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Preface

Several objectives guided the preparation of this second
edition of the Standard Handbook of Petrolewm and Natu-
ral Gas Engineering. As in the first edition, the first objective
in this edition was to continue the effort to create for the
worldwide petroleum and natural gas exploration and pro-
duction industries an engineering handbook written in the
spirit of the classic handbooks of the other important engi-
neering disciplines. This new edition reflects the importance
of these industries to the modern world economies and the
importance ofthe engineers and technicians that serve these
industries.

The second objective of this edition was to utilize, nearly
exclusively, practicing engineers in industry to carry out the
reviews, revisions, and any re-writes of first edition mate-
rial for the new second edition. The third objective was, of
course, to update the information of the old edition and to
make the new edition more SI friendly. The fourth objective
was to unite the previous two volumes of the first edition
into a single volume that could be available in both book and
CD form. The fifth and final objective of the handbook was
to maintain and enhance the first edition objective of hav-
ing a publication that could be read and understood by any
up-to-date engineer or technician, regardless of discipline.

Theinitial chapters of the handbook set the tone by inform-
ing the reader of the common language and notation all
engineering disciplines utilize. This common language and
notation is used throughout the handbook (in nearly all
cases consistent with Society of Petroleum Engineers publi-
cation practices). The 75 contributing authors have tried to
avoid the jargon that has crept into petroleum engineering
literature over the past few decades.

The specific petroleum engineering discipline chapters
cover drilling and well completions, reservoir engineering,
production engineering, and economics (with valuation and
risk analysis). These chapters contain information, data,
and example calculations directed toward practical situa-
tions that petroleum engineers often encounter. Also, these
chapters reflect the growing role of natural gas in the world
economies by integrating natural gas topics and related
subjects throughout the volume.

The preparation of this new edition has taken approxi-
mately two years. Throughout the entire effort the authors
have been steadfastly cooperative and supportive of the
editors. In the preparation of the handbook the authors

have used published information from both the American
Petroleum Institute and the Society of Petroleum Engineers.
The authors and editors thank these two institutions for
their cooperation. The authors and editors would also like
to thank all the petroleum production and service company
employees that have assisted in this project. Specifically, edi-
tors would like to express their great appreciation to the
management and employees of Weatherford International
Limited for providing direct support of this revision. The
editors would also like to specifically thank management
and employees of Burlington Resources Incorporated for
their long term support of the students and faculty at the
New Mexico Institute of Mining and Technology, and for
their assistance in this book. These two companies have
exhibited throughout the long preparation period exemplary
vision regarding the potential value of this new edition to the
industry.

In the detailed preparation of this new edition, the authors
and editors would like to specifically thank Raven Gary. She
started as an undergraduate student at New Mexico Institute
of Mining and Technology in the fall of 2000. She is now a new
BS graduate in petroleum engineering and is happily work-
ing in the industry. Raven Gary spent her last two years in
college reviewing the incoming material from all the authors,
checking outline organization, figure and table organization,
and references, and communicating with the authors and
Elsevier editors. Our deepest thanks go to Raven Gary. The
authors and editors would also like to thank Phil Carmical
and Andrea Sherman at Elsevier for their very competent
preparation of the final manuscript of this new edition. We
also thank all those at Elsevier for their support of this project
over the past three years.

All the authors and editors know that this work is not per-
fect. But we also know that this handbook has to be written.
Our greatest hope is that we have given those that will follow
us in future editions of this handbook sound basic material
to work with.

William C. Lyons, Ph.D., PE.
Socorro, New Mexico

and

Gary]. Plisga, B.S.
Albuquerque, New Mexico
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1-2  MATHEMATICS

1.1 GENERAL
See Reference 1 for additional information.

1.1.1 Sets and Functions

A set is a collection of distinct objects or elements. The inter-
section of two sets Sand T'is the set of elements which belong
to S and which also belong to T. The union (or inclusive) of
S and T is the set of all elements that belong to S or to T (or
to both).

A function can be defined as a set of ordered pairs, denoted
as (%, y) such that no two such pairs have the same first
element. The element x is referred to as the independent
variable, and the element y is referred to as the dependent
variable. A function is established when a condition exists
that determines y for each x, the condition usually being
defined by an equation such as y = f(x) [2].

References

1. Mark’s Standard Handbook for Mechanical Engineers, 8th
Edition, Baumeister, T., Avallone, E. A., and Baumeister
III, T. (Eds.), McGraw-Hill, New York, 1978.

1.2 GEOMETRY
See References 1 and 2 for additional information.

1.2.1 Angles

Angles can be measured using degrees or with radian mea-
sure. Using the degree system of measurement, a circle has
360°, a straight line has 180°, and a right angle has 90°. The
radian system of measurement uses the arc length of a unit
circle cut off by the angle as the measurement of the angle.
In this system, a circle is measured as 2 radians, a straight
line is 7 radians and a right angle is n/2 radians. An angle
A is defined as acute if 0° < A < 90°, right if A = 90°,
and obtuse if 90° < A < 180°. Two angles are complemen-
tary if their sum is 90° or are supplementary if their sum is
180°. Angles are congruent if they have the same measure-
ment in degrees and line segments are congruent if they
have the same length. A dihedral angle is formed by two
half-planes having the same edge, but not lying in the same
plane. A plane angle is the intersection of a perpendicular
plane with a dihedral angle.

1.2.2 Polygons

A polygon is a closed figure with at least three line segments
that lies within a plane. A regular polygon is a polygon in
which all sides and angles are congruent. Two polygons are
similar if their corresponding angles are congruent and cor-
responding sides are proportional. A segment whose end
points are two nonconsecutive vertices of a polygon is a
diagonal. The perimeteris the sum of the lengths of the sides.

1.2.3 Triangles

A triangle is a three-sided polygon. The sum of the angles of
a triangle is equal to 180°. An equilateral triangle has three
sides that are the same length, an isosceles triangle has two
sides that are the same length, and a scalene triangle has
three sides of different lengths.

A median of a triangle is a line segment whose end points
are a vertex and the midpoint of the opposite side. An angle
bisector of a triangle is a median that lies on the ray bisect-
ing an angle of the triangle. The altitude of a triangle is a
perpendicular segment from a vertex to the opposite side.

Two triangles are congruent if one of the following is given
(where S = side length and A = angle measurement): SSS,
SAS, AAS, or ASA.

1.2.4 Quadrilaterals
A quadrilateral is a four-sided polygon.

A trapezoid has one pair of opposite parallel sides. A par-
allelogram has both pairs of opposite sides congruent and
parallel. The opposite angles are then congruent, and adja-
cent angles are supplementary. The diagonals bisect each
other and are congruent. A rhombus is a parallelogram
whose four sides are congruent and whose diagonals are
perpendicular to each other.

A rectangle is a parallelogram having four right angles;
therefore, both pairs of opposite sides are congruent.
A rectangle whose sides are all congruent is a square.

1.2.5 Circles and Spheres

If P is a point on a given plane and r is a positive number,
the circle with center P and radius r is the set of all points
of the plane whose distance from P is equal to r. The sphere
with center P and radius r is the set of all points in space
whose distance from P is equal to r. Two or more circles
(or spheres) with the same P but different values of r are
concentric.

A chord of a circle (or sphere) is a line segment whose end
points lie on the circle (or sphere). A line which intersects
the circle (or sphere) in two points is a secant of the circle
(or sphere). A diameter of a circle (or sphere) is a chord
containing the center, and a radius is a line segment from
the center to a point on the circle (or sphere).

The intersection of a sphere with a plane through its center
is called a great circle.

A line that intersects a circle at only one point is a tangent
to the circle at that point. Every tangent is perpendicular to
the radius drawn to the point of intersection. Spheres may
have tangent lines or tangent planes.

Pi (n) is the universal ratio of the circumference of any
circle to its diameter and is approximately equal to 3.14159.
Therefore, the circumference of a circle is nd or 2nxr.

1.2.6 Arcs of Circles

A central angle of a circle is an angle whose vertex is the
center of the circle. If P is the center and A and B are points,
not on the same diameter, which lie on C (the circle), the
minor arc AB is the union of A, B, and all points on C in the
interior of <APB. The major arc is the union of A, B, and all
points on C on the exterior of <APB. A and B are the end
points of the arc and P is the center. If A and B are the end
points of a diameter, the arc is a semicircle. A sector of a circle
is a region bounded by two radii and an arc of the circle.

1.2.7 Concurrency

Two or more lines are concurrent if there is a single point that
lies on all of them. The three altitudes of a triangle (iftaken as
lines, not segments) are always concurrent, and their point
of concurrency is called the orthocenter. The angle bisectors
of a triangle are concurrent at a point equidistant from their
sides, and the medians are concurrent two thirds of the way
along each median from the vertex to the opposite side. The
point of concurrency of the medians is the centroid.

1.2.8 Similarity

Two figures with straight sides are similar if corresponding
angles are congruent and the lengths of corresponding sides
are in the same ratio. A line parallel to one side of a triangle
divides the other two sides in proportion, producing a second
triangle similar to the original one.

1.2.9 Prisms and Pyramids

A prism is a three-dimensional figure whose bases are any
congruent and parallel polygons and whose sides are paral-
lelograms. A pyramid is a solid with one base consisting of
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any polygon and with triangular sides meeting at a point in
a plane parallel to the base.

Prisms and pyramids are described by their bases: a trian-
gular prism has a triangular base, a parallelpiped is a prism
whose base is a parallelogram and a rectangular parallelpiped
is a right rectangular prism. A cube is a rectangular par-
allelpiped all of whose edges are congruent. A triangular
pyramid has a triangular base, etc. A circular cylinder is a
prism whose base is a circle and a circular cone is a pyramid
whose base is a circle.

1.2.10 Coordinate Systems

Each point on a plane may be defined by a pair of numbers.
The coordinate system is represented by a line X in the plane
(the x-axis) and by aline Y (the y-axis) perpendicular to line X
in the plane, constructed so that their intersection, the o7igin,
is denoted by zero. Any point P on the plane can be described
by its two coordinates, which form an ordered pair, so that
P(x1, y1) is a point whose location corresponds to the real
numbers X and y on the x-axis and the y-axis.

If the coordinate system is extended into space, a third
axis, the z-axis, perpendicular to the plane of the x; and y;
axes, is needed to represent the third dimension coordinate
defining a point P(xy, y1, z1). The z-axis intersects the x and
y axes at their origin, zero. More than three dimensions
are frequently dealt with mathematically but are difficult to
visualize.

The slope m of a line segment in a plane with end points
P (x1, y1) and P> (Xs, y2) is determined by the ratio of the
change in the vertical (y) coordinates to the change in the
horizontal (x) coordinates or

m = (y2 —y1)/(Xz — X1)
except that a vertical line segment (the change in x coor-
dinates equal to zero) has no slope (i.e., m is undefined).
A horizontal segment has a slope of zero. Two lines with
the same slope are parallel and two lines whose slopes are
negative reciprocals are perpendicular to each other.

Because the distance between two points Py (x4, y1) and
P, (x2, y2) is the hypotenuse of a right triangle, the length
(L) of the line segment PP, is equal to

L =/(x2 — x1)% + (y2 — V1)

1.2.11 Graphs

A graph is a set of points lying in a coordinate system and
a graph of a condition (such as x = y + 2) is the set of
all points that satisfy the condition. The graph of the slope-
intercept equation,y = mx+b, is a straight line which passes
through the point (0, b), where b is the y-intercept (x = 0)
and m is the slope. The graph of the equation

x—aP+(@y—bP=r

is a circle with center (a, b) and radius r.

1.2.12 Vectors

A vector is described on a coordinate plane by a directed seg-
ment from its initial point to its terminal point. The directed
segment represents the fact that every vector determines a
magnitude and a direction. A vector v is not changed when
moved around the plane, if its magnitude and angular ori-
entation with respect to the x-axis is kept constant. The
initial point of v may therefore be placed at the origin of
the coordinate system and v may be denoted by

v={(abh)

where a is the x-component and b is the y-component of the
terminal point. The magnitude may then be determined by

the Pythagorean theorem

v =+vaZ+hb?

For every pair of vectors (x1,y1) and (Xs,y2), the vector sum
is given by (X1 +X2, y1 +¥2). The scalar product of the vector
P = (x,y) and a real number (a scalar) r is rP = (rx, ry).
Also see the discussion of polar coordinates in the Section
“Trigonometry” and Chapter 2, “Basic Mechanics.”

1.2.13 Lengths and Areas of Plane Figures
For definitions of trigonometric functions, see “Trigonome-
try.”

o Right triangle (Figure 1.2.1)

B C
a

c? = a? + b?(Pythagorean theorem)
area = 1/2eab =1/2 ¢ a’cotA
=1/2eb’tanA = 1/4 ® c®sin 2A
o Any triangle (Figure 1.2.2)
A

B C
a

area = 1/2base ¢ altitude =1/2 ¢ ah =1/2 @ absinC
==+ 1/2 * {(1y2 — X2¥y1)
+ (X2y3 — X3¥2)
+ (x3y1 — x1y3)}
where (x1,v1), (X2,¥2), (X3,y3) are coordinates of vertices.
o Rectangle (Figure 1.2.3)

ju b

a

area =ab =1/2 ¢ DZsinu
where u = angle between diagonals D, D.
o Parallelogram (Figure 1.2.4)

area=bh =absinc=1/2 ¢ DD, sinu
where u = angle between diagonals D; and D,.
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o Trapezoid (Figure 1.2.5)

area=1/2 ¢ (a+b)h=1/2 e D;D, sinu
where u = angle between diagonals Dy and D,
and where bases a and b are parallel.

o Any quadrilateral (Figure 1.2.6)

area=1/2 ¢ DDy sinu
Note: a? + b* + ¢? + d? = D? + D} + 4m?®
where m = distance between midpoints of D; and D.
o Circles
area =nr =1/2 ¢ Cr=1/4 « Cd = 1/4 * nd? =
0.785398 d?
where r = radius
d = diameter
C = circumference = 2nr = nd.
o Annulus (Figure 1.2.7)

area = T(R® — r?) = n(D? — d%)/4 = 2rR'b
where R = mean radius =1/2 ¢ (R+7r)
b=R-r

o Sector (Figure 1.2.8)

area=1/2 o rs = mr?A/360° = 1/2 ¢ r’rad A
where rad A = radian measure of angle A
s = length of arc = rrad A

o FEllipse (Figure 1.2.9)

area of ellipse = wab
area of shaded segment = xy + ab sin~! (x/a)
length of perimeter of ellipse = w(a + b)K,
where K = (1 +1/4 « m?+1/64  m* +1/256 o
mé+...)
m=(@-b)/(@a+h)
o Hyperbola (Figure 1.2.10)

\

For any hyperbola,
shaded area A = ab * In[(x/a) + (y/b)]
For an equilateral hyperbola (a = b),
area A = a® sinh~! (y/a) = a® cosh™! (x/a)
where x and y are coordinates of point P.

e Parabola (Figure 1.2.11)
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shaded areaA =2/3 e ch

P
y

P
Al/' f
T O] F M

In Figure 1.2.12,
lengthofarc OP=s=1/2 e PT+1/2 e p o
In [cot(1/2 ® u) ]
Here ¢ = any chord
p = semilatus rectum
PT = tangent at P
Note: OT = OM =x

1.2.14 Surfaces and Volumes of Solids
o Regular prism (Figure 1.2.13)

I

|

I

|
4
T

r

a

volume = 1/2 e nrah = Bh
lateral area = nah = Ph
where n = number of sides

B = area of base
P = perimeter of base
o Right circular cylinder (Figure 1.2.14)

N
|
—

N

volume = nr’h = Bh
lateral area = 2nrh = Ph
where B = area of base
P = perimeter of base
Any prism or cylinder (Figure 1.2.15)

volume = Bh = N1
lateral area = QI
where | = length of an element or lateral edge

B = area of base

N = area of normal section

Q = perimeter of normal section
Hollow cylinder (right and circular)
volume = th(R? — r¥) = thb(D — b) = thb(d +b) =
nthbD’ = thb(R + 1)
where h = altitude
r, R (d, D) = inner and outer radii (diameters)
b = thickness =R —r
D' =meandiam=1/2 ¢ (d+D)=D—-b=d+b
Sphere
volume =V = 4/3 o nr® = 4.188790r° = 1/6 * nd® =
0.523599d*
area = A = 4nr? = nd?
where r = radius

d = 2r = diameter = Y6V /1 = 1.24070Y/V

= YA/m = 0.56419vA

Hollow sphere, or spherical shell
volume = 4/3 e (R® — %) = 1/6 e n(D® — d%) = 4nR3t +
1/3 o nt?
where R, r = outer and inner radii

D, d = outer and inner diameters

t = thickness =R —r
R; =meanradius=1/2 ¢ (R+r)

Torus, or anchor ring (Figure 1.2.16)

4

10

volume = 2n?cr?
area = 4nricr (proof by theorems of Pappus)




1-6  MATHEMATICS

References

1. Moise, E. E., and Downs, Jr., E L., Geometry, Addison
Wesley, Melano Park, 1982.

2. Graening, J., Geometry, Charles E. Merrill, Columbus,
1980.

1.3 ALGEBRA
See Reference 1.3 for additional information.

1.3.1 Operator Precedence and Notation
Operations in an equation are performed in the following
order of precedence:

1. Parenthesis and grouping symbols

2. Exponents

3. Multiplication or division (left to right)
4. Addition or subtraction (left to right)

For example:
at+bec—d/e
will be operated upon (calculated) as if it were written
a+(bec)—[(d)/e]
The symbol |a] means “the absolute value of a,” or the
numerical value of a regardless of sign, so that
[—=2l=12[=2
The n! means “n factorial” (where n is a whole number)

and is the product of the whole numbers 1 to n inclusive, so
that

4'=1020304=24

0! = 1 by definition
The notation for the sum of any real numbers ay, a,, . . . ,a,

is
n
2
i=1

and for their product

n
[T
i=1

The notation “x co y” is read “x varies directly with y” or
“x is directly proportional to y,” meaning x = ky where k is
some constant. If x co 1/y, then x is inversely proportional
toyandx = k/y.

1.3.2 Rules of Addition
a + b = b + a (commutative property)
(a+b) +c=a+ (b+ c) (associative property)
a—(-b)=a+band
a—-X—-y+z)=a—-XxX+y—z
(i.e., a minus sign preceding a pair of parentheses operates
to reverse the signs of each term within if the parentheses
are removed)

1.3.3 Rules of Multiplication and Simple Factoring
a e b = b e a (commutative property)
(ab)c = a(bc) (associative property)
a(b + ¢) = ab + ac (distributive property)
a(—b) = —aband — a(—b) = ab
(a+b)a—b)=a%—-1b?
(a+b)? =a% 4 2ab + b?
and
(a—b)? = a% —2ab +b?
(a+b)® =a® +3a% 4+ 3ab% +b°

and
(a—h)® = a® — 3a® 4 3ab® — b°
(For higher-order polynomials, see the “Binomial Theo-
rem.”) a" + b" is factorable by (a + b) if n is odd, and
a® +b® = (a+b)@% —ab+1b?
and a" — b" is factorable by (a — b), thus
a"—b"=@-by@ '+a"*+... +ab" 2 +b"

1.3.4 Fractions
The numerator and denominator of a fraction may be mul-
tiplied or divided by any quantity (other than zero) without
altering the value of the fraction, so that, if m # 0,
ma+mb4+mc a+b4c
= iy

To add fractions, transform each to a common denomina-

tor and add the numerators (b, y # 0):

mx + my

a x_ay bx_ay+bx
by by by by
To multiply fractions (denominators # 0):
a X ax
—e_ =
b y by
a, _ax
b " b
a X C axc
—_e_eo_ —
by z byz

To divide one fraction by another, invert the divisor and
multiply:

a x _ayy ay
b y b x bx
1.3.5 Exponents
amea" =a™" and am+a"=a""
a’=1(@#£0) and al=a
a ™ =1/a"
(am)n — amn
al/m = o3 and a™/m = am

(ab)" = a"b"

(a/b)" =a"/b"
Except in simple cases (square and cube roots), radical
signs are replaced by fractional exponents. If n is odd,

Ya=-Ya

but if n is even, the nth root of —a is imaginary.

1.3.6 Logarithms

The logarithm of a positive number N is the power to
which the base must be raised to produce N. So, x = log, N
means b* = N. Logarithms to the base 10, frequently used
in numerical computation, are called common or denary log-
arithms, and those to base e, used in theoretical work, are
called natural logarithms and frequently notated as In. In
any case,

log(ab) =loga +logh
log(a/b) = loga —logb
log(1/n) = —logn
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log(a") = nloga
logy,(b) = 1, where b is either 10 or e
log0 = —o00
log1=0
logpe = M = 0.4342944819. . ., so for conversion
logox = 0.43431log. x
and since 1/M = 2.302585, for conversion (In = log.)
Inx = 2.3026 log;, x

1.8.7 Binomial Theorem

Let
n=n
nn—1)
="y
ny = n(n — 1)(n — 2)

3!

and so on. Then for any n, [x| < 1,
A4+%)"=14nmx + x> +n3x° +. ..

Ifnisa positive integer, the system is valid without restriction
on x and completes with the term n,x".
Some of the more useful special cases follow [1]:

\/1+7x=(1+x)1/2=1+%x—%x2+%x3

o 4
—@x +...(x] <1

¢31+x=(1+x>“3=1+%x—$x2—8*51)(3

10 ,
~9;3% +...(Xl <1

l—i-%=(1+X)71=1—X+X2—x3+x4—...(lxl<1)
\/L—X=(l+x)’1/2:1—%x+gx2_%xs
+%X4—...(Ix|<1)
\3/%2(14—)()‘1/3:1—%;(4_%)(2_%){3
Foxt (< D)
M=(1+x)3/2:1_%x+%){2_%6x3

3
+§8x4—...(|x|<l)

1 3 15 35
I — | —3/2:1_7 Y2 U3
Tix? 1+x) 2x+ 8X 16X
315 ,
+@x —...(xl <]

with corresponding formulas for (1 — x)'/?, etc., obtained
by reversing the signs of the odd powers of x. Provided
[b] <|a]:

@b =a (1+7)
a

=a" +n;a" b + mea™ ?b% + n3a™ vt + . ..

where ny, ny, etc., have the values given earlier.

1.3.8 Progressions

In an arithmetic progression, (a,a+d,a+2d,a+3d,...),
each term is obtained from the preceding term by adding a
constant difference, d. If n is the number of terms, the last
termis p = a + (n — 1)d, the “average” term is 1/2(a + p)
and the sum of the terms is n times the average term or
s = n/2(a + p). The arithmetic mean between a and b is
(a+b)/2.

In a geometric progression, (a, ar, ar?, ar®, . . .), each term
is obtained from the preceding term by multiplying by a con-
stant ratio, r. The nth term is ar"!, and the sum of the first
ntermsiss=a(" —-1)/c—-1) =a(l -r")/A —-r).Ifrisa
fraction, r" will approach zero as n increases and the sum of
n terms will approach a/(1 — r) as a limit.

The geometric mean, also called the “mean proportional,”
between a and b is +/ab. The harmonic mean between a and
bis2ab/(a+Db).

1.3.9 Sums of the First n Natural Numbers
o To the first power:
14243+... +(n—1)+n=nn+1)/2
e To the second power (squared):
24+224+. . +@=-1*+n’=nm+12n+1)/6
e To the third power (cubed):
P4+22 4+ . +@—-1%+0®=nmn+1)/2°

1.3.10 Solution of Equations in One Unknown
Legitimate operations on equations include addition of any
quantity to both sides, multiplication by any quantity of both
sides (unless this would result in division by zero), raising
both sides to any positive power (if £ is used for even roots)
and taking the logarithm or the trigonometric functions of
both sides.

Any algebraic equation may be written as a polynomial of
nth degree in x of the form

apx" +ayx" 1 ax" % ... +a, x+a,=0
with, in general, n roots, some of which may be imaginary
and some equal. If the polynomial can be factored in the form
X-pE-—@E-1)... =0
thenp, q, 1, ... are the roots of the equation. If || is very
large, the terms containing the lower powers of x are least
important, while if || is very small, the higher-order terms

are least significant.
First-degree equations (linear equations) have the form

ax+b=c

with the solution x = b — a and the root b — a.
Second-degree equations (quadratic equations) have the
form

ax’+bx4+c=0
with the solution
‘— —b + +/b? — 4ac
- 2a
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and the roots

—b + +/b?% — 4ac
2a
and
—b — +/b?% — 4ac
2a

The sum of the roots is —b/a and their product is c/a.

Third-degree equations (cubic equations) have the form,
after division by the coefficient of the highest-order term,

x®+ax’+bx+c=0
with the solution
X:f = AX1 +B

wherex; =x — a/3

A=3@/3)?-b

B=-2@/3)® +b@/3) —c

Exponential equations are of the form

a*=b

with the solution x = (log b)/(log a) and the root (log b)/

(log a). The complete logarithm must be taken, not just the
mantissa.

1.3.11 Solution of Systems of Simultaneous Equations
A set of simultaneous equations is a system of n equations in
n unknowns. The solutions (if any) are the sets of values for
the unknowns that satisfy all the equations in the system.
First-degree equations in 2 unknowns are of the form

aiX; + bixs = ¢

X1 + boxy = ¢

The solution is found by multiplication of Equations 1.3.1
and 1.3.2 by some factors that will produce one term in each
that will, upon addition of Equations 1.3.1 and 1.3.2, become
zero. The resulting equation may then be rearranged to
solve for the remaining unknown. For example, by multiply-
ing Equation 1.3.1 by a; and Equation 1.3.2 by —aj, adding
Equation 1.3.1 and Equation 1.3.2 and rearranging their sum

azC1 — a1C2
- a2b1 — 31b2
and by substitution in Equation 1.3.1:
bicy —baey
1= a2b1 — a1b2

A set of n first-degree equations in n unknowns is solved in
a similar fashion by multiplication and addition to eliminate
n — 1 unknowns and then back substitution. Second-degree
equations in 2 unknowns may be solved in the same way when
two of the following are given: the product of the unknowns,
their sum or difference, the sum of their squares. For further
solutions, see “Numerical Methods.”

1.3.12 Determinants
Determinants of the second order are of the following form
and are evaluated as

a1b1
= ajby — ash
ashy 1D2 — azby
and of the third order as
ajbic;
b _ bgCg b]Cl b]Cl
aDaCy | =21 | —a |y tag|y
3C3 3C3 2C2
azhscs

and of higher orders, by the general rules as follows. To
evaluate a determinant of the nth order, take the elements
of the first column with alternate plus and minus signs and

form the sum of the products obtained by multiplying each
of these elements by its corresponding minor. The minor
corresponding to any element e, is the determinant (of the
next lowest order) obtained by striking out from the given
determinant the row and column containing e,.

Some of the general properties of determinants are

1. Columns may be changed to rows and rows to columns.

2. Interchanging two adjacent columns changes the sign of
the result.

3. Iftwo columns are equal or if one is a multiple of the other,
the determinant is zero.

4. To multiply a determinant by any number m, multiply all
elements of any one column by m.

Systems of simultaneous equations may be solved by the
use of determinants using Cramer’s rule. Although the exam-
ple is a third-order system, larger systems may be solved by
this method. If

ax+biy+ciz=m
aX + bay + 2z 4 p2
asX + b3y + 32 = p3
and if
ajbic;
D= 82b2C2
azhscs

£0

then
X:Dl/D
y =Dy/D
zZ= Dg/D

where

pibicy
pzbacy
psbscs
a1P1Cy
azP2C2
aspsCs
ajbipy
azbyps
azhsps

D, =

D,

D3
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1.4 TRIGONOMETRY

1.4.1 Directed Angles

If AB and AB’ are any two rays with the same end point A,
the directed angle <BAB' is the ordered pair (I?B, A/TB’). }T)B
is the initial side of <BAB’ and A_)B’ the terminal side. <BAB’

# <B’AB and any directed angle may be <0° or >180°.
A directed angle may be thought of as an amount of rota-

—
tion rather than a figure. If AB is considered the initial
position of the ray, which is then rotated about its end point

ity
A to form <BAB’, AB' is its terminal position.

1.4.2 Basic Trigonometric Functions
A trigonometric function can be defined for an angle 0
between 0° and 90° by using Figure 1.4.1.

1.4.3 Trigonometric Properties

sin © = opposite side/hypotenuse = s;/h
cos 6 = adjacent side/hypotenuse = s;/h
tan © = opposite side/adjacent side = s;/s; = sin 6/ cos 0
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Figure 1.4.1 Trigonometric functions of angles.

and the reciprocals of the basic functions (where the function
# 0)
cotangent® = cot® = 1/tan 0 = sy/s;
secant® = sec® = 1/cos0 = h/s;
cosecant® = csc0 = 1/sin0 = h/s;

To reduce an angle to the first quadrant of the unit
circle, that is, to a degree measure between 0° and 90°,
see Table 1.4.1. For function values at major angle values, see
Tables 1.4.2 and 1.4.3. Relations between functions and the
sum or difference of two functions are given in Table 1.4.4.
Generally, there will be two angles between 0° and 360° that
correspond to the value of a function.

The trigonometric functions sine and cosine can be
defined for any real number by using the radian measure
of the angle as described in the section on angles. The tan-
gent function is defined on every real number except for
places where cosine is zero.

1.4.4 Graphs of Trigonometric Functions
Graphs of the sine and cosine functions are identical in shape
and periodic with a period of 360°. The sine function graph

Table 1.4.1 Angle Reduction to First Quadrant

If 90° < x < 180°

180° < x < 270°

270° < x < 360°

sinx = +cos(x —90°)

—sin(x — 180°)

—cos(x — 270°)

cosx = —sin(x—90°) —cos(x—180°) +sin(x — 270°)
tanx = —cot(x—90°) +tan(x —180°) —cot(x — 270°)
cscxXx = +4sec(x—90°) —csc(x—180°) —sec(x —270°)
secx= —csc(x—90°) —sec(x—180°) +csc(x — 270°)
cotx = —tan(x—90°) +cot(x —180°) —tan(x — 270°)

translated £ 90° along the x-axis produces the graph of the
cosine function. The graph of the tangent function is discon-
tinuous when the value of tan 0 is undefined, that is, at odd
multiples 0of90° (..., 90°,270°,...).Forabbreviated graphs
of the sine, cosine, and tangent functions, see Figure 1.4.2.

1.4.5 Inverse Trigonometric Functions

The inverse sine of x (also referred to as the arc sine of x),
denoted by sin~!x, is the principal angle whose sine is x,
that is,

y = sin"! x means siny = x

1 1

Inverse functions cos™'x and tan~'x also exist for the
cosine of y and the tangent of y. The principal angle for
sin~'x and tan—'x is an angle a, where —90° < a < 90°,
and for cos™'x, 0° < a < 180°.

1.4.6 Solution of Plane Triangles

The solution of any part of a plane triangle is determined in
general by any other three parts given by one of the following
groups, where S is the length of a side and A is the degree
measure of an angle:

o AAS
e SAS
e SSS

The fourth group, two sides and the angle opposite one
of them, is ambiguous since it may give zero, one, or two
solutions. Given an example triangle with sides a, b, and ¢
and angles A, B, and C (A being opposite a, etc., and A + B
+ C = 180°), the fundamental laws relating to the solution
of triangles are

1. Law of sines: a/(sin A) = b/(sin B) = ¢/ (sin C)
2. Law of cosines: ¢? = a®> + b? — 2ab cos C

1.4.7 Hyperbolic Functions

The hyperbolic sine, hyperbolic cosine, etc., of any number x
are functions related to the exponential function e*. Their def-
initions and properties are very similar to the trigonometric
functions and are given in Table 1.4.5.

Table 1.4.3 Trigonometric Function Values at Major
Angle Values

Values at 30° 45° 60°
sinx 1/2 1/2v2 1/2v3
Cos X 1/24/3 1/24/2 1/2
tan x 1/3V3 1 V3
csc X 2 NZ] 2/3v3
secx 2/3J3 V2 2
cotx V3 1 1/3V3

Table 1.4.2 Trigonometric Function Values by Quadrant

If 0° <x < 90° 90° < x < 180° 180° < x < 270° 270° < x < 360°
sin x +0to +1 +1to +0 —0to -1 —1to -0
CcoS X +1to +0 —0to—1 —1to -0 +0to +1
tan x +0 to +o0 —oo to —0 +0to +o00 —oo to —0
csC X +ooto +1 +1to +o0 —ooto —1 —1to —o0
sec X +1to +o0 —ocoto —1 —1to —o0 400 to +1
cotx ~+o00 to +0 —0to —oc0 400 to +0 —0to —oc0
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Table 1.4.4 Relations Between Trigonometric Functions
of Angles

Single Angle
sin?x 4 cos’x = 1
tan x = (sin X)/(cos X)
cotx = 1/(tan x)
1 + tan®x = sec®x
1+ cot?x = csc?x
sin(—x) = — sin X, cos(—x) = cos X, tan(—x) = — tan X
Two Angles
sin(x +y) = sinx cosy + cosx siny
sin(x —y) = sinx cosy — cos X siny
cos(X+y) =cosxcosy —sinxsiny
COS(X —y) = COSX COSy + sinx siny
tan(x +y) = (tanx + tany)/(1 — tan x tan y)
tan(x —y) = (tan X — tany)/(1 + tan X tan y)
cot(x +y) = (cotx coty — 1)/(coty + cot x)
cot(x —y) = (cotx coty + 1)/(coty — cot x)
sin X +siny = 2 sin[1/2x +y)] cos[1/2(x —y)]
sinX —siny = 2 cos[1/2(x +y)] sin[1/2(x — y)]
cosx+cosy =2cos[1/2(x +y)] cos[1/2(x —y)]
cosX —cosy=—2sin[1/2(x +y)] sin [1/2(x —y)]
tan X +tan y = [sin(x 4+ y)]/[cos x cos y]
tanX —tany = [sin(x — y)]/[cos x cos y]
cotx + coty = [sin(x + y)]/[sin x sin y]
cotx — coty = [sin(y — x)]/[sin x sin y]
sin?x — siny = cos?y — cos?x

= sin(x +y) sin (x —y)
cos’x — sin’y = cos’y — sin’x

= cos(X +y) cosxX —y)
sin(45° + xX) = cos(45° — x), tan(45° + xX) = cot(45° — x)
sin(45° — x) = cos(45° + x), tan(45° — x) = cot(45° + x)
Multiple and Half Angles
tan 2x = (2 tan x)/ (1 — tan®x)
cot 2x = (cot?x — 1)/ (2 cot x)
sin(nx) = n sin x cos™x — (n)3sin®x cos®3x

+(n)ssin®x cos"Px —. ..
cos(nx) = cos"x — (n),sin®x cos™2x
+ (n)4sin*x cos™ *x —. ..
(Note: (n)s, . .. are the binomial coefficients)
sin(x/2) = +,/1/2(1 — cosx)
cos(x/2) = +./1/2(1 + cosx)
tan(x/2) = (sinx)/(1 4 cosx) = +/(1 — cosx)/(1 + cosx)
Three Angles Whose Sum = 180°
sin A + sin B + sin C = 4 cos(A/2) cos(B/2) cos(C/2)
cos A+ cos B+ cos C =4sin(A/2) sin(B/2) sin(C/2) +1
sin A + sin B — sin C = 4 sin(A/2) sin(B/2) cos(C/2)
cos A+ cos B —cos C =4 cos(A/2) cos(B/2) sin(C/2) — 1
sin?A + sin?B + sin?C = 2 cos A cos B cos C + 2
sin?A + sin?B — sin?C = 2 sin A sin B cos C
tan A + tan B + tan C = tan A tan B tan C
cot(A/2) + cot(B/2) + cot(C/2)
= cot(A/2) cot(B/2) cot(C/2)

sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
sin 2A + sin 2B — sin 2C =4 cos Acos Bsin C

The inverse hyperbolic functions, sinh~'x, etc., are related
to the logarithmic functions and are particularly useful in
integral calculus. These relationships may be defined for real
numbers X and y as

sinh ! (x/y) = Inx + v/x2 + y2) — Iny

cosh™!(x/y) = In(x + v/x2 —y%) — Iny
tanh™'(x/y) = 1/2 ¢ In[(y + x)/(y — X)]
coth™'(x/y) = 1/2 * In[(x + y)/(x = y)]

1.4.8 Polar Coordinate System

The polar coordinate system describes the location of a point
(denoted as [r, 6]) in a plane by specifying a distance r and
an angle 0 from the origin of the system. There are several
relationships between polar and rectangular coordinates,
diagrammed in Figure 1.4.3. From the Pythagorean theorem

r==+yx24+y?
Also
sin@=y/r or y=rsin®
cos®=x/r or Xx=rcos6
tan6=y/x or 0= tan‘l(y/x)

To convert rectangular coordinates to polar coordinates,
given the point (%, y), using the Pythagorean theorem and
the preceding equations.

mm=pﬂ+ﬂermﬂ

To convert polar to rectangular coordinates, given the
point [r, 6]:

(X,y) = [rcos6,rsing]

For graphic purposes, the polar plane is usually drawn as
a series of concentric circles with the center at the origin and
radii 1, 2, 3, ... Rays from the center are drawn at 0°, 15°,
30°, ..., 360° or 0, /12, /6, /4, . . ., 2n radians. The origin
is called the pole, and points [r, 6] are plotted by moving a
positive or negative distance r horizontally from the pole,
and through an angle 8 from the horizontal. See Figure 1.4.4
with 0 given in radians as used in calculus. Also note that

[r,8] =[-1,6+m]

1.5 DIFFERENTIAL AND INTEGRAL CALCULUS
See References 1-4 for additional information.

1.5.1 Derivatives

Geometrically, the derivative of y = f(x) at any value x, is
the slope of a tangent line T intersecting the curve at the
point P(x, y). Two conditions applying to differentiation (the
process of determining the derivatives of a function) are

1. The primary (necessary and sufficient) condition is that
A
im =Y
Ax—0 AX

exists and is independent of the way in which Ax — 0
2. A secondary (necessary, not sufficient) condition is that

lim f(x + AX) = f(x)
Ax—0

A short table of derivatives will be found in Table 1.5.1.

1.5.2 Higher-Order Derivatives

The second derivative of a function y = f(x), denoted f’(x)
or d?y/dx? is the derivative of f (x) and the third derivative,
f”(x) is the derivative of f” (x). Geometrically, in terms of f(x):
if f"(x) > 0then f(x) is concave upwardly, if ' (x) < 0 then
f(x) is concave downwardly.

1.5.3 Partial Derivatives

If u=1f(x, vy ...) is a function of two or more variables,
the partial derivative of u with respect to x, f; (X, y, ...) or
ou/0x, may be formed by assuming x to be the indepen-
dent variable and holding (y, .. .) as constants. In a similar
manner, f, (X, y, ...) or du/dy may be formed by holding
(%, ...) as constants. Second-order partial derivatives of
f(x, y) are denoted by the manner of their formation as fi,
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The sine graph The cosine graph The tangent graph
period 360° period 360° period 360°
Figure 1.4.2 Graphs of the trigonometric functions.

Table 1.4.5 Hyperbolic Functions Y
sinhx = 1/2(e* — e™¥)
coshx = 1/2(e* +e7¥)
tanh x = sinh x/cosh x
csch x = 1/sinh x
sech x = 1/cosh x
coth x = 1/tanh x
sinh(—x) = —sinh x
cosh(—x) = cosh x ) Y
tanh(—x) = —tanh x \
cosh®x — sinh?x = 1 A X
1 — tanh®x = sech?x ]
1 — coth®x = —csch?x "
sinh(x £+ y) = sinh x cosh y & cosh x sinh y X
cosh(x £y) = cosh x coshy & sinh x sinh y
tanh(x +y) = (tanh x & tanh y) /(1 & tanh x tanh y)
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh?x + sinh?x
tanh 2x = (2 tanh x)/ (1 + tanh?x)
sinh(x/2) = /1/2(coshx — 1)
cosh(x/2) = \/1/2(coshx + 1) Figure 1.4.3 Polar coordinates.
tanh(x/2) = (cosh x — 1)/(sinh x) = (sinh x)/(cosh x + 1)

/2
fyy (equal to fiy), fyy or as d%u/ax?, 8%u/dxdy, 9%u/dy?, and
the higher-order partial derivatives are likewise formed. 2m/3 /3

Implicit functions (i.e., {x, y) = 0) may be solved by the 3n/4 /4
formula
&y _ & 5m/e /6
dx — f
at the point in question.
b1 0
1.5.4 Maxima and Minima
A critical point on a curve y = {(X) is a point where y’ = 0,
that is, where the tangent to the curve is horizontal. A critical
value of x is therefore a value such that f' (x) = 0. All roots of
the equation f' (x) = 0 are critical values of x, and the corre- 7n/s 111/
sponding values of y are the critical values of the function.
A function f(x) has a relative maximum at x = a if f(x) 5m/4 /g

< f(a) for all values of x (except a) in some open interval a7/ 5m).
containing a and a relative minimum at x = b if {(x) > f(b) 3 3
for allx (exceptb) in the interval containing b. At the relative
maximum a of f(x), f (a) = 0, i.e., slope = 0, and {"(a) < 0, 3nf2

i.e., the curve is downwardly concave at this point, and at
the relative minimum b, f'(b) = 0 and "(b) > 0 (upward
concavity). In Figure 1.5.1 A, B, C, and D are critical points
and x;, X», X3, and x4 are critical values of x. A and C are
maxima, B is a minimum, and D is neither. D, F, G, and
H are points of inflection where the slope is minimum or
maximum. In special cases, such as E, maxima or minima
may occur where f' (x) is undefined or infinite.

Figure 1.4.4 The polar plane.

The absolute maximum (or minimum) of f(x) atx = a exists
if f{(x) < f(a) (or f(x) > f(a)) for all x in the domain of the
function and need not be a relative maximum or minimum.
If a function is defined and continuous on a closed interval, it
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Table 1.5.1 Table of Derivatives®

d oy 4 ginlu 1
(TX(X) =1 dx Sin 1— uz dx
d d -1y du
L (a) = £ cos -
ax (@) ax /71 2 dx
d _ du dv d -1, _ 1 du
cutvi.. )= £ £ o tan U= 170 &
d “1,___1 du
dx i aw) = adx i e wer i
_qdv du d 1, _ _ 1 du
&(UV) - udx + V& dx Sec "u= w21 X
du_ viE-ui doge-lye -1 du
ddx v v2 ; d(;( u /1127‘1jl dx
ay _ a—1du d -1, u
= (u?) = nu I xvers u= m &
d _ logze du d o _
ax logau= 2= d—xsmhu_coshudx
d _ 1du d o du
—logu_ﬁ& d—xcoshu_smhud—X
dd a' =a"elog.a® g d“ % tanhu = sechzu%u
d .u_ ,udu d - _ 2y du
we' = I cothu = —csch*ugy
d%u" = vu"’lg—g +u logeug—z d%sechu = 7sechutanhug—g

di sinu = cosugu d%cschu = —cschu cothug)‘i
ddx cosu = — smug)‘é % sinh 1u \/17 &
%tzmu:sec2 gﬁ dXcosh u_«/lidx

% cotu = —csc? ug—“ & tanh " u = 13u2 %
disecu_secutanu— dixcoth’1u=7112171g—;(1

(fx cscu——cscucotudx %sech_luz—u\/ﬁg—)‘:
(fversu_smug“ fxcsch 1u_—u\/1112jg—)‘:

@The u and v represent functions of x. All angles are in radians.

will always have an absolute minimum and an absolute max-
imum, and they will be found either at a relative minimum
and a relative maximum or at the endpoints of the interval.

1.5.5 Differentials
If y = f(x) and Ax and Ay are the increments of x and vy,
respectively, because y + Ay = f(x + Ax), then

Ay = f(x + Ax) — f(x)

As Ax approachesits limit 0 and (since x is the independent
variable) dx = Ax

dl ~ fx+Ax) —f(x)

dx Ax
and
dy = Ay
By defining dy and dx separately, it is now possible to write
g—i =f'(x)
as
dy =f' = (x)dx

In functions of two or more variables, where f(x,y,...) =
0, if dx, dy, . . . are assigned to the independent variables x,
y, ..., the differential du is given by differentiating term by
term or by taking
du=fyedx +fyedy +...
are functions of t, then
du

Ifx,y,...
dy
(f) +(fy)a+

expresses the rate of change of u with respect to t, in terms
of the separate rates of change of X, y, . . . with respect to t.

Y
H
X
- ] X
A
\
Figure 1.5.1 Maxima and minima.
Y
As -
z Ay
P
AX
s
e - X

Figure 1.5.2 Radius of curvature in rectangular
coordinates.

1.5.6 Radius of Curvature
The radius of curvature R of a plane curve at any point Pis the
distance along the normal (the perpendicular to the tangent
to the curve at point P) on the concave side of the curve to
the center of curvature (Figure 1.5.2). If the equation of the
curve isy = f(x)

ds  [1+fx)?P?

T du 7(x)

where the rate of change (ds/dx) and the differential of the
arc (ds), s being the length of the arc, are defined as

ds dy
& = 1+<dx>

ds = dx2 + dy?

and

and dx = ds cos u
dy =dssinu
u=tan'[f %)]
with u being the angle of the tangent at P with respect to the
x-axis. (Essentially, ds, dx, and y correspond to the sides of
aright triangle.) The curvature K is the rate at which <u is
changing with respect to s, and
1 du
K=o =—
R ds
If f (x) is small, K = {"(x).
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As

p e+A0
-

Y

Figure 1.5.3 Radius of curvature in polar coordinates.

In polar coordinates (Figure 1.5.3), r = £(8), where r is the
radius vector and 6 is the polar angle, and

ds = ,/dp? + p2d6?
so thatby x =p cos 0,y =p sin 8 and K= 1/R=d6/ds, then
ds [P+ ()*P2
de  rZ—rr’+2(r)?
If the equation of the circle is
RP=x—0)+(@y—P)°
by differentiation and simplification
Y+
v

and

1+ @)
B=y+——
y

The evolute is the locus of the centers of curvature, with
variables o and P, and the parameter x (y, y, and y” all

being functions of x). If f(x) is the evolute of g(x), g(x) is
the involute of f(x).

1.5.7 Indefinite Integrals
Definition: The indefinite integral (antiderivative) may be
defined as follows:

ff(x)dx =Fx)+ Cif F(x) = f(x)

The constant C is called the constant of integration.
Integration by parts makes use of the differential of a
product
d(uv) = udv + vdu
or
udv = d(uv) — vdu

and by integrating

/udv:uv—/vdu

where /v du may be recognizable as a standard form or may
be more easily handled than / udv.

Integration by transformation may be useful when, in cer-
tain cases, particular transformations of a given integral to
one of a recognizable form suggest themselves.

For example, a given integral involving such quantities as

vuz—a? Ju?4a? or vaZ-u?

may suggest appropriate trigonometric transformations
such as, respectively,

u=acsco,

u=atano,
or

u=asin6

Integration by partial fractions is of assistance in the
integration of rational fractions. If

ax+b ax+b A B
XApxtd K-ox-P  x-o  x-p
where A+ B=a
AB+Ba=-b
and A and B are found by use of determinants (see “Alge-
bra”), then
(ax + b)dx Adx Bdx
x—a)x—P) :/xfoc /xfﬁ

=Alog(x — o)+ Blogx—p)+C

Integration by tables is possible if an integral may be put
into a form that can be found in a table of integrals, such as
the one given in Table 1.5.2. More complete tables may be
found in Bois, “Table of Indefinite Integrals,” Dover, and in
others.

1.5.8 Definite Integrals

The fundamental theorem of calculus states that if f(x) is the
derivative of F(x) and if f(x) is continuous in the interval
[a, b], then

b
/ fx)dx = F(b) — F(a)

Geometrically, the integral of f(x)dx over the interval
[a, b] is the area bounded by the curve y = f(x) from f(a) to
f(b) and the x-axis from X = a to X = b, or the “area under
the curve fromato b.”

1.5.9 Properties of Definite Integrals

[=1
[+[-]

The mean value of {(x), f, between a and b is

_ 1 b
= / fx)dx

If the upper limit b is a variable, then / f(x)dx is a function
of b and its derivative is

d b
f(h) = E/ f(x)dx

To differentiate with respect to a parameter
a [ b Bf(x,
— / f(x, c)dx = / & C)dx
ac J, a ac

Some methods of integration of definite integrals are
covered in “Numerical Methods.”

1.5.10 Improper Integrals

If one (or both) of the limits of integration is infinite, or if the
integrand itself becomes infinite at or between the limits of
integration, the integral is an improper integral. Depending
on the function, the integral may be defined, may be equal
to oo, or may be undefined for all x or for certain values of x.
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Table 1.5.2 Table of Integrals®

1. [dfx) = fx) + C

2.d [fx)dx = f(x)dx

3. [0edx=C

4. [af(x)dx = a [f(x)dx

5 [(uxv)dx = [udx + [vdx
6. [udv = uv — [vdu

7. Wiy =uv — [vidx

8. [f(y)dx = f fody
9. [u'du =& n+1 +C n#-1
10. f & —Jog,u+C

11. fe“du—e“+C

12. [ b'du = 25 +C

13. fsmudu_—cosu-i-C

14. [ cosudu=sinu+C

15. [tanudu = log, secu + C = —log, cosu+ C

16. [ cotudu = log, sinu+ C = —log.cscu+ C

17. [ secudu = log.(secu + tanu) + C
=log.tan(} +§)+C

18. [ cscudu = log.(cscu — cotu) + C =

19. [sin®udu = lu— §sinucosu+C

20. [ cos’udu = ju+ §sinucosu+C

21. [sec’udu=tanu+C

22. fesc®udu = —cotu+C

23. [tanudu=tanu —u+C

24. [ctn’udu= —cotu—u+C

Wy = tan™' 4+ C
26/ L

log.tan 5 +C

loge(h‘+2)+C
:——coth (4) +C,if v* >
IOgE (a u)+c
atanh ()—i—C,ifu2<a2

1/u
(5)+C
log.(u++/u £a%)t+C

=sin~

d
27. f T{ -

du
28.[ i
29./ d“g:cosl(

1) +C

au—u

SO/J% lsec!(4)+C=12cos124C

t
—_1 aty/alou?
31/«/@ aloge< = >+C
/Va —uZe du=%(u«/az—uz—i-azsin’1 §)+C

3 /\/uz +aZedu

=1 [u\/u2 +aZ+a’log.(u+vu £ 32)]1 +C
34. [sinhudu = coshu+C
35. [coshudu =sinhu+C
36. [ tanhudu = log.(coshu) + C
37. [ cothudu = log.(sinhu) + C
38. [ sechudu = sin*(tanhu) + C
39. [ eschudu = log, (tanh §) + C
40. [ sechue tanhuedu = —sechu+C
41. [ cschue cothuedu = —cschu+C

2The u and v represent functions of x.

2,2 2_42
Tloge (VW27 _ sinh=1 (49) ; loge (Y277 — sech—L(Y);
a a u a

2_,2 2_42
loge(ﬂi v“ﬂ) :Coshfl(%);loge('ﬁi vau>csch71(g)

a u

1.5.11 Multiple Integrals

It is possible to integrate functions of several variables by
using an iterated integral. An iterated integral is solved from
the inner integral to the outer, and variables other than the
variable of integration are held constant.

// f(x,y)dydx = / (/ f(x, y)dy) dx

Definite multiple integrals may have variable inner limits
of integration with respect to the outer variable of integration:

d rgx)
/ F(x, y)dydx
c f(x)
Uses for multiple integrals include finding areas, volumes,
and the center of mass.

1.5.12 Differential Equations

An ordinary differential equation contains a single indepen-
dent variable and a single unknown function of that variable,
with its derivatives. A partial differential equation involves
an unknown function of two or more independent variables,
and its partial derivatives. The order of a differential equa-
tion is the order of the highest derivative in the equation.
The general solution of a differential equation of order n is
the set of all functions that possess at least n derivatives and
satisfy the equation, as well as any auxiliary conditions.

1.5.13 Methods of Solving Ordinary
Differential Equations
For first-order equations, if possible, separate the variables,
integrate both sides, and add the constant of integration, C.
If the equation is homogeneous in x and y, the value of dy/dx
in terms of x and y is of the form dy/dx = f(y/x) and the
variables may be separated by introducing new independent
variable v = y/x and then
xd—v +v =1(v)
dx a
The expression f(x, y)dx + F(x, y)dy is an exact differen-
tial if
ixy) _ Fxy)
dy  0x
Then, the solution of f(x, y)dx + F(x, y)dy = 0 is

/f(x,y)der/ [F(x,y)fdex] dy=C
/F(x, y)dy—',—/ [f(x, y)—[de] dx =C

A linear differential equation of the first order such as
dy/dx + f(x)ey = F(x)

(= P, for example)

has the solution
y=e? [/ e’!Fx)dx + C:| where P = /f(x)dx

In the class of nonlinear equations known as Bernoulli’s
equations, where

dy/dx + f(x)ey = F(x)ey"
substituting y' ™" = v gives
dv/dx + (1 — n)f(x)ev=(1-n)Fx) [n#0or1]
which is linear in v and x. In Clairaut’s equations
y=xp+1i(p) where p=dy/dx,

the solution consists of the set of lines given by y =
Cx + f(C), where C is any constant, and the curve obtained
by eliminating p between the original equation and x +

f( =0/[1].
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Some differential equation of the second order and their
solutions follow:
For d%y/dx? = —n?%y
y = C; sin(nx + Cy)
= C3 sinnx + C4 cos nx
For d%y/dx? = 4+n%y
y = C; sinh(nx + Cy)
— Csenx + C4e—nx
For d?y/dx? = f(y)

VAN ) I
where P = [ f(y)dy.
For d?y/dx? = f(x)

y = /de + Cix+C, where P = /f(x)dx

=xP— /xf(x)dx +Cix+Cy

For d?y/dx? = f(dy/dx), setting dy/dx = z and d?/dx? =
dz/dx

X = /dz/f(z) + Cy and

y= / zdz/f(z) + C,, then eliminating z

For d?y/dx? + 2b(dy/dx) + a’y = 0 (the equation for
damped vibration)

o Ifa? —b% > 0,
then m = /a2 — b?
y = Cie ™ sin(mx + Cy)
= e7™[C; sin(mx) + C4 cos(mx)]
o Ifa?—b2=0,
y = e ™(Cy + Cox)
o Ifa’?—b* <0,

then n = /b2 — a2 and
y= Cie ™ sinh(nx + Cy)
— CBe*(b+n)x + C4ef(b—n)x

For d?y/dx? + 2b(dy/dx) + a’y = ¢
y=c/a®+n
where y is the solution of the previous equation with second
term zero.

The preceding two equations are examples of linear dif-
ferential equations with constant coefficients and their solu-
tions are often found most simply by the use of Laplace
transforms [1].

For the linear equation of the n™ order

Apx)dy/dx™ + Ay 1 (x)d* y/dx™ L

+ Ay (x)dy/dx + Ap(x)y = E(x)
the general solution is
y=u+ciu; +Couz + ... + Cply,
where u is any solution of the given equation and uj,
s, ..., u, form a fundamental system of solutions to the
homogeneous equation [E(x) < zero]. A set of functions
has linear independence if its Wronskian determinant,

W), #0, where

u uz ... Uy
u uz ... U
W(X) _ 1 2 n
m m m
upg uy ..Uy

and m = n — 1th derivative. (In certain cases, a set of
functions may be linearly independent when W(x) = 0.)

1.5.14 The Laplace Transformation
The Laplace transformation is based on the Laplace inte-
gral which transforms a differential equation expressed in
terms of time to an equation expressed in terms of a com-
plex variable 6 + jo. The new equation may be manipulated
algebraically to solve for the desired quantity as an explicit
function of the complex variable.

Essentially three reasons exist for the use of the Laplace
transformation:

1. The ability to use algebraic manipulation to solve higher-
order differential equations

2. Easy handling of boundary conditions

3. The method is suited to the complex-variable theory
associated with the Nyquist stability criterion [1].

In Laplace-transformation mathematics, the following
symbols and variables are used:

f(t) = afunction of time

s = acomplex variable of the form (o + jo)

F(s) = the Laplace transform of f, expressed in s, resulting
from operating on f(t) with the Laplace integral.

L = the Laplace operational symbol, i.e., F(s) = L[f(t)].

The Laplace integral is defined as
L= / e Sdt and so
0

amn:/waﬁmm
0

Table 1.5.3 lists the transforms of some common time-
variable expressions.
The transform of a first derivative of f(t) is

d _ "
L[aﬂw}_sﬂ9—fm)

where f(0*) = initial value of f(t) as t — 0 from positive
values.
The transform of a second derivative of f(t) is

LIf"(t)] = s*F(s) — sf(0T) — £'(07)
and of [f(t)dt is
-1
ﬁ{/mmq:f(w>+gﬂ

S S

Solutions derived by Laplace transformation are in terms
of the complex variable s. In some cases, it is necessary to
retransform the solution in terms of time, performing an
inverse transformation

L7IF(s) = f(t)

Just as there is only one direct transform F(s) for any
f(t), there is only one inverse transform f(t) for any F(s) and
inverse transforms are generally determined through use of
tables.
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Table 1.5.3 Laplace Transforms

f(t) F(s) = LIf(1)]
A A/s
1=u(®) 1/s
—at 1
e S
—t 1
1/re t* P
—at A
Ae™® St
sin Bt v
S
COS Bt W
1,—at o 1
Ee sin Bt s2+2as+02 +f2
e ot ﬂ 1
B-o ~ P (s+a)(s+P)
Ae—% _Be—Bt s+a
C (s+o)(s+B)
A=a-a
where B=a -
c=pf—-a
e—at ot -8t

Tt

A=B-u@ -
where B = (0. — B)(3 — B)
C=@-8PB-9

1
(s+o)(s+B)(s+d)

t nn«il

d/ati®)] SF(s) — 107

d2/de[f®)] s?F(s) — sf(0*) — £(0%)

d3/aeIE] SBF(S)df_ SZf(Oﬂde
—Sa(oﬂ - @(Oﬂ
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é sinh ot 1

cosh at
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1.6 ANALYTIC GEOMETRY

1.6.1 Symmetry

Symmetry exists for the curve of a function about the y-axis
if F(x,y) = F(—x,y), about the x-axis if F(x, y) = F(x, —y),
about the origin if F(x, y) = F(—x, —y), and about the 45°
line if F(x,y) = F(y, x).

1.6.2 Intercepts

Intercepts are points where the curve of a function crosses
the axes. The x intercepts are found by setting y = 0 and the
y intercepts by setting x = 0.

1.6.3 Asymptotes

As a point P(x, y) on a curve moves away from the region
of the origin (Figure 1.6.1a), the distance between P and
some fixed line may tend to zero. If so, the line is called an
asymptote of the curve. If N(x) and D(x) are polynomials
with no common factor, and

y = Nx)/D(x)

where x = c is a root of D(x), then the line x = cis an
asymptote of the graph of y.

-

P’ [c,y] >

i X

Figure 1.6.1a Asymptote of a curve.

[0,b]

Figure 1.6.1b Slope of a straight line.

1.6.4 Equations of Slope and Straight Lines
1. Equation for slope of line connecting two points (x1, y1)
and (xg, y2)
m= Y2—V1
X2 —X1
2. Two-point equation (Figure 1.25)
Y—-vi_Y¥2—%n
X — X1 - Xo — X1
3. Point-slope equation (Figure 1.25)
y—y1=mEX—Xxq)
4. Slope-intercept equation (Figure 1.6.1b)
y=mx+ b

1.6.5 Tangents
In the slope m of the curve of f(xX) at (x1, y1) is given by
(Figure 1.6.2)

Todxxy1)

then the equation of the line tangent to the curve at this point
is

f'(x)

y—y1 =&)X —x1)
and the normal to the curve is the line perpendicular to the
tangent with slope m, where

my = —1/m; = —1/f'(x)
or
y—y1=-x-x)/f'(x1)

1.6.6 Other Forms of the Equation of a Straight Line
e General equation

ax+by+c=0
e Intercept equation
x/a+y/b=1
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tangent
m,=f[x]

Figure 1.6.2 Tangent and normal to a curve.

Figure 1.6.3 Equation of a straight line (normal form).

e Normal form (Figure 1.6.3)
xcosO+ysin®—p=20

e Distance d from a straight line (ax+ by +c = 0) to a point

P(x1, y1)

_ax;+by;+c¢

- +Valfb?

e [fuisthe angle between ax + by + ¢ = 0 and a’x + b’y +
¢’ = 0 then

d

aa’ + bb’

+,/(a% +b?)(a? + b?)

cosu =

1.6.7 Equations of a Circle (Center (h, k))
e x—hf+(y—-kZ=r?
e Origin at center

e General equation
X +y?+Dx+Ey+F=0
where center = (—D/2, —E/2)
radius = \/W

e Tangent to circle at (x4, y1)

1 1
XX +y1y + ED(X+X1)+ §E(y+yl)+F =0

e Parametric form, replacing x and y by
X =acosu
and

y =asinu

Figure 1.6.4 Equation of a parabola.

1.6.8 Equations of a Parabola (Figure 1.6.4)

A parabola is the set of points that are equidistant from a
given fixed point (the focus) and from a given fixed line (the
directrix) in the plane. The key feature of a parabola is that
it is second degree in one of its coordinates and first degree
in the other.

(v -k =4px —h)

Coordinates of the vertex V(h, k) and of the focus
Fth+p, k)

Origin at vertex

y? = 4dpx
Equation of the directrix
Xx=h-p
Length of latus rectum
LL =4p
Polar equation (focus as origin)
r=p/(1—cos0)
Equation of the tangent to y2 = 2 px at (X1, y1)
V1y = p(X + X1)

1.6.9 Equations of an Ellipse of Eccentricity e

(Figure 1.6.5)
ch? | ok g

Cgordinates of center C(h, k), of vertices V(h + a, k) and
V'(h — a, k), and of foci F(h + ae, k) and F' (h — ae, k)
Center at origin

x?/a? +y?/b2 =1
Equation of the directrices
x=h+a/e
Equation of the eccentricity
VI
a
Length of the latus rectum

LL = 2b%/a
Parametric form, replacing x and y by

1

e =

X =acosu and y =bsinu
Polar equation (focus as origin)

r=p/(1 —ecos0)
Equation of the tangent at (x1, y1)

b?x;x + a’yy = a?h?
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j

/ IWANE

v,
T—

—— - ——

Figure 1.6.5 Ellipse of eccentricity e.

Y

Figure 1.6.6 Equation of a hyperbola.

1.6.10 Equations of a Hyperbola (Figure 1.6.6)

2 2
b gdo? g

2 b
CSordinates of the center C(h, k), of vertices V(h + a, k)
and V' (h — a, k), and of the foci F (h +ae, k) and F' (h — ae,

k)
Center at origin

x?/a? —y?/p2 =1
Equation of the directrices
x=h+a/e
Equation of the asymptotes
y —k =+b/ae(x — k)
Equation of the eccentricity

JETR
e=f>1

Length of the latus rectum
LL = 2b%/a
Parametric form, replacing x and y
X =acoshu and y = bsinhu
Polar equation (focus as origin)
r=p/(1 —ecos0)
Equation of the tangent at (x, y)

b%x;x — a’y,y = a’b?

1.6.11 Equations of Three-Dimensional Coordinate

Systems (Figure 1.6.7)
Distance d between two points

d=vx — %)%+ (y2 — y1)? + (22 — z1)?
Direction cosines of a line
W = cosf,

A = cosa, vV =cosy

Y

Figure 1.6.7 Three-dimensional coordinate systems.

e Direction numbers, proportional to the direction cosines
with k

a=k\, b =ku, c=kv

1.6.12 Equations of a Plane
e ax+by+cz+d=0
o Intercept
x/a+y/b+z/c=1
e Normal form
AX+uy+vz—p=0
e Distance from ax + by +cz+d = 0 to a point P(xy, y1, z1)
_ax;+by;+c¢+d

D
+va? + b +¢?

