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FOREWORD 
 
 
The development program for the design manuals of the European 
Convention for Constructional Steelwork (ECCS) represents a major effort 
for the steel construction industry and the engineering profession in Europe.  
Conceived by the ECCS Technical Activities Board under the leadership of 
its chairman, Professor Luis Simões da Silva, the manuals are being prepared 
in close agreement with the final stages of Eurocode 3 and its national 
Annexes.  The scope of the development effort is vast, and reflects a unique 
undertaking in the world. 
 
The publication of the first of the manuals, Design of Steel Structures, is a 
signal achievement which heralds the successful completion of the Eurocode 
3 work and brings it directly to the designers who will implement the actual 
use of the code.  As such, the book is more than a manual – it is a major 
textbook that details the fundamental concepts of the code and their practical 
application.  It is a unique publication for a major construction market. 
 
Following a discussion of the Eurocode 3 basis of design, including the 
principles of reliability management and the limit state approach, the steel 
material standards and their use under Eurocode 3 are detailed.  Structural 
analysis and modeling are presented in a chapter that will assist the design 
engineer in the first stages of a design project.  This is followed by a major 
chapter that provides the design criteria and approaches for the various types 
of structural members.  The theories of behavior and strength are closely tied 
to the Eurocode requirements, making for a unique presentation of theory 
into practice.  The following chapters expand on the principles and 
applications of elastic and plastic design of steel structures. 
 
The many design examples that are presented throughout the book represent 
a significant part of the manual.  These will be especially well received by 
the design profession.  Without a doubt, the examples will facilitate the 
acceptance of the code and provide for a smooth transition from earlier 
national codes to the Eurocode. 
 
Reidar Bjorhovde 
Member, ECCS Editorial Board 
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PREFACE 
 
 

The General rules and rules for buildings of part 1-1 of Eurocode 3 
constitute the core of the code procedures for the design of steel structures. 
They contain the basic guidance for structural modeling and analysis of steel 
frameworks and the rules for the evaluation of the resistance of structural 
members and components subject to different loading conditions. 
 
According to the objectives of the ECCS Eurocode Design Manuals, it is the 
objective of this book to provide mix of “light” theoretical background, 
explanation of the code prescriptions and detailed design examples. 
Consequently, this book is more than a manual: it provides an all-in-one 
source for an explanation of the theoretical concepts behind the code and 
detailed design examples that try to reproduce real design situations instead 
of the usually simplified examples that are found in most textbooks.  
 
This book evolved from the experience of teaching Steel Structures 
according to ENV 1993-1-1 since 1993. It further benefited from the 
participation in Technical Committees TC8 and TC10 of ECCS where the 
background and the applicability of the various clauses of EN 1993-1-1 was 
continuously questioned. This book covers exclusively part 1-1 of Eurocode 
3 because of the required level of detail. Forthcoming volumes discuss and 
apply most of the additional parts of Eurocode 3 using a consistent format.  
 
Chapter 1 introduces general aspects such as the basis of design, material 
properties and geometric characteristics and tolerances, corresponding to 
chapters 1 to 4 and chapter 7 of EN 1993-1-1. It highlights the important 
topics that are required in the design of steel structures. Structural analysis is 
discussed in chapter 2, including structural modelling, global analysis and 
classification of cross sections, covering chapter 5 of EN 1993-1-1. The 
design of steel members subjected to various types of internal force (tension, 
bending and shear, compression and torsion) and their combinations is 
described in chapter 3, corresponding to chapter 6 of EN 1993-1-1. Chapter 
4 presents the design of steel structures using 3D elastic analysis based on 
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the case study of a real building. Finally, chapter 5 discusses plastic design, 
using a pitched-roof industrial building to exemplify all relevant aspects. 
 
Furthermore, the design examples provided in this book are chosen from real 
design cases. Two complete design examples are presented: i) a braced steel-
framed building; and ii) a pitched-roof industrial building. The chosen 
design approach tries to reproduce, as much as possible, real design practice 
instead of more academic approaches that often only deal with parts of the 
design process. This means that the design examples start by quantifying the 
actions. They then progress in a detailed step-by-step manner to global 
analysis and individual member verifications. The design tools currently 
available and adopted in most design offices are based on software for 3D 
analysis. Consequently, the design example for multi-storey buildings is 
analysed as a 3D structure, all subsequent checks being consistent with this 
approach. This is by no means a straightforward implementation, since most 
global stability verifications were developed and validated for 2D structures. 
The authors are indebted to Prof. Reidar Bjorhovde who carried out a 
detailed technical review of the manuscript and provided many valuable 
comments and suggestions. Warm thanks to Prof. David Anderson who 
carried out an additional detailed revision of the book and also made sure 
that the English language was properly used. Further thanks to Liliana 
Marques and José Alexandre Henriques, PhD students at the University of 
Coimbra, for the help with the design examples of chapter 4. Additional 
thanks to Prof. Tiago Abecasis who spotted innumerous “bugs” in the text. 
Finally, thanks to Filipe Dias and the staff of cmm and ECCS for all the 
editorial and typesetting work, making it possible to bring to an end two 
years of work in this project. 
 
Luís Simões da Silva 
Rui Simões 
Helena Gervásio 
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Chapter 1 
 
 

INTRODUCTION 
 
 
1.1. GENERAL OBSERVATIONS 
 

Steel construction combines a number of unique features that make it 
an ideal solution for many applications in the construction industry. Steel  
provides unbeatable speed of construction and off-site fabrication, thereby 
reducing the financial risks associated with site-dependent delays. The 
inherent properties of steel allow much greater freedom at the conceptual 
design phase, thereby helping to achieve greater flexibility and quality. In 
particular, steel construction, with its high strength to weight ratio, 
maximizes the useable area of a structure and minimizes self-weight, again 
resulting in cost savings. Recycling and reuse of steel also mean that steel 
construction is well-placed to contribute towards reduction of the 
environmental impacts of the construction sector (Simões da Silva, 2005). 

The construction industry is currently facing its biggest transformation 
as a direct result of the accelerated changes that society is experiencing. 
Globalisation and increasing competition are forcing the construction 
industry to abandon its traditional practices and intensive labour 
characteristics and to adopt industrial practices typical of manufacturing. 
This further enhances the attractiveness of steel construction.  

