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PREFACE

The year 2010 marks the centennial for the identification of histamine and the 
first glimpse of its many physiological functions. From these initial findings a rich 
tapestry of research has uncovered roles for histamine in almost every physiological 
process with new findings emerging every year. These diverse roles of histamine have 
made for fertile ground for the discovery of novel therapeutics, and these drugs have 
been so successful that the term “antihistamine” has entered the common lexicon. 
This volume is an attempt to give a snapshot in time as to the current understanding 
of the role of histamine in just one important therapeutic area—inflammation. 

The first three chapters provide some background context for the rest of the 
book starting out with a historical perspective by Figueroa and Shankley. Bongers 
et al provide an overview of the pharmacology of the four histamine receptors and 
the chapter by Hiroshi Ohtsu describes how histamine is synthesized as well as 
the insights derived from mice where this synthesis is disrupted. The next several 
chapters discuss disease areas where histamine is known to be involved. Chapter 4 by 
Thomas Taylor-Clark outlines the role of histamine in allergic rhinitis, an area were 
antihistamines are commonly used. This is also true for ocular allergy as discussed 
by Ohbayashi et al. Both of these chapters highlight aspects of these conditions 
that are still not well-controlled and suggest the utility of new antihistamines 
targeting other histamine receptors. A related conclusion can be seen in the chapter 
by Dunford and Holgate on the role of histamine in asthma. In this case, however, 
current antihistamines are not considered to be effective, but the circumstantial 
evidence for a role of histamine in asthma provides evidence that other histamine 
receptors may be involved. Antihistamines are also useful for the treatment of some 
dermatological diseases as discussed by Zuberbier and Maurer. However, the chapter 
by Buddenkotte et al shows that this cannot be generalized since atopic dermatitis 
is much like asthma in that histamine has been suspected as being involved, but 
where current antihistamines are not effective. Traditionally histamine has mainly 
been associated with allergic reactions, but Schneider et al discuss evidence that 
histamine may have a broader role in immune function and autoimmune disease. 
While the majority of other contributions focus on inflammatory conditions, two 
of the concluding chapters touch on other areas. Nuutinen and Panula discuss the 
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important role of histamine in neurotransmission and for the treatment of various 
neurological disorders. Falus et al takes the same approach with cell proliferation 
with an emphasis on malignancy. Finally, the book concludes with the future of 
antihistamine research and the potential for novel antihistamines targeting newest 
members of the histamine receptor family—the H3 and H4 receptors. 

Taken together, I hope that this volume imparts the rich history of histamine 
research and that it stimulates further interest in uncovering yet to be discovered 
functions of histamine and the development of new antihistamines for the treatment 
of human disease.

Robin L. Thurmond, PhD
Johnson & Johnson Pharmaceutical Research & Development, LLC,  

San Diego, California, USA
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Chapter 1

*Corresponding Author: Katherine Figueroa—Johnson & Johnson Pharmaceutical Research  
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Email: kfiguero@its.jnj.com

Histamine in Inflammation, edited by Robin L. Thurmond. 
©2010 Landes Bioscience and Springer Science+Business Media.

One Hundred Years  
of Histamine Research
Katherine Figueroa* and Nigel Shankley

Abstract

In this introductory chapter, we revisit some of the landmarks in the history of histamine 
research. Since histamine was first synthesized (1907) and isolated as a bacterial contaminant 
of an extract of ergot (1910), the elucidation of its role in health and disease and its molecular 

mechanism of action have been continuous, reflecting the application of advances in scientific 
knowledge, technology and therapeutics over the last 100 years.1 It appears that the research will 
continue indefinitely as the nature of the problem is inherently fractal. First, there was a single 
chemical entity, described in terms of state-of-the-art, two-dimensional projections of structures 
introduced by Fischer in 1891, and an idea that such potent chemicals produced their effects on 
biological systems as a consequence of an exquisite interaction with a receptive substance, the revo-
lutionary concept of Langley (1905).2 Today, we recognize four receptor subtypes with multiple 
activation states and multiple coupling to intracellular effector systems, so that we are no longer 
able to reliably and in all instances classify compounds interacting with the histamine receptors 
simply as agonists or antagonists. The complexity is potentially overwhelming, but the promise 
of value to patients beyond that already provided by the first approved generations of histamine 
receptor blockers is a compelling driver.

Introduction
In the Middle Ages, bewitchment would sometimes take the form of St Anthony’s fire, a syn-

drome characterized by convulsions, diarrhea, gangrene and hallucinations. Rather than a question-
able ‘gift’ of the local witch, in the 1850s this syndrome was associated with the ingestion of rye and 
other cereals infected with a fungi, Claviceps purperea. It was determined that the over-wintering 
body of the fungi, termed ergot, with the appearance of their host grain, was responsible for these 
physiological and mental symptoms allowing the syndrome to be renamed as the ergot poisoning  
still observed today. The therapeutic value of preparations of ergot was recognized centuries earlier 
by midwives seeking to control post-partum hemorrhage on account of the uterine contractions 
they induced. The elucidation of the diverse pharmacologically active ingredients of ergot began 
with the development of extraction and isolation chemistry techniques in the 19th Century. For 
example, in 1875, Tanret isolated the crystalline alkaloid ergotinine, a powerful and fast-acting 
uterine contractile agent, allowing for safe administration with measured dosing.3

In 1904, Henry Dale aged 29, following his education at Cambridge University under the 
mentorship of John Langley among other leading physiologists, was appointed as a researcher at 
the Wellcome Physiological Research Laboratories in South London. According to Dale’s memoirs1 
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(1953), Henry Wellcome requested that he “make an attempt to clear up the problem of ergot; the 
pharmacy, pharmacology and therapeutics of that drug being then in a state of obvious confusion”. 
Together with George Barger, a chemist and former Cambridge associate, who had already prepared 
a number of compounds from ergot, Dale began a systematic pharmacological evaluation of each 
compound. Working with a standardized, although decaying and contaminated, “Liquid Extract of 
Ergot” Barger & Dale (1910)4 reported the isolation and identification of -aminoethylimidazole, 
the product of the decarboxylation of the amino-acid histidine (Fig. 1). According to Dale, the 
logical short name, histamine, was withheld for a while due to trademark infringement disputes.  
The chemical synthesis of histamine had first been described three years earlier by Windhaus and 
Vogt (1907),5 providing a method for Dale and colleagues to obtain a supply of pure material for 
their subsequent physiological studies.

Exploring the Physiological Effects of Histamine
The early exploration of the biological effects of histamine was predominantly performed by 

observation and measurement in mammalian experimental systems. Histamine was described as 
having powerful contractile effects on a variety of smooth muscles including the uterus, airways 
and certain blood vessels but was also found to be a secretogogue stimulating gastric acid secretion. 
In addition Dale and Laidlaw (1910)6 made the link between the phenomenon of anaphylaxis and 
histamine when they recognized the similarity of the response, and subsequent death of sensitized 
guinea-pigs, to a second challenge with an antigen to that produced by histamine. In 1927, Dale’s 
laboratory, in collaboration with Best, went on to demonstrate that histamine was an endogenous 
ligand by showing that extracts obtained from liver and lung produced similar responses to chemi-
cally synthesized histamine in isolated uteri of guinea-pigs and anesthetized cats.7

The First Antihistamines
In 1936, at the Pasteur Institute, Bovet and Staub used compounds synthesized by Fourneau 

to show that certain stimulatory actions of histamine could be prevented.8 The first reported 
‘antihistamine’ was 933F (piperoxan), which in the isolated guinea-pig ileum could block the 
effect of histamine. Another compound 929F could prevent death due to histamine injection in 
guinea-pigs but had too many side effects to be considered for clinical use. Members of a later series, 
which included phenbenzamine (RP 2339, Antergan), were able to prevent anaphylaxis-induced 
bronchospasm in guinea pig as well as many actions of histamine in various other species. These 
compounds possessed a lower level of side effects enabling mepyramine (RP2786, pyrilamine) to 
be marketed as Neoantergan in 1944 for the treatment of allergies.8,9 Although the early pharma-
cological analysis of antihistamines was largely qualitative, it soon became apparent that not all of 
the physiological effects of histamine were blocked by this new class of agents.

Pharmacological Definition of Histamine H1 and H2 Receptors
In the 1940s, evidence was presented first by Wells et al (1945) and subsequently by Folkow 

et al (1948), suggesting that the antihistamines prevented the actions of histamine as a consequence 

Figure 1. Synthesis and distribution of histamine. Histamine can be released from a variety 
of cells including neurons, enterochromaffin-like cells and mast cells. Histamine is generated 
by decarboxylation of histidine by the enzyme histidine decarboxylase.
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of competitive inhibition at a cell surface receptor.10,11 The fact that specific substances, like bena-
dryl, only partially reversed histamine-induced vasodilation in the cat led to the conclusion that 
histamine-induced vasodilation was mediated by more than one type of receptor. Around this 
time, Schild, following on from the pioneering work of Clark in 1927 and Gaddum in 1937, was 
refining analytical methods for the use of competitive receptor antagonists as quantitative tools 
for receptor classification.12

In 1960, Trendelenburg13 used these methods to show the pA2 values obtained for pyrilamine, 
when blocking the actions of histamine to increase rate in the isolated mouse right atria and smooth 
muscle contractions in the isolated guinea-pig ileum, were significantly different and so concluded 
that the histamine receptors in the two tissues were pharmacologically distinct.13 This initial 
observation was followed by the first classification of histamine receptors by Ash and Schild.14 It 
was determined that low concentrations of specific histamine antagonists inhibited receptors in 
the guinea-pig ileum and bronchi but did not produce the same response in rat uterine contrac-
tion assays. The receptor expressed in the guinea-pig ileum and bronchi was classified as H1. It 
was noted that classification of a second histamine receptor would require selective antagonists 
targeted towards to those expressed in the uterus, right atrium and stomach. This was solved by 
studies commenced at Smith, Kline and French in 1964.

James Black, following his successful discovery of -blockers working with medicinal chemist 
John Stephenson within the ICI Pharmaceutical Division, relocated to Smith, Kline and French 
laboratories and established a new partnership with Robin Ganellin.15 They took the same approach 
followed for the discovery of the first -blockers (pronethalol and propranolol) namely, by making 
analogues of the parent hormone (adrenaline) and -selective agonists (isoprenaline) and partial 
agonists (dichloroisoprenaline). 4-methylhistamine was found to express selective agonist activ-
ity for what would later be termed the H2 receptor. Subsequently, N-( )-guanylhistamine, was 
identified as a selective partial agonist and further modification led to the prototype, selective, 
competitive antagonists, burimamide and metiamide.9,16 Burimamide not only inhibited gastric 
acid secretion in the dog but also was shown to inhibit histamine pressor responses in the cat ad-
dressing the complex cardiovascular pharmacology of histamine first described by Dale 60 years 
previously. The clinical development of metiamide was terminated due to toxicity in preclinical 
testing but the replacement compound, cimetidine (Tagamet ), was subsequently marketed for 
the treatment of heart burn and peptic ulcers.

Pharmacological Definition of the Histamine H3 Receptor
The presence of a third histamine receptor was first clearly described by Arrang et  al, in 

1983.17 Just as the existence of the H2 receptor was first postulated by observation that not all 
actions of histamine were blocked by the H1-receptor antagonists, it was the unexpected phar-
macological behavior of the compounds previously classified as selective H2-receptor agonists 
and antagonists that characterized the H3-receptor. Their paper described the inhibition of 
[3H]-histamine release from depolarized slices of rat cerebral cortex through a histamine-stim-
ulated presynaptic receptor. Burimamide, the prototype low potency H2-receptor antagonist 
(pKB 5) and impromidine,  previously classified as a potent, selective H2-receptor partial agonist, 
both behaved as potent competitive antagonists with burimamide expressing 300-fold higher 
affinity for the new autoreceptor. It was later shown that the expression of the third histamine 
receptor was not confined to the central nervous system. In 1987, Trzeciakowski described 
presynaptic inhibition of myenteric nerve stimulated contractions of the guinea-pig ileum by a 
class of receptors that pharmacologically resembled the H3-receptor described earlier by Arrang 
et al.18 In the same year, the first potent and selective H3-receptor compounds were described, 
R-( )-methylhistamine and thioperamide, an agonist and antagonist, respectively, which remain 
as standard reference compounds.17 Although no histamine H3-receptor compounds have been 
approved as drugs, there are several centrally-acting antagonists currently in clinical trials for the 
treatment of disorders such as Alzheimer’s disease, Attention-Deficit-Hyperactivity-Disorder 
(ADHD) and narcolepsy.
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Pharmacological Definition of the Histamine H4 Receptor
History repeated itself in the early 1990s as the fourth histamine was also characterized ini-

tially using quantitative pharmacological methods and existing compounds classified in terms of 
their potency and affinity for agonist and antagonist activity, respectively, at the H1-, H2- and 
H3-receptors. Raible et al (1996) first discovered that histamine-stimulated increases in intracel-
lular calcium in eosinophils were blocked by thioperamide, but not by pyrilamine or cimetidine, 
suggesting that the effects of histamine may be H3-receptor mediated.19 However, they found 
that the H3-receptor selective agonist, R-( )-methylhistamine, was over an order of magnitude 
less potent than histamine, which was not consistent with the characterization of H3-receptors 
in other tissues and prompted them to perform a more detailed pharmacological analysis using 
a broader range of compounds. They concluded that the eosinophil histamine receptor was 
novel. The two H3-receptor antagonists, thioperamide and impromidine expressed affinity esti-
mates similar to their H3-receptor values. However, histamine was more potent than, not only 
R-( )-methylhistamine, but also N-( )-methylhistamine (previously characterized as an agonist 
at H1-, H2- and H3-receptors with highest potency at the H3-receptor) and dimaprit which 
behaved as a low potency partial agonist (previously characterized as an agonist at H2-receptors 
and antagonist at H3-receptors). With the subsequent cloning and expression of the histamine 
H4-receptor (see below), highly selective H4–receptor antagonists have been described over the 
last few years. Given the expression of the receptor on key immune cells these ligands have been 
advocated as having potential therapeutic value in auto-immune and allergic disease although to 
date no clinical trial data have been reported.20

The Molecular Biological Characterization of Histamine Receptors
By 1990, although there was a significant amount of literature pertaining to the function of 

the three known histamine receptors, there was little information about the molecular structure 
of these receptors. The first histamine receptor to be cloned was the canine H2-receptor in 1991 
by Gantz et al at the University of Michigan, Ann Arbor.21 Their work came after other G pro-
tein-linked receptors had been cloned with the amino-acid sequence suggesting a rhodopsin-like 
seven transmembrane structure. In order to clone the canine H2-receptor Gantz and colleagues 
employed the method developed by Libert et al.22 The process involved the use of degenerate 
primers and polymerase chain reactions (PCR) to generate partial cDNA sequences from gastric 
parietal cell mRNA; the PCR derived clones were then used to probe canine genomic libraries. 
Colo-320 DM cells transfected with the vector containing the canine H2-receptor clone exhibited 
an increase in intracellular cAMP when challenged with histamine and the concentration-response 
curve to histamine could be shifted to the right by prior incubation with cimetidine. The selective 
H2-receptor antagonist also inhibited [methyl-3H]tiotidine binding in the H2-receptor express-
ing cells. Later that same year functional human and rat H2-receptors were cloned and expressed 
using similar techniques.23,24

The bovine H1-receptor was the first one of the subtype to be cloned.25 In an alternative 
method to genomic library screening, the method employed by Yamashita and collegues involved 
adrenal medullar RNA fractions injected into Xenopus oocytes for assessment of Ca2 -dependent 
Cl- currents, the presence of which and its susceptibility to mepyramine, indicated that the RNA 
fraction injected could transcribe a functional H1-receptor. Northern blot analysis showed that 
the cloned H1-receptor had highest expression in the lung and small intestine. Functional human 
and rat H1-receptors were cloned and expressed two years later.26,27

Within a decade of cloning the first histamine receptor, cloning of the human H3-receptor was 
reported in the literature.28,29 Lovenberg et al described the screening of a human thalamus library 
using a GPCR fragment from an orphan library database, GPR97. A full-length clone encoding a 
putative GPCR was isolated and, although it showed high homology to the acetycholine muscarinic 
M2-receptor,  presented pharmacology that was indistinguishable from the histamine H3-receptor. 
Expression analysis revealed high expression in many brain areas, confirming histamine’s role as a 
neurotransmitter modulator as first revealed 16 years earlier by Arrang et al in 1983.17 When the 
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receptor was cloned from multiple species it became evident that there are significant differences 
in the H3-receptor pharmacological profile between species.30,31

Soon after the confirmation of the H3-receptor sequence, the histamine H4-receptor was 
cloned through the use of genomic database homology screening, which had also been the 
means for successful determination of the H3-receptor sequence.32-35 A partial clone, GPR 105, 
had significant homology to the newly cloned H3-receptor. When GPR105 was transfected 
into SK-N-MC cells it expressed high specific binding for [3H]-histamine but not for H1- or 
H2-receptor specific radiolabels. Moreover, binding to GPR105 was inhibited by a panel of 
H3-receptor antagonists with an unusual rank order of affinity, once again indicating the ex-
istence of a novel histamine receptor. In contrast to the H3-receptor, which is predominantly 
expressed in the central nervous system, the H4-receptor was found to be primarily expressed 
in bone marrow and eosinophils.

Alternative Intracellular Signaling of Histamine Receptors
Following the pioneering work of Earl Sutherland and colleagues in 1959 to reveal cyclic 

adenine monophosphate (cAMP) as an intracellular messenger, Karppanen and Westermann 
(1973) showed that histamine dose-dependently stimulated the production of cyclic AMP in 
the gastric mucosa of guinea pigs.36,37 This effect could be selectively inhibited by H2- but not 
H1-receptor antagonists, suggesting that the H2-receptor was positively coupled to adenylate cy-
clase. In the same year, Lichtenstein and Gillespie also showed positive modulation by histamine 
of intracellular cAMP levels in human leukocytes.38 Through H2-receptor selective inhibition 
they identified a negative feedback mechanism whereby histamine inhibits its own release from 
human leukocytes via the H2-receptor. For the H1-receptor, it was later shown that histamine 
provokes turnover of inositol phospholipids in guinea-pig and human airway epithelial cells via 
a G protein-dependent mechanism.39

The H1 through H4 histamine receptors have now been shown to couple to Gq/11, Gs and 
Gi/o G-proteins, respectively.24,28-30,40 In addition to increases in intracellular inositol phosphates 
upon activation of the H1-receptor it was frequently noted that significant increases in cAMP 
were observed upon receptor activation. In 2005, Maruko et al described that upon activation 
of the H1-receptor the -dimer released after separation from the G q/11 protein, stimulated 
the increases in cAMP, which could be inhibited by co-transfection of G s-protein C-terminal 
peptides.41 This result suggests the histamine family of receptors should be added to the growing 
number of GPCRs that may have differential effects on cellular function and organ physiology 
through possible ‘ligand directed signaling’.

A summary of cloned histamine receptors, their signaling pathways, distribution and selec-
tive ligands is presented in Table 1.

Generations of Histamine Targeted Genetically Modified Mice
Identification of the genes encoding each of the four histamine receptor subtypes enabled the 

generation of genetically modified mice lacking each of the receptors H1 through H4. The first his-
tamine receptor ‘knock-out’ mouse was generated targeting the H1-receptor.42 Both physiological 
and neurological testing showed the lack of functional H1-receptors produced similar results to the 
administration of selective H1-receptor antagonists. An increase in brain serotonin levels was noted 
as a compensatory response in the H1-receptor knock-out mice that could account for the behavioral 
changes observed. The generation of an H2-receptor knock-out mouse by Kobayashi et al in 2000 
confirmed previous evidence that the H2-receptor is absolutely required for normal function of 
parietal cell acid secretion and cellular homeostasis of the gastric mucosa.43 H2-receptor knock-out 
mice present normal gastric basal pH but display gastric hypertrophy and increased circulating gastrin 
levels. Neither histamine nor gastrin stimulate gastric acid secretion in the H2-receptor knock-out 
mice. Compensatory mechanisms for this change in physiology were shown to include an increased 
cholinergic stimulus to the parietal cells. Prior to the generation of H3-receptor knock-out mice, the 
function of this predominantly presynaptic autoreceptor was evaluated using the selective antagonist 
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thioperamide.44 The generation of the H3-receptor knock-out mice in 2002 by Toyota et al43,45 pro-
vided an alternative method to evaluate the receptors role in behavior modulation.45 The H3-receptor 
knock-out mice showed normal circadian rhythmicity but did not respond to the wake-inducing 
properties of thioperamide. The H3-receptor deficient mice also highlighted the role the H3-receptor 
plays in the modulation of other neurotransmitter systems in the brain such as the noradrenergic and 
cholinergic control of attention and memory functions, respectively. The link between H3-receptor 
modulation and dopaminergic control has yet to be fully characterized. The last histamine receptor 
knock-out mouse to be generated and evaluated was of the H4-receptor subtype.46 Initial studies 
using the H4-receptor deficient mice showed the receptor was important for histamine mediated 
mast-cell chemotaxis. Overall, the use of histamine receptor-deficient mice, in combination with 
specific receptor antagonists, continues to allow clarification of histamine’s role in various pathologies 
and guide potential therapeutic value of selective antagonists.

Conclusion
As will be detailed in the following chapters of this book, investigation into the modulation of 

histamine signaling continues and is still a significant area of pharmacological research and drug 
discovery and development. From the use of H1-receptor antagonists for the treatment of urticaria 

Table 1. Histamine receptor subtype summary

H1 H2 H3 H4

Amino acid 
sequence

NP_000852  
HRH1: 487 amino 
acids

NP_071640 
HRH2: 359 
amino acids

NP_009163 
HRH3: 455 
amino acids

NP_067637 
HRH4: 390 
amino acids

Coupling Gq/G11 family to 
phospholipase C 
stimulation

Gs  family to 
 adenylate 
 cyclase 
 stimulation

Gi/o family 
to  adenylate 
 cyclase 
 inhibition

Gi/o family to 
 intracellular 
 calcium 
 increases

Distribution CNS, airway 
smooth muscle, 
gastrointestinal 
tract, cardiovas-
cular system, 
lymphocytes, 
endothelial cells, 
genitourinary 
system, adrenal 
medulla

stomach, 
 vascular smooth 
muscle, CNS, 
 cardiovascular 
system, 
 neutrophils, 
uterus

CNS, cardio-
vascular sys-
tem, lungs, 
endothelial 
cells, periph-
eral nerves

Eosinophils, 
bone marrow 
and leukocytes

Selective 
agonists

HTMT 
 2- pyridylethylamine

amthamine, 
dimaprit

imetit 
methyl-
histamine

Clobenpropit 
VUF 8430

Selective 
antagonists

mepyramine, 
fexofenadine, di-
phenhydramine

cimetidine, 
ranitidine

clobenpro-
pit, ROS 234

JNJ7777120 
JNJ10191584 
thioperamide

Radiolabel [3H]-pyrilamine [125I]- 
aminopotentidine

[3I]- 
iodoproxyfan

[3H]-JNJ7777120
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since the 1950s and to the discovery of the H2 antagonists for gastric acid hypersecretion disorders, 
the area of histamine pharmacology now moves on to both neurological and immunological disorders 
(see Fig. 2 for a diagrammatic synopsis of the one hundred years of histamine research). Expression of 
the H3-receptor in the brain led to research into the control of body weight and appetite, narcolepsy 
and Alzheimer’s. The identification of H4 receptors has seen a number of new classes of selective 
antagonist which may be of value in diseases such as allergic rhinitis and atopic dermatitis. One thing 
seems certain; Dale’s contaminant of ergot will continue to occupy researchers during the next century.
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Figure 2. Historic milestones during one hundred years of histamine research.
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Abstract

Histamine and its receptors have been (and are still today) very fruitful topics for pharma-
cological and medicinal chemistry studies. In this chapter we review the various selective 
ligands that are available for the four different histamine receptors and we describe the 

main molecular pharmacological aspects of each of the receptor subtypes.

The Discovery of the Four Histamine Receptors: An Historical Overview
The biological effects of histamine were observed early by Dale and Laidlaw (1910). Injection 

of the biogenic amine produced similar effects as in many allergic reactions.1 As early as 1937, 
the first evidence for a histamine receptor was provided by Bovet and Staub, who discovered the 
first antihistamine thymoxidiethylamine, that was capable of preventing anaphylactic shock in 
animals.2 The discovery by Ash and Schild in 1966 that antihistamines, like mepyramine, could 
block certain pharmacological actions of histamine on symptoms of allergic reactions, but not 
the effects on the gastric acid secretion led the hypothesis that there were at least two subtypes of 
histamine receptors.3 This was further corroborated by the finding that burimamide selectively 
antagonized the histamine mediated effects on the gastric acid secretion.4 The histamine mediated 
auto-inhibition of brain histamine release was shown to by mediated by a third class of histamine 
receptors that could be pharmacologically differentiated from the heretofore known histamine H1 
receptor (H1R) and histamine H2 receptor (H2R).5 The histamine H3 receptor (H3R) was definitely 
confirmed by the first selective and potent H3R antagonists thioperamide.6 The last member of 
the histamine receptor family was originally cloned as an orphan receptor, but based on its high 
sequence homology to the H3R was found to respond to histamine and confirmed to be a fourth 
histamine receptor, the histamine H4 receptor (H4R).7-11

The four histamine receptors are all membrane bound proteins that belong to the superfamily 
of the G-protein coupled receptors (GPCRs) and more precisely to the biogenic amine receptors 
in the rhodopsin-family. GPCRs convert diverse stimuli like odors, photons, neurotransmitters 
(including biogenic amines), hormones, peptides and proteases, via guanine nucleotide-binding 
proteins (G-proteins) into intracellular responses. GPCRs are characterized by seven alpha helical 
transmembrane (TM) domains and are found in eukaryotes, including yeast, plants, choanoflagel-
lates and animals. They are involved in numerous physiological processes like smell, taste, vision, 
behavior and mood, regulation of the immune system and autonomic nervous system transmis-
sion. GPCRs are considered attractive drug targets by the pharmaceutical industry, because they 
are involved in the regulation of almost every major mammalian physiological process and are 
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readily accessible to drugs due to their localization on the cell surface. In fact, 30% of all drugs 
on the market are targeting GPCRs, among these are several block-buster drugs like clopidogrel 
(Plavix ), cimetidine (Tagamet ), Fexofenadine hydrochloride (Allegra ), quetiapine (Seroquel ) 
and metoprolol (Lopressor  or Seloken ).12,13 Recently, considerable progress has been made in 
the purification and crystallization of several members of the rhodopsin class of GPCRs,14-16 likely 
further enhancing the success of GPCR based drug discovery.

Histamine Receptors, Signal Transduction and Their Ligands
In the next paragraphs we will discuss various molecular pharmacological aspects of the four 

different receptor subtypes, including the availability of selective subtype selective agonists and 
antagonists.

The Histamine H1 Receptor and Its Ligands
The histamine H1 receptor (H1R) is found mainly on smooth muscle cells, endothelium and 

in the CNS. Its physiological role includes e.g., vasodilatation, bronchoconstriction, modulation 
of endothelial barrier function (responsible for hives), pain and itching due to insect stings. The 
antagonists for the H1R, commonly known as antihistamines, are successfully used for the treat-
ment of allergic rhinitis and skin irritations.17 Following the first antihistamine, thymoxyethyldi-
ethylamine (Fig. 1), the related ethylenediamines (e.g., mepyramine) were the first clinically used 
H1R antagonists. Like the other first generation H1R antagonists, the use of mepyramine however 
suffers from sedation as a side effect. Actually, these compounds are now used in many sleeping-aid 
preparations. Second generation antagonists for the H1R, e.g., the piperazine cetirizine, have a 
reduced occurrence of adverse drug reactions due to a decreased brain penetration and increased 
H1R selectivity.18

Some selective H1R agonists have recently been developed as well, but are not used therapeutically. 
Modification of the imidazole moiety of histamine has been the most successful approach for obtain-
ing selective H1 agonists (Fig. 2). The presence of the tautomeric N -N  system of the imidazole ring is 

Figure 1. Chemical structures of selected H1R antagonists.

Figure 2. Chemical structures of selected H1R agonists.
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not obligatory, as reflected by the selective, but weak H1 agonists 2-pyridylethylamine. Substitution of 
the imidazole ring at the 2-position leads to relatively selective H1 agonists. Schunack and colleagues 
developed a series of H1R selective histaprodifens.19-21 A further increase in H1R agonist potency was 
obtained by a bivalent ligand approach. Suprahistaprodifen, a dimer of histaprodifen and histamine 
is currently one of the most potent H1R agonists available.22,23 Surprisingly, recent high throughput 
screening of CNS-active drugs at the H1R has identified the non-imidazole ergot derivative lisuride 
as another high affinity H1R agonist.24

The bovine H1R cDNA was cloned from a cDNA library of bovine adrenal medulla and was the 
first H1R gene to be cloned,25 soon to be followed by other species, including the human H1R.26-28 
The human H1R gene is an intron-less gene that is located on chromosome 3p25 and encodes for 
a 487 amino acid GPCR with a long third intracellular loop (IL3).29

The H1R predominantly couples to G q/11-proteins30 leading to the activation of PLC and 
subsequent release of the second messengers IP3 and DAG followed by the activation of PKC and 
the release of [Ca2 ]i. Additionally, the H1R has been shown to constitutively increase IP3 levels31 
and to activate the nuclear factor B (NF- B),32 a transcription factor involved in inflammation 
and cancer. Remarkably, the H1R-mediated constitutive activation of NF- B is primarily mediated 
through G-protein -subunits, whereas both G q/11-proteins and -subunits are required for the 
H1R agonists mediated NF- B activation.32 All the clinically used H1R antagonists, in fact act as 
inverse agonists inhibiting the constitutive activation of the H1R.

The Histamine H2 Receptor and Its Ligands
The histamine H2 receptor (H2R) is located in a variety of tissues including brain, gastric cells 

and cardiac tissue.17 H2Rs are involved in the gastric acid secretion and therefore antagonists of 
the H2R are used in the treatment of peptic ulcers. The first H2R antagonist, burimamide (Fig. 3),4 
was not very potent and actually was not very specific for the H2R either. With the discovery of the 
H3R and H4R we now know that burimamide has a higher affinity for the H3R and H4R.5,33 Further 
development within the class of H2R antagonists led to the discovery of cimetidine (Tagamet ) by 
Smith, Kline and French and ranitidine (Zantac ) by GlaxoSmithKline. These H2R antagonists 
have been widely used in the clinical treatment of peptic ulcers and have become major blockbust-
ers. Nowadays it has become apparent that gastric ulcers can effectively be cured by a proton-pump 
inhibitor in combination with antibiotics when an infection with H. pylori is found.34-36

A first step towards a selective H2R agonist was made with the discovery of dimaprit (Fig. 4), 
which was found in a quest for isothiourea-based H2R antagonists. Dimaprit is an H2R agonist 
that is almost as active as histamine at the H2R, but hardly displays any H1R agonism. Later it 
was found that dimaprit is also a moderate H3R antagonist and a moderate H4R agonist. Using 
dimaprit as a template, amthamine (2-amino-5-(2-aminoethyl)-4-methylthiazole) was designed as 
a rigid dimaprit analogue (Fig. 4).37 Amthamine combines a high H2R selectivity with a potency, 
which is slightly higher compared to histamine, both in vitro and in vivo.

The H2R gene was the first gene of the histamine receptor family to be cloned. By using degen-
erate oligonucleotide primers based on the known homology between GPCRs and subsequent 
polymerase chain reaction (PCR) on canine gastric parietal cell cDNA Gantz and coworkers 
cloned the canine H2R.38 High homology of the various H2R facilitated cloning of the H2R 
in other species, including the human H2R gene.39 The human H2R gene is an intron-less gene 

Figure 3. Chemical structures of H2R antagonists.
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located on chromosome 5q35 encoding for a protein of 358 amino acids. Compared to the other 
histamine receptors the H2R has a short IL3 and a longer C-terminal tail. The H2R predomi-
nantly couples to G s-proteins and subsequently leads an increase in intracellular cAMP and the 
activation PKA. Selective immunoprecipitation of activated G proteins labeled with [ -32P]GTP 
azidoanilide revealed, in addition to G s-protein coupling, specific coupling to G q-proteins as 
well. Stimulation of recombinantly expressed H2R in COS-7 cells indeed resulted in an increase 
in intracellular inositol 3-phosphate (IP3) and as well as an increase in cAMP.40 Similar to the 
H1R, the H2R was found to display constitutive activity as well,41 which led to the reclassification 
of heretofore known (and clinically important) antagonists (like cimetidine and ranitidine) as 
inverse agonists. Burimamide was found to be neutral antagonist for the rat H2R,41 but acts as a 
weak partial agonist on the human H2R.42

The Histamine H3 Receptor and Its Ligands
The histamine H3 receptor (H3R) is predominantly expressed in the CNS and to a lesser 

extent in the peripheral nervous system.17 On histaminergic neurons in the CNS the H3R acts 
as an presynaptic autoreceptor inhibiting the release and synthesis of histamine.5 On nonhis-
taminergic neurons in mammalian brain, the H3R functions as a heteroreceptor inhibiting 
the release of various important neurotransmitters like serotonin, noradrenalin, acetylcholine 
and dopamine.17 Besides neuronal expression, peripheral inhibitory effects of H3R activation 
on neurotransmission have been shown to occur in the cardiovascular system, gastrointestinal 
tract and the airways.43-46

The H3R has been an attractive drug target for both academia and the pharmaceutical 
industry.47-51 The H3R is expressed in brain regions that are critical for cognition (cortex and 
hippocampus), sleep and homeostatic regulation (hypothalamus).52 Moreover, the H3R acts as a 
heteroreceptor modulating the release of several important neurotransmitters that are involved 
in processes like cognition, mood and sensory gating.53-55 In addition, the H3R acts as an autore-
ceptor regulating the release and synthesis of histamine, a neurotransmitter that plays a role in 
vigilance, attention, impulsivity and feeding/weight regulation.17,56 Therefore, antagonists for the 
H3R are currently under investigation in several therapeutic areas including sleep disorders, energy 
homeostasis and cognitive disorders.57,58

The first potent H3R ligands, e.g., thioperamide and clobenpropit (Fig. 5)6,59 were based on 
the structure of histamine and therefore imidazole-based. However, development of H3R specific 
antagonists by pharmaceutical companies like GlaxoSmithKline (e.g., GSK-189254), Abbott (e.g., 
A-423579), Johnson and Johnson, Schering-Plough, Pfizer, UCB Pharma, Merck, Banyu, Eli 
Lilly, Sanofi-Synthelabo and Roche focused on non-imidazole compounds,57,60 in order to limit 
potential drug-drug interactions via the interaction with the cytochrome P450 isoenzymes.61,62

At the H3 receptor, histamine itself is a highly active agonist. Methylation of the -carbon 
atom of histamine’s ethylamine sidechain leads to R- -methylhistamine, with a highly reduced 
activity at both the H1R—and H2R and potent agonist activity at the H3R.63 For potent H3 
agonism, the amine function of histamine can be incorporated in ring structures. For ex-
ample, immepip (Fig. 6) is a potent H3 agonist that is effective in vitro and in vivo. Although  

Figure 4. Chemical structures of H2R agonists.
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immepip and R- -methylhistamine have previously been used as reference ligands to study 
the H3R, both of them have considerable activity for the recently discovered H4R. Therefore, 
new potent and selective H3R agonists have been developed, most notably immethridine 
(pEC50   9.8; 300 fold selectivity over the H4R) and methimepip (pEC50   9.5;  10000 fold 
selectivity over the H4R).64

It was not until the turn of last century before the human H3R cDNA was identified by 
Lovenberg and his coworkers at Johnson and Johnson in 1999.65 Earlier efforts to clone the H3R 
gene by homology screening on the basis of the earlier elucidated H1R and H2R genes all failed. 
In search for novel GPCRs in commercial genome databases, an orphan GPCR with homology 
to the M2 muscarinic acetylcholine receptor was identified. Full pharmacological characterization 
of this new aminergic GPCR identified this protein as the histamine H3R. Cloning of the H3R 
genes of other species, including rat, guinea pig and mouse, soon followed and important H3 
receptor species differences have been identified.66 The H3R mRNA undergoes extensive alterna-
tive splicing, resulting in many H3 receptor isoforms that have different signaling properties and 
expression profiles.50,67 Moreover, the H3R displays particularly high constitutive activity, which 
can also be observed in vivo, leading to a reclassification of existing ligands into agonists, neutral 
antagonists and inverse agonists.

The H3R signals via G i/o proteins as shown by the pertussis toxin sensitive stimulation of 
[35S]-GTP S binding in rat cortical membranes.68 The inhibition of adenylyl cyclase after stimu-
lation of the H3R results in lowering of cellular cAMP levels and modulation of CREB (cAMP 
responsive element-binding protein) dependent gene transcription.69-75 Moreover, the H3R ef-
fectively couples to the stimulation of MAPK 67 and the Akt-GSK3-  axis.76

Figure 6. Chemical structures of H3R agonists.