1.6.13 Equations of a Line
o Intersection of two planes
ax+biy+ciz+d; =0
212X+b2y+CZZ+X2 =0
For this line
a; by
az bz

b ¢;
b ¢

a G
az C

Aip:iv= T— :

e Symmetric form i.e., through (x1, y1, z;) with direction
numbers a, b, and ¢
x-x1)/a=(y-y1)/b=(z—z)/c
Through two points
X—X3 ¥Y—-VN1 _zZ2—71
X2 — X1 B Y2—V1 B Zy — 71
where A 1 v = (X2 —X1) : (y2 —y1) : (22 — 21)

1.6.14 Equations of Angles
e Between two lines
€080 = AAg + Willg + V1Vy
and the lines are parallel if cos 8 = 1 or perpendicular if
cos0=0
e Between two planes, given by the angle between the
normals to the planes.

1.6.15 Equation (Standard Form) of a Sphere
(Figure 1.6.8)

4+yi+z2=r
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Figure 1.6.8 Sphere. Y

Figure 1.6.10 Hyperboloid of one sheet.

Figure 1.6.11 Hyperboloid of two sheets.

Figure 1.6.9 Equation of an ellipsoid.

1.6.16 Equation (Standard Form) of an Ellipsoid A
(Figure 1.6.9)

x?/a? +yi /b 22 =1 [.
1.6.17 Equations (Standard Form) of Hyperboloids ' b
o Of one sheet (Figure 1.6.10)
x%/a? +y? /b2 — 2%/t =1
o Of two sheets (Figure 1.6.11)

x?/a? —y? /b2 — 2%/t =1

1.6.18 Equations (Standard Form) of Paraboloids
o Of elliptic paraboloid (Figure 1.6.12)

x?/a? +y? /b2 =cz
o Of hyperbolic paraboloid (Figure 1.6.13) Figure 1.6.12 Elliptic paraboloid.

x2/a? —y?/b? = cz

Y

1.6.19 Equation (Standard Form) of an Elliptic Cone
(Figure 1.6.14)

x2/32 +y2/b2 _ 22/02 —0
1.6.20 Equation (Standard Form) of an Elliptic Cylinder

(Figure 1.6.15)
x?/a? +y2 /b2 =1

Figure 1.6.13 Hyperbolic paraboloid.
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Figure 1.6.14 Elliptic cone.

% e )

Y
Figure 1.6.15 Elliptic cylinder.

1.7 NUMERICAL METHODS
See References 1-14 for additional information.

1.7.1 Expansion in Series

If the value of a function f(x) can be expressed in the region
close to x = a, and if all derivatives of f(xX) near a exist and
are finite, then by the infinite power series

x-

ay
5 f"(@)y+...

f(x) =f(a) + (x — a)f'(a) +

x—-ar
n!

+ f"(a)+...

and f(x) is analytic near x = a. The preceding power series
is called the Taylor series expansion of f(x) near x = a. If for
some value of x as [x — a] is increased, the series is no
longer convergent, then that value of x is outside the radius
of convergence of the series.

The error due to truncation of the series is partially due
to [x — a] and partially due to the number of terms (n) to
which the series is taken. The quantities [x — a] and n can
be controlled, and the truncation error is said to be of the
order of (x — a)"*! or O(x — a)™*1.

1.7.2 Finite Difference Calculus

In the finite difference calculus, the fundamental rules of
ordinary calculus are employed, but Ax is treated as a small
quantity, rather than infinitesimal.

Given a function f(x) which is analytic (i.e., can be
expanded in a Taylor series) in the region of a point x, where
h = Ax, if f(x + h) is expanded about x, f' (x) can be defined
atx =X as

f'(x) =1 = (fis1 — fi)/h+ O(h)
The first forward difference of f at x; may be written as
A =fiy — 5
and then
f'(x) = (Afy)/h + O(h)
The first backward difference of f at x; is
Vi =f —fi,
and f (x) may also be written as
f'(x) = (Vf)/h + O(h)
The second forward difference of f(x) at x; is
APy = fipg — 260 +
and the second derivative of f(x) is then given by
f'(x) = (4*f)/h* + O(h)
The second backward difference of f at x; is
V2’ =f — 261 +fis
and f’ (x) may also be defined as
f'(x) = (V*f)/h? + O(h)

Approximate expressions for derivatives of any order
are given in terms of forward and backward difference
expressions as

£7 = (A™)/h" + O(h) = (V")/h" + O(h)

Coefficients of forward difference expressions for deriva-
tives of up to the fourth order are given in Figure 1.7.1 and
of backward difference expressions in Figure 1.7.2.

More accurate difference expressions may be found by
expanding the Taylor series. For example, f' (x) to V(h) is
given by forward difference by

f'(x) = (—fiy2 + 411 — 35)/(2h) + Oh?)

and a similar backward difference representation can also be
easily obtained. These expressions are exact for a parabola.
Forward and backward difference expressions of O(h?) are
contained in Figures 1.7.3 and 1.7.4.

A central difference expression may be derived by combin-
ing the equations for forward and backward differences.

ofi = 1/2¢(Af; + VE) = 1/2¢ (i1 — fi1)

The first derivative of f at x; may then be given in terms of
the central difference expression as

f{ = (8f;)/h + O(h?)
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Figure 1.7.2 Backward difference coefficients of c (h).
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Figure 1.7.3 Forward difference coefficients of ¢ (h)2.

and is accurate to a greater degree than the forward or back-
ward expressions of f. Central difference expressions for
derivatives of any order in terms of forward and backward
differences are given by

£ = [V'in2 + A™iny2]/(2h") + O(h?), n even
and
£ = [V 12 + A™i_n-1)21/(2h") + O(h%), n 0dd

Coefficients of central difference expressions for derivatives
up to order four of O(h?) are given in Figure 1.7.5 and of
O(h*) in Figure 1.7.6.

1.7.3 Interpolation

A forward difference table may be generated (see also
“Algebra”) using notation consistent with numerical
methods as given in Table 1.7.1. In a similar manner, a back-
ward difference table can be calculated as in Table 1.7.2. A
central difference table is constructed in the same general
manner, leaving a space between each line of original data,
then taking the differences and entering them on alternate
full lines and half lines (Table 1.7.3). The definition of the
central difference 8 is

Sfiyrp =fiy1 — 1§

Figure 1.7.4 Backward difference coefficients of c (h)2.
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Figure 1.7.5 Central difference coefficients of ¢ (h)2.
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Figure 1.7.6 Backward difference coefficients of c (h)*.

The quarter lines in the table are filled with the arithmetic
mean of the values above and below (Table 1.7.4).

Given a data table with evenly spaced values of x, and
rescaling X so that h = one unit, forward differences are
usually used to find f(x) at x near the top of the table and
backward differences at x near the bottom. Interpolation
near the center of the set is best accomplished with central
differences.

The Gregory-Newton forward formula is given as

f(x) = f(0) + x(Afy) + X(Xi_l)Azfo

2!
xX(x — 1) — 2)A3f0 .
3!
and the Gregory-Newton backward formula as
1) _,
f(x) = £(0) + x(Vfy) + X(XZT ) w24,

1 2
N XX+ D)X +2)
3!
To use central differences, the origin of x must be shifted

to a base line (shaded area in Table 1.7.5) and x rescaled so
one full (two half) line spacing = 1 unit. Sterling’s formula

V3f0+...



1-22  MATHEMATICS

Table 1.7.1 Forward Difference Table

X fx) Af A%f A3 A A3
0 0 2 -2 4 2 1
1 2 0 2 6 3
2 2 2 8 9
3 4 10 17
4 14 27
5 41
Table 1.7.2 Backward Difference Table
X fx) Af A%f A3f A ASf
0 0
1 2 2
2 2 0 -2
3 4 2 2 4
4 14 10 8 6 2
5 41 27 17 9 3 1
Table 1.7.3 Central Difference Table (Original Data)
X fx) Af A%f A3 A ASf
0 0
2
1 2 -2
0 4
2 2 2 2
2 6 1
3 4 8 3
10 9
4 14 17
27
5 41
(full lines as base) is defined as
x? Xx:—-1) .
f() = £(0) +x(8yo) + 57 (&*yo) + %(B%)
x¢(x% -1 xx? - Hx*—4) .
D@ty + T " gy 4
and Bessel’s formula (half line as base) as
x2-1) x(x? -1
f(x) = £(0) + x(@yo) = ( 5 D @%yo) + ( T ) &°yo)
x2—1)(x2 -9
+ (4)4# (54)’0)
x(x2—1)(x2 -2

Interpolation with nonequally spaced data may be accom-
plished by the use of Lagrange Polynomials, defined as a set
of n't degree polynomials such that each one, P® (j=0,
1,..., n), passes through zero at each of the data points
except one, X, where k = j. For each polynomial in the set

Px)=A [ x—x)
i=0
i

Table 1.7.4 Central Difference Table (Filled)

X f(x) Af A A3 A ASf
0 0
0.5 1 2
1 2 1 -2
1.5 2 0 0 4
2 2 1 2 5 2
2.5 3 2 5 6 2.5 1
3 4 6 8 7.5 3
3.5 9 10 12.5 9
4 14 18.5 17
4.5 27.5 27
5 41
Table 1.7.5 Central Difference Table with Base Line
Oldx Newx f(x) Af Af A AM A
0 —-2.5 0
0.5 -2.0 1 2
1 -1.5 2 1 -2
1.5 -1.0 2 0 0 4
2 -0.5 2 1 2 5 2
2.5 0.0 3 2 5 6 2.5 1
3 +0.5 4 6 8 7.5 3
3.5 +1.0 9 10 12.5 9
4 +1.5 14 18.5 17
4.5 +2.0 27.5 27
5 +2.5 41
where if
1
A=
I & —x)
=

then

o]0, k#Ej

and the linear combination of P;(x) may be formed

n
Pa(x) = ) f(x)P(x)
=0

It can be seen that for any x;, p, (x;) = f(x;).

Interpolation of this type may be extremely unreliable
toward the center of the region where the independent vari-
able is widely spaced. If it is possible to select the values
of x for which values of f(x) will be obtained, the maximum
error can be minimized by the proper choices. In this par-
ticular case Chebyshev polynomials can be computed and
interpolated [3].

Neville’s algorithm constructs the same unique interpolat-
ing polynomial and improves the straightforward Lagrange
implementation by the addition of an error estimate.

IfP;i=1,...,n)is defined as the value at x of the unique
polynomial of degree zero passing through the point (x;, y;)
and Py@=1,...,n—1,j = 2,..., n) the polynomial of
degree one passing through both (x;, y;) and (x;, y;), then
the higher-order polynomials may likewise be defined up to
P123. 4, whichis the value of the unique interpolating polyno-
mial passing through all n points. A table may be constructed
(e.g.,ifn=3):

x1:y1=P P
X2 :y2 =Pp Plz P1o3
X3:y3=DP3 »
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Neville’s algorithm recursively calculates the preceding
columns from left to right as

Pigy1).. )

X = Xim)Pirn . rm-n) + & = )Pty rm)
Xj — Xitm

In addition, the differences between the columns may be
calculated as

_ itmi1 = X)(Cmis1 + Dim.i)

Dm+l,i
Xj — Xitm+1
C i = X)(Cin,iv1 — Dmii)
m+1,i =
Xi — Xitm+1

and Py». , isequal to the sum of any y; plus a set of Cs and/or

Ds that lead to the rightmost member of the table [14].
Functions with localized strong inflections or poles may

be approximated by rational functions of the general form

Yo aix!
iy bixi
as long as there are sufficient powers of x in the denom-
inator to cancel any nearby poles. Stoer and Bulirsch [8]

give a Neville-type algorithm that performs rational function
extrapolation on tabulated data

Rx) =

Rig+1)...a+m = Rasyy. . Gm) + {(R(i+1).,.(i+m)
~Ri o) /[ = %0/ = Xi4m)]
x [1 = (Rasyy...a+m — Ri.. d+m-1)

/Ry 4my — Risny...gem-1)] — 1}

starting with R; = y; and returning an estimate of error,
calculated by C and D in a manner analogous with Neville’s
algorithm for polynomial approximation.

In a high-order polynomial, the highly inflected character
of the function can more accurately be reported by the cubic
spline function. Given a series of x;(i =0, 1, ..., n) and cor-
responding f(x;), consider that for two arbitrary and adjacent
points x; and xi.;, the cubic fitting these points is

Fi(X) = ag + aiX + apx® + asx®
(X <X < Xiy1)

The approximating cubic spline function g(x) for the
region (Xg < X < X,) is constructed by matching the first
and second derivatives (slope and curvature) of F;(x) to
those of Fi_; (x), with special treatment (outlined below) at
the end points, so that g(x) is the set of cubics F;(x),i = 0, 1,
2,...,n — 1, and the second derivative g” (x) is continuous
over the region. The second derivative varies linearly over
[X0, Xx] and at any x(x; < X < Xjy1)

" ” X —Xj " ”
X =g"X)+ ——[g X)) — g X)]
Xit1 — Xj
Integrating twice and setting g(x;) = f(x;) and g(xi1) =
f(xi;1), then using the derivative matching conditions
Fx) = F,;(x) F/(x) = F ()

and applying the condition for i = [1, n — 1] finally yields a
set of linear simultaneous equations of the form

[Ax;_118"(Xi—1) + [2(Xi1 — Xi-1)18"(X1) + [Ax;]g” (Xis1)
_6 fxip) —f(x)  f(xi) — f(xi-1)
- AXi AXi,l
wherei=1,2,...,n—1

and

A% = Xip1 — X

If the x; are equally spaced by Ax, then the preceding
equation becomes

[11g"(xi-1) + [4]g" (%) + [118" (Xi+1)

—6 f(xiy1) — 2f(x) + f(Xi-1)
B (Ax;)?

There are n — 1 equations in n + 1 unknowns and the
two necessary additional equations are usually obtained by
setting
and g"x,)=0
and g(x) is now referred to as a natural cubic spline. g" (Xo)
or g” (x,) may alternatively be set to values calculated so as
to make g’ have a specified value on either or both bound-
aries. The cubic appropriate for the interval in which the x
value lies may now be calculated (see “Solutions of Sets of
Simultaneous Linear Equations”).

Extrapolation is required if f(x) is known on the inter-
val [a, b], but values of f(x) are needed for x values not
in the interval. In addition to the uncertainties of interpola-
tion, extrapolation is further complicated since the function
is fixed only on one side. Gregory-Newton and Lagrange
formulas may be used for extrapolation (depending on the
spacing of the data points), but all results should be viewed
with extreme skepticism.

g"(%0) =0

1.7.4 Roots of Equations

Finding the root of an equation in X is the problem of deter-
mining the values of x for which f(x) = 0. Bisection, although
rarely used now, is the basis of several more efficient meth-
ods. If a function f(x) has one and only one root in [a, b],
then the interval may be bisected at x,, = (a+b)/2. If f(x,,)
e f(b) < 0, therootisin [xy, b], while if {(x,,) ® f(b) > 0,
the root is in [a, X, ]. Bisection of the appropriate intervals,
where x| = (a’ + b)/2, is repeated until the root is located
=+ ¢, € being the maximum acceptable error ande < 1/2 o
size of interval.

The Regula Falsa method, or the method of false position,
is a refinement of the bisection method, in which the new
end point of a new interval is calculated from the old end
points by

f(a)
Xm =a— —ad)/——
e @
Whether x,,, replaces a or replaces b depends on the sign of
a product, and

if f(a) ® f(x,,,) < 0, then the new interval is [a, x;;]
or
if f(xy,) @ f(b) < 0, then the new interval is [Xy,, b].

Because of round off errors, the Regula Falsa method
should include a check for excessive iterations. A modified
Regula Falsa method is based on the use of a relaxation fac-
tor, i.e., a number used to alter the results of one iteration
before inserting into the next. (See the section on relax-
ation methods and “Solution of Sets of Simultaneous Linear
Equations.”)

By iteration, the general expression for the Newton-
Raphson method may be written (if f' can be evaluated and is
continuous near the root):

_fx™)

x@+D) _ @ — @+l
fr(x™)
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where (n) denotes values obtained on the n' iteration and
(n+1) those obtained on the (n+1)™ iteration. The iterations
are terminated when the magnitude of |§®+D — §®™| < ¢,
being the predetermined error factor and ¢ = 0.1 of the
permissible error in the root.

The modified Newton method [4] offers one way of dealing
with multiple roots. If a new function is defined

R (C9)
0= P
because u(x) = 0 when f(x) = 0 and if f(x) has a multiple

root at X = ¢ of multiplicity r, then Newton’s method can be
applied and

@+ _ g _ s+l _ _ ux®™)
uw(xm)
where
f(x)f"(x)
uvx)=1—- —-"7
e [ ()12

If multiple or closely spaced roots exist, both f and f may
vanish near a root and methods that depend on tangents
will not work. Deflation of the polynomial P (x) produces, by
factoring,

P(x) = x - 1QX)

where Q(x) is a polynomial of one degree lower than P(x)
and the roots of Q are the remaining roots of P after factoriza-
tion by synthetic division. Deflation avoids convergence to
the same root more than one time. Although the calculated
roots become progressively more inaccurate, errors may be
minimized by using the results as initial guesses to iterate
for the actual roots in P.

Methods such as Graeffe’s root-squaring method,
Muller’s method, Laguerre’s method, and others exist for
finding all roots of polynomials with real coefficients [4, 7, 8].

1.7.5 Solution of Sets of Simultaneous Linear Equations
A matrix is a rectangular array of numbers, its size being
determined by the number of rows and columns in the array.
In this context, the primary concern is with square matrices,
and matrices of column dimension 1 (column vectors) and
row dimension 1 (row vectors).

Certain configurations of square matrices are of particular
interest. If

Ci1 .. Cuy
C=

C41 . . Cy4
the diagonal consisting of ci1, C29, €33 and cyy is the main
diagonal. The matrix is symmetric if ¢; = c;. If all elements
below the main diagonal are zero (blank), it is an upper tri-
angular matrix, while if all elements above the main diagonal
are zero, itis a lower triangular matrix. If all elements are zero
except those on the main diagonal, the matrix is a diagonal
matrix and if a diagonal matrix has all ones on the diagonal,
it is the unit, or identity, matrix.
Matrix addition (or subtraction) is denoted asS =A+ B
and defined as
sij = a; + by
where A, B, and Shave identical row and column dimensions.
Also,
A+B=B+A
A-B=-B+A

Matrix multiplication, represented as P = AB, is defined
as

n
Py =) ayby
k=1

where n is the column dimension of A and the row dimension
of B. P will have row dimension of A and column dimension
of B. Also

Al=A
and
A=A
while, in general,
AB # BA

Matrix division is not defined, although if C is a square
matrix, C! (the inverse of C) can usually be defined so that

ccl=1
and
chHt=cC
The transpose of A if

an a2
gy az
agy az

A=

is
apy dzr asi
arp az as

AT =

A square matrix C is orthogonal if
CT — C—l

The determinant of a square matrix C (det C) is defined as
the sum of all possible products found by taking one element
from each row in order from the top and one element from
each column, the sign of each product multiplied by (—1)F,
where r is the number of times the column index decreases
in the product.

For a 2 x 2 matrix

C11 Ci2
Co1 C22

detC = C11C22 — C12C21

(Also see discussion of determinants in “Algebra.”)
Given a set of simultaneous equations, for example, four
equations in four unknowns:
C11X1 + C12X2 + C13X3 + CiyXy =17
C21X1 + Co2Xg + C23X3 + CoaXy =TI
C31X1 + C32X2 + C33X3 + C34X4 =173
C41X1 + C42X2 + C43X3 + C44Xg =1y

and in matrix form

C11 €12 C13 Cu4 | | X1 I
Co1 C22 C23 Co4 | X2 | _ |12
C31 C32 C33 C34 | | X3 r3
C41 Cq2 Cy3 Cyq | [ X4 Iy
or
CX=R

The solution for X in a system of equations such as given
in the matrix above is

xi; = (det Cy)/(det C)

where Cy is the matrix C, with its k™ column replaced by
R (Cramer’s Rule). If det C = 0, C and its equations are
singular and there is no solution.
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Sets of simultaneous linear equations are frequently
defined as [12]

o Sparse (many zero elements) and large

o Dense (few zero elements) and small. A banded matrix has
all zero elements except for a band centered on the main
diagonal, e.g.,

C11 €2
Co1 C22 Co3
C32 C33 C34
C43 Cyq

then C is a banded matrix of bandwidth 3, also called a
tridiagonal matrix.

Equation-solving techniques may be defined as direct,
expected to yield results in a predictable number of oper-
ations, or iterative, yielding results of increasing accuracy
with increasing numbers of iterations. Iterative techniques
are in general preferable for very large sets and for large,
sparse (not banded) sets. Direct methods are usually more
suitable for small, dense sets and also for sets having banded
coefficient matrices.

Gaussian elimination is the sequential application of the
two operations:

C=

1. Multiplication, or division, of any equation by a constant.

2. Replacement of an equation by the sum, or difference, of
that equation and any other equation in the set, so that a
set of equations

C11 C12 C13 Cu4 | [ Xy r
Co1 C22 C23 Co4 | [X2| _ |I2
C31 C32 C33 C3¢ | |X3 | T3
C41 C42 Cq3 Cyq | [ Xy ry

becomes, by division of the first equation by ¢y,

1 ¢y ¢ Sy | %1 ry
Co1 C22 C23 Co4 | |X2| _ |T2
C31 C32 C33 C34 | [X3 | |13
Ca1 C42 Cq3 Cyq | [ Xy Iy

then, by replacement of the next three equations,

L ey €5 Cu | x 1
0 chy Ch Coy || %o | _ |1
0chy chy ey || X3 |1y
0 ¢y Chy Chy |14 ry
and finally
Ly, ey ciy | Xt ry
1 chyycy||Xe| |1y
1 ¢y ||x3 ry
1 |Ix4 r

Gauss-Jordan elimination is a variation of the preceding
method, which by continuation of the same procedures
yields

1 X1 I'/l/
/!

1 X2 _ T,
- "

1 X3 Iy

1"

1]1xy ry

Therefore, x; = rf, etc,, i.e., the r vector is the solution
vector. If the element in the current pivot position is zero or
very small, switch the position of the entire pivot row with
any row below it, including the x vector element, but not the
r vector element.

If det C # 0, C! exists and can be found by matrix inver-
sion (a modification of the Gauss-Jordan method), by writing
C and I (the identity matrix) and then performing the same

operations on each to transform C into I and, therefore, I
into C1.

For any square matrix, a condition number can be defined
as the product of the norm of the matrix and the norm of
its inverse. If this number is large, the matrix is ill condi-
tioned. For an ill-conditioned matrix, it can be difficult to
compute the inverse. Two quick ways to recognize possible
ill conditioning are

1. If there are elements of the inverse of the matrix that are
larger than elements of the original matrix.
2. If the magnitude of the determinant is small, such as

Gauss-Siedel method is an iterative technique for the solu-
tion of sets of equations. Given, for example, a set of three
linear equations

C11X1 + Cr2Xz + C13X3 =17

C21X1 + C22X2 + C3X3 =12

C31X1 + C32Xg + C33X3 =13
solving for the unknowns yields
T1—C12Xp—C13X3

X1 =
1 c11
_ I2=Co1X| —C3X
xp = AN
22
I3 —C31X1 —C39X9
Xy = BICXI O

€33
By making an initial guess for xi, Xo, and x3, denoted as x‘l),
xJ, and xJ, the value of x; on the first iteration is

X(11) _ r— Clzxg)) - Clsxéo)
C11
Using the most recently obtained values for each unknown
(as opposed to the fixed point or Jacobi method), then
(11)—c23x§0)
€22
f3*031X(11)*032X§1)
€33
If the equations have the proper characteristics, the iter-
ative process will eventually converge. Commonly used
convergence criteria are of two types:

1 ro—Co1X
X;): 2—C21

D _
Xy =

1. Absolute convergence criteria of the form

Xi(n+1) _ <e

)
X

are most useful when approximate magnitudes of x;
are known beforehand so that € may be chosen to be
proportional to x;.

2. Relative convergence criteria of the form

‘(Xi(nJrl) _ Xi(n)) /Xi(n+1)‘ <e

is the choice if the magnitudes of x; are uncertain.

Relaxation methods may also be used to modify the value
of an unknown before it is used in the next calculation. The
effect of the relaxation factor A may be seen in the following
equation, where x{"*”' is the value obtained at the present
iteration.

Xi(n+1) _ lx;nﬂ)- +(1- K)Xf")
and0 < A < 2.If 0 < A < 1, the effect is termed under
relaxation, which is frequently employed to produce conver-
gence in a nonconvergent process. If 1 < A < 2, the effect,
overrelaxation, will be to accelerate an already convergent
process.
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1.7.6 Least Squares Curve Fitting

For a function f(x) given only as discrete points, the mea-
sure of accuracy of the fit is a function d(x) = [fx) — g(®)|
where g(x) is the approximating function to f(x). If this is
interpreted as minimizing d(x) over all X in the interval, one
point in error can cause a major shift in the approximating
function towards that point. The better method is the least
squares curve fit, where d(x) is minimized if

E =Y [gx) —f(x)°

i=1
is minimized, and if g(x;) is a polynomial of order m

n
E=> [a+ax+ax +... +anx" —f(x)’]
i=1
Setting the partial derivatives of E with respect to each
of the coefficients of g(x) equal to zero, differentiating and
summing over 1, . . ., n forms a set of m + 1 equations [9] so

that
n in ZXIZ .. N Zf(xl)
in inz ins- = inf(xi)

If the preceding solution is reduced to a linear approxima-
tion (n = 1), the matrix will be (n = 1)

no X |lag| _ | Df(x)
Yox YoxF||an| T | o xif(xi)

and for a parabola (n = 2), the first three rows and columns.
Another possible form is the exponential function

F(t) = aeP

and although partial differentiation will produce two equa-
tions in two unknowns, they will be nonlinear and cannot
be written in matrix form. However, a change in variable
form may produce a model that is linear, for example, for the
preceding equation

In(F) = In(o) + Bt

and if X is defined to be t, Y to be In (F), ap = In (o), and
a; = B, the equation becomes

Y(X) =ag+a; X

and linear least squares analysis may be applied.

In order to determine the quality (or the validity) of fit of
a particular function to the data points given, a comparison
of the deviation of the curve from the data to the size of
the experimental error can be made. The deviations (i.e.,
the scatter off the curve) should be of the same order of
magnitude as the experimental error, so that the quantity
“chi-squared” is defined as

n

ly; —vil?
X=3 (Ayi)?

i=1

wherey/ = is the fitted function and y; is the measured value
of y at x;, so that Ay; is the magnitude of the error of y|.
The sum is over n points and if the number of parameters
in the model function is g, then if OX?) > O(n — g), the
approximating function is a poor fit, while if O(X?) < O(n —
g), the function may be overfit, representing noise [10].

The simplest form of approximation to a continuous func-
tion is some polynomial. Continuous functions may be
approximated in order to provide a “simpler form” than
the original function. Truncated power series representa-
tions (such as the Taylor series) are one class of polynomial
approximations.

Table 1.7.6 Chebyshev Polynomials

TO (X) =1
Tix) =x
Tyx) =2x2 — 1

Ty(x) = 4x° — 3x

Ty(x) =8*—8x2+1

Ts (%) = 16x° — 20%3 + 5x

Te (%) = 32x5 — 38x4 + 18x% — 1

Tr (x) = 64x7 — 112%° + 56%° — 7x

Ts(x) = 128x® — 256x°® + 160x* — 32x% + 1

Table 1.7.7 Inverted Chebyshev Polynomials
1= To

x=T

X2 = 3(To +Ty)

= 16T +Ts)

x' = 13Ty +4T; +Ty)

x> = L(10Ty 4 5T3 + Ts)

x0 = £ (10T, + 15T; + 6T; + Ts)

X = é(35T1 + 21T + 7T5 + T7)

x* = 35 (35T + 56T, + 28T, + 8Ts + Ts)

The Chebyshev polynomials T, (x) or T,,, which exist on
the interval —1 < x < 1, form the series

To=1
T1=X

Tn+1 = 2XTn - Tn—l

(see Table 1.7.6 for a more complete list). If these polyno-
mials are inverted, powers of X are given in terms of T} (x)
(Table 1.7.7). Any finite intervala < y < b can be mapped
onto the interval —1 < x < 1 by the formula

Xx=@2y—-b—a)/(b—a)

and the inverted Chebyshev polynomials can be substituted
for powers of x in a power series representing any function
f(x). Because the maximum magnitude for T, = 1 because
of the interval, the sum of the magnitudes of lower-order
terms is relatively small. Therefore, even with truncation of
the series after comparatively few terms, the altered series
can provide sufficient accuracy.

See also the discussion on cubic splines in “Interpolation.”

1.7.7 Numerical Integration

By assuming that a function can be replaced over a limited
range by a simpler function and by first considering the sim-
plest function, a straight line, the areas under a complicated
curve may be approximated by the trapezoidal rule. The area
is subdivided into n panels and

1 n-1
I:Tn = EAXH (fa‘i‘zzfl +fb>

i=1

where Ax, = (b — a)/n and f; is the value of the function at
each x;. If the number of panels n = 2¥, an alternate form of
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the trapezoidal can be given, where

n—1

1 .
=Tk = éTk71 + Axg Z f(a + 1Axy)
i=1

i odd

where Ax, = (b —a)/25, T, = 1(f, + f,) (b — a), and the
equation for Ty is repeatedly applied for k = 1, 2, ... until
sufficient accuracy has been obtained.

Ifthe function f(x) is approximated by parabolas, Simpson’s
rule is obtained, by which (the number of panels n being
even)

n-1 n—-2

1
I=Sn=§AX fo+4§ fi+2§ fi+f, | +E
i=1 i=2
i odd i even

where E is the dominant error term involving the fourth
derivative of f, so that it is impractical to attempt to provide
error correction by approximating this term. Instead, Simp-
son’s rule with end correction (sixth order rather than fourth
order) may be applied where

n-2

1 1
I=S, = X 14 5(f0+fn)+ ;f

i even

n—-1
+16 ) " fi + Ax[f'(a) — f'(b)]
i
The original Simpson’s formula without end correction
may be generalized in a similar way as the trapezoidal for-
mula for n = 2% panels, using Ax, = (b — a)/2% and
increasing k until sufficient accuracy is achieved, where

1 n—-1 ) n—2 )
S =5 A%c fa+4;f(a+1AXk)+2 gf(a+mxk)+fb
i odd i even

Forthe next higher level of integration algorithm, f(x) over
segments of [a, b] can be approximated by a cubic, and if this
ki order result is Cy, then Cote’s rule can be given as

Cx = Sk + (Sk — Sk-1)/15
and the next higher degree approximation as
Dy = Cx + (Cx — Cx-1)/63
The limit suggested by the sequence
Tk > Sk —> Ck— Dy — ...

is known as Romberg integration.
If anew notation Tl(("‘) is defined, where k is the order of the

approximation (n = 2¥) and m is the level of the integration
algorithm, then m = 0 (trapezoidal rule)

T =Ty
m = 1 (Simpson’s rule)

T = Sk
m = 2 (Cote’s rule)

T? = Cx
m=3

TP = Dx

and so forth.

The generalization of the preceding definitions leads to
the Romberg equation
T _
(m+1) _ p(m) k k-1
T =T+ Am+D) _ 1

The procedure is to start with the one-panel trapezoidal
rule

Ty~ T = b - a)ty +5)

and then increase the order (k) of the calculation by
1 n—1
Tk = iTk—l + Axg ® Zf(a + iAky)

i=1
i odd

and next increase the level of the algorithm m by the equa-

tion for Tl((m“) just shown. In terms of T]((m) for the first few
k and m [10].

0 1 2 3 4

m

k

0o T

1 T TP

2 T TP TP

3T T TP TP

4 1Y TP TP TP TP

Increasing accuracy may be obtained by stepping down or
across the table, while the most accurate approximation will
be found on the lower vertex of the diagonal. The Romberg
procedure is terminated when the values along the diago-
nal no longer change significantly, i.e., when the relative
convergence criterion is less than some predetermined e.
In higher-level approximations, subtraction of like numbers
occurs and the potential for round-off error increases. In
order to provide a means of detecting this problem, a value
is defined

m m
1T
A(m+1) Tl(cm) _ Tl({nj)1

and since Rf{m) should approach 1 as a limit, a satisfactory

criterion of errorisif Rl((m) begins to differ significantly from 1.
An improper integral has one or more of the following
qualities [38]:

1. Its integrand goes to finite limiting values at finite upper
and lower limits, but cannot be integrated right on one or
both of these limits.

2. Its upper limit equals oo, or its lower limit equals —oo.

3. It has an integrable singularity at (a) either limit, (b) a
known place between its limits, or (c) an unknown place
between its limits.

In the case of 3b, Gaussian quadrature can be used, choos-
ing the weighting function to remove the singularities from
the desired integral. A variable step size differential equation
integration routine [Computer Applications, ref. 8] produces
the only practicable solution to 3c.

Improper integrals of the other types whose problems
involve both limits are handled by open formulas that do
not require the integrand to be evaluated at its endpoints.
One such formula, the extended midpoint rule, is accurate to
the same order as the extended trapezoidal rule and is used
when the limits of integration are located halfway between
tabulated abscissas:

I=M, = AX(f3/2 +f5/2 +... + fnfs/z + fn,l/z)
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Semi-open formulas are used when the problem exists
at only one limit. At the closed end of the integration, the
weights from the standard closed-type formulas are used and
at the open end, the weights from open formulas are used.
(Weights for closed and open formulas of various orders of
error may be found in standard numerical methods texts.)
Given a closed extended trapezoidal rule of one order higher
than the preceding formula,

5
[=Th =Ax |:12(f1 +1,) +

n—2
(fz +1 1)+ij|

i=2
and the open extended formula of the same order of accuracy

n—-3
(fa+fn 2>+Zf}

23
I1=T =Ax| —= +fi_
2 XL2(1+ 1)+ 2
asemi-open formula can be constructed that, in this example,

is closed on the right and open on the left:

3 5
I:TQSZAX|:f2+f3+<Zf> fo 1+12f]

To eliminate the restriction of evenly spaced points, Gauss
quadrature algorithms may be constructed. In these algo-
rithms not only the function values are weighted, but the
position of the function evaluations as well as the set of weight
factors are left as parameters to be determined by optimiz-
ing the overall accuracy. If the function is evaluated at points
X0, X1, . . ., Xp, the procedure has 2n + 2 parameters to be
determined (the x;, and the w; for each x;) and is required
to be accurate for any polynomial of degree N = 2n + 1 or
less.

These algorithms are frequently stated in terms of inte-
grals over [—1, 1], termed Gauss-Legendre quadrature, and
the general formula then is

1
/ fx)dx = wofy + wify + ... +wpf,
-1

For example, forn = 1,

/jlf(x)dx;f(x=:/—%>+f<x: %)

For each choice of n (the number of points), the wy and
the n zeros (§x) of the nth degree Legendre polynomial must
be determined by requiring that the approximation be exact
for polynomials of degree less than 2n + 1. These have been
determined for n = 2 through 95 and an abbreviated table
for some n is given in Table 1.7.8. The interval -1 < & < 1
is transformed onto the interval a < x < b by calculating
foreachxy(k=1,..., n)
b+a b-— a&

2 T =

and an approximation to the integral is then

1=b-a 5 Zka(Xk)

Xk =

Table 1.7.8 Sampling Points and Weight Factors for

Gauss Quadratures

n 1 X1 o1

2 0 —0.5773502692 1.0000000000
1 —0.5773502692 1.0000000000

3 0 —0.7745966692 0.5555555556
1 0.0 0.8888888889
2 0.7745966692 0.5555555556

5 0 —0.9061798459¢ 0.2369268850“
1 —0.5384693101 0.4786286705
2 0.0 0.5688888889

34

10 0 —0.9739065285" 0.0666713443*
1 —0.8650633667 0.1494513492
2 —0.6794095683 0.2190863625
3 —0.4333953941 0.2692667193
4 —0.1488743390 0.2955242247

59

20 0 —0.9931285992¢ 0.0176140071¢
1 —0.9639719273 0.0406014298
2 —0.9122344283 0.0626720483
3 —0.8391169718 0.0832767416
4 —0.7463319065 0.1019301198
5 —0.6360536807 0.1181945320
6 —0.5108670020 0.1316886384
7 —0.3737060887 0.1420961093
8 —0.2277858511 0.1491729865
9 —0.0765265211 0.1527533871

10-19

@Points and weight factors are symmetric with respect to zero.

k=1
Some other typical Gaussian quadrature formulas are
(a, b) W(x) Gauss-
-1,1 — Chebyshev
0, 00) x¢e™™ Laguerre (c=0,1,...)
(=00, 00) e Hermite

Weights and zeros for these formulas (and for other Gaus-
sian formulas) may be found in references such as Stroud
(Gaussian quadrature formulas, Prentice-Hall, 1966).
Because the dominant error term in Gauss Quadrature
involves very high-order derivatives, the best method for
determining the accuracy of an integration is to compare

the results for several different n. However, in certain cases,
a comparison may result in a set of significantly different
answers, due to the presence of one or more singularities in
f(x) or to a highly oscillatory function. If very large values
of n are employed, round-off error can cause a major dete-
rioration in accuracy (see previous discussion of Romberg
integration).

1.7.8 Numerical Solution of Differential Equations
The two major categories of ordinary differential equations
are

1. Initial value problems where conditions are specified at
some starting value of the independent variable.

2. Boundary value problems where conditions are speci-
fied at two (or, rarely, more) values of the independent
variable.

(The solution of boundary value problems depends to a great
degree on the ability to solve initial value problems.) Any
n'M-order initial value problem can be represented as a sys-
tem of n coupled first-order ordinary differential equations,
each with an initial condition. In general

dy:

T fi(y1,y2, - - ¥, O
dy:

— = ey Vs

m 2(Y1, Y2, - -+ » Y, )
dyn

3. = fﬂ ’ p. EER AR ] n» t
It (Y1, y2 Vo, 1)

and
¥1(0) = y10, 2(0) = y20, - - -, ¥n(0) = yno

The Euler method, while extremely inaccurate, is also
extremely simple. This method is based on the definition
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of the derivative

dy _ y(xi +Ax) - y(x)
dx Ax
or
Vir1 = Vi + fiAx

where f; = f(x;, y;) and y(X = a) = yj (initial condition).
Discretization error depends on the step size, i.e., if Ax; —
0, the algorithm would theoretically be exact. The error for
Euler method at step N is ON(Ax)? and total accumulated
error is O(Ax), that is, it is a first-order method.
The modified Euler method needs two initial values y, and
y1 and is given by

Yo = Va2 + fi_1(2A%) + O(Ax)?

Ify, is given as the initial value, y; can be computed by Euler’s
method, or more accurately as

Ay, = {(Xo, yo)AX

Y1 = Yo +AYa

fi = fx1,y1)
and

Ayb = flAX
therefore
1
Ay = E(AY:A + Ayb)

and

Y1 =Yo + Ay
Another improvement on the basic Euler method is to
approximate the slope in the middle of the interval by the
average of the slopes at the end points, or

Vis1 = Vi + 16 +fi)Ax
This form is a closed-type formula because it does not allow

direct steps from x; to x;,1 but uses the basic Euler’s method
to estimate y;,1:

Vis1 = ¥i +fiAx
fiy1 = (g1, ¥ig1)
Vier = ¥i + 36 +fii)Ax

The Runge-Kutta method takes the weighted average of
the slope at the left end point of the interval and at some

Table 1.7.9 Coefficients B of the Open Adams Formulas

intermediate point. This method can be extended to a fourth-
order procedure with error O(Ax)* and is given by

1
Vis1 = Vi + 3 [Ayo + 2Ay1 + 2Ay; + Ays]

where Ay, = f(x;, yi)Ax
Ayy =1 (% + 1AX, y;i + 1Ayo) AX

Ayz = f (% + JAX, Vi + JAy1) Ax

Ays = f(Xit1, Vi + Ay2)AX
Runge-Kutta formulas of the sixth and eighth orders are also
available but are less commonly used.

If two values of y;,1 are calculated, y;,; by using one step
between x; and x;,; with Ax, and ¥;,; by taking two steps
with Ax/2, the estimate of the truncation error is
Vir1 — Vin1

27k 1
wherekisthe order ofthe expression (e.g.,k = 4 for the fore-
going Runge-Kutta formula). The step size can be adjusted
to keep the error E below some predetermined value.

The Adams open formulas are a class of multistep formu-
las such that the first-order formula reproduces the Euler
formula. The second-order Adams open formula is given by

Vier = Vi +Ax [§f — 1]+ O(Aa%)°
This formula and the higher-order formulas are not self start-
ing since they require f;_1, f;_», etc. The common practice is
to employ a Runge-Kutta formula of the same order to com-
pute the first term(s) of y;. The general Adams open formula
may be written as

Eiy1 ~

n
Vier = Vi + A% ) Bufi + O(Ax)"
k=0
and the coefficients B are given in Table 1.7.9 for n =
0,1,...,5.

Adams closed formulas require an iterative method to solve
for y;,1, because the right side of the expression requires a
value of f,;. The iteration of estimating y, evaluating f, and
obtaining a new estimate of y is repeated until it converges
to the desired accuracy. The general formula is

n
Viel = Vi + A% ) Brcfisik + OAx)™
k=0

and the coefficients B* are given in Table 1.7.10.

nk 0 1 2 3 4 5 o°
0 1 1
1 3/2 -1/2 2
2 23/12 —-16/12 5/12 3
3 55/24 —59/24 37/24 —9/24 4
4 1901/720 —2774/720 2616/720 —1274/720 251/720 5
5 4277/1440 —7923/1440 9982/1440 —7298/1440 2877/1440 —475/1440 6
% O is the order of the method.

Table 1.7.10 Coefficients B, of the Closed Adams Formulas

nk 0 1 2 3 4 5 o°
0 1 1
1 1/2 1/2 2
2 5/12 8/12 -1/12 3
3 9/24 19/24 —5/24 1/24 4
4 251/720 646/720 —264/720 106/720 —-19/720 5
5 475/1440 1427/1440 —798/1440 482/1440 —173/1440 27/1440 6

@ O is the order of the method.
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A combination of open- and closed-type formulas is
referred to as the predictor-corrector method. First the open
equation (the predictor) is used to estimate a value of yj, 1,
this value is then inserted into the right side of the correc-
tor equation (the closed formula) and iterated to improve
the accuracy of y. The predictor-corrector sets may be the
low-order modified (open) and improved (closed) Euler
equations, the Adams open and closed formulas, or the Milne
method, which gives the following system

1. Predictor
Vit1 = Vi3 + §AX(26 — fi 1 + 2f; )
2. Corrector
Virr = $AX(fig 446 + i q)
although the Milne method, like the Adams formulas, is
not self starting.

The Hamming method [4] applies a predictor y° and then
a modifier y°, which provides a correction for the estimate
of error in the predictor and corrector, and then iterates the
corrector y" as desired. The procedure is

1. Predictor
Vi) = Vies + $AXA — fiy + 26 o)
2. Modifier
i =i+ -y
3. Corrector
Virt) = 2OV —yio) + $Ax(E) + 26 — i)
Truncation error estimates can be made to determine if the

step size should be reduced or increased. For example, for
the Hamming method,
Eip1 ~ % (i —v)

The Gear algorithm [15], based on the Adams formulas,
adjusts both the order and mesh size to produce the desired
local truncation error. Bulirsch and Stoer method [16, 22]
is capable of producing accurate solutions using step sizes
that are much smaller than conventional methods. Packaged
Fortran subroutines for both methods are available.

One approach to second-order boundary value problems is
a matrix formulation. Given

Y Av=B y0) =0, ya)=0
@4‘ y=B, y0=0, yo)=
the function can be represented at i by
Vil — 2¥i + Vi
———~ — +Ay;=B
axp

Because there are n equations of this form and n values of y,
the set can be written in matrix form as

ol Vi B(Ax)?
lal Va2 B(Ax)?
lal V3 B(Ax)?
lol ||y B(Ax)?
1alf|yn B(Ax)?

where o, = —2 + A(Ax)? and the error is essentially second
order. Row manipulation may be necessary if there are
boundary conditions on the derivatives. Equations of higher
order and sets of coupled ordinary differential equations may
be solved this way if central difference representations of
O(Ax)? are used for the derivatives.

Shooting methods attempt to convert a boundary value
problem into an initial value problem. For example, given

the preceding example restated as an initial value problem
for which

y(0)=0 and d—y(O) =U
dx

U is unknown and must be chosen so that y(L) = 0. The
equation may be solved as an initial value problem with pre-
determined step sizes so that x,, will equal L at the end point.
Since y(L) is a function of U, it will be denoted as y;, (U) and
an appropriate value of U sought so that

yvuU)=y@L)=0
Any standard root-seeking method that does not utilize
explicitly the derivative of the function may be employed.
Given two estimates of the root Uy and Uy, two solutions of

the initial value problem are calculated, y; (Up) and yi, (Uy),
a new estimate of U is obtained where

yL(Uo)
[y1.(Uo) = y1.(U00)1/(Uo — Uoo)
and the process is continued to convergence.

U =0, -

There are three basic classes of second-order partial
differential equations involving two independent variables:

1. Parabolic

8%u
i ¢
2. Elliptic
?u  9%u
w oy =0
3. Hyperbolic
?u  9%u
o gz 0

where ¢ = ¢(x,y, u, du/dx, du/dy). Each class requires a
different numerical approach. (For higher-order equations
and equations in three or more variables, the extensions are
usually straightforward.)

Given a parabolic equation of the form

0ﬁé)zu _du
x2 9y
with boundary conditions
u@,y) =u,
u(b,y) = up
u(x, 0) =uy

the equation can be written in a finite difference form, consid-
ered over the grid as shown in Figure 1.7.7. Using a central
difference form for the derivative with respect to x and a
forward difference form for the derivative with respect to

Y
A

2
=1
=0

k=0 1 2
a

n-1 n n+1

Figure 1.7.7 Finite difference grid.
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y gives
W1 — 205k + W1 1 [ Uik — Ujk
(Ax)? T o Ay
and

oA oA
o= o 12287 o

o(Ay) w
( AX)Z j,k+1
If j is set to zero, the procedure can be used to take the first
step after the initial conditions are set.
If 9%u/9x? is represented by a central difference expres-
sion and du/dy by a backward difference expression an
implicit solution may be obtained where

Ujri kel — 201k + k-1 _ 1 [ Wak — Ujk
(Ax)? T o Ay
is written for allk = 1, 2, ..., n. A set of n linear algebraic

equations in n unknowns is now defined, expressed in matrix
form as

B1 Ujt1,1 Qujp — U,
11 Uji1,2 Qup
1B1 Uj;1.3 Quy3
181 Uj11n-1 Qujpg
1B1|| Wsin Qujy —up
where B = — 2 — [(Ax)?]/[0.(Ay)]
Q= —[(Ax)%]/[0(AY)]

The Crank-Nicholson method is a special case of the
formula
o | @ litLks1 = 2U41 & + U1 k-1
(Ax)?

+(1-9)

Ujk1 — 2Wk + uj‘k—l] Uik — Uk
(Axy? a Ay
where 0 is the degree of implicitness, 6 = 1 yields implicit
representation, 8 = 1/2 gives Crank-Nicholson method, and
6 = 0, the explicit representation. 6 > 1/2 is universally
stable, while 6 < 1/2 is only conditionally stable.
Given a partial differential equation of the elliptic form

%u  9%u
ox?  dy?
and a grid as shown in Figure 1.46, then the equation may
be written in central difference form at (j, k) as
Uke1 — 20k + Wik1 | Wik — 20k + Ujo1k
(Ax)? (Ay)y?
and there are mn simultaneous equations in mn unknowns
Uj k-

The most effective techniques for hyperbolic partial differ-
ential equations are based on the method of characteristics
[11] and an extensive treatment of this method may be found
in the literature of compressible fluid flow and plasticity
fields.

Finite element methods [12, 13] have replaced finite differ-
ence methods in many fields, especially in the area of partial
differential equations. With the finite element approach, the
continuum is divided into a number of “finite elements” that
are assumed to be joined by a discrete number of points along
their boundaries. A function is chosen to represent the vari-
ation of the quantity over each element in terms of the value
of the quantity at the boundary points. A set of simultaneous
equations can be obtained that will produce a large, banded
matrix.

=0

=0

The three primary advantages of the finite element
approach over finite difference methods are [1]

1. Easy handling of irregularly shaped regions.

2. Variation in size of elements over a region, allowing
smaller elements where strong variations occur.

3. Larger elements can produce comparable accuracy to
smaller mesh elements of a finite difference grid, which
is especially useful in handling elliptic partial differential
matrices.

Other methods for solving partial differential matrices
include Monte Carlo, spectral, and variational. Spectral meth-
ods in particular converge more rapidly than finite difference
methods, but do not handle problems involving irregular
geometries or discontinuities well.
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1.8 APPLIED STATISTICS

See References 1-6 for additional information.

A discrete random variable is one that may take on only
distinct, usually integer, values. A continuous random vari-
able is one that may take on any value within a continuum of
values.

1.8.1 Moments

The moments describe the characteristics of a sample or
distribution function. The mean, which locates the average
value on the measurement axis, is the first moment of values
measured about the origin. The mean is denoted by p for the
population and X for the sample and is given for a continuous
random variable by

X or u / Xf(X)dX
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For a discrete random variable, the mean is given by

Xorp= ZXif(Xi)
i=1
and if each observation is given equal weight, f{X) = 1/n
and

Xorp= %Xn:Xi
i=1

The variance is the second moment about the mean and
indicates the closeness of values to the mean. Itis denoted by
o? (population) or S? (sample) and is given for a continuous
random variable by

o?orS? = / X — wEX)dX
For a discrete random variable, the variance is

n
clorS = Z X — WHX)
i1

and if f{X) = 1/n

1 n
2 2 _ 1 N2k
o°orS° = = izzl X; — w?(biased)
or

; 1 - ;
2 2 _ : 2 .
c‘orS = —— izzl X; — w? (unbiased)

The standard deviation is the square root of the variance
and is denoted by ¢ (population) or S (sample).

The skew, the third moment about the mean, is a measure
of symmetry of distribution and can be denoted by y (pop-
ulation) or g (sample). It is given for a continuous random
variable by

yorg= f " X - wHdX

and for a discrete random variable by

n
yorg=>Y Xi—wiX)
i=1
A completely symmetrical distribution will have a skew = 0,
and in a non-symmetric distribution the sign of the skew will
depend upon the location of the tail of the distribution.

The kurtosis, the fourth moment, is a measure of peaked-
ness or flatness of a distribution. It has no common notation
(k is used here) and is given for a continuous random
variable by

k= / ” X — wHX)dX

and for a discrete random variable by

k=" X —w'X)

i=1

1.8.2 Moment Ratios
The moment ratios are dimensionless coefficients used to
compare characteristics of distributions measured on differ-
ent scales.

The coefficient of variation is a measure of relative disper-
sion of a set of values and is given for the population by

C = o/l
and for the sample by
C, =S/X

The coefficient of skewmess is a measure of relative
symmetry of a distribution and is given for the popula-
tion by

B =y?/c®
and for the sample by
Br=g?/S°
The coefficient of kurtosis is a measure of relative peaked-
ness and is given by

B2 =k/S*

1.8.3 Common Probability Distributions for

Continuous Random Variables
The parameters of a distribution control its geometric char-
acteristics [1]:

1. Alocation parameteris the abscissa of a location point and
may be a measure of central tendency, such as a mean.

2. A scale parameter determines the location of fractiles of
the distribution relative to some specified point, often the
value of the location parameter.

3. Shape parameters control the geometric configuration of
a distribution. There may be zero, one, or multiple shape
parameters.

A bounded continuous random variable with uniform
distribution has the probability function

/B-)a<X<B

fX) =
&) 0 otherwise

where oo = location parameter, representing lower limit of
the distribution

B = scale parameter, representing upper bound of the
distribution

Probabilities are determined by integration over the nec-
essary range:

PX; <X < Xy) = /XZ 1/B — aydX
X1

‘The normal (Gaussian) distribution is the most frequently
used probability function and is given by

2
iexp —1<X p.) for —oco <X < 0
V2no 2\ ©
where u = location parameter and ¢ = scale parameter.
The cumulative function for this distribution is [ f (X).
The standard normal distribution is determined by calcu-
lating a random variable z where

f(X) =

z= X —u) /o for the population

z= (X - i) /S for the sample

The probability function for the standard normal distribution
is then

1 2
f(z) = —e %
V2n
where z has mean of zero and a standard deviation of one.
Probability estimates are evaluated by integrating f(z).

2 1 2
P(z1<z<2z)= ——e 57y
(z1 <z < 1z) /Z . Ven
The ¢t (Student’s t) distribution is an unbounded distribu-
tion where the mean is zero and the variance is v/(v — 2), v
being the scale parameter (also called degrees of freedom).
As v — oo, the variance — 1 (standard normal distribu-
tion). A t table such as Table 1.8.1 is used to find values of
the t statistic where v is located along the vertical margin
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Table 1.8.1 Critical Values for the t Distribution
Level of Significance for One-Tailed Test
.250 .100 .050 .025 .010 .005 .0025 .0005
Level of Significance for Two-Tailed Test
.500 .200 .100 .050 .020 .010 .005 .001
v (degrees of freedom)

1 1.00 3.078 6.314 12.706 31.821 63.657 127.321 536.627
2 .816 1.886 2.920 4.303 6.965 9.925 14.089 31.599
3 .765 1.638 2.353 3.182 4.541 5.841 7.453 12.924
4. 741 1.533 2.132 2.776 3.747 4.604 5.598 8.610
5. 727 1.476 2.015 2.571 3.365 4.032 4.773 6.869
6. 718 1.440 1.943 2.447 3.143 3.707 4.317 5.959
7 711 1.415 1.895 2.365 2.998 3.499 4.029 5.408
8 .706 1.397 1.860 2.306 2.896 3.355 3.833 5.041
9. .703 1.383 1.833 2.262 2.821 3.250 3.690 4.781
10. .700 1.372 1.812 2.228 2.764 3.169 3.581 4.587
11. .697 1.363 1.796 2.201 2.718 3.106 3.497 4.437
12. .695 1.356 1.782 2.179 2.681 3.055 3.428 4.318
13. .694 1.350 1.771 2.160 2.650 3.012 3.372 4.221
14 .692 1.345 1.761 2.145 2.624 2.977 3.326 4.140
15 .691 1.341 1.753 2.131 2.602 2.947 3.286 4.073
16 .690 1.337 1.746 2.120 2.583 2.921 3.252 4.015
17 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.965
18 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.922
19 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.883
20 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.850
21 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.819
22 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.792
23 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.768
24 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.745
25 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.725
26 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.707
27 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.690
28 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.674
29 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.659
30 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.646
40 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.551
50 .679 1.299 1.676 2.009 2.403 2.678 2.937 3.496
60 679 1.296 1.671 2.000 2.390 2.660 2.915 3.460
70 678 1.294 1.667 1.994 2.381 2.648 2.899 3.435
80 678 1.292 1.664 1.990 2.374 2.639 2.887 3.416
90. 677 1.291 1.662 1.987 2.368 2.632 2.878 3.402
100. 677 1.290 1.660 1.984 2.364 2.626 2.871 3.390
150. .676 1.287 1.655 1.976 2.351 2.609 2.849 3.357
200. .676 1.286 1.653 1.972 2.345 2.601 2.839 3.340

00 .6745 1.2816 1.6448 1.9600 2.3267 2.5758 2.8070 3.2905

and the probability is given on the horizontal margin. (For
a one-tailed test, given the probability for the left tail, the t
value must be preceded by a negative sign.)

The chi-square distribution gives the probability for a con-
tinuous random variable bounded on the left tail. The proba-
bility function has a shape parameter v (degrees of freedom),
amean of v, and a variance of 2v. Values of the x? character-
istic are obtained from a table such as Table 1.8.2, which is
of similar construction as the t table (see Table 1.8.1).

The F distribution has two shape parameters, v; and vs.
Table 1.8.3 shows F values for 1% and 5% probabilities.

F (v1,vs) # F (v2,v1)

1.8.4 Probability Distributions for Discrete Random
Variables

The binomial distribution applies to random variables where

there are only two possible outcomes (A or B) for each trial

and where the outcome probability is constant over all n

trials. If the probability of A occurring on any one trial is
denoted as p and the number of occurrences of A is denoted
as x, then the binomial coefficient is given by

and the probability of getting x occurrences of A in n trials
is

bx;inp =) pA-p"* forx=0,1,2,...,n

The cumulative probability of the binomial distribution is
given by

Bxin.p) =)  bnp
For the binomial distribution
w=np

6 =+/np(1-p)



Table 1.8.2 Critical Values for the Chi-Square Distribution

Degrees of Freedom

v

o .999 .995 .990 975 950 .900 .700 .500 .200 .100 .050 .020 .010 .005 .001
1. .000 .000 .000 .001 .004 .016 .148 455 1.642 2.706 3.842 5.405 6.637 7.905  10.809
2. .002 .010 .020 .051 102 211 713 1.386 3.219 4.604 5.995 7.822 9.221  10.589  13.691
3. .024 071 115 .216 .352 .584 1.424 2.366 4.642 6.252 7.817 9.841 11.325 12.819  16.292
4. .090 .205 .297 484 711 1.064 2.195 3.357 5.989 7.782 9.492 11.660 13.280 14.824  18.432
5. .209 411 .553 .831 1.145 1.610 3.000 4.352 7.291 9.237 11.073 13385  15.088  16.762  20.751
6. 377 .673 871 1.236 1.635 2.204 3.828 5.349 8.559 10.646 12.596  15.033 16.810  18.550  22.677
7. .597 .988 1.237 1.688 2.167 2.833 4.671 6.346 9.804 12.020 14.070 16.624 18471  20.270  24.527
8. .850 1.341 1.642 2.179 2.732 3.489 5.527 7344 11.031 13363 15,512 18.171  20.082  21.938  26.318
9. 1.135 1.728 2.086 2.699 3.324 4.168 6.393 8.343  12.243 14686 16925 19.683 21.654  23.563  28.061
10. 1.446 2.152 2.555 3.244 3.938 4.864 7.266 9.342 13443 15990 18311 21.165 23.194 25.154  29.763
11. 1.819 2.597 3.047 3.815 4.574 5.576 8.148  10.341 14.633 17.278 19.681  22.623  24.755  26.714  31.431
12. 2.188 3.064 3.568 4.402 5.225 6.303 9.034 11.340 15813 18551  21.030  24.059  26.246  28.249  33.070
13. 2.577 3.560 4.102 5.006 5.890 7.041 9926 12.340 16986  19.814 22367 25477  27.717  29.878  34.683
14. 3.018 4.066 4.653 5.624 6.568 7.789  10.821 13339 18152  21.067 23.691  26.879  29.169 31376  36.272
15. 3.449 4.588 5.226 6.260 7.260 8.546  11.721 14339 19312 22310 25.000 28.266  30.605  32.857  37.842
16. 3.894 5.135 5.807 6.905 7.960 9.311 12624 15339 20466  23.546 26.301 29.640  32.027  34.321  39.392
17. 4.350 5.687 6.400 7.560 8.670  10.083  13.530 16.338  21.616 24.771  27.593  31.002 33.435 35771  40.926
18. 4.864 6.251 7.004 8.225 9.388  10.864 14.440 17.337  22.761 25992  28.877 32353  34.831 37.208 42.444
19. 5.351 6.825 7.627 8904 10.114 11.650 15.351 18338  23.902 27.206 30.148 33.694 36.216 38.633  43.949
20. 5.848 7.422 8.252 9.587 10.849 12442 16.265 19.337  25.039 28415 31.146  35.026 37.591  40.046  45.440
21 6.398 8.018 8.886  10.278  11.590  13.238  17.182  20.337  26.173  29.619  32.678 36.350  38.957 41.449  46.919
22. 6.919 8.622 9.528 10976 12336  14.040 18.100 21.337 27.304 30.817 33.933 37.666 40.314 42.843  48.387
23. 7.447 9.247 10.187 11.685 13.088 14.846  19.020  22.337 28431 32.012 35178 38975 41.662  44.228  49.845
24. 8.027 9.869 10.846 12397 13.845  15.657 19.943  23.337  29.556  33.199  36.421 40.277 43.004 45.604  51.293
25. 8.576  10.498 11510 13.115 14.607 16.471  20.866 24.337 30.678 34.384 37.660 41.573 44.338 46.973  52.732
26. 9.130  11.132 12190 13.837 15377  17.291  21.792 25337 31.796  35.566  38.894 42.863 45.665  48.334  54.162
27. 9.735 11.789  12.868 14.565 16.149 18.113 22.718 26336 32913  36.745 40.119 44.147 46.986 49.688  55.584
28. 10.306  12.438  13.551 15304 16.925 18.938 23.646 27.336  34.028 37.920 41344 45426 48301 51.036  56.998
29. 10.882  13.092  14.240 16.042 17.705 19.766  24.576  28.336  35.140  39.092  42.565 46.699  49.610 52378  58.405
30. 11.509  13.767 14.943 16.784 18488  20.598  25.507 29.336  36.251  40.261 43.782 47968  50.914 53.713  59.805
40. 17.846  20.699  22.139 24423  26.508  29.055  34.879  39.337 47.261 51.796  55.753  60.443 63.710 66.802  73.490
50. 24.609 27957 29.685 32349 34.763 37.693 44319 49336 58157 63.159 67.501 72.619 76.172  79.523  86.740
60. 31.678 35503  37.465 40.474 43.187 46.463 53.814 59336 68.966  74.390  79.078  84.586  88.396  91.982  99.679
70. 38.980 43.246 45423 48750  51.739  55.333  63.351  69.335  79.709  85.521  90.528  96.393 100.441 104.243 112.383
80. 46.466 ~ 51.145  53.523  57.147 60.391  64.282  72.920 79.335 90.400 96.572 101.876 108.075 112.344 116.348 124.901
90. 54.104  59.171  61.738  65.641  69.126  73.295  82.515  89.335 101.048 107.559 113.143 119.654 124.130 128.324 137.267
100. 61.869 67.303 70.049 74216 77.929 82362  92.133  99.335 111.662 118.493 124.340 131.147 135.820 140.193 149.505
150. 102.073  109.122 112.655 117.980 122.692 128.278 140.460 149.334 163.345 172.577 179.579 187.683 193.219 198.380 209.310
200 143.807 152.224 156.421 162.724 168.279 174.838 189.051 199.334 216.605 226.017 233.993 243.191 249.455 255.281 267.579

ve-1
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Table 1.8.3 Critical Values for the Cumulative F Distribution

Degrees of Freedom

v2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 100 500 1000 10000
vl
1. 161 200. 216. 225. 230. 234. 237. 239. 241. 242. 246. 248.  250.  251. 252. 253.  254. 254. 254.
4052. 5000. 5403. 5625. 5764. 5859. 5928. 5961. 6022. 6056. 6157. 6209. 6261. 6287. 6303. 6334. 6360. 6363. 6364.
2. 18.151 19.00 19.16 19.25 1930 19.33 1935 1937 1938 1940 1943 1945 1946 1947 1948 1949 1949 1949 1949
98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 9943 9945 9947 99.47 99.48 99.49 99.50 99.50 99.49
3. 1013 955 928 912 901 894 889 88 881 879 870 866 862 859 858 855 853 853 8.52
3412 30.82 2946 2871 28.24 2791 2767 2749 2734 2723 26.87 2669 2650 2641 2635 26.24 26.15 26.14 26.12
4. 771 694 659 639 626 616 609 604 600 59 58 580 575 572 570 566 564 563 563
21.20 18.00 16.69 1598 1552 1521 1498 14.80 14.66 14.55 14.20 14.02 1384 13.75 13.69 13.58 1349 1347 13.46
5. 6.61 579 541 519 505 495 488 482 477 474 462 456 450 446 444 441 437 437 437
16.26 13.27 12.06 11.39 1097 10.67 10.46 10.29 10.16 1005 9.72 955 938 929 924 913 9.04 9.03 9.02
6. 599 514 476 453 439 428 421 415 410 406 394 387 381 377 375 371 368 367 367
13.75 1092 978 915 875 847 826 810 798 787 756 740 723 714 709 699 690 6.89 6.88
7. 559 474 435 412 397 387 379 373 368 364 351 344 338 334 332 327 324 323 323
1225 955 845 785 746 719 699 684 672 662 631 616 599 591 58 575 567 566 5.65
8. 532 446 407 38 369 358 350 344 339 335 322 315 308 304 302 297 294 293 293
1126 865 759 701 663 637 618 603 591 581 552 536 520 512 507 496 488 487 4.86
9. 512 426 3.8 363 348 337 329 323 318 314 301 294 28 283 280 276 272 271 271
1056 8.02 699 642 606 580 561 547 535 526 496 481 465 457 452 441 433 432 431
10. 496 410 371 348 333 322 314 307 302 298 28 277 270 266 264 259 255 254 254
1004 756 655 599 564 539 520 506 494 485 456 441 425 417 412 401 393 392 391
15. 454 368 329 306 290 279 271 264 259 254 240 233 225 220 218 212 208 207 207
868 636 542 489 456 432 414 400 389 380 352 337 321 313 308 298 289 288 287
20. 435 349 310 287 271 260 251 245 239 235 220 212 204 1.99 197 1.91 1.86 1.85 1.85
810 585 494 443 410 387 370 356 346 337 3.09 294 278 269 264 254 244 243 242
30. 417 332 292 269 253 242 233 227 221 216 2.01 193 184 179 176 170 164 1.63 1.62
756 539 451 402 370 347 330 317 3.07 298 270 255 239 230 225 213 203 202 201
40. 4.08 323 284 261 245 234 225 218 212 208 192 184 174 169 166 159 153 1.52 151
731 518 431 383 351 329 312 299 289 280 252 237 220 211 206 194 183 1.82 1.82
50. 403 318 279 256 240 229 220 213 207 203 187 178 169 163 160 152 146 145 144
717 506 420 372 341 319 302 28 278 270 242 227 210 201 1.95 1.82 1.71 1.70  1.68
100. 394 309 270 246 231 219 210 203 197 193 177 1.68 157 152 148  1.39 1.31 130 1.28
690 482 398 351 321 299 28 269 259 250 222 207 18 18 174 160 147 145 143
500. 386 301 262 239 223 212 203 19 190 18 169 159 148 142 138 128 116 114 112
669 465 382 336 3.05 284 268 255 244 236 207 192 174 163 157 141 123 120 117
1000. 38 300 261 238 222 211 202 195 189 184 168 158 147 141 136 126 113 111 1.08
666 463 380 334 3.04 282 266 253 243 234 206 190 172 1.61 1.54 138 119 116 112
10000. 384 300 261 237 221 210 201 194 18 183 167 157 146 140 135 125 111 1.08  1.03
664 461 378 332 302 280 264 251 241 232 204 18 170 159 1.53 136 116 1.11 1.05

% The upper and lower values in the table are for F o5 and F .
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Figure 1.8.1 Probability paper for frequency analysis.

