfTicients, ic.
(8, 8a...8y), representing the effects of ditferent times of the day of activity participation on activity
duration, & 15 a standard cxtreme-value (Gumbel) distributed crror term assumed to be
independently and identically distributed across times of the day and obscrvations, «, is the
logarithm of activity duration {0 address the possibility of negative durations) and ¥ is its
cocllicient. The crror term @y is assumed to be ii.d. normally distributed across observations with a
muean of zero and variance of 7. In Fquation 1, the time of day alernative 7 will be chosen (i.e., Dy
—1)if the utility of that alternative is the maximum of'| alternatives. Defining
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the ulility maximizing condition for the choice of the /' alternative may be writlen as: D= 1 il and
only if ﬁ,-'z(,f = vy Let Fi(wy) represent the marginal distribution function of vy implied by the
assumed LD extreme value distribution for the error terms €4:{/=1,2,....f). Using the properties that
the maximum over identically distribuled extreme value random terms is extreme value distributed
and the difference of two identically distributed extreme values terms is logistically distributed. the
implied distribution for v may be derived as:

exp(y) M
exp(y)+ Y exp(fiz, )

E(p)=Prlv, <y)=

Thetefore,
PrD,=1)=F Bz, +va,) (4)
Pr(D, =0 =1-T(Bz, +7a,) (5)

Both Fi(3) and @™'(y) (inverse of standard normal cumulative distribution function) are monotone

increasing functions, so

Pr(D({f = 1) = Pr[ﬁalzm + Y a, > "r(w ] = Pr{q)_ll.Fj (184.:(0 + yiaq )] > qL,_I.l.Fi (1'.4;“ ) J}° (6)

iy
Let v, =@ '[F(v)], then
PrD, =1)=Pr{®"|F, (B2, +¥a,)] > v} (7)

It can be casily shown that \rq,' 1s standard normally distributed. One can introduce a new latent

variable:

s

D, =0 F(B s, +r,a,)) vy, (%)

which is able to indicate binary response of £ since
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P D> 0)=Pr(®'[F(B.z, +7.a,)]-v, > 0) =Prdy,;=1) {9
Pr( 1< 0) = Pr{d'[Fifiz, +y,a,)]-v, < 0) = Pe(D, = 0) (10)
Equation system (1) may now be rewritten as:

L - P e
D=0 [Ffz,+tva)l-v,, D, =04 D,<0, D =1iD >0

E

(1)
a,=0%, +8D, +wo,

A correlation p;between the error torms 1-,,,-* and @, is allowed to accommaodate common unobserved
factors influencing the time of day choice for activity participation and the duration of the
participation. Since «, is partially determined by @, and vq,* is correlated with @, if p;is unequal to
zero, a, is apparently correlated with random error term vl,,-¥ in the first equation. Similarly, D, is
also correlated with random error term @, in the second equation. The endogenous nature of
dependent variables /3, and a, entails the full-information maximum likelihood method to jointly
estimate their corresponding parameters ¥ and 8. Limited-information maximum likelihood
estimation (sequential estimation) does not provide consistent estimators for the coefficients of

endogenous variables,
In Equations (4), replacing a, with the second equation of {1}, one obtains:
Pr(D, =1}=F{fz, +78x, +7.6 +yw,) (12)
Similarly, it can be shown that
PrD, =0)=1-F(Bz, +7.8x, +7.8, +v.@,) ifDy=1 (13)
P(D, =1)+Pr(D, =0)=1,then y,5, = 7,3, (14)
‘Three possible restrictions may be imposed on the modelling coefficients to satisfy Equation (14):
1} y=0and § = & =0, which implies that the continucus variable appears in the right hand side of
the equation for the discrete choice and a vector of dummy variables corresponding to the

discretle choice also appear in the model for the conlinuous variable. However, the coelficients

on the dummy variables must be mutvally identical. The modelling specification constraint by
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this condition is practically meaningless, since diserete variables cught to have varied impacts

on the continuous variable and thus have unequal coefficients.

=)
—

¥.#0and &= § =10, which implies that the continuous variable appears in the utility function of
the discrete choice variable but the discrete choice variable does not appear in the model for the
conlinuous variable. This restriction will lead to a recursive structure for the endogenous
variables. where the continuous variable is predetermined and then influences the discrete
variable.

3) 3 — 0, in which case Cquation (14) is always satisfied: then § and § can take any unequal
values. 'This restriction wiil lead to the other recursive structure, where the discrete variable is

predetermined and then influences the continuous variable.

Accordingly, the condition of logical consistency only allows two alternative recursive structures.
The first is the case where y= 0 and 6 =0, i.e., the continuous variable affects the discrele variable,
Tn this easc, the continuous endogenous variable a, is predetermined and appears as an explanatory
variable in the utility functions uq‘*. The full-information likelihood function for estimating

parameters in this casc is equal to:

e f

1 B
=11 [Emwwﬁ,)] . (15)

a-l i=1
where ¢(.} is the standard normal density function, and /,and b, are defined as follows:

-9 O F(fz, )y -pd
(2%, Bz, + )= pd, (16)

The second case is when y=0and §# 0, i.c., the diserete variable aftects the continuous variable. Tn
this case, the vector of discrete variables D, is predetermined and serves as an explanatory variable

veetor in the linear moedel for the continuous endogenous variable, a,.

The full-information likelihood function is the same as equation (15), but here

a —8% —8D O 'F(Bz.)-pi
] — g i i b.: |(ﬁ‘ [,.) p!q (17)
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Recursive Simultaneons Bivariate Probit Model

This madelling methodalogy is utilized in the application to the analysis of the relationship between
trip liming and mode choice and between trip chain type and mode choice. The discussion here
tollows that presented in Tringides ef af. (2004). Tt the trip's departure time choice {peak vs. oft-
peak) and mode choice (SOV vs. non-50V) are treated as two binary choices, the bivariate probit
model can be formulated at the trip level to simultaneously analyze their probabilities with

accommadation of random ercor correlation. The general formulation is as follows:

M, =y:, +al +¢,
(1%)

I =0'x,+1M +w,

where,

¢ is an index for observations of trips (¢ =1, 2, ..., O

1’\/}'4,M and T,,! are latent variables representing the mode choice and departure time for trip g,
respectively,;

M, =1if Mq‘ > 0, = 0 otherwise (i.e., &, is a dummy variable indicating whether twip ¢ uses the
SOV maode),

7, = Lif TC,M > 0, = 0 otherwise (i.e., T, is a dummy variable indicating whether trip ¢ is made in
the peak period);

zy and x,are vectors of explanatory variables for M(f and T(,*. respectively;

v, are two vectors of model coefficients associated with the explanatery variables z; and x,
respactively,

r is a scalar coefficient for T, to measure the impact of departure time choice on mode choice;

n is a scalar coefficient for M, to measure the impact of mode choice on departure time choice;

¢, and, are random error terms, which are standard bivariate normally distributed with zero

means, unit variances, and correlation p,ie. £,,@, ~¢,(006.1.1.p ).

Based on this normality assumption, one can derive the probability of each possible combination of

hinary choices for trip ¢
Pr(M =0,T=0)=0,[-y'z,—f'x,p] (19

PH(M =1,T =0)=® [(f'x +)| - D |~/ z~(F'x +17) p) (20)
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Pr(M =0T =1)=D [~y = +@)]-C,[(7' - +a),—3'x, 0] 21

PriM =1,T =1 =1 -@,[—(y'z +a} - D [~(f'x+1)]
+ @, [ (Y z+a),~(B x+m), 2] 22

where @[] and @,[] are cumulative distribution function lor standard univariate and bivariate

normal distribution, respectively.

The sum of the probabilities for the four combinations ot two hinary choices should be egual to one,

ie.,

PHM = 0,7 = 0)+ P{Af = L.T = Q)+ Pr{(M = 0,7 = )+ Pe(M =1,T =) =1 (23)
Substituting equations {19) through (22) into equation (23}, it can be shown that

D, [=7' 2= 5, )+ B[y = + @}~ ' x + 1) p]

=Q,[-y 5~(B'x +0), p1+ D[~y z+ 00~ f'x. ] (24)

This equation does not hold unless either & or 17 is equal 1o zero. This requirement, known as the

logical consistency condition, will lead to two different recursive simultaneous modelling structures
{Maddala, 1983), suggesting two different causal relationships. The [irst structure is defined

byo =0, 1 # 0 and implies that mode choice influences departure time choice. Thus:

M, =v'z +e,
(235)
T, =B8'x,+nM, +w,

Trv this strueture, mode choiee is predetermined as per the first functional relationship. Then, the
choice of mode is specified as a dummy variable in the second functional relationship for departure

lime choiee to directly measure the impact of mode choice on time-of-day choice.

[ the second structure =0 and 7) =0, implying that departure time choice influences mode

choice. Thus,
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o s ‘
M, =7z +al +eg,

(20)
ij = 'B'xu o,

Departure time choice is predetermined as per the second [unctional relationship. ‘The trip departure
time is specified as an explanatory variable influencing mode choice as per the first functional

relationship.

Thus, the desirable feature of the bivariate probit model in which the coefficients of two
endogenous dumimy variables do not coexist in both functional relationships provides an
appropriate modelling framework to analyze the causality between trip departure time and mode
choice. The endogenous nature of one of the dependent variables in the simultaneous equation
system can be ignored in formulating the likelihood function, To facilitate formulating likelihood
[unctions, equations (19} through (22) can be rewritien in a format including only the cumulative
distribution  function of the standard bivariate normal distribution {Greene, 2003). The
corresponding likelihood [unctions can be summarized by the lollowing gencral formulations [or
the two different unidireetional causal structures:

1y e =0, n =0 (Mode Choice — Departure Time Choice)

0

L=T] {(Dz[/if,}"z.prf,(ﬁ'xq +nM ), ﬂk,'r,,p]} (27)

iq=1
2) o # 0, =0 {Departure Time Choice — Mode Choice)

[4)

L= H {(Dz [l-'q(]"z.; +aT},)’T(,ﬁ'xq,yqrqp]} (28)

g=l

where y, =2M,—land 7, =27, -1,

Simultancous Logit Model

This modelling methodology is presented in the context of an application to the analysis of the joint
relationship between trip chaining type choice and mode choice (i.e., trip chain type choice <

mode choice). The bivariate probit model only allows the unidirectional causal relationship belween



10 Progress in activitv-based analysis

1wo binary choiees. To accommodate plausible bidirectional causality, the simultancous logit model
can be applied (Schmidt e al, 1975, Ouyang er af, 2002). The simultaneous logit model is
introduced in the context of trip chaining type choice and mode choice. This modelling
methodology may be considered an extension of the multinomial logit model commonly used in
transportation modelling practice. In the simultanecus logit model, the logarithm ol (he ratio of
probabilitics for two alternatives to be selected from one choice set is assumed to equal a lincar
combination of a set of explanatory variables. One dummy variable indicating the choice of tour
complexity may be added into the set of explanatory variables for mode choice. Similarly, one
dummy variable indicating mode choice may be added into the set of explanatory variables for tour
complexity. The model may be formulated as follows:

[ Pr(M =1|T)
In| ————— =92 +oT 2N
Pr{Af, =0|T)) - '

[ Pr(T, =1]M )

ll'l D ——
| PH(T,=0[M,)

= B'xq + 5, (30}

whete

g is an index for observations of tour (g — 1, 2, ..., O);

M, is a dummy variable indicating whether tour g uses the auto mode;

T, 1s a dummy variable indicating whether tour g is complex;

z, isavector of explanatory variables for A4

x, s a veotor of explanatory variables for 75;

¥. B are two vectors of model cocfficients associated with the explanatory variables z, and x,,
respectively;

o is a scalar coefticient for 7, to measure the impact of tour’s complexity on mode choice;

1 is a scular coelficient for M, to measure (he impact of mede choice on the choice of lour

complexity.
By rewriting equations (29) and (30) across two possible values that 7, and M, can take, one gets:

Pr(M, =1,T, =0)
br(M =07 =0)

’

=7z (31)

In
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| [PM, =1T,=1)] |
n =9y 4+ 3 .
PV = 0.7 <1) Ye, (32)
[ pr(r =10 =0
Inf T (33)
Pr(T, =0.M, =0) 4
1 [ P(T, =1,M, =1) p
_Pr(?'q =0,Mq -1 g TH (34)

"I'he sum of the probabilities for the four combinations of binary choices should be equal to one, i.e.,

Pr(M, =0,T, =0)+Pr(M, =1,7, =0)

Ty

(35)
+P(M, =0T, =D+Pr(M, =T =1)=1
By converting simultanecus equations (31) through {34), it can be shown that
PeM =1T,=1)y=Pe(M =0T, =0)exp(yz, +f'x, +a)
(36}

=Pr(M, =0,T, = 0)exp(y'z, + B'x, +n)

For logical consistency, o must be equal o 7. Endogenous dummy variables T, and A4, are allowed
to coexist in the simultaneous equation system. By replacing 17 with o and solving the simultancous
equations (31) through (35), the probability for each combination is formulated as follows:

Py, =PM, =07, =0)=1/4, (37)
Py, =PrM =T =0)=exp(y'z,}/ 4, (3%)
Py, =PrM =0T =ly=exp(f'x, )/ 4, (39)
B, =PM=1T=1) =cxp(y'z,+fx, +a) 4, (40

where,



12 Progress in aclivitv-based analysis
A{f =1+ exp( }f'zq )+ exp(/ﬁ“xq )+ exp()f’zq + ﬁ',\‘q + ) (41)
Finally, the likelihood function may be formulated as follows:

o ‘ » _ "
1_, — H(]J[qu }[I U.; Wl .’g)(jjmq )Jfgtl .”_,)(qu )('I Uq]f” ()D“q ) W (42]

=1

DaTA SETS

This seetion deseribes the data sets that were used for estimating the joint model systems and
inferring the nature of the causal relationships among selected activity and travel variables,

Data Set for Analyzing Relationship between Activity Timing and Episode Duration

The data set for the analvsis between activity timing and activity episode duration is derived from a
comprehensive household travel survey that was administered in 1996 in the Tampa Bay Region of
Florida. The survey was a traditional trip diary survey and was not an aclivity or lime use survey.
The survey was a mail-out mail-back survey that collected household and person socio-economic
and demographic characteristics together with detailed information about all trips undertaken over a
24 hour period. touseholds were asked to return one complete diary for every household member
{including children). After extensive checking and data integrity screening, a final respondent
sample of 5261 houscholds was obtained. Trom these 5261 houscholds, a total of 9066 persons
returned usable trip diaries. The 9066 persons reported information for a total of 31459 trips
(through the 24 hour trip diary). The trip file was used to crcate an out-of-home activity file where
individual activity records were created trom the trip records. This activity file included information
about activity type, activity timing, activity duration, and other variables pertinent to each activity
cpisode. Based on a time of day distribution of all trips in the data set, four distinet time periods

were identified. They are:

» AMnpeak: 7:15 AM-9:15 AM
+ Midday 916 AM 3:15PM
* PMpeak :3:16 PM - 6:15 PM
= Offpeak :6:16 PM - 7:14 AM
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Maintenance activities included the following three activity (trip) types: Shopping, personal
business, and errands, Medical/dental; Scrve passenger or child. These activity records were
extracted from the original file to create two maintenance activity record files, one for commuters
and one for non-commuters. Commulers were deflined as driving age individuals who commuted to
a work place on the travel diary day, while non-commuters were defined as driving age individuals
who did not commute to a woerk place (made zero work trips) on the travel diary day. Note that a
worker (employed person} who did not commulie on the travel diary day would still be classified as
a non-commuter for the purpose of this analysis. Also, children under the age of 16 were excluded
[rom the analysis completely. Mainlenance activity records that had [ull informaiion (no missing
data) were extracted to create commuter and non-commuter data files for the modelling effort in

this paper.

Maintenance activities were pursued by 2904 individuals residing in 2386 households. Of these
individuals, 1023 were commuters and they reported 1331 mainlenance activities. The remaining
1881 individuals were non-commuters and they reported 2899 maintenance activities. The
commuter and non-commuter maintenance activity episode dala sets included complele socio-

economic and activity information for the respective samples.

Data Set for Analyzing Relationship between Non-Work Trip Timing and Mode Choice

The dataset used to analyze the relation between trip timing and mode choiee is drawn from the
Southeast I'lorida Regional 1louseheld Travel Survey, which was conducted during 1999 in Miami-
Dade, Broward, and Palm Beach counties. Households agreeing to participate in the survey were
mailed a survey package including a 24-hour travel diary for each member of the household. As
with most houschold travel surveys, this survey collected detailed socio-demographic and trip
information for each person in the household. The survey provided a respondent sample of 11,426
persons reporting a total of 33,082 trips. The socio-economic, demographic, and travel
characteristics of the respondent sample were generally consistent with those of the population in
the region. The analysis focuses on the relationship between time-of-day choice and mode choice
for non-work trips made by adults. For this reason, all non-work trips made by persons 18 vears of
age or older were extracted from the original dataset. In addition, the analysis distinguishes between
workers (employed)} and non-workers (unemployed) in an attempt to capture the effect of potential
differences in temporal and modal choice flexibility between these two groups. For example,
workers might link (heir non-work (rips to the commute while non-workers might make use of their
travel flexibility to aveid congestion during peak hours. From the original trip data set, all non-work
trips that had complete information including household and person socic-economic data, trip
attribuie data, and modal level of service data were extracted. This subsample of trips included a
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total of 14,410 non-work trips of which 7,947 were made by 2,710 workers and 6,463 were made
by 1,741 non-workets.

Data Set for Analyzing Relationship between Trip Chaining and Mode Choice

The data set used for analysis of relation between trip chaining and mode choice is extracted from
the Swiss Travel Microcensus 2000, The survey respondent sample consists of 27,918 households
from 26 cantons in Switzerland. The person sample was formed by randomly selecting one person
over 6 years old from each household with less than 4 household members and two persons over 6
years old from cach houschold with 4 or more members, As a result of this sampling scheme, the
person respondent sample consisted of 29,407 persons. All of the persotis in the person sample were
asked (o report heir (ravel in a one-day trip diary. The resulting trip data set includes 103,376 trips
reported by 29.407 interviewed persons (including the possibility of some respondents making zero

trips on the survey day),

Data corresponding to respondents from the Canton of Zurich was extracted to reduce the data to a
more manageable size and o control for possible area specific effects. The Zurich subsample
includes 5,128 houscholds from which 5,241 persons provided travel information. A trip chain is
defined in this analysis as a complete home-to-home journey where the origin of the first trip is
home and the destination of the last trip is home. No intermediate home stop can exist within a trip
chain. Whenever the home location is reached, a chain is formed. A tour-level data set was formed
by aggregating the trip data set to the tour level. All person and household characteristics were
merged into the tour level data set. In most cases, a single mode was prevalent for the trip chain. In
cases where multiple modes were prevalent within the same trip chain or tour, a single mode was
assigned based on the whether or not the auto mode was used in the chain. Tf the auto mode was
used for any segment in the trip chain, then the chain was assigned an auto mode. Each tour was
classified as a simple or complex tour depending on whether it had one intermediate stop or more
than one intermediate stop within the chain. Tn addition, tours were also classified as work-based
tours and non work-based tours. Any tour that included a work stop (regardless of the presence of
other types of stops) was classitied as a work-based tour while any tour that included only non-work
stops was classified as a non work-based tour. 1t was felt that the causal relationships governing
work-based tours may be different from those governing non work-based tours. This is because the
presence of a work stop may impose a certain amount of spatial and temporal rigidity on the
activity/travel behaviour of the individual in the context ol that tour. The constraints associated with
the work activity may lead to a different causal structure underlying trip chain formation and mode

choice. The Zurich subsample included 4,901 non-work tours and 1,711 work tours.
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MODEL ESTIMATION RESULTS

In this section, the major findings from the model estitnation results are presented. Detailed model
specifications and estimation results may be found for the activity timing-duration model systems in
Pendyala and Bhat (2004), activity timing-mode choice model systems in Tringides ¢f of (2004),

and trip chaining-mode cheice model systems in Ye and Pendyala (2004).

Activity Episode Timing and Duration

Non-commuters: Activity timing =2 Activity episode duration. The time of day indicators are all
slatistically significant in the model. Relative o the off-peak period, all olher periods are
characterized by shorter maintenance activity cpisodes as reflected by the negative coefticients. The
midday indicator has the most negative coefficient suggesting that the maintenance activity
episodes in his period are the shortesl. The error correlation between midday aclivity participation
and activity duration is the only statistically significant ceror correlation.

Non-comnuters: Activity episode duration = Activity timing. The activity duration variable affects
time of day choice in the AM peak and PM peak activity participation equations. It does not enter
the midday activity participation equation. The coelficients associated with the duration variable are
positive indicating that non-commuters arc not constrained with respeet to the lengths of their
activity episodes in these time periods. Also, the error correlation between midday activity
participation and activity duration is the only statistically significant error corrclation.

An assessment of the cavsal structures is performed using the goodness-of-fit measures as both
model structures offered plausible results. The adjusted likelihood ratio index at zero is computed

a8

; LiB)—k .

pr—1-HEE (43)
L}

where, & is the number of parameters as shown in the table. Similarly, the likelihood ratio index at

sample shares is computed as:

I T .
s =1 10 (44)
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Table 1.1
Measuores of Fit for Joint Activity Episode Timing-Duration Models

Non-Commuter Model Commuter Model
Time of Day > Duration 2 Time of Day > Duration =

Summary Statistic Duration Time of Day Duration lime of Day
Sample size 2899 2899 1351 1351
Number of parnmeters’ i 21 2i 22

Log-l.ikelihood

Al convergence -A584.14 -33160.82 -2990.86 -2490.60

At market share” -5756.11 -5756.01 -3058.38 -3038.38

At zero® -T2 .00 SHIT200 -3216.60 -3216.60
Adjusted Likelihood Ratio

gl 0.207 0.245 0.064 0.063

p’ 0.027 0.073 0014 0.016

The number of parameters does not inelude the constant and variance term in the log-lincar duration model,

The log-iikelihood at sample shares corresponds to the likelihood function walue of the joint model with only
allemative spevific constants in the MNL time of day model. and with only the constant and variance werm in the log-

linear duration cqualion. All correlation terms are zero,

The log-likelihood al zero corresponds o the likelibood function value of the joint model with no variables in the
MNL time of day model. and with only the constant and variance {standard deviation) wrm in the log-lincar duration
cquation. All correlation termy are zero.

A comparison of the adjusted likelihood ratio indices, as shown in Table 1.1, provides a mechanism
tor comparing two non-nested models. Ben-Akiva and Terman {1985) note that, for estimations
involving more than 250 observations, if the adjusted likelihood ratio indices differ by more than
0.01, then the model with the lower index is almost certainly the incorrect model. As the difference
in indices for the non-commuter models is substantially greater than 0.01, it may be safely
concluded thal the model representing the causal structure where duration affects time of day is the
more appropriate one. Thus, activity episode duration drives activity timing (scheduling) for

mainlenance activities ol non-commulers.

Commuters. In the log-linear duration model, time-of-day variables are significant in influencing
activity duration. As expected, episode duration tends to be longer in the off-peak period as
retlected by the positive coeflicient associated with the off-peak period indicator. In the causal
structure where activity duration alTects time of day choice 1s considered, activity duration is found
to be significant in all time period equations. Relative to the oft-peak period, the negative
coefficients associaled with activity duration suggest that there is lower propensity to pursue longer
activity episodes in the AM-peak, midday, or PM-peak periods. Within these three periods, the
lowest propensity is seen in the AM-peak period and the highest propensity is seen in the midday

periods. It is found that none of the error correlalion terms are statistically significant regardless ol
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the causal structure considered. Thus, in effect, the joint model reduces to an independent model
system where time of day and duration models may be estimated separately in a sequential fashion.
This finding suggests that there is only a loose relationship between time of day choice and activity

episode duration for commuters.

The comparison between two alternative causal structures shows that the adjusted likelihood ratio
indices, as shown in Table 1.1, arc very similar and have differences less than the 0.01 value
required to help identify the correct model. In addition, the model fit is substantially poorer than the
[its obtained in the context of the non-commuter samples. These findings coupled with the finding
that none of the error correlation terms are statistically significant suggest that time of day choice
and activity episode duration are correlated albeit with only a loose causal relationship between
them. [t does not appear that one decision precedes or necessarily determines the other. This
conclusion may be explained by the fact that work schedules tend to dictate time of day
parlicipation and activily durations for commuters. Thus, aclivity episode duration and activily
timing of maintenance activities are only loosely related to one another for commuters and may be

maodelled independently in a single-equation framework.

Non-Work Trip Timing and Mode Choice

Workers. In the model where departure time choice is assumed to affect mode choice (timing =
mode choice), it is found that the dummy variable representing peak period departure time choice
significantly affects the choice of SOV as the mode for non-work trips. The coefficient is negative
indicating that a departure time choice in the peak period tends to lower the propensity to drive
alone for non-work trips. There are two important possible explanations for this. First, it is possible
that peak period non-work trips are primarily serve passenger trips where a worker is dropping oft
or picking up a child at school or day care on the way to and from work. As nearly one-half of the
households in the sample have at least one child, this is likely to be a strong explanation for this
relationship. Seccond, it is possible that some workers are choosing to use alternative modes of
transportation for their non-work trips to avoid the frustration of driving alone in congested
conditions during the peak period. Random error correlation is positive and statistically significant

at the 0.05 level of significance.

In the model where mode cheice is assumed to affect departure time choice (mode = timing), it is
[ound that that the SOV mode choice contributes negatively to peak period departure time choice as
evidenced by a negative coefficient associated with the SOV choice variable in the departure time
choice model. In addition, the random error correlation is statistically significant. These indications
are consistent with those found in the (rst causal structure.
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The adjusted likelihood ratio index as a goodness-of-fit measure can be wsed for testing and
comparing non-nested relationships in discrete choice models. To choose between two models (say,
1 and 2}, Ben-Akiva and Lerman (1983) provide a test where under the null hypothesis that model 1
is the true specification, the following holds asymptotically:

Prip,—p, » 2} SOf—[ 22 L(0)+(K. K, )] " }pz>0 (45}
where,

5, is the adjusted likclihood ratio index at zero for model 7 =1, 2, as in cquation (43);

Ki is the number of parameters in model /;

@ s the standard normal cumulative distribution funciion;

L0 )15 the log-likelihood value at zero; if all N observations in the sample have all J allernatives,
Li0) =N In{1/)).

Table 1.2 shows that the difference between the adjusted likelihood ratio indices for the two worker
models is 0.0002 with the model in which departure time choice precedes mode choice showing the
better fit. Applying equation (45} yields a bounding probability of almost zero; therefore, it can be
said with a high degree of confidence (99 percent confidence or better) that the model
corresponding to the causal structure “departure time choice 2 mode choice™ is statistically
dominant in the worker sample (for non-work trips). This may be behaviourally cxplained by
considering the typical work schedule constraints faced by workers. As workers tend to link their
non-work trips with the commute to and from work, the departure time choiec is predetermined in
conjunction with the work schedule that takes precedence over all else. The mode choice is then
simply determined by the mode that has been chosen for the commute trip as the non-work trips are
part of a larger trip chaining meehanism. Thus, departure time choice (timing) decision precedes the

mode choice decision for non-work trips of workers.

Non-Workers. The model in which departure time choice influences mode choice appears to reject
the paradigm of simultaneity, The coefficient of the dummy endogenous variable indicating peak-
period departure in the mode choice model is negative, but not statistically significant. Morcover,
the random error correlation is also not statistically significant at the .05 level. Both of these
findings indicate that this model specification does not suppeort the notion of simultancity in
departure time and mode choice for non-work trips made by non-workers. As these findings are
quite counter-intuitive, the authors feel that this causal structure is not appropriate to describe the

behaviour ol non-workers.
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Table 1.2
Measures of Fit for Joint Activity Episode Timing-VMode Choice Models

Workers Waorkers Non-Workers Non-Workers
Dep Time=>>Mode Mode=>Dep Time  Dep Time=>Mode  Mode=>Dep Time
Sample size 7947 7947 6463 6463
Mo. ol parmnelers 18 20 20 20
Log-Likelihood
Al convergenee -0912.77% -GO08.679 -7448.404 -7440.233
Al market share -10417.222 -10417.222 -7964.838 -7964.838
Al zero -11016.881 -11016.881 -8959.620 -8939.620
Likelihwod Ralio
o4 0.1002 0.1006 (0.1298 0.1308
,rJ__1 {.0484 (.0488 (1.0648 {1.0659
iy 0.0986 0.0984 01664 0.1674
,51 {0467 0.0465 (.0623 1.0634

Estimation results in the model where mode choice precedes time-of-day choice supports the
hypothesis of simultangily belween departure time choice and mode choice. The coefficient of
mode choice (SOV) in the departure time choice model is negative and statistically significant at the
0.05 level of significance. In general, the mode] indicates that non-workers arc likely to aveid
travelling in the peak period (negative constant in the depatture titme choice model) and using the
SOV mode further contributes to avoiding the peak period. In addition, the random error correlation
is positive and statistically significant at the 0.05 level of significance. The significant crror
correlation supports the notion of a simultaneous relationship between time of day choice and mode
cheice and is intuitively more consistent with travel behaviour hypotheses. Thus, from a qualitative
and intuitive standpoint, it appears that the causal model in which departure time choice precedes
mode choice is more applicable to workers’ non-work trips while the opposite causal structure in
which mode choice precedes departure time choice is more applicable to the non-worker sample,

The results of the analysis of the relationship between departure time choice and mode choice are
quite intuitive and may be explained from a behavioural standpoint. One may conjecture that
individuals first mmake decisions regarding those choices that are more constrained and then proceed
to decisions that are less constrained. [n the case of workers, the timing of a non-work activity is
likely to be more constrained due to the rigidity of the work schedules around which non-work
aetivitics must be accommodated. Thus workers first determine when a non-work activity will be
pursued and then proceed to the mode choice decision. On the other hand, non-workers are likely to
be more mode constrained than time of day constrained as the worker(s) in the houschold may have

taken the automobiles to work and so on. Then, non-workers first determine the mode that will be
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used for the non-work trip and then proceed to determining when they will make the trip. They are
less constrained with respect to the timing decision because of the absence of rigid work schedules.
Thus, mode choice decision precedes the departure time choice decision for non-work trips of non-

workers.

Complexity of Trip Chaining and Mode Choice

Non-Work Tours (Workers and Non-Workers]. In the model in which tour complexity influences
mode choice, the cocfficient for tour complexity is statistically significant and positive in the mode
choice model. This lends credence to the hypothesis that the need to make a complex tour is likely
to incrcase dependency on the aute mode. Tn addition, the error correlation is found to be
statistically significant and this is indicative of the validity of the assumption that non-work tour
complexity and mode choice should be modelled in a simultaneous equations framework.
[nterestingly, in the alternative recursive causal structure where mode choice influences tour type
choice, it is found (hat mode choiee significantly allects tour complexity and that the choice of auto
is positively associated with the formation of complex tours. Thus it appears from this model that
the choice of the autommobile mode tor a tour contributes positively to the formation of multi-stop
trip chains. Inn addition, the crror correlation is significant and negative. Estimation results of
simultanecus logit model appear to support the notion that there is a bidirectional causality between
mode choice and tour complexity. The significantly positive joint dependence parameter, ¢, shows
the presence of significant positive correlation between auto mode choice and tour complexity.

The test of non-nested models, as described in earlier, is applied to conduct a statistical comparison
between the alternative causal structures so as to identily the most appropriate simultangous
structure. As shown in Table 1.3, the difference in adjusted likelihood ratios (s approximately 0.004
between the model where “tour complexity =2 mode choice™ and the models where “mode choice
= tour complexily” and “mode choice < lour complexity™. According lo cquation (45), the
calculated bounding probability on the right hand side of the expression is almost zero. Thus, it may
be concluded that the model “tour complexity = mode choice™ is more closely capturing the causal
structure undetlying the relationship between mode choice and tour complexity. The significantly
belier goodness-ol-[it of the model suggests that the causal siruclure where the complexity of the
tour affeets mode choice is stanistically, and possibly behaviourally, dominant in the population for
non-work tours. This result suggests that the complexity of the trip chain drives mode choice
decisions for non-work tours. Thus the auto mode is chosen (or not chosen} as a consequence of the

complexity of the activity agenda/schedule/pattern that the person needs to undertake.



Contributions to understanding joint relations among travel and activine variables 21

Table 1.3
Measures of Fit for Joint Non-Work Tour Complexity-Mode Choice Models

Tour Complexity — Mode Choice — Mode Choice
Mode Choice Tour Complexity — Tour Complexity
Sample size 4901 4901 4901
Number of parameters 20 18 14
Log-likelilioud
Al comvergence -S179.689 -5207.736 -3203.343
At market share -5734.170 -3734.070 -3734. 170
At zeto -6794.229 -6794.229 -6794.229
Likelihood Ralio
N 02376 0.2335 0.2342
: 1.0967 0.0918 0.0926
i 0.2347 0.2309 0.2314
B. 0.0932 0.0387 0.0893

Work Tours {Workers Onfy). In the model where “tour complexity = auto mode choice™, it is found
that tour complexity has a positive impact on auto mode choice. This is consistent with
expectations, trends in the data, and the models ot non-work tours. The coefficiant associated with
tour complexily variable in the mode choice model is positive and statistically significant. Thus the
model supports the notien that a complex tour or trip chaining pattern contributes to the choice of
aulo as the mode [or the (our. [n addition, the error correlation is negalive and statistically
significant, once again supporting the simultaneous equations formulation of the relationship
between tour complexity and mode choice.

In the model where “auto mode choice = tour complexity”, the coefficient associated with the auto
mode choice variable in the tour complexity equation 1s statistically signilicant and positive
indicating that the choice of auto mode contributes positively to the formation of complex multi-
stop trip chains. However, unlike other models, the error comelation is statistically insignificant.
Thus, this mode]l suggests that tour complexity and mode choice can be modelled as two
independent equations where mode choice affects tour complexity in a recursive unidirectional
causal structure. In the simultaneous logil model [or work 1ours, the joint dependence parameler, «,
is found to be statistically significant and positive. This model supports the notion that there is a
significant and positive bidirectional causal relationship between tour complexity and aulo mode
choice. In comparing the maodels, the seemingly better model “tour complexity = mode choice™ has
an adjusted likelihood ratio index that is only 0.001 greater than those of the models in the other
two causal structures, as shown in Table 1.4.
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Table 1.4
Measures of Fit for Joint Work Tour Complexity-Mode Choice Models

Tour Complexity — Mode Choice — Mode Choice
Mode Chuice Tour Complexity +— Tour Complexity

Sample size 1711 1711 1711
Number of parameters 16 1o 15
Log-likelihood

At convergenee -2076.249 -2078.843 -2079.840

Al market share -1354.340 -2354.340 -2354.340

Al zero -2371.950 -2371.950 -2371.9350
Likelihoad Ratio

Pl 0.1247 01236 0.1232

p_" 01181 21170 0.1166

Pu 0.1179 0.1168 0.1168
y 0113 21102 0.z

The bounding probabilities, as per the right hand side of equation (45), are calculated to be 0.036
and 0.007, respectively. The statistical test rejects the causal structure where mode choice drives the
complexity of the work tour (i.c., mode choice =2 tour complexity). However, the test fails o reject
the simultanecus logit model, i.e., bidirectional simulianecus causality, at the 0.05 level of
significance. In addition to this non-nested test, the insignificance of the random error correlation in
the model of mode choice affecting tour complexity suggests that the assumed causal structure in
that joint model may not be valid. Thus, for work tours, two possible causal structures can not be
rejected from this analysis. Either, the decision to make a complex work tour tends to result in the
choice of the auto mode or both of these decisions are made contemporancously. The results
suggest that for work tours, two joint relationships appear equally valid to explain the causality
between complexity of trip chain and mode choice. Either the complexity of the trip chain precedes
the mode cheiee decision or both decisions are made contemporancously.

CONCLUSIONS

This paper summarizes a series of research efforts exploring the joint relationships among activity
and travel variables including trip chaining pattern, mode choice, time-of-day choice, and activity
episode  duration.  Joint  econometric  simultaneous  equations modelling  methodologies
accommodating mixed variables and flexible error covariance structures are used for analyzing the
joint relationships. A discrete-continuous model ramework 15 used to maodel the relationship
between a discrete choice variable {(activity timing} and a continuous variable (activity duration)
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while the bivariate probit and simultaneous logit modelling approaches are used te analyze
relationships between two binary choice variables. The similarity between discrete-continuous
modelling framework and the bivariate probit model is that both endogenous variables cannot
coexist in the model specification o ensure logical consislency and model identilication in a full-
information maximum likelihood estimation framework. This property leads to two alternative
recursive structures representing two unidirectional causal relationships between the endogenous
variables. The performance compatisons between the alternative recursive causal structures help
identily the dominant causal relationship belween (he endogenous variables. In turn, a knowledge ol
the dominant causal relationships helps in the development of accurate activity-based travel demand
model syslems thal inlend Lo capture behavioural mechanisms al the level of the individual (raveller.
In addition, the knowledge of the true causal relationships underlying decision proccsses will help
in the accurate assessment and impact analysis of alternative transportation policies such as variable

pricing, parking pricing, and telecommuting.

‘The analysis and findings presented in this paper have direet implications [or the development of
activity-based travel demand modelling systems. In the context of individual travel behaviour
micro-sitnulation, the development and application of these model systems calls for the ability to
accuralely represent cavsal relationships that are prevalent in the population. The analysis belween
trip timing and activity duration suggests that for non-commuters, the medel for forecasting
maintenance activily duration ought to be applied belore the model for seheduling the activity. The
analysis between trip timing and mode choice suggests that, for workers, the trip scheduling model
may precede the mode choice model, but in contrast, for non-workers, the mode choice model may
precede the trip scheduling model. The analysis between trip chaining formation and mode choice
suggests that the activity agenda or tour formation step may precede the mode choice step tor both
non-work and work tours, although one may also use a contemporancous relationship for the latter,
luture research eftorts should focus on analyzing whether these findings regarding causal
relationships between these travel variables hold in other data sets as well. In addition, the
modelling framework for causal analysis between two disercte choiees can be extended to consider

multinomial choice situations.
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A DYNAMIC PROGRAMMING APPROACH FOR THE
ACTIVITY GENERATION AND SCHEDULING
PROBLEM

Anders Karlstrint, Roval lnstitute of Technology. Siockholm, Sweden

INTRODUCTION AND MOTIVATION

Travel is derived demand and a trip should not be seen in isolation. In fact, a trip may be a
consequence of decisions and behaviour at a much earlier stage. As a consequence, the theoretical
superiority of activity-based approaches over trip-based models has been well documented during
the past several decades. The comparison belween (rip-based approaches and activily-based
approaches has been discussed at length clsewhere (e.g., Timmermans, 2000}, [n characterizing the
area of activity-based modelling, activity-based approaches can be partitioned into many different
dimensions. For the purpose of this chapter, it is useful to distinguish between models in two
different dimensions.

First, we diseriminate beiween approaches thal are founded in a microcconomic theory and those
tor which no such claim is made. Transport models has been used extensively in project evaluation
during many decades, and it scems clear that a model has to be consistent with microcconomic
theory if it should be used for cost benefil assessment and wellare cconomic analysis. Towever,
travel models well rooted in microeconomic theory have been criticized to the extent that they make
unrealistic behavioural assumptions. Therefore, it is useful to discriminate between different
approaches also on the basis of behavioural content. That is, whether a model claims to actually
mode] the decision process of individuals (and households) or whether the model is more confined

Progress in Activity-Based Analysis edited by H. Timmermans
€ 2005 Published by Elsevier [.id.
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(o replicate the pattern of travel decisions rather than the decision process. A related distingtion is
whether it is assumed that individuals behave with high rationality or low rationality. This is
logically disjunct from whether individuals arc utility maximizcrs or, for that matter. whether the
model is consistent with microcconomic theory.

One inherent difficulty with the econometric approach is the computational complexity of finding,
in a utlity maximizing franework, the optimal activity pattern, including activity generation,
allocation and scheduling. The current state-of-the-art in microeconometric models has been noted
to suffer from problems related to combinatorics. For instance, if there are 10 activities that can take

placc at 100 locations, and there are 5 modes and 100 time periods, there are 10" alternative
schedules facing the individual (Bowman and Bern-Akiva, 2001). Seen from this perspective, it is
not surprising that current econometric models have to be constrained in some way to be tractable,
{or instance by nol allowing for all sequences of activities. In contrast, we argue thal the activily
pattern problem is quite tractable without making a priori restrictions with respect to allowed trip
patterns. Econometric estimation of models of similar size is regularly made in the literature on

labeur supply and social security.

Theoretically, first we need © develop a theoretical framework that allows for sequential decision
making in an uncertain environment. The sugeested approach relies on the framework of Markov
decision processes, and we will demonstrate that the dvnamic framework in fact makes the activity
patiem problem quile manageable. That is, although the combinatories still look daunting, we can
solve the decision problem for one individual without a prieri restricting the travel patterns, 1f we
wanl lo estimate the model econometrically, we need a probabilistic formulation of the decision
problem. [ we choose, lor mstance, a logit model as the diserete choiee model, the model looks a
bit similar to the state-of-art activity-based cconometric models. In comparison, we will argue that
there are a number of advantages asociated with the suggested approach. First, our model is
computationally efficient. We do not have to constrain the activity patterns into a priori activity
patterns. The dynamic programming apptoach is efficient in solving these kind of Markov decision
processes, and the activity pattern problem is small encugh such that we can allow for all possible
combinations. As such, it is not combinatorics that 1s the limiting factor for relevant models.

Sccond, by formulating a Markov decision problem, we can allow for explicit sequential decision
making in an uncertain environment. For instance, the travel time to work in the marning may be
stochastie, although with a known distribution. This may be taken into account when deeiding on
departure time for the work trip in the morning. When arriving at work, this uncertainty is
dissolved. It the travel time was unusual long, then a shopping trip may be postponed to the next
day. The method also has the potential of modelling information. 1f information of expected travel
conditions is provided to the individual, it may affect the activity pattern throughout the day.
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Finally, a shift in departure time for work in the morning may influence the departure time from
work in the afternoon.

Third, since the dynamic programming approach is computationally efficient, and we can solve the
utility maximizing problem for ong individual for onc day, we arc ablc to introduce between-day
dependencies. That is, it an individual switches to publie transportation (as a response to congestion
pricing, for nstance), a shopping tip on the way home from work may be posiponed to the
weekend, for instance, The use of different time-scales for individuals® agendas fits well with this
approach. [t is natural to consider planning within a day, then for several days, and longer (months,
and years). In this chapter, we will demonstrate the approach by considering one day and between-
days interrelations only. Note that in-between day interdependencies and uncertainty/rescheduling
are usually not considered in econometric models. The topic however has attracled attention in
proposals [or computational process models (e.g., Garling and Young, 2000; Doherty ef al., 2005).
Smash (Cltema ef af., 2000} and Aurcra (Joh et af., 2002, 2003, 2004) are operational models of
rescheduling behaviour. The latier model has been extended 1o rescheduling under uncertainty
(Arentze and Timmermans, 2004) and the case of informaltion provision (Sun ez af.. 2005).

In this chapter, we follow the econometric approach of estimating a mode] that replicates the actual
choices ol individuals without making any claim with respect 1o the decision process individuals
actually use. Still, we cannot overlook the serious and valid criticism that it is unrealistic to think
that individuals actually are able to solve very complicated wtility maximizing problems, In our
case, in a houschold setting where there are interpersonal relations, our activity pattern problem
becomes much more difticult to solve. If we have a problem that we cannot solve even if we use the
most sophisticated current algorithm using the best available computer power, it is unrealistic to
think that individuals are able to find the optimal solution. Therefore, we need suboptimal
algorithms © solve such problems. Such algorithms (in the class of state-of-art algorithms for our
class of problems) are based on algorithms that are alse used in models which are not based on
micro-ceonomics, butl ruther based on heunistic {(behavioural) algonthms, such as computational
process models  and  rule-based approaches.  Approximation  methods, such  as  function
approximation used in the reinforcement learning literature, become necessary as the dimensions of
the problem grow. A rule-based approach based on decision trees (e.g., Arentze and Timmermans,
2000) may be viewed as a piecewise linear approximation of the value function in our setting,
Algorithms based on reinforcement-learning, neural networks, and decision-trees have indeed
proven to be elficient in finding good decision poelicies in the setting of Markov decision problems.
These ideas will only be touched upon in this chapter.
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LITERATURE

This is not the place for a detailed review of activity-based models. Excellent reviews can be found
clsewhere (e.g., Timmermans, 2000; MeNally, 2000; Bowman and BerrAkiva, 2001). To put the
current work into perspective it is useful to follow the argument of Nagel and Marchal (2003, pp.
20-21). First, note that the main difficulty with activity-based modelling is combinatorics. Even tor

one individual, with only 10 destinations, three modes, and 100 time intervals, the number of

activity patterns can easily he 1t (Bowman and Ben-Akiva, 2001). What an activity modeller
needs therefore is good search methods. Second, the main purpose of this chapter is to argue that a
problem of the above size is quite traclable using cfficient search methods. We will arguc that such
a problem can easily be solved with dynamic programming. Third, solving the deterministic
problem s much casier than solving the problem in a random utility framework. However, (or
activity problems of the size indicated above, for one individual, it is shown that the problem is still

tractable even with a random utility formulation.

Fourth, although the one-individual problem 18 tractable, the houschold activity model 18 much
larger in terms of computational complexity. To be able to handle such problems, it may be useful
to use other search techniques. Nagel and Marchal (2003) suggested search heuristics from
computer science. Indeed, one of the approaches we have tested is to use reinforcement learning,
algorithms with function approximation (state aggregation) to solve the activity scheduling
problem. One way to solve very large dynamic programming problems is (o use approximation
methods. Intuilively, the indirect utility of being in a certain state al time 7 is not solved exactly, but
rather approximated by some [unction, In the reinforcement learning literature, many such
approximations have been used. Reinforcement learning has been also used in the activity based
literature, but most often such methods has been confined to the route choice problem, rather than
the activity scheduling problem (Charypar ef ol., 2004). We are not aware of such algorithms for the
scheduling problem. On the other hand, rule-based methods using decision trees has been advocated
for the activity scheduling problem, which may be seen as a way of solving the DP problem with
function approximation (scc Bertsckas and Tsitsiklis, 1996),

A DYNAMIC MICRO-ECONOMIC FRAMEWORK

[n this section we will develop the micro-economic framework for sequential decision making in an
uncertain environment, We will here use the principle of dynamic programming (DP) for solving
Markov decision problems (MDP). 1n the economie literature, dynamic programming has been used
o model decision making in a dynamic setling with uncertaintics, for instance in modelling labour
supply, savings and retirement decision {Rust and Phelan, 1997; French, 2001, and Karlstrom ef af.
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2004}, investment decisions and durable consumption (Rust, 1987}, Discussions of dynamic
programming models in econometrics and economics can be found in Rust (1994, 1996) and Adda
and Cooper (2003).

In the tollowing we will formulate the activity pattern problem for one individual as an MDP. Let
us first describe the concept of a (discrete time) Markov decision process, in which the decision

maker being in stale s, al time ¢ — 1,...,T lakes aclion a, that will delermine the immediate uiility

#{s,,a,) and also determine the distribution of the next period’s state s,,,, represented by a Markov

r+1®

transition probability matrix. The individual seeks a decisionrule @, = d(s,) that solves
J T
V(s) = max FLZ Bluts La, | s, = s} (N
N i—0

where £ denoles cxpeclation with respeet (o the stechastic process (5,4, ) induced by the decision

rule, fis the discount rate, and s, is state at time r=0.

Let us consider an example. Consider an individual with children and full-time work with flexible
working hours. For now, assume that the individual has no intetrelations with othet individvals in a
household. Hence, suppose the individual knows that (sthe will pick up children at school in the
afternoon, more specifically in a given time window. In the morning, the individual will have to
decide at what time to travel to work, The travel time to the workplace is uncertain, The individual
may know the empirical distribution of travel time to work, including extreme travel times due to
extreme weather or accidents, etc. When deciding the departure time for travelling to work, the
uncertainty is taken into account, as well as the rest of the agenda for the rest of the day. When
deciding when to leave work, the uncertainty of the morning travel time has disappeared, and this
information is taken into account at that time. All travel times may be stochastic, with ditferent
variability depending on ume of day, destination, and mode. At each time period, the individual can
choose destinations (including the option of not travelling) and mode.

To see how this example of an activily pailern problemn can be formulated as a MDP, we [irst
discretize the day into a finite number of time periods ¢ = 1,..,T. Assume that there is a finite
number of locations x — {1, .., J}. To travel, we assume that there is a finite set of modes available
m={1, ..., M}, Thus, we have a finile aclion space, a, € Jx M, Now, whal are the slate variables?
First, one statc state variahle is the time £, and another is the location x. To know whether we have a
car available, we need a dummy variable &, We also need a dummy variable &, to know the

status of the child. For instance, if the child may be brought to day-care and the individual is a
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singlc-pareni, one slate variable is whether the child is at the day-care or not. Furthermore, we will
need three stock variables. First, we need a variable K e [(J,EJ as a proxy variable indicating the
need for maintenance shopping. If it is close to zero, we will have to go shopping before we can
derive any utility while being at home at dinner or breakfast titme (or lunch). [t will be useful to
think of K as the amount of food in the fridge. Second, the individual may have flexible working
hours, The second stock variable is therefore flex F e [_F,F]. Finally, money is needed for certain

activitics. The last stock variable that we will use in this example is moncy Y e R,

As the example indicates, for the purpose of this chapter, we will confine our interest in diserete
choice decision processes. That is, the action space 4(s) is assumed to be finite for each s€ 8. In
the example above, we can choose among, say 10 destinations and three modes. Even with this
simplification, the optimization problem is rather daunting. For each sequence of decisions
(e1) a7 ) we need to evaluate a 7 |} dimensional integral to find the objective function. And the
number of decision scquences may be large, In the oxample above, we can take 10 x 3 = 30

decisions at each time period.