All these advantages can only be achieved with sound technical 
knowledge of all the stages in the life-cycle of the construction process 
(from design, construction and operation to final dismantling). The objective 
of the ECCS Eurocode Design Manuals is to provide design guidance on the 
use of the Eurocodes through a “light” overview of the theoretical 
background together with an explanation of the code’s provisions, supported 
by detailed, practical design examples based on real structures. Each volume 

Design of Steel Structures: Eurocode 3: Design of
Steel Structures, Part 1-1 – General Rules and Rules for Buildings, First Edition

by Luís Simões da Silva, Rui Simões and Helena Gervásio
Copyright © 2010 Eccs – European Convention for Constructional Steelwork
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addresses a specific part of the Eurocodes relevant for steel construction. 
This inaugural volume of the ECCS Eurocode Design Manuals 

addresses the Design of Steel Structures in terms of the General Rules and 
Rules for Buildings, covering all the topics of Part 1-1 of Eurocode 3  
(CEN, 2005a). These range from structural analysis of skeletal structures to 
design of members and components. More specifically, chapter 1 of this 
manual introduces general aspects such as the basis of design, material 
properties and geometric characteristics and tolerances, corresponding to 
chapters 1 to 4 and chapter 7 of EN 1993-1-1. It highlights the important 
topics that are required in the design of steel structures. Structural analysis is 
discussed in chapter 2, including structural modelling, global analysis and 
classification of cross sections, covering chapter 5 of EN 1993-1-1. The 
design of steel members subjected to various types of internal force (tension, 
bending and shear, compression and torsion) and their combinations is 
described in chapter 3, corresponding to chapter 6 of EN 1993-1-1. Chapter 
4 presents the design of steel structures using 3D elastic analysis based on 
the case study of a real building. Finally, chapter 5 discusses plastic design, 
using a pitched-roof industrial building to exemplify all relevant aspects. 

The design examples are chosen from real design cases. Two complete 
design examples are presented: i) a braced steel-framed building and ii) a 
pitched-roof industrial building. The chosen design approach tries to 
reproduce, as much as possible, real design practice instead of more 
academic approaches that often only deal with parts of the design process. 
This means that the design examples start by quantifying the actions. They 
then progress in a detailed step-by-step manner to global analysis and 
individual member verifications. The design tools currently available and 
adopted in most design offices are based on software for 3D analysis. 
Consequently, the design example for multi-storey buildings is analysed as a 
3D structure, all subsequent checks being consistent with this approach. This 
is by no means a straightforward implementation, since most global stability 
verifications were developed and validated for 2D structures. 

The scope of this manual is limited to those issues covered by Part 1-1 
of EC3. Issues such as fire design and the design of joints, which are covered 
by Parts 1.2 and 1.8 of EN 1993, are not included in this manual. Other 
companion publications on fire design (Franssen and Vila Real, 2010) and 
joint design (Jaspart, 2010) address these. Seismic action is also not 
considered in this manual. This is because the many different options that 
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could be adopted in the conceptual design phase would lead to completely 
different structures for the same architectural brief. A forthcoming manual 
dealing specifically with seismic design issues for buildings is planned 
(Landolfo et al, 2010).  

This manual follows the code prescriptions of the Structural 
Eurocodes. This is done without loss of generality since the theoretical 
background, the design philosophy and the design examples are code 
independent, except when it comes to the specific design procedures. 
 
 
1.2. CODES OF PRACTICE AND NORMALIZATION 
 
1.2.1. Introduction 

 
The European Union has spent several decades (since 1975) 

developing and unifying the rules for the design of structures. This work has 
culminated in a set of European standards called the Eurocodes which have 
recently been approved by member states. The foreword to each part of the 
set of Eurocodes contains the following statement:" In 1975, the Commission 
of the European Community decided on an action programme in the field of 
construction, based on article 95 of the Treaty. The objective of the 
programme was the elimination of technical obstacles to trade and the 
harmonization of technical specifications. Within this action programme, the 
Commission took the initiative to establish a set of harmonized technical 
rules for the design of construction works which, in a first stage, would serve 
as an alternative to the national rules in force in the Member States and, 
ultimately, would replace them. For fifteen years, the Commission, with the 
help of a Steering Committee with Representatives of Member States, 
conducted the development of the Eurocodes programme, which led to the 
first generation of European codes in the 1980’s. In 1989, the Commission 
and the Member States of the EU and EFTA decided, on the basis of an 
agreement between the Commission and CEN, to transfer the preparation 
and the publication of the Eurocodes to CEN through a series of Mandates, 
in order to provide them with a future status of European Standard (EN). 
This links de facto the Eurocodes with the provisions of all the Council’s 
Directives and/or Commission’s Decisions dealing with European standards 
(e.g. the Council Directive 89/106/EEC on construction products - CPD - 
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and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public 
works and services and equivalent EFTA Directives initiated in pursuit of 
setting up the internal market)." 

The publication of the Construction Products Directive in 1989  
(OJ L 040, 1989) established the essential requirements that all construction 
works must fulfil, namely: i) mechanical resistance and stability; ii) fire 
resistance; iii) hygiene, health and environment; iv) safety in use;  
v) protection against noise and vi) energy economy and heat retention.  

The first two requirements are addressed by the following nine 
Structural Eurocodes. These have been produced by CEN (European 
Committee for Standardization) under the responsibility of its Technical 
Committee CEN/TC 250: 

� EN 1990 Eurocode:  Basis of Structural Design 
� EN 1991 Eurocode 1: Actions on Structures 
� EN 1992 Eurocode 2: Design of Concrete Structures 
� EN 1993 Eurocode 3: Design of Steel Structures 
� EN 1994 Eurocode 4: Design of Composite Steel and Concrete 

Structures 
� EN 1995 Eurocode 5: Design of Timber Structures 
� EN 1996 Eurocode 6: Design of Masonry Structures 
� EN 1997 Eurocode 7:  Geotechnical Design 
� EN 1998 Eurocode 8: Design of Structures for Earthquake Resistance 
� EN 1999 Eurocode 9:  Design of Aluminium Structures 

 
Each Eurocode contains provisions that are open for national 

determination. Such provisions include weather aspects, seismic zones, 
safety issues etc. These are collectively called Nationally Determined 
Parameters (NDP). It is the responsibility of each member state to specify 
each NDP in a National Annex that accompanies each Eurocode. 

The Structural Eurocodes are not, by themselves, sufficient for the 
construction of structures.  Complementary information is required on: 

� the products used in construction (“Product Standards”, of which 
there are currently about 500); 

� the tests used to establish behaviour (“Testing Standards”, of which 
there are currently around 900); 

� the execution standards used to fabricate and erect structures 
(“Execution Standards”). 
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The flowchart in Figure 1.1 illustrates the full range of information 
required. It also illustrates the relationship between the Construction 
Products Directive, the Eurocodes and their supporting standards. More 
detailed information on the development process of the Eurocodes can be 
found in Dowling (1992) and Sedlacek and Muller (2006). 

 

European Commission 

Construction Products Directive (CPD) 89/106/EEC

Essential Requirements 

Mechanical Resistance and 
Stability 

Fire Resistance 

Interpretative document No. 1 Interpretative document No. 2 

Support documents: application and use of Eurocodes 

EN 1990 – Basis of structural design 

EN 1991 EN 1992 
EN 1993 
EN 1994 
EN 1995 
EN 1996 
EN 1997 
EN 1998 
EN 1999

EU 

Product 
Standards, 

Testing 
Standards and 

Execution 
Standards 

hEN’s – Harmonized 
Standards of products for 

materials and pre-
manufactured components 

ETA’s – 
European 
Technical 
Approvals 

 
Figure 1.1 – European normative structure for the construction sector 

 

s s 
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Initially the Eurocodes were presented as Pre-Standards (ENVs), and 
between 2002 and 2007 were converted in to European Standards (ENs). 
This was followed by the development and publication of the National 
Annexes in each CEN country and the translation of the Eurocodes into the 
various national languages. After a period of coexistence the Eurocodes will 
eventually replace all conflicting national standards by 2010. 