Figure 5. Chemical structures of H3R antagonists.
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The Histamine H4 Receptor and Its Ligands
The histamine H4 receptor (H4R) has a relatively low CNS expression and is highly expressed 

in peripheral blood leukocytes and mast cells, suggesting a role for the H4R in inflammatory and 
immune responses.77 At this moment lot of interest is focused on the potential of the H4R as 
drug target in inflammatory conditions (e.g., allergic asthma) and itch. With the discovery of the 
H4R and its initial pharmacological characterization,7-11 it became immediately clear that many 
imidazole-containing H3R ligands show a high affinity for the H4R as well.78 This is probably due 
to the high homology (68%) in the transmembrane regions of the H3R and H4R.8,9,33,79 Classical 
H3R ligands like the H3R agonists immepip and imetit and the H3R inverse agonist clobenpropit 
were shown to be potent high affinity agonists on the H4R,78 whereas thioperamide turns out 
to be a high affinity inverse agonist for the H4R.33 The first potent and H4R selective agonists, 
4-methylhistamine80 and VUF843078 and inverse agonists, JNJ 777712081 and its benzimidazole 
derivative VUF6002,82,83 have now been developed (Fig. 7). These specific H4R ligands, together 
with the availability of H3R specific ligands,84 will help to delineate the roles of the H4R in vivo.

The gene that encodes for the human H4R is located on chromosome 18q11.2 and contains 
three exons encoding for a 390 amino acid protein that has a 31% homology to the human H3R.85 
Similarity in gene organization between the H3R and the H4R might indicate the possibility of 
H4R isoforms, however so far no 7-TM H4R isoforms have been published.7,9,11,86 Like the H3R, 
the H4R couples to G i/o-proteins, subsequently leading to an inhibition of cAMP accumulation 
and the subsequent PKA dependent inhibition of the cAMP responsive element-binding protein 
(CREB).10 Furthermore, activation H4R has been shown to lead to a G i/o-protein dependent phos-
phorylation of MAPK in HEK293 cells87,88 and mobilization of [Ca2 ]i in mast cells endogenously 
expressing the H4R and in L1.2 cells that recombinantly express the H4R.87 The H4R mediated 
mobilization of [Ca2 ]i in mast cells is both G i/o-protein and PLC dependent as shown by the 
use of PTX and the phospholipase C inhibitor U73122.65

Conclusion
After the first successful period of histamine receptor pharmacology and the blockbuster 

success of the histamine H1R and H2R antagonists, the histamine research area is now having a 
firm revival. With the cloning of the genes of the H3R and H4R worldwide significant attention 
is paid to the potential therapeutic use of ligands acting at these two “new” family members. It 
is anticipated that in the coming years the first clinical results with recently developed H3R and 
H4R antagonists will be made public.
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Abstract

This chapter summarizes the information about the transcriptional regulation of histidine 
decarboxylase (HDC), which is the catabolic enzyme of histamine synthesis, and the 
activity of histamine in vivo as clarified using HDC gene deficient mice (HDC-KO). The 

research of the regulatory mechanism of histamine synthesis has been focused on transcriptional 
and posttranslational aspects. The generation of HDC-KO mice clarified several new pathophysi-
ological functions of histamine. It is now recognized that the activity of histamine is not limited 
to allergic, peptic and neurological functions as in the old paradigm, but extends to other fields 
such as cardiology, immunology and infectious diseases. Therefore, this chapter will focus on these 
newly revealed functions of histamine. For example, histamine was known to be involved in the 
effector phase of allergic responses, but a role has now been shown in the sensitization phases and 
in innate immunity. In the allergic bronchial asthma model using HDC-KO mice it was found 
that histamine positively controls eosinophilia, but not bronchial hypersensitivity. The effect on 
eosinophils was afterwards shown to be mediated through the activity of the histamine H4 receptor. 
The recent advances in the understanding of histamine synthesis and the activity of HDC have 
dramatically expanded our understanding of the scope of histamine function.

Introduction
Histamine, 2-(4-imidazole)-ethylamine, has been regarded as one of the most important biogenic 

amines since the original pharmacological studies in 1910 and 1911.1,2 Histamine regulates smooth 
muscle contraction, immune responses, vascular permeability, neurotransmission and the stimulation 
of gastric acid secretion. Histamine is synthesized from histidine through oxidative decarboxylation by 
histidine-decarboxylase (HDC; EC 4.1.1.22), a pyridoxal 5 -phosphate (PLP)-dependent enzyme.3 
HDC is expressed in the liver of developing fetuses and in the stomach, brain, thymus, kidney, spleen 
and bones. Restricted and cell-specific expression of HDC in peripheral tissues is controlled both 
transcriptionally by processes such as DNA methylation4,5 and posttranslationally where levels can be 
controlled by the ubiquitin-proteasome system,6,7 caspases8 and other mechanisms. At the transcrip-
tional level, expression of HDC is regulated by various kinds of stimuli including gastrin,9 phorbol 
esters like phorbol 12-myristate-13-acetate (PMA),9-12 oxidative stress13 and thrombopoietin.14

Histamine exerts its activity through four different G-protein-coupled receptors.15-18 The his-
tamine H1 receptor (H1R) couples to Gq G-proteins and leads to the phosphoinositol hydrolysis 
pathway. The H1R is known to be responsible for the acute inflammatory responses. Antagonists 
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of the H1R are used for treatment of allergic states. The H2 receptor (H2R) links to Gs G-proteins 
to activate adenylate cyclase, H3 receptors (H3R) couple to Gi G-proteins to inhibit the adenylate 
cyclase pathway and the H4 receptor (H4R) couples to Gi/o G-proteins and leads to increases in 
calcium. The representative function of H2R pathway is gastric acid secretion. H3R are responsible 
for the inhibition of neuronal histamine release. The functional role of the H4R is an emerging 
field that has been energetically investigated in recent years.19

It has been 15 years since the cloning of HDC and much new information on its transcriptional 
regulation has accumulated. This chapter will compile all of this information and review the func-
tion and regulation of HDC. Moreover, this new data has also led to a better understand of the 
role of histamine and this too will be reviewed.

HDC Transcriptional Regulation
HDC are PLP-dependent enzymes in mammals and Gram-negative bacteria. It was deduced 

that the mammalian native enzyme catalyzed its activity in the form of homodimer (53-54 kDa/
subunit).20,21 However, the mammalian cDNAs were found to encode 74 kDa peptides22 and 
therefore it became clear that different active HDC peptides (53-74 kDa/subunit) exist in vivo.23,24 
After cloning of HDC gene it was found that the human gene was unique per haploid genome.25 
Many studies on mammalian HDC transcriptional regulation have been devoted to character-
ize the mechanisms operating in gastric cells under different stimuli and circumstances (gastrin, 
Helicobacter pylori infection, oxidative stress, etc).26 Although one may expect tissue-specific and 
time-specific transcriptional regulation in the HDC gene, this information is still very limited.5

Epigenetic Regulation of HDC Gene Expression
In hematopoietic cell lineages, HDC gene expression has been reported in mast cells and ba-

sophils. In an attempt to discover how HDC gene expression is regulated in these cells, we found 
that the human HDC-promoter region in HDC-expressing cell lines is selectively unmethylated.5 
A correlation between HDC expression and hypomethylation was also found in primary mast cells 
and methylation of a HDC promoter-luciferase reporter construct resulted in decreased luciferase 
activity in a transient expression system. Later on we confirmed the importance of methylation in 
regulating the activity of the mouse promoter.4 HDC gene expression is strongly induced in the 
mouse immature mast cell line P815 after incubation in the peritoneal cavity.27 The induction of 
gene expression is correlated with the demethylation of the promoter. Consistently, forced dem-
ethylation by 5-azacytidine treatment induced high expression of HDC mRNA in P815 cells. These 
data suggest that DNA methylation may be one of the major mechanisms that regulate HDC gene 
expression and may be of functional importance in the development of mast cells.

In addition to DNA methylation, there is also evidence that histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) regulate HDC gene expression. After the demonstration that 
KLF4 represses the HDC gene promoter,26 Tip60 was identified as a KLF4-interacting protein. 
Transfection experiments suggest that Tip60 inhibits HDC-promoter activity. The data also sug-
gests that Tip60 functions as a corepressor of KLF4 in the regulation of HDC promoter activity.28

Histamine production in enterochromaffin-like cells in  the stomach is controlled by gastrin29 
and, in turn, histamine controls gastric acid secretion by activating the proton pump in parietal cells 
through H2R activation.30 This is the rationale for the use of H2R antagonists for treating peptic 
ulcer disease. Studies in HDC-KO mice that are therefore histamine-deficient have confirmed 
that de novo histamine synthesis is essential for gastric acid secretion induced by gastrin, but does 
not play a role in vagal release of acetylcholine that also participates in acid production.31 Since 
gastrin treatment decreased the association of KLF4, Tip60 and HDAC7 with HDC promoter, 
the decrease of repressive complexes formed by these factors might suppress HDC transcription.28 
In this report a new technology, chromatin immunoprecipitation (ChIP), was used that allows the 
in vivo identification of direct transcription factor-binding sites in the context of chromatin and, 
therefore, avoids many of the previous problems. In theory, ChIP could be used to investigate any 
target on chromatin against which an antibody can be raised and, consequently, it has successfully 
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been used to identify regions of the genome associated with specific transcription factors, cofactors, 
histone modifications and DNA methylation. By using ChIP analysis it was found that transcription 
factors bind the promoter region of HDC and not to the first or second intron. The binding was 
disrupted by gastrin treatment suggesting that Tip60 and HDAC7 act as corepressors of KLF4 in 
the regulation of HDC gene expression.28 It has also been reported that the promoter of the HDC 
gene was activated by hypoxia inducible factor-1 in a human mast cell line and this activation seems 
to occur during hypoxic stress.32

l-Histidine Decarboxylase Gene Knockout Mice
HDC-KO mice lack the ability to synthesize histamine and, therefore, cannot undergo 

histamine-dependent activation through any of the four known histamine receptors.33 These 
mice have been used to clarify the role of histamine in various conditions including anaphylactic 
responses and allergic inflammation,34-36 as well as several neurophysiologic functions.37,38 Because 
it is difficult to achieve complete and long-lasting elimination of the effects of histamine in vivo 
by pharmacological approaches, HDC-KO mice provide an excellent tool for studying the effect 
of chronic deprivation of histamine in disease models.

Histamine and Immunity
Histamine is well known for its role in immunological reactions. The development of H1R and 

H2R knockout mice has clarified the role of histamine in T cells.39,40 Histamine has been proved 
to be important as a regulator in Th1 and Th2 cells.39 Gutzmer et al. have reported that human 
dendritic cells express all four histamine receptors (H1R to H4R). H2R and H4R stimulation sup-
presses IL-12p70 production and mediates chemotaxis in human dendritic cells.41

It is also clear that histamine functions in innate immunity since it mediates NK cell chemotaxis42 
and cytokine release from invariant natural killer T cells (iNKT) through the H4R.43 Histamine-free 
HDC-KO mice have a numerical and functional deficit in iNKT cells as evidenced by a drastic de-
crease in IL-4 and IFN-  production by these cells. This deficiency was established both by measuring 
cytokine levels in the serum and intracellularly in gated iNKT cells. The defect was due to the lack of 
histamine since a single injection of histamine into HDC-KO mice sufficed to restore normal IL-4 
and IFN-  production. Histamine-induced functional recovery was mediated mainly through the 
H4R since it could be abrogated by a selective H4R antagonist and by the demonstration of a similar 
iNKT cell deficit in H4R-deficient (H4R-KO) mice. These findings identify a novel function of 
histamine through the H4R in modulating iNKT cell functions and, therefore, may contribute the 
initial host defense mechanism. Furthermore since the production of IL-4 is important for antibody 
class switching to produce IgE, it is possible that histamine is not only a canonical allergic effecter 
molecule, but can also regulate the afferent phase of the allergic state as well.

Histamine in Wound Healing
The absence of histamine in HDC-KO mice resulted in delayed cutaneous wound healing and 

exogenously administered histamine was able to restore this response.44 Furthermore, overproduction 
of histamine in HDC gene-transgenic mice lead to accelerate healing compared to wild-type mice 
(Fig. 1). These results indicate that histamine accelerates cutaneous wound healing. Macrophage 
recruitment and angiogenesis at the wound edge were specifically impaired in HDC-KO mice and 
histamine treated wounds in HDC-KO mice demonstrated increased macrophage recruitment 
and angiogenesis. Since macrophages are an important cellular component for the wound healing 
process, it was postulated that histamine, whether directly or indirectly, accelerates the recruitment of 
macrophage to the wound. The protein levels of basic fibroblast growth factor (bFGF) at the wound 
edge was higher in wild-type mice, especially on the 3rd and 5th day of wound healing, compared 
to HDC-KO mice. Topically administered SU5402, a specific antagonist to fibroblast growth 
factor receptor-1 (FGFR1) tyrosine kinase, to the wound surface suppressed the wound healing in 
wild-type mice, but not in HDC-KO mice. Moreover, SU5402 reduced macrophage recruitment 
and angiogenesis in wild-type mice. From these observations it was concluded that the accelerated 
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wound healing activity of histamine was mediated by the activity of bFGF, which leads to angiogenesis 
and macrophage recruitment in the wound healing process.

Histamine in Malaria
There are several lines of evidence suggesting that the existence of histamine is beneficial for para-

sites to spread through the vasculature, perhaps due to its vasodilatory effects.45 Furthermore, histamine 
can increase endothelial expression of thrombomodulin through the H1R.46 Thrombomodulin is 
important for the sequestration of the parasitized erythrocyte through its binding to anticoagulants. 
From the inoculation of Plasmodium sporozoites via Anopheles mosquito bites to the development 
of blood-stage parasites, a hallmark of the host response is an inflammatory reaction characterized by 
elevated histamine levels in the serum and tissues. After consideration of the proinflammatory and 
immunosuppressive activities associated with histamine, it can be postulated that histamine partici-
pates in malaria pathogenesis. Combined genetic and pharmacological approaches demonstrated 
that histamine binding to H1R and H2R, but not H3R and H4R increases the susceptibility of mice 
to infection with Plasmodium.47 To further understand the role of histamine in malaria pathogenesis, 
HDC-KO mice were used. HDC-KO mice were highly resistant to severe malaria whether infected 

Figure 1. Histamine affects on the wound healing process. A) Wound areas in HDC-KO 
(HDC / ) and wild-type (HDC–/–) mice were determined by tracing the wound margin using 
a transparent sheet. Results are means   SEM, n   8, for each time point and group. *P  0.05, 
**P   0.01 compared with wild-type mice. B) Wound area of wild-type and HDC transgenic 
(HDC-Tg) mice. Results are means   SEM, n   6 for the wild-type, n   5 for the HDC-Tg mice. 
*P  0.05, **P   0.01 compared with wild-type mice. The figure is modified from reference 44.
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by mosquito bites or via injection of infected erythrocytes.47 HDC-KO mice displayed resistance to 
two lethal strains: Plasmodium berghei (Pb) ANKA, which triggers cerebral malaria (CM) and Pb 
NK65, which causes death without neurological symptoms. The resistance of HDC-KO mice to 
CM was associated with a preserved blood-brain barrier integrity. Also the resistance seemed to be 
associated with the absence of infected erythrocyte aggregation in the brain vessels. No infiltration 
of CD4 and CD8 T cells was observed in the brains of infected HDC-KO mice, although this was 
observed in wild-type mice after infection. These results suggest that histamine-mediated signaling 
contributes to malaria pathogenesis and that understanding the basis for these biological effects may 
lead to novel therapeutic strategies to alleviate the severity of malaria.

Histamine in Crohn’s Disease
Crohn’s disease (CD), one of the two major types of inflammatory bowel disease, is a chronic 

inflammatory disorder of unknown etiology that affects any part of the gastrointestinal tract from 
the mouth to anus, however, the small intestine and colon are most commonly involved. It has been 
considered that CD is a multifactoral disease with genetic background, environmental factors and 
immunological responses all contributing.

Although historically CD is rare in Asian countries, the number of patients with CD has increased 
during the past decade. One of the reasons for the change is thought to be due to changes in diet and 
exposure to new dietary antigens that may stimulate the mucosal immune response. Patients with 
active CD respond to bowel rest along with total parenteral nutrition (TPN). In addition, enteral 
nutrition in the form of elemental or peptide-based preparations is as effective as glucocorticoids or 
TPN. Although the therapeutic mechanisms of elemental diets (ED) remain unclear, some possibili-
ties have been suggested: (1) a low-antigenic diet reduces the mucosal immune response; (2) a low-fat 
diet is less pro-inflammatory; and (3) that ED alters the enteric flora population.

Since ED may have mechanisms to suppress intestinal inflammation directly, the effect of amino 
acids that are the main component of ED was assessed. Histidine reduced histologic damage in a 
model of CD.48 Furthermore, histidine, but not lysine or alanine, inhibited the production of TNF  
and IL-6 by LPS-stimulated peritoneal macrophages in a concentration-dependent manner. Since 
intracellular histidine is metabolized to histamine by HDC, we hypothesized that histamine might be 
the substance which ameliorates CD in histidine supplemented ED. However, histidine was still able 
to reduce production of TNF  and IL-6 in LPS-stimulated HDC-deficient peritoneal macrophages.48 
Thus, the anti-inflammatory effect of histidine seemed to be independent of histamine synthesis.

Histamine in Allergic Bronchial Asthma
Histamine is a major mediator that elicits a number of the acute physiologic responses in al-

lergic asthma.49 Its role in asthma is supported by several pieces of evidence including the release of 
histamine from cells participating in allergic responses, the reproduction of the features of allergic 
inflammation by application of histamine, the reduction of allergic inflammation by histamine 
receptor antagonists and the reduced eosinophilia in mice genetically modified not to synthesize 
histamine.35 Mast cells, basophils, enterochromaffin-like cells in gastric wall and neurons in tubero-
mammillary nucleus in hypothalamus are major sources of histamine at the cellular level. Mast cells 
and basophils are the postulated major sources of histamine in allergic reaction. Histamine release 
from these cells is triggered by the interaction of an allergen with specific immunoglobulin E (IgE) 
bound to the high-affinity IgE receptor on the cell membrane or by nonspecific stimuli including 
exercise or cold, dry air. The actions of histamine in allergic asthma may be rather complicated 
since it not only has the direct actions on smooth muscle and sensory nerves, but also can have 
indirect activity on vagal reflexes that cause cough.

The role of histamine in immunology has been a major topic of study over the past few years. 
Previous studies have suggested that histamine enhances Th2 responses through modulation of 
dendritic cell function and regulation of IL-10 and IL-12 production. Dendritic cells express H1R, 
H2R and H4R50 and their exposure to histamine induces a shift toward the DC2 phenotype with 
regard to the expression of cytokines and chemokines that promote Th2 immune responses.51,52 
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Histamine inhibits IL-12 production, while enhancing IL-10 synthesis in lipopolysaccharide-treat-
ed leukocytes.53,54 These observations suggest a Th2-promoting influence of histamine. In contrast, 
studies with mice bearing a targeted deletion of the H1R show reduced production of IFN  and 
increased IL-4 and IL-13 secretion, results more consistent with the Th1-polarizing function of 
this receptor.39 Recently, the H4R was shown to play an important role in allergic lung inflamma-
tion with effects on Th2 responses and the recruitment of lung eosinophils and lymphocytes.55 
Blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production 
and limits their ability to induce Th2 responses in T cells. In addition effects on innate immune 
responses such as those on iNKT cells already mentioned indicate that histamine plays important 
role not only during the efferent phase but also for the afferent phase of allergic responses.

We previously examined the role of endogenous histamine on eosinophilic recruitment 
and hyperresponsiveness in allergic bronchial asthma mouse model using HDC-KO mice.35 
Histamine levels in the airways in HDC-KO mice were largely diminished compared with 
wild-type mice. Inhalation challenge with ovalbumin (OVA) in OVA-sensitized wild-type 
mice caused total cell, macrophage and eosinophil accumulation in the lung as well as airway 
hyper-responsiveness to methacholine three days after the challenge. The eosinophil recruitment 
to the lung was significantly reduced in HDC-KO mice compared with wild-type mice(Fig. 2). 

Figure 2. A) Total cell and differential leukocyte counts in the bronchoalveolar lavage fluid 
BALF in a mouse allergic asthma model. On the 3rd day after the ovalbumin (OVA) inhala-
tion challenge, the mice were anesthetized and the recovered fluid from bronchial tract was 
analyzed. Each value indicates mean   SEM in 1 ml BALF of 8 to 11 mice (Mann-Whitney U 
test). HDC-KO are designated as (–/–) and wild-type mice as ( / ). B) Eosinophil counts in the 
submucosal area of the trachea. Eosinophil number within the submucosal area encircling 
the trachea was counted and expressed as number/mm basement membrane. Each value 
indicates mean   SEM of five to six animals (Mann-Shitney U test). Modified with permission 
from reference 35, ©2003 American Thoracic Society.



27Histamine Synthesis and Lessons Learned from Histidine Decarboxylase Deficient Mice

In the bone marrow proliferation of eosinophils was induced after OVA challenge in wild-type 
mice; however, the proliferation was significantly suppressed in HDC-KO mice. In contrast, 
airway hyper-responsiveness was not suppressed in HDC-KO mice. These results suggest that 
endogenous histamine is involved in the accumulation of eosinophils into the airways after 
allergic challenge, possibly via effects in the bone marrow. Since histamine has eosinophil 
chemotactic activity via H4R,56 reduced eosinophilia in HDC-KO mice could be explained 
through the activity via H4R. However, allergen-induced airway hyper-responsiveness occurred 
independently of airway eosinophilia in this model.

Histamine in Systemic Anaphylaxis Model
Compared with other allergic disorders, such as asthma, allergic dermatitis and allergic rhinitis, 

the pathophysiology of anaphylaxis seems relatively simple. Antigen cross-links antibody molecules, 
activating immunoglobulin receptors on inflammatory cells and causing them to release mediators 
that increase vascular permeability and cause smooth muscle contractions that produce urticaria, 
hypotension, dypnea, abdominal cramping and diarrhea.57 Mouse systemic anaphylaxis reaction 
is IgE-dependent and manifested by hypotension, airway obstruction and hypothermia.36 The Fc  
receptor is expressed on the plasma membrane of mast cells and is bound to IgE antibodies.58-62 
Antigen binding to IgE molecules leads to cross-linking of the Fc  receptor, which in turn leads to 
the secretion of the intragranular content into the environmental fluid, leading to the symptoms 
observed in systemic anaphylaxis. The reaction starts from a few minutes to 30 minutes after the 
allergen challenge and it leads to an increase in vascular permeability, contraction of smooth muscle 
and an increase in mucin secretion. The final results are circulatory collapse, which is observed as 
hypotension, an increase in heart rate and a decrease in peripheral blood resistance, sometimes 
leading to death.

To elucidate the role of histamine in each of these symptoms, we induced a passive systemic 
anaphylaxis reaction in HDC-KO mice and wild-type mice and compared the changes in body 
temperature, blood pressure and respiratory function.36 Blood pressure dropped in both HDC-KO 
and wild-type mice. However, decreases in respiratory frequency, body temperature and elongation 
of expiratory respiration time occurred only in wild-type mice (Fig. 3). Therefore, in this model of 
passive systemic anaphylaxis reaction via the Fc  receptor, respiratory frequency, expiratory time 
and body temperature were shown to be controlled by the activity of histamine, but its contribu-
tion to blood pressure was small. Since mast cell deficient W/Wv mice did not show any decrease 
in body temperature compared to control mice, it can be concluded that histamine derived from 
mast cells contributes to the change of body temperature.

Histamine in Atherosclerosis
HDC mRNA levels increase during the progression of atherosclerosis in the human aorta. 

HDC protein localized to macrophage-derived foam cells and mononuclear cells including lym-
phocytes.63 The effect of histamine depends on the vascular size and localization. In capillaries, 
histamine distends the vessel wall and exerts an inflammatory reaction such as extravasation of 
blood. In contrast the muscular arteries, including coronary and mesenteric arteries, are constricted 
by histamine, owing to the contraction of medial smooth muscle cell (SMC). Histamine also has 
effects on the proliferation of SMC.64 To clarify the role of histamine-producing cells and its origin 
in atherosclerosis, we investigated HDC expression in atherosclerotic arteries after the mouse had 
received a bone marrow transfusion from green fluorescent protein (GFP)-transgenic mice.65 Two 
different atherosclerosis models were investigated—a ligation-induced vascular injury model and a 
cuff-induced vascular injury model. In the ligation model, the neointima of atherosclerotic carotid 
arteries contained bone marrow-derived HDC /  cells expressing macrophage or smooth muscle 
antigens. In contrast in the cuff replacement model, the HDC /  bone marrow-derived cells, 
which were positive for Mac-3, were mainly located in the adventitia. After inducing atherosclerotic 
lesions, HDC-KO mice showed reduced neointimal thickening and a decreased intima-to-media 
ratio in comparison to wild-type mice. These results indicate that histamine produced from bone 
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marrow-derived progenitor cells, which could transdifferentiate into SMC- or macrophage-like 
cells, are important for the formation of neointima and atheromatous plaques.

Histamine Uptake into and Release from Histamine Producing Cells
A number of cells have been shown to take up histamine. For example a medullary population 

of basophils containing few granules have been shown to take up histamine from the environ-
ment.66 Mast cells from HDC-KO mice were also demonstrated to store exogenous histamine 
immediately after incubation with histamine and release the stored histamine after anti-DNP IgE 
and DNP-HSA treatment.67

The uptake of the histamine into the basophil/mast cell granules involves transport through 
two distinct membranes—the plasma membrane and the vesicular membrane. It was shown that 
the bidirectional organic cation transporter 3 (OCT3/Slc22a3) has a role in histamine uptake.68 
In addition the vesicular monoamine transporter 2 (VMAT2) is involved in the vesicular mem-
brane transport system, since mast cells prepared from VMAT2-deficient mice showed reduced 
release of histamine.69 The vesicular membrane transport system appeared to be more efficient than 
plasma membrane transport, because the amount of histamine in the granular fraction was much 
higher than in cytosolic fraction. Therefore, once histamine has been absorbed by the mast cell, 
it is transported into the secretory granules quite rapidly.67 OCT3 also participates in the control 
of basophil function since exogenous histamine inhibits not only its own synthesis, but also that 
of IL-4, IL-6 and IL-13.68

Conclusion
This chapter has summarized the recently clarified mechanisms of histidine decarboxylase regula-

tion and the insights gained using histidine decarboxylase gene knockout mice on the varied roles 
of histamine in vivo. Since in vivo the synthesis of histamine from histidine is catalyzed solely by 
histidine decarboxylase, the amount of histamine is suppressed closely to null levels by knocking 
out the gene and hence the HDC-KO have been a useful tool for observing altered phenotypes 
in the absence of histamine. The availability of the gene-manipulated mice along with the aid of 

Figure 3. Change of body temperature in HDC-KO (–/–) and wild-type ( / ) mice after the 
passive systemic anaphylaxis reaction. Body temperature was monitored using thermometer 
probe situated in anal. *P   0.05 and **P   0.01 in comparison with HDC-KO mice. Reproduced 
with permission from reference 36, ©2002 from Elsevier.
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selective pharmacological agents have been powerful tools for uncovering and clarifying the various 
phenomena mediated by histamine in vivo. The information gained by using such approaches can 
provide basic knowledge that can be used for exploring the direction of clinical studies.
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Abstract

Histamine plays a major role in allergic rhinitis. In susceptible individuals, allergen  
induces nasal mast cell degranulation and the release of histamine into the nasal mu-
cosa. Histamine has been detected after controlled challenges with allergen and, when 

administered into the nasal cavity, elicits signs and symptoms similar to those elicited by allergen. 
All four histamine receptors have been demonstrated in the nasal mucosa. The role of the four 
histamine receptors in the pathophysiology of allergic rhinitis are discussed.

Introduction
Allergic rhinitis is the result of abnormal inflammation of the nasal mucosa, characterized by 

nasal congestion, nasal itchiness (pruritus), sneezing and a runny nose (rhinorrhea).1 In man, these 
symptoms are due to the release, into the nasal mucosa, of pro-inflammatory mediators from mast 
cells (and basophils) after IgE-dependent activation. The presence on the surface of mast cells of 
specific IgE against specific aeroallergens determines the sensitivity of individuals to a wide range 
of innocuous substances. These aeroallergens include substances that vary throughout the year (e.g., 
grass pollen—“Seasonal”) and those that do not (e.g., animal dander—“Perennial”) and according 
to the World Allergy Organization approximately 24-28% of the population of the United States 
and the United Kingdom suffer from some form of allergic rhinitis.

The signs and symptoms of seasonal allergic rhinitis (SAR) can be recreated in a laboratory set-
ting, with nasal challenges of solubilized pollen sprays eliciting a two-phase response in sensitized 
subjects (early phase starts immediately and typically lasting up to an hour and the late phase occurs 
approximately 4-12 hours post challenge). Concurrent with the symptoms of congestion, pruritus, 
sneezing and rhinorrhea is the release of mast cell mediators such as histamine, leukotrienes, pros-
taglandins and tryptase. The inflammatory environment is increased by the influx of lymphocytes 
and granulocytes and the production of a wide array of cytokines, chemokines, growth factors and 
adhesion molecules. Allergic rhinitis is also characterized by airway hyperreactivity, in that nasal 
challenge of vasoactive or neuroactive stimuli elicit greater responses in rhinitics. In addition, a 
large percentage of individuals with allergic asthma also have allergic rhinitis and there is evidence 
that alleviation of nasal symptoms has beneficial effects on lower airway function.2,3

This book chapter will concentrate, where possible, on data derived from studies on human 
subjects and human tissue. In addition, the focus of the chapter will be on the role of histamine 
in seasonal allergic rhinitis. Although allergic reactions generally follow the same inflammatory 
pathways independent on the type of allergen, it is well established that some perennial allergens 
such as house dust mite have non-IgE-mediated activity which can alter the pathophysiology of 
the disease.
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Histamine and the Early Phase Response in Allergic Rhinitis
Despite the complex inflammatory environment produced following IgE-dependent mast 

cell activation, histamine plays a critical role in the symptoms of allergic rhinitis. Histamine, 
synthesized from l-histidine by histidine decarboxylase, is present in nasal mast cells and cir-
culating basophils and is released following allergen challenge. Histidine decarboxylase is also 
expressed by other immune cells, such as dendritic cells and lymphocytes.

When administered to the nasal mucosa histamine mimics the early phase of allergen chal-
lenge, causing nasal blockage, pruritus, sneezing and rhinorrhea.4-6 These symptoms develop 
rapidly and fade within 15-20 minutes due to metabolism and venous clearance.

To date, four histamine receptors have been described and all four metabotropic GPCRs 
(H1R, H2R, H3R and H4R) have been detected in the nasal mucosa.7 Antagonists at H1R and 
H2R have been widely used clinically to study the roles of these receptors in histamine- and 
allergen-induced nasal symptoms. Recently, ligands at H3R and H4R have been approved for 
some human studies. Histamine research has also benefitted from the development of knockout 
mouse strains of HDC as well as all four histamine receptors.

H1 Receptors: Sensory Nerve Activation and Central Reflexes
The selective H1R agonist betahistine, but not the selective H2R agonist dimaprit or the H3R 

agonist R- -methylhistamine, causes sneezing, pruritus and rhinorrhea in humans.8 The crucial 
role of H1R in histamine-induced neuronal symptoms is confirmed by the inhibition of sneezing, 
pruritus and rhinorrhea by H1R antagonists following nasal challenge with histamine.9-13 H2R 
antagonists have no effect on histamine-induced neuronal symptoms.9,12,14

Both pruritus and sneezing are completely mediated by nasal sensory nerves that originate 
from the 5th cranial nerve (trigeminal nerve). These afferent sensory nerves (which are dis-
tinct from olfactory nerves, 1st cranial nerve, that encode information of smell) innervate the 
epithelium, blood vessels and glands of the nasal mucosa. Although detailed studies in this 
field are limited, it appears that there are at least two kinds of nerves innervating the nasal 
mucosa of mammals:15 touch/air flow-sensitive fibers and neuropeptide-containing polymodal 
nociceptors which respond to noxious stimuli such as histamine, ATP, mustard oil and cap-
saicin.16-18 It is likely that this nociceptive subtype mediates allergen and histamine-induced 
sneezing and pruritus.19-22 Nasal trigeminal afferents terminate in the brain stem trigeminal 
nuclei, forming synapses with central neurons that either ascend to the thalamus (sensations) 
or modulate nasal and lower airway efferent nerve activity (central reflexes). Histamine is un-
able to directly activate nasal submucosal glands,23 but histamine-induced activation of nasal 
nociceptive sensory nerves causes a central reflex-dependent bilateral increase in the release of 
acetylcholine from nasal parasympathetic nerves, which results in increased mucus secretion 
from nasal submucosal glands.24 Correspondingly, contralateral glandular secretion induced 
by unilateral histamine challenge is only reduced by muscarinic antagonists that are applied to 
the contralateral side, unlike H1R antagonists that are effective when applied to the ipsilateral 
side.25 Glandular secretion and plasma extravasation (see below) combine to cause the sensa-
tion of rhinorrhea associated with histamine challenge and may contribute to the sensation 
of nasal congestion.

Allergen-induced sneezing, pruritus and rhinorrhea in allergic individuals are reduced by H1R 
antagonists (Table 1), but not by H2R antagonists.26,27 Evidence suggests that allergen-induced 
sneezing is largely abolished whereas residual itch and rhinorrhea remains in the presence of 
H1R antagonists. The reasons for this remain unknown, but it is known that some nociceptor 
stimuli, such as capsaicin (pungent ingredient in chilli peppers) can cause reflex glandular 
activation without eliciting sneeze.28 Perhaps histamine is the sole allergen-induced mediator 
that contributes to the initiation of sneeze, but other mediators are released during allergic 
inflammation that can activate nasal nociceptive nerves.
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In addition to its effects on nasal reflexes, there is evidence that histamine-induced activation 
of nasal sensory nerves can augment cough sensitivity in some individuals. Although histamine 
nasal challenge does not evoke cough, it increases the number of coughs elicited by ‘mouth-only’ 
inhalation of the tussive stimulant capsaicin.29 Cough associated with allergic rhinitis remains 
a controversial topic,2 but H1R antagonists are commonly used as a first line of defense in the 
treatment of chronic cough in individuals with allergic rhinitis. The evidence suggests that 1st 
generation H1R antagonists (e.g., chlorpheniramine) are perhaps better at reducing cough com-
pared to 2nd generation H1R antagonists (e.g., cetirizine), although the mechanisms through 
which this occurs is not fully understood.3

Table 1.   Nasal blockage as measured subjectively by symptom scores (SS) and 
objectively by expiratory or inspiratory peak flow (PF), rhinomanometry (R) 
and acoustic rhinometry (AR)

Antagonist
Allergen 
Exposure Sneeze Pruritus Rhinorrhea Nasal Blockage Ref

Astemizole Challenge (R) 66

Astemizole Ambient No effect (SS) 67

Chlorpheniramine Ambient No effect (SS) 68

Cetirizine Ambient 69

Cetirizine Ambient No effect (SS) 70

Cetirizine Challenge No effect (AR) 11

Cetirizine Challenge No effect (PF) 71

Desloratadine Ambient No effect (PF) 72

Desloratadine Challenge (PF,SS) 73

Desloratadine Ambient (SS) 74

Desloratadine Challenge No effect (PF) 60

Desloratadine Ambient No effect No effect No effect (SS) 75

Desloratadine Ambient No effect (SS), (R) 76

Desloratadine Ambient No effect (SS) 77

Diphenhydramine Ambient (SS) 75

Dimetindene Challenge No effect (PF) 78

Fexofenadine Ambient No effect (PF) 72

Hydroxyzine Challenge No effect (SS) 79

Hydroxyzine Ambient No effect (SS) 68

Levocabastine Challenge No effect (PF) 80

Levocabastine Challenge No effect (R) 81

Levocabastine Challenge No effect (R,SS) 26

Olopatadine Challenge (SS) 82

Terfenadine Challenge No effect (R) 83

Terfenadine Ambient No effect No effect (SS) 67
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H1 Receptors and the Nasal Vasculature
Nasal blockage is defined as a parameter objectively measured using acoustic rhinometry, 

rhinomanometry or nasal peak flow meters and is thought to be the result of vasodilation of 
nasal blood vessels, in particular sinusoids (also known as capacitance vessels). This causes 
the turbinate tissue to protrude into the nasal cavity, which is experienced as nasal conges-
tion. Initially histamine was thought to cause nasal blockage solely through the activation of 
H1R. The selective H1R agonist betahistine causes nasal blockage and H1R antagonists reduce 
histamine-induced nasal blockage.8-11,30,31 H1R have been shown, using autoradiography, on 
human turbinate vascular endothelium32 and histamine induces an increase in calcium in 
cultured human turbinate endothelial cells that is blocked by H1R antagonists but not H2R 
or H3R antagonists.33 In addition, in vitro airway blood vessels fail to dilate in response to 
histamine following endothelial denudation.34 Human studies with nitric oxide synthase35 
and cyclooxygenase inhibitors36 suggest that neither nitric oxide nor prostanoids are the 
H1R-induced endothelium-dependent relaxing factor. However, nitric oxide does play a role in 
H1R-mediated increase in plasma extravasation.35 Through this mechanism barrier function in 
the nasal vasculature becomes leaky, resulting in increased plasma release into the nasal cavity 
(which contributes to rhinorrhea).