Fortunately, the problem can be solved by dynamic programming. First, notice that for the finite
herizon problem. where 7 <, the problem can be solved by backward recursion. The value
function in the final period 7T is given by

V, = max u(s,,a,) (2}

RN L)

where 4(s,} is the action space available being in state 5, For each preceding time period, we can

solve
V()= max als,.a) v B[V ts,)pies, ) | 5.4,) 3

where 3 is a discount [actor.

Equation {3) 13 known as the Bellman's cquation, and the existenee for a valuc function M)
follows by the fact that the Bellman operator is a contraction mapping (see, e.g., Rust, 1994},
Furthermore, it follows that a deeision rule ofs), which is found by doing (he argmax in the Bellman
opcrator, is an optimal deeision rule for the infinite-horizon MDP problem.

Bellman’s optimality principle is a powerful tool. For large problems, it is difficult to solve since
the state space grows exponentially with the number of variables. However, it should be clear that it
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is an inherent characteristic of the problem and not of the solution method. The curse of
dimensionality is inherent of the problem. What we can hope for is to find efficent algorithms for
the problem at hand. Dynamic programming is more efficient than other methods, such as linear

programuming, for problem sizes by a [actor of hundreds (Bertsckas and Tsitsiklis, 1996).

One Day Activity: The Finite TTorizon Problem

We will start by formulating a problem with a finite horizon, i.e. an activity pattern for one day and

one individual. Let s, denote the state vector at time 7 — 0, |, ..., T. The states are locations x;, time

{, car availability 8, , and children task indicator §,_,, . In addition, we have three stock variables,
that is K which is the proxy variable for the need of mandatory shopping, £ which represents the
currently available flex hours, and ¥ which is the available money. In our simple example, we will
have seven locations: home, work, day care, local shopping centre, shopping mall, and two other
locations (recreational). When the individual wakes up in the morning, she will know that at the end
of the day she will have at most visited these seven locations {but pessibly more than once, or not at
all). The time is continuous, but, depending on the choice of solution method, it may be useful to
discretize time. In that case, there will be six minutes intervals during the moming (6 9 am.) and
aftermoon (3 — 6 pan), and fiflcen minutes intervals in the evening (6 — 8 pm.). To make fiings
simple, if the individual is working during the day, there will only be one long interval during that
period of time. However, we allow for tlexible working hours, so the departure time from home and
work is endogenecus. If the individual checks out from work earlier than the fixed work supply,

flex hours variable 7 will be decreased. &, is a dummy variable that indicates whether the car is

-
available to the individual. In the moming, this is set exogenously in a household allocation stage. If
the individual chooses the car as mode of transportation, when deciding mode for the next
movement, car will be available. In our experiment, the individual will always take the car if it is
available and the location is not home. &, is a dummy variable indicating whether the individual
has fulfilled a child movement tlask that has been allocated n the household allocation stage. For
instance, il the individual is to pick up the children after work, &, is set to zero until the

child(ren) has heen picked up.

For the finite horizon problem, we first need the continuation pay-oft at the end of the day. First,
assume that this is given by a function J{F. K, V). This is the expected pay-off for the rest of the
life, given that the individual at the end of the day ends up with stock variables (F,K,¥). Hence,
these are the only variables that matter inrbetween days. We will assume that individuals will end
the day at home, with the car in the garage, and children not still at the day care. Diepending on the



32 Progress in activitv-based analvsis

decisions and activities taken during the day, there will be consequences for the following day, but
these are limited (o the state variables associated with what is in the fridge (K), available flex hours
(F), and available money { ¥). Hence, the value function at the end of the day is given by:

Velspy JULKL T (4)
Now, at tim¢ = 7-1 w¢ have

Fo (s )=max u(a,, s )+ ﬁz Pls'| 5,0,V (s {5}

where #(s,.a,) is the immediate pay off when being instate 5, and taking action &,. Since this

decision is taken during the day, it is natural to set the discount factor 3 (close) to one,

Although there are a huge number of combinations of activitics, this problem can be solved
efficiently by backward induction, To make the computation even faster, there are a number of
computational methods that nay be considered. First. we may use a non-uniform discretization grid.
In fact, in a diserele decision problem such as this randomization can be shown 1o break the curse off
dimensionality {Rust, 1997a, 1997b} in the sense of worst-case complexily. Second, since we use
discretization both in time and flex hours, it mav be the case that a decision does not give exactly a
flex how that is in the discretization set. In such cases, we will use interpolation to tind the
intermediate values. Randomization has a "self-approximation” property that is useful and in fact is
the reason why the curse of dimensionality is broken in the case of a discrete MDP problem such as
ours. Expericnee with programming this model indicates that it 1s quite [easible 1o compute the
activity scheduling (and generation) pattern using the suggested approach, How this translates into
feasibility of estimarion will be touched upon below.

Between-Day Interrelations: The Infinite Horizon Problem

In the preceding subsection we assumed that we already knew the in-hetween days continuation
pay-off function J{F.K.¥). We want the continuation pay off to be consistent with the expected
value of the value function for the rest of the lite, given that the individual behaves according to the
decision rule A(s}. [n the literature on dynamic programming, such a decision rule is also known as
a policy, and we will use this term below. Using the decision rule d(s) throughout a day, the
following should hold
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J(z)= E{Zu(s,,d(sn} 7Y 0 @ d(sW() (6)

=0

where  ya discount factor, and we denote z = (&, F, }). { is the transition probabilily matrix. Let

rz,d{s))= E{Z uis, . d(s))} denote the expected sum of immediate pay-offs during the day,
i

given that the day starts in state z and one follows the policy a{s) during the day. Then (6) can be

scen as a lincar equation system:
J(@)=T-"'R (7

where R is the vector of #(z.4(5)), and L is the z x | identity matrix. Now, (7) is a linear equation
system with size |, For instance, if K, F, and ¥cach is diserctized nto seven values, (7)1 a lincar

equation svstem with 173 unknowns, which is easily solved.

A less straightforward parl is the caleulation of the expected value of the wtility stream as a result of
a given policy d(s). In a stochastic environment, even a deterministic policy may result in stochastic
pay off. Similarly, cven a deterministic poliey can result in different values of z at the end of the
day. For instance, if travel times to work are stochastic, then an unusual long travel time to work in
the morning may result in a postpened shopping trip, as compared with an unusual short travel time
1o work in the morning, In our ¢xample, the only stochastic component is teavel time, Travel time
during peak hours by car is stochastic, but with a known distribution. Starting at state z in the
motning, following the policy ¢{s), we want to calculate the expected stream of immediate pay-offs
during the day, but also the distribution of states =' we end up with at the end of the day. We have
tested different methods, but for now we use simulation. We simulate the path for each individual
[ollowing policy (s). Smee the stochastic component 15 very limited, and the stale variables are
only thosc associated with shopping, flex time and income, the resulting transition probability
matrix (} is very sparse. Note that if travel times were deterministic, there is no need for simulation,
and the calculation of Az) according to equation (7) is straightforward.

SOLUTION METHODS AND ESTIMATION

The one-day finite horizon problem for one ndividual with a moderately sized state space is best
solved with backward induction, as indicated above. The infinite horizon problem is more difticult
to solve. There are many different solution methods (value iteration. (-learning, etc.), but as
indicated above we will use policy iteration. That is, we will fix the one-day policy ¢(s) and solve
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equation system {7) to find the between-day continuation pay-offs J(2). With these new between-
days continuation payofts, we solve the one-day activity scheduling problem with backward
induction o find a new policy «(s). Policy ilcration is known o converge quile [ast, and it is 1o be
preferred if the associated cquation system can be solved efficiently. In our case, the size of the
equation system is quite small, so policy iteration is appropriate.

Estimating the model is typically more difficult than just solving the DP problem for each
individual, since we need to do it repeatedly for different parameter vectors, and we may also need
gradient information. To date, DP econometric models have been estimated by maximum
likelihood. One method is the nested [ixed point poly-algorithm (NFXP) due 1o Rust (1994, 1996).
In this algerithm, the DP problem for one individual is solved by policy iteration for a given
parameter vector, and a hill-climbing algorithm 1s used to find the maximum likelihood parameter
vector, using Newton-Kantorovich iterations to achieve fast convergence towards the maximum
likelihood solution. [n a more recent algorithm. Aguirregabiria and Mira (2002) show that the ML
solution can be attained by swapping the fixed-point iterations and the hill-climbing maximum
likelihood iterations. Under certain assumptions, this method should be computationally faster than
the NFXP algorithm.

We have not started to estimate the model vet. We do believe that estimmation will be faster with the
swapped iteration method, but in our case we are not only interested in estimating the model. We
ate also interested in computation of the model with given estimated parameter vectors. The choice
of estimation method will also have consequences for the computational effort (and programming
cffort) to compute the mode] for policy applications. We have not deeided on what estimator (o usc.
[t should be noted that the computational time on current computers fo solve the onc-individual
scheduling problem is well below one second, although we have made no effort to optimize the
code. The same holds true even for the infinite horizon problem below (since it converge quite fast
and the associated cquation system is stnall). Therefore, we belicve it is feasible to estitnate this
model. So far, we have shown that we can calibrate the model to give realistic mode choice shares,

departure time distributions, and maintenance shopping frequencies.

Honsehold Allocation and Bounded Rationality

We have demonsirated above that the activity scheduling problem for onc individual can efficiently
be solved in a dynamic mircceconomic framework by dynamic programming. However, in our
examples we have taken the allocation of activities within a household as given, which is a
limitation in households with more than one adult. More specifically, we have allocated the pick up
or drop off of children, the maintenance shopping and the use of the car to one individual.
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Unlortunately, technically, the size of the stale space explodes for a houschold. For instance, il
there are five thousand states for one individual, there will be at least 25 million states for a
houscheld with two individuals. Henee, it 1s difficult (o sec that we can solve the houschold activity
allocation and scheduling problem with straightforward brutal methods, as we were able 10 do for
the one-individual activity scheduling problem. Therefore, we will try two different approaches for

the household problem.

The first cbvious optien is to constrain household interaction into just a few aspects. Different
activity-based models focus on ditferent aspects (e.g., Gliebe and Koppelman, 2005, Srinivasan and
Bhat, 2005). In any case, the problem 1s significantly simplified 1f we were 1o focus on just 4 lew
aspects of household interactions, for instance cscorting children and mainengnee shopping for out-
of-home maintenance activities, and car availability for resource allocation. Thereby we can to a
large extent reduce the household allocation problem to a small number of individual activity
scheduling problems. That is, suppose there are four possible combinations of escorting children (A
drops off children and B picks theti up, or the other way around, or A does both, or B does both},
two combinations of car availability, and two for maintenance shopping. Then, the household
allocation problem is cssentially a choice among 16 combinations, cach of which can be solved by
solving the individual scheduling problem for cach of the two individuals. This problem is already
of tractable size.

lTowever, if we add more and more decisions to the household allocation problem, the problems
again grows at an alarming rate. Therefore, the above approach will be useful to determine the
major household allocation decisions, but it is not flexible enough to allow for more general
household allocation problems (including in-house maintenance and out-of-home joint activities).
One way to overcome this problem would be to use approximations methods. Since the problem has
considerable structure, one may be successful in using the efficient methods for solving the one-
individual activity scheduling problems o approximate the houschold aclivity problem by state
aggregation. 1t should be cmphasieed, as stated in the introduction, that such an approximation
method could be casted inte a decision-tree framework, or a reinforcement learning framework. The
reconsilidation of these methods is left for further research.

Multiagent Models and Intcraction

As noted in the introduction, utility maximization is not a prerequisite for a micro-cconomic
foundation. This line of research has recently been particular active in gathe theory and the theory

of leaming games. In our context, things become much more complicated (and interesting) in a
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multi-agent setting, where agents are interacting with each other. In such a setting, it is not
convineing to argue that agents know the preferences and the actions chosen by all other relevant
individvals (Fudenberg and Levine, 1998). Instead, it may be argued that individuals use more low-
rational strategics (o play the game,

The travel departure time is an integral part of our activity model. We let the individual observe a
distribution of travel times, and trom this information the individual solves the activity scheduling
problem that gives the departure time. In the morning peak hour, however, the individuals are
interacting with each other. Ideally, one would like the dynamic traffic assignment to be a part of
the activity scheduling problem. This raises a number ol theoretical questions. In fact, Nagel of af.
(2000) have pointed out the lack of theoretical results. For instance, what is the outcome of such an
interaction? From recent theory of learming n games {e.g., Fudenberg and Levine, 1998) we know
that simple adaptive learning rules can sometimes be shown 10 converge, but gleobal convergence
has been shown only under fairly strict assumptions. Even if the learning algorithms do converge, to
what do they converge? Traditionally, this problem has been approach with the concept of NE.
Nash equilibrium (Nagel and Marchal, 2003). llowever, there is theoretical evidence (Fudenberg
and Levine, 1998) that the characienistics of the equilibrium depend on the detail of the lcaming
algorithm, and the outcome frequently may be a correlated equilibrium (CE), rather than a N,
What solution concept should be used is an open question (Greenwald ef ., 2001). Furthermorg,
there may be multiple equilibria. In summary, there remains much theoretical work before we can
say anything definite about which equilibrium will be the outcome (see also Williams, 2001).

As is evident from the discussion in this subsection, the theoretical considerations for activity
scheduling and dynamic traffic assignment are overlapping. Likewise, the algorithms for solving
route choice and activity scheduling are overlapping. In fact, the problem as described in (his
chapter relates to the problem of the stochastic shortest path.

Comparison with Activity-Based Nested Logit Models

The dynamic programming model may be compared with state-of-the-art nested logit models, as
described by Bowman and BenrAkiva (2001). The DP model is somewhat similar to such a model,
as soon as we allow for idiosyncratic error components, for instance extreme value distributed error
terms yielding a logit specification for the choice probabilities. This is in fact the common practice
wlien estimating cconomcetric DP models (see Rust, 1996). 1t is therelore natural to compare the DP
approach with structural logit speeifications, Tn the cconometric literature, one alternative to a
dynamic programming model that has been proposed is the so-called option value model {Stock and
Wise, 1990). In the context of an optimal stopping problem, given an option value model, the
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individuals are not supposed to solve the complicated dvnamic programming model, but rather
solve a more simple model where individuals compare the utility of retirement in period ¢ with the
maximum expected utility of retirement in the future. Hence, the option value model is model of
bounded rationality. Although there is little doubt of the theorctical superiority of the dynamic
programming approach, there has been a number of empirical studies to investigate which model

best tits empirical data (Butler ef af., 2003).

The difference between the DP approach and using nested logit specification is the way in which
utilities from the future (the rest of the day) are nested into a value function at the present time. In
the 1P selting, we take the expected maximum of values, whereas in the nested logit Tormulation
we lake the maximum of cxpectations. Furthermore, the decision tree in DI retains the sequential
deeision process, whereas in the nested logit formulation the timing of ¢vents is decided in ong (or a
few) steps. For instance, tine departure choices to and from work may be one level in the nested
logit formulation. Therefore, the nested logit formulation is not dynamically consistent, although
the numerical outcome may {or may not) be similar.

It is not difficult to construetl examples where a structural form nested Llogit formulation will be at its
disadvantage (one such case is when we have uncertainties that dissolve during the day). TTowever,
in the activity modelling setting, more important are computational issucs. [n the labour supply
optimal stopping context, the logit formulation is quite simple, typically a binary logit model, while
in the activity modelling setting, the structural logit models are rather complex nested logit models.
This means that to estimake such a model, we first have to impose some a priori structure {partition
into nests). Second. the estimated models may turn out to be difficult to interpret. A common
problem in the cstimation 1s that the dissimilarity paramcters (or logsum parameters) exhibit values
that are not easily interpreted in a stochastic utility maximization setting.

In contrast, there are no such parameters in the TXP model. Instead, we ensure that the indirect
utilities are consistent {even dynatnically consistent) by solving the scheduling problem backwards
(for the (inite horizon problem), or solving the equation system (7} (for the inlnile horizon
problem). Thus, the advantage of the IIP approach is that (i) we do not have 1o impose some a priori
structure (nesls or reslrict activity paltemns) and (ii) the estimated mode] will be dynamically
consistent. However, there is a price ta be paid: we have o solve for the indirect utilitics (value
functions). As in the labour supply literature, the theoretical superiority of the dynamical
programming approach follows from the explicit modelling of sequential decisions. However, it
remains an open question which model will fit empirical data best. The exact trade-off of
computational burden and programming effort is also not clear (and probably subjective and
idiosyneratic).
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A COMPUTATIONAL EXPERIMENT

[t is useful, in this rather conceptual paper, to hint whether it is possible to estimate the model, and
what aspects of travel patterns reasonably can be modelled. To this purpose, we will focus on
departure time choice. [n fact, the proposed approach will be used in a project evaluating the
Stockholm congestion pricing scheme that probably will be implemented in August 2005, Since the
congestion pricing scheme is time differentiated, with a higher charge during peak hours, it will be
interesting to test the hiypothesis that the congestion pricing will shift time departure choice, both
for travel to and from the workplace. Our model ensures that a delayed departure time to work in
the morning may result in a delayed departure time from work in the afternoon.

To test whether the medel is flexible enough to capture a shifi in departure time choice as a
response to a congestion charge in the morning peak hour, we will here brictly report the results of
an experiment {for more computer experiments, see Jonsson and Karlstrom, 2005). We consider
here an individual that lives 10 km north of Stockholm and have workplace in the city center. The
travel time to work is on average 19 minutes during the moming peak hour (and approximately the
same by public transport). The congestion charge will be enforced from 8 a.m., but the peak hour is
from 6 - @ a.m. The individual docs not have hard constraints in terms of flex hours or shopping
activities. That is, the individual does not necessarily have to stay at work for full 8 hours, and does
not necessarily have 10 shop. However, the individual has o leave children at the day care in the
morning, and pick them up before 6 p.m. The individual has to be at work at least from 9 a.m. to 3

p.m.

Figure 2.1 shows the probability of departure from home for this individual. First, note that the
individual is certainly leaving home no later than 8:06 a.m, This is in fact the latest possible time of
departure, 1 he will be able 10 make 1t to work before 9 a.m. Sccond, note that the departure
probability is very similar for the first half hour, Sinee there are few hard constraints in the schedule
for this individual. the individual may stay at home or go to work (and come home early). So, there
is little difference between going to work, or staying at home early in the morning, since peak hour
has not yet arrived. The small ditference in choice probabilities early is due to the fact that leaving
home early gives a little more flexibility in adjusting the schedule later, if some improbable events
aceur, However, if the individual has stayed longer at home, constraints will become active, These
constraints are clearly visible in the diagram, indicated by peaks in the departure probabilities, For
instance, the optimal schedule for the individual is to depart at 7:42, but if the individual does not
choose to do so, he can just as well stay home a little longer. The reason is that if the individual
starts from home earlier than 7:42, he can follow a schedule that allows him to shop that day (and

other peaks in the departure probabilitics are also directly derived [rom lime constraints).
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Figure 2.1
The Probability of Departing from Home Before and After a Change from 8 a.m.

After 7:42, it is a bad choice to go shopping that day, and the shopping activity is posponed until the
next day. This illustrates the fact that the shopping activity is modelled endogeneously, and is

allowed to affect the activity pattern throughout the day for this particular individual.

Third, note that the departure time shifts from the peak hour. The probability is higher for all
departure times earlier than 8 am, when the charge is implemented. There is a marked increased
probability just before the charge is implemented (from 8 a.m.), but otherwise the pattern looks
similar.

SUMMARY AND FURTHER WORK

In this chapter, we have argued that we need methodological development in order to achieve the
following objectives. First, a microeconomic foundation is needed for any activity based model that

is to be used for welfare evaluation of policies. Secondly, this microeconomic model should be
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dynamically consistent, and allow for uncertainties and sequential decision making. Thirdly, to the
extent that bounded rational behavioural rules are consistent with microeconomic theory, unrealistic
assumptions on computational capabilities (and behaviour) should be avoided.

The first two objectives were the main focus of this chapter. In particular, we showed that the
activity scheduling problem for one individual can be solved in a consistent dynamic
microcconomic framework. We will later report on our experienice with estimating such a model, At
the same time, we acknowledge that further development is needed in order to use these techniques
in a household activity model. However, it may be the case that having efficient methods for the
ang-individual activity scheduling and generation problem will prove uselul in the development of
such a hovschold model. Whether this conjecture is justified or not is left for luture rescarch. In
particular, 1t would be useful to compare reinforcement learning {or function approximation)

approaches with the more brutal force method described in this paper.

ACKNOWLEDGEMENT

Financial support from VINNOVA is gratetully acknowledged,

REFERENCES

Adda, J. and R. Cooper (2003). Dynamic Economics. MIT Press, Boston.

Aguirregabiria, V. and . Mira (2002). Swapping the nested fixed point algorithm: a class of
eslimators for descrete markov decision models, Econoni., 70, 15191543,

Arentze, T.A. and H.J.P. Timmermans (2000). Aluaiross: A Learning - Based Transportation
Oriented Simulation Svstem. European Institute of Retailing and Service Studies, Eindhoven.

Arentze, T.A. and H.J.P. Timmermans (2004). A theoretical [ramework for modeling activily-travel
scheduling decisions in notestationary cnvironments under conditions of uncertainly and
learning. Proc. Int. Conf. on Activity-Based An., Maastricht, The Netherlands (CD-Rom).

Bertsekas, D.P. and J. Tsitsiklis {1996). Newro-Dynamic Programming. Athena Scientific, Belmont,
MA.

Bowman, l.L. and M.E. BenrAkiva (2001). Activity-Based Travel Forecasting. US Department of
Transportation. htip://tmip.thwa.dot.gov/clearinghouse/docs/abi/bowman.stn

Rutler, 1.5, G. Gumus and R, Burkhauser (2003). Comparing Option Value and Dynamic
Programiming Models Estimates of Social Security Disability Insurance Application Timing,
1ZA-DP 941, Institute for the Study of Labor, Bonn.

Charypar, I, P. Grat' and K. Nagel (2004). Q-learning for flexible learning of daily activity plans.



A dvnamic microeconomic framework for the activity schedufing problem 41

Proc. Swiss Transp, Res. Conf  {CD-Rom), www.stre.ch/2004.html.

Doherty, 5.T., E.J. Miller, K.W. Axhausen and T. Girling (2045). A conceptual model of the
weekly  houschold  activitv-travel  scheduling  process, Tn: Travel Behaviour: Patterns,
Implications and Madelling (E. Stern, 1. Salomon, and P. Bovy, eds.). Elgar Publishing,
Cheltenham, to appear.

Fitema, 10.F., AW.J. Borgers and H.ILP. Timmcrmans (2000). A simulation model ol activity
scheduling heuristics: an empirical test. Geo, & Env, Modelling, 4, 175-187,

French, L. (2001). The effects of health, wealth, and wages on labor supply and retirement
behavior. Manuscript, Federal Reserve Bank of Chicago, Chicago.

Fudenberg, [3. and D). Levine (1998). Learning in games. Eur. Fc. Rev., 42, 631-639.

Girling, T. and W. Young {2000). Perspectives on travel behaviour: decision patradigms, I[n:
Transportation Research:The Leading Edge (D.A. Hensher, ed), pp. 189-196. Elsevier,
Oxford.

Gliche, JP. and I.S. Koppelman (2003). Modcling houschold activity-travel interactions as parallel
constrained choices. Proe, 84" TRR Conf.. Washington [.C. (CD-Rom).

Greenwald, A., E.J. Friedman and 5. Shenker (2001}. Learning in network contexts: experimental
results from simulations. Games aud £. Bef., 35, 80-125.

Joh, C-H.,, T.A. Arentze and H.J.P. Timmermans (2002). Modeling individuals' activity-travel
rescheduling heuristics: theory and numerical experiments. Transpa. Res. Rec., 1807, 16-25.

Joh, C.-H., T.A. Arentze and H.J.P. Timmermans (2003). Estimaling nor-linear utility [unctions ol
time use in the context of an activity schedule adaptation model. Proe, 107 Tat. Conf. Travel
Beh. Res.. Lucerne, Switserland CD-Rom).

Joh, C-IL., T.A. Arentze and TT.JP. Timmermans (2004). Activity-travel rescheduling decisions:
empirical estimation of the AUrcra madel. Transpi. Res. Rec., 10 appear.

Jonsson, D. and A. Karlstrom {2005). SCAPES — A dynamic microeconomic model ot activity
scheduling. Working paper. Royal Institute of Technology, Stockholm.

Karlstrom, A., M. Palme and 1. Svensson (2004). A dynamic progtamming approach to mode] the
retirement behavior of blue-collar workers in Sweden. J. Appl. Econon., 19, 795-807.

MeNally, M.G. (2000). The Activity-Based Approach. Report UCLKITS-AS-WP-00-4, University ol
Irving, Trving, CA,

Nagel, K. and F. Marchal, {2003). Computational methods for multi-agent simulations of travel
behavior. Proc. TATRR Conf., Lucerne, Switzerland (CD-Rom).

Nagel, K., M. Rickert, P. Simen and M. Pieck, (2000). The dynamics of iterated transportation
simulations. Working Paper 00-02-012, Santa Fe Institute, Santa Fe.

Rust, ). {1987). Optimal replacement of GMC bus engines: an cmpirical model of Harold Zurcher.
Feonom., 55, 999-1023.

Rust, J. (1994). Structural estimation of Markov decision processes, [n: Handbook of Econometrics



42 Progress in activitv-based analysis

{R. Engle and D. McFadden, eds.), Vol. 4, pp. 3081-3143. North-Holland, Amsterdam.

Rust, J. {1996). Numerical dynamic programming in economics. In: Handbook of Computational
Feonomics (HM. Amman, D.A. Kendrick and J. Rust, eds.), Vol. L, pp. 620-729. Elsevier,
Amsterdam

Rust, J. {1997a). A comparison of policy iteration methods for solving continuous-state, infinite-
horizon Markovian decision problems using random, quasi-random, and deterministic
discretizations. Working paper. Yale University, New Haven.

Rust, J. (1997b}. Using randomization to break the curse of dimensionality. Econom., 63, 487-516.

Rust, J. and C. Phelan (1997). How social sccurily and medicare affeetl retirement behavior in a
world of incomplete markets, Ecosom., 65, 781 831,

Srinivasan, S. and C.R. Bhat {2005). Modeling household inleractions in daily in-home and out-of
home maintenanee activity participation. Proc. 84 TRB Conf.. Washinglon D.C. (CD-Rom).

Stock, LT, and DA, Wise (1990). Pension, the option value to work and retirement, Feonom., 58,
LL51-1180.

Sun, Z., T.A. Arentze and H.L.P. Timmermans (2005). Modeling the impact of travel information
on activity-travel rescheduling decisions under conditions of travel time uncertainty. FProc.
84" TRB Conf., Washington D.C. (CD-Rom).

Timmermans, 11.J.P. (2000). Theory and models of activity patterns. In: Aibaiross: 4 Learning-
Bused Transportation Qrieated Simudotion Svstem (T.A. Arentze and H.IP. Timmermans,
eds.), pp. 6-20. EIRASS, Eindhoven.

Williams, N. {2001). Stability and long run equilibrium in stochastic fictitious play. Working paper,
Princeton University, Princeton, NJ.



Sinmlation of daily activitv patterns 43

SIMULATION OF DAILY ACTIVITY PATTERNS

Ondref Pribvl, Czech Technical University, Prague. Czech Republic

Konstadinos G. Goulias, University of California, Santa Barbara, USA

THE PROBLIEM

The traditional goal of modelling travel demand analysis is to estimate the volume of traffic on
particular roads in a transportation network {Ortuzar and Willumsen, 1994). Recent policy
propositions and actions {introduction of new technologies, taxation and congestion pricing) and
market trends (market penctration of mobile telecommunication technologies) also motivate the
study of impacts not only on traffic volumes but also on car ownership, trip consolidation into
chains, departure times, and more general shifts in spatial and lemporal aspects ol travel demand.
For this reason, many rescarchers and praciutioners ereate models that address travel behaviour ina
more comprehensive way, looking at schedules of activities to assess the impact of policy actions.
The required precision and level of detail of such models have also changed dramatically over the
years. An estimate of only daily volumes was sufficient in the early stages of modelling and
regional simulation. However, the current objective of research is to find a model that can estimate
traffic volumes at much finer time scales and also estimate other changes in travel behaviour such
as departure time shifts affecting peak spreading and changes in time allocation from weekdays to
weekends that may create unseen congestion types. 1t is clear that this is not an easy task and the
original four-step model developed in the early 1950s is not sufficient (¢.g., McNally, 2000),

A way to overcome these limitations is using activity-basced approaches to travel demand analysis
{e.g., McNally, 2000; Goulias, 2003). The idea behind these approaches is that travel demand is
derived from the demand for activities. The models attempt to estimate the sequence of activities an
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individual follows in a day, called a synthetic schedule or activity patrern. Once we know the
schedule, deriving volumes on parlicular roads in the network is a rather straight{orward algebraic
operation. Much ¢ffort has been spent on this problem, and knowledge in the ficld has developed
significantly n just a few years (for an overview, see Arentze and Timmermans, 2000). Many
different models have been proposed. However, there is no single model that considers all of the
issues that a human being considers during her/his activity planning process. Moreover, the
interaclion among persons in aclivily scheduling is only recently receiving attention.

OBJECTIVES

A miero-simulation model that generates activity patterns of individnals in a given study area is
described and evaluated in this chapter. The proposed algorithm belongs to the field of activity-
based approaches to travel demand analysis. Tt aims to replicate the observed patterns that implicitly
include the constraints and outcomes of the decision making processes underlying 4 person’s time
allocation in a day with other persons and alone, By replicating the entirety of a person’s activity-
travel pattern in a day, a feasible and robust solution that consists of timing and sequencing of
activities is provided. These synthetically generated schedules are also linked to individual’s and
househald’s characteristics (such as income, number of cars, number of children, age, gender, and

others).

The main contribution in iravel behavieur research of the proposed approach is in capturing the
interactions among houschold members. For example, in a funily with a child of school age, one of
the parents has to adjust her/his schedule in order to be able to drop off the child in the morning to
school. Another example can be a joint dinner of hoth parents. Both must adjust their schedules in
order (o meet at the same lime and al the same restaurant. These examples show the importance of
such a model. The objectives defined at the early stages of research were met. As expected and to
make the work tractable, however, many issues are left as future tasks and are reviewed at the end

of this chapicr.

THE DATA

The data set used to test the model in this study was obtained from the CentreSIM survey,
conducted belween November 23, 2002 and May 30, 2003 (Patten and Goulias, 2004), The activity
and travel data collected from each person in the household using the two-day complete record of
the activitics not only includes the types of activities but also cach person engaged and the different
transportation options taken. The respondents were asked to record start and end time of each
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episode, its purpese. but also questions such as *With whom did you do the activity™ and “For
whotn did you do the activity™. For trips, the respondents reported the travel mode used for the trip.
if they drove on this trip, start and end point of the trip, and they also estimated the distance of each
trip and reported it. All these questions were included in order to eapture a variety of contexts in the

decision-making aspcets of cach houschold in activity and travel scheduling,

Data Representation

The deseribed activity/travel data were organized in a structure in which cach activity or trip
corresponds 1o one record. However, a different sicucture 18 needed for the analysis, The entire daily
activity/travel pattern, i.c., the sequence of all trips and activitics will be recorded. Such a pattern is
obtained by sampling the cobserved daily activity participation in regular time intervals, in this
project every 10 minutes. The entire daily activity/ravel pattern is thus represented as a vector of
144 values (24 hours ¥ 60 minutes / 1|0 minutes). Each value of this vector is an integer that
corresponds to the particular activity type combined with the information about joint/alone activity
participation al a given tme nstant. In this project, we distinguish four activity purposes: Home
that denotes all-in home activities; Work corresponds to all work related or school related activities;
Maintenance that groups all shopping, dining out and other activitics; and Discretionary that
focuses on leisure activities and recreation.

An important issue in the activity-based approaches to travel demand analysis is representing the
within-household interactions. Different representations of withinrhousehold interactions were
lested in Pribyl (2004}, Here results of the mosl promising representation are sununarized. The
answers 10 the question “With whom did vou do the activity?” are reduced to four different
categories: Alone/Other (ne other household member involved), with Spouse, with Child{ren), and
with Multiple Family (more than onc houschold member). The activity type is combined with the
joint/alone activity participation so that one veetor is created. This implics that there are the

following sixteen possible outcomes at every time instant:

Home-Alone, Home -Spouse, Home -Child, Home -multiple fomily, Work-Alone, Work -Spouse,
Work -Child, Work -multiple familv, Maintenance-Alone, Maintenance -Spouse, Maimtenarice -
Child, Maintenance -andtiple familyv, Discretionary-Alone, Discretionary -Spouse, Discretionary -
Child, Discretionary -muftipie family.

The cluster algorithm distinguishes all described values on the y-axis. When visualizing the patterns
in [igures, however, only two levels of joint/alone activity participation arc distinguished, for
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simplicity: alone/other (includes also categories with child(ren) and with multiple family), and
activity conducted with spouse.

An example of this representation of the activity patterns is provided in Figure 3.1. This individual
is alone at home (H-A) until 8 a.m. when s/he leaves for work (W-A). At about 1:30 p.m. s/he goes
home for lunch and after about 45 minutes/he returns to work again. S/he stays at work until 7 p.m.
. and then returns home when s/he stays till the end of day (Note: The diagonal vertical lines in the
figure only connect two activity types and do not have a real meaning).

The advantage of this representation is its ability to handle a daily activity pattern as a whole. The
type of activities, their timing, duration, and sequencing, as well as the alone/joint activity

participation are all embedded directly in this representation.

Activity
types

D-St
D-Af-
M-S
M-A
W-S+

H-St+
H-A =

1 1 1 1 1 | 1 1 1 I

2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

Figure 3.1
An Example of an Activity Pattern
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The Data Scts

Since we are interested in representing the within-household interactions, the household is the
proper level of analysis. The methodology was applicd o adult members of the houscholds only.
For this reason, each object must represent the activity patterns of all adult household members of
the household. It means that since the vector describing a one-adult household has a length of 144
(described above); the vector for a two-adult household has the length of 288 (schedule of the first
adult plus of the second adult). In a two-adult household, we should be comparing only suitable
individuals. For this reason we have to sort the adults in the household. The first person is called,
lfor simplicily, the head of the houschold {even though this term is used with a high level of
simplification). If one person is emploved full-time and the second person has a different status, the
first person 1s considered the head of the household. 1f both individuals are employed full-time, the
male will be considered the head of the household. The definition of the head of the household is
not essential as long as it is consistent for all households. It ensures that individuals having a similar
role in the houschold are compared.

Past research dedicated to the cluster analysis of activity patterns still leaves one question open:
what is the relationship between the activity patterns and household socio-demographic
characteristics? This question is important sinee it enables the simulation of houschold activity

patterns based on socio-detoeraphic characteristics of the households.

One way to approach this task 1s 1o apply a cluster algorithm o the entire data set. The problem can
be the high heterogeneity in the patterns. Wang (1996) therefore first specified six lifecyele groups
and clustered the groups independently. The advantage ol this method is that the found paticrns arce
more homogenous. On the other hand, some of the found elusters can be redundant {similar or the
same patterns can be found for difterent litfecycles). For the reasons stated above, a compromise of
these two methods is used in this project. Prior to the cluster analysis, all households are split based
on the number of adults in the houschold. The most common group, two-adult households, is
further split based on the employment status of the head of the household — employed full time, and
any other employment status. The analysis is performed for cach split separately and this decreascs
the heterogeneity within the clusters. The variables used for splitting the data set were chosen based
on empirical results and esults of different papers (for example, Kulkarni and McNally, 2000).
Because of low occurrences of households in which there are more than two-adults, in this analysis
only households up to two adults will be used. The proposed methodology could be used without

changes to any houschold size.
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THE METHOD

This chapter describes an algorithm for generating daily activity-travel patterns of individuals in a
household. The proposed approach is based on the belief that people with similar socio-
demographic characteristics have similar travel behaviour (Bowman and Ben-Akiva, 1997; Stopher
and Metcalf, 1999). In this model, first homogenous activity patterns are found, and then assigned
to the households whose patterns are simulated. The probabilities of departing for particular
activities by time of day are derived from the data belonging to each group. A micro-simulation
model is used to assign each individual in a household to particular activities during the day. The
output of the model is an estimate of individuals’ activity-travel patterns on a detailed time span (10
minutes). The information whether each activity was conducted alone or together with other

household members is also incorporated in the model.

INPUT DATA ALGORITHM OUTPUT
Step 1:
Hqusehold i Find groups in data . q1uster
activity patterns (Cluster analysis) assignment
Step 2: 1
Derive likelihood of '
participation in
particular activities probabilities
Step 3: l

hold and I Derive decision trees
iy (c)ld ! pen;;:na to link the found groups to Derived
RO e DRI socio-demographic decision trees
s ] characteristics

Figure 3.2
Overview of the Model Estimation Phase



Simulation of daily activity patterns 49

INPUT DATA ALGORITHM OUTPUT

ousehold and personal Get a household
. . 1—

socio-demographics from the data set

(to be estimated)

Derived
—
Derived Simulate the
. the first person

N

Sim_u]ate the entire Simulated activity
daily pattern for ==p | patterns for all adults
other individuals in the testing data se

Figure 3.3

Overview of the Simulation Phase

The praoposed algorithm is executed in several consecutive steps, which can be aggregated into two
major phases: a model estimation phase, and a (micro)simulation phase. The task of the model
estimation phase is to calibrate the proposed model, given a training data set that is known prior to
analysis. The simulation phase aims to replicate the entire daily activity pattern for a given
household using the results from previous phase. The schematic structure of this model is provided

in Figure 3.2 and 3.3. These figures also show the input for each step as well as its output.

Model Estimation Phase

Step 1. The objective of the first step is to find groups of households with similar activity patterns,
taking into consideration interactions within the family. This task will be accomplished using
cluster analysis applied to the entire pattern. It should be noted that sequencing of activities is not
explicitly modelled here, but this could be established applying sequence alignment measures (Joh
et al., 2001a,b,c,d). Many different clustering algorithms and heuristics have been developed over
the years. The method wsed in this project is based on the so called kmedoid clustering, also called
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partifioning around medoids (PAM) (Kaufiman and Rousseeuw, 1990}, Consider a set S-{5,. ...,
Sy} of N objects (in our case activity patterns). Each object §; is a vector, containing L integer
values describing an activity type at a particular time instant. Our objective is to find K objects, w,.
wo, #1g, which represent all objects in the data set. These representative objects are called medoids,
because we expect them to be located in the centre of cach cluster. The remaining objeets are then
assigned to the nearest representative ohject, using a given dissimilarity measure. Each object in the
data set belongs exactly to one medoid. All objects belonging to the same medoid form a cluster.
The objects in each cluster are clearly more similar (based on given dissimilarity measure) to each
other than to objects in any other group.

Mathematically, we are looking for a set of K objects, K<<N, which minimize the obfective
N

Jfunction T =Z n]]ink_d(S{.,m,), where [ is the sum of dissimilarities of all objects S; to their
1 =l

necarest medoid. We are secking the medoids so that this sum is minimal. An advantage of this
method is that it uses only a dissimilarity matrix and not the original data. This implies that this
methaod can be used for any type of data as long as we know how to measure dissimilarities among
objects in the dataset.

A very important issue in any clustering algerithm is the detinition of dissimilarity between two
objects. We cannot use the common Euclidean distance, becavse we deal with objects of a
categorical type (activity types). The distance measure used in this chapter 1s defined in lluang
(1997) as follows: The dissimilarity measure between two objects S, and S reflects the total

number of mismatches of activity types at a corresponding time index. This can be written as:

5]
d(85,.5,) = 205, (), 5.0 (1

Ry
P

¢

where,

8(5,(1).5, i) = {0 5= 50)

(S0} £ 5:0)
and S denotes the length of a schedule (in our case 1t equals (o 144}, Therelore, the value of the
dissimilarity measure between two patterns can range in case of onc-adult househelds from O (the
two patterns are the same) to 144 (totally different); in case of two-adult households from 0 to 288.
The developed algorithm requires the number of clusters, X, to be known. In order to find the
optimal number of clusters, the algorithm is usually repeated for different numbers of clusters. The
optimal number is chosen ofT-line, after the elustering problem lor different & will be performed.
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There are many ditferent measures that can be used (see overview in Fridlyand, 2001). Based on
existing literature (Maulik and Bandyopadhyay. 2000; Fridlyand, 2001) and author’s preliminarily
tests (Pribyl, 2004}, the use of the silhouette coefficient (Kaufman and Rousseeuw, 1990) is the
most promising. For every cluster, X, j — I,....K, the silhouette technique assigns the i member

(%, ¢ = 1,...,00 ol cluster X; a quality measure (silhouctie width):

h —a.
g = ha (3)

maxia,b} ’

where, a; is the average distance where between x; and all other members in ., and &; denotes the
minimum ol @, = £, 2, ....»m, where #; is the number of patierns in cluster A7 and naturally, », +...—
ng cquals mif cach pattern belongs o one and only one cluster, # 1s the number of patterns o be
clustered. The silhouelle is delined for each ebject ¢ in the interval 1<, 1. Oul of these
silhouette values we can also compute another entity called average silhouelle width for the entire

data set, s(K}. This coefficient is very important since it helps to determine the optimal number of

clusters K. The clustering algorithm will be used on the same data for different numbers of clusters
and for each setting the s(K} will be computed. The number of clusters will be determined based

on the silhouetie coefficient (SC) that is computed according to the following equation
SC ~ max F(K) (4)

where, the maximum is taken over all K for which the silhouettes can be computed. The optimal

number of clusters is taken as the argument of this maximum.

In order to avoid some limitations of the algorithm such as finding only local extremes, genetic
algorithms are used tor mplementing the problem. The most common clustering techniques, such
as parlitioning methods are se-called greedy algorithms, L.e. they look for the largesi unprovement
at cach step. This does not ensure finding the global optima. Also their performance is very
sensitive to the initial partitioning, that is in most cases done randomly. Using a genetic algorithm
also does not ensure reaching the global optimum. The result depends maostly on the setting of its
parameters, for example the selection mechanism, probability and type of recombination. llowever,
the existing literature demonstrates that genetic algorithms are well suited for ¢lustering and with
the right parameter setting vutperform standard clustering algorithms {Maulik and Bandyopadhyay,
2000; Lucasius e af., 1993). In this study, an algorithm developed in Pribyl (2003) 1s used. L
implements partitioning around medeids using genctie algorithms. The algorithm is rather robust
and not too sensitive to its parameter settings, which is a significant advantage.
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Stepr 2. The ohjective of this step is to find probabilities that an individual starts a particular activity
at every time instant and its duration. For every cluster and every time step, the relative frequencies
of leaving for a particular activity are derived. Also for each time instant, average duration and
standard deviation of duration are computed for each activity type and travel. These probabilities

will be cssential for the simulation of daily activity patterns.

Step 3. In this step, the identified clusters are linked 10 the persons in the data set (this is also called
action-assignment), based on their personal socio-demographic characteristics as well as
characteristics of their entire houscholds. There are several methods that can be wed to link the
houschold and personal socio-demographic characteristics to the resulting clusters found in the
previous siep, for example multidimensional cross-tabulation, nmultinomial logit model (MXNL), or
decision frees (DT), Each of these methods has advantages and drawbacks (discussed for example
in Ortuzar and Willumsen, 1994; Bowman and BenrAkiva, 1997; Arentze and Timmermans, 2000).
Previcus research does not show any evidence that any of these methods clearly outperforms the
others (Lim e al., 1998; Wets er af., 2000). llowever, the decision tree algorithms have some
potential advantage over the MNL model in terms of interpretability. They find context-sensitive
rules that are well suited for discontinuous behavioural changes. Compared to MNL, the decision
trees are also theory free, We do not make any assumptions about rational behaviour of individuals
and about their maximizing of utility. All results arc directly derived from the data. Also these
algorithms are less sensitive to cutliers and multicollinearity, These issues are also very important.
In contrast, logit models (and in general all parametric models) have an advantage in predicting the
size of the impact of particular explanatory variables on the probabilities of the outcome. This is not
a major concern in the case of the sitnulation model proposed here. Based on findings from Arentze
and Timmermans (2000), a decision-tree algorithm called CHAID (Chi-square Awtomatic
Inreraction Detection) 1s used in this modcl (Kass, 1980},

Simulation Phase

Step 4 In the next step the decision trees are used to link these groups to socio-demographic
characteristics. The results from decision trees must allow generalization for some other data set of
similar features to a testing data set. The question is how to assign one group of synthetic schedules
{response variable) to a person (case) described hy socio-demographic characteristics. In most
applications, the used actionrassignment is purely deterministic. A typical example is the pluraliry
action-assignment rule. This rule assigns the modal response at a leaf node after training to every
new case assigned to this leaf node. Clearly, it describes well the average values, but fails to
describe the variance present in the sample.
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In this model, we therelore use a probabilistic action-assignment rule {Arentze and Timmermans,
2003). The choice probabilities are mathematically expressed in the following equation:

py=—. (5)

where, £; is the [fequency of choice / at leal node 7 and #; is (he total number of cascs at leaf node j
in the training data. In their work, Arentze and Timmermans (2003b) derived a more general form
of the probabilistic assignment rule, which takes into account the possibility that for a given case
one or more choice allernatives are not frasible or available, Sinee there are no constraints of this
type in the problem as formulated here, the simple probabilistic rule as described in the previous

equation is used.

Srep 5. Once we know to which cluster each household belongs, we proceed with simulating its
daily activity pattern. In this step, the variance in activity behaviour must be reintroduced to the
data. The activity patterns consist of the sequence of activities, gach with their start time, their
duration, and also the within houschold inieractions. The simulation model used in this chapter is
similar 10 Kulkami and McNally (2000), but some modificalions are introduced to reflect the
different representation of the data. The patterns are generated conditional on the probability
distributions derived from each cluster and each time step. The simulation is performed
sequentially. Starting at the first time step, the procedure assigns the type of the first activity, and its
duration according to the derived distributions. The activity type is assigned probabilistically. based
on the proportions in the training data set engaging in particular activities. Once the activity type is
known. its duration is computed as a normally distributed random number with a mean value and
standard deviation corresponding to the activily type and time instanl. The assumption of the
normal distribution of the duration of particular aclivities is based on the work of Kulkarni and
McNally (2000). At the cnd of the first simulated activily, a new activily and its duration are
selected accordingly.

In order to decrease the sensitivity of the model to the number of households contributing to each
cluster, a ume window of ¢+ 30 mun is used n the estimation phase {in the case where we have
more households contributing to the estimation of the model, the time window can be decreased.)
The model 1s constructed for cach tune step from the proportion of eluster members hat start cach
particular activity within half hour on either side of the time step in question, It means that if an
aclivily ends al time ¢, we look at the probabilitics with which the next activity starts in the interval
{#-30 mein, ¢+30 min). The travel in this model is not treated as a scparate activity (as within the
cluster algorithm), but rather as an indivisible part of each activity. A normally distributed random
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number with the mean value and standard deviation obtained from the sample for a particular

actlivity type at every time instant will be used.

Another important issue that needs to be addressed is the simulation of alone or joint activity
participation in multi-adult households. We expect that all joint-activities will be the same in both
patterns. The patterns of all adult houschold members will be simulated sequentially. First, the
pattern of the first person in the household (head of the household), similarly to the previous
example, will be simulated. In case some activity was estimated as a joint activity with spouse, the
schedule of the spouse will define an exact part of her/his schedule. The remainder of the schedule
will be simulated conditioned on the derived probabilities and the joint parts of the schedule. The
probability of an activity to start at the end of the joint activity will be used; similarly the
probability of an activity to end at the beginning of the joint activity will be used. The schedule will
be simulated starting at the edges of the joint activities. In this way, we implicitly account for
Hagestrand’s coupling constraints and introduce a schedule hierarchy by imposing conditionality of
one person’s schedule on the first simulated schedule.

Head of the household Head of the houschold
int activit
- ﬂom activity W
1 ) [ : 7 1 [
- H - g -
E Time (hours) Time (hours;
Spouse g Spouse
w ; W —_—
M S M TR
H | — H p— —
Time (hours) Time (hours)
Step 1: Copy the joint activities to Step 2: Simulate activities for the
the pattern of spouse remaining time
Figure 3.4

The Principle of Simulating Joint Activities for Multiple-Adult Households
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OVERALL PERFORMANCE OF THE MODEL

The overview of the micro-simulation model of activity patierns was described above. Here, the
methodology is applied to the data collected in Centre County, Pennsylvania and the results of the
model are presented. The simulation does not attempt to mimic one particular activity pattern, rather
it focuses on probabilities of the entire cluster. FFor this reason, the evaluation should be executed at
the aggregate level, which means the averages of all patterns in a particular cluster will be
compared.

Three ways of comparing the results are followed. First, the activity profiles (percentage
involvement in particular activity types at every time instant) for each group in the observed and
simulated data will be compared. Second, the fime spent in activities by particular type will be
evaluated. Third, the numbers of episodes (number of activities) simulated and observed per day

will also be compared.

time[h]

Figure 3.5
An Observed Activity Profile for One-Adult Household
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time[h]

Figure 3.6
A Simulated Activity Profile for One-Adult Household

Legend: H-A...home alone, H-S...home with spouse, W-4...work alone, W-S...work with spouse,
M-A.. maintenance alone, M-§...maintenance with spouse, D-A...discretionary alone, D-
S...discretionary with spouse, T...travel.