For np > 5 and n(1-p) > 5, an approximation of
binomial probabilities is given by the standard normal
distribution where z is a standard normal deviate and

X —np

vap (1 -p)
The negative binomial distribution defines the probability

of the k' occurrence of an outcome occurring on the xt
trial as

boeokn = (0] a-p

forx=k,k+1,k+2,...
and
p=k1-p)/p

o’ =k (1-p) /p’

If the probabilities do not remain constant over the trials
and ifthere are k (rather than two) possible outcomes of each
trial, the hypergeometric distribution applies. For a sample of
size N of a population of size T, where

ti+t+... +tx =T, and
nm+n+... +n =N

) () (%)
(~)

The Poisson distribution can be used to determine prob-
abilities for discrete random variables where the random
variable is the number of times that an event occurs in a sin-

gle trial (unit of time, space, etc.). The probability function
for a Poisson random variable is

b
Pxiw) = P forx=0,1,2,..

X!

the probability is

h(@n; N, t,T) = (

where p=mean of the probability function (and also the
variance)
The cumulative probability function is

FOGw=) PGw

1.8.5 Univariate Analysis
For multivariate analysis, see McCuen, Reference 23, or
other statistical texts.

The first step in data analysis is the selection of the best
fitting probability function, often beginning with a graph-
ical analysis of the frequency histogram. Moment ratios
and moment-ratio diagrams (with B; as abscissa and B, as
ordinate) are useful since probability functions of known
distributions have characteristic values of B; and (.

Frequency analysis is an alternative to moment-ratio anal-
ysis in selecting a representative function. Probability paper
(Figure 1.8.1) is available for each distribution, and the func-
tion is presented as a cumulative probability function. If the
data sample has the same distribution function as the func-
tion used to scale the paper, the data will plot as a straight
line.

The procedure is to fit the population frequency curve as
a straight line using the sample moments and parameters of
the proposed probability function. The data are then plotted
by ordering the data from the largest event to the smallest
and using the rank (i) of the event to obtain a probability
plotting position. Two of the more common formulas are
Weibull

ppw =1/(n+1)
and Hazen
pph = (21 — 1)/(2n)
where n is the sample size. If the data do not show a reason-

able fit to the population curve, a different function should
be investigated.
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Estimation of model parameters is frequently accom-
plished by the method of moments. For example, for the
uniform distribution, the mean is

b 1 B+o <
w= [ % (o) ax=Pg =x
and the variance is

—(B-0)/12=95"
Solving for o and [ gives
a=X-Sv3
B=X+SV3

1.8.6 Confidence Intervals

Confidence intervals provide a method of calculating the
range of values that contains the true value of an estimate. A
general equation for a two-sided confidence interval is

Kest = £FD
where K.t = estimated value of the K statistic

F = distribution factor

D = measure of dispersion
(For one-sided confidence intervals, the & is replaced by
+orby —.)

If 6 is known, the confidence interval on the mean is
1. Two sided

S c = c
X_Za/Zﬁ =u §X+Za/2ﬁ
2. One sided, lower limit

X -z~ <p<oo

/o
3. One sided, upper limit

o<p<X42z,2
U= o 7/
where X = sample mean = K
n = sample size

Zy, Zas2 = values of random variables, with standard
normal distribution, cutting off (1—7)
and (1 — v/2) respectively in the tail of the
distribution, and oo = 1 — 7y (the level of
significance) =

6/+/n = measure of dispersion

If o is unknown, the equations are

1. Two sided
s

i_t“/zf —“<X+ta/2[

2. One sided, lower limit
X- m—fsusw
\/>
3. One sided, upper limit
= s
—00o<pu<X+tqy ﬁ
where s = standard deviation of sample
to, ta/2 = values ofvariables having a t distribution with
v = n — 1, and a% of distribution cut off in
one tail and o./2% in both tails = F
s/+/n = measure of dispersion

The confidence interval on the variance is computed by

1 (n 1)52 <qot< (@-DS*

a/z X(1 0/2)

2
2. ("X?S <o’ <o
oL

< (n 1)s?
(1 o)
where XZ ,, X2 = values of a random variable with a
chi-square distribution cutting off
/2% and %, respectively, of the
right tail
XG_ay2 Xi_gy = values of a random variable with a
chi-square distribution cutting off
(1-0/2)% and (1 — o) %, respec-
tively, of the left tail
52 = Kest

X? values = distribution factors

3. —c0o<o?<

1.8.7 Correlation
Correlation analysis quantifies the degree to which the value
of one variable can be used to predict the value of another.
The most frequently used method is the Pearson product-
moment correlation coefficient.

The coefficient of determination is the fraction of the vari-
ation that is explained by a linear relationship between two
variables and is given by

= (%-Y)
Zinzl (Yi - ?)2

where X = observation on the random variable
Y = value of Y estimated from the best linear
relationship with the second variable X
Y = mean of the observations on Y
and R is the correlation coefficient. A perfect association is
indicated by R = 1 for a direct relationship and R = —1 for
an inverse relationship. R = 0 indicates no linear association
between X and Y.
A second deﬁnition of Ris
- s X0, (5-%) (v-Y)
where n = number of observations on Y
Sk, Sy = biased (n degrees of freedom) estimates of
the standard deviations of X and Y

Note: For small n, even high correlation may not indicate a
significant relationship between the variables.

R? =

1.8.8 Regression

The relationship between a criterion variable and two or
more predictor variables is given by a linear multivariate
model:

Y = by +byXy + boxs + ...

where p = number of predictor variables

x; = i predictor variable

b; = i slope coefficient

b, = intercept coefficient

i=12,...,p
The coefficients b; are the partial regression coefficients.
The principle of least squares is used to correlate Y with

the X; values. The error e (or residual) is defined as

=Yi-Y

+bpx,

where Y; = ith predicted value of the criterion variable

Y; = i measured value of the criterion variable

e; =i error
The purpose of the principle of least squares is to minimize
the sum of the squares of the errors so that

E=mmilmi—@2
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where n = number of observations of the criterion variable
(i.e., sample size)

E=Y" (+biXi— Yy’

By differentiating with respect to b, and by and setting the
equations equal to zero, two equations in two unknowns are
obtained (the summations are forI=1,...,n)

by = 2XYi— (X ) Yi)/n
YXZ— (XX) /0

and
b — XY biYX
p = =t e
n n
and by solutions of the set, b, and b; can be obtained.
The standard deviation S, gives the accuracy of prediction.
If Y is related to one or more predictor variables, the error
of prediction is reduced to the standard error of estimate S,
(the standard deviation of the errors), where

s=[iznL e

where v = degrees of freedom, or sample size —
number of unknowns. For the general lin-
ear model with an intercept, there are
(p+ 1) unknownsandv=n— (p + 1).
If Se=0,thenR =1, and if S. = Sy, then R = 0.
The standardized partial regression coefficient t is a mea-
sure of the relative importance of the corresponding predic-
tor and is given by

t = (b1Sx)/Sy
where — 1 <t < 1 for rational models
The two-sided confidence intervals for the coefficients b,
and by, when B, and B; are random variables having t distri-

butions with (n — 2) degrees of freedom and error variances
of

Sz(bo) — LXIZ

ny (X —X)?
and
SZ
SEb) = ———;
=(%)

are (if o is the level of significance)
bo =+ ta2.n-2Se (bo)
b1 £ te2n-2Se (b1)

The confidence interval for a line of m points may be plot-
ted by computing the confidence limits Y, at each point,

(Xxi, ?ai, i=12,..., m) of the regression line when
xx)

> (x-X)

0.5

S S 1
Yo = Yo + Sev2F 0 +

where ?ai =Y +b (Xy—X
F = F statistic obtained for (2, n — 2) degrees
of freedom and a level of significance
o = 1—1, vy being the level of confidence.
The confidence interval for a single point, say X,, can be
computed using the interval
05

(x-X)

PN 1
Y &+ to2Se 3 + —
SR

where t,» = value of random variable having at t distri-
bution with (n—2) degrees of freedom and
alevel of confidence o = 1 — .

Y=Y+ biX, —X)
The confidence interval for a future value X is given by

(x-%)° 1"

N 1
Yita/ZSe 1+H+ N
£ (%)

where?:?-i—bl (Xf —Y).
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1.9 COMPUTER APPLICATIONS

See References 1-12 for additional information.
Some areas of digital computer use that are highly appli-
cable to the engineering field include

Numerical computations for design and modeling
Information storage and retrieval

Data sorting and reduction

Computer-aided graphics for illustration and for design
Word processing

Communication networks and database access

Artificial intelligence applications such as expert sys-
tems and neural networks (see Reference 40 for more
information).

1.9.1 Problem Solving

The initial outline of a solution to a problem is the algorithm
(i.e.,alist of English-language instructions with the following
properties):

1. The execution of the proposed algorithm must be com-
pleted after a finite number of operations, the number
depending on the complexity of the problem and the
degree of detail of the algorithm.

2. The representation of the solution must have a unique
interpretation, so when executing the steps with the same
input data, the same outputs are obtained.

3. The algorithm must present the computer with sufficient
information and instructions to carry out the solution.

4. The scope of the algorithm may be predefined by the
range of the inputs.

1.9.2 Programming Languages

A wide variety of programming languages are available rang-
ing from machine code, composed of sequences of 0’s and
1’s representing either data or instructions, which is com-
pletely processor dependent and not transferable, through
assembly languages consisting of mnemonics for instruc-
tions and usually hexadecimal representation of storage



location addresses and of data to high-level programming
languages such as FORTRAN, C, and JAVA. High-level lan-
guages may be divided into procedure-oriented languages
and problem-oriented languages.

The term problem-oriented languages should be read as
“special-purpose languages” or “applications-oriented lan-
guages,” because in a more general context all high-level
languages may be used to solve problems. Some of these
languages have been designed for special applications such
as electronic circuit analysis, while others are more general
purpose, such as those written for simulation or statistical
packages. An example is the programming language avail-
able in many computer algebra systems (CAS) such as Maple
or Matlab.

Procedure-oriented languages, so called because they
allow the programmer to concentrate on the process rather
than on the machine architecture, include familiar lan-
guages, such as FORTRAN, as well as many more recently
developed ones. Three of the high-level languages of com-
mon interest to engineers are:

1. Formula Translating Language (FORTRAN) the original,
still most commonly used language for engineering com-
putations. Itis a compiled language (the entire program is
translated to object code and saved before execution) that
links to many libraries of subroutines and has a number
of special purpose extensions. FORTRAN has been much
improved by the addition of control structures which
eliminate the necessity for many unstructured leaps of
logic through the program. The basic structure of many
programming languages is similar (see the FORTRAN
language section for details on the structure and syntax
of this language).

2. C is a programming language developed in the 1970s
and originally associated with the Unix operating system.
C++ is an update to C that adds object-oriented features
to C. Object-oriented programming is a relatively new
approach to programming that differs from traditional
structured or procedural programming in that it is based
on the use of objects, which are members of classes or
categories of objects that have similar features [11].

3. Java is a fully object-oriented language that is based on
the creation of applets, which are small programs that can
be attached to Web pages and move across the Internet
[11]. One important feature of Java is that, unlike other
programs that require a specific operating system, a Java
program runs on all operating systems and hardware
platforms.

Packaged programs are available in many areas of gen-
eral interest to engineers, including mathematics, statistics,
and structural design. The popular Microsoft Office software
contains a spreadsheet program, Excel, and a database man-
agement program, Access, that are used in many petroleum
engineering applications. Excel has many built-in functions,
including common statistical and mathematical functions,
and it has the ability to easily perform operations on large
amounts of data. A number of vendors also offer special-
ized petroleum engineering packages relating to such areas
as EOR, drilling fluids, corrosion control, cementing, and
well production histories. Some private vendors also main-
tain databases on specific subjects such as well production
histories.

1.9.3 Common Data Types

Although the number of data types available varies with the
programming language and a particular vendor’s restric-
tions and extensions of the standard, the following types
are particularly useful in scientific programming. (Some lan-
guages permit user definition of nonstandard data types,
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Table 1.9.1 ASCII (American Standard Code for
Information Exchange) *
Left Right Digits
Digts 0 1 2 3 4 5 6 7 8 9
3 ! “o% S % &
4 « ) o, - . /0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [ \ ] A ¢ a b c
10 d e f g h i j k 1 m
11 n o p q r s t u vV W
12 x v z | | )~

2Decimal codes 00 to 31 and 127 and higher represent nonprintable
characters and special character codes.

usually for the purpose of limiting the range of values
accepted by a variable of that type.)

1. Integer — A signed number with no fractional part.

2. Real — A signed number with an integer part and a
fractional part.

3. Double precision — Value stored as two words, rather
than one, representing a real number, but allowing for
approximately double the number of significant digits.

4. Complex — Value stored as two words, one representing
the real part of the number and the other representing
the imaginary part.

5. Character — Alphanumerical item (2, m, !, etc.) repre-
sented in memory as a binary code (see Table 1.9.1 for
ASCII and Table 1.9.2 for EBCDIC).

6. Logical — Data type with only two possible values: True
(represented as 1) and False (represented as 0), also
referred to as Boolean.

7. Pointer — Identifies addresses of other data items; used
to create linked data structures.

Table 1.9.2 EBCDIC (Extended Binary Coded Decimal
Interchange Code) *

Left Right Digits

Digits 0 1 2 3 4 5 6 7 8 9
6

7 ¢ < ( + |

8 &

9 D L

10 A, % —
11 > 7

12 # @ * - a
13 b ¢ d e f g h i

14 i k m n
15 o p q r

16 s t u v w x y 2z
17 Voo

18 [ |

19 A B C D E F G
20 H 1 J
21 K L N O P Q R

22 S T U V
23 W X Y Z

24 0 1 2 3 4 5 6 7 8 9

@ Decimal codes 00 to 63 and 250 to 255 represent nonprintable
control characters.
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1.9.4 Common Data Structures
The following data structures are available or can be con-
structed in most high-level languages.

1. Variable — Named data item of a specific type; may be
assigned one or more values during the course of a pro-
gram run (in some languages, a constant may be defined
with a specified initial value that may not be changed).

2. Array — A collection of data items of the same type,
referred to collectively by a single name. The individual
items, the array elements, are ordered by their subscripts,
the number of subscripts being determined by the dimen-
sionality of the array. An element is referred to by the
array name followed by its parenthesized subscripts (e.g.,
TEMP(, J) might refer to the temperature at the I'" time
increment and at the J™ pipe node).

3. Record — A collection of data items (fields) of various
types, which may also be records themselves. If EMP1 is
a record in the master file of employees, EMP1.NAME
may be a character field, EMP1.ZIP an integer field, and
EMP1.SAL a real field.

4. File — Collection of records that normally consist of
matching types of fields. Records in a file may be accessed
sequentially (the entire file must be read until the needed
record is reached) or randomly (the record contains a key
field, which determines its physical location in storage).

5. Linked lists — Data items linked by pointers. In the gen-
eral form, each item, except the first, has one predecessor,
and each item, except the last, has one successor, with
pointers linking items to their successors. Doubly linked
lists have pointers to both the predecessor and the suc-
cessor of an item and a circular list has a pointer from
the final item to the initial item (producing a predeces-
sor to the initial item and a successor to the final item).
Restricted lists also exist, such as stacks, where items may
only be added (pushed) or deleted (popped) at one end
(the top), and queues, where items must be inserted at
one end and deleted from the other. Trees are linked lists
in which each item (node) except the root node has one
predecessor, but all nodes may have any finite number, or
zero, successors; graphs contain both nodes and edges,
which connect the nodes and define their relationships.

6. Class — A description of data and the procedures used
to work with the data. Examples of classes common in
graphical user interfaces (GUI) are Scrollbar and Button.

7. Object — An object is a specific member of a class.

1.9.5 Program Statements

The statements of which the program consists may be either
executable or nonexecutable. Nonexecutable statements con-
sist of comments, which explain the data and logic of the
program, and declarations, which are orders to the transla-
tor or to other system programs and which usually serve to
allocate memory space for data.

Executable statements, which are translated into machine
code, are instructions by which operations are performed
on data or by which the sequence of execution is changed.
Statements producing operations on data are

1. Assignment — Assign a value, either a constant or a com-
puted value, to a variable, an array element, a node, or a
field.

2. Input — Transfer data from external devices, such as a
keyboard or disk file, to the program.

3. Output — Transfer data from the program to an external
device, such as a printed, screen, or a disk file.

Executable statements affecting the order in which
the program instructions are executed include conditional
(branching) statements, iterative (looping) statements, and
statements which call subprogram units.

1. Conditional statements — Change the sequence in which
instructions are executed depending upon the logical
relationship(s) between variables and/or between vari-
able(s) and set value(s).

2. Iterative statements — Force the repetition of instructions
depending on preset conditions.

3. Calling statements — Transfer control to a subprogram
unit.

1.9.6 Subprograms

The division of a program into a main program unit and one
or more subprogram units allows logical organization of the
program into sections of related operations and facilitates
the coding, debugging, and replacement of units of the pro-
gram. Data are passed from one unit (or module) to another
through parameters (arguments) and/or through shared
memory locations. There are two types of subprograms
usually available:

1. Function subprograms — Return a single value as the
value of the function name; these may be either extrinsic
(user-defined) or intrinsic (provided as part of the system
library).

2. Subroutine or procedure subprograms — Return values
through parameters or global variables (see scope).

The scope of a data item in a program determines which
program units may access (and change) the value of that
data item. Global data may be accessed by all program units,
whereas local data are visible only to the unit(s) in which
they are defined. The method by which scope is determined
depends on the type of language being used. In FORTRAN, a
COMMON block defined by a COMMON statement in the
main program allows data in that block to be accessed by
any module in which the block is defined. Parameters allow
two units to share data values; some types of parameters
allow the passing of only the value and not the location of the
item, so that the subunit can read, but not change, the value.
In block structured languages, such as Pascal, the structure
determines the scope of the variables; the scope of a variable
is the block in which it was defined and all blocks contained
therein. A variable in this case is global to a sub-unit if it was
declared not in that sub-unit but in a higher-level unit which
contains the sub-unit, e.g., all variables declared in the main
program are global to all program units.

Recursion is available in languages having dynamic mem-
ory allocation. Direct recursion occurs when a program
unit calls itself; indirect recursion occurs when a chain of
subprogram calls results in the original calling unit being
called again without returning to a higher-level unit, such as
MAIN— SUBA— SUBB— SUBC— SUBA, where

MAIN

L1
ABCD

1.9.7 General Programming Principles
Two characteristics of well-designed programs are

1. Generality — To as great an extent as possible for a par-
ticular problem, a program should be able to operate on
a wide variety of data sets with a minimum of program
revision, and the necessary changes should be as simple
to make as possible.

2. Portability— A program should adhere as closely as pos-
sible to a standard version of a language and avoid highly
machine-dependent constants and constructions. Uniden-
tified machine-dependent information should be localized
and identified for simplification of transport.

With little extra effort, code can be written so as to mini-
mize the difficulty a reader will encounter in comprehending
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the program logic. Several considerations in improving
readability of a program are

1. Names should be as descriptive as possible (e.g., DEPTH
rather than 12).

2. Comments should be liberally used to describe the data
and logic of the program; they should be brief when placed
in the body of a program unit, but may be longer and more
descriptive at the beginning of a program unit.

3. Indentation, when possible, clarifies conditional and iter-
ative constructions, and spacing improves the general
readability of a program.

4. The use of subprogram units allows separation of the vari-
ous operations of a program into modules, thereby clearly
delineating the program logic. Specific types of calcula-
tions, input, and output may be done in distinct modules;
in many cases, the main unit will consist primarily of
calling statements to a few modules.

The proper handling of certain common errors can
improve the run-time behavior of programs. In most cases,
awareness of inherent problems in machine handling of data
and attention to program details can avoid program crashes
due to error. The following should be considered when the
program code is being designed:

1. Input validation statements should be used to automati-
cally check input data, to produce a clear message when
an error is found, and to allow reentry of erroneous data.
Data input should be echoed for user verification and an
opportunity allowed for alteration of specific data items.

2. A method of exiting the program in case of a run-time
error, which produces a message to the user as to the
type and location of the error, should be provided. The
possibility of certain errors occurring can be anticipated,
and the use of flags and conditional constructions may
provide a path to exit the program gracefully.

3. It is necessary to avoid predicting the exact value of a
real variable, because after several operations, it may have
been rounded off one or more times.

4. Side effects in subprogram units are unintentional
changes in data values defined in other units. These fre-
quently occur when the scope of a variable is mistakenly
considered because of insufficient cross-checking to be
local, when it is, in fact, global.

1.9.8 FORTRAN Language

FORTRAN names (e.g., unit, variable, array) consist of an
initial letter (see defaults for real and integer types in the
following) followed by letters or digits, the maximum length
of which is 6 characters.

1.9.8.1 Data Types
See the section “Statements” for forms of declaration of type.

Integer — Variable names starting with I-N, unless other-
wise declared.

Real — Variable names starting with A-H and O-Z, unless
otherwise declared.

Double precision — Must be declared.

Complex — Must be declared.

Logical — Must be declared.

Character — Must be declared with length of string;
default length is 1.

1.9.8.2 Data Structures

Variable — May be assigned value by a numerical or
character constant, by input, or by an expression.

Array — May have up to seven dimensions; number and
size (upper and lower boundaries) of dimensions are
declared in DIMENSION or TYPE statements.

File — External (physical) only; may be sequential or
random access.

1.9.8.3 Statements

Most statements, except where noted otherwise, begin in the
seventh column of a page considered to be 80 columns wide;
continuation lines are indicated by a “+” (symbol may vary
with version of language) in the sixth column. The first five
columns are reserved for labels (line numbers), which are
only required if the line is referenced by another statement,
and for comment lines, which are determined by a charac-
ter in the first column. Columns 7 to 72 are reserved for
statements; 73-80 are not read. (See Table 1.9.3 for required
order of statements in FORTRAN.)

1.9.8.3.1 Nonexecutable Statements
Program unit heading — Program name, function name,
or subroutine name.

Type declaration — Specifies data type to be represented
by a variable name (overrides defaults):

REAL MSR

INTEGER COUNT, PNUM, AP
LOGICAL TEST1
CHARACTER*10 LNAME

Implicit declaration — Allows type specification for all
names beginning with the given first letter (s)

IMPLICIT DOUBLE PRECISION (A-Z)
IMPLICIT COMPLEX (C)

Dimension statement — Specifies number and size
of dimensions for each array (may be included in Type
statement); lower bound default is 1

DIMENSION A1(5:10), A2(15)
DIMENSION A3(0:5, 0:10, 10:100), A4(10, 10, 10, 10)

Table 1.9.3 Order of Statements in FORTRAN

PROGRAM, FUNCTION, SUBROUTINE or BLOCK DATA Statements

MMENT IMPLICIT Statements
giges F%RMAT PARAMETER Statements
%nNTRY DIMENSION COMMON TYPE,
Statements| and EQUIVALENCE Statements
DATA Statement Function Definitions
Statements| pyecytable Statements

END Statements
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or

INTEGER A1(5:10), A2(15)

Common statement — Defines a common block of
global variables (one common block may have no specified
name)

COMMON/blockname/varnames/blockname/varnames
COMMONX, Y, Z/C2BLK/A, B, C

Data may be entered into variables declared in a labeled
COMMON block by an assignment or an input statement
or through a BLOCK DATA subprogram as defined in
subprogram statements.

Equivalence statement — Assigns two or more variable
names to the same memory location

EQUIVALENCE(A, B, ©)

Parameter statement— Declares the name of a constant
whose value cannot be changed in the program

PARAMETER name
End statement — Compiler signal for end of unit

END

1.9.8.3.2 Executable Statements
Assignment statements may be DATA statements and are
used mainly to assign initial values to variables

DATAA,B,C,D,E/1,2,3,4.,5./X,Y, Z/3*10.

or values assigned by numerical or character constants or
by expressions (see Table 1.9.4 for arithmetic operators and
precedence)

PI = 3.1415927
C1 = ‘Thisis atest’
XI ) =XA-1,]) + YD *Z**3

Input/output statements may be either list-directed
(stream) or formatted. List-directed I/O statements may be

READ (device#, *)varl, var2, . ..
WRITE (device#, *)varl, var2, . ..
PRINT *varl, var2, . ..i

where device# refers to either a device such as a screen or
printer or to a disk file. Usually, the default input device (ref-
erenced by an asterisk rather than a device#) is the keyboard
and the default output device (also referenced by an aster-
isk) is the screen. PRINT connects only to the printer. Other
devices and files may be assigned device numbers through
file handling statements (see later). A statement requesting
list-directed input from the default device (the keyboard)

Table 1.9.4 Precedence of FORTRAN Operators

Class Level Symbol of Mnemonic
Exponential First *x
Second — (negation) and + (identity)
Arithmetic Third */
Fourth +, —
Relational Fifth .GT,, .GE., LT, .LE, .EQ., .NE.
Sixth NOT.
Logical Seventh AND.
Eighth .OR.
Ninth EQV., NEQV.

might be, for example,
READ (*, *) TEMP, PRSSR, LENGTH

Formatted I/0O statements require edit specifiers
(Table 1.9.5) for each variable to be handled and may also
include strings of characters enclosed in single quote marks.
The format may be given in a separate format statement
(referenced by a line number and labeled) or, in many sys-
tems, may be enclosed in quotes and parentheses in the
I/0 statement itself. The general form for formatted I/0
statements is

READ (device#, label)varl, var2, . . .
WRITE (device#, label)varl, var2, . . .
PRINT label varl, var2, . . .

label FORMAT (list of specifications)

For example,

READ (*, 100)X(1), Y, I
100 FORMAT (1X, 2F12.4, 15)
WRITE (6, 110) (TEMP(D), I =1, 5)
110 FORMAT (1X, 5(F7.3, 2X))
WRITE (*, ‘(“TEMP AT SURFACE IS”, F8.2)") TSURF

Table 1.9.5 FORTRAN Edit Specifiers

Character data fields

Double precision data fields

Real data fields-exponential (E) notation

Real data fields-decimal notation

General form

Character constants

Integer data fields

Logical data fields

Scale factors, used with D, E, F, and G speci-

fiers to shift the decimal point or exponent size

for output

S Restores the optional + convention to the
compiler

SP Prints + with all subsequent positive data

SS Suppresses + for all subsequent positive data

TL Next character will be input/output the spec-

ified number of spaces left of the current

position

Next character will be input/output the spec-

ified number of spaces right of the current

position

X Skip the specified number of spaces before
next character is input/output
Ends format control if no more data items in
list

/ Skips a record

T ImomEg R

TR

Specifiers for Input
Operations Only

BN Specifies that blank characters are to be
ignored
Specifies blank characters are to be read as

Zeros

BZ

Specifications for Time:
Four Most Common Data Types

Integer Iw
Real Fw.d
Character  Aw
Exponential Ew.d
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File handling statements allow the manipulation of
sequential and random access files. (Because there is con-
siderable variation from one system to the next, the following
information is given in general terms only.)) Devices are
treated as sequential files, while disk files may be sequential
or random access. The following statements are generally
accepted forms.

OPEN (list of specifiers) — Connects an existing file to an
1/0 device or generates a new file, and specifies a device
(unit) number. The specifiers (required and optional) are

UNIT = file unit (device) number

IOSTAT integer variable for I/O status

FILE name of file

ERR label for error transfer

STATUS file status descriptor, may be OLD, NEW,
SCRATCH, or UNKNOWN

ACCESS may be SEQUENTIAL or DIRECT

FORM  may be FORMATTED or UNFORMATTED

RECL record length, if file access is DIRECT

BLANK specifies blank handling, either NULL

or ZERO

CLOSE(list of specifiers) — Disconnects a file. The
specifiers may be

UNIT = file unit (device) number
IOSTAT asin OPEN

ERR as in OPEN

STATUS may be KEEP or DELETE

INQUIRE (list of specifiers) — Returns information about
the attributes of a file. Besides the UNIT=, IOSTAT, and ERR
specifiers, the following specifiers may be included:

EXIST returns .TRUE. if file exists, else .FALSE.
OPENED returns .TRUE. if open, else .FALSE.
NUMBER returns number of connected device
NAMED  returns .TRUE. or .FALSE.

NAME returns name of file

FORM returns FORMATTED or UNFORMATTED
RECL returns record length in direct access file

NEXT REC returns number of next record in direct
access file

BLANK returns whether blanks or zeros specified

The following statements must include the UNIT = and may

include the IOSTAT and/or the ERR specifiers:

REWIND — Causes a sequential file to be

(list of specifiers) rewound to first record
BACKSPACE — Causes a sequential file to rewind
(list of specifiers) one record

ENDFILE — Places an end-of-file mark on a

(list of specifiers) sequential file

A few examples of file-handling statements are

OPEN(UNIT = 6, IOSTAT = FSTAT, FILE = ‘PRINTER,,
STATUS = ‘NEW’)

OPEN(4, FILE = ‘DATAY’, STATUS = ‘OLD’)

CLOSE(6)
BACKSPACE (4, ERR = 500)

Control statements affect the flow of instructions within
a program unit. (For control between units, see subpro-
gram statements later.) These may be general, conditional,
or iterative statements. General control statements follow.

PAUSE n — Interrupts program run, resumption on press-
ing “Enter”; n is an optional character constant or integer of

less than 5 digits:
PAUSE ‘VALUE INVALID’
STOP n — Halts program run (n as above)
STOP 10050

GOTO i— Transfers control to statement labeled i, where
iis an integer constant or variable with value of label:

GOTO 700

Conditional statements are as follows.

IF(e)sl, s2, s3 — Arithmetic if, where e is an arithmetic
expression and sl, s2, s3 are statement labels; transfers
control to a labeled statement depending on whether e eval-
uates to a negative, zero, or positive value, respectively. For
example,

IFd - 5) 30, 40, 50

will transfer control to the statement labeled 40 if I = 5.

IF (e) st—Logical if, where e is a logical expression (see
Table 1.9.5 for relational and logical operators) and st is
any executable statement except DO, IF, ELSEIF, ENDIF,
or END. For example,

IFL.EQ.1) WRITE(*, *)'YES’

IF(e) THEN—BIock if, where e is a logical expression,
followed by a sequence of statements and completed by
an ENDIF statement. The block may include sub-blocks
introduced by one or more ELSEIF statements and/or one
ELSE statement and all sub-blocks may contain nested
IF-THEN-ELSE blocks within them. For example,

IF(LEQ.J) THEN
X=4
Y=5
ENDIF
IF(L.LEQ.J) THEN
X=4
ELSE
X=5
ENDIF
IF(LEQ.J) THEN
X=4
ELSEIF(LEQ.K) THEN
X=5
ELSE
X=Y
ENDIF

The iterative statement in FORTRAN is the DO state-
ment (although others may be constructed using conditional
statements and GOTOs), where

DO st i = init, term, incr

introduces the repetitive section, and st is the label of the
executable statement marking the end of the loop (usually,
but not necessarily, a CONTINUE statement), i is the index
or control integer variable and init, term, and incr (optional)
are the initial value for i, the terminal value for i, and the
increment of i to be used, respectively. These values must
be integer constants, variables, or expressions in standard
FORTRAN 77, but many extensions to the language allow
real values to be used. DO loops may be nested to a level
determined by a specific compiler. For example,

DO 100I=1,10,2
PR() = PPEI-1)
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100 CONTINUE Table 1.9.6 FORTRAN Intrinsic Functions
DO100I=10,1,-1 Integer
DO 100] =1, 10 ge

100 ATR({, J) = P(J, D*FRIC
DO 1001=-5,25,5
PF() = TFP(D) - FFG
IF(PF(I).GE.LMT) GOTO 110
100 CONTINUE
110 MAXC =1

Statement functions are defined before any other exe-
cutable statements in the program and are called in the same
way that subprogram or intrinsic functions are called (see
later subprogram statements). They are one-line expres-
sions that receive one or more parameters from the calling
statement and return a single calculated value to the func-
tion name in the calling statement. For example, a statement
function defined as

FDPTXD), YD, Z, D =XO*YD) + Z**1

will calculate a value depending on the values of X(I), Y(I),
Z, and I at the time of calling and return the calculated value
to the calling statement through FDPT.

Subprogram statements are those used to transfer con-
trol between program units — the main program, functions,
and subroutines. A function call is performed by invoking
the name of the function module in an assignment statement,
such as

X = FDPR(Z, YD) *PRF

which will transfer control to the function FDPR and pass
the values Z, and Y(I) to that unit. An intrinsic function or
a statement function may be called in the same way. (See
Table 1.9.6 for a list of FORTRAN 77 intrinsic functions.) A
subroutine call is performed by a statement such as

CALL CALCSUB(MATFOR, 1, J, PVAL)

which will transfer control to the subroutine CALCSUB and
pass (and/or return) the values MATFOR, I, J, and PVAL.
A subroutine may have an ENTRY name (parameter list)
statement embedded within it, which when called in the
same manner as the main subroutine call, will receive con-
trol transfer at that point. Control passes from the called
unit back to the calling unit when a RETURN statement is
encountered. Given a subroutine

Subroutine CALCSUB(MAT, M, N, P1)
REAL MAT (100)
P1 = MAT(M) + MAT(N)
RETURN
ENTRY NEWCALC(MAT, M, N, P2)
P2 = MAT(M) + MAT(N)
RETURN

END

a call to CALCSUB as before will return a value through P1
to PVAL and a call

CALL NEWCALC(MAT, K, L, PVAL)

will transfer control in at the ENTRY statement and return
a value through P2 to PVAL. A BLOCK DATA subpro-
gram enters data into the variables declared in a labeled
COMMON block and has the form

BLOCK DATA

(DATA, DIMENSION, IMPLICIT, TYPE, EQUIVA-
LENCE, COMMON and PARAMETER statements)
END

IABS
IDIM

IDINT

IFIX
INT
ISIGN

MAXO0
MAX1

MINO
MIN1

MOD

ABS
ACOS
AIMAG
AINT
ALOG
ALOG10

AMIN1
AMOD

ANINT

ASIN
ATAN
ATAN2

COS
COSH
DIM

EXP

FLOAT
NINT
REAL
SIGN
SIN
SINH
SQRT
SNGL

TAN
TANH

DABS
DACOS
DASIN
DATAN
DATANZ2

DBLE
DCOS

Returns the absolute value of an argument
Returns the positive difference between two
arguments

Converts a double-precision argument to integer
by truncation

Converts a real argument to integer by truncation
Truncates the decimal part of an argument
Transfers the sign from one integer argument to
the other

Selects the largest value of several arguments
Selects the largest value of several arguments, but
converts any real result to integer

Selects the smallest value of several arguments
Selects the smallest value of several arguments,
but converts any real result to integer

Returns the remainder from division of two
arguments

Real

Returns the absolute value of an argument
Returns the arc cosine of an argument

Returns the imaginary part of a complex number
Truncates the decimal part of an argument
Returns the natural logarithm of an argument
Returns the common logarithm of an argument
Selects the largest value of several arguments
Selects the smallest value of several arguments
Returns the remainder from division of two
arguments

Returns the whole number nearest in value to the
argument

Returns the arc sine of an argument

Returns the arc tangent of an argument

Returns the arc tangent of two arguments
[arctan(a;/ay)]

Returns the cosine of an argument

Returns the hyperbolic cosine of an argument
Returns the positive difference between two
arguments

Returns the exponential e raised to the power of
the argument

Converts an argument to a real number

Returns the nearest integer value

Converts a complex argument to a real value
Transfers the sign from one argument to the other
Returns the sine of an argument

Returns the hyperbolic sine of an argument
Returns the square root of an argument
Converts a double precision argument to single
precision

Returns the tangent of an argument

Returns the hyperbolic tangent of an argument

Double Precision

Returns the absolute value of an argument
Returns the arc cosine of an argument
Returns the arc sine of an argument
Returns the arc tangent of one argument
Returns the arc tangent of two arguments
[arctan (a; /az)]

Converts an argument to double precision
Returns the cosine of an argument

(continued)
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Table 1.9.6 Continued

DCOSH Returns the hyperbolic cosine of an argument

DDIM  Returns the positive difference between two
arguments

DEXP  Returns the exponential e raised to the power of
the argument

DINT  Truncates the decimal part of an argument

DLOG  Returns the natural logarithm of an argument

DLOG10 Returns the common logarithm of an argument

DMAX1 Selects the largest value of several arguments

DMIN1 Selects the smallest value of several arguments

DMOD Returns the remainder from division of two
arguments

DNINT Returns the whole number closest in value to the
argument

DPROD Converts the product of two real arguments to
double precision

DSIGN  Transfers the sign from one argument to the other

DSIN Returns the sine of an argument

DSINH Returns the hyperbolic sine of an argument

DSQRT Returns the square root of an argument

DTAN  Returns the tangent of an argument

DTANH Returns the hyperbolic tangent of an argument

IDINT  Converts the argument to the nearest integer
value

Complex

CABS  Returns the absolute value of an argument

CCOS  Returns the cosine of an angle

CEXP Returns the exponential e raised to the power of
the argument

CLOG  Returns the natural logarithm of the argument

CMPLX Converts the argument to a complex number

CON]J Returns the conjugate of a complex function

CSQRT Returns the square root of an argument

CSIN Returns the sine of an argument

1.9.9 System Software

System software is the connection between the user and the
machine. It provides management of the system resources
and utilities which simplify development of applications
programs. Essential system software includes the following:

1. Translators — Assemblers, interpreters, and/or com-
pilers that translate symbolic language into machine
code.

2. Linkers and loaders — Linkers resolve references
between program units and allow access to system
libraries; loaders place code into the main memory
locations from which it will be executed.

3. Operating systems — Manage hardware resources of
the computer system. Utilization may be of the batch
method, in which program units, libraries, and data
are submitted to the system along with the job control
language statements needed to run the program. The
operating system allocates the central processing unit to
one batch job at a time, according to a hierarchical sys-
tem. Time-sharing systems provide interactive sharing of
resources by many users. The system must interweave
allocation of resources to users and manage memory
locations.

4. Utility programs — Simplify use by performing particu-
lar tasks for the programmer, such as editing, debugging,
etc.

5. File manager systems — Maintain files and handle data
input to and output from the files. Database management

systems (DBMS) contain integrated sets of files related
by their use and provide uniform software interfaces
for accessing data. The essential relationships between
records in the files may be of several types, including
sequential, associative, or hierarchical.

6. Telecommunications monitors — Supervise commu-
nications between remote terminals and the central
computer.

1.9.10 System Hardware

System hardware consists of the central processor, the input
devices (usually a keyboard), the output devices (proba-
bly both a video display terminal and a hardcopy printer),
long-term storage devices, and perhaps communications
components. In smaller systems, more than one of these
components may be “built in” to one unit, while in larger sys-
tems there may be many units each of several components
associated with the system.

The central processing unit (CPU) consists of the
arithmetic-logic unit (ALU), the control unit, and the cen-
tral storage (short-term memory) unit. The CPU is normally
classified by size of the word (number of bits in one piece of
information or address), size of memory (which is usually
expressed in MB or megabytes, with a byte being a group
of 8 bits and a bit being a single value, either 0 or 1) and
by speed of operations (usually given in gigahertz or GHz).
Input may also be from files stored on a disk or CD. There are
many combinations of these factors, depending on the pro-
cessor chip used and upon the architecture of the machine.
Speed of operation and of data transfer is of major impor-
tance in large number-crunching programs. Memory size
affects the size of the program and the amount of data that
may be held at one time, while word size primarily affects
the size of memory available. A useful addition to the system,
if a need for large-scale number crunching is anticipated, is
the arithmetic coprocessor chip, which performs high-speed
numerical operations.

Keyboards are the most widely used input devices, but opti-
cal scanners and digital pads (for computer-aided design) are
some additional input devices. Input may also be from files
stored on a disk or tape.

Video display terminals for output are available in several
sizes (measured diagonally in inches) and various resolu-
tions. Laser printers are common forms of hardcopy output
devices. Color and even photo-quality laser printers are read-
ily available. For engineering and design use, plotters, either
black-white or multicolored are frequently added to the sys-
tem. Output may also be sent to a disk or CD for long-term
storage.

Long-term memory storage devices include floppy disks, zip
disks, and CDs. The choice between storage devices is based
on the amount of available storage needed. Floppy disks can
store up to 1.44 MB of data, and CDs can store up to 700 MB
of data.

Systems may also include modems, which connect com-
puters to other computers or servers. Computers may be
connected to other computers over telephone lines, through
cables, or using satellite transmission or other wireless
methods. Modem speed is usually measured in bps or
bits per second. Telephone modems usually have a rate of
56 Kbps.
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2.1 BASIC MECHANICS (STATICS
AND DYNAMICS)

Mechanics is the physical science that deals with the effects
of forces on the state of motion or rest of solid, liquid, or
gaseous bodies. The field may be divided into the mechanics
of rigid bodies, the mechanics of deformable bodies, and the
mechanics of fluids.

A rigid body is one that does not deform. True rigid
bodies do not exist in nature; however, the assumption
of rigid body behavior is usually an acceptable accurate
simplification for examining the state of motion or rest
of structures and elements of structures. The rigid body
assumption is not useful in the study of structural failure.
Rigid body mechanics is further subdivided into the study
of bodies at rest, statics, and the study of bodies in motion,
dynamics.

2.1.1 Definitions, Laws, and Units

2.1.1.1 Fundamental Quantities

All of Newtonian mechanics is developed from the inde-
pendent and absolute concepts of space, time, and mass.
These quantities cannot be exactly defined, but they may
be functionally defined as follows:

Space. Some fixed reference system in which the posi-
tion of a body can be uniquely defined. The concept of
space is generally handled by imposition of a coordinate
system, such as the Cartesian system, in which the position
of a body can be stated mathematically.

Time. Physical events generally occur in some causal
sequence. Time is a measure of this sequence and is
required in addition to position in space in order to fully
specify an event.

Mass. A measure of the resistance of a body to changes in
its state of motion.

2.1.1.2 Derived Quantities
The concept of space, time, and mass may be combined to
produce additional useful measures and concepts.

Particle. An entity which has mass, but can be considered
to occupy a point in space. Rigid bodies that are not subject
to the action of an unbalanced couple often may be treated
as particles.

Body. A collection of particles. A rigid body is a rigidly
connected collection of particles.

Force. The action of one body on another. This action will
cause a change in the motion of the first body unless coun-
teracted by an additional force or forces. A force may be
produced either by actual contact or remotely (gravitation,
electrostatics, magnetism, etc.). Force is a vector quantity.

Couple. If two forces of equal magnitude, opposite direc-
tion, and different lines of action act on a body, they produce
a tendency for rotation, but no tendency for translation.
Such a pair of forces is called a couple. The magnitude of the
moment produced by a couple is calculated by multiplying
the magnitude of one of the two forces times the perpendic-
ular distance between them. Moment is a vector quantity,
and its sense of direction is considered to be outwardly
perpendicular to the plane of counterclockwise rotation of
the couple. The moment of a single force about some point
A is the magnitude of the force times the perpendicular
distance between A and the line of action of the force.

Velocity. A measure of the instantaneous rate of change of
position in space with respect to time. Velocity is a vector
quantity.

Acceleration. A measure of the instantaneous rate of
change in velocity with respect to time. Acceleration is a
vector quantity.

Gravitational acceleration. Every body falling in a vacuum
at a given position above and near the surface of the earth
will have the same acceleration, g. Although this acceleration
varies slightly over the earth’s surface due to local variations
in its shape and density, it is sufficiently accurate for most
engineering calculations to assume that g = 32.2 ft/s? or
9.81 m/s? at the surface of the earth.

Weight. A measure of the force exerted on a body of mass
M by the gravitational attraction of the earth. The magnitude
of this force is

W = Mg [2.1.1]

where W is the weight of the body. Strictly speaking, weight
is a vector quantity since it is a force acting in the direction
of the gravitational acceleration.

2.1.1.3 General Laws

The foregoing defined quantities interact according to the
following fundamental laws, which are based upon empirical
evidence.

Conservation of mass. The mass of a system of particles
remains unchanged during the course of ordinary physical
events.

Parallelogram law for the addition of forces. Two forces,
F; and F,, acting on a particle may be replaced by a sin-
gle force, R, called their resultant. If the two forces are
represented as the adjacent sides of a parallelogram, the
diagonal of the parallelogram will represent the resultant
(Figure 2.1.1).

Principle of transmissibility. A force acting at a point on a
body can be replaced by a second force acting at a different
point on the body without changing the state of equilibrium
or motion of the body as long as the second force has the
same magnitude and line of action as the first.

2.1.1.3.1 Newton’s Laws of Motion

1. A particle at rest will remain at rest, and a particle in
motion will remain in motion along a straight line with no
acceleration unless acted upon by an unbalanced system
of forces.

2. If an unbalanced system of forces acts upon a particle,
it will accelerate in the direction of the resultant force ata
rate proportional to the magnitude of the resultant force.
This law expresses the relationship between force, mass,
and acceleration and may be written as

F =Ma [2.1.2]

where F is the resultant force, M is the mass of the
particle, and a is the acceleration of the particle.

3. Contact forces between two bodies have the same magni-
tude, the same line of action, and opposite direction.

Gravitation. Two particles in space are attracted toward
each other by a force that is proportional to the product
of their masses and inversely proportional to the square
of the distance between them. Mathematically this may be
stated as

IFI _ Gm1m2

[2.1.3]

r2

Figure 2.1.1 Parallelogram law for addition of forces.
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where |F| is the magnitude of the force of gravitational
attraction, G is the universal gravitational constant (6.673 x
10~ m3/kg — s? or 3.44 x 10~8 ft*/Ib — s*), m; and m, are
the masses of particles 1 and 2, and r is the distance between
the two particles.

2.1.1.4 Systems of Units

Two systems of units are in common usage in mechanics.
The first, the SI system, is an absolute system based on
the fundamental quantities of space, time, and mass. All other
quantities, including force, are derived. In the SI system the
basic unit of mass is the kilogram (kg), the basic unit of
length (space) is the meter (m), and the basic unit of time is
the second (s). The derived unit of force is the Newton (N),
which is defined as the force required to accelerate a mass
of 1 kg at a rate of 1 m/s2.

The U.S. customary or English system of units is a grav-
itational system based upon the quantities of space, time,
and force (weight). All other quantities including mass are
derived. The basic unit of length (space) is the foot (ft), the
basic unit of time is the second (s), and the basic unit of force
is the pound (Ib). The derived unit of mass is the slug, which
is the unit of mass that will be accelerated by a force of one
pound at a rate of 1 ft/s?. To apply the slug in practice, as
in Equation 2.1.2, the weight in pounds mass must first be
divided by g = 32.2 ft/s?, thus generating a working mass
in units of Ib — s2/1t, or slugs.

2.1.2 Statics

If there are no unbalanced forces acting on a particle, the
particle is said to be in static equilibrium, and Newton’s
second law reduces to

Z F=0 [2.1.4]

Solving a problem in particle statics reduces to finding the
unknown force or forces such that the resultant force will be
zero. To facilitate this process it is useful to draw a diagram
showing the particle of interest and all the forces acting on it.
This is called a free-body diagram. Next a coordinate system
(usually Cartesian) is superimposed on the free-body dia-
gram, and the forces are decomposed into their components
along the coordinate axes. For the particle to be in equilib-
rium, the sum of the force components along each of the
axes must be zero. This yields a set of algebraic equations
to be solved for the forces in each coordinate direction.

Example 2.1.1

Block W, weighing 100 1b (see Figure 2.1.2) is attached at
point A to a cable, which is, in turn, attached to vertical walls
at points B and C. What are the tensions in segments AB
and AC.

W

Breaking down the diagram into the various forces
(Figure 2.1.2b):

e Force balance in the y direction:
> Fy = =100 + Tac sin 45° + Tpp sin 15° = 0

0.707Tac + 0.259T g = 100 [a]
e Force balance in the x direction:
Z Fx = Tac cos45° — Tag cos15° =0

0.707Tac — 0.966Taz = 0 [b]

and solving Example 2.1.1 Equations a and b simultane-
ously yields

Tag =81.61b
Tac =111.51b

If there are no unbalanced forces and no unbalanced
moments acting on a 7igid body, the rigid body is said to be
in static equilibrium. That is, Equation 2.1.4 must be satisfied
just as for particles, and furthermore

ZMA =0 [2.1.5]

where Y M, is the sum of the vector moments of all the
forces acting on the body about any arbitrarily selected
point A. In two dimensions this constitutes an algebraic
equation because all moments must act about an axis per-
pendicular to the plane of the forces. In three dimensions
the moments must be decomposed into components paral-
lel to the principal, axes, and the components along each
axis must sum algebraically to zero.

Example 2.1.2
A weightless beam 10 ft in length (see Figure 2.1.3a)
supports a 10-Ib weight, W, suspended by a cable at point C.
The beam is inclined at an angle of 30° and rests against a
step at point A and a frictionless fulcrum at point B, a dis-
tance of L; = 6 ft from point A. What are the reactions at
points A and B?

Breaking the diagram down into the various forces
(Figure 2.1.3b):

e Force balance in the x direction:
> Fy =Rax — 10 Cos 60° = 0

Rax =51b

= 45°

(b) 100 Ib

Figure 2.1.2 Diagram for Example 2.1.1.
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(b)

Figure 2.1.3 Diagram for Example 2.1.2.

Table 2.1.1 Centroids of Common Lines

Shape Diagram
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From Reference 2.

o Moment balance about point A:
Y " Ma = (10)(10) sin 60° — 6Rg, = 0

Rgy =14.431b
e Force balance in the y direction:

> Fy =Ray + Rgy — 10sin60° = 0
Ray = 10sin 60° — Ry
Ryy = —4.431b

Note that although the direction assumed for Ry, was incor-
rect, the sign of the result indicates the correct direction.
Whenever the weight of a body is significantin comparison
to the external forces, the weight, or body force, must be
considered in both the force and moment balances.
The weight W of the body acts at the center of gravity, the
Cartesian coordinates of which are found by

%= % / xdw 2.1.6]
-—i/ dw (2.17]
I=g v 1L
P [2.1.8]
—W[ZW A

The foregoing are volume integrals evaluated over the
entire volume of the rigid body and dw is an infinites-
imal element of weight. If the body is of uniform den-
sity, then the center of gravity is also called the centroid.
Centroids of common lines, areas, and volumes are shown

in Tables 2.1.1, 2.1.2, and 2.1.3. For a composite body made
up of elementary shapes with known centroids and known
weights the center of gravity can be found from

%% Wi

X = 2.1.9
=W [2.1.9]
VAR

= 2.1.10
V=3W [ |
I VAA
Z= W, [2.1.11]

Example 2.1.3

A mallet is composed of a section of a right circular cylinder
welded to a cylindrical shaft, as shown in Figure 2.1.4a and
b. Both components are steel, and the density is uniform
throughout. Find the centroid of the mallet.

r=2in. d = 1lin.
L; = 6in. L, = 5in.
Lz = 1.5in. vy = 0.283 1b/in.?

Letting the center of the bottom of the handle be the origin,
the centroid of section 1, the handle, can be found by
inspection as

%1 =0
L
§71=?1:3in.

Wi = %dley —1331b
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Table 2.1.2 Centroids of Common Areas

Shape Diagram X v Area
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'-c\__ﬁ_ e ? 3n 3n 1
4b b
Semielliptical area _‘2] 5l o, ,_J 0 e %
e 3 h 2ah
Semiparabolic area 1 ! - g % g
. X7 P N b 3h 42h
Parabolic area o I : | 0 = -
MR oL .

Parabolic spandrel h = il
o c Ty l 4 10 3
s
¢ —f
y=k" n+1 n+1 ah
General spandrel 13 58 yron 1
o [4 T l n+ n+ n+

ol

,—
orsi
Circular sector g rsin o, 0 or?
3a

From Reference 2.

In section 2, the integral formula, 2.1.7, is applied 0, — sin”! <r —rLs) —14.5° — 0.253 rad

X2 =0

1 b B, = 90° = © rad
fo=at g [ vaw, 2
z cos 0; = 0.968 rad

where s 0
- 2Lpyr® (%2
a=L— (-1 Fo=Li—(r -1+ sin  cos 6 do
b=L+Ls W, Jo,
Transforming the integral to polar coordinates as shown in _ 6.85
Figure 2.1.4c: V2=55+ W,

dW, = Lyy2r cos 8 dy Li+1g 0
W, = / dW = 2r214~{ cos?0de
Ly

y =rsin@ 0,

dy =rcos6d6 W, =6.091b
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Table 2.1.3 Centroids of Common Volumes

Shape X Volume
Hemisphere 3@3 “ma’
s . 3h 9
Semiellipsoid of revolution 5 gna h
. . h 1,
Paraboloid of revolution 3 iTta h
h 2
- ~ma‘h
Cone 1 3 na
. h 1
Pyramid 1 3 abh

From Reference 2.

Substituting W, into the equation for ¥,

Vo = 6.62 in.
For the entire body
X=0
Wi +7.W, 3 x1.33+6.62 x6.09
Y TWow, 1334 6.09
¥ = 5.97in.

When two bodies are in contact and there is a tendency
for them to slide with respect to each other, a tangential
friction force is developed that opposes the motion. For
dry surfaces this is called dry friction or coulomb friction.
For lubricated surfaces the friction force is called viscous
friction or lubricated, and it is treated in the study of fluid
mechanics. Consider a block of weight W resting on a flat
surface as shown in Figure 2.1.5. The weight of the block is
balanced by a normal force N that is equal and opposite to the
body weight. If some sufficiently small sidewise force P is
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Figure 2.1.4 Diagram for Example 2.1.3.
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Figure 2.1.5 Dry friction force.

applied (Figure 2.1.5b), it will be opposed by a friction force
F that is equal and opposite to P, and the block will remain
fixed. If P is increased, F will simultaneously increase at the
same rate until the maximum value of the static friction force
is reached, at which point the block will begin to slide.

The maximum value of the static friction force is propor-
tional to the normal force as

Ff = uN [2.1.12]
where L is called the coefficient of static friction. Once the

block begins to slide, the friction force decreases slightly
and remains at a constant value defined by

Fr = N (2.1.13]

where Lk is the coefficient of kinetic friction. The magnitude
of the friction force as a function of the applied force P is

illustrated in Figure 2.1.5¢c, and typical values for ps and py
are give for both dry and lubricated surfaces in Table 2.1.4.

It is often necessary to compute the forces in structures
made up of connected rigid bodies. A free-body diagram
of the entire structure is used to develop an equation or
equations of equilibrium based on the body weight of the
structure and the external forces. Then the structure is
decomposed into its elements and equilibrium equations are
written for each element, taking advantage of the fact that by
Newton’s third law the forces between two members at a
common frictionless joint are equal and opposite.

One of the simplest structures is the truss. A truss consists
of straight members connected at their end points only (two
force members). All loads, including the weight of the mem-
bersthemselves, are considered to be supported at the joints.
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Table 2.1.4 Typical Values for us and |k for Dry and Lubricated Surfaces

Static Sliding
Materials Dry Greasy Dry Greasy
Hard steel on hard steel 0.78 (1) 0.11 (1, a) 0.42 (2) 0.029 (5, h)
0.23 (1,b) 0.081 (5, ¢)
0.15(1,¢) 0.080 (5, 1)
0.11(1,d) 0.058 (5, j)
0.0075(18, p) 0.084 (5, d)
0.0052 (18, h) 0.105 (5, k)
0.108(5, m)
0.12 (5, a)
Mild steel on mild steel 0.74 (19) 0.57 (3) 0.09 (3, a)
0.19 (3, u)
Hard steel on graphite 0.21 (1) 0.09 (1, a)
Hard steel on babitt (ASTM No. 1) 0.70 (11) 0.23(1,b) 0.33 (6) 0.16 (1, b)
0.15(1,¢) 0.06 (1,¢)
0.08 (1,d) 0.11(1,d)
0.085(1, €)
Hard steel on Babbitt (ASTM No. 8) 0.42 (11) 0.17 (1,b) 0.35(11) 0.14 (1,b)
0.11(1,¢) 0.065 (1, d)
0.09 (1,d) 0.07 (1,d)
0.08 (1, e) 0.08 (11, h)
Hard steel on Babbitt (ASTM No. 10) 0.25(1,b) 0.13(1,b)
0.12 (1,¢) 0.06 (1,¢)
0.10 (1, d) 0.055 (1, d)
0.11(1,e)
Mild steel on cadmium silver 0.173 (2, 1)
Mild steel on phosphor bronze 0.34 (3) 0.173 (2, 1)
Mild steel on copper lead 0.145 (2, 1)
Mild steel on cast iron 0.183 (15, ¢) 0.23 (6) 0.133 (2,1)
Mild steel on lead 0.95 (11) 0.5(1,1) 0.95 (11) 0.3 (11, 1)
Nickel on mild steel 0.64 (3) 0.178 (3, x)
Aluminum on mild steel 0.61 (8) 0.47 (3)
Magnesium on mild steel 0.42 (3)
Magnesium on magnesium 0.6 (22) 0.08(22,y)
Teflon on Teflon 0.04 (22) 0.04 (22, 1)
Teflon on steel 0.04 (22) 0.04 (22, 1)
Tungsten carbide on tungsten carbide 0.2 (22) 0.12(22, a)
Tungsten carbide on steel 0.5 (22) 0.08(22, a)
Tungsten carbide on copper 0.35(23)
Tungsten on carbide on iron 0.8 (23)
Bonded carbide on copper 0.35(23)
Bonded carbide on iron 0.8 (23)
Cadmium on mild steel 0.46 (3)
Copper on mild steel 0.53 (8) 0.36 (3) 0.18 (17, a)
Nickel on nickel 1.10 (16) 0.53 (3) 0.12 (3, w)
Brass on mild steel 0.51 (8) 0.44 (6)
Brass on cast iron 0.30 (6)
Zinc on cast iron 0.85 (16) 0.21(7)
Magnesium on cast iron 0.25 (7)
Copper on cast iron 1.05 (16) 0.29 (7)
Tin on cast iron 0.32 (7)
Lead on cast iron 0.43 (7)
Aluminum on aluminum 1.05 (16) 1.4 (3)
Glass on glass 0.94 (8) 0.01(10, p) 0.40 (3) 0.09 (3, a)
0.005(10, q) 0.116 (3, v)
Carbon on glass 0.18 (3)
Garnet on mild steel 0.39 (3)
Glass on nickel 0.78 (8) 0.56 (3)
Copper on glass 0.68 (8) 0.53 (3)
Cast iron on cast iron 1.10 (16) 0.15(9) 0.070 (9, d)
0.064 (9, n)
Bronze on cast iron 0.22 (9) 0.077 (9, n)
Oak on oak (parallel to grain) 0.62 (9) 0.48 (9) 0.164 (9, 1)
0.067 (9, s)

(continued)
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Table 2.1.4 (continued)

Static Sliding

Materials Dry Greasy Dry Greasy
Oak on oak (perpendicular) 0.54 (9) 0.32 (9) 0.072 (9, s)
Leather on oak (parallel) 0.61 (9) 0.52 (9)
Cast iron on oak 0.49 (9) 0.075 (9, n)
Leather on cast iron 0.56 (9) 0.36 (9, 1)

0.13 (9, n)
Laminated plastic on steel 0.35(12) 0.05 (12, 1)
Fluted rubber bearing on steel 0.05 (13, 1)

Reference letters indicate the lubricant used: numbers in parentheses give the sources.

(1) Campbell, Trans. ASME, 1939; (2) Clarke, Lincoln, and Sterrett, Proc. API, 1935; (3) Bears and Bowden, Phil. Trans. Roy. Soc., 1935;
(4) Dokos, Trans, ASME, 1946; (5) Boyd ani Robertson, Trans. ASME, 1945; (6) Sacha, Zed. . angeu. Math, und Mech., 1924; (7) Honda
and Yania la . Jour. I of M. 1925; (8) Tomlinson, Phil, Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole, Trans. ASME,
1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASME, 1937; (13) Brazier and Holland-Bowyer,
General Discussion on Lubrication, ASME, 1937; (14) Burwell, Jour. SAE, 1942; (15) Stanton, “Friction,” Longinans; (16) Ernst and Merchant,
Conference on Friction and Surface Finish, M.LT,, 1940; (17) Gongwer, Conference on Friction and Surface Finish M.I.'T,, 1940; (18) Hardy
and Bircumshaw, Proc. Rey. Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; M.I.'T, 1940; (20) Bowden and Young, Proc. Roy. Soc., 1951;
(21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowqden and Tabor, “The Friction and Lubrication of Solids,” Oxford: (23) Shooter.
Research, 4,1951.

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor oil; (d) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; (f) medium
ineral oil; (g) medium mineral oil plus 1/2 percent oleic acid; (h) stearic acid; (i) grease (xinc oxide base); (f) graphite; (k) turbine oil plus
1 percent graphite; (1) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (n) olive oil; (p) palmitic acid; (q) ricinoleic

acid; (r) dry soap; (s) lard; (t) water; (u rape oil); (v) 3-in-1 oil; (W) octyl alcohol; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

From Reference 1.

Due to its construction and the assumption of loading at
joints only, the members of a truss support only loads of axial
tension or axial compression. A 7igid truss or a rigid struc-
ture will not collapse and can only deform if its members
deform. Asimple truss is one that can be constructed, starting
with three members arranged in a triangle, by adding new
members in pairs, first connecting one end of each together
to form a new joint, and then connecting the other ends at
separate existing joints of the truss.

A frame is a structure with at least one member that sup-
ports more than two forces. Members of a frame may support
lateral as well as axial forces. Connections in a frame need not
be located at the ends of the members. Frames, like trusses,
are designed to support loads, and are usually motionless.
A machine also has multiforce members. It is designed to
modify and transmit forces and, though it may sometimes be
stationary, it always includes parts that move during some
phase of operation.