H1R antagonists, however, have been far less effective in reducing allergen-induced nasal 
blockage (Table 1). A large number of studies have been published investigating the effect of a 
range of H1R antagonists in reducing nasal blockage as measured by a wide variety of objective 
and subjective techniques. Many studies failed to demonstrate a reduction in allergen-induced 
nasal blockage. Meta-analysis by Hore et al (2005) of double-blind randomized controlled trials 
of oral H1R antagonists suggest that there is indeed a significant reduction of allergen-induced 
nasal blockage,37 but this seems at best to be inconsistently demonstrated throughout the lit-
erature (at least compared to the effectiveness of H1R antagonists in reducing allergen-induced 
sneezing). One H1R antagonist that may be efficacious is desloratadine. However, compared to 
other H1R antagonists such as cetirizine and fexofenadine, desloratadine is relatively unselective 
for H1R.38 Calculations based on their published H1R affinities and oral bioavailability sug-
gest that both desloratadine and cetirizine occupy a very similar proportion of H1R following 
standard oral doses. Thus it seems likely if desloratadine does reduce allergen-induced nasal 
blockage, it does so via nonH1R-mediated mechanisms. The failure of H1R antagonists to re-
duce allergen-induced nasal blockage is unlikely to be due of a decrease in H1R on nasal blood 
vessels, as H1R mRNA levels are higher in individuals with allergic rhinitis.39 More likely is the 
existence of redundancy in the vasodilatory mechanisms following allergen challenge.

Other Histamine Receptors in the Early Phase Response
Analysis of the effect of high-dose H1R antagonists on histamine-induced nasal blockage 

suggests that histamine causes nasal blockage via H1R and nonH1R mediated pathways.31 
Consistent with this, dimaprit, the selective H2R agonist, causes nasal blockage in humans that 
is abolished by H2R antagonists.8,31 Based on work in other vascular systems, the H2R-mediated 
nasal blockage is likely due to the activation of H2R on the nasal vascular smooth muscle, 
causing endothelial-independent vasodilation.40 Despite this data, histamine-induced nasal 
blockage is inconsistently reduced by H2R antagonists, although combinations of H1R and 
H2R antagonists appear to be more effective than H1R antagonists alone.6 Importantly, in the 
limited number of published studies, the combination of H1R and H2R antagonists failed to 
reduce allergen-induced nasal blockage.26,41

Nasal challenge with the selective H3R agonist R- -methylhistamine causes nasal blockage 
in humans that is reduced by a topical application of the H3R/H4R antagonist thioperamide.31 
In vitro mechanistic studies of nasal tissue taken from both pigs and humans demonstrate that 
R- -methylhistamine indirectly causes vasodilation by reducing the release of the vasoconstrictor 
noradrenaline from nasal sympathetic nerve endings.42,43 Compound 48/80, a mast cell activator, 
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mimicked the effect of R- -methylhistamine and both were inhibited by thioperamide (H3R/
H4R) and clobenpropit (H3R antagonist/H4R agonist). Nasal blood vessels and, to a much lesser 
extent, submucosal glands are innervated by sympathetic neurons originating from the superior 
cervical ganglion. Stimulation of nasal sympathetic nerves in vitro causes vasoconstriction mainly 
via noradrenaline’s activation of 1-adrenoceptors on the vascular smooth muscle,42,44 although 
postjunctional 2-adrenoceptors and neuropeptide Y may also play a role.45,46 Consistent with 
these in vitro studies, nasal challenge with the selective 1-adrenoceptor agonist corynanthine 
caused nasal blockage in humans,31 demonstrating that there is a basal sympathetic vasocon-
stricting tone in vivo.

In vivo evidence for a contribution of H3R in histamine-induced nasal blockage has been 
demonstrated in both cats and humans. However, the H3R antagonist thioperamide only re-
duced histamine-induced nasal blockage in humans when given in combination with an H1R 
antagonist.31 Similar results have been observed in compound 48/80-induced nasal blockage 
in cats.47 The reasons for this requirement of H1R antagonism are not clear, but one theory 
suggests that activation of H1R receptors functionally antagonizes the effect of H3R activation 
on sympathetic output.6

Unfortunately, the H3R antagonists available at the moment (thioperamide and cloben-
propit) are not suitable for clinical development and as such we must await more potent and 
selective tools before any assessment of the role of H3R in allergen-induced nasal blockage 
in humans. If allergen-induced histamine release does indeed reduce the sympathetic tone 
to the nasal blood vessels via H3R, perhaps a combination of H1R and H3R antagonists may 
be efficacious. Indeed the function of efferent autonomic nerves in the nasal mucosa may be 
perverted in allergic individuals,45,48 which may result in a more critical role for H3R. However, 
it is important to note that in murine models of allergic rhinitis a different role of H3R has 
been described.49-51 In these studies a combination of an H1R antagonist and an H3R agonist 
reduced allergic symptoms. The mechanism suggested for the role of H3R was through the 
inhibition of substance P release from nasal nociceptive sensory nerves. Although H3R have 
been immunohistochemically demonstrated on human nasal nerves,7 this study unfortunately 
did not characterize these nerve fibers (e.g., afferent vs efferent autonomic). Nevertheless, it 
seems unlikely that a reduction in substance P release from nociceptive sensory nerves in the 
human nasal mucosa would greatly inhibit allergen-induced sneeze, pruritus, rhinorrhea and 
nasal congestion because although human nasal challenge with substance P does cause plasma 
extravasation (and therefore rhinorrhea) and nasal blockage, it does not cause sneeze or pruri-
tus.52,53 In addition, nasal challenge with capsaicin, which causes the activation of nociceptive 
sensory nerves innervating the airways,16 leading to the release of substance P from afferent 
peripheral terminals, fails to induce nasal blockage,28,54,55 suggesting that endogenously pro-
duced substance P is unable to elicit the nasal responses that exogenously applied substance P 
can. Unfortunately, until better pharmacological tools (specifically selective and potent H3R 
ligands) can be developed, the role of H3R in the early phase response of allergic rhinitis will 
remain unclear.

Histamine Receptors and Immune Modulation
Many immune cell types including mast cells, eosinophils, dendritic cells, T-lymphocytes, 

monocytes and macrophages, express histamine receptors and there is growing evidence that his-
tamine can exert influence on the immune response. In some cases multiple histamine receptors 
are expressed on the same cell type and activation of these receptors can have opposing effects to 
one another. Histamine modulates chemotaxis of granulocytes: positively via H1R and negatively 
via H2R.56 Histamine also modulates the production of Th2 cytokines and chemokines, mainly via 
the H1R.57 There is some evidence that H1R antagonists reduce mast cell function and eosinophilia 
following allergen challenge in allergic subjects,58-62 but there is ongoing debate on whether these 
effects were due to off-target functions of the antihistamine.63-65
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Conclusion
Histamine is released during both early and late phases of the nasal allergic response and can 

modulate the function of virtually every important cell type in the nasal mucosa. The principle 
pro-rhinitis actions of histamine are mediated via H1R. H2R appear to play a minor role. The 
discovery of H3R and H4R have yielded interesting and sometimes controversial hypotheses, 
but until selective and safe ligands can be developed and tested in the clinic, the debate will 
rage on.
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Abstract

Ocular allergy is a disorder affecting increasing numbers of individuals worldwide. Among 
the inflammatory mediators that contribute to ocular allergy, histamine is perhaps the 
best characterized. This monoamine is released by sensitized mast cells upon exposure 

to allergen and causes symptoms such as redness and tearing. Histamine may also recruit immune 
cells that can cause long-term damage to ocular surfaces. In this chapter we will discuss the known 
functions of histamine and histamine receptors in ocular allergy and will describe promising 
therapies targeting the histamine-signaling pathway.

Introduction
Allergic diseases are widely prevalent with one study showing about 35% of families interviewed 

in the United States experiencing some form of allergy and more than 50% of those affected report-
ing eye symptoms.1 Worldwide, allergies are estimated to affect 20% of the population.2 Allergic 
pathogenesis is therefore the focus of intensive research and many studies have focused on the role 
of histamine in ocular allergy and other atopic disorders.

Histamine is a biogenic amine that plays a key role in allergic inflammation. This molecule 
is closely associated with immunoglobulin E (IgE)-mediated mast cell activation in conjunctival 
tissues.3 It also regulates physiological functions in the gut and can act as a neurotransmitter.4 As 
part of an immune response to foreign pathogens, histamine is produced by basophils and mast 
cells found in the local connective tissue. Upon release it acts to increase the permeability of the 
capillaries to other white blood cells.5 These changes in vascular permeability along with other 
effects of histamine play critical roles in the pathogenesis of ocular allergy.

Clinical Manifestations of Ocular Allergy
The manifestations of allergic eye disease comprise a heterogeneous group of clinical condi-

tions that range from simple, intermittent symptoms of itching, tearing and redness to severe, 
sight-threatening corneal complications. These conditions may be considered as part of an im-
munologic spectrum—incorporating both Type I and Type IV hypersensitivities—that affect the 
anterior surface of the eye.6 Allergic eye diseases have a degree of overlap, but are traditionally clas-
sified into five distinct entities (Table 1): seasonal allergic conjunctivitis (SAC), perennial allergic 
conjunctivitis (PAC), vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC) and 
giant papillary conjunctivitis (GPC). GPC is an iatrogenic disease that is associated with foreign 
bodies on the eye (e.g., contact lenses, ocular prostheses) and is not always included in this group-
ing. GPC invariably resolves when the cause is removed and keratopathy is rare. It was thought 
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to have a possible allergic mechanism because of the predominance of mast cells, but now the 
underlying mechanism of GPC is thought to be an inflammatory rather than an allergic response.1

Seasonal and Perennial Allergic Conjunctivitis
SAC (also known as hay fever conjunctivitis) and PAC are the most common ocular allergic 

disorders worldwide. Although neither results in blindness, they can cause severe incapacitation in 
affected patients. Both are bilateral, self-limiting conjunctival inflammatory processes that occur in 
susceptible individuals of either sex. The condition is initiated by either a seasonal (e.g., ragweed, 
birch or grass pollen) or a perennial (e.g., cat dander, house dust mite) allergen binding to IgE on 
mast cells and triggering the Type I hypersensitivity response. It is this response that leads to the 
clinical symptoms of itching and watering eyes that are associated with conjunctival redness and 
edema. Neither SAC nor PAC causes permanent ocular surface damage.

Vernal Keratoconjunctivitis
VKC is a sight-threatening, bilateral, chronic inflammatory process that mainly affects males. 

The onset tends to be early in life, usually before the age of 5 and resolution generally occurs by 
the end of puberty.1 Individuals who live in warm, dry climates tend to be more commonly af-
flicted, with the Mediterranean and Western Africa having the greatest numbers of patients. About 
three-quarters of VKC patients tend to have a significant history of atopy, often also suffering 
from asthma or eczema and a positive family history of atopy is found in two-thirds of patients.1 
Symptoms are similar to those of SAC and PAC and include pain, itching, conjunctival injection 
and mucous discharge. Although the symptoms may be present year-round, patients tend to have 
seasonal exacerbations. Clinical signs include superior tarsal conjunctival papillae, conjunctival 
hyperemia and edema. Horner-Trantas dots, which are composed of clumps of dead epithelial cells 
and eosinophils, may be found on the superior limbus. Corneal involvement in VKC with the 
development of ulceration can lead to sight-threatening complications, such as corneal scarring.

Atopic Keratoconjunctivitis
AKC is another bilateral chronic inflammatory disease of the conjunctiva that has the potential 

to be sight threatening and, unlike VKC, it has a very strong association with atopic dermatitis (ec-
zema). Atopic dermatitis, a pruritic skin condition that affects 3% of the population worldwide, is 
present in 95% of patients with AKC.7 Conversely, 25-40% of atopic dermatitis patients have AKC.8 
The onset of the disease is usually between the ages of 20 and 50 years and there seems to be a slight 
male preponderance. Symptoms are similar to VKC, but patients may also complain of a mucous 
discharge, especially upon wakening in the morning. Clinical signs are also similar to VKC, with the 
exception of papillary hypertrophy, which may be present on the lower tarsal conjunctiva in AKC. In 
addition, these patients have variable signs of disease on the lid margins (thickening of the margin, 

Table 1. The spectrum of allergic eye disease

Hypersensitive Type Sight-Threatening?

Seasonal allergic conjunctivitis Type I response to seasonal allergen no

Perennial allergic conjunctivitis Type I response to seasonal allergen no

Vernal keratoconjunctivitis Type I and Type IV hypersensitivity 
(Chronic), sometimes associated with 
other atopic conditions

yes

Atopic keratoconjunctivitis Chronic, often associated with atopic 
dermatitis

yes

Giant papillary conjunctivitis Mast cell-mediated or inflammatory rarely
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meiobomian gland dysfunction, blepharitis with crusts) and the periorbital skin (dry and scaly skin, 
an extra skin fold of the lower eye lid and fissures of the lateral canthus of the eye).

Current Treatments for Ocular Allergy
The basic aim in treating allergic eye disease is to achieve relief from symptoms and control 

of the underlying condition. Additionally, in the more severe forms of allergy such as VKC and 
AKC, the aim also extends to preventing visual complications that may result, the most severe of 
which is sight loss. Basic treatment—applicable to all forms of allergic eye disease—is aimed at 
removing or diluting the allergens that may come into contact with the ocular surface. Patients 
are advised allergen avoidance if the inciting allergen is known, and the use of cold compresses is 
recommended for symptomatic relief of the pruritus experienced in these conditions. It is further 
recommended that patients keep their ocular medications refrigerated so that additional symp-
tomatic relief can be achieved when the cold drops are applied to the ocular surface. Lubrication, 
in the form of tear substitutes, are used to dilute the allergen and/or wash out the inflammatory 
mediators from the ocular surface, thereby providing symptomatic relief. Lubricating ointments 
can be applied to the patient’s eye just before they go to sleep and can provide moisture to the 
ocular surface overnight.

Given the prevalence of mast cells in the conjunctiva in all forms of allergic conjunctivitis (see 
below), it is not surprising that mast-cell stabilizers and antihistamines form the mainstay of topi-
cal treatments. Dual-acting agents, combining antihistamine effects with inhibition of mediator 
release, are the newest generation of anti-allergic agents. They offer the advantage of rapid relief of 
symptoms coupled with the long-term disease modifying benefits. In the more severe or chronic 
forms, additional therapy with topical anti-inflammatory treatment is also often required, usually 
in the form of topical corticosteroids. Topical steroid preparations are the most effective therapy for 
use in moderate to severe forms of allergic eye disease. However, their use should be strictly limited 
to severe cases and the patient will require careful monitoring by an ophthalmologist. Long-term 
use of these drugs is associated with an increased risk of cataract formation and glaucoma and they 
can potentiate ocular herpetic infections.

The calcineurin inhibitors cyclosporine A and tacrolimus, drugs used to induce systemic im-
munosuppression following organ transplantation, can also be effective in treating ocular allergy. 
The enzyme calcineurin plays an important role in cell receptor signaling and is inactivated by 
cyclosporine A. In addition, cyclosporine A inhibits histamine release from mast cells.9 Systemic 
cyclosporine A has been shown to improve symptoms in severe AKC,10 but its use is associated 
with potentially life-threatening side effects such as renal failure, which makes it difficult to 
justify its use in nonlife-threatening diseases. Topical preparations of cyclosporine A circumvent 
the problem of systemic side effects and a 0.05% cyclosporine A emulsion formulation has been 
licensed in the United States for the treatment of dry eye disease. In a Phase III multicentre study 
this formulation proved to be safe and well tolerated.11

Tacrolimus has been approved for topical use in atopic dermatitis. It is available as an ointment 
in two strengths, 0.1% and 0.03% and has recently been reported to be effective in treating severe 
AKC and VKC.12,13 There are a number of concerns regarding topical use of this drug, however. 
First, local immune deviation or suppression may increase a patient’s susceptibility to local infec-
tions. Second, tacrolimus, even used topically, may be carcinogenic. The US FDA issued a public 
health advisory in March 2005 about the potential cancer risk and advised that tacrolimus should 
be used only as labeled, for patients in which other treatments have failed to work.14

Allergic Responses in the Conjunctiva
It is known that two cell types participate in the initiation of the ocular allergic response. Mast 

cells, which are perhaps the key cellular component of ocular allergy, are found in increased num-
bers in all forms of allergic conjunctivitis. The second cell type is the conjunctival T cell, whose 
numbers, particularly of the CD4  memory cell subtype, are simultaneously increased with those 
of mast cells in VKC and AKC.15,16 The pathophysiology of allergic eye disease involves a Type I 
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and/or IV hypersensitivity reaction. The acute forms of allergic eye disease (i.e., SAC and PAC) 
typically involve a mast cell-mediated Type I hypersensitivity reaction, whereas in the more chronic 
conditions of AKC and VKC, a Type IV hypersensitivity response is also thought to be involved.

Ocular allergic reactions typically occur in three phases: the sensitization phase, the early phase 
and the late phase. The sensitization phase occurs upon initial exposure of the ocular surface to 
aeroallergens. These allergens are phagocytosed by antigen-presenting cells such as dendritic cells on 
the mucosal epithelium of the conjunctiva. The allergens are processed within the antigen-presenting 
cells and then presented on the cell surface as a peptide fragment in association with the major 
histocompatibility complex class II molecule. This allergen-major histocompatibility complex on 
the surface of antigen-presenting cells then interacts with naïve CD4 , or T helper (Th) cells, caus-
ing maturation of these naïve cells into Th type 1 (Th1) or Th type 2 (Th2) cells. It is Th2 cells that 
are mainly involved in the allergic response. The antigen-presenting cell-Th2 interaction results in 
the production of cytokines, which interact with naïve B cells and cause production of immuno-
globulin E (IgE)-type antibodies. The IgE binds to its high-affinity receptor Fc RI on the surface 
of mast cells and basophils. When the sensitized eye subsequently encounters the same allergen, 
the allergen attaches to and cross-links IgE-Fc RI complexes on the surface of mast cells.15 This 
leads to changes in the mast cell outer membrane, making the mast cell more permeable to calcium 
ions with subsequent mobilization of intracellular calcium. When a critical mass of IgE antibodies 
becomes cross-linked, this increased permeability causes the mast cells to degranulate, releasing a 
variety of primary inflammatory mediators that are stored in preformed granules. The mediators 
include histamine, serotonin, leukotriene C4, prostaglandin D2, platelet-activating factor, tryptase, 
chymase, cathepsin G and other eosinophil and neutrophil chemoattractants. These molecules are 
responsible for the symptoms of the “early-phase response”, usually beginning within seconds of 
allergen contact and lasting for up to 40 min after exposure (Fig. 1). In ocular allergy, tear levels 
of histamine are increased during the early phase; ocular redness, tearing and itching also occur.17

A “late-phase reaction” sustained by a complex network of inflammatory cells and mediators 
can also occur in the eye. This has been demonstrated in humans using allergen for conjunctival 
provocation of allergic subjects.18 Allergen challenge caused the typical early-phase reaction within 
20 minutes, with the initial reaction being dose dependent. With smaller doses of allergen the 
reaction was not so pronounced and spontaneous recovery occurred within a brief period. With 
larger doses, the reaction was more persistent and progressed to a late-phase reaction. Typically, 
high doses of allergen induced a continuous response manifested by burning, redness, itching, 
tearing and a foreign body sensation that began 4-8 hours after challenge and persisted for up to 
24 hours. This clinical reaction was accompanied by a significant recruitment of inflammatory 
cells in the tears: neutrophils first appeared about twenty minutes after challenge with eosinophils 
and lymphocytes increasing in prominence 6-24 hours after challenge.18

The eosinophil is the cell that predominates in the late phase reaction. It is a powerful effector 
cell, releasing arginine-rich toxic proteins that can damage the corneal epithelium.15 Eosinophils are 
not normally found in the conjunctival epithelium of non-atopic subjects, but their numbers are 
increased in the conjunctival epithelium, subepithelium and tears of patients with AKC and VKC. 

Figure 1. Histamine contributions to allergic responses.
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In VKC, this increase in eosinophils and eosinophil products is observed in both skin test-positive 
and skin test-negative patients and is not confined to ocular tissues, suggesting that systemic activa-
tion of eosinophils may be more important than IgE activation in disease pathogenesis.18

Mast Cells in the Conjunctiva
Mast cells are subdivided into subtypes based on various physical and functional characteristics. 

The majority of conjunctival mast cells are of the MCTC phenotype (with granules containing 
tryptase, chymase, carboxypeptidase and cathepsin) and are primarily found in the subepithelial 
region; the remaining mast cells are of the MCT (with granules containing tryptase only) subtype.19 
Interestingly, mast cell subtype levels can vary depending on the type of ocular allergy. MCT numbers 
increase in SAC, VKC and AKC, and in AKC the MCTC subtype predominates.19

The healthy human conjunctiva has been estimated to contain approximately 11,000 mast cells/
mm3, found below the basement membrane in the substantia propria.20 The number of mast cells in 
the conjunctiva increases in the chronic forms of ocular allergy. Mast cell localization also changes 
in the more-chronic forms of ocular allergy, from the substantia propria to the epithelial surface.20 
Interestingly, the histamine concentration in the tears of allergic conjunctivitis patients can reach 
values greater than 100 ng/mL, as compared with values of 5-15 ng/mL in control patients.21

Histamine in the Conjunctiva
In ocular responses, the primary source of histamine is mast cells, which are primarily found below 

the basement membrane in the substantia propria.7 Histamine is released in both the early phase and 
the late phase of allergic reactions. In the early phase response histamine is released from activated 
mast cells upon degranulation, whereas in the late phase allergic reaction histamine release from mast 
cells and basophils is dependent on the activity of chemokines and cytokines such as eotaxin, the 
protein regulated on activation T cell expressed and secreted (RANTES) and interleukins (IL)-1, -3, 
-5 and -6. These chemokines and cytokines are produced by inflammatory cells such as eosinophils, 
neutrophils and mononuclear cells and their release can be dependent on or independent of IgE.22

Histamine influences the activity of a variety of cell types, including immune cells, vascular cells and 
epithelial cells. Its actions on immune cells promotes a Th2 response.23 Histamine is a well-documented 
vasoactive factor, causing increases in vessel diameter and capillary permeability. In the conjunctiva, 
vascular responses to histamine increase inflammatory cell recruitment and contribute to the red-
ness and tearing associated with ocular allergy.24 Finally, histamine can have important effects on the 
barrier function of the conjunctival epithelial cells.

Histamine and the Conjunctival Barrier
Allergic inflammation predominantly occurs at mucosal surfaces. The epithelium represents a 

physical barrier that protects against the exaggerated intrusion of antigens through the function 
of tight junctions and adhesion molecules. Tight junctions are protein complexes that link the 
cytoskeleton of adjacent epithelial cells thereby increasing adhesion and stability. Tight junction 
proteins include zonula occludens 1 (ZO-1). One important epithelial adhesion protein is the 
calcium-dependant adhesion molecule E-cadherin. During allergic inflammation, alterations in 
expression of these proteins indicate destabilization of the conjunctival epithelium and loss of ocular 
surface integrity. Lost conjunctival surface integrity could in turn lead to increased penetration of 
allergen and an exacerbation of the allergic response.

Disruption of the epithelial barrier can occur in response to inflammation or to other fac-
tors. Some allergens, including pollen, contain active proteolytic enzymes that break down tight 
epithelial cell junctions.25 Other allergens enhance inflammation by stimulating epithelial cell 
secretion of proinflammatory cytokines and chemokines. Histamine is a particularly potent 
disruptor of tight junctions. In a study of experimental nasal allergy, locally released histamine 
caused epithelial cells to decrease ZO-1 mRNA expression and upregulated IL-8 mRNA expres-
sion.26 The former effect may increase the mucosal permeability and penetration of additional 
antigen through paracellular spaces. The latter effect could stimulate local accumulation of 
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eosinophils, thereby enhancing local allergic inflammation. A bronchial biopsy study showed 
that ZO-1 and E-cadherin were expressed at significantly lower levels in asthmatic subjects than 
in non-asthmatic subjects.27 This, too, suggests that disrupted barrier function might contribute 
to allergic pathogenesis.

Figure 2 shows the expression of the ZO-1 and E-cadherin in the mouse conjunctiva. In the 
forniceal conjunctiva, ZO-1 is found at the superficial cell layer and E-cadherin is expressed from 
the basal cell layer to the facial layer. Interestingly, conjunctival expression of these proteins does 
not decrease following exposure to allergen in a murine model of allergic conjunctivitis (Fig. 2), in 
contrast to observations for respiratory allergy.27,28 These differences may be explained by different 
functions of histamine receptor subtypes.

Histamine Receptors in the Conjunctiva
Histamine receptors are G protein-coupled receptors expressed by a variety of cell types. Of 

the four known histamine receptors (H1R-H4R), the subtypes H1R, H2R and H4R have been most 
strongly linked to ocular allergy.

Histamine H1 and H2 Receptors
H1 histamine receptors are expressed by a variety of cell types. In the conjunctiva, they are 

expressed by vascular endothelial cells.29 The H1R and H2R are expressed at higher levels in the 
conjunctiva of VKC patients compared to normal controls,29 but expression levels in other types 
of ocular allergy have not yet been assessed.

Figure 2. Expression of the epithelial proteins ZO-1 and E-cadherin is similar for nonsensi-
tized/nonchallenged (NS/NC) and sensitized/challenged (S/C) conjunctivae in wild type mice 
(WT) (left photographs upper and lower), but decreases in expression of these proteins are 
observed following allergen challenge in H4R-deficient mice (H4) (right photographs, up-
per and lower). Green: ZO-1, Red: E-cadherin. A color version of this image is available at 
www.landesbioscience.com/curie.
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Histamine signaling through H1R and H2R has been shown to increase conjunctival hyper-
emia, fibroblast proliferation, cytokine secretion and microvascular permeability.5 Stimulation of 
conjunctival H1R with histamine increases intracellular calcium via inositol phosphate activity, 
leading to the symptom of pruritus.5 Histamine stimulation of H2R on the ocular surface results 
in vasodilation, another symptom of ocular allergy.5

The H1R plays important roles in both early- and late-phase allergic responses in the eye. 
H1R-deficient mice do not display the increased vascular permeability30 and conjunctival eosino-
phil infiltration31 following allergen challenge that are typical in wild-type mice. It is therefore not 
surprising that this receptor has been targeted by therapeutic agents for ocular allergy. The H1R 
antagonist levocabastine reduced vascular permeability32 and late-phase nitric oxide production33 
in rat models of allergic conjunctivitis. In humans, topical application of levocabastine clinically 
reduces symptoms of ocular allergy as well as allergic rhinitis;34 other H1R antagonists are also used 
for treatment of ocular allergy.35 Further effects of histamine on the eye may be due to activity of 
the newest member of the histamine receptor family, the H4R.

Histamine H4  Receptor
The H4R subtype is expressed on hematopoietic cells such as mast cells, eosinophils, T cells and 

dendritic cells.36 The H4R modulates a variety of physiological functions in these immune cells, includ-
ing chemotaxis, cytokine and chemokine release and adhesion molecule expression.36 Conjunctival 
biopsies from VKC patients display higher levels of H4R than does the normal conjunctiva, with 
H4R especially present in stromal inflammatory cells.29 Histamine binding to H4R may therefore 
selectively recruit mast cells, eosinophils, dendritic cells and T cells into VKC conjunctival tissue.

In vitro, H4R activation induces mast cell migration towards histamine, though it has no ef-
fect on degranulation.37 The H4R has also been implicated in the pathogenesis of ocular allergy in 
vivo. Application of an agonist specific for H4R resulted in symptoms of ocular allergy in mice.38 
Interestingly, the H4R antagonist JNJ7777120 was able to inhibit allergic conjunctivitis symptoms 
induced by both H1R- and H4R-specific agonists, whereas selective H1R antagonists such as levoca-
bastine had no effect on H4R induced allergic conjunctivitis.38 These results suggest that H4R activity 
is important for allergic conjunctivitis in vivo and that this receptor may even affect H1R-mediated 
pathogenesis, though the mechanisms for this remain unknown.

The H4R may be particularly important in maintaining barrier function of the conjunctival epi-
thelial cells in an allergic response. Although conjunctival epithelial cells in wild-type mice express 
ZO-1 and E-cadherin at normal levels following allergen challenge, decreases in expression of these 
tight junction proteins are observed following allergen challenge in H4R-deficient mice (Fig. 3A). H4R 
may therefore maintain the integrity of the conjunctival barrier in the presence of allergen, whereas 
histamine signaling via H1R or H2R may promote disruption of the conjunctival epithelium.

Tissue-Specific Roles of Histamine Receptors
Interestingly, differential effects of H4R activity have been demonstrated in different tissues. 

In the lung, H4R-deficient mice display decreases in inflammation, infiltrating eosinophils and 
lymphocytes and Th2 responses compared to wild-type mice following exposure to allergen.39 In a 
mouse model of allergic conjunctivitis, on the other hand, we have observed comparable eosinophil 
infiltration between H4R-deficient mice and wild-type mice (Fig. 3B). Differences in responses to 
H1R antagonists also differ depending on the allergy site. Although H1R antagonists are used to 
treat a variety of allergic disorders, the H1R antagonist cetirizine has differing effects when applied 
prior to allergen challenge in the skin allergy and in allergic rhinitis. Whereas pretreatment with the 
drug reduces histamine release and migration of eosinophils, neutrophils and basophils at the skin, 
similar treatment of nasal tissue causes a lesser decrease in mediator release and no change in eosino-
phil migration.40 Differential roles of histamine receptors in atopic disease may be influenced by the 
microenvironment of the tissues involved, a phenomenon that may have important implications for 
development of therapies for allergic conjunctivitis. Further research is needed to define histamine 
receptor roles in different tissues during allergic responses.
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Figure 4. Possible effects of histamine H1 and H4 receptors in allergic conjunctivitis.

Figure 3. Sensitized challenged H4R-deficient conjunctivae display decreased expression of 
ZO-1 and E-cadherin (A), but normal levels of eosinophil recruitment (B). NS/NC, nonsensi-
tized/nonchallenged; S/C, sensitized/challenged; WT, wild type.
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Conclusion
Histamine clearly plays a critical role in allergic pathogenesis in atopic conditions, including 

ocular allergy. The exact roles of histamine receptors in different tissues remain poorly understood, 
but tissue-specific differences in allergic pathogenesis may be mediated by histamine receptor 
subtypes (Fig. 4). The interplay of histamine with mast cells and other inflammatory cells, such 
as T cells and eosinophils, is another active area of research with important implications for 
treatment of allergic conjunctivitis. A better understanding of the pathways and mechanisms 
involved in allergic diseases at specific sites will greatly assist the development of more-effective 
pharmacological treatments.
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Abstract

Histamine is a ubiquitous inflammatory mediator intimately associated with the pathology 
of allergy. Traditional antihistamines, targeting the histamine H1 receptor, have failed 
to demonstrate a significant role for histamine in asthma. Novel immunomodulatory 

roles for histamine and the discovery of a novel histamine receptor, the histamine H4 receptor, 
have resulted in a reassessment of its importance in asthma.

Introduction
Asthma is a complex and increasingly prevalent airway syndrome, most often associated with an 

allergic phenotype. It is characterized by inflammatory infiltrates and episodes of reversible airway 
obstruction. In its more serious forms chronic airway remodeling may result in persistent airway 
dysfunction and hyperreactivity.

The association of asthma with allergy has long been apparent, with the atopic phenotype of 
immunoglobulin-E, mast cell, eosinophil and T-helper-type 2 (Th2) cytokine involvement, com-
monly displayed. Correspondingly, IgE-mediated mast cell degranulation is thought to be involved 
in the pathogenesis of allergic asthma through the resultant release of potent physiological and 
immunological modulators such as eicosanoids, proteases and histamine.

Histamine exerts its effects in the airways, potentially through all four histamine receptors. A 
pathological role for histamine in asthma has long been proposed, largely due to its increased pres-
ence in asthmatic patients and its ability to manifest many symptoms of asthma when administered 
to the human lung. In spite of this association, frequent and robust analysis of drugs designed to 
block the action of histamine at the histamine H1 receptor, namely ‘antihistamines’, have failed to 
demonstrate meaningful clinical benefit on symptoms or progression of allergic asthma disease.

More recently a role for histamine in immune modulation has been proposed via its activity 
at various histamine receptors, notably the histamine H1 (H1R), H2 (H2R) and H4 (H4R) Whilst 
relatively high concentrations of histamine, as detected in asthmatic airways might be needed 
to activate low affinity H1R and H2R, it is ironic, given the previously stated correlates between 
high histamine levels and asthma, that minute levels of histamine, acting at high affinity receptors 
such as H4R may be more pathologically relevant to the immune malfunction observed in asthma 
development and persistence. These traditional and emerging hypotheses for the role of histamine 
in asthma are discussed below.

Histamine in the Asthmatic Airway
Histamine has been considered to be intimately associated with the pathophysiology of asthma 

since its identification as a potent constrictor of airway smooth muscle by Henry Dale in 19101 
and the subsequent realisation of its increased presence in diseased tissue by Curry in 19462 In 
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addition, the main source of histamine in the airway, IgE stimulated mast cells, have been shown 
to be increased in the airways of allergic asthmatics.3,4 Their infiltration into airway smooth muscle 
in asthmatics has also been associated with airway dysfunction.5 Basophils, were also demonstrated 
to be a relevant source of histamine in anti-IgE stimulated blood6 and have been noted in increased 
numbers in the BAL fluid of allergen challenged asthmatics and in bronchial biopsies of allergic 
and non-allergic asthmatics,7 particularly during the late phase response, as has also been noted 
with mast cells.4

Correspondingly, upon antigen challenge of the airways, histamine levels are rapidly increased 
in the airways and in plasma.8 This increase has been correlated with disease severity,3,9-13 whilst 
effective management of asthma lowers plasma histamine.14 Since the pharmacological actions 
of histamine on the airways and cells involved in the asthmatic response mimic many of the 
pathophysiological features of asthma, these observations are additionally provocative in terms 
of a pathologically relevant role for histamine in the disease.

Physiologic Role for Histamine in Lung and Asthma
One of the first identified actions of histamine was its constrictor actions on airway smooth 

muscle.1 This response was subsequently shown to exacerbate disease when Weiss reported that 
administration of histamine to asthmatic patients resulted in breathlessness and decreased vital 
capacity.15 This association was strengthened with the observation that the bronchoconstric-
tor response to histamine was enhanced in asthmatic versus normal individuals and that these 
responses could be blocked by a prototypical H1R antihistamine drug.2 Subsequently, develop-
ment of more selective H1R antagonists allowed for studies to more clearly define the role of 
histamine and H1R in bronchoconstriction. In one important study, inhalation of histamine 
leading to bronchoconstriction and a decrease in FEV1 (forced expiratory volume in 1 second), 
was significantly inhibited by oral administration of all H1R antagonists tested, whose efficacy 
in the lung correlated well with that observed against histamine induced skin responses in the 
same patients. In addition, none of the antihistamines were able to inhibit methacholine induced 
bronchoconstriction.16 Consequently, this one study demonstrated the selectivity and specificity 
of the H1R mediated bronchoconstrictor response to histamine, whilst supporting the theory 
that the histamine induced vasodilatory responses in skin and bronchoconstrictor responses in 
lung are mediated by the same receptor.

While histamine is incontrovertibly a constrictor of large and small airway smooth muscle, 
the direct contractile effect of histamine on airway smooth muscle cells is largely inferred from 
in vitro studies on human tissue. There is some debate as to whether, in vivo, H1R present on 
sensory nerves may contribute to an indirect contractile response via stimulation of a vagally 
mediated parasympathetic reflex. Whilst this may be relevant in some species, the lack of effect 
of anticholinergics on histamine-induced bronchoconstriction in humans would seem to argue 
against this. In addition, a role for histamine in maintaining bronchial smooth muscle tone, in 
the absence of nerve innervation has also been demonstrated.17 Constitutive production of hista-
mine and cysteinyl leukotrienes appeared to impart a resting tone on bronchial smooth muscle that 
could be significantly reversed by addition of H1R antagonists and CysLT1 receptor antagonists, 
respectively. Provocatively, H1R antagonists dosed to asthma patients can produce immediate 
bronchodilatory responses, with one study demonstrating that cetirizine was almost as potent a 
bronchodilatory agent as a -adrenergic agonist.18 However, as discussed in detail below, these 
effects are inconsistent and appear to fade with continuous treatment.

The previously mentioned edematous and vasodilator responses observed in the skin to hista-
mine could additionally have pathological implications in asthmatic airways via the causation of 
mucosal edema and the facilitation of plasma proteins and leukocyte movement into the affected 
tissue. These vasodilator effects are mediated by H1R on vascular endothelium which act to in-
crease paracellular permeability,19,20 whilst the movement of cells is additionally facilitated by the 
H1R dependent upregulation of adhesion molecules such as ICAM-1, E-selectin and P-selectin 
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on endothelial and epithelial cells,21-23 particularly under inflammatory conditions. Histamine 
acting on H1R on endothelium and airway epithelium may have direct pro-inflammatory effects 
via the release of cytokines such as IL-6 and IL-824,25 and has also been shown to augment the 
release of IL-16, a potent chemokine for T helper cells, from airway epithelial cells.26 Interestingly, 
histamine has been shown to similarly induce IL-16 release from CD8  T cells in a H4R and H2R 
dependent fashion.27

All of these actions of histamine on airway structural cells may combine to promote an inflam-
matory phenotype, however a caveat of all these data is that they have largely been obtained in 
vitro and their in vivo significance is unknown. Likewise, a role for histamine in airway smooth 
muscle cell proliferation in vitro has also been reported28 and other studies have suggested histamine 
receptors to be involved in the hypersecretory response seen in asthmatic airways. Whilst H1R may 
be linked to airway secretion via an effect secondary to its role in plasma exudation, the H2R has 
been shown to be the sole histamine receptor involved in mucus secretion,29 which is consistent 
with the expression of H2R in secretory cells from nasal mucosa.30

In summary, the pharmacological effects of histamine on the lung recapitulate many of the 
pathophysiological symptoms of asthma and that the potential role of histamine as an important 
mediator in asthma is further suggested by its increased presence in the asthmatic airway. In the 
rest of this chapter we will examine whether this ‘guilt by association’ is borne out by the evidence 
from clinical studies with antihistamines and whether newer insight into the role of histamine in 
immune modulation, potentially through receptors not targeted by current antihistamines, may 
have implications for the future treatment of asthma.