The development of technical rules is also taking place outside 
Europe. Codes such as the North American AISC code, the Chinese code 
and the Australian code contain alternative design procedures that sometimes 
appear to be quite different, mostly because they reflect local engineering 
tradition. 

 
1.2.2. Eurocode 3 

 
EN 1993, Eurocode 3: Design of Steel Structures (abbreviated in this 

book to EC3) is divided in the following parts: 
 EN 1993-1 General rules and rules for buildings 
 EN 1993-2 Steel bridges 
 EN 1993-3 Towers, masts and chimneys 
 EN 1993-4 Silos, tanks and pipelines  
 EN 1993-5 Piling 
 EN 1993-6 Crane supporting structures 

 
EN 1993-1-1, Eurocode 3: Design of Steel Structures - General rules 

and rules for buildings (abbreviated in this book to EC3-1-1) is further  
sub-divided in the following 12 sub-parts:  

EN 1993-1-1 General rules and rules for buildings 
EN 1993-1-2 Structural fire design 
EN 1993-1-3 Cold-formed thin gauge members and sheeting 
EN 1993-1-4 Stainless steels 
EN 1993-1-5 Plated structural elements 
EN 1993-1-6 Strength and stability of shell structures 
EN 1993-1-7 Strength and stability of planar plated structures 

transversely loaded 
EN 1993-1-8 Design of joints 
EN 1993-1-9 Fatigue strength of steel structures  
EN 1993-1-10 Selection of steel for fracture toughness and 

through-thickness properties 
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EN 1993-1-11 Design of structures with tension components 
made of steel 

EN 1993-1-12 Supplementary rules for high strength steel 
 
According to the normative framework described in section 1.2.1, 

EC3 is used together with a series of complementary standards. The 
execution standard for steel structures EN 1090-2 (CEN, 2008) guarantees 
an execution quality that is compatible with the design assumption in EC3. 
The product standards provide the characteristic properties of the materials 
used, that in turn must conform to the quality control procedures specified in 
the test standards. Finally, the EC3 National Annexes specify the national 
parameters relating to actions and safety levels, as well as some options 
concerning design methodologies. 

 
1.2.3. Other standards 

 
EN 1090: Execution of structures in steel and aluminium (CEN, 2008), 

establishes the execution conditions compatible with the design prescriptions 
of EC3. In particular, it establishes the execution classes and the tolerances 
of structural components. It is noted that the fulfilment of these tolerances 
and of the other requirements of EN 1090 constitutes necessary conditions 
for the validity of the EC3 rules. EN 1090 is organised in 3 parts: 

� EN 1090-1:  Steel and aluminium structural components – Part 1: 
General delivery conditions 

� EN 1090-2: Technical requirements for the execution of steel 
structures 

� EN 1090-3: Technical requirements for the execution of 
aluminium structures 

 
Part 2 is divided in the following 12 chapters (including 12 annexes): 

� Chapter 1:  Scope 
� Chapter 2: Normative references 
� Chapter 3: Terms and definitions 
� Chapter 4: Specifications and documentation 
� Chapter 5: Constituent products 
� Chapter 6: Preparation and assembly 
� Chapter 7: Welding 
� Chapter 8: Mechanical fastening 
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� Chapter 9: Erection 
� Chapter 10: Surface treatment 
� Chapter 11: Geometrical tolerances 
� Chapter 12: Inspection, testing and correction 

 
The other relevant standards for steel structures can be grouped into 

standards for materials (steel, steel castings, welding consumables, 
mechanical connectors, high-resistance steel cables and support devices), 
fabrication, welding, testing, assembly, protection against corrosion and 
other complementary standards.  

 
 

1.3. BASIS OF DESIGN 
 
1.3.1. Basic concepts 

 
Eurocode 3 must be used in a consistent way with EN 1990 Eurocode: 

Basis of structural design, EN 1991 Eurocode 1: Actions on Structures,  
EN 1998 Eurocode 8: Normative rules for the design of earthquake resistant 
structures, and EN 1997 Eurocode 7: Geotechnical design. 

Chapter 2 of EC3-1-1 introduces and complements the normative rules 
included in these standards. According to the basic requirements specified in 
EN 1990, a structure must be designed and executed so as to perform the 
functions for which it was conceived, for a pre-determined service life. This 
includes ensuring that the conditions that prevent failure (ultimate limit 
states) are verified, as well as conditions that guarantee proper performance 
in service (serviceability limit state) and those related to durability (among 
others, protection against corrosion). These basic requirements should be 
met by: i) the choice of suitable materials; ii) appropriate design and 
detailing of the structure and its components and iii) the specification of 
control procedures for design, execution and use. 

The limit states shall be related to design situations, taking into 
account the circumstances under which the structure is required to fulfil its 
function. According to EN 1990 (CEN 2002a) these situations may be: i) 
persistent design situations (conditions of normal use of the structure); ii) 
transient design situations (temporary conditions); iii) accidental design 
situations (exceptional conditions, e.g. fire or explosion) and iv) seismic 
design situations. Time dependent effects, such as fatigue, should be related 
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to the design working life of the structure. 
The Ultimate Limit States (ULS) correspond to states associated with 

failure of the structure, endangering people’s safety; in general, the 
following ultimate limit states are considered: loss of equilibrium 
considering the structure as a rigid body, failure by excessive deformation, 
transformation of the structure or any part of it into a mechanism, rupture, 
loss of stability and failure caused by fatigue or other time-dependent 
effects. 

The Serviceability Limit States (SLS) correspond to a state beyond 
which the specific service conditions, such as the functionality of the 
structure, the comfort of people and acceptable appearance are no longer 
met; in steel structures, limit states of deformation and of vibration are 
normally considered. 

The requirements for limit state design are, in general, achieved by the 
partial factor method as described in section 6 of EN 1990; as an alternative, 
a design directly based on probabilistic methods, as described in Annex C of 
EN 1990, may be used. 

In a design process, the loading on the structure must be quantified 
and the mechanical and geometrical properties of the material must be 
accurately defined; these topics are described in the subsequent  
sub-chapters.  

The effects of the loads for the design situations considered must be 
obtained by suitable analysis of the structure, according to the general 
requirements specified in section 5 of EN 1990. The different types of 
analysis for steel structures and all the main procedures involved are treated 
in detail in chapter 2 of this book. 

For the design of a structure in circumstances where: i) adequate 
calculation models are not available; ii) a large number of similar 
components are to be used or iii) to confirm a design of a structure or a 
component, EN 1990 (Annex D) allows the use of design assisted by testing. 
However, design assisted by test results shall achieve the level of reliability 
required for the relevant design situation. 