Not all structures can be fully analyzed by the methods
of statics. If the number of discrete equilibrium equations is
equal to the number of unknown loads, then the structure is
said to be statically determinate and rigid. If there are more

unknowns than equations, then the structure is statically
indeterminate. If there are more equations than unknowns,
then the structure is said to be statically indeterminate and
nonrigid.

For further information on this subject, refer to References
1-5.

2.1.3 Dynamics

Dynamics is the study of the mechanics of rigid bodies in
motion. It is usually subdivided into kinematics, the study of
the motion of bodies without reference to the forces causing
that motion or to the mass of bodies, and kinetics, the study
of the relationship between the forces acting on a body, the
mass and geometry of the body, and the resulting motion of
the body.

2.1.3.1 Kinematics

Kinematics is based on one-dimensional differential equa-
tions of motion. Suppose a particle is moving along a
straight line, and its distance from some reference point
is S (see Figure 2.1.6a). Then its linear velocity and linear

(b)

Figure 2.1.6 Diagrams of motion: (a) one-dimensional linear; (b) rotational.
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Table 2.1.5 One-dimensional Differential Equations of Motion and Their Solutions

Differential
Equations a/o = constant a=a(t); o = a(t) a=a(V); o= o(w) a=a(s); o = a(0)
. ds t st ds
Linear V= — vi=vVv; =at Sf=Si+/ v(t)dt t=/ —_—
dt 0 5 v(s)
a—d—V st =si +vit + lat? v—v-+/ta(t)dt t—/viﬂ
= dt f = Si i ] f=Vi ) = . a(v)
Vi d . Sf
vdv = ads vZ =vZ + 2aAs s =si+ / A4 vi=vi+ 2/ a(s)ds
v a) 5
. de t % de
Rotation 0=— o = ; + ot 0, =6 +/ wi(t)dt t= / —_
dt 0 6 (0)
d t o d
a=2 6 = 6 + it + Lot u)fz(niJr/oc(t)dt t=/ Lo
dt 0 ®; (X(U))
o nd . . 6f
odo=0dd  of =0+ 2040 ef—e,+/ 2L (of:mf—!—Z/ a(6)de
o; OL((D) 0;

acceleration are defined by the differential equations given
in the top half of Column 1, Table 2.1.5. The solutions to
these equations are in Columns 2—5, for the cases of constant
acceleration, acceleration as a function of time, acceleration
as a function of velocity, and acceleration as a function of
position.

For rotational motion, as illustrated in Figure 2.1.6b, a
completely analogous set of equations and solutions are
given in the bottom half of Table 2.1.5. There w is called the
angular velocity and has units of radians/s, and o is called
angular acceleration and has units of radians/s?.

The equations of Table 2.1.5 are all scalar equations rep-
resenting discrete components of motions along orthogonal
axes. The axes along which the component ® or o acts is
defined in the same fashion as for a couple. That is, the
direction of ® is outwardly perpendicular to the plane of
counterclockwise rotation (Figure 2.1.7).

The equations of Table 2.1.5 can be used define orthogonal
components of motion in space, and these components are
then combined vectorally to give the complete motion of the
particle or point in question.

The calculation and combination of the components of
particle motion requires imposition of a coordinate system.
Perhaps the most common is the Cartesian system illus-
trated in Figure 2.1.8. Defining unit vectors i, j, and k along
the coordinate axes X, y, and z, the position of some point in
space, P, can be defined by a position vector, r;:

r, =Xl 4+ ¥l + 7k [2.1.14]
In Equation 2.1.14, x, y, and z represent the coordinates of
point P. The velocity of P is the vector sum of the component
velocities:

vy = % Vy = % and v,

dt’

_dz
Tt
Vp = Vel + V] + v,k [2.1.15]

Likewise, the acceleration of P is the vector sum of the
components of the accelerations where

dv, dv.
a = ditx ay = dity and a,

a, = a1+ ayj +ak

B dv,
Todt

[2.1.16]

For any vector, the magnitude is the square root of the
sum of the squares of the components. Thus the magnitude
of the velocity of point P would be

Vpl = (V2 4 V2 +v2)? [2.1.17]

Figure 2.1.7 W is a vector of magnitude Wy acting
along the x axis.

The angle between the total velocity (or any other vector)
and any particular coordinate axis can be calculated from
the scalar product of said vector and the unit vector along
that axis. The scalar product is defined as

a.b = ayby +ayby + a,b, = |a||b| cos 6

where 0 is the angle between vectors a and b. Thus the angle
between the velocity and the x axis is

0 = cos! v
v

—cos!| —Vx
(VZ 4 V2 +v2)0s

If the magnitude and direction of a vector are known,
its components are the products of the magnitude and the
respective direction cosines. In the case of the velocity
vector, for example, the components are

[2.1.18]

Vx = |Vp| cOS O
Vy = |Vp| cos Oy [2.1.19]
v, = |Vp|Ccos 0,
Example 2.1.4

A projectile is fired at an angle of 30° to the surface of
the earth with an initial velocity of 1000 ft/s (Figure 2.1.9).
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z

Figure 2.1.8 Equations of motion in a Cartesian coordinate system.

30°

Figure 2.1.9 Diagram for Example 2.1.4.

‘What will be its velocity and the angle of its trajectory as a
function of time?
x Component: The initial velocity in the x direction is

Vxo = |V| cos 6x = 1000 ft/s cos 30°
Vxo = 866 ft/s

Assuming no air friction, this velocity is constant; that is VO —
Vxo = 866 ft/s.
y Component: The initial velocity in the y direction is

Vyo = V| cos By = |v|sin 6y = 1000 ft/s sin 30°
Vyo = 500 ft/s

In the y direction, the projectile has a constant acceleration
of —g = —32.2 ft/sec®. By the first Equation, Column 2,

Table 2.1.5, its velocity as a function of time is
Vy(t) = Vyo + at = vy, — gt

32.21t

= 500 ft/s - =5—t

and the total velocity vector is
v = 8661 + (500 — 32.2t)]
The angle of the trajectory is found from Equation 2.1.18 as

866
(8662 + (500 — 32.2¢)05

0 = cos! {

It is often convenient to use some other coordinate sys-
tem besides the Cartesian system. In the normal/tangential
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a>

A
n

>>

Path of
motion

a>

Figure 2.1.10 Normal and tangential unit vectors at different points on a path.

system (Figure 2.1.10), the point of reference is not fixed
in space but is located on the particle and moves as the
particle moves. There is no position vector and the veloc-
ity and acceleration vectors are written in terms of unit
vectors 1, tangent to the path of motion, and 7}, inwardly
perpendicular to the path of motion.

The velocity is always tangent to the path of motion,
and thus the velocity vector has only one component
(Equation 2.1.20).

v=vi [2.1.20]

The acceleration vector has a component tangent to the
path a; = d|v|/d;, which the rate at which the magnitude
of the velocity vector is changing, and a component perpen-
dicular to the path a, = |v|?/p, which represents the rate at
which the direction of motion is changing (Equation 2.1.21)

Lo dvl, v
a=at+afi=——1+—n
dt p

In Equation 2.1.21 p is the local radius of curvature of
the path. The normal component of acceleration can also
be expressed as a, = p|o|® or a, = |v||®| where o is the
angular velocity of the particle.

[2.1.21]

Example 2.1.5
Acarisincreasingin speed atarate of 10t/s? whenitentersa
curve with a radius of 50 ft at a speed of 30 ft/s. What is the
magnitude of its total acceleration?

djv|

_ 2
a = FTa 10 ft/s

V¢ (30 ft/s)?

== TR
a =107+ 18a

=18 ft/s?

la] = (10° + 18%)*% = 20.6 ft/s?

In addition to the Cartesian and normal/tangential coor-
dinate systems, the cylindrical (Figure 2.1.11) and spherical
(Figure 2.1.12) coordinate systems are often used.

When dealing with the motions of rigid bodies or systems
of rigid bodies, it is sometimes quite difficult to directly
write out the equations of motion of the point in question
as was done in Examples 2.1.4 and 2.1.5. It is sometimes
more practical to analyze such a problem by relative motion.
Thatis, first find the motion with respect to a nonaccelerating
reference frame of some point on the body, typically the cen-
ter of mass or axis or rotation, and vectorally add to this the
motion of the point in question with respect to the reference
point.

Example 2.1.6
Consider an arm 2 ft long rotating in the counter clockwise
direction about a fixed axis at point A at a rate of 2 rpm

'y
A
. K
Y X:Rpcose
z ™~ )
P TP Y=R,sin®
!
r |
1
1
]
1
I
~ R i
p | A
~
\\\l
x 7

r=Ryt + 7,k

dR, doy , [dz\ .
V_(Tr)+(Rpa)e+(a)k

d’R, de\?], d%e  dRyde |, [d%z].
a_|:dt2 7Rp(a> t+ Rp@+zEa 0+ a2 k

Figure 2.1.11 Equations of motion in a cylindrical
coordinate system.

(Figure 2.1.13a). Attached to the arm at point B is a disk
with a radius of 1 ft, which is rotating in the clockwise direc-
tion about point B at a rate of 5 rpm. What is the velocity
and acceleration of some arbitrary point C on the rim of the
disk? (Consider that at f, = 0, the configuration is that of
Figure 2.1.13d.)

By relative motion the position vector of C is the sum of
the position vector of B and the position vector of C with
respect to B

rc =rg+1rc/B [2.1.22]
and likewise with the velocity and acceleration, which is
Ve = VB + V¢/B [2.1.23]
ac = ap +acs [2.1.24]
Analyzing the motion of point B (Figure 2.1.13b),
rg = L cos eBi + Lsin GBj

Assuming rotation starts at 0 = 0,

O = wpt

VB = %(Rg) = —Log sin thf + Lwg cos u)Btj

d B s 9 :
ag = a(VB) = —Lwj cos mpti — Log sin wpt)
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z
Y
S $ A X:|r\sin¢cose
o A
\\X/'e Y =|r|sin¢ sin®
~,
1 Z=|r|cos¢
r i
n-q) !
; Y,
o H -
07 |
\\ |
X 1
r = |r|f
V= @ + |r\@ cos ¢ 6+ |r|@ q>
L dt dt dt
2| do\? ae\? cosd d [ ,de dedo . 7.
=| —— - — ] - — F — — ) = 2lr|=— =
a |: diz Irl (dt) Irl (dt) cosTe | F+ |: x| dt <|1‘| dt) il dt dt %1n¢i| 0
1d [ _,de de\? . .
+ |:ma (|r| E) + |r| (E) 51n¢cos¢i| [0]
Figure 2.1.12 Equations of motion in a spherical coordinate system.
C
2 rpm
A E/
(a)
Y
C
B
og Al ¢ D C
0
(c) (d)
Figure 2.1.13 Diagram for Example 2.1.6.
Assuming point B is fixed and analyzing the motion of Point acp = —Ru)% cos ot — Roo% sin mctj
C with respect to B (see Figure 2.1.13c),
res = Reos 0ci + Rsin ecj The velocity of point C is
0. = ot vc = Vg + V¢ = —(Log sin wpt + Rooe sin coct)f

ve = —Rooe sin u)ctf + Roc cos wctj + (Log cos ot + R cos ooct)j
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2rev[1min[ 2nrad
@B = hin| 60s Irevolution 0.209 rad/s A
2 1t]0.209 rad 1
Log = 4%/5 = 0.418 ft /s
o, = —0.524 rad/s
Va

Ro. = —0.524 ft/s
ve = —[0.4185in(0.209t) — 0.524 sin(—0.524 t)1i

+ [0.418 c0s(0.209t) — 0.524 cos(—0.524 t)]j
Att = 0, for instance, the velocity is (Figure 2.1.13d)

ve = —0.106] ft/s

Likewise, the general expression for the acceleration of
point C is

ac =ag +ac = —(L(n,z3 cos wpt + Rw% cos wct)i

— (Lo} sin ot + R sin oct)]
At t = 0 this reduces to
ac = —(Lod + Rod)i = —[2 x 0.209* + 1 x (—0.524)*1i

ac = —0.3621 ft/s?

When looking for the velocities of points on a rigid body,
the method of instantaneous centers can often be used.
If the velocity of two points on the body are known, those
points and all other points on the body can be considered
to be rotating with the same angular velocity about some
motionless central point. This central point is called the
instantaneous center of zero velocity. The instantaneous
center generally moves through space as a function of time
and has acceleration. It does not represent a point about
which acceleration may be determined.

Example 2.1.7

Link AB of length 2 ft (see Figure 2.1.14a) is sliding down a
wall with point A moving downward at 4 ft/s when 0 is 30°.
What is the angular velocity of the link and linear velocity of
point B?

Because vy (Figure 2.1.14b) is parallel to the vertical
wall, it is rotating about a point on a line through A perpen-
dicular to the wall. Likewise B is rotating about a point on a
line through B perpendicular to vg. These two lines interest
at C, the instantaneous center.

AC=Lcos6=7x0.866 =1.73 ft
[val = AC|oag|

o = Va1 _ 411
BTAC T s 173 H

where wap = 2.31 rad/s = the angular velocity of the link

and of any line on the link

51231
[vg| = BC|wap| = L sin 6|wap| = 21t10.5 3Srad

[vg| = 2.31ft/s

As an exercise, show that the locus of the instantaneous
center of rotation represents a quarter circle. What is the
radius of the circle?

2.1.3.2 Kinetics
In kinetics, Newton’s second law, the principles of kinematics,
conservation of momentum, and the laws of conservation of
energy and mass are used to develop relationships between
the forces acting on a body or system of bodies and the
resulting motion.

(a)

Figure 2.1.14 Diagram for Example 2.1.7.

2.1.3.3 Applications of Newton’s Second Law

Problems involving no unbalanced couples can often be
solved with the second law and the principles of kinematics.
Asin statics, itis appropriate to start with a free-body diagram
showing all forces, decompose the forces into their compo-
nents along a convenient set of orthogonal coordinate axes,
and then solve a set of algebraic equations in each coordinate
direction. If the accelerations are known, the solution will
be for an unknown force or forces, and if the forces are
known the solution will be for an unknown acceleration or
accelerations.

Example 2.1.8
In Figure 2.1.15a, a 10-1b block slides down a ramp inclined
atan angle of 30°. If the coefficient of kinetic friction between
the block and the ramp is 0.1, what will be the acceleration
of the block?

As shown in the free-body diagram of Figure 2.1.15b, all
the motion of the block is parallel to the surface of the ramp,
and there is a static force balance in the y direction.

> Fy=N-Wcos30° =0
N = W cos 30°
— Ff = uN = uW cos 30°

By Newton’s second law, the force in the x direction produces
an acceleration ay:

> Fy = Wsin30° — Fy = ma, = gax
ay = g(sin30° — pcos 30°)
ay = 13.31 ft/s2
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Figure 2.1.15 Diagram for Example 2.1.8.

‘When unbalanced couples are involved, a rotational analog
to Newton’s second law can be applied:

> M=Ia
where Y~ M is the sum of all moments acting about the
center of mass in the plane of rotation, I is the mass moment
of inertia about the center of mass, and o is the angular

acceleration of the body. The mass moment of inertia is
defined by

I:/rzdmzmk2

[2.1.25]

[2.1.26]

where r is the perpendicular distance from the axis of rota-
tion to the differential element of mass, dm. I is sometimes
expressed in terms of k, the radius of gyration, and m, the
mass of the body. If the axis of rotation passes through the
center of mass, then the mass moment of inertia is desig-
nated as I. Mass moments of inertia of common shapes are
compiled in Tables 2.1.6 and 2.1.7.

It is often convenient to sum the moments about some
arbitrary point 0, other than the mass center. In this case,
Equation 2.1.25 becomes
> My = lo + mad [2.1.27]
where m is the mass of the body, a is the linear accelera-
tion of the mass center, and d is the perpendicular distance
between the vector a and point 0.

If 0 is a fixed axis or the instantaneous center of zero
velocity, then Equation 2.1.27 reduces to

ZMO = I()OL

where Ij is the mass moment of inertia about point 0, Iy
may be found from Equation 2.1.26, or it may be calculated
from the parallel axis theorem

[2.1.28]

[2.1.29]

where T is the distance from 0 to the center of mass. The
parallel axis theorem may be used to find Iy regardless of
whether I is a fixed axis of instantaneous center of zero
velocity.

IO=i+mF2

Example 2.1.9
In Figure 2.1.16a 10 1b cylinder with a 3-in. radius rolls down
a 30° incline. What is its angular acceleration and the linear
acceleration of its center of mass?

In the free-body diagram of Figure 2.1.16, the point of
contact between the wheel and the ramp is the instantaneous
center of zero velocity. Thus,

Z My = rwsin 30° = [yo

rw sin 30°
o=

Iy
From Tables 2.1.6 and 2.1.7 and the parallel axis theorem,
I = ﬂrz + ﬂrz _3W,
2g g 2g
o= Zgsin30° = 3.57rad/s

3r
a, = ro. = 10.73 ft/s?

2.1.3.4 Conservation of Momentum

If the mass of a body or system of bodies remains constant,

then Newton’s second law can be interpreted as a balance

between force and the time rate of change of momentum,

momentum being a vector quantity defined as the product of

the velocity of a body and its mass.

d d

F =ma = o= dtG
Integrating Equation 2.1.30 with respect to time yields the

impulse/momentum equation

/th =AG

[2.1.30]

[2.1.31]

where Fdt is called the impulse, and AG is the change in
momentum. Equation 2.1.31 can be applied explicitly and
is particularly useful when the force is known as a function
of time.

In collisions between two bodies the contact force and
the duration of contact are usually unknown. However, the
duration of contact is the same for both bodies, and the force
on the first body is the negative of the force on the second
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Table 2.1.6 Mass Centers and Moments of Inertia

Body

Mass Center Moments of Inertia

Circular Cylindrical Shell

Half Cylindrical Shell

Circular Cylinder

Semicylinder

Rectangular Parallelepiped

_ 1.2 192
Ly = zmr® 4+ sml

_ 12 192
Lyx, = gmr® 4 sml

I, = mr?
Lo = Ly
= lmr? + {ml?
o _ 2t ot = I1ymz 1,12
X = - = jmr” 4 zml
I, = mr?

Lk = jmr? + Lml?
_ 12 1.2
Ly, = zmr® 4 zml

I, = imr?

Iy = Iy

— 1mr2 4+ 1 mi?
= gmr® 4 5ml

_ 4r Ix1X1 = I"1"1
X=— 1ol 192
3n = gmr’ + zml

1.2

L, = gmr

1 16 5
I, = (5 - @> mr

I = %m(az + 12)
Ly = Sm@®?+1%)
- I, = $m(® +b?)

— Ilmb? 4 ImP?
Ly, = fzmb” + gml

From Reference 3.

body. The net change in momentum is zero. This is called
the principle of conservation of momentum.

If a collision is purely plastic, then the two colliding
bodies will adhere to each other and move on as a single body.
Knowing the initial velocities and masses allows calculation
of the final velocity:
mivy + myve = (Mg + my)v [2.1.32]

If the collision is purely elastic or elasto-plastic, then the
two bodies will depart the collision with different velocities.
[2.1.33]
In this case, an additional equation is required before the
final velocities may be found. Thus, the coefficient of resti-
tution e is defined as the ratio of the velocity of separation to
the velocity of approach:

Vaox — Viax
e—

mpVvi1 + MgVer = MyViz + MaVay

_ Vaooy — Vigy

= = [2.1.34]

Viix — Va2ix Vily — Vaiy
Note that e is defined in terms of the components of the
velocities, not the vector velocities, whereas the momen-
tum balance is defined in terms of the vector velocities.
To solve Equations 2.1.32 and 2.1.33 when all the veloci-
ties are not colinear, one writes the momentum balances

along the principal axes and solves the resulting equations
simultaneously.

For purely elastic impacts, e = 1, and for purely plastic
impacts, e = 0. For elastoplastic impacts, e lies between
zero and one and is a function of both the material properties
and the velocity of impact.

Example 2.1.10

Sphere 1 weights 1 1b and is traveling at 2 ft/s in the posi-
tive x direction when it strikes sphere 2, weighing 5 1b and
traveling in the negative x direction at 1 ft/s. What will be
the final velocity of the system if the collision is (a) plastic,
or (b) Elastoplastic with e = 0.5?

(a) By Equation 2.1.32
_mpvy —mpvyr  2-5
my + my 6
(b) By Equation 2.1.34

V22 — V12
e—

=-05ft/s

Vi1 — Va1

Voo = V12 +0.512 — (=) =vi2 + 1.5



BASIC MECHANICS (STATICS AND DYNAMICS)  2-17

Table 2.1.7 Area Centroids and Moment Areas

Figure Centroid Area Moments of Inertia
r/
Arc Segment 4 Pl o MO —
¢ o
N
N
Quarter and Semicircular Arcs
_ 2r
y=— —
T
[4—— A = — — =X bh?
| T g = 21D b I
Triangular Area | X (A ii h 3 - %
I {3 . Y=3 bh?
|<—[1 — i X = 4
Yo L — bh?
T3
—— 3
Rectangular Area j______ - — 1 = &
i’ ’ * 12
X _ ;_bh o
—— " J= S0 +1%)
rt 1 .
T . - Ix:ﬁ<(x251n2(x>
Area of Circular Sector : o_ C X= 3 rsgloc I, = L <0c + 1 sin 2(x>
Xe® ——X 4 2
o 1
J = 51‘406
iy
I 4
A =L =1
Quarter Circular Area , X . X=y,= é L=I=(f-g)r
7 ==
p 8
-—x
L — mab® - /w4 b?
Area of Elliptical Quadrant 7 _ 4da *T 160" \16 9n
X = —
Area :{0( _C 3n L — ma’h ;w4
nab o " y:@ v 16 7 16 9n
A= ™~ 3n mab o 1o
N I= T6 @ +b?)

From Reference 3, pp. 498-499.

By Equation 2.1.33
m;Vi; + MpVey = MyVi2 + MaVa

=myviz + my(viz + 1.5)

= (m; + mg)vyz + 1.5 my

myv; + I’Ilg(Vg — 15) _ 1x2+ 5(—1 — 15)

m; + my 1+5
= -1.751t/s
Vo2 = -0.25 ft/S

The foregoing discussion of impulse and momentum
applies only when no change in rotational motion is involved.
There is an analogous set of equations for angular impulse
and impulse momentum. The angular momentum about an
axis through the center of mass is defined as

H=Io

[2.1.35]

and the angular momentum about any arbitrary point 0 is

defined as

H, = Io + mvd

[2.1.36]

where V is the velocity of the center of mass and d is the
perpendicular distance between the vector v and the point 0.
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30°

=

(b)

Figure 2.1.16 Diagram for Example 2.1.9.

And if 0 is a fixed axis or instantaneous center of zero
velocity, then

H = Lo [2.1.37]
Likewise, the angular impulse is defined as
/ Mydt = AH, [2.1.38]

In collisions, angular momentum, like linear momentum,
is conserved.

2.1.3.5 Conservation of Energy
In a rigid-body system, energy is conserved in the sense
that the net change in mechanical energy must be equal to
the net work done on the system.

U = AT + AVg + AVe [2.1.39]

U is the net work done on the system and is defined as
the sum of the work done by external forces and external
moments.

U:/F-ds+[M-de

The work of the force F is positive if it acts in the direction
of the displacement ds, and the work of the moment M is
positive if it acts in the direction of rotation de.

AT is the change the Kinetic energy, made up of a change
in linear Kinetic energy and rotational kinetic energy.

[2.1.40]

AT = %m (VE— %) + 1y (0f — w?) [2.141]

2

If the body in question has a fixed axis or an instantaneous
center of zero velocity, then Equation 2.1.41 can be simplified
to

1

AT = Sl (0f — of) [2.1.42]

AV, is the net change in gravitational potential energy.
This term is path independent and depends only on the initial
and final heights, h; and h;, above some arbitrary reference
height with respect to the surface of the earth.

AVg = mg(hf — h,) = W(hf — hl) [2143]
AV, isthe net change in elastic energy stored in a massless

spring, due to extension or compression (no spring is mass-
less, but this assumption is reasonably accurate for most

18 ft

—+

2 ft
Figure 2.1.17 Diagram for Example 2.1.11.

engineering calculations).

1 .
AVe = Sk (X7 - X) (2.1.44]
The constant k, called the spring constant, represents the
ratio of the force exerted by the spring to X, its net
compression or extension from the rest length.

Example 2.1.11

A 1-Ib sphere is dropped from a height of 20 ft to strike a
2-ft-long relaxed vertical spring with a constant of 100 1b/ft
(Figure 2.1.17). What will be the velocity of the sphere at a
height of 2 ft when it strikes the spring? What will be the
maximum compression of the spring?

The sphere and the spring may be considered as a system
in which no outside forces or moments are acting. The work
term in Equation 2.1.39 is zero. Before the collision with the
spring, AV, = 0 also, and Equation 2.1.39 reduces to

AT + AV, =0
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1w
AT = EE(V[zfv?) =—-—V?

AVy =W (hy — hy)
which can be solved for the impact velocity.
v = [2g(h; — hy)]™5 = [2 x 32.2(20 — 2)1°°
vi =34 ft/s

At full compression the velocity of the sphere is zero.
Equation 2.1.39 reduces to

AVe + AV, =0

AV, = T (x2 - x2) = i
e—2 (Xf Xl)_szf

AVg = W(h — hy)

hf =L —X;

where L is the relaxed height of the spring which can be
solved for X, the maximum compression of the spring.

SR WL X~ =0

2W_  2W
XIZTXf + 4 @ -h)=0
. _ 2W/kE[@W/)” — 4 (@W/k)L ~hy)]"
=
2

_0.02 £ [0.02% — 4{0.02(2 — 20)]1°*

= 2
X¢ = 0.611t

The negative root is ignored because it represents an
extension of the spring rather than a compression.
For further information, refer to References 1-5.
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2.2 FLUID MECHANICS

In fluid mechanics, the principles of conservation of mass,
conservation of momentum, the first and second laws of
thermodynamics, and empirically developed correlations
are used to predict the behavior of gases and liquids at
rest or in motion. The field is generally divided into hydro-
statics and hydrodynamics and further subdivided on the
basis of compressibility. Liquids can usually be considered
as incompressible, while gases are usually assumed to be
compressible.

2.2.1 Fluid Statics
Pressure is the force per unit area exerted by or on a fluid.
In a static fluid, the pressure increases with depth, but

according to Pascal’s principle, it is the same in all direc-
tions at any given depth. Pressure may be specified as either
absolute or gauge, the relationship between the two being

P, =P, — Py [2.2.1]

where P, is gauge pressure, P, is absolute pressure, and Py,
is the atmospheric pressure. Fluid mechanics calculations are
generally done in absolute pressure, and hereafter, P will
represent absolute pressure.

The governing equation for the pressure within a fluid at
any depth h is

dP = pgdh [2.2.2]

where p is the fluid density in mass per unit volume, and g is
the acceleration due to gravity. In engineering calculations,
it is often convenient to replace the quantity pg with vy, the
specific weight, which is a measure of the weight of the fluid
per unit volume.

If y can be considered to be constant, the fluid is said to
be incompressible and Equation 2.2.2 can be solved to yield

P =Py + y(h — hy) [2.2.3]

where hy is some reference depth, h is depth increasing
downward, and P, is the pressure at hy. In a gas, the specific
weight of the fluid is a function of pressure and temperature.
The concept of an ideal or perfect gas as one in which the
molecules occupy no volume and the only intermolecular
forces are due to intermolecular collisions leads to the ideal
gas law:

s
" RT

where P is the absolute pressure in pounds per square foot,
T is the temperature in degrees Rankine, S is the specific
gravity (the ratio of the density of the gas in question to the
density of air at standard conditions), and R is Boltzman’s
constant (53.3 ft-Ib/1b-°R). Under the assumption of an ideal
gas at constant temperature, Equation 2.2.2 can be solved
to yield

Y [2.24]

_ (h —hy)S
P =Pyexp [T [2.2.5]
If the gas behavior deviates markedly from ideal, the real gas

law can be written as

_ Ps
"= ZRT
where Z is an empirical compressibility factor that accounts

for nonideal behavior (see Volume 2, Chapter 5).
Substituting the real gas law into Equation 2.2.3 yields

[2.2.6]

ZT S
—dP = —dh 2.2.7

P R [2.2.7]
Equation 2.2.7 can be integrated under the assumption that
Z and T are constant to yield Equation 2.2.8, or, if extreme
accuracy is required, it is necessary to account for variations
in Z and T and a numerical integration may be required.

(h - ho)S}

“IRT [2.2.8]

P=P0exp[

Example 2.2.1

Consider a 1,000-ft-deep hole. What will be the absolute
pressure at the bottom if (a) it is filled with pure water or
(b) it is filled with air at a constant temperature of 85°F?
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(@ where f = an empirical friction factor (Moody friction
P = Py + y(h — hy) factor)
v = the average velocity along the flow path
hy=0 L = the length of the flow path
h = 1.000 ft D = the hydraulic diameter, 2(flow area)/ (wetted
’ perimeter) (See Figure 2.2.1.)
i2
Py = @‘MT;H =2,116.8 Ib/ft? If the fluid is highly compressible, Equation 2.2.9 must be
mn. further modified:
v = 62.4 1b/ft®

P = 2,116.8 + 62.4(1,000 — 0) = 64,516.8 Ib/ft2

P = 448 psi
()

h —hy)s
P:Poexp[i( ZR"I?) ]
s=1

Assume
Z=1
T =85+ 460 = 545°R

(1,000 — 0)1

P=21168exp| o 0
OO EXP [ 1(53.3)(545)

] — 2,190.94 Thyft?

P =15.21 psi

In a case where Z # 1, it is practical to assume Z = 1,
perform Calculation (b), and then, based on the resultant,
estimate for Py = (P+Py)/2, find the value of Z, and repeat
the calculation. Three iterations are generally sufficient. If
T varies, it is usually sufficiently accurate to use an estimate
of Tyyg such as Ty, = (T + Tp) /2.

2.2.1.1 Fluid Dynamics
When fluids are in motion, the pressure losses may be deter-
mined through the principle of conservation of energy. For
slightly compressible fluids, this leads to Bernoulli’s equa-
tion (Equation 2.2.9), which accounts for static and dynamic
pressure losses (due to changes in velocity), but does not
account for frictional pressure losses, energy losses due to
heat transfer, or work done in an engine.

2
E + n +h; = E +
mo 2g Y o 2g
where vy, v, = velocity at points 1 and 2

g =the acceleration due to gravity
(See Figure 2.2.1.)

For flow in pipes and ducts, where frictional pressure losses
are important, Equation 2.2.9 can be modified into
Pl V% P2 V% fLV2
w e T T, Tag T o

2
Y2 4, (2.2.9]

[2.2.10]

Figure 2.2.1 Flow in an inclined pipe.

P [ k vi o Pk v2
o les) o=t () ra
[2.2.11]

where k=ratio of specific heats, c,/c,; see Table 2.2.1.
(See Figure 2.2.1)

The Moody friction factor in Equations 2.2.10 and 2.2.11
is a function of the surface roughness of the pipe and the
Reynolds number. Typical surface roughnesses of new com-
mercial pipes are shown in Table 2.2.2. Old or corroded pipes
may have a significantly higher roughness.

The Reynolds number is the ratio of the inertia forces
acting on the fluid to the viscous forces acting on the fluid.
It is dimensionless and may be calculated as

R YDV _ pDv
gu u

The term p in Equation 2.2.12 is the dynamic viscosity of
the fluid. The dynamic viscosity is the ratio of the shear
stress to the shear rate. It has units of (force x time)/ (area).
The most common unit of viscosity is the centipoise

[2.2.12]

Table 2.2.1 Critical Expansion Rates

G, Btw/ k=GC/G Acoustical

(Ib mole)  at1atm, velocity at
Gas F) 60°F P./P;  60°F, ft/sec
Air 7.00 1.410 0.528 1,031
Helium 4.968 1.66 0.486 2,840
Methane 8.44 1.308 0.545 1,350
Ethane 12.30 1.193 0.565 967
Propane 17.10 1.133 0.577 793
Isobutane 224 1.097 0.585 681
n-Butane 23.0 1.094 0.585 680
0.6 gravity 8.84 1.299 0.546 1,309
0.7 gravity 9.77 1.279 0.550 1,035

From Reference 2.

Table 2.2.2 Values of Absolute Roughness, New, Clean,
Commercial Pipes

Probable max
e ft (0.3048 m) x 106

Type of pipe variation of f
or tubing Range Design from design, %
Asphalted

cast iron 400 400 —5to +5
Brass and copper 5 5 —5to +5
Concrete 1,000 10,000 4,000 —35t0 50
Cast iron 850 850 —10to +15
Galvanized iron 500 500 0to +10
Wrought iron 150 150 —-5t0 10
Steel 150 150 —5t0 10
Riverted steel 3,000 30,000 6,000 —25t075
Wood stave 600 3,000 2,000 —35t0 20

Compiled from data given in “Pipe Friction Manual,” Hydraulic
Institute, 3d ed., 1961.
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(1 centipoise = 0.01 g/cm-s). Dynamic viscosity may be a
function of temperature, pressure, and shear rate.

For Newtonian fluids the dynamic viscosity is constant
(Equation 2.2.13), for power-law fluids the dynamic viscos-
ity varies with shear rate (Equation 2.2.14), and for Bingham
plastic fluids flow occurs only after some minimum shear
stress, called the yield stress, is imposed (Equation 2.2.15).

dv .

T=U (dy) (Newtonian) [2.2.13]
_ <d" " Powerl 2.2.14]
=u ay (Power law) 2.

dv .
=T, +U (®> (Bingham) [2.2.15]

where 1is the shear stress in force per unit area, dv/dy is the
shear rate (rate of change in velocity with respect to distance
from measured perpendicular to the flow). The behavior of
all three types of fluids is illustrated in Figure 2.2.2. Viscosi-
ties of common fluids that are normally Newtonian are given
in Tables 2.2.3 and 2.2.4. Viscosities for hydrocarbon gases
can be estimated from Figure 2.2.3.

If the calculated value of the Reynolds number is below
2,000, the flow will generally be laminar, that is, the fluid
particles will follow parallel flow paths. For laminar flow the
friction factor is

f=64/R [2.2.16]

If the Reynolds number is greater than 4,000, the flow
will generally be turbulent and the friction factor can be
calculated from the Colebrook equation:

1 —2log [ﬂ + —2'51]
N 0137 "RVE

where ¢ is the surface roughness. Equation 2.2.17 can be
solved iteratively. If the Reynolds number falls between 2,000
and 4,000, the flow is said to be in the critical zone, and it may
be either laminar or turbulent.

Equations 2.2.16 and 2.2.17 are illustrated graphically in
Figure 2.2.4. This chart is called a Moody diagram, and it
may be used to find the friction factor, given the Reynolds
number and the surface roughness.

A better approach to determine the friction factor used
in Equation 2.2.10 is to calculate f using Equation 2.2.16
(laminar flow) and Equation 2.2.17 (turbulent) and take the
largest value.

[2.2.17]

/ Bingham plastic

Power Law, Dilatant

To

AQ—

Newtonian

Power Law, Pseudoplastic

d

dy

Vv

—

Figure 2.2.2 \Viscous behavior of fluids.

The friction factor presented in this text is the called Moody
friction factor. Other texts may use the term Fanning friction
factor. Both use the Colebrook empirical implicit formula for
calculation but differ in the definition of the friction factor.
The Moody friction factor is defined by

~ (dp/dL)D
- /D

f

where dp/dL is the pressure drop gradient, D the diameter
of the pipe, and ey is the specific kinetic energy of the flowing
fluid. The Fanning friction factor is defined as

f= L
€
where 7 is the shear stress acting on the walls of the pipe.
Working these two expressions shows that the Moody fric-
tion factor is four times the Fanning Friction factor. To use
Equation 2.2.10, a friction factor obtained with the Fanning
formula or read from the Stanton chart must be multiplied
by four.

Example 2.2.2

Suppose 1,000 gal/min of light machine oil (see Table 2.2.3)
flow through a 100-ft-long straight steel pipe with a square
cross-section, 2 in. on a side. At the inlet of the pipe the pres-
sure is 2,000 psi and the elevation is 150 ft. At the outlet
the elevation is 100 ft. What will be the pressure at the out-
let when the temperature is 32°F? When the temperature is
104°F?

v = (0.907)(62.4 Ib/ft%) = 56.60 lb/1t>

A = [(2in.)/(12 in./ft)]?> = 0.0278 ft?

C =4(2in.)/(12 in./ft) = 0.667 ft

D =2A/C = 0.0833 ft

v = Q/A = [(1,000 gal/min)(0.1337 ft*/gal)/(60 s/min)]
= .0278 ft? = 80.21 ft/s

1t = 7,380 x 1079 Ib — s/ft>@32°F
=647 x 1078 Ib — s/ft’@104°F

g =32.21t/s’

At 32°F

_ (56.60)(0.0833)(80.21)
T (32.2)(7,380 x 10-6)
Because R <2000 the flow is laminar and f = 64/R =
0.04022. Assuming that the fluid is incompressible implies

that y = v, and v = vy, and Equation 2.2.10 can be
rewritten as

= 1,591

fLv?
P2=P1+Y[(h1*h2)* 7]

2gD

2
=2,000+56.60 [(150 —100)— (0.04022)(100)(80.21) ] /

2(32.2)(0.0833)
(144 in.2 /ft%)
=124 psi
At 104°F
~ (56.6)(0.0833)(80.21)

(32.2)(647x10-6) 18,150
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Table 2.2.3 Dynamic Viscosity of Liquids at Atmospheric Pressure

Temp:

°C 0 20 40 60 80 100
°F 32 68 104 140 176 212
Liquid u, (bf.s)/(ft?) [47.88 (N.s)/(m?)] x 10°

Alcohol, ethyl? 37.02 25.06 17.42 12.36 9.028

Benzene? 19.05 13.62 10.51 8.187 6.871

Carbon tetrachloride? 28.12 20.28 15.41 12.17 9.884

Gasoline,” sp. gr. 0.68 7.28 5.98 4.93 4.28

Glycerin? 252,000 29,500 5,931 1,695 666.2 309.1
Kerosene,” sp. gr. 0.81 61.8 38.1 26.8 20.3 16.3

Mercury? 35.19 32.46 30.28 28.55 27.11 25.90
Oil, machine,? sp. gr. 0.907

“Light” 7,380 1.810 647 299 164 102
“Heavy” 66,100 9,470 2,320 812 371 200
Water, fresh® 36.61 20.92 13.61 9.672 7.331 5.827
Water, saltd 39.40 22.61 18.20

Computed from data given in

a Handbook of Chemistry and Physics, 52d Edition, Chemical Rubber Company, 1971-1972.

b Syithsonian Physical Tables, 9th Revised Edition, 1954.

€Steam Tables, ASME, 1967.

dAmerican Insitute of Physics Handbook, 3d Edition, New York, McGraw Hill, 1972.

€ International Critical Tables, McGraw-Hill.

Table 2.2.4 Viscosity of Gases at 1 Atm

Temp:

°C 0 20 60 100 200 400 600 800 1000
°F 32 68 140 212 392 752 1112 1472 1832
Gas u, (Ibf.s)/ (ft?) [47.88 (N.s)/(m?)] x 108

Air? 35.67 39.16 41.79 45.95 53.15 70.42 80.72 91.75 100.8
Carbon dioxide? 29.03 30.91 35.00 38.99 47.77 62.92 74.96 87.56 97.71
Carbon monoxide® 34.60 36.97 41.57 45.96 52.39 66.92 79.68 91.49 102.2
Helium? 38.85 40.54 44.23 47.64 55.80 71.27 84.97 97.43
Hydrogen®® 17.43 18.27 20.95 21.57 25.29 32.02 38.17 43.92 49.20
Methane? 21.42 22.70 26.50 27.80 33.49 43.21

Nitrogen®P 34.67 36.51 40.14 43.55 51.47 65.02 76.47 86.38 95.40
Oxygen® 40.08 42.33 46.66 50.74 60.16 76.60 90.87 104.3 116.7
Steam*® 18.49 21.89 25.29 33.79 50.79 67.79 84.79

Computed from data given in

2 Handbook of Chemistry and Physics, 52d Edition, Chemical Rubber Company, 1971-1972.
b Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

CSteam Tables, ASME, 1967.

Because R > 4000 the flow is turbulent. From Table 2.2.2,
£=150x 1075, and £/D =0.0018. Interpolating from Figure
2.2.4 yields f=0.03. Now apply the Colebrook equation:

1
— =-2lo,
N g1o|:

£=0.02991

0.0018 251
37 ' (18,150)(0.03)05

56.60
PZ =2,000+ (m)

(0.02991)(100)(80.21)?

« [(150—100>— 2(32.2)(0.0833)

] =610 psi

or an equivalent length, L/D. Typical resistance coefficients
are given in Table 2.2.5 and typical equivalent lengths are
given in Table 2.2.6. To correctly apply either the resis-

tance coefficient or the equivalent length, the flow must be
turbulent.

Example 2.2.3
Water flows from a horizontal 4-in. ID pipe into a horizontal
1-in. ID pipe at a rate of 1,000 gal/min (Figure 2.2.5). If the
transition is abrupt, what will be the pressure change across

In piping systems fittings, valves, bends, etc., all cause addi-
tional pressure drops. For such components the pressure
drop can be estimated by modifying the frictional compo-
nent of Equation 2.2.10 with a resistance coefficient, K=1L/D,

1 :Al_

the connection?

Q _ [(1,000 gal/min)(0.1337 ft* /gal)(60 s/min)]

=2553ft/s

T 2t
[ /4(4/12) ftz]
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Figure 2.2.3 Viscosity of natural gases: (a) 0.6 gravity; (b) 0.7 gravity; (c) 0.8 gravity; (d) 1.0 gravity.

4, [(1,000)0.1337)/(60)
2= P
[n/4(1/12)2]

Nn="v.=6241b/ft>

From Table 2.2.1, Dip/dou =4; k=0.45.
From Equation 2.2.10,

=408.6 ft/s

Y .
Pl—PQZAPZE[Vg—V%—}-kVé]
Y 5 5
~ L [ i)
624 ) ,o 1
—MHO&(S (140.45)—25.53 ]m
=1,625 psi

The 1,120 psi of this pressure drop is a dynamic loss due
to the change in velocity, and 505 psi is a frictional loss due
to the fitting.

Components of a piping system that are connected in sezies
produce additive pressure drops, while components that are
connected in parallel must produce the same pressure drop.

‘While the modified energy equation provides for calcula-
tion of the flow rates and pressure drops in piping systems,
the impulse-momentum equation is required in order to
calculate the reaction forces on curved pipe sections. The
impulse-momentum equation relates the force acting on the
solid boundary to the change in fluid momentum. Because
force and momentum are both vector quantities, it is most
convenient to write the equations in terms of the scalar
components in the three orthogonal directions.

ZFX = M(Vxl _Vx2 )

> Fy=M(Vy, —Vy,)

ZFZ = M(Vzl _Vz2)

[2.2.18]
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Figure 2.2.4 Friction factor for flow in pipes [5].

Table 2.2.5 Representative values of Resistance
Coefficient K

Sharp-edged inlet

I

V—>» K=05

—
—¢—|

Rounded inlet

N

V—> K=0.05

—

Inward projecting

pipe

V—>» K=1.0

=

Sudden contraction

|D/d [1.5 [2.0 [250]3.0 35 J4.0 ]

V—
x_[0.28]0.36[0.40]0.42]0.44 J0.45 ]

Gradual reduction Sudden enlargement

A
v—> id D K=[1-(d/D)2]2

Gradual enlargement
T K =K’ [1 - (d/D)2]2
D

> L«

V—>

D a)/2] 0.05] 0.10] 0.20]0.30]0.40]0.50 0.80]
K Jo.14]0.20]0.47]0.76]0.95]1.05[1.10]

[}

Exit loss = =1.0

Compiled from data given in "Pipe Friction Manual." 3d ed., Hydraulic Institute. 1961.

(sharp edged, projecting, Rounded), K

where M is the fluid mass flow rate, Fy is the sum of forces
in the x direction, Vy, is the initial fluid velocity in the x
direction, etc.

Example 2.2.4

Water flows through a 120°F reducing bend at a rate of 100
gpm. The inlet diameter of the bend is 2 in. and the outlet
diameter is 1 in. (Figure 2.2.6). What is the reaction force on
the bend?

Table 2.2.6 Representative Equivalent Length in Pipe
Diameters (L/D). of Various Valves and Fittings

Globe valves, fully open 450
Angle valves, fully open 200
Gate valves, fully open 13
% open 35
1 open 160
1 open 900
Swing check valves, fully open 135
In line, ball check valves, fully open 150
Butterfly valves, 6 in. and larger, fully open 20
90° standard elbow 30
45° standard elbow 16
90°long-radius elbow 20
90° street elbow 50
45° street elbow 26
Standard tee:
Flow through run 20
Flow through branch 60

Data from Flow of Fluids, Crane Company Technical Paper 410,
ASMF, 1971.

Assuming that the flow is incompressible,

(100 gal/min)(0.1337 ft*/gal)(62.4 Ib/ft")

[(32.2 ft/s®)(60 s/min)]
. Ih—s*
M=0.4318 =0.4318 slugs/s
2\ )
A= 1 (ﬁ) =0.02182 ft

n/ 1\
A== (=) =0.005454 ft2
2 4(12)
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Figure 2.2.5 Diagram for Example 2.2.3.

|

—_—

120°

SN

Figure 2.2.6 Diagram for Example 2.2.4.

Q _ (100)(0.1337)(1/60)

V1=Vyl=—xl— 0.02182 :10.21ft/S
. Q  (100)(0.1337)(1/60)
VS A, T oo0sdsa | 0861it/s

vy, =—V28in30° = —-20.43 ft/s
Vx, =V2€0830°=35.38 ft /s

Fy = M(vy, —vxZ):O.43181bT'S(O—35.38 ft/s)=—15.28 Ib

F, =M(vy, —Vy,)=0.4318(—10.21+20.43) =4.413 I

Flow through chokes and nozzles is a special case of
fluid dynamics. For incompressible fluids the problem can
be handled by mass conservation and Bernoulli’s equation.
Bernoulli’s equation is solved for the pressure drop across
the choke, assuming that the velocity of approach and the
vertical displacement are negligible. The velocity term is
replaced by the volumetric flow rate times the area at the
choke throat to yield
_

T 2gC2A2
Cis a constant introduced to account for frictional effects. In
general, 0.94 <C < 0.98.

Example 2.2.5

Assume 100 ft*/min of water is to be pumped through a
nozzle with a throat diameter of 3/4 in. What pressure drop
should be expected?

100 s
Q=55 =167 1t%/s

AP [2.2.19]

 n(0.75%)

- -3 42
=414d) 3.068 x 107 ft

v=62/4 1h/ft>

Assume C=0.95; then
AP— (1.67%)(62.4)
T 2(32.2)(0.952)(3.068 x 10-3)2(144)

To analyze compressible flow through chokes it is assumed
that the entropy of the fluid remains constant. The equation
of isentropic flow is

P,Vk=P,Vk [2.2.20]

where P; and V; are the pressure and specific volume of
the fluid at point 1, immediately upstream of the choke,
and P, and V, are the pressure and specific volume imme-
diately downstream of the choke. Equation 2.2.20 can be
combined with the ideal gas law to provide an estimate for
the temperature drop across the choke

P (k—1)/k
()

where T, and T; are temperatures in °R. Furthermore, the
first law of thermodynamics can also be imposed, yielding
the following equation for the volumetric flow rate:

0.5
~ P, K P\YE /P, Dk
MWMMWhARJ (%)

[2.2.22]

where Q is the volumetric flow rate in scfm, C is a discharge
coefficient that accounts for friction and velocity of approach
(Figure 2.2.7). Ais the choke area in square inches, P; is the
inlet pressure in pounds per square inch absolute (psia), P
is the outlet pressure in psia, T; is the inlet temperature in
°R, and S is the specific gravity of the gas.

Equations 2.2.21 and 2.2.22 apply only as long as the fluid
velocity at the throat of the choke is subsonic. Sonic velocity
is the speed of a pressure wave in a fluid. Once sonic velocity
is achieved, the effects of the downstream pressure can no
longer be transmitted to the upstream side of the choke.

There is a critical pressure ratio beyond which the flow at
the throat is always sonic. This is termed critical flow.

P, 2 k/(k—1)
2 <k+1)

If the pressure ratio is less than or equal to that specified by
Equation 2.2.23; the flow will be sonic at the choke throat
and the temperature at the throat can be found from

=2,210 psia

[2.2.21]

[2.2.23]

=T, (%ﬂ) [2.2.24]
The flow rate can be found from

P, 9 /-0
Q= GIOCAW k <k7+1> [2.2.25]

For critical flow the discharge coefficient is dependent upon
the geometry of the choke and its diameter or the ratio § of
its diameter to that of the upstream pipe (see Figure 2.2.7).

Example 2.2.6

A 0.6 gravity hydrocarbon gas flows from a 2-in. ID pipe
through a 1-in. ID orifice plate. The upstream temperature
and pressure are 75°F and 800 psia, respectively. The down-
stream pressure is 200 psia. Does heating need to be applied
to assure that frost does not clog the orifice? What will be
the flow rate?

Check for critical flow. From Table 2.2.1 itis determined
that k=1.299. Checking the pressure ratio, Equation 2.2.23,
gives

Py

k/(k—1)
P—1:0.25< (rﬂ) =0.546
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Figure 2.2.7 Flow coefficient for nozzles and orifices (From Reference 1, p. 226).

Therefore, critical flow conditions exist and the fluid velocity =~ Equation 2.2.25,
in the choke is sonic.
Temperature in the choke. From Equation 2.2.24, the

temperature in the throat is calculated as —610(1.0)(0.785 _ 80
Q=010 00T 55 5357
2 2
T.=T (le) =535 (m> =4654°R=54°F [ ipgg( 2\t 00
' 1.299+1

Therefore, if the gas contains water, icing or hydrate for-
mation may occur, causing the throat to clog. A heating =14,021 scfm
system may be needed.
Flow rate. Assume that the discharge coefficient is C=
1.0. The choke area is A=n(1/2)2=0.785 in.2. Thus, from  Now check on the discharge coefficient.



STRENGTH OF MATERIALS  2-27

The Reynolds number for gases can be calculated directly
in terms of flow rate and gas gravity as

[2.2.26]

where Q is in scfm, s is the specific gravity of the gas, d is
the pipe hydraulic diameter in inches, and p is in centipoise.
From Figure 2.2.3 the viscosity of the gas is

n=0.0123 cp

and
_(28.8)(14021)(0.6)

Re= (0.0123)(2)

From Figure 2.2.7, using B=0.5, the value of the discharge

coefficient is read as C=0.62, and a new estimate of Q is
Q=0.62(14,021)=38,693 scfm

A further iteration produces no change in the estimated flow

rate for this case.

In subcritical flow the discharge coefficient is affected by
the velocity of approach as well as the type of choke and the
ratio of choke diameter to pipe diameter. Discharge coef-
ficients for subcritical flow are given in Figure 2.2.7 as a
function of the diameter ratio and the upstream Reynolds
number. Because the flow rate is not initially known, it is
expedient to assume C=1, calculate Q, use this Q to calcu-
late the Reynolds number, and then use the charts to find
a better value of C. This cycle should be repeated until the
value of C no longer changes.

=9,850,000

Example 2.2.7
A 0.65 gravity, natural gas (K=1.25) flows from a 2-in. line
through a 1.5-in. nozzle. The upstream temperature is 90°F.
The upstream pressure is 100 psia, and the downstream pres-
sure is 80 psia. Is icing a potential problem? What will be the
flow rate?

Check for critical flow using Equation 2.2.23.

P, 2 k/(k-1)
208> =0.549
P 1 > |: k+1 ]
The flow is clearly subcritical.
Check the outlet temperature using Equation 2.2.21.
T, =550(0.8"%/125) =506.86°R = 66°F

There will be no icing.
Calculate the flow rate.

152 ,
A=n <7) =1.767 in.?
Assuming C=1 and applying Equation 2.2.22 gives

100
[(0.65)(530)]1/2

1.95 80 \ /1% g0 \ 1B+D/1.25 1/2
X[1.25-1[(100) _<M) ”

=3,214 scfm
From Figure 2.2.3, the viscosity of the gas is
n=0.0106 cp
and from Equation 2.2.26
_ (28.8)(3,214)(0.65)
Re= (0.0106)(2)

From Figure 2.2.7, using p=0.75, the value of the discharge
coefficient is read as c=1.2. Now a new estimate of Q can
be found as

Q=(864)(1)(1.767)

=2.84x10°

1.2
Q= <T>3214=3’ 857 scfm

Because further increases in the flow rate (see Figure
2.2.7) produce no increase in the discharge coefficient, it
is unnecessary to do any further iterations.

For further information on this subject, refer to References
1-5.
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2.3 STRENGTH OF MATERIALS

The principles of strength of materials are applied to the
design of structures to assure that the elements of the
structures will operate reliably under a known set of loads.
The field encompasses both the calculation of the strength
and deformation of members and the measurement of the
mechanical properties of engineering materials.

2.3.1 Stress and Strain

Consider a bar of length L and uniform cross-sectional
area A to which an axial, uniformly distributed load with
a magnitude, P, is applied at each end (Figure 2.3.1). Then
within the bar there is said to be uniaxial stress o, defined as
the load, or force per unit area

P
o= A [2.3.1]

If the load acts to elongate the bar, the stress is said to be
tensile (+), and if the load acts to compress the bar, the stress
is said to be compressive (—). For all real materials, an exter-
nally applied load will produce some deformation. The ratio
of the deformation to the undeformed length of the body is
called the strain €. In the simple case illustrated in Figure
2.3.1, the strain is

e=8/L (2.3.2]

where 3 is the longitudinal deformation. The strain is tensile
or compressive depending upon the sign of 8. The relation-
ship between stress and strain in an axially loaded bar can
be illustrated in a stress-strain curve (Figure 2.3.2). Such
curves are experimentally generated through tensile tests.
In the region where the relationship between stress and
strain is linear, the material is said to be elastic, and the con-
stant of proportionality is E, Young’s modulus, or the elastic

modulus.
o=Ee¢ [2.3.3]

Equation 2.3.3 is called Hooke’s law.
In the region where the relationship between stress
and strain is nonlinear, the material is said to be plastic.

Figure 2.3.1 Uniaxial loading of a bar.
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Figure 2.3.2 Idealized stress-strain curve.

Elastic deformation is recoverable upon removal of the load,
whereas plastic deformation is permanent. The stress at
which the transition occurs, oy, is called the yield strength
or yield point of the material, and the maximum stress is
called the ultimate tensile strength, UTS, of the material. Stan-
dard engineering practice is to define the yield point as 0.2%
permanent strain.

When a bar is elongated axially, as in Figure 2.3.1, it will
contract laterally. The negative ratio of the lateral strain to
the axial strain is called Poisson’s ratio v. For isotropic mate-
rials, materials that have the same elastic properties in all
directions, Poisson’s ratio has a value of about 0.3.

Now consider a block to which a uniformly distributed load
of magnitude P is applied parallel to opposed faces with area
A (Figure 2.3.3). These loads produce a shear stress within
the material 7.

1=P/A [2.3.4]

Note thatin order for the block of Figure 2.3.3 to be in static
equilibrium, there must also be a stress 1 applied parallel to
each of the faces B. Any given shear stress always implies a
second shear stress of equal magnitude acting perpendicu-
larly to the first so as to produce a state of static equilibrium.
The shear stress will produce a deformation of the block,
manifested as a change in the angle between the face per-
pendicular to the load and the face over which the load is
applied. This change in angle is called the shear strain .

[2.3.5]

For an elastic material the shear stress is related to the
shear strain through a constant of proportionality G, called
the shear modulus. The shear strain is dimensionless, and
the shear modulus has units of force per unit area.

Y:AOL

1=Gy [2.3.6]

\

o

P X

Figure 2.3.3 Shear loading of a block.

The shear modulus is related to Young’s modulus and
Poisson’s ratio by

E
G= 2(1+v)

In practice, loads are not necessarily uniformly distributed
nor uniaxial, and cross-sectional areas are often variable.
It becomes necessary to define the stress at a point as the
limiting value of the load per unit area as the area approaches
zero. Furthermore, there may be tensile or compressive
stresses (Ox, Oy, 0,) in each of three orthogonal directions
and as many as six shear stresses (Tyy, Tyx, Txz, Tzx, Tyz, Tay)-
The direction of the shear stress is indicated by two sub-
scripts, the first of which indicates the direction normal to
the plane in which the load is applied, and the second of
which indicates the direction of the load. Note that for static
equilibrium to exist, Tyy =Tyx, Ty, =T, and Ty, =T

If a multidimensional state of stress exists, the effect of
Poisson’s ratio causes the tensile and compressive strains to
be dependent on each of the components of stress.

[2.3.7]

€ = %[GX_V(GY +0,)] [238]
1

&y = E[Gy 7V(Gx+cz)] [239]

&, = [0, —V(oy —0,)] [2.3.10]

E

Likewise the stresses may be written in terms of the
components of strain.

zem[(l—v)sx—i-v(ey—i-ez)] [2.3.11]
= L[ 1 1 [2.3.12]

Gy_(1+v)(172v) (1=v)ey+v(ex+¢,) 3.

o, [(A—V)e,+V(ex+&y)] [2.3.13]

T d+vd-2v

The components of the shear stress all obey Equation 2.3.6.

While the foregoing discussion of stress and strain is
based on a Cartesian coordinate system, any orthogonal
coordinate system may be used.

2.3.2 Elementary Loading Configurations

2.3.2.1 Torsion of a Cylinder

Consider a uniform cylindrical bar or tube to which some
balanced torque T is applied (Figure 2.3.4). The bar will
be subject to a torsional stress, or shear stress T,, which
increases with the radial position within the bar.

T=Tr/] [2.3.14]
where r is the radial distance from the z axis, and ] is the
polar moment of inertia. The polar moment of inertia for a

hollow cylinder with an internal radius r; and an external
radius, r,, is

J:g(rg_r;t) [2.3.15]
The strain due to the torque T is given by
2(14v) Tr
o= L 2.3.16
Yzo E ] [ |

and the total angular deflection between any two surfaces
perpendicular to the z axis is

TL
EJ
where L is the distance between the two surfaces.

0=2(1+v) [2.3.17]
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Figure 2.3.4 Torsional loading of a right circular cylinder.

Example 2.3.1
A uniform steel bar 3 ft long and 2.5 in. in diameter is sub-
jected to a torque of 800 ft-Ib. What will be the maximum
torsional stress and the angular deflection between the two
ends?

Assume E=30 x 10° psi and v=0.3. Then

J= 3(1.254 —0%=3.83in.*

800 ft-b|12 in.|1.25 in.

o= 3133 psi
o | 38314 pst
800ft—lb‘12in.‘3ft‘121n.‘ in.?
—2(1+0.
8=2(1+03) & | | f& [30x1001b3.83in2
=7.8x1073 rad 360 =0.45°
2n rad

2.3.2.2 Pure Bending

A beam is subjected to a pure bending moment when no
other loading (shear, torsion, or axial) exists. A typical situa-
tion is shown in Figure 2.3.5a. Because the moment M =Fd
is the same along the portion BC, this portion will bend in an
arc of a circle. An imaginary longitudinal fiber in the upper
side of the beam will be in compression (negative strain),
and an imaginary fiber in the lower side of the beam will
be in tension (positive strain). It is reasonable to conclude
that somewhere in between a longitudinal fiber will have no
strain, and therefore no axial stress. If the beam has a vertical
axis of symmetry, all zero strain lines will form a cylindrical
surface perpendicular to the plane of bending, called neutral
plane of bending. If p is the radius of the circle determined
by the neutral plane, the length L’ of a fiber passing in a
point of the cross-section with coordinate y with respect to
the neutral plane is (Figure 2.3.5b).

L'=(p-y)®

Because the undeformed length of the fiber is L=p6, we
have for the strain of the deformed fiber

L'-L
e= =7

L p
Consequently, the stress in a point of coordinate y in any
cross-section of the beam is
E
o=Ee=——y
p

[2.3.18]

<«~>|F F

A D
h B C F 3
F ) L R F

Figure 2.3.5 Supported Beam.

The equilibrium of forces acting on a cross-section is zero,
resulting in the following expression:

Ozfchz—E/ydA
A pJa

where A is the area of the cross-section of the beam. This
leads us to conclude that the neutral plane of bending passes
at the centroid of the cross section.

The equilibrium of moments acts on the cross-section
results in

M=7/ycA:E/y2dA:%
A pJa p

[2.3.19]
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Figure 2.3.7 Transverse loading of a beam.

where I, is the moment of inertia (or second moment) of
the cross-section. Combining equation 2.3.21 with 2.3.22
results in

My

o=—7 [2.3.20]

2.3.2.3 Transverse Loading of Beams

Abeam subjected to a simple transverse load (Figure 2.3.6a)
will bend. Furthermore, if the beam is cut (Figure 2.3.6b)
and free-body diagrams of the remaining sections are con-
structed, then a shear force V and a moment M must be
applied to the curt ends to maintain static equilibrium.

The magnitude of the shearing force and the moment can
be determined from the conditions of static equilibrium of
the beam section. For the cut shown in Figure 2.3.6b, the
shear force and the moment on the left-hand section are

V=—Ra=(-b/L)P [2.3.21]

M=Rax=(b/L)Px [2.3.22]

If the cut had been to the right of the point of application of
load P, then the shear force and the moment on the left-hand
section would be

V=—Ra+P=(—b/L)P+P=(a/L)P [2.3.23]

M:RAX—P(x—a):P(be —x+a> - %P(L—x) [2.3.24]

In the loading configuration of Figure 2.3.6, the beam
will bend in the concave upward direction, thus putting
the lowermost fiber in tension and the uppermost fiber in
compression. The magnitude of this axial stress is

My

L
The position of the centroidal axis of common areas is given
in Table 2.3.1. The areal moments of inertia about any axis,

Ox = [2.3.25]

w for instance, is defined by

IW:/ r’dA
A

where A is the cross-sectional area of the body and r is the
perpendicular distance from axis w to the differential ele-
ment of area dA. Values for the areal moments of inertia of
common cross-sections are given in Table 2.3.1.

The beam is also subject to a shear stress that varies over
the beam cross-section.

vQ
Tyy = b

where b is the width of the beam. The moment area about the
z axis Q is defined as

[2.3.26]

[2.3.27]

Ymax

Q= ydA [2.3.28]

Yo

where yj is the location of the shear stress.

Example 2.3.2
Assuming that the beam in Figure 2.3.6 has a rectangular
cross-section with a height of 1 ft and a width of 3 in. and
given that L=10 ft, a=4 ft, and P=1,000 b, what are the
maximum values of the shear and tensile stresses within the
beam?

Tensile stress. The maximum moment occurs at the
point of application of the load P and has the value

= E = @e 1,000=2,400 ft-Ib =28,800 in.-Ib
L 10

The areal moment of inertia of the beam can be found from
Table 2.3.1 as

_1ls 1 3y _ 42050 4
Iz_ﬁbh _E(3)(12 )=432in.
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Table 2.3.1 Properties of Cross-Sections

Section Area Centroid Area Moments of Inertia

h bh3
Cx = — i = —
Rectangle h — 4 x bh l% hlt?*
[ Cx & =3 I = T
b
y
= _d o _md
d2 Cx = g X = 644
. T nd
Circle ’ X x o =3 I, = o
C
. ndt
- b=J=%
do b
&= L = a(d;‘fd;‘)
Thick-walled tub T do -t
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Ay
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The maximum tensile stress occurs at the outer fiber of the
beam (at y=— 6 in.) and has the value
o My  (28,800)(—6)

e 432
Shear stress. For a rectangular cross-section, the maxi-
mum value of Q occurs at the neutral axis, and, because

the width b of the beam is a constant 3 in., the maximum
value of the shear stress occurs at the neutral axis.

6 1 1 .
Q= f vb dy =S by?li = S (6P =54in?
0

=400 Ib/in 2

4
V:_E x1,000=—400 Ib

(-400)54) oy
w="gaag = 1667 1b/in.