Immunological Modulation by Histamine
Many cells of the immune system associated with asthma have been shown to express a range of 

histamine receptors, notably H1R, H2R and the newly described H4R. In most cases these recep-
tors are co-expressed so that the net effect of their activation may vary, depending on the exact 
expression profile and the concentration of histamine in the surrounding milieu, and is further 
complicated since the receptors may have opposing function. It is therefore difficult to interpret 
the significance of the in vitro literature in which many of these conditions may be manipulated 
to observe a specific effect and hence preclinical examination of their role in the whole animal 
is likely the most relevant predictor of their role in human disease. Nevertheless, the in vitro lit-
erature reviewed here demonstrates the broad spectrum of cells and effector functions that may 
be modulated by histamine. In vivo evidence will be described later. The proposed immune and 
physiologic roles of histamine in asthma are depicted in Figure 1.

Mast Cells and Basophils
Mast cells are not only the main source of histamine in the lung, but are a source of cytokines 

and tissue growth factors that may be important in the inflammatory and remodeling processes 
observed in asthma.31 They themselves may be modulated by histamine through expression of 
H1R, H2R and H4R on their surface. While histamine does not appear to affect degranulation of 
mast cells, it has been shown to be a potent chemoattractant for mast cells32 and has been shown 
to enhance chemotaxis of mast cell precursors in response to CXCL12,33 all via activity at the 
H4R. In addition, inhaled histamine was able to increase the number of sub and intra-epithelial 
mast cells in mouse airways in an H4R dependent fashion.34 Interestingly, localization of mast 
cells to the bronchial epithelium has been observed in asthmatics after allergen challenge.35 
There are several reports of H1R antagonists reducing leukotriene and histamine release from 
human lung mast cells and basophils , but these effects are believed to be independent of their 
antagonism of histamine, as previously reviewed.36 Histamine acting at the H2R does appear 
to have inhibitory effects on mast cells, decreasing histamine and cytokine release37,38 and may 
have similar actions on basophils.37 H4R has also been detected on basophils but its role in their 
function has yet to be studied.
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Eosinophils
Eosinophils are traditionally one of the major cell types implicated in the pathology of asthma, 

due to their observed increase in asthmatic lungs and the plethora of cytotoxic and pro- inflammatory 
mediators, linked with disease progression, that they are able to release. Although a direct causative 
role in disease has been difficult to prove, recent pharmacologic intervention has suggested their 
importance in at least a subset of asthma patients.39,40 Therefore, it is provocative to note that, as for 

Figure 1. Potential role of histamine in asthma. Allergen entering the airways may cross-link 
IgE on mast cells(or basophils) to release histamine, lipid mediators and cytokines. Antigen 
is also processed by airway dendritic cells and macrophages for presentation to T helper 
cells. During this process local release of histamine and cytokines may also occur. Resultant 
histamine from these processes can act at a variety of cells and levels. Histamine can fa-
cilitate the recruitment of inflammatory cells via direct chemotaxis of additional dendritic 
cells, eosinophils and mast cells to the airways via action at H4R, whilst also aiding the 
chemotactic and inflammatory process through effects at H1R on the airway epithelium 
and vascular endothelium. Release of cytokines, such as IL-8, from the airway epithelium 
and increased vascular permeability in response to H1R activation enrich the inflammatory 
milieu. Constriction and proliferation of airway smooth muscle via H1R also contributes to 
the asthma phenotype. Histamine has diverse effects on the activation of leukocytes via H1R 
and H4R. Complex autocrine and paracrine processes in response to dendritic cell histamine 
and cytokine release control the priming and education of T cells via cytokines that are re-
leased from dendritic cells in response to H1R and H4R ligation, during antigen presentation. 
Histamine may additionally affect the cytokine release from CD8  cells via H4R and from 
mast cells, eosinophils and neutrophils through multiple histamine receptor activity. Key: 
solid arrows: cytokine effect; dashed arrow: histamine effect; light 7TM: H1R; dark 7TM: H4R. 
A color version of this image is available at www.landesbioscience.com/curie. Reproduced 
from Thurmond et al. The role of Histamine H1 and H4 receptors in allergic inflammation: 
the search for new antihistamines. Nat Rev Drug Discovery 2008; 7:41-53.
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mast cells, histamine has been shown to be a potent chemoattractant and enhancer of chemokine 
mediated chemotaxis, once more through the recently described H4R.41,42 H4R dependent upregula-
tion of adhesion molecules was also reported.42 H1R antagonists have been investigated for their 
role in eosinophil function, but effects via nonhistaminergic pathways at irrelevant concentrations 
confuse the interpretation of these studies. As with mast cells and basophils, these activities appear 
independent of H1R activity and are not discussed here, as they do not contribute to an understand-
ing of the role of histamine in asthma.

Neutrophils
The presence of neutrophils in the airways has been demonstrated during asthma exacerbations, 

after treatment withdrawal43 and in a sub-set of chronic asthma patients with severe disease.44,45 
In patients that die suddenly from asthma, they are also increased,46 with the same study demon-
strating elevated histamine levels. Interestingly, neutrophils have also recently been identified as 
a source of histamine in the lung,47 so this correlation may be effect rather than cause. The role 
of histamine in neutrophil function is also unclear, with any function appearing limited to the 
H2R, which may in fact have a negative regulatory role on their function.48 Histamine may have 
an indirect effect on neutrophil chemotaxis via its H1R-dependent ability to stimulate release of 
proneutrophilic cytokines and chemokines from airway tissue.24,25 Similarly, an indirect role for 
H4R has been reported in mast cell dependent models of neutrophilia.42,49,50

Monocytes and Macrophages
Expression of the H1R, H2R and H4R have been demonstrated in human monocytes yet their 

expression on different macrophage lineages and at different levels of activation may vary and has 
not been well studied. Alveolar macrophages are the most abundant inflammatory cell in the hu-
man lung, yet their association with asthma is not clear, likely due to the difficulty in studying this 
highly heterogenous population. However, alveolar macrophage suppression of T-cell proliferation 
is reduced in asthma and after allergen challenge51 and some alterations in specific subpopulations 
have recently been described in asthma.52 In vitro studies have demonstrated that histamine may 
have modulatory effects on LPS stimulated monocytes via the H2R, including a reduction in 
the production of IL-12 and an increase in IL-10 release,53,54 which could conceivably promote 
Th2 cell development. The constitutive production of MCP-1 (CCL2) has also been reported 
to be inhibited via an action at the H4R.55 In alveolar macrophages, specifically, H1R mediates 
histamine induced -glucuronidase and IL-6 release, which may indicate a role for histamine in 
macrophage-mediated remodeling processes.56

Dendritic Cells
Dendritic cells are professional antigen presenting cells that may develop from cells of either 

lymphoid or monocytic lineage. They are intimately associated with the pathogenesis of asthma 
through their initiation and maintenance of T-cell responses, particularly Th2 type. Polarization of 
naïve Th0 cells to Th2 and other T helper sub-sets may be differentially controlled at the level of the 
interaction between dendritic cells and antigen-specific T cells. Such interaction can be directed by 
a variety of cytokines, chemokines, toll-ligands and biogenic amines, such as histamine. These are 
released at sites where antigen is encountered or presented and may sequentially modulate both the 
dendritic cell and subsequent T helper phenotypes.57 All four histamine receptors have been identified 
on immature and mature dendritic cells. Histamine, released from dendritic cells or more traditional 
sources, may act in an autocrine or paracrine fashion to modify their phenotype, as measured by 
alterations in surface markers58, or in cytokine release.59 Cytokine secretion, including inhibition of 
IL-12 and enhancement of IL-10 and IL-6, may be modulated by histamine with H1R, H2R and 
H4R all involved60-62 in these Th2 promoting processes. The autocrine activation of dendritic cells 
by histamine deserves additional discussion, since it is indicative that low levels of locally released 
histamine are able to define and control immune responses that may be important in asthma, via 
actions at high affinity histamine receptors, such as H4R and at concentrations where low affinity 
H1R and H2R may not be engaged. This may suggest that the high levels of histamine frequently 
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cited as correlating with asthma severity are unrelated to the underlying immunology of asthma and 
therefore, at best, may only have a relationship to the physiological sequalae previously described.

T Cells
As described above, T cells are pivotal cells in the initiation and perpetuation of adaptive im-

mune response associated with allergic asthma. In addition to being modulated by the effects of 
histamine on dendritic cells, they may be directly affected by histamine. H1R, H2R and H4R are 
all expressed on CD4  and CD8  cells and have been shown to demonstrate reciprocal responses 
to histamine, based on the preferential expression of H1R on Th1 cells and H2R on Th2 cells, for 
example.63 Most recently, H4R has also been described to be functionally active on human Th2 
cells64, with upregulation of H4R in response to IL-4 reported. H4R agonism of these cells resulted 
in activation of the pro-Th2 transcription factor, AP-1 and the induction of the Th2 cytokine, 
IL-31. H1R on Th1 cells appears to enhance Th1 type responses, with deletion in mice leading to 
a consequent skewing to Th2 type responses after T-cell dependent antigen immunization and 
resultant enhanced production of IgE and IgG1.65 H2R appears to negatively regulate both Th1 
and Th2 responses, with the surprising net effect of H2R deletion in mice resulting in decreased 
IgE in response to immunization, at least in the Th2 predominating system tested.63 This was in 
spite of the predicted increase in IL-4 and IL-13 production from H2R deficient mice, suggesting 
that the concomitant overproduction of IFN  had a dominant effect on the humoral response.

In vitro, T-cell proliferation has also been reported to be affected by histamine, with once more 
a pro- inflammatory enhancement of proliferation associated with H1R activation63,66and an inhibi-
tory effect on proliferation via H2R activation, reported.63,67 On CD8  T cells deletion of either 
H1R or H2R has been shown to increase their capacity for IFN-  release whilst reducing IL-2 and 
IL-10 secretion.68 Activation of H2R and H4R on CD8+ cells also leads to IL-16 release, a potent 
T-cell cheomattractant associated with asthma.27 Direct effects of histamine on the chemotaxis of 
T cells are also apparent, via activity at either H1R or H4R.69,70 The effect of histamine on T-cell 
and dendritic cell interactions, through action at H4R is depicted in Figure 2.

Figure 2. Role of histamine H4R on dendritic cell and T-cell function. Histamine acting at H4R 
on dendritic cells can drive T helper 2 (Th2) cell polarization. This may be accomplished by 
inhibiting Th1 polarizing cytokines such as IL-12 and by stimulating cytokines such as IL-10 
and IL-6. Release of chemokines such as TARC, MDC and MIP-1  may further influence this 
and the further recruitment of Th2 cells to sites of antigen capture. Histamine may also act as 
a direct chemoattractant at H4R on Th2 cells. Reproduced from Thurmond et al. The role of 
Histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. 
Nat Rev Drug Discovery 2008; 7:41-53.
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iNKT Cells
Although still somewhat controversial, invariant NKT cell are considered to be a potentially 

important initiator of allergic and inflammatory responses, via their ability to rapidly produce 
primary cytokines such as IL-4 and IFN- .71 Allergens such as pollen may also act at the invariant 
TCR to cause their activation, further linking them to allergic conditions.72 Modulation of iNKT 
cells by histamine has recently been reported, whereby histamine deficient mice demonstrated 
reduced IL-4 and IFN-  production in response to in vivo iNKT activation. This could be recon-
stituted with histamine and blocked by a selective H4R antagonist.73

In concluding this section, the diverse roles of histamine in asthma associated immune cells, 
dissected from in vitro experiments, would appear to argue for a potential immunomodulatory role 
for histamine in asthma. The next sections, however, will highlight the caveats of in vitro histamine 
research, discussed earlier and review the contribution of histamine to in vivo models of asthma 
and human disease, based on genetic, pharmacological and clinical evidence.

Histamine in Animal Models of Asthma
A role for histamine in the pathogenesis of asthma has also been studied using animal models of 

asthma. Notably, the role of H1R has been extensively studied with genetic knockout and pharmaco-
logical approaches, while that of H4R has just begun. Interpretation of these studies is complicated 
by the exact nature of the model and the dosing regimen applied to each investigation. In general, 
models have a ‘sensitization’ phase to allergen, which is comparable to the development of allergy 
in patients and a ‘challenge’ phase which is considered analogous to the pro-inflammatory response 
to an allergen in an already allergic individual, such as an atopic asthmatic. Hence pharmacologi-
cal intervention around the challenge phase is considered most translational to the therapeutic 
treatment of pre-existing asthma in patients.

Correspondingly, when H1R antagonists have been examined therapeutically in mice, and at 
clinically relevant doses, they appear to have no effect on allergic airway inflammation.62,74 These 
respective studies used loratadine and desloratadine and the results are therefore consistent, being 
parent and metabolite, respectively. Others have tested high doses of alternate H1R blockers, such as 
fexofenadine and have demonstrated an effect with a similar dosing schedule in such models.75 Of 
interest, higher than standard doses of H1R have also been shown to have more efficacy in urticaria 
and are the current recommended treatment.76 However, these effects may not results completely 
from blockade of H1R and as with non-H1R mediated effects of antihistamines in vitro these find-
ings do not contribute to this discussion of the role of histamine in asthma. Interestingly, high dose 
loratadine was ineffective in the study previously referenced,62 further supporting the hypothesis 
that the reported effects of fexofenadine may be attributed to non-H1R activity of the drug.

In contrast, H1R blockade around the sensitization phase of these models appears to indicate 
a role for H1R in the developmental stage of allergic responses. In one study, clinically relevant 
doses of desloratadine were administered prior to antigen sensitization , resulting in a reduced 
inflammatory response to allergen challenge.74 Specifically, eosinophilic and lymphocytic airway 
inflammation was reduced with a resultant decrease in airway hyperreactivity in treated animals. 
Th2 cytokines and immunoglobulins were also decreased, confirming the inhibitory effect of 
desloratadine on immune sensitization. The effect of H1R blockade on allergic sensitization may 
also explain the reported protective effect of H1R genetic deficiency in mouse asthma models.69,77 
H1R deficient mice had a diminished airway inflammation and Th2 cytokine response to allergen 
challenge as well as a decrease in airway hyperreactivity.69 Since in these animals the H1R is absent 
at all stages of the model the exact point of effect is difficult to pinpoint, but in these studies, 
transferring cells from sensitized H1R deficient mice into wild-types which were then challenged 
with allergen recapitulated the effect. This reinforces the pharmacological evidence that it is an 
effect at sensitization that ameliorates the subsequent response to allergen challenge. There is also 
evidence of synergy between the H1R and H4R during the sensitization phase.78 Some clinical 
studies suggest that these findings may be relevant to humans, since treatment of atopic children 
with antihistamines appeared to reduce the risk of developing asthma in later life.79
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Other histamine receptors have been studied in similar models. H2R genetic deficiency resulted 
in a decrease in ova-specific IgE production which was attributed to an apparent increase in IFN-  
production in these mice.65 Pharmacological administration of H2R antagonist prior to challenge 
did not affect IgE levels, but did diminish eosinophilia and airway hyperresponsiveness,80 whilst 
low dose H1R antagonist was once more ineffective. However, the effect of H2R antagonist in this 
model do not mirror the non-effect of H2R antagonists observed in clinical asthma,81,82 perhaps 
highlighting the difficulty in interpreting animal data.

Despite this, compelling in vivo evidence does exist for a role of the newly described H4R 
in asthma. In a mouse ovalbumin challenge model, H4R deficient animals were protected from 
eosinophilic and lymphocytic airway inflammation with concomitant reduction in Th2 cytokines 
in airway and draining lymph nodes. Ova-specific IgE was also decreased.62 In addition, pharma-
cological intervention at either the sensitization or challenge stage lead to a diminishment of the 
subsequent allergic response, suggesting H4R is involved in both the developmental and effector 
phases of allergic inflammation. Dissection of the cellular basis for these effects indicated that 
inhibition of H4R on dendritic cells results in a decrease in their capacity to activate Th2 cells.

Taken together, these investigations demonstrate the ability of histamine receptors to contribute 
to various stages of allergic inflammation in mouse models. The therapeutic translation of these 
findings is discussed below.

Antihistamines and Clinical Asthma
This weight of preclinical evidence and the provocative similarity between the physiological 

effects of histamine and the pathological symptoms of asthma, has resulted in an enduring inves-
tigation into the possible utility of antihistamines in asthma, over the past 50 years.

Promising results were initially obtained with first generation antihistamines demonstrating 
their acute bronchodilator effects in asthmatic patients83 and against histamine and allergen 
induced bronchoconstriction, that appeared independent of muscarinic activity.84 Despite this, 
doses that were absent of dose-limiting sedation were ineffective in modulating exercise or naturally 
occurring asthma,81 whilst inhaled antihistamines, aimed at reducing these side-effects, were either 
irritants or variable in their observed activity.85-88 Consequently, it was not until the development 
of more potent and nonsedative second generation antihistamines in the 1980s that the role of 
antihistamines in asthma was reappraised. A selection of these studies is summarized in Table 1.

Whilst a meta-analysis of properly designed studies reached an overall conclusion that second 
generation antihistamines were ineffective in the treatment of asthma,89 some interesting trends 
are apparent that require further discussion. Notably, doses of antihistamines much greater than 
those observed to be effective in rhinitis appear to offer some benefit and concomitant therapy 
with other agents might also be beneficial. Several studies with recommended doses of terfenadine, 
for example, while demonstrating an ability to produce bronchodilation,16 or reduce early phase 
responses to allergen challenge,90 showed no effect on late phase responses.91 However, increasing 
doses of terfenadine were able to enhance the effect on early phase responses and afford protec-
tion against late phase responses.92 A similar reliance on increased doses of terfenadine for efficacy 
in clinical asthma has also been observed. In comparable double-blind placebo controlled studies 
in mild asthmatics, terfenadine was more active than placebo when dosed at 120 mg twice daily,93 
or at 180 mg thrice daily.94 The higher dose appeared more effective at increasing peak expiratory 
flow and reducing use of inhaled beta-agonists, as well as reducing cough and wheeze. A suggestion 
that disease severity may also determine the efficacy of antihistamines was suggested in another trial 
where 120 mg twice a day terfenadine was deemed inactive in a population of severe asthmatics.95 
A more recent low dose trial of fexofenadine, the active metabolite of terfenadine, in moderate 
disease, demonstrated a mild but transient effect on wheezing and peak expiratory flow.96 This 
transient effect may be related to a loss of the bronchodilator effect that has been observed with 
repeat dosing of antihistamines, including terfenadine.97

Similar trends to efficacy have been seen with other antihistamines such as cetirizine and lorata-
dine. Cetirizine has demonstrated improvement in lung function and symptoms over placebo,98 while 
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another study showed a dose dependent improvement in symptoms, in comparison to terfenadine, 
but no effect on lung function.97 Once more, relatively high doses with some sedative effects were 
used. The beneficial effects with loratadine have most interestingly been shown in combination with 
other drugs. The combination of loratadine with pseudoephedrine has been reported to improve 
both rhinitis and asthma symptoms, with an improvement in peak expiratory flow measurements, 
versus placebo.99 No comparison to individual agents alone was made, however. The addition of 
loratadine to montelukast therapy was examined by Reicin and colleagues.100 The dual treatment 
provided a significant improvement in asthma symptoms and lung function, as determined by peak 
expiratory flow and FEV1, when compared to montelukast alone. Mild but transient improvement 
in lung function has also been observed with high dose loratadine alone,101 perhaps reiterating the 
apparent development of toleration to the bronchodialtor effects of antihistamines.

In summary, the limited efficacy of H1R antagonists in asthma does not appear to warrant 
their use over existing steroid sparing therapies, such as montelukast, although cotherapy may 
be warranted in some instances. The use of totally nonsedating blockers such as fexofenadine at 
higher doses may prove fruitful in the future. Whether this apparent improved efficacy at high 
doses is a result of additional ant-inflammatory effects is not clear, but the studies in mice discussed 
earlier are beginning to tease out the possible immunomodulatory role of H1R antagonists102 and 
may additionally explain the observed prophylactic effect of antihistamines in reducing asthma 
development in atopic children.79

Conclusion
Whilst there is a plethora of preclinical data supporting a role for histamine in the pathophysi-

ology of asthma, the general lack of efficacy of H1R antagonists in the clinical setting is perplexing 
and may speak to the importance of histamine’s effects on other cell types, mediated by other 
receptors. Activation of the H2R certainly mimics some pathophysiological aspects of asthma, 
but H2R antagonists have no efficacy in allergic asthma. Therefore, the role of histamine in the 
modulation of immune cell chemotaxis, function and education, with the recent observations of 
an important role for H4R in these events, may provide an additional and novel avenue for suc-
cessful pharmacological modulation of histamine mediated responses. In addition, to this novel 
receptor pharmacology some positive studies investigating higher doses of second generation H1R 
antagonists in allergic asthma, may help reconcile the current discrepancy between the observed 
experimental importance of histamine and its apparent clinical irrelevance.
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Abstract

Most urticaria subtypes have a profound impact on patients’ quality of life and perfor-
mance. Effective treatment is thus required in all cases where the avoidance of eliciting 
factors and the elimination of underlying causes is not feasible. In nearly all subtypes 

histamine released by mast cells plays a predominant role. For symptomatic relief second generation 
nonsedating histamine H1 receptor (H1R)-antihistamines are, therefore, the first choice. However, 
double-blind controlled studies have shown that dosages required to achieve complete protection 
from urticaria symptoms may exceed those recommended for other diseases, e.g., allergic rhinitis. 
Therefore, the current guidelines suggest increasing the dosage up to fourfold, whereas alternative 
treatments should be reserved as add-on therapy for unresponsive patients.

Introduction
Urticaria as a disease was described as far back as Hippocrates, but the many different types 

and subtypes of urticaria have only been recognized and characterized during the past century. 
With an increasing understanding of the molecular mechanisms involved in urticaria pathogenesis, 
there is also growing evidence for the heterogeneity of the disease. This new knowledge calls for 
an individualized approach, which is especially important since the impairment of the quality of 
life in urticaria is often high. For example, Poon et al1 report that chronic spontaneous urticaria 
patients suffer an impairment of health that is similar to that seen in patients with psoriasis or acne 
in a study of 170 consecutive patients attending a specialist urticaria clinic.

According to the new EAACI (European Academy of Allergology and Clinical Immunology) 
Dermatology Section, the EU-funded network of excellence, GA2LEN (Global Allergy and 
Asthma European Network), the EDF (European Dermatology Forum) and WAO (World Allergy 
Organization) guidelines the different urticaria subtypes can be grouped into spontaneous urticaria, 
which includes acute urticaria and chronic urticaria, the physical urticarias and other urticarias includ-
ing contact urticaria, e.g., wheals and angioedema formation that is directly linked to the degranula-
tion of mast cells either in superficial layers (wheals) or in deeper layers of the skin (angioedema). 
Because of the many different subtypes of urticaria a clear definition and classification of the disease 
is a prerequisite for a suitable treatment. The clinical appearance is defined as follows:
 • Urticaria is characterized by the rapid appearance of wheals and/or angioedema.
 • A wheal consists of three typical features:

1. a central swelling of variable size,
2. an associated itching or sometimes burning, and
3. a fleeting duration of usually 1-24 hours.
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Angioedema is defined by:
 • Sudden, pronounced swelling of the lower dermis and subcutis.
 • Possible pain.
 • Resolution is slower than for wheals (up to 72 hours).

Nearly all symptoms of urticaria are mediated by histamine as the major proinflammatory mast cell 
mediator binding to H1R on endothelial cells and sensory nerves. However, the clinical manifestations 
of different urticaria subtypes vary considerably. Also, it is important to note that in one patient two 
or more different subtypes of urticaria can coexist. Table 1 presents a classification for clinical use.

Physical urticarias, although of a chronic nature, are grouped separately since they depend on 
the presence of their eliciting physical factors, whereas in acute and chronic spontaneous urticaria 
wheals arise spontaneously without external physical stimuli.

Another important factor in classifying urticaria is disease activity. Where physical triggers 
are implicated, e.g., temperature, an exact measurement of the intensity of the eliciting factor can 
be made. However for spontaneous urticaria, assessing disease activity is more complex. The new 
guidelines propose a unified scoring system that will facilitate comparison of study results from 
different centers. This simple scoring system is based on the assessment of key urticaria symptoms 
(wheals and pruritus). The self-evaluation of the last 24 hours each day by the patient has proven 
to be very robust and helpful since disease activity often varies during the day.

Table 1. Classification of urticaria30

Type Subtype Definition

Spontaneous urticaria Acute spontaneous urticaria Spontaneous wheals and/or angio-
edema 6 weeks

Chronic spontaneous urticaria Spontaneous wheals and/or angio-
edema 6 weeks

Physical urticaria Cold contact urticaria Eliciting factor: cold objects/air/
fluids/wind

Delayed pressure urticaria Eliciting factor: vertical pressure 
(wheals arising with a 3-12 h 
latency)

Heat contact urticaria Eliciting factor: localized heat

Solar urticaria Eliciting factor: UV and/or visible 
light

Symptomatic dermographism/
Urticaria factitia

Eliciting factor: mechanical shear-
ing forces (wheals arising after 1-5 
min)

Vibratory urticaria/angioedema Eliciting factor: vibratory forces, 
e.g., pneumatic hammer

Other urticaria disorders Aquagenic urticaria Eliciting factor: water

Cholinergic urticaria Elicitation by increase of body 
core temperature due to physical 
exercises, spicy food

Contact urticaria Elicitation by contact with urticar-
iogenic substance

Exercise induced anaphylaxis/
urticaria

Eliciting factor: physical exercise
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Acute Urticaria
For acute urticaria life-time prevalence ranges from 12-15%2,3 or even, in one study, 23.5%.4 In 

a prospective study, in a rural area of Brandenburg in Germany, a one-year incidence of 0.154% 
was found, which equals a life-time prevalence of 12.32% based on a life expectancy of 80 years.5,6 
However, mild symptoms may not have been reported and the true life-time prevalence must be 
estimated to be rather 15-20%.

Regarding the etiology of the disease, the above-mentioned prospective study in acute urticaria 
showed that although 63% of the patients suspected food to be the cause, in only 1 of 109 patients 
was food shown to be the causing agent upon thorough investigation. This highlights that patient 
history, especially in acute urticaria, may be misleading.6 Drugs can elicit acute urticaria both as 
allergens (e.g., penicillin) and as pseudoallergens (e.g., NSAID). The most frequent reason for 
acute urticaria, however, appears to be viral infections of the upper respiratory tract.

Chronic Spontaneous Urticaria
Due to the lack of cross-sectional studies, there is no reliable data regarding the prevalence 

of chronic spontaneous urticaria although it is estimated to be 1%. As for acute spontaneous 
urticaria, Type I—allergic reactions are only rarely responsible for the development of chronic 
spontaneous urticaria.7,8 In different subsets of patients with chronic spontaneous urticaria, the 
role of pseudoallergic reactions against food and food additives have been repeatedly discussed in 
the past as well as an infectious or autoreactive etiology.

Our own results8 show that in those patients who improve on a diet low in pseudoallergens, 
30% show a decrease of symptoms only after 10-14 days on the diet. The study included unselected 
chronic spontaneous urticaria patients with daily or almost daily symptoms who had not received 
a diagnostic work-up before. Approximately 50% of the responders did not express a total clear-
ance of symptoms, pointing at other possible cofactors involved in the pathogenesis. These results 
were confirmed by Pigatto and Valsecchi9 who investigated a group of 202 patients with chronic 
spontaneous urticaria using the same diet. In this study 126 patients improved on diet, whereas 
35 patients did not show any benefit from the diet and 41 patients dropped out. In both studies 
reactions to food additives were only seen in a minority of patients (19% and 37%, respectively). 
Meanwhile the relevance of naturally occurring pseudoallergens, especially aromatic compounds 
found in vegetables and wine, have been confirmed.10 Various studies have investigated the oc-
currence of anti-Fc RI  autoantibodies, which have been described to be of pathophysiological 
relevance in some patients with urticaria.11-13 In our own study these autoantibodies were found in 
the same frequency as described earlier, but they could be found in both patients with idiopathic 
chronic spontaneous urticaria (7 of 22) and in patients with pseudoallergy against food whose 
symptoms cleared with elimination diet (6 of 17).14 In addition, it has been shown that these 
autoantibodies crosslink the IgE-receptor only if it is not occupied by IgE, which is rarely the case 
under physiological conditions.15,16 Two possible explanations for these findings are conceivable. 
First, the Fc RI  autoantibodies are not of pathophysiological relevance in all patients with urti-
caria or second, a synergism between the autoantibodies and other eliciting stimuli, e.g., food, is 
necessary for the appearance of clinical symptoms in some patients. Future research in this field 
is necessary to answer this question.

Apart from anti-IgE receptor autoantibodies, thyroid autoantibodies are also associated with 
chronic spontaneous urticaria,17 although the pathomechanism is unclear. Infections such as hepa-
titis A and B, bacterial infections, e.g., of the nasopharynx or helicobacter pylori of the gastrointes-
tinal tract,18-21 can also trigger chronic spontaneous urticaria and should be treated appropriately.

Parasites, a rare cause of urticaria in North European countries but more frequent in other 
regions, should be eliminated. In the past, intestinal candidosis has been regarded as a highly 
important eliciting factor for chronic spontaneous urticaria,3 but recent findings fail to support 
a significant causative role.6 Nevertheless, it is recommended that massive candidosis should be 
treated. In general, the frequency and relevance of infectious diseases as a cause for chronic urti-
caria varies between different patient groups and in different regions. For example, hepatitis virus 
infections are a more frequent cause for chronic spontaneous urticaria in southern Europe, but a 
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rare cause in northern Europe. Apart from infections, also non-infectious chronic inflammatory 
processes such as gastritis, reflux esophagitis, inflammation of the bile duct or bile gland,6,22 or rarely 
autoimmune disorders, e.g., SLE, have been identified to cause urticaria in some patients.

Management of Urticaria Follows Basic Principles
The management of urticaria should follow the newly developed EAACI/GA2LEN/EDF/

WAO-Guideline.23 This guideline is the result of a consensus reached during a panel discussion at 
the 3nd International Consensus Meeting on Urticaria, Urticaria 2008, a joint initiative of EAACI 
Dermatology Section, the EU-funded network of excellence, GA2LEN, the EDF and WAO.

Although urticaria is elicited by a great diversity of factors and clinically presents in a highly 
variable way its treatment mainly follows the same basic principles. These are:
 • Avoidance or elimination of the eliciting stimulus or underlying cause.
 • Symptomatic treatment mainly targeting either reducing mast cell mediator release or 

reducing the effect of these mediators on the target organs.
In all cases symptomatic relief should be offered while searching for causes. Avoidance, 

elimination or treatment of the eliciting stimulus or cause is most desirable since it is curative, 
but unfortunately it is not applicable in the majority of patients as the exact eliciting stimulus is 
frequently unknown.

Antihistamines Play the Major Role in Urticaria Treatment
Nearly all symptoms of urticaria are mediated primarily by the actions of histamine on H1R 

located on endothelial cells (the wheal) and on sensory nerves (neurogenic flare and pruritus). Thus, 
H1R antagonists are of eminent importance in the treatment of urticaria. The availability of this 
class of therapeutics since the 1950s has made urticaria a disease that can be treated effectively with 
a very low adverse effect profile. The older 1st generation antihistamines have pronounced CNS 
and anticholinergic effects which last longer than 12 hours, whereas the antipruritic effect lasts 
only for 4-6 hours. Consequently, many drug interactions have been described for these sedating 
antihistamines, particularly with drugs affecting the central nervous system, like analgesics, hyp-
notics, sedatives and mood elevating drugs as well as alcohol. Also, MAO inhibitors can prolong 
and intensify the anticholinergic effects of these drugs. In addition, 1st generation antihistamines 
can interfere with REM sleeping phases and impact learning and presentation.

The development of 2nd generation antihistamines led to drugs that are nonsedating or mini-
mally-sedating and are free of anticholinergic effects. However, two of the earlier 2nd generation 
drugs, astemizole and terfenadine, which were essentially pro-drugs requiring hepatic metabolism 
to become fully active, had cardiotoxic effects if this metabolism was blocked by concomitant 
administration of ketokonazole or erythromycin. These two drugs are no longer available in most 
countries. Further progress with regard to drug safety was achieved by the development of the new 
generation antihistamines fexofenadine and desloratadine, which are cytochrome P450 indepen-
dent metabolites of earlier antihistamines. Levocetirizine is the active enantiomer of cetirizine, 
thus, where cetirizine is indicated as effective treatment, levocetirizine could also be considered.

Thus, considering their good safety profile, 2nd generation antihistamines must be considered as 
first line symptomatic treatment for urticaria. However, as of now well-designed randomized con-
trolled clinical trials comparing the efficacy and safety of different nonsedating H1R-antihistamines 
in chronic urticaria are largely missing. However, while single dose is sufficient in up to 50% of 
patients with chronic spontaneous urticaria, many patients need additional therapy. There are some 
studies showing the benefit of a higher dosage of antihistamines in individual patients. 24,25 This has 
been verified in studies using up to fourfold higher than recommended doses of desloratadine.26 
Interestingly, however, Asero27 reported that increasing the dose of cetirizine for chronic spontane-
ous urticaria threefold did not produce further efficacy in severely affected patients. Most likely 
the increase of dosage does not only block histamine mediated effects, but also reduces mast cell 
activation and has an impact on various cytokine and endothelial adhesion molecules. The highest 
reported accidental overdosage of antihistamine (fifty-fold the prescribed dosage of cetirizine in 
an 18-month-old boy) induced no adverse effects.28
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Further Therapeutic Possibilities Are Limited
Alternative treatments are needed for patients unresponsive to higher dosages of antihistamines. 

Although the mechanism remains unclear, it can be speculated that individual profiles of other 
mediators and histamine receptors other than the H1R are involved. Since the side-effects of many 
of these substances are considerable, it may be wise to try to use them as add-on therapy only in 
patients unresponsive to antihistamines. Since the severity of urticaria may fluctuate and since 
spontaneous remission may occur at any time, it is recommended that the necessity for continued 
or alternative drug treatment should be re-evaluated every 3-6 months.

Modern Antihistamines Should also Be Used for Children
Many clinicians use 1st generation H1R-antihistamines as their first choice in the treatment 

of children with allergies assuming that the safety profile of these drugs is better known than 
that of the 2nd generation nonsedating H1R-antihistamines due to a longer life on the market. 
Also the use of 2nd generation H1R-antihistamines is restricted for children less than 6 months 
of age, while the recommendation for the 1st generation H1R-antihistamines is sometimes less 
clear as these drugs have been licensed in a period when the code of Good Clinical Practice for 
pharmaceutical industry was less stringent. As a consequence many doctors choose a 1st genera-
tion antihistamine, which as pointed out above have a lower safety profile compared with a 2nd 
generation H1R-antihistamine. This practice must be discouraged. Thus, in children the same first 
line treatment and updosing (weight adjusted) is recommended as in adults.

The same considerations in principle apply to pregnant and lactating women. So far no reports 
of birth defects in women having used 2nd generation antihistamines during pregnancy have been 
published. Although only small sample size studies are available29 it must be assumed that due to the 
wide use of 2nd generation antihistamines in allergic rhinitis and urticaria many women have used 
these drugs especially in the beginning of pregnancy, at least before the pregnancy was confirmed 
and most likely later since a number of these drugs do not require a prescription.

Conclusion
Modern H1R-antihistamines are the mainstay in the treatment of urticaria. However, until 

now it is not clear if the mode of action in increased dosages is related only to the inactivation 
of the H1R-receptor response. Due to the many other anti-inflammatory properties of modern 
H1R-antihistamines which are not found in antihistamines of the first generation it is more likely 
that the positive effects of up-dosing are based on extended modes of action.

Further research is needed to better understand this as well as the role of other histamine 
receptors than H1R-receptors in the pathogenesis of urticaria.
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Abstract

Itching (pruritus) is perhaps the most common symptom associated with inflammatory skin 
diseases and can be a lead symptom of extracutaneous disease (e.g., malignancy, infection, meta-
bolic disorders). In atopic dermatitis itching sensations constitute one of the most prominent 

and distressing features. The most characteristic response to itching is the scratch reflex: a more 
or less voluntary, often sub-conscious motor activity, to counteract the itch by slightly painful 
stimuli. The benefit of a short-termed relieve from itching through this scratch reflex though is 
counteracted by a simultaneous damage of the epidermal layer of the skin which leads to increased 
transepidermal water loss and drying, which in turn results in a cycle of more itching and more 
scratching. A wide range of peripheral itch-inducing stimuli generated within or administered 
to the skin are able to trigger pruritus, one of them being histamine. Based on early experiments, 
histamine has been suggested to may play a key role in the pathogenesis of AD. This is reflected 
by a history for antihistamines in the therapeutic medication of AD patients. Antihistamines are 
believed to share a common antipruritic effect and therefore are prescribed to the vast majority of 
AD patient suffering from itch to act alleviating. The level of evidence in support of the benefits 
of antihistamine treatment, however, is low. To assess the benefit of antihistamines in the treat-
ment of AD in a better way, their mechanisms and specific effects need to be understood more 
precisely. In particular their precise indication is crucial for successful use. This book chapter will 
therefore summarize and assess the role of histamine in AD and the efficacy of antihistamines in 
its treatment based on results of basic research and clinical studies.