 
1.3.2. Reliability management 

 
The design and execution of steel structures should be performed 

according to a required level of reliability. The levels of reliability should be 



1. INTRODUCTION 

 

_____
10

achieved by an appropriate choice of quality management in design and 
execution, according to EN 1990 and EN 1090. The levels of reliability 
relating to structural resistance and serviceability can be achieved by suitable 
combinations of the following measures:  

� preventive and protective measures (e.g implementation of safety 
barriers, active or passive protective measures against fire, protection 
against risks of corrosion); 

� measures related to design calculations (representative values of 
actions or partial factors); 

� measures related to quality management; 
� measures aimed to reduce human errors in design and execution; 
� other measures related to aspects such as basic requirements, degree of 

robustness, durability, soil and environmental influences, accuracy of 
the mechanical models used and detailing of the structure; 

� measures that lead to an efficient execution, according to execution 
standards (in particular EN 1090); 

� measures that lead to adequate inspection and maintenance.  
 
To ensure that the previous measures are verified, EN 1990, in  

Annex B, establishes three classes of reliability: RC1, RC2 and RC3, 
corresponding to values of the reliability index � for the ultimate limit state 
of 3.3, 3.8 and 4.3 respectively, taking a reference period of 50 years. The � 
index is evaluated according to Annex C of EN 1990, depending on the 
statistical variability of the actions, resistances and model uncertainties. The 
design of a steel structure according to EC3-1-1, using the partial factors 
given in EN 1990 - Annex A1, is considered generally to lead to a structure 
with a � index greater than 3.8 for a reference period of 50 years, that is, a 
reliability class not less than RC2.  

According to the consequences of failure or malfunction of a structure, 
Annex B of EN 1990 establishes three consequence classes as given in  
Table 1.1 (Table B1 of Annex B of EN 1990). The three reliability classes 
RC1, RC2 and RC3 may be associated with the three consequence classes 
CC1, CC2 and CC3. 

 
Depending on the design supervision level and the inspection level, 

Annex B of EN 1990 establishes the classes given in Tables 1.2 and 1.3 
(Tables B4 and B5 of Annex B of EN 1990). According to Annex B of  
EN 1990, the design supervision level and the inspection level are also 
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associated with the reliability classes, as given in Tables 1.2 and 1.3. 
 

Table 1.1 – Definition of consequence classes 
Consequence 

Classes 
Description Examples of buildings and 

civil engineering works 

CC3 

High consequence for loss of 
human life, or economic, 
social or environmental 

consequences very great. 

Grandstands, public buildings 
where consequences of failure 
are high (e.g. a concert hall). 

CC2 

Medium consequence for loss 
of human life, economic, 
social or environmental 

consequences considerable. 

Residential and office buildings, 
public buildings where 

consequences of failure are 
medium (e.g. an office 

building). 

CC1 

Low consequence for loss of 
human life, and economic, 

social or environmental conse-
quences small or negligible. 

Agricultural buildings where 
people do not normally enter 

(e.g. storage buildings), 
greenhouses. 

 
Table 1.2 – Design supervision levels 

Design 
Supervision 

Levels 

Characteristics Minimum recommended 
requirements for checking of 
calculations, drawings and 

specifications 

DSL3 
relating to RC3 

Extended 
supervision 

Third party checking: Checking 
performed by an organisation different 

from that which has prepared the design. 

DSL2 
relating to RC2 Normal supervision 

Checking by different persons than those 
originally responsible and in accordance 
with the procedure of the organisation. 

DSL1 
relating to RC1 Normal supervision Self-checking: Checking performed by 

the person who has prepared the design. 
 

The reliability classes are also associated with the execution classes 
defined in EN 1090-2 (CEN, 2008). Four execution classes, denoted EXC1, 
EXC2, EXC3 and EXC4, are defined, with increased requirements from 
EXC1 to EXC4. The requirements related to execution classes are given in 
Annex A.3 of EN 1090-2. The choice of the execution class for a steel 
structure is related to production categories and service categories (defined 
in Annex B of EN 1090-2) with links to consequence classes as defined in 
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Annex B of EN 1990 and consequently with reliability classes defined in the 
same standard.  
 

Table 1.3 – Inspection levels 

Inspection 
Levels 

Characteristics Requirements  

IL3 
relating to RC3 

Extended inspection 
Third party inspection. 

IL2 
relating to RC2 

Normal inspection 
Inspection in accordance with the 

procedures of the organisation. 
IL1 

relating to RC1 
Normal inspection 

Self inspection. 

 
Annex B of EN 1090-2 defines two service categories:  

SC1 – Structures submitted to quasi-static actions or low seismic and fatigue 
actions and SC2 – Structures submitted to high fatigue load or seismic action 
in regions with medium to high seismic activity. The same standard defines 
two production categories: PC1 – Structures with non welded components or 
welded components manufactured from steel grade below S355, and PC2 – 
Structures with welded components manufactured from steel grades S355 
and above or other specific components such as: components essential for 
structural integrity assembled by welding on a construction site, components 
hot formed or receiving thermal treatment during manufacturing  and 
components of CHS lattice girders requiring end profile cuts. The 
recommended matrix for the determination of the execution class of a steel 
structure, after the definition of the production category, the service category 
and the consequence classes, is given in the Table 1.4 (Table B.3 of Annex B 
in EN 1090-2).  

One way of achieving reliability differentiation is by distinguishing 
classes of �F factors (partial safety factors for the actions) to be used in 
fundamental combinations for persistent design situations. For example, for 
the same design supervision and execution inspection levels, a multiplication 
factor KFI, given by 0.9, 1.0 and 1.1 for reliability classes RC1, RC2 and 
RC3 respectively, may be applied to the partial factors given in  
EN 1990 - Annex A1. Reliability differentiation may also be applied through 
the partial factors �M on resistance; however, this is normally only used for 
fatigue verifications. 
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Table 1.4 – Determination of execution classes in steel structures 

Consequence classes CC1 CC2 CC3 
Service categories SC1 SC2 SC1 SC2 SC1 SC2 

Production 
categories

PC1 EXC1 EXC2 EXC2 EXC3 EXC3 a) EXC3 a) 

PC2 EXC2 EXC2 EXC2 EXC3 EXC3 a) EXC4 

a) EXC4 should be applied to special structures or structures with extreme 
consequences of a structural failure as required by national provisions. 

 
The working life period should be taken as the period for which a 

structure is expected to be used for its intended purpose. This period may be 
specified according to Table 2.1 of EN 1990. 
 
1.3.3. Basic variables 

 
1.3.3.1. Introduction 

 
The basic variables involved in the limit state design of a structure are 

the actions, the material properties and the geometric data of the structure 
and its members and joints.  

When using the partial factor method, it shall be verified that, for all 
relevant design situations, no relevant limit state is exceeded when design 
values for actions or effects of actions and resistances are used in the design 
models.  