Thin-walled pressure vessels. A thin-walled pressure
vessel is one in which the wall thickness t is small com-
pared to the local radius of curvature r. At a point in the
wall of the vessel where the radius of curvature varies with
the direction, the wall stresses are

Cg O
S0 _ O« _P [2.3.29]
rg ry t
where p is the net internal pressure and 6 and o indicate any
two orthogonal directions tangent to the vessel surface at
the point in question. For a spherical vessel, rg =r, =r, and
Equation 2.3.29 reduces to
Pr

Og =0y = ﬁ

For a cylindrical vessel, the radius of curvature in the axial
direction is infinite, and the stress in the direction of the
circumference, called the hoop stress, is

Pr
(59=T

The stress in the axial direction in a cylindrical vessel is
found by taking a cross-section perpendicular to the longitu-
dinal axis and imposing the conditions of static equilibrium.
This yields
o — Pr

ot

[2.3.30]

[2.3.31]

[2.3.32]

2.3.3 Prediction of Failure

For most practical purposes, the onset of plastic deformation
constitutes failure. In an axially loaded part, the yield point
is known from testing (see Tables 2.3.2 through 2.3.5), and
failure prediction is no problem. However, it is often neces-
sary to use uniaxial tensile data to predict yielding due to a
multidimensional state of stress. Many failure theories have
been developed for this purpose. For elastoplastic materials
(steel, aluminum, brass, etc.), the maximum distortion energy
theory or von Mises theory is in general application. With this
theory the components of stress are combined into a single
effective stress, denoted as o., which can be compared to
known data for uniaxial yielding. The ratio of the measure
yield stress to the effective stress is known as the factor of
safety.

Ce = { %[(Gx _Gy)2+(6x_62)2+(6y_cz)2

1/2
+6(1%, +12,+72,) [2.3.33]

For brittle materials such as glass or cast iron, the
maximum shear-stress theory is usually applied.

Example 2.3.3

A cylindrical steel pressure vessel (AISI SAE 1035, cold
rolled) with a wall thickness of 0.1 in. and an inside diam-
eter of 1 ft is subject to an internal pressure of 1,000 psia
and a torque of 10,000 ft-1b (see Figure 2.3.7). What is the
effective stress at point A in the wall? What is the factor of

safety in this design?
Hoop stress:
_ (1,000 psi)(6in.) .
Cg= ©0.1in) =60,000 psi
Axial stress:
(1,000 psi)(6 in.) .
, = —————7— =230,000
o 2(0.1in.) pst
Torsion:
J=m/2(6.05* —6.00*)=68.71 in.*
o 10,000 ft-Ib 12 in. 6.05 in. — 10,566 psi

|ft|68.71 in.4
Effective stress:

Ce= { %[(60, 000—30,000)2 4 (60,000 — 0)?

1/2
+(30,000—0)? +6(10,566)]

=55,090 psi
From Table 2.3.2, the yield strength for AISI SAE 1035, cold
rolled, is 67,000 psi. Thus the factor of safety is
67,000
~ 55,090
For further information on this subject, see References 1-5.

SF =1.22
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2.4 THERMODYNAMICS

2.4.1 Introduction

Historically, the word thermodynamics stems from the
Greek words therme (heat) and dynamis (force), and the
discipline grew out of considerations involving the motive
power of heat (i.e., the capacity of hot bodies to produce
work). Thermodynamics involves terms and concepts that
often are used in a nontechnical setting. In thermodynam-
ics, these terms are abstractions of the ordinary concepts
and have precise meanings that may differ drastically from
everyday usage. It is therefore necessary to begin the dis-
cussion of thermodynamics by defining some of these words
and concepts.

System. A system is the particular part of the observable
universe in which an investigator is interested. Typical ther-
modynamic systems are a quantity of a gas, a liquid and its
vapor, a mixture of two liquids, a solution, and a crystalline
solid.

Surroundings. Everything in the observable universe
except the system is called the surroundings.



Table 2.3.2 Mechanical Properties of Metals and Alloys

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 1b/sqin. 1000 Ib/sq in. in2in., % Brinell Comments
FERROUS ALLOYS

Ferrous alloys comprise the largest volume of metal alloys used in engineering. The actual range of mechanical properties in any particular grade of alloy steel depends on
the particular history and heat treatment. The steels listed in this table are intended to give some idea of the range of properties readily obtainable. Many hundreds of steels are
available. Cost is frequently in important criterion in the choice of material; in general the greater the percentage of alloying elements present in the alloy, the greater will be the
cost.

IRON
1  Ingotiron Fe 99.9 Hot-rolled 29 45 26 90
(Included for comparison) Annealed 19 38 45 67
PLAIN CARBON STEELS
2 AISI-SAE 1020 C 0.20 Mn 0.45 Hot-rolled 30 55 25 111 Bolts, crankshafts, gears,
Si 0.25 Fe bal. Hardened (water-quenched, 62 90 25 179 connecting rods;
1000° F-tempered) easily weldable
3 AISI 1025 C 0.25 Fe bal. Bar stock
Mn 045 Hot-rolled 32 58 25 116
Cold-drawn 54 64 15 126
4  AISE-SAE 1035 C 0.35 Mn 0.75 Hotrolled 39 72 18 143 Medium-strength,
Cold-rolled 67 80 12 163 engineering steel
5  AISI-SAE 1045 C 0.45 Fe bal. Bar stock
Mn 0.75 Annealed 73 80 12 170
Hot-rolled 45 82 16 163
Cold-drawn 77 91 12 179
6  AISI-SAE 1078 C 0.78 Fe bal. Bar stock
Mn 0.45 Hot-rolled; spheroidized 55 100 12 207
Annealed 72 ez 10 192
7  AISI-SAE 1095 C 0.95 Fe bal.
Mn 0.40
8  AISI-SAE 1120 CS 02 Mn 0.8 Cold-drawn 58 69 —_ 137 Free-cutting, leaded,

S 0.1 resulphurized steel;
high-speed, automatic
machining

ALLOY STEELS
9  ASTM A202/56 C 0.17 Mn 1.2 Stressrelieved 45 75 18 — Low alloy; boilers,

pressure vessels
Cr 05 Si 0.75

(continued)
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Table 2.3.2 (continued)

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 1b/sqin. 1000 1b/sq in. in2in., % Brinell Comments
10 AISI 4140 C 0.40 Si 0.3  Fully-tempered 95 108 22 240 High strength; gears, shafts
Cr 1.0 Mo 0.2  Optimum properties 132 150 18 —
Mn 09
11  12% Manganese steel 12% Mn C Tempered 600°F 200 220 10 — Machine tool parts; wear,
Rolled and heat-treated 44 160 40 170 abrasion-resistant
stock
12 'VASCO 300 Ni 185 Ti 0.6  Solution treatment 1500°F; 110 150 18 — Very high strength,
Co 90 C 0.03 aged 900°F maraging, good
Mo 4.8 machining properties in
annealed state
13 TI (AISI) W 180 V 1.0 Quenched; tempered R(c) High speed tool steel,
Cr 40 C 0.7 cutting tools, punches,
etc.
14 M2 (AISI) w 6.5 Mo 5.0 Quenched; tempered 65-66  M-grade, cheaper, tougher
Cr 40 C 0.85
A% 2.0
15  Stainless steel type 304  Ni 90 C 0.08 Annealed; cold-rolled 35 to 160 85 to 185 60 160 to 400 General purpose, weldable;
Cr 19.0 max 8 nonmagnetic austenitic
steel
16  Stainless steel type 316 Cr 180 C 0.10 Annealed 30 to 120 90 to 150 50 165 For severe corrosive media,
Ni 11.0 max 8 275 under stress;
Mo 2.5 Febal nonmagnetic austenitic
steel
17  Stainless steel type 431 Cr 16.0 Si 1.0 Annealed 85 120 25 250 Heat-treated stainless steel,
Ni 20 C 0.20 Heat-treated 150 195 20 400 with good mechanical
Mn 1.0 Febal strength; magnetic
18  Stainlesssteel 174PH  Cr 17.0 Co 0.35 Annealed 110 150 10 363 Precipitation hardening;
Ni 40 C 0.07 heat-resisting type;
Cu 4.0 Febal retains strength up to

approx. 600°F

€-¢
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19

20

21

22

23

24

25

26

CAST IRONS AND CAST STEELS

These alloys are used where large and or intricate-shaped articles are required or where over-all dimensional tolerances are not critical. Thus the article can be produced with
the fabrication and machining costs held to a minimum. Except for a few heat-treatable cast steels, this class of alloys does not demonstrate high-strength qualities.

CAST IRONS
Cast gray iron
ASTM A48 48,
Class 25
White

Malleable iron
ASTM A47
Ductile or nodular
iron (Mg-containing)
ASTM A339
ASTM A395
Ni-hard type 2

Ni-resist type 2

CAST STEELS
ASTM A27-62 (60-30)

ASTM A148-60 (105-85)

Mn

Mn
Mn
Mn
Ni
Si

Mn
Cr

Mn
Cr

Si
Cr

3.4
0.5

0.3
0.8
0.4

Si 1.8 Cast (as cast)
Si 0.7 Cast
Si 1.0 Cast (annealed)
P 0.1 Cast

max Cast (as cast)
Mg 0.06 Cast (quenched
Fe bal. tempered)
Si 0.6  Sand-cast
Ni 4.5 Chill-cast (tempered)
Fe bal.
Si 2.0 Cast (as cast)
Ni 20.0
Fe bal.
Mn 0.6
Ni 0.5
Mo 0.2

30

85

25
min

25
52

70
90

135
55
75

27

60

105

0.5
max

0
12

24

17

180

450
130

170
235

310
550
625

140

Engine blocks, fly-wheels,
gears, machine-tool
bases

Automotives, axle bearings,
track wheels, crankshafts

Heavy-duty machines,
gears, cams, crankshafts

Strength, with heat- and
corrosion-resistance

Low alloy, medium
strength, general
application

High strength; structural
application

(continued)
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Table 2.3.2 (continued)

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 1b/sqin. 1000 Ib/sq in. in2in., % Brinell Comments
27 Cast 12 Cralloy (CA-15) C 0.15 Mn 1.00  Air-cooled from 1800°F; 150 200 7 390 Stainless,
max max tempered at 600°F corrosion-resistant to
Si 150 Cr 11.5-14 Air-cooled from 1800°F; 75 100 30 185 mildly corrosive alkalis
max tempered at 1400°F and acids
Ni 1.00 Fe bal.
max
28 Cast299alloy (CE-30) C 0.30 Mn 1.50  Ascast 60 95 15 170 Greater corrosion
ASTM A296 63T max max resistance, especially for
Si 2.00 Cr 26-30 oxidizing condition
max Fe bal.
Ni 8-11
29  Cast 28 7 alloy (HD) C 0.50 Mn 1.50
ASTM A297-63T max max As cast 48 85 16 190 Heat resistant
Si 2.00 Cr 26-30
max Fe bal.
Ni 4-7
SUPER ALLOYS

The advent of engineering applications requiring high temperature and high strength, as in jet engines and rocket motors, has led to the development of a range of alloys
collectively called super alloys. These alloys require excellent resistance to oxidation together with strength at high temperatures, typically 1800°F in existing engines. These
alloys are continually being modified to develop better specific properties, and therefore entries in this group of alloys should be considered “fluid.” Both wrought and casting-type
alloys are represented. As the high temperature properties of cast materials improve, these alloys become more attractive, since great dimensional precision is now attainable in

investment castings.

NICKEL BASE
30 Hastelloy X

31 Hastelloy C

Co
Cr

w
C

Cr

w

Mo

1.5
max
22.0
0.6
0.20
max

(cast)

16.0
4.0
17.0

Fe 18.5  Wrought sheet

Mo 9.0 Mill-annealed

C 0.15 Asinvestment cast
max

(wrought)

Ni bal.

Fe 6.0  Sand-cast (annealed)

C 0.15 Rolled (annealed)
max Investment cast

Ni bal.

52 113.2 43
— 67 17
46.5 — —
50 78 5
71 130 45
50 80 10

194
172

199
204
215

9¢€-¢
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32

33

34

35

36

37

38

NICKEL BASE (Cont.)
Inconel 713C

In 100

Tax 8

Nimonic 90

Inconel X

Waspaloy

Rene 41

Ni (+Co)
bal.
Mo

A%

C

Mo

w

Ta

Ni (+Co)

Mn

S

Cu

Al

Co

Ni (+Co)

Mn

S

Cu

Al

Cb (+Ta)

C
Mo
Co
C
Mo
Al

4.5
6.0
18.0
3.0
55.0
1.0

125.0

4.0
4.0
8.0

57.00
0.50

Cr
Cb
Ti

Cr
Ti
Co

Cr
Al
Zr
\%
C
Fe
Si

0.007 Cr

0.05
1.65
16.90

72.85
0.65

Ti

C
Fe
Si

0.007 Cr

0.05
0.75

0.85

0.08

4.3
13.5

Ti

Cr
Ti

0.09 Cr
10.0 Ti
1.5 Co

19.5
3.0

19.0

11.0

Investment cast

Cast

Cast

Annealed: wrought

Annealed

Annealed; age-hardened

Cold-rolled

Wrought

102

90

50
115

270

100

120

155

115
175

275

145

50
25

260 General elevated
temperature applications

150
300

Rc 51

(continued)
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Table 2.3.2 (continued)

8¢€-¢

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 Ib/sqin. 1000 Ib/sq in. in2in., % Brinell Comments
39  Udimet 700 C 0.08 Cr 15.0 Cold-rolled 280 285 6 Rc 53
Mo 50 Ti 35
Al 43 Co 18.5
40 T.D. Nickel Ni 975 ThO, 24 Extended and cold-worked 85 100 13 — High temperature;
jet engine parts
COBALT BASE
41 Haynes Stellite alloy 25 C 0.15 Cr 20.0 Wrought sheet; 63 140 60 244 Wrought products
(L605) max w 15.0  mill annealed
Ni 10.0 Co bal
Min 1.5
42 Haynes Stellite alloy 21 C 0.25 Mo 5.5 Asinvestment cast 82 103 8 313 For castings
AMS 5385 (cast) Ni 2.5 Cobal. max
Cr 285
ALUMINUM ALLOYS

Although the strength of aluminum alloys is in general less than that attainable in ferrous alloys or copper-base alloys, their major advantage lies in their high strength-to-weight
ratio due to the low density of aluminum. Aluminum alloys have good corrosion resistance for most applications except in alkaline solutions.

43 3003 Cu  0.12 Albal. Annealed-O 6 16 40 28 Good formability, weldable,
ASTM B221 Mn 12 Cold-rolled-H14 21 22 16 40 medium strength;
Cold-rolled-H18 27 29 10 55 chemical equipment
44 2017 Mn 05 Mg 0.5 Annealed-O 10 26 22 45 High strength; structural
ASTM B221 Cu 4.0 Albal Heat-treated-T4 40 62 22 105 parts, aircraft, heavy
45 2024 Cu 45 Mg 1.5 Heat-treated-T4 47 68 19 120 forgings
ASTM B211 Mn 0.6 Albal
46 5052 Cr 0.25 Albal. Annealed-O 13 28 30 47 Medium strength, good
ASTM B211 Mg 25 Cold-rolled and 31 38 14 68 fatigue properties;
stabilized-H34 street-light standards
47 ASTM B209 Cold-rolled and 37 42 8 77

stabilized-H38
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48

49

50

51

52

7075
ASTM B211

380
ASTM SC84B

195

ASTM C4A
214

ASTM G4A

220
ASTM G10A

Cu
Cr
Zn

Si
Cu

Si
Cu

Mg

Mg 10.0 Albal

1.6
5.6

9.0
3.5

0.8

3.8

Mg

Al bal.

Al bal.

Al bal.

Al bal.

2.5

Annealed-O 15
Heat-treated and artificially 73
aged-T6
Die-cast 24
Sand-cast: heat-treated-T4 16
Sand-cast: heat-treated and 24
artificially aged-T6
Sand-cast-F 12
Sand-cast: heat-treated-T4 26
COPPER ALLOYS

33

48

32

25

48

17

8.5

16

60
150

60

50

75

High strength, good
corrosion resistance

General purpose die-casting

Structural elements,
aircraft, and machines

Chemical equipment,
marine hardware,
architectural

Strength with shock
resistance: aircraft

Because of their corrosion resistance and the fact that copper alloys have been used for many thousands of years, the number of copper alloys available is second only to the
ferrous alloys. In general copper alloys do not have the high-strength qualities of the ferrous alloys, while their density is comparable. The cost per strength-weight ratio is high;
however, they have the advantage of ease of joining by soldering, which is not shared by other metals that have reasonable corrosion resistance.

53  Copper Cu 99.9 Annealed 10 32 45 42 Bus-bars, switches,
ASTM B152 plus Cold-drawn 40 45 15 90 architectural, roofing,
ASTM B124, R133 Cold-rolled 40 46 5 100 screens
ASTM B1, B2, B3

54  Gilding metal Cu 95.0 Zn 5.0 Cold-rolled 50 56 5 114 Coinage, ammunition
ASTM B36

55  Cartridge 70-30 brass Cu 700 Zn 30.0 Cold-rolled 63 76 8 155 Good cold-working
ASTM B14 properties: radiator
ASTM B19 covers, hardware,
ASTM B36 electrical
ASTM B134
ASTM B135

56  Phosphor bronze 10% Cu 90.0 Sn 10.0  Spring temper — 122 4 241 Good spring qualities,
ASTM B103 P 0.25 high-fatigue strength
ASTM B139
ASTM B159

(continued)
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Table 2.3.2 (continued)

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 1b/sqin. 10001b/sqin. in2in., % Brinell Comments
57 Yellow brass (high brass) Cu 65.0 Zn 35.0 Annealed 18 48 60 55 Good corrosion resistance:
ASTM B36 Cold-drawn 55 70 15 115 plumbing, architectural
ASTM B134 Cold-rolled (HT) 60 74 10 180
ASTM B135
58 Manganese bronze Cu 58.5 Zn 39.2 Annealed 30 60 30 95 Forgings
ASTM B138 Fe 1.0 Sn 1.0 Cold-drawn 50 80 20 180
Mn 0.3
59 Naval brass Cu 60.0 Zn 39.25 Annealed 22 56 40 90 Condensor tubing: high
ASTM B21 Sn 0.75 Cold-drawn 40 65 35 150 resistance to salt-water
corrosion
60 Muntz metal Cu 60.0 Zn 40.0 Annealed 20 54 45 80 Condensor tubes: valve
stress
ASTM B111
61 Aluminum bronze Cu 92.0 Al 8.0 Annealed 25 70 60 80
ASTM B169, alloy A Hard 65 105 7 210
ASTM B124
ASTM B150
62 Beryllium copper 25 Be 1.9 Cu bal. Annealed, solution-treated 32 70 45 B60 Bellows, fuse clips,
ASTM B194 Co or Ni (Rockwell)  electrical relay parts,
ASTM B197 0.25 Cold-rolled 104 110 5 B81 valves, pumps
ASTM B196 Cold-rolled 70 190 3 C40
63 Free-cutting brass Cu 62.0 Zn 35.5 Cold-drawn 44 70 18 B8O Screws, nuts, gears, keys
Pb 2.5 (Rockwell)
64 Nickel silver 18” Cu 65.0 Zn 17.0 Annealed 25 58 40 70 Hardware, optical goods,
Alloy A (wrought) Ni 18.0 Cold-rolled 70 85 4 170 camera parts
ASTM B112, No. 2 Cold-drawn wire 105
65 Nickel silver 13” (cast) Ni 125 Pb 9.0 Cast 18 35 15 55 Ornamental castings,
10A Sn 2.0 Cubal plumbing: good
ASTM B149, No. 10A  Zn 20.0 machining qualities
66 Cupronickel 10” Cu 88.35 Ni 10.0 Annealed 22 44 45 — Condensor, salt-water
piping
ASTM B111 Fe 1.25 Mn 0.4 Cold-drawn tube 57 60 15 —

ASTM B171
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67
68
69

70

71

Cupronickel

Red brass (cast)

ASTM B30, No. 4A
Silicon bronze

ASTM B30, alloy 12A

Tin bronze
ASTM B30, alloy 1B
Navy bronze

Cu

Cu
Pb
Si
Zn
Mn
Sn

Ni

Zn

Fe

30.0 Wrought

5.0 As-cast 17
5.0
2.0  Castings
1.0
4.0 Castings
Cast
TIN AND LEAD-BASE ALLOYS

35

25

60

Heat-exchange process
equipment, valves

Cheaper substitute for tin
bronze

Bearings, high-pressure
bushings, pump
impellers

Major uses for these alloys are as “white” metal bearing alloys, extruded cable sheathing, and solders. Tin forms the basis of pewter used for culinary applications.

72  Lead-base Babbitt Pb 85.0 Sn 5.0  Chill cast — 10 5 19 Bearings, light loads and
ASTM B23, alloy 19 Sb 10.0 As 0.6 low speeds
Cu 05
73 Arsenical-lead Babbitt Pb 83.0 Sn 1.0  Chill cast — 10.3 2 20 Bearings, high loads and
ASTM B23, alloy 15 Sb 16.0 As 1.1 speeds, diesel engines,
Cu 06 steel mills
74  Chemical lead Pb 999 Cu 0.06 Rolled 95% 1.9 2.5 50 5
Bi 0.005
max
75 Antimonial lead (hard Pb 94.0 Sb 6.0  Chill cast — 6.8 22 (500 kg) Good corrosion resistance
lead) and strength
Rolled 95% — 4.1 47 9
76  Calcium lead Pb 999 Ca 0.025 Extruded and aged — 4.5 25 — Cable sheathing,
Cu 0.10 creep-resistant pipe
77  Tin Babbitt alloy Sb 4.5 Snbal Chill cast — 9.3 2 17 General bearings and
ASTM B23-61,gradel Cu 4.5 die-casting
78  Tin die-casting alloy Sb 13.0  Snbal Die-cast — 10 1 29 Die-casting alloy
ASTM B102-52 Cu 5.0
(continued)
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Table 2.3.2 (continued)

Typical mechanical properties

Yield strength
(0.2% offset), Tensile strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 Ib/sqin. 1000 Ib/sq in. in2in., % Brinell Comments
79 Pewter Sn 91.0 Sb 7.0 Rolled sheet, annealed — 8.6 40 9.5 Ornamental and household
Cu 20 items

80 Solder 50 50 Sn 50.0 Pb 50.0 Cast 4.8 6.1 60 14 General-purpose solder
81 Solder Sn 20.0 Pb 80.0 Cast 3.6 5.8 16 11 Coating and joining, tilling

seams on automobile

bodies

MAGNESIUM ALLOYS

Because of their low density, these alloys are attractive for use where weight is at a premium. The major drawback to the use of these alloys is their ability to ignite in air (this
can be a problem in machining); they are also costly. Magnesium alloys are used in both the wrought and die-cast forms, the latter being the most frequently used form.

82 Magnesium alloy AZ31B

83 Magnesium alloy AZ80A

84 Magnesium alloy AZ92A

85 Magnesium alloy ZK60A

Zn
AL

Zn

Zn
Zr

1.0
3.0

0.5
8.5

2.0
9.0

5.7
0.55

Mn
min
mi

5

Mg bal.

min
Mg bal.
Mn

min

Mg bal.

Mg bal.

0.20 Rolled-plate (strain-hardened,

0.15

0.10

then partially annealed)
Rolled-sheet
(strain-hardened, then
partially annealed)
Annealed
Extruded
Extruded
Extruded (age-hardened)
Forged (age-hardened)
Sand-cast (as cast)
Sand-cast (solution
heat-treated)
Sand-cast (solution
heat-treated and aged)
Sand-cast (age-hardened)
Sand-cast and tempered

Extruded

24

32

16
22

43

37
42

30
40

52

18

15

12

73

82

Structural applications of
medium strength

General extruded and
forged products

Pressure-tight sand and
permanent mold castings:
high UTS and good yield
strength

cv-¢
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Zn 0.6 Mn
Al 9.0

Mg bal.

0.13

Die-cast (as cast) 22
BERYLLIUM

27

Hot-pressed 38

Cross-rolled 40

60

NICKEL ALLOYS

33

33

60
90

1-3

10-40

67

General die-casting

applications

Windows, X-ray tubes

Moderator- and

reflector-cladding
nuclear reactors:
heat-shield and
structural-member
missiles

Nickel and its alloys are expensive and used mainly either for their high-corrosion resistance in many environments or for high-temperature and strength applications.

86 Magnesium alloy
AZ91A and AZ91B

87 Beryllium

(See Super Alloys.)

88  Nickel (cast)

89 K Monel

90 A nickel
ASTM B160
ASTM B161
ASTM B162

91 Duranickel

92 Cupronickel 55-45
(Constantan)

93  Nichrome

Ni 956 Cu
Fe 0.5 Mn
Si 1.5 C
Ni (+Co) C
65.25
Mn 0.60 Fe
S 0.005 Si
Cu 29.60 Al
Ti 045 —
Ni (+Co) C
99.40 Fe
Mn 0.25 Si
S 0.005
Cu 0.05
Ni (+Cu) C
93.90 Fe
Mn 0.25 Si
S 0.005 Al
Cu 0.05
Ti 0.45
Cu 55.0 Ni
Ni 80.0 Cr

0.5
0.8
0.8
0.15

1.00
0.15
2.75

0.06
0.15
0.05

0.15
0.15
0.55
4.50

45.0

20.0

As cast

Annealed

Annealed, age-hardened
Spring

Spring, age-hardened

Annealed
Hot-rolled
Cold-drawn
Cold-rolled

Annealed

Annealed, age-hardened
Spring

Spring, age-hardened

Annealed
Cold-drawn
Cold-rolled

25

45
100
140
160
20

70
95

45
125

30

65

57

100
150
185
70

95
105

100
175
205
60

85

22

40

10

40
25
40
25
10

45

20

110

155
270
300
335

100
110
170
210

160
330
320
370

Good corrosion-resistance

applications

High strength and

corrosion resistance;
aircraft parts, valve
stems, pumps

Chemical industry for

resistance to strong
alkalis, plating nickel

High strength and

corrosion resistance;
pump rods, shafts,
springs

Electrical-resistance wire;

low temperature
coefficient, high
resistivity

Heating elements for

furnances

(continued)
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Table 2.3.2 (continued)

Typical mechanical properties

Yield strength Tensile

(0.2% offset), strength, Elongation, Hardness,
No. Material Nominal composition Form and condition 1000 Ib/sq in. 10001b/sqin. in2in.,% Brinell Comments
94 “S” Monel Ni 60.0 Cu 29.0  Sand-casting 80-115 110-145 2 270-350  High-strength casting alloy;
Fe 2.50 Mn 1.5 good bearing properties
max max for valve seats
Si 4.0 Al 0.5
max

TITANIUM ALLOYS

The main application for these alloys is in the aerospace industry. Because of the low density and high strength of titanium alloys, they present excellent strength-to-weight ratios.

95 Commercial titanium  Ti 99.4 Annealed at 1100 to 1350°F 70 80
ASTM B265-58T (593 to 732°C)
96 Titanium alloy Water-quenched from 160 170

ASTM B265 58T 5 1750°F (954°C); aged at
Ti 6 Al4V 1000 F (538 C) for 2 hr

97 Titanium alloy Water-quenched from 170 185
Ti 4 Al 4Mn 1450°F (788°C); aged at

900°F (482°C) for 8 hr
98 Ti Mn alloy Fe 0.5 Tibal. Sheet 140 150
ASTM B26558T7  Mn 7.0 8.0

ZINC ALLOYS

A major use for these alloys is for low-cost die-cast products such as household fixtures, automotive parts, and trim.

99 Zinc Cd 0.35 Zn bal. Hot-rolled — 19.5
ASTM B69 Pd 0.08
100 Zilloy-15 Cu 1.00 Zn bal. Hot-rolled — 29
Mg 0.010 Cold-rolled — 36
101 Zilloy 40 Cu 1.00 Zn bal. Hot-rolled — 24
Cold-rolled — 31
102 Zamac-5 Zn (99.99% pure Al 3.5-4.3 Die-cast — 47.6
ASTM 25 remainder) Cu 0.75
Mg 0.03-0.08 1.25
ZIRCONIUM ALLOYS

20

13

13

18

Moderate strength,
excellent fabricability;
chemical industry pipes

High-temperature strength
needed in gas-turbine
compressor blades

Aircraft forgings and
compressor parts

Good formability, moderate
high-temperature
strength; aircraft skin

Battery cans, grommets
lithographer’s sheet

Corrugated roofs, articles
with maximum stiffness

Weatherstrip, spun articles

Die-casting for automobile
parts, padlocks; used also
for die material

These alloys have good corrosion resistance but are easily oxidized at elevated temperatures in air. The major application is for use in nuclear reactors.

103 Zirconium, commercial O, 0.07 C 0.15 Annealed 40 65
Hf 1.90 Zn bal.
104 Zircaloy 2 Hf 0.02 Ni 0.05 Annealed 50 75

Fe 0.15 Other 0.25
Su 1.46 Zn bal.

27

22

B80 (Rockwell)

B90 (Rockwell) Nuclear power-reactor

cores at elevated
temperatures

yv-¢
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THERMODYNAMICS  2-45
Table 2.3.3 Typical Properties of Glass-Fiber-Reinforced Resins
Base resin

Property Polyester Phenolic Epoxy Melamine Polyurethane
Molding quality Excellent Good Excellent Good Good
Compression molding

Temperature, °F 170 to 320 280 to 350 300 to 330 280 to 340 300 to 400

Pressure, psi 250 to 2000 2000 to 4000 300 to 5000 2000 to 8000 100 to 5000
Mold shrinkage, in./in. 0.0 to 0.002 0.0001 to 0.001 0.001 to 0.002 0.001 to 0.004 0.009 to 0.03
Specific gravity 1.35t0 2.3 1.75t0 1.95 1.8t0 2.0 1.8t0 2.0 1.11t0 1.25
Tensile strength, 1000 psi 25t0 30 5to 10 14 to 30 5to 10 4.5t08
Elongation, % 0.5t0 5.0 0.02 4 10 to 650
Modulus of elasticity, 10~° psi 8to 20 33 30.4 24
Compression strength, 1000 psi 15to0 30 17 to 26 30 to 38 20 to 35 20
Flexural strength, 1000 psi 10 to 40 10 to 60 20 to 26 15to 23 7t09
Impact, Izod, ft-Ib/in. or notch 2to0 10 10 to 50 8to 15 4to6 No break
Hardness, Rockwell M70 to M120 M95 to M100 M100 to M108 M28 to R60
Thermal expansion, per °C 2to5 x10° 1.6 x10° 1.1t0 3.0 x10~° 1.5x107° 10 to 20 x 10
Volume resistivity at 50% RH

23°C. ohm-cm 1 x10" 7 x10%2 3.8 x10%° 2 x101 2 x10M to 10
Dielectric strength, 1 in.
Thickness, v/mil 350 to 500 140 to 370 360 170 to 300 330 to 900
Dielectric constant

At 60 hz 3.8t06.0 7.1 5.5 9.7t0 11.1 54107.6

At1khz 4.0t0 6.0 6.9 5.6t0 7.6
Dissipation factor

At 60 hz 0.01 to 0.04 0.05 0.087 0.14 to 0.23 0.015 to 0.048

At1Kkhz 0.01 to 0.05 0.02 0.043 to 0.060
Water absorption, % 0.01to 1.0 0.1to 1.2 0.05 to 0.095 0.09 to 0.21 0.7t0 0.9
Sunlight (change) Slight Darkens Slight Slight None to slight
Chemical resistance Fair** Fair** Excellent Very good? Fair
Machining qualities Good Good Good Good

Note: Filament-wound components with high glass content, highly oriented, have higher strengths. The decreasing order of tensile strength

is: roving, glass cloth, continuous mat, and chopped-strand mat.
**Attacked by strong acids or alkalies.
T Attacked by strong acids.

*From “Reinforced Thermosets,” C.A. Spang and G.I. Davis. Machine Design 40(29): 32 Dec 12, 1968.

Boundary. A boundary separates the system from the
surroundings. Ideally, boundaries are mathematical sur-
faces that are endowed with various ideal properties, such
as rigidity and impermeability. Real boundaries only approx-
imate the properties or ideal thermodynamic boundaries.
A system enclosed by a boundary impermeable to matter
is called a closed system, and one enclosed by a permeable
boundary is called an open system.

Thermodynamic Variables. Thermodynamic variables
are quantities found from experimentation to be necessary
or convenient to specify to give a macroscopic description
of a system. Most such quantities are drawn from other
branches of science or engineering; accordingly, no detailed,
all-inclusive definitions of thermodynamic variables can be
given.

State of a System. When all of the variables necessary
to describe a system are specified, the state of the system is
said to be specified. The specification of the state of a system
gives no information on the process by which the system was
brought to this state.

Processes and Cycles. When one or more properties
of a system change, the system is said to have undergone a
change in state. The path of the succession of states through
which the system passes is called the process. When a system
in a given initial state goes through a number of different
changes of state or processes and finally returns to its initial
state, the system has undergone a cycle.

Equilibrium. A fundamental concept in thermodynam-
ics is that of equilibrium. The key idea is that the variables
describing a system in equilibrium do not change with time.
This idea does not form a sufficient basis for a definition of
equilibrium, because it fails to exclude a number of steady-
state processes (principally various types of flow processes)
that cannot be handled by classic thermodynamic methods.
To exclude these, a more restrictive definition is used: A sys-
tem is in equilibvium if and only if it is in a state from which
no change is possible without net changes in the surroundings.
In steady-state processes, there must be continual changes
in the surroundings to maintain the variables of the system
at constant values. Classic thermodynamics deals only with
systems in equilibrium.

Equilibrium is an abstraction, and real systems are never
strictly in equilibrium, but so long as the variables do not
change measurably during the time spent making a mea-
surement on the system, the system can be considered to be
in equilibrium, and thermodynamic reasoning can be applied
to it. A system may be in equilibrium with respect to some
variables but not with respect to others.

2.4.2 Fundamentals

Thermodynamics is the science that deals with “energy
in transit” and is quantified in terms of heat and work
and the properties of substances that bear a relation to
heat and work. The science of thermodynamics deals very
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Table 2.3.4 Allowable Unit Stresses for Lumber
SPECIES, SIZES, ALLOWABLE STRESSES, AND MODULUS OF ELASTICITY
Normal Loading Conditions: Moisture Content Not Over 19 Percent

Allowable unit stresses, psi*

Species and Typical Extreme Tension Modulus
grades Sizes, grading fiberin parallel Compression Compression of elasticity,
(visual grading) * nominal agency 1968* bending to grain perpendicular parallel psi
Idaho white pine  2x4 w 850 500 240 1,050 1,120,000
2x6 and wider 1,200 800 240 1,100 1,400,000
Ponderosa pine 2x4 w 850 500 280 1,000 950,000
2x6 and wider 1,150 800 280 1,000 1,190,000
Lodgepole pine 2x4 w 1,400 850 250 1,100 1,030,000
4x4 1,350 800 240 1,050 1,000,000
Southern pine 2x4 S 1,810 1,190 405 1,190 1,800,000
4x4 S 1,810 1,190 405 1,300 1,700,000
Douglas fir 2x4 w 1,700 1,000 385 1,510 1,80,000
2x6 and wider w 1,900 1,250 385 1,800 1,810,000
Western hemlock  2x4 w 1,450 850 245 1,350 1,210,000
2x6 and wider 1,650 1,100 245 1,450 1,520,000
Western spruce 2x4 W 1,150 650 220 950 920,000
2x6 and wider 1,050 700 220 1,000 1,150,000
Wester cedar 2x4 w 850 500 295 1,150 860,000
2x6 and wider 1,200 800 295 1,150 1,070,000
Redwood 2" and 4" R 1,640 — 305 1,190 1,240,000
(unseasoned) “Construction”

Note: Allowable unit stresses in horizontal sheat are in the range of 75 to 150 psi.

*There is no single grade designation that applies to all lumber. Values in the table apply approximately to “No. 1,” although this designation
is often modified by terms such as dense or dry. For grades better than No. 1, such terms as structural, heavy, select, dense, etc. are used.
Lower grades are No. 2, No. 3 factory, light industrial etc., but there are seldom more than four grades of a single size in a given species. The
allowable stresses are for “repetitive member” users.

*Most lumber is graded by the following agencies, although there are other grading organizations.

W =Western Wood Products Association
S=Southern Pine Inspection Bureau
R=Redwood Inspection Service

*Load applied to joists or planks. For beam or stringer grades, stresses are for load applied to the narrow face.

*For engineered uses the allowable stresses are slightly lower; for kiln-dried lumber slightly higher. For short-term loads, such as wind,
earthquake, or impact, higher unit stresses are allowed.

“Wood Handbook,” U.S. Department of Agriculture Handbook No. 72, 1955.

“Timber Construction Manual,” American Institute of Timber Construction, John Wiley & Sons, 1966.

"National Design Specification for Stress-Grade Lumber,” National Forest Products Association, Washington, D.C. 1968.

broadly with concepts of how systems and processes work,
why some systems and processes cannot work, and why

of stating this law is as follows:
It is impossible to make any

some systems and processes do not work as intended. Like
all sciences, the basis of thermodynamics is experimen-
tal observation. In thermodynamics, these findings have
been formalized into certain basic laws, which are known
as the first, second, and third law of thermodynamics. The
zeroth law of thermodynamics, which is the definition of
the thermodynamic temperature scale, precedes the first
law. These laws of thermodynamics can be summarized as
follows:

Zeroth Law of ~ When two objects or bodies have

Thermodynamics equality of temperature with a
third body, they have equality of
temperature with each other.

First Law of The law of conservation of energy
Thermodynamics applies to all thermodynamic systems.

Second Law of  This law deals with a quantity (entropy)
Thermodynamics that serves as a means of determining
whether a process is possible. One way

transformation whose only final result

is the exchange of a non-zero amount of
heat with less than two heat reservoirs and
the appearance of a positive amount of
work in the surroundings.

Third Law of This law deals with the entropy of

Thermodynamics substances at the temperature of
absolute zero. In essence, it states that
the entropy of a perfect crystal is zero at
absolute zero.

From a purely thermodynamic point of view, the third
law is in a different class from the first and second laws.
Its purely thermodynamic content is rather limited, and it
is difficult to state the law so that there do not seem to be
several experimentally observable exceptions. The second
law is not believed to have any macroscopic exceptions; for
example, it is not believed possible to construct a perpetual
motion machine. However, there are experimental excep-
tions to many of the common statements of the third law.



Table 2.3.5 Physical, Mechanical, and Thermal Properties of Common Stones

Abrasion- Coefficient of
Rupture hardness 48-hr water Thermal thermal
Compressive modulusx1073, Shearing  Young’s Modulus of index Porosity, absorption conductivity, expansion
Type of Density, strength psi (ASTM strength  modulus rigidity Poisson’s (ASTM  volume (ASTM Btu per ft per hr x10-6
Stone Ibpercuft x1073 psi C99 52) x107%, psi x1076 psi x107°, psi ratio C241-51)  percent C97-47) perdeg F per deg F
Granite 160—190 13-55 1.4-55 3.5-6.5 4-16 2—6 0.05-0.2 37-88 0.6—-3.8  0.02—-0.38 20-35 3.6—4.6
Marble 165—179 8-27 0.6—4.0 1.3-6.5 5-11.5 2—4.5 0.1-0.2 8—42 0.4-2.1 0.02—-0.45 8-36 3.0-8.5
Slate 168—180 9-10 6—15 2.0-3.6 6—16 25—6 0.1-0.3 6—12 0.1-1.7 0.01-0.6 12—-26 3.3-5.6
Sandstone  119—168 5-20 0.7-2.3 0.3-3.0 0.7-10 0.3—4 0.1-0.3 2—26 1.9-273 2.0-12.0 4-40 3.9-6.7
Limestone 117-175 2.5-28 0.5-2.0 0.8-3.6 3-9 1-4 0.1-0.3 1-24 1.1-31.0 1.0-10.0 20-32 2.8-4.5
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Figure 2.3.7 Diagram to Example 2.3.3.

Some care is required to frame the statement so that it is
free of exceptions and does not claim anything that is not
in principle susceptible of measurement on a macroscopic
level. The following is the most satisfactory statement from
a purely thermodynamic point of view:

The first and second laws of thermodynamics are applicable
down to the limit of absolute zero, provided that at this limit
entropy changes vanish for any reversible process.

This statement of the third law defines only entropy dif
ferences at absolute zero, not absolute values. Just as the
absolute value of energy is undefined and only energy differ-
ences can be measured, so can only entropy differences be
measured. However, if entropy values for all reversibly con-
nected states are equal at absolute zero, this entropy value
may as well be taken to be zero for convenience.

2.4.3 Units of Energy

A concept in the study of thermodynamics is the concept of
energy. In classic thermodynamics, energy is a fundamen-
tal quantity, such as mass or force, and as is often the case
with such concepts, it is difficult to define. A general defini-
tion that results in analytical predictions that can be verified
by experimentation is energy is the property of a system
to produce an effect. However, the absolute value of energy
cannot be defined or calculated; only the changes in energy
as a system transitions from one state to another state has any
significance. Energy can be stored within a system in vari-
ous macroscopic forms and can also be transformed from one
form to another, such as potential energy and kinetic energy
exchanges. It can be transferred between systems by various
modes of heat transfer across the boundary or by the work
associated with the motion of the boundary.

Work has units of force times distance, with the units of
kinetic energy being the same as work. In the SI (Systeme
International d’Unites) system, work and kinetic energy
have units of newton (N)-meters (m), which is the defini-
tion of joules (J). In the English engineering system, work
and kinetic energy have units of pound force (Ibf)—foot (ft).

Heat transfer is a transit phenomenon and can be thought
of as energy transfer across the boundary per unit time. In
the SI system of units, heat transfer is measured in watts
(W), which is the number of joules per unit time crossing
the boundary. In the English engineering system of units,
heat transfer is usually measured in British thermal units
per hour or Btu/hr.

When working in the SI system and equating the heat
transfer rate with the rate of doing work, the units are entirely
consistent, because both are measured in joules/s, which are
defined as watts. In the English engineering system, how-
ever, a conversion factor is required to maintain consistency
of units because the heat transfer rate is specified in Btu/s
but the rate of doing work is specified in ft-Ibf/s. In addition,
550 ft-Ibf/s is called 1 horsepower (hp). This conversion fac-
tor between Btu and ft-Ibf is determined from the definition
of Btu:

1 Btu=778.17 ft-Ibf [2.4.1]

This conversion factor is often referred to as the mechanical
equivalent of heat. The following table expresses relation-
ships between several other useful energy units:

1J=0.3756 ft/Ibf
1kJ=0.9478 Btu

1 kJ/kg =0.42992 Btu/lbm
1 ft-Ibf =1.35562 ]

1 kcal =4.1868 k]
1W=1J/s=3.413 Btu/hr
1 hp=>550 ft-1bf/s

1 hp=2545 Btu/h

1 hp=0.7457 kW

A = work function (Helmholtz free energy),
Btu/lb,, or Btu
C = heat capacity, Btu/Ib,,°R
C, = heat capacity at constant pressure
Cy = heat capacity at constant volume
F = (Gibbs) free energy, Btu/lb,, or Btu
g = acceleration due to gravity =32.174 ft/s?
g. = conversion factor between force and
mass = 32.174 (Iby,) (ft/s%) /Ib;
h, H = enthalpy or heat content, Btu/lb,, or Btu
x = ratio Cp/Cy
Mw = molecular weight, Ib,/Ib,,-mole
m, M = mass of fluid, 1b,,
m, M = mass flow rate, Ib,,/s
P = absolute pressure, Ib;/ft?
Ps = entropy production rate, Btu/°R.s
Q = heat transferred to system across
a system boundary, Btu/lb,, or Btu
Q = rate of heat transfer, Btu/s
R = universal gas constant, Ib; —ft*/mole . °R
s, S = entropy, Btu/lb,,°R or Btu/°R
T = absolute temperature, °R
u, U = internal energy, Btu/Ib,, or Btu
V = volume, ft*/Ib, or ft*
v = flow velocity, ft/s
W = work done by a system against its
surroundings, Btu/lb,, or Btu
Z = height from center of gravity of a fluid mass
to a fixed base level, ft

2.4.4 The First Law of Thermodynamics

The differential form of the first law as applied to a closed
system, for which there is no exchange of matter between
the system and its surroundings, is given by

dU=58Q—W [2.4.2]

where dU represents an infinitesimal increase in the internal
energy of the system, 8Q is the heat absorbed by the system
from its surroundings, and 8W is the work done by the sys-
tem on its surroundings. The state of a system is defined
by its temperature, pressure, specific volume, and chemical
composition. The change in internal energy expressed by
Equation 2.4.2 depends only on the difference between the
final and initial states and not upon the process or processes
that occurred during the change. The heat and work terms
depend on the process path. For a change from a state A to
a state B, the first law becomes

AU=Up—-Up=Q-W [2.4.3]

Work interchange between a system and its surroundings
can take on any of a variety of forms including mechanical



shaft work, electrical work, magnetic work, surface tension,
etc. For many applications, the only work involved is that
of compression or expansion against the surroundings, in
which case the work term in Equation 2.4.2 becomes

SW =PdV

or

VB
W= Pdv
Va

[2.4.4]

where Vg is the final volume and V, the initial volume of the
system, and P is the system pressure. Thus, for a constant
pressure process,

W=PAV=P(Vg—V,) (constant pressure process)

[2.4.5]
or, combining Equations 2.4.3 and 2.4.4.
AU=Up—Up=Q—PV+PVa [2.4.6]
or
Q=(Up+PVg)—(Us+PVa) [2.4.7]

The combination of properties (U+PV) occurs so fre-
quently in thermodynamics that it is given a special symbol,
H, and termed the enthalpy or heat content of the system.
Thus Equation 2.4.7 can be written as

Q=A(U+PV)=Hg —Ha =AH [constant pressure process]
[2.4.8]

Enthalpy is a property of the system independent of the path
selected. Processes can be conveniently represented graph-
ically. For example, a P-V diagram can be used to illustrate
the work done when a system undergoes a change in state
(see Figure 2.4.1) In each of the cases depicted in Figure
2.4.1, the work is equal to the shaded area under the P-V
curve as shown.

Because the mass is fixed for a closed system, the equa-
tions in this discussion will be valid for the entire mass (M)
or on a unit mass basis.

2.4.5 The First Law of Thermodynamics Applied to

Open Systems
An open system is one which exchanges mass with its
surroundings in addition to exchanging energy. For open
systems, the first law is formulated from a consideration of
the conservation of energy principle which can be stated as

O]

path (isothermal)

®

i

Ww=[ ? pdv

(a)
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follows:
Net increase
of stored energy
of system
Stored Stored Net energy
| energy energy entering as
of mass | | of mass heat and all
entering leaving forms of work

Consider the arbitrary open thermodynamic system illus-
trated in Figure 2.4.2. The foregoing statement of the first
law for this open system can be written as

22
m; Uy —m;U; + mfvf27gmlvl + gg(mfzf —m;Z;)
v g
=f Hi+ 2+ 27 | omy
28 &
2
7/ (H2+ 2"72 + gzz> dmy+Q-W [2.4.9]
g &

where dm refers to a differential mass of fluid, and the sub-
scripts f and i refer to the entire system in its final state and
initial state, respectively. Clearly, for a closed system defined
as one which exchanges no mass with its surroundings,
Equation 2.4.9 reduces to Equation 2.4.3.

For an open system at steady state, as in the case of
turbines, compressors, pumps, etc., Equation 2.4.9 can be
written (for unit mass flow rate) as

2
AvZ £ = —
AH + 3 R AZ = Q Whet
Increase Increase Increase Net heat Net work
in enthalpy in kinetic in potential exchanged exchanged
energy energy with with

surroundings surroundings

[2.4.10]

where W, is the net useful work (or shaft work) done by
the fluid.

Example 2.4.1. Isobaric Compression of an Ideal Gas
One pound-mole of an ideal gas is compressed at a con-
stant pressure of 1 atm in a piston-like device from an initial
volume of 1.5 ft to a final volume of 0.5 ft®. The internal
energy is known to decrease by 20 Btu. How much heat was
transferred to or from the gas?

path (isobaric)

@ O]

W=/ ? pdv

Ui

(b)

Figure 2.4.1 P-V process diagrams: (a) isothermal expansion; (b) isobaric compression.
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dmy ——

® | o
k

Figure 2.4.2 An open thermodynamic system.

2.4.5.0.1 Solution
This is an isobaric (constant pressure) process in a closed
system. Equation 2.4.3 applies.

va
Q:AU+W:AU+] PdV
V1

=20 Btu+P(Vo—Vy)

2
— 20 Btu+(1 atm) <11j27aﬂz> (14‘;;“' )

3 3 1Btu
x5t ~151t )<778 ft.Iby

=—20 Btu—2.72 Btu
=-22.72 Btu

Because Q is negative, 22.72 Btu of heat were transferred
from the gas to its surroundings.

Example 2.4.2. Hydroelectric Power System

A hydroelectric power plant proposes to use 1500 ft3/s of
river water to generate electricity. The water enters the sys-
tem at 1 atm and 50°F and is discharged at 1 atm and 50.4°F
after passing through a turbine generator. The discharge
point is 600 ft below the inlet. The increase in enthalpy of the
water is known to be 0.36 Btu/1b,,. Assuming 70% efficiency
for the conversion, what power output can be expected from
the power plant?

2.4.5.0.2 Solution
The following assumptions pertain to this open system:

1. Steady-state flow.
2. No heat transferred between system and surroundings.
3. Change in kinetic energy of the flow streams is negligible.

With these assumptions, we take as a reference point the
discharge level of the water, and apply Equation 2.4.10. Thus,
Z,=0, Z; =600 ft and the energy balance becomes

AH+ B AZ= W,

C

where

Btu\ {1,500 ft* \ /62.4 by /3,600 s
AH:(“-“%)( s )( ) ()

=1.213 x 108 Btu/hr
=35,553 kW

and

g .. 32.2 ft/s? 1,500 ft®
QAZ - (32.2 ft.Iby, /Ibs.s2 ) (0-600) s

62.4 by, 3,600 s
X
3 hr
——2.599 x 10° Btu/hr
=-76,163 kKW
Therefore,

Whet =—35,553 kW + 76,163 kW =40,610 kW
At 70% efficiency, this would yield

Wacwal = (0.70)(40, 610) = 28,427 kW = 28.427 MW

2.4.6 Entropy and the Second Law

The second law of thermodynamics provides a basis for
determining whether or not a process is possible. It is con-
cerned with availability of the energy of a given system for
doing work. All natural systems proceed towards a state of
equilibrium and, during any change process, useful work can
be extracted from the system. The property called entropy,
and given the symbol S or s, serves as a quantitative measure
of the extent to which the energy of a system is “degraded”
or rendered unavailable for doing useful work.

For any reversible process, the sum of the changes in
entropy for the system and its surroundings is zero. All
natural or real processes are irreversible and are accom-
panied by a net increase in entropy.

Several useful statements have been formulated concern-
ing the second law that are helpful in analyzing thermo-
dynamic systems, such as:

e No thermodynamic cycle can be more efficient than a
reversible cycle operating between the same temperature
limits.

o The efficiency of all reversible cycles absorbing heat from
a single-constant higher temperature and rejecting heat
at a single-constant lower temperature must be the same.

e Every real system tends naturally towards a state of
maximum probability.

e For any actual process, it is impossible to devise a means
of restoring to its original state every system participat-
ing in the process.

e For any reversible process, the increase in entropy of any
participating system is equal to the heat absorbed by that
system divided by the absolute temperature at which the
transfer occurred. That is, for a system, i,

ds;= 8,? (reversible processes) [2.4.11]
Alternatively, for an ideal reversible process, the sum of all

the changes in entropy must be zero or

dQ; .
ZdSi = Z T 1 =0 (reversible processes)
i

Because all 7eal processes are irreversible as aresult of fric-
tion, electrical resistance, etc., any processes involving real
systems experience an increase in entropy. For such systems

[2.4.13]

The entropy change of a system during any process
depends only upon its initial and final states and not upon
the path of the process by which it proceeds from its initial
to its final state. One can devise a reversible idealized pro-
cess to restore a system to its initial state following a change

[2.4.12]

ZdSi >0 (irreversible processes)
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and thereby determine AS =S — Sinitial- This is one of the
most useful aspects of the concepts of a reversible process.

2.4.7 Entropy Production: Flow Systems
In general, for all real processes, there is a net production of
entropy and Equation 2.4.13 applies. Because many practical
engineering processes involve open systems, it is useful to
develop a generalized expression of the second law applied
to such systems.

For the generalized control volume shown in Figure 2.4.3,
and entropy balance can be stated as follows:

Rate of entropy | _ ( Rate of entropy
in out

n Rate of entropy \ _ ( Rate of entropy
production ~ \ accumulation

. Qs . 3Q; - dSM)
{;av[swr%: T ]—{%MM; T, }FPS: &
[2.4.14]

In Equation 2.4.14, P is the rate of entropy production
within the control volume; symbols with dots refer to the
time rate of change of the quantity in question. The second
law requires that the rate of entropy production be positive.

Py>0 [2.4.15]

2.4.8 Heat Capacity
The heat capacity of a substance is extremely important in
thermodynamic analysis involving both the first and second
laws.
Heat capacity per unit mass is defined by the relationship
8Q
C=—
dT
where 8Q is the heat absorbed by unit mass of the system
over the infinitesimal temperature change, dT.

[2.4.16]

Tp—

BQC TC

For constant pressure when only P-V work is involved, the
first law yields

Co ( % ) P [2.4.17]

For constant volume

Cy= (ﬂ) [2.4.18]
oT Jy

Cp is related to Cy by the following expression:

ac-[r-(2) (%) a0

For an ideal gas for which PV=RT/M,,, with M,, repre-
senting the molecular weight, the enthalpy and internal
energy are functions only of temperature and Equation 2.4.19
becomes
v R
Cp—Cy=P( = | =— 2.4.20
p—Cv < T ) ST, [ ]
The ratio of the heat capacity at constant pressure to that at
constant volume is

Cp
= 2.4.21
o= [ ]
For an ideal gas, this ratio becomes
R
Kk=1+ ML [2.4.22]

2.4.9 Application of the Second Law
2.4.9.1 Heat Engines
The purpose of aheat engine is to remove heat Q from a ther-
mal reservoir at a higher absolute temperature Ty; extract
useful work W; and reject heat Q. to a second thermal reser-
voir at a lower absolute temperature Ts. The device used to
obtain the useful work is the heat engine.

Considering an ideal heat engine as the system, the first
law as applied to the engine undergoing a series of reversible
changes in a cyclical fashion becomes

D AU=0, or W=Q;-Q 2.4.23]

3Qa

——'—)Mz

Figure 2.4.3 Generalized control volume for a flow system.
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The second law yields For constant pressure processes, the entropy increase is
T written as
> AS=0 or D By BT [2.4.24]
Q T

To obtain the fraction of the heat input Q; that is converted
to useful work, Equations 2.4.23 and 2.4.24 are combined
to give

W T -T,
Q T
This important result is called the Carnot engine efficiency
and yields the maximum thermal efficiency that can be
achieved by anyheat engine cycle operating between any two
given temperature limits. Heat engines have been proposed
to operate within the temperature gradients of the ocean as a
means of harnessing the vast amounts of renewable energy
available from that source.

[2.4.25]

2.4.9.2 Heat Pumps
A heat pump, which is the opposite of a heat engine, uses
work energy to transfer heat from a cold reservoir to a “hot”
reservoir. In households, the cold reservoir is often the sur-
rounding air or the ground while the hot reservoir is the
home. For an ideal heat pump system with Q; and T; refer-
ring to the hot reservoir and Q, and T referring to the cold
reservoir, the work required is, from the first and second
laws,
w T,-T
Q: T
Application of this result shows that if 100 units of heat
Q; are needed to maintain a household at 24°C (297°K)
by “pumping” heat from the outside surroundings at 0°C
(273°K), it would require a minimum of (24 x 100/297) =
8.08 units of work energy.

[2.4.26]

2.4.9.3 Refrigeration Machines
Refrigerating machines absorb heat Q, from a cold reser-
voir at temperature Ty, and discharge heat Q, into a “hot”
reservoir at Ty. To accomplish this, work energy must also
be absorbed. The minimum required work is obtained as
shown before, using the first and second laws:
W T-T

Q T

[2.4.27]

2.4.9.4 Reversible Work of Expansion or Compression
Many systems involve only work of expansion or compres-
sion of the system boundaries. For such systems the first
law is written for unit mass of fluid as the basis:

dU=8Q—-PdV [2.4.28]

where fv‘; 2PdV represents the reversible work of compres-

sion or expansion.
From the second law, for a reversible process,

dS:? or 8Q=TdS [2.4.29]
Combining Equations 2.4.28 and 2.4.29 gives
dU=TdS—PdV (reversible, P-V work only) [2.4.30]

2.4.9.5 Reversible Isobaric Processes
The second law is written as
8Q=TdS
but, since the heat capacity C=38Q/dT, the second law
becomes

CdT =TdS [2.4.31]

dS=C, dT =Cpd(¢nT) (reversible isobaric process)
[2.4.32]

2.4.9.6 Reversible Constant Volume Processes
A constant-volume process is called isochoric, and for such
processes, the entropy increase is written as

dS=C, dTT =C,d(¢nT) (reversible isochoric process)

[2.4.33]

2.4.9.7 Reversible Isothermal Changes: Maximum Work
The variation of entropy with volume and pressure under
conditions of constant temperature is determined by using
Equation 2.4.30:

U S
(W)T:T(W>T—P [2.4.34]
or rearranging:

aS 1 U
(W)r =7 |:<W>T +P] (constant T) [2.4.35]

The variation of entropy with pressure is likewise written as

aS 1 P\ au
<ﬁ>T =T |:P<3—P>T+ <87P>Tj| (constant T)  [2.4.36]

or

aS 1 oH
(ﬁ>”[‘ =T |:—V+ (E>T:| (constant T)

Combining the first law Equation 2.4.2 with the second
law Equation 2.4.11 yields the expression

dU=TdS — 5W =d(TS)— 6W

[2.4.37]

or
SW=—-d(U-TS)

which, upon integration between states 1 and 2, yields

W =—A(U-TS)(reversible isothermal processes) [2.4.38]

The combination of properties U —TS occurs so frequently
in thermodynamic analysis that it is given a special name
and symbol, namely A, the work function or maximum work
(because it represents the maximum work per unit mass,
obtainable during any isothermal reversible change in any
given system). Therefore, it is seen that

[2.4.39]

Note that the maximum work depends only upon the initial
and final states of a system and not upon the path.

Winax = —AA (reversible isothermal process)

2.4.9.8 Maximum Useful Work: Free Energy

The first and second law expressions can be combined
and written for constant temperature, constant pressure
processes:

dU=TdS—3dW =TdS—PdV — 6W’ [2.4.40]
where 8W’ represents all work energy exchanged with

the surroundings except P-V work that is written as PdV.
Therefore, solving for SW’ gives

—3dW'=dU+PdV —-TdS [2.4.41]

or, because both T and P constant,
—8W'=dU+d(PV)—d(TS)

or

—8W' =—d(U+PV-TS) [2.4.42]
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Thermodynamic properties of carbon dioxide (CO,). Diagram copy },‘ [ T
supplied by General Dynamics Corporation, Liquid Carbonic Division. 1w, 280
Tin°F, hin Btu/lbm, v in ft%/Ibm, s in Btu/lbm-°F; at critical point f = 260°
P = 1066.3 psia, T = 87.8°F - PR 240°
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> 200
A 4— 180"
/ 4 _/.’. 160°
- 140°
TT.55% P =0
Tais e #H4A 100°
,g"b :‘Z ‘;/’7‘ *Z}L# 80°
- S 60°
. AL 4 a0’
) B g ALY 32
L6 1 |‘ 1 . 'eé I’ i (2)0
g BT TR LAl 0
o %xsé 8 AL ] o
Jl 7 A = ! 4 4 o
DR LRI R LTk k. 4 4817 B ;3‘? 7 VA% Bt L s J 74 60
N)zamn TP A RS O E A SIS AL/ T1508) _go0
3 A | \ U A BN AN AN \ Dia S ST )
[ iimimuie gy o i AAL -100
i S RS T Wi et ST ST o 3 3 HRSS / .
A R R R R S
P LA A A AT AR SR ™ T S e R N ~ r\ﬁ R 1407
6 7 8 9 1.0 1.1 1.2 13 1.4
Figure 2.4.4 Thermodynamic properties of carbon dioxide.
By integration this becomes 2.4.9.8.1 Solution
W' =—AU+PV-TS) The device will be impossible if it violates either the first or
second law of thermodynamics. From Figure 2.4.4 the inlet
=—A(H-TS) (constant temperature and pressure) and outlet properties are
[2.4.43]
This expression shows that the maximum possible useful State 1 State 2
work (i.e., reversible work) that can be obtained from any
process occurring at constant temperature and pressure is Ty =100°F T, =40°F
a function of the initial and final states only and is indepen- P, =150 psia P, =500 psia
dent of the path. The combination of properties U+ PV—TS  h; =315 Btu/Ib,, hy, =285 Btu/Ib,,
or H-TS occurs so frequently in thermodynamic analy- S;=1.318 Btu/lb,°R S, =1.215 Btu/Ib,,°R

sis that it is given a special name and symbol, F, the free
energy (sometimes called the Gibbs free energy). Using this
definition, Equation 2.4.44 is written

Referring to Figure 2.4.5 (process diagram), the first law for
this steady-state flow system becomes

Wia=—AF [2.4.44] ) .
Because F is a function of temperature and pressure, its Mih; _h1?+Q_(2) (285_315)+_€30_0 Btu/s .
differential can be written as Because energy is not created, the device does not violate
IF O9F the first law. Application of the second law (Equation 2.4.14)
dF — (7) P+ <7> T [2.445]  yields
aP ), aT ), ,
Because F=U+PV—TS, we can also write PS=M(52—S1)+& =(2)(1.215—1.318)+ 60
dF =dU +PdV +VdP—TdS — ST [2.4.46] T (~140+460)
Using Equation 2.4.30, this becomes =-0.206+0.1875=—0.0185 Btu/s.°R
dF =VdP—-SdT [2.4.47]  Because the rate of entropy production is negative, the
Comparison with Equation 2.4.45 shows that device violates the second law and is therefore impossible.
3F Note that the device would be theoretically possible if the
<ﬁ) = [2.4.48]  final pressure were specified as 400 psia or less by the inven-
T tor. That is, at P, =400 psia, Ty =40°F, hy =290 Btu/lb,,, and
< aF) S [2.4.49] S; =1.25 Btu/1bg, R, the entropy production rate would be
aT/)p o Py=2(1.25—1.318)+0.1875=+0.0515 Btu/s°.R
Because entropy is produced in this case, the device is
Example 2.4.3 theoretically possible.

An inventor claims to have devised a CO, compressor that
requires no shaft work. The device operates at steady state by
transferring heat from a feed stream of 21b,,/s of CO5 at 150  2.4.10 Summary of Thermodynamic Equations

psia and 100°F. The CO, is compressed to a final pressure  The thermodynamic relations formulated earlier for a pure
of 500 psia and a temperature of 40°F. Kinetic and poten-  substance are summarized in Table 2.4.1 with unit mass of
tial energy effects are negligible. A cold source at —140°F  fluid as the basis. Several additional important relationships
“drives” the device at a heat transfer rate of 60 Btu/s. Check  can be derived from them and these are shown in the third
the validity of the inventor’s claim. column of Table 2.4.1.
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Mh,

Cod 1 Q,=60BTU/Sec!
eservoir i r°_ _y40°F
(a) Process Diagram

T,=100°F

S

Graphical Representation

(b) of process (D—(2)

Figure 2.4.5 (a) Process diagram. (b) Graphical representation of Processes 1 and 2.

By mathematical manipulation, numerous additional rela-
tionships can be derived from those given in Table 2.4.1. Of
particular significance are expressions that relate enthalpy
H and internal energy U to the measurable variables, P, V,
and T. Thus, choosing the basis as one pound mass,

oH vV
(ﬁ)f”(ﬁl

and

oU oP
(), =),

Equations 2.4.50 and 2.4.51 apply to any substance or sys-
tem and are called equations of state because they com-
pletely determine the state of a system in terms of its
thermodynamic properties.