Histamine
Imidazolethylamine, better known as histamine, is synthesized from the amino acid l-histidine 

through oxidative decarboxylation by histidine decarboxylase (HDC) and occurrs in tissues through-
out the body.1 The precise function of histamine is dependent on its tissue-localization: e.g., in the 
nervous system it operates as a neurotransmitter and in the immune system, gut and skin it serves 
as a signaling molecule.1 Since the first description of histamine more than a century ago,2 many 
important implications on human health have been assigned to this molecule.3 This importance 
may derive in major parts from the central role histamine plays in inflammatory processes. In early 
cutaneous inflammation some researchers consider histamine to be the “quintessential mediator”.4 
In fact, histamine has been described to trigger the characteristic triad of inflammation—redness, 
wheal, flare—along with pruritus in the skin.5,6 The sources of cutaneous histamine are reported to 
be mast cells and keratinocytes, which release the molecule upon stimulation.7,8
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Histamine Receptors
Histamine exerts its action through binding to distinct metabotropic histamine receptor 

subtypes. To date, four histamine receptor subtypes are known and cloned. All four belong to the 
rhodopsin-like family of G protein-coupled receptors (GPCR). Also several isoforms exist for each 
receptor subtype which emerge from different transcriptional and posttranscriptional processing. 
Remarkably, the histamine receptors display a high degree of functional heterogeneity as well as dis-
criminable expression patterns and a distinct utilization of intracellular signaling mechanisms.1,9,10 
Differences in the functionality of histamine receptor splice variants are not reported so far.3,9,10 In 
the skin, the expression of two of the histamine receptors, H1R and H2R, has been detected7,11 but 
most histamine-mediated dermatological effects are attributed to the classical H1R.12

The histamine H1 receptor (H1R) is found throughout the whole body. It is expressed by 
multiple cell types including endothelial cells, epithelial cells, nerve cells, smooth muscles and 
immune cells.9 As indicated, H1R couples to G-proteins. More precisely H1R mediates its effects 
through G  q/11 and Gi/Go. Coupling of these G proteins leads to phospholipase C, protein 
kinase C activation, Ca2  mobilization, inositol phosphate, arachidonic acid and nitric oxide 
production1,9 (Fig. 1). Utilizing these effector pathways, histamine is competent to generate a 
wide range of effects among which roles in inflammation and immune modulation are described 
best. In the skin, for example, histamine causes vasodilation (reddening), vascular permeability 
(wheal), flushing and pruritus.9 In allergic reactions histamine leads to an increase of the cellular 
immunity and decrease of the humoral immunity.9 Further effects typical for allergic reactions 
which are inducible by the histamine H1R axis are pain, asthmatic bronchoconstriction and 

Figure 1. Diagram showing the major G protein-mediated signaling pathways coupled to the 
histamine H1 receptor. Question marks represent effects of signalling pathways that are not 
fully revealed to be activated by H1R, but are in favor of other G protein-coupled receptors 
or are typical intermediate-accompanying molecules.



75Histamine and Antihistamines in Atopic Dermatitis

coughing. As of yet it is not known which of these H1R-mediated effects may contribute to 
the pathology of AD.

Next to H1R, the histamine H2 receptor (H2R) could be a putative candidate receptor that 
might contribute to AD because its expression pattern closely resembles that of the H1R includ-
ing its presence on cutaneous sensory nerve fibers.7,11 The intracellular effector pathways activated 
by H2R are restricted when compared to H1R effector pathways. Hence, histamine mediates the 
direct stimulation of membrane adenylate cyclase activity and cAMP-dependent inhibition of 
cell functions in parts via H2R, but appears to fail to mediate other major secondary messengers 
via this receptor.9 The last cloned histamine receptors are the histamine H3 (H3R) and H4 recep-
tor (H4R). Due to the expression of the H3R which does not comprise the epidermal tissue a 
prominent role for the H3R in AD or any cutaneous disease is not likely.13 In contrast, H4R is 
coexpressed with H1R and H2R by many cells involved in inflammatory processes.9 Only recently 
Dilkstra et al provided evidence for the expression of H4R on inflammatory dendritic epidermal 
cells (IDEC), which are typically found in lesional skin of patients with AD14 and revealed an im-
munomodulatory function for this receptor on this distinct population of dendritic cells. Because 
of the importance of IDECs in the pathogenesis of AD, the data accumulated by this work for 
the first time suggests a fundamental role for H4R in the pathogenesis of ths disease. In mice H3R 
as well as the H4R operate as itch receptors,15,16 it is likely that both receptors could in part be 
responsible for the onset of itch also in humans. Antagonists against H3R and H4R may in the 
future become beneficial tools for the treatment of AD symptoms, preferentially for pruritus that 
does not respond to H1R targeting compounds.

Histamine in Atopic Dermatitis
Atopic Dermatitis (AD) is a common chronic inflammatory skin disease and is increasing 

in prevalence throughout the world.17,18 Patients with AD typically present with xerosis, relaps-
ing eczematous skin lesions and pruritus.19,20 AD can range from mild disease where only parts 
of the body are affected to almost total body involvement. There is currently no cure available 
and therapies are mainly directed at alleviating the symptoms.19,21 This critical situation mainly 
results from the poor understanding of the underlying pathogenesis. In the literature one finds 
indications for a relevant role of histamine in AD, e.g., histamine-free diet reportedly reduces AD 
symptoms22,23 and administration of histamine immunoglobuline complexes has been shown to 
result in clinical improvement.24 Overall, however, the precise role of histamine in AD remains 
enigmatic. In the recent scientific debate the role of histamine in AD is mainly seen as that of a 
molecule with pruritogenic impact.13,25,26 Earlier studies did find elevated levels of histamine and 
dermal mast cells in AD patients,13,25,27,28 topographically associating histamine and itch and un-
derscoring that the itch sensation perceived by AD patients is at least partially due to the action 
of histamine. However, more recent evidence has not supported this role for histamine in AD.29 
Re-evaluating the potency of histamine to induce itch, it was shown that instead of being pruri-
togenic, small doses of intracutaneously injected histamine clearly fail to produce itch, but suffice 
to produce edema and erythema.30-33 Further studies even report that intracutaneous injection 
and also iontophoretical application of histamine in AD patients even provokes a reduction of 
the itch perceived by the proband.34-37 Additionally, intradermal injection of substance P, a neuro-
peptide that stimulates histamine release from mast cells, in AD patients produced a reduction in 
itch perception. This not only emphazises the minor capacity of histamine to induce pruritus in 
AD,38 but lets one speculate about the general capacity of histamine as a potent pruritogen. Still 
there is some speculation that pruritus in AD may be due to centrally rather than peripherally 
expressed histamine receptors.13,25 This debate is supported by recent studies where brain activity 
was measured after histamine-induced itch by neuroimaging methods. The results demonstrated 
that the brain activity patterns in AD patients and healthy subjects differ and are associated with 
itch intensity and disease severity.39,40 Despite of the controversy as to the pruritic nature of his-
tamine, the pro-inflammatory capacity of histamine appears to be assured and may be the major 
role of histamine in AD.9
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Antihistamines and Histamine Receptor Antagonism  
in Atopic Dermatitis

Topical corticosteroids are first-line therapeutic agents and topical calcineurin inhibitors are 
considered second-line agents for AD patients;19,21 however, physicians generously prescribe antihis-
tamines to AD patients as an adjunctive therapy. The most commonly prescribed antihistamines in 
AD are targeted against the classical H1R.3,9,13 Antihistamines against the H2R play a considerably 
minor role in AD9 and as of yet, no antihistamines that target the H3R are reported of to be used in 
AD patients. Recent results point to a possible role of H4R in AD but no compound inhibiting this 
receptor is approved for use in AD patients as of yet.

The H1R antihistamines applied in the conventional treatment of AD patients are grouped 
into “first generation” and “second generation” antihistamines. Criteria for grouping are the date of 
commercial availability, receptor specificity, penetration of the central nervous system and potential 
for sedation.3,12,25,41 Earlier generations of H1 receptor antagonists were associated with a range of 
unwanted properties. The first generation of drugs were sedative as well as possessing significant 
anti-cholinergic effects. Second generation drugs did not cross the blood—brain barrier and, there-
fore, caused less drowsiness. The benefit of first-generation antihistamines in the treatment of AD 
is described controversially but is often attributed to their anti-pruritic effect that might rely on the 
sedative property of this group of pharmaceuticals.25 In fact, clinicians consider the first-generation 
H1R antihistamines mainly for the treatment of sleep problems associated with AD.42 For example, 
Doxepin, a tricyclic antidepressant, is prescribed to aid the sleep of patients with AD because it has 
a high H1R antagonist activity and is sedating.42

Interestingly also nonsedative second-generation antihistamines are often approved by the 
food and drug administration (FDA), especially for the treatment of pruritus associated with AD. 
A prominent member of this group is fexofenadine. The value of nonsedating second-generation 
antihistamines in the treatment of AD is not necessarily seen in their anti-pruritic effect but in 
their anti-inflammatory properties and it appears to be acknowledged that these anti-inflammatory 
properties are not strictly histamine receptor related.43,44 For example, cetirizine, a metabolite of 
hydroxyzine, is successfully deployed in the treatment of AD due to its anti-inflammatory impact: 
ceterizine inhibits eosinophil chemotaxis, lowers eosinophilic chemokine release and reduces the 
expression of endothelial adhesion molecules.45,46 Further examples are loratadine and desloratadine. 
Both agents modulate inflammatory responses by regulating cytokine release in immune cells such 
as human mast cells and basophils47 and by regulating the expression of cellular adhesion molecules 
of the endothelium.48 However, it has to be admitted that the prescribed antihistamines, inhibiting 
H1R or H2R, are not very effective to alleviate symptoms of AD, in particular pruritic sensations. 
Therefore the search for novel antihistaminic drugs targeting e.g., H3R or H4R or new treatment 
regimens is of uttermost importance. A recent study therefore tested the outcome of a combination 
of antihistamines in a murine model of allergic contact dermatitis which closely resembles an AD 
phenotype. Typically such mice show a strong hapten-induced scratching behaviour, which in this 
study was strongly inhibited by a combination of ceterizine and a novel H4R antagonist named 
JNJ7777120.49 These results indicate that combination of antihistamines in fact might become 
a new option in the treatment of AD. More importantly it strongly suggests a prominent role for 
H4R in the pruritus related to AD and along with earlier publications demonstrates that blocking 
of H4R relieves such symptoms.49,50 Another new approach to the treatment of AD patients follows 
the idea of antagonists that inhibit multiple receptors important to the pathogenesis of the disease 
alongside of histamine receptors. A promising lead compound fulfilling the criteria is the dual inhibi-
tor YM-344484. It is capable to block both the chemokine receptor 3 (CCR3) induced and H1R 
induced influx of Ca2  and upon oral application nearly fully inhibits histamine induced vascular 
permeability.51 So far this compound has only been tested in animal models and is far from a use in 
humans, but due to its strong effect it surely will be an attractive candidate for further investigation 
with regard to its potential to alleviate symptoms of AD. It has to be noted, that other actions of 
antihistamines in addition to their anti-inflammatory effects have been discussed to contribute to 
their ameliorating effect in AD. Another benefit might be the ability of some antihistamines to 
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modulate the status of the skin barrier, which in patients suffering from AD typically is dysfunctional. 
As a proof of concept, olopatadine hydrochloride, a drug with H1R antagonistic action, alleviates 
skin inflammation and pruritic sensations in a murine model of chronic contact dermatitis by ac-
celerating the recovery of the skin barrier function.52,53

Clinical Studies of Antihistamines in Atopic Dermatitis
To date, only limited evidence exists that antihistamines are effective in the treatment of 

AD.21 Indeed for some antihistamines slight benefits in the amelioration of AD are reported, 
but such studies are rare and their evidence is limited. In fact despite their clinical success, an-
tihistamines have not been subjected to large, randomized, double-masked, placebo-controlled 
long-term trials. Only a few quality studies, small randomized controlled or not even random-
ized small trials exist assessing the efficacy of antihistamine in the treatment in AD.30,31,54-58 But 
either these studies pooled ambiguous results or were not able to provide sufficient evidence for 
a general efficacy of antihistamines in the treatment of AD.3,12,13,21,25,30 For example in an early 
small trial, the authors studied the effect of the second-generation antihistamine terfenadine 
on alleviating AD symptoms and failed to assign a clear beneficial effect for the compound. 
Still the authors hesitated to disapprove the usage of terfenadine for AD treatment due to 
inaccuracies of the very own study.30 In an only recently published trial the authors assessed 
the efficacy of the second generation antihistamine fexofenadine in AD patients.59 The main 
conclusions of this study derived from a population of only twenty patients suffering from a 
mild form of AD who were randomly assigned in groups of ten receiving the antihistamine and 
emollient or the antihistamine and a steroid. The sensation of pruritus was evaluated before and 
after treatment. In fact, the authors were able to monitor an improvement of pruritus in both 
groups and suggest that fexofenadine is beneficial in the treatment of AD symptoms disregard-
ing the inadequate size of the study groups. Therefore, a strong demand exists to conduct solid, 
large-scale, placebo-controlled randomized quality studies to finally develop an assessment of 
the efficacy of antihistamines for AD treatment. Interestingly, these studies provided an insight 
as to why some antihistamines may be helpful for some patients with AD: the improvements in 
the clinical condition and patient quality of life may be due primarily to the promotion of restful 
sleep, rather than to a direct reduction of symptoms.12,21,25 Therefore, sedation as an unintended 
side-effect might be the reason why antihistamines are effective in the treatment of AD patients. 
Nonetheless, not all antihistamines are effective only because they are sedative. Promethazine,25 
chlorpheniramine31 and clemastine,30 for examples, are sedative antihistamines but have been 
found ineffective in clinical trials. Therefore, the effectiveness of some sedative antihistamines 
has to be independent of a sedative side-effect.

For further reading, a listing summarizing and assessing the available published clinical 
evidence on the use of antihistamines for AD can be found in the publication of Maurer et al.60  
Although the level of evidence for efficacy of antihistamines in AD is low, clinical experience 
supports the benefit of non-sedating antihistamines in some AD patients using sometimes higher 
than standard doses. Furthermore, despite the effectiveness of sedating antihistamines their use 
should–due to their unfavorable safety profile61 and especially because of their effects on REM 
sleep62–not be considered as a routine treatment of AD.

Conclusion
Williams63 suggested that histamine might play a role in the pathogenesis of AD since intra-

muscular histamine injections resulted in pruritus. Histamine has doubtlessly become one of the 
most exhaustingly investigated “itchy” agonist, but today it is acknowledged that the chorus of 
itch-inducing agents contains many other protagonists. Interestingly upon re-evaluation of the 
role of histamine in patients with AD, it has been shown that histamine accounts for a reduction 
in itch sensation instead of an enhancement. This observation lets one speculate about the general 
capacity of histamine as a potent pruritogen in AD. Another observation demonstrates that small 
doses of histamine are sufficient to produce edema and erythema upon intracutaneous injection 
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and this may be of importance in the pathogenesis of AD. However, certain antihistamines have 
been shown to be effective for certain subgroups of AD patients. Sedative antihistamines, such as 
hydroxyzine and cetirizine, appear beneficial for night time use in patients and second generation 
antihistamines, such as loratadine and desloratadine, appear beneficial for patients with comorbid 
conditions such as chronic urticaria. Furthermore, novel results demonstrate that H4R antagonists 
may have a strong therapeutic utility for treating pruritic diseases in humans which are unaffected 
by H1R or H2R antagonists. There is also hope that a combination of antihistamines might pro-
vide a stronger alleviation of pruritus in AD patients. Taken together, although a definite role of 
histamine in the pathology of AD appears to be difficult to assess, the available data is also not 
sufficient to eliminate histamine from the list of potential mediators necessary for the onset of 
AD or AD symptoms, respectively, in particular AD related pruritus. Further research is needed 
to finally settle the case for histamine and its receptors in AD.
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Abstract

Histamine is one of the most versatile biogenic amines with multiple roles during the immune 
response and in allergic disorders. With four distinct G protein-coupled receptors (H1R, 
H2R, H3R and H4R), intracellular histamine binding sites (most likely members of the 

cytochrome P450 family) as well as a membrane transporter (Organic Cation Transporter; OCT3) 
expressed in various immunocompetent cells, it can entertain a complex network of interactions. 
These signaling pathways are expressed differentially, depending on the stage of differentiation or 
activation of target cells, thus adding a further degree of complexity to the system. For this reason, 
published data are sometimes conflicting and varying according to the particular cell type or 
responses analyzed and the experimental approaches used. On the other hand, histamine is gener-
ated by several cells during the immune response, not only through release of intracellular stores 
in mast cells or basophils in response to IgE-dependent or -independent stimuli, but also through 
neosynthesis catalyzed by histidine decarboxylase (HDC) in a number of hematopoietic cells that 
secrete the amine immediately without prior storage. These features enable histamine to tune the 
fine balance between immunity and tolerance by affecting dendritic cells, immunoregulatory cells, 
T-cell polarization and cytokine production, making the way for new pharmacological strategies 
to control immune reactivity during immune disorders, such as autoimmunity.

Introduction
Histamine (2-(imidazol-4-yl) ethylamine) was discovered in 1910 by Sir Henry Dale,1 due 

to its ability to constrict guinea-pig ileum. At present, it is considered the biogenic monoamine 
with the broadest spectrum of activities in various physiological and pathological situations. 
Thus, it performs neurotransmitter functions in the central nervous system, regulates peripheral 
vasoactivity as well as acid secretion in the stomach and modulates immune responses, inflam-
mation and hematopoiesis. These effects are mediated through four distinct histamine receptors 
(H1R, H2R, H3R and H4R), which are heptahelical, G-protein-coupled molecules expressed 
either ubiquitously (H1R and H2R) or predominant in particular tissues (H3R in the brain and 
H4R in the hematopoietic system). The multiple activities of histamine and its receptors have 
been extensively reviewed.2-8

Histamine is synthesized by a unique enzyme, histidine decarboxylase (HDC) (EC.4.1.1.22) 
that requires pyridoxal-5-phosphate as a cofactor. The HDC gene is located on chromosome 15 in 
humans and chromosome 2 in mice and its expression is controlled by various lineage-specific tran-
scription factors.2 Recently, several findings have shed a new light on the contribution of histamine 
to the regulation of the immune response, namely 1) cloning of a H4R expressed in hematopoietic 
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cells, 2) demonstration of histamine synthesis in immuno-competent cells other than mast cells or 
basophils, 3) identification of OCT3 as a transporter through which intracellular histamine levels 
can be increased to inhibit basophil functions and 4) evidence for a histamine-cytokine connec-
tion.2 These properties enable histamine to modulate the fine balance that prevents the rupture 
of immune tolerance toward various tissue autoantigens leading to autoimmunity. We will discuss 
this issue later in this chapter, once we have dealt with the cellular sources of histamine and its 
effect on target cells involved in the immune response.

Histamine and Immune Cells
Basophils and mast cells have long been considered the unique source of histamine among the 

cells of the immune system. They remain the most proficient producers of this biogenic amine, 
since they can store and release in response to IgE-dependent or independent stimuli. However, 
it has been established that a number of other immuno-competent cells can express high levels 
of inducible HDC activity and secrete the newly synthesized histamine immediately rather than 
storing it in specific granules. This property is shared by dendritic cells, neutrophils and monocytes/
macrophages and lymphoid cells that generate histamine in response to various stimuli, making 
it available in the microenvironment, ready to modulate the biological activities of other immune 
cells and hence the orientation of the immune response.

Histamine and Dendritic Cells
Dendritic cells (DCs) are professional antigen-presenting cells of lymphoid or myeloid origin, 

present in a variety of tissues. Immature DCs are activated by pathogens and cytokines that pro-
mote their final maturation into the DC1 or DC2 phenotype and their migration into lymphoid 
organs where they activate resting T-lymphocytes and produce cytokines that determine the dif-
ferentiation of CD4  T cells into different helper subsets. DCs express H1R, H2R and H4R, while 
H3R expression is low or undetectable.9-13 Histamine modulates their typical functions, such as 
chemotaxis,11,12 antigen uptake and cross-presentation,9 cytokine and chemokine production14-16 
as well as their ability to drive CD4  T-cell differentiation14,16 by targeting one or several of its 
receptors, depending on their respective surface expression. In this context, several investigators 
have examined the effect of histamine on the capacity of DCs to promote the transformation of 
naïve CD4  T cells into Th1, Th2 or Th17 cells. They established that the amine inhibits IL-12 
p70 and increases IL-10 production through H1R, H2R and/or H4R activation, thus favoring 
the development of Th2 cells.12,14,16,17 Histamine induces chemotaxis of human immature DCs by 
targeting H1R and H2R,15 while chemotaxis of murine bone marrow-derived DCs is enhanced via 
the H4R, as assessed in vitro as well as in a skin model in vivo.11 This receptor is also implicated 
in the enhancement of the cross-presentation of antigen by MHC-class I molecules induced by 
exposure of immature DCs to histamine,9 while its positive effect on antigen uptake and endocy-
tosis is mediated through the H2R subtype.9 These data suggest that histamine can enhance the 
ability of extracellular antigens to activate CD8  T-cell-mediated responses by targeting DCs. Its 
effect is restricted to soluble antigens, while particulate antigen cross-presentation or uptake by 
dendritic cells is not affected.18 Not only does histamine influence DC polarization to skew the 
differentiation of naive T cells toward a Th2 profile, but it also enhances Th2 cell recruitment by 
inducing Th2-attracting chemokines (CCL17 and CCL2), while inhibiting their Th1 counterpart 
(CXCL10).18

Plasmacytoid DCs (pDCs) constitute another subset of professional antigen-presenting cells 
and are a major source of IFN . Similarly to what happens in myeloid DCs, histamine modulates 
their cytokine production through H2R. Indeed, the presence of histamine during stimulation of 
pDCs by live flu virus or CpG oligodeoxynucleotides markedly decreases their IFN  and TNF  
production.19 This may explain why viral infections in atopic children are associated with low levels 
of Type I IFN. In striking contrast with functional H1R and H2R expression by myeloid DCs and 
dermal dendritic cells, Langerhans cells lack both receptors, probably because their expression is 
inhibited by TGFß1, which is required for the differentiation of these cells.20
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Interestingly, previous studies have demonstrated that DCs themselves can produce histamine, 
which could in turn modulate the expression of DC markers in an autocrine or paracrine man-
ner.21 It is tempting to speculate that during inflammatory processes DCs can produce sufficient 
amounts of histamine to act similarly, since it has been reported that histamine production by 
DCs is increased under such circumstances.22 In support of such a contribution to antigen pre-
sentation and regulation of Th1/Th2 CD4  T-cell differentiation, it has been described that the 
antigen-presenting capacity and the cytokine production profile are altered in spleen DCs from 
HDC-deficient mice, leading to preferential Th1 development.23

Histamine and T Cells
It is currently acknowledged that histamine can influence T helper cell differentiation by tar-

geting DCs. This notion is supported by the decreased allergic airway inflammation in an allergic 
asthma model carried out in mice in which the H4R was either disrupted or blocked by a specific 
antagonist.22 These data are reminiscent of a similar effect described in mice lacking HDC or 
injected with histamine-binding proteins.24-26

On the other hand, histamine receptors are also expressed by T cells, which respond directly 
to the amine. Indeed, Th1 cells display predominantly the H1R, through which histamine en-
hances their typical functions, while the H2R that mediates the inhibitory effect of histamine 
on Th2 as well as on Th1 cells is preferentially associated with the Th2 subset.27,28 In agreement 
with these data, H1R-deficient mice produce low levels of IFN  together with high amounts of 
Th2-derived cytokines, while both Th1- and Th2-type cytokine synthesis is increased in their 
H2R-deficient counterpart. Although IL-17 production is diminished during the asthmatic re-
sponse in H4R-deficient mice,24 no formal demonstration of the effect of histamine on Th17 cell 
differentiation has been provided as yet. Conversely, it has been shown that histamine does not 
affect Th17 cell differentiation in a model involving mast cells.29

CD8  T cells are also sensitive to histamine as demonstrated by their increased IL-16 produc-
tion in response to H2R or H4R engagement30 and by their reduced IFN  production in H1R- or 
H2R-deficient mice.31

Endogenous production of histamine by CD4  and CD8  T cells has been described follow-
ing mitogen stimulation.31-32 Although HDC has been detected in the Jurkat cell line,33 normal 
T cells need to be purified more thoroughly to confirm their histamine production since this 
could easily be generated by a few contaminating basophils or basophil precursors (less than 
1%). This explanation is particularly likely in view of the authors’ claim that IL-3 and GM-CSF, 
two cytokines well known for their effect on this lineage, increase histamine production in the 
lymphocyte preparation, even in the absence of mitogen.32 Indeed, it has been documented long 
ago that splenic nonT non-B cells,34 presently identified as basophils35,36 increase their histamine 
synthesis in response to IL-3 and GM-CSF, both produced by ConA-stimulated lymphocytes.37-39

Histamine and Immunoregulatory T Cells
The immunosuppressive functions of histamine have been known for a long time and were 

initially ascribed to its ability to induce IL-10 production, a strong immunosuppressive or immuno-
regulatory cytokine. As mentioned above, histamine targets dendritic cells or Th2 cells to increase 
their production of IL-10, which can in turn enhance the suppressive effect of TGF  on T cells.40 
More recently, the effect of histamine on immunoregulatory T cells, such as CD4 CD25 Foxp3  
(Treg) and NKT cells, has been investigated in an allergic asthma model. This study established 
that histamine acted as a chemoattractant of T cells by activating their H1R or H4R. However, 
those recruited through the H1R were mainstream T-lymphocytes, whereas those targeted via the 
H4R belonged mostly to the CD4 CD25 Foxp3  T-cell subset that suppressed autologous T-cell 
proliferation in an IL-10-independent fashion. These regulatory T cells accumulated in the lung 
following instillation of H4R agonist and might be responsible for the inhibition of allergic asthma 
in this model.41 However, the apparent discrepancy between this result and a similar alleviation of 
disease syndromes reported after treatment with a specific H4R antagonist25 needs to be clarified, 
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even though the route of administration differs between the two protocols (local for the agonist 
versus systemic for the antagonist).

iNKT cells, another immunoregulatory T-cell subset, constitute a distinctive population of 
mature T-lymphocytes positively selected by the nonpolymorphic MHC class-I-like molecule, 
CD1d. They co-express a highly restricted T-cell receptor (TCR) repertoire, composed of a 
single invariant V 14J 18 chain in mice and a V 24J 18 chain in humans, preferentially paired 
with a limited TCR V  chain repertoire that specifically recognizes glycolipids. iNKT cells 
are implicated in the control of several immune responses, most likely because of their capac-
ity to promptly produce cytokines, such as IL-4 and IFN- .42-44 Histamine has been shown to 
target this cell population by modulating their cytokine production. Indeed, iNKT cells from 
HDC-deficient mice generate less cytokines in response to their specific ligand GalCer than 
their wild-type counterpart. Administration of histamine restores a normal production, through 
H4R engagement. Indeed, this conclusion is supported by the fact that the functional recovery 
no longer occurs when the receptors are blocked by a specific antagonist and a similar deficit in 
iNKT-cell-derived cytokine production is found in H4R- and HDC-deficient mice.45 Although 
the exact mechanism through which histamine exerts this positive effect has not been elucidated, 
these data underscore once again the importance of mutual interactions between histamine and 
cytokines, whatever the target cells.2,46

Histamine and B Cells
Anti-IgM-induced B cell proliferation in mice is increased in the presence of histamine and 

diminished in H1R-deficient mice, suggesting that H1R activation can amplify B cell receptor 
signaling. Concerning the antibody response to T-cell-dependent antigens, two different results 
have been reported, namely an increase of ovalbumin-specific IgE and IgG1 antibody production 
in H1R-deficient mice and a decreased IgE and IgG3 production in H2R-deficient mice. In the 
latter, ovalbumin-specific IgE levels dropped, in spite of the enhanced IL-4 and IL-13 production, 
because of the high inhibitory concentration of IFN . This finding supports the idea that H1R 
and Th1 responses prevail over humoral responses.29,47

Histamine and Monocytes/Macrophages
Histamine decreases p40 and p70 IL-12 and increases IL-10 production through the H2R 

in lipopolysaccharide (LPS)-stimulated whole blood cells or purified monocytes.48,49 These data 
are reminiscent of the work of Rocklin et al. who demonstrated the presence several years ago 
of a histamine-induced suppressor T-cell factor derived from monocytes,50 which, in the light 
of the present data, could be identical with IL-10. Histamine also inhibits LPS-induced TNF  
production by human peripheral blood monocytes via its H2R.51 Conversely, it fails to prevent 
LPS-induced upregulation of TNF  expression in macrophages or even increases its secretion by 
modulating the TNF -converting enzyme (TACE) via H1R.52 A distinctive effect of histamine 
on monocytes and macrophages is also observed in terms of Ca  influx and IL-8 production in 
response to H1R stimulation, which takes place only in macrophages.53 Furthermore, decreased 
lectin-like oxidized low-density receptor-1 (LOX-1) gene expression associated with upregulation 
of monocyte-chemoattractant protein-1 (CCL2) and its receptor CCR2 via H2R engagement 
occurs in monocytes but not in macrophages.54,55 This differential modulation is explained by a 
switch in histamine receptor expression from H2R to H1R during maturation of monocytes into 
macrophages.52,53 In apparent contradiction, it has recently been shown that CCL2 synthesis and 
secretion by monocytes is downregulated by histamine through H4R.56

The decreased TNF  production by LPS-induced monocytes in the presence of histamine might 
result from its ability to reduce the surface expression of CD14, but not TLR4.57 The modulation of 
CD14 probably occurs through posttranscriptional events, since mRNA levels remained unchanged. 
However, histamine does not downregulate this surface marker during GM-CSF- and IL-4-induced 
differentiation of monocytes into dendritic cells that continue to express CD14 but not CD1a.58 It 
is also noteworthy that histamine diminishes IL-18- induced IFN , TNF  and IL-12 production 
by human PBMC. IL-18 exerts this effect through upregulation of ICAM on monocytes, which 
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is prevented by histamine via the H2R.59 In addition, it has also been demonstrated that histamine 
increases the lifespan of monocytes by protecting them against apoptosis in response to CD95/
Fas ligation, dexamethasone or serum deprivation. These effects are explained by upregulation of 
Bcl-2 and Mcl-1 and inhibition of caspase 3 activation and could be partially mediated through 
histamine-induced IL-10 production.60

HDC expression increased during maturation of monocytes into macrophages,55 in agreement 
with other reports on histamine synthesis in the differentiated population.54,61 In addition, it has 
been shown that mouse peritoneal macrophages as well as the macrophage cell line, RAW264.7 can 
take up histamine and release it when its extracellular concentrations drop.62 Whatever the exact 
mechanism, these data suggest that histamine originating from macrophages could contribute to 
their deleterious effects during inflammatory pathologies, such as in atherosclerosis.55

Histamine and Basophils/Mast Cells
Mast cells and basophils compose the main population of cells in which histamine can be stored 

to be promptly liberated upon stimulation. Mast cells reside in various tissues of the organism, 
conversely to basophils, which represent the mobile pool of the amine. Both cells derive from 
CD34  hematopoietic stem cells. Mast cells leave the bone marrow as immature precursors and 
complete their differentiation in peripheral tissues. Conversely, basophils enter the circulation only 
when they have achieved full maturation in the bone marrow. It is generally accepted that mast 
cells and basophils represent distinct cell lineages derived from different progenitors. However, 
some data argue in favor of a mast cell/basophil progenitor, such as the expression of a common 
antigen recognized by the antibody 97A6, shared by mature basophils and mast cells, as well as 
their precursors63 and the identification of cells with metachromatic granules combining the 
features of both basophils (blood location, segmented nuclei and expression of Bsp1, a basophil 
specific antigen) and mast cells (c-kit, tryptase and chymase expression) in the peripheral blood of 
patients with asthma, allergy and allergic drug reactions.64 Mast cells and basophils are regarded 
as key effector cells in IgE-associated immediate hypersensitivity reactions and allergic disorders, 
while basophils though described over a century ago, remain enigmatic as to their physiological 
functions. However, recent data suggest that they may play an important role during helminth 
infections and are more efficient than mast cells in producing IL-4 together with histamine, which 
both facilitate Th2 differentiation.65 Mast cells and basophils share the expression of Fc RI, a 
tetramer composed of one ,  and two  chains ( 2). Cross-linking of Fc RI-bound IgE with 
antigen, initiates degranulation with subsequent release of stored mediators, such as histamine, de 
novo synthesis of pro-inflammatory lipid mediators and production of cytokines and chemokines. 
In these conditions, the amount of histamine liberated into the microenvironment may reach mil-
limolar levels. This process is enhanced by high concentrations of IgE, which upregulate membrane 
Fc RI expression. In addition, recent data indicate that monomeric IgE can increase survival of 
mast cells without cross-linking, by rendering them resistant to apoptosis. This type of stimulation 
is efficient enough to induce cytokine production and increased HDC activity through a signaling 
pathway distinct from the one triggered by antigen-induced Fc RI cross-linking.66

Although basophils and mast cells are primarily a source of histamine, they also express hista-
mine receptors (H1R, H2R and H4R) and transporters (OCT3) and could therefore be targeted 
by the amine in an autocrine or paracrine manner. For instance, the H4R seems to be involved in 
the control of mast cell chemotaxis since this biological activity is induced by receptor engagement 
in vitro and results in a change of tissue localization in vivo.67,68 Histamine also synergizes with 
chemoattractants, such as CXCL12 by targeting the H4R on mast cell precursors.69 Histamine does 
not seem to affect degranulation in either cell. However, in basophils, histamine exerts a negative 
control on its own synthesis and that of associated cytokines (IL-4, IL-6 and IL-13). This effect 
is not mediated through classical receptors, but results from increased intracytosolic histamine 
levels under the control of the organic cation transporter, OCT3. When intracellular histamine 
attains a critical level, it inhibits the transcription of HDC and cytokine genes70 by a mechanism 
not clearly identified as yet, but most likely related to molecules of the CYP450 family71,72 (Fig. 1).
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Histamine and Eosinophils/Neutrophils
As stated above for mast cells, histamine is also a potent chemoattractant for eosinophils 

via H4R activation. Likewise, changes in eosinophil shape and increases in expression of ad-
hesion molecules like CD11b/CD18 (Mac1) and CD54 (ICAM-1) appear to be mediated 
through this receptor.73-75 It has also been claimed that the chemokine (LEC)/CCL16, which 
is expressed in the liver, targets the H4R, causing human or mouse eosinophil migration.76 This 
finding suggests an intriguing functional similarity between chemokines and H4R that needs to 
be confirmed. Using a protein array to evaluate cytokine production by human eosinophils, it 
has been shown that levoceterizine (H1R antagonist) inhibits IL-1, IL-7 and SCF production 
promoted by stimulation with LPS.77 At relatively high doses (10-100 M) histamine can also 
counteract the effect of IL-5 on the survival of human eosinophils by inducing their apoptosis. 
This effect occurs through an unknown mechanism that does not involve classical receptors,78 but 
might be analogous to the cAMP-dependent-apoptotic pathway induced by some H4R agonists, 
which inhibit antigen-specific human T-cell responses through an H4R-independent pathway.79

Histamine is also involved in chemotaxis of neutrophils, as shown during their mast 
cell-dependent recruitment induced by zymosan in vivo80 and trinitrobenzene sulphonic 
acid-provoked acute colitis.81 This effect is mediated through the H4R, which is likewise respon-
sible for the decrease in bone marrow neutrophils following injection of histamine.80 In addition 
to being a target, neutrophils are also a source of histamine, as evidenced in a casein-induced 
peritonitis model where HDC has been localized on the intracytosolic face of the membrane 
granules82 as well as during mycoplasma pneumonia.83 In this latter model, mycoplasma has been 
shown to stimulate naive neutrophils directly to synthesize histamine by strongly upregulating 
HDC mRNA expression. Further investigations will be required to elucidate the nature of 
signals exchanged between mycoplasma and neutrophils that lead to such an increase in HDC 
mRNA expression.

Histamine and Autoimmunity
As discussed above, histamine controls accessibility to sites of inflammation by modulating 

vasopermeability and adhesion molecule expression. In addition, it exerts a chemotactic effect 
on various cell types, on its own or in synergy with classical chemoattractants. It also targets 
DCs and Th1/Th2 cells directly, mainly by modulating their cytokine profile, thus establishing 

Figure 1. Basophils: a typical cell at the crossroad between cytokines and histamine. IL-3 and 
some other cytokines increase histamine synthesis as well as pro-Th2 cytokine production 
by basophils. When extracellular levels of histamine are high, histamine is taken up by OCT3 
and inhibits its own synthesis and those of associated cytokines.
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the histamine/cytokine network illustrated in Figure 2. These multiple biological activities are 
consistent with a major regulatory function of histamine during the immune response and in the 
emergence of pathologies resulting from immune disorders such as autoimmunity. In favor of a 
potential immunointervention, increased production of histamine occurs during diseases such 
as multiple sclerosis,84 psoriasis,85 Crohn’s disease and ulcerative colitis86,87 in which histamine 
metabolite levels are correlated with disease severity. In the same line of evidence, the increase 
of mast cell numbers associated with autoimmune diseases argues in favor of the contribution 
of histamine during onset or effector phase of the pathology, even though it is quite evident 
that mast cells participate in various other ways in the autoimmune reaction, as summarized 
in a recent review.88 For instance, mast cells are found in the brain of patients with multiple 
sclerosis associated with demyelinated plaques,89-91 in the synovial fluid of rheumatoid arthritis 
patients,93-95 in the salivary gland of individuals suffering from Sjogren’s syndrome,96 in the 
vicinity of peripheral nerves during experimental neuritis and so on. Basophils, as the second 
most potent source of histamine, could also participate in these processes, even though there is 
no reliable evidence for their role in autoimmunity as yet, possibly because these rare cells are 
difficult to identify. The availability of new specific surface markers and murine models in which 
basophils have been implicated during the polarization of the immune response,97 will certainly 
lead to the reappraisal of their role in the near future. In addition, histamine receptor-bearing 
cells have been recovered from sites of autoimmune aggression, as exemplified by the presence 
of infiltrating H1R and H2R-positive cells in the brain in experimental autoimmune encepha-
lomyelitis (EAE) models and in synovial fluids of rheumatoid arthritis patients, which contain 
fibroblasts and macrophages that express H4R.