 
1.3.3.2. Actions and environmental influences 

 
The actions on a structure may be classified according to their 

variation in time: i) permanent actions (self weight, fixed equipment, among 
others); ii) variable actions (imposed loads on building floors, wind, seismic 
and snow loads); and iii) accidental loads (explosions or impact loads). 
Certain actions, such as seismic actions and snow loads may be classified as 
either variable or accidental depending on the site location. Actions may also 
be classified according to: i) origin (direct or indirect actions); ii) spatial 
variation (fixed or free) and iii) nature (static or dynamic).  

For the selected design situations, the individual actions for the critical 
load cases should be combined according to EN 1990, as described in the 



1. INTRODUCTION 

 

_____
14

sections 1.3.4 and 1.3.5. Load combinations are based on the design values 
of actions. The design values of actions Fd are obtained from the 
representative values Frep. In general, their characteristic values Fk are 
adopted, considering adequate partial safety factors �f, through the 
expression: 

 
 repfd FF �� . (1.1) 
 
The characteristic values of actions (permanent, variable or accidental 

actions) shall be specified as a mean value, an upper or a lower value, or 
even a nominal value, depending on the statistical distribution; for variable 
actions, other representative values shall be defined: combination values, 
frequent values and quasi-permanent values, obtained from the characteristic 
values, through the factors �0, �1 and �2, respectively. These factors are 
defined according to the type of action and structure. 

The design effects of an action, such as internal forces (axial forces, 
bending moments, shear forces, among others), are obtained by suitable 
methods of analysis, using the adequate design values and combinations of 
actions as specified in the relevant parts of EN 1990. 

The environmental influences that could affect the durability of a steel 
structure shall be considered in the choice of materials, surface protection 
and detailing. 

The classification and the quantification of all actions for the design of 
steel structures, including more specific examples such as the seismic action 
or the fire action, shall be obtained according to the relevant parts of  
EN 1990 and EN 1991. 

 
1.3.3.3. Material properties 

 
The material properties should also be represented by upper or lower 

characteristic values; when insufficient statistical data are available, nominal 
values may be taken as the characteristic values. The design values of the 
material properties are obtained from the characteristic values divided by 
appropriate partial safety factors �M, given in the design standards of each 
material, Eurocode 3 in the case of steel structures. The values of the partial 
safety factors �M, may vary depending on the failure mode and are specified 
in the National Annexes. 

The recommended values in EC3-1-1 for the partial safety factors �Mi 
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are the following: �M0 = 1.00; �M1 = 1.00 and �M2 = 1.25. 
The values of the material properties shall be determined from 

standard tests performed under specified conditions, as described in  
sub-chapter 1.4. 

 
1.3.3.4. Geometrical data 

 
The geometry of a structure and its components must be evaluated 

with sufficient accuracy. Geometrical data shall be represented by their 
characteristic values or directly by their design values. The design values of 
geometrical data, such as dimensions of members that are used to assess 
action effects and resistances, may be, in general, represented by nominal 
values. However, geometrical data, referring to dimensions and form, must 
comply with tolerances established in applicable standards, the most relevant 
being described in sub-chapter 1.5. 
 
1.3.4. Ultimate limit states 

 
For a structure, in general, the ultimate limit states to be considered 

are: loss of static equilibrium, internal failure of the structure or its members 
and joints, failure or excessive deformation of the ground and fatigue failure. 
In a steel structure, the ultimate limit state referring to internal failure 
involves the resistance of cross sections, the resistance of the structure and 
its members to instability phenomena and the resistance of the joints. 

In general, the verification of the ultimate limit states consists of the 
verification of the condition: 

 
 dd RE � , (1.2) 
 

where Ed is the design value of the effect of actions, such as internal forces 
and Rd represents the design value of the corresponding resistance. 

The design values of the effects of actions Ed shall be determined by 
combining the values of actions that are considered to occur simultaneously. 
EN 1990 specifies the following three types of combinations, and each one 
includes one leading or one accidental action:  

i)  combinations of actions for persistent or transient design 
situations (fundamental combinations); 

ii)  combinations of actions for accidental design situations; 
iii)  combinations of actions for seismic design situations. 
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The criteria for the establishment of these combinations and the values 

of all the relevant factors are defined in EN 1990 and its Annex A. 
The verification of the ultimate limit state of loss of static equilibrium 

of the structure, considered as a rigid body, shall be verified comparing the 
design effect of destabilising actions with the design effect of stabilising 
actions. Other specific ultimate limit states, such as failure of the ground or 
fatigue failure, have to be verified according to the relevant rules specified in 
EN 1990 (EN 1997 and EN 1993-1-9). 

 
1.3.5. Serviceability limit states 

 
As defined before, the serviceability limit states correspond to a state 

beyond which the specific service conditions are no longer valid; in steel 
structures limit states of deformation and of vibration are normally 
considered. 

The verification of the serviceability limit states consists of the 
verification of the condition: 

 
 dd CE � , (1.3) 
 

where Ed is the design value of the effect of actions specified in the 
serviceability criterion, determined by the relevant combinations, and Cd is 
the limiting design value of the relevant serviceability criterion (e.g. design 
value of a displacement). 

The design values of the effects of actions Ed in the serviceability 
criterion shall be determined by one of the following three types of 
combinations specified in EN 1990 and its Annex A: 

i)  characteristic combinations; 
ii)  frequent combinations; 
iii)  quasi-permanent combinations. 
 
The limit values of the parameters for the verification of the 

serviceability limit states, according to EC3-1-1, section 7 and to EN 1990 – 
Basis of Structural Design, must be agreed between the client and the 
designer, and can also be specified in the National Annexes. Typical 
recommended values1 for the verification of the deformation limit state in 

                                                      
1 Portuguese National Annex of EC3-1-1 
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steel structures are described below, for vertical deformations in beams 
(Figure 1.2 and Table 1.5) and for horizontal deformations in  
multi-storey structures (Figure 1.3). 
 

w2 

wc 

wmáx 
w1 

 
Figure 1.2 – Vertical deformations in beams 

 
In Figure 1.2, wc is the precamber in the unloaded state of the beam, w1 

is the deflection of the beam due to permanent actions, immediately after 
their application, w2 is the deflection of the beam due to variable actions, 
increased by the long term deformations due to permanent actions and wmáx is 
the final maximum deflection measured from the straight line between 
supports. 