[2.4.50]

[2.4.51]

2.4.11 Thermal Properties for Selected Systems
For practical applications of the numerous thermodynamic
relationships, it is necessary to have available the properties

of the system. In general, a given property of a pure sub-
stance can be expressed in terms of any other two properties
to completely define the state of the substance. Thus, one can
represent an equation of state by the functional relationship:

P=£(T,V) [2.4.52]

which indicates that the pressure is a function of the
temperature and specific volume.

Plots of the properties of various substances as well as
tables and charts are extremely useful in solving engineer-
ing thermodynamic problems. Two-dimensional represen-
tations of processes on P-V, T-S, or H-S diagrams are
especially useful in analyzing cyclical processes. The use
of the P-V diagram was illustrated earlier. A typical T-S
diagram for a Rankine vapor power cycle is depicted in
Figure 2.4.6.

For the Rankine cycle, the area enclosed by the line
segments connecting points 1, 2, 3, 4, 1 on Figure 2.4.6
represents the net heat transferred into the system per unit
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Table 2.4.1 Summary of Thermodynamic Relations (Basis: Unit mass of Fluid)

Common Name
for Terminology

Function of Definition

Differential
Equation

Derived Relationships
Among Variables

Cp= (§> = <@> =T (£> Heat Capacity at Constant Pressure 8Qp=CpdT
T /p T Jp P

aTp

Cy= (ﬁ) = (%) =T <§) Heat Capacity at Constant Volume  8Qv = CydT
v v v

T T

U kA%
Cf’:(ﬁ)ﬁ"(ﬁl)
U P

CVZ(ﬁX(ﬁ)V

Cp . . aP av
K_C—V Heat Capacity Ratio CP?CV_T(BT)V(aiT)P
R
Cp—Cy= NTW |Ideal Gas|
AU=Q-W Internal Energy dU=TdS —PdV (E) - <£)
(First Law of Thermodynamics) A S )y
oU
(5),~7
10]
(%),
H=U+PV Enthalpy dH=TdS+VdP <£> = (ﬂ>
aP ) \aS /),
oH
22) -1
(5),
oH
().~
. . aS aP
A=U-TS Work function or maximum work ~ dA=-SdT-PdV ( =) =(—=
(Helmbholtz free energy) Vv /)p aT Jy
0A
(5),=-
0A
) —_p
().
. aS v
F=H- TS Free energy or Gibbs Free Energy dF=-SdT+VdP ( —= | =—( =
P ) T Jp
oF
(77),~
oF
(5¢),~

mass, because

S1 S3
Qnet :/ Tds—/ TdS
54 52

The efficiency of power cycles such as the Rankine cycle
is given by the ratio of the net work out to the heat added.
From Figure 2.4.6, the efficiency is

Wnet Qin - Qout

B Qin - Qin

The H-S plot is called a Mollier diagram and is particu-
larly useful in analyzing throttling devices, steam turbines,
and other fluid flow devices. A Mollier diagram for steam is

[2.4.53]

[2.4.54]

presented in Figure 2.4.7 (standard engineering units) and
in Figure 2.4.8 in SI units.

Thermodynamic properties may be presented in various
ways, including:

e Equations of state (e.g., perfect gas laws, Van der Waals
equation, etc.).

e Charts or graphs.

e tables.

Tables 2.4.2-2.4.7 present thermodynamic properties
for several pure substances commonly encountered in
petroleum engineering practice.

For further information on this subject, refer to References
1-8.
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Figure 2.4.6 (a) Schematic diagram of system. (b) T-S diagram of process.
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Figure 2.4.7 Mollier diagram for steam.
(Source: Steam Tables in SI-Units, Springer-Verlag, 1984.)
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Specific enthalpy h
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Figure 2.4.8 Mollier (enthalpy-entropy) diagram for steam.
(SOURCE: Steam, its generation and use, Babcock $ Wilcox Co., 1978.)



2-58  GENERAL ENGINEERING AND SCIENCE

Table 2.4.2 Properties of Saturated Steam (h;s and sy are measured from 32°F)

Specific volume Enthalpy Entropy Internal energy

Abs press, Temp, — — —

psi deg F Liquid Vapor  Liquid Evap Vapor  Liquid Evap Vapor Evap
1.0 101.74  0.01614  333.6 69.70  1036.3 1106.0 0.1326 1.8456  1.9782 974.6
1.2 107.92  0.01616  280.9 75.87  1032.7 1108.6 0.1435 1.8193  1.9628 970.3
14 113.26  0.01618  243.0 81.20  1029.6 1110.8 0.1528 1.7971  1.9498 966.7
1.6 117.99  0.01620 2143 85.91 1026.9 11128 0.1610 1.7776  1.9386 963.5
1.8 122.23  0.01621  191.8 90.14 10245 11146 0.1683 1.7605 1.9288 960.6
2.0 126.08 0.01623 173.73  93.99  1022.2 11162 0.1749 1.7451  1.9200 957.9
2.2 129.62 0.01624 158.85  97.52  1020.2 1117.7 0.1809 1.7311  1.9120 955.5
2.4 132.89  0.01626 14638 100.79 10183 1119.1 0.1864 1.7183  1.9047 953.3
2.6 13594 0.01627 13578 103.83 10165 11203 0.1916 1.7065 1.8981 951.2
2.8 138.79  0.01629 126.65 106.68 1014.8 1121.5 0.1963 1.6957  1.8920 949.2
3.0 14148  0.01630 11871 109.37 1013.2 1122.6 0.2008 1.6855  0.8863 947.3
4.0 152.97  0.01636  90.63 120.86  1006.4 1127.3 0.2198 1.6427 1.8625 939.3
5.0 162.24  0.01640  73.52 130.13  1001.0 1131.1 0.2347 1.6094 1.8441 933.0
6.0 170.06  0.01645  61.98 13796  996.2  1134.2 0.2472 1.5820 1.8292 927.5
7.0 176.85 0.01649  53.64 14476  992.1 11369 0.2581 1.5586  1.8167 922.7
8.0 182.86  0.01653  47.34  150.79  988.5  1139.3 0.2674 1.5383  1.8057 918.4
9.0 18828 0.01656 4240 15622 9852 11414 02759  1.5203  1.7962 914.6
10 193.21 0.01659  38.42 161.17  982.1 11433 0.2835 1.5041  1.7876 911.1
11 197.75 0.01662  35.14  165.73  979.3  1145.0 0.2903 1.4897  1.7800 907.8
12 201.96 0.01665 3240 169.96 9766  1146.6 0.2967 14763  1.7730 904.8
13 205.88 0.01667  30.06  173.91 9742 11481 0.3027 1.4638 1.7665 901.9
14 209.56  0.01670  28.04  177.61 9719 11495 0.3083 1.4522  1.7605 899.3
14.696 21200 0.01672  26.80  180.07 970.3 11504 0.3120 1.4446 1.7566 897.5
15 213.03  0.01672  26.29 181.11  969.7 1150.8 0.3135 14415 1.7549 896.7
16 216.32  0.01674  24.75 184.42  967.6  1152.0 03184 14313  1.7497 894.3
17 21944 0.01677 2339  187.56 9655  1153.1 0.3231 1.4218 1.7449 892.0
18 22241  0.01679  22.17 190.56  963.6 11542 0.3275 14128  1.7403 889.9
19 22524 0.01681  21.08 19342 9619 11553 0.3317 1.4043 1.7360 887.8
20 22796 0.01683 20.089 196.16  960.1 1156.3  0.3356  1.3962  1.7319 885.8
21 230.57 0.01685 19.192 198.79 9584 11572 0.3395 13885 1.7280 883.9
22 233.07 0.01687 18375 201.33  956.8  1158.1 0.3431 1.3811 1.7242 882.0
23 23549 0.01689 17.627 203.78 9552  1159.0 0.3466  1.3740  1.7206 880.2
24 237.82 0.01691 16.938 206.14  953.7 1159.8 0.3500 13672 1.7172 878.5
25 240.07 0.01692 16.303 20842  952.1 1160.6  0.3533 1.3606  1.7139 876.8
26 24225 0.01694 15715 210.62  950.7 1161.3 0.3564 1.3544  1.7108 875.2
27 24436  0.01696 15170 212,75 949.3 11620 0.3594 13484 1.7078 873.6
28 24641 0.01698 14.663 214.83 9479  1162.7 0.3623 1.3425 1.7048 872.1
29 24840 0.01699 14.189 216.86 9465 11634 0.3652 1.3368  1.7020 870.5
30 250.33  0.01701 13.746 218.82 9453  1164.1 0.3680 13313  1.6993 869.1
31 252.22  0.01702 13.330 220.73  944.0 1164.7 0.3707 1.3260 1.6967 867.7
32 254.05 0.01704 12940 22259 9428 11654 0.3733 1.3209 1.6941 866.3
33 255.84  0.01705 12.572 22441  941.6 11660 0.3758 13159  1.6917 864.9
34 257.08 0.01707 12226 226.18 940.3 1166.5 0.3783 1.3110  1.6893 863.5
35 259.28 0.01708 11.898 22791 939.2 1167.1 0.3807 1.3063  1.6870 862.3
36 260.95 0.01709 11.588 229.60  938.0 1167.6 0.3831 13017 1.6848 861.0
37 262.57 0.01711 11294 231.26 9369 11682 0.3854 1.2972 1.6826 859.8
38 264.16  0.01712 11.015 232.89 9358 1168.7 0.3876  1.2929  1.6805 858.5
39 265.72  0.01714 10.750 23448  934.7 11692 0.3898 1.2886 1.6784 857.2

(continued)
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Table 2.4.2 (continued)

Specific volume Enthalpy Entropy Internal energy

Abs press, Temp, — — —

psi deg F Liquid Vapor Liquid Evap  Vapor  Liquid Evap Vapor Evap
40 267.25 0.01715 10498 236.03 933.7 1169.7 0.3919 1.2844 1.6763 856.1
41 268.74  0.01716  10.258 23755 932.6 1170.2 0.3940 1.2803  1.6743 855.0
42 270.21  0.01717  10.029  239.04 931.6 1170.7 0.3960 12764 1.6724 853.8
43 271.64 0.01719  9.810 24051 930.6 1171.1 0.3980 12726  1.6706 852.7
44 273.05 0.01720  9.601 24195 9296 11716  0.4000 1.2687  1.6687 851.6
45 27444  0.01721 9.401 24336 9286 1172.0 04019 1.2650 1.6669 850.5
46 275.80  0.01722  9.209 24475 9277 11724 04038 1.2613  1.6652 849.5
47 27713 0.01723  9.025  246.12  926.7 11729 0.4057 12577  1.6634 848.4
48 27845 0.01725  8.848 24747 9258 11733 04075 12542  1.6617 8474
49 279.74  0.01726  8.678 24879 9249 1173.7 0.4093 1.2508 1.6601 846.4
50 281.01 0.01727 8515  250.09 924.0 11741 04110 1.2474  1.6585 845.4
51 282.26  0.01728 8359  251.37 923.0 11744 04127 12432  1.6569 844.3
52 28349 0.01729 8208  252.63 922.2 11748 0.4144 12409 1.6553 843.3
53 284.70  0.01730  8.062  253.87 921.3 11752 0.4161 12377  1.6538 842.4
54 285.90  0.01731 7.922  255.09 920.5 11756 04177 12346  1.6523 841.5
55 287.07 0.01732  7.787 25630 919.6 11759 0.4193 12316  1.6509 840.6
56 28823  0.01733  7.656  257.50 9188 11763 0.4209 12285 1.6494 839.7
57 289.37 0.01734  7.529  258.67 9179 1176.6 0.4225 1.2255  1.6480 838.7
58 290.50 0.01736  7.407  259.82 917.1 11769 0.4240 12226 1.6466 837.8
59 291.61 0.01737  7.289 26096 9163 1177.3 0.4255 12197 1.6452 836.9
60 292.71 0.01738 7175  262.09 9155 1177.6 04270 12168  1.6438 836.0
61 293.79  0.01739 7.064  263.20 914.7 11779 04285 1.2140 1.6425 835.2
62 294.85 0.01740 6957  264.30 9139 11782 04300 12112 1.6412 834.3
63 295.90  0.01741 6.853 26538 913.1 11785 04314 12085 1.6399 8334
64 296.94 0.01742  6.752  266.45 9123 11788 0.4328 12059  1.6387 832.6
65 29797  0.01743  6.655  267.50 911.6 1179.1 04342 12032 1.6374 831.8
66 29899 0.01744 6560  268.55 910.8 11794 04356 1.2006  1.6362 831.0
67 299.99 0.01745  6.468  269.58 910.1 1179.7 0.4369 1.1981  1.6350 830.2
68 300.98 0.01746  6.378  270.60 909.4 1180.0 0.4383 1.1955  1.6338 8294
69 301.96 0.01747  6.291 271.61 9087 1180.3 0.4396 1.1930 1.6326 828.6
70 302.92 0.01748  6.206  272.61 9079 1180.6 0.4409 1.1906  1.6315 827.8
71 303.88 0.01749  6.124 27360 907.2 1180.8 0.4422 1.1881  1.6303 827.0
72 304.83 0.01750  6.044 27457 906.5 1181.1 0.4435 1.1857  1.6292 826.3
73 305.76  0.01751 5,966 27554 905.8 1181.3  0.4447 1.1834 1.6281 825.5
74 306.68  0.01752 5890 27649 905.1 1181.6 0.4460 1.1810 1.6270 824.7
75 307.60  0.01753 5.816 27743 9045 11819 04472 11787 1.6259 824.0
76 308.50 0.01754 5743 27837 903.7 1182.1 0.4484 1.1764 1.6248 823.3
77 309.40 0.01754 5673 27930 903.1 11824 0.4496 1.1742  1.6238 822.5
78 310.29  0.01755 5.604  280.21 9024 11826 0.4508 1.1720 1.6228 821.7
79 311.16  0.01756 5537  281.12 901.7 11828 0.4520 1.1698 1.6217 821.0
80 312.03  0.01757 5472  282.02 901.1 11831 04531 1.1676  1.6207 820.3
81 312.89 0.01758 5408 28291 9004 11833 0.4543 1.1654 1.6197 819.6
82 313.74  0.01759 5346  283.79 899.7 11835 0.4554 1.1633  1.6187 818.9
83 31459 0.01760 5285  284.66 899.1 1183.8 04565 1.1612 1.6177 818.2
84 31542  0.01761 5.226 285,53 8985 1184.0 04576 1.1592  1.6168 817.5
85 316.25  0.01761 5.168 28639 897.8 11842 04587 1.1571 1.6158 816.8
86 317.07  0.01762 5.111 28724 8972 11844 04598 1.1551  1.6149 816.1
87 317.88  0.01763 5.055  288.08 896.5 1184.6 0.4609 1.1530 1.6139 8154
88 318.68 0.01764  5.001 28891 8959 1184.8 0.4620 1.1510 1.6130 814.8
89 31948 0.01765 4948  289.74 8953 11851 0.4630 1.1491 1.6121 814.1

(continued)
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Table 2.4.2 (continued)

Specific volume Enthalpy Entropy Internal energy
Abs press, Temp, — — —
psi deg F Liquid Vapor Liquid Evap  Vapor  Liquid Evap Vapor Evap
90 320.27 0.01766  4.896  290.56 894.7 11853 0.4641 1.1471 1.6112 8134
91 321.06 0.01767  4.845 291.38 894.1 11855 0.4651 1.1452 1.6103 812.8
92 321.83 0.01768  4.796  292.18 893.5 1185.7 0.4661 1.1433  1.6094 812.2
93 322.60 0.01768  4.747 29298 8929 11859 04672 1.1413  1.6085 811.5
9 323.06 0.01769  4.699  293.78 8923 1186.1 0.4682 1.1394 1.6076 810.9
95 32412 0.01770  4.652 29456 891.7 1186.2 0.4692 1.1376  1.6068 810.2
96 324.87 0.01771 4606 29534 891.1 11864 0.4702 1.1358  1.6060 809.6
97 325.61  0.01772 4561  296.12 890.5 1186.6 0.4711 1.1340 1.6051 808.9
98 326.35 0.01772 4517  296.89 8899 11868 04721 1.1322  1.6043 808.3
99 327.08 0.01773 4474 297.65 8894  1187.0 0.4731 1.1304 1.6035 807.7
100 327.81  0.01774 4432 29840 888.8 1187.2 0.4740 1.1286  1.6026 807.1
102 329.25  0.01775 4350 299.90 887.6 1187.5 04759 11251  1.6010 805.9
104 330.66  0.01777 4271  301.37 886.5 11879 04778 11216  1.5994 804.7
106 332.05 0.01778  4.194 302.82 8854 11882 0.4796 1.1182  1.5978 803.5
108 33342 0.01780 4.120 304.26 884.3 1183.6 0.4814 1.1149  1.5963 802.4
110 334.77 0.01782  4.049 305.66 883.2 11839 04832 1.1117 1.5948 801.2
112 336.11 0.01783 3981 307.06 8821 1189.2 0.4849 1.1085 1.5934 800.0
114 33742 0.01784 3914 30843 881.1 1189.5 0.4866 1.1053  1.5919 798.9
116 338.72 0.01786  3.850  309.79 880.0 1189.8 0.4883  1.1022  1.5905 797.8
118 339.99 0.01787  3.788  311.12 879.0 1190.1  0.4900 1.0992  1.5891 796.7
120 341.25 0.01789  3.728 31244 8779 11904 04916 1.0962  1.5878 795.6
122 342,50 0.01791  3.670  313.75 8769 1190.7 0.4932 1.0933  1.5865 794.5
124 343.72 0.01792  3.614  315.04 8759 11909 0.4948 1.0903  1.5851 7934
126 34494 0.01793 3560 31631 8749 1191.2 04964 1.0874  1.5838 792.3
128 346.13  0.01794 3507  317.57 8739 1191.5 04980 1.0845 1.5825 791.3
130 34732 0.01796 3455 31881 8729 1191.7 04995 1.0817  1.5812 790.2
132 34848  0.01797 3405  320.04 872.0 1192.0 05010 1.0790  1.5800 789.2
134 349.64 0.01799  3.357 321.25 871.0 11922 05025 1.0762  1.5787 788.2
136 350.78  0.01800  3.310 32245 870.1 11925 05040 1.0735  1.5775 787.2
138 35191 0.01801 3.264 323.64 869.1 1192.7 0.5054 1.0709 1.5763 786.2
140 353.02 0.01802 3.220  324.82 8682 1193.0 0.5069 1.0682  1.5751 785.2
142 354.12  0.01804  3.177 32598 867.2 1193.2 0.5083  1.0657  1.5740 784.3
144 355.21  0.01805 3.134 327.13 8663 11934 05097 1.0631  1.5728 783.3
146 356.29 0.01806  3.094 32827 8653 1193.6 0.5111 1.0605 1.5716 782.3
148 357.36  0.01808  3.054 329.39 864.5 11939 05124 1.0580  1.5705 7814
150 35842  0.01809 3.015 330.51 863.6 11941 05138 1.0556  1.5694 780.5
152 359.46  0.01810 2977 331.61 862.7 11943 05151 1.0532  1.5683 779.5
154 36049 0.01812 2940 332.70 861.8 11945 0.5165 1.0507  1.5672 778.5
156 361.52 0.01813 2904 333.79 8609 1194.7 05178 1.0483  1.5661 777.6
158 362.03 0.01814 2.869 334.86 860.0 11949 05191 1.0459  1.5650 776.8
160 363.53 0.01815 2.834 33593 859.2 11951 0.5204 1.0436  1.5640 775.8
162 364.53 0.01817 2.801 33698 8583 11953 0.5216 1.0414  1.5630 775.0
164 365.51 0.01818 2.768 338.02 857.5 11955 0.5229 1.0391  1.5620 774.1
166 36648 0.01819 2.736  339.05 856.6 1195.7 0.5241 1.0369  1.5610 773.2
168 36745 0.01820 2.705  340.07 855.7 11958 0.5254 1.0346  1.5600 7723
170 368.41 0.01822 2.675 341.09 8549 1196.0 0.5266 1.0324  1.5590 7714
172 369.35 0.01823  2.645 34210 854.1 1196.2 0.5278  1.0302  1.5580 770.5
174 370.29 0.01824 2.616 343.10 853.3 11964 0.5290 1.0280  1.5570 769.7
176 371.22  0.01825 2587  344.09 8524 1196.5 0.5302  1.0259  1.5561 768.8
178 37214 001826 2559  345.06 851.6 1196.7 0.5313  1.0238  1.5551 767.9

(continued)
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Table 2.4.2 (continued)

Specific volume Enthalpy Entropy Internal energy

Abs press, Temp, — — —

psi deg F Liquid Vapor Liquid Evap  Vapor  Liquid Evap Vapor Evap
180 373.06  0.01827 2532  346.03 850.8 11969 0.5325 1.0217  1.5542 767.1
182 373.96  0.01829 2505 347.00 850.0 1197.0 0.5336 1.0196  1.5532 766.2
184 374.86  0.01830 2479 34796 849.2 1197.2 0.5348 1.0175  1.5523 765.4
186 375.75  0.01831 2454 34892 8484 11973 0.5359 1.0155 1.5514 764.6
188 376.64  0.01832 2429 34986 8476 11975 0.5370 1.0136  1.5506 763.8
190 37751  0.01833 2404  350.79 846.8 1197.6 0.5381 1.0116  1.5497 763.0
192 37838  0.01834 2380 351.72 846.1 1197.8 0.5392 1.0096  1.5488 762.1
194 379.24  0.01835 2356  352.64 8453 11979 0.5403 1.0076  1.5479 761.3
196 380.10  0.01836 2333  353.55 8445 11981 0.5414 1.0056  1.5470 760.6
198 380.95 0.01838 2310 35446 843.7 1198.2 0.5425 1.0037  1.5462 759.8
200 381.79  0.01839 2288 35536 843.0 11984 0.5435 1.0018  1.5453 759.0
205 383.86  0.01842 2234 35758 841.1 1198.7 0.5461 0.9971  1.5432 757.1
210 385.90  0.01844  2.183  359.77 839.2 1199.0 0.5487 0.9925  1.5412 755.2
215 387.89  0.01847 2134 36191 8374 11993 0.5512 0.9880  1.5392 753.2
220 389.86  0.01850  2.087 364.02 8356 1199.6 0.5537 0.9835  1.5372 751.3
225 391.79  0.01852 2.0422 366.09 833.8 1199.9 0.5561 0.9792  1.5353 749.5
230 393.68  0.01854  1.9992 368.13 832.0 1200.1 0.5585 0.9750  1.5334 747.7
235 395.54  0.01857 1.9579 370.14 830.3 12004 0.5608 0.9708 1.5316 745.9
240 397.37  0.01860 1.9183 372.12 8285 1200.6 0.5631 0.9667  1.5298 744.1
245 399.18  0.01863 1.8803 374.08 826.8 1200.9 0.5653  0.9627  1.5280 742.4
250 400.95  0.01865 1.8438 376.00 825.1 1201.1 0.5675 0.9588  1.5263 740.7
260 404.42  0.01870  1.7748 379.76  821.8 1201.5 0.5719 0.9510  1.5229 737.3
270 407.78  0.01875 1.7107 383.42 8185 12019 0.5760 0.9436 1.5196 733.9
280 411.05 0.01830 1.6511 386.98 8153 12023 0.5801 0.9363 1.5164 730.7
290 414.23  0.01835 1.5954 390.46 812.1 1202.6 0.5841 0.9292 1.5133 727.5
300 417.33  0.01890  1.5433 393.84 809.0 1202.8 0.5879  0.9225 1.5104 724.3
320 423.29  0.01899 1.4485 400.39 803.0 12034 0.5952  0.9094  1.5046 718.3
340 42897  0.01908 1.3645 406.66 797.1 1203.7 0.6022 0.8970  1.4992 712.4
360 434.140  0.01917 1.2895 41267 7914 12041 0.6090 0.8851  1.4941 706.8
380 439.60  0.01925 1.2222 41845 7858 12043 0.6153 0.8738  1.4891 701.3
400 444.59 0.0193 1.1613  424.0 780.5 12045 0.6214 0.8630 1.4844 695.9
420 449.39 0.0194 11061 4294 7752 1204.6 0.6272  0.8527  1.4799 690.8
440 454.02 0.0195  1.0556 4346 7700 1204.6 0.6329 0.8426  1.4755 685.7
460 458.50 0.0196  1.0094  439.7 7649 1204.6 0.6383 0.8330  1.4713 680.7
480 462.82 0.0197  0.9670 4446 7599 1204.6 0.6436 0.8237  1.4673 675.7
500 467.01 0.0197  0.9278 4494  755.0 12044 0.6487 0.8147 1.4634 1118.6
520 471.07 0.0198  0.8915  454.1  750.1 1204.2 0.6536 0.8060  1.4596 1118.4
540 475.01 0.0199  0.8578 4586 7454 1204.0 0.6584 0.7976  1.4560 1118.3
560 478.85 0.0200  0.8265  463.0 7408 1203.8 0.6631 0.7893  1.4524 1118.2
580 482.58 0.0201  0.7973 4674 7361 1203.5 0.6676 0.7813  1.4489 1118.0
600 486.21 0.0201  0.7698 4716 7316 1203.2 0.6720 0.7734 1.4454 1117.7
620 489.75 0.0202  0.7440 4757 7272 12029 0.6763 0.7658  1.4421 1117.5
640 493.21 0.0203  0.7198  479.8 7227 1202.5 0.6805 0.7584  1.4389 1117.3
660 496.58 0.0204  0.6971 4838 7183 1202.1 0.6846 0.7512  1.4358 1117.0
680 499.88 0.0204  0.6757  487.7 7140 1201.7 0.6886 0.7441  1.4327 1116.7
700 503.10 0.0205  0.6554 4915  709.7 1201.2 0.6925 0.7371  1.4296 1116.3
720 506.25 0.0206  0.6362 4953 7054 1200.7 0.6963 0.7303  1.4266 1116.0
740 509.34 0.0207  0.6180  499.0 7012 1200.2 0.7001 0.7237  1.4237 1115.6
760 512.36 0.0207  0.6007 5026  697.1 1199.7 0.7037 0.7172  1.4209 1115.2
780 515.33 0.0208  0.5843  506.2 6929 1199.1 0.7073 0.7108 1.4181 1114.8
800 518.23 0.0209  0.5687  509.7 6889 1198.6 0.7108 0.7045 1.4153 1114.4
820 521.08 0.0109  0.5538 5132  684.8 11980 0.7143 0.6983 1.4126 1114.0
840 523.88 0.0210  0.5396 5166  680.8 11974 0.7177 0.6922  1.4099 1113.6
860 526.63 0.0211  0.5260  520.0 6768 1196.8 0.7210 0.6862  1.4072 1113.1
880 529.33 0.0212  0.5130 5233  672.8 1196.1 0.7243  0.6803  1.4046 1112.6

(continued)
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Table 2.4.2 (continued)

Specific volume Enthalpy Entropy Internal energy

Abs press, Temp, — — —

psi deg F Liquid  Vapor  Liquid Evap  Vapor  Liquid Evap Vapor Evap
900 531.98  0.0212  0.5006 526.6 668.8 11954  0.7275 0.6744  1.4020 1112.1
920 534.59  0.0213  0.4886 529.8 664.9 1194.7 0.7307 0.6687  1.3995 11115
940 537.16  0.0214  0.4772 533.0 661.0 1194.0 0.7339 0.6631  1.3970 1111.0
960 539.68  0.0214  0.4663 536.2 657.1 11933 0.7370  0.6576  1.3945 1110.5
980 542.17  0.0215  0.4557 539.3 653.3 11926  0.7400  0.6521  1.3921 1110.0
1,000 544.61  0.0216  0.4456 5424 649.4  1191.8 0.7430  0.6467  1.3897 1109.4
1,050 550.57  0.0218  0.4218 550.0 639.9 11899 0.7504 0.6334  1.3838 1108.0
1,100 556.31  0.0220  0.4001 5574 630.4 1187.8  0.7575  0.6205  1.3780 1106.4
1,150 561.86  0.0221  0.3802 564.6 621.0 11856 0.7644  0.6079  1.3723 1104.7
1,200 567.22  0.0223  0.3619 571.7 611.7 11834 0.7711 0.5956  1.3667 1103.0
1,250 57242  0.0225  0.3450 578.6 6024 1181.0 0.7776  0.5836  1.3612 1101.2
1,300 57746  0.0227  0.3293 585.4 593.2 11786 0.7840  0.5719  1.3559 1099.4
1,350 582.35  0.0229  0.3148 592.1 584.0 11761 0.7902  0.5604  1.3506 1097.5
1,400 587.10  0.0231  0.3012 598.7 5747 11734  0.7963  0.5491  1.3454 1095.4
1,450 591.73  0.0233  0.2884 605.2 565.5 1170.7 0.8023  0.5379  1.3402 1093.3
1,500 596.23  0.0235  0.2760 611.6 556.3 1167.9 0.8082 0.5269  1.3351 1091.0
1,600 604.90  0.0239  0.2548 624.1 538.0 11621  0.8196  0.5053  1.3249 1086.7
1,700 613.15  0.0243  0.2304 636.3 519.6 11559 0.8306  0.4843  1.3149 1081.8
1,800 621.03  0.0247  0.2179 648.3 501.1 11494 0.8412 0.4637 1.3049 1076.8
1,900 628.58  0.0252  0.2021 660.1 4824 11424 0.8516  0.4433  1.2949 1071.4
2,000 635.82  0.0257  0.1878 671.7 4634 11351 0.8619  0.4230  1.2849 1065.0
2,200 649.46  0.0268  0.1625 694.8 4244  1119.2 0.8820 0.3826  1.2646 1053.1
2,400 662.12  0.0280  0.1407 7184 382.7 11011 0.9023  0.3411  1.2434 1038.6
2,600 673.94  0.0295 0.1213 743.0 337.2  1080.2  0.9232 0.2973  1.2205 1021.9
2,800 684.99  0.0310  0.1035 770.1 284.7 1054.8  0.9459  0.2487  1.1946 1001.2
3,000 695.36  0.0346  0.0858 802.5 217.8  1020.3 0.9731 0.1885  1.1615 972.7
3,200 705.11  0.0444  0.0580 8724 62.0 9344 1.0320  0.0532  1.0852 898.4
3,206.2 705.40  0.0503  0.0503 902.7 0 902.7 1.0580 0 1.0580 872.9

Source: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co., New York,
1967.

Note: Specific volume in cu. ft. per by, enthalphy and internal energy in Btu per by, entropy in Btu per by °R.
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Table 2.4.3 Superheated Steam Tables (v=specific volume, cu ft per Ib; h=enthalpy, Btu per Ib; s=entropy)

Pressure, Temperature of steam, deg F
ia (Saturati

{’:ﬁp(_ dea ) 340 380 20 460 500 550 600 650 700

20 (227.96) v 23.60 24.82 26.04 27.25 28.46 29.97 31.47 32.97 34.47
h 1210.8 1229.7 1248.7 1267.6 1286.6 1310.5 13344 1358.6 1382.9
S 1.8053 1.8285 1.8505 1.8716 1.8918 1.9160 1.9392 1.9671 1.9829

40 (267.25) v 11.684 12.315 12.938 13.555 14.168 14.930 15.688 16.444 17.198
h 1207.0 1226.7 1246.2 1265.5 1284.8 1309.0 1333.1 13574 1361.9
S 1.7252 1.7493 1.7719 1.7934 1.8140 1.8345 1.8619 1.8843 1.9058

60 (292.71) v 7.708 8.143 8.569 8.988 9.403 9.917 10.427 10.935 11.441
h 1203.0 1223.6 1243.6 1263.4 1283.0 1307.4 1331.8 1356.3 1380.9
S 1.6766 1.7135 1.7250 1.7470 1.7678 1.7927 1.8162 1.8388 1.8605

80 (312.03) 5.718 6.055 6.383 6.704 7.020 7.410 7.797 8.180 8.562

o<

1198.8 1220.3 1240.9 1261.1 1281.1 1305.8 1330.5 1355.1 1379.9
s 1.6407 1.6669 1.6909 1.7134 1.7346 1.7598 1.7836 1.8063 1.8281

4.521 4.801 5.071 5.333 5.589 5.906 6.218 6.527 6.835
1194.3 1216.8 1238.1 1258.8 1279.1 1304.2 1329.1 1354.0 1378.9
s 1.6117 1.6391 1.6639 1.6869 1.7085 1.7340 1.7581 1.7610 1.8029

3.964 4.195 4.418 4.636 4.902 5.165 5.426 5.683
1213.2 1235.3 1256.5 12772 1302.6 1327.7 1352.8 1377.8
s 1.6156 1.6413 1.6649 1.6869 1.7127 1.7370 1.7801 1.7822

3.365 3.569 3.764 3.954 4.186 4.413 4.638 4.861
1209.4 1232.3 1254.1 1275.2 1300.9 1326.4 1351.6 1376.8
s 1.5950 1.6217 1.6458 1.6683 1.6945 1.7190 1.7423 1.7645

2.914 3.098 3.273 3.443 3.648 3.849 4.048 4.244
1205.5 1229.3 1251.6 1273.1 1299.3 1325.0 1350.4 1375.7
s 1.5766 1.6042 1.6291 1.6519 1.6785 1.7033 1.7268 1.7491

2.563 2.732 2.891 3.044 3.230 3.411 3.588 3.764
1201.4 1226.1 1249.1 1271.0 1297.6 1323.5 1349.2 1374.7
s 1.5596 1.5884 1.6139 1.6373 1.6642 1.6894 1.7130 1.7355

2.438 2.585 2.726 2.895 3.060 3.221 3.380
1222.9 1246.5 1268.9 1295.8 1322.1 1348.0 1373.6
S 1.5738 1.6001 1.6240 1.6513 1.6767 1.7006 1.7232

2.198 2.335 2.465 2.621 2.772 2.920 3.066
1219.5 1243.8 1266.7 1294.1 1320.7 1346.8 1372.6
S 1.5603 1.5874 1.6117 1.6395 1.6652 1.6892 1.7120

1.8257 1.9483 2.063 2.199 2.330 2.457 2.582
1212.4 1238.3 1262.3 1290.5 1317.7 1344.3 1370.4
S 1.5354 1.5642 1.5897 1.6184 1.6447 1.6692 1.6922

1.5513 1.6638 1.7675 1.8891 2.005 2.118 2.227
1204.8 1232.5 1257.6 1286.8 1314.7 1341.8 1368.3
S 1.5126 1.5434 1.5701 1.5998 1.6268 1.6517 1.6751

1.3984 1.4923 1.6010 1.7036 1.8021 1.8980
1224.8 1251.5 1282.1 1310.9 1338.5 1365.5
S 1.5197 1.5481 1.5792 1.6070 1.6325 1.6563

100 (327.81)

o<

120 (341.25)

=<

140 (353.02)

=<

160 (363.53)

=<

180 (373.06)

=<

200 (381.79)

=S

220 (389.86)

=S

260 (404.42)

=

300 (417.33)

=S

350 (431.72)

=<

400 (444.59) v 1.1978 1.2851 1.3843 1.4770 1.5654 1.6508
h 1216.5 1245.1 1277.2 1306.9 1335.2 1362.7
S 1.4977 1.5281 1.5607 1.5894 1.6155 1.6398

(continued)
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Table 2.4.3 (continued)

Pressure, Temperature of steam, deg F
psia (Saturation
temp. deg F) 340 380 420 460 500 550 600 650 700
450 (456.28) v 1.1231 1.2154 1.3005 1.3810 1.4584 1.5337 1.6074 1.7516 1.8926
h 1238.4 1272.0 1302.8 1331.9 1359.9 1387.3 1414.3 1467.7 1521.0
s 1.5095 1.5437 1.5735 1.6003 1.6250 1.6481 1.6699 1.7108 1.7486
500 (467.01) v 0.9927 1.0798 1.1591 1.2333 1.3044 1.3732 1.4405 1.5715 1.6996
h 1231.3 1266.7 1298.6 1328.4 1357.0 1384.8 1412.1 1466.0 1519.6
s 1.4919 1.5279 1.5588 1.5663 1.6115 1.6350 1.6571 1.6982 1.7363
550 (476.94) v 0.8852 0.9686 1.0431 1.1124 1.1783 1.2419 1.3038 1.4241 1.5414
h 1223.7 1261.2 1294.3 1324.9 1354.0 1382.3 1409.9 1464.3 1518.2
s 1.4751 1.5131 1.5451 1.5734 1.5991 1.6228 1.6452 1.6868 1.7250
600 (486.21) v 0.7947 0.8753 0.9463 1.0115 1.0732 1.1324 1.1899 1.3013 1.4096
h 1215.7 1255.5 1289.9 1321.3 1351.3 1379.7 1407.7 1462.5 1516.7
s 1.4586 1.4990 1.5323 1.5613 1.5875 1.6117 1.6343 1.6762 1.7147
700 (503.10) v 0.7277 0.7934 0.8525 0.9077 0.9601 1.0108 1.1082 1.2024
h 1243.2 1280.6 1313.9 1345.0 1374.5 1403.2 1459.0 1513.9
s 1.4722 1.5084 1.5391 1.5665 1.5914 1.6147 1.6573 1.6963
800 (518.23) \ 0.6154 0.6779 0.7328 0.7833 0.8308 0.8763 0.9633 1.0470
h 1229.8 1270.7 1306.2 1338.6 1369.2 1398.6 1455.4 1511.0
s 1.4467 1.4863 1.5190 1.5476 1.5734 1.5972 1.6407 1.6801
900 (531.98) \ 0.5264 0.5873 0.6393 0.6863 0.7300 0.7716 0.8506 0.9262
h 1215.0 1260.1 1298.0 1332.1 1363.7 1393.9 1451.8 1508.1
s 1.4216 1.4653 1.5002 1.5303 1.5570 1.5814 1.6257 1.6656
1,000 (544.61) \% 0.4533 0.5140 0.5640 0.6084 0.6492 0.6878 0.7604 0.8294
h 1198.3 1248.8 1289.5 1325.3 1358.1 1389.2 1448.2 1505.1
s 1.3961 1.4450 1.4825 1.5141 1.5418 1.5670 1.6121 1.6525
1,100 (556.30) v 0.4632 0.5020 0.5445 0.5830 0.6191 0.6866 0.7503
h 1236.7 1280.5 1318.3 1352.4 1384.3 1444.5 1502.2
s 1.4251 1.4656 1.4989 1.5276 1.5535 1.5995 1.6405
1,200 (567.22) v 0.4016 0.4498 0.4909 0.5277 0.5617 0.6250 0.6843
h 1223.5 1271.0 1311.0 1364.4 1379.3 1440.7 1499.2
s 1.4052 1.4491 1.4843 1.5142 1.5409 1.5879 1.6293
1,400 (587.10) v 0.3174 0.3668 0.4062 0.4403 0.4714 0.5281 0.5805
h 1193.0 1250.6 1295.5 1334.0 1369.1 1433.1 1493.2
s 1.3639 1.4171 1.4567 1.4893 1.5177 1.5666 1.6093
1,600 (604.90) v 0.3027 0.3417 0.3743 0.4034 0.4553 0.5027
h 1227.3 1278.7 1320.9 1358.4 1425.3 1487.0
s 1.3800 1.4303 1.4660 1.4964 1.5476 1.5914
1,800 (621.03) v 0.2506 0.2907 0.3225 0.3502 0.3986 0.4421
h 1200.3 1260.3 1307.0 1347.2 14174 1480.8
s 1.3515 1.4044 1.4438 1.4765 1.5301 1.5752
2,000 (635.82) v 0.2058 0.2489 0.2806 0.3074 0.3532 0.5935
h 1167.0 1240.0 1292.0 1335.5 1409.2 1474.5
s 1.3139 1.3783 1.4223 1.4576 0.5139 1.5380
2,200 (649.46) v 0.1633 0.2135 0.2457 0.2721 0.3159 0.3538
h 1121.0 12174 1276.0 1323.3 1400.8 1468.2
s 1.2665 1.3515 1.4010 1.4393 1.4986 1.5465

Sourck: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co.,

New York, 1967.
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Table 2.4.4 Steam Table for Use in Condenser Calculations
Abs pressure Specific volume Enthalpy Entropy
Temp Psi In. Hg Sat Sat Sat Sat Sat
degF, t vapor, Vg liquid, h¢ Evap. hgy vapor, hy liquid, s¢ vapor, sg
50 0.17811 0.3626 1703.2 18.07 1065.6 1083.7 0.0361 2.1264
52 0.19182 0.3906 1587.6 20.07 1064.4 1084.5 0.0400 2.1199
54 0.20642 0.4203 1481.0 22.07 1063.3 1085.4 0.0439 2.1136
56 0.2220 0.4520 13824 24.06 1062.2 1086.3 0.0478 2.1072
58 0.2386 0.4858 1291.1 26.06 1061.0 1087.1 0.0517 2.1010
60 0.2563 0.5218 1206.7 28.06 1059.9 1088.0 0.0555 2.0948
62 0.2751 0.5601 11284 30.05 1058.8 1088.9 0.0593 2.0886
64 0.2951 0.6009 1055.7 32.05 1057.6 1089.7 0.0632 2.0826
66 0.3164 0.6442 988.4 34.05 1056.5 1090.6 0.0670 2.0766
68 0.3390 0.6903 925.9 36.04 1055.5 1091.5 0.0708 2.0706
70 0.3631 0.7392 867.9 38.04 1054.3 1092.3 0.0745 2.0647
72 0.3886 0.7912 813.9 40.04 1053.2 1093.2 0.0783 2.0588
74 0.4156 0.8462 763.8 42.03 1052.1 1094.1 0.0820 2.0530
76 0.4443 0.9046 717.1 44.03 1050.9 1094.9 0.0858 2.0473
78 0.4747 0.9666 673.6 46.02 1049.8 1095.8 0.0895 2.0416
80 0.5069 1.3021 633.1 48.02 1048.6 1096.6 0.0932 0.0360
82 0.5410 1.1016 595.3 50.01 1047.5 1097.5 0.0969 2.0304
84 0.5771 1.1750 560.2 52.01 1046.4 1098.4 0.1005 2.0249
86 0.6152 1.2527 527.3 54.00 1045.2 1099.2 0.1042 2.0195
88 0.6556 1.3347 496.7 56.00 1044.1 1100.1 0.1079 2.0141
90 0.6982 1.4215 468.0 57.99 1042.9 1100.9 0.1115 2.0087
92 0.7432 1.5131 441.3 59.99 1041.8 1101.8 0.1151 2.0034
oL} 0.7906 1.6097 416.2 61.98 1040.7 1102.6 0.1187 1.9981
96 0.8407 1.7117 392.8 63.98 1039.5 1103.5 0.1223 1.9929
98 0.8935 1.8192 370.9 65.97 1038.4 11044 0.1259 1.9877
100 0.9492 1.9325 350.4 67.97 1037.2 1105.2 0.1295 1.9826
102 1.0078 2.0519 331.1 69.96 1036.1 1106.1 0.1330 1.9775
104 1.0695 2.1775 313.1 71.96 1034.9 1106.9 0.1366 1.9725
106 1.1345 2.3099 296.2 73.95 1033.8 1107.8 0.1401 1.9675
108 1.2029 2.4491 280.3 75.95 1032.7 1108.6 0.1436 1.9626
110 1.2748 2.5955 265.4 77.94 1031.6 1109.5 0.1471 1.9577
112 1.3504 2.7494 251.4 79.94 1030.4 1110.3 0.1506 1.9529
114 1.4298 29111 238.2 81.93 1029.2 1111.1 0.1541 1.9481
116 1.5130 3.0806 225.8 83.93 1028.1 1112.0 0.1576 1.9433
118 1.6006 3.2589 214.2 85.92 1026.9 1112.8 0.1610 1.9386
120 1.6924 3.4458 203.27 87.92 1025.8 1113.7 0.1645 1.9339
122 1.7888 3.6420 192.95 89.92 1024.6 1114.5 0.1679 1.9293
124 1.8897 3.8475 183.25 91.91 1023.4 1115.3 0.1714 1.9247
126 1.9955 4.0629 174.10 93.91 1022.3 1116.2 0.1748 1.9202
128 2.1064 4.2887 165.47 95.91 1021.1 1117.0 0.1782 1.9156
130 2.2225 4.5251 157.34 97.90 1020.0 1117.9 0.1816 1.9112
132 2.3440 4.7725 149.66 99.90 1018.8 1118.7 0.1849 1.9067
134 2.4712 5.0314 142.42 101.90 1017.6 1119.5 0.1883 1.9023
136 2.6042 5.3022 135.58 103.90 1016.4 1120.3 0.1917 1.8980
138 2.7432 5.5852 129.12 105.89 1015.3 1121.2 0.1950 1.8937
140 2.8886 5.8812 123.01 107.89 1014.1 1122.0 0.1984 1.8894
142 3.0440 6.1903 117.23 109.89 1012.9 1122.8 0.2016 1.8851
144 3.1990 6.5132 111.77 111.89 1011.7 1123.6 0.2049 1.8809
146 3.365 6.850 106.60 113.89 1010.6 1124.5 0.2083 1.8768
148 3.537 7.202 101.71 115.89 1009.4 1125.3 0.2116 1.8726
150 3.718 7.569 97.07 117.89 1008.2 1126.1 0.2149 1.8685

Source: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co.,
New York, 1967.
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Table 2.4.5 Properties of Carbon Dioxide (h; and s are measured form 32°F)

Density 1b per cu ft Enthalpy, Btu Entropy
Temp. Pressure, Sat Sat Sat Vaporization, Sat Sat Sat
degF t psia, p liquid vapor liquid, hg¢ hygy vapor, h, liquid s¢ Vapor, Se
—40 145.87 69.8 1.64 —38.5 136.5 98.0 —0.0850 0.2400
-35 161.33 69.1 1.83 -35.8 134.3 98.5 —0.0793 0.2367
-30 177.97 68.3 2.02 -33.1 132.1 99.0 —-0.0735 0.2336
-25 195.85 67.6 2.23 -30.4 129.8 994 —0.0676 0.2306
—-20 215.02 66.9 2.44 —-27.7 127.5 99.8 —0.0619 0.2277
-15 235.53 66.1 2.66 —24.9 125.0 100.1 —0.0560 0.2250
-10 257.46 65.3 2.91 -22.1 122.4 100.3 —0.0500 0.2220
-5 280.85 64.5 3.17 -194 120.0 100.6 —0.0440 0.2198
0 305.76 63.6 3.46 -16.7 117.5 100.8 —0.0381 0.2173
5 332.2 62.8 3.77 -14.0 115.0 101.0 —0.0322 0.2151
10 360.4 61.9 4.12 —11.2 112.2 101.0 —0.0264 0.2124
15 390.2 61.0 4.49 -84 109.4 101.0 —0.0204 0.2100
20 421.8 60.0 4.89 -5.5 106.3 100.8 —0.0144 0.2071
25 455.3 59.0 5.33 —-2.5 103.1 100.6 —0.0083 0.2043
30 490.6 58.0 5.81 +04 99.7 100.1 —0.0021 0.2012
35 528.0 57.0 6.35 35 95.8 99.3 +0.0039 0.1975
40 567.3 55.9 6.91 6.6 91.8 98.4 0.0099 0.1934
45 608.9 54.7 7.60 9.8 87.5 97.3 0.0160 0.1892
50 652.7 53.4 8.37 12.9 83.2 96.1 0.0220 0.1852
55 698.8 52.1 9.27 16.1 78.7 94.8 0.0282 0.1809
60 7474 50.7 10.2 194 74.0 93.4 0.0345 0.1767
65 798.6 49.1 11.3 22.9 68.9 91.8 0.0412 0.1724
70 852.4 47.3 12.6 26.6 62.7 89.3 0.0482 0.1665
75 909.3 45.1 14.2 30.9 54.8 85.7 0.0562 0.1587
80 969.3 42.4 16.2 35.6 44.0 79.6 0.0649 0.1464
85 1032.7 38.2 19.1 41.7 27.5 69.2 0.0761 0.1265
88 1072.1 32.9 25.4 Critical point at 88.43°F

Source: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co.,

New York, 1967.



Table 2.4.6 Properties of Propane and Butane

Propane (CsHy) (Heat measurement are from 0°F) Butane (C4H;y) (Heat measurements are from 0°F)

Specific volume of Enthalpy, Btu per Ib Entropy Specific volume of Enthalpy, Btu per 1b Entropy

Temp, deg F Pressure, psia  vapor, cuftperlb  Liquid hy Vaporh, Liquids; VaporS, Pressure,psia  vapor, cuftperlb Liquidh; Vaporh, LiquidS; Vapor S,

—70 7.37 12.9 -37.0 152.5 —0.086  0.400
—60 9.72 9.93 -32.0 155.0 —0.074  0.393
-50 12.6 7.74 —26.5 158.0 —0.061  0.389
—40 16.2 6.13 -21.5 160.0 —0.049  0.384
-30 20.3 4.93 -16.0 163.0 —0.036  0.380
—20 254 4.00 —11.0 165.0 —0.024 0377
-10 314 3.26 -5.5 168.0 —0.012  0.374
0 38.2 2.71 0 170.5 0.000 0.371 7.3 11.10 0 170.5 0.000 0.371
+10 46.0 2.27 5.5 173.5 0.012 0.370 9.2 8.95 5.5 174.0 0.011 0.370
20 55.5 1.90 11.0 176.0 0.024 0.368 11.6 7.23 10.5 177.5 0.022 0.370
30 66.3 1.60 17.0 179.0 0.035 0.366 14.4 5.90 16.0 181.5 0.033 0.371
40 78.0 1.37 23.0 182.0 0.047 0.366 17.7 4.88 21.5 185.0 0.044 0.371
50 91.8 1.18 29.0 185.0 0.059 0.365 21.6 4.07 27.0 188.5 0.056 0.373
60 107.1 1.01 35.0 188.0 0.070 0.364 26.3 3.40 33.0 192.5 0.067 0.374
70 124.0 0.883 41.0 190.5 0.082 0.364 31.6 2.88 38.5 196.0 0.078 0.375
80 142.8 0.770 47.5 193.5 0.093 0.364 37.6 2.46 44.5 199.5 0.089 0.376
90 164.0 0.673 54.0 196.5 0.105 0.364 44.5 2.10 51.0 203.0 0.100 0.377
100 187.0 0.591 60.5 199.0 0.116 0.363 52.2 1.81 57.0 206.5 0.111 0.378
110 212.0 0.521 67.0 201.0 0.128 0.363 60.8 1.58 63.5 210.5 0.122 0.380
120 240.0 0.459 73.5 202.5 0.140 0.363 70.8 1.38 70.0 213.5 0.134 0.382
130 81.4 1.21 76.5 217.0 0.145 0.384
140 92.6 1.07 83.5 221.0 0.157 0.386

Source: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co., New York, 1967.
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Table 2.4.7 Properties of Freon 11 and Freon 12

89-¢

Freon 11(CChF) (Heat measurement are from —40°F) Freon 12(CCh F») (Heat measurements are from —40°F)

Enthalpy, Btu per Ib Entropy Enthalpy, Btu per Ib Entropy

Specific volume of Specific volume of

Temp, deg F Pressure, psia vapor, cuftperlb  Liquid hy Vaporh, Liquids; VaporS, Pressure,psia vapor,cuftperlb  Liquidh; Vaporh, LiquidS; Vapor Sg

—40 0.739 44.2 0.00 87.48 0.0000  0.2085 9.3 3.91 0.00 73.50 0.0000 0.1752
-30 1.03 32.3 1.97 88.67 0.0046  0.2064 12.0 3.09 2.03 74.70 0.00471  0.1739
-20 1.42 24.1 3.94 89.87 0.0091  0.2046 15.3 2.47 4.07 75.87 0.00940  0.1727
—-10 1.92 18.2 591 91.07 0.0136  0.2030 19.2 2.00 6.14 77.05 0.01403  0.1717
0 2.55 13.9 7.89 92.27 0.0179  0.2015 23.9 1.64 8.25 78.21 0.01869  0.1709
10 3.35 10.8 9.88 93.48 0.0222  0.2003 29.3 1.35 10.39 79.36 0.02328  0.1701
15 3.82 9.59 10.88 94.09 0.0244  0.1997 32.4 1.23 11.48 79.94 0.02556  0.1698
20 4.34 8.52 11.87 94.69 0.0264  0.1991 35.7 1.12 12.55 80.49 0.02783  0.1695
25 4.92 7.58 12.88 95.30 0.0285  0.1986 39.3 1.02 13.66 81.06 0.03008  0.1692
30 5.56 6.75 13.88 95.91 0.0306  0.1981 43.2 0.939 14.76 81.61 0.03233  0.1689
35 6.26 6.07 14.88 96.51 0.0326  0.1976 47.3 0.862 15.87 82.16 0.03458  0.1686
40 7.03 5.45 15.89 97.11 0.0346  0.1972 51.7 0.792 17.00 82.71 0.03680  0.1683
45 7.88 4.90 16.91 97.72 0.0366  0.1968 56.4 0.730 18.14 83.26 0.03903  0.1681
50 8.80 4.42 17.92 98.32 0.0386  0.1964 61.4 0.673 19.27 83.78 0.04126  0.1678
55 9.81 4.00 18.95 98.93 0.0406  0.1960 66.7 0.622 20.41 84.31 0.04348  0.1676
60 10.9 3.63 19.96 99.53 0.0426  0.1958 72.4 0.575 21.57 84.82 0.04568  0.1674
70 13.4 2.99 22.02 100.73 0.0465  0.1951 84.8 0.493 23.90 85.82 0.05009  0.1670
80 16.3 2.49 24.09 101.93 0.0504  0.1947 98.8 0.425 26.28 86.80 0.05446  0.1666
90 19.7 2.09 26.18 103.12 0.0542  0.1942 114.3 0.368 28.70 87.74 0.05882  0.0662
100 23.6 1.76 28.27 104.30 0.0580  0.1938 131.6 0.319 31.16 88.62 0.06316  0.1658
110 28.1 1.50 30.40 105.47 0.0617  0.1935 150.7 0.277 33.65 89.43 0.06749  0.1654
120 33.2 1.28 32.53 106.63 0.0654  0.1933 171.8 0.240 36.16 90.15 0.07180  0.1649
130 39.0 1.10 34.67 107.78 0.0691  0.1931 194.9 0.208 38.69 90.76 0.07607  0.1644

Source: Baumeister T., and Marks, L. S., eds., Standard Handbook for Mechanical Engineers, Seventh edition, McGraw-Hill Book Co., New York, 1967.
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2.5 GEOLOGICAL ENGINEERING

Geology is the study of the Earth, its internal and sur-
face composition, structure, and the processes that cause
changes in its composition and structure. The Earth is
constantly changing. The processes within the Earth and
the history of these processes are important factors in
determining how minerals deposits were formed, where
they accumulated, and how they have been preserved. The
composition and structure of the Earth and the history of
the processes that resulted in the present geological set-
tings of rocks are very important in the prediction of where
accumulations of economically valuable hydrocarbons (oil
and gas) may be found.

Studies of surface geological features and interpreta-
tions of past processes, coupled with surface geophysical
investigation techniques such as seismic, gravity, mag-
netic, radioactive, electrical, and geochemical methods, are
used to locate probable subsurface target regions that
may contain economically valuable accumulations of hydro-
carbons. However, only by drilling from the surface to
these subsurface regions is it possible to definitely assess
whether hydrocarbons exist and to determine quantitatively
their distribution and composition. Drilling from the sur-
face — whether on land or from floating platforms — allows
drill holes to test subsurface rocks and provides a direct
sampling of rocks and fluids from subsurface regions. These
subsurface fluids, if present, can be assessed for their
economic value.

Geology is important in exploring for hydrocarbons, and
engineers must study the present composition and structure
of the Earth to successfully drill boreholes. After hydrocar-
bons have been found and have proved to be economically
recoverable, studies of the physical and chemical aspects of
the Earth in such regions are important to production and
reservoir engineering. These studies help to ensure that the
accumulated hydrocarbons are recovered in an economic
and a sustainable manner.

2.5.1 General Rock Types

The Earth is composed of three general rock types: igneous,
sedimentary, and metamorphic. Reference 1 provides a
general background of these three rock types and their

relationships in the rock cycle, sometimes called the rock
recycle.

Igneous rocks represent the solidified products of magma-
tism and volcanism — processes that bring molten materials
close to the Earth’s surface, allowing these materials to
erupt on the surface (volcanic rocks) or freeze at shal-
low levels within (intrusive or plutonic rocks) the Earth.
Such rocks comprise variable yet definable mineral assem-
blages, usually constituting relatively dense, compact, and
weakly porous materials. Fracturing in igneous rocks
may provide substantial permeability; however, because
igneous rocks generally are not found in sedimentary
basins that otherwise would preserve hydrocarbon accumu-
lations, this rock type seldom hosts significant hydrocarbon
concentrations.

Sedimentary rocks comprise materials derived from the
weathering and erosion of preexisting rocks and soils.
These materials have been variably consolidated and
cemented (clastic sedimentary rocks) or precipitated
directly from water (chemical sedimentary rocks). Partic-
ulate materials and dissolved rock components are trans-
ported by water, wind, and ice (as glaciers) to new locations,
where they eventually assemble by means of the general
process of lithification into a new rock mass. The eroded
material from which sedimentary rocks are derived, called
protolith, may be igneous, sedimentary, or metamorphic or
some combination of these forms. During the process of
weathering and erosion, especially by water, geochemical
components of the original rock mass may be dissolved
and may therefore be transported separately from the orig-
inal rock fragments. This is an important characteristic of
the genesis of sedimentary rocks because such dissolved
components may reprecipitate —re-form from solution —
and constitute the cementing agent in sedimentary rocks.
These pore-filling cements are very important in determin-
ing the hydrocarbon storage capacity of sedimentary rock
units and require assessment for any rock considered a
potential hydrocarbon source.

Metamorphic rocks represent igneous, sedimentary, or
other metamorphic rocks that have changed texturally and,
in some cases, compositionally. Because the processes
that engender these changes—called metamorphism —
involve application of substantial heat and pressure to the
original rock, changes may take place in the rock that
preclude or inhibit completely the ability of the rock to pro-
duce or store hydrocarbons. These temperature-pressure
effects may force rocks to endure conditions outside of
the “petroleum window” defining suitable conditions for
hydrocarbon generation and storage. These changes usually
result in a reduction in pore volume by means of com-
paction and consolidation, including mineral deformation;
therefore, metamorphic rocks, unless they are near the sur-
face and well fractured, seldom make suitable storage media
for hydrocarbons.

2.5.2 Historical Geology

Based on studies of radioactive isotopes derived from mete-
orites, the age of the Earth is estimated to be approxi-
mately 4,650 million years; the oldest known rocks, found
in metamorphic rock assemblages in northern Canada and
in Australia, are approximately 3,800 million years old [2].
Radiometric age dating, first devised in the early part of the
20th century, provides geologists with a means of establish-
ing the absolute ages of rock units containing radioactive
minerals that were formed at the same time as the enclos-
ing rock. However, in the search for petroleum and gas
resources and because most hydrocarbons occur in sedi-
mentary rocks, petroleum geologists rely on the relative
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geological ages of rock units to unravel the sedimentary
and structural history of potential hydrocarbon-bearing
rocks.

Geologists generally use two characteristics of geologi-
cal processes to determine the relative ages of rock units,
especially of sedimentary rock sequences.

1. The principle of uniformity states that the internal and
external processes affecting the Earth today have been
operating unchanged and at the same rates throughout
the developmental history of Earth. This means that an
historical geological event preserved in the rock record
can be identified and compared to similar events occur-
ring at the present time in terms of the elapsed time
and the geological processes necessary for that event to
have occurred. Therefore, rates of deposition, erosion,
igneous emplacement, and structural development are
preserved in the geological column and can be compared
with current similar processes [2,3].

2. Relative time is based on the occurrence of geologi-
cal events relative to each other. Dating in this manner
requires the development of a sequence of events that
can be established on the basis of obvious consecutive
criteria, as indicated later. This requires the geologist
to identify a geological continuum such that the events
within the sequence are sufficiently identifiable (events
such as uplift, erosion, and deposition) and widespread
(acting over geographically large areas on the scale of
hundreds of square kilometers) to have practical signif-
icance. Such dating in relative time allows events to be
identified throughout the world [2,3].

Examples of the types of observations used to establish
relative time are given in the following list:

o Superposition is fundamental to the study of layered rocks.
This means that in a normal layered sedimentary rock
sequence, the oldest rocks were deposited first and are
at the sedimentary base of the sequence. Younger rocks
were deposited last and are at the top of the sequence.

o Succession of flora and fauna refers to the deposition
of sedimentary material that includes the remains of
contemporaneous plant and animal life. Fossils of these
plants and animals may be preserved in the rock for-
mations that result from the processes of deposition
and lithification. The presence, absence, or change of the
plant and animal life within a sequence of the geologi-
cal column, as indicated by the presence, abundance, and
diversity of fossil evidence, provides important informa-
tion that allows geologists to correlate rock formations
and thereby relative time from area to area. The fos-
sil records within sedimentary sequences also provide
important information regarding the evolution of life
through geological time.

o Inclusion of one rock type within another indicates that
the included rock is necessarily older than the rock in
which it is enclosed. This is significant in interpretation of
sedimentary sequences, especially those that have been
structurally deformed by faulting or folding, because it
allows a geologist to ascertain lateral and vertical conti-
nuity of rock units or structures that may comprise source
regions or host rocks for hydrocarbons.

o Cross-cutting relationships are essential for the determi-
nation of the relative ages of rocks that show rock-to-rock
contact. The idea is that any rock (especially igneous
rocks) or structure (such as a fault or sedimentary bed-
ding feature) that transects or “cuts” another must be
younger than that feature. The feature that has been
transected must have been present (older) before the
cross-cutting feature (younger) existed.

e Physiographic development of the surface of the earth
refers to the landforms and shapes of the landscape.
These surface features are subject to continuous change
from constructive (e.g., uplift, volcanic activity, deposition
of sediments) and destructive (e.g., erosion) processes.
Landform modifications are continuous and sequential.
These modifications establish a predictable continuity
that can be helpful in determining certain aspects of
relative geologic ages.

The relationship between time units, time-rock units, and
rock units is as follows:

Time Units Time-Rock Units Rock Units
Eon

Era Erathem Group
Period System Formation
Epoch Series Member
Age Stage

This system for keeping track of these important units is
used as the basis for the standard geologic time and the evo-
lution of the animal life on earth. (See also Tables 2.5.1. and
2.5.2.) Table 2.5.3 gives the relationship between geologic
time and important physical and evolutionary events that
are used to aid in the identification of rock units in relative
geologic time [3].

2.5.3 Petroleum Geology

Empirical field evidence has led geologists to conclude that
nearly all economically important liquid and gas hydrocar-
bon accumulations are associated with sedimentary rocks.
This evidence suggests that hydrocarbons represent ther-
mally altered organic material derived from microscopic
plant and animal life. This microscopic plant and animal life
thrived in terrestrial and aquatic environments through geo-
logical time, but since the start of the Paleozoic era (see Table
2.5.1). Occasionally, these life forms were deposited in geo-
chemically significant quantities along with fine-grain sedi-
ments, especially in marine environments along or adjacent
to continental margins.

Organic material deposited with these marine sediments
becomes entrained with the clastic debris and eventually
forms sedimentary source rocks. Whether a sedimentary
sequence becomes a substantial source of hydrocarbons is
a function of a number of physical and geochemical param-
eters, including the origin and amount of original organic
materials deposited, the burial and thermal history (see dis-
cussion of Equation 2.5.1) of the evolving sediment-to-rock
mass, and the nature and continuity of permeability within
the source rock. Conversion of organic matter to various lig-
uid and gaseous hydrocarbons takes place as heat, pressure,
and biological activity geochemically change the entrained
organic materials in areducing environment through a series
of processes collectively called maturation. If geochemi-
cally significant oxygen is present during any stages of the
hydrocarbon maturation process, at least some of the hydro-
carbons will be destroyed by oxidation and will be converted
to water plus carbon dioxide with or without sulfur.