Histamine and Experimental Autoimmune Encephalomyelitis (EAE)
The large majority of studies looking for a possible implication of histamine during autoim-

mune diseases has been performed in the murine EAE model, which is most closely related to 
human multiple sclerosis (MS). Mice are immunized with myelin peptide in the presence of 
complete Freund adjuvant to generate the autoimmune disease in which Th198 and/or Th17 
cells are most likely involved. Indeed, IFN - or IFN receptor-deficient mice express a more 
severe EAE,99,100 while IL-23-deficient mice are relatively protected.101 The etiology of the dis-
ease, characterized by myelin destruction in the CNS, is not entirely clear. In MS or EAE, one 
of the earliest events of disease onset is an increase in blood barrier permeability that allows 

Figure 2. Histamine-cytokine connection in immune cells.
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inflammatory and immune cells to infiltrate the murine CNS, a step in which the vasoactive 
properties of histamine could play a major role. In support of this assumption, mice with dis-
rupted H3R expression develop a more severe disease and neuroinflammation, due to deficient 
neurogenic control of cerebrovascular tone as well as increased chemokine production.102 
Moreover, histamine can enhance disease progression through the H1R, as shown by reduced 
pathological alterations after receptor blockade98 as well as a significant delay in EAE onset in 
H1R-deficient mice, associated with a decrease in the severity of clinical symptoms.103 By con-
trast, it has been reported that H2R activation by the agonist dimaprit has a beneficial effect, 
alleviating the typical hallmarks of disease.104 These data, together with the fact that during 
EAE inflammatory and immune cells bearing H1R or H2R infiltrate the CNS, argue strongly 
in favor of the contribution of histamine to this pathology. This notion is strengthened by the 
exacerbation of MOG 35-55-induced chronic EAE in histamine-free mice. Indeed, CNS in-
flammatory infiltrates that develop in brain parenchyma of these mutants are more diffuse and 
contain more eosinophils and polymorphonuclear leukocytes than their wild-type counterpart. 
Furthermore, T cells from HDC-deficient mice produce more IFN , TNF  and MCP-1 in 
response to autoantigens, suggesting that the overall effect of histamine might be protective, 
limiting the CNS immune damage.105

Taken together these data are somewhat contradictory. On the one hand, the reduced pathoge-
nicity observed in H1R KO mice might be explained by decreased inflammatory cell infiltration in 
the CNS because the vasopermeability at the BBB (Blood-Brain Barrier) is no longer increased via 
this receptor subtype. In accordance with this finding the disease is exacerbated in H3R KO mice 
whose histamine synthesis is no longer regulated by the H3R, leading to increased vasopermeability, 
which facilitates the infiltration of immunocompetent cells in the CNS. These data are reminiscent 
of similar chain of events in cerebral malaria.106 On the other hand, the question arises why the lack 
of histamine in HDC KO mice aggravates the disease. To account for this result the control of 
the vascular tone by histamine might be considered solely as a means of enhancing the pathology 
by favoring the immune cell infiltration in the CNS, while more pathogenic TH1 cells are gener-
ated and migrate together with other inflammatory cells to the CNS in a histamine-independent 
fashion. This hypothesis is supported by the observation that IFN-  production by T cells from 
HDC KO mice is increased. Moreover, the activity of infiltrating cells could be increased in the 
absence of histamine, which is known for downregulating leukocyte functions such as production 
of oxygen radicals, leukotrienes and cytokines.

In agreement with the regulatory functions of histamine in autoimmune diseases, the Bordetella 
pertussis toxin-induced histamine sensitization (Bphs) gene that controls the susceptibility to EAE 
and experimental allergic orchitis, has been identified as the H1R.103 Signaling through this receptor 
is important during early activation of CD4  T cells since it is required for their TCR-mediated 
p38 MAPK activation and optimal IFN  production.107 Indeed, structural polymorphism (L263P, 
M313V and S331P) in the third intracellular loop of the murine H1R regulates T-cell cytokine 
production and thereby controls disease susceptibility. The PVP haplotype is associated with 
increased susceptibility (H1Rs), while the LMS counterpart develops a less severe disease (H1Rr). 
Mechanistically, polymorphism alters H1R surface expression; the H1Rr allele being retained within 
the endoplasmic reticulum of T cells, thus modifying their immune functions and autoimmune 
disease susceptibility.108

Histamine and Autoimmune Chronic Urticaria (CU)
Chronic urticaria is a common disease characterized by recurrent, transitory and itchy wheals 

for more than six weeks that may severely worsen the quality of life. No precise pathogenesis has 
been established so far for all cases of CU, although a serologic component has been identified in 
many cases of autoimmune origin.109 Indeed, in around 50% of CU patients circulating antibodies 
directed against the high affinity receptor for IgE (Fc RI) and more rarely against IgE have been 
detected.110 These autoantibodies are responsible for in vitro histamine release from basophils or 
mast cells and explain the in vivo wheal-and-flare response observed following intradermal injec-
tion of autologous serum (autologous serum skin test, ASST). In addition, the binding of these 
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autoantibodies to receptors triggers the activation of the complement cascade and production of 
anaphylatoxins such as C5a that synergizes in turn with Fc RI autoantibodies to enhance histamine 
release from mast cells.111 The autoimmune origin of CU is also supported by its association with 
thyroid autoimmune disease in some patients.112 In a limited number of cases, skin biopsies with 
infiltrating CD4  T cells contained some CD4 C25  Treg cells characterized by an uncommon 
decrease in their ability to inhibit CD4 CD25  proliferation in response to mitogen.113

Circulating autoantibodies directed against high-affinity IgE receptors were also found in 
some patients suffering from asthma, suggesting that autoimmunity may contribute to intrinsic 
asthma pathogenesis.114

Histamine and Rheumatoid Arthritis (RA)
Rheumatoid arthritis is defined as an autoimmune disease with chronic inflammation of 

the synovium that leads to the destruction of bone and articular cartilage. Histamine is found 
both in diseased synovium and joint fluid115-118 and originates either from an increased number 
of activated and degranulated mast cells at the inflammatory sites or from neosynthesis by 
chondrocytes of osteoarthritic cartilage.119,120 Based on these data and the fact that histamine 
receptor-bearing cells are present in the synovium,121,122 it has been suggested that histamine could 
increase inflammation during RA.120,123 However, histamine injected in mouse knee joints does 
not induce any signs of synovitis on its own. In addition, even in combination with HMGB1 or 
peptidoglycans, histamine injection does not modify the inflammatory effect of these molecules. 
The fact that mast cell membrane stabilization does not alter in vivo inflammatory responses 
supports the idea that histamine is not responsible for this process. Lastly, a recent study shows 
that histamine levels both in synovial fluids and in sera of patients suffering from RA are sig-
nificantly lower than in healthy individuals and anti-TNF  treatment of RA patients restores 
normal histamine levels.124 Taken together, these data does not fit with previous data and argue 
in favor an anti-inflammatory rather than a pro-inflammatory role of histamine during RA.

Histamine and Experimental Autoimmune Myocarditis
Experimental autoimmune myocarditis represents another model in which a possible implica-

tion of histamine has been evaluated. The development of this pathology is associated with H1R 
expression in the myocardium, which does not occur in healthy individuals.125-127 It might be 
hypothesized that histamine provided by infiltrating cardiac mast cells impairs cardiomyocyte 
functions via H1R activation, as suggested by the improvement of viral myocarditis following 
treatment with H1R antagonists.128

Conclusion
The regulatory functions of histamine during the immune response are widely documented. 

However, the complexity of interactions between immune cells through a variety of receptors 
and other binding sites has engendered some conflicting data. They are probably explained by 
the relative selectivity of histamine receptor agonists and antagonists used in these studies, de-
pending on their concentrations and the identity of target cells. Moreover, the contribution of 
other sites of interaction, such as membrane transporters like OCT3 or intracellular receptors 
has certainly been underestimated in the overall effect of histamine. The most recent discovery 
of the H4R and its predominant expression in hematopoietic and immunocompetent cells has 
led to a reappraisal of the role of histamine during the immune response and provided a new 
pharmacological target with potential therapeutic applications. Although interesting data have 
already been obtained in some models of autoimmune diseases, the appreciation of the influence 
of histamine on the equilibrium between immunity and tolerance and its complex network 
of interactions is far from complete. Differences between species, routes of administration of 
histamine response modifiers and the like, are probably responsible for the confusing picture 
obtained so far. This needs to be put into better focus in order to evaluate the impact of future 
therapeutic strategies. Furthermore the involvement of histamine during self-recognition has 
yet to be addressed, although recent data implicate histamine during T-cell tolerance to high 
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dose bee venom exposure in beekeepers that is caused by an in vivo switch from venom-specific 
Th2 to IL-10-secreting Treg cells via H2R activation.129

Finally, the peculiar interaction between histamine and cytokines raises hope for new 
pharmaceutical developments of histamine-related molecules acting on the inflammatory axis 
of autoimmune diseases. For example, the demonstration that H4R antagonists affect TNF  
production in a model of colitis could lead to new treatments of autoimmune diseases that are 
so far based mainly on anti-TNF  therapies.
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Chapter 10

Histamine in Neurotransmission 
and Brain Diseases
Saara Nuutinen and Pertti Panula*

Abstract

Apart from its central role in the mediation of allergic reactions, gastric acid secretion and 
inflammation in the periphery, histamine serves an important function as a neurotrans-
mitter in the central nervous system. The histaminergic neurons originate from the tu-

beromamillary nucleus of the posterior hypothalamus and send projections to most parts of the 
brain. The central histamine system is involved in many brain functions such as arousal, control of 
pituitary hormone secretion, suppression of eating and cognitive functions. The effects of neuronal 
histamine are mediated via G-protein-coupled H1-H4 receptors. The prominent role of histamine 
as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narco-
lepsy, via modulation of H3 receptor function. Post mortem studies have revealed alterations in 
histaminergic system in neurological and psychiatric diseases. Brain histamine levels are decreased 
in Alzheimer’s disease patients whereas abnormally high histamine concentrations are found in 
the brains of Parkinson’s disease and schizophrenic patients. Low histamine levels are associated 
with convulsions and seizures. The release of histamine is altered in response to different types of 
brain injury: e.g. increased release of histamine in an ischemic brain trauma might have a role in 
the recovery from neuronal damage. Neuronal histamine is also involved in the pain perception. 
Drugs that increase brain and spinal histamine concentrations have antinociceptive properties. 
Histaminergic drugs, most importantly histamine H3 receptors ligands, have shown efficacy in 
many animal models of the above-mentioned disorders. Ongoing clinical trials will reveal the 
efficacy and safety of these drugs in the treatment of human patients.

Histaminergic Neurons
The first findings of histamine in the brain date back to 1919 when John J. Abel isolated 

histamine from the pituitary.1 However, histamine’s role as a neurotransmitter became evident 
only several decades later when lesions of the lateral hypothalamic area were found to decrease 
the activity of histamine synthetizing enzyme, l-histidine decarboxylase (HDC).2 Another 
decade went by before methods became available to directly demonstrate the localization of the 
histaminergic neurons in the brain.3,4 Cell bodies of histaminergic neurons are localized in the 
tuberomamillary nucleus (TMN) of the posterior hypothalamus from where they send projections 
to essentially all areas of the central nervous system similar to other amines (Fig. 1).5 The number 
of histamine-containing neurons is about 4000 in the rat6 whereas in human brain histaminergic 
neurons are more numerous ( 64,000).7
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In addition to neurons, mast cells can produce histamine in the brain.8 Indications of his-
tamine synthesis in microglial cells also exists, but in vivo evidence of histamine produced by 
microglia is still missing.9 It is noteworthy that brain ependymal cells also express HDC and can 
potentially synthesize histamine.10 The role of this histamine is unknown, but it may be involved 
in regulation of stem cells located underneath the ependymal layer. Neural stem cells in vitro 
respond to both H1R and H2R receptor ligands.11 Nonneuronal histamine has an important role 
in immune responses in the periphery and in the CNS and is covered elsewhere in this book. 
However, it should be noted that the source of brain histamine in some cases is difficult to detect. 
It is thus possible that both neuronal and nonneuronal histamine might regulate certain brain 
functions such as neuroinflammation.

Histamine Synthesis, Storage, Release and Catabolism
Histamine penetrates the brain poorly from blood, which protects the brain from many 

effects of blood-borne histamine. Histamine is synthetized from amino acid histidine by the 
specific histidine decarboxylase (HDC) enzyme in the brain.2 The activity of HDC is highest 
in the hypothalamus where the histaminergic cell bodies are located, but HDC is also active in 
histaminergic nerve terminals.3 The rate-limiting factor for histamine synthesis is the bioavail-
ability of its precursor, histidine. Histamine is stored in vesicles in cell somata and especially in 
axon varicosities distinct from those containing GABA in the same cells.12-14 Vesicular mono-
amine transporter 2 (VMAT-2) is responsible for the transport of histamine to the intracellular 
vesicles.5 Upon arrival of action potentials histamine is released in a Ca2 -dependent manner 
from the storage vesicles. In contrast to other amines, histaminergic synapses are rarely found 
in vertebrate nervous tissue and most histaminergic endings (varicosities) do not make close 
contact with postsynaptic sites.

Inactivation of histamine in the brain begins with a methylation reaction by histamine-N-meth-
yltransferase.15 Tele-methylhistamine undergoes oxidative deamination by monoamine oxidase B 

Figure 1. Histaminergic neurons and main projections in the human brain. Reprinted from: 
Haas H, Panula P. Nat Rev Neurosci 2003; 4:121-130.5
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(MAO-B) into t-methyl-imidazolacetic acid.16 Diamine oxidase (DAO) is the main histamine 
metabolizing enzyme in the peripheral tissues, but its activity in the brain is considerably low in 
basal conditions. However, it can be activated under conditions where methylation is inhibited.17

Histamine Receptors in the Brain
The actions of histamine in the brain are mediated through four G protein-coupled receptors, 

H1R-H4R (Fig. 2). H1R and H2R are postsynaptic and mediate mostly excitatory actions on neurons 
or potentiate excitatory inputs.5 H3R are located on histaminergic and other neurons on their somata, 
dendrites and axons.18 On presynaptic sites H3 autoreceptors inhibit the synthesis and release of 
histamine and H3 heteroreceptors inhibit the release of other neurotransmitters.19,20 The importance 
of postsynaptic H3R on somata of neurons other than histaminergic neurons is not fully understood, 
but a recent study demonstrated that in striatum they are able to couple to dopamine D2 receptors 
and this interaction decreases the affinity of D2 receptors for its agonists.21 An interesting property of 
H3R is the high constitutive activity, which means spontaneous activity in the absence of histamine.22 
The constitutive activity has a potential regulatory role in the brain and several inverse agonists that 
are able to block this activity are currently in clinical trials to prove their efficacy in disorders such as 
Alzheimer’s disease, schizophrenia, epilepsy, narcolepsy and obesity.23,24 Another particular feature of 

Figure 2. Distribution of histamine receptors in rat brain. Coronal sections at the level of the 
medial hypothalamus showing mRNA in situ hybridization and specific radioligand binding 
of H1R (A, B), H2R (C, D) and H3R (E, F) receptors. Modified from: Haas H, Panula P. Nat Rev 
Neurosci 2003; 4:121-130.5
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H3R is the existence of multiple isoforms25,26 derived from a single gene27 by alternative splicing. The 
distribution of H1R-H3R is widespread in the brain as characterized by mRNA in situ hybridization 
and specific radioligand binding studies (Fig. 2). H4R were first thought to be expressed only in the 
periphery, but recent studies suggest that H4R is also expressed both in human and rat brain with 
highest levels of H4R mRNA detected in the spinal cord.28

Histamine neurons are pacemakers that display a regular spontaneous firing with low fre-
quency (1-4 Hz). When waking up, the firing of histaminergic neurons is increased.5 During slow 
wave sleep the firing is low and no firing can be detected during rapid-eye-movement (REM) 
sleep. The inhibition of histaminergic neurons during sleep is mediated via GABAergic control 
from the ventrolateral preoptic area (VLPO).29

Physiological Role of Neuronal Histamine
Brain histamine is implicated in brain homeostasis and control of several neuroendocrine 

functions. Histamine has an important role in the control of behavioral state, biological rhythms, 
body weight, energy metabolism, thermoregulation, fluid balance, stress and reproduction.5 In 
addition, histamine is implicated in higher brain functions such as sensory and motor functions, 
mood state, reward, learning and memory.

Arousal
Histamine has a prominent role in the control of arousal. The first cues of histamine as a wak-

ing substance came from the unwanted sedative side-effects of the first generation antihistamines 
that were able to cross the blood brain barrier. EEG recordings have shown that tuberomammil-
lary neurons fire during wakefulness, but not during sleep.30,31 In agreement, manipulation of 
the histaminergic system by H3R antagonists to activate histaminergic neurons,32 inhibition of 
histamine synthesis by alpha-fluoromethylhistidine33 or histidine decarboxylase gene deletion 
(HDC knockout mice) leads to disturbances in sleep and waking state.34

Control of Pituitary Hormone Secretion
The role of histamine in the regulation of various endocrine functions is due to the effects of 

histamine on secretion of pituitary hormones.35 This function is also in agreement with abun-
dant expression of H1R-H3R in the hypothalamus (Fig. 2). Histamine regulates fluid balance 
via activation of H1R localized on the neurons of supraoptic nucleus, which causes the release 
of vasopressin36,37 and in turn induces antidiuresis.38,39 Histaminergic neurons are also activated 
during parturition and lactation regulating the release of oxytocin and prolactin.35,40,41 In addi-
tion, certain subgroups of histaminergic neurons are activated in response to stressful stimuli 
and control the release of adrenocorticotropic hormone.42 Histamine also participates in the 
regulation of the release of growth hormone and thyrotropin-releasing hormone.35

Appetite and Body Weight
A large body of evidence links neuronal histamine to the regulation of appetite and body weight. 

First indications came from the appetite stimulating and weight increasing side-effects of first 
generation antipsychotics and antidepressants that had strong H1R antagonist properties.43 Later, 
several studies have demonstrated that histamine acts as an anorexigenic agent via stimulation of 
H1R.44 Histamine mediates the inhibitory effect of leptin on appetite via H1R45 confirmed by the 
complete absence of leptin-induced feeding suppression in H1R knockout mice.46,47 The effects of 
histamine on appetite are linked to various other neuroendocrine peptides such as orexins, neuro-
peptide Y, peptide YY and bombesin.48 In addition to control of appetite, neuronal histamine affects 
metabolism by increasing lipolysis.49,50 H3R are promising targets to treat obesity since blockade 
of H3R seems to be beneficial in decreasing energy intake, body weight and plasma triglycerides.23 
However, based on inconsistent results in H3R antagonist studies, further investigations are needed 
to prove the potential of these drugs in the treatment of obesity and weight gain.
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Histamine in Brain Diseases
Even though no pathological states have been selectively connected to deficits in the brain 

histamine system, alterations in histaminergic neurotransmission have been found in many 
neurological and psychiatric diseases such as sleep disorders, disorders of mood and cognition 
(schizophrenia, depression, Alzheimer’s disease), movement disorders (Parkinson’s disease), 
epilepsy, eating disorders, pain, neuroinflammation and addiction.48 In the following parts of 
this chapter the role of histamine in some selected important brain diseases will be reviewed.

Sleep-Wake Disorders
Narcolepsy is a rare sleep disorder which is characterized by excessive daytime sleepiness that 

can be accompanied by manifestation of sudden loss of muscle tone triggered by emotional factors, 
referred to as cataplexy.51 Pathophysiological studies have shown that narcolepsy is caused by the 
early loss of orexinergic neurons in the hypothalamus. Histaminergic neurons remain active during 
cataplexy whereas norepinephrine neurons stop firing and serotonin neurons lose much of their 
activity.52 H3R antagonists reduce sleepiness and cataplexy in animal models, probably due to the 
blockade of autoreceptors on histaminergic neurons resulting in increased release of histamine. 
Several compounds are being investigated in Phase II clinical trials for the treatment of narcolepsy.23

Due to the central role of histamine in the control of arousal and wake state, histamine recep-
tors are potential targets for treatment of other types of sleep and wakefulness disorders as well. 
Doxepin is a tricyclic antidepressant that displays antagonistic effects on H1R/H2R in addition to 
the inhibitory action on norepinephrine and serotonin reuptake. The most common side-effect 
of doxepin is sedation and it has been shown to improve sleep quality in elderly patients suffering 
from insomnia.53 Hypersomnia, on the other hand, could be treated by enhancing histaminergic 
activity. H3R control histaminergic activity and histamine release and thus are promising targets 
to treat hypersomnia.

Alzheimer’s Disease
Neuropathological studies have demonstrated deficits in the histaminergic system of 

Alzheimer’s disease (AD) patients. Histamine and histidine decarboxylase levels are decreased in 
some key areas for cognition such as frontal cortex and hippocampus (Table 1).54,55 Furthermore, 
numerous neurofibrillary tangles are found in the tuberomammillary nucleus of the AD brain 
and the number of large neurons in TMN is decreased, which may at least partly cause the his-
taminergic dysfunction in AD brain.56,57 The number of H1R ligand binding sites is decreased 
in the AD brain,58 but interestingly H3R levels seem to remain normal.59 It is possible that 
decreased histaminergic activity may participate in the cognitive impairments of AD based on 
the ability of histamine to activate septohippocampal GABAergic neurons through both direct 
and indirect (cholinergic) mechanisms, which contribute to maintenance of hippocampal theta 
rhythm and thus cognition and memory.60 A potentially important target for cognitive effects 
of H3R ligands is also the thalamocortical system since the H3R is expressed at particularly high 
levels in both the rat61 and human62 thalamus and cerebral cortex. Interestingly in the mouse, 
the H3R expression is significantly lower, which may render studies with mice less relevant for 
modeling of human disease processes than those with rats.

Novel H3R antagonists increase acetylcholine levels in cortical areas and hippocampus and 
improve performance in different cognition paradigms in experimental animals.59,63-65 Ongoing 
clinical trials will show whether these compounds are effective in patients as well. In addition to 
memory-improving effects, H3R antagonists show efficacy in attention and impulsivity, which 
makes them attractive candidates for the treatment of attention deficit hyperactivity disorder 
(ADHD) and cognitive deficits in schizophrenia (see below).
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Schizophrenia
Studies in humans and models in rodents support a role for histamine in the pathophysi-

ology of schizophrenia. The levels of histamine’s major metabolite, N-tele-methylhistamine, 
are elevated in the cerebrospinal fluid of schizophrenics66 whereas the H1R binding sites are 
decreased.67,68 In agreement, repeated administration of methamphetamine which results in be-
havioral sensitization to dopamine agonists, a cardinal feature of schizophrenia, is accompanied 
by enhanced histamine release in rat brain.69 Similar increases in histamine release are found in 
mice treated with phencyclidine.70 Histamine H3R radioligand binding is significantly increased 
postmortem in the prefrontal cortex of schizophrenics as compared to normal control, bipolar 
or depressive subjects.71 Although this may be a consequence of drug treatment, lack of such 
differences in the temporal cortex of the same subjects suggests that increased H3R radioligand 
binding may be directly related to the disease process. H3R may play important roles in regulation 
of the thalamocortical system, which is essential for sensory systems and cognitive functions. 
H3R mRNA is expressed at very high level in the dorsal thalamic nuclei of the human brain72 
and in layers IV and V of different subregions of the prefrontal cortex.62

Based on the alterations in the histaminergic system in schizophrenic patients, histaminergic 
drugs might be useful in the treatment of schizophrenia. Indeed, in preclinical studies, H3R 
antagonists display antipsychotic effects by improving the deficits in sensomotoric gating in a 
prepulse inhibition of startle model and by reducing the hyperactivity induced by metham-
phetamine.73 Some new H3R antagonists also increase the release of dopamine in rat prefrontal 
cortex59,63 which is regarded as beneficial since hypodopaminergic function in prefrontal cortex 
is associated with negative symptoms and cognitive deficits of schizophrenia.74 Tiprolisant 
(BF2.649) is a novel H3R antagonist that has an antipsychotic profile in animal models and shows 
efficacy in patients suffering from antipsychotic-induced weight gain. The effect of tiprolisant 
on cognitive functions is currently being investigated in clinical trials.23 Interestingly several 
open studies have shown that the H2R antagonist famotidine reduces negative symptoms in 
schizophrenics,75,76 a finding that needs to be confirmed in controlled studies.

Table 1. Changes in histamine concentrations in different brain areas of Parkinson’s 
disease and Alzheimer’s disease patients

 Parkinson’s Disease Alzheimer’s Disease

Caudate 28* 0

Putamen 59* 60

Substantia nigra pars compacta 101* 27

Substantia nigra pars reticulata 64 23

Globus pallidus internum 134*

Globus pallidus externum 100*

Hypothalamus 47 58*

Hippocampus 16 57*

Frontal cortex 17 33

Temporal cortex 5 47*

Occipital cortex 18 25

Data are expressed as a percentage change in histamine concentration from corresponding control 
brains. Asterisks refer to statistically significant differences from controls. Modified from Panula et al54 
and Rinne et al.78
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Parkinson’s Disease
Morphological changes and an increase in histaminergic fibers in the substantia nigra 

have been detected in Parkinson’s disease (PD) patients (Fig. 3).77 Also the histamine levels 
in the brains of Parkinson patients are increased in areas that regulate motor behavior such 
as the putamen, substantia nigra and globus pallidus (Table 1).78 Polymorphism of Thr105Ile 
histamine-N-methyltransferase that leads to increased turnover of histamine is associated with 
PD risk.79 Furthermore, H3R ligand binding levels are increased80 or unchanged81 in PD patients. 
The H3R binding is also increased in an animal model of PD where dopaminergic neurons 
are destroyed by a neurotoxic agent 6-OHDA.82,83 H3R regulate the release of GABA84 and 
serotonin85 in the direct and indirect striato-nigral movement pathways and might thus serve 
as possible drug targets in the treatment of Parkinson’s disease and other movement disorders. 
H3R antagonists improved motor coordination in 6-OHDA-lesioned rats.86 In contrast, the 
H3R agonist immepip, co-administered with l-dopa, decreased dyskinesia in nonhuman primate 
model of PD, whereas it increased parkinsonian disability when given alone.87

Since 198888 it has been known that inflammation and microglia may play important roles 
in PD. Both in animal models of PD and in PD patients, many characteristic features of neu-
roinflammation have been found.89 An alteration of blood-brain barrier (BBB) function, char-
acterized by increased permeability to both FITC-labeled albumin and horseradish peroxidase 
and neovascularization, follows an experimental lesion induced by intracerebral 6-OHDA.90 
Endothelial proliferation has also been found in human PD patients91 and this seems to be as-
sociated with dysfunction of the BBB in PD patients as evidenced by uptake of (11C)verapamil.92 
The alteration of BBB function may be a secondary phenomenon, since in experimental animals 

Figure 3. Histaminergic fibers in the substantia nigra of normal and Parkinson’s disease brain. 
A,B) Histamine-immunoreactive fibers in normal brain substantia nigra pars compacta (A) 
and pars reticulata (B). C,D) Histaminergic fibers in Parkinson’s disease brain substantia nigra 
pars compacta (C) and pars reticulata (D). Reproduced with permission from: Anichtchik OV 
et al. Exp Neurol 2000; 163:20-30,77 ©2000 Elsevier.
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it is observed ipsilaterally to the 6-OHDA lesion.90 Whether the alteration of BBB function is 
primary or secondary in PD, it is potentially important as dysfunctional BBB may allow entry 
of blood-borne toxins in the affected areas. Similarly, entrance of histidine might increase lead-
ing to larger than normal amounts of substrate available for HDC present in the nerve fibers. 
Histamine synthesis is largely regulated by substrate availability and unusually high histidine 
levels following, e.g., portacaval anastomosis are associated with very high brain histamine 
levels.93 Alternatively, increased histamine in PD may be associated with neovascularization.

Epilepsy
Animal models and clinical observations have revealed that the brain histaminergic system 

has an inhibitory effect on seizures.5 H1R antihistamines show pro-convulsant effects particularly 
in children94 and suppression of histaminergic activity promotes seizures in animal models.95-98 
In addition, development of epileptic behavior by kindling of the amygdala is increased in 
HDC- and H1R-knockout mice.99 Histamine levels in cerebrospinal fluid of children with febrile 
convulsions are significantly lower than those in the febrile children without convulsions.100 
Low histamine levels have also been detected in Krushinski-Molodkina rats that are prone to 
epilepsy.101 In addition to its anti-convulsive effects, histamine has neuroprotective proper-
ties102,103 and inhibits excitotoxic effects of glutamate.103 H3R antagonists have shown beneficial 
effects in different seizure models, such as electrically induced convulsions,104,105 kindling106 and 
pentylenetetrazole-induced seizures.107

Brain Injury
Involvement of histamine in the pathophysiology of brain injuries has been demonstrated in 

hypoxia,108 trauma,109,110 ischemia and stroke111 or neoplasms.112 For example, in rat brain, trauma 
leads to increased histamine levels both in the plasma and in the traumatized hemisphere.110 In 
another study, fluid-percussion-evoked brain trauma caused changes in H3R regulation demon-
strated by receptor binding and mRNA in situ hybridization experiments.109 In ischemic brain 
damage, histamine is released gradually over a long time frame.113 Since preischemic administra-
tion of alpha-fluoromethylhistidine completely abolishes the ischemia-induced increase in the 
brain histamine, the source of histamine in cerebral ischemia is regarded to be neuronal.113,114 
An increased level of brain histamine may contribute to the amelioration of ischemic neuronal 
damage.115 Thus, the emergence of neuronal injuries after ischemic events could be decreased 
by increasing brain histamine levels by histidine loading or H3R blockade.

Pain
The descending histaminergic neurons originating from TMN project to areas related to 

pain perception116 such as the dorsal raphe nucleus, periaqueductal gray region and dorsal horn 
of the spinal cord.4,117,118 Several studies have demonstrated that histamine applied directly 
into CNS induces antinociception.119-123 In line with this, brain histamine level reduction 
by alpha-fuoromethylhistidine or H3R agonists enhances nociception.123,124 Studies using 
histaminergic ligands121 or mice lacking either H1R or H2R125 suggest that H1R and H2R are 
responsible for the mediation of histamine’s effects on pain perception.

Spinal H3R have been also linked to antinociception based on studies with H3R knockout 
mice and H3R antagonists.126,127 Interestingly, activation of H3R seems to inhibit only certain 
types of pain such as pain induced by mechanical low-intensity stimulation.128 The antinocicep-
tive properties of novel H4R antagonists129 and recently described expression of H4R in spinal 
cord28 suggest a role for neuronal H4R in pain perception as well.

Conclusion
The brain histaminergic system participates in the regulation of various brain functions, 

including sleep-wake cycle, energy and endocrine homeostasis and cognition. The effects of 
histamine in the brain are mediated via four histamine receptors (H1R-H4R), of which H1R-H3R 
are highly expressed. Changes in the neuronal histaminergic system are found in various brain 
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disorders such as Alzheimer’s disease, Parkinson’s disease and schizophrenia, making histamine 
receptors promising targets for future drug therapies.  
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Abstract

Histamine is a biogenic amine widely distributed throughout the body. Given the 
observations that histamine can be induced and made available in an unstored dif-
fusible form in tissues undergoing rapid growth (such as tumors and regenerating 

liver), it could have a role beyond inflammatory and allergic responses.

Histamine and Cell Proliferation
It is an old clinical/pathological observation that the risk of the development of cancerous pro-

cesses is increased in tissue adjacent to areas of long-standing inflammation. Intuitively researchers 
and clinicians have long ago deduced that abnormal inflammatory responses and in particular those 
that are persistent, may promote the development of certain tumors. Recently, researchers have gen-
erated a more detailed picture about the molecular background of this empirical observation. It has 
been demonstrated that inflammatory mediators, which under normal circumstances are activated 
only for a short time and then are rapidly down-regulated, can, when improperly regulated, support 
the development, invasivity or angiogenic activity of some tumors. Convincing evidence is available 
showing that if production of inflammatory mediators is prolonged or their normal functions become 
modified, they can provide support for both tumor formation and progression. In accordance with 
these observations an attempt to redefine the paradigm of solid tumors has taken place, with new the 
interpretation of tumors as “wounds that never heal”—referring to an abnormally long and drawn-out 
regeneration-like process that is frequently present around progressing tumors. Histamine may have 
a role in this process since overexpression of histidine decarboxylase (HDC) has been detected in a 
wide range of tumors, including colon, breast, stomach, lung cancer and leukemia. On the other hand 
neoangiogenesis and antitumor immune responses are also clearly influenced by histamine and can 
modify local tumor growth. In this chapter we attempt to summarize the most well known effects 
of histamine on normal and tumor cell growth.

Histamine in Normal Cell Proliferation
The hypothesis that histamine could be involved in cell differentiation and proliferation was 

proposed in the 1960s and still remains controversial. In this section the discussion will be confined 
to “normal proliferation”, that is proliferation where the normal highly sophisticated systems for 
controlling proliferation are functionally intact. Situations where proliferation control is corrupted, 
damaged or even completely abolished will be dealt with in the section on malignant proliferation.
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In the following section an attempt will be made to overview the large amount of available data 
regarding the effects of histamine on cell proliferation. It is a widely accepted fact that prolifera-
tion—being one of the most common phenomena in living organisms—represents the very funda-
ment of a great number of vital processes such as reproduction, growth, differentiation, functional 
and structural repair, regeneration, hematopoiesis and the immune response. Furthermore, as a 
consequence of its vast impact on virtually all physiological processes, proliferation stands under 
the strict control of probably the most secured regulative systems that evolution has equipped the 
species with. Obviously, proliferation cannot be interpreted within narrow borders as in most cases 
it means far more than simply cell reproduction. Proliferation often represents only an initiation 
step and is part of more complicated processes such as wound healing and immune responses.

Gastric Mucosa
Histamine is involved in the regulation of diverse physiological and pathological processes 

in the gastric mucosa. It is generally accepted that histamine plays a central role in mediating 
gastrin-stimulated gastric acid secretion of the stomach. Gastrin acts indirectly, as it induces 
HDC-expression, enhances HDC activity and forces histamine release from ECL (enterochro-
maffin-like) cells in the mucosa that in turn stimulates acid secretion in an H2R dependent manner. 
In addition, gastrin is able to induce massive proliferation of several cell types within the mucosa. 
It has been proposed that gastrin-induced mucosal proliferation could in fact be a histamine/
ECL cell-elicited response as well. The first known targets of the proliferation-supporting effects 
of gastrin were the mucus secreting cells of the mucosa. In a recent study, however, somewhat 
unexpected results were reported regarding the induction of gastrin-mediated mucosal prolif-
eration.2 In this work the impact of treatments with histamine H1 receptor (H1R), histamine 
H2 receptor (H2R) and histamine H3 receptor (H3R) antagonists (mepyramine, famotidine and 
clobenpropit, respectively) was investigated. In consensus with an earlier study1 it was reported, 
that although signals coming through H2R or H1R are probably irrelevant, inhibition of H3R 
expressed mostly on neurons blocked proliferation and emigration of stem cells of the fundic 
mucosa. In complete agreement with this, experimental H3R activation via its specific agonist, 
(R)-alpha-methylhistamine, resulted in increased number, volume and secretory activity of dif-
ferentiated mucus-secreting cells on the mucosal surface.2

In addition to mucus-secreting cells it is possible that gastrin-induced ECL cells could be targets 
of their own histamine secretion as well. The observation that ECL cells—being highly sensitive 
to gastrin induced proliferation—express considerable amounts of H1R and H2R support this 
possibility and it was suggested that H1R acts as a proliferation promoting-factor in emerging 
ECLomas. Finally, some light was shed in this area owing to the work of two independent groups 
studying H2R antagonist-mediated suppression of acid secretion.3,4 Sustained blockade of acid 
secretion increases stomach pH, which evokes gastrin production as compensation. However, the 
prolongation of this hypergastrinaemia aberrantly increases tissue histamine content and overall 
mucosal thickness due to gastric cell and ECL-cell hyperplasia. The two groups independently 
concluded that although H1R-coupled signals are unable to influence gastrin levels, gastric cell 
proliferation and, under normal physiological circumstances, ECL cell proliferation, this situation 
is changed during sustained suppression of acid secretion. In such cases, H1R mediated signals 
support the proliferation of ECL cells.3,4

The third possible question is the putative connection between histamine and regenerative 
proliferation during the removal of mucosal damage associated with massive stress or ulcers. Ulcer 
healing can be accelerated by careful H2R antagonist treatment owing to its moderating impact 
on acid secretion. Interestingly, in an in vitro experimental setting where the deleterious effect of 
gastric acid secretion was excluded, H2R antagonist treatment remained effective by enhancing 
regeneration-like processes within a stimulated ulcer. It was observed that ulcer-like “wounds” 
scratched into confluent monolayers of MKN 28 gastric adenocarcinoma cells “healed” faster in 
H2R-antagonist treated cultures than in untreated control ones. Accelerated healing was a result 
of a faster proliferation of cells neighboring the damaged areas, rather than enhanced migration 
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to the “wounds”.5 Whether H2R blockade could foster ulcer healing in this way in vivo remains 
to be elucidated. The already mentioned data suggesting that H2R antagonists in healthy animals 
fail to influence mucosal proliferation may be insufficient to clearly rule out this possibility. As we 
have seen for examples with H1R and ECL cells, the proliferation-inducing efficiency of histamine 
through the same receptor can be very different under different physiological situations. While H1R 
remained irrelevant regarding proliferation of ECL-cells under normal physiological circumstances, 
they gained relevance in acid suppression. It is possible that similar differences can be observed 
with the roles played by H2R in a healthy stomach versus an ulcer-bearing one.