Evaluation of Activity Profiles

The first evaluation is based on comparisons of the so-called activity profiles of each cluster. An
activity profile is an aggregate pattern of the entire cluster. In every time step, the percentage of
individuals participating in different activity types is computed. Examples of observed and
simulated activity patterns are shown in Figures 3.5 and 3.6. Figure 3.5 shows that until
approximately 6 a.m. about 98 percent of all individuals in this group stayed “alone™ at home. The
remaining part of the individuals participated alone in some discretionary activity. Starting at about
& a.m. , the percentage of individuals who are at work increases, and between 10 a.m. and 6 p.m. it
fluctuates around 80 percent, only at about noon, there is a peak of maintenance activity (lunch).
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Tahle 3.1
The Average MSE and P-Values for the Evaluation of Activities Profiles

Evaluation of Evaluation of Time Spent on

Activity Profiles Activities

Activity Type Average MSE Average P-Valoe
H-A home alone 0.0267 0.3080
H-5 hume with spouse 0.0130 0.3426
W-A work alone 0.0073 0.3786
W-S wiork with spouse 0 04113
M-A Maintenance alone (1.0023 0.4392
M-§ Maintcnance with spouse (L0010 0.4473
D-A Discretionary alone (.0053 0.5046
D-5 Diseretionary with spouse 0.0010 0.4358
T Travel (XN 02790
MEAN G000 0.3934

At about 8 p.m., there is a peak in discretionary activity participation. Late at night most individuals

return home (up to 90 percent).

The activity profiles of the simulated patierns have similar trends; however, the numbers differ, In
vrder (o provide g nwmnerical evaluation, the mean square error (MSE) between the observed and
simulated activity profiles will be computed (Ma, 1997). This measure is applied to each particular

activity type. The results are summarized in the third column of Table 3.1.

Evaluation of Time Spent on Activities

The second comparison [ocuses on the Lime spent in particular activitics. ln order Lo have more
insight into the time-aspects of the results, the time spent in particular activitics for particular
groups will be compared for the entire day as well as for parts of the dav. For the observed as well
as simulated patterns we compute the average time spent in activities of all different types during
the following time periods: (i) Morning hours (6 am. — 10 am.}; (i) Noon {10 a.m. =2 p.m.); (iii)
Afternoon howrs (2 p.m. — 6 p.m.), and {iv) Evening hours (6 p.m. — 12 a.m.). There is not much
activity before 6 am., so we will not focus on this time period. There are two parts to this
evaluation; a) evaluation of the time spent in activities using the p-value and b) evaluation of the
time spent in activities using a regression model.
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Table 3.2
Strength of Relationship Between the Observed and Simulated Patterns

Adjusicd Sid. Error of the
Maddel R R Square R Square Estimate
1 0.956 0914 0.914 16398

Fvaluation of the Time Spent in Activities Using the P-Vaiue. Once having the measured values of
average time spent in activities, a statistical test should be performed to evaluate if the simulated
patterns arc actually similar to the obscrved patterns. There are different tests wath different
assumptions that could be used. Since we do not have any additional information on the values of
the standard deviations, we assume that the standard deviations are not the same. Consequently, a ¢-
test for fwo usksowen means and siandard devietion will be performed (Bhattacharyya and Johnson,
1977). The p-values of the null hypothesis that the values of time spent in activities in the simulated
patterns are drawn from a distribution with the same mean as the sample of observed patterns are
provided in the fourth column of Table 3.1. The lowest p-value (which implies the weakest
estimate) was obtained for both inchome activities and travel activity.

Evaluation of the Time Spent in Activities Using a Regression Model. There 18 another comparison
that will be performed to compare the time spent in activities. The time spent in particular activities
for different clusters and different data sets can be written in two vectors; first corresponding to the
observed data and the sceond representing the simulated data (i.c., we lose the table format, but we
have corresponding values of observed and simulated patterns next to each other). These two
vectors will be used in a simple regression model - the observed values as the dependent variable,
and the simulated values as an explanatory variable. We use the R-square of the regression equation
as a measure of the strength of the relationship between the vectors. The results of the regression
model presented in this seetion are presented in Table 3.2, The value of 0.914 shows a very strong
relationship between observed and simulated values.

Evaluation with Respect to the Number of Episodes

The last comparison focuses on the average number of activities in the simulated patterns as
compared to those observed. It is an important indicator of the quality of the simulation especially
for its practical use. The proposed model aims to replace the trip generation step in Urban
Transportation Planming System. For this reason, the most important output of the madel 1s the
number of episodes in the simulated patterns. Figure 3.7 compares the average number of activities
in the observed and simulated patterns within the entire activity patterns (during the simulated 24
hours).
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OObserved patterns
4 B Simulated patterns
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Activity types

Figure 3.7
Comparison of the Average Number of Episodes Between Observed and Simulated Patterns
(24 hours)

Legend: I-A.. . home alone, FI-S...home with spouse, W-A...work alone, W-S...work with spouse,
M-4...maintenance alone, M-S...maintenance with spouse, D-A4...discretionary alone, D-

S...discretionary with spouse, T...travel.

The values depicted in the figure show similar trends for all different activity types. It tends to
underestimate the average number of most activities, except for discretionary activities conducted

alone, and the travel activity; however, overall the results seem promising.

One of the drawbacks of traditional methods to travel demand analysis is that they are not accurate
in estimating the number of trips for peak hours (see for example discussions provided at
http:/tmip.thwa.dot.gov/clearinghouse/docs/amos/ch2.stm). For this reason, comparisons of the
number of episodes between observed and simulated patterns during peak hours are provided. The
four following figures compare the number of trips in the following time intervals: from 7 am. to 8
am., from 8 am. to 9 am., from 5 p.m. to 6 p.m., and finally from 6 p.m. to 7 p.m. The results are
similar for all four time intervals. The largest discrepancies are obtained for home activities, both
conducted alone or jointly. The average number of trips is also underestimated in dl cases. The
difference ranges from 0.1 to 0.2 trips per hour, which is still satisfactory for the majority of
applications. The results of Pearson chi-squared statistic (Fienberg, 1981) are also provided in Table
3:3.
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Figure 3.8
Comparison of Number of Episodes Between Observed and Simulated Patterns
(Conducted between 7 a.m. and 8 a.m.)
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Figure 3.9
Comparison of Number of Episodes between Observed and Simulated Patterns
(Conducted between 8 a.m. and 9 a.m.)
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Comparison of Number of Episodes Between Observed and Simulated Patterns
{Conducted between 5 p.m. and 6 p.m.)

O Observed patterns |
@ Simulated patterns

Average number of activities

H_A H_S W_A W_S M_A M_S D_A DS T
Activity types
Figure 3.11

Comparison of Number of Episodes Between Observed and Simulated Patterns
{Conducted between 6 p.m. and 7 p.m.)
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Table 3.3
Similarity of the Frequency of the Number of Activities
Between Observed and Simulated Patterns

Statistics Entire Day Morning Peak Hours Afternoon Peak Hours
Gam —7am  Tam —8am. Spm —-6pm. 6pm —7pm.
Test statistics - total =~ 0.636 0.321 0.283 0.517 0.586
Degrees ol treedom 8 7 7 7 7
Critical valye* 13,51 14.07 14,07 14.07 1407
Agsymplolic significance (L9996 0.9994 0,9989496 0,9993 09991

* Critical value is computed for level of significance alpha = 0.05,

The valucs Test statistics - fotal + show the computed Lest statistics, In casc of all peak hours
{colummns three 1o six in the lable), there are no activitics ol the (ype “work with spouse”™ 1n the
obhserved activity patterns. We have to exclude this activity type from the analysis and the number
of degrees of freedom equals seven. The critical value is computed for level of significance alpha —
0.05. In all cases the critical values are much higher than values of the test statisties. Asymptotic
sighilicance is the cstimaled probability of obtaining a chi-square value greater than or equal to test
statistics. The high significance values suggest that there is no statistical evidence that the number
of trips in the observed and simulated patterns difTer, This test really strongly supperts the validity
of the proposed model with respect to the number of activities.

CONCLUSIONS AND FUTURE STEPS

[n this chapter a model that simulates the daily activity patterns of individuals and their households
is presented. An important feature of the proposed model is its ability to simulate activities that are
conducted alone as well as those thal are conducted jointly with other household members. These
interactions are essential for models based on activity participation and affect other features of the
moedel, for example, vehicle availability or others { Arentze and Timmermans, 2000).

The performance of the entire model {not its particular steps) is evaluated [rom  dilferent
viewpoints. The output of this model is each individual's acfivity pattern. In general, the simulated
patterns are feasible and reasonable. The evaluation of performance of the model is performed at an
aggregate level, however. Overall the performance of the model is encouraging. The simulated
patterns seem to be reasonable and the simulated activity profiles are similar to those observed with
respect to all compared characteristics. The model replicates the overall distribution of participation
in particular activities, taking implicitly into consideration temporal constraints and constraints
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imposed by other household members. [t also provides the level of detail required for advanced
applications.

Although the results of the model are promising. there is indisputably room for improvement in
terms of prediction accuracy, but alse to address some additional issucs and constraints. ‘The most
important issues that could lead to better performance of the model are summarized here. This
model focused on the temporal aspects of activily patiems, The main objective was 1o lind a model
that could substitute and enhance the trip generation step of the UTPS model. Tlowever, an
impaortant issue in an activity-based model is the treatment of spatial characteristics of activity
patterns. The proposed methodology could be easily adjusted to address this problem. Probabilistic
tables of distances from home and distances from the previous activity could be derived in the
second step of this model, similar to the probabilistic (ables of activily participation and aclivily
duration. This cnhancement would not require any additional modifications of the algorithm. In the
simulation step, these two distances would be assigned to a particular activity, based on the derived
ptobabilities. In connection with GIS software, these distances would detetmine the traffic analysis
zone to which the particular trip leads. Similarly, we could determine the travel mode for each trip,
for example. It could be assigned based on probabilistic tables that would be derived it the second
step of this model.
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THROUGH THE IDENTIFICATION OF
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INTRODUCTION

For the last decade, activity-based transportation models have set the standard for modelling travel
demand. The research community has witnessed a multitude of modelling approaches, which can
mainly be divided into utility-based transportation models and computational process models.
Utility-based models typically use econumetric techniques and assume that individuals evaluate a
number of complete, one- or several-day activity-travel pattems and choose the particular pattern
that maximises their utility. Examples of these models are the Daily Activity Schedule Model {(Ben-
Akiva gf al., 1996), Wen and Koppelman (1999), CEMDAP (Bhat er al.. 2004) and many others,

Several scholars however have argued that people do not necessarily arrive at “optimal™ choices,
but rather use heuristics that may be context-dependent. In their most simple form, the resulting
computational process models are based on a set of IF-THEN rules, which take on the following
form: IF (condition—X) TIIEN {perform action Y). Dependent on the context or the situation an
individual faces, another outcome or another decision is taken. The first conceptual framework,
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which is based on these decision heuristics is the SCHEDULER model {Girling ef al., 1989),
Another model system that resembles computational process modelling 18 AMOS, a dynamic
micro-simulator of houschold activitics and travel over time and space (Pendyala e ol 1998). The
AMOS maodel uses micro-simulation techniques to predict a traveller’s adaptation from a baseline
activity-travel pattern. Another important advanced operational process model is Albatress: a
learning-hased transportation oriented simulation system (Arentze and Timmermans, 2000, 2004,
Arentze et ol , 2003).

While activity-based models can be differentiated into one ol these two categories, both approaches
try to find the most accurate representation of observed distributions of travel characteristics,
consistent with their undetlying theory about human decision-making. Based on this most accurate
representation, activity patterns are then generated. Given however a set of variables that are
assumed to influence (aspects of) activity-travel behaviour, and assuming that these variables are
known for the target population, micre-simulation can equally be used 1o predict activity-travel
paticrns. For instance, McNally (1995), Kulkami and MeXNally (2000, 2001), and Recker er of.
{19864, 1986b), proposed the use of representalive aclivily patterns (RAP), and suggested to
sunulate activity lacets such as purpose and duration by drawing [rom the distributions that are
associated with the target pattein. In the identification of RAP’s, segmentation {clustering)
approaches can be adopted to derive more homogencous and hence more representative activity
patterns, based on variables that are assumed to influence the activity-travel pattern {for instance
socio-demographic variables). The identitied RAP’s are then vsed for simulating and predicting
new activity patterns,

While the representativencss of such representative patterns has been questioned duc to fluctuations
over longer periods of time {Clarke, 1985) and regional difterences (Veldhuisen ef al., 2000),
simulation approaches are also susceptible to the criticism that they do not account for sequential
information and sequential dependencies in the identification of representative activity patterns.
However, it has been shown that the inclusion of sequential information in deriving a segmentation
ol aclivity-lrave] patterns produces betier results (Joh er of, 2002} Henee. the omission of
sequential information in the identification of activity-travel patterns may be a deficiency,
especially beeause some skeleton aetivity structure is ofien assumed [irst. For instance, Vaughn et
al. (1997), emphasized the need for a skeletal structure which imposes time-space constraints and
simplifies the simulation of the remaining facets ot the activity-travel pattern. Similarly, Kitamura
and Kermanshan (1983) introduced a lechnique in which the different characteristics of the set of
activities can be generated sequentially using a Markov approach,

The aim of this chapter is to explicitly incorporate scquential information and dependencices in the
identification of representative activity patterns. In addition, a test which determines the optimal
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historical (sequential) information that nceds to be taken into account is incorporated in the
framework, Onee the skeleton activity-pattern has been identified, additional facets such as location
and time (duration) information are generated. The simulation framework thal is proposed in this
chapter is able 1o generate these [acets in an ilerative heuristic manoer. The presented approach is
an extension of previous studies (Janssens ef o/, 20014, 2005) in which it is assumed that each
activity pattern only consists of a set of correlated successive observations of activities and travel
characteristics (transpott modes). The hewistic nature of the proposed simulation processes and the
fact that all sequential information is immediately derived from the data itself, facilitate the
immediate applicability of the simulation procedures in othet study areas or regional settings, at
least when regional data is available. Indeed, existing simulation and computational process models
ofien use procedures or detailed variable-specific information thal is (uned owards a particular
regional setting, which makes transferability sometimes difficult. due to the lack of this specific
information or due to the infeasibility of these procedures in other regions. The next section of this
chaptet portrays the general outline of the simulation framework.

OVERVIEW OF THE. SIMULATION FRAMEWORK

It can be seen from Figure 4.1 that the (ransportation model presented in this chapter is 4 sequential
process that first involves the simulation of a sequence of in-home and out-of-home activities along
with a particular transporl mode during a single day. Next, the general skeleton of the activity

pattern 15 used as (he basis for simulating time and location facets.

With respect to the simulation of activities and transport modes, it is assumed that each sequence in
the activity pattern consists of a set of correlated successive observations of a random variable. To
this cnd, a discrete random variable X, is considered, taking values from the finite set {1,..., m},
where each value represents an activity that occurs in a persons’ activity pattern. Travelling is
considered as an activity as well, however the transport mode is added as an additional attribute in
this case. For this reason. the parameter s contains the number of non-travel actlivities and (ransport
modes that occur in an activity pattern. The index ¢ represents the position of the activity in the
activity pattern.

In this first step, the goal is to generate (predict) the value laken of X as a function of the values
taken by previous obscrvations of this variable. Obviously, the most important question here is to
investigate which number of previous observations can best explain the current observation in the
activity pattern. In the limit, the current value taken by X, can be entirely explained by the previous
observation (Activity 1-1), which is also referred to as the first lag. Analogously, in the limit, it
might only be possible to accurately explain the current value of X, by the last £-7 ohservations
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(Activity 7-1. Activity £-2, ..., Activity & -1} (i.e. k-I™ lag) in which & represents the length of the
activity pattern. [lowever, when the current value can only be explained by a relative large number
of previous observations, it is unlikely that the information that is identified is suitable for
generalisation (prediction) purposes. On the other land, a low number of previous observations
might not be sufficient to explain the current observation either. This trade-ott between accuracy
versus generalisation will be validated later in the chapter. It 1s assumed that an optimal skeleton
{i.e. the skeleton with that lag that achieves the best match to the observed patterns) is able to
generate better start and end times and location information than a suboptimal skeleton {Figure 4.1).
The general deseription about how this dependency and correlation information can be taken into
decount is described in the first part of the methodological section. Once the optimal skeleton is
selected, duration probability distributions from the sample dataset are used to generate the start and
end limes of each activity in the skeleton. The procedure for doing this 15 shown in the second part
ol the methedological section. Finally, origin-destination information from the sample data is used
to generate the location where each activity in the skeleton is performed. The methodology is
presented in the final part of that particular section. The chapter concludes with a description of the

experimental results and with conclusions and topics for future research.

[t should be emphasized that in the simulation framework, the dataset is split up into a training and
a validation set. The training set is used for generating the information, whereas the test set is used
e validale the generated paticms. Splitting the dataset is widely used to account for overfitting,
which occurs when high “accuracy” of the simulation model is achicved on the training set, while
rather low “accuracy™ is oblained on the unseen test sel.

Simultancously simulate activities and transport modes by .| Validation
using sequential information> General skeleton

Optimal skeleton

Based on the optimal skeleton and by using duration
information, simulate start and end time of the activity

I

Based on the optimal skelcton and by using QD information,
simulate location information

Figure 4.1
Overview of the Simulation Framework
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METHODOLOGY
Gencerate the General Skeleton

Introducing Transition Prohability Matrices. Markov chains are probahilistic models, which are
commonly used to model dependencies in data (Stewart, 1995). While Markov chains and the
corresponding transilion probabililics have been used in a number of discrele choice models
(Lerman, 1979; Kitamura and Kermanshah, 1983; van der Hoorn, 1983}, their full and unmodified
application turned out to be infeasible in our simulation framework. The most important drawback
is that the number of independent parameclers inereascs cxponentially and becomes too large 1o be
estimated. Moreover, it is important to notice that in calculating transition probabilities in Markov
Chains, the independent character of each activity pattern in the data is in fact ignored, which may
resull in estimates thal are seriously biased by specilic combinations thal may appear in one
particular sequence. A more detailed discussion is given in Janssens «f ¢l (2003). Tn order to cope
with both these drawhacks, an adapted methodology to calculate transition probabilities and to

generate activity patterns was developed and empirically tested.

We will discusses different approaches for storing sequential information (sequences of activities)
in ‘activity bundles’, a term which is introduced to reflect that the information which is kept here
represents low- and high-order combinations of activities that typically sequentially occur in one
particular aclivity patlern. Activity bundles are constructed per activity pattern (le. lor each
respondent). Aggregating activity bundles will resull in transition probability matrices, which give
an idea about the sequential information for the whole sample populaiion. Tn this sense, the activily
bundles neced to be interpreted as an intermediate but crucial step before building iransition
probabilily matrices.

As indicated before, it is possible that the current value taken by X, can be entirely explained by the
previous observation {Activity #-7), with the index r representing the current position of the activity

in the activity pattern. In this case, it is in fact assumed that;

PX, =1,

Xy=is X, =h)l=PX, = “Yr—l =§)= 9, (1), where NS {],<.<,-'7!.} (h

Each value in the set {1...., m} represents a nomnrtravel activity or transport mode thal oceurs in a
persons activity pattern. Considering all combinations of /; and /;, we can now construct a

probability matrix 0, each of whose rows sumsto 1.
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X,
X, 1 - - m
1 g v g
o- | @
mogy 0

Suppose now that we wish to take into account that the current value of X, is not only explained by
the first lag, but alse by an additional second lag. To illustrate, assume that the variable X, originally
b I AL

takes the values in the state space {1,2,3), where stands for instance for “Sleeping”, *2" stands

for “Eating™ and “3™ stands for “Working”. When one wishes to take into account that X, is not only
explained by the first lag (.-1) but also by a second lag {¢-2), the state space can be redefined as
{1,103}, indicating chat this person was Sleeping at moment ¢-2 and at moment #-1, and with {(1.2),
(1L,3), (2.1, (2.2, {2,3), (3,10, (3,2), (3,3)} defined similarly. In this case, the number of previous
observations that are taken into account equals 2, which is also referred to as the order (¢} of the
transition probability matrix. The number of activities that occurs in this person’s activity pattern

tm1) cquals 3. The corresponding transition matrix Q for £ =2 and m = 3 1s then:

A’r
A A, 1 2 3
1 1 G G G
L T TP
ol g da das
1 2 L2 I TR PR P
Q= 2 2 G o o (3)
5002 | gn b des
1 3 G Goar Gisy
2 3 Fo Hea Hois
ki 3 g Fou Fas

More general, inan £ -th order transition probability matrix it is implicitly assumed that

PIX, =i, | Xy =i X =)= POX, =iy |X, L =i X =i) =g, () ()

Obviously, the way in which the transition probabilities ¢, , are calculated determines the quality

of the transition probability matrix. In order to avoid that transition probabilities are calculated for
all sequences at once, as it is often done in Markov Chains, the idea of calculating probabilities for
each respondent by means of activity bundles was developed.
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From Activity Bundles ro Transition Probabifity Matrices. The approach presented here estimates
the probabilities based on the frequencies, observed in the data. These frequencies are maximum
likelihood estimates, calculated as Nj/N;, where Nj; equals the number of transitions from state i to
state / in each activity pattern and ¥, represents the number of transitions starting from state { in the
patiern. The algorithm, which is used (o consiruct an activity bundle of the 7 -th-order, 15 displayed
in Figure 4.2, The algorithm starts with first-order activity bundles, To this end, the unique clements
{activities) in the activity pattern are identified. Next, the number of times that an activity bundle

starts with that unique element in a particular activity sequence, s calculated (»,).

Set ko =length of the sequence idiary)
Ser €=t &8 is the order of the wcriviey bunclies

Do while an £ -th wetivite brundle con siill ke constructed ¢ F <k

Begin
ii £ =1 then
Begin
fefentifv all unigue elementy o withu e [, m}
Jor each unigue element w do
hegin
set i —current mrfqm’ element
cafculate the number of fransitions that start from stete §in the activity pattern (1)
Tedentifv all the elements i which follow immediately apferd, withy e {1, m}
Jor eack [f do cownt the mumber of Times that i ovcars ()
store each if and each weight (n/n; ) in the first-order activite bundie
end
end
else
begin
read the (£ - 1)-th order acriviny hundie
Jor each combinution A in the £6 -1 -th order activiry bundic do
begin
sef A:=current combination
calculate the number of fransitions thar stare from A i the getivine pattern in, i
identify all the elements Af which pollow immedicrely affer A, withjc (1, . m}
Jor each Aj count the number of tites that A occurs (n ;)
store each Aj and each weight tn; ,/ n ) in the £ th-order activity brndle
end
errd
end

Figure 4.2
The Construction of Activity Bundles with Maximum Likelihood Estimates
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Also, the frequency that an activity immediately follows after the current unigque activity 1s stored
(#1). Then, the weight of the unique activity is calculated, dividing s,; by n;. This procedure is
repeated for every unique element. When dealing with activity bundles of a higher order (> 1), the
algorithm continues with the activity bundle that immediately precedes the current activity bundle,
while the procedure for calculating the weights remains similar. It can thus be seen frem Figure 4.2
that the construetion of higher-order activity bundles is bascd upon the activity bundle which
immediatcly preeedes the current higher-order activity bundle. By doing this, the bundles can be
built in a more efficient manner. Consider the following example to illustrate the algorithm, where
T.— Transportation, with ear as transport mode, F—visit Family, E—Eat, and R—Read.

Activity pattern L: T .FFFEFFFFFFFEFFFFE

Activity pattern 2; T EEFREREERFT FT.FFT.FETF
Activity pattern 3: RREFEFEET. T.R

Activity pattern 4: EEFFT.FT.FRRT.T.RT.RR
Activity pattern 5: FFT.FFRE

Activity pattern 6: EET.FRRE

The first-order activity bundles of these activity patterns are shown in Table 1, with weights shown
in brackets. Bascd on these activity bundles, the final first-order transition probability matrix can be
constructed for this example by aggregating the same bundles of activities across the different
activity patterns {Table 2). Notmalizing Table 2 such that each row sums to one, gives a first-order
transition probability matrix as defined previously. After the transition probability matrices are
generated (for different orders), one can adopt this information to generate in-home, out-home and
travel activities in the pattern. This procedure is described in the next section.

Table 4.1
A First-order Example of Activity Bundles

Seq. number First-order Combinations

Activity pattern | T.-F (1y; E-F (00.94); F-E (.08}

Activity pattem 2 T-E (0.2). T-F ({(0.8), E-E 033y E-F (0.17x; E-R (0.33); ET, (0.17)
F-R(0.17), F-T. {05, F-F (0.17y . F-E (0.17) ; R-E {(0.67); R-F (0.33)

Activity pattern 3 R-R{0.3); R-E {{0.5); E-F (0.5} E-E (0.25%E-T. (0.25); F-E (). T.- T, (0.5): T,-R (0.5)

Activity pattern 4 E-E{0.5); E-F {0.3); F-F {0.23). F-T. {0.3); F-R (3.23);
T-F ({d), T.-T, {0.2), T-R {0.4); R-R (0.3%; R-T, (0.5)

Activity pattern 5 F-F{03):; F-T 40235), F-R (023, T-Fily, R-E (1)

Activity pattern 6 F-FE(0.3):E-T,(05); T-F(13y;F-R{1):R-R (0.3 R-E {0.5)
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Table 4.2
The Final First-order Transition Probability Matrix

X,
X, ' T, F ' R F
T. 0.70 0.20 0.90 420

o= E 0.92 1.58 0.33 .17
R 0 .50 267 1.50 0.33
F 1.25 1.23 1.67 1.85

Generule the General Skeleton of an Activity Pattern. The aim of the simulation procedure is to
predict the value taken by X, as a function of the values taken by previous observations of this
variable. The procedure for simulating the activity patterns is described in Figure 4.3, The left part
of this tigure shows the different steps of the procedure; the right part shows the real outcome of
these steps by means of an example. The procedure starts by initialising the values of the indexes ¢
and “diarypeinter™. The index 7 is prelerably interpreted as the position of the activity in (he aclivily
pattern, whereas the “diarvpointer” is a kind of technical index that keeps track of the lag, which 1is
used in the simulations, The diarypointer is always initialised at position zero; the index ¢ is variable
and is set equal to the order of the transilion probability matrix. The second order transition

probability matrix is considercd as an example (see right part).

Reading the transition probability matrix is the first logical step. The length of the activity pattern is
generated using Monte Carlo simulation. This implies for this step that a random number is
generated, based on a given sample distribution of the length of the activity pattern. The decision
was made to incorporate this dimension into the generated activity patterns since some people fill
out their diaries carefully (or simply perform more activilies), while others are more imprecise. In

our cxample, il is assumed that 15 activitics will be generated.

Next, the first £ elements in the activity patterns are generated. The initial sequential probability
distributions in the sample data are used for the Monte Carlo simulation. This means that the first
¢ clements of the sequence are generated [rom the prior probability distnibutions, which arc in the
data and not from the empirically constructed transition matrices, Assume that a sleep and an eat-
activity are the (irst two elements, which are simulated. The diarypeinter ¢an now be augmented
[rom zero to one in order to keep rack of the two lags that are used in the example. Noie that these
and the subsequent steps of the simulation procedure will only occur when the order of the activity

bundles { #) does not exceed the simulated length.

The next step 1s to search for the combinations of elements in the transition probability matrnix in the
mnterval [diarypointer..f]. This means for our example that the Sleep-Eatcombination is looked up
in the transition malrix and thai the distribution which s in this row of (he table 1s used as a
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constraint for simulating the next activity. 1f no combination of elements is found. the procedure
stops simulating elements for this particular activity pattern (not shown in Figure 4.3).

After the “diarypointer™ and the index ¢ are augmented, the clement (“transportation by car™ in our
example) is stored at position 7 (i.e. 3) in the activity pattern. The simulation procedure is repetitive,
i.e. when the prediction of the value X, is based on two lags, then the next value to be predicted
becomes X,.,, which is based on X, (predicted in previous step} and on X, ,. This repetition
continues until the generated activity pattern equals the simulated length of the pattern. This
procedure is repeated for every activily pattern in the data sel. Next, the simulated skeleton of every
activity paltern is used to generate time and location information (see also Kulkarni and McNally,
2001). A validation procedure is first exceuted to select the most appropriate lag. However, for the
sake of clarity, this step is only described in the empirical section. In addition to the selection of the
most appropriate lag. the accuracy of the generated general skeleton may be improved by using
transition probability matrices, dependent on time of day. This is a topic for future research.

Set f.—ovder of the transition prob, matrix ({)

Set diarypointer:—0

‘Emptv diary
*{)

‘ Read {-th order transition prob. matrix ‘

¥

‘ Simulate length ‘ 15
‘ Simulate lirst £ clemnents k‘ ‘ Sleep | Eat |

L diarypointer;=diarypointer: 1

Search for the combination of elements in the
interval from |diarypointer.s] in the fransition
prebabiliy matrix & simulate the next element

Transportation by car

While ]t_! # | then diarypointer:=diarypointer—|
r=length Ll

—' Stare the element at position £ {X,) in diary F

Transporlation by car

Sleep ‘ Fat

Figure 4.3
Description of the Simulation Procedure for Generating a General Skeleton
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Simulating Time Information

Consistenit with the generation of the general skeleton of activities and transport modes, the
generation of time information is also based on empirically constructed sample probability
distributions. To this cnd, in a [irst step, when simulating start and cnd times, probability
distributions about the duration of activitics need to be derived. Tt is assumed that the length of the
general skelelon has @ major impact on the duration of the activities. To give an example, il the
generaled skeleton 1s short in terms of number of activities, this may indicate that people have not
very carcfully filled out their diary and supposedly have aggregated some aetivitics into one
category. which lasts much longer. After all, diaries are collected during a 24-hour period, and thus
logically when the number of activities in the diary is smaller the duration per activity on average is
larger. The derived duration probability distribution is split up according to the length of the
generated general skeleton. Skeletons are discretized into a number of intervals using a simple equal
frequency discretization method, which categorizes the length of the activity pattern into a fixed
number ol inlervals, cach interval containing an “equal™ number of observations. Duration

probability distributions are constructed for every discretized interval.

W Initiglize begin time S, as s, with f:=1

!

Read activity sequence / from the general skeleton and compute its length

l

Cateporize the computed length and assign correct probability distribution

}

Read activity 7 in activity sequence / and simulate duration D, from the
allocated probability distribution

Da while j<=length Dawhile 7= ry,,.
=i+l Set j-1
o =1

Compute end time of activity f (£,=5,+D:)
Compute begin time of activity j | 1 (5;,-,=F;}

Do whils /= number

of generated diaries ¥ ¥
i==1 | If Tf satisfies [f 7f does not satisfy
Ts10<Ty=Ts - 24 Ts 10T =75+ 24
Figure 4.4

Description of the Simulation Framework for Generating Time Information
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The tramework for simulating start and end times is shown in Figure 4.4. The procedure first starts
with an initialisation of the start time of the first activity {{:—1) in the activity sequence {{), which is
defined as Ts. Ty is a parameter which can be tuned in cach simulation, however it is kept constant
in the experiments reported later. After this step, the length of the general skeleton of activities is
computed, calegorized inte one of the intervals thal were delined before and the probability
distribution, which is associated with this interval is assigned accordingly. The duration of cach
activity in the generated general skeleton is then generated using Monte Carlo simulation from the
previously allocated probability distribution for this sequence. Next, the end time of the present
activity is simply computed by adding the simulated duration to the start time of this activity. Since
it is assumed that there are no gaps in the activity patterns, computing the end time of the current
activity simply gives us the begin time of the next activity. This loop procedure is repeated for the
full length of the activity pattern.

The final step in the simulation ramework in Figure 4.4 performs a check 1o control whether the
generated start and end times are simulated within an aceeptable error range. Therefore, the end
time of the final activity in a persons’ diary is defined as 7f If 7f is within a time window that is
defined as Iy + @< 1 < Ts+24 | the simulation is considered te be reliable under the assumed error
parameter 8. Indeed, this procedure only ¢heeks the end tme of the [nal activity, but since cvery
begin and end time is connected with cach other, it gives us a quite reliable estimate of the overall
quality of the timc simulation in the patterns. If considered to be satisfactory, the index 7 is
augmented and the time simulation of a new activity sequence can starl. Alternatively, if 77 does not
pass the test, the full time information simulation is repeated for the first activity in the sequence. In

this case, a parameter » 15 defined to account for exceptions (Le, time simulations which are

‘Illi]h
beyond the error range). [t should be c¢lear that there is no distinction in this simulation between in-
home, out-home or travelling. Every transport mode (travel) has its own probability distribution

which is derived from the training data, just as the in-home and out-home activities.

Simulating Location Information

The last step in the simulation framework deals with the generation of location information. To this
end, and consistent with the general concept presented in the chapter, origin-destination matrices
arc derived from ihe training data sei. To establish a link with the time information that is generated
by means of the procedure that was described previously, it is assumed that the duration of the trip
{with a particular transport mode) has an important impact on the (origin and) destination of
activitics. Indeed, common sense lets us believe that the longer the duration of the trip, the more
likely it 15 that lecations are visited further away from the start location (i.e. number of out-of-area
locations is likely to increase). To this end, origins and destinations are coupled with the duration of
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the travelling which is needed to get there. That is, the derived origin and destination matrices are
split up according to the duration of the trip. As betfore, the equal frequency interval method is used
to categorize durations of the trip. The framework for simulating locations is shown in Figure 4.5,
The procedure first starts with a random assignment of a home location to the activity sequence
under consideration, based on a hist of locations in the study arca and a category: “oul-ol-arca”.
Then, the length of the activity sequence is computed. Next, an element in the scquence 15 read by
means of a loop procedure until a transport mode is encountered, and it is evaluated whether this is
the first transport mode in the sequence or not. In the first case, the home location is assigned to the
activity that immediately comes before the trip (¥;,.,). This implies that the simulation framework
assumes that every first travel episode in an activity pattern starts at the home location.

Randotnly assign a home location to aclivity sequence  and
compute its length

»

v

While ¥, 27 | Read clement A,; from the general skelcton [+
travel ’
A= [
* v

If X is the first transport 1f X} is not the first transport

maode in # then assign home mode in { then assign

location to element X ., previously allocated location in

sequence  to clement Xy,

[ [
¥ ¥

X;; is an out-of-home Xj 1 is an in-home activity
activity

¥

Categorize the travel
duration of X}, and assign
correct OD-matrix

i :

Simulate the destination of Assign home Jocation to

X, from the OD-matrix element Xj; .,

with as origin X,

ifj length then ] J —
i=itl I if j<length

Figure 4.5
Description of the Simulation Framework for Generating Location Information
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A small experiment supported this assumption. In the latter case. the location that was previously
allocated in the sequence, is assigned to the activity that immediately comes before the trip (X, ;).
By doing this, the simulation does not allow errors, which means that somebody cannot perform an
activity at a particular location, and immediately after this perform another activity at another
location, without Nirst reporting {ransportation 1o gel there. In the next step, it is evaluated whether
the activity that follows immediately after the trip (X;. /) is an out-of-home activity or not. In case it
is an in-home activity, the simulation of the location is simple; i.e. the home location of the
sequence is allocated to element JX;;. .. On the other hand, in case of an out-of-home activity, the
duration of the transport mode is categorized into one of the intervals that were defined before and
the OD-matrix that is associated with this interval i1s assigned accordingly. Afler this, (he destination
location Xj;.; is generated by means of Monte Carlo simulation in which the different number of
trips that are present in the particular row of'element A% ; of the origin-destination matrix are used

as a probability distribution that serves as a constraint for simulating the next Jocation.

EMPIRICAL APPLICATION
The Data

The activity diary data used in this study were collected in the municipalities of Hendrik-Ido-
Ambacht and Zwindrecht in the Netherlands (South Rotterdam region) (o develop the Albatross
mode] system (Arentze and Timmermans, 2000). The data involve a full activity diary, implying
that both in-home and out-of-home activities were reported. Respondents were asked, for each
successive activity, to provide information about the nature of the activity, the day, start and end
time, the location where the activity took place, the transport mode and the travel time. A pre-coded
scheme was used for activity reporting., Eighteen different activity classes and five different
transport modes were distingnished. The activity categories are work or study in-home, bring or get
persons or goods, daily shopping, non-daily shopping, service activily, medical visit, caling or
drinking, slceping, out-olFhome leisure, in-home lcisure, in-home non-leisure (houschold tasks),
out-of-home non-leisure, receive social visit, bring social visit, work or study out-of-home, return
home (e.g. drop bags), “other™ and “missing™ activities. The transport modes. which respondents
could report were car (as driver ot as car-passenger), walk, bike and public transport. Instead of
using intervals, users were asked to report exact start, end and travel times. The sample, which was
used in this study contains 1847 person-day diaries. In order to be able to test the transition matrices
on a holdout sample, only 75 percent of these diaries (1385) were used as the training set for
building transition matrices, O} matrices and duration probability distributions. Given the large
number of observations, the 25 percenl subset (462) was judged o be sufficiently large for a
reliable validation set.



Simulating daify activity patterns 81

Generating the General Skeleton

Deriving Transition Probabilicy Mairices, The first step in the generation of a gencral skeleton of
activities and transport modes 1s the development of transition probabilities by means of the
algorithm that is shown in Figure 4.2, There are 23 first-order transition probability matrices as 23
different activity and travel categories were distinguished in the activity patterns. The sequential
information that is revealed seems logical and uselul for low-order combinations. Table 3 provides
an example of a 5 x 5 sccond-order probability matrix, which is randomly selected from the full 325
x 23 matrix. Indeed, the identified combinations seem credible. For example, the combination
“Bat/drink — In-home Leisure — Work {out-of-home)” never occurs. Also, people first need
transportation to arrive at work. The reader may also note that this matrix is the result of the

aggrepation ol equal activily bundles and accordingly still has (o be normalized.

Once all these transition probability matrices for each lag in the training data are built, the next step
is 1o apply the simulation procedure deseribed in Figure 4.4, In order to make a fair comparison
between observed and generated activity patterns, 1385 activity patterns were predicted for the
training data sel. Predictions [or the training dala sel measure how well the simulation framework is
capable of generating data. In addition, 462 activity patters were predicted for the test data set.
Predictions lor the lest data sel allow us lo measure how well transition matrices are capable of
simulaling new unscen data and give an indication about the reliability of the resulis. As shown in
Figure 4.1, once the general skeleton is predicted, the aim of the next step is to derive an “optimal™
skeleton (i.e. that particular skeleton with a lag that achieves the hest match to the observed pattern)
from the general skeleton. This is likely to result in more accurate results for the time and location

(acels of the simulation.

Table 4.3
An Example of a 5 x 5 Sccond-Order Probability Matrix

xf
X.. X, Slee Eat! Transport ((\)‘::::‘f- In-Home
e ! P Drink (Car) Leisure
home)
Sleep Eatdrink 43 3 2115 03 2143
Lat/drink Transporl (car} 1.5 3 0 236.¥ 6.1
0= Transport{car) Work 0 47.3 3394 3 0
Work Transport (car) 163 163.4 0 31.7 2006
Eat/drink [n-home Leisure 334 37.1 1429 0 3714
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Validating the General Skeleton ar Patrern Level At an aggregate level, pattern level attributes are
used to evaluate goodness-of-fit. The goodness-of-fit for the generated patterns can be measwred by
comparing the generated activity patterns with the observed patterns in the training and the test data
set. The mean number of tours in the observed and the generated patterns is used as the evaluation
measure at the pattern level. A tour is defined as a subsequence of activities that starts and ends at
the same base location. Since location information is nol yet incorporated al (his stage in the
simulation, a tour refers 1o any appearance/subscquence ol (oul-o -home) activity(ics) between two
trips. The =test for equal population means with known variances was used to test for significant
differences. The tesults are shown in Table 4. It can be seen from this table that high-ordet
combinaticns are not very successful in generating reliable patterns of activities. This seems
counter-intuitive at first sight. Indeed, one might expect that reliability increases with more
sequential information being incorporated in the transilion probability matrices. This (urned oul o
be only truc W some extent (only unil #=7). Indeed, recall Figure 4.3, where il was explained that
one of the first steps is to draw the first ¢ elements from the prior sample distributions, This means
for high numbers of £ that the generated activity patterns are much larger than the activity patternis
in the sample data, which damages the aceuracy of the results. Activity bundles with orders ranging

from 5 to 7, turned out to generate no significant differences with respeet to the training data set.

Table 4.4
Comparing the Observed and Predicted Mean Number of Tours
by Differentiating Between the Order of Activity Bundles

Training datasel Test datasel
Observed Order ol @ Predicted Tours Ohbserved Tours Orderof O Predicted Tours

Tours {(mean) (mean) {mean) (mean)
f=1 1.722% £=) 1.621*
f=2 1.975% £F=2 1.954*
o3 1,940% 3 2, 128*

fod 2.563% P 2316

2.801 ¢=3 2752 2435 £=3 2424
F=6 2779 Feg 2.621*
f=7 2821 £=7 2.730%
f=8 2.262% F=g 2.003*
f—g 1951% P 1.621%
£=10 13124 f=10 1.222%

* Stalistically significant dilference in means (observed vs. predicted) at the 95 pereent level of confidence
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When we compare these results with the data which is generated for the test set, it appears that 6"
and 7" order activity bundles slightly overfit the training data, i.e. the good performance on the
training data could not be kept on the unseen test data. The 4™ and 5 order activity bundles seem to
generate the best fit. Based on this validation, five lags were considered most appropriate for

generating (optimal) skeletons for this data set.

Generating Time Information

As explained previously, in a first step, probability distributions for the duration of the different
activities are derived from the training data. To this end, the length of the generated activity patterns
was discretized into three intervals, i.e. activity patterns less than 12 activities, patterns between 12
and 135 activities, and patterns equal or more than 16 activities, respectively containing 422, 485 and
478 activity sequences. After this discretization, duration probability distributions were constructed
for every discretized interval. This was done for 5 randomly chosen activities (for the sake of
clarity) in Figure 4.6. Probability distributions were aggregated into 15-minutes intervals to

improve the readability of the figure.

M\H\Rn 80 Frequency
— 160
~140

120
=100

B 4 E
Minutes ’J‘\'@ o,,% “ %’@
A 5, %
% q-%%
Figure 4.6

Difference in Duration Probability Distributions for Three Discretized Intervals
(5 Randomly Chosen Activities)
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Table 4.5
Comparing Observed and Simulation Probability Distributions of Departure Times
for the Training and Test Set

Training Set Test Sct
(hserved Simulation Observed Simulation
<10 aam. 0278 0.269 0254 0.281%
10am. - 12 am. 0141 0.125 1148 0.138
12 am. -2 p.m, 0.168 0,151 {164 0,159
2 pam, — 4 pam, 146 0.117* {.148 0,121*
4 pam. - 6 p.n. 0,109 0.121 {.110 0.132
= f pum. 0,158 0.217* 0.174 0.169

* Statistically significant difference at the 95 percent level of confidence

[t is obvious from this [igure that the activity pattern length has an important impact on the duration
probahility distributions. Especially the difference in distributions with activity patterns of length
smaller than 11 and those larger than 16 is significant. It can be seen that people who report more
activitics also provide significantly more detailed information, as cspecially the reported frequency
of short time (15 and 30 minute intervals) activities is significantly larger. A similar conclusion was
reached for frequency distributions of other in-home, out-of-home activities and trips (not shown

here).

Once the probability distributions were built, the begin time of the first activity in all activity
patterns was initialized at 3 am (75}, This start time decision is consistent with previous data
collection clforts. The idea behind this decision is that rescarchers look lor data that consist of
activities that form an entity and “belong to each othet”. Obviously, when the start time is set at 3
am this is more likely to be the case than when the start time was set at 12 pm (people may often
read a book until 12:05 pm for example). Another parameter, which needs to be sct, is the etror
parameter €. In the experiments, & was set to 21. With Ts set equal to 3, this implies that 7/ needs
o be between 24 and 27 1o pass the reliability test defined in Figure 4.4, Note that in this time
notation 24 is considered to be midnight, 25 15 defined as | am, and 26 and 27 are defined

accordingly. Finally, the parameter #,,. is arbitrarily set at 5, which means that the simulation

procedure trics al most 5 times to get the end time of the (inal activity in the activity pattern situated
within the time window. With these parameters, start and end times of activities and trips can be
generated. The results of these simulations are reported in Table 5. Recall that 3" order transition
matrices were used to generate the general skeleton as the basis for the columns labelled as
“simulation™ in this table. The values reported in this table represent distributions instead of means
{Table 4). The Kolmogorev-Smimov-test (Siegel, 1956) was used to test the level of significance.
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The simulation results of the training set give an indication about how well the framework is
capable of capturing and simulating the time information, which is incorporated in the training data.
Except for the last time category (> 6 pm), which is overestimated in the detriment of the fourth

time category, the results are satisfactory. Simulated results for the test set are also encouraging.

Generating Location Information

For the generation of location information, origin-destination matrices first need to be derived from
the training set, as explained before. The distinct locations in the dataset are defined by means of
different zip codes and are labelled as ‘Rot-Noord 1-3’; ‘Rot-Zuid 4-6"; ‘Hido A7-Hido A9’;
Zwiinl0-Zwijn15°, ‘Drechtl6-Drecht]19’; ‘Outarea’ and ‘Missing’. A derived origin-destination
matrix is shown in Figure 4.7 in a bubble chart. The locations on the X-axis represent the origin of
the trip; destinations are shown on the Y-axis. The diameter of the circle gives an indication of the
frequency that a particular origin-destination pair is observed. Except for the category ‘Outarea’,
that could use more differentiation, the results do not suffer much from the spatial aggregation,
which is used in the generation of location information. In order to improve the readability of the
figure, the “missing” category is not shown. The dark grey circles represent the general OD-matrix
across all different transport modes. The light grey and white circles only represent the locations in

which respectively the car and slow modes were used and in which a significant difference could be
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Figure 4.7
Origin-destination Bubble Chart for the Training Data
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perceived compared to the general OD-matrix. The only slow mode, which is shown on the figure is
located in the upper right part. Given the small differences, transport mode-specific OD matrices
were notl calculated in the simulations. However, experiments discovered that there was a stronger
relationship between origins and destinations and the duration of the trip. Especially the relationship
between out-of-area locations and long travel durations appeared to be significant.

The validation of the simulation results between predicted and observed origin-destination matrices
was assessed in terms of correlation coefficients. The correlation coefficient between the observed
and the predicted origing and destinations of the training set was 0.885, while it was 0.843 for the

lest set. Both coefficients were judzed (o be satislactory.

CONCLUSION AND FUTURE RESEARCH

In this chapler, 1 was assumed that each activity patlern consists of a sel of correlated successive
abscrvations, A methodology for simulating activity patterns and lor storing sequential information
was developed and empirically tested. In a first step, the simulation framework generates a
sequence of in-home and out-of~home activities along with transport modes. The notion of “activity
bundles” i1s used to store the information of low- and high-order combmmations that typically
sequentially occur in one particular activity sequence. Based on these activity bundles, transition
matrices can be calculated, which in turn are used for simulating the general skeleton. The general
skeleton was evaluated at the pattem level by caleulating the mean number of tours. An optimal
number of lags was selecled based on this eriterion. Obviously, the simulation of activity patterns is
multidimensional. This means that also time and location information needs to be generated.
Procedures tor doing this were described in this chapter.

The methodology described here is novel, especially with respeet to expliertly capruring sequential
information in data and with respect to using this information for generating a general skeleton. The
procedures for generating time and location information are straightforward when compared to

other methodologies (hat exist in the literature.

Despite the promising results presented in this chapler, it s important to understand that the
presented [ramework needs 1o be augmented with additional procedures and finctionalities. First
and [oremost, the conditional and causal relationships between the different facets of the simulation
approach need to be strengthened by adopting additional constraints and rules that make the
generated patterns more realistic. Secondly, previous research efforts have emphasized the need for
modelling procedures that are capable of capturing the correlation information (for instance Greaves
and Stopher, 2000) between socie-demographics and travel or activity characteristics. [deally,
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transition probability matrices need to be clustered according to socio-demographics in order to
generate more homogeneous groups with the same skeleton. The integration with this socio-
demographic information is currently being implemented and has already generated some initial

promising results, but needs (o be validated Turther. This is an important topic for further research.

Using transition probabilities that can be made time-dependent is another interesting area to
cxplore, It is also important to use the presented transportation maodel for policy evaluation, Policy
measures such as for instance an increase of part-time workers or changes in start times for work
can be evalualed by re-calibrating the model for the particular subset ol respondents under
cvaluation {in the casc of an increasc of part time workers) or by imposing constraints on the
sequence and iming of activitics which are generated {in the case of a change in the start time for
work)., A more thorough cmpirical comparison with other existing transportation models will then

become feasible in the future.
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ADJUSTMENTS OF ACTIVITY TIMING AND
DURATION IN AN AGENT-BASED TRAFFIC FLOW
SIMULATION
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Brvan Raneyv, ETIT Zurich, Zurich, Switzeriand

Kai Nagel, TU Beriin, Berlin, Germany

INTRODUCTION

One possibility to bring activity-based demand generation into the transportation planning processes
18 10 use it o replace the first two {or three) steps of the conventional four step process. Activily-
based demand generation would produce a standard origin-destination (00D} matrix, which would
then be fed into the existing assignment model. Both the OD matrix and the assignment model
could be time-dependent. The advantage of this approach is that it ties in with the arguably most
sophisticated and best understood part of the four step process: route assignment. Yet, some of these
advantages disappear when ithe OD matrices are time-dependent. In that situation, very few of the
mathematical results of static assignment carry over. In addition, coupling activity-based detnand
generation to network assignment through an QD matrix disrupts the connection hetween
mndividuals and their performance n the simulated tralfic system. Any iterative feedback [rom the
traffic system performance to the activity generation can only be hased on aggregate measures, such
as link travel times, not on individual performance of the traveller. An obvious case where the
coupling through the OD malrix goes wrong is when it is possible Tor a person to complete an
activity even before he/she has arrived at the destination where the activity will be conducted.
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To avoid such situations, we propose to use a truly agent-based representation of the traffic svstem
and the assignment process. In a truly agent-based representation. each person remains individually
identittable throughout the whole simulation process. In particular, the traftic micro-simulation
assumes the role of a realistic representation of the physical system, including explicit modelling of
persons walking 1o the bus stop, or of a bus being stuck 1n traffic. Also, in tenns of analysis such 4
system offers enormous advantages. It is, for example, possible to obtain the demographic
characteristics of all drivers being stuck in a particular tralfic jam. It is also possible (o make each
traveller react individually to exactly the conditions that this traveller has experienced, rather than

to aggregated conditions.