Because trapping of organic materials with resultant
prevention of organic material oxidation is essential to the
generation of economically important hydrocarbon accumu-
lations, rapid burial of organic-bearing sediments is geo-
logically favorable; as such, sedimentary basins in which
sediment input is high and basins in which reducing con-
ditions are maintained over extended periods, along with
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Table 2.5.1 The Standard Geological Column [1]

Relative Geologic Time
Era Period Epoch Atomic Time*
Holocene
Quaternary y
Pleistocene on
Pliocene 12
Cenozoic Miocene o
Tertiary Oligocene 3738
Eocene 53-54
Paleocene -
Cretaceous Eate
arly
136
Late
Mesozoic Jurassic Middie
Early
190-195
Late
Triassic Middie
Early e
Permian Late
Early e
Late
Carboniferous Pennsylvanian Middle
Early
. . Late
Systems Mississippian Early sis
Late
Paleozoic Devonian Middie
Early 05
Late
Silurian Middle
Early 430-440-
Late
Ordovician Middle
Early 500
Late
Cambrian Middte
Early 00
Precambrian 3600
"Estimated ages of time boundaries (millions of years)
Table 2.5.2 Geological Time and Evolution of Ancient Life [3]
Approx. Age .
PP Period or System
Era in Millions Pariod 4lors 10 4 e mensure:
of Years System refers to the rocks deposited during a period.
(Radioactivity)
Recent (Holocene) ﬁ Humans
Pleistocene Neogene v ﬁ X
) Pliocene Birds
Cenozoic 7 Miocene Mammals
" 2% Tertiary Oligocene
37-38 Eocene Paleogene
53-54 Paleocene
65
Cretaceous \ / ///\\ s\ [
Y/ @
oo o \ 7 THEE]]
Jurassic a
190-195 \4
Triassic \ / I \ \\\. //‘y
225 == -
Permian / \ \ 2 W Reptiles
280 Pennsylvanian / \ [
ivant
310 i Carboniferous —
345 Mississippian / \ -
Devonian ( Fish ) ; Amphibians
Paleozoic 395 b= —
430-440 Siturian . A
Ordovician Y
|
500 1
Cambrian :
I
570
700 First multi-celled organisms
Precambrian 3,400 First one-celled organisms
4.000 Approximate age of oldest rocks discovered
4,500 Approximate age of metecrites
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Table 2.5.3 Geological Time and Important Events [3]

Radiometric
Uniform visi Dates i
Time Subdivisions Based on Strata/Time (millions of Outstanding Events _ ‘
Scale iods ies/Ep years ago) In Physical History In Evolution of Living Things
l—o it
Recent or Holocene Several glacial ages Homo sapiens
] Quaternary Pleistocene
E : < Later hominids
] Pliocene
H " .
£ g M Colorado Piver begins Primitive hominids
an o Miocene Grasses; grazing mammals
580 3 22 Mountains and basins in
§ Tertiary Ofigocene Nevada
Eocene Yellowstone Park volcanism | Primitive horses
Palgocene
— i i Spreading of mammais
C h Rocky Mountains begin Dinosaurs extinct
retaceous ississippi Ri
tg;;’sstsmslppi River Flowering plants
g ——145— Climax of dinosaurs
§ Jurassic Birds
]
= ——210— conh I
onifers, cycads, primitive
Triassic f Atiantic Ocean begins mammais ve P
§ Dinosaurs
§ 3 = Appalachian Mountains
s Permian climax Mammat-like reptiles
[
- ——280——
Pennsylvanian P
(Upper = )
Carboniferous) g Coal forests, insects,
s ————— = —-=320—— amphibians, reptiles
5 Mississippian
E {Lower
3 o Carboniferous)
5 E ——360—— Amphibians
8 | Devonian
w
° [—415~—
Siturian Land plants and land ani-
mals
Ordovician {opaiachian Mountains Primitive tishes
——520——
Cambrian Marine animais abundant
58!
y Primitive marine animals
FPrecambrian L— —
(Mainly igneous and metamorphic rocks; 1.000 Green aigae
no worldwide subdivisions.) [——2.,000——
——a,000— Oldest dated rocks Bacteria, blue green algae
~4,650 Birth of Planet Earth (—~4,650

input of elevated amounts of marine organic materials, are
considered most prospective for hydrocarbon-source rocks.
For this reason, geologists and geophysicists are employed
to interpret the sedimentation and tectonic history and
the lithologic settings of rock volumes that are considered
favorable for petroleum and gas occurrence [3-6].

2.5.3.1 Source Rocks

Source regions for hydrocarbons are required to have a
substantial input of organic material and, to preserve that
material so that it may mature in to liquid and gaseous
hydrocarbons, a geochemically reducing environment.
Restricted sedimentary basins accumulating detrital conti-
nental debris and marine organic matter represent the most
favorable environments for the storage and generation of
hydrocarbons.

Generation of chemically precipitated sediments, notably
limestones and related calcareous components of clastic
rocks, usually results in at least initial trapping of organic
matter. This matter may be released for migration after frac-
turing of the host carbonate or if the carbonate is subjected to
thermal stress such that volatile organic materials are driven
from the otherwise stable carbonate source rock. Other
chemical precipitates such as gypsum (a sulfate), halite, and
related halide minerals such as potash salts and anhydrite
derived from gypsum may host organic matter as a burial

component and therefore may serve as source rocks under
some sedimentary-geochemical conditions.

2.5.3.2 Migration
Organic matter buried in reducing environments (usually of
marine nature) may accumulate in sufficient quantities to
be considered geochemically and economically important
source rocks. Because of thermal and load stresses applied
to such sediments and the organic materials they host, this
organic matter may change chemically and may be driven
from the source rock along more permeable and porous
pathways. These chemically and thermally changed hydro-
carbons may, if structural and thermal conditions permit
(see sections on “Structural Geology” and “Traps”), cease
migration, accumulating in rock masses called reservoir rock.
This migration from source to reservoir is generated by
hydrodynamic forces, thermal stress, or a combination of
these factors. Water generally moves in conjunction with
hydrocarbons and is usually segregated from gas and oil
by buoyancy (density) contrast (Figure 2.5.1). Migration of
hydrocarbons is attenuated or ceases entirely when applied
stresses, the existing stress regime of enclosing rock, and
hydrocarbon with or without water pore pressures reach
transient equilibrium. Because such equilibrium is dynamic
and therefore transient, fluids may continue to migrate if any
of the factors controlling fluid movement are changed.
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Figure 2.5.1 Anticlinal hydrocarbon accumulation.

2.5.3.3 Accumulation
Accumulation and storage of hydrocarbons occurs when
structural settings appropriate to the preservation of oil
and gas (see section on “Traps”) receive hydrocarbons and,
usually, water. The migration of hydrocarbons is strongly
influenced by geological structures and the nature and
lateral continuity of sedimentary rock bedding features
(see Figure 2.5.10). Gases generally travel as dissolved
components of liquid hydrocarbons or as a component of
water. The amount of gas dissolved and therefore trans-
ported is a function of the temperature and pressure of the
source region and adjacent rock masses through which the
hydrocarbon-water fluids pass. After accumulation, hydro-
carbons tend to stratify according to the relative densities
of gas, oil, and water, with gases accumulating in the struc-
turally highest portions of the reservoir, liquid hydrocarbons
lower, and water lowest. Most reservoirs “leak” some-
what, with lighter components, such as gases and lighter
liquid hydrocarbon fractions, capable of continuing migra-
tion, effectively leaving behind heavier and more viscous
hydrocarbons.

After hydrocarbons accumulate in a rock mass serving as
a reservoir, the hydrocarbons must be preserved from oxi-
dation, from escape along other structural avenues, and from
bacterial activity that might convert the hydrocarbons to sul-
fur, as in sulfur deposits of west Texas, the Gulf Coast region
of the southern United States, the Misraq area of eastern
Iraq, and southern Poland. Because the Earth is dynamic,
the stability of any reservoir rock is transitory, and rocks
that otherwise appear to be excellent storage media may
no longer host hydrocarbons because of changes in local or
regional structural, tectonic, or sedimentary regimes.

2.5.4 Structural Geology

The law of original horizontality states that all sediments
are deposited essentially horizontally in response to grav-
ity and the approximate Stoke’s law of settling of particles.
Sedimentary rocks, originally deposited as horizontal or
near-horizontal sediment beds, undergo diagenetic changes
that result in variable lithification. Because of the dynamic
nature of Earth forces, sedimentary rocks are subject to
myriad stresses and changes in stress regimes. Rock masses
respond to such stress and stress changes by deform-
ing, with deformation taking place on scales varying from
microscopic to hundreds of kilometers.

Sedimentary rocks generally show deformation by the
rearrangement of mineral grains (microscopic) and the
larger-scale folding or fracturing of rock units; such fold-
ing and fracturing display variations in scale from micro-
scopic offset of mineral grains to folds having wavelengths
measured in tens to hundreds of kilometers.

These structural features of deformed sedimentary rock
sequences comprise some of the most important reservoirs
for hydrocarbons and water and are therefore of significant
interest to petroleum geologists and geophysicists in the
search for petroleum resources [3].

1. Faults are breaks in the Earth’s crust along which there
has been measurable movement, called displacement, of
rock on one side of the fault relative to the other (Figure
2.5.2). Some definitions describing the most important
structural features of faulted sedimentary rocks follow:

o Dip—the angle the fault plane makes with the hor-
izontal, measured from the horizontal to the fault
plane.
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Figure 2.5.2 Fault terminology [3].

e Strike—a line on the horizontal surface represented
by the intersection of the fault plane and the horizontal
surface. The strike line is always horizontal, and since
it has direction, it is measured either by azimuth or
bearing. Strike is always perpendicular to the dip.

o Heave— the horizontal component of movement of the
fault.

e Throw—the vertical component of movement of the
fault.

o Slip—the actual linear movement along the fault
plane.

o Hanging wall —the block located above and bearing
down on the fault surface.

e Footwall—the block that occupies the position
beneath the fault, regardless of whether the hanging
wall has moved up or down.

o Normal faulting takes place in extensional regimes in
which tension within rock masses produces slip such
that the hanging wall block is displaced downward with
respect to the footwall block Figure 2.5.2 is an example
of a normal fault.

o Reverse (thrust) faulting takes place in generally com-
pressional structural regimes, and produces displace-
ment such that the hanging wall is thrust over footwall
rocks.

o Strike-slip faulting occurs in structural environments in
which more or less horizontally directed forces cause
structural blocks to slide laterally along the fault sur-
face. Transform faults are special cases of strike-slip
faults, occurring as differential spreading takes place
along mid-ocean ridges.

. Displacement along faults varies from almost zero to
tens of kilometers for normal and reverse faults and
up to hundreds of kilometers for strike-slip structures.
Faults seldom consist of only single surfaces; they typ-
ically are made of myriad faulted surfaces comprising
a fault zone, along which each of the faults takes up—
accommodates —a portion of the overall displacement.
Because fault surfaces and the zones they comprise may
represent relatively low permeability zones, such struc-
tural zones may serve as effective traps for hydrocarbons
and water (see Figure 2.5.10).

. Folds in sedimentary rocks are generated when rock
mass strength and the rate at which pressure is applied
to a sedimentary rock sequence are such that the rock

is able to reaccommodate an applied stress, accumulat-
ing strain energy as deformed mineral grains. In some
cases, because the rate of applied pressure is changed,
folded rock sequences may rupture and fault, with
stress being taken up by movement along the fault
instead of as deformed mineral grains. Folds are gen-
erated on scales varying from millimeters to kilometers
Figure 2.5.3.

Crest
Anticline

Hinge point

N

Inflection
points

Trough

Hinge point =%

Syncline

Asymmetrical fold

Hinge point

\

Inflection point

Hinge point

Symmetrical fold

Figure 2.5.3 Folding terminology [3].
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Fold terminology follows: 2.5.5 Traps

Traps are structural features that represent permeability
contrasts such that the migration of hydrocarbons or water
is attenuated to an extent that permits temporary accumu-
lation and storage. Because traps are essentially always of

o Aunticline— a fold with upward convexity.

o Syncline—a fold that is concave upward.

o Hinge point— the point of maximum curvature of a fold.
The hinge surface is the locus of hinge lines within the
fold.

o Inflection point—occurs when bed curvature in one
direction changes to bed curvature in the opposite direc-
tion.

o Limbs (or flanks) of a fold— those portions adjacent to thinning
the inflection points of the fold.

o Symmetrical fold— a fold whose shape is a mirror image
across the hinge point.

o Asymmetrical fold—a fold whose shape is not a mirror
image across the huge point.

o Recumbent fold— characterized by a horizontal or nearly
horizontal hinge surface (see Figure 2.5.4).

o Querturned fold—when the hinge surface is depressed
below the horizontal (see Figure 2.5.4).

o Concentric (parallel) folds—rock formations parallel to
each other such that their respective thicknesses remain
constant (see Figure 2.5.5).

o Nonparallel folds—rock formations that do not have
constant thickness along the fold (Figure 2.5.6).

o Similar folds — folds that have the same geometric form,
but where shear flow in the plastic beds has occurred
(Figure 2.5.7).

o Disharmonic folds—folds in layered rock that have vari-
able thickness and competence and, thereby, fold in
accordance to their ability (Figure 2.5.8).

Figure 2.5.6 Nonparallel folds [3].

Hinge surface
Hinge line

Figure 2.5.7 Similar folds [3].
Figure 2.5.4 Recumbent (A) and overturned (B) folds [3].

Figure 2.5.5 Concentric folds [3]. Figure 2.5.8 Disharmonic folds [3].
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structural or stratigraphic origin, they may have finite life-
times; if trap morphology, permeability, or size changes, the
ability of a trap to store hydrocarbons and water may be
altered substantially.

1. Structural traps result from deformation of rock masses,
usually attributable to folding or faulting.

o Anticline trap —because of the upwarping of sedi-
ments in this fold type (see Figures 2.5.1 and 2.5.8),
hydrocarbons and water tend to accumulate in fold
crests; as such, this type of fold represents one of the
most important productive structural traps for hydro-
carbons. In some cases, faulting, especially thrust
faulting, may complicate or generate anticlinal struc-
tures and the traps they may form (Figure 2.5.9).
The fold-and-thrust belt of the western United States
(also called the overthrust belt) represents an excel-
lent example of composite folding and faulting, and
associated hydrocarbon production.

o Fault traps — involve the movement of the reservoir
rock formation to a position where the formation
across the fault plane provides a seal preventing
further migration of hydrocarbons (Figure 2.5.10).

o Salt-related traps—formed when the plastic salt for-
mations deform into domelike structures under the
overburden forces of the beds above the salt beds.
Such plastic flowing (and bulging) of the salt beds
deforms the rock formations above producing anti-
cline structures and faults in the rock formation
astride the domelike structures (Figures 2.5.11 and
2.5.12).

2. Stratigraphic traps consist of permeability contrasts in
sedimentary rocks. These contrasts might have been
created by sedimentary processes associated with depo-
sition of the original sediments; by post-depositional
(diagenetic) processes, including lithification mecha-
nisms; or by acombination of these processes. Biological
activity also may form significant stratigraphy-related
traps, such as reefs and fossiliferous carbonate banks.

o Sand body traps— finite sand bodies such as chan-
nel sands, river delta sands, and sea or ocean beach
or barrier bar sands. These sand body traps are
deposited over well-defined regions. As deposition
continues on a wider regional basis of shale-forming
deposits, the sand body becomes enclosed by shale
and becomes a trap for fluids, particularly hydrocar-
bons (Figure 2.5.13).

® Reef traps—important hydrocarbon-producing geo-
logical features. The porosity and permeability in
reefs can be excellent. As in sand body traps, reef
traps are finite bodies that are deposited over well-
defined regions. Continued deposition of silt and
clay materials will eventually enclose such features
in shale, allowing them to trap fluids, particularly
hydrocarbons (Figure 2.5.14).

o Unconformity traps — result from alternating periods
of sedimentation and erosion; that is, the process
of sediment deposition is interrupted by a period
in which erosion removes some of the previously
deposited sediment, creating a contrast in permeabil-
ity along the erosional surface. This erosional period
may occur in response to tilting of the sediment pack-
age (Figure 2.5.15) or as a consequence of climate or
structural change.

o Combination traps— sedimentary trap features that
result from both stratigraphic and structural mecha-
nisms. There can be many combinations for strati-
graphic and structural traps. An example of such a

trap would be a reef feature overlaying a porous and
permeable sandstone but in which the sequence has
been faulted (Figure 2.5.16). Without the fault, which
has provided an impregnable barrier, the hydrocar-
bons would have migrated further up dip within the
sandstone.

2.5.6 Basic Engineering Properties of Rock

Because sedimentary rocks constitute the most important
source and storage rocks for hydrocarbons and water,
petroleum engineers emphasize the significance of under-
standing the nature of sedimentary rocks and the deposi-
tional environments that formed them.

Most liquid and gaseous hydrocarbons are generated
from — and represent — the former remains of microscopic
marine plant and animal life. Continental plant life, compris-
ing grasses and woody materials, tends to generate coal and
some low-molecular-weight gases rather than liquid hydro-
carbons; this is attributable to the environment in which coal
materials are accumulated, the size of the carbon molecules
making up woody plants and grasses, and the nature of the
sedimentary rocks with which the precursor coal organic
materials are associated. Because marine life forms exist
in the same aquatic environment that produces sediments
and consequently sedimentary rocks, hydrocarbon gene-
sis, migration, storage, and preservation are related closely
to sedimentary processes. The two properties with which
we will now be concerned are permeability and porosity;
although these are different characteristics of hydrocarbon-
host rocks, they are each significant in determining whether
a rock unit may serve or might have served as a source or
storage media for hydrocarbons.

2.5.6.1 Porosity
Porosity is a measure of the void space within a rock, which
is expressed as a fraction (or percentage) of the bulk volume
of that rock [8].

The general expression for porosity ¢ is

ViV, V,
= [2.5.1]

o=

where Vj, is the bulk volume of the rock, Vy is the volume
occupied by solids (also called grain volume), and Vj, is the
pore volume.

From an engineering point of view, porosity is classi-
fied as:

o Absolute porosity— total porosity of a rock, regardless of
whether the individual voids are connected.

o Effective porosity— only that porosity due to voids that are
interconnected.

It is the effective porosity that is of interest. All further
discussion of porosity will pertain to effective porosity.
From a geologic point of view, porosity is classified as:

1. Primary porosity— porosity formed at the time the sed-
iment was deposited. Sedimentary rocks that typically
exhibit primary porosity are the clastic (also called frag-
mental or detrital) rocks, which are composed of erosional
fragments from older beds. These particles are classified
by grain size.

2. Secondary porosity— voids formed after the sediment was
deposited. The magnitude, shape, size, and interconnec-
tion of the voids bears little or no relation to the form of
the original sedimentary particles. Secondary porosity is
subdivided into three classes.
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Figure 2.5.10 Fault structural traps.
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Societies).

o Solution porosity refers to voids formed by the solution
of the more soluble portions of the rock in the pres-
ence of subsurface migrating (or surface percolating)
waters containing carbonic and other organic acids.
Solution porosity is also called vugular porosity where
individual holes are called vugs.

Fractures, fissures, and joints represent planar surfaces
formed in response to applied stresses that produce
local rock failure. These structures may be of tensional
or compressional nature, and they may individually
contribute nominal to volumetrically substantial per-
meability to a rock mass by locally enhancing the
connection between pores or between porous rock
units.

Dolomitization is the process by which limestones,
dominated by the mineral calcite, are transformed into

a Ca-Mg carbonate, dolomite [Ca, Mg (COs3),]. This
process involves a significant change in rock density;
because dolomite has a greater density than lime-
stone, rocks undergoing dolomitization develop voids.
These voids may result in very substantial increase
in rock porosity (and permeability), making some
dolomites excellent hydrocarbon reservoirs (e.g., the
Ordovician-age Ellenberger dolomite of West Texas).

The typical value of porosity for a clean, consolidated,
and reasonably uniform sand is 20%. The carbonate rocks
(limestone and dolomite) normally exhibit lower values (e.g.,
6-8%). These are approximate values and do not fit all situa-
tions. The principal factors that complicate intergranular
porosity magnitudes are uniformity of grain size, degree of
cementation, packing of the grains, and particle shape.
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2.5.6.2 Permeability

Permeability is defined as a measure of the ability of a rock
to permit passage of fluids. In addition to rock porosity, the
permeability of a rock unit is definitive in terms of allowing
the migration accumulation, and storage of hydrocarbons
and water in rock media. Fluids are transmitted through rock
because of differential pressures created in the normal burial
and tectonic environments of subsurface rocks. Permeability
reflects the connected character of pores, fractures, joints,
and faults within a rock unit; because each of these structures
permits fluid flow to some extent, the overall nature of these
structures to serve as interconnected passageways for fluids
also represents the capacity of arock mass to transmit fluid in
response to pressure differences. The quantitative definition
of permeability was first given in an empirical relationship
developed by the French hydrologist Henry D’Arcy, who
studied the flow of water through unconsolidated sands [8].

This law in differential form is
k dp

— [2.5.2]

where vis the apparent flow velocity (cm/s), p is the viscosity
of the flowing fluid (centipoise), pis pressure (atmospheres),
¢ is the length (cm), k is permeability of the porous media
(darcies).

Consider the linear flow system of Figure 2.5.17. The
following assumptions are necessary to establish the basic
flow equations:

o Steady-state flow conditions.

e Pore volume is 100% filled with flowing fluid; therefore,
k is the absolute permeability.

e Viscosity of the flowing fluid is constant. In general, this
is not true for most real fluids. However, the effect is
negligible if u at the average pressure is used.

e [sothermal conditions prevail.

e Flow is horizontal and linear.

e Flow is laminar.

Using the foregoing restrictions:

.
v=y [2.5.3]
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where q is the volumetric rate of fluid flow (cm®/s); A is
the tzotal cross-sectional area perpendicular to flow direction
(cm?2).

This further assumption concerning velocity and the volu-
metric rate of flow restricts flow to the pores and not the full
area. Therefore, v is an apparent velocity. The actual velocity,
assuming a uniform medium, is

Vapparent

2.54
0 [2.54]

Vactual =

where ¢ is porosity defined in Equation 2.5.1.

Substituting Equation 2.5.3 into Equation 2.5.2 yields
qa_ kdp
—=——— 2.5.5
A u de [ ]
Separation of variables and using limits from Figure 2.5.17
gives

¢ p;
E/ de=—5 " ap 2.5.6]
A 0 H P1
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! l as will the strength and fracture toughness of steels used in
I | drilling, well completion, and production.
i dp ! Temperature logs can be taken as wells are drilled and the
P1~ ! L i — %2 temperature gradient determined for the particular region.
o Y These temperature logs taken at depth are used to determine
q—F7FA Ul | T~ p, the types of drilling fluids used as drilling progresses. The
_____ L ] _,_____L temperatures at depth will determine the cements used in
RN N well completion operations.
N NN \\ The average geothermal gradient used in most areas
N S of the United States for initial predictions of subsurface
Loy temperatures is a value of 0.016°F/1t [9].
k € 1
Example 2.5.1
Figure 2.5.17 Linear flow system. Determine the temperature at 20,000 ft using the approxi-
mate geothermal gradient § ~ 0.016°F/1t.
Assume ts ~ 60°F.
Integrating the preceding yields ta=ts+0.016d
q= kA(p1 —p2) [2.5.7] ta=60+0.016 (20,000)
ue .
or ta=380°F
l
k= E—L [258]  2.5.6.4 Subsurface Fluid Pressure

Equations 2.5.7 and 2.5.8 are the basic forms of the per-
meability relationship, and the following example serves to

define the darcy unit:
If q=1cm?/s
A=1cm®
p=1lcp
Ap/€=1atm/cm
then from Equation 2.5.8,
k=1 darcy

A permeability of 1 darcy is much higher than that com-
monly found in sedimentary rock, particularly reservoir
rocks. Consequently, a more common unit is the millidarcy,
where

ldarcy =1,000 millidarcies

Typical values for sedimentary rock permeability for the
flow of hydrocarbons and other fluids are 100 millidarcies
(md) or greater. Rocks exhibiting permeabilities of 50 md or
less are considered tight relative to the flow of most fluids.

2.5.6.3 Subsurface Temperature

Attributable to many causes, including lithostatic and hydro-
static pressures, frictional energy, accumulated and locally
released strain energy, and radioactive decay, rock tempera-
tures show a general tendency to increase with depth. This
temperature depth relationship is commonly assumed to be
a linear function.

ta=t;+Bd [2.5.9]

where tq4 is the temperature of the rock at depth, d(°F), t; is
the average surface temperature (°F), B is the temperature
gradient (°F/ft), and d is the depth (ft).

In general, there is considerable variation in the geother-
mal gradient throughout the United States and the world.
In many regions of the world where there is evidence of
rather thin crust, the relationship between temperature at
depth and depth may not be approximated by the linear
function given in Equation 2.5.9. The increase in tempera-
ture with depth has important consequences for drilling and
production equipment that is used in the petroleum industry.
The viscosity of drilling and production fluids will, in general
decrease with high temperatures. The sitting time for well
cement will generally decrease with increased temperature,

(Pore Pressure Gradient)
The total pressure acting on a subsurface rock mass and
the fluids it contains is a function of the weight of the rock
(called lithostatic pressure) and fluid (called hydrostatic pres-
sure) affecting the given subsurface rock mass. Because
rocks are essentially “squeezed” by tectonic, lithostatic, and
hydrostatic pressures, the fluids within rocks develop and
exhibit a variable and generally substantial fluid pressure,
referred to as pore pressure. Pore pressures represent the
environmental equilibrium of a rock-fluid mass and change
dramatically in response to local aberrations in applied pres-
sure, such as the changes engendered when a surface drill
hole penetrates a rock mass.

Fluids within rock pores may be inherited, such as sed-
iments that contain original fluids from their depositional
environments, called connate waters, or the fluids may be
introduced, such as the gas-oil-water media that migrate into
appropriate rock masses.

Total theoretical maximum overburden pressure, P
(b/ft?), is
W, +Wgy

A

where W, is weight of rock particle grains (Ib), Wy, is weight
of water (Ib), and A is area (ft2).
The term W, can be approximated by

W =(1—6)Adym [2.5.11]

where ¢ is the fractional porosity, d is depth (ft), and y,, is
average mineral specific weight (Ib/ft®).
The term W can be approximated by

Wew = 0AdYgy [2.5.12]

where g, is the average saltwater specific weight (Ib/ft?).
Substitution of Equations 2.5.11 and 2.5.12 into Equation
2.5.10 yields

Pob = (1= ¢)d¥m +¢dvsw [2.5.13]
Equation 2.5.13 can be rewritten in terms of the specific
gravities of average minerals S, and salt water Sgy:

P=(1-¢)dSmYw +0dSsw Yo [2.5.14]

where v, is the specific weight of fresh water (i.e.,
62.41b/1t3).

The average specific gravity of minerals in the earth’s
crust is taken to be 2.7. The average specific gravity of
saltwater is taken to be 1.07. If the average sedimentary

Po,= [2.5.10]
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rock porosity is assumed to be 10%, then the total theo-
retical maximum overburden pressure gradient (Ib/ft2)/ft
becomes

% =(1-0.10)(2.7)(62.4)+0.10(1.07)(61.4)

[2.5.15]

Pob
—-=158.3
d

Equation 2.5.15 can be expressed in normal gradient terms
of psi/ft. Equation 2.5.15, which is the theoretical maximum
overburden pressure gradient, becomes

Pob
q =1.10

where p,y, is pressure in (psi).

The foregoing theoretical overburden pressure gradient
assumes that the sedimentary deposits together with the
saline water are a mixture of materials and fluid. Such a
mixture could be considered as a fluid with a new specific
weight of

[2.5.16]

v:=158.31b/ft

which in terms of drilling mud units would be
- 1583
=748

where 1 ft>=7.48 gal.
Immediately after and during the deposition of sediments
in an aqueous environment, diagenetic processes may begin
to cement (or dissolve) mineral grains, depositing by means
of solution newly formed minerals within the interstices of

=21.1ppg

DEPT(I)—| :FEET

the grains composing the original sediment. The effect of
adding a cementing agent to otherwise unconsolidated sed-
iment results in a substantial reduction in pore volume and
concomitant reduction in permeability. If the pore space in
arock were occupied by cementing agents and water, and if
the pores were connected, the calculated minimum pressure
gradient applied to that rock would be that of the overlying
column of water, given as follows:
P

i 1.07(62.4) or
P
d
Equation 2.5.17 can be expressed in normal gradient terms
of psi/ft. Equation 2.5.17 which is the minimum pressure
gradient, becomes

p_
Fl =0.464

=66.8 [2.5.17]

[2.5.18]

The foregoing minimum pressure gradient assumes also
that the sedimentary column pores are completely filled with
saline water and that there is communication from pore to
pore within the rock column from surface to depth.

Figure 2.5.18 shows a plot of the theoretical maximum
overburden pressure and the theoretical minimum pres-
sure as a function of depth. Also plotted are various
bottomhole fluid pressures from actual wells drilled in
the Gulf Coast region [10]. These experimentally obtained
pressures are the measurements of the pressures in the
fluids that result from a combination of rock overburden
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Figure 2.5.18 Magnitude of abnormal pressure encountered in Gulf Coast region (from Cannon and Sullins,
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and the fluid hydraulic column to the surface. These data
show the bottomhole fluid pressure extremes. The abnor-
mally high pressures can be explained by the fact that the
sedimentary basins in the Gulf Coast region are imma-
ture basins and are therefore unconsolidated relative to
older basins. In such basins, the cementing process is
by no means complete, which results in pressures at
depths approaching the maximum theoretical overburden
pressures.

The fluid pressure in the rock at the bottom of a well is
commonly defined as pore pressure (also called formation
pressure, or reservoir pressure). Depending on the matu-
rity of the sedimentary basin, the pore pressure will reflect
geological column overburden that may include a portion of
the rock particle weight (i.e., immature basins), or a sim-
ple hydrostatic column of fluid (i.e., mature basins). The
pore pressure and therefore its gradient can be obtained
from well log data as well are drilled. These pore pressure
data are fundamental for the solution of engineering prob-
lems in drilling, well completions, production and reservoir
engineering.

Because the geological column of sedimentary rock is
usually filled with saline water, the pore pressure and pore
pressure gradient can be obtained for nearly the entire
column. Figure 2.5.19 shows a typical pore pressure gradient
versus depth plot for a Gulf Coast region well.

2.5.6.5 Subsurface Rock Fracture Pressure

(Fracture Pressure Gradient)
The Subsurface rock fracture pressure can be approximated
by utilizing the known pore pressure at the same depth. The
relationship between rock fracture pressure p; (psi) and pore
pressure p;, (psi) is [11]

v
pf:(cob_pp)<liv)+pp [2519]
where o, is overburden stress (psi) and v is Poisson’s ratio.

The subsurface rock fracture pressure gradient is

Pt Gob  Pp v Pp
=4 ><17V>+ d
where d is the depth to the subsurface zone (ft).

Figure 2.5.20 shows the variation of Poisson’s ratio versus
depth for two general locations, the West Texas region and
the Gulf Coast region.

The constant value of 0.25 for Poisson’s ratio versus depth
reflects the geology and the rock mechanics of the mature
sedimentary basin in the West Texas region. Since mature
basins are well cemented, the rock columns of West Texas
will act a compressible, brittle, elastic materials.

The Cenozoic portions of the Gulf Coast sedimentary
basins are immature; therefore, little cementing of the sedi-
ments has taken place. Poisson’s ratio varies with depth for

[2.5.20]
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Figure 2.5.20 Poisson’s ratio vs. depth (from Eaton,
“Fracture Gradient Prediction and Its Application in
Oilfield Operations,” Journal of Petroleum Technology,
October 1969).

such sedimentary columns, reflecting the variation of prop-
erties through the column. At great depth (i.e., approaching
20,000 ft), Poisson’s ratio approaches that of incompressible,
plastic materials (i.e., 0.5) [12].

Figure 2.5.21 gives typical total overburden stress gra-
dients versus depths for several regions in North America
[13].

The rock fracture pressure gradient at depth can be
approximated by using Equation 2.5.20 and the variable
Poisson’s ratios versus depth data (Figure 2.5.20) and the
variable total overburden stress gradients versus depth data
(Figure 2.5.21).

Example 2.5.2

In Figure 2.5.19 the pore pressure gradient has been given as
a function of depth for a typical Gulf Coast well. Determine
the approximate fracture pressure gradient for a depth of
10,000 ft. From Figure 2.5.19, the pore pressure gradient at
10,000 ft is

% —0.066 psi/ft

From Figure 2.5.20, Poisson’s ratio at 10,000 ft is (i.e., Gulf
Coast curve)

v=0.45

From Figure 2.5.21, the total overburden stress gradient is
(i.e., Gulf Coast curve)
% —0.95 psi/ft
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Figure 2.5.21 Total overburden stress gradient vs.
depth (from Engineering of Modern Dirilling, Energy
Publication Division of Harcourt Brace Jovanovich,

New York, 1982, p. 82).

Substituting the foregoing values into Equation 2.5.20 yields

P 0.45
d 0.95 0.66)(1_0.45

This value of 0.90 psi/ft falls on the dashed line of Figure
2.5.19. The entire dashed line (fracture pressure gradient) in
Figure 2.5.19 has been determined by using Equation 2.5.20.

In general, Equation 2.5.20 can be used to approximate
fracture pressure gradients. To obtain an adequate approx-
imation for fracture pressure gradients, the pore pressure
gradient must be determined from well log data. Also, the
overburden stress gradient and Poisson’s ratio versus depth
must be known for the region.

> +0.66=0.90 psi/ft
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There is a field operation method by which the frac-
ture pressure gradient can be experimentally verified. Such
tests are known as leak-off tests. The leak-off test will be
discussed in Chapter 4.

2.5.7 Basic Engineering Soil Properties

The surface rock formations of the earth are continually
exposed to the weathering process of the atmosphere that
surrounds the earth. The weathering process through time
can change the rock exposed at the surface. Such changes
are both mechanical and chemical. The altered surface rock
is often used by lifeforms, particularly by plant life that
directly draws nourishment from minerals at the surface. As
the weathering process proceeds at the surface of the earth,
rock at the surface disintegrates into small separate particles
and is carried off and deposited at various locations around
the original rock. Some particles are carried great distances
to the sea to become source sediments for new rock for-
mations. Some particles move only a few feet or a mile or
two to be deposited with fragments from other nearby rock
locations. These weathered particles, once deposited on the
surface of the earth in land locations, are often referred to
as soil [14].

To a farmer, soil is the substance that supports plant life.
To a geologist soil is an ambiguous term that refers to the
material that supports life plus the loose rock from which it
was derived. To the engineer, soil has a broader meaning.

Soil, from the engineering point of view, is defined as any
unconsolidated material composed of discrete solid particles
that has either liquids or gases in the voids between the
individual particles.

In general, soil overlays rock formations, and the soil is
related to the rock since the rock was its source. Where the
soil ends (in depth) and rock begins is not a well-defined
interface. Basically, the depth to which soil is found is that
depth where excavation by land methods can be employed.
The area where the removal of material requires drilling,
wedging, and blasting is believed to be the beginning of rock
(in the engineering sense). The engineering properties of
soil are of importance to petroleum engineering because it
is soil that the drilling engineer first encounters as drilling
is initiated. But, more important, it is soil that must sup-
port the loads of the drilling rig through an appropriately
designed foundation. Further, the production engineer must
support the well head surface equipment on soil through an
appropriately designed foundation.

2.5.7.1 Soil Characteristics and Classification
The engineer visualizes a soil mass as an ideal, real, physical
body incapable of resisting tensile stresses.

The ideal soil is defined as a loose, granular medium
that is devoid of cohesion but possesses internal friction.
In contrast, an ideal cohesive medium is one that is devoid
of internal friction. Real soils generally fall between the
foregoing two limiting definitions.

Soils can consist of rock, rock particles, mineral materials
derived from rock formations, and organic matter.

e Bedrock is composed of competent, hard, rock forma-
tions that underlie soils. Bedrock is the foundation engi-
neer’s description of transition from soils to rock at depth.
Such rock can be igneous, sedimentary, or metamorphic.
Bedrock is very desirable for foundation placement.

o Weathered rock is bedrock thatis deteriorating due to the
weathering process. Usually, this is confined to the upper
layers of the bedrock.

o Boulders are rock fragments over 10 in. in diameter found
in soils.

e Cobbles are rock fragments from 2-4 in. in diameter
found in soils.

e Pebbles are rock fragments from about 4 mm to 2 in. in
diameter found in soils.

e Gravel denotes unconsolidated rock fragments from
about 2 mm to 6 in. in size.

e Sand consists of rock particles from 0.05-2 mm in size.

o Silt and clay are fine-grained soils in which individual par-
ticle size cannot be readily distinguished with the unaided
eye. Some classification systems distinguish these parti-
cles by size, other systems use plasticity to classify these
particles.

Plasticity is defined as the ability of such particle groups to
deform rapidly without cracking or crumbling. It also refers
to the ability of such groups to change volume with relatively
small rebound when the deforming force is removed.

e Silt, in one particle classification system, consists of rock
particles from 0.005 to 0.05 mm in size.

e C(Clay, in one particle classification system, consists of
inorganic particles less than 0.005 mm in size. In another
system, clay is a fine-grained inorganic soil that can be
made plastic by adjusting the water content. When dried,
clay exhibits considerable strength (i.e., clay loses its
plasticity when dried and its strength when wetted). Also,
it will shrink when dried and expand when moisture is
added.

Figure 2.5.22 shows a classification system developed by
the Lower Mississippi Valley Division, U.S. Corps of Engi-
neers. Percentages are based on dry weight. A mixture with
50% or more clay is classified as clay; with 80% or more silt,
as silt; and with 80% or more sand, as sand. A mixture with
40% clay and 40% sand is a sandy clay. A mixture with 25%
clay and 65% silt is a clay-silt (see intersection of dashed lines
in Figure 2.5.22).

2.5.7.2 Index Properties of Soils

Easily observed physical properties of soils often are useful
indexes of behavior. These index properties include texture
and appearance, specific weight, moisture content, consis-
tency, permeability, compressibility, and shearing strength
[14,15].

e Soil texture, or appearance, depends on particle size,
shape, and gradation. Therefore, using the classification
in Figure 2.5.22 the soil texture can be specified as sandy
clay or clay-sand.

e Soil specific weight is the measure of the concentration
of packing of particles in a soil mass. It is also an index
of compressibility. Less dense, or loosely packed, soils
are much more compressible under loads. Soil specific
weight may be expressed numerically as soil ratio and
porosity (porosity for soils being basically the same defi-
nition as that for rocks discussed earlier in this section).
Soil porosity e is

V,—Vs
e= A [2.5.21]
where Vj, is bulk volume of undisturbed soil (ft*), and V;
is volume of solids in soil (ft).

The specific weight (unit weight) (Ib/ft®) of undisturbed
soil is

A
T= W,
where Wy is the weight of the soil solids relative to the
undistributed soil bulk volume (Ib).

Relative density Dq (a percent) is a measure of the com-
pactness of a soil with void ratio e when the maximum void

[2.5.22]
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Figure 2.5.22 Classification chart for mixed soils (from Lower Mississippi Valley Division, U.S. Corps of Engineers).

ratio is emax and the minimum ep,;,. Relative density is

€max —€

Dg= (100) [2.5.23]

€max — €min
Percentage compaction usually is used to measure soil
density in a fill situation. Generally, the maximum Proctor
specific weight (dry, Ib/ft?), determined by a standard labo-
ratory test, is set up as the standard for the soil. Normally,
90-100% compaction is specified.

e Moisture content, or water content, is an important influ-
ence on soil behavior. Water content w, dry-weight basis
percent, is

Wy
W

where Wy, is weight of water in soil (Ib) and Wy is weight
of solids in soil (Id).

Total net weight of soils, W (Ib), is
We :Ww +Ws

Degree of saturation, S (percent) is

W [2.5.24]

[2.5.25]

S= [2.5.26]

v V (100)

where V is volume of water in soil (ft®).

Saturation, porosity, and moisture content are related by
Se=WG (2.5.27]
where G is the specific gravity of solids in the soil mass.

o Consistency describes the condition of fine-grained soils:
soft, firm, or hard. Shearing strength and bearing capacity
vary significantly with consistency. In consistency, there
are four states: liquid, plastic, semisolid, and solid.

e Permeability is the ability of a soil to conduct or discharge
water under a pressure, or hydraulic gradient (permeabil-
ity for soils being basically the same definition as that for
rocks discussed earlier in this section). For soils, the def-
inition of coefficient of permeability is slightly different
than that discussed earlier for petroleum reservoir rocks.
Since civil engineers and hydrologists are always deal-
ing with water, the coefficient of permeability, or more
precisely, the hydraulic conductivity, k' (cm/s)! is

K=k
Huy

where k is permeability as defined in Equation 2.5.8, vy
is the specific weight of water, and p,, is the viscosity of
water.

Therefore, substituting Equation 2.5.8 into Equation 2.5.28
yields

[2.5.28]

kK'=—
iA

where i (cm/cm) is the hydraulic gradient and is ex-

pressed by

j= AP [2.5.30]
LYy

[2.5.29]

and A (cm?) is the total cross-sectional area of soil through
which flow occurs.

Table 2.5.4 gives some typical values for hydraulic conduc-
tivity and drainage characteristics for various soil types.

'Note: k’, hydraulic conductivity, is used for water flow in rocks as
well as in soils.
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Table 2.5.4 Hydraulic Conductivity and Drainage
Characteristics of Soils

Approximate

Coefficient of

Permeability Drainage
Soil Type k (cm/s) Characteristic
Clean gravel 5-10 Good
Clean coarse sand 0.4-3 Good
Clean medium sand 0.05-0.15 Good
Clean fine sand 0.004-0.02 Good
Silty sand and gravel 10-5-0.01 Poor to good
Silty sand 10-5-10* Poor
Sandy clay 10-6-10-° Poor
Silty clay 106 Poor
Clay 107 Poor
Colloidal clay 1079 Poor

From Reference 14.

o Soil compressibility is important for foundation engineer-
ing because it indicates settlement. Settlement or defor-
mation of the soil under the foundation occurs because of
change of position of particles in a soil mass.

e Shearing Strength is the shear stress in a soil mass
at failure of the soil mass (usually cracking), or when
continuous displacement can occur at constant stress.

Shearing strength of a soil is usually important in determin-
ing bearing capacity of the soil. Shearing stress, t (Ib/in.?),
of a soil is expressed as

T=c+o,tan0 [2.5.31]

where C is cohesion of the soil (Ib/in.2) o, is the normal,
effective stress perpendicular to shear surface (Ib/in.?), and
0 is the angle of internal friction of soil.

The shear strength of coarse particle soils like gravel
and sand depend on the interlocking of their particles and,
thereby, on intergranular friction. The shear strength of
pure clay soils depends basically on cohesion. Figure 2.5.23
gives a graphical representation of the two limits of soil
types, i.e., coarse particle soils are denoted as 6 soils, pure
clay soils are denoted as c soils. Most real soils are a
combination (i.e., 8—c) soils. Some approximate friction
angles for typical cohesionless soil types are as follows [14]:

Soil Type o, deg tan ¢
Silt, or uniform

fine to medium sand 26-30 0.5-0.6
Well-graded sand 30-34 0.6-0.7
Sand and gravel 32-36 0.6-0.7

2.5.8 Site Investigations and Laboratory Tests

Before the construction of a foundation, field investigation
should be carried out to determine surface and subsurface
conditions at the site.

2.5.8.1 Site Investigations

Numerous techniques are used for site investigations. The
techniques vary in cost from relatively low-cost visual inves-
tigations to costly subsurface explorations and laboratory
tests [16,17].

e Visual inspection is an essential primary step. Such
inspections should provide data on surface soils, surface
waters, and slopes.

Shear stress

u-—_n—»i

TA

7= c=const
¢—soil

» 0

n
Effective normal stress

Figure 2.5.23 Graphic shear strength of soils.

Probing, driving a rod or pipe into the soil and measur-
ing the penetration resistance, obtains initial subsurface
information. This is a low-cost method, but in general it is
likely to supply inadequate information about subsurface
conditions, especially on the depth and nature of bedrock.
Augers provide subsurface data by bringing up mate-
rial for detailed examination. Augers disturb the soil;
therefore, little or no information can be obtained on the
character of the soil in its natural undisturbed state.
Test pits permit visual examination of the soil in place.
Such pits also allow manual sampling of “undisturbed”
soil samples. These samples can be taken from the side
walls of the pit.

“Dry” spoon sampling is a technique that is often used in
conjunction with auger drilling. At certain depths in the
augered borehole a spoon is driven into the undisturbed
bottom of the borehole. The spoon sampler is a specified
size (usually a 2-in. OD). The number of blows per foot
to the spoon samples frequently are recorded, indicating
the resistance of the soil. The spoon sampler is driven into
the bottom of the hole with a free-falling weight. A 140-1b
weight falling 30 in. onto the 2 in. O.D. spoon sampler is
the standard method of driving the sampler into the bore-
hole bottom. Table 2.5.5 shows a system of correlation of
this technique of sampling. Figure 2.5.24 shows a typical
subsurface soils log that describes the soils encountered
at depth and number of blows per 6 in. (instead of per
foot) on the spoon sampler.

Table 2.5.5 Correlation of Standard-boring-spoon
Penetration with Soil Consistency and Strength

(2 in OD Spoon, 140 Ib)
Unconfined

Soil Number of Blows Compressive
Consistency per ft on Spoon  Strength, tons/ft?
Sand

Loose 15

Medium compact 16-30

Compact 30-50

Very compact Over 50
Clay

Very soft 3orless 0.3 or less

Soft 4-12 0.3-1.0

Stiff 12-35 1.0-4

Hard Over 35 4 or more
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Figure 2.5.24 Typical soils boring log.

2.5.8.2 Laboratory Tests

In addition to the site investigations just described and the
on-site tests which can be carried out through test pits and
augering, often specific laboratory tests are required to iden-
tify soils and determine their properties. Such laboratory
tests are conducted on the soil samples that are recovered
from various subsurface depths. These laboratory tests are
used when there are questions as to the structural support-
ing capabilities of the soils at a particular site. Numerous
types of laboratory tests are available that can aid the engi-
neer in designing adequate foundation support for heavy or
dynamic loads. In general, however, few tests are necessary
for most foundation designs [14-17].

e Mechanical analyses determine the particle-size distribu-
tion in a soil sample. The distribution of coarse particles
is determined by sieving, and particles finer than a 200 or
270-mesh sieve and found by sedimentation.

e Specific weight determinations measure the relative vol-
umes of voids and solids in a soil.

e Compaction tests, such as the standard Proctor, deter-
mine the maximum specific weight or minimum void ratio
that can be obtained for a soil, particularly a soil which
is to be used for a fill. Specific weights of at least 95% of
maximum are usually specified for compacted fills.

o In-place specific weight tests are used to correlate field
compaction results with specified engineering require-
ments for specific weight.

e Moisture-content determinations provide data for esti-
mating soil compaction and compressibility. If a soil is
saturated, no volume change can occur without intake or
discharge of water.

o Atterberg-limit tests determine the water content influ-
ence in defining liquid, plastic, semisolid and solid states
of fine-grained soils. Permeability tests may be carried
out in the laboratory or in the field. Such tests are used
to determine the hydraulic conductivity coefficient k'.

e Confined compression tests are used to determine infor-
mation pertaining to the behavior of foundations where

large volume changes of soil can occur under compres-
sion but in the vertical dimension only.

e Unconfined compression tests are used to estimate the
shearing strength of cohesive soils.

e Consolidation tests are made on saturated silts and clays
to determine the rate of volume change under constant
load.

e Direct shear tests are made in the laboratory to obtain
data for determining the bearing capacity of soils and the
stability of embankments.

e Triaxial compression tests are another means of deter-
mining shearing strength of a soil. A complex device
is used to apply pressure along the sides of a cylindri-
cal specimen and axially down the axis of the cylindrical
specimen. In general, triaxial tests are superior to direct
shear tests since there is better control over intake and
discharge of water from the specimen.

e (California bearing ratio tests are used to evaluate sub-
grades for pavements. These tests may be carried out
in the field or in the laboratory. Such tests determine the
resistance to penetration of a subgrade soil relative to that
of a standard crushed-rock base.

e Plate bearing tests are field tests that are also used to
evaluate subgrades for pavements.

Foundation Loads and Pressures. Foundations should
be designed to support the weight of the structure, the live
load, and the load effect on the structure and its foundation
due to such other loads as wind. In general, for foundation
designs, a safety factor of 3 is used for dead loads or live loads
independently. A safety factor of 2 is used for combination
loads including transient loads [15,17].

In general, a foundation is designed for settlement and
for pressure distribution. In designing for settlement the
usual practice is to ignore transient loads. To keep differen-
tial settlements small, foundations are designed to apportion
the pressure (between the foundation and the soil) equally
over the soil. The assumption is that equal intensities of pres-
sure will produce equal settlement. The accuracy of this
assumption will vary with the soil uniformity beneath the
foundation, the shape of the foundation, and the distribution
of the load on the foundation. Pressures used in calculat-
ing bearing capacity or settlement are those in excess of
the pressure due to the weight of the soil above. Thus, one
should consider pressures composed by the adjacent founda-
tion on the region below the foundation under design. Usual
practice in foundation design is to assume that bearing pres-
sure at the bottom of a foundation or on a parallel plane
below the foundation is constant for concentrically loaded
foundations. This assumption may not be entirely accurate,
but more accurate and more complicated theories usually
are not justified because of the lack of future knowledge of
loading conditions or by the present knowledge of soil condi-
tions. The assumption of constant pressure distribution has
been the basis of design of many foundations that have per-
formed satisfactorily for decades. This is especially true for
rigid foundations on soils with allowable bearing pressures
of 6,000 Ib/ft*> or more. Another commonly used assump-
tion in foundation design is that the pressure spreads out
with depth from the bottom of the foundation at an angle of
30° from the vertical or at a slope of 1 to 2 (Figure 2.5.25).
Therefore, for a total load on a foundation of P, the pressure
at the base of the footing would be assumed to be p=P/A,
where A is the area of the foundation itself. As shown in
Figure 2.5.25b, the pressure at a depth h would be taken to
be P/A or, for a square foundation, as P/(b+h)2. When a
weak layer of soil underlies a stronger layer on which the
foundation is founded, this method may be used to estimate
the pressure on the lower layer. This method can be adopted
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Figure 2.5.25 Assumed pressure distribution under a foundation: (a) 30° spread; (b) 1x2 spread [14].

to determine the total pressure resulting from overlapping
pressure distribution from adjacent foundations.

Approximate allowable bearing pressures on sedimentary
rock and soils may be taken from Table 2.5.6 [1,14]. Where
questionable surface and subsurface soil conditions exist
allowable bearing pressures can be determined with the aid
of field sampling, field tests (both surface and subsurface
through borings), and laboratory tests.

Spread Foundations. The purpose of the spread founda-
tion is to distribute loads over a large enough area so that
soil can support the loads safely and without excessive set-
tlement. Such foundations are made of steel-reinforced con-
crete. When concrete is used for a foundation, it should be
placed on undisturbed soil. All vegetation should be removed
from the surface; therefore, the upper few inches of soil
should be removed before concrete is laid down. The area
of the foundation must be large enough to ensure that the
bearing capacity of the soil is not exceeded or that maximum
settlement is within acceptable limits. If details are known
of the subsurface soil conditions, the foundation must be
sized to that differential settlement will not be excessive. For
uniform soil condition (both horizontal and vertical), this is
accomplished by designing the foundation such that the unit
pressure under the foundation is uniform for the working
loads (usually dead load plus normal live loads) [15,17].

Example 2.5.3

It is intended that a spread foundation be designed for a
concentric load of 300,000 1b (dead load plus live load).
This foundation is to be placed on the surface (brown silty
sand and gravel) of the soil and bedrock column shown in
Figure 2.5.23. If a square foundation can be made to support
the 300,000-1b load, what should be the dimensions of this
foundation?

e The surface layer of soil (i.e., brown silty sand and gravel)
has a minimum number of blows per foot on the 2-in.
split-barrel spoon of 8 (see Figure 2.5.24). According to
Table 2.5.5, this soil would have the classification of a
loose silty sand and gravel layer. Table 2.5.6 indicates the
allowable bearing capacity could be as low as 3,000 1b/ft2.
To improve the soil conditions where the foundation is
to be laid, the initial few feet of soil are to be removed to

Table 2.5.6 Allowable Bearing Capacities of
Sedimentary Rock and Soils [14]

Allowable Bearing
Rock or Soil Capacity Ibs/ft?
Sedimentary rock: hard shales, 20,000 to 30,000
sitstones, sandstones,
requiring blasting to remove
Hardpan, cemented sand and 16,000 to 20,000
gravel, difficult to remove by
picking
Soft rock, disintegrated ledge; 10,000 to 20,000
in natural ledge, difficult to
remove by picking
Compact sand and gravel, 8,000 to 12,000

requiring picking to remove

Hard clay, requiring picking for 8,000 to 10,000

removal

Gravel, coarse sand, in natural 8,000 to 10,000
thick beds

Loose, medium and coarse 3,000 to 8,000
sand; fine compact sand

Medium clay, stiff but capable 4,000 to 8,000
of being spaded

Fine loose sand 2,000 to 4,000

Soft clay 2,000

expose the subsurface layer which has a minimum num-
ber of blows per foot on the 2-in. split-barrel spoon of
16. This would require a removal of approximately 4 to
5 ft of soil. The brown silty sand and gravel in the layer
at about 5 ft of depth can be classified as medium com-
pact. Again referring to Table 2.5.6 this layer of soil should
have an allowable bearing capacity above 3,0001b/ft?. The
average between 3,000 and 8,000 1b/ft? is assumed, i.e.,
5,500 Ib/ft2.

e The initial square foundation dimension that would be
needed to meet the allowable bearing capacity of 5,500
Ib/ft? is
300,000

5,500

A =54.6 ft?
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where A is the surface area of the foundation at the point
where it contracts the soil. The dimensions of the square
foundation are

b=(54.6)"2=741ft

e There are two potentially weak subsurface soil layers in
the boring log in Figure 2.5.24 that should be checked
before the initial foundation design above is accepted.

1. At the depth of approximately 10 ft below the surface,
or 5 ft below the intended foundation soil interface,
there is a layer of clay, sand, and gravel that has a mini-
mum number of blows per foot on the 2-in. split-barrel
spoon of 18. Referring to Table 2.5.5, the compressive
strength of this layer could be as low as 2,000 1b/ft?.
Assuming a one-by-two spread of the subsurface pres-
sure under the foundation, the pressure at that layer
would be

_ 300,000
T (7.445)?

For further information on this subject, refer to Refer-
ences 15 through 17.

The subsurface pressure calculated for this layer
is below the assumed compressive strength of 2,000
Ib/ft?; therefore, the initial foundation divisions are
acceptable relative to the strength of this subsurface
layer.

2. At the depth of approximately 40 ft below the surface
or 35 ft below the intended foundation-soil interface,
there is a layer of medium brown sand that has a mini-
mum number of blows per foot in the 2-in. split-barrel
spoon of 14. Referring of Tables 2.5.5 and 2.5.6, this
soil could be classified as a loose sand having a com-
pressive strength as low as 3,000 Ib/ft?. Assuming a
one-by-two spread of the subsurface pressure under
the foundation, the pressure at that layer would be

300,000
T (74435
The subsurface pressure calculated for this layer
is well below the assumed compressive strength of

3000 1b/ft?; therefore, the initial foundation dimensions
are acceptable relative to this subsurface layer also.

1 =1948 Ib/ft*

p =167 Ib/ft*

e Because theinitial foundation dimensions resultin accept-
able foundation-soil interface bearing pressures and
acceptable subsurface pressures on weaker underlying
layers of soil, the square foundation of 7.4 ft is the final
foundation design.
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2.6 ELECTRICITY

2.6.1 Electrical Units

There are two principle unit systems used in electrical
calculations, the centimeter-gram-second (cgs) and the
meter-kilogram-second (mks) or International System (SI).
Table 2.6.1 is a summary of common electrical quantities
and their units. The magnitude of the units in Table 2.6.1
is often not conveniently sized for taking measurements or
for expressing values, and Table 2.6.2 presents the prefixes
that modify SI units to make them more convenient.

Energy or work W is defined by

t2

t

[2.6.1]

where W is work in joules, p is power in watts, and t is time
in seconds.

Table 2.6.1 Electrical Units

Quantity Symbol MKS and SI Units

Current Li Ampere

Charge (Quantity) Q,q Coulomb

Potential Vv Volt (V)

Electromotive Force Ee Volt (V)

Resistance Rr Ohm ()

Resistivity 14 Ohm-cm

Conductance G,g Mho, Siemens (Q1)

Conductivity Y Mho/cm

Capacitance C Farad (f)

Inductance L Henry (h)

Energy (work) w Joule (J), Watthour (Wh)
Kilowatthour (KWh)

Power Pp Watt

Reactance, inductive XL Ohm

Reactance, capacitive Xc Ohm

Impedance Z Ohm
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Table 2.6.2 S/ Unit Dimensional Prefixes

Symbol Prefix Multiple
T tera 1012
G giga 10°
M mega 106
k* kilo 10°
h* hecto 10?
da* deca 10!
d deci 10!
c centi 102
m milli 10-3
micro 10-6
n nano 10—?
p pico 1012

*May also use capital letter for the symbol.

Relations between common units of energy are as follows:

watt-second =1 joule

watt-second =0.239 calorie

watt-second =0.738 foot-pound
kilowatt-hour =3413 Btu
kilowatt-hour =1.34 horsepower-hours
kilowatt-hour =3.6 x 10° joules

electron-volt=1.6x 102 joule

erg=10"" joule
Power (P,p) is the time rate of doing work. For constant

current I through an electrical load having a potential drop
V, the power is given by

P=IV [2.6.2]
where P is power in watts, V is potential drop in volts, and I
is current in amperes.

For a time-varying current i and potential drop v, the
average power P,, is given by

t
Pav=1/ ivdt
tJo

where P,, is average power in watts; i is current in amperes,
v is potential drop in volts, and t is time in seconds.
Relations between common units of power are as follows:

lw=1j/s
0.239 ¢/sec

[2.6.3]

9.48 x 10* Btu/s
1/745 hp

0.7375 ft-1b/s

Electric charge or quantity Q, expressed in units of
coulombs, is the amount of electricity that passes any section
of an electric circuit in one s by a current of one ampere.
A coulomb is the charge of 6.24 x 10'® electrons.

Current (1,i) is the flow of electrons through a conductor.
Two principal classes of current are:

o Direct (dc) — the current always flows in the same direc-
tion.

o Alternating (ac) —the current changes direction period-
ically.

The unit of current is the ampere which is defined as one
coulomb per second.

Electric potential (V\v), potential difference, or electro-
motive force (emf, E, ) have units of volts and refer to the

energy change when a charge is moved from one point to
another in an electric field.

Resistance (Rr) is an element of an electric circuit that
reacts to impede the flow of current. The basic unit of
resistance is the ohm (Q), which is defined in terms of Ohm’s
law as the ratio of potential difference to current, i.e.,

R=

The resistance of a length of conductor of uniform cross-
section is given by

[2.6.4]

pL
R= A [2.6.5]
where A is cross-section area of the conductor in square
meters, ¢ is length of the conductor in meters, and p is
resistivity of the material in ohm-meters; R is resistance in
ohms.

Conductance (G,g) is the reciprocal of resistance and has
units of reciprocal ohms or mhos (Q~!) or more properly in
SI units, seimens.

Conductivity (y) is the reciprocal of resistivity.

Capacitance (C) is the property that describes the quantity
of electricity that can be stored when two conductors are
separated by a dielectric material. The unit of capacitance
is the farad. The capacitance of two equal-area, conducting
parallel plates (see Figure 2.6.1) separated by a dielectric is
given by

_ e A
T d

where ¢, is dielectric constant of the material between the
plates, &, is dielectric constant of free space or of a vacuum, A
is the area of a plate in square meters, d is distance between
the plates in meters, and C is capacitance in farads.
Inductance (L) is the property of an electric circuit that
produces an emf in the circuit in response to a change in
the rate of current, i.e.,
di
e=L i@t
where e is emf induced in the circuit in volts, I is current in
amperes, t is time in seconds, and L is coefficient of (self)
inductance in henries.
For a coil (see Figure 2.6.2), the inductance is given by

L=KN? [2.6.7b]

where N is number of turns, K is a constant that depends
on the geometry and the materials of construction, and L is
coefficient of inductance in henries.

Coils are described later in the section tilted “Magnetic
Circuits.”

C [2.6.6]

[2.6.7a]

e

o

Figure 2.6.1 Schematic of a parallel plate capacitor.
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L = KN2

Figure 2.6.2 Schematic of an induction coil.

2.6.2 Electrical Circuit Elements

Electrical phenomena may generally be classified as static
or dynamic. In static phenomena, current or charges do not
flow or the flow is only momentary. Most practical uses of
electricity (at least in the conventional engineering sense)
involve dynamic systems where current flows for useful peri-
ods of time. Systems that allow current to flow for extended
periods of time are termed circuits. As the name implies,
such systems are connected in a loop so that any beginning
point in the circuit has electrical continuity with the ending
point through circuit elements.

The simplest circuit element is the short circuit. Figure
2.6.3a illustrates the concept of a short circuit. A source
of emf (labeled vs) produces a current that flows relatively
unimpeded through the conductor resulting in a nearly zero
potential drop and an infinite current.

Figure 2.6.3b illustrates an open circuit. The conductor of
the short circuit is interrupted and current cannot flow even
though the emf produces a finite potential.

2.6.3 Passive Circuit Elements
Circuit elements may be classified as passive or active. Pas-
sive elements may store or transform electrical energy. Active
elements may transform other forms of energy (including
electrical energy from another system) into an increase in
the electrical energy of the circuit or they may serve to dissi-
pate circuit energy. In the latter case, the rate of increase or
dissipation is controlled by conditions outside of the circuit.
A simple example of an active element might be a generator
that supplies power (emf) to the circuit. The rate of power
generation depends on the mechanical shaft power input.
There are three, linear, passive circuit elements: resistors,
capacitors, and inductors. Resistors dissipate energy in the
circuit, i.e., electrical energy is transformed to heat energy
and is lost from the circuit. Capacitors store electrical energy
as charges on conductors separated by a dielectric material.
Inductors store the electrical energy of current as magnetic
potential in a manner analogous to the Kkinetic energy stored
in a mass in motion. Table 2.6.3 summarizes the circuit
element characteristics.

2.6.3.1 Series and Parallel Connection of
Circuit Elements

Circuit elements may be connected in either a series or
parallel configuration. In the series configuration, the same
current flows through each and every element, and the cir-
cuit potential drop (or emf that is developed by the voltage
source) is the algebraic sum of the potential drops of each
individual element. For sources in series, the total emf devel-
oped is the algebraic sum of the emfs developed by each
individual source.

vgt Q v=0
for any

(a) SHORT CIRCUIT
v=0

V+< vt

]
]
(b) OPEN CIRCUIT

Figure 2.6.3 Schematic of the simplest circuit elements.

In the parallel configuration, the same potential difference
occurs across each and every element with the total cur-
rent being the algebraic sum of the current flowing through
each individual circuit element. Table 2.6.4 summarizes
the equivalent resistance, conductance, capacitance, and
inductance of series-parallel configurations of resistors,
capacitors, and inductors.

2.6.3.2 Circuit Analysis
There are two fundamental laws used in circuit analysis,
called Kirchhoff’s laws:

1. Ata branch point in an electric circuit, the sum of the cur-
rents flowing to the point equals the sum of the currents
flowing from the point.

2. The electric potential measured between two points in an
electric circuit is the same regardless of the path along
which it is measured.

These laws apply to both DC and AC currents.