Hematopoietic Proliferation
After initial work in the late 1970s showing that histamine was able to induce hematopoietic 

stem cell proliferation by promoting resting bone marrow cell progression from the G0 to the S 
phase via H2R,6 a real rush broke out in searching for further effects of histamine on hematopoiesis. 
At first it was suggested that histamine-mediated signals through H2R may induce proliferation of 
certain precursor cell types within the myeloid lineage. At low concentrations (10–8 M) histamine 
was able to enhance granulocyte precursor proliferation and colony-forming unit activity (CFU-C) 
resulting in an increased number of differentiated neutrophils. The effect described, however, was 
limited to granulocytes, as the monocyte-macrophage lineage remained unaffected.7

The possible existence of such a differentiated effect of histamine on distinct hemato-
poietic precursors was again suggested by a report investigating LPS-provoked induction of 
HDC-expression in several tissues. It was found that G-CSF and GM-CSF could specifically 
evoke rapid HDC-activation in the bone marrow in contrast to other cytokines strongly coupled 
with inflammatory responses and characterized by broad HDC-activating properties like TNF- , 
TNF- , IL-1  and IL-1 . However, M-CSF does not transmit such signals, emphasizing the 
proposed differences between the sensitivity of granulocyte and macrophage precursor prolif-
eration to histamine.8 Later Dy and coworkers suggested that instead of exogenous histamine 
signals it might be advisable to consider nascent (i.e., newly synthesized) histamine from the 
hematopoietic bone marrow cell itself.9 After stimulation with IL-3, a cytokine known to 
promote hemotopoiesis, bone marrow derived colony-forming units in the spleen (CFU-S) 
strongly up-regulated histamine production and this was apparently coupled with their entry 
in the cell cycle. This remarkable temporal association was proven to be functional as well, as 
inhibition of histamine synthesis with -fluoromethylhistidine ( FMH) or blocking histamine 
signaling via H2R strongly impeded IL-3 induced proliferation.9 Further research by this group 
provided evidence for a similar requirement of nascent histamine synthesis for hematopoietic 
proliferation initiated by a combined treatment with IL-1 and GM-CSF.10 Interestingly, neither 
IL-1 nor GM-CSF could evoke proliferation alone, although both supported survival of CFU-S 
cells under some circumstances. Regarding GM-CSF, this result was far more surprising: how 
is it possible to stimulate histamine synthesis in bone marrow cells on the one hand (as noted 
above), but not to induce proliferation on the other?

Although the exact background of these phenomena was not fully clarified, a theory was pro-
posed that GM-CSF acts as a factor modulating not only histamine synthesis, but also diminishes 
the H2R/H1R ratio on the surface of the precursor cells. This reduces the proliferation-promoting 
capacity of histamine since H2R and H1R have opposite influences on the proliferation of stem 
cells. This proliferation-blocking regulatory effect of GM-CSF on histamine receptors was 
suggested to be alleviated by simultaneous IL-1 signals thereby rendering the cells sensitive to 
H2R-mediated mitogenic signals rather than to an H1R-mediated inhibition. This theory was 
supported to some extent by similar observations indicating that IL-1 combined with other 
mitogenic cytokine signals was able to enhance bone marrow proliferation, although alone it 
fails to induce hematopoiesis.10 Interpretation of this data and other available reports regarding 
histamine-induced hematopoietic proliferation has led to the notion that it was heavily question-
able whether histamine should be considered as a common general regulator of bone marrow 
proliferation. Histamine-provoked proliferation of hematopoietic stem cells is apparently a rather 
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exceptional, intermittent phenomenon limited to periods characterized by an activated immune 
system, as almost all of the cytokine signals that induce histamine synthesis in the bone marrow 
are more or less coupled with ongoing immune responses.

Fibroblasts and Fibrosis
Enhanced proliferation, migratory activity, altered production of and interactions with extracel-

lular matrix components (matrix remodeling) are characteristic features of fibroblasts participating 
in fibrosis. There is a clear and accepted connection between chronic inflammation and fibrotic 
aberration of connective tissues (e.g., Mycobacteria-infected tissues show heavy granulomatous 
fibrosis because of permanent inflammation due to unsuccessful immunological clearance of the 
bacteria), however the fact that mast cell activation could also result in similar consequences is 
not widely recognized. Since the late 1970s, experimental models have provided strong evidence 
for abnormal accumulation and enhanced degranulation of mast cells in lung fibrosis11 and, 
furthermore, for increased histamine content in the bronchoalveolar lavage of patients suffering 
from these disorders.12 As mast cell over-activation appeared in response to many structurally 
unrelated fibrosis-inducing agents in several experimental settings and the exhibited mitogenic 
effect of mast cell mediators was not limited to the lung,13 it was proposed that histamine might 
be a general inductor of fibrosis.

In their pioneer work Jordana et al14 first demonstrated in a pure in vitro setting that histamine 
was in fact able to enhance fibroblast proliferation, an effect that could be abrogated by H2R but 
not by H1R antagonist treatment.14 More recently a significant advance was made in this area as it 
was reported that histamine induced both proliferation (via both H1R and H2R) and migration 
of conjunctival fibroblasts (via H2R dependent signaling pathways).15 Histamine seemed also to be 
capable of stimulating procollagen I production in these cells, however this effect remained unaf-
fected by H1R or H2R antagonists15 suggesting involvement of another type of histamine receptor. 
Finally, similar results were obtained in a study conducted with human fibroblasts treated with 
sonicated human mast cells, as it was again shown that mast cell components such as histamine 
and tryptase support fibroblast proliferation and collagen synthesis.16

Mammary Gland and Uterus
In the murine uterus rapidly dividing epithelial cells of the endometrium are major sources of his-

tamine. In these cells the level of HDC-expression is controlled mainly by progesterone-mediated 
signals, which, interestingly, induce maximal level of HDC-expression on the day of implantation 
(day four of pregnancy). Epithelial cells from the mammary glands of mice, rats, pigs, guinea pigs, 
cows and humans express HDC at high levels leading to a local histamine concentration that is one 
of the highest among mammalian tissues.17 In the mammary glands activity of the HDC gene is 
under the control of estradiol. Estradiol signal transduction appears to influence HDC expression 
at the transcriptional level. Estradiol induces HDC expression resulting in a progressively increas-
ing rate of histamine synthesis during the estrus cycle and, in mice and rats, a significant increase 
in the histamine content of the mammary gland can be observed during the late, proestrus-estrus 
phase of the cycle.

Moreover, during the development of the mammary glands in young females there is an elevated 
histamine level along with rapid cell proliferation.17 Mammary glands are able to synthesize and 
inactivate histamine, since the activity of both histidine decarboxylase and at least one of the 
histamine-catabolizing enzymes has been demonstrated in these tissues. Furthermore, expres-
sion of both H1R and H2R has been detected in the mammary gland.18 These data suggest that 
histamine fulfills the basic criteria for involvement in the physiological regulation of mammary 
tissue. Interestingly, during the development of the mammary glands H1R and H2R change the 
coupling to their respective signal transductional pathways.19 Between 30 and 60 days of age, as a 
consequence of progressive branching, the gland of young virgin rats exhibits a profuse mitotic and 
DNA-synthesizing activity, which declines progressively with age. During this period histamine 
H1R and H2R are coupled to their second messenger systems in a rather uncommon way initially 
described in mammary adenocarcinoma cells.20 Consequentially, expression of a high affinity H2R 
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that activates phospholipase C (PLC) instead of adenylyl cyclase makes it possible for histamine 
to modulate cell growth. Later in the adult female tissue, the coupling of the high affinity H2R 
changes to adenylyl cyclase, thus playing a role in differentiation. All these data support the hy-
pothesis that histamine is a mediator of hormonal actions regulating proliferation in tissues such 
as mammary glands and the uterus.

Skin
The ability of keratinocytes to synthesize, store and release histamine has been proposed to 

be related to the physiological functions of histamine in the skin.21 Initially these functions were 
thought to be related to inflammation and itching, however, more recently it was suggested that 
they might also be coupled to keratinocyte proliferation, differentiation and function.22 Histamine 
is released in the skin from both mast cells and keratinocytes; both cell types contain considerable 
amounts of HDC. The effects of histamine in the skin are mainly mediated by the activation of 
H1R.23 The expression of H2R on keratinocytes was also reported, but its physiological importance 
is less clear. Recent observations have suggested that the activation of this receptor may have a role 
beyond the usually described response to inflammation. Accumulating evidence indicates that the 
activation of the H2R may not always increase cAMP production in keratinocytes, but under some 
circumstances can be connected to the PLC signaling pathway. Interestingly, histamine metabolism 
is reduced during keratinocyte differentiation and is associated with a significant reduction in HDC 
mRNA levels, intracellular histamine content and histamine release. This reduction is followed by 
a substantial down-regulation in the expression of H2R that influences the functional coupling to 
the PLC signaling pathway, suggesting that histamine may have a paracrine/autocrine role on the 
regulation of keratinocyte growth.24 Histamine could also stimulate the production of IL-6 and 
other cytokines by keratinocytes, thereby enhancing cell proliferation.23 The regulation of H2R 
expression has been demonstrated in other cell lines during cellular differentiation. Furthermore, 
strong evidence suggests that histamine could participate in epithelial cell differentiation in an 
autocrine manner. Consequently, the presence of HDC and the accumulation of histamine in 
the undifferentiated phenotype, point to a broader function for histamine and for the H2R as 
mediators of keratinocyte growth.

Tumor Formation—Principles
The development of malignant tumors is a long process lasting years or decades and recent 

progress has led to a more detailed picture as to the molecular mechanisms involved. Recent 
information suggests that there are two main phases in the development of clinically manifested 
tumors—that is the malignant transformation of normal cells and the subsequent tumorous pro-
gression of the transformed clones that results in a gradually independence from the mechanisms 
controlling cellular growth, tissue integrity and homeostasis. We also know that one major driving 
forces of this process is the random mutations that cells accumulate during their individual life. 
This effect modifies their genome and can transform healthy cells as well as constantly leading 
to the formation of newer mutant variants among the already cancerous cells. The other driving 
force is continuous clone selection, which sorts out the most resistant clones from the numerous 
competing tumor cell variants. These cells are then able escape from the grab of the anti-tumor 
mechanisms activated against them. In the long run this process is the microscopic analogue of 
the gradual adaptation process of different species evolving in their natural environments, i.e., 
evolutionary development. This has led to the view that the development of tumors is a type of 
microevolution. One of the capital conclusions of this concept is that in the body among the 
permanently appearing precancerous cells (cells that have just started transformation) only an 
insignificantly small proportion can reach a degree of development where they can form clinically 
relevant tumors. However, the other message of this theory is that cells found in such tumors 
have come down a long evolutionary road and are well adapted to the environment surrounding 
them and to its defensive reactions. In other words, cells of clinically manifested tumors can be 
considered as a peak in tumor microevolution.
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It is well known that there are several intrinsic reasons for initiating and stimulating tumor 
formation and malignant progression. Such intrinsic reasons are the limited chemical stability of 
DNA, faulty DNA replication in dividing cells, errors of genomic repair and imprinting systems 
and the DNA damaging effects of reactive free radicals. Furthermore, there are external transform-
ing effects as well. For instance, physical mutagens like ionizing radiation that cause chain breaks 
in DNA or ultraviolet radiation-induced dimerizing of adjacent pyrimidine bases. There are also 
chemical mutagens such as alkylating agents, other agents that interchalate into the DNA double 
chain, various nucleotide-base analogues and so on. Finally, besides the physical and chemical effects, 
certain biological factors also belong to the group of external carcinogenic factors. For instance, 
some pathogens, like the retroviruses, infiltrate randomly into the genome and may inactivate 
crucial genes or transactivate adjacent genes through insertion of aggressive retroviral promoters. 
In addition, there are certain DNA-viruses that are not built into the genome, but can produce 
proteins with transforming effects. Other biological factors are genomic parasites that are located at 
the border of endogenous and exogenous tumorogenic effects, for instance the various transposons 
that are moving continuously in the human genome as well as other, similar transposable elements.

To counter these effects numerous regulating, correcting, cellular distress and immunological 
defensive systems are mobilized to maintain the organism’s operability. In the majority of cases these 
systems are able to keep the process of malignant transformation and cancerous progression in check. 
These systems include the DNA repair systems mentioned above that protect the integrity of the 
information coded in the genome and the automatically activated “built-in” cell cycle controlling 
points and tumor suppressors in dividing cells that stop the further division of the cells, if neces-
sary. These can also start the process of programmed cell death, thereby destroying both recently 
transformed and, though less frequently, progressing cancer cells. There are also regulating systems 
at the organism level that inhibit the further spread of precancerous cells by controlling the acces-
sibility of growth factors, cytokines and other different regulating molecules. Beyond the direct 
obstructive effects on the division and survival of transforming cells, these systems can efficiently 
impede the oxygen and nutriment supply of the given cancerous cells, their invasion into the adjacent 
tissues and their emigration into the surrounding blood and lymph circulation. Last, but not least, 
the organism also directs an aggressive machinery, the immune system, against developing tumors. 
The immune system deploys its commandingly ample weapon arsenal and presents a waxworks of 
various sorts of cellular death when tracing and destroying cancer cells.

Histamine in Benign and Malignant Tumors
The first evidence reported on the relevance of histamine in tumor development came when 

increases in histamine content, urinary excretion and HDC activity was observed in tumor bear-
ing mice.25 Since 1960 many authors have demonstrated that histamine synthesis is significantly 
increased in tumoral tissues like breast cancer, colon carcinoma, melanoma, lymphomas and 
leukemia, compared to surrounding normal tissues.26,27 In experimental tumor models the role 
of histamine has been more clearly established. In N-nitroso-N-methylurea (NMU)-induced 
mammary adenocarcinomas in rats histamine was demonstrated as an autocrine growth factor.28 
In vitro studies employing cell lines have demonstrated the expression of H1R and H2R and the 
associated signaling pathways through which histamine may modulate cell proliferation. Direct 
effects of histamine on tumor cells were found to be primarily autocrine, although paracrine effects 
of histamine released by tumor cells influencing immune responses or stimulation of angiogenesis 
has to also be considered.

Proliferation of Malignant Cell Lines
Several recent literature reports have demonstrated the effect of histamine on the proliferation 

of different cell lines, but the data remain controversial. The decrease in proliferation caused by 
HDC antisense oligonucleotides indicates considerable functional relevance of histamine synthesis 
in melanoma growth.31 The diverse effects of histamine can be explained by the relative abundance 
of the different receptors and differences in their affinity for histamine. Histamine receptors are 
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expressed in multiple malignant cell types, however the effect of histamine depends on the type 
of the cell, the balance between different receptor subtypes and the downstream effectors that are 
subsequently activated. For example, histamine influences the growth of human melanoma cells 
depending on the actual receptor balance, i.e., it increases cell proliferation through H2R, but in-
hibits it through H1R.27 In addition H2R obtain functional heterogeneity by activating adenylate 
cyclase or phospholipase C by either different subclasses of H2R or by coupling to two different 
effector G proteins29,32 (Table 1). Interestingly, most cell lines express HDC and contain high 
amount of histamine in a diffusible, unstored form. The histamine released to the extracellular 
medium is in the nanomolar concentration range, thus clearly indicating that this endogenously 
synthesized histamine can modulate diverse biological responses through the activation of high 
affinity histamine receptors in an autocrine way.

In-Vivo Experimental Models
Histamine has proven to be crucial for tumor growth and development in various experimental 

models. If we consider that histamine is a mediator of keratinocyte growth and hormonal action 
in the mammary gland, it could then be assumed that it plays a role as a promoter in skin and 
mammary gland carcinogenesis. In the development of different animal tumors such as EMT6 
sarcoma in mice, Lewis Lung carcinoma in mice and HTC hepatoma in rats, a parallel increase in 
ornithine decarboxylase and HDC activities occurs during early stages. The induction of HDC is 

Table 1. Histamine synthesis and the presence of H1R, H2R, in different cell lines 
derived from human neoplasias

Cell Line/References Histamine Receptors Effects on Cell Proliferation

Parietal cell29

HEK-293
H2R Histamine stimulates cell growth

Colon carcinoma.30

C170, LIM2412
H2R Histamine stimulates cell proliferation 

in C170, but neither histamine nor H2R 
antagonist affected basal growth of LIM2412

CT-26.45 H2R Histamine does not effect proliferation

Melanoma27,31,44,45

A875, Js, DU, BH, NEW
WM-35,983, HT-168, M1

H1R and H2R Different effects depending on histamine 
concentration and cell line

Pancreatic carcinoma.33,34

PANC-1
H1R and H2R At low concentration histamine increases 

proliferation while at high doses histamine 
inhibits cell growth, producing a G1/G0 cell 
cycle arrest

Promonocytic
cell line.35,36 

U937

H1R and H2R Differentiation induced by histamine via H2R

Human epidermal 
carcinoma cells A431 and 
HeLa.37

H1R Stimulating proliferation of cells that express 
functional H1R

Astrocytoma.38

U373 MG cells
H1R H1R activation stimulates the proliferation

Prostate cancer cell line.39 

DU-145
H1R Histamine inhibits the proliferation by H1R
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followed by a rapid increase in tumor histamine content and can lead to increases in tissues distant 
from the tumor such as spleen or lymphoid nodes.25 The specific HDC inhibitor, FMH, reduces 
histamine levels in some tissues and produces a marked inhibition of tumor growth in different 
animal models.40,41 The multistage model of mouse skin carcinogenesis is a useful system to study 
the sequential changes that normal skin undergoes during its transformation into neoplastic tissue. 
Studies of histamine receptors in initiated skin of Sencar mice during the promotion-progression 
period showed a sequential change in the coupling of both H1R and H2R to signal transduction 
pathways.42 In uninvolved skin H1R were coupled to inositol phosphate production and H2R to 
cAMP production as normal. However, in tumors this was reversed. A simultaneous increase in 
mast cell numbers, with a homogeneous subepithelial distribution and marked phenotypic changes 
was observed suggesting that such cells may play a role in the process of carcinogenesis. These 
findings indicate an atypical association of histamine receptors to second messengers that could 
enable histamine to behave as a growth factor through H2R. This alteration seems to be a significant 
feature for the postulated action of histamine in tumor growth. Strengthening this hypothesis, 
PDV-C57 cells, a cultured cell line derived from DMBA-transformed mouse keratinocytes and 
different mice epidermal tumor cell lines exhibit a similar atypical signal transduction linkage of 
histamine receptors.43

In another study our group previously showed that transgenic enhancement of histamine 
production in B16-F10 melanomas strongly supports tumor growth in C57BL/6 mice.44 Gene 
expression profiles (validated by real-time PCR and immunohistochemistry) of transgenic mouse 
melanomas secreting different amounts of histamine suggested that H1R activation suppressed 
RNA-level expression of the tumor suppressor insulin-like growth factor II receptor (IGF-IIR) 
and the antiangiogenic matrix protein fibulin-5 (FBLN5). Pathway analysis suggested that since 
plasma membrane-bound IGF-IIR is required to activate matrix-bound, latent transforming growth 
factor-B1, a factor suggested to sustain FBLN5 expression, the effect of H1R activation can be 
explained by the suppression of a known antineoplastic regulatory pathway. Surprisingly, these 
data show that in melanoma H2R are rather irrelevant compared with H1R.45

A critical role has been described for histamine in the development of an experimental 
mammary adenocarcinoma induced in rats with NMU.46 In these tumors histamine exerts a 
regulatory function on cell growth by acting directly through H1R and H2R, which exhibit an 
atypical coupling to intracellular signaling systems. In these tumors histamine acts as an auto-
crine growth factor and stimulates cell proliferation. Interestingly, in the NMU-induced tumors, 
HDC loses its normal response to estrogen. Furthermore, HDC mRNA abundance and enzyme 
activity are regulated by histamine itself acting upon its specific membrane receptors. Therefore, 
the escape of HDC from the characteristic estrogen control present in the normal mammary 
gland is a common feature of all NMU-induced tumors and it may be one the first and most 
significant alterations in the development of the malignant phenotype. The oral administration 
of ranitidine at 50 mg/kg to rats bearing mammary adenocarcinomas resulted in the complete 
remission in 55% of tumors, partial remission in 35% while 10% remained without changes. 
The survival of treated animals was significantly higher than control groups. On the contrary, 
the treatment with an H1R antagonist augmented tumor growth rates in all cases and animal 
survival was significantly decreased. The daily administration of FMH, 5 mg/kg, produced 
the remission of 100% of the tumors.46

In an experimental syngenic tumor model using a colon adenocarcinoma cell line, CT-26, in 
Balb/c mice, daily administration of cimetidine significantly suppressed the increase in tumor 
volume and weight observed on day 6 after inoculation. Cimetidine also reversed the suppression 
of the expression of tissue cytokines such as lymphotoxin- , TNF- , IFN- , IL-10 and IL-15. 
The effects of cimetidine on tumor growth in this model might be mediated by the restoration of 
local cytokine expression and thereby exert antitumor effects.47 In human melanoma-grafted mice 
the combined treatment of cimetidine and DPPE reduced tumor growth and increased survival. 
These changes were accompanied by enhanced infiltration of IFN  producing mouse macrophages 
into the tumor tissue.48
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Experimental results obtained working with a model of human bronchogenic carcinomas 
propagated as subcutaneous xenografts in immunosuppressed mice, indicated that the treatment 
with the H2R antagonists cimetidine and ranitidine increased the tumor mass doubling time. The 
co-administration of the dual H2R/histamine H4 receptor (H4R) agonist 4-methyl histamine 
abolished the effects of cimetidine, thus indicating that in these tumors histamine may stimulate 
growth through the H2R.

Human Tumors
In addition to the data available from studies in tumor cell lines derived from human neoplasias 

and in xenotransplanted models in nude mice, a number of investigations have also been carried 
out in biopsies of tumoral tissues. Most reports are coincident in showing an increase in histamine 
synthesis and content in tumors and the presence of histamine receptors.

Breast and Colorectal Cancer
Tumor and adjacent normal breast content of histamine was measured in 29 patients having 

surgery for breast cancer.50 The median content of histamine in breast cancer tissue was 5.4 (range 
0.9-27.3) g/g and was significantly greater than that in adjacent breast tissue. The authors pos-
tulated that the concentration of histamine in breast cancer was sufficient to inhibit lymphocyte 
function suggesting that it could be locally immunosuppressive.50 In agreement with this result, 
Garcia-Caballero et al reported that the HDC activity of breast cancer is significantly higher than 
that of the healthy mammary gland tissue of the same patient.26 It is interesting that the activity of 
HDC was the highest in benign tumor tissue. It was also found that the histamine content in muscle 
tissue was significantly higher in cancer patients than in noncancer patients. These findings suggest 
that high histamine synthesis by malignant tumors can affect other host tissues.26

A study with tissue samples obtained by surgery from 25 patients indicated that both H1R and 
H2R are present in human mammary glands, in benign lesion and in breast carcinomas.51 In benign 
lesions H2R produced increases in cAMP levels, while H1R were coupled to PLC activation. On the 
other hand, the response observed in carcinomas was different: H1R were invariably linked to the 
PLC pathway, but H2R stimulated both signal transduction pathways. In agreement with a previ-
ous report, approximately 25% of breast carcinomas were negative for H2R. In all cases the lack of 
expression of H2R in tumors corresponded to patients with poor prognosis and progression.51

Histamine has been found to stimulate growth of colorectal cancer in vitro and in vivo. Similarly 
to the studies carried out in breast carcinomas, the histamine content was measured in 31 colorectal 
cancer specimens using a radioenzymatic assay.52 The median histamine concentration in colorectal 
cancer tissue was 8.4 g/g, ranging from 0.3 g/g to 20.6 g/g. Again the high concentration of 
histamine in colon cancer seems high enough to be locally immunosuppressive.52 Another study was 
designed to determine the activity of HDC in normal and tumor tissues in a series of ten surgical 
patients with colorectal carcinoma. A significantly increased HDC activity, almost double that of 
normal tissues, was found in specimens of human tumors, consistent with numerous reports of high 
HDC activity in tumor-bearing animals.53

In humans, several clinical trials have been carried out with H2R antagonists as an adjunct to 
surgical resection, with conflicting results. While the H2R antagonist cimetidine has been shown to 
reduce the number of tumor infiltrating lymphocytes in colorectal cancer this was not found to be 
the case in breast cancer.54 A comparison of breast cancer with colorectal cancer showed no relation-
ship between preoperative cimetidine administration and tumor cell proliferation. Furthermore, 
cimetidine did not have any influence on tissue histamine content and mast cell numbers. The 
presence of mast cells around tumor tissue raises questions concerning the source of histamine in 
breast tumor tissue. Tumor cell proliferation correlated well with other prognostic indicators such 
as grade and differentiation.54

The beneficial effect of cimetidine on survival in colorectal cancer patients has been demonstrated 
in several cases, but the mode of action has not been elucidated. In one animal study cimetidine 
was demonstrated to block the adhesion of colorectal tumor cells and metastasis of the tumor cell 
in a nude mouse model.55



118 Histamine in Inflammation

A recent study suggested that in human colorectal cancer tumors both H1R and H4R expression 
was markedly decreased (p  0.001) both at the mRNA and protein levels compared to those of 
normal colonic mucosa, without significant change in H2R.56

The up-regulation of HDC protein expression and activity in colorectal tumor specimens has been 
detected and shown to be higher in metastatic tumors than in nonmetastatic ones. These variables 
significantly correlated with tumor PGE2 production. These data showed that histamine exerts both a 
proproliferative and a proangiogenic effect via H2R/H4R activation. These effects are likely to be medi-
ated by increasing COX-2-related PGE2 production in colon cancer cells that express COX-2.57

Melanoma
Analysis of HDC expression in melanoma showed that in primary melanomas and cutaneous 

metastases HDC is present at significantly higher levels than in benign nevi and the surrounding 
nontumoral skin. Parallel expression of HDC and synthesis of histamine has also been demon-
strated in melanoma. Moreover, HDC and the released histamine both have been shown to be 
related to the malignant phenotype and it is also likely that the presence of these markers may 
have a prognostic value.31

It has been demonstrated that melanomas not only have a histamine-producing capacity, but 
also perform continuous histamine secretion into the environment as well.27 In addition, melanoma 
cells are also able to detect the presence of histamine since surface expression of H1R and H2R has 
been demonstrated. Moreover they most likely also display H3R, which is in line with the fact that 
melanocytes originate from the neuronal crest during embryonic development. However, in spite 
of the above data, the many in vitro observations and the data derived from mouse tumor models, 
there is no clear evidence that histamine-mediated autocrine signaling has an actual role in the in 
vivo progression of human melanomas and if it does, which aspects of malignant development are 
affected. Although definite in vivo evidence for this concept is not yet available, it has been shown 
that histamine-mediated signals may support the proliferation of melanoma cells in culture.31 In 
addition to this it is notable that histamine can efficiently influence the immune system in the 
local milleu of the tumor and it may also be able to do the same at the antigen-presenting level 
in draining lymph nodes. Furthermore, it seems that histamine primarily mediates Th2-type ef-
fects and, hence, can inhibit anti-tumor Th1 responses. It is also known that in dermal mast cells 
UVB-radiation, one of the most widely suspected causative agents of melanoma, evokes a robust 
histamine release that has significant immune-modulating effects frequently even leading to system-
atic immune-suppression. Observations suggesting that in the stroma of certain tumors, including 
melanoma, a robust mast cells inflow is perceptible make an interesting parallel with these thoughts 
and emphasize the possible existence of significant external histamine-release that can also assist 
melanoma growth. Notably, it has recently become evident that in addition to histamine, several 
other mediators and enzymes released from mast cells can stimulate invasivity and angiogenesis 
by increasing capillary permeability and inducing remodeling of the adjacent stroma.27,31

Lung Cancer
It was recently reported that human small cell lung carcinomas (SCLCs) express vesicular 

monoamine transporters in addition to other neuroendocrine markers indicating that SCLCs are 
histaminergic. The biosynthetic enzyme HDC was detected by immunohistochemistry in paraf-
fin sections of 12 biopsies of SCLC tumors. This finding was supported by immunoblotting and 
RT-PCR using established SCLC cell lines, as well as, frozen and paraffin-embedded SCLC tumors. 
Moreover, it was found that histamine is synthesized, stored and released by cultured SCLC cells. 
These observations may be useful for developing new diagnostic tools for this frequent and highly 
malignant tumor.58 There are also data about human lung H1R and H2R in cancer and chronic 
inflammatory processes. It has been found that the number of H1R significantly increases both in 
cancer and chronic pneumonia, although it does not change in tuberculosis lung parenchyma. In 
contrast, the binding parameters of H2R both in cancer and inflammatory processes were similar 
to those obtained for the normal tissue. The authors proposed an important role of parenchymal 
H1R in the neuromodulation of airways in human lung adenocarcinoma.59
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Lymphomas and Leukemia
The median levels of histamine were determined in lymph nodes of patients with malignant 

lymphomas, Hodgkin’s disease (HD) or non-Hodgkin’s lymphomas (NHL) and in all cases the 
values were higher than in controls. In patients with NHL, the levels of histamine showed a 
dependence on the grade of malignancy, as they were significantly higher in those classified as 
high-grade malignant.60 Immunostaining and ELISA also confirmed the presence of histamine in 
the cytoplasm of acute lymphocytic leukemia (ALL) cells. Primary leukemia cells had detectable 
levels of histamine ranging from 12.5 pg/106 cells to 1235.4 pg/106 cells. ALL cells can therefore 
produce histamine and H1R antihistamines can inhibit their clonogenic growth. However, there 
was no correlation between the clonogenic growth of ALL cells and their histamine content 
suggesting that, while histamine may be important for the clonogenic growth of ALL cells, other 
factors also affect their clonogenicity.61

Histamine Blood Levels in Cancer Patients
A number of different authors have demonstrated that histamine serum levels are significantly 

decreased in cancer patients, suggesting that decreased levels may be a good marker for the onset 
and progression of solid malignant tumors. In patients with gastrointestinal tumors, blood hista-
mine levels provided information additional to that derived from serum carcinogen embrionary 
antigen (CEA) determination. In patients with nongastrointestinal tumors, the blood histamine 
level may be of more value than CEA as a marker of disease progression.63 In a similar study, the 
concentration of histamine in blood was determined in 22 patients with solid malignant tumors, 
16 hospitalized noncancer patients and 9 healthy subjects. Patients with cancer (mainly carcino-
mas of the breast and gastrointestinal tract) were divided into two groups: patients with resected 
primary tumor without known metastases (group I) and patients with present primary tumor with 
or without metastases (group II). In comparison to healthy subjects (histamine concentration 
69.0  6.0 ng/ml), cancer patients in both groups had significantly decreased levels of histamine 
in blood. Also, the concentration of histamine in patients with present tumor (group II; 40.1  
3.48 ng/ml) was significantly lower than in patients with resected primary tumor (49.9  3.14 ng/
ml). Furthermore, hospitalized noncancer patients had slightly lower (not significant) concentra-
tions of histamine (59.7  6.13 ng/ml) compared to healthy subjects’.63 Blood histamine levels 
were reported to be significantly decreased in patients with active phase Hodgkin’s lymphoma 
and returned to normal values after treatment or during remission. A recent work investigated 
the utility of a histamine assay for detecting the presence of primary cancers. In order to assess the 
usefulness of this assay in primary tumor monitoring, two groups of individuals, 29 controls and 
29 colon cancer patients were selected and serum levels of histamine, CEA and tumor staging were 
determined. A significant reduction in histamine levels was found between controls and patients. 
No correlation was found, however, between tumor node metastasis staging and histamine levels, 
indicating that this marker is not related to the tumor mass and that it could be a potentially 
interesting nonspecific tumor marker in colon cancer monitoring.64

Angiogenesis
Clinically tumor progression, invasion and metastasis are more relevant than tumor induction. 

It is well known that the outcome of tumor invasion and metastasis is closely dependent on the 
capability to induce angiogenesis. Angiogenesis is tightly regulated by pro- and anti-angiogenic 
factors. Activated mast cells are able to induce and enhance angiogenesis via multiple interacting 
pathways. In tumor models, mast cells have been shown to play a decisive role in inducing the 
angiogenic switch, which precedes malignant transformation. In fact, it is well documented that 
heparin, combined with a range of heparin-binding factors such as bFGF (basic fibroblast growth 
factor) or TGF  (transforming growth factor) is able to promote neovascularisation and that 
mast cell proteases cause cell structural alterations by destroying extracellular matrix integrity. 
Moreover, there is strong evidence that mast cells significantly influence angiogenesis and thus 
growth and progression in human cancers.65 The role of histamine secreted by mast cells is less 
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clear. It seems that histamine can behave as a pro- or an anti-angiogenic modulator, depending on 
which histamine receptor is bound.66,67

Many years ago it has been reported that histamine increases endothelial cell proliferation via 
both H1R and H2R. Histamine is able to induce VEGF production in the granulation tissue via 
the H2R-cyclic AMP-protein kinase A pathway and augments angiogenesis in the granulation 
tissue.68 Recently it has been demonstrated that HDC-deficient (HDC-KO) mice show lower 
VEGF levels in the granulation tissue and that there is notably less angiogenesis and granulation 
tissue formation than in the wild-type mice. The topical injection of histamine or the H2R agonist 
dimaprit rescued the defective angiogenesis and granulation tissue formation in HDC-KO mice. 
This effect is not observed in mast cell deficient mice. In addition, macrophages in the granulation 
tissue were found to express HDC. These findings indicate that histamine derived from cells other 
than mast cells play a significant role in the angiogenesis of inflammatory granulation tissue.69 IP-10, 
(interferon-induced protein of 10 kDa) induces antitumor immune responses in synergy with 
IL-12 via activated Th1 cells. In addition, IP-10 inhibits tumor angiogenesis and abrogates a route 
for nutrition and metastasis. Tumor cells can produce IP-10 in response to IFN  and histamine 
inhibits this effect.70 In different melanoma and squamous carcinoma cell lines, it was observed 
that histamine suppresses IP-10 expression and secretion via H2R and the cAMP-protein kinase A 
signaling pathway.70 By this mechanism histamine released from tumor cells or peritumoral mast 
cells may increase angiogenesis and sustain the growth and survival of the tumor.70

Effect of Histamine on Immune Regulation
Histamine strongly affects the balance of cytokines from T helper type 1 (Th1) cells and T 

helper type 2 (Th2) cells by shifting cytokine production from a Th1 to a Th2 pattern. Stress 
mediators, as well as histamine and adenosine, are increased in certain circumstances and thus 
upregulate Th2 cytokines and may play a role in the induction and progression of certain allergic/
atopic reactions and tumor growth.27,71 Using a CT-26 colon adenocarcinoma-based syngenic 
mouse experimental tumor model, endogenous tumor histamine synthesis was shown to enhance 
tumor growth by suppressing local expression of LT-  (lymphotoxin), TNF-  (tumor necrosis 
factor alpha) and IFN-  (interferon gamma) in an H2R-dependent manner.73

Conclusion
Convincing evidence is available that if production of inflammatory mediators is prolonged 

or their normal functions become modified, they can provide support for both tumor formation 
and progression. Histamine seems to be one of the modulators in normal cell proliferation in 
many tissues, including skin, gastric mucosa, bone marrow and fibroblasts. Moreover, there is an 
increase in histamine synthesis and content in tumors and in most cases the expression levels of 
histamine receptors are also increased. Histamine serum levels are significantly decreased in cancer 
patients, suggesting that decreased levels may be a good marker for the onset and progression of 
solid malignant tumors, Histamine regulates angiogenesis, as well, and it seems that it can behave 
as a pro- or an anti-angiogenic modulator, depending on which histamine receptor is bound.
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Abstract

The field of histamine research has progressed far from a century ago when the first biological 
functions of histamine were identified. It is now known that histamine function is mediated 
by four histamine receptors, which belong to the G-protein-coupled receptor family. While 

antihistamines that target the first two receptors have enjoyed clinical and commercial success, 
efforts to find new antihistamines against the histamine H3 and H4 receptors are still in the early 
stages. Here we will review the therapeutic potential of targeting these new histamine receptors.