This multi-agent concept consists of basically two parts: (i) the simulation of the “physical™
propertics of the system, and (i) the generation of the agents” stralegics. The simulation of the
physical system 1s the place where the agents interact with each other—car drivers produce
congestion, traftic lights change their intervals dependent on the amourtt of traffic, pedestrians wait
for the nextl wraim to calch, and so on. The agents make their stratcgics based ot what they
experienced in the physical simulation—car drivers try other routes to avoid congestion, pedestrians
nced to leave carlier o catch the train, trallic lights [avour the main strecls to maximize the
throughput of an intersection, ete.

We are in the process of implementing such a multi-agent simulation for the whole of Switzerland.
This paper concentrates on the Zurich area, with about 260,000 agents that cross this region. The
challenges with such an implementaion are many: availabilty and quality of mput data,
computational implementation and computational performance, conceptual understanding of agent
learning, and validation. [n previous research (Raney e ., 2003), we have reported the first results
based on typical transportation planning data:  standard origin-destination  matriecs;  the
transportation planning network from the corresponding Swiss federal planning authority; and
performed route assignment (dynamic traffic assignment or DTA) based on these input data. The
two main differences with other DTA systems, such as DYNASMART (htp://mit.edu/its) or
DYNAMIT (http:/iwww.dynasmart.com), were that our system uses individual route plans for each
agenl while standard DTA systems store the routing decisions in the network, and that our system
was run on really large scale scenarios with several millions of travellers. A newer version of
DYNASMART, however, now alsoe uses individual routes, and other systems also move towards
increasingly large scales, In contrast to TRANSIMS {www.lransims.net), which has used individual
routes and large scales for many vears now, we used a so-called agent database, which keeps track

of several plans for each agent.

This chapter goes further by now also internalizing the time structure of the input data. ln other
words, it is possible for the simulation system (o predict when agenis start and end their main
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activities. The main result is that it is possible to completely ignore the time structure of the time-
dependent OD matrices without compromising predictive power. This is similar to the approach
used and results obtained with METROPOLIS (D¢ Palma and Marchal, 2002). The main diffetenee
is that our implementation uses complete daily activity chains, whereas METROPOLIS only uses
trips. We believe that cur method, while computationally more demanding, opens the door to morc
flexible transportation planning models.

This chapter will continue with an outline of the gencral simulation structure, where we also
describe in more detail the modules we will use. Next, we introduce the network and the scenario.
The results of the different setups of the scenario are compared with traffic count data. Some

computational issucs are discussed next, The paper is coneluded by a scction on future work,

SIMULATION STRUCTURE

Overview

As pointed out before, cur simulation is constructed around the notion of agents that make
independent decisions about their actions. Each traveller of the real system is modelled as an

individual agent in our simulation, The overall approach consists of three important pieces;

. Each agent independently generates a so-called plan, which encodes its intentions during a
certain time period, typically a day. As this is an application to traffic forecasting, a plan
contains the itinerary of activities the agent wishes to perform during the day, plus the trips the
agent muost take o travel between aetivitics. An agent's plan details the order. Lype, location,
duration and other time constraints of each activity, and the mode, route and expected departure
and trave] times of each leg.

2. All agents' plans are simultaneously executed in the simulation of the physical system. In this
chapter, this is a #raffic flow simulation. In other publications, we use the term mobility
simedation in order to emphasize that the simulation of the physical system can go bevond
traffic.

3. There is a mechanism that allows agents to fecrn. In our implementation, the system iterates
between plan generation and traffic flow simulation. The system remembers several plans for
cach agent, and scores the performance of cach plan. Agents normally choose the plan with the
highest score, sometimes re-evaluate plans with bad scores, and sometimes obtain new plans.
Further details will be given below.
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This chapter concentrates on “home” and *work™ as the only activities, and “car” as the only mode.
We do not distinguish between a trip (between twoe activities) and a leg (a part of a trip which uses
cxactly one mode), since the “mode change™ can also be defined as an activity (which has a
specilied location, i.c. a train station). Each of the details deseribed in the plan, such as activity
duration, 1s a decision that must be made by the agent. These decisions are mutually dependent, but
the decisions made by one agent are independent of those made by another. We divide the task of
generaling a plan inlo sels ol closely relaled decisions, and each set 1s assigned o a separale
module. An agent strings together calls to various modules in order to build up a complete plan. To
support this “stringing”, the input 10 a given module is a (possibly incomplcte) plan, and the output
is a plan with some ot the decisions updated. Some possible modules ate:

Activitv Pattern Generator: Decides which activities an agent actually wishes to perform during the
day, and in what order. At present, this module is not used, but we have a fixed “home-work-home™

pattemn for all agents.

Aerivity Location Generator: Delermines where the agent will perform a particular activity. At
present, this medule is not used, but we have a fixed location for each agent's “home™ and “work”

activity.

Activity Time Allocaror: Determines the timing attributes the agent will utilize for each activity in a
plan. Activities have two passible timing atiributes: “activity duration” and “activilty end time”,
After starting an activity, an agent performs the activity either for the length of “duration™, or until
the “activity end time™, whichever comes first, Activitics cannot overlap in time,

Router: Determines which route and which mode the agent chooses for cach trip leg that connects

activities at different locations.

A special feature of our approach is that users can choose any nuniber and tvpe of these modules as
long as they generale some informaltion thal coniribules to a plan. For that reason, il is easy lo
combine for example activity and mode choice into a single module or to add residential or
workplace choice. This application will employ two modules only: “activity time allocator™ and
“router™. Other modules will be the topic of future work.

Onee the agent's plan has been constructed, it can be fed into the traffic flow simulation medule.
This module executes all agents' plans simultaneously on the network, allowing agents to interact
with one another, and provides output deseribing what happened to the agents during the execution
of their plans. The modules produce dependencies. The outcome of the traffic flow simulation
madule {¢.g., congestion) depends on the planning deeisions made by the decision-making modules.
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However, those modules can base their decisions on the output of the traffic flow simulation (e.g.,
knowledge of congestion). This creates an interdependency (“chicken and egg™) problem between
the decision-making modules and the traftic flow simulation module. We need these modules to be
consistent with one another, and therefore we introduced feedback into the traftic tlow simulation
structure (Kaulman er ¢, 1991; Nagel, 1995; Bottom, 2000). This involves an iteration cycle which
runs the traffic flow simulation with specific plans for the agents, then uses the titne allocator and
the rouler to updale the plans. and these changed plans are again fed into the tralfic flow simulation,
ete., until consistency between modules s reached.

The feedback cyele is controlled by the agent database, which also keeps track of multiple plans
generated by each agent, allowing agents to reuse those plans at will. The repetition of the iteration
cycle coupled with the agent databasc ¢nables the agents to leam how to improve their plans over

many iterations. [n the following sections we describe the modules in more detail.

Activity Time Allocator

This module is called to change the timing of an agent's plan. At this peint, a very simple approach
is used which just applies a random mutation to the duration and end time of an agent’s activities.
More precisely, for the first activity, the activity end time is the only attribute that is specified and
thus mutated, while for all other activities, the duration is what is specified and mutated. For each
such altribute of each activity in an agent's plan, this module picks a random time from the uniform
distribution |-30 min, -30 min| and adds it to the attribute. Any negative duration is resel to zero;
any activity end time before 00:00 a.m. is reset to (0:00 am.. The entire plan is returned to the
agent, with only the time attributes modified.

Although this approach is not very sophisticated, it 1s sufficient to obtain uscful results, This is
consistent with our overall assumption that, to a certain extent, simple modules can be used in
conjunction with a large number of learning iterations (e.g., Nagel e/ af., 2004). Since each module
is implemented as a “plug-in”, this module can be replaced by an enhanced implementation if
desired.

Router
The router is implemented as a time-dependent Dijkstra algorithm, Tt first caleulates link travel

times from the events output of the previous traffic flow simulation. The link travel times are
aggregated into 15 minute time bins, and then used as the weights of the links in the network graph.
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Apart from relatively small but essential technical details, the implementation of such an algorithm
is straightforward (Jacob er af, 1999). With the knowledge about activity chains, it computes the
fastest path from cach activity (o the next one in the sequence as a funclion in time. [t returns the
entire plan. completed with updated paths. to be used by the agents for the next run of the traffic
flow simulation.

TRAFFIC FLOW SIMULATION

The traffic flow simulation simulates the physical world, [t is implemented as a queuc simulation
{Gawren, 1998; Cetin and Nagel, 2003), which means that cach street (link) is represented as a
FIFO (first-in first-out) queue with three restrictions. First, each agent has to remain for a certain
time on the link, corresponding to the free speed travel time. Second, a link storage capacity is
defined which limits the number of agents on the link. If this capacity has been reached, no more
agents can enter this link. Third, there is a flow capacity, which limits the number of vehicles that

can leave the link in any given lime step.

Even though this structure is indeed very simple, it produces traffic as expected and it can run
dircetly using the data typically available for transportation planning purposes. On the other hand,
there are some limitations compared to reality, i.e., the number of lanes, weaving lanes, tum
conneclivilies across interseclions or signal schedules cannol be included into this model. The
output that the traffic flow simulation produces 15 a list of events for each agent, such as
entering/leaving link, left/arrived at activity, and so on. Data for an event includes which agent
experienced i1, what happened, at what time it happened, and where {link/node) the event oceurred.
With this data it is easy to produce different kinds of information and indicators such as link travel

time, wrip travel time, trip length, percentage of congestion, and so orl.

AGENT DATABASFE. — FEEDBACK

As mentioned above, the feedback mechanistn is important for making the modules consistent with
one another, and for enabling agents to learn how to improve their plans. In order to achieve this
improvement, agents need to be able to try out different plans and to tell when one plan is “better™
than another. The iteration eyele of the feedback mechanism allows agents (o try out multiple plans.
To compare plans, the agents assign each plan a “score” based on how it performed in the traftfic
flow simulation. Lssentially, each agent is running its own classifier system {e.g. llolland, 1992;
Palmer e al., 1994). Tt is very Imporlant to note that our framework always uses actual plan

pertormance for the score. This is in contrast to all other similar approaches that we are aware of
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which typically feedback some aggregated quantity such as link travel times and reconstruct
performance based on those (¢.g., URBANSIM—www urbansim.org; Ettema e af., 2004). Because
of unavoidable aggregation errors, such an approach can fail rather badly in the sense that the
performance information derived from the aggregated information may be rather different from the
performance that the agent in fact experienced (Raney and Nagel, 2003). The procedure of the
feedback and learning mechanism is as follows:

Initial Conditions: Start with a plan file that specifies one complete plan for each agent. The agent
dalabasc loads these plan files into the memory ol the agenis. Each agent marks its initial plan as
the “selected” plan,

Simulate: The agent database sends the set of “selected” plans (one for each agent) to the traffic
flow simulation. The simulation executes the plans simultancously and outputs events,

Process Events; Ihc agent databasce reads the events that arc output by the traffic flow simulation
and sends each one to the agent identified within it. Cach agent uses its events to calculate the score
of its “selected” plan  the one it most recently sent to the traffic flow simulation.

Fian Pruning: The number of plans kept in an agent's memory for reuse ean be limited to & plans
to conserve memory, If & is defined, each agent that has P > & plans deletes its lowest-scoring
P— N plans in this step. Note that when an agent that has & plans generates a new one, it
temporarily keeps & + | plans until the new plan has been scored. Then, in this step, it deletes the
worst plan (even if it is the newest one),

Select Plans: Each agent decides which plan to select for execution by the next (raffic flow

sinulation, It chooses from the following sclection options, according to the indicated probabilitics:

s (100 %) New Plan, Routes Oniy: The agent sends an existing plan (chosen with equal
probability among all plans in memory) to the router, The router caleulates new routes in that
plan based on the link travel times calculated from the events data from the most recent
traffic flow simulation, and returns the updated plan. The new plan is added to the agent's
memory and marked as “sclected™.

o ([00%) New Plan, Times and Rowres: The agent sends an existing plan {chosen with equal
probabilily ameng all plans in memory) to the activity time allocation module. This module
“mutates” the durations and/or end times of all activities in the plan and returns the updated
plan. The returned plan is also sent to the router for route re-planning. When it comes back
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from the route re-planner, it is added to the agent's memory and marked as “selected”. (Note

that now 20 % of agents will have new routes, while only 10 % will have new times).

» (10 %) Random Selection: The agent picks an existing plan, chosen with cqual probability

among all plans in memory, without regard to their scores. This plan is marked as “selected™.

s (Rest) Probabilistic Selection: The agent picks an existing plan from memory, choosing
according to probabilities based on the scores of the plans. The probabilities are of the form

pee (D

where, 8, is the scorc of plan 7, and § is an empirical constanl. This is cqual to a logil

model from discrete choice theory. The chosen plan is marked as “selected”.

The cyele returns to step 2 (simulate), and continues until the system has reached a relaxed state. At
this point. there is no quantitative measure ot when the svstem is “relaxed”™; we just allow the cycle
to continue until the outcome seems stable, Note that when an agent reuses an existing plan, its
previous score is not forgotten, but averaged with its new score;

S=(1-e}S,,, +as, .. (2)
with the blending factor ¢ . This allows the agent to base plan selection on the plans' history and
not only on the last iteration. With « =0 no score will be updated and the agents will not learn.
With ¢ =1 the history of a plan is neglected. Score averaging requires all plans to have an S ;. so
when a new plan is generated, it is optimistically given a preliminary score cqual to the score of the

agent's best plan. More sophisticated approaches to agent learning are discussed in Timmermans ez
al. (2003).

SCORES FOR PLANS

In order to compare plans, il 15 neeessary to assign a quantitative score to the performance of cach
plan. In principle, arbitrary scoring schemes can be used (e.g., prospect theory by Avineri and
Prashker, 2003). We used a simple utility-based approach, which 1s related w0 the Vickrey
bottleneck model (Arnott ez al.. 1993), but needs to be modified to be consistent with our approach
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based on complete daily plans (Charypar and Nagel, 2003; Raney and Nagel, in press). The total
score of a plan is computed as the sum of individual contributions:

" i £l
(‘frum.* = 2 {j,';r'r'f A + z L‘rfrm',i + 2 b’.u'm‘.‘.’,.! (3]
= i=1 i=l

where U, is the total utility for a given plan; # is the number of activities/trips; L/ is the

perf i
(positive) utility earned for performing activity 7; I/, . is the (negative) utility earned for arriving

late at activity 7; and U 15 the (negative) utility cared for travelling during trip 7 . [n order to

e i

work in plausible real-world units, utilities are measured in Euro.

A logarithmic form is used for the positive utility carted by performing an activity (¢.g., Axhausen,
1990b):

! ;
7 _ * perf .
U et (‘{;Jﬂ_',f‘r)_ ﬁpt‘r'f -, In (4)
(n_j
where. ¢, is the actual performed duration of the activity, ¢7 is the “typical” duration of an

activity, and f§,,, is the marginal utility of an activity at its typical duration. §_,, is the same for
all activities, since in equilibrivm all activities at their typical duration need to have the same
marginal utilily. ¢, is a scaling parameter (hat is related both (o the minimum duration and to the

importance of an activity,

If the actual duration falls below 7, ,, then the utility contribution of the activity becomes negative,
implying that the agent should completely drop that activity. A ¢, only slightly less than 1, means

that the utility of activity / rapidly decreases with decreasing ¢, implying that the agent should

rather cut short other activities where the utility does not decrease as quickly when reducing their
duration. In this application, we use

t = f_. . E.'_;f{'!”‘-‘] (5]

where ¢ is a scaling constant set to 10 hours, and p is a priority indicator, here set aniformly to

w

one. Note that with this specific form, U,.w-r..("; ): 8,., -G - independent of the activity type. This

“consequence” is actually the motivation for the specific mathematical form of the activity
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performance ulility contribution, which was used because no betier argument was available

{Charypar and Nagel, in press); future research should lead to better versions.
The (dis)ulility of being laie 15 delined as:
User = B e (6)

where, 8, <0 is the marginal wtility (in Euro/h) for being late, and ¢, is the number of hours

late for activity i. Te be able to calculate the utility of being late, a starting time window for the
activities has to be given. The {dis)utility of travelling is defined as:

! —_
LH'U\'UFJ = lBrrcnw’ gy (7}

where f3,,., <0 is the marginal utility {in Furo/h) for travel, and ¢ is thc number of hours

teaved §

spent travelling during trip /.

At this point, our traffic flow simulation does not ditferentiate between “being at an activity
location™ (which potentially iticludes waiting) and “performing an activity”. Consequently, the
simulation makes the agent stay at the activity location for the lengih of “duration™, no matler
whether the agent can petform the activity or not. For example, when work starts at 8 a.m. but the
agent arrives at 7 aum. with a duration of 8 hours, then the agent will depart from the activity
location at 7 a.m. plus & hours = 3 p.m.. The utility function, however, differentiates between
“arrival time” and “activity start time”. The “work”™ activity has a particular starting time, and
arriving belore this time causes the agent to wait until then before actually starting the activity. This

means that arriving early to an activity does not gain an agent any activity performance utility.

YERIFICATION OF IMPLEMENTATION

We have verified that the simulation structure as described above works as we intended by running
it on a simple test scenario consisting of a circular network with 2,000 agents going back and forth
between home and work. All agents have the same “home™ location on one side of the circle and the
same “work™ location on the other side. Nine routes are availabie between home and work, and one
route is available between work and home. We ran three sclups with various combinations of
decision-making modules enabled:
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New plan, routes only: The agents are only allowed to use the router module. They may do so with
a 10 % probability.

New plan, times only: The agents are only allowed to use the activity time allocation module. They
may do so with a 10 % probability.

New plan, times and routes: Agents may use the router module with a 10 % probability, or both
modules with a 10 % probability (see p. 97 Select plans).

The results from these three scenarios were as expected (Raney and Nagel, in press).

INPUT DATA AND SCENARIO

Network

The street network that is used was originally developed for the Swiss regional planning authority
(Bundesamt fuer Raumentwicklung), and covered Switzerland. It was extended with the major
European transit corridors for a railway-related study (Vrtic er al, 1999). Some further
modifications, in particular a capacity increase inside the Zurich city area, are described in Raney ef
af. (2003). The resulting network has the fairly typical size of 10,564 nodes and 28,624 links
(Figure 5.1). Also fairly typical, the major attributes on these links are type, length, speed, and
capacity.

Figure 5.1
Switzerland Network
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ZURICH AREA SCENARIO

The full Switzerland secnario demand generation is based on 24-hour origin-destination matriecs
from the Swiss regional planning authority {Bundesamt fuer Raumentwicklung). The original 24-
hour matrix was converted into 24 ong-hour matrices using a three step heuristic (Vrtic and
Axhausen, 2002). The first step employed departure time probabilities by population size of origin
zone, population size of destination zone and network distance. These were calculated using the
1994 Swiss National Travel Survey (BfS, 1996). The resulting 24 initial matrices were then
corrected {calibrated) against available hourly counts using the OD-matrix estimation module of
VISUM (www.plv.de). Hourly traffic count dala are available (rom the counting stations on the
national motorway system. Finally, the hourly matrices were rescaled so that the totals over 24
hours match the original 24h matrix, VISUM assignment of the matrices showed that the patterns of
congestion over time are realistic and consistent with the known patterns,

For the multi-agent simulation, these hourly matrices were then disaggregated into individual trips.
That is, we genetated individual trips such that sumtning up the trips would again result in the given
0D matrix. The starting time for each trip was randomly selected hetween the starting and the
ending time of the validity of the OD matrix. The OD matrices assume tralfic analysis zones
{TAZs) while in our simulations trips start on links, We converted traftic analysis zones to links by
the following heuristic. First, the geographic location of the zone is found via the geographical
coordinate of its centroid given by the database. Next, a circle with radius 3 km is drawn around the
centroid. Finally, each link starting within this circle is now a possible starting link for the teips.
One of these links is randomly selected and the trip start or end is assigned. This led o a list of
approximately 5 million trips, or about 1 million trips between 6 a.m, and 9 a.m.,, Since the origin-
destination matrices are given on an hourly basis, these trips reflect the daily dynamics. Intra-zonal
trips are not included in those matrices, as by tradition,

Since an agent should keep more than one plan during the ileration process, the memory
requiremnents of one million agents exceeded the available memory. So we restricted our interests to
the Zurich Area only. This was done with the following steps: {i) all trips are routed using free flow
travel times; (i) we define the area of interest as a cirele of 26 km radius around the center
(“*Bellevue™) of Zurich City, and (iii) each trip that does not cross this area is removed. This results
in 260,275 trips between 6 a.m. and 9 a.m.. All trips are now identified with an agent. The “origin”
location for the morning trip is assigned to the home activity, and the “destination” location is
assigned to the work activity. The end time of the home activity is set to the departure time of the
original trip. The daily patterns “home-work™ are then extended to the “home-work-home” patiern,
where the two homes are at the same location. The duration of the “work™ activity is set to § hours,
with no fixed activity end time. At the end we gel 260,275 agents that have an initial day plan.
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TRAFFIC COUNT DATA

There are about 230 automatic counting stations registered with the Swiss Federal Roads Authority
(Bundesamt fuer Strassen). Of those, we had hourly tralTie count data for 75 stations. A tolal of 33
of these could be located unequivocally on our network. Unfortunately there are only 6 useful bi-

directional counting stations lefl in the Zurich area, implying we can compare 12 links with reality.

SIMULATION PARAMETERS

The maximum number of plans per agent, &, was set (o 5 plans. The value of the empirical
constant f used to converl plan scores to selection probabilities is 2.0/ Ewro. We use the [ollowing
values for the marginal utilities of the utility function used for calculating scores:

B =+0Fwrolh, B =—6Furo/h and B, =-18Fwuih

ranef
Although it is not obvious at first glance, these values mirror the standard values of the Vickrey
scenario {Arnott ef ol , 1993): An agent that arrives early to an activity must wait for the activity to
start. During this time, the agent cannot perform amy activity and therefore forgees the
B,.; =+6Euro/h thal it could accumulaie instcad (opportunity cost). An agenl that travels fore-
goes the same amount, pfus a loss of &fwro/h for travelling, And finally, an agent that arrives late
receives a penalty of 18£uwro per hour late, but is not losing (or gaining) any time clsewhere by
being late, We only look at daily activity chains that consist of one home and one work activity. The
“lypical” times were sct (0 £, =16 howrs and ¢, =8 hours . With these assumptions, the maximum
score is 120 Enre (060 Euro per activity), For the work activity a starting time window is defined
between 7:08 a.m. and 8:52 a.m.. The blending factor « is set to 0.1. This is a useful compromise
between zero learning and overrcaction. We expeet thal changes in @ will mostly affcet the speed
of relaxation; this may be a topic of future research.

RESULTS
Overview

We present the results of four different sctups, which result from two different initial conditions and
from using time re-planning or not. The two initial conditions are:
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Initial departure times given externally: Here, the activity end times from the home activity are
generated as described carlicr, When the home activity ends, agents immediately depart and drive to
work, where they stay for 8 hours, and then return. We will call the two setups where agents
initially use externally detined times fimes-routes-initiai-times-extern and rowtes-oniy-initial-times-
extern when times re-planning is enabled and disabled, respectively.

All agents depart home at 6 aan: Onee deparied, agents drive 10 work, where they work for
& hours, and then return. These initial conditions are used to have a scenaric where the simulation
starts with a clearly implausible situation. The question that is tested is whether it will recover to a
realistic solution by itself. We will call the two setups where all agents depart at 6 am. times-
routes-inttial-times-allba.m.  and routes-only-initial-times-allba.m. when times re-planning is
cnabled and disabled, respectively.

Note that when limes re-planning is disabled, only 10 % of agents perform route re-planning, but
when it is enabled, a total of 20 % of agents perform route re-planning, with half of those also
performing times re-planning. We compare the results with the following indicators: (i) Average
travel time: The average (ravel time across all agents plans for cach ileration: (1) Averuge score:
The average score across all agents for each iteration; {iii) Departure and arvival time histograms:
The number of agents that arrive/depart from an activity over lime during a certain iteration;
(iv) Traffic count data comparisoir: Mean bias and error of the simulations compared to the
counting data described above.

Initial Plans with Externally Defined Departure Times

This setup tests whether ot not the learning, once time re-planning is switched on, drifts away from
the time structure given by the cxternal data. Since these initial plans are based on realistic lime
distributions, one would assume that the time re-planning will not affect the result that much. Re-
routing alone should decrease the average travel time and congestion. Figure 5.2 compares the
average travel times over the iterations, The routes-only iteration {(Figure 5.2a} quickly gets to a
stable result because re-routing is the only part, which has to be optimized. The small fluctuations
are due (o the fact that some percentage of the agents always re-plans, and that the wallic low
simulation is stochastic.

The iterations where time re-planning is switched on (Figure 5.2h) behave in a similar way, but the
average travel time is slightly higher than routes-only and also it fluctuates more. llowever, the
scores of the times-routes setup are not worse than the scores of the routes-only setup. This
indicates that the agents are “trading oft” travel time for other parts of their utility. In other words,
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by adjusting their activity times (i.e., the times they make their trips) they make up for the fact that

trips are longer by arriving at a more suitable time to work. The higher fluctuations can be attributed
to the fact that there are now two re-planning parts, which have to be optimized.
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Arrival and Departure Histograms when the Initial Plans have “Plausible” Departure Times

Figure 5.3 shows the scores for each iteration of both setups. They are once more similar to each
other, and once more the routes-only setup (Figure 5.3a) shows less fluctuation than the setup with
time re-planning (Figure 5.3b). The reason is the same as described above. Comparing to Figure
5.2, one can see that in both setups, the average scores relax considerably more slowly than the

average travel times. This is due to the score averaging in the agent database.

The histograms (Figure 5.4) show how the re-planning affects the agents. Starting with the same
configuration (Figure 5.4a), the routes-only iteration only tries to minimize travel times, so that the
periods of arrivals decreases (see bold graph of Figure 5.4b), while departure from home stays the
same (see dotted graph of Figure 5.4b). Switching on time re-planning changes also the dotted
graph (see Figure 5.4¢). The two peaks of the arrival (bold) graph are at 7:08 a.m. and 8:52 a.m.,
which is the border of the time window we defined for these scenarios.
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Table 5.1
Bias and Error of Routes-Only-Initial-Times-Extern and

Times-Routes-Initial-Times-Extern Compared to Field Data at 7-8 a.m.

Initial-Times-Extern

Mean / Bias Routes-Only 7-8 a.m. Times-Routes 7-8 a.m.
Mean Absolute Bias: +331.403 F306.320

Mean Relative. Bias: +19.6 % +25.3 %

Mean Absolute Error: 533.553 503.768

Mean Relative Error: 375 % 354 %

The reason for that is the fact that agents, which are too late or too early at work try to “squeeze”
into this time window. Once they are inside the time window they will more or less stay at this plan
if they succeeded. Since an “optimal” plan for an agent is still to have short travel times, more and
more agents try to arrive earlier in the defined time window. That is why the left peak is higher than

the right one.

Finally, we look at the traffic count data. Figure 5.5 shows the relations of the two setups and the
real data given by the already mentioned 12 links. As expected, the two results do not differ very
much, and they are comparable to reality. Also the quantitative measures of bias and errors are
similar (Table 5.1).
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Figure 5.5
Initial Plans with Externally Defined Departure Times: Comparison to Traffic Count Data
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Initial Plans with Departure Time at 6 a.m. for all Agents

The previous section demonstrated that the results both with respect to the time structure and with
respect to validation do not (at least) become worse when time re-planning is switched on.
However, the initial condition was still based on the externally given time structure. The
experiments in this section will test in how far a realistic time structure can be generated even when
starting from a clearly implausible initial condition. For this purpose, all initial plans will be
modified so that all agents initially depart at 6 a.m.. Apart from that, the initial plans are the same as
before.

Figure 5.6 shows again the average of travel times for both setups. We see that this time, the routes-
only setup decreases travel time more slowly than before because it is harder to avoid congestion
when all agents start travelling at the same time. Of course, at the end the average travel time will
be higher. With time re-planning switched on, average travel times decrease rather quickly, because
agents are now allowed to change their departure time, too. Also average scores without time re-
planning (Figure 5.7a) show only little improvement. Only optimizing routes does not help very
much because a major part of the agents will then arrive at work too early which does not increase
scores (Figure 5.8b). When the time re-planning module is also switched on, agents are now able to
have short travel times and still arrive at work within the given time window. Figure 5.7b shows

that the average score slowly increases to the same level as in Figure 5.3b.
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The histograms (Figure 5.8) also show those facts. There are many more people who arrive between
6 and 7 a.m. in the routes-only setup (Figure 5.8b) than in the times-routes setup (Figure 5.8¢). The
peak of the departure time (dotted) graph of Figure 5.8¢ moved toward the same time as shown in

Figure 5.9

Departure Time 6 a.m. Plans: Comparison to Traffic Count Data

Figure 5.4¢ of the previous section.

Comparing the results with real word data shows a high discrepancy between the two setups. In the
routes-only setup almost everybody starts too early. So it underestimates the throughput between 7
and 8 am. (Figure 5.9a). In the times-routes setup (Figure 5.9b), agents slowly move to more
appropriate departure times which—at the end—will converge to similar results as obtained before.
Of course, the calculation of the bias and the error (Table 5.2) now produces completely different

results for the routes-only setup.

Table 5.2
Bias and Error of Routes-Only-Initial-Times-All6a.m .
and Times-Routes-Initial-Times-Alléa.m. Compared to Field Data at 7-8 a.m.

Mean / Bias Routes-only 7-8 a.m. Times-Routes 7-8 a.m
Mean Abs. Bias: U 3dazed T 99236
Mean Rel. Bias: 313 % +12.4 %
Mean Abs. Error: 644.107 520.256
Mean Rel. Error: 43.8% 36.1%
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COMPUTATIONAL ISSUES

Performance: One iteration takes on average about 102 minutes. The average duration of sub-steps
of an iteration are: about |8 sec for the departure time allocation medule; about 23 min for the
router module, of which about 19 min is spent reading the events; about 39 min for the traffic flow
simulation module, including file input and output {(Cetin and Nagel, 2003}; about 11 respectively
16 min for sorting events and reading processing them into scores; about 103 sec for writing the
new plans, the remaining time is used for other /0 processes/bottlenecks, communication and data

preparations. These times allow the caleulation of 15 to 24 iterations per day.

Disk Usage: A complete data set generated by one iteration produces about 280 MB of data (when
compressed). These will be kept for the first and the last 5 ilerations and also for cvery 10th
iteration. For each of the other iterations only about 40 MB are kept.

Memory Usage: Since we are simulating about 260,000 Agents with most 5 different plans and each
of them needs about 700 Bytes of memory plus some overhead, we end up with a requirement of
about | GB of memory. The router module also necds about 200 M of memory. Higher resolution

networks will need more memory which might become a problem in the future.

FUTURE WORK

At present we only model the “primary” activities “home™ and “work™. We are working on adding
“secondary” activities, such as shopping and leisure to the system. This requires the addition of two
more modules: the activity pattern generator and the activity location generator. Another module we
are interested in adding is a Population generation module, which would disaggrezate demographic
data to obtain individual households and individual household members, with certain
characteristics, such as a street address, car ownership or househeld income (Beckman er «f., 1996;
Frick, 2004). The population would not maich reality, but would result in the same statistics. These
modules should also be implemented as “plug-ins”. We are also investigating other travel modes
such as public ransport or pedestrian mode.

Another issue of interest is the possibility that agents could also leam during the day. They could re-
route while they are stuck in congestion, drop an activity hecause they are already too late, and so
on. This “within day re-planning”™ (e.g., Axhausen, 1990; Cascetta and Canlarella, 1991} should
help to improve their strategics faster than only “day-by-day re-planning™, and the interaction with
other entities (like traffic lights, changing traffic signs and other ITS entities) can be added to the
traffic flow simulation. Within-day learning is more realistic since some types of decisions are
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made on time scales much shorter than a day {Doherty and Axhausen, 1998). However, within-day
re-planning is at odds with the parallel computing approach to the traffic flow simulation (Nagel
and Marchal, 2003), which 15 the reason why it 1s cutrently not used in our project.

Simulation speedup can also be improved by climmation of performance bottlenecks. At the
moment the agent database keeps track of afi agents of the simulation. Since recalculating an
agents’ strategies is complelely independent to other agents, it would be uselul (o introduce
parallelism into this. These “multiple agent databases™ should then be controlled by a separate
module, which keeps track of the feedback. This leads us to a clear separation of “agent databases™
and “teedback™.

The activity time allocation module itself could be improved, too. 1t should recognize when agents
arc too early or too late, so the adaptation to a more realistic departure time should be done with
fewer iterations. High resolution networks are another 1ssve. especially if there is more precise
information available about locations. The main goal will be that each agent has its home location at
a street with a house number, possibly a ramp (o its garage, a private pedestrian path (o the next
tram station, and so on. Last but not least, high resolution scenarios are indeed a computational
challenge. Quile in general, more precise traflic count data is required. There is some cffort to
extract information of the raw data of the Kanton Zurich, which gives more precise information
about local traffic situations.
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THE SCHEDULING AGENT -
USING SESAM TO IMPLEMENT A
GENERATOR OF ACTIVITY PROGRAMS

Guido Rindsfiiser, Emeh—Berger AG, Bern, Switzerland

Franciska Kliigd, Universitdt Wirzburg, Germany

INTRODUCTION

Several reviews of the activity-based approach have underscored the importance of travellers’
activitics as objeets of cxamination in transport rescarch and the shift rom vchieles o people
thouseholds) as the behavioural units (e.g., Jones er «f,. 1983; Kurani and Lee-Gosselin, 1998).
Activity scheduling (e.g., Damm and Lerman, 1981: Doherty, 2000; Timmermans, 2001), a current
reseatrch field within the framework ot the activity-based approach (e.p. Axhausen and Herz, 1989,
Jones, 1990; Ettlema and Timmermans, 1997; Arentze and Timermans, 2000) atins at understanding
the underlving behavioural mechanisms that give rise to activity sequencing over the course of a
day or a weck. Activity scheduling surveys brought new insights into individual scheduling
behaviour (Etlema e @f., 1994; Rindsliser ef af., 2003; Lee and McNally, 2003; Doherty ef al.
2004). The first models of activity scheduling have been developed and some have been tested
reeently (e.g., Ettema ef af., 1993, 2000 Arentze and Timmermans, 2000, Girling ef af., 2001; Joh
ef al., 2002, 2003, 2004; Miller and Roorda 2003). Some of these models can be viewed as simple
multi-agent models. It is believed thar these models of activity scheduling behaviour can improve
transport demand modelling because of their behavioural underpinnings.

Progress in Activity-Based Analysis edited by H. Timmermans
@ 2005 Elsevier Tud. All rights reserved.
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The focus of these models of activity-scheduling behaviour has primarily been on the formulation
of these models. Less attention has been paid to the implementation of the estimated models in real-
time simulations. Multi-Agent teehnology has much promise in this regard (Kligl, 2001). The
concept “agent” is especially useful for developing solutions in highly dynamic problem domains.
Thus, in simmulation applications the multi-agent view enables the specification and simulation of
variable structure models where the components of the models may interact with each other. This
allows for models of human decision making that are less abstract than any traditional paradigm.
The multi-agent paradigm provides interesting modelling options for traffie and transportation

svstems.

The remainder of the paper is organized as follows. In the next section, the objectives of the
presented approach are summarized. This is followed by a brief overview of current research related
te (the vse of agent technology in transport applications. Next, we will give a short introduction o
the modelling and experimenting environment “SeSAm”, followed by a description of the

application of a scheduling agent. Conclusions will closc this chapter.

OBJECTIVES

The objective of this chapter is to present an emerging activity scheduling process simulation
designed as a multi-agent simulation — briefly describing the overall model coneepi, the simulation
modules. and first experiments. The focus is on demonstrating the feasibility and henefits of this
approach, and not that much on a detaded description of the behavioural models, which are and
which have to be included in the simulation. During the development of the simulation system a
number of problems, related to both information technology and transportation occurred. Therefore,
a sceond objective of this chapler is to discuss these difficultics and provide hints for further

research.

AGENTS IN TRANSPORT

The Agent Paradigm

Before discussing characteristics and examples of agents in transportationt modelling, the meaning
ol the term software agent has 10 be clarilicd. An cxamination of the literalure suggested that no
single definition was available that is widely acceptable. Franklin and (rraesser (1997} collected a
variety of definitions of the concept “agent™. Their definition only focused on the situational context
of an agenl in an environment, and did not cxplicitly explain other important properties hke
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autonomy, flexibility and responsiveness, pro-activeness or ability for interactions with other agents
or users. Wooldridge and Jennings (1995) on the other hand as probably the most cited paper in the
context of agent properties did identify those properties.

AgentLink, the Curopean Network of Excellence for agent-based systems (www.agentlink.org)
called “autonomous, problem-solving computational entities capable of effective operation in
dynamic and open environments™ agents (Luck er af,, 2003). The key property is aulonomy —
although the definition of this property turns out to be ditficult as well. Autonomy is what
distinguishes an agent [rom an objeet, as an agent should be capable of choosing its actions and
interactions itself. For implementation, object-oriented technigues might be used.

Multi-Agent Systems

A multi-agent system can be scen as a colleetion of agents. The following broad characteristics are
associated with multi-agent systems:

* [iach agent has incomplete information or capabilities for solving the problem, as it is only

capable of perceiving part of the problem space or part of its environment (locality).
¢ There is no global system control.
s Data is decentralized.

e Computation is asynchronous.

Multi-agent system technology may form an ideal basis for traffic and transportation modelling
because these properties can also be ascribed to traffic systems with all their individual participants
that are processing information and modify their environment based on this information.

Existing Applications

Applications of multi-agent systems in traffic and transportation modelling can be distinguished

into three domains and levels of application:

» Use of agent technology as a basis for sophisticated traftic control and/or traffic management
strategies. A prominent and early example is the OASIS system (Ljungberg and Lucas, 1992),
where air traffic was modelled as agents that are negotiating for scheduling take-off and
landing time slots. This system was actually tested al Sydney Alirport. Other cxamples in
transportation management can be found in Fischer ef e, (2000), Dijkstra and Timmermans
(2002), Hernandez er al. (2002}, and Adler and Blue (2002).
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* Use of agent technology for abstract modelling of phenomena. This consists mostly ol basic
research into information technologies with a game-theoretic background (e.g., Kligl and
Bazzan, 2004)

s Use of agent technology for more realistic traftic simulation. For example, Dia (2002)
proposed an agent simulation for route choice behaviour. Microscopic traffic tlow models -
many of them originally based on cellular aulomata - arc now developed as agent-based
models resulting in more interesting travel hehaviour due to the decision making abilities
{e.g., Nagel and Marchal, 2003). Another example is an agenl system 0 model lane changing
within a micro simulation {Hidas, 2002). These simulations are not only based on predetined
behaviour schemes but also use “intelligent™ and adaptive activity generation (e.g. Charypa
and Nagel, 2003; Balmer ¢/ af., 2004).

A fourth category concerns the simulation of individual activity scheduling processes, which is a
relatively new research field within the activity-based approach. The problem of modelling
individual demand and scheduling of activities and as a result the generation of activity patterns
seems o call for an agent-bascd simulation where a single agent represents a single person. Duc to
the fact that the society is becoming more and more heterogenous. activities and cbserved activity
palterns increasingly diversify, Thus, new maodcels {or the cstimation ol single and individual
decision processes for activity participation and derived transport demand are required. Traditional
models are able to depict only a small range of variation in behaviour {(e.g., Kitamura, 1996; Recker
et al., 1988), Morc current models such as for example the sophisticated Albarross model system
{Arentze and Timmermans, 2000} produce more variations and more complex patterns while taking
into account several constraints influencing individual behaviour, The use of several rules and
heuristics underscore the new approaches as agent systems. Various agents perform different jobs to

assign activities to decision units,

With a multi-agent approach in the sense of having one agent for one person of the represented real
system (plus agents [or facilitics and other constructs like houscholds, resources or the world), one
should be able to simulate activity patterns with more behavioural soundness, covering a broader
range of behavioural change due to new transport measures. The proposed approach is a first step

towards a multi-agent simulation system 1¢ generate individual activity programs.

SESAM

The model and experiments described in this chapter are implemented and conducted using the

multi-agent simulation environment ScSAm. Thus "Shell for Simulated Agent Systems™ provides a
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generic  environment for modelling and experimenting with ageni-based simulations. Its
development was specially focused on providing 4 comfortable tool for the construction of complex
agent-based models (Kligl, 2001} In the following, we want to present relevant propertics of
SeSAm as a short inttoduction to the simulation system. More information about SeSAm can
oblained from http://www.simsesam.de.

Basic Agent Architecture

One of the most impertant characteristics is the underlying agent archilecture, as it determines (he
potential abilities of the agents based on it. SeSAm-Agents consist of two parts: a body that
deseribes the current state and beliels of the agent and a “brain™ that is responsible Tor seleeting the
agents’ actions. The body is represented by a set of state variables that may not only contain
numeric information but also nested symbolic data. Every variable may have some associated
g, cte. The brain

=

dynamics that may be vsed for unconscious changes in this variable, like agin
interprets a behaviour network — described based on enhanced UML Activity Graphs. The nodes of
the behaviour network can be scen as scripts (hat are initiated and terminated by {iring rules. An
agent is always tound in one behaviour node in each network (there can be more than one graph
responsible for behaviour representation, in this case an agent concurrently is in more than one
behavioural state).

A set ol predefined primitive actions and perceplions can be used for filling the nodes and rules lor
“implementing” the concrete agent behaviour. This simple and transparent agent architecture
resembles a computationally complete agent programming language (Oechslein er a/., 2001}, Thus,
it can also be used for BDI {Belief Desire [ntention (Kligl, 2001)) agent models or other intelligent

behaviour generation, like the activity scheduling approach described in this chapter.

Representation of the Agents® Environment

In SeSAm ditferent forms of spatially ¢xplicit simulations are possible, The basic space
representation is a continuous map (can be mapped to a discrete grid). Possible movement
directions are arbitrarily values for movement angles (0-360°). On the map, agents and resources
can bhe positioned. Resources are passive objects that also possess a body, but no behaviour. They
can store arbitrary complex state descriptions but may net manipulate their environment actively.
The environment for an agenl consists not only of other agents and resources that are localized on
the map, but also on some properties on the global level, e.g. averall temperature or time of day.
Howcever, all agents may not perceive this information in the same way.
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Simulation Routine

For technical reasons (he simulation reutine and updale order is relevant, especially as SeSAm does
not support real agent parallelism. The simulation is time-stepped, that means at every time point,
all agents and all other objects containing some vpdate formula in their state variable descriptions
are updaled. Alter one updale round the global time step 18 incremented. For emulating agent
parallelism their update happens in random order, which leads to the system property that the
modeller cannot rely en one agent being updated belore a particular other one. In detail the update
routine 15 as follows:

L. Generate start silvation and imtialize simulation clock.
2. While not terminating condition true
a. Updatc all simulation components in a random scquence
For every object in the situation do
i. Update body variables
i, If object is an agent
For every reasoning engine
1. Exccute Action Scquence
2. If current behaviour node 15 terminating = Select new node
(Execute termination and starting sequence resp.)
3. Repeal 243 until a lime consuming node is executed
b. Update World behaviour

Consequently, there is only one possible synchronization point, namely the defined update time of
the world. All other synchronization and coordination may usc morc or less traditional approaches

known from distributed and multi-agent systems.

The SeSAm System

Based on the representation concepl described above, both a specification language and a software
environment for modelling and simulation were developed. The specification framework focuses on
the representation of agent behaviout especially in relation to other agents, resources or the general
environment. In SeSAm, the actual modelling and simulation environment user is able (0 design
visually the behaviour of agent classes. Analogous mechanisms are provided for specifying the
slatic structures of an agent, an agenlt system or the environmental elements and their conliguration.
Thus, a complete agent-based simulation model can be implemented visually without programming
in 4 traditional programming language. Duc (o the provision of abstract data structures and diverse

modularization and abstraction instruments, the SeSAm also allows to handle complex models.
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Plugins arc provided that also supporl real-world simulations, like database conneclivity or
sophisticated spatial enhancements. Support for simulation cannot ¢nd when the model s
implemented completely. Testing and execuling experiments are also very demanding and elfortful
tasks. As it provides freely configurable instruments for gathering data and scripting options for
constructing simulation experiments on several computers concurrently, ScSAm is a highly
valuable tool even tor large-scale agent based simulations.

THE SCHEDULIING AGENT

“The Scheduling Agent™ is a complex system ol models of individual behaviour related o the
scheduling processes realized as a multi-agent system. Tt aims atr the generation of activity patterns
of individuals. The multi-agent model was (it is still in progress} designed using SeSAm. This
chapter describes the first implementation and tests, Therefore, it was the major objective to bring
the two approaches, the transport related scheduling process approach and the IT related multi-agent
approach, gether and to demonstrate the feasibility and advantages. Because of the complexity,
the amount of data required, the models of individual behaviour and the poor available empirical

dalta, the behavicural models are kepl relalively simple.

Simulation Concept

The basic concept gocs back to the ideas of a unificd modelling framework lor the scheduling
process proposed by Doherty and Axhansen (1999). Following this framework, Rindsfiser and
Doherty (2000) elaborated the original idea and conducted some data analyses for single facets of
the coneept. In particular, the coneepl of The Scheduling Agent system is based on the simulation

components displayved in Figuie 6.1.

The input is a data set describing a synthetic population, a synthetic city and a set of behavioural
parameters, In a first modelling step, an “activity repertoire™ and a “habitual program™ are
generated. The repertoire is a list of activities with vartous sets of distributions for cvery attribute
value, as for example the start time. For different combinations of individual socio-demographic
altributes an assigned set of activity attribute value distributions can be found. The habitual program
is a set of routine/habitual activities with already assigned attributes. The second modelling step
concerns the simulation of the scheduling processes, It starts with an initial “current™ program,
generated from the habitual program while adding and fixing values of some variables. This current

program can be seen as a skeleton program and can be moditied during scheduling.
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Synthetic Synthetic Behavioural (e
Population city Data bl
Activity Repertoire Habitual Program Btetic
Alist of possible activities for each |=§» A subset of scheduled Model
person in the relevant time period routine activities
Dynamic Scheduling
Simulation

Controls sequence of scheduling decisions and events
occuring over time

¥

Historic Program Output
A complete sequence of undertaken activities

Figure 6.1
Schematic Representation of the Main Structure and Components

The simulated scheduling may happen at every time step during the execution of the current
program (a day, a week, and so on). The output of the overall simulation is a “historic program”, a
list (sequence) of activities and trips the individual has undertaken during the simulation run
including activity and trip attributes as there are start time, duration, visited location and used mean
of transport at present. There is no route choice realized until now. In this first implementation
agents move on direct line to the destination with an average speed (depending on the used mode).

The general simulation framework of a scheduling process is displayed in Figure 6.2. One of the
major benefits of using agents is the possibility to integrate the situational context of each
individual into the model. As displayed in Figure 6.2, an agent can act in reaction to a modification
in his environment or act depending on his own status or the status of other agents at every time
step during the simulation. All actions of the simulated agents result in changes in attributes of the

environment, agents’ own attributes or attributes of the other agents.
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Figure 6.2
Schematic Representation of the Simulation Concept

Data

Modelling the scheduling processes at the individual level requires not only a lot of data on socio-
demographics, but also new, additional data about the scheduling process (Doherty, 2001). To
develop an executable simulation at the microscopic level, empirical data (where possible),
synthetic data (where needed) and assumptions/rules to generate additional data (where necessary)
had to be used:

e The population (modelled as agents):
A synthetic population, created for the project ILUMASS (Strauch et a/., 2004), was used to
specify different agents. A description of the generation of the synthetic population is given in

Moeckel et ai. (2003). These data sets do not include any choice variables.

e The agents’ behaviour:
To generate input data for the various components of the agents’ behaviour model mainly the
Mobidrive dataset (Axhausen ef al., 2002) was used. For example, a measure of similarity of
activity patterns was calculated using the sequence alignment method (e.g., Wilson, 199&; Joh
et al., 2000, 2001ab,c; Rindsfiiser, 2001) besides several other parameters including
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flexibility measures, routine measures, ete. These and socio-demographic attributes of the
individuals are used to (rule based and stochastically) choose activities to perform, choose
start times and durations as well as to serve as a basis for the decisions during fitting the
chosen activities into the schedule. Some additional findings from data produced with
CHASE (Litwin et al., 2004) and data from the time budget study in Germany (Statistisches
Bundesamt, 1997) were used as a supplement for statistical distributions of activity start

times, durations, ete.

o The “world” and the facilities (modelled as agents):
A synthetic city, created for the project ILUMASS was used to specify different facilities
(residences and places to undertake an activity). Some properties of the facilities, as for
example opening hours, were created using general and simplified assumptions, for example
opening hours are not differentiated between facilities.

An example of observed scheduling behaviour using EX-ACT (Rindsfiiser er al., 2003) in
Dortmund is shown in Figure 6.3. For a single person and a single (here out-of-home) activity the
whole planning/scheduling process is displayed. In the middle of day six, the execution of this
single activity starts. All gathered information afier this time concerns decisions made during the
execution of the activity. With EX-ACT all activities (30 categories) were observed.

initialisation day 1 day 2 day 3 day 4 day 5 day 6 day 7

t'me A vy | Fvy
mon wed||wed fri sun ||sun
4:00pm 3:37pm|[3:50pm 2:24pm 10:30am ||10:31am
start of
activity type going t_:_u_f > restaurant o real.isation
day sarurq’ayl.
start-fend time ...S¥E7ing l. po=11ia0phy = 8:10-...pm oo ...-0:10am
exactness time I.*_ -2h ) exactly 'Iulexal:;riy
location ~Belia rzsn'a".
mode — . "‘9".'
trip starttime 7”7’79’”1 7:45pm o
exactness trip starttime FERHET m“.ﬁ'”lfl - ZJ;:{;Egl RS
kind of decision after a call . pfannr:d'"pfgmwd p!anned.l . realisation L' during realisation

Figure 6.3
Schematic Representation of Observed Scheduling Behaviour
of a Single Person for a Single Activity
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These data will support this simulation system in the future. For the moment these data are used to
determine decision (scheduling) horizons or decision {scheduling} points and scheduling scquences,
which choice is made first or last before realisation.