 
Table 1.5 – Limiting values for the vertical displacements in beams (span L) 

 wmáx w2 
Roofs in general L/200 L/250 
Roofs often used by people L/250 L/300 
Floors in general L/250 L/300 
Floors and roofs supporting plaster or other fragile 
finishes or non-flexible partition walls 

L/250 L/350 

Floors that bear columns (unless the displacement has 
been included in the global analysis for the ultimate 
limit state) 

L/400 L/500 

When wmáx may affect the appearance of the building L/250 - 
Cantilever beam (L = 2 Lcantiliver) Previous limits 
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Figure 1.3 – Limiting values for horizontal displacements in frames 
 

The limit state of vibration for steel-framed buildings has become 
more relevant in recent years because of the increased demand for buildings 
that are fast to construct, have large uninterrupted floor areas and are flexible 
in their intended final use (Smith et al, 2007). The subject of floor vibration 
is complex. In general, the designer should make realistic predictions of the 
floor’s response in service by considering the excitation directly and 
comparing this with acceptability criteria (ISO, 2006). Smith et al (2007) 
provides a practical method for assessing the likely vibrational behaviour of 
floors in steel-framed buildings. However, in many situations, simpler 
deemed-to-satisfy criteria are traditionally applied that should ensure 
adequate designs. For example, the Portuguese National Annex for EC3-1-1 
(IPQ, 2010) establishes in clause NA-7.2.3(1)B that the verification of the 
maximum vertical accelerations may be ignored whenever the eigen 
frequencies associated with vertical modes are higher than 3 Hz, in the case 
of residential or office buildings, or 5 Hz, in the case of gyms or other 
buildings with similar functions. Additionally, if the vertical deflections due 
to frequent load combinations are lower that 28 mm (office or residential 
buildings) or 10 mm (gyms or other buildings with similar functions), the 
calculation of the natural frequencies is not required.  
 
1.3.6. Durability 

 
Clause 2.4 of EN 1990 defines the requirements for the durability of 

structures. For steel structures (chapter 4 of EC3-1-1), the durability depends 
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on the effects of corrosion, mechanical wear and fatigue; consequently, the 
parts most susceptible should be easy to access, inspect, operate and 
maintain. 

When building structures are not subjected to relevant cyclic loads it is 
not necessary to consider the resistance to fatigue, as it would be in the case 
of loads resulting from lifts, rolling bridges or vibrations of machines. 

The durability of a steel structure depends essentially on its protection 
against corrosion. Corrosion is a chemical process of degradation of the 
steel, which grows in the presence of humidity, oxygen and existing 
pollutant particles in the environment. Independent of the anticorrosion 
protection system adopted (e.g. organic painting, metal coating), the 
conception and design of steel structures should take precautions to avoid the 
accumulation of water and debris, as illustrated in Figure 1.4.  
 

     
Figure 1.4 – Anti-corrosion details 

 
1.3.7. Sustainability 

 
Steel is one of the most sustainable materials on earth due to its natural 

properties. Steel is the most recyclable material in the world. It can be 
recycled over and over again without losing its properties, saving natural 
resources and reducing construction waste in landfills, thus minimizing two 
major problems faced by the construction sector.  

However, it is not only the environmentally-friendly properties of 
steel that contribute to its sustainability credentials. Steel structures also have 
an important role to play. Steel structures are durable. With proper design, a 
steel structure can last for many years beyond its initial service life. The 
durability of steel, associated with the adaptability of steel structures, avoids 
the need for demolition and new construction. 

The other advantages of steel structures are briefly outlined below.  
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The construction stage has a significant impact on the environment. 
Waste generated by construction accounts for a large proportion of landfill 
volumes. Emissions, dust, particles and other airborne contaminants 
generated during the construction process may cause health problems. In this 
regard, steel structures have major advantages: 

� the prefabrication of steel frames provides a safer and cleaner working 
environment and minimizes the pollution and noise on the 
construction site;  

� frame elements are delivered in time for installation minimizing the 
area needed for storage and contributing to an efficient construction 
site; 

� prefabrication ensures accurate dimensions and ease of erection; 
� waste during construction is reduced to a minimum and most waste is 

recyclable. 
 
During the building’s life, the main environmental impacts result from 

the operational energy needed to heat and cool the building. In the European 
Union, buildings are responsible for more than 40% of the total energy 
consumption (of which 70% is for heating) and for the production of about 
35% of all greenhouse gas emissions (Gervásio and Simões da Silva, 2008). 
Steel framed buildings provide efficient solutions to minimize this problem: 

� lightweight steel systems provide well-insulated envelope panels 
contributing to the energy efficiency of buildings; 

� alternative and renewable sources of energy are easily installed in steel 
buildings. 
 
At the end-of-life of a structure, the major source of concern is the 

construction waste. Buildings and the built environment are the source of 
450 MT of construction and demolition waste per year (over a quarter of all 
waste produced). The advantages of steel structures are: 

� steel structures are easily dismantled, allowing the removal and 
collection of parts of the steel frame; 

� steel frames can be re-used and are easily removed from one place to 
another.  
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1.4. MATERIALS 
 
1.4.1. Material specification 

 
Constructional steel used in steel structures consists of alloys of iron 

with carbon and various other elements (e.g. manganese, silicon, 
phosphorus, sulphur, …). Some of these are unavoidable impurities while 
others are added deliberately. The mechanical and technological properties 
depend on the steel’s chemical composition. The carbon content exerts the 
biggest influence on the microstructure of the material and, consequently, on 
the mechanical properties, such as yield, ultimate strength and ductility and 
also on technological properties, like weldability and corrosion resistance. 

Hot-rolled steel is the most widespread type of steel used in structural 
members and joints. When made using the electric arc furnace process and 
continuous casting, this steel has  carbon contents of between 0.06% to  
0.10 %. This increases to between 0.20% to 0.25 % for steel made using the 
basic oxygen process (Bjorhovde, 2004). 

Cold-formed members are produced by forming steel plates of small 
thickness, in general with a pre-applied zinc coating. Members are available 
in several types of section, leading to lightweight structures mainly used in 
low-rise residential buildings or as secondary components. 

Connecting devices, such as bolts, nuts, are in general manufactured 
from high strength steels. 

All steel is produced in several grades and according to different 
production processes and chemical compositions, as specified in EN 10020 
(CEN, 2000). In Europe, hot-rolled steel plating or profiles for use in 
welded, bolted or riveted structures must be produced in conformity with  
EN 10025 (CEN, 2004). The first part of this European standard specifies 
the general technical delivery conditions for hot-rolled products. The 
specific requirements, such as classification of the main quality classes of 
steel grades in accordance with EN 10020 (CEN, 2000), is given in parts 2 to 
6 of EN 10025 (2004); these parts refer to the technical delivery conditions 
of the following steel products: non-alloy structural steels; 
normalized/normalized rolled weldable fine grain structural steels;  
thermo-mechanical rolled weldable fine grain structural steels; structural 
steels with improved atmospheric corrosion resistance; flat products of high 
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yield strength structural steels in the quenched and tempered condition. 
Structural hollow sections and tubes must be specified in accordance with 
EN 10210 (CEN, 2006a) and EN 10219 (CEN, 2006b). According to  
EN 10025, the steel products are divided into grades, based on the minimum 
specified yield strength at ambient temperature, and qualities based on 
specified impact energy requirements. EN 10025 also specifies the test 
methods, including the preparation of samples and test pieces, to verify the 
conformity relating to  the previous specifications. 