2.6.4 Transient and AC Circuits

In atransient or an AC circuit, we term the sum of resistance,
inductance, and capacitance as impedance. Using complex
notation, the energy storage properties of inductance and
capacitance are represented as purely imaginary quantities,
while the resistance is represented as a (+) real quantity.
Capacitance is represented as the negative imaginary axis,
and current through a pure capacitance is said to lead the
potential by 90°. Inductance is represented as the positive
imaginary axis, and the current through a pure inductance
is said to lag the potential by 90°. These relationships may be
expressed mathematically for an inductance and resistance
in series as

Z=R+jX,, [2.6.8]
and for a capacitance and resistance in series as
Z=R—-jXc [2.6.9]

where Z is impedance in ohms, j is an imaginary unit,
X, is the impedance due to inductance or reactance in
ohms =2nfL. =wL, X¢ is impedance due to capacitance or
reactance in ohms =1/2nfC=1/wC, R is resistance in ohms,
L is coefficient of inductance in henries, C is capacitance in
farads, f is frequency of the current (or voltage) in Hertz
(cycles per second), and w is angular velocity in radians per
second.
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Table 2.6.3 Circuit Element Characteristics

Element Unit Symbol Characteristic
Resistance ohm i R o= Ri
(Conductance) (mho) +, (G) (i = Go)

. L o= L-:—i
Inductance henry e W 1 re
*y i= —f vdt + Io
LJo
if =c
Capacitance farad 1 (t
* v= = f idt +Vp
Clo
Short circuit J. 0 = 0 for any i
Open circuit —ty o— i=0foranyo
Voltage source volt — v = v, for any i
o
Current source ampere i =i, for any v

Table 2.6.4 Series-Parallel Combinations

Circuit Element Series Parallel
acancal facemca J IONCEC
CE o
R=R, +R A1 R
i = + B e———
Resistor 1 2 R+ Aa
or
)
Rlv Rz Rl Rz
L+l Ltila
Inductor L 1 2 L +L
or
L _1_+_1_ !
L!l LZ L‘ L,
C,C
Capacitor =C—ll:-é: C=C, +C;
or
¢.C cafL. Y\
1. %2 cl C1

For the impedance of the resistance and inductance in
series, the current will lag the potential phase angle by

XL
—arct: —
6=arc an( R >

For the impedance of the resistance and capacitance in
series, the current will lead the potential phase angle by

[2.6.10a] 9:arctan<7TXC> [2.6.10b]
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‘When multiple circuit elements are involved, the resultant
phase angle difference between the current and the potential
will result from the contribution of each element.

2.6.5 AC Power

The power dissipated in an AC circuit with current of maxi-
mum amplitude I;, flowing through a resistance is less than
the power produced by a constant DC current of magnitude
I, flowing through the same resistance. For a sinusoidal AC
current, the root mean square (rms) value of current I is the
magnitude of the DC current producing the same power as
the AC current with maximum amplitude I;,. The rms value
I is given by

1
1= ﬁlm =0.7071,
The power dissipated in an AC circuit with only resistive
elements is

V2

2
P=I'R= R
where V is rms value of the potential drop. This resistive
power is termed active power with units of watts.

Reactive circuit elements (i.e., capacitors and inductors)
store, not dissipate, energy. While the energy stored is peri-
odically returned to the rest of the circuit, reactive elements
do require increased potential or current to flow in the
circuit. The power that must be supplied for the reactive
elements is termed reactive power, and it is calculated as

e V°
Qx=I'X= X

[2.6.11]

[2.6.12]

[2.6.13]

where Qy is reactive power in volt-amperes reactive (VAR)
X is reactance in ohms, V is rms potential in volts, and I is
current in amperes.

The reactive component of impedance is expressed as

X =Zsin6 [2.6.14]

where Z is impedance in ohms, and 0 is leading or lagging
phase difference between current and potential.

Note that sin 6 may be either positive or negative and lies
between 0 and 1 for |6] < 90°.

The apparent power is the complex sum of the active power
and the reactive power. By nothing that

R=Zcos0 [2.6.15]
we may calculate
Py =VIcos0+jVIsin [2.6.16]

where P, is apparent power in volt-amperes (VA), V is
rms potential, I is rms current, and 6 is leading or lagging
difference in phase angle between current and potential.
The power factor cos 0 is always a positive fraction between
0and 1 (as long as |8] <90°). The smaller the power factor,
the greater the current that must be supplied to the circuit
for a given active (useful) power output requirement. The
increase in current associated with low power factors causes
greater line losses or requires an increase in the capacity of
the transmission equipment (wire size, transformers, etc.).

factor change in the rate structure for supplying electric-
ity. The usual situation is for loads to be inductive, and the
industrial consumer may add capacitance to their circuits to
correct the lagging power factor.

2.6.6 Magnetism

Magnetic fields are created by the motion of electric charges.
The charge motion may be a current in a conductor or,
at the atomic level, the movements of orbital electrons.
For certain materials, called ferromagnetic materials, the
neighboring atoms align themselves so that the magnetic
effects of their orbital electrons are additive. When the atoms
of a piece of such a ferromagnetic material are aligned, the
piece is called a magnet. Magnetic fields have north (N) and
south (S) poles. When two magnets are brought together,
like poles repel and unlike poles attract each other. In other
(nonmagnetic) materials, the atoms are aligned randomly
and the magnetic effects cancel.

Analogies exist between electric and magnetic fields. The
magnetic flux (0) is analogous to electric current and has SI
units of webers (see Table 2.6.5). The magnetic flux density
(B) is analogous to current density and has units of teslas.
One tesla exists when the charge of one coulomb moving
normal to the magnetic field with a velocity of one meter per
second experiences a force of one newton. In vector notation
this is expressed as
f=q(@xB) [2.6.17]
where f is the force vector in newtons, q is the charge in
coulombs, i is velocity vector in meters per second, and B
is magnetic flux density vector in teslas.

If a current flows through a conductor, the magnetic flux
is oriented in a direction tangent to a circle whose plane is
perpendicular to the conductor. For current flowing in an
infinitely long, straight conductor, the magnetic flux density
at a point in space outside the conductor is given as

ui

2D
where B is magnetic flux density in teslas, i is current in
amperes, D is distance from conductors to the point in space
in meters, and p is permeability in webers per amp-meter or
henries per meter.

The permeability (u) is a property of the material
surrounding the conductor. The permeability of free space
(o) is

o =4 x 10~ henries per meter

[2.6.18]

[2.6.19]

The ratio of the permeability of any material to the perme-
ability of free space is termed the relative permeability (u,).
The magnetic field intensity (H) is given as
g B
u
or for the magnetic field induced by current in an infinite-
length straight conductor,

[2.6.20]

i

As aresult, for industrial applications there is often a power H= 2rD [26.21]
Table 2.6.5 Magnetic Units
Quantity Symbol Cgs Units SI Units
Magnetomotive Force F Gilberts Amp-turns (NI)
Magnetic Field Intensity H Oersted (Oe) Amp-turns/meter
Magnetic Flux o Maxwell or line Webers (Wb)
Magnetic Flux Density B Gauss Teslas (Wh/m?)
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(a)

2.6.7 Magnetic Circuits

Previously the analogy between electric fields and magnetic
fields was introduced. Likewise, there are analogies between
magnetic circuits and electric circuits. Figure 2.6.4 illustrates
these analogies and allows us to define additional terms. In
the electric circuit of Figure 2.6.4a Ohm’s law applies, i.e.,

\% pt ¢
T_R—K_Y—A [2.6.22]
In Figure 2.6.4b, there is an analogous relationship, i.e.,
F l
R=—=— [2.6.23]
o uA

where F is magnetic magnetomotive force in ampere-turns,
0 is magnetic flux in webers, R is reluctance — the resis-
tance to magnetic flux, and p is magnetic permeability.
The magnetic magnetomotive force (F) in Figure 2.6.4 is
given by

F=Ni [2.6.24]

where F is magnetomotive force in ampere-turns, N is
number of turns, and i is current in amperes.

2.6.8 Transformers

Transformers are electromagnetic devices that allow elec-
trical power supplied at one potential to be transformed into
electrical power at another potential. The potential or voltage
may be stepped up (increased) or stepped down (decreased).
For instance, in the usual transmission of domestic power,
the potential in the transmission lines is greater than the load
requirements and a step down transformer is used to reduce
the potential at the end use point.

Figure 2.6.5 illustrates the basics of a transformer. First
there is a core, usually constructed of a material of high mag-
netic permeability to achieve a high magnetic flux density.
The core has two windings of conductors, a primary coil (des-
ignated as N in the figure) and a secondary coil (designated
as Ny). Electric current through the primary coil causes a
magnetic flux in the core and at the same time an impedance
to the current and therefore an induced emf across the pri-
mary. The magnetic flux in the core in turn induces an emf
across the secondary coil, causing a current to flow. The
relation between the emf induced in the primary coil (note
that this is not the source emf) and the emf induced in the
secondary coil is given by
a_EN [2.6.25]
e E:N
where ey, e, is AC-induced emfs in volts, E, E; is rms values
of e; and ey, and Ny, N, is number of turns on the primary
and secondary coils, respectively.

(b)

Figure 2.6.4 Electric (a) and magnetic (b) circuits.
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Figure 2.6.5 Basic transformer operation.

There will be inefficiencies within the transformer, and
the voltages at the transformer terminals will vary a little
from the previous relationships.

Likewise, the approximate relationship between the pri-
mary and secondary currents will be

L N,

i=% [2.6.26]

2.6.9 Rotating Machines

There is a class of electromechanical equipment in which
mechanical energy is converted into electrical energy (or
vice versa), all of which use either the response of conduc-
tors rotating through a magnetic field or a magnetic field
rotating in the presence of stationary conductors. Because
the machines rotate, power is transformed in a constant
mode rather than the pulsating mode as occurs in similar
translational devices.

Figure 2.6.6is a schematic of perhaps the simplest rotating
machine, the elementary dynamo. The elementary dynamo
consists of a rectangular-shaped coil, which is free to rotate
about an axis. In a practical device, the coil is physically
attached to a shaft at the axis of rotation but is electrically
insulated from this shaft. Slip rings connected to the coil are
also attached but insulated from the shaft. The slip rings
and brushes allow electrical contact with an external circuit
while the shaft turns.

Consider the effect when the coil turns in the presence of
an external magnetic field. An emf will be generated in the
coil given by

e=NBAwcoswt [2.6.27]
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(@)

Figure 2.6.6 Elementary dynamo construction and operation.

where e is generated emf in volts, N is number of turns of
wire in the coil, B is magnetic flux density in teslas, A is area
surrounded by the coil=2r¢, r is radius of rotation of the
coil, ¢ is length of coil along the axis of rotation, ® is angular
velocity in radians per second, and t = time in seconds.

A torque will have to be overcome to maintain the rotation
of the coil. This torque is given as

14=NBAicoswt [2.6.28]

where N, B, A, o, t are as previously defined, 14 is developed
torque in the elementary dynamo, and i is current.

Note that the direction of the applied torque will dictate the
direction of the induced current in the elementary dynamo.

The “external” magnetic field could be due to a magnet
or it could be due to the magnetomotive force induced by a
current in a conductor (or another stationary coil). The rela-
tionship for torque developed when the fields of a stationary
(stator) coil and a rotating (rotor) coil interact is given by

[2.6.29]

where 14 is torque developed in the dynamo, k is constant
term, which includes the number of coil windings, dimen-
sions of the dynamo, velocity of rotation, etc., i is current
in the stator coil in amperes, i, is current in the rotor coil in
amperes, and § is angle between the fields, called the torque
or the power angle.

Because the current in each coil induces a magnetic field,
the torque relationship may also be given as

T9=Kk'BsB;sind [2.6.30]

where K’ is constant, B is magnetic flux density associated
with the stator in teslas, and B, is magnetic flux density
associated with the rotor in teslas.

Thus from Equation 2.6.30, we see that for a given dynamo
geometry, the developed torque only depends on the interac-
tion between two magnetic fields and their orientation with
respect to each other. One or both of the magnetic fields may
be induced by a current. If one of the fields is the field of a
magnet, then it may be either in the rotor or the stator. If the
rotation results from the imposition of mechanical power on
the rotor, the device is called a generator. If the rotation is
caused by the flow of current, the device is called a motor,
i.e., converts electric power to mechanical power.

If the rotor of the elementary dynamo is turned in a uni-
form magnetic field, an AC emf and current are produced.
If the speed of rotation is constant, the emf and current are
sinusoidal as shown in Figure 2.6.6.

Figure 2.6.7 is a schematic of another AC generator called
an alternator. A DC current is supplied to field windings on

T4 =Kigi, sind

(b) ()

Figure 2.6.7 An alternator.

the rotor, which are then rotated inside the stator windings,
producing the AC emf.

The device of Figure 2.6.7 can also operate as a motor if
a DC current is applied to the rotor windings as in the alter-
nator and an AC current is imposed on the stator windings.
As the current to the stator flows in one direction, the torque
developed on the rotor causes it to turn until the rotor and
stator fields are aligned (§=0°). If, at that instant, the stator
current switches direction, then mechanical momentum will
carry the rotor past the point of field alignment, and the
opposite direction of the stator field will cause a torque in
the same direction and continue the rotation.

If the slip rings of the elementary dynamo are replaced by
a split-ring commutator, then a DC emf and current will be
generated as shown in Figure 2.6.8. If the single coil of the
elementary dynamo is replaced with multiple coils attached
to opposing segments of a multisegment commutator, then
the emf generated will be more nearly constant. There will,
however, always be a momentary reduction in the emf at the
times in the cycle when the spaces in the commutator pass
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ot

Figure 2.6.8 Commutator operation (a) and generated
voltage waveform (b).

the brushes. By the proper orientation of the rotor (called the
armature) windings in relation to the commutator segment
in contact with the brushes, the torque angle (§=90°) can
be made to produce maximum torque.

The DC generator can be operated as a motor by imposing
a dc current on the armature.

2.6.10 Polyphase Circuits
Circuits that carry AC current employing two, three, or more
sinusoidal potentials are called polyphase circuits. Polyphase
circuits provide for more efficient generation and transmis-
sion of power than single-phase circuits. Power in a three- (or
more) phase circuit is constant rather than pulsating like the
single-phase circuit. As a result, three-phase motors operate
more efficiently than single-phase motors.

The usual situation is to have three phases, each gener-
ated by the same generator but with a difference of 120°

Y — CONNECTION

A — CONNECTION

Figure 2.6.9 Three-phase connections.

between each phase. Each phase of the generator could be
operated independently of the other phases to supply single-
phase loads, but to save wiring costs the phases are often
run together. The three-phase generator may be connected
in either delta (A) or Y configuration. Figure 2.6.9 illustrates
the two types of generator connections. The coils in the
figure are armature windings (see the section on “Rotat-
ing Machines”). For the Y connection with balanced (equal
impedance and impedance phase angle on each phase) load,
the line and coil currents are equal, but the line-to-line emfs
are the square root of three times the coil emfs. In the A
configuration with balanced loads, the line currents are the
square root of three times the coil currents, and the coil and
line emfs are the same.

The common connection of all three armature windings in
the Y connection allows a fourth, or neutral, conductor to be
used. This neutral point is often grounded in transmission
and distribution circuits. Such a circuits is termed a three-
phase, four-wire circuit.

In a balanced three-phase circuit, the total power is three
times the power in each phase, or

Piota =3P, =3V, I, cos0 (2.6.31]

where Pio is total circuit power, P, is phase power, V, is
rms phase potential, I, is rms phase current, and 6 is phase
angle difference between phase potential and phase current.

Regardless of whether the circuit is connected in A or Y,
the total power is also

Piotal = v/3V1]; cos [2.6.32]

where Py, and 0 are previously defined, V; is rms line-to-line
potential, and I; is rms line current.

Note that 0 is not the phase angle difference between line
potential and line current.

Just as the armature coils of a three-phase generator may
be connected in a A or Y configuration, the circuit loads may
be connected in a A or Y configuration. The A-load configura-
tion may be supplied from a source that is connected in either
AorY.TheY connection may include a neutral (fourth) wire,
connected at the common connection of the circuit.

2.6.11 Power Transmission and Distribution Systems
Electric power is almost always transmitted as three-phase
AC current. In domestic use, current is often distributed
from a substation at voltages ranging from 4,160 to 34,500
volts, which are stepped down by a transformer close to the
point of use to 600, 480, and 240 V for three-phase current for
commercial power and 240 and 120 V for single-phase, three-
wire current for household power and lights. If DC current
is required, synchronous converters or rectifiers are used to
convert the AC supply to DC.
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Most devices are designed for a constant potential and,
as a result, power is usually distributed to loads at con-
stant potential. Two possible configurations for delivering
a constant potential to multiple loads are illustrated in
Figure 2.6.10. In the parallel circuit, the potential across the
load decreases as the distance from the source increases.

B
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D

(@)
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o

SUPPLY

o
(b)

Figure 2.6.10 Circuits: (a) parallel; (b) loop.

For the loop circuit, potentials are more nearly equal along
the length of the circuit.

Transmission lines usually consist of two or more con-
ductors separated by some form of insulation. Such a con-
figuration exhibits a significant resistance, inductance, and
capacitance. Figure 2.6.11 illustrates these effects. Solving
the circuit of Figure 2.6.11 is quite involved, and transmission
line electrical characteristics are often represented more
simply as a lumped parameter model. Figure 2.6.12 depicts
two common lumped models used as equivalent circuits to
calculate line losses, changes in phase angle, etc.

The materials for transmission and distribution conduc-
tors are usually copper and aluminum. Copper is expen-
sive, has a high conductivity, and has sufficient mechanical
strength for many uses. Aluminum has the advantage that for
a given weight of conductor, it has twice the conductance of
copper. A disadvantage of aluminum is that its melting point
is lower than copper, while its thermal expansion is greater
and stability problems are sometimes encountered.

Conductor or wire sizes are expressed in terms of the
American Wire Gage (AWG) system. In this system, the ratio
of any wire diameter to the next smaller gage or diameter
is 1.123. The AWG sizes range from 40 to 0000. Table 2.6.6
lists the AWG number, wire dimension, and resistance for
solid copper wire. Wires larger than 0000 (as well as smaller
wires) are stranded to maintain flexibility. Wire sizes greater
than 0000 are expressed in circular mils. A circular mil is the
square of the diameter of the conductor, where the diameter
is expressed in mili-inches. (1000 mili-inch =1 inch).

(a) T - LINE MODEL

l

LI
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— < —¥n

=

(b) = — LINE MODEL

Figure 2.6.12 Lumped element models of transmission line electrical characteristics.
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Table 2.6.6 Wire Table for Copper
Resistance at
Diameter, Area, circular 20°C (68°F), ohms per
AWG  inches mils 1000 feet of length
0000  0.4600 211,600 0.04901
000  0.4096 167,800 0.06180
00  0.3648 133,100 0.07793
0 0.3249 105,500 0.09827
1 0.2893 83,690 0.1239
2 0.2576 66,370 0.1563
3 0.2294 52,640 0.1970
4 0.2043 41,740 0.2485
5 0.1819 33,100 0.3133
6  0.1620 26,250 0.3951
7 0.1443 20,820 0.4982
8 0.1285 16,510 0.6282
9 0.1144 13,090 0.7921
10  0.1019 10,380 0.9989
11 0.09074 8,234 1.260
12 0.08081 6,530 1.588
13 0.07196 5,178 2.003
14 0.06408 4,107 2.525
15 0.05707 3,257 3.184
16 0.05082 2,583 4.016
17 0.04526 2,048 5.064
18  0.04030 1,624 6.385
19  0.03589 1,288 8.051
20 0.03196 1,022 10.15
21 0.02846 810.1 12.80
22 0.02535 642.4 16.14
23 0.02257 509.5 20.36
24 0.02010 404.0 25.67
25 0.01790 320.4 32.37
26 0.01594 254.1 40.81
27 0.01420 201.5 51.47
28  0.01264 159.8 64.90
29  0.01126 126.7 81.83
30 0.01003 100.5 103.2
31  0.008928 79.70 130.1
32 0.007950 63.21 164.1
33 0.007080 50.13 206.9
34 0.006305 39.75 260.9
35 0.005615 31.32 329.0
36 0.005000 25.00 414.8
37 0.004453 19.83 523.1
38 0.003965 15.72 659.6
39 0.003531 12.47 831.8
40 0.003145 9.888 1,049
41 0.002800 7.840 1,323
42 0.002494 6.200 1,673
43 0.002221 4.928 2,104
44 0.001978 3.881 2,672
45  0.001760 3.098 3,348

Interior wiring design and installation for most commer-
cial and industrial uses should follow the National Electrical
Code (NEC) which has been a national standard since 1970
with the passage of the Occupational Safety and Health Act
(OSHA). Some localities, however, may not accept the NEC

and require that their own (more stringent) standards be
followed.

For further information on this subject, refer to References
1-5.
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2.7 CHEMISTRY

This section discusses basic chemistry, with emphasis on
the compounds found in petroleum and selected physical
chemistry topics likely to arise in petroleum engineering.
Examples are provided to illustrate fundamental ideas and
principles. More complete treatment of these topics and
others can be found in standard textbooks of general,
organic, and physical chemistry.

2.7.1 Chemical Bonds and Polarity

Chemical compounds may be considered ionic or covalent.
In an ionic compound, electrons are transferred from a more
electropositive element, such as a metal, to a more elec-
tronegative element, such as a halide, or to a more complex
structure, such as nitrate (NO;). Common salt, NaCl, is an
example of an ionic compound. Ionic compounds are usually
soluble in water because the cation, in this case Na*, and the
anion, C1~, can dissociate and become solvated by the water.
Many inorganic compounds are at least partly ionic. Ionic
compounds tend to be good conductors of electricity. Their
melting and boiling points are higher than those of covalent
compounds.

In covalent compounds, electrons are shared in the bond
between two atoms, and anions and cations are not formed.
Organic compounds found in petroleum are predominantly
covalent. Covalent compounds are poorly soluble in water
and are poor conductors of electricity.

Chemical bonds may also have mixed ionic and covalent
character. As the difference in electronegativities of atoms
sharing a chemical bond increases, the bond becomes more
ionic. Although the molecule may be electroneutral, it can
have a dipole moment, with the more electronegative atom
carrying a partial negative charge.

The order of electronegativity of some elements [1] is

F>0>CI>N>Br>I>S>C>H>B
>Si>Mg>Li>Na>K

Examples of nonpolar molecules in which both atoms are
the same are Hy, Ny, O,, I, and Cl,. Compounds in which
atoms are symmetrically arranged, such as methane (CHy),
also may be nonpolar.

Water is a covalent compound, with two bonds between
oxygen and hydrogen in which the oxygen and hydrogen
each contribute one electron. However, the electronegativity
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difference between oxygen and hydrogen is large enough
that the bonds and therefore the molecule is polar:

.

/O\

S H*
The oxygen in water also carries an electron pair, which
is attracted to the hydrogens of other water molecules (i.e.,
hydrogen bonding) or to other electropositive species, such
as cations or electropositive hydrogens in other compounds
such as acids. The hydrogen bond is much stronger than
most dipole-dipole interactions and accounts for many of the
distinctive properties of water.

(bond angie = 105°)

2.7.2 Hydrocarbons

Compounds formed from carbon and hydrogen only are
called hydrocarbons, which make up the bulk of petroleum.
Carbon atoms can bond to each other to form chains and
rings, and they can share one, two, or three pairs of electrons
in each bond. These characteristics allow the formation of
a wide variety of compounds. Chemists group these com-
pounds into homologous series, families of compounds that
contain a common functional group. Each member of a
homologous series differs from the next by a one-carbon
unit.

Nonpolar molecules such as Hy, Ny, O, I, and Cl,
have zero dipole moments, because e=0. On the other
hand, hydrogen fluoride, HF, has a large dipole moment of
1.75 Debye and so is strongly polar. Simple carbon com-
pounds with symmetric arrangement of like atoms (e.g.,
methane, CHy, and carbon tetrachloride, CCly) have zero
dipole moments and so are nonpolar.

In polar compounds, the operative intermolecular forces
are dipole-dipole interactions, which refer to the attraction
between the positive pole of one molecule and the negative
pole of another. For this reason, polar compounds are rela-
tively more stable than nonpolar substances. A particularly
strong kind of dipole-dipole attraction is hydrogen bonding,
in which a hydrogen atom acts as a bridge between tow elec-
tronegative atoms, holding one atom by a covalent linkage
and the other by purely electrostatic forces, e.g.,

H—F- F—H
H—O --O—H

| 1

H H

where the sequence of dots indicates the hydrogen bridge.
This bond has a strength of 5 kcal/g-mole versus 50-100
kcal/g-mole for the covalent bond, but it is much stronger
than other dipole-dipole interaction [21]. For hydrogen
bonding to be important, both electronegative atoms must
belong to the group: F, O, N.

The intermolecular forces operative in nonpolar com-
pounds are also electrostatic in nature. These weak van der
Waals forces involve attraction between nonbonded atoms
and are effective over short ranges only.

The nomenclature of organic compounds is based on con-
ventions adopted by the International Union of Pure and
Applied Chemistry (IUPAC) [2]. A brief discussion of the
various classes of hydrocarbons follows.

Hydrogen fluoride
Water

2.7.2.1 Alkanes

Alkanes are the simplest aliphatic compounds, containing
only carbon and hydrogen held together by single bonds
and not containing a ring. They have the general formula
C,Ha,.2, where n is the number of carbon atoms in the
alkane molecule, and n> 1. These are also known as paraffins
or saturated aliphatic hydrocarbons. Continuous or straight-
chain alkanes are called normal paraffins or n-alkanes

(e.g., methane, CHy; ethane, C,Hg; propane, CsHg; n-
butance, n-C4Hj; etc.). The corresponding alkyl groups,
methyl, -CHj; ethyl, ~CoHs; n-propyl, —C3H7; n-butyl, -C4Ho;
etc., are generally represented by the symbol R—.

Branched-chain alkanes, also known as “isoparaffins”
or “isoalkanes,” are possible when n>4. The prefix “iso” is
used when two methyl groups are attached to a terminal
carbon atom of an otherwise straight chain and the pre-
fix “neo” when three methyl groups are attached in that
manner. Branched-chain alkanes are sometimes regarded
as normal alkanes with attached substituent alkyl groups.
An example is

CH3

CH; — CH— CH2— C — CHj

CH;s

CHs
2,2,4-trimethlypentane (isooctane)

Isomers are substances having the same molecular formula
and molecular weight, but differing in physical and chem-
ical properties. Branched and straight-chain alkanes with
the same molecular formula can exist as distinct structures
having different geometrical arrangement of the atoms,
which are termed structural isomers. One example is C4Hygo
(butane), which has two isomers:

H H CHs

| |

HyC —C—C—CH; and H—C—CH,

| |

H H CH,

[CH,CH,CH,CH, (n-butane)] [(CH,),CH (isobutane)]
As the carbon number increases, the number of possible
structural isomers grows rapidly. For example, CsH;, has
only three isomers,

CHy CH,

| |

I;:I[‘{.]1l_{.|!_f'.illﬂ'|-|| H CHyCHy HC— C— CH,
| |

CHia CH.

[HEH L EHC H, [(EEH, ), { neopentande |

(sogrentane)]

[0 H,, (n-pentane)]

while CioHs (decane) has 75, and Cy0Hyo (eicosane) has
366,319 possible isomers.

Although n-alkanes exhibit smooth and graded variations
in physical properties (Table 2.7.1), the branched members
do not [3]. The structural isomers of any alkane gener-
ally show dissimilar physical and chemical characteristics.
A branched-chain isomer has a lower boiling point than a
straight-chain isomer, and the more numerous the branches,
the lower its boiling point. Alkanes are either nonpolar or
weakly polar. They are soluble in nonpolar or weakly polar
solvents (e.g., benzene, chloroform, ether), and are insoluble
inwater and other highly polar solvents. Alkanes can dissolve
compounds of low polarity. Chemically, paraffins are unreac-
tive at ordinary conditions. At high temperatures, they can
burn completely in the presence of oxygen to yield CO, and
H,O0 as products. The combustion reaction is exothermic.

At ambient temperature and pressure, the first four mem-
bers of the n-alkane series (methane to n-butane) are gases,
the next thirteen (n-pentane through n-heptadecane) are
liquids, and the higher members from n=18 on are solids.
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Table 2.7.1 Physical Properties of Normal Alkanes [3]

Molecular Melting Point Boiling Point State Under

Name Formula “C) “C) Density? Atmospheric Conditions
Methane CH, —183 —164 0.55 Gas
Ethane CyHg —183 -89 0.51 Gas
Propane C3Hg —189 —42 0.50 Gas
n-Butane C4Hyo —138 0 0.58 Gas
n-Pentane CsHyy —130 36 0.63 Liquid
n-Hexane CeHyy —-95 69 0.66 Liquid
n-Heptane C;Hyg -91 98 0.68 Liquid
n-Octane CgHyg —-57 126 0.70 Liquid
n-Nonane CoHay -51 151 0.72 Liquid
n-Decane CyoHys -30 174 0.73 Liquid
n-Undecane Ci1Hoy —26 196 0.74 Liquid
n-Dodecane CioHog -10 216 0.75 Liquid
n-Tridecane Cy3Hog -5 235 0.76 Liquid
n-Tetradecane C4Hzg 6 254 0.76 Liquid
n-Pentadecane CisHso 10 271 0.77 Liquid
n-Hexadecane Ci6Hsy 18 287 0.77 Liquid
n-Heptadecane Cy7Hsg 23 303 0.76 Liquid
n-Octadecane CigHsg 28 317 0.76 Solid
n-Nonadecane Ci9Hyo 32 330 0.78 Solid
n-Eicosane CooHyo 37 343 0.79 Solid
n-Triacontane CsoHg2 66 450 0.81 Solid

@Densities are given in g/mL at 20°C, except for methane and ethane, whose densities are given at their boiling points.

2.7.2.2 Alkenes

These are also called “olefins” and have the general formula
C,Ha,, with n> 2. They contain a C=C double bond (func-
tional group) and are named in accordance with the [IUPAC
convention by specifying the location of the double bond
from the terminal carbon atom nearest to it.

The first three members of the olefin series are ethene,
propene, and butene. Structural isomers exist when n>4,
as a consequence of the positioning of the double bond in
normal alkenes, or as a result of branching in branched
alkenes. In addition, geometric isomers may be possible
owing to restricted rotation of atoms about the C=C bond.
For instance, C4Hg (butene) has four possible isomers:

H CHs
H,C=C—C—CHs H3C — C=—=C — CHg C=CH,
H H H H CHjy
CH,CHCH,CH, CH,CHCHCH, (CH,),CCH,
(1-butene) (2-butene) (isobutene)

This occurs because 2-butene can exist in two different
structures, the cis or the trans configurations, depending on
whether the methyl groups are situated on the same side or
on opposite sides of the main chain.

CHs CHj; CH; H
| |
C==C and C=C
| |
H H H CH;

(cis-2-butence) (trans-2-butene)
With the inclusion of these two geometric isomers, butene
has a total of four isomers.

As the carbon number increases, the number of possible
isomeric structures for each member increases more rapidly
than in the case of the alkane series.

The physical properties of alkenes [3] are not very differ-
ent from the corresponding members of the alkane family.
Alkenes are nonpolar or at most weakly polar. They are insol-
uble in water but are soluble in concentrated H,SO, and
liquid HE. Normal alkenes dissolve in nonpolar or weakly
polar organic liquids such as ethers, CCly, and hydrocar-
bons. In general, the cis isomer has a slightly higher polarity,
a higher boiling point, and a lower melting point than the
trans isomer, but there are exceptions.

The double bond in olefins is reactive. Halogens can be
added across the double bond:

CH,=CH, +Bry — CH,BrCH,Br

This reaction and its homologs are the basis for a common
test for unsaturated compound, in which orange bromine
water is shaken with a hydrocarbon. Disappearance of the
orange color, caused by reaction of the bromine with double
bonds, indicates the presence of unsaturated compounds.

More than one double bond may be present in a com-
pound. The chemical behavior of compounds containing
multiple double bonds is similar to that of compounds
containing a single double bond.

Common alkenyl groups include

CH,=CH— CHy=CHCH,— CH5CH=CH- CH;CH=CHCH,—

(vinyl) (allyl) (propenyl) (crotyl)

2.7.2.3 Alkynes

These contain a single triple bond and have the general
formula C,Hy,_», with n>2. Alkynes are also referred to
as acetylenic compounds. The simple alkynes can be named
as derivatives of acetylene:

HC=CH acetylene (or ethyne)

CH3C=CH methylacetylene or propyne

Isomers are similar to the isomers of alkenes, with the
double bond replaced by the triple bond, but cis and trans
isomers are not possible because of the linear geometry of
the triple bond.
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Physical properties of alkynes [3] are similar to those of
alkanes and alkenes. They are weakly polar and insoluble in
water, but they are quite soluble in organic solvents of low
polarity (e.g., ether, benzene, CCly). Chemically, the triple
bond is less reactive than the double bond in some reagents
and more reactive in others.

Diynes and triynes are alkynes containing two or three
triple bonds; poly-ynes contain multiple triple bonds. A conju-
gated triyne is a straight-chain hydrocarbon with triple bonds
alternating with single bonds. An examples is

CH3—-C=C-C=C-C=C-CH3 2,4 6-octatriyne
When both double and triple bonds occur in the same
molecule, the IUPAC system recommends the use of both

endings -ene, and -yne, with the former always preceding the
latter in the name. Common alkynyl groups are

HC=C- HC=C-CH,—
(ethynyl) (propargyl)

and

In cyclic hydrocarbons, the carbon atoms form a ring
instead of an open chain. They are also called carbocyclic
or homocyclic compounds. They are divided into two classes:
alicyclic (or cycloaliphatic) and aromatic compounds.

Cyclic analogs of aliphatic hydrocarbons are also known
as cycloalkanes, naphthenes, cycloparaffins, or saturated
alicyclic hydrocarbons. They have the general formula
C,Hy, with n> 3. The first two members are

CHs
cyclopropane AN or A
H2C - CH2
CH; — CH;
cyclobutane | | or D
CHy — CH:

the next two being cyclopentane Q and cyclohexane O For
convenience, aliphatic rings are represented by polygons.
Their properties are similar to their open-chain aliphatic
counterparts. Alicyclic hydrocarbons may have a single ring
or multiple rings. Monocyclic aliphatic structures having
more than 30 carbon atoms in the ring are known, but
those containing 5 or 6 carbon atoms are more commonly
found in nature. See, for example, the sections on steroids,
prostaglandins, and terpenes in standard textbooks [3,4].
When substituent groups are present, they are identified
and their positions indicated by numbers in naming the
compound. As an example, dimethylcyclohexane has three
structures:
CH;

CH;3

CHj3

CHjs

(1,2-dimethylcyclohexane) (1,3-dimethylcyclohexane)

CH3

CHs
(1,4-dimethylcyclohexane)

Cis-trans isomerism occurs in these disubstituted cyclo-
alkanes because the substitutent groups may be located
above or below the plane of the ring.

Physical properties of cycloalkanes [3] show reasonably
gradual changes, but unlike most homologous series, dif-
ferent members may exhibit different degrees of chemical
reactivity. For example, cyclohexane is the least reactive
member in this family, whereas both cyclopropane and
cyclobutane are more reactive than cyclopentane because
of the strain involved in forming the ring.

Cycloalkenes may have one or more double bonds in the
ring. Examples are

1-cyclopentene ' | or

1,4-cyclohexadiene l

CH
N
CH

They are chemically as reactive as their straight-chain coun-
terparts. Compounds are added across the double bond. In
scission or cleavage reactions, the ring structure opens up
into a straight chain.

Hydrocarbons containing both aliphatic and alicyclic parts
may be named by considering either part as the parent
structure and the other part as a substituent:

CH;
ethylcyclopropane > CH —
~
CHy

Cycloalkynes have a triple bond in the carbon ring, as
shown in the following example:
/CHQ —  CH;y ~
CHy CHgy
~
Cth —C = C— CH2

Lo O

CH,

CH, — CHj,

cyclooctyne

Although it is possible to conceive of alicyclic hydro-
carbons containing more than a triple bond or two dou-
ble bonds in the carbocyclic ring, such ring structures are
usually unstable.

Polycyclic aliphatic hydrocarbons contain two or more rings
that share two or more carbon atoms. An example of a fused-
ring system is

0O

The aliphatic rings may be saturated or partially unsaturated.

[decahydronaphthalene (or decalin)]

2.7.2.4 Aromatic Hydrocarbons

Aromatic hydrocarbons are unsaturated cyclic compounds,
usually with benzene or its derivatives as the common build-
ing block. Benzene, the simplest aromatic hydrocarbon, has
the molecular formula CsHg. It is a flat and symmetrical
molecule with six carbon atoms arranged in a hexagonal
ring (bond angle=120°) with a hydrogen atom attached
to each carbon. Benzene is represented as having three
double bonds and three single bonds between the carbon
atoms, but the bonding electrons are delocalized around the
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ring, providing great stability. Reactions of benzene com-
pounds usually involve substitutions of the atoms bonded
to the carbon ring, rather than the ring itself. Severe condi-
tions are required to break the ring. The molecule may be
represented by

00 >

Nomenclature for benzene derivatives is a combination of
the IUPAC system and traditional names. Many of the deriva-
tives are named by the substituent group appearing as the
prefix. Thus, alkylbenzenes are made up of a benzene ring
and alkane units; alkenylbenzenes are composed of a ben-
zene ring and alkene units; and alkynylbenzenes comprise a
benzene ring and alkyne units. Examples of alkylbenzenes
include

CHs

or O HLCH,

}-

':‘ |
) [toluene (or methyvibenzene i
H,C
CH C.H.CH(CH,)
or . D
H,C -~ 65 32

[cumene (or isopropylbenzene)]

If several groups are attached to the benzene ring, their
names as well as their relative positions are indicated.
For example, dimethylbenzene or xylene, C¢H, (CH3)2, has
three geometric isomers, with prefixes ortho-, meta-, and
para-, indicating the relative positions of the two methyl
groups.

CHs

CHj;
lortho-xylene (o-xylene or [meta-xylene (m-xylene or

1,2-dimethylbenzene)] 1,3-dimethylbenzene)]

CH;s

CHs

[paraxylene (p-xylene or
1,4-dimethylbenzene)]

Examples of an alkenylbenzene and an alkynylbenzene are
given below:

CH—=—CH;, C=CH
and
[styrene (phenylacetylene)
(vinylbenzene)]

When the benzene ring is considered a substituent group,
it is called the phenyl group and is represented by

@/ or C6H5

CH,CHCH, (CgHs)

An example is

3 2 1
CH; — CH = CH; or

(3-phenylpropene)

More generally, aromatic substituent groups are called aryl
groups.

Polynuclear aromatic hydrocarbons have complex struc-
tures made up of aromatic rings, or combinations of aromatic
rings with aliphatic rings and chains. One such class of com-
pounds is biphenyl and its derivatives, in which two benzene
rings are connected by a single C-C bond. The structural
formula of biphenyl (or phenylbenzene) is

m o o m
Pp or or CgHs5CsHs
B o

in which the ortho-, meta-, and para-positions of the carbon
atoms in the o and B rings are as marked.

Condensed-ring or fused-ring systems contain two or
more aromatic rings that share a pair of carbon atoms. Exam-
ples include naphthalene, anthracene, and phenanthrene.

| =
&

(naphthalene)

Y

(anthracene)

aYe
(phenanthrene)

Other polynuclear hydrocarbons include bridged hydro-
carbons, spiro hydrocarbons, mixed systems containing ali-
cyclic and aromatic rings, and aliphatic chains, etc. Examples
may be found in the CRC Handbook [3]. Physical properties
of naphthalene are discussed in Reference 1.

Although many of the aromatic compounds have pleasant
odors, they are usually toxic, and some are carcinogenic.
Volatile aromatic hydrocarbons are highly flammable and
burn with a luminous, sooty flame. The effects of molecular
size (in simple arenes as well as in substituted aromatics) and
of molecular symmetry (e.g., Xylene isomers) are noticeable
in physical properties [1,3].

2.7.3 Other Organic Compounds
Many other functional groups are possible. Other atoms,
such as O, N, S, and Cl, combine with hydrocarbon chains
to form homologous series. Table 2.7.2 lists common func-
tional groups and examples of organic compounds con-
taining them. Compounds in a homologous series show
gradual variations in physical properties as the molecular
size increases.

‘When compounds contain more than one functional group
in their structures, they are referred to as polyfunctional
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Table 2.7.2 Selected Functional Groups and Representative Organic Compounds [3]

Example
Class Functional Group Molecular Formula Compound Name
Alkene >C=C< CH,CH =CH, Propylene
CHy
Alkyne -C=C- | CHC = CH Cyclopropylacetylene
CHy
OH
Alcohol -OH CH4CH,CHCH1 sec-Butyl alcohol
"n
Aldehyde -C-H CgHgCHO Benzaldehyde
Q
Ketone -C- CH,COCH3 Acetone
(Methyl ketone)
Q
Carboxylic acid -C-0H CglH5COOH Benzoic acid
Q
Ester -C-0- CH3COOCH,CHy Ethyl acetate
O
Il
Acid anhydride e 0 (CH;C0),0 Acetic anhydride
I
o]
Ether -0- CH40CgHg Methylphenyl ether
[ CHy — CH,
Epoxide / \ Ethylene oxide
(Oxirane) >0 — < [¢]
Peroxide -0-0- (CH3)3C00C(CH3)3 Di-tert-butyl peroxide
Halide -X CHC1 Trichloromethane
3
(chloroform)
2
Acid halide -C-X CgHsCOCL Benzoyl chloride
Amine -NH4 (CH3)3N Trimethylamine

(continued)
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Table 2.7.2 (continued)

Example
Class Functional Group Molecular Formula Compound Name
Nitrile -C=N CgHgCN Benzonitrile
CHy
Nitroso -N=0 é\N meta-Nitrosotoluene
o]
- CH,0NO,
Ni t° HONO Nitroglyceri
itro —N\0 C 2 itroglycerine
CH,ONO5
Q
Amide -C-NHy CONHy Oxamide
CONH,
I}
—C co
Imide N Ny Phthalimide
—¢ - co”
[¢]
Isocyanate -N=C=0 CH4(CHy)4NCO n-~Amyl isocyanate
Oxime >C=N-CH CgHgCHNOH Benzaldoxime
Mercaptan -SH CgHsSH Phenyl mercaptan
(Thiol) (Thiophenol)
Sulfide -s- CH4SCH,CH3 Methylethyl sulfide
(Thioether)
Disulfide -§-s- CH4CH,SSCH,CH3 Ethyldisulfide
/H
Sulfonate >é Cy2Hy5504Na Sodium dodecyl sulfonate
~Nan. - :
(Salt of 503 (Sodium salt of
sulfonic acid) dodecylsulfonic acid)
|
Organometallic —C—NM (CH3)ASn Tetramethyltin
!
-t z - . :
R™M R Mg Br Alkylmagnesium bromide
compounds. Examples include are shown below:
O
H,C —OH 7N
COOH \ 0 HC — cH, CHy  CHy
HC — OH I NS | | O
COOH | H,N — C — NH, o CH,  CHp [
HC —OH N/
O
(oxalic acid) (glycerol) (urea) {ethylene oxide) (1,4-dioxane) (furan)
S Na
Unlike the hydrocarbon rings (carbocyclic or homocyclic) I | P

discussed previously, heterocyclic compounds contain in . \ -
their rings other atoms in addition to carbon. Some examples ~ {thiophene) (pyridine)

[

(pyrrole)
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Other structures may be found in Reference 1. Physical prop-
erties of heterocyclic compounds are given in Reference 5.

2.7.4 Stereoisomerism

Stereoisomers contain the same atoms bonded to each other
in the same ways, but they differ with respect to the orienta-
tion of the atoms in space. Enantiomers are stereoisomers
that are mirror reflections of each other. Diastereomers
are stereoisomers that are not mirror reflections of each
other.

Enantiomers come about because of the tetrahedral
arrangement of singly-bonded atoms around carbon. If four
different groups are bonded to a carbon atom, that atom is
a chiral center, and the chiral compound will have two enan-
tiomeric forms. Molecules may have more than one chiral
center. Sugars contain multiple chiral centers.

The Cahn-Ingold-Prelog, or R-S, system is used to name
enantiomers. Groups bonded to the chiral carbon are given
priority numbers from 1 to 4. Priority numbers are assigned
by atomic number of the atom bonded to the chiral car-
bon, starting with the lowest atomic number. Thus, H would
always have the priority number of 1. If a distinction cannot
be made between tow groups on this basis, the next atom is
considered. For example, 2-butanol has a chiral center at the
asterisked carbon:

CH; - C*H—-CH,CH;3

\
OH

The groups attached to this carbon would be assigned
priority numbers 1 for H, 2 for CH; 3 for CH,CHj3, and
4 for OH.

The formula or model is then rotated in space so that
the lowest priority group is behind the chiral carbon. If
the priority numbers of the other groups then increase
counterclockwise, the enantiomer is designated R. If they
increase clockwise, the enantiomer is designated S. The two
enantiomers of 2-butanol are shown below.

CHj CHj

CH;CH, OH HO

R S

CH,CH;

For further discussions of stereoisomerism, consult Refer-
ences 1, 2, and 4.

Table 2.7.3 Typical Crude Oil Fractions [1]

2.7.5 Petroleum Chemistry

Natural petroleum deposits are made up primarily of hydro-
carbons in gaseous (natural gas), liquid (crude oil or
petroleum), and solid (tars and asphalts) form. For general
literature on the subject of petroleum chemistry consult
References 6-9.

Methods of characterizing a crude oil include, among
other techniques, the ultimate analysis for elemental com-
position and the classification, based on a standard distilla-
tion procedure, into various boiling fractions and residuum
(Table 2.7.3). Selected examples of the types of compounds
present in petroleum are illustrated in Tables 2.7.4 and 2.7.5.

The principal classes of hydrocarbons found in crude oils
are paraffins, cycloparaffins (naphthenes), and aromatics.
Compounds containing N, S, or O and metals and also found
in crude oil. The molecular weight distribution of a crude
oil ranges from 16 for methane to several thousands for
asphaltenes. The lower boiling point fractions of most crude
oils are dominated by saturated hydrocarbons (i.e., paraffins
and napthenes), whereas the higher boiling fractions and
residuum contain large proportions of aromatics and N/O
compounds. The sulfur content tends to increase with the
boiling point.

The ratio of hydrogen to carbon in typical crude oils
is approximately 1.85:1; the other elements, chiefly sulfur,
nitrogen, and oxygen account for less than 3% by weight
in most light crudes. Table 2.7.6 illustrates the elemental
compositions of typical crude oils and asphalts. Sour crudes
contain larger amounts of sulfur-containing compounds.
Traces of phosphorus and heavy metals such as vanadium,
nickel, and iron are also present.

In refining operations, crude oils are fractionally distilled
and separated into different fractions according to the boil-
ing point range of the compounds and their end use or
application (see Table 2.7.3).

A “base” designation is given in the refining industry
to classify crude oils: (i) A paraffin-base crude contains
predominantly paraffins and small amounts of naphthenes
or asphalt. Upon distillation, it yields fine lubricating oils
from the gas-oil fraction and paraffin wax from the solid
residue. (ii) An asphalt-base crude contains mostly cyclic
compounds (primarily naphthenes), which, upon distilla-
tion, produce high yields of black, pitchlike, solid residue,
asphalt, and heavy fuel oil. (iii) A mixed-base crude has char-
acteristics intermediate between the above two categories.
(iv) An aromatic-base crude contains large amounts of low-
molecular weight aromatics together with naphthenes, and
small amounts of asphalt and paraffins.

Tars and Asphalts are semisolid or solid substances. They
are also referred to as bitumens, waxes, and pitch. These
materials consist of mixtures of complex organic molecules
of high molecular weight. As with crude oils, an exact chem-
ical analysis for identification and composition is impractical
to perform on the solid deposits of petroleum.

Crude Boiling Approximate chemical
fraction point, °C composition Uses
Hydrocarbon gas <30 Co—C,4 LP gas for heating
Gasoline 30-180 C4—Cy Motor fuel
Kerosene 160-230 Cg—Cis Jet fuel, home heating
Diesel 200-320 C10-Cis Motor fuel
Heavy oil 300-450 C16—Cso Lubricating oil, bunker fuel
Petroleum > 300 vacuum Co6—Css Lubricating oil, home heating
“jelly” or “wax” > Cys Roofing compounds, paving asphalts
Residuum >Css
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Table 2.7.4 Selected Examples of Cyclic Hydrocarbons Found in Crude Oils (MW=
Molecular Weight, NBP =Boiling Point at 760 mm Hg, MP =Melting Point) [5]

Naphthenes
CHy 53
Methylcyclopentone Methylicyclohexane- Cycloheptane
(CgHjp) (C7H|g) (C7Hyg)
MW = 84.2 98.2 98.2
NBP(°C) = 7.8 100.9 118.4
MP(°C} = -142.5 -126.6 -8.0
Aromatics
CH3 CH3 (CHp) g CH3
O < W
Benzene Toluene m-xylene n-heptylbenzene
(Methylbenzene) {1.3-dimethylbenzene)
{CgHg) (C7Hg) (CgH|Q) (Ci3H20)
MW = 78.1 92.1 106.2 176.3
NBP(°C) = 80.0 110.6 139.1 240
MP({°C) = 5.5 -94.9 -47.8 _48
4 8 1
3 7 2
5
71
Indene Indon Naphthotene Tetralin
(Indonaphthene}  {2.3-dihydroindene) {1.2.3,.4- Tetrohydronaphtholene )
(CgHg) {CoHp) (CgHg) (CgH |2}
MW = 6.2 118.2 128.2 132.2
NBP (°C) = 182 177.9 217.9 207.6
MP(°C) = -18 ~51.4 80.2 -35.7
[
X oo gus
8 = 3 3
Q0 QX T
6 S 8 9 1
Biphenyl Acengphthylene Acenaphthene Fluorene
(Diphenyl) Acenaphthalene  1,2-dihydroacenaphthylene 2,2'-Methylenebiphene
{Phenylbenzene)
(CizHi0!} PLEY (€240} (Cy3Hi0)
W = 154.2 152.2 154.2 166.2
NBP(°C) = 256.1 280 279 295
MP{°C) 69 92.5 93.4 114.8
Phenanthrene Fluocronthene Pyrene
1,2-(1,8- Naphthylene)benezene (gep;0 [d e f] phenonthrene}
(UELITY {CigH 10! (CigHio!
MW = 178.2 202.3 202.3
NBP{°C) = 340 384 404
MP(°C)= 992 107.8 151.2

&,
S0 o5 OO

Triphenylene Chrysene Naphthacene
{9,10-~Benzophenonthrene } {t.2-Benzophenanthrene) 2,3-Benzonthracene )
(Benzo [a] phenanthrene ) {Tetrocene)
(CigHiz) (CigHi2) (CigH 2!
MW = 228.3 228.3 228.3
NBP(°C)= 425 448 Sublimes
MP(°C) = 199 258.2 357
LD m\ Y
Pentacene Perylene

(8enzo {b] naphthacene }

{CoaH1g! {Ca0H 12!
278.4 252.3
Sublimes Sublimes

257 274
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Table 2.7.5 Selected Examples of NSO Compound Types Found in Crude Oils
(MW = Molecular Weight, NBP =Boiling Point at 760 mm Hg, MP =Melting Point) [5]

OH a4
5 3
|
(1N 2
@ CH3(CHp) g COOH &) ¥y
Phenol Stearic ocid Furan Benzofuran Dibenzofuren
Hydroxybenzene Octadecanoic acid Oxacyclopentadiene Coumarone 2,2'-Biphenylene oxide
(CgHgO) (CigH3g02) (C4H40) (CgHgO! (CipHgO)
MW = 94.1 284.5 68.1 1g.i 168.2
NBP(°C) = i81.8 350 (decomposes) 31.85 174 287
MP(°C) = 40.9 68.8 -85.76 <-18 86.5
SH SH
A O &) g
Cyclopentanethiol Cyclohexonethiol Thiophene Benzothiophene Dibenzothiophene
Cyclopentylmercaptan Cyclohexylmercaptan {Thioturan) {Thionophthene}
(CsHipS) {CgH2S) (CqHgS) (CgHgS) (CioHgS)
MW = 102.2 116.2 84.1 134.2 184.3
NBP(°C) = 132.1 158.9 84.0 221 3325
MP{°C) = * * -39.4 32 99.5
OH 4
N3 flj 5( Lo NN
o C, Sy LG
IH-Pyrrole Pyridine 4-Hydroxypyridine Indale Quinoline
{Azole} (Azine} 4-Pyridinol (2,3-Benzopyrrole) I-Azanaphthalne
(C4H5N) (C5HgN) (CgHgNO) (CgHzN} (CgH7N)
Uw = 67.1 79.1 95.1 117.2 129.2
NBP(°C) = 129.8 115.2 >350 253.6 237.1
MP(°C) = -23.4 -41.6 149.8 52.5 _148
B, oo w0 *
m @(Nj N N
H
Isoquinoline 6-Hydroxygquinoline 1,2.3,4-Tetrohydroguinoline  5,6,7.8-Tetrohydroquinaling
(Benzopyridine) 6-Quinolinol
{CgH7N) (CgH7NO) (CgHy N (CghyN)
MW = i29.2 145.2 133.2 133.2
NBP{°C) 243.2 360 251 222
MP(°C) = 415 195 20 *
g3,
7 R
l:u ﬁm!
5 10 4
Phenanthridine Acridine
Dibenzo-[b, e] pyridinol
(Cj3HgN} {CzHgN)
Mw = 179.2 179.2
NBP{°C) = 349 344.9
MP(°C) = 107.4 106,110
(different crystal forms)
H
|
N N O N N
0 1
1 Cii) F?y \
H
9H-Carbazole 7H-Benzocarbazole 1H-Imidazole Pyridazine
(Dibenzo [b, d] pyrrole 1,3-Diazole 1,2-Diazabenzene
{ClpHgN) (CigHN) {C3HgN2) (C4HgND)
MW = 167.2 217.3 68.1 80.1
NBP(°C) = 354.7 448 257 208
MP(eC) = 246.2 134 90.5 -8
Porphin
(Tetrometheneletropyrrole)
{Ca0M1aN 4!
MW = 310.4
NBP(°C) =

MP{°C) =

dorkens ot 360
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Table 2.7.6 Elemental Composition of Natural
Petroleum (Percentage by Weight) [7]

Element Crude Oils
Carbon 84-87
Hydrogen 11-14
Sulfur <0.1-8
Nitrogen <0.1-1.8
Oxygen <0.1-1.8

Metals (N1, V, etc.) trace — 1,000 ppm

Table 2.7.7 Composition of Typical Petroleum Gases [6]

Natural Gas
Hydrocarbon
Methane 70-98%
Ethane 1-10%
Propane trace-5%
Butanes trace-2%
Pentanes trace-1%
Hexanes trace—1%
Heptanes + trace-5%
Nonhydrocarbon
Nitrogen trace-15%
Carbon dioxide* trace-5%
Hydrogen sulfide* trace-3%
Helium up to 5%, usually trace or none

Gas from a Well that also produces Petroleum Liquid

Hydrocarbon
Methane 45-92%
Ethane 4-21%
Propane 1-15%
Butanes %—7%
Pentanes trace-3%
Hexanes trace-2%
Heptanes + none-11%

Nonhydrocarbon
Nitrogen trace—up to 10%
Carbon dioxide trace—4%
Hydrogen sulfide none-trace—6%
Helium none

*Qccasionally natural gases are found which are predominately
carbon dioxide or hydrogen sulfide.

Gas collected at the wellhead is mostly methane with
decreasing amounts of heavier hydrocarbons. Typical com-
positions are given in Table 2.7.7. Natural gases are pri-
marily mixtures of normal alkanes in the C; to C4 range,
although other paraffins and heavier hydrocarbons may also
be present. Natural gases also contain water vapor, carbon
dioxide (CO), hydrogen sulfide (H,S), nitrogen and helium.
At conditions of high pressure and low temperature, solid
hydrates may form between H,O and the hydrocarbons.

Natural gases are classified as sweet or sour (similar to
crude oils), depending on the absence or presence, respec-
tively, of significant amounts of hydrogen sulfide. Wet gas
is capable of producing liquid hydrocarbons upon suitable
treatment; dry gas does not have such ability. Processing of
natural gas results in pure methane, liquefied petroleum gas
(or LPG, which is mostly propane and some n-butane), and
gasoline.

Saturated aliphatic hydrocarbons found in petroleum
include normal alkanes as well as branched alkanes (iso-
alkanes). The paraffin content can vary widely from one
crude oil to another. n-alkanes have been found throughout
the boiling range of most crude oils, from n=1 to 78. Some
waxy crudes contain higher alkanes, up to n=200. The pour
point of a crude oil is strongly influenced by the amount and
carbon-number distribution of n-alkanes present. For crude
oils, it can range from —70 to 110°F (—57 to 43°C). Whereas
n-alkanes tend to raise the pour point, other hydrocarbon
types lower it.

All possible isoalkanes from C, through Cg have been
found in crude oils, along with several isomers of Cy and
some of Cyo. Many isoprenoids (e.g., pristane and phytane)
which serve as biomarkers to the genesis of petroleum
have been detected in significant concentrations. The 2- and
3-methyl alkanes and pristane appear to be the dominant
isoparaffins in crude oils.

Cycloalkanes occur in varying amounts in crude oils.
The rings contain of five, six, or seven carbon atoms. Alkyl
derivatives of cyclopentane and cyclohexane have been
found, but not of cycloheptane. The most common naph-
thenes are methyl- and dimethyl-substituted cyclopentane
and cyclohexane. The amount of naphthenes can be greater
than 50wt% of a crude oil, with the lighter boiling frac-
tions containing less and the heavier fractions containing
more. Fused polycyclic aliphatic structures such as decalin
(C1oHyg) become prevalent in the heavier fractions. Some of
these multiring compounds may contain up to seven rings.

Alkenes are found in petroleum in very low concen-
trations because of the reaction. Trace concentrations of
multiring cycloalkenes such as hopenes and sterenes have
been reported to be present in crude oils. Alkynes and
cycloalkynes are not commonly found in natural petroleum.

Aromatic hydrocarbons are frequently found in crude oils.
Benzene and alkylbenzenes, ranging from methyl through
decyl groups, have been found in liquid petroleum, together
with several Cy;-alkyl isomers. Indane and tetrahydronaph-
thalenes as well as some of their methyl isomers have been
identified. Biphenyl and its derivatives occur in lower con-
centrations than naphthalene and its derivatives. Polynuclear
aromatics including phenanthrene, fluoranthene, pyrene,
benz[a]anthracene, chrysene, triphenylene, benzopyrenes,
perylene, etc., and some of their alkyl derivatives have been
detected, but not anthracene. Crude oils also may contain
aromatic compounds such as acenaphthene, acenaphthy-
lene, fluorene, dibenzanthracenes, etc. Among the simpler
aromatic molecules, toluene and meta-xylene are the most
common; benzene, ethylbenzene, and other alkylbenzenes
also occur in significant concentrations in distillates.

Aromatic content can vary considerably between crudes
but rarely exceeds 15% of the total crude weight. The aro-
matic hydrocarbons appear throughout the boiling range but
tend to be concentrated in the heavy fractions of petroleum,
including the residuum. As a class, aromatics (e.g., toluene
and xylenes) have the highest octane ratings among hydro-
carbons and hence are used as additives to gasoline and
other fuel oils. They show the largest viscosity changes
with temperature and are therefore undesirable in the
lubricating oil range. With rising boiling point, the heavy
fractions contain increasing amounts of complex polycyclic
aromatic compounds that are difficult to characterize. Some
polynuclear aromatic molecules such as 3,4-benzopyrene
and benz[a]anthracene are carcinogens.

Compounds containing nitrogen, sulfur, and oxygen are
usually abbreviated NSO compounds and are sometimes
referred to as asphaltics. The residuum contains a high per-
centage of NSO compounds. The strong odor of crude oil is
imported by NSO compounds.
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All crude oils contain sulfur in one of several forms includ-
ing elemental sulfur, hydrogen sulfide, carbonyl sulfide
(COS), and in aliphatic and aromatic compounds. The
amount of sulfur-containing compounds increases with an
increase in the boiling point of the fraction. Most of these
compounds have one sulfur atom per molecule, but cer-
tain aromatic and polynuclear aromatic molecules found in
low concentrations in crude oil contain two and three sulfur
atoms.

Alkyl thiols (mercaptans) with normal or branched alkyl
groups and with the thiol group in a primary, secondary
or tertiary location have been found in petroleum, together
with cycloalkyl thiols having rings of five or six carbon
atoms. Continuous chain or branched alkyl sulfides and
cyclic sulfides with four or five carbon atoms in their
rings have been detected. Mixed alkyl cycloalkyl sulfides
have also been found. Alkylpolycyclic sulfides containing
one to eight cycloparaffin rings were identified in certain
crudes. Aromatic compounds of sulfur include thiophenes,
their benzo- and dibenzo-derivatives, and benzonaphthothio-
phenes. Thioindanes and alkylaryl sulfides are also present.

In general, mercaptans are more malodorous than sulfides
and hydrogen sulfide. The presence of significant amounts
of sulfur can poison catalyst for the refining of crude oil.

Most crude oils contain nitrogen; a large proportion of
it occurs in the high boiling fractions and in the residuum.
Examples of the nitrogen compounds present in petroleum
include mono-, di-, and tri-alkylpyridines, quinoline and alkyl
substituted quinolines, tetrahydroquinolines and dialkyl-
benz[h]quinolines. Carbazole and methyl- through decyl-
substituted carbazoles have also been identified. The high
boiling fractions from one crude oil contained a variety of
nitrogen compound types (in excess of 0.1wt% concen-
tration) that included indoles, carbazoles, benzcarbazoles,
pyridines, quinolines, and phenanthridines. Compounds
containing both nitrogen and oxygen, such as amides,
hydroxypyridines and hydroxyquinolines, as well as com-
pounds containing two nitrogens such as azaindoles and
azacarbazoles, were also found. Other molecular types
including pyrroles, isoquinolines, benzoquinolines, and
benzologues of acridine may be present in crude oil.
Porphyrins are observed in the residuum, usually in associa-
tion with metals. Certain aromatic nitrogen compounds (e.g.,
pyridines, quinolines) can cause coking on acid catalysts
during petroleum processing.

Most crude oils contain only small amounts of oxygen.
Oxygen compounds are mainly carboxylic acids, includ-
ing straight-chain fatty acids, branched-chain acids, naph-
thenic acids, and dicarboxylic acids. Other molecular types
observed in the higher boiling fractions include furans
and their benzo-, dibenzo-, and benzonaphtho- derivatives.
Oxygen may also be present in the form of phenols, alcohols,
esters, and ketones and in combination with nitrogen.

Residuum is the undistilled fraction remaining at the
end of distillation, which corresponds to an upper limit
of —565°C (—1050°F) at atmospheric pressure, or up to
—675°C (- 1250°F) under vacuum. The residuum amounts
to a small percentage of a very light crude oil and up
to 30-40 wt% of a heavy crude. Its major constituents
are resins, asphaltenes, and some high molecular weight
oils and waxes. The residuum accounts for most of the
total NSO content and the heavy metals. The resins and
asphaltenes precipitate out when the residuum (or crude
oil) is treated with liquid propane below 70°F. Additional
treatment of this precipitate with n-pentane separates the
soluble resins from the insoluble asphaltenes. The amount
of resins always exceeds the asphaltene content of a crude
oil. Resins are light to dark colored and range from thick vis-
cous materials to amorphous solids. Asphaltenes are dark

brown to black amorphous solids. Together, they may con-
tain nearly 50% of the total nitrogen and sulfur in the crude oil,
predominantly in the form of heterocyclic condensed rings
structures. Asphaltenes may account for as much as 25 wt%
of the residuum (up to 12% of the crude oil). Colorless oils are
the most paraffinic, while asphaltenes are the most aromatic.
Dark oils and resins show similar degrees of paraffinicity and
aromaticity. Up to 40 wt% of saturated hydrocarbons may
be present in the residuum; however, this comprises only
1-3 wt% of the total crude. The rest are aromatic and N/O-
containing compounds. In the nonasphaltene fraction of the
residuum, the typical aromatic structure is a highly substi-
tuted, condensed polynuclear aromatic molecule, with an
average formula, Cy0oHj60S. The substituents are fused naph-
thenic rings, which in turn are substituted with long (Cy5—
Cy) alkyl side chains having intermittent methyl branches.
The average structure for a N/O compound is similar in fea-
tures excepting for slightly higher aromaticity and shorter
(C19—C;y5) alkyl side chains. Other types of NSO compounds
descri