Implementation

Situational Context “'The World". The “world” - the enviromment in which the agents act - is an
agent too in SeSAM, to ease the specification of the environment, Theretore, the world can possess
“behaviour™ {can have a behaviour graph). The world, as every agent, can have attributes, which
can be modified by other agents. The behaviour of the world can also influence the other agents. In
the curreni application, the world is used (o provide the current time, day and weck., With cvery
simulation step, one minute is added to the current time. Additionally, the world is used to generate

aggregated simulalion data used for the gencration of outpul files.

Agents and “Reasoning Engines”. The main objective during the design precess of a scheduling
agenl in SeSAm was to ereale a universal agent and not (o design dilferent elasses of agent groups.
The individuality of the agerts should be represented by the individual set of attributes of the agents
- resulting in maximum individuality. Meta-level behaviour - seheduling and exceutling activities -
was defined for only one agent class. Therefore, the simulation is based on generated, different
agents as instances of the designed agent. Consequently, all agents have the same generic
behavicur, Their individual behaviour results rom individual altribute values, from the assignment
rules based on these variations in personality and therefore from individual tasks generated from
their individual context. A “Task™ 1s one single [uture activity or trip, which 1s chosen, specified
and carried out during simulation.

The generic behaviour of the agents 1s represented in the “reasoning engine”, one part of the agent
specification. The behaviour network is the graphical representation of the rules and functions,
which determine (he agents” behaviour. At [irst glance, the graph seems to be guile simple (Figure
6.4, The main components are the states of an agent. An agent can be found either in an activity or
in a trip. 1s a person in one of these states, and only then, time elapses. All other actions are only
containers of more or less inner processes ovcurring during an activity or a trip excluding the

hehaviour node “out of simulation”, which is only implemented to end the simulation.

An instrument to generate some kind of real situational context is the use of triggers. Some of the
most frequently observed reasons for scheduling are used in the simulation to cause a transition
from “during activity™ or “during trip™ to “schedule”. In the following, the single components of the
behaviour graph and these triggers and steps in the processes will be explained in more detail.
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Before starting the actual simulation an initialisation step is needed. All assignments and

variable value settings required to generate a start situation and all modelling which is not part

of the inner scheduling are made during initialisation:
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Figure 6.4

The Agents’ Activity Graph

- For each facility present in the situation a list of possible related activities is generated.

- The individual dwelling (originally coming with the household file) is assigned to the

agents.

- The initial current program of the individual for the simulation period is generated from the

habitual programs and assigned to the agents.

- The starting position of the agents in the world is assigned depending on the location of

their first activity in the current program.
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- For each activity in the current program {until this time only activities are generated) a trip
{a new lask) 1s generated when the location of the inspecied activity dilffers rom the
location of the previous activity. The distance (direct line) is calculated. Depending on the
distance and individual characteristics a transport mode is chosen. Based on the mesn
speed for the chosen moede and the distance, the expected trip duration is calculated. The
end time of the trip is set to the start time of the following activity.

e (Current Task:
The determination of the current task of an agent plays a kev role. Depending on the current
task the next actions of the agenl are determined. But also other functions and rules are
located in this node of the behaviour graph:

- Using the time of the world, the current task is determined out of the agents™ current
program as the task with start time <= the current time and with end time »>= the current
time.

- Ifthe current task is an activity, a transition to “during activily™ is made.

- Is the current task a trip, the agent’s state in the next simulation step is *during trip”.

- If the current task is empty the agent contlinues with the node “schedule™.

s During Activity:
The agent is in this statc during an activity. The simulation time is advancing until the activity
end time is reached and the agent leaves this behaviour node. The agent can act or react in
every simulation step duc to moedifications of (he siuational context. The agent s
continuously updating his wvariables and his knowledge of the environment with every
simulation step. The current time for example is a public attribute from the world, which can
be read by the other agents, as well as all public attributes. Another advantage is that agents
can communicate, in a single form through changing of attributes, which the other {specificd)

agents can read.

- In the state “during activity™ the agent stays at the current position (facility) to carry out the
cutrent task {an aclivity), the agent is nol moving.

- It may happen due to some triggers (personal. from communication with other agents or
related 1o modifications of the cnvironment) that the agent needs to do some scheduling, If
s0, he leaves the node “‘during activity” and changes to the node “schedule™. After
finishing his scheduling behaviour, the agent updates his current program and continues
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wilh his current activity or reaches the state “update hisioric program®™, This happens if the

current fask is to stop spontaneously and a new task is to start directly.

¢ During Trip:
The agent is in this state during a trip. The simulation time is advancing until the destination
15 arrived and the agent leaves this behaviour node. As in the node “during activity™ the agent
can act or react in every simulation step due to modifications of the situational context. The
agenl is continuously updating his variables and his knowledge every simulation step.

- In the state “during trip” the agent moves in the environment to reach the given (chosen)
destination where the next task has to be carried out.

- It may happen duc to some triggers {personal, from communication with other agents or
related to moditications of the environment) that the apent needs to do some scheduling. 1f
s0, he leaves the node “during trip” and changes to the node “schedule™. Afller linishing his
scheduling behaviour, the agent updates his current program and continues with his current
trip or reaches the state “update historic program”™. This happens if the current task is to
stop spontangously and a new task is to start directly.

The current realization of the movement is a direct moving [rom one position 1o another with
a calculated mean speed (depending on the used mode). In the future, it will be possible to let
the agents move along the road network, imported from a GIS.

* Schedule:
This state can be seen as a collection of behavioural models, Thus, it 1s the most complex
module of the simulation and still under development. All scheduling related processes are
simulated within this behaviour nede. These processes are additions of new activities,
modifications or deletions of alrcady secheduled activities. Because 1 15 possible that an
already scheduled activity has to be modified again for some reason, this concept and
realisation in this simulation includes rescheduling of activities and trips. For all these
decisions, a reasonable number of constraints and intentions needs to be taken into
consideration (as for example location and mode choice or temporal overlapping with other,
already scheduled, activities). For this first simple implementation some rules derived from
CHASE and EX-ACT data arc used, as [or example, which activity types are more likely o
be moved in time or deleted, or which activities are to what amount shortened. Again
depending on the own attributes these values are chosen stochastically. Constraints like

opening hours and time budgets are (simplified) considered.
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This node can be reached from every other node, comparable to real life, where planning and
scheduling is not {ixed to specilie times of the day. This is a major benefit of the using multi-
agent simulation compared to “traditional™ modelling techniques. Depending on the received
triggers an agent needs 10 add a new task, modily or delete an already scheduled or the current

task or their variables.

New tasks:

The need to choose a new task {during simulation run) is given if the agent has no current task
(just finished a previous task) or if a trigger (e.g. external demand from another agent) is
recognized during a just exccuted task (activity or trip). Scveral steps, new task gencration,
activity type choice, start time choice, duration choeice, location choice and fitting into
existing schedule arc performed based on simple algorithms and distributions depending on
the very own characteristics of the agents attribute values and the situation. Several more
sophisticated choice procedures are known and well documented (e.g., Arentze and
Timmermans 2000}, The difference is that in the presented simulation each agent uses these
procedures to act {and react) depending on the state of his own attributes and all other public

attributes from other agents depending on the specific situation during simulation is running.

- A new task (an activity or trip) is gencrated based on choosing an activity type out of the
agents’ repertoire. The possibility to choose a specific activity depends on the individual
characteristics and the time of the day, In the future, some kind of learning (e.g., Arentze
and Timmermans, 2002, 2004; Charypar ef «/., 2004) should be implemenied to enable the
agent to compare with his activity history or choose from the history to simplify modelling
and to narrow real behaviour, In addition, an individual start time and duration 1s chosen
from specific distributions.

- Depending on the activity type a location (a facility) is chosen. In the current model, an
appropriate [acility nearcst (o the current position is chosen, with some randomness (so that
in 10% of the choices a facility further away is taken into consideration). The agent is also
considering his home position and the next task to check whether it 1s possible to find a
location on “the way home™.

- A new task, a trip, is generated (see above),

- The new task (tasks) is fitted into the current program. Several context sensitive rules are
used. Due to the poor availability of empirical data, many assumptions had to made for
prioritizing aclivities (which task has 1o be moved in ume, 1o be shortened or to be deleted,
which task cannot be moved, etc.}, change start and end times, etc. For example, if a new
task lcisure is 1o be scheduled and the time window between possible starl time of the

planned leisure task and the next task, lets sav work, is not long enough, it is only to some
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extend possible to move the start time from the work task to fit the [eisure sk into the
program, The amount of movement is chosen again from a distribution derived from time

budgel studies.

s Modifications and/or deletions:
Based on similar/same rules, the current or future task is modified or deleted.

* Update Historic Program:
This status is not time consuming, and is entered when the end time of an aclivily or a trip is
reached (including the case, that the current task is to stop spontaneously).

- The activity or trip carried out is written at the end of a historic program (a list), which is

consequently a sequence of activities and trips already carried out.

- The agents’ current task is scb to sero.

s (ut of Simulation:
This behaviour node is needed, because the simulation is set up to stop when the very last
activity or trip 1s carried out. Due to the fact that during generation of the current program the
individual programs vary and a simulation end per se not exists one of the future tasks can be
marked as last onc. An agent with no next task afier the marked onc moves o the “out ol
simulation” state where he is doing nothing until the simulation stops (the last agent reached
this node). [n addition the simulation can be stopped immediately,

- After all agents have reached the out of simulation status, the realized programs of all
agents are written 1o a file. This is done in a XML format, corresponding (o an XSD
schema and an XSI. stvlesheet, so that the results can be displayed and inspected within a

stundard browser (e.z., internet Explorer).

As indicated before, the objective of this project was to demonstrate the feasibility of using SeSAM
as a shell for implementing a scheduling based activity generation using a multi-agent system.
Therefore, the implemented behavioural rules and models are kept simple so that the general
framework could be build and the advantages be demonstrated. In terms of sophisticated
behavioural models, other work is available and documented. Nevertheless, the approach differs
from most from existing work due to the fact that it is a step towards (re-)scheduling and simulation
of individual hehaviour within the running execution of activities and trips. Only Girling e/ af.
{1998) and Aurora (Joh et of., 2003, 2004) have a similar focus.



131

The scheduling agent

b r—t
4 3 e
4 Ao by el shan I3 arcbomitaol el s <
s
» =-a R ]
T ¥ I — [ i
T g b B b3, sl ' (pe Zans
B — 8 [y P,
e r— B 3
5w el e s 13 6 [ R T
w0 et (o i ‘ _"
e o
R S —— Y H : o
e - a a L
§ @ wrens_srogram i ctad s, : Crs opel
e ———y & : & | =
a = ek
#eu o bashs L Sam [} C ™
= :
st L] s
Drawcs € g g ot fase
H B
e o
B
= - Sl
: LN e
u
s : R i
&z s H ™
& & P
i =Yg A :
a B g
% R
& -l B
8 2 & 3
2 N ] 7 _a,s
2 " vt Lo
4@ e chamce_dration e
Tt Beawrvs % &
= s
v T3 Srveamn Lawarts (SE—
i i 1 : 51 [frmsteen_araen o
t S Pevedituann] e e
| sk it Setmcn, [ i, Rafver | 4 Rufvseny
Al 'l i}
N
Figure 6.5

A Situation within a Simulation in SeSAm (Screenshot)

Generating a Situation. Before starting a simulation run, a situation has to be created. Generating a
situation means generating so many instances of the designed agent that the desired number of
individual agents exists. Also, the different facilities must be generated, meaning that there is a
simulation object for each facility with a position in the environment. The data concerning the
synthetic population is stored in two files: a household file with all the household-related
characteristics and a person file, including ~3 million persons with their attributes. Two other files
contain data related to the residences and the facilities. Pre-processing of these data is necessary to
convert the ASCII coded files into SeSAm readable data. A converter is used to produce one
SeSAm description file and another file with general preferences for the situation. In the latter, for
example a background map can be determined to be loaded into the situation. New advances in
SeSAm make it possible to load geo-referenced data directly. A plugin for SeSAm generates a
specific situation directly out of the read data via a parser and an interface. For the first test
simulation runs different numbers of agents, households and facilities were used, but until now not
more than 200 agents due to the processing speed. This is still a major problem simulating such
models with such numbers of calculations. The screenshot displayed in Figure 6.5 displays an
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example of a generated situation within a simulation and some of the SeSAm control windows. On
the left hand the structure of the model is displayed. For example the variables of an agent used in
the simulation are shown in the tree structure. The main simulation window shows the agents in the
world (at present a bitmap out of a GIS is used). On the right hand the current values of the chosen
agents attributes can be inspected. Some of the agents (facilities are agents too) are found outside
the map. This is because the map only shows the area of the city Dortmund, whereas the simulation
the more or less (transport) modelling relevant areas around the city are considered.

Simulation. Using SeSAm, it is possible to run and test simulations almost after every model
programming step (Figure 6.5). Therefore, the design of the agent and the environment was an
iterative process of implementing the rules and functions and testing variations (specifications) of
the agents® behaviour and the implementation into SeSAm. Agents have their individual current
program, fill the remaining time windows by adding new activities out of a list of possible activities
with a start time and duration, try to carry out the scheduled tasks considering the environment and
do some problem solving (overlapping of new scheduled tasks with existing tasks). This results in
generated activity sequences.

The Scheduling Agent

1 11
d:rnhhlr 90 minutes
PERSON tne mode:

Figure 6.6
Examples of Generated Activity Patterns (Screenshot from Browser)
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Figure 6.6 shows the result for a somewhat detailed activity categorization and a test for including
simple communications between he agents (o lest external triggers. Communications are actually
used only to generate triggers. [n Figures 6.6 activity/trip sequences of individuals {two for each for
two days) are displayed. Starting at the left side at midnight, time is displayed on the x-axis. The
first light grey bar indicates an activity at home, continued from previous day. Black bars indicate
trips. Variations of greyv {in original: colours} indicate different activities. To display the night sleep
(or other aclivitics lasling over midnight) as a complele activity, the time axis is longer than 24
hours. When moving the computer mouse over a segment, additional information is displayed (for
example type of activity, duration, mode). As can be seen, the simulation results are individual
sequences of activities and trips with day-to-day-variations. The result depends strongly on

variations in activity categories, input data, and behavioural rules.

CONCLUSIONS

A multi-agent simulation including the generation of individual activity programs, the simulation of
these programs under ongoing planning and modilication of future (asks based on the 1dea
simulating the scheduling processes was developed and tested. Such a simulation on a microscopic
level requires data about the scheduling processes and related behaviour in addition to the usual
data about infrastructure and the temporal organisation of the physical environment. It is necessary
to find the right balance between the possible level of modelling detail and the availability of or
demand for empirical data. The results suggest that with some rules based on expert knowledge and
empirical data - where possible - a satisfying result can be obtained.

The major benefits of the proposed work concern the researcher’s ability to enrich the agents’
behaviour iteratively, and in doing so learn and understand scheduling behaviour and derived
aclivity-travel patterns. The relatively rules used in the present illusiration can be replaced by more
sophisticated models. The presented approach aims at simulating the individual persons
(represented as an agent) decision during execution of his and all others “life™ in the simulation,
The agent cannot only react but act based on sensing the envircnment and for that incorporate much
more information for his decision. The need to derive behavioural rules and appropriate data is
unquestionable. With further research on analysing decisions in time and space, this approach can
be proemising in terms of improved behavioural underpinnings in integrated transportation
maodelling. Nevertheless, whether such improved behavioural realism will results in befter forecasts
and outweighs additional data acquisition remains a question of further research. Overall this
combination of a highly sophisticated simulation shell and a complex and behaviourally rich
modelling of individual scheduling hehaviour could improve bath our understanding of behavioural
mechanisms underlying maobility and the predictive ability of transport demand models.
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ACTIVITY-BASED ANALYSIS OF TRAVEL DEMAND
USING COGNITIVE AGENTS

Rosaldo J. 7. Rossetti, Universidade Atidntica, Barcarena, Portugal

Ronghui Lin, University of Leeds, Leeds, UK

INTRODUCTION

Transportation systems are subject of much coneern as they play an important role in contemporary
society and have long been atfracting great interest among technical and scientific communities.
Analysing and understanding traffic phenomena has historically been approached from two major
points of view (McNally, 2000a). [n a longer-term perspective, transportation analysis seeks to
improve network and service infrastructures either 1o accommodate a forecasied future demand or
to increase capacity as resources become obsolete. A shorter-term approach, on the other hand, is
rather oriented at (he evaluation of immediate application of management policies Lthat are somehow
expected to directly influence travel behaviour. Not surprisingly, the physical modification of
infrastructures and the improvement of control systems are some attempts to tackle the problem of
tralfic congestion with moderate success. When similar measures were used to try and deal with the
demand side, the results have been less positive. Nonetheless, recent advances in communication
and computer technologies have encouraged the advent of Intelligent Transportation Systems (1TS).
One prime goal of ITS-based solutions is to ensure productivity and efficiency of existing
transportation systems through the application of distributed solutions that handle users’ needs on
an individual basis (Chatterjee and McDonald, 1999). Ileterogeneity, uncertainty. and dynamics are
key clements in this scenario. So, how can onc assess the complex impact of these new technologics
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through modclling? At the very least, this implics the need lor more powerlul tools of analysis that
arc capable of coping with the representation of the complexity inherent in human behaviour and
interactions. Existing microscopic approaches suffer from various shortcomings and the need for
more expressive modelling approaches is frequently recognised (Watling, 1994; Ettema e af.,
2003). In this way, the activity-based approach emerges as an altempt at addressing the inability ol
more conventional trip-based models to reflect the underlying behaviour of travellers (MeNally,
2000b). According to Ben-Akiva er af. {1998) the fundamental problem facing demand modelling is
the trade-ofl between behavioural realism and complexity. Representing human behaviour has
received special attention frem technical and scientific communities. Much effort has been devoted
to adapt traditional models to meet [TS requirements and significantly contributed (o building up
the roadmap towards the development of new generation traffic network medels, which explicitly
incorporate behavioural realism of demand {Amott ef ¢f., 1991; Mahmassani and Jayakrishnan,
1991; Cantarclla and Cascella, 1995; Liu ef ol 1995; Bazzan et al., 2000}, Recently, agent-based
techniques have been increasingly applied in that way. Schleiffer (2000) claims that modelling
hcterogeneity at a microscopic level is a key slop towards the understanding of macroscopic
behaviour. The author suggests that the use of artificial agents to represent simple fundamental
individual mechanisms is the tool to better comprehend highly complex and dvnamic collective
behaviour of iraffic.

Tn this rescarch project, we seck to incorporate behavioural realism in travel demand forecasting by
means of featuring travellers with cognitive abilities. The use of predicate logics through a BDI
{beliefs, desires, and intentions) architecture allows for an expressive way to specify and implement
activity-based travel hehaviours, Some examples arc identified in the literature, which apply the
concept of autonomous agent and multi-agent system to address different issues in transport
analysis, Travel demand is presented from a multi-agent system point of view, where travellers are
agents that autonomously plan their journeys according to their activities’ needs and parameters.
Different behaviours for departure time selection are proposed accounting for activity arrival time
constraints, and a microscopic simulation framework is set up. Some cxperimental scenarios are
simulated in order to support the methodological approach presented in this chapter. Finally, some

canclusions are drawn and next steps lor further research on this topic are presented,

INTELLIGENT AGENTS AND THEIR APPLICATION IN TRANSPORT SYSTEMS

Multi-agent systems (MAS) are under the umbrella of the Distributed Artificial Intelligence (DAI

and have iriggered increasing interest among seientists [rom different knowledge (ields. The rapid

evolution in computational resources, both in hardware and in software, has contributed a great deal
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to its development. Basically, there are two major ways through which agent-based solutions have
been proposed and cffcctively applied. First, real agents are playing an important role in
contemporary society. Not only robotics has profited from such a technology but also the Internet
envirenment expericnees lhe presence of soflware agents that are frequently interacting with human
users. Second, agent-based models hecome a natural metaphor to represent domains where a
number ol intelligent and autonomous entitics interact with cach ether and with the environment.
These models are being ingreasingly based on claborate frameworks of analysis as an effeetive tool
to aid the understanding of complex and stochastic phenomena. Traffic and transportation systems
have profited from these approaches and have also stimulaied much research on and development of
agent-bhased technologies.

The main premise of multi-agent systems is to interpret the real world in terms of agents that exhibit
intelligence, autonomy, and some degree of interaction with other agents and with their
enviromment. Other characteristies of agents inelude, for example, reactivity, adaplability, pro-
activity, and the ability to communicate and to behave socially. The basic structure of an agent
[eaturcs scnsors through which it can gather infonmation from the environment, and cifcctors
through which it can act and behave according to its objectives {Russell and Norvig, 1993). This
structure can feature both reactive and cognitive abilities, and a mixture of both, to mimic human
behaviour in a wide range of applications. Steels (1990) suggests that cach single agent possibly
having a very simple structure can contribute to a more complex and efficient behaviour of the
system as a whole. I the behaviour of such a single agent can be backtracked, then this can be used
to aid the understanding of the more complex behaviours at the aggregate level, such as social

phenomena for instance.

To the best of owr knowledge. former attempts to apply agent-based techniques to address
transporlation issues date back (o the 90°s, For instance, Haugeneder and Steiner (1994) proposed 4
co-operative agent-based architecture as a means of improving traffic management and control,
where agents were implemented in the MAI'L language (Steiner ef @f., 1993). Not surprisingly, that
was when much research and controversies were going on to detine the actual scope of agents (e.g.,
Wooldridge and Jennings, 1995}, For instance, many people from diflerent (ields m Computer
Science (CS) and even in Artificial Intelligence (Al) were tryving to decide whether agents were
different from objects, as in the object-oriented perspective, or from autonomous processes,
considering operating systems and network points of views. Whereas in the beginning people from
Al community benetited from the complex and dynamic nature intrinsic in transportation systems to
devise and support agent theory, transportation ¢ngingcrs and practitioners have now started to
recognise the natural ability of the multi-agent metaphor to medel traffic phenomena. Owing to
their characteristics and concepts, multi-agent systems have a natural aptitude to cope with a wide
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range of issues in contemporary traffic and transportation scenarios (Schleifler, 2002). Not
amazingly, most publications report on the application of agent-based techniques to control systems
and traffic management to make those systems more autonomous and responsive to recurrent tratfic
demand (c.g., Hemandez ¢f af., 2002). The analysis of ITS systems through this approximation has
also been investigated (e.g., Rickert and Nagel, 1997; Wahle er al, 2002), and some other
publications report on applications to freight transport and the optimisation of resource usc (e.g.,
Adler and Blue, 2002). A research project has been recently presented, which provides a survey on
the application ol ageni-based approaches to transport logisties (Davidsson ef al.. 2004).
Nevertheless, the challenging issue of modelling the decision-making process underlying travellers’
behaviour in a more realistic way has encouraged (he increasing use of agents for such a purpose.
For example, drivers are endowed with cognitive abilities to plan a trip accounting for a mental
model of the world and an expectation of the utility their choices would bring about (e.g., Dia,
2002; Nagel and Marchal, 2002; Rossctti e «f., 2002a).

In this same direction, agent concepts have also proved to be very useful in fostering the
improvement of an activity-based analysis of travel demand. Albarrass {Aventze and Timmermans,
2000 is one of the most comprehensive and operational models in this respect and uses a decision
tree induction approach to derive choice heuristics. Rindt er o/, {2003} conceptualised a reactive
architecture on the basis of a scrics of interrelated sub-modules that implement different aspects of
agent behaviour, such as assessment, interpretation, decision processes, and learning abilities. With
such a structure the authors seek ta explore the dynamic nature of the activities’ interactions in the
formulation of demand. Rancy and Nagel (2004) used activitics parameters Lo generate a plan that
drives the decision-making of each agent of the population. Cach agent may have several plans,
which are associated with a score that keeps a record of performance evaluation that is used by the
agent when choosing a plan to follow. Marchal and Nagel (2004} devised a model that is rather
focused on addressing performance issues in the selection of secondary activities’ location in large
data sets with gains in computation workiload, Rindsfiser ¢f /. (2004) formulated a model in which
daily activitics schedules result from the combination of the interaction of ditferent behavioural

processes defined within an agent architecture implemented in SeSAm (Kligl, 2001).

In this rescarch project, we focus on the cognitive process that underlics the plamng of activity
journeys rather than building daily activity schedules. All activities characteristics are assumed to
be exogenous with regard to the planning process and are assimilated as beliefs through perception
from an outer level of interaction, as suggested in Rindt ef af. (2003). Therefore, beliefs on activity
paramcters wall trigger possible courses of actions that are expected to produce the best joumney
options that satisfy time constraints for an activity.
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THE AGENT-BASED DEMAND APPROACH

The Driver Agent

The transportation domain is approached from a multi-agent system point of view, according to the
framework presented in Rossetti er @f. (2000), and Rossetti and Liu (2004). If the natural
phenomenon of traflic in urban arcas is already complex enough in its own right, the dilferent levels
of interactions implied by contemporary intelligent transportation solutions bring about additional
modelling challenges. Thus, in order Lo casc the task ol identilying which componcents of the system
we might model as agents, we use a simple rule: entities make decisions it an autonomous fashion
are considered to be autonomous decision entities (ADLE) and therefore are potential agents.

To avoid going too much into detailed specifications, the task of identifying agents within a system
is basically reduced to the identification of ADEs. We have devised an agent shell to structure the
way agents can be implemented and inserted into the environment. Such a structure is very flexible
in the sense that it is only defined at the meta-level, comprising sensors through which the agent can
perceive the world and effectors through which it can effectively act on the environment. It is also
lcatured with a reasoning kernel that drives the decision-making processes. It is impaortant to notice
that this meta-level agent shell only specifies the basic structure for the ADEs, allowing the
definition of different kinds of agents with different reasoning capabilitics, skills, and goals.
Communication among agents is simply considered to be acting/sensing behaviour. Then, all
messages are issued as actions, trough effectors, and received as perceptions, through sensors as
[urther explained in Rosselti ef @f. {2002a), The environmenl is basically lormed by a network
topology and parameterises all the information shared by the inhabitant agents. Tratfic signs and

basic rules are considered part ol the environment structure and dynamics.

With this conceptualisation, it is possible to virtually represent all aspects involved in contemporary
traffic scenarios: drivers are agents in the sense they make their decisions en-route and at the time
of departure; travellers are agents as they have to choose among transport modes and activities;
each level of decision in an advanced traffic management system could be an agent that interacts
direetly or indireetly with the others in order to optimise overall traffic performance; in the same
way, traveller information systems could be agents interacting with drivers or travellers so as to
optimise individual performance levels; and so torth. Albeit all these ADEs are encapsulated into
agent shells, they may be interally different, implementing distinet reasoning approaches and
having different knowledge representations. Basically, the shell defines the common interface
shared by all these agents within the transportation system.
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Figure 7.1
A Two-Layered Architecture for the Driver Agent

To demonstrate our approach, we have started by modelling the driver agent whose structure is
depicted in Figure 7.1. This is a simplification adopted in the first stage of our research in activity-
based travel analysis, as we believe the traveller is a more adequate trip-maker unit to be considered
at this level. We have designed a two-layered reasoning kernel to base the driver model so that it is
able o exhibit both reactive and cognitive behaviours to some extent. The reactive layer relies on a
simple set of rules that map perceptions to actions and is basically used to implement rather
instinctive behaviours. Individual’s driving abilities, in terms of car-following and lane-changing
behaviours, are performed in this layer. The more complex decisions, such as selecting the next
activity and which itinerary to follow, are addressed in the cognitive layer.

The Cognitive Layer

The cognitive approach for the BDI architecture, devised by Rao and Georgeff (1991), basically
relies on the mental states of beliefs, desires, and intentions, and on their relationship. This
approach was inspired by Bratman’s (1987) philosophical work, which deals with intentions as an
important element for rational reasoning. The BDI architecture makes a clear distinction between
the choices an agent has over the actions it can perform and the different outcomes an action can
possibly bring about. Thus, an agent might consider that a certain action would produce an expected
effect, however environmental conditions actually dictate the results of executing that action. This
allows for the overall system dynamics and non-determinism, which are important characteristics to
feature models of complex domains such as transport systems.
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The conceptual architecture of a BDI agent is depicted in Figure 7.2, and is briefly explained in
(Wooldridge, 1999) as follows, Wilh every pereeption from the environment, the agent’s sct of base
beliefs is updated. The new configuration of beliefs is established by a belief revision function
(BRF}, which 1s responsible for preserving the consistence of the agent’s beliefs. An opfinas
function determines the options available to the agent, which are its desires. This function receives
as inputs the current configuration of the beliels st (B), as well as the agent’s current intentions (1)
As further discussed in Georgeft and Lansky (1987), and Georgeft and Rao (1996), an agent is
cquipped with a library of plans that are used (o perform means-ends reasoning. Deliberation is
achieved on the basis of instantiating the meta-descriptions of plans, which generates the agent’s
options and are able to modify its intention structure dynamically during run time. The desires
represent possible course of actions available to the agent, and a simplification is generally made in
the sense that conflicting desires are discarded and only non-conflicting ones (the goals) are
considered. A filter Tunction representing the deliberation process determines new intentions on the
basis of the agent’s current beliefs, non-conflicting desires (goals), and the intentions currently
being performed. The intentions represent those states of affairs that an agent has committed trying
1o bring aboul. An action sclection [unction then execules the next action the agent must perform on
the basis of its current intention.

The cognitive layer of our ageni is represented by the tuple {E, B, P, I, A, Sg, Sa, S}, as initially
proposed in Rossetti of al. (2002a), according to the AgentSpeak(L) language specification (Rao,
1996), where E is the sct of events, P is the set of non-instantiated plans, and A is the set ol basie
actions, Sg, Sp, and 8§ denote the selection functions for events, options, and intentions,
respectively. As intentions are generated dynamically during the lifecycle of an agent in the system,
and cvenls resull cither (rom pereeption or during the iteration of current intentions, the modelling
fask is reduced to identifying base beliefs, non-instantiated plans, and the actions an agent can
perform, as mentioned before. Rather than using the basic approach of aggregating all the lactors
that can in any way influence drivers decisions on travel solely within the concept of trip, we have
opted to use the activity metaphor intrinsic in human behaviour. Driver agents make their decisions
on aclivilics, rather than on actions or individual paramcters of trips. Thus, the basic structure of a
trip is defined as the wple {i. /, R, ). where i is the origin,  is the destination, R is the set of links
from / to j giving the itinerary chosen for the trip, and o is the departure time at which the journey is
to be started. An activity is given by tuple {», s, £, where p is the activity purpose, s 15 the site
where thc activity 15 to be performed, and ¢ 18 the time (he activity 1s expected Lo starl. In order 1o
evaluate the next journey on a certain day, the agent needs to seek among every activity belief in its
base beliefs set for the next activity on the base of the starting time term, ¢, of the activity belief
cniry. Onee another activity is sclected for exceution the agent proceeds with the journey planning,

which encompasses departure time and route selection.
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Figure 7.2
The Basic BDI Architecture (Wooldridge, 1999)

ANALYSING SCHEDULED ARRIVAL OF ACTIVITIES: A FIRST EXERCISE

The driver plans each trip on a next-activity basis. Recalling that an activity has been basically
characterised by its purpose, site at which it is performed, and time at which it is expected to begin,
the driver then proceeds with the selection of the time to start the journey and its itinerary based on
the desired arrival at the activity site. The departure time and route selection behaviours are
proposed on the basis of the habitual choices as initially implemented in Liu ef al. (1995).

Habitual Behaviour

For the original habitual behaviour, departure time is chosen in response to the traveller’s previous
experiences and preferred arrival time, so that the activity can be started as expected. The absolute

delay for a driver m travelling from certain origin i to a destination j on day 4 is given in Equation 1,
()

ifm

is the departure time, r*) is the travel time, and %! is the desired arrival time. Drivers

fim ijin

where d

(£)

o (relative to the travel time experienced).

are also assumed to be indifferent to a delay of g, xt

Equation 2 represents the lateness actually perceived by individuals.
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As suggested in Mahmassani ef al. (1997), drivers are likely to be indifferent to early arrivals.

Accounting for that fact, we consider that users only adjust their departure time for a future journey

in the case of A

iim

> 0, otherwise they will keep the same departure time. That is:

113 ; (£}
d:fHI] — diwr + '{}{ A;‘,-'m = 0 3
[ A AR i AS 3
i 7 { im

The route choice model is based on bounded rational behaviour, as suggested in Mahmassani and
Jayakrishnan (1921). Drivers are assumed to usc their habit routes, unless the cost expeeted for the
minimum cost route is significantly better. Thus, a driver will use the same route unless
C, —C, »max(nxC, 7)1, where C, and €, are the costs along the habit and the minimum cost

~r
routes, respectively. The parameters 1 and 7, representing the relative and the absolute cost
improvement required [or a route switch, are associaled with the activity belicl

This model seems 1o be quite flexible as lateness tolerance is evaluated with respeet to the travel
time experienced {as will be seen later in the simulation results). This means that the longer the trip
lasts, the more tolerant the driver will be with regard to being late. Moreover, the model completely
disregards carly arrivals. This may constiiule a problem when the activity 1s being performed within
a one-day activity chain. In this case, previous activities, work for instance, cannot just be
interrupted lor the traveller 1o adjust the departure time much earlier for the next activity, shopping
for example. Therefore, two extensions to the initial structure of the habitual behaviour are
suggested in order fo support the definition of earliness-lateness tolerance windows that will depend
on the nature of the activity. They beth differ from one another basically in terms of how lateness
and earliness thresholds are identified. In the first extension, limits are drawn from the total travel

time experienced, whereas in the second one boundaries are given in absolute terms.

The Relative Tolerance Window

The first extension considers an earliness threshold in addition to the lateness constraint, both

relative (0 travel time. Leisure and shopping activitics, (or instance, might have associated such
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thresholds. Indeed, a family travelling to the beach on a summer holiday may have an expected
arrival time but may also be very keen to tolerate early or late arrivals depending on the access

be the earliness tolerance factor as £, still

i

conditions to the place they are going to. So. let A

W

represents the lateness tolerance factor, both related to a driver m. As in the original habitual

thy

e}
iim i

ife *

behaviour, perceived lateness and earliness will be drawn from trip cost as £, xr;" and A xr
L]
i

respectively. The term ¢’ reters to the total travel time from 7 to j on day & The sign of the

absolute delay 5;.,’,‘,’ {as defined in Equation 1) is alse important as it allows one to identify whether

the driver has arrived earlier or later. Bearing in mind the definition for perceived lateness A}

]

{see

Equation 2}, let ©F" be the perecived carliness, as given in Cxpression 4.

e

Ol =[5t — 4, xii )

T 17713 i ime

Onc should notice that the absolute value of &' is used instcad as its sign is negative meaning the

i
agent was earlier. Thus, the departure time on the next day & +1 is adjusted according to the

following criterion.

] (LRI EY] 1)
drjm - Ar',l‘m ’ it 6#»1 > 0 a"d A.{‘.uu = 0
ey _ ) gtk gtk e gtk . cyih]
Ay = e +00 T8 <0and ), >0 3
it ,otherwise
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The Absolute Tolerance Window

A similar approach is used for the absolute lateness-carliness window. For ather activities, such as
work, travellers are unlikely to exhibit such a flexible behaviour with respect to either early or late
arrival. In this case we consider an absolute top lateness and an absolute bottom earliness
thresholds, within which no adjustment to departure is required. In turn, any arrival expericnee

perceived outside these bounds should be considered in future journgys, So, let ¢ be the absolure

i

represents the absolute earliness tolerances. Then. the perceived lateness A"

L

lateness whereas v,

e

and the perceived carliness ©%Y should be redefined as ollows.

i
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The adjustment for departure time on day & +1 happens on the same conditions as in the case of the
relative lateness-earliness tolerance window, in Equation 5. It is important to notice that both

relative and absolute lateness and earliness factors are very likely to depend on the trip purpose
rather than being global parameters. In this sense, all these factors are associated with the activity
belief in the agent’s base beliefs set. Other types of behaviour were also suggested and specified in

AgentSpeak(L), where all the plans and base beliefs were presented (Rossetti ef al., 2002a).

initialisation

Trip Generation
generates demand for travel {i=i+1)

learning
costs perceived
on day i

.

Trip Distribution
sets origin and destination pairs and
departure times on day '

.

Mode Choice
sets relative proportions of trips by
altemative modes on day '

Supply Varlability

conditions on day '’

sets environment ——

Route Cholce (assignment)
performs microscopic simulation
of movement on day I

terminate
simulation?

yes

end of simulation

Figure 7.3

A Basic Transport Analysis Framework
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THE SIMULATION FRAMEWORK AND SOME EXPERIMENT RESULTS

Madam+Dracula

Some transpott analysis frameworks (e.g., Chatterjee and McDonald, 1999) implement a structure
that resembles the original four-step model, as depicted in Figure 7.3, In a trip gereration module,
mcasures of trip lrequency are developed, which provide the propensity of a certain tnip unily to
make a trip. Then, origins and destinations are associated in the irip disteibution module. These
tables are generally related to a certain period of the day. Trips are distributed among transport
modes (mode choice). whereas routes are assigned to mode-specific networks (route choice).
Generally, the assignment parl is connected 10 a supply variability module capable ol emulating the
supply dynamic nature (giving link capacity as a function of weather, for instance),

Tn this rescarch project, we extend the demand formulation of the DRACULA original structure in
order to allow for autonomous and cognitive behaviour of trip makers, as suggested in Rossetti ¢f
af. {2000). DRACULA s a microscopic network simulator thal has been developed in the Institute
for Transport Studies, at the University of Leeds (Liu &f /., 1993). It comprises basically a demand
and a supply model whose integration gives rise to the main premises in DRACULA, namely the
within-day decision-making process and the day-to-day dynamics, as depicted in Figure 7.4. These
are two ithpottant concepts that deserve special attention in modelling tratfic systems with regard to
users’ behaviour. The within-day formulation focuses on the travel choices made by individuals.
These choices are made with regard to each specific journey to take place at a given time on a given
day. All trip preferences, such as travel goals and purpose, iravel needs and mode, and other
traveller parameters, such as perceptions, behavioural tendencies, and cognitive abilities that
influence the decision-making process are retlective of the traveller’s mental state at the instant the
choice is being undertaken. The dynamic formulation, on the olher hand, s coneerned with

modelling how the state of the network changes from one day to the other and evolves aver time.

[n addition, the spatial knowledge of travellers is constantly evolving in response to trips made
throughout the network, in terms of the travel cost experienced for cach joumney (which may be
associated to travel time, [or instance, or any other performance measure). Such a structure has been
used as an attempt at improving the representation and simulation of the complexity and the
unccrtainty inherent in the ransportation domain. Rather than cxceuling separate modules 1o set
variable states from a probability distribution, demand emerges from the aggregate combination of
individual choices carried out by autonomous decision entities. In such a demand model, coined
MADAM. the cognitive kernel of each agent is implemented in JAM (Huber, 1999) and
encapsulated into a Java-based ADE (Rossetti ef a/.. 2002b; Rossetti and Liu, 2004).
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Figure 7.4
MADAM+DRACULA Simulation Framework

Thus, contrary to the approaches based on fixed matrix structures, the demand stage predicts the
level of individual demand on a certain day from a full population of potential traveller agents. In
the supply side, trips are individually simulated from their origins throughout the network to their
destinations, and travellers are able to gather information about trip conditions to improve future
choices as their base beliefs sets are constantly being updated as new perceptions are gathered. Such
a structure will very likely reflect back in the demand side as travellers may present different
abilities of learning with their previous experiences, thus influencing their decision-making process
in future journeys.

Simulation Scenario Set-Up

Some experiments were carried out in order to demonstrate the methodological approach presented
in this chapter. A small network with 54 links (uni-directional road segments) connected through 14
junctions was selected for this purpose. Most road junctions follow a priority regime, whereas two
of which are governed by ftraffic signals. In this simple example, demand is generated from a
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population of 2,323 driver agents who wish to travel in a one-hour morning peak period, and their
day-to-day choices on next-activity basis are simulated. The agents can perform their trips to/from
11 zoncs, i.e there are 11 zoncs generating traffic onto and 11 zones draining traffic from the
network. A hypothetical morning peak period starting at hour 8 is considered and the simulation is
carried out from day 0 o day 100,

In order to test the ability of our approach to cope with the activity-based analysis of travel demand,
we started by considering the constraints of arrival time in choosing departure time of activities. As
discussed above, the habitual driver as originally implemented (Liu er a/., 1995) seems to be quite
flexible with regard to earliness, which may not be realistic for every kind of activity. Thus, two
exlensions to the habitual behaviour were proposed i order to allow for both relative and absolute
earliness-lateness tolerance at arrival. For studying the different behaviours presented in this work,
different values were considered lor the tolerance Tactors, as presented in Table 7.1. As discussed
earlier, these values are considered to depend on the nature of the activity to be performed by the
traveller. Some belief entries in a typical traveller’s base beliefs set are illustrated in Table 7.2
alongside their terms and an instance cxample.

The predicate today denotes the current day on which the agent should make activizy seleclions Lo
carry out, We are currently considering a week horizon for the agent memaory so that day can be any
value in {sun, mon, tue, wed, thu, fri, sat}. Daily activities, such as work are inserted in the base
beliefs set at the beginning of each day, whereas other activities are assigned to the agent as the
result of activily interactions, at the houschold Tevel, as mentioned before. Thus, whenever the day
lerm in the fodar predicate binds with the day predicate in the getivity predicate, il is possible for
the agent to identify what activities are 1o be performed. The belief dimeNow{time) is updated
periodically, for instance every minute, according to the environment clock.

Table 7.1

Taolerances at Arrival Time

Original Behaviour Relative Toleranee Windows Absuvlute Tolerance Windows
(Relative (o Travel Time) (Relative to Travel Time) {(in Minulys)
£ E A 8 v
020 0.20 3 5
(.20 0.30 5 10
0.20
0.20 0.50 5 20
0,20 1.00 5 30
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Tahle 7.2

Base Belief Entrics

Beliel Predicate Terms Example
todar current day today(wed)
timeXNow current time timeMNow(0813)
activity day, purposc, time, location activity{wed, work, 0900, 109)
tripRoute origin, destination, link list tripRoute( 109, 105, [1 5 ...35])
tripPepartwe origin, destination, time TripDepartucef 109, 105, 0837)
location current lecation location( [05)
rofe otigin, destination, mode, duration, link list routet 101, 106, car, 32, [14 13..3])
roufeSwitel origin, destination, n, T RouteSwitch( 133, 109, (1.20, 53
iwScheduledDelay  purpose, &, A rwScheduledDelay{shop, (.10, 0.2
awSchedufedDelay  purpose, 1, v awScheduledDelayiwork, 5. 10)

The predicates fripRoute(origin, destination, linksy and tripDeparture(origing destination, line)
result from the planning of an activity journey through the /inks within the itinerary to be followed.
When the current time in /imeNow({inre) is tound to be the departure time for the next activity in
tripDepartureloriging destination, time), then the agent starts the journey. A number of beliefs
rowrelorigin, destination, mode, duration, links) gives the alternatives for an agent to move from its
current focation(azent location), resulting from the binding between the termns agent focation and
origin, to the selected activity location, as the term activity location in activiniday, purpose, time,
activity_location) binds wilh destination. As many route allernatives may be applicable, the term
duration in the belief predicate route is used to denote an expected travel time, which is updated
whenever the option 1s selected. The route selection will consequently be constrained by the values
ol the terms 7 and 7 in the belicl predicales routeSwitch(origin, destination, N, T}, which arc related
to trips made from a certain erigin to a certain destinadion. The activity journcy departure {ime in
tripDeparture, on the other hand, is constrained by the purpose of the activity and respective values
for the terms £ and A, in rwScheduledDelay, and the values of ¢ and v, in awScheduledDelay.
Contrary to considering global values for these parameters as originally assumed in Liu et al.

(1993). we now associate these values to different kinds of activities.

Results and Comments

As expected for the original habitual behaviour, drivers can experience a stnoother arrival time after

few days from the start of the simulation as observed in graph of Figure 7.5. The departure choice
remains the same unless new delay beyond what is tolerable by the driver is perecived.
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Activity Journeys with Lateness Thresholds

This means that stabilising arrival much earlier than deadline results in keeping the same departure
choice. Although this behaviour can be representative of some kind of activities, such as for leisure,
featuring agents with such an unlimited earliness tolerance may not be exactly the case for all
activities. Indeed, real commuters may not be so tolerant to early arrivals at work, for instance,
especially during morning journeys. Some kind of activities may also pose some sort of penalty for
early arrival.

Then a first extension to the habitual behaviour is suggested, which considers an earliness threshold
with respect to the travel time in addition to the lateness tolerance. The behaviour of single
instances of travellers presenting a relative lateness-earliness tolerance to desired arrival time is
depicted in Figure 7.6. It is interesting to note that the fluctuation of the agent’s arrival time can be
considerably high, and this has also been observed even for some agents in the population when
testing activities with the [20%, 100%] relative window.
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Activity Journeys with both Relative Earliness and Lateness Thresholds

This specific behaviour may result in a considerably shorter journey yielding a very restrictive
tolerance. As thresholds may vary on a daily basis, even if the driver sometimes experiences longer
journeys, it seems to be very difficult to reach a steady state and wide fluctuations have been
observed in all window sizes simulated. A similar experiment was carried out for the suggested
extension, taking into consideration that certain activities pose an absolute lateness-earliness
tolerance window. In this case, earliness and lateness thresholds of arrival time window are kept
constant, according to the tolerance parameters 1 and v as listed in Table 7.1. Simulation results, as
exemplified in graph of Figure 7.7, have shown that it is easier for the traveller to meet its lateness-
carliness thresholds after a number of iterations and to keep this state for a longer period of time.
The wider the distance between the upper and lower boundaries, the more tolerable the agent will
be in absolute terms. What remains to be analysed is the departure time behaviour of travellers
when activities present mixed thresholds, that means either relative earliness and absolute lateness
or absolute earliness and relative lateness tolerances.
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Activity Journeys with both Absolute Earliness and Lateness Thresholds

CONCLUSIONS

In this research project, we used a cognitive approach to achieve behavioural realism. The
expressiveness provided by the BDI approach adopted allows for a straight match between
modelling language constructors and the mental attitudes that play a role in deliberation processes
of travellers. This fosters the activity-based analysis of travel demand as activity parameters can be
accounted for on an individual and scalable basis. For example, the first experiments focused on the
effect of activity arrival time constraints on departure time selection where all tolerance factors
were associated with the kind of activity rather than being treated as global parameters. After
extending the original habitual behaviour to consider both earliness and lateness tolerance at arrival
time, it was observed that drivers are very likely to meet deadline window for activities with
absolute thresholds, even for the lowest values of 1 and v. For those activities with thresholds
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depending on travel time, drivers experienced high fluctuation in arrival time, meeting thresholds
ocecasionally, even for the highest values for £ and A, as unpredictability of travel time dictates the
tolerance to be considered.

Next steps include the development of 2 methodological approach for validation and calibration of
activity-based demand models based on cognitive agents. Dia and Purchase (1999) and Dia (2002)
have proposed a survey of driver behaviowrs to provide useful insight into the characteristics of
commuters, their preferences and thresholds. Results from such a survey could he easily specified in
lerms of AgentSpeak(L) construclors to enrich agents® base beliefs and plan options. The use of
virtual envitonments, such as the one implemented in Vladimir (Bonsall e/ «if., 1997), and the use of

stated preference experiments (MeNally, 2000a) could also serve this purposc.

Unfortunately, a high computation has been observed while simulating the simple scenarios herein
presented, and this is an important issue t¢ overcome for larger populations. In our simulation set-
up, a population of 2,323 BDI agents look approximaltely 10 to 12 hours’ CPU time, running
sequentially in a PC featured with an AMD Athlon™ {a trademark of Advanced Micro Devices,
Ine} processor at 1.1 GHe. In fact, cognitive approaches, such as the one adopled in this work, have
been found to be very suitable from a psychological point of view, as all mental attitudes are
accounted for when modelling the complex nature of human reasoning. However, only systems
with a reduced number of deeision-making enlitics have been represented in (erms of cognilive
models. On the other hand, reactive solutions relying on the overall behaviour emerging from the
interaction of simpler agent structures have proven to be very effective when applied to larger data
sets (Balmer ¢f al., 2003; Gloor et @f., 2004). Thus, a coupling ol both behaviours within the layered
architecture we have used could be the basis for profiting from the qualities of the reactive and the
cognitive approaches, Indeed, the frequent exercise of heavy deliberation performed for some
decision-makings is very likely to be transformed into a natural aptitude in a longer-term, allowing
the individual to behave more instinctively as the result of a leaming process, through which new
rules might be assimilated. This being zo, complex driver behaviours could be modelled and
analysed on a individual basis in a cognitive level, while the simpler reactive behaviour could be
used to assess the overall system performance in complex and highly dynamic scenarios on
aggrepate basis.
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ADAPTATION OF TIME USE PATTERNS
TO SIMULATED TRAVEL TIMES
IN A TRAVEL DEMAND MODEL

Georg Hertkorn, German Aevospace Centre, Berlin, Germany

Peter Wagner, German Aerospace Centre, Berlin, Germany

INTRODUCTION

The theoretical number of possible alternative activity patterns for a day is huge. A varying number
ol various activilies can be sequenced in dilferent order. The activity pattems then can be combined
with a great number of locations for activity participation. Another dimension is the transport mode,
which is used to get to these lecations, The imitation of the processes that leads to the activity travel
paticrns observed in reality is stll challenging in terms of theoretical (rameworks and computing
time {Arentze and Timmermans, 2000, Bowman and Ben-Akiva, 2001). The model discussed in
this paper employs observed time use diaries to delermine activity patterns for travel demand
estimation. Thus, an efficient microscopic model can be implemented that takes spatio-temporal and
logical constraints into account. Travel demand models are often used to evaluate the consequences
of changes in the transportation syslem. Such changes in the transportation system usually cause
changes in travel times and accessibility perceived by the travellers. Travel demand modelling has
to provide insights into the likely efTects of such changes for activity-travel patterns, destination
choice and meode choice. Therefore, the model presented in this paper has been applied in
combination with a traffic flow simulation model in order to generate a travel demand that is
consistent with travel times e the network. The effect of the lecdback belween travel demand and

traffic network performance is studied using data from the City of Cologne, (Germany. A scenario in

Progress in Activity-Based Analysis edited by H. Timmermans
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which an important link in the traffic network is interrupted is studied. The discussion of the
scenario simulation is preceded by a description of the model structure and by a section about the
pre-processing of input data.