The main material specifications imposed by EN 10025 for hot rolled 
products are: i) the chemical composition determined by a suitable physical 
or chemical analytical method; ii) mechanical properties: tensile strength, 
yield strength (or 0.2% proof strength), elongation after failure and impact 
strength; iii) technological properties, such as weldability, formability, 
suitability for hot-dip zinc-coating and machinability; iv) surface properties; 
v) internal soundness; vi) dimensions, tolerances on dimensions and shape, 
mass. 

 
1.4.2. Mechanical properties 

 
The behaviour under monotonic loading is obtained, in general, by 

uniaxial tensile tests, performed according to EN 10002-1 (CEN, 2001). The 
location and orientation of samples and pieces for tensile tests for common 
structural sections are described in Figure 1.5, according to Annex A of  
EN 10025. 
 

 
Figure 1.5 – Location and orientation of samples and pieces for tests 

 
Samples for plates, bars, wide strips, among others, are also specified 

in EN 10025. Since the thickness has a significant influence on the yield and 
tensile strength of steel, samples are taken from the flanges to establish the 
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conformity of the steel grade, in accordance with EN 10025. Despite the 
greater yield strength of the web, this procedure gives an adequate estimate 
of the resistance of a cross section. 

According to EN 10002, the geometry of the samples may be 
proportional or non-proportional. In the case of proportional flat samples, the 
main geometrical dimensions, including the gauge initial length (L0) and the 
transversal net section (S0), are illustrated in Figure 1.6. In this test, the 
sample is submitted to an increasing deformation until rupture, in a room 
with a temperature between 10 and 35 ºC. From the resulting stress-strain 
curve, shown schematically in Figure 1.7 for the case of a mild steel (steel 
with ductile behaviour), it is possible to obtain the key mechanical properties 
of steel: yield stress (upper yield stress ReH or lower yield stress ReL), tensile 
strength (Rm), maximum load strain (Agt) and strain after failure (A). If these 
properties are evaluated using the initial dimensions (initial length L0 and 
initial transversal net section S0) they are called engineering stresses and 
engineering strains; alternatively, if they are obtained with the instantaneous 
dimensions they are called true stresses and true strains. 
 

Lc

S0

L0 

00 65.5 SL �  
 


 �00 5.1 SLLc �
  
 

sectionnetlTransversa0 �S

 
a) Geometry 

 

 
b) Sample after test 

Figure 1.6 – Geometry of proportional flat test samples 
 

Table 1.6 lists the main mechanical properties of the hot-rolled steel 
grades of the qualities covered by EN 10025-2 (non-alloy structural steel), 
for the most common thicknesses. As the temperature is increased, the 
tensile properties such as the yield stress and ultimate tensile stress decrease.  
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Figure 1.7 – Schematic stress-strain curve 

 
Table 1.6 – Hot-rolled steel grades and qualities according to EN 10025-2. 

 
Steel 

grades 
and 

qualities 

Minimum yield  
strength ReH 

(MPa) 

Tensile strength  
Rm 

(MPa) 

Minimum percentage  
elongation after  

fracture 

065.5 SLo �  

Nominal thickness 
 (mm) 

Nominal thickness 
 (mm) 

Nominal thickness 
 (mm) 

� 16 >16 
� 40 

>40 
� 63 

>63
� 80

< 3 �3 
� 100 

�3 
� 40 

>40 
� 63 

>63 
� 100 

S235JR 

S235J0 

S235J2 

235 

235 

235 

225 

225 

225 

215 

215 

215 

215 

215 

215 

360 to 510 

360 to 510 

360 to 510 

360 to 510 

360 to 510 

360 to 510 

26 

 

24 

25 

 

23 

24 

 

22 

S275JR 

S275J0 

S275J2 

275 

275 

275 

265 

265 

265 

255 

255 

255 

245 

245 

245 

430 to 580 

430 to 580 

430 to 580 

410 to 560 

410 to 560 

410 to 560 

23 

 

21 

22 

 

20 

21 

 

19 

S355JR 

S355J0 

S355J2 

S355K2 

355 

355 

355 

335 

345 

345 

345 

345 

335 

335 

335 

335 

325 

325 

325 

325 

510 to 680 

510 to 680 

510 to 680 

510 to 680 

470 to 630 

470 to 630 

470 to 630 

470 to 630 

22 

 

 

20 

21 

 

 

19 

20 

 

 

18 

S450J0 450 430 410 390 - 550 to 720 17 17 17 
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In clause 3.2 of EC3-1-1 the following mechanical and physical 
properties are specified: 

 
� Modulus of elasticity    E = 210 GPa; 
� Poisson’s ratio in elastic range   � = 0.3; 
� Coefficient of linear thermal expansion  � = 12x10-6 /ºC; 
� Volumetric mass     � = 7850 kg/m3. 

 
1.4.3. Toughness and through thickness properties 

 
Steel may present acceptable properties when submitted to monotonic 

loading but may fail in a brittle way under rapid loading. Resistance to fast 
fracture is commonly defined as material toughness. Part 1-10 of Eurocode 3 
(CEN, 2005d) supplies design guidance for the selection of steel (grades  
S235 to S690) according to material toughness for use in welded elements in 
tension and fatigue elements in which some portion of the stress cycle is 
tensile. This property is quantified by the energy absorbed by a test 
specimen in an impact test. The most common is the Charpy test  
(EN 10045-1, 1990). According to this, the material toughness is quantified 
by the value of the impact energy Av(T) in Joules required to fracture a 
Charpy V – notch specimen at a given temperature. Steel product standards 
generally specify that test specimens should not fail at impact energy lower 
than 27 Joules at a specified test temperature T. In general, the  
toughness-temperature diagram of a structural steel presents a transition 
region in which the material toughness decreases with decreasing 
temperature and the failure mode changes from ductile to brittle; the 
temperature values T27J required by the product standard are located in the 
lower part of this region (Figure 1.8). EN 10025 specifies four classes of 
quality in terms of impact strength: classes JR, J0 and J2 corresponding to an 
impact energy not lower than 27 Joules at temperatures 20ºC, 0ºC and -20ºC, 
respectively, and class K2 corresponding to an impact energy not lower than 
40 Joules at a temperature of -20ºC. The maximum permitted thickness for a 
steel element may be specified according to Table 2.1 of EC3-1-10 
depending on the steel grade, its toughness quality in terms of KV-value, the 
reference stress level �Ed and the reference temperature TEd. 
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2
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Figure 1.8 – Relationship between impact energy and temperature 

 
The selection of the through-thickness properties of materials should 

prevent lamellar tearing in steel assemblies (Figure 1.9). The susceptibility 
of the material should be determined by measuring the through-thickness 
ductility quality according to EN 10164 (CEN, 2004c), which is expressed in 
terms of quality classes identified by Z-values. According to EC3-1-10, 
lamellar tearing may be neglected in a detail if ZEd �  ZRd, ZEd being the 
required design Z-value resulting from the magnitude of strains from 
restrained metal shrinkage under the weld beads obtained as given in  
Table 3.2 of EC3-1-10 and ZRd is the available design Z-value for the 
material according to EN 10164 (Z15, Z25 and Z35 classes are established). 
The appropriate ZRd class according to EN 10164 may be obtained by 
applying a suitable classification. According to EC3-1-1, the classification 
described in Table 1.7 may be adopted for buildings structures. 
 