Introduction
The first identified histamine receptor was the histamine H1 receptor (H1R), which was known 

from a pharmacological standpoint for many years, but was only cloned in 1991.1 The H1R is 
mainly expressed on smooth muscle and endothelial cells where it mediates vasodilation and 
bronchoconstriction. The term “antihistamine” has been commonly used to refer to antagonists 
specific for the H1R, which are used in the treatment of allergic inflammatory reactions.2 Several 
H1R antagonists have been developed into successful drugs, including diphenhydramine, fexofena-
dine and loratadine. Diphenhydramine represents a “first-generation antihistamine” that crosses 
the blood-brain barrier and possesses sedative properties.3 While in most cases this is considered 
a side-effect, such drugs also have therapeutic utility as sleep aides. The second-generation anti-
histamines, such as loratadine, do not cross the blood-brain barrier and this largely alleviates the 
sedative side effects.3

The histamine H2 receptor (H2R) was first discovered due to actions of histamine that were 
not blocked by the existing antihistamines that targeted the H1R, leading to the recognition that a 
second histamine receptor existed. The H2R was actually the first histamine receptor to be cloned.4 
The H2R is expressed in a variety of tissues including brain, gastric cells and cardiac tissue and its 
best understood function is its role as a mediator of gastric acid secretion.5 Together with acetyl-
choline (M3) and gastrin (CCKB) receptors, the H2R is expressed on the basolateral membrane 
of parietal cells. Stimulation of these receptors leads to movement of H , K -ATPase to the apical 
membrane of the cells where it can exchange H  for K  and results in the secretion of acid. H2R 
antagonists, such as cimetidine and ranitidine, are used for the treatment of acid-related diseases 
like erosive esophagitis, although it has been shown that they are not as effective as proton pump 
inhibitors, which inhibit the final step of acid secretion.6

Given the clinical and commercial success of drugs targeting the H1R and H2R, there is much 
hope for a next generation of antihistamines that specifically target the two newer members of 
the histamine receptor family, the histamine H3 (H3R) and H4 receptors (H4R). The H3R was 
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first described in 1983 as a presynaptic autoreceptor that mediates the synthesis of histamine and 
inhibits its release from histaminergic neurons in rat brain, but the receptor was not cloned until 
years later.7,8 Cloning of the H4R was first reported in 2000 following a genomic approach based 
on searches using the H3R sequence.9,10 The H3R is mainly expressed in the nervous system and 
has been shown to participate in various neuronal activities including cognitive function and 
sleep-wake regulation.11 The H4R is mainly expressed in hematopoietic cells and has been associ-
ated with allergic inflammatory and immune responses.2

The role of H3R and H4R antagonists in various neuronal and inflammatory responses has been 
extensively investigated. The development of potent and selective ligands has greatly facilitated 
H3R and H4R research and these compounds have demonstrated efficacy in numerous preclinical 
models. The clinical development of H3R ligands has progressed further than for the H4R, with 
several inverse agonists/antagonists already undergoing clinical evaluation for different indica-
tions.12 H4R research has largely remained in the preclinical stage, but it is anticipated that H4R 
antagonists will progress into clinical studies in the near future. In the following sections, the disease 
areas where these future antihistamines are being investigated will be discussed.

Potential Indications for H3R Ligands
The H3R is predominantly expressed in the central nervous system (CNS). Histamine syn-

thesizing neurons originate in the tuberomamillary nucleus and project throughout all major 
areas of the brain. The H3R is a presynaptic autoreceptor on these neurons and is expressed in 
many brain areas including the cerebral cortex, hippocampus, amygdala, nucleus accumbens, 
globus pallidus, striatum and hypothalamus.13,14 In addition, H3R expression has been identified 
in nonhistamine-containing neurons in the central and peripheral nervous systems and regulates 
the levels of a variety of neurotransmitters including noradrenaline and acetylcholine.13

Both histamine and the neurotransmitters regulated by it participate in many important physi-
ological functions. Brain histamine levels regulate wakefulness; acetylcholine plays an important 
role in cognitive functions; and norepinephrine has come to be recognized as playing a large role 
in attention and focus. Since the H3R regulates the levels of these important neuronal agents, it 
has become an attractive target for developing treatments for a variety of neurological disorders 
(Table 1).

Early H3R antagonist compounds possess an imidazole moiety that was first considered to be 
an essential element required for receptor affinity. Examples include thioperamide, ciproxifan and 
clobenpropit. However, these compounds have not advanced in clinical development as therapeu-
tic agents due to issues such as the potential for drug-drug interactions and poor bioavailability, 
however they still remain valuable research tools.15 In addition, some of these compounds have 
questionable selectivity for the H3R. For example thioperamide was later found to be a dual H3R/
H4R antagonist and to have affinity for serotonin receptors and clobenpropit was found to be an 
H4R agonist as well as an H3R antagonist. This has led to the development of non-imidazole-based 
H3R antagonists that are more promising clinical candidates.15 A representative compound in this 
category is Bioprojet’s H3R inverse agonist/antagonist tiprolisant (BF2.649).16

Sleep/Wake Disorders
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness (EDS), either 

on its own or accompanied by manifestation of cataplexy (sudden loss of muscle tone).17 The 
pathophysiology of narcolepsy is strongly associated with an early loss of orexinergic neurons in 
the hypothalamus liberating hypocretin, an excitatory neurotransmitter promoting wakefulness.17 
Experiments have shown that the histaminergic system is one of the important executive pathways 
driven by the hypocretin system for promoting wakefulness, indicating that EDS associated with 
narcolepsy may be due to reduced histamine tone.18,19 H3R blockade results in enhanced brain 
histamine levels, thus counteracting the sleepiness associated with the disrupted hypocretin system 
observed in narcolepsy. It has been demonstrated that the H3R inverse agonist/antagonist tipro-
lisant enhanced neuronal activity in narcoleptic orexin-deficient mice and promoted wakefulness 
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Table 1. Potential therapeutic indications for histamine H3 receptor antagonists

Category Indications Rationale

Sleep/Wake 
disorders

Narcolepsy * Hypocretin is an excitatory neurotransmitter promoting 
wakefulness

* H3R blockade results in enhanced brain histamine levels, 
which enhances the activity of the hypocretin system

* A general pattern of wake promoting activity of H3R 
antagonists has been observed in several species including 
mice, rats, cats and guinea pigs

* Clinical efficacy of tiprolisant in reducing excessive daytime 
sleepiness in narcoleptic and Parkinson’s disease patients

Cognitive 
impairment

Alzheimer’s 
disease and 
Schizophrenia

* Acetylcholine is an important neurotransmitter regulating 
cognitive functions

* H3R antagonists increase acetylcholine levels in the brain and 
improve performance in a diverse range of rodent cognitive 
paradigms

Attention-deficit 
hyperactivity 
disorder 
(ADHD)

* Noradrenaline is an important neurotransmitter for attention
* H3R antagonists may increase noradrenaline levels in the 

cerebral cortex and thereby provide a therapeutic benefit 
in ADHD

* Clinical efficacy of tiprolisant in ADHD

Other 
indications

Epilepsy * The H3R may have some control over the neuronal 
hyperactivity associated with seizures in epilepsy

* H3R inhibition reduced epileptic symptoms in various animal 
models

Obesity * Central histaminergic signaling has been implicated in the 
regulation of appetite

* H3R blockade by inverse agonists or in H3R knockout mice 
was shown to reduce food intake and body weight, although 
inconsistent results have also been reported

Neuropathic 
pain

* Previous findings have suggested interactions between 
histamine, histamine receptors and nociceptors in itch and 
pain sensation

* Conflicting results have been reported regarding the role of 
the H3R in pain

Allergic rhinitis * The blockade of presynaptic H3R, through inhibiting 
histamine release, may enhance norepinephrine release 
leading to vasoconstriction and reduced congestion

* Contribution of the H3R in histamine-induced nasal blockage 
has been reported in preclinical models

* Efficacy reported in a clinical nasal allergen challenge model

Cancer * Histamine upregulation and an increase in histamine receptor 
expression have been reported in various cancers including 
colorectal cancer, pancreatic cancer and breast cancer
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and decreased abnormal direct onsets of rapid eye movement sleep.20 Clinical data with tiprolisant 
has shown reduced EDS in narcoleptic patients and in Parkinson’s disease patients.20,21 Additional 
data were recently released by Bioprojet indicating that the drug was still efficacious after 6 months 
treatment.22 Tiprolisant received orphan drug status by the European Medicines Agency (EMEA) 
in May 2007. Several other drug candidates are in clinical development for narcolepsy.12

Cognitive Impairment
There is evidence that the H3R can function as a negative modulator of neurotransmission. 

Blockade of centrally localized H3R by selective H3R antagonists has been shown to enhance the 
release of histamine, acetylcholine and norepinephrine which play important roles in cognitive 
processes. The cognitive-enhancing effects of H3R antagonists across multiple cognitive domains 
in a wide number of preclinical cognition models also bolster confidence in this therapeutic 
approach for the treatment of attention deficit hyperactivity disorder, Alzheimer’s disease and 
schizophrenia.23 There are reports of several H3R antagonists in different stages of clinical devel-
opment for these disorders.12,14

Alzheimer’s Disease (AD) and Schizophrenia
Several selective H3R antagonists have been shown to improve performance in a diverse range of 

rodent cognition paradigms, including object recognition, olfactory recognition, water maze, radial 
maze and passive avoidance, with the most pronounced effects being observed in models where an 
age-related or pharmacologically induced cognitive deficit is present.24,25 These preclinical results 
have generated considerable interest in the development of H3R antagonists as novel treatments 
for cognitive deficits in conditions such as Alzheimer’s disease and schizophrenia.

It is estimated that in 2009 there were more than 5.3 million people affected by Alzheimer’s 
disease in the United States alone.26 Alzheimer’s disease is a neurodegenerative disease character-
ized by progressive patterns of cognitive and functional impairments. In the early stages, the most 
commonly recognized symptom is memory loss. As the disease advances, symptoms include confu-
sion, irritability and aggression, mood swings, language breakdown, long-term memory loss and 
the general withdrawal of the sufferer as their senses decline. In animal models, H3R antagonists 
have been shown to increase performance in attention and memory tests and prevent the degra-
dation in performance produced by pharmacological agents such as scopolamine, MK-801, or 
age.24,27,28 In contrast, agonists of the H3R generally produce cognitive impairing effects in animal 
models.27 Importantly, dense H3R binding was detected in medial temporal cortex samples from 
severe cases of Alzheimer’s disease, suggesting for the first time that H3R receptors are preserved 
in late-stage disease.29

Schizophrenia is a neuropsychiatric and mental disorder affecting around 0.4-0.6% of world 
population.30 It is characterized by abnormalities in the perception or expression of reality and 
most commonly manifests as auditory hallucinations, paranoid or bizarre delusions, or disorga-
nized speech and thinking with significant social or occupational dysfunction. The mechanism of 
schizophrenia is still poorly understood, but the role of H3R in regulating cognitive functions via 
histaminergic signals and other neurotransmitters has encouraged interest in investigating H3R 
antagonists as a potential treatment for this disease. In several mouse models of schizophrenia 
tiprolisant showed significant inhibitory activity. It reduced locomotor hyperactivity elicited by 
methamphetamine or dizolcipine without significantly affecting spontaneous locomotor activity 
when administered alone. It also abolished the apomorphine-induced deficit in prepulse inhibi-
tion.31 Several other H3R antagonists, such as ABT-239 and GSK-189254, have also been shown 
to be effective in rodent schizophrenia models.24,32 The pro-cognitive effects of tiprolisant in 
schizophrenic patients are currently being evaluated through the MATRICS program.33

Attention-Deficit Hyperactivity Disorder (ADHD)
ADHD is the most commonly studied and diagnosed psychiatric disorder in children with 

a worldwide prevalence of about 5%.34 ADHD is characterized by the co-existence of attention 
problems and hyperactivity.35 The etiology of ADHD is unknown, however a combination of 
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factors including genetic and environmental influences appear to contribute to the onset of this 
disease. Enhancement of cerebral cortical noradrenaline levels may be an essential component in 
the therapeutic effect of ADHD treatments.36 Because the H3R controls noradrenaline release, 
H3R antagonists may increase its levels in the cerebral cortex and, therefore, be beneficial in 
ADHD. Several H3R antagonists have been shown to be effective in a preclinical model of ADHD. 
Spontaneously hypertensive rat pups are known to exhibit learning deficits compared to normo-
tensive pups. This memory deficit can be corrected by the administration of methylphenidate, a 
compound clinically used to treat ADHD and by H3R antagonists.13 Several H3R antagonists have 
been reported to have progressed into clinical trials for the treatment of ADHD.14 Positive results 
from a Phase II study in adult ADHD with tiprolisant were recently reported.22

Other Indications
Epilepsy, obesity, pain, allergic rhinitis and cancer have also been suggested as potential indica-

tions for ligands of the H3R, but the role of the H3R in the mechanisms of these disorders is less 
clear and there have been controversial reports regarding the effect of H3R antagonists in preclini-
cal studies. However, there is an ongoing interest in investigating H3R antagonists as potential 
treatments for these indications.

Epilepsy
Epilepsy is a common chronic neurological disease characterized by recurrent unprovoked 

seizures affecting about 50 million people worldwide.37 The seizures are generally associated with 
neuronal hyperactivity and reflect an imbalance between excitatory glutamatergic signaling and 
inhibitory GABAergic signaling. H3R ligands may prove useful in adjusting this balance and H3R 
inhibition has been shown to reduce epileptic symptoms in various animal models.38-40

Currently pilot clinical data exist for tiprolisant.41 In this study, the efficacy of tiprolisant was tested 
using a photosensitivity technique. Photosensitivity, defined as a generalized epileptiform reaction 
to intermittent photic stimulation outlasting the stimulus train, is found in about 5% of epileptic 
patients. The result from the 12 patients enrolled in this study showed an ability of tiprolisant to 
suppress photo paroxysmal response. Other compounds have been tested in animal epileptic models 
and in the near future additional H3R antagonists may progress into clinical testing.

Obesity
Obesity has become a growing health concern worldwide and is a major risk factor for diabetes 

mellitus. One of the characteristics of obesity is excessive caloric intake. The brain receives and 
processes energy intake information from the periphery and controls appetite through numerous 
neurotransmitters and hormones including neuropeptide Y, melanocortin, leptin and ghrelin.42 
Central histaminergic signaling has been implicated in the regulation of this process.12 However, 
there have been inconsistent findings as to the role of the H3R in feeding behavior and body weight. 
Several studies reported the ability of H3R blockade either by antagonists or in H3R -deficient mice 
to reduce food intake and body weight.43-45 Other studies, however, reported that H3R blockade 
increases appetite and body weight in mice, whereas H3R activation leads to decreases.42 Despite 
the conflicting preclinical data, investigation of H3R antagonists for their therapeutic potential 
in diet-induced obesity continues.

So far tiprolisant is the only known H3R inverse agonist/antagonist for which some clinical 
data related to feeding behavior are available. In a single-center, open-label, placebo-controlled 
Phase I study to evaluate subjective satiety, tiprolisant was found to counteract the effect of the 
antipsychotic drug olanzapine, which is known to reduce satiety and induce weight gain in treated 
patients.46 Much work is still needed to establish the clinical relationship between H3R antagonists 
and obesity/diabetes, but it remains an exciting area of H3R research.

Neuropathic Pain
Histamine has been implicated in both pain and itch responses and there are complicated inter-

actions between the two pathways, although itch and pain are largely controlled by peripheral and 
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central nervous systems respectively.47 Findings such as the fact that in patients with neuropathic 
hyperalgesia cutaneous injection of histamine results in a sensation of pain instead of itch, suggest 
an interaction between histamine, histamine receptors and nociceptors.48 The potential therapeu-
tic effect of agents targeting the central histamine receptor H3R in pain has been investigated in 
numerous preclinical models and conflicting findings have been reported.49,50

Allergic Rhinitis
Allergic rhinitis is a nasal inflammatory disorder characterized by symptoms such as nasal 

congestion, pruritus, sneezing and rhinorrhea. It is believed that the interaction of antigens with 
antigen-specific IgE bound to IgE receptors on the surface of nasal mast cells causes the release 
of pro-inflammatory mediators that generate the symptoms of the disease.51 Antihistamines that 
target the H1R have been used for many years to treat allergic rhinitis and while they are gener-
ally effective, the relief of some symptoms, such as congestion, is not complete. This has led to the 
suggestion that other histamine receptors may be involved. The H2R is believed to play a minimal 
role in allergic rhinitis, since H2R antagonists appear to provide little benefit. However, there has 
been preclinical evidence for a contribution of H3R in histamine-induced nasal blockage.52,53 The 
blockade of presynaptic H3R, through inhibiting histamine release, may enhance norepinephrine 
release leading to vasoconstriction and reduced congestion. A recent clinical study studied the 
effects of an H3R antagonist in a nasal allergen challenge model.54 Here it was shown that the 
combination of an H3R antagonist with fexofenadine was more effective than fexofenadine plus 
pseudoephedrine in reducing the allergen induced nasal symptom including congestion. Several 
H3R antagonists including some that target multiple histamine receptors, such as H1R/H3R dual 
antagonists, have been reported to be in clinical development for allergic rhinitis.14

Cancer
Histamine plays a role in normal and cancerous cell proliferation. Histamine upregulation 

and an increase in histamine receptor expression in various cancers including colorectal cancer, 
pancreatic cancer and breast cancer have been reported. The relationship between histamine re-
ceptors and those cancers has been specifically studied for the H1R, H3R and H4R.55-57 Histamine 
receptor antagonists, including H3R antagonists, may represent a new therapeutic approach to 
treat these malignancies.

Potential Indications for H4R Ligands
The histamine H4 receptor (H4R) is the newest member of the histamine receptor family. The 

H4R is expressed mainly on hematopoietic cells, such as mast cells, eosinophils, basophils, dendritic 
cells and T cells.58 Recently, the H4R has also been shown to be expressed in the CNS including 
the brain and spinal cord and is expressed in the dorsal root ganglion suggesting that like the H3R 
it may have utility in CNS disorders.59 However, most of the evidence has pointed to a role for the 
H4R in inflammatory and immune responses. Due to the short history of H4R research, the clini-
cal development of potential therapeutic agents targeting the H4R is not as advanced as for other 
histamine receptors. However, its hematopoietic expression pattern and the increasing preclinical 
evidence for H4R as an important immune and inflammatory response modulator have made it 
an attractive target to develop novel therapeutic approaches for a number of disorders. The role 
of the H4R in various conditions and potential indications for future antihistamines targeting the 
H4R will be discussed in the following section (Table 2).

Asthma
Asthma is characterized by acute and reversible bronchoconstriction driven by airway 

inflammation that is often eosinophilic in nature and affects 300 million people worldwide.60 
The disease can be exacerbated and become a chronic condition after repeated acute episodes 
of inflammation, which are often in response to specific allergens. Activation of mast cells and 
macrophages in the airway mucosa leads to activation of dendritic cells, the recruitment and 
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Table 2. Potential therapeutic indications for histamine H4 receptor antagonists

Category Indications Rationale

Airway 
inflammatory 
diseases

Asthma * Histamine is a known airway constrictor and increased histamine 
levels have been found in airway and plasma following antigen 
challenge

* The H4R is functionally expressed in many cell types associated 
with asthma, including mast cells, eosinophils, dendritic cells, 
fibroblasts and T cells (especially Th2 cells)

* H4R-deficient mice and mice treated with H4R antagonists 
exhibited decreased allergic lung inflammation and related 
cytokine levels

Pruritus Atopic 
dermatitis

* Histamine is a well-known mediator of itch and increase in 
histamine levels has been observed in the skin and plasma of patients 
with pruritic conditions such as atopic dermatitis or acute and 
chronic urticaria

* The H4R is expressed in human dermal fibroblasts and 
inflammatory dendritic epidermal cells

* H4R agonists upregulated the mRNA of IL-31, an important 
cytokine produced by activated Th2 cells that is involved in 
atopic dermatitis

* H4R antagonists were shown to inhibit pruritus and dermal 
inflammation in a model of atopic dermatitis

Autoimmune 
diseases

Rheumatoid 
arthritis, 
psoriasis, 
ulcerative 
colitis, 
multiple 
sclerosis

* Histamine or histamine metabolites levels as well as mast cell 
numbers are increased in autoimmune disease patients such as 
multiple sclerosis and rheumatoid arthritis patients

* H4R expression has been detected in synovial tissues from 
rheumatoid arthritis and osteoarthritis patients and correlated 
with disease severity and duration

* H4R antagonists have been shown effective in animal models 
such as a rat acute colitis model

Other 
indications

Allergic 
rhinitis

* There is a significant increase in the expression of the H4R in 
human nasal polyp tissue taken from patients with chronic 
rhinosinusitis

* An H4R antagonist was shown to cause dose-dependent 
inhibition of nasal symptoms in a mouse allergic rhinitis model

Pain * The H4R has been shown to express in the CNS
* H4R antagonists have been shown to possess antinociceptive 

activity in a number of animal pain models

Cancer * In vitro results have shown that treatment with H2R/H4R 
antagonists prevented cell proliferation and VEGF production 
in colon cancer cell lines

* H4R expression has been shown in other cancers such as 
pancreatic cancer and breast cancer and has been implicated in 
the disease mechanism

* Agonists of the H4R protect cells from toxicity associated with 
anti-cancer drugs
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activation of Th2 cells and the infiltration of eosinophils and neutrophils. Ongoing inflammation 
also leads to  remodeling of the airways, which further impacts lung physiology and function.2,61 
The commonly prescribed drugs for asthma target either the acute bronchoconstriction for 
symptomatic control of asthma, such as inhaled beta2-adrenoceptor agonists, or the underlying 
inflammation, such as with leukotriene modifiers and inhaled corticosteroids.

Histamine has been closely associated with the pathophysiology of asthma. Histamine is a 
known airway constrictor and increased histamine levels have been found in airways and plasma 
of asthma patients following antigen challenge.62 Many cell types associated with asthma express 
histamine receptors, most notably the H1R, H2R and H4R. The role of the H1R and H2R in 
asthma has been extensively studied. Cells that are thought to play a major role in asthma such 
as eosinophils, T cells, mast cells and smooth muscle cells have all been shown to express both 
the H1R and H2R and these receptors can mediate cytokine and chemokine secretion.2 The role 
of the H1R in asthma has been supported by studies of asthma models in H1R-deficient mice. 
However, in these models H1R antagonists were shown to be effective only when given during 
sensitization, but not during the antigen challenge phase. Despite the preclinical data, currently 
H1R antagonists are not a front-line treatment for asthma and indeed a meta-analysis of clinical 
trial data indicates that H1R antagonists are not effective in treating asthma.63 H2R antagonists 
have largely had no efficacy in asthma.64,65

The identification of the H4R has offered new insights into the effect of histamine and his-
tamine receptors in asthma. The H4R is expressed in many important immune cells involved 
in the pathophysiology of asthma. For example, mast cells are a main source of histamine in 
the lung and it has been shown that histamine enhances mast cell chemotaxis via the H4R.66 
Increased eosinophil numbers are found in asthmatic lungs and the H4R has been shown to 
mediate eosinophil chemotaxis.67 Recent studies suggest that the H4R can modulate airway 
allergic responses via their influence on T-cell activation. H4R-deficient mice and mice treated 
with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in Th2 
responses, including decreases in IL-4, IL-5, IL-13, IL-6 and IL-17 levels.68 Most recently the 
H4R has been shown to be functionally expressed on human Th2 cells and the expression level 
is upregulated by IL-4.69 In contrast to H1R antagonists, H4R antagonists were equally effec-
tive during the sensitization and the allergen challenge phase of a mouse asthma model.68 The 
H4R may account for effects of histamine that are not blocked by H1R antagonists in asthmatic 
responses and, in addition, there may be an interaction between the two receptors. A recent 
study demonstrated that in an acute mouse asthma model, the H1R antagonist mepyramine 
and the H4R antagonist JNJ 7777120 exhibited synergistic inhibitory effects on eosinophil 
accumulation in the bronchoalveolar lavage fluid.70

The H4R may have other effects that could contribute to asthma. In mice, the H4R mediates 
IL-4 and IFN  production from invariant NK T cells and such cells have been implicated in 
the pathogenesis of asthma in humans.71,72 The H4R mediates the migration of lung fibroblasts, 
which are important contributors of lung remodeling and other fibrotic lung disorders. Histamine 
augmented the migration of human fetal lung fibroblasts induced by fibronectin and this effect 
could be blocked by the H4R antagonist JNJ 7777120.73 There is also evidence that the H4R is 
important for migration and recruitment of regulatory T cells to the lung. In a mouse asthma 
model the H4R agonist 4-methylhistamine given intratracheally reduced lung inflammation 
and airway hyperreactivity.74 This was accompanied by an increase in the number of regulatory 
T cells in the lung. Furthermore, the agonist specifically induced the migration of regulatory T 
cells in vitro. These data suggest that the H4R may be important in the recruitment and possible 
activation of regulatory T cells to help downregulate inflammatory responses. However, one 
caveat with the work is that 4-methylhistamine has other activities besides those at the H4R. Of 
particular interest is the fact that 4-methylhistamine is also an H2R agonist and H2R activation 
is thought to provide anti-inflammatory effects. Nevertheless, further exploration into the role 
of the H4R in regulatory T-cell function is warranted.
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Atopic Dermatitis
Atopic dermatitis is an inflammatory, chronically relapsing, noncontagious, pruritic skin 

disease. Histamine is a well-known mediator of itch in both normal and diseased skin of patients 
with atopic dermatitis.75 An increase in histamine levels has been observed in the skin and plasma 
of patients with pruritic conditions such as atopic dermatitis or acute and chronic urticaria.2,76-79 
Atopic dermatitis is believed to be driven, at least in the early stages, by Th2 cell responses, because 
lesions show marked T-cell infiltration and these cells predominantly express “classic” Th2 cytokines 
such as IL-4, IL-5 and IL-13, especially during the acute phase; however, Th1 responses may have 
a more dominant role in chronic lesions.80-82 The H4R was shown to be expressed on CD4 T cells, 
with a higher expression on Th2 cells than Th1 cells and this expression was further enhanced in 
T cells from subjects with atopic dermatitis.69 The H4R agonist 4-methylhistamine upregulated 
the mRNA of IL-31 in Th2 cells and peripheral blood mononuclear cells. Furthermore, the up-
regulation was higher in cells from atopic dermatitis subjects.69 IL-31 is an important cytokine 
produced by activated Th2 cells and is thought to be involved in both inflammation and pruritus in 
atopic dermatitis. Increased IL-31 levels have been detected in lesions of allergic contact dermatitis 
and atopic dermatitis and its serum levels correlate with disease severity in atopic dermatitis.83-86 
In addition, the H4R is also expressed in human dermal fibroblasts and inflammatory dendritic 
epidermal cells that may play a role in atopic dermatitis. 87,88 Finally, the H4R agonist clobenpropit 
was shown to enhance the chemotaxis of dendritic cells through skin in an in vitro assay and this 
effect was blocked by JNJ 7777120.89

In a Th2-cell-mediated mouse skin inflammation model that mimics several of the features 
of atopic dermatitis, H4R antagonists were shown to significantly inhibit inflammation as evi-
denced by reduced edema and a reduction in the number of eosinophils and mast cells in the 
skin.90 In addition many inflammatory cytokines and chemokines such as IL-4, MCP-1, MIP-1 , 
KC, RANTES, IL-1 , GM-CSF and TNF  were all reduced in the skin after H4R antagonist 
treatment. All of these mediators have been found to be associated with atopic dermatitis and 
several of them have been shown to be decreased with successful treatment.91,92 One important 
cytokine is IL-4, which is key for the development of Th2 cells that in turn express more IL-4. 
Such IL-4-producing T cells are known to drive acute atopic dermatitis lesions and also be 
present in chronic lesions.93 MCP-1, MIP-1 , KC and RANTES are important chemokines 
for the migration of dendritic cells, monocytes, T cells and eosinophils that are found in atopic 
dermatitis lesions.81,94,95 In addition the pro-inflammatory cytokines and chemokines such as 
IL-1 , GM-CSF and TNF  can influence activation and function of many of these same cell 
types. Therefore, inhibition of these inflammatory mediators by an H4R antagonist would be 
expected to modify the extent and persistence of the skin inflammation in atopic dermatitis. 
In further support of this idea, the H3R/H4R antagonist thioperamide was shown to reduce 
acanthosis, which indicated the development of contact dermatitis and the number of inflam-
matory cells in eczematous lesion in a mouse model.96

Pruritus is the most common complaint from subjects suffering from atopic dermatitis. 
Traditional H1R antagonists have proven to be effective in the relief of certain pruritic condi-
tions, such as those mediated by IgE and mast cell degranulation in acute and chronic urticaria.97 
However, they are not deemed effective in treating pruritus in atopic dermatitis, even though 
they are commonly prescribed by physicians as an adjunctive treatment to topical corticosteroids 
and calcineurin inhibitors. Analysis of existing clinical data has come to the conclusion that 
antihistamines that target the H1R are largely ineffective in treating pruritus in atopic dermatitis 
patients.98 This suggests that the itch response in atopic dermatitis may be mediated by pruritogens 
other than histamine.

Recently there has been evidence that the H4R mediates pruritus in mice, but via a different 
mechanism from the H1R and therefore it may play a role in pruritic responses in atopic dermatitis. 
In mice, histamine and selective histamine H4R agonists caused scratching responses, which were 
almost completely abolished in H4R knockout mice or by pretreatment with the H4R antagonist 
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JNJ 7777120.99-101 Differential roles for the H1R and H4R were observed in mouse models where 
scratching behavior was induced by histamine or substance P. The H1R antagonist fexofenadine 
reduced scratching induced by histamine but not by substance P, whereas the H4R antagonist JNJ 
7777120 significantly reduced both histamine- and substance P-induced scratching.102 In addi-
tion, JNJ 7777120 was shown to be effective in reducing hapten-induced scratching behavior and 
scratching to IgE-mediated mast cell degranulation.100,103 The same was seen in the mouse model 
of atopic dermatitis where scratching to the hapten was reduced by H4R antagonist treatment.90

One interesting observation from the mouse atopic dermatitis study was that the H4R-mediated 
pruritus was independent of mast cells suggesting that both the source of histamine and the location 
of the H4R were not mast cells.90 The lack of mast cell involvement was also found for scratching 
induced by compound 48/80 in mice.100 Compound 48/80 is known to directly activate nerve 
fibers and it was suggested was that pruritus was induced by directly activating C-afferent fibers in 
the skin. The action of the H4R would then be downstream of the initial neuronal response. H4R 
expression has been detected in the dorsal root ganglion, spinal cord and brain and either of these 
locations may represent the site of action for H4R antagonists to block itch.59,104 Indeed, there is 
some indication that the anti-pruritic effects of H4R antagonists require CNS penetration. Recent 
evidence indicates that the H4R does have neuronal activity as it has been shown that activation of 
the receptor mediates hyperpolarization of mouse somatosensory cortex neurons and excitation of 
human enteric neurons.104,105 The data on the central activity of the H4R along with the fact that 
H4R antagonists are effective in blocking scratching induced by a number of different pruritogens 
indicate that the receptor may be downstream from several pruritus pathways and antagonists may 
be efficacious even if histamine is not the initial trigger. These findings support the claim that H4R 
antagonists have therapeutic utility for treating pruritus in atopic dermatitis and other indications 
where traditional H1R antagonists are not effective.

Allergic Rhinitis
As described previously, H1R antagonists have traditionally been used to treat allergic rhinitis 

and the exploration of the potential therapeutic potential of H3R antagonists is ongoing. Recent 
data have also pointed to a potential involvement of the H4R in this disease process. There is a 
significant increase in the levels of both the H1R and H4R in human nasal polyp tissue taken from 
patients with chronic rhinosinusitis when compared to normal nasal mucosa.106 In a mouse allergic 
rhinitis model, JNJ 7777120 caused dose-dependent inhibition of nasal symptoms.107 One H4R 
antagonist has been reported to be in preclinical development for allergic rhinitis.108

Autoimmune Diseases
Autoimmune diseases are defined by aberrant immune responses directed against self. 

Representative autoimmune diseases include rheumatoid arthritis, systemic lupus erythematosus 
and multiple sclerosis. Histamine has been regarded as a mediator of inflammatory responses 
in these disorders and changes in histamine levels have been observed in various autoimmune 
diseases. For example, there are increased histamine levels in cerebrospinal fluid of multiple 
sclerosis patients, plasma and synovial fluid of rheumatoid arthritis and plasma of psoriatic ar-
thritis patients.109-112 Higher levels of histamine metabolites were found in Crohn’s disease and 
ulcerative colitis and the levels positively correlated with disease severity.113-115 Mast cells are a 
major producer of histamine and increased mast cell numbers are found in many autoimmune 
conditions, such as in the brains of patients with multiple sclerosis and in synovial fluid from 
rheumatoid arthritis patients.116-119 Evidence for mast cell degranulation is observed in active 
regions of ulcerative colitis or Crohn’s disease.120,121 In the experimental autoimmune encepha-
lomyelitis model, a model for multiple sclerosis, mast cell-deficient mice exhibit significantly 
reduced onset and severity of the disease.122,123

Although there is circumstantial evidence for the involvement of histamine in autoimmune 
diseases, H1R and H2R antagonists have shown little efficacy for these disorders. The identi-
fication of the H4R has provided new hope for targeting histamine receptors as an effective 
treatment for these diseases, given the expression of the H4R in related immune cells and its 
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role in mediating immune and inflammatory responses. H4R expression has been detected in 
synovial tissues from rheumatoid arthritis and osteoarthritis patients and the variations in H4R 
expression in human synovial cells have been suggested to reflect the severity and duration of 
rheumatoid arthritis.14 Recently, it was shown that mice deficient in the enzyme that synthesizes 
histamine, histidine decarboxylase, were protected from K/BxN serum-induced arthritis, but 
that H1R or H2R deficiency did not have the same effect.124 This suggested that other histamine 
receptors like the H3R or H4R may be involved. In an acute colitis model in rats two selective 
H4R antagonists reduced the pathological symptoms and neutrophil infiltration supporting a 
role for the H4R in colitis.125 One interesting observation from this study was that treatment 
with the H4R antagonists led to a reduction in tissue TNF  levels and anti-TNF  therapy is 
effective for the treatment of ulcerative colitis in humans. 125,126

Pain
Recent studies support claims that the H4R plays a role in pain modulation. The H4R has been 

shown to be expressed in the CNS, including the brain, spinal cord and dorsal root ganglia.59 H4R 
antagonists have been shown to possess antinociceptive activity in several models of pain.127-130 The 
H4R antagonist, JNJ 7777120 was as efficacious as diclofenac in an acute carrageenan-induced 
inflammatory pain model and in a more chronic CFA-induced pain model.130 Similar results were 
seen in a model of osteoarthritis where the maximum efficacy was on par with celecoxib and in 
a model of post-operative pain where the efficacy approached that of morphine.130 Activity for 
a number of compounds has been reported in neuropathic pain models including JNJ 7777120 
where the efficacy was superior to that of gabapentin in two different models.129,130 In addition, 
selective H4R antagonists significantly reduced paw edema and hyperalgesia provoked by sub-
plantar injection of carrageenan in a rat acute inflammation and hyperalgesia model.128,131 One 
issue with these studies is that the doses needed for efficacy appear to be quite high relative to the 
in vitro potency. This, however, may be accounted for by the fact that CNS penetration appears 
to be required for activity and that so far all of the tested compounds have a limited half-life in 
vivo. Nevertheless, the fact that several structurally distinct H4R antagonists have shown activity 
in these pain models is supportive of an H4R specific effect.

At present, the mechanism of action in these pain models is not clear, but as for the anti-pruritic 
effects it has been suggested that the CNS penetration is required for activity in the pain models. 
The reported expression and activity of the H4R in the peripheral and central nervous systems 
may point to potential mechanisms.59,104,105 Therefore, the H4R presents a promising target for the 
treatment of pain, although more work is needed to uncover the mechanism of action.

Cancer
The H4R, along with the H3R, has been recently indicated to play a role in cancer. One study 

showed that the administration of histamine increased COX-2 expression and activity, cell pro-
liferation and VEGF production in the COX-2-positive colon cancer cell lines HT29 and Caco2 
and treatment with the H2R or H4R antagonists prevented these effects.132 The H4R has also 
been shown to be expressed in other cancers, such as pancreatic cancer and breast cancer and has 
been implicated in disease mechanisms.56,57 The H4R has been shown to mediate cell cycle arrest 
in hematopoietic progenitor cells induced by growth factors.133 Agonists of the H4R protect cells 
from toxicity associated with anti-cancer drugs and may be useful in reducing side effects during 
cancer therapy. Although the available data for oncology are still very preliminary and somewhat 
inconclusive, they support a connection between the H4R and cancer and future efforts to inves-
tigate the therapeutic potential of H4R ligands in oncology.

Conclusion
Histamine mediates a variety of important biological and physiological functions and this has 

been underscored by the success in a number of indications for drugs that target the H1R and H2R. 
Now the more recently identified H3R and H4R have become new targets for the development 
of therapeutic approaches for many neuronal, immune and inflammatory diseases. Some of this 
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work has focused on diseases where histamine is known to be involved, but where H1R and H2R 
antagonists have not been sufficiently effective. However, new areas are also being explored. Several 
H3R ligands have progressed through the preclinical stage into clinical studies for an expanding 
range of indications. The H4R antagonists programs have not appeared to have progressed beyond 
the preclinical stage as of yet, but an increasing number of studies have shown efficacy of selective 
H4R antagonists in a variety of animal disease models. The work on the H3R and H4R has added 
new chapters to the already rich history of histamine research and should set the stage in the near 
future for yet another generation of clinically and commercially successful antihistamines.
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