STRUCTURE OF THE MODEL

The model uses four different types of input data: a synthetic population, a synthetic town, time use
data, and mode choice probabilities. The synthetic population consists of individuals with home
locations and socio-demographic characteristics, and il is oblained from marginal distributions
using iterative proportional fitting {Beckman er af.. 1996). For the test case of this paper, the
process is described in detail in Hertkorti (2002). Te explain the algorithms of the model, we call a
member of the synthetic population represeniing an individwval in reality an agent. The synthetic
town is made up of the locations for activities, e.g. working places, shops, gyms. For activities like
shopping with 4 greatl number of possible locations, the data are based on zones. For other activities,
the coordinates of every single possible location are known, e.g. for theatres and cinemas
{Rindsfiiser ef af., 2002).

Time use patterns are the third type of input. They are the result of a two-step classification process
of diary data. In the first step diaries are compared and 24 classes are formed. Within these classes
the variation ol starling times of similar episedes is determined. The data were colleeted by the
Federal Statistical Office in Germany. The analysis of the tinte use data is described in the next
section. The travel demand model deals with one agent at a time, The first step is to select 4 time
usc patlern on the basis of the socio-demographic characteristics of the agent and the associated
household {see Figure 8.1). The trips in the pattern need to be completed with information about
destination, transport mode and departure time. The choiee of destination and (ransport mode are
interrelated because it is assumed that destination choice is sensitive to the travel times, which in

turn depend strongly on the means of transport.

We call the activity-travel pattern, complemented with destinations and modes, a schedule. For
every schedule it has to be decided whether it can be realised in the environment in which the agent
lives. Usually the travel times that the agent experiences in the model will differ from the travel
times in the activity pattern. This induces a time stress in the schedule, depending on the magnitude
of the differences in travel times and on the rigidity of the ¢pisodes in the pattern, The next step
aims at minimizing the time stress. This is achieved by shifting the starting time of the episodes.
The magnitude of the shifis depends on the flexibility parameters of each episode. If after this
equilibration the value of wotal time stress still exceeds a threshold value, it s assumed that the
pattern is not likely to occur in this form and new locations and modes are selected.
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Figure 8.1
Structure of the Model

Finally, origin, destination and starling time of the car Wwips are wrillen o a trip table that can be
used as mput for a traffic flow simulation. The traffic flow simulation results in travel times on the
network. In an iterative process they are used for the next run of the travel demand model. This
cvele s repeated until & sell~consistent situation is obtained. This is the case when the actual travel
times that the agents encounter during their trips are very similar to those that they expected when

they planned (heir trips.

Mode Choice

Mode choice depends on many other aspects of the trip and the attributes of the traveller.
Influcneing vanables to be considered are trip purpose, number of cars in the houschold, gender and
age of the person, and trip distance. The full combination of all of these variables would lead to a
huge number of cases to be differentiated. It would be expensive to provide an empirical data set
big cnough to cstimate cach case in a reliable way., The CHAID-Algorithm (Chi-square automatic
interaction detection) (Kass, 1980) allows one to reduce the numhber of combinations to those that

are significantly different with respect to the dependent variable.
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Time-use patterns and simulated travel tinies 165

It builds up a tree structure: in each step the variable leading to the most significant subdivision of
the data set, based on the y-slatistic, is determined, Ofien two or more variables provide a
significant distinction at an arbitrarilv small level of significance with respect 10 the y-test, In these
cases, the value of the Goodman-Kruskal-Tau {(Ludwig-Mayerholer, 1999) is used in this model o
select the variable for a split. The data set for the estimation of the CHAID tree stems from a
nationwide survey in Gertmany: Mobilitdt in Deutschland, M1 (Bundesministetium fir Verkehr,
Bau-und Wohnungswesen, 2003; Clearingstelle fir Verkehrsdaten und -modelle, 2003). 100 000
respondents were asked to report all their trips on a given day. The CHAID-tree is built ot1 the basis
ol 44 000 (rips. Only trips of those respondents, who live in a region of similar density compared to

the area under investigation here, are taken into account.

Figure 8.2 lisis the rool node and the nodes at the first (wo levels of the CHAID-deeision tree.
Missing 1Ds belong to nodes of higher levels omitted in this table. Car trips include trips as car
passcnger. Cars is the number of cars in the houschold, ¢ is distance in meters. On the first level,
the set of trips is divided based on the variable “number of cars in the household™. The value of this
variable for nodes 1 to § can be found in the second column of the table included in Figure 8.2.
Then, for example, the subset of trips for node number | is further split, based on variable
“distanec”, Somge of the nodes are further differentiated, ¢.g. node 14, However, duc to the restricted
space, nodes at higher levels are omitted in the table. In addition to the variables “number of cars in
the household”, “distance”, and “age” the variables “purpose of the trip”, and “gender™ were found
significant by the splitling procedure.

The CHAID-tree reveals that trip distance strongly influences transport mode choice. On the other
hand, destination cheice is based on travel time, which in turn depends on the transport mode. The
next section explains how mode choice is integrated in the destination choice procedurs.

Destination Choice

The basic idea of the destination choice algorithm in this model is the concept of intervening
opportunitics (Ortuzar and Willumsen, 1999). People use the closest destination for a given purpose
unless there are reasons not to do so, such as for example the fact that a location is unknown to the
traveller, Consequently, there s some probability ¢ that the closest location will not be taken into
account by the traveller or that it does not meer particular needs. The same holds for the second
closest destination and all the others. The probability that location number i is chosen in a list of
locations sorted by (ravel times 1s then equal 0

Fth=pg" ", p=l-g.
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Two tasks have to be accomplished to apply this procedure. First, the possible destinations have (o
be sorted by travel times, and sccond, the appropriate value for ¢ has to be determined. For the first
task, the value of the travel time is computed as the weighted mean value for the modes that may be
uscd by the traveller. The sceond task requires a survey where the home location and the job
location of the respondent and the location of all other possible destinations for each trip are known.
Usually such a data set is not available, As an alternative, the value of ¢ for different groups ol

travellers can be calibrated indireetly using distance or travel time from usual travel surveys.,

Temporal Adaptation of the Schedule

At this stage the schedule is complete. It is a sequence of either activity episodes or trips. For the
trips, departure time, destination and mode are known. However, the process starts with a pattern in
which lor cach ¢pisode and cach trip 4 certain time span is reserved. The result of the location and
mode choice usually vields travel times ditferent from those in the genuine pattern. The deviations

arc used to caleulate for episode { a local stress value
5, =0, (ALY + B(AG)Y,

where,
{, : deviation of starting time,
d, @ deviation of duration,

@, B, : parameters.

The starting time of the episodes are shifted such as o minimize the total stress § = 2{3;. As

illustrated in Figure 8.3 shifts in starting times can be both positive and negative. This means that
the shifts are not regarded as spontancous reactions of the travellers to disturbances in traffie Nows.
The shifts reflect the fact that travellers usually are aware of typical travel times. Therefore, they
adapt their schedules to the situation they are used to live with, The second and the third trip require
longer travel times than those in the original pattern. The rightmost column displays the new
starting times, for example the work episode starts and ends earlier. The sleep episode in the
cvening is shortened.

The value of § is used to decide whether the schedule is still likely to oceur, In the example shown
in Figure 8.3, the shift of the working time may be acceptable only for people with tlexible working
hours, Thus, a threshold value is introduced. I the (otal stress is above this value, alternative
lacations and modes are considered.
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Adaptation of Starting Times and Durations to Actual Travel Times

Traffic Flow Simulation

The traffic flow simulation is based on a queuing algorithm described in Gawron (1998). It
performs a stochastic dynamic traffic assignment to find a route for each driver that leads to a user
equilibrium, The travel times computed with the traffic flow simulation are used to establish a
feedback loop with the travel demand simulation. As described above, travel times are essential for
the location choice algorithm. But they also have an impact on mode choice. If it is assumed that
many locations can be reached within a short time by car, these locations get a higher ranking on
the location selection list and it is likely that the car is used for the corresponding trip. Finally,
travel times are the source for deviations of starting times in the schedules compared to the original
activity pattern.

INPUT DATA

There are four groups of input data: synthetic population, activity patterns, locations and mode
choice parameters. The population of the area under investigation is represented in the model as a
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synthetic population. The challenge is to assign all relevant attributes such as age, gender, principal
oceupation, and number of cars in the houschold o cach agent, knowing only the marginal
distributions of these variables for the set of zones. To this end, iterative proportional fitting was
used. It starts with a sub-sample, in which the values of the variables are known simultanecusly.
Then, the share of cach ‘person type’ 15 incrcased until the sums are consistent with the marginal
distributions for the zones.

The activity patterns are derived from the diary data, using a nationwide time use survey in
Germany. In this survey, respondents were asked to complete a diary for two consecutive days. The
second part of the survey provides information about socio-demographics of the respondents and
their households (Blanke ez af.,, 1996). The data set consists of 32 000 diaries from 7 200
households. Fach diary is a sequence of 283 activity codes (one for a five minute interval).
Sequence aligniment was applied to determine the similarity of each pair of diaries (Sankoft and
Kruskal, 1983; Wilson, 1998; Hertkorn et af, 2001). The temporal dimenston is included here,
because not only the type of activity is known but also the duration of the episode by the number of
intervals 1t occupics. The resulting distanee table is used in agglomerative clustering leading to 24
time-use classes. These classes are essential for the next steps in the modelling process. First, they
are used to discern different socio-demographic groups. according to the frequency of the time-use
classes within these groups (Ilertkorn and Kracht, 2002). The link between specific distcibutions of
time-use classes within the socio-demographic groups is used to select an activity pattern in the first
slep of the travel demand simulation process. Second, within the time-use classes the cpisodes of
the diaries are compared to estimate the shitt parameters a and /4, necessary for the adaptation of a
schedule to the travel times experienced by the traveller in his/her enviromment. The comparison is

restricted to the scope of the ¢lasses, because they represent the temporal context of their episodes.

The environment is given as the positions of possible locations where out-of-home activitics can
take place. For some activities, the density of locations was estimated on a zonal basis, e.g. for
bakeries and lood stores. For other locations, such as schools, universities, and theatres, the true
position is given for every single location. For activities such as paid work and school, each location
has a capacity, which is taken into account when the destinations of trips are assigned (Rinds[Tiser e
af., 2002). In addition, it 15 ensured that work places and schools are selected again if they are
visited more than once during a single day.

CASE STUDY: CITY OF COLOGNE

The case study was designed to study the functioning of the model with real world data. Travel
demand was estimated [or the 1.1 millien inhabitants ol Cologne, Germany, and the fecdback loop
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with the trattic flow simulation was realised. It turned out that after five iterations a steady state in
terms of number of trips, modal split and distances travelled was reached. A short deseription of the
geographic characteristics of Cologne is necessary to interpret the results. As can be seen in Figure
8.4, the population density 1s quite heterogeneous within the administrative borders ot the city. The
medigeval cily centre, Altstadi, on the lell riverside ol River Rhine is easily identified. The yuarler
boundaries follow the line of the ancient ¢ity wall. It was destroyed in 1881, and teday a major road
tollows its course. The river flows from the south to the north. Four bridges are in the vicinity of the
city centre. In addition, there are (wo molorways crossing the river, at a distance of 11 km and 5 km
to the north and the south of the centre, respectively. Only during the last century some independent
municipalities joined the City of Cologne. Some of them have a relatively high population density
{e.z., Kalk on the left riverside, Porz to the south of Kalk, and Weiden at the western boundary of
the map). The high density in the district of Chorweiler to the north of the city centre is due to the
tower block housing that was built there in the F960s.

The reference scenario A is a lypical working day, i.e. (he aclivily paltems refer (o a Tuesday,
Wednesday or a Thursday. As an example of major changes in the road network, scenario B
assumces that one of the bridges in the cily centre cannot be passed anymore. It is instructive to
compare the effects of this intervention for the inhabitants of the two sides of River Rhine. Table
&.1 contains some figures about the travel demand for the two scenarios. Under scenario A, the
number of trips per person is comparable to the reported number of 3.7 trips in the nationwide study
MID (Bundesministerium fir Verkehr, Bau-und Wohnungswesen, 2003). The predicted share of car
trips is 3 percentage points lower on the western side compared to the castern side, reflecting the
fuct that the western side has many locations for activity participation within or ¢lose to vesidential
neighbourhoods.

Table 8.1
Travel Demand by Residence on the Western or Eastern side of Rhiver Rhine for Scenario A:
Normal Traftic Network Conditions and Scenario B: Dentzer Briicke Closed

A: Bridge open B: Bridge closed
West East West East
Trips per person 384 3.73 3.74 3.00
Total number of trips [#10%] 2.10 1.10 210 110
Share ol car trips 0.35 0.40 033 0.38
Distance per person and day [km] 15.5 203 154 2.5
Travel ime per person and day [min] 63 7w 63 7l

Average car trip length [km] 5.3 6.9 5.7 7.1
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Figure 8.4
Population Density in the City of Cologne

As expected, this reduces the travel distance per person and day as well. Even for the eastern side,
the value of 20.5 km per person and day is below the average value of 23.4 km reported in the MID
study, which is likely due to the fact that very long trips cannot occur in the restricted area that is
considered here. The city centre on the western side attracts many trips; therefore the average length
of a car trip is longer for inhabitants of the eastern part of Cologne.

The effect of the bridge closure in the simulation is not very large with regard to the averages in
Table 8.1. For inhabitants of both sides of the river, the number of trips and the share of car trips are
both decreasing. Table 8.2 shows, however, that there are significant changes in the prediction of
destination choice. The first row in each section contains the number of trips that start and end on
the western side. The second row displays trips that start on the western side but end on the eastern
side, and so on. As mentioned above, crossing the Rhine is much more important for people living
on the eastern side than for those living on the western side. The share of trips crossing the river is
only 2.5% for the latter, but 13% for the former. This share is reduced by 2 percentage points when
the bridge is closed.
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Table 8.2
Trips Crossing the Rhine by Residential Location

A: Bridge Open B: Bridge Closed
Home Direction Number |x Il]"[ Share Number [* [(I"| Share
West w—w 1987 94.6 1941 94.9
wW—e 54 2.6 50 24
e —=w 53 2.5 48 23
e —e 6 0.3 6 0.3
East W W i 3.2 29 2.5
wW—e 151 13.0 126 11.2
e —w 153 13.2 127 11.3
e —e 818 70.6 853 75.1

Considering only car trips crossing the river, the number per day drops from 179 000 to 136 000
(24%). As a consequence, the overall effect on the flows on the traffic network is reduced on most
bridges, in the city centre, and on roads that lead from the bridges to the residential areas on the
eastern side of the river (Fig. 5). Thus, according to the model it is easier for most travellers to
abandon their trips to the city centre rather than to accept the longer travel times that would result
from detours or the congestion caused by the concentration of traffic on the remaining bridges. The
increase in the flow on the eastern Autobahnring may be caused by less interference with traffic in
the direction of the city centre.

dNeg [veh./day] dPos [veh./day]
0-10 0-10

Figure 8.5
Left: Roads with Less Traffic; Right: Roads with More Traffic
as a Consequence of the Bridge Closure



172 Progress in activitv-based analpsis

Cairns er af. (2002) studied more than seventy cases where road space was reallocated, “whether
duc Lo positively planned schemes, temporary road closure for maintenance or renewal of transport
facilities, or natural disasters.” Tn mest of these cases, overall raffic was reduced by a noticeable
amount. The median reduction was 11%, compared 1o the traflic on the read that was closed. In
same cases, values above 100% were obtained. This occurred when not only the increase of traffic
on alternative routes was smaller than the traffic on the missing road, but also when there was a
decrease on the allernaliive routes as well, like in the simulation here. Traffic flow reduction related
to the original flow on the bridge is 147%. However, comparing these values, it has to be kept in

mind that they strongly depend on local conditions, ¢.g. on the definition of alternative routes.

CONCLUSION

The model discussed in this paper captures all aspects ot a trip in an activity-based, microscopic
framework. Time use patterns are derived [rom reported time use diaries and assigned o individuals
according to their socio-demographic characteristics. The concept of intervening opportunities is
applied to find the [ocations for out-ot-home activities. A decision tree stores the mode choice
probabilities depending on the characteristics of the trip. The starting times and durations of
episodes can be adapted if travel times are different from the expected values. This is done in a way
that takes into account the time use pattern of the day as a whole, The microscopic approach makes
it possible to respect all spatio-temperal constraints and logical constraints related to the usage of
individual modes of (ransport. The simulation can be computed [ast enough on an ordinary PC to
establish the feedback loop with a traffic flow simulation. Thus, consistency of travel demand with

car travel times in the network is obtained,

The simulation results for a bridge closure scenario predict less traffic in the part of the network
where the bridge is located. At first glance, one would ¢xpeet an increasing number ot vehicles
crossing the other bridges, instead. llowever, the simulation results are in accordance with empirical
findings about road space reallocations,

Except lor some comparisons with aggregate models the results were not rigorously validated. Such
validation requires the study of location and mode choice in different neighbourhoods and to check
whether the model predicts the variability in these aspects of the trips in an adequate manner. The
model will become more flexible il it is possible to relate the parameters of loeation choice to a
hehavioural concept rather than calibrating them using observed distances. Similarly, the integration
of research results of how people allocate their time could lead to a belter handling of the time stress
within the schedules.
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AN INTEGRATED FRAMEWORK FOR MODELLING
SHORT- AND LONG-RUN HOUSEHOLD DECISION-
MAKING

Evic J. Miller. University of Toronto, Toronto, Ontario. Canada

INTRODUCTION

While the need for integrated models of transportation and land use is well understood, the
conceptual framework for actually integrating relatively short-run activity/travel behaviour of
households with their longer-run residential location and auto ownership choices (among ather
longer-run decisions) is not well developed. Current integrated models generally are rather ad hoc
in their handling of this issue, In particular, while activity-based travel models continue 1o mature in
both their theoretical foundations and their empirical implementation, a corresponding evolution of
longer-term decision-making as a logical extension of the activity-based paradigm has not occurred
to any significant extent (e.g., Miller ef af., 1998; Timmermans, 2003).

This chapter presents a conceptual framework that provides a unified, activity-based approach for
dealing with housechold-based decision-making in both the short and the long run. It is unified in
thal the same Tramework “scales™ Irom day-to-day (o very long-term processes, and all decisions
are viewed as occurring within a temporal continuum. The framework is explicitly activity-based, in
that automobile ownership, residential location/tenure decisions, cte, are treated within the same
“project” representation that is used to model activity/travel. The result is a comprehensive and
consistent representation of househeld {and individual househeold member} planning/decision-
making concerning the acquisition/allocation of personal and household resources (time, money,

Progress in Activity-Based Analysis edited by H. Timmermans
@ 2005 Elsevier Tud. All rights reserved.
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*durable goods™ and information) over both the shott and the long run.

The chapter is largely devoied o describing the proposed framework. Tt builds directly upon an
earlier paper by the author, in which a comprehensive model of household decision-making was
first sketehed {Miller, 2004). Section 2 bricly summarizes some of the key concepts and definitions
introduced in the earlier paper. Other important elements of the framework derive from recent
contributions of Salvini (2003} and Litwin (2004), as well as from the seminal work of Maslow
{1970). These clements are introduced in Scetions 3 through 3, respectively. The sixth scetion then
brings the various pieces together to construct an overall conceptual framework for household-
based decision-making. The final section briefly summarises the chapter and discusses “next steps”

in the claboration and implementation of the framework,

BASIC CONCEPTS AND DEFINITIONS

Decision-Making Units {DMU)

A decision-making unit (DMUD is defined as an intelligent agent that is capable of perceiving the
world around it, acquiring and using resources, scheduling its activities, and acting into the world
{(Miller and Salvini, 2001). Each of these four capabilities  perception, resource acquisition,
scheduling, and action — are essential to characterizing human behaviour and be must explicitly
incorporated into the conceptual framework., DMU’s of interest within integrated urban models
include persons, households, firms, and business establishments. Within this chapter, the focus is on
the inter-related decision-making of persons and the households within which they live. The need to
work simultancously and consistently at both the person and houschold levels is well understood in
the literature: it is persons who ultimately always act, but households are socio-economic units that
constrain personal behaviour, coordinate the use of joint, household-level resources, generate joint
aclivities among its members, and have “needs™ of their own that can be dilferent from and ofien

supersede the needs of the individual household members.

Activity Episodes

A MU acts into the world through a sequence of activity episodes, where cach episode is a
specific instance of an activity of some sort. Attributes of an episode include activity type, episode
start time, cpisode duration, cpisode location, and episode mode. Start time, duration and location
are self-evident in their definition. In Miller (2004), the concept of activity mode was introduced.
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The idea is that, just as in the case of travel, undertaking any activity requires a certain combination
of technology, culture and other contextual factors that determings the detailed nature, form, cte, of
the activity episode. As a simple example, the generic activity “shopping” has “modes™ for
accomplishing the task that include in-store, madl-order, telephone and mitemet. With the addition of
mode as a generic episode attribute, the mapping between “activity™ and “travel™ as simply two sub-
classes of the episode class becomes complete, in that a trip {travel episode) also has start time,

duration, location and made.

Note that in speaking of an “activity episode™ no distinction between the “short-run”™ and the ~“long-
run” is made. The key difference between these two types of activities is that one oeccurs within a
fixed set of resources and other constraints (a current number of household cars, a current job, a
contracted  child-care arrangement, etc.), while the other involves actions that change these
resources or constraints. Thus these lwo (ypes of activities are “short-run” and “long-run™ in the
classical economic definition of the terms; i.e., they depend on whether resources/technology (the
“production function” of the household it you will) are fixed or not. The key point, however, is that
decision-making processes concerning both types of activities (what to do today given available
resources?  can/should 1 change my available resources today?) “run”  continucusly and
simultaneously within the DMU. They also interact, in that decisions about resoutces constrain day-
to-day activities, while day-to-day experiences “feedback™ to the DMU “resource manager”
information concerning resouree needs and opportunitics,

Resources

The terms “resources”, “lechnology™ and “durable goods™ are all used somewhat interchangeably
within this chapter, although each term obviously carries somewhat ditferent detinition and
connotations, What is meant collectively by these terms is the physicalftechnological/fiscal context
within which day-to-day activity occurs. In particular, the engagement in any activity requires the
expenditure of resources of various kinds, At a minimum, time must be expended by the person(s)
involved. Knowledge of various kinds is also always involved (where the store is located, how to
play the game, ete.). Very often money is required to engage in the activiry (transit fare, admission
price, cost of the goods purchased, ete.) and/or durable goods/technology or services of one sort or
anather (car, tools, cte.) are used. Without (he required resources, the activity episode can not be
executed as intended {no allowance lefi to spend on a movie: car isn’t available this afternoon to go
shopping; ete.), and it will ither not be undertaken at all or it will have 1o be rescheduled lor some

peint in time when the necessary resources will be available.
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While activities consume resowrees, they also generate them. “Outputs” from activities can include
money {paid [abour; relurns on investment, cte.), new or improved durable goods/technology and
increased knowledee (e.g., now know how to play the game). The money, knowledge and/or
durable goods acquired through this activity episode, of course, are added to the household’s or
person’s stock of such resources and are available for use o subsequent activity episodes. In

particular, note that it is through action that we leam (i.e., incrcase our knowledge base).

Urifirv 1s also generated by most activities, where “utility” is simply the label used to represent the
benelit, pleasure, avoidance of adverse conscquences, cle. derived [rom engaging in the given
activity episode at a given point in time. Unlike the other activity outputs {which are all
instrumenial in nature; that is, they are means to achieve other ends -- (heir value lics in their ability
to support new activities), utility is an “end” output of the activity. It is “consumed™ as it is
generated, and, while the memory of the event can be “stored™ in the recipient’s mind and thereby
provide [uture utility (e.g., recollections of last summer’s vacation), utility does not 1sell become an

input into other activity episodes.

Resources in addition to time (knowledge, money, technology embedded in durable goods.
contracted services) thus clearly play a central role in the life of a DMU, both as enablers of DMU
action and as constraints on the scope of DMU activity. As such, the acquisition and mainicnance of
resources — resource management — is a major DMU activity in its own right that must be explicitly

accounted for in any aclivity-bascd model of the DMU.

Projects

Axhausen (1998) defines a project as a coordinated set of activities, tied together by a common goal
or outcome. Axhausen’s simple example to illustrate the concept of the project is the dinner party,
in which the logical sct of inter-related activities might inelude: the deeision to hold a dinner party,
planning the meal, shopping tor the food and drink, cleaning the house priot to the party. preparing
the mical, the dinner party event wsell, and cleaning up afier the party. In Miller (2004) 1t 15 argued
at length that all activities can be conceived of as being contained within (or generated by) projects.
It is also hypothesized that a set of primary projects can be identified that form the basis tor all
specific projects underiaken by a given DMU. Without revisiting these arguments in detail within
this chapter, the assumption that each DMU (person or household) possesses at any time a set of
active projects within which all the DMU's getivities are “generated” represents a fundamental
component of this conceptual framework.
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It must be stressed that the adoption of the project as a basic building block of DMU behaviour has
both bechavicural and computational motivations, Behaviourally, it is argucd that the project is a
reasonable organizing principle for dealing with complex human behaviour. This holds even in
cascs in which people may not explicitly “think in projects™ For example, 1015 probable thal a
person does not think of his/her social activities as a **project”. But these activities do have a “logic
of their own™ that is clearly distinel from other activily sets (work, home maintenance, ele.) in leoms
of its “rules”, motivation, information base, ¢tc. Social activities also de “spawn” other logically
related, but “non-social™ activities, as the simple dinner party example above illustrates that are
difficult 1o “explain® outside of the project thal 15 motivating them.

In operational, computational terms this ability to group aclivilics into logical projects is al lcast as
compelling. The project gua agent (L.e., an intelligent object) allows the modeller to encapsulate the
logic of each project within its own object: in building the behaviour describing the work project,
the modeller does not have to be concerned with how to model social networks (and vice versa). At
the same time, since each project is a sub-class of the abstract project class, it benefits through the
object-oricnted (QO) propertics of generalization and inheritance from common clements (atiributes
and behaviours) that are generic across all projects. As a modelling approach this is extremely
powerful, since it allows the modeller to decompose an extraordinarily complex problem into more
“bite size” piceces {the standard modelling approach for dealing with complexily) while still
retaining a coherent, consistent representation of the “whole™. That is, while the internal logic of
cach projeet typically will be very dilferent, they all remain projects, and their gencralized
behaviour, as viewed “externally” by the rest of the modelling system (and, in particular, as viewed
by the DMU agent that is “managing” these projects), is common (and hence computationally
tractable).

Further, the decomposition ol behaviour into projects helps reduce the combinatornies ol dealing
with the huge **decision space” potentially faced by DMU’s. That is, each project need only concern
iself with its own objectives and actions, and it can leave the consideration of “tradeol1s™ among
competing actions/objectives to “higher-level” agents that deal with these decisions. For example, [
do not need Lo know the details of my wile’s day o schedule my work day (and vice verse), excepl
in the case where competition for fixed household resources might arise (e.g., we both need the only
family car at the same time) or where collaborative action is required (e.g., who is going to pick the
child up from day carc). In such cases, it is argued that a higher-level DMU (i.c., the houschold)
mediates/decides the resolution of the conflict and/or collaboration issues. Similarly, competing
demands for activity cngagement by two or more projects within a DMU {c.g., should T mow the
lawn Saturday afternoon or play golf?), it is argued, are resolved at the “higher level” of the activity
scheduler, whose task is specifically to resolve such issues. That is, it is far more efficient to have a
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scheduler agent that “sees™ the “activity requests™ from all competing projects and mediates among

them, than to try to have individual projects try to mediate these issues among themselves. This

does, however, imply the need for each project. regardless of its specific nature, to be able to supply

to the scheduler a standard set of activity episode attributes so that the scheduler can intelligently

choose from among the eandidale episodes those that will actvally be scheduled for exceution.

The three key elements of a project are:

=]

The project will have a knowledge base that defines the information available to support its
decision-making, including information concerning its mandate, how to evaluate the
accomplishment of its objectives, ¢te. This information basc may well be updated over time

as new informatien is obtained, or as the “rules of the game” change.

The “output” of the project is an agendi. which consists of one or more specific activity
episodes that the project currently would like to have scheduled and executed. This agenda
is provided to the activity scheduler, which will decide which, if any, of these episodes to
insert within the provisional schedule for the current planning period. Thus, the project dees
not schedule its episodes. Rather, it gencrates candidate cpisedes (hat may or may nol be
scheduled and subsequently executed. Note that the agenda does not consist of all activities
in which the DMU might conceivably engage within the context of this project. This totality
of possible activities is embedded within the task manager. The agenda, rather, is the
current, finile, speeific sei of activity episodes that the projeet is contemplating for execution
within the current planning period. The agenda, thus, is a dynamic list of potential episodes
that evolves over time as candidate cpisodes are added (o the list by the preject and then
subsequently deleted, either because they have been executed or hecause the project decides
to “cancel” them for one reason or another.

The heart of the project is the fask mancger. The task manager contains the “intelligence™

and dynamies ol the project agent. The responsibilities of the task manager include:

instantiate the project agenda when the project is first created;
delete the project agenda when the project is terminating;

instantiate episodes within the agenda, as required;

c 0 ¢ o

monitor the progress of the project (what activities necd to be donc next; how well is the
project’s mandate is being tulfilled: etc.);
delete agenda episodes if they are now longer required and/or feasible; and

o]

o communicale with collaborating agents.
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Thus, once instantialed, a projeet is an autonomous agent capable of moniloring its own aclivitics
and receiving and sending information to other, collaborating agents (e.g., the scheduler). The
project’s “view” of the world around it, however, is limited to information and events pertaining to
the project itself. For the reasons discussed above, one projeet is not “aware™ of other projeets, and

does not ever communicate directly with these other projects.

The Activity Scheduler

As already discussed, the logic of the project design concept is that another agent must exist that
undertakes the actual scheduling of candidate cpisodes within a provisional schedule. This schedule
is labelled “provisional™ since it is subject to change up to the point that the next episode is to be
actually executed by the DMU — it is only at the instant of episode exeeution thal commilment Lo
undertaking the episode is realized and the episode attributes are confirmed. This agent is labelled
the activity schediler, or, more simply, the scheduler, Many detailed models of activity scheduling
(both conceptual and at least semi-operational} exist {see Arentze and Timmermans (2000) or
Roorda et af. (2004) for reviews of such models), and the activity scheduling task per se will not be
discussed in detail here. The conceptual model being developed here differs to varving degrees
from other models of activity scheduling in at least two key ways. First, it clearly demarcates
between the project (that generates an agenda containing activity episodes) and the scheduler {that
schedules these episodes, including resolving conflicts among competing episodes). This permits
project-specific caleulations to be encapsulated within each project, leaving the scheduler free to
focus on the scheduling task per se. Second, “day-to-day™ scheduling occurs within an explicit,
continuous, “longer-lenn” process within which the resources (knowledge, technology, money, ete.)
that constrain these day-to-day decisions evolve over time. Further, the projects “driving” the
scheduling process may change over time (change jobs, have a baby, etc.), thereby changing the
nature of the activity episodes to be scheduled.

EVENT-DRIVEN, CONTINUOUS TIME SCHEDULING

Litwin and Miller (2004a,b) argue that activity scheduling 15 a diserele event, continuous tune
process in that:

¢ The human mind is constantly aware of and responding to the world around it.
o We continuously make both “short-run™ and “long-run™ decisions at arbitrary points in time.
The only difference between a “short-run”™ decision (what am [ going to do in the next hall
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hour?) and a “long-run™ decision {should T buy a new home?} is the timeframe over which
Lthe impacts of the decision are likely to be [elt. Another way of putting this is thal we have
multiple plamning horizons over which we are continuously and simultancously planning —
today, this week, this year, etc.

Scheduling decisions are events that cause the provisional schedule to change in a diserete
way. Similarly, all physical events, whether these are caused by our own actions (drive to
work) ot exogenously imposed upon us by the world around us {traffic jam) potentially
“trigger” scheduling/rescheduling decisions,

Litwin identifics three temporal ““spaces™ of relevance to scheduling:

A-Space: This is a multi-dimensional space in which beth past memories and possible [uture
actions lie. [t is the “home™ of projects (i.e., the things we might do); indeed, each project
can be thought of as a dimension in A-Space.

C-Sperce: This is the space of physical events (past and current). A key point in this space is
the moving “NOW?™ — the point in physical time at which we are at “now”.

B-Space: B-Space consists of a set of lines in which each line connects NOW (0 a [uture
planning horizon, Each such ling contains a sct of preposed activitics in which the agent
wishes to engage during this planning perniod, at least roughly ordered by “before/after”
relationships. Thus, one line may exist for today’s activities, arother for the time between
now and next summer’s vacation, ele. Similarly, a line may exist for cach project over the

project’s planning hotizon, containing the project’s agenda over this time petiod.

The extent to which the “full” concepts of A-Space. B-Space, ete. can or should be implemented

within an operaticnal model of houschold decision-making remains to be scen (c.g., in practical

terms, how might we “observe™ the evolution of B-Space?). Regardless, Litwin’s conceptual model

provides a very strong framework for a consistent and unilied model of houschold decision-making.

Key points that are applied within this chapter include:

C-Space is explicitly implemented within the conceptual model as the set of events within
the world at large that a DMU perceives and responds to.

The NOW point is similarly implemented as the point in sumulated clock time that triggers
“eurrent” decision processes.

Multiple planning horizons are explicit within the model.

The conceplt of mental simulation is explicitly incorporated as the means by which
alternative courses of action are explored by decision-making agents.

Although not explicit in the current framework, A-Space is viewed as the “home™ of
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projects and, indeed, resource management,

+  Similarly, B-Space is unplemenied within the coneept of project agendas.

* The event-driven nature of decision-making is taken as an axiomatic feature of the
framework. Each event can potentially trigger a response (decision) since each event brings
with it new information, a change in system and DMU staies, cte. Note in particular that
each decision is, itself, an event that might trigger & new decision.

STRESS MANAGEMENT

Definitions and the Example of Residential Stress

The concept of stress as an explanatory variable in urban spatial processes dates at least 1o the
seminal work of Rossi in the 1950's (Rossi, 1955). Looscly defined, stress arises when one’s current
state deviates from some alternative desired/expected/optimal state. The larger this deviation, it is
hypothesized, the more likely one is to act in some way that attempts to reduce the stress; e, to
attempt to move one's state closer to the alternative *target” state. While consistent with utility
concepts, the notion of stress recognizes that people often are unable {or are at least unwilling) to
“act al the margin®; 1.¢., in many silvations people do not make continuous marginal adjusiments 1o
their state so as to maintain themselves at their “optimal™ {utility-maximizing) state. This is
particularly the case with respect o “large™. discrele choices such as residential Jocation,
employment, etc. in which: marginal adjustments ate generally not possible; significant transaction
costs are invelved in state changes {usuvally both monetary and psychic); infonmation about
alternatives is imperfect {the “target state” is a hypothesivzed one, based on limited information); and
state transitions typically involve engaging in a market process involving an explicit search for
aclual alternatives, with the outcome of this scarch heing uncertain at the time the scarch is initiated.

For all of these reasons, it is reasonable to hypothesize that people will tend to remain in their
current state {same house, same job, cle)) when stress is low, and will only actively seek to change
this state when stress exceeds some threshold value. Sarjeant, for example hypothesized a cusp-
catastrophe model of residential search (Sarjeant, 1986; Miller and Sarjeant, 1987), illustrated in
Figure 9.1, in which the “explanatory™ variables of search behaviour are “present satisfaction™ with
one’s current dwelling (PS) and an “expected alternative satisfaction” (EAS) that one anticipates
could be achieved il one were to move now 1o another dwelling. Both PS and EAS change over
time in response to changing conditions within the household (household structure, employment
status, cte.) and cxternal Cactors {(housing prices, mnterest rates, neighbourhood characteristics, ele.).
Thus, the household traces a trajectory within the PS-EAS plane over time.
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Figure 9.1
Stress-Based Search Process

Residential “search™ is hypothesized to be a continuous process of information acquisition about
the residential housing markel. As senticnt beings we are constantly exposed to some level of
information about the housing market, which we filter in various ways and assimilate to varying
degrees. Normally, this information acquisition process is an cssentially passive onc in that the
mformation “comes to us” through cur normal day-to-day activities (newspaper articles, noticing
“for sale” signs as one drives through the neighbourhood. ¢tc.); that is, we are not consciously, pro-
actively secking specific, detailed information about the housing market. As a result of this passive
information acquisition process we each have some general (but certainly imperfect) information
about the current state ol the housing market, upon which we can form some judgement (again
typically imperfect) about what our EAS would be if we were to move to a new dwelling at this
peint i time, It is also cerlainly the case thal we have a good sense of our PS with our current
dwelling, given that we arc expericncing it on a day-to-day basis. Thus, in principle, both PS and

EAS are “known” to the household at each point in time.

The difference between EAS and PS is assumed to define the houschold’s residential stress. If
{LAS- PS) < 0, then presumably the houschold is in an “optimal” location with respect to its current
residential location. If, however. (EAS - PAS) > 0, then some amount of stress between its current
and “desired” states exists. 1T (EAS - PS) > 1, where 7 1s some non-negative threshold value, then
the houschold abruptly (ransilions into an active scarch stale in which detailed, specific information
about dwelling units that are currently available for purchase (or rent, as the case may be) is sought.
A value of 7 = 0 would correspond to a “classical” economic model of marginal, “utility
maximizing™ behaviour, in which as soon as a marginally better alternative exists, a transition lo
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this alternative is attempted. As argued above, it is generally more reasonable to assume that > 0

in value. Tand/or EAS and PS, of course, may well be random from the modeller’s perspective.

This active state generally persists for only a relatively short period of time (a few weeks or months
at the most), before the household reverts to a passive state again. This reversion to the passive state
can arisc n lwo ways. First, through the information gained within the active scarch, the
household’s EAS is revised (downward) to the point that the household no longer expects to
(sufticiently) improve its satisfaction level by moving from its current location, and so it ccases to
actively search in the market. As a result, the household “drops out” of active participation in the
housing market. This corresponds to a very rapid trajectory in PS-EAS space, such as trajectory (A)
in Figure 9.1. Second, the household is successful in finding an attractive new dwelling and in
purchasing this dwelling. In this case, a sharp. discontinuous rise in PS occurs (associated with the

new dwelling), which again returns the household to a passive state.

Stressors and Stress Management

The extended example above deals with only one source of stress (residential), and considers only
one “stress resolution™ mechanism (move or don’t move). In general, DMLU’s face many sources of
stress (congestion, dissatislfaction with one’s current job, financial problems, ete.) and potentially
have many options to relieve a specific stress {e.g., perhaps change jobs instead of move residence).
Further, relief of one stress might trigger a “cascade™ of responses {e.g., in order to accept an
attractive job offer one may end up changing place of residence and/or buying a second car). In
order to deal with this multi-dimensionality (in  both sources of stress and stress
resolubion/management), Salvini introduced the concept of (he siress wmanager (Salvini, 2003;
Salvini and Miller, 2004). A stress manager 1s “simply”™ an object that “manages” stresses that arise

from a variety of stressors, where a stressor is something that generates stress for the DMU,

1t is argued further below that it is reasonable to assume that each project undertaken by a DMU has
itz own “stress™. This stress is provisionally defined as the difference between the current projeet
“state”™ and some perceived, tfeasible alternative (new job, expected/desired house, etc.). This
difference can either represent a “deficit” (“my current job stinks™) or an “opportunity™ (“my
current job is OK, but this job offer is too good to turn down™). Stress in one arca generally will be
resolved in the first instance within the area (i.e., within the project) itself, if this is possible. But
stress, if large enough, will also be resolved through accommodations elsewhere: allocation of

addition resources, modifications of other projects, etc.

The concept of stress is, inevitably, closely aligned with the concept of utility: a *natural” definition
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of stress is the difference between the current utility and some target utility level, This linkage
between the twe coneepls is strenglthenced by the need 1o compare stresses in one arca with another
{c.g., a move to the suburb may create a stress due to loss of urban environment; this may be
compensated for by more disposable income for vacations; greater stimulation and prestige at work;
more green space for the kids; ete.). That s, 11 1s not clear how o consislently evaluale stress
management strategies and their outcomes within a general model outside of at explicit utility-

based [ramework. This issue is returned Lo in (he next section.

Similarly, the stress management concept supports a houschold basc for these decisions. A move to
the suburbs (which might be “triggered™ by a job offer to one household member} impacts all
houschold members. [Uis reasonable to argue that this decision must be made at the houschold level,
with the household needing to mentally simulate the impacts of the proposed move on all household
members, and to “add up” the utilities/stresses to see how they all balance out (e.g., “we can’t move
because we don't want the kids 10 have to change schools™).

The very simple notion that underlies the concept of stress management is that Tor every stressor
there is a logical set of responses that can be worked through in attempting to relieve the stress. For
example, if travel time to work is too onerous then the person may try changing the trip route, start
time and/or mode. Alternatively, the person might change jobs and/or residential location. In order
to avoid the combinatorics of exploring all combinations/permutations of all such responses, it is
suggested that sequential exploration of “increasingly major” changes (try change mode, if that
doesn’t work, try buying another car; if that doesn’t work ...) may well represent a reasonable

app:‘oach to stress management in most cases.

Certainly any stress management response will typically involve the “mental simulation™ of
allernative courses of action. In parlicular, the ramifications of any proposcd change in “lower-
level” and/or “collateral™ projects should be considered. For example, every “"move residence”
assessment probably must trigger a mental simulation of auto ownership to see if the proposed
change results m exeessive new stress within this project. Every “change job™ assessment probably
should similarly trigger a “move residence”™ mental simulation  at least il the job location changes
significantly (and “negatively” in terms of its stress implications) relative to the starus guio. The job
change, for example, may also trigger an independent change mode/change auto holdings
assesstent. “Smart™ uses of stress caleulations may help enormously here. 11 for example, the job
change does not involve a significant location change (i.e., no new residential stress) then there is
no need to trigger a residential move change at this point in time. At the same time, however,
commuting times may change, the need for a car may change, etc., thereby creating stress with
respect to work mode and/or auto ownership that may need evaluation.
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MASLOW’S HIERARCHY OF NEEDS

Basic Concepts and Definitions

Maslow’s seminal 1970 book Motivation and Personality provides an in-depth exploration of the
motivated nature of human behaviour. His best-known concept is that of the existence of a
hierarchy of needs that influence our actions. Figure 9.2 provides a very simplistic summary of
Maslow’s hierarchy. A key point of this hierarchy is that lower-level needs are prepotent over
higher-level needs; that is, lower-level needs take precedence over higher-level needs until they are
satisfied to some level. A starving person is only interested in food; once a person has eaten he will
be concerned with shelter and security; and so on. As a general principle, it is argued that the
motivation for our behaviour “moves up” the hierarchy as lower-level needs are “satisfied”. Having
said this, however, it is important to note that Maslow stresses that the motivation for a given act
generally is derived from many needs simultaneously, with different needs providing the motivation
to varying degrees, depending on the context of the action. In addition to “needs™ per se, Maslow
identifies a number of preconditions for the satisfaction of needs. These preconditions can be

prepotent in nature given their importance to the needs satisfaction process.

“Preconditions™ for
satisfaction of needs:
+ freedom of speech
« freedom of movement
« self-defense
* justice
+ faimess

| g

nderstandin, Self-

Actualization

Knowledge

Esteem
(self-respect, esteem of others)

Curiosity

Cognitive Needs

Love
(affection, belongingness, family, social)

Safety
(security, stability, freedom from fear, etc.)

Physiological
(air, water, food)

Conuative Needs

Figure 9.2
Maslow’s Hierarchy of Needs
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Wilh respect to the coneeptual [ramework being advanced within this chapter, Maslow’s (heory
provides at least three important concepts. First, to the extent that one accepts Maslow’s thesis that
human behaviour is largely motivated in nature, it can be argued that the economist’s concept of
wiility 15 a very simplificd/abstracted approximation of motivation, We can never {(certainly in
ILUTE-type models) trace back to motivations in any meaningful or operational way, especially
given their multiple/over-lapping nature within any given act. The “only” (but still usclul) link here
1s that actions are viewed as being motivated, and hence utility would appear to be a reasonable
“surrogate™ to capture the benefits received from the action (i.e., the desired ends that motivated the
act).

Sccond, Maslow's hicrarchy of needs provides a sound foundation for the development of a set of
“fundamental activities”™ ot “primary projects”™ that are relatively universal across persons and
households. The existence ol such 4 universal set obviously would simplify the task of constructing

a transferable, relatively “eeneric” model of household decision-making.

Third, the concepts of prepotency and preconditions may provide insights into the establishment of
priority and precedence relationships among activities within a scheduling/decision-making process.
[t may also tfurther strengthen the validity of the generic concept of a project as a set of logically
connected actions; that is, some of the actions within the project are preconditions to others in the

satisfaction of the needs motivating the given project.

Given these observations, it would seem very reasonable, as is often done in the literature, to speak
of place utility as @ measure ol the level of satisfaction thal a household possesses al any pomt of
time with its place of residence, in terms of the extent to which these various nceds and
precondilions are being met. Note that in this delinition place utility is an entity attached to the
residence per se, independent of the daily “activities” that occur within it. Alternatively, one might
argue that place utility is simply the sum of the expected utilitics over all of the detailed activities
that will go on within the residence (child-rearing, family entertainment, mecals, personal
maintenance, sleeping, socializing, gardening, etc.). This is clearly operationally a hopeless path to
tread. But what is being argued here 1s that 1t 15 also behaviourally incorreet: one’s home possesses
utility because it directly addresses various conative needs. It also is a precondition for a wide
variety of other needs. Indeed, it would be “double counting™ to “integrate™ over the expected
utilities of these activities as part of the place utility per se. since these activitics will possess utility
in their own right that will acerue as they are execuled. Further. when | buy my house | do not know
all the activities that will occur within it or because of it. [ do know, however, that it is of value to

me for all of the reasons listed above,
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As wnother example, consider the “mobility project”. Project activities include: vehicle ownership
and maintenance; obtain a driver’s Licence; purchase a transit pass; etc. Ownership of a car can
address safety, love and esteam needs. The car is an important precondition for virtually all out-of-
home activitics, since it significantly increases the “action space™ available to the car owner, The
ability of the car to provide enhanced mobility (combined with the way we have typically built our
cities) invests in the car a considerable amount of prepotency over many other investments, since
the precondition of car availability for activity participation s extremely strong in many, many
instances. Thus, as with the residence, the car possesses “mobility utility™ that is separate from (and
“prior to”) the utility derived from travel per se.

To take a third (and final) case, the “work project” is different from the previous two discussed in
that it generates income as well as utility, Work gua activity directly addresses both cognitive and
conative (safety, love, esteemn, self-actualization) needs directly (perhaps aesthetic needs as well).
The income derived from work is an cssential precondition to undertaking virtually all other
activities and thereby achieving the full range of cognitive, conative and aesthetic needs (in
particular all prepotent physiological needs  food, shelter, etc.}). Thus, the work project generally
has a very high level of utility/priority atlached to it.

Other projects can also generate income. Projeets also, in general, incur both capilal costs (equity
investments in dwelling units, purchase of autos, etc.) and on-going operating costs {out-of-pocket
travel costs, activity participation costs, dwelling unit maintenance and utility costs, etc.}. lgnoring
capital costs for present purposes, one can on an “annualized basis™ define for each project p:

U, — the utility derived from project p
Y, =the income derived from project p
C, = the on-going costs for project p

One can bring these project-specific terms together to construet an overall DMU utility (U), which

for current purposes of illustration will simply be written as:
U= Zp U, +o log(zﬂ ¥,-2,6) ()

It was previously argued that resource management is stress-driven. A natural definition of stress is
the difference between current utility (&/ in total or &/ within a given project) and some expected
ulility [rom another possible “project target state” (dilferent home, new car, ete.). Stress is also

generated as (2;- ¥, - 2!) ', yapproaches zero, regardless of the values of U .
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The stress manager is not necessarily trying to maximize U directly. Rather, it is assumed that it is
trying to keep stresses within certain thresholds. That is, because most projects of intercst are
inherently lumpy things (home, car, job, marriage, etc.) with high transaction costs, etc., absolute

utility maximization/stress minimization is not generally feasible or directly sought.

Without worrying how it might be computed for the moment {a big leap!), let us assume that for
each project p there is an expected/desired “target” utility. 7. that the decision-maker thinks might
be achieved if the project was to change to the target state (change job, change eating habits, etc.).

Deline the project siress level, §,, as:

S, =T,-U, 2)

It 5, = 0 for all possible (or at least known) target states, then the current project state is optimal.
As in the Sarjeant modcl, il §, 2 7 for some threshold level 7, then the DMU will actively engage
in trying to change the project state to impreve its utility and reduee its stress. This stress resolution
strategy may well impact other projects, and so utilities (and stresses) within other projects might be

altered it the project state transition is implemented. Possible considerations for assessing whether

to actually change project state may include:
AU 20 (3}

{any change in total ulility must be positive; Le., the DMU will not change project state il this

change reduces overall utility}

S <t wp (4}

THE CONCEPTUAL FRAMEWORK

[n this section, the previously developed concepts are combined into a unified conceptual
framework of household-based decision-making. First, a general model of the decision-making unit
(DMU) is presented. The DMU can be decomposed into several discrete decision managenient
agents (DMA): the scheduler, the project and the stress manager. The general concept of the DMA
1s developed, lollowed by a brief revisit of the seheduler, project and stress manager within the
DMA/DMU framework. Finally, the household as a DMU is discussed.
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Figure 9.3
The Decision-Making Unit (DMU) Agent

The DMU Agent

Figure 9.3 “puts the pieces together” in terms of a provisional model of the DMU agent. It is argued
that both persons and houscholds represent sub-classes of this abstract agent class, and, hence, the
DMU represents the “basic unit of analysis™ for micro-simulation modelling of socio-economic

Processcs.