 
Figure 1.9 – Lamellar tearing 
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Table 1.7 – Choice of quality class according EN 10164. 

Target value of ZEd obtained according 
to EN 1993-1-10 

Required value of ZRd obtained 
according to EN 10164 

10�EdZ  - 

2010 �� EdZ  15Z  

3020 �� EdZ  25Z  

30�EdZ  35Z  

 
1.4.4. Fatigue properties 

 
The fatigue properties are important when the structure and its 

members and joints are submitted to cyclic loading. Fatigue may cause 
premature failure of a structural detail at stress levels much lower than those 
required for failure under a steadily applied stress. The fatigue strength 
depends on the material but essentially on the detail category. The fatigue 
strength of a detail, in general obtained by extensive testing, is expressed as 
a ��R-N curve, where ��R is the stress range and N is the number of cycles 
to failure. In a particular detail, the fatigue strength depends essentially on 
the design stress range and the mean stress of the cycles. The stress range 
below which failure does not occur is designated as the endurance limit. The 
fatigue strength for the majority of details in steel structures should be 
obtained according to Part 1-9 of Eurocode 3 (CEN, 2005c). 
 
1.4.5. Corrosion resistance 

 
Steel materials in aggressive environments, in presence of water and 

oxygen, have a tendency to develop processes of corrosion that can be very 
damaging for the durability of the structure. In order to prevent these 
phenomena, it is essential to ensure that the surface of steel elements exhibits 
sufficient corrosion resistance. According to clause 2.1.3.1(1) of EC3-1-1, 
this may be provided by: i) the modification of the properties of the parent 
metal or alloy, producing a surface film which is stable in most corrosive 
environments (in stainless steel this is achieved by producing a passive 
chromic oxide surface film); or ii) by the application of protective coatings 
that can be either metallic or non-metallic.  
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1.5. GEOMETRIC CHARACTERISTICS AND TOLERANCES 

 
The main hot-rolled products are: I and H sections, box sections, 

channels, tees, angles, plates, among others (Figure 1.10). Alternatively it is 
possible to obtain welded sections with various cross section configurations, 
including those shown in Figure 1.10. By the cold-form process it is possible 
to make a wide variety of sections (Figure 1.10 and Figure 1.11). 

 

    

    
Figure 1.10 – Rolled sections 

 

 

 

 
Figure 1.11 – Cold formed sections 

 
All the steel products to be used in steel structures should fulfil 

geometrical tolerances (on dimensions and shape) dependent on the forming 
process. EN 1090-2 (2008) establishes two types of tolerances: i) essential 
tolerances – applicable for a range of criteria that are essential for the 
mechanical resistance and stability of the structure and ii) functional 
tolerances – required to fulfil other criteria such as fit-up and appearance of 
the structure. In specific cases special tolerances may be specified.  

According to EN 1090, hot-rolled, hot-finished or cold-formed 
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structural products shall conform to the permitted deviations specified by the 
relevant product standards. The most relevant applicable standards are 
supplied in EN 10025-1 (clause 2.2). In the case of hot-rolled products with I 
or H sections, the maximum permitted values specified in EN 10034  
(CEN, 1993) are given in Tables 1.8 to 1.10. The deviation from the nominal 
mass of a piece shall not exceed ±4%. The tolerances on length of pieces are 
±50 mm or, where minimum lengths are requested, +100 mm. 
 
Table 1.8 – Dimensional tolerances for structural steel I and H sections (EN 10034) 

Section 
height h 

(mm) 

Tol. 
(mm) 

Flange 
width b 
(mm) 

Tol. 
(mm)

Web 
thickness s 

(mm) 

Tol. 
(mm)

Flange 
thickness t 

(mm) 

Tol. 
(mm) 

180�h  
+3.0 
-3.0 

110�b  
+4.0
-1.0 

7�s  +0.7 

-0.7 
5.6�t  +1.5 

-0.5 
400180 �� h

 

+4.0 
-2.0 

210110 �� b
 

+4.0
-2.0 

107 �� s  +1.0 

-1.0 

105.6 �� t  
 

+2.0 
-1.0 

700400 �� h
 

+5.0 
-3.0 

325210 �� b

 

+4.0
-4.0 

2010 �� s
 

+1.5 

-1.5 

2010 �� t  
 

+2.5 
-1.5 

700�h  
+5.0 
-5.0 

325�b  
+6.0
-5.0 

4020 �� s
 

+2.0 

-2.0 

3020 �� t  
 

+2.5 
-2.0 

6040 �� s
+2.5 

-2.5 
4030 �� t  +2.5 

-2.5 

60
s  +3.0 

-3.0 
6040 �� t  +3.0 

-3.0 

 -- 60
t  +4.0 
-4.0 

 

h 

b

X

Ys 

t

 
 

h – Height measured at 
the centre line of web 
thickness 

b – Flange width 
s – Web thickness 

measured at the mid-
point of dimension h 

t – Flange thickness 
measured at the 
quarter flange width 
point 
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Table 1.9 – Tolerances on out-of-square and web off-centre of structural steel I and 

H sections (EN 10034) 

Out-of-square 
 k+k1 

Tol. 
(mm) 

Web off-centre 
e 

Tol. 
(mm) 

110�b  1.50 mmt 40�

110�b  2.50 
325110 �� b 3.5 

325�b  5.0 

110�b  
2 % of b 

(max. 6.5 mm) 
mmt 40


325110 �� b 5.0 

325�b  8.0 

h 

b 

k1 

b
h 

b 

b1 b2k1 

k 

k1 

b – Flange width 
t – Flange thickness 

2
21 bb

e
�

�  

 
Table 1.10 – Tolerances on straightness of structural steel I and H sections 

 (EN 10034) 

Section height h 
(mm) 

Tolerance on straightness  
qxx and qyy on length L (%) 

18080 �� h  0.30 L 

360180 �� h  0.15 L 

360�h  0.10 L 

 

L

qyy
L 

qxx 
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Annex D of EN 1090-2 specifies geometrical tolerances for other 

products, such as welded sections, cold formed sections, plates, sheets and 
shells. For example, Table 1.11 describes some of the main essential 
tolerances for welded sections. Essential erection and functional tolerances 
are also specified in Annex D of EN 1090. 

The tolerances on mass must be evaluated from the nominal 
dimensions of profiles using a volumetric mass of 7850 kg/m3 as specified in 
clause 7.7.2 of EN 10025-1. 
 

Table 1.11 – Essential manufacturing tolerances – welded sections (EN 1090-2) 

Criterion Parameter Tolerance � 
Depth 

  

h+� 

 

Overall depth h 
50h���  

No positive value given 

Flange width 
   b 1 +� 

b 2 +� 
 

Width b = b1 or b2 100b���  

Squareness at bearings 