At the heart of the DMU are three cognitive agents (the scheduler, the stress manager. and the set of
DMU projects), interconnected by the DMU knowledge base. Each of these agents has been
discussed in isolation in earlier sections of the chapter. Sub-sections below provide additional
discussion of these agents and their roles/interactions within the DMU., It is noteworthy with respect
to the DMU as a whole, however, that stress management is where “reflection™ resides within the
DMU. That is, it involves the agent observing its own condition and actions and “reflecting” upon
them in terms of how things could be improved (would a new car help; is now the right time to
move, etc.). Scheduling, on the other hand, is much less “conscious™ an activity. That is, it is more
mechanical in nature; it must go on due to the relentless need to “spend™ each minute of the day. It
is efficient in the programming sense, but also behaviourally plausible/sensible, to differentiate this
activity from the reflective considerations of stress management. Also, the “B-Spaces” of the two
activities are typically very different.

Allocation of task management within a given project also makes computational and behavioural
sense. As has already been noted, it is where the “specialized knowledge” and the “specific
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management” of the project resides. Each project is different in its details from each other, and the
encapsulation of these differences within the project (but with a commaon “interface™ to the DMU)
seems very sensible. And while task management of all projects is going on inside a person’s head
more or less simultaneously, it still makes sense to separate out projects in this way: we do
“compartmentalize™ within our own minds.

The DMU must be able to communicale with both the agents with which it is explicitly
collaborating (other household members, members of a social network, ete.) and, more generally,
the world within which the DMU exists. This interface with collaborating agents and the world at
large is assumed to be handled by a perceptual interface. At a minimum, this nterface handles the
mechanies of information cxchange. Tt may also be the case that some “perceptual filtering™ oceurs,
in which “objective facts” about the world (e.g., current housing market prices) are medified to
reflect the DMU's unique perception of these “facts”. Care must be taken in the model design to
ensure that this interface facilitates rather than hinders information exchange between agents. At the
same time, the need to encapsulate each DMU’s knowledge basis within each DMU object would
appcar to be a paramount design feature {and, hence, the need for an interface): [ cannot “read the
mind” of another person - it is only through their actions and their communications with me that I

can obtain some understanding of their thoughts, tastes, cte.

The totality of all DMU’s, all other sinmulated objects (buildings, roads. etc.). and all the events
arising from DMU agctions within the model is represented in Figure 9.3 as the World. In short, the
World is the simulation model. Indeed, within ILUTE lor example, the World exists as an explicit
object which brings into existence all other objects within the model and which “releases™ them to
act (Salvini, 2003). Each DMU is, of course, contained within the World, is affected by the actions
of other DMUI’s within the World, and, in turn, through its own actions affects others. In particular,
it is through the individual actions of all the DMU’s within the World that the “collective outcome™
Lthat 15 the “system stale™ of the World evolves over time.

It is beyond the scope of this chapter to deal in depth with the concepts of learning and adaptation.
Clearly, however, a truly behavioural DMU representation is one that permits the DMU to learn and
to adapt to changes in its surroundings over time. Adaptation presumably can oceur in at least three
ways within a DML changes in selected actions within a given set of resources and decision rules
{e.g., changing work trip travel mode in response to new congestion levels, ete.); changes in the
resources available to support activitics within a given set of rules (purchasing an additional car for
household use; acquiring a transit pass; moving residential location: etc.). and changes in the
“rules” used to choose activities and/or resources (e.g.. changes in tastes and preferences as a
[unction of cxpericnee and socialisation; changes in the set of activilics being considered). It is
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argued that the conceptual model of the DMU presented here explicitly deals with the first two of
these processes. The extent to which the third process can be captured within this framework is
discussed somewhat further below.

The Decision Management Agent (DMA)

In this preceding section three primary cognitive functions were identified for a DMU: project task
management; activity scheduling; and resource/stress management. Each of these activities involves
the intelligent use of DMU knowledge to arrive at decisions on an on-going, continuous basis.
While all three of these activities obviously occur within the same mind, it is clear from the
discussion above that these are three very different cognitive tasks. It is thus both practically and
behaviourally reasonable to encapsulate each of these primary activities within its own object/agent
for modelling purposes, which can be labelled the project, the scheduler and the stress manager,
respectively. These, in turn, can be represented as sub-classes of an abstract class — the decision
management agent (DMA) — as is illustrated in Figure 9.4.

Decision Qutcomes
+ Task Manager: An agenda
* Scheduler: A provisional schedule == Thunsmit Jecision outcomes fund uttributes)
+ Stress Manager: Stress reduction strategy 10 colluborating ugents

Decision Manager
+ Task Manager: Generate/update an agenda
+ Scheduler: Generate/update a provisional e Reguests for u decision:

schedule = * “uctuerl " (need 1o do tish
« “hypothetical” (“mentel simulation”

* Stress Manager: Assess & resolve stresses pothetical” (“mental simulation )

T Decisions cun ulso be “self-triggered | in response to information updutes; rufe changes; etc.

Knowledge Base (L’; ——— Information updates:
+ Current list of management rules » gl fed i
v e = responses 10 prior decisions
= Information concerning resources [— + decision outcomes from collubo ruting ugents
+ Procedures for computing utility, stress, etc. b=

+ Memory/history Changes 10 decision mundgement
« Other information rutes, wtility calculation procedure, &ic

Figure 9.4
The Decision Management Agent
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A DMA depends upon a knowledge base that provides it with information pertinent to its decision-
making, as well as the rules/algorithms, tastes/preferences, etc. that are to be used by the DMA in
ils deliberations, Memaory/hislory of past DMA decisions and their oulcomes reside here as well,
The knowledge base communicates with other agents and can thereby update itself over time. While
onc could assume that the knowledge base is intrinsic to the DMA per se, it is computationally far
more etficient to assume that the DMA has access to appropriate portions of a common, DMU-level
knowledge base, so as to avoid excessive and artificial “information requests™ between DMA’s, Or,
in behavioural terms, while it 1s reasonable 1o divide decision processes among separale “agents™
within the mind, it seems much less reasonable to divide the mind’s knowledge (memary, tastes,
ete.) among these agents. Thus, the primary means of communication among DMA’s is through
shared access to the common DMU knowledge base.

DMA’s, however, can communicate directly with collaborating DMA’s in terms of direct requests
for a decision and the transmission of deeision results, Direct DMA-DMA communications are
discussed further below. In general, however, these consist of requests from a “higher-level” DMA
{c.g., the stress manager) 1o a “lower-leve]” DMA {c.g., a project) for information (¢.g., ulility
impacts of purchasing another car, as computed by the mobility project), and the passing of this
information back to the requesting DMA. In general, direct DMA-DMA communications are not
encouraged within the model lor a variety of computational and behavioural reasons. In particular,
note that projects do not communicate directly with one another: they are “self-contained™ in their
deeision-making and ncither “need”™ Lo know or “carc™ about information generaled by other
projects. That is, the interface between prajects occurs at the “higher” levels of scheduling and
stress management.

[t is also the case that a DMA within one DMU does not communicate with any DMA belonging to
another DMU (e.g., the household within which the person resides). All communications between
DMLU’s must logically oceur al the DMU level; that is, it is through the DMU agent that all
information from “outside” the DMU passes (e.g., information from other household members).
This information is then passed to projects and other within-DMU agents as required. In other
words, a project does nol intcract with or act upon the world direetly — its DMU agent does.

Thie DMA per se largely consists of the decision manager. The decision manager controls the
execution ot the DMA decision rules/algorithms and monitors the outcomes of its decisions. The
decision manager runs continuously within {simulated) physical time. [t is autonomous within the
limits of its programming. Thal 1s, il can respond to new information as this becomes available, and
it can change the outcome of its decisions {c.g., switch modes for the primary work chain) in the
face of new circumstances.
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Whether the DMA can “change its own programming”™ is a question for @ more detailed maodel
design than will be attempted within this chapter. It is also a function of the sophistication of our
modelling and computational capabilitics, It is conceivable, for cxample, that a project over time
might alter its “utility function parameters™ as the DMU’s tastes and preferences change, or that a
project “learns™ over time how to execute its tasks more efficiently. Alternatively, it might be
argued (hat a DMA’s “programming” should only be changed by a higher-level agent (e.g., the
stress manager might change a project’s “rules” as a mechanism for reducing stress in a given area).
Possible advantages of the latter approach may be improved computational cfficiency {ic., the
lower-level agent is not constantly asking itself’ if it needs to change how it is doing things), as well
as the ahility for the higher-level agent to “consider” more factors in its decision-making (e.g., a
change in one project’s rules may be introduced so as to improve another project’s performance --
something the individual project cannot, by definition “see™).

The focus of this chapter is not on activity scheduling per se, and so relatively little will be said here
concerning the scheduler DMA. Suffice to say, a number of activity scheduling models currently
exist that fall within this category and are consistent with the cenceptual framework presented in
this chapler, whether or not they explicitly adopt the DMA class design. The key point is that
scheduling is viewed as a dynamic, agent-based process in which aclivity episodes within some
form of an agenda are inserted into a daily schedule for eventual execution.

The preject coneepl has alrcady been discussed in detail above. In termis of the overall conceplual
structure, key points to note about the project DMA include:

* projcels arc insiantiated by the resource manager;

*  projects compute utilities and associated stresses, but the resource manager evaluates these
stresses and acts upon them;

* projeets generale aclivily episedes; these episodes are scheduled by the scheduler; and

* projeets also must be able te respond (o “what if”* questions from bath the scheduler and the
resource marager when they are “mentally simulating™ alternative courses of action (e.g.,
“What is the utility loss if this activity ¢pisode cannat be scheduled?™),

Finally, key points to note about the stress manager include the following.

* [Each project monitors its “stress” level, however stress is defined. These stresses are passed
to the stress manager, which compares them with threshold values.

+ The stress manager resides outside of the project, since siresses across the projects must be
considered together, and action within one project may well alter the stress in another.
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e [t is the stress manager that instantiates (and terminates) all projects.

e The slress manager asks “what il {“mental simulation™) questions of projects (“What il we
bonght a new car? “What if' ] took the new joh?”).

e The stress manager “authorizes” a search for new resources since it must consider the
impacts of identificd altematives “across the board™. That is, as with other projeets, the
stress manager must instantiate a “search project” in order for the DMU to participate in a
civen market activity. The seatrch for and evaluation of options, however, must occur within

the projeet, sinee it has the knowledge (o undertake this.

Adaplation oceurs al the stress manager level given (hat it is able 1o instantiate and lerminate
projects in response to changing conditions/stresses. One can argue, however, that, for “true”
adaptation t¢ oceur, project rules, ete. need to be modifiable over titme as well {in response to new
information, adaptive learning, etc.). The stress manager is envisioned to have the “power” to
change projects and to {perhaps) change scheduling rules. The question arises as to whether it is
possible for the stress manager itself to adapt; that is, for its “programming” to change. [f one
deeepls the argument that only a “higher-level” agent can change the programming of a (lower-
level) agent, this would imply the need for vet a higher-level “consciousness™ within the DMU that
is capable of changing the stress manager over time. Alternatively, one might conceive of a stress
manager that 1s sulliciently self-rellective thal it might be able 1o “change itself”. Given (he
rudimentary state of our current capabilities for modelling learning and adaptation, however, it is
perhaps not neecssary o pursue this rain of thought (oo much further at (his stage of model
development! The important point for now is that the proposed framework is at least in a
provisional way starling to be explicit coneerning learning/adaptation and is conceivably extendable
in this regard as nced and modelling capabilitics inercasc.

The Houschold DMU

To this point in the discussion relatively little has been said about the houschold per se, cxcept 1o
claim that the overall decision-making framework is “household-based”, and to identify the
household as a DMU sub-class. To a large extent the discussion concerung DMU’s, and their
DMA’s (stress manager, scheduler, and projects), holds at the household level as well as the person
level. Indeed, this is one of the strengths of the DMU concept, that it applies equally well at either
level, The household is, however, also different from the person in numerous ways. Most nolably, il
is not a biological, sentient being, but rather a social unit — a collection of logically related
individuals (often, but not always, a family). As such, households do not “de™ anything; it is their
members that undertake activities “*on behalf™ of the houschold.
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The Household DMU

Nevertheless, it is very convenient from a modelling point of view to treat the houschold as a
sentient, wilful agent that is, in certain circumstances, able to “act” directly into the world, rather
than have to model the actions of the individual household members who actually undertake these
acts. A typical example of this is residential search. While it is individual household members who
actually inspect vacancies, make bids on houses, sign purchase agreements, etc., it is far simpler, as
well as sufficient for modelling purposes, to think of “the houschold™ doing these activities directly.

Figure 9.5 sketches the household DMU and its key functions. As indicated in this figure, the
household scheduler is responsible for controlling the scheduling of household-level activities (i.e.,
those activities episodes that are generated by household projects). This involves coordinating with
the schedulers of household members to determine feasible allocations of these activities among the
person-level provisional schedules. Thus, the household scheduler is quite different in its internal
workings than the person scheduler. Types of household activities include: joint activities, in which
two or more household members jointly participate; serve-dependent activities, in which an
independent member (e.g., an adult) assists a dependent member (e.g., a child) undertake an
activity; ride-sharing, in which one household member drives one or more other members to their
activity location; and individual activities, in which a single household member undertakes a
household-level activity (e.g., mow the lawn).
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Mosl resource management of interest within an integrated urban model {houscs, cars, cle.} oceurs
at the houschold level. Not only does the houschold allocate existing, houschold resources (e 2.,
which driver gets the single family car in the case of a scheduling conflict), but it is the household
that must decide when and how these commonly held resources should be changed in some way
{e.g., move to a new place of residence). Further, certain person-level decisions that have significant
impact on houschold-level resourees (e.g.., quit one’s job) should be “vetled™ at the houschold level

in order (o assess the overall ramifications of this decision.

Madelling household-level decision-making is not a well-developed tield, especially in terms of
modelling cither inter-personal conflict resolution or inler-personal collaboration in joint activilics.
In the travel demand field the vast majority of models are person-based, with, at most, a tew
household-level variables included in the model it an attempt to capture (inevitably in a rather ad
hoc [ashion) al least some houschold-level cffeets. Examples of studies mvolving explicit
household-level decision-making include: Miller and Rhamey (1987), Golob {1999}, Scott (20013,
Gliche and Koppelman {2002), and Zhang ef al. {2002). As indicated by the dates on most of these
references, most of household-based work is very recent. [n addition. residential location choice
models within existing land use models are houschold-based, although in all such cases the
houschold “agent™ 15 not a very well delined object. A considerable literature in howusehold
economics also exists that might prove useful in developing operational models of household
DMU’s, Building upon the seminal work of Becker (1963), various rescarchers have attempted to
build micro-economic models of household interactions and decision-making, recent examples of
which include Manski (2000} and Ermish {2003). Overall, however, it is fair to say that much work
remains to be done before satistactory operational dynamic, houschold-level decision-making

models of the sort envisioned within this chapter have been achieved.

SUMMARY COMMENTS AND FUTURE WORK

This chapter has sketched a comprehensive model of an Integrated model of person- and household-
level decision-making. ‘The model is continuous in time and deals with both “short-run” and “long-
run” deeisions and actions on the part of houscholds and their individual members. It is
comprehensive in that all person- and household-based actions are potentially included within its
[ramework. The model is cvent-driven in that decisions always oceur in response o cvenls
(including prior decisions which are, themselves, events). A fundamental organizing principle of the
model 15 the concept of the project, which is defined as a logically connected set of activitics. All

activities are “generated”, in the first instance, out of projects.
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The fundamental unit of analysis is the decision-making unit {DMU). Both persons and households
are DMU sub-classes. A DML is an intelligent agent that is able to: perceive the world around it
acquire and use resources; schedule its activities; and act into the world. A DMU further sub-
divides into three decision-making agents {IDMA); an activity scheduler; a stress (resource)
manager; and a set of project task managers. These DMA’s interact to determine the DMU’s
behaviour. They share {and communicate through) a common DMU knowledge base. The DMU
interacts with collaborating DMU’s and the world at large via a perceptual interface (hat handles all
inter-agent information exchange and filtering.

Research is ongoing at the University of Toronto to test this conceptual framework within
operational models. The Travel and Activity Scheduler for Ilousehold Agents (TASIIA) represents
d prototype implementation of the activity scheduler DMA, as well as project-based activity agenda
formation, that is undergoing continuous testing and elaboration (Miller and Roorda, 2003; Roorda
et al., 2004; Miller er af., 2005). The Integrated Land Use, Transportation, Environment (ILUTE)
model (Miller and Salvini, 2001; Salvini, 2003; Salvini and Miller, 2004) similarly represents an
ongoing research effort to develop an integrated, comprehensive micro-simulation model of urban
spatial processes {within which TASHA (s but one component) using both person and household
agenis consistent with the conceptual framework presented in this chapter. In particular, stress-
based resource management {residential mobility decisions; household auto transactions) is heing

explicitly explored and tested.
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10

STRATEGIES FOR RESOLVING ACTIVITY
SCHEDULING CONFLICTS: AN EMPIRICAL
ANALYSIS

Matthew Roorda, University of Toronto, Toronte, Canuda

Eric J. Miller, University of Toronto, Toronto, Carnada

INTRODUCTION

Modelling the process of activity scheduling has been difficult to do because there have been
relalively few reliable data sources through which the day-to-day scheduling decision making
process has been observed, Conflict resolution, the process of deciding what 1o do when multiple
activity opportunities are available at the same time, requires information about the activity
schedule before and after the conflicting opportunities arose, With new data from an activity
scheduling pancl survey in Toronto, we now have an opportunity Lo better understand conflict

resolution outcomes, and use that understanding te improve models of this process.

There has been debate about the modelling of activity scheduling in the travel behaviour research
community. Two methods of meodclling activity schedules have cmerged. The cconomctric
modelling approach, which is almost always based on random utility maximization, has been
applicd to individual components of activity and travel behaviour, including activity requency, task
allocation, activity duration, departure time, travel party and trip chaining (see Arentze and
Timmermans, 2000 for a comprehensive review). Models that are more comptehensive have also
been developed based on random utilily maximization, in which choices are made between

Progress in Activity-Based Analysis edited by H. Timmermans
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alternative patterns of activity/travel {e.g. Jones et af, 1983; Recker et af, 1986a, [986b;
Kawakami and Isobe, 1990). These approaches have been eriticised for their lack of an underlying
behavioural theory (Gérling, 1994).

It has been argued that understanding the underlying process of activity scheduling is crucial for a
more accurate prediction of activity travel patterns (Pas, 1985; Jones e af, 1990; Axhausen and
Giirling, 1992; Lee-Gosselin, 1996; Axhausen, 1998; Bhat and Lawton, 2000). In response Lo this
view, computational process models have been proposed as an alternative to randem utility
maximization apptoaches. Computational process models conceptualize choices as an outcome of a
set of rules, or heuristics, Examples of rule-based computational process models include
SCIEDULER (Gérling ef «f.. 1989}, SMASH (FCttema ef of.. 1993), AMOS (Pendyala ef of., 1995,
1998) and .Afbarross (Arentze and Timmermans, 2000, 2004). The Travel-Activity Scheduling
model for Household Agents (TASIHA) 1s a computational model of activity scheduling that is the
subject of research at University of Toronto {Miller and Roorda, 2003; Roorda er e, 2005).

One of the key difficulties in developing a credible rule-based model of activity scheduling is that it
is difficult to observe the scheduling process. Indeed, an obscrved pattern of activitics and travel
can be the outcome of countless long-term and short-term decisions, many of which are done
subconsciously. Ilence, rule bases for activity scheduling cannot adequately be assessed with
traditional activity-based surveys that [ocus only on the charactenistics ol the Noal executed
schedule. Observation of the process of activity scheduling is required to extract rules or strategies
employed by individuals. A number of methods have been attempted to cbserve this process and to
ey to develop decision-making rules appropriate 10 the activity scheduling problem. Examples
include MAGIC (Ettema et aif., 1994) and CIIASE (Doherty and Miller, 2000).

This paper reports on an attempl to usc dala from the first wave of a multiple instrument panel
survey conducted in Toronto (Roorda and Miller, 2004} to assess rules for activity rescheduling in
response Lo scheduling conflicts. The CHASE survey mstrument employed in the first wave
{Doherty ef al. 2004) resulted in revealed activity rescheduling scenarios. Two types of rules are
considered in the analysis, Firsi, the concept of activity precedence is defined and analyzed; does
activity precedence play an important role in resolving conflicts, is activity type a valid measure for
activity precedence, and il so, what kinds ol aclivilies are more likely to be modified or deleted
when a scheduling confliet accurs? Sccond, strategics for rescheduling of the activities are assessed.
Given that a conflict has occurred, is the activity moved to another time in the same day, is it moved
to another day, or is the activity skipped altogether? The intention of this analysis (s to provide an
empirical basis for enhancing the system of rules used in the prototype TASHA model of activity

and travel scheduling.
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CONCEPTS OF ACTIVITY PRIORITY, PRECEDENCE AND CONFLICT
RESOLUTION FOR TASHA

TASHA models the process of schedule building by:

Generating activities with attributes based on empirical distributions,
Inserting those activities into project agendas, and

3. Constructing person schedules by moving activities from project agendas to be inserted into
person schedules

The process of insertion in steps 2 and 3, above, can result in scheduling conflicts when two
activities are generated at overlapping times. Conflicts arise when a “competing” activity, which is
a new activity being inserted into the schedule, overlaps in time with an “original” activity, which

already exists in the schedule. Three different classes of conflict arise, as shown in Figure 10.1:
Class 1 — A competing activity being added to the schedule is added within an original activity

Class 2 — A competing activity being added partially overlaps one or two original activities
Class 3 — A competing activity completely overlaps one or more shorter original activities

[ Original

| Class 1 - Added within

v

Original | Class 2 — Partial overlap

v

\ Competing I

Original | Class 3 = Complete Overlap

>
»

Figure 10.1
Classes of Activity Conflict
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The coneepts ol “aclivilty priority” and “activity precedence” play a large role in the cumrent
implementation of TASHA, Activities are moved from project agendas to form person schedules in
order of priority/precedence (until the writing of this paper, the two terms had not been
dilferentiated in TASHA), which were assumed (o be hnked o broad activity type. The order in
which activities are added to the schedule clearly has an influence on the predicted activity

schedule; the process is path-dependent.

Given our current goal of testing the assumptions made in TASHA, it is important to clarify our
conceptualizations of priority and precedence. Priority is a term that holds connotations of
importance, of “utility” (the satisfaction or benefit one obtaing by participating in an activity) and of
the degree of commitment to other partics. Precedence, on the other hand, 1s the degree 1o which an
activity is planned at an earlier point in time than other activities. An activity’s precedence may be
related to its place in a “normal routing”™ (activities that are usually done at around the same time
and place without thinking too much about their planning), and its “fixity™ {the extent to which the
attributes of the activity may not be changed, once they are planned), in addition to any influence of

the activity's utility/importance.

Fxamples of activities with high and low levels of priority and precedence are shown in Table 10,1,
It is noted that the fixity of an activity in time and space (i.e. the extent to which an activity is non-
flexible) is not considered here to be an clement of priority. In fact, high priority activitics may be
very flexible. Work might be have a high priority (important, involving commitment), vet one may
indeed have the option to work at times and locations of one’s choosing. A highly non-flexible
activity might register very low in terms of priority if the activity is considered unimportant (for
example, a one-time showing of a boring movie at 7:00pm at the theatre}. Clearly flexibility can be
related to commitments and contracts one has with another party regarding a particular activity, but
it is not fixity per se that determines the priority of the activity.

Table 10.1
A Typology of Priority and Preference

High Precedence Low Precedence
High Priority Preplanned, high utility activities, Spontaneously planned, high utility activities,
especially with commitment to others especially with commitment to others
{e.p. doctors appointment) {e.p. pick up sick child from school)
Low Priorily Routine or preplamed activities with Spontaneously planned activities with less utility
less utility, and less comnmitment Lo and less comniitment o others (e.g. shopping at

others {e.g. watch favourite TV show) corncrstore for a magazinc}
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Similarly, the Mexibility of an activily can be distinguished from its precedence, although the two
may be related. One might have, as part of ong’s regular routing, a stop at the coffec shop on the
way home from work. Yet. this may be an entirely flexible activity; one could just as easily go for
colfee al 4 different time or location, with litlle consequence. When activities conlliet, clements of
pricrity, precedence and flexibility all play a part in determining the scheduling outcome.
Intuitively, activitics that have lower priority and higher Pexibility are more likely to be adjusted
than fixed, high priority activitics, Furthermore, those activitics that have higher precedence are
more likely to be modified simply because they are already part of a schedule into which more
spontlancous aclivitics must [it. Ceteris paribus, activitics with high precedence are more likely to
be planned in advance, they are more likely to be the “original™ activity in a scheduling conflict,
and they are more likely 1o be modified or skipped, particularly il they are flexible or low priority
activities. Priority of ant activity 1s a latent variable. It is very difficult, if not impossible, to measure
and no cmpirical analysis of activity priority can be provided in this analysis. Precedence is
measurable using CHASE: we observe the time when each activity was entered into the schedule.
However, measures of prececdence are not available in traditional activity- or trip-bascd surveys, on
which models such as TASHA are based. Therefore, we need to assess whether another activity
attribute, such as broad activity type is a sufficient measure of precedence to explain the outcomes
of scheduling conflicts (and thus 15 appropriate as clear rule for scheduling), or whether a more
complex treatment is required.

TASIIA, or any rule-based model which attempts to predict scheduling/rescheduling behaviour,
must also represent the process of conflict resolution. Once it is decided which of two conflicting
activitics is displaced, a course of action must be chosen. Should the activity be moved to another
time in the same day, should it be moved to another day, should the duration be shortened, should
the activity be split, or should it be skipped altogether? The rules for activity rescheduling in the
prototype implementation of TASHA are numercus and depend on the conflict class and the
availability of nearby “gaps”™ in the schedule. In cases of conflict, the lower priority aclivity is
shifted to an adjacent gap in the schedule, it onc exists. If a gap does not exist, then ane is created
by shifting the adjacent activity provided there is sufficient “room™ in the schedule to take place
withoul signiticantly reducing activity durations, Onge an activity i3 successfully added 0 a
schedule in TASIIA, it is never subsequently deleted or moved te another day.

Dara

The first wave of a three-wave pancl survey undertaken in Toronte was designed to assess the

mechanics of schedule building with particular focus on how scheduling conflicts are resolved as
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they arisc. The pancl survey was conducted with an initial sample of 270 houscholds in the Toronto
Area at one-year intervals over the period from 2002 to 2005. The panel survey is used to collect
core data, which are comtmon data gathered for every wave in the panel, and additional data
clements, which are unique to cach wave, Core data mclude information about the residence, the
household structure, attributes of the people in the household, and the vehicles and other modes of
transportation available to the houschold. In all waves, a minimum 2-day activity schedule is
collected tor multiple household members including:

* All activities completed for all participating adult household members,

= Activity description,

& Start time, duration, and location,

*  Mode(s) of transportation, estimated travel time, and passengers in the vehicle,
= Other people involved in the activity, and

¢ Children under the responden(’s care at the Ume of the activity

In the [irst wave, a seven-day computerized aclivily diary is scll-reported by the respondent in
customized scheduling software entitled CHASE" {Doherty and Miller, 2000). The application of
the CIIASE survey process to the first wave of the Toronto Area Panel Survey has been
documented in detail by Doherty ¢f af. {(2004),

In short, the CHASE software records schedule adjustiments made by respondents over the weelk,
including activity additions, deletions and modifications. An activity addition in CITASE occurs
when respondents enter an activity into their schedule for the first time. An activity modification
accurs when one or more of the attributes of an activity in the schedule are changed, including
changes to starl Uime, duration, mode, location, or the other persons with home the activity is done.
Deletions refer to activities that are removed from the 7-day schedule entirely. Deletions can

include activities that are moved to another week or are done by another person.

ANALYSIS OF RESCHEDULING RULES

Summary of Activity Scheduling
The CIIASE data can be summarized as follows:

Number of respending households: 264%
Number of responding persons: 423%
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Total activity operations in 7-day schedule; 40756 (13.8 operations/person-day)
Total number of activity additions 35644 (87.5%)
Total number of activity deletions 755 (1.8%)
Total numbecr of activity modifications 4359 (10.7%)

Total number of executed activities 34880 {11.8 activities/person-day)

* 6 househokls and 30 persons were eliminated from this analysis due to poor data guality

OF the deleted activitics, 465 (62%) could be linked with an activity of the same type al the same
location that was “added™ to the schedule. [t the addition was entered into the cotmputer within one
hour of “deletion™ operation, the two activities are considered to be linked (and is treated as a

maoditication),

One of the drawbacks of the CHASE data is that only a subset of possible activity conflicts and the
resulting modifications and deletions are observed. Consider the following example, A friend calls
to po for dintter with a CHASE respondent on Friday evening, but she had already planned to go to
a movic with her brother at that time. Several solutions o this scheduling conflict exist, enly some
of which would be observed in the CHASE database. If the respondent decided not to go for dinner
with the friend, thet the activity would not have been entered into the CHASE database. If she
decided to have dinner earlier than suggested, then the activity would have been entered into the
CITAST. database at a different time (likely into a gap in her schedule), but would not have been
captured as a contlict. The conflict would only have been captured in CHASE if the movie was
rescheduled or skipped completely beecause of the conflict and the dinner plan was entered into the
schedule. [ndeed, it would be very difficult o try to model all potential activity conflicts, since one
is arguably screening a constant stream of possible opportunities subconsciously.

1t 15 also important to note that net all activity modifications are made as the result of a conflict with
another higher priority activity. Activities can be modified because of traffic delays, changes to
plans made by other people, or simple adjustments in the attributes of the activity (e.g. “I had
nothing else planned so 1T spent an extra hour studying econometrics at the library™). Yet, the
concern for this rescarch is on how scheduling conflicts are handled.

The identification of activity confliets in the CHASE database is not straightforward, and requires
some assumptions about what constitutes a conflict. For the purposes of this analysis, the following
criteria are vsed to define a conflict;

&« The competing activity overlaps in time with the original activity in a manner described by one
of the conflict classes shown in Figure 10,1,
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s The competing activity is entered by the respendent at a point in time after the initial entry of

the original activity,

* A valid adjustment was made to the original activity such that the conflict was resolved. Valid

adjustments included: moving the activity 1o another day, shilling the sctivily o another parl of

the day such that there was no overlap with the competing activity, or deleting the activity

outrighi,

# The adjustment to the original activity is entered by the respondent not more than one hour

belore the entry of the competing activity.

The total number of conflicts discovered in the CHASE duatabase is as follows:

Class | (added withind 1023
Class 2 — {partial overlap) 445
Class 3 (complete overlap) 449
Total 1917

Of these 1917 conflicts, there were cases where a competing activity conflicted with more than one

otiginal activity and cases where more than one competing activity conflicted with

one original

aclivity. The total number of activities represented in our database of conlicts is shown below:

Total number of competing activities 1678
Total number of original activities 1279
Total number of conflicts 1917

Table 10.2
Original Activities Ordered by Probability of Modification / Deletion

Activity Group Total Activity Additions Tu[kg(:r:;]r::'t':r of (;rrL:tg?:];ltiE:t?:s DisF[’JI:':él:}ll;nt
Wark/School 3300 9.5% 423 22.1% 235 17.6% 6.6%
Drop-offiPick-up 1726 4.5% 91 4.7% 73 57 4.2%
Recreation’Entertainment 79 19.9% 402 21.0% 277 21.7% 3.9%
Houscheld Obligations 4985 14.0% 227 11.8% 168 13.1% 3.4%
Social 1818 5.0% L3 6.0% 38 4.5% 3.2%
Services 805 2.3% 39 2.0% 25 2,0% 3.1%
Basic Needs 13906 39.0% 553 29.0% 405 3L 2.9%
Shopping 1240 3.5% 4% 2.5% 15 2.7% 2.8%
Other 695 1.9% 17 0.9% 13 1.0% 1.9%
Tolal 35644 100.0% 1917 100.0% 1279 100.0% 3.6%
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Table 10.2 shows the proportion of “original™ activities that are displaced by another activity with
which it is in conflict. It shows that work/school, drop-offipickup and recreation/entertainment arc
the activities thal are most likely o be displaced. Overall, 3.6% ol aclivilies were displaced by
another aetivity {recognizing that this 1s an underestimate of all possible conflicts, as described on
the previous page). These activity modifications or deletions represent about 1/3 of all activities that
are modified at least onee, which indicates that many modifications are made due to changing
opportunities or constraints that do not relate fo other conflicting activities.

Assessment of Activity Precedenee

One way of assessing the precedence of an activity is to compare the number of conflicts in which
activities of the same type are the competing activity {i.e. doing the displacing) to the number where
they are the original activity (i.e. being displaced). Table 10.3 shows the number of scheduling
conflicts that oceur belween competing and original aclivities, grouped by broad activity type. I
activities are ordered from highest to lowest precedence in this matrix, then the entries above the
main diagonal are conflicts where the lower precedence activity {which are entered later) displaces
a higher precedence activity (which is entered earlier). Those elements below the main diagonal are
conflicts where a higher precedence activity displaces one with lower precedence. If activity type
was a perfect descriptor of precedence, then the activities types could be arranged such that the
lower half of the matrix would be zeros. In this case, a simple rule could be developed for the order
that activities are added into the schedule.

In Table 0.3, activitics arc ordered optimally, (o maximize the sum of the clements above the
diagonal. Yet, 531 (28%) of conflicting activities remain below the main diagonal, indicating that
there 1s significant roem for improvement in assessing precedence. We also recogmize that Tor the
428 (22%) of conflicting activities on the diagonal. with two activities of the same type in conflict,
we would need additional rules, using attributes other than activity type te specify which activity
has higher precedence. [n an attempt to improve this result, the matrix was cross-classified with sex,
and subseguently with income. For each classification, optimal precedence rankings were
developed and the number of “violations” was assessed, as shown in Table 10.4. Two observations
can be made about this table. First, the pracedence rankings change slightly for different groups of
people, but major differences are not evident, Work/school does appear as the highesi precedence
activity for all groups of people regardless of income or gender. On the other hand., more
“discretienary™ activities such as shopping, services and other activities are consistently found to
have low precedence. As the number of ohservations decreases within a particular group of persons
the data within the matrix become more sparse, leading to less confidence in the resulting ranking.
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Table 10.3
Optimal Precedence Ranking for Conflicting Activities

R Activity Group - Activity Group - Competing Activity
a Original Activity Work/ Basic Recr/ Drop-off/ Social Household Services Other Shop- Total
T]: School Needs Entert. Pick-up Obligations ping
1 Work/School 49 113 92 S5 22 33 23 6 28 423
2 Basic Needs 43 215 115 13 48 68 24 20 9 535
3 Recr/Entert. 39 108 82 £S 33 46 22 23! 24 402
4 Drop-off/Pick-up 24 18 8 4 5 17 3 4 8 91
5 Social 9 30 24 24 18 22 2 4 4 115
6 Hhld Obligations 32 43 38 13 18 43 13 6 16 227
7 Services 4 5 3 2 P/ 8 6 1 8 39
8 Other 1 6 6 1 1 0 1 1 17
9 Shopping 6 7 14 1 3 8 3 1 5 48
Total 207 545 382 117 150 251 96 66 103 1917

Shading indicates for each pair of activity groups, the "competing"/"original” ordering observed more frequently

Total number of entries where the lower precedence activity displaces the higher precedence activity 958  50.0%
Total number on the diagonal (same activity group) 428 223%
Total number of entries where the higher precedence activity displaces the lower precedence activity 531 27.7%

Some of the results that look somewhat anomalous for low-income groups (note the positions of
household obligations and other activities) are partially explained by the low number of total
conflict observations for low-income households (36 and 17 for these two activity types,
respectively). Overall, evidence in Table 10.4 shows that, in terms of activity precedence rankings,
the differences between people of different genders and incomes are minor and that the use of a

single rule base for different people may be an appropriate simplification.

Second, with a single rule base for activity precedence, we observe violations at a rate of 27.7%.
Yet, by disaggregating by sex or income, we can only obtain marginal improvements in this
violation rate (to 27.4% and 25.7%, respectively). While the optimal rule base does explain the
majority of choices, it is clear that precedence lists based only on broad activity type are not
sufficient to fully predict the order in which activities are added to the schedule. To fully explain the
outcome of scheduling conflicts, a more sophisticated measure for activity precedence is required.
Two methods are suggested for further research based on these results.

(a) An improved measure of activity precedence could be developed that is a function of activity
type and other key attributes that are elements of precedence. These elements could include the
level of commitment to other people, the degree of pre-planning associated with this activity, the
difficulty associated with rescheduling the activity, and so on. Such an improved measure could be
used to develop better rules for predicting the outcome of scheduling conflicts.
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Table 10.4
Optimal Precedence Rankings by Age and Household Income

Ciender Income
Medium

All Conllicts Males Females Low Income Income  1ligh Income
($35-60K

(<=%35K Can) Can) (=60K Can)

Work/School  Worki/Scheol  WorksSchool  Work/School  Work/School  Work/School
Recreation/ Recreation/ Recreation/

Basic Needs  Basic Needs Entertaimment Entertginment. Eoterlainment Basic Noods
Recreation’  Recreation/ Drop-offy Other Drop-off! Recreation/
QOptimal PPrecedence Lintertainment  Entertainment Pick-up Pigk-np Iintertainment
Rankings ol op-olli
Dr_op off HOL.lsch.Uld_ Basic Needs  Basie Needs  Basic Needs DI.OF oll
(Rule: If activicics high Pick-up Obligations Pick-up
ule: If activities higher ) . ' ,
in the Jist conflict with Social L?)]_OE'MH Social L;xp‘[;-om lloll_lstehold. Sacial
activities lower in the list, 1ek-up ick-up Obligations
those Tower in the list are Houschold . Houscheld ) Houschold
modified or deleted) Obligations Soctal Obligations Shopping Social Obligations
Serviees Shopping Services Saouial Services Other
Other Other Shopping Services Shopping Shopping
" —— Houschold . "
Shopping Scrvices Other Oblisations Other Scrvices
Total Conflicts 1917 644 1228 3z7 573 G930
Total Rule Violations 331 148 365 77 143 254
% Rule Violations 27.7% 23.0% 29.7% 23.5% 25.3% 26.7%
Overall % Rule Vielations 27.7% 27 4% 25.7%

b) There are some altributes of activities that have an influence on the activity's precedence rhat
cannot be observed. Currently, with a simple specification of precedence based only on broad
aclivity type, we are able 1o explain precedence with a rule violation rate of 27.7% (although we
recognize that when two activities of the same type are in conflict, our rule base does not make any
prediction about precedence). While the violation rate could be improved with a better specification
of precedence, uncertainly will always exisl. This uncertainty could be incorporated into the
measure of precedence by wmeans of an error term, such that the rule base for activity
scheduling/rescheduling becomes more stochastic in nature.

Strategies Employed to Resolve Scheduling Confliets
In the CHASE dalabasc, confllict resolution strategics could be deternuned by observing the

modification or deletion of the original activity that was displaced by the competing activity. A
summary of the strategies used to resolve each of the conflicts is shown in Table 14.5.
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Table 10.5
Strategies Used to Resolve Conflicts

Deseription of Strategy Total Nurllher of T(fn!l l\'umh_er_‘ '?f

: Conflicts Original Activitics
Maodify activily within the same day 1287 67.7% KRH 69.4%
Shorten duration of activity 463 23.7% 330 2538%
Shift activity w another part ol the day o0 4. 7% 75 5.9%
Shitt and shorten duration of activity 204 10.6% 118 9.2%
Shift and lengihen duration of activity 110 5.7% 83 6.6%
Split the activity 400 20.9% 280 21.9%
Move activity to another day 233 12.2% 157 12.3%
Skip activity 387 20.2% 234 18.34%
{Other 0 0.0% { 0.0%
Tatal 1917 100% 1279 100%

It is noted that in some cascs, some judgement was required to properly classify the cenflict. The
first source of ambiguity existed when a respondent deleted an activity, and some time later added
another activity of the same type at the same location. If the respondent made the addition within
one hour ol the deletion, the two operations were considered a single modification; otherwise, the
deletion and addition were assumed unrelated. Similarly, an activity was assumed to be “split” into
two activitics if the original activity was shortened, and a new activily ol the same type was added

at the same location such that the result resembled a split activity.

Table 10.6
Conflict Resolution Strategies by Conflict Class

Wave | (Revealed Response)}

Description of Strategy Class 1 - Class _2 - Class 3 -
(added within) (partial (eomplete Tutal
averlap} overlap)

Modity activity within the same day 831 Bl2% 291 e56% 174 3BE% 1297 677
Shorten duration of activity 337 324% 156 35.1% 0 D.0% 493 25.7%
Shitt activity to another part of the day 8 08% 24 34% 58 129% 90 47
Shift and shorten duration of activity 93 93% 57 128% 32 1le% 204 10.6%
Shitt and lengthen duration of activity 23 22% 26 5R% 6l 136% 1D 5T
Split the activity g 3e0% 2Iv 0.5% 3 0.7% M0 20.9%

Maove activity to another day 63 6.2% 58 13.0% 112 249% 233 12.2%

Skip activity 129 126% 95 21.3% 163 36.3% 387 20.2%

Other 0 0.0% 4 0.0% 0 0.0% 0 0.0%

Total 1023 100% 445 100% 449  100% 1917 100%




Resolving activity scheduling conflicts 213

Table 10.7
Conflict Resolution Strategics by Activity Type

Activity Group — Move activity within Move activity to

Ovriginal Activity the same day another day Skip Activity Total
Basic Needs 423 76.1% 68 12.2% 63 11.7% 556
Drop-offiPick-up 25 31.6% 19 24.1% 3s 14.3% 79
Houschold Obligations 147 63.6% 37 16.0% 47 20.3% 231
Other 1% 48.7% 8 20.5% 12 30.8% 39
Regreationd/linterlainment 258 6:4,7% 61 15.3% 80 20,1% 399
Services [ F4% l 3.7% 7 23.9% 27
Shopplng 27 55.1% 10 20.4% 12 24.5% 49
Social 83 67.5% & 6.5% 3 26.0% 123
Work/Sehool 296 71.5% 21 5.1% 97 234% 414
Total 1297 67, 7% 233 12.2% 387 20.2% 1917

Most conflicts are resolved by shitting activities within the same day (68%). 12% are resolved by
moving the aclivity 1o snother day and the remuaining 20% are resolved by deleling the activity
altogether. Skipped activities do not imply that the activity never gets done. In fact, such an activity
could possibly be donc by the same person in a different week (which we do not observe in a one
week survey), by another househeld or non-household member, or could be replaced by another
type of activity that meets the samne goal. A skipped activity, here, is defined as an activity that is
not immediately replaced by another activity of the same type at the same location by the same
person within the same week. The resolution of a conflict is related 1o the conflict class, as shown in
Table 10.6. If a complete overlap (i.e. class 3) occurs, then the activity is moved to another day or
skipped outright over 60% of the time, However, if the “‘competing activity™ falls within the
original activity, then the activity is shortened or moved within the same day over 80% of the time.

Some differences are also noticeable between resolution strategies for different activity types, as
shown in Table 10.7. Activities that are most likely to be skipped include drop-offfpickup activities,
shopping, social and other activitics. These activities are largely discretionary activitics, with the
exception, perhaps, of the drop-olT and pick up ol children. For these activities, it would be likely
that responsibility has been transterred to another person, or another strategy found to serve the
children. With the exception of social activities, these discretionary activities are also highly likely
to be moved to another day and somewhat less likely to be shifted around in the same day. Those
aclivitics that were more likely to have timing and/or duration changed within the same day
included work/school, services and basic needs. Work/school and basic needs are more pre-planned
in nature and tend to form the basic, routing skeleton for the schedule, Thus, fine-tuning, as more
spontaneous activities are added to the schedule, would reasonably cause these changes.
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Proportion in each Conflict Class

1

00%
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Figure 10.2

The Proportion of Conflict Classes by Original Activity Duration
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Figure 10.3
Conflict Resolution Strategies by Original Activity Duration
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Clearly, duration ol the activity must play 4 tole in how activitics arc rescheduled. First, the
duration of an activity aftects the kinds of conflicts that occur with the activity. Figure [0.2 shows
how short duration “original™ activities are far more likely to be involved in conflicts with other
activitics that overlap them completely (i.c. Class 3 conflicts). As duration increascs, the incidence
of partial overlaps increases {i.e. Class 2 conflicts), and for “original” activities that are longer than
2 hours in duration, the majority of conflicts arc with compeling activitics that fall entircly within
the original activity (1.e. Class | conflicts).

The contlict resolution strategy is also related to the duration of the activity, as shown in Figure
10.3. As duration increases, opportunities to shorten the duration of or split the activity increase
notably., Opportunitics to shift the activity within the same day tend to decrease with increasing
activity duration, especially when the activity’s duration is not simultaneously shortened. The way
that a conflict is resolved appears (o be related, al least, o the kind of conflict, and characteristics of
the activity, including its duration and the activity type. Yet each of these attributes are related to
cach other, which makes it difficult to sort out the true causal factors behind the choice of a conflict
resoluhion strategy without a multivariate analysis. Furthermore, there are clearly other influences
on the kinds of strategies chosen including the characteristics of ihe schedule {where are there
“gaps” in the schedule that might accommodate a shified activity?), and characteristics of the
person (are certain persons more prone to fill their schedule, while others are more likely to reject
opportunities that arise?). These influences are potential subjects for further research, and are not
discussed in this paper. While analysis continues to sort out potential influences on rescheduling
behaviour, it is certain is that no single atiribute of the activity, the conflict, the schedule or the
person can, by itself, explain the resolution strategy chosen.

IMPLICATIONS FOR THE TASHA SCHEDULING PROCESS MODEL

The prototype version of the Travel and Activity Scheduler for Houschold Agents (TASHA)
assumes a set of rules for activity rescheduling in response to scheduling contlicts (see Miller and
Roorda, 2003 lor details). Some obscrvations can be made about the appropriatcness of these
assumptions, in light of the empirical analysis provided in this paper. First, precedence rankings for
activity tvpes assumed in TASHA can be comparced to the optimal precedence rankings found in the
CHASE data. A comparison is shown in Figure 10.4. First, it is to be noted that the activity
classifications used in TASHA are limited by what is available in the travel survey data upon which
it 1s based, therefore, the activity classifications are not as precise as those found in CHASE, in

particular for the “other™ category.
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TASHA CHASE

(Assumed ranking) {Optimal observed ranking)

At home acrivit]es'_ Work/school
Work business /\4 Basic needs
Primary work . .
Y Recreation/entertainment

All other work

School Dropofﬂpickup
Social

Other* “+——» Household Obligations**
Services
Other

Shopping* 4—p Shopping

* In TASHA, a further dilTerentiation s assumued between individual and joint
shopping and other activities. with joint activities being assigned a higher precedence
#*¥ In CHASE, some houschold obligations done al bome betler correspond e ™At home
activities™ in TASIIA
Figure 10.4

Precedence Rankings Assumed in TASHA vs, those Observed in CITASE

Second, the currently assumed precedence rankings in TASHA correspond reasonably well to those
found in the CHASE survey data. The clear exception is the number one ranking of at-home
activitics (the defaull activity in TASHA generated activity schedules, which in CHASE are found
to have lower ranking than work/school. Scheduling strategies found in CHASE indicate that the
TASIIA model does not allow for the full range of observed rescheduling responses. Contlicts in
TASHA are resolved by a) shortening the duration of the activity, b) shifiing the activity 1o another
part of the day, ¢) shifting and shortening the activity or d) splitting the activity. Once they have
been added to the schedule, TASHA daes nof allow activities to be shifted and lengthened, moved
to another day, or skipped or shifted to another person’s schedule, These omissions indicate a need
to extend the time horizon of the TASIIA model from 24 hours to one week and to improve the
representation of household interactions in the model to provide the appropriate structure to allow
for these rescheduling responscs.

CONCLUSIONS

Several conclusions can be made through the analysis of CHASE data from the [irst wave of the

Toronto Arca Panel Survey:
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It is feasible to observe conflict resolution strategies using revealed response data from the
CHASE survey insirument.

About onie third of all activity modifications are made because of an activity confliet. Once an
activity 1s emlered into the schedule there is, overall, at least a 3.6% chance that 1 is
subsequently modified or deleted because of a conflicting activity,

Precedence, the degree to which an activity is routine or pre-planned, can be simply
approximaled using broad activily groups, yielding the {cllowing “optimal™ precedence ranking:
work/school, basic needs, recreation/ entertainment, drop-off/pickup, social, household
obligations, services, other, shopping. This ranking is vielated 27.7% of the time in the CHASE
data.

The precedence ranking is difficult to improve significantly by cross-classifying the data by sex
or ingcome, and the rankings themselves do not change very much across groups. Therefore, a
single activity precedence ranking for all individuals may be an appropriate simplification.
Assessmenl of Lhe strategies used to resolve the conllict (once the displaced activity is chosen)
shows that most conflicts (68%) are resolved by moving the activity within the same day. 12%
are moved to another day and 20% are skipped, moved to another day outside the survey week
or done by another person.

Systematic differences in conflict resolution strategy can be found for different kinds of
conflicts, for different activity tvpes and for different activity durations. No single attribute of
the activity, the confliet, the schedule or the person can, by itself, explain the resolution strategy
chosen.

Activity precedence rankings in TASHA are similar to those found in CHASE with the
exeeption of in-home activitics.

A significant proportion of conflicts are resolved by moving activities to another day {12%),
skipping activities {or shifting them to another week or another person) (20%), and shifting and
lengthening activities {(6%). TASHA s prototype version docs not allow for these responses.

The following suggestions are provided for further research hased on these results.

An improved measure of activity precedence could be developed that is a function of activity
type and other key attributes that are elements of precedence (e.g. level of commitment to ather
people, the degree of pre-planning, ctc.). Such an improved measure could be used to develop
betier rules for predicting the outcome of scheduling confliets.

There are some attributes of activities that have an influence on the activity’s precedence that
camnot be abserved, hence uncertainty will always exist in our measure of precedence. This
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uncertainty could be incerporated into the measure ol precedence by means of an crror term,
such that the rule base for activity scheduling/rescheduling becomes maore stochastic in nature.

* This analysis of conflict resolution strategies has focussed on the influence of attributes of the
activity and the nature of the scheduling contlict. Other influences include the characteristics of
the schedule (“gaps™ in the schedule that might accommodate a shifted activity?), and
chargcteristics of the person (are certain persons more prone 1o fill their schedule, while others
are more likely to reject oppartunities that arise?). These should be further explored.

e The time horizon of the TASHA model should be extended from 24 hours to one week and the
representation of houscheld interaclions in the model should be improved to allow Tor a full

range of rescheduling responses.
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Eric Pefersen, PR Consult. Parsons Brinckerhoff Inc. Chicago, IL, US
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INTRODUCTION

[ntra-household interactions constitute an important aspect in modelling activity and travel-related
deeisions. Recognition of this importance has receently produced a growing body of research on
various aspects of modelling intra-household interactions and group decision making mechanisms
as well as first attempts to incorporate intra-household interactions in regional travel demand
models. The previously published research works were mostly focused on time allocation aspect
and less on generation of activity episodes, trips, and travel tours. In particular, the works of
Townsend (1987}, Golob and MeNally {1997), Fujii et al. (1999). Borgers et al. (2002), Gliebe and
Koppelman (2002), Goulias (2002), Mceka et al. (2002), Zhang ¢r aof. (2002, 2004), Zhang and
Fujiwara (2004) and Fttema ez af. (2004} give examples of models for time allocation between
various type of activities and household members. Though these works provide valuable insights
into the intra-household decision-making mechanism they are not directly compatible with the
structure of most travel demand models that are based on discrete units of ravel and discrete choice

modelling techniques.

Progress in Activity-Based Analysis edited by H. Timmermans
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Most of the approaches including Townsend (1987), Golob and McNally (1997), Simma and
Axhausen (2001), Borgers ef al. (2002), Gliebe and Koppelman (2002, 2004), Scott and Kanaroglou
(2002), Ettema et al. (2004), and Srinivasan and Bhat (2004) were limited to household heads only
and did not consider explicitly the other household members as active agents in the intra-household
decision making. This is another limitation that has to be lifted in order to integrate intra-household
interactions in the framework of regional travel demand models. To date, no comprehensive
approach has been proposed that would address interactions between all household members,
include all types of individual, joint, and allocated activities, and also represent an operational
framework that could be incorporated in regional travel demand models. The current paper presents
an attempt to build a general and operational framework for incorporation of intra-household
interactions in the regional travel demand model.

CLASSIFICATION OF INTRA-HOUSEHOLD INTERACTIONS

As shown in Figure 11.1, the operational structure of intra-household interactions distinguishes

between two principal mechanisms: activity coordination and resource allocation.

Activity Coordination Resource Allocation

Entire-Day Level

| Coordinated DAP type |

Mandatory |Non-M:ndam;|| Home |

T
Joint Activity-Episode Level

| JOINT non-mandatory activity | Aﬂtoc;:ﬁo" ?’f ::grs
0 nouseno
| RIDE sharing for mandatory activity | members

| ESCORT children |
4
Task Allocation Level

| ALLOCATED maintenance task |

Figure 11.1
Operational Classification of Intra-Household Interactions
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The activity coordination mechanism reflects the way household members interact in order to
undertake various joint activities and/or travel arrangements as well as allocate household
maintenance tasks to household members. [t is based on the general behavioural phenomenon that
joint participation in activitics has an added “group-wisc worth” that cammot be reduced (o a simple
sum of individual utilities for each participant. It also represents various compromises made by
some household members in order to serve the other household members representing “altruistic”
behaviour thatl cannol be explained by the individual ulility maximization. Activity coordination is

the focus of the current paper.

Resource allocation represents another facet of intra-household interactions. Even if activity agenda
of all household members on a given day includes only individual activities, they have to interact in
order to share constrained resources between them. In the context of travel demand modelling, the
most important allocated (and (requently constrained) resource is houschold cavs. First allempts to
incorporale intra-houschold allocation ol cars as a part of a travel demand model have been made
by Wen and Koppelman (1999, 2000) and Miller ef @/, (2003). This aspect of intra-houschold
interactions is beyond the scope of the current paper.

Activity coordination mechanism can be stratified by three following principal layers of intra-
housetiold interactions:

. Coordinated principal activiiy pattern (DAP) types af the entire-dayv level. We consider
three principal DAP types: (1) mandatory (work, university or school activities, which might
include additional out-of-home norrmandatory activities); (2) non-mandatory travel (only
nen-mandatory activities at least one of which is out of home); and (3) staying at home or
absence from town for the entire day. Statistical evidence shows strong coordination
between houschold members at this principal level, resulting in such deeisions as staying
home for child care; coordinated work connimutes; and household members taking time oft’
together for major shopping, family events, or vacations.

2. Ipisedic joint activity and travel, Tven il household members have chosen different pattern
types {for example, one mandatory and the other nonmandatory} they may participate in
shared activity and/or joint travel episodes. We propose a classification of typical joint
activity and travel types that supports the development of operational choice models. In
particular, we distinguish fully joint travel tours for shared activities from partially joint
tours, in which household members share transportation without participation in the same
aclivily.

3. Imra-household allocation of maintenance acitivivies. Many of the routine household
maintenance activitics (shopping, banking, visiting post office, cte) arc implemented and

scheduled individually; however, generation of such an activity and its allocation to a
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particular houschold member is a function of a houschold decision-making process. Thus,
these activities require an intra-household interaction mechanism to be praperly understood
and moedelled.

11 is also assumed that a general hierarchy of intra-household decision making follows these three
layers [rom top to bottom. It means thal entire-day level decisions come first. Then, conditional
upon the chosen daily pattern types for each houschold member, the decisions regarding joint
activities and travel are made, Finally, maintenance activities are allocated to persons conditional
upon the chosen daily patterns and patticipation in jomnt activities. These assumptions give a
schematic and simplified view on the extremely complicated real-world variety of travel behaviour
of the members of a household and numerous interactions between them. This view, however, has
two important features: (i) the proposed structure gives a good coverage for most [requent cases of
intra-houschold interactions obscrved in the houschold travel surveys, (ii) the proposed structure
serves as a constructive framework for derivation of operational choice models that can be
estimated based on available surveys and applicd in a [ramework of @ regional travel demand
model.

Further classification of episodic joint activities is subject to the purpose of travel demand
modelling. At this stage we do not model explicitly in-home activities. The following categories of
out-of-home episodic joint activity and travel are distinguished:

1. Joint travel generated by the shared activity. This category is almost exclusively bound to
non-mandatory activities (shopping, eating out, other maintenance, and discretionary
activities) as well as almost exclusively implies a fully joint tour structure. Lssentially, in the
modelling procedure a single set of activity attributes {location, schedule, duration, and

travel mode) should be considered for all members of the (ravel party.

3=

Joint ravel to synchromized mandatory activities. The activities are essentially individual
but associated travel arrangements are jeint that may require a certain time-space
coordination from different household members. This category has a significant share of
drop-offs and pick-ups of school children made by workers on the way to and from work.
Additionally. a significant percentage of school children travel together to and frem school
generating fully-joint tours and joint halFtours. Alse carpooling of workers for commuting
to work 1s observed, though this type has a comparatively low percentage,

3. [Iscorting that is the purely “altruistic™ purpose of driving some other household member
without participation in the activity. Statistical analysis has shown that majority of escorting
is associated with serving children who cannot drive alone and, in the case of preschool

children, cannot even ride transit alone,
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The proposed classification leads to a sequence of five models: I-coordinated DAP, 2-joint travel
for shared non-mandatory activity, 3-joint travel (ride-sharing) for mandatory activities, 4-escorting
children, and 5-allocation of maintenance tasks.

COORDINATION OF DAILY ACTVITY PATTERN TYPES

Classification of DAP types can be done in many different ways. DAP definition normally includes
a list of activities undertaken by the person in the course of entire day with some predetermined
hierarchy of the activity types. DAP may also include activity sequencing and/or scheduling
attributes, as well as travel related characteristics. In particular, the definition adopted for most tour-
based model systems uses travel tours as basic units. Figure 11.2 below shows the structural
dimensions along which DAPs are classified in the current research. DAP is classified by three
main types:

Mandatory pattern (M) that includes at least one of the three mandatory activities — work,
university, or school. This constitutes either a workday or a university/school day, and may include
additional non-mandatory activities such as separate home -based tours or intermediate stops on the
mandatory tours.

| Daily activity-travel pattern |

Non- At home /
MBdcatony mandatory | | absent
| Workday | | University day | | School day |
Work Um:;‘n?lvi University| U;vaegll(ty School smz;’.{&
tours tours tours

tours tours tours

Figure 11.2
Classification of Daily Activity Patterns
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Nown-mandatory pattern (NM) that includes only maintenance and discretionary tours. By virtue of
the tour primary purpose definition, maintenance and discretionary tours cannot include travel for
mandatory activities,

At-home pattern (H) that includes only in-home activities. At the current stage of model
development, at-home patterns are not distinguished by any specific activity (work at home, take
care of child, being sick, etc). Cases with complete absence from town (business travel) were also

combined with this category.

The M type is further classified by purpose and frequency of mandatory tours. The nature of
mandatory activities — they are usually associated with both long duration and long commuting
times — limits significantly the number of mandatory tours that can be implemented in the course of
a day. The vast majority of observed cases include only one or two tours, where two-tour
combinations include either two tours to the same primary activity or a combination of work and
university/school activities. In contrast to the M type, the NM type includes a wider variety of tour
frequencies and purposes that is difficult to cover by one choice framework. Thus, the associated
details are modelled later in the model stream. Statistical analysis presented in Vovsha ef al.
(2004a) and Bradley and Vovsha (2005) has shown that there is an extremely strong correlation
between DAP types of different household members, especially for joint NM and H types. It means
that joint staying at home or having a norrmandatory travel day has additional utility beyond a
person utility associated with these patterns when implemented alone. For this reason, DAP for
different housechold members cannot be modelled independently. In the most general way the DAP
type choice model can be represented by a matrix view in the Table 11.1 below. Each household
member m e M has a row while available alternatives are represents by columns. The choice is
associated with a value of 1 in the corresponding cell. The row totals are all equal to 1, while the
column totals are not controlled and can take any value between 0 and M assuming that every

alternative is available to every person.

Table 11.1
Coordinated DAP Model — A Matrix View

HH Members DAP Alternatives (i € [\ .J )

(me M) Individual Mandatory ({ € 1) Potentially Joint ({ € J)
Wi W2 NM H

17 person I

2" person 1

3" person 1
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Alternative DAP types are broken into two groups. The first group ie/ contains patterns with
mandatory activities that assumed individual in a sense that choice of this pattern by one household
member does not directly affect choice of the mandatory pattern by the other household member.
The second group i e.J contains two patterns — NM and H - that have a potential to be joint if

several household members choose the same pattern.

The total number of possible matrices is equal to (f f j)M where 1,J, M denote the number of
elements in arrays [,J,M consequently. This gives a maximum choice set for a simultaneous
model. However, there are several important considerations that significantly reduce a
dimensionality of the simultaneous model. First of all, most of the individual mandatory DAP types
are only partially available for the corresponding person types. Secondly, and even more
importantly, intra-household coordination of DAP types is relevant only for the NM and H patterns.
Thus, simultaneous modelling of DAP types for all household members is essential only for trinary
choice (mandatory, NM, H) while sub-choice of the mandatory pattern can be modelled for cach
person separately. These considerations result in the following tree representation (Figure 11.3):

Individual Joint

Mandatory

A\

Mandatory

A\ Y

1

Mandatory

A\

Figure 11.3
DAP Type Choice Structure
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The Tollowing alternative choeice constructs correspond (o the tree representation in the Figure 11.3:
* Scquential proeessing of persons according to the intra-houschold hierarchy.

¢ Simuliancous modelling of poteniially joint alicrnatives lor all houschold members wilh
subsequent medelling of individual allematives.

¢ Parallel choiee structure thal considers combinations of main trinary choices at the upper
level and individual sub-choeiees simultancously in ong choice structure,

Sequential processing of persons according (o the intra-houschold hicrarchy assumes that choiees
made by the persons modelled first arc used as variables explaining choices of the subsequently
modelled persons. Choice model for each person includes all individual and joint alternatives
available for the person type. Linkage across person is implemented by means of using Boolean
variables for potentially joint choices (indicators of either NM or 11 patterns) in the utility functions
for the comresponding altermalives of the subscquently modelled persons, This was the prefamed
model structure for several regional travel models in US mestly for its simplicity in estimation and
application (Vovsha er af., 2004a). However, this approach does not have a full integrity in
capturing intra-household interactions and relies on the ordering of persons in the household.

Simultaneous modelling of potentially jeint alternatives for all household members assumes that for
each person only a trinary choice (M, NM, H) is considered (Bradley and Vovsha, 2003). Sub-
choice of the mandatory alternative is done by a separate choice model conditional upon the choice
of mandatory alternative in the trinary chowee. Comparcd 1o the sequential model, this structure is
much more powerful for ¢apturing intra-houschold interactions in the most integrative way. Fven
for a household of six persons the simultaneous combination of trinary models results in a total of
3% - 720 alternatives that is a manageable number in estimation and application. For a limited
number of households of size greater than six, the model is applied for the first six household
members by priority while the rest of the houschold members is processed scquentially conditional
upon the choices made by the first six members. However, this structure has also a drawback
comparing to the sequential estimation. Higher integrity of intra-household interactions comes at
the expense of disjoining the upper-level trinary choice (M, NM, H} from the lower-level choice of
the mandatory sub-alternative,

Parallel choice structure considers combinations of main irinary choices at the upper level and
individual sub-choices of mandatory alternatives simultaneously in one choice structure. Different
from just mechanical combination of all alternatives for all howsehold members that would result in
infeasible choice structure, the parallel choice model requires only a limited principal combinations
lo be listed explicitly {as in the simultaneous approach described above) as upper-level nests

{Glicbe, 2004; Glicbe and Koppelman, 2004, 2003). These nests correspond to the combination of
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activities where joint participation is essential. The structure of these nests captures different levels
of intra-household interaction. Under each nest, the correspondent individual choices of mandatory
alternatives are considered for each person individually. This greatly reduces the dimensionality of
the model and makes the whole structure manageable in estimation and application. An example of

a simple parallel choice structure for a case of a two-person household is shown in the Figure 11.4.

EPISODIC JOINT NON-MANDATORY ACTIVITIES

Episedic joint non-mandatory activities are associated with fully-joint travel tours. Each fully-joint
tour is considered as a unit of modelling with a group-wise decision making regarding the primary
destination, mode, frequency and location of stops ete. Formally, modelling joint activities involves
two linked stages:
1. Generation stage attributed to the entire-household level that is done by means of a
frequency-choice model that considers a number of joint tours j, = 0,1,2...7, as alternatives

where k € K denotes segmentation by purpose / activity type.

1o

Participation stage at which decision is made for each household member m € M and tour

Ji = 0,1,2.._.7;‘ whether to participate or not in the joint tour.

| Coordinated DAP types |

Both | | 1-M 1-M | [1-NM| | 1-H | |1-NM| | 1-H | |Joint| |Joint
M 2-NM| | 2-H 2-M 2-M 2-H | |2-NM| | NM H

I
]

)
Independent [ Independent
Choice for Choice for
15! Person 2nd Person
wif [we | [.-] [wi] [we]
Figure 11.4

Parallel Choice Structure Applied for DAP
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| Frequency of fully-joint tours generated by shared activity

Eati / visi
Disc/ Disc

Eati / Eat
Eati / disc

Main / disc
Visi/ Visi

Main / main
Main / visi
Visi/ Disc

Main /eati \

Shop / disc

Shop / shop
Shop / visi

Discretionary
Shop / main

Maintenance
Eating out

X
By purpose
| Travel party composition for shared activity l
—

| Aduis | | chidren | | Adultsechildren |

X
| Person participation in shared activity l Btra pvi:p:::y&

| Yes No

Figure 11.5
Example of Model Structure for Joint Non-Mandatory Activity

The number of travel purposes is limited to 4-5 (shopping, maintenance, discretionary, eating-out,
visiting relatives and friends) and the observed maximum total number of fully joint tours
implemented by a houschold during a regular workday is limited to 2-3. A simultaneous frequency-
choice model can be formulated that would cover all possible frequencies and purpose
combinations. A model adopted by Vovsha er al. (2004) included 5 purposes and maximum of 2

joint tours that resulted in 21 alternatives — see Figure 11.5.

The participation stage in the most general way can be viewed as a matrix where each household
member has a row while joint tours are represented by column — see Table 11.2 below. Choice to
participate is associated with a value of 1 in the corresponding cell. Different from the DAP type
choice matrix in the Table [1.1 above, the row totals in the joint participation matrix are not
controlled and can take any value from 0 to J since each person may choose not to participate in
joint tours or participate in some of them, or participate in all of them. The column totals are
constrained to be greater or equal to 2 since joint activity requires at least two members to
participate. Household members having 1 in a particular column constitute the travel party for the

tour that is a subset of household members me M, < M .
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Table 11.2
Joint Participation Model — A Matrix View

HH Members Joint Tours (j € J)
M
L ) 1™ Tour (Purpose k) 2" Tour (Purpose &, ) 3™ Tour (Purpose k)
1¥ person ' I ' 1 '
2" person I 1 1
3" person 1 1

Each person participation matrix constitutes a distinct alternative. Even if the number of tours is
limited (say, 3) and number of household members is limited (say, 6) the resulting number of
2

. : 7 6*5Y) o
participation matrices would be (C%} =(C‘(,)1 =(]$7] =3,375. If the frequency choice is

combined with the participation choice in one simultaneous structure, the total number of
alternatives would be even greater, though not significantly since the matrices for frequencies of |
and 2 would be much simpler. Choice models with several thousands of alternatives are not
infeasible if a parsimonious component-wise utility structure can be applied. However, for first
practical implementations of the model, the following various decomposition schemes with

sequential processing along some dimensions were applied:

e Sequential modelling of generation and participation stages, that results in two choice
models applied in succession:

o Tour frequency choice model that is applied for the entire household and yields
probability of having a certain set of joint tours by purpose

o Person participation choice model that yields probability of having a certain
participation matrix conditional upon the chosen set of joint tours; the participation
choice model in itself quite complicated and can be decomposed by sequential
processing of tours (i.e. columns of the Table 11.2). Further on, the participation
model for each tour can be decomposed into two models — see Vovsha er al.
(2003):

. Party-composition choice model that predicts a principal party composition

in terms of the participating person types (adults, children, mixed).

= Person participation choice model that assigns member of the travel party for
each tour conditional upon the chosen party composition; this model in turn
can be decomposed by persons into a sequence of binary choice models (to
participate or not).
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¢ Simultaneous modelling of generation and participation stages as one choice structure

Sequential modelling of generation and participation stages assumes that the tour-frequencey choice
model is applicd first for the entire houschold. This choice model yiclds probability of a certain
frequency combination of tours by purpose P(_}'],.,r'z,.._jf]. The utility function is normally
formulated in such a way that advantage can be taken on the combinatorial structure of choice

altcrnatives cach of them essentially represents a combination of clemental tours. In particular, the
following utility structure was applied by Vovsha er af. (2003):

V(J—|’J‘13"'J—r):(x,."+f-+.-‘ﬁ': +ZJ{&XV£ > (1)
kK
where,
o - constant that depends on the total number of tours only,
F, = clemental utility of onc tour speeific 1o purpose.

In this structure it is assumed that the elemental purpose-specific utilities capture impact of all
explanatory variables and if there are several tours in the alternative their utilities are linearly
combined. For example, if there are two tours for shopping purpose the shopping tour utility
component will be doubled. Constants are specific to the total number of tours only (0, 1, 2...) and

allows for capturing a saturation eftect for multi-tour alternatives.

The participation choice model yields probability of a certain participation matrix to be chosen. The

participation mairix can be deseribed in terms of Boolean variables {cu = O,l} or allernatively in

i

terms of travel parties formed for each tour M, - {meM|w. —l}. It we consider tours

inr
sequentially, then the core choice model is essentially formulated for each tour separately and we
can drop index /7 from the participation variables, i.c. consider only one coluttin in the Table 11.2.

Thus the participation problem is reduced 10 deflining a probability P(J'FIJ of a subset of the

household members A7 = {m € M|a) = I} to be chosen as a travel party, Even this reduced task is

mn

not simple for the model formulation and estimation because of variety of person types and possible
combinations of them. One of the constructive ways to decompose this choice further is to define

first a principal party composition g e & in terms of participating person types and then model

person participation conditional upen the chosen party composition.
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Possible party compositions_g e G are defined in a mutually exclusive and colleetively cxhaustive
way by person types. For example, in the model reporied by Vowsha ef af. (2003), threc party
compositions were defined — adults, children, and mixed. Fvery household member m can

participatc in only a subsel of relevant partics G, . There are in a common ¢ase several possible
patties that can be formed within the same composition type Mc M, . For example, if there are 3

adult household members there are 4 different adult parties that can be formed (1" and 2™ member,

1 and 3, 2™ and 3", and all three). The probability of a party to be chosen P( ,ﬁ) is:

Plar) - Plejaix Pt a1, ), )
where,
P(g G ] = marginal party composition choice probability,

P(;’ljf|.«\/fg) = conditional participation choice probability.

While the first choice sub-medel for marginal party-composition probability i1s comparatively
simple and has a predetermined set of alternatives {three in the MORPC case), the second model for
conditional participation choice probability is more complicated and the number of alternatives for
this model 1s a function of the household size in composition. For example, consider a number of
alternatives for adult travel party. If the houschold has only onc adult member then adult party 1s
infeasible. If the household has 2 adult members, adult party is feasible but participation of both
adults i1s mandatory, 1.c. there 18 only one participation alternative. If the houschold has 3 adult
members, there are 4 possible ways to form an adult party. If the household has 4 adult members,
there are already 11 poessible participation alternatives. In this situation, it is not straightforward 10
formulate a choice structure that would incorporate all possible houschold sizes. One of the ways to
simplify this model is (o decompose it further into a sequence of binary choice models for cach
relevant person. It means that the conditional participation probability s assumed to have the

following form:

g,

P("t} ‘M_L, )= HP(m

mub,
where,

P(mlg) 15 4 probabilily [or a person to parlicipate in the given party composition.
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The advantage of the binary participation choice model is its simplicity in terms of the number of
alternatives. The choice utility can incorporate riumerous person, household, and other variables, as
well as the purpose of the tour / activity type. Application of the binary choice model in a micro-
simulation (ashion docs not guarantee a leasible travel parly of size 2 or large. In the casc of
inteasible size of (0 or 1 the micro-simulation procedure is restarted until a feasible solution is
generated. The model is automatically sensitive to the household size in a sense that relatively large
partics would generally be generated for large houscholds.

Application experience of this sequential structure {tour frequency, party composition by tours,
person participation by persons) has shown that is performs reasonable well in practical terms.
[Towever, there are several serious weaknesses of the sequential approach that should be

understood:

e DPerson participation in any joint tour is modelled independertly of the other tours; it is
assumed that since number of tours is limiled, there is only a little saturation effect. In
reality, in a casc that there several joint tours implemented by the household in the course of
a day there can be strong limilations for participation of the same person in all of them
ncluding scheduling conflicts when these joinl tours are implemented by different travel
parties at the same time.

s Person participation in any joint tour is modelled independently of the other household
members; it is assumed that every person has an inherent propensity to participate in joint
activities of a certain type (purpose and party composition). In reality, there can be a strong
clustering effect when participation of some household members may be strongly linked to
participation of the other ones. Alternatively there can be a substitution effect, especially for
mixed parties where one of the houschold adults takes children while the spouse may stay at

home aor undertake some other activity.

s  Frequency of joint tours is modelled independently from person participation in them.
Person participation is conditional upon the set of generated tours, however, there is no
upward linkage that would make frequency of tour explicit function of potential person
participation.

Consider the first two aspeets that relaie (o the person participation under condition of a fixed set of
tours, To cnsure integrity acress both tours and persons we have to consider the whole participation
matrix and not to decompose t by columns (tours) or rows {persons). However it 1s not a simple
task to find a choice model structure that would correspond to such multidimensional choice in
terms of the observed utility components and correlations across unobserved compouetits. A simple
MNL model that would consider all possible participation matrices with additive utility that is

compound of components speeific to either tour or person can be cquivalently decomposed into a
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sequence of independent participation models, Tt is important to substantiate possible meaningful

rules for grouping alternatives (participation matrices} based on some partial similarilies.

One of the advantages of the matrix view in the Table 11.2 above is that it suggests several

aggregations of alternatives that can be etffectively used for substantiation of possible nests. First of

all, there are aggregations naturally associated with the marginal totals, i.e. total mumber of tours in

which each person participates as well as total number of persens participating in each tour.

Secondly, there are aggregations associated with clusters of persons and subsets of similar activities

(tours for the same purpesc). The [ollowing practical conclusions f[or substantiating the

corresponding choice tree can be made:

Ngsting by persons with subscquent sub-nesting by a number of tours in which the person
pariicipates (person “workload™) can be wseful sinee it gives a reasonable dimension lor
similaritics across different participation matrices, Two matrices ¢an be considered similar if
all or at least some persons participate in approximately the same number of tours in both
matrices, Allernatively, matrices that represent signilicantly different person workloads
should be Ireated as distinet alternatives.

Nesting by activities with subsequent sub-nesting by a number of participants (party size}
also can be usclul sinee 1t gives another dimension for similarities across different
participation matrices. Two mairices can be considered similar if all or at least some tours
have approximately the same number of participants. Alternatively, matrices that represent

significantly different party sizes for all tours should be treated as distinct alternatives.

[nira-household clusters by person types can be used as additional nests above persons or as
alternative nests instead of persons or even along with the person nests. This means that
workload variations within the cluster are more probable, while changing workloads
between clusters lead to principally different matrices, Travel party composition types used
for the model decomposition in the Columbus and Atlanta models can be also associated
with person clusters that do not necessarily have to be mutually exclusive.

Tour groups by purposc can be used as additional nests above tours or as allernative nests
instead of tours or even along with the tour nests. This means that participation variations
between tours made for the same purpose are more probable, while changing parties
between tours of different purposes lead to principally ditferent matrices. This dimension,
however, is relevant only for infrequent cases with 3 ot more joint tours made by a
household on the same day.

Combining these considerations we arrive at the following choice structure shown in the Figure

| 1.6 for a case of a 3-person household with 3 joint tours. Since there are 4 possible parties for each

tour we have 4° _ 64 possible participation matrices at the lowest choice level.
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|  Choice of joint participation matrix |

[ 1%t cluster | [ 2 cluster | [1st purpose|  [2n purpose]

[1%person | [2@person| | 3" person | [1% tour| |2 tour| |3™ tour|

Personﬁvhrkioad Parl/j} size
ﬂllﬂﬂﬂllﬂﬂ |f|§|
] -
Figure 11.6

General Choice Structure for Joint Participation

Joint participation matrices Party size
1%t person
2™ person
3 person

1=t tour [=[=[o]n
2™ tour |o|=| =~
srﬂmu[- ot |t )
Workload || w|n

Clusters that correspond to persons that are substitutable, for example two adults each of them can
play the role of a driver of a mixed party with children, are treated as nests (i.e. unobserved similar
components in the utility function). Person clusters that correspond to person types that are most
frequently linked in the same party (for example non-working adult with preschool child) are

treated through observed components of the entire-party utility function.

Since this structure is not a simple hierarchy where each lower-level alternative belongs to exactly
one nest, it cannot be modelled by a simple nested logit model. However, it can be effectively
handled by generalized nested structures of the GEV class. A structure of the utility function can be
quite parsimonious because it is essentially combined of a limited number of pre-determined
components. This greatly simplifies the model estimation and application. In particular, the

following components should be taken into account:

Ve = elemental participation utility (person suitability for the activity)
Ve, = person workload utility to capture saturation effects at the person level
Vy party size utility to capture additional worth of joint participation

The participation matrix utility can be linearly combined of these components in the following way:
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Cach component corresponds to either the cell of the matrix or one of its margins (or aggregalc
margins) and they are all combined over (non-zero) cells. Further gencralization of the model
includes the frequency choice aspect. Combining frequency choice and participation choice in one
choice structure essentially means that the variety of participation matrix to consider should include
all possible matrices with variable (rather than fixed) number of columns. There are several ways to

construct such a simultaneous model:

¢ Consider frequeney of joint Lours as one more upper level {above the choice of participation
matrix) in the choice hierarchy shown in the Figure 11.6. This is the most straightforward
way o combine [fequency and parlicipation choice model since when they are considered
m a scquential fashion, frequency should naturally precede participation. This, however,
means that a similar structure should be replicated under each trequency combination.

o  Consider frequency as one more upper level only for tours, while person nest will continue
to go to the root directly. This structure 1s sitmpler since additional nesting level and the
corresponding multiplication of nests would relate to the tour side only.

» Consider a maximum observed number of tours for cach purpose but allow for participation
matrix to have empty columns with no persons assigned. This requires extension of the
participation matrix rules: either no one or at least 2 persons have to participate.

All approaches mentioned above produce the same full set of participation matrices with variable
number of columns as elemental choice alternatives. The differences relate to the way how the nests

are structured and consequenily how the correlation structure of the model is assumed.

RIDE-SHARING FOR MANDATORY ACTIVITIES

Ride-sharing for mandatory activities relate to pure travel arrangement while the underlying activity
for cach participant is assumed individual with correspondingly individual choices of locations and
durations. Thus, different from joint activities, the ride-sharing modelling technique does not
require a generation model but rather a linking and synchronizing model. Ride-sharing
arrangements may require limited adjustments of schedules of participants in order to synchronize
their travel but it is assumed that location for ¢ach {mandatory) activity and the basic schedule are
lixed for each houschold member and the household interaction are aimed al Ainding the best travel
arrangements that would serve that individual locations and schedules rather than change them.
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When modelling ride-sharing, it is assumed that for each household member it is known a number
and purposc of mandatory tours /& as well as location zone =z(f), preferred outbound time

{departure from home) r(f), and preferred inbound time (arrival back home} m{i} for cach lour.
Ride-sharing can oceur only for either outbound or inbound bunches of mandatory tours that share
the samc home end. Thus, the medel can be cssentially broken into fwo parts  outbound and
inbound ride-sharing. In many cases, these two parts can be processed independently, especially
when a worker and school child are involved with very different activity durations. However, for
worker-worker and child-child compositions, two-way ride-sharing arrangements can be considered

where ride-sharing decisions are not independent by directions.

The ride-sharing model considers partition of mandatory tours into ordered subsets of outbound and
inbound half-tours ;= {fl ,.iz,..}, The length of the subset corresponds to the number of participants.
One-tour length means travel alone; twe-tour length means participation of two persons in a shared
ride; three-tour length means participation ol three persons in a shared ride, ete. Order of
participants refleets their roles in the shared ride. The first tour corresponds to the driver; the second
tour corresponds 10 the passenger wilh the longest ride (the last getling-off passenger for the
autbound direction or the [irst getiing-in passenger for the inbound direetion), cte.

From the formal peoint of view modelling ride-sharing involves two subscquent stages:

1. Linkage and synchrenization of outbound and inbound half-tours that is done by means of a
pariition-choice model that considers all possible partitions of mandatory halFtours into

rides (alone and sharcd)

2. Ordered participation choice model that cssentially considers a role of cach participant
(driver, passcnger) and route along which sctivity locations of all ride participants are

visited.

A tree choice structure example for a howsehold with 2 workers {each having one work tour) and
one child (having one school tour) is shown in Figure 11.7. The outbound and inbound sets of
linking choices are not exclusive but rather should be combined. Thus, even for a comparatively
small houschold of 3 persons, the hnking- choiee level ineludes 5*5=25 alternatives. Tor a large
household the formal number of choice alternatives would grow up exponentially. However, in the
real-world model estimation and application there are numerous considerations that allow for
reduction of the ride-sharing choice model to a manageable size:

*  Number of houschold members who actually have mandatory tours (workers and students)
is limited in most of the households to 3-4 persons with predominantly one tour per persen,
Thus, lor majority of cases the choice structure would be similar (o shown in Figure [1.7.
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| Ride-sharing choice for 2 workers & 1 child|
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Figure 11.7

General Choice Structure for Ride-Sharing

* Many of the possible linkages can be rejected as impossible at the preliminary stage of
synchronizing locations and departure/arrival times based on reasonable thresholds. These
thresholds include maximum allowable differences in departure/arrival times (30 min
performs quite well in practical terms) and maximum deviation from the shortest path to or
from the location of activity for the driver (5 miles performs quite well). Application of
these thresholds allows for cutting down a number of branches in the linking model

significantly.

® A maximum size of travel party can be limited to 3 participants because larger travel parties
for ride sharing to mandatory activities proved to be very infrequent even for large
households.

In addition to a priori elimination of improbable alternatives, several constructive decompositions
of the choice structure can be considered. The first one includes a natural breakdown into the
linking and participation-role stages. Secondly, the linking stage itself can be implemented as a
sequence of pair-wise choices rather than a single choice model. To illustrate the ways of
decomposition of the linking model it is useful to put it into a matrix view (Table 11.3).
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Table 11.3
Ride-Sharing Model — A Matrix View

Drivers’ Half Passengers’ Half-Tours
Tours Outbound Inbound
1" Worker 2" Worker Child 17 Worker

Qutbound:

1% worker
Inbound:

1* worker 1 1
2" worker

Each ride-sharing matrix constitutes a distinct alternative for the choice model. Rows correspond to
half-tours of potential drivers. Columns correspond to all half-tours. Each column can have not
more than one assignment of 1. A cell value of 1 means that the corresponding passenger (column)
travels with the driver (row). Assignment of | to the diagonal cell means being a driver of the ride.
This is mandatory for all rows that lave non-zero totals (i.e. valid rides must include the driver’s
half-tour). A column can consist of zeros only. It means that the corresponding passenger cannot
find a ride and travel alone or by other modes (transit or non-motorized). A row can consist of zeros
only. It means that the corresponding potential driver is either taken as a passenger by the other
driver or travels alone by other modes. A minimal positive total for each row is equal to two,
meaning that it must be a driver and at least one passenger for each ride.

The table cannot have cycling relations when two half-tours serve as drivers to each other. Inbound
and outbound half-tours cannot interact, thus the appropriate parts of the table are blocked out.
Also, if the same person has several mandatory tours on the same day they cannot be linked
between themselves. These rules along with the threshold described below introduce many a priori

zeros to the ride-sharing matrix, thus, reducing significantly a number of feasible alternatives.

Every non-diagonal cell is associated with potential pair of half-tours. A pair-wise measure of
matching these half-tours in time and space can be formed as a linear combination of schedule
discrepancies and route deviations associated with each direction of the ride (Vovsha and Petersen,
2005):

Vi = axledi) - )} +oxlmin(, +L.. L1 L -1, )l; i

Vi = ax[afi)-m{i, ) +bx|min(L, +L,. -L,,L, +L., L. )

[
it

where,
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distance from home to the destination of the first tour,

L. - distance from home to the destination of the sccond tour,

distance between the destinations of the first and second tour

Pan]
I

The coefficients aand b are statistically estimated together with the other parameters. The
minimum route deviation reflects the inconvenicnce of ride-sharing for the driver who has to visit
the passenger’s location first and then go to hisher own location (in the outbound case). If one of
the persons cannot drive (like in a case of worker-child carpool) the correspending route deviation
lerm is sel lo a large number, thus ensuring that minimum would relate 1o the driver’s deviation,
Squaring discrepancics proved to work better than lincar inclusion because the negative impact of

large schedule discrepancies and route deviations on probability of ride-sharing is highly non-linear.

This pair-wise measure is instrumental for both the model decomposition and simultaneous
formulations. One of the possible model decompesitions is based on sequential processing of pairs
ordered by the minimum discrepancy measure. Sequential processing of potential ride-sharing pairs
requires development ol a binary choice model that yields probability of sharing ride for two
persons as a [unction of (he matching measure as well as houschold, person, and other
characteristics. For the inbound dircction the utility function of ride-sharing should include
indicator on outbound ride sharing with generally a strong positive impact. Then the following

sequential procedure can be outlined (outbound as an example):

1. Order ouwtbound halftour pairs by the matching measure (and possibly person type
consuderations)

b3

Take the highest-order unprocessed pair that has a matching measure within the threshold
pom <

3. Run a binary choice model to calculate probability of ride-sharing and simulate the choice
outcome (1-share, 0-not)

4, Tfthe choice outcome is 1 then engage the pair;

a. [f no one of the engaged persons has been previously engaged vet, then register a

new shared ride

b. [t one of the engaged persons has been already engaged in a shared ride. then add a
new participant to the previously registered shared ride and mark all person pairs in
this ride as processed

¢. [f both engaged persons have been alrcady cngaged in different shared rides then

combine these rides, register a new ride that includes all participants from the
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previous rides, discard the previous rides, mark all person pairs in a new combined
ride as processed

5. If there are unprocessed pairs go to step 2; il no unprocessed pairs lefl then end

This precedure assumes a micro-simulation framework for the model application. Ordering of halt-
tour pairs by the matching measure can be enhanced using person-based priority rules. For example,
processing of worker-child pairs can be done prior to processing worker-warker pairs.

The simultancous choice appreach that relates o thie upper-level nests in the Figure 11.7 is also
practically manageablc taking into account that numcrous branches of the tree can be pruncd a
priori. However, in some cases [or large houscholds the number of alternatives (ride-sharing
matrices) can reach thousands, As for the most cases where choice alternatives are compound of
elements, the utility function can be eftectively combined from a limited number of components
thai greatly simplifies the choice model estimation and application even with thousands of
alternatives. The following utility components can be used to construct the ride-sharing matrix

utility;

F’,I'jf",V,",'fF’ pair-wise hall~tour ride-sharing utilities

po g - half-tour utilities specific to the party size of the ride

"

et - utility of having a ride in both directions

The ride-sharing matrix utility takes the following form:

v{{i i) S Vet TV X Vi T [+ Sp (6)
£

j"“" [N el IS

The person participation role model considers sequences of person within the ride in such a way
that the first person plays the driver role, the second person corresponds to the passenger with the
lemgest route, and so forth, The last person 1s the [irst passenger dropped ofl on the outbound hall
tour or the last person picked-up on the inbound halt-tour. The last person does not experience any
roule deviation. The order of persons from the driver to the shortest-leg passenger corresponds to
the magnitude of potential deviations from the shortest ronte. The number of alternatives is equal to
i and also some of them should be excluded since not every person ean be a driver. For example,
for a rarc case of a nide-sharing ol 4 persons and also assuming that they all can be drivers, we have
41=24 alternative orders that all can be treated simultancously in one choice structure. The utility for
the participation role distribution is combined of person utilities associated with route deviation and
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additional driver-role compaonent that is associated with person type and characteristics in the
following way (example for a 3-person ride)j:

Vi =V 1V AV @

LN

ESCORTING CIITLDREN

Escorling is a joint iravel arrangement that is characlerized by distinctive-in-kind roles of
participants. There is always an cscorting adult driver (in vast majority of the obscrved cases a
single adult person, otherwise it hecomes a joint tour for shared activities) and one or sevetal
escorted children. The important characteristic that distinguishes escorting from all other joint
activity and travel arrangements is that only the escorted persons have a purposed activity to
participate while the driver does not participate in any activity and implement a pure chauffeuring
lunction. A dominant sharc ol cscorting involves children as passengers. Escorling of adult
household members is observed rarely and mostly in households with low car ownership. Thus, we
assume escorting children from now on in this paper. From the perspeetive of escorted person,
hershe has a mandatory or non-mandatory tour to implement, The escorting service may cover the
whole tour {two-way escorting) or only one of the halt-tours (one-way escorting). From the
perspective of the chauffeur, his/her tour may cover only ene halftour of the escorted child with no
waiting at the activity location or both half~tours of the escorted child with waiting while the child
is involved in his/her aclivity. Thus, for each tour of a child that demands escorting there are five
possible alternatives:

« Noescort
+ Escort in outhound direction only (from home to activity)
+ [Escort in inbound direction only (from activity back home)

* FEscort in both direction by means of two separate tours of the same driver or by difterent
drivers withoul wailing

» Escort in both direction by means of a single tour of the same driver with waiting

To formalize escorting as a choice model we use the following notation:

iel child tours that demand escorting,

me M, - houschold adults that can play a chauffeur role,

jed - escorling tours made by each chau(feur.

@
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Table 11.4
Escorting Tour Construction Model — A Matrix View

Chauffeurs Escort tours Child tours demanding escort i € [
(meM,) (jed,) ¥ child ) 2" child
1™ tour 2™ tour 1¥ tour
Out Inb Out Inb Out Inb
1™ chaulTer 1™ escort 1 1
2" escort 1 |
2™ chauffer 1* escort 1

The set of children’s tours ¢ € I with all pertinent characteristics of the person m(i ), tour purpose /
activity type k(i), departure-fronrhome time (i} for outbound half-tour, arrival-back-home time
(i) for inbound half-tour, and location z(i) is assumed known and fixed. The set of adult

chauffeurs me M, with all pertinent characteristics of the person and availability to serve child

tours /%", 1" within the time window left after scheduling the chauffeur’s mandatory and joint

m T m

activities (they are considered of higher scheduling priority) is also assumed known and fixed.

Modelling of escorting can be formalized as finding a set of escorting tours for each chauffeur

J €J,, where each tour covers a subset of outbound /% and inbound /! children’s tours. The

subsets /7" and / # are mutually exclusive across escorting tours je.J, for either outbound or
inbound subsets. Also not every child half-tour that demand escorting can be satisfied in a general

case. Thus, UI:.’"’ o/ as well as UI’{”” c /. The escorting tour construction problem can be
i I

presented in the following matrix view (Table 11.4).

Each escorting tour construction matrix constitutes a distinct alternative. The rules for construction
of a feasible matrix are as follows:

e Every row corresponds fo escorting tour of the chauffer. Cell values of 1 correspond to
served child half-tours. Escorting tours for each chauffer are listed in a chronological order.
The first escort tour can take any outbound or inbound child halftours that fall info the

available time window of the chauffeur 7", 7™ . Each subsequent escorting tour of the

same chauffeur has a narrower window available since the previous tour(s) block out
additional time windows making available sets essentially tour-specific and dependent on

the escorting matrix 72",7”® The minimal row total allowed is | (at least one halftour

Jm 2% gm

should be served; otherwise the escorting tour does not make sense). The maximum row
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tolal (s controlled by the availability rules but it never can be greater than number of child

tours in the set J multiplied by 2.
=  Every column corresponds to a child half-tour {either outbound or inbound). The column
total can be either 1 {get escort) or O (not).

= The allocation of 1"s in each row should meet the internal tour feasibility condilions:

o The bundle of outbound half tours of children 77" served by the tour should have
close departure-from-home times and locations, A threshold on the discrepancy
mcasure described for ride-sharing above proved 1o be useful for bundling outbound
halt-tours for escorting as well.

o The bundle of inbound half tours of children /7 served by the tour should have
close arrival-back-home times and locations. The same thresheld on the discrepancy
measurc is applied for bundling inbound tours as well.

o All outhbound half tours 77" start earlier than inbound halt-tours 17" served hy the
same escorting tour, Thus, only disjoint-in-time sets /%" and {7 can be “bridged”

by one escorting tour.

One of the problems with forming alternative escorting matrices is that the set of escotting tours
JjeJ usell is vanable and should be considered as a part of the choice model. One of the possible
views on the forming alternative escorting matrices that also gives some insights into the possible
decomposition of the choice structure is that it can be broken into two subsequent stages:

» FEscorting tour set formation j € J by partitioning scts of children’s haif-tours 77,7 into
nor-overlapping and nomexhaustive subsets /2, /%, This problem is similar to the

partitioning problem for the ride-sharing mechanism described above.

» FEscorting tour allocation to chauffeurs <./ . This problem is similar to the task allocation

mechanism described in the section that follows,

However, the escorting tour formation cannot be done effectively without considering chauffeurs
availability constraints. More exactly, if “bundling™ cutbound and inbound child half-tours can be
cectively done based on the halfFtours themselves, “bridging™ outbound and inbound half-tours
cannot be done without imposing the chauffeur availability constraints. Still, if we consider all
possible tour formations and then allocation 1o chaulfeurs, for most households, the lask of listing

all resulting combinations is not insurmountable.
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| Choice of escorting matrix |

Chauffeurs Children tours demanding escort

hY rd

I1out| I1Inb| |Zoul‘ IZInbl

Escort matrices

1stescort | 1 0 0 0
t+ 1% chauffeur
2™ escort | © 0 1 0
L 2™ chauffeur | 1**escort | © 1 0 0
No escort | 0 0 0 1
1out | 1inb | 2out | 2inb

Figure 11.8
Escorting Choice Tree — General Case

For example, in a household with 2 potential chauffeurs and 2 child tours (i.e. 4 half-tours) to
handle, we will have 52 possible tour formation sets (including various options of serving only
some of the 4 halftours) and then from 2 to 16 allocation-to-chauffeurs alternatives for each of tour
formation sets which results in approximately 500 escorting matrix alternatives. The corresponding
choice tree is depicted in the Figure 11.8.

However, after application of the tour-feasibility rules, many of the tour-formation sets fail at ether
bundling or bridging stage. Further on at the chauffer availability check many of the matrices fail
because at least one of the tours prove to be outside the available time window of the assigned
chauffer. These two checks normally reduce the choice set size significantly. However, for large
households the number of potential escorting matrices in the original list can come to thousands and
thus decompositions of the choice structure is welcome even for computational efficiency. One of
the possible decompositions assumes that the household chauffeurs are ordered starting from the
least individual person types. Non-workers are considered the first-choice chauffeurs, followed by
retired persons, then by part-time workers, then by full-time workers, then by university students,
and finally by driving-age school children. Then, the choice model is developed for a single person
and includes only residual chauffeuring alternatives left after the choices actually made by the
previously modelled chauffeurs. Figure 11.9 shows as an example a | child tour to serve.
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Number of escort tours (workioad)

B
15t escort tour options

[1out| [1out+1inb| [1inb| — 1out|

2nd escort tour options

mnb

Elemental child half-tours

Figure 11.9
Escorting Choice Tree for a Single Chauffeur

Another possible decomposition is based on the ordering of child tours demanding escort rather
than chauffeurs. Figure 11.10 shows an example of 2 chauffeurs available. More details are
provided in Vovsha and Petersen (2005). In this case, household children are ordered first by age
(from youngest to oldest) and then tours for each child are ordered chronologically. The choice
model considers one child tour at a time to define probability of coverage by escorting for outbound
and inbound half-tours and assignment of the chauffeur. Bundling of children’s half-tours is done
by inclusion of the chauffeur’s previously assigned tours as the lower-level sub-choices.

In all cases of the model formulation only a limited number of the following components of the
utility function should be considered:

yom, V,.'”h = escorting utility for each child half tour (no escort has zero utility),
AV, . additional child utility of escorting in both directions,

G = chauffeur suitability and availability for each child half-tour,

V.., (Tm) - chauffeur workload saturation effect,

V., (I;.:j’ ; [};jf) = chauffeur tour disutility associated with bundling and bridging.

The entire-household escorting matrix utility can be expressed as a sum of these components in the
following way:
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Escort r.l‘ove.'age
No Outbound Inbound 2-way 2-way
escort only only linked unlinked

Chauffeurgr outbound
oo / N nn D

Chauffeur for inbound

\
M BM E HERD
X

Bunching with other escorts of the chosen chauffeur

Figure 11.10
Escorting Choice Tree for a Single Child Tour
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The first three components correspond to different aspects of the utility of the served children while

the last three components relate to associated disutility aspects of the chauffeurs.

ALLOCATION OF MAINTENANCE TASKS

The essence of the current model is to generate these activities at the household level and then

allocate to the household members. Since, travel details are dependent on the characteristic of the

person and his/her individual decisions this model is better formulated in terms of maintenance

tasks rather than tours. From the formal point of view, modelling allocated activities involves two

linked stages:

1. Generation stage attributed to the entire-household level that is done by means of a

frequency choice model that considers a number of maintenance tasks by type Jj, = (),l,?....j,‘

as alternatives,
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Table 11.5
Task Allocation Model — A Matrix View

HH Members Maintenance Tasks ( j €.J )

(me M) 1" Task (Purpose k) 2" Task (Purpose k) 3" Task (Purpose k ;)
17 person 1 1

2" person 1

3" person

2. Task allocation stage at which decision is made for each task j, = I,Z...}k to which of the

household members m € M this task is assigned for implementation.

There is an appealing analogy between the maintenance task allocation problem and the joint non-
mandatory activity problem described above. The frequency choice model has the same structure.
The task allocation model has replaced the joint participation model. However, the task allocation
model is similar to the joint participation model with the only principal difference that a single

person is assigned to each task instead of a party.

Taking into account that the number of allocated maintenance activity types is limited to 2-3 (major
shopping, grocery and incidental shopping, banking, other maintenance) and observed maximum
number of maintenance tasks implemented by a household on a regular workday is limited to 3-4, a
single simultaneous frequency choice model can be formulated that covers all possible frequencies
and activity types as alternatives. The allocation stage in a general way can be viewed as a matrix
where each household member has a row while maintenance tasks are represented by columns
(Table 11.5). Allocation is associated with a value of | in the corresponding cell.

Similar to the joint participation choice matrix in the Table 11.2, the row totals are not controlled
and can take any value from 0 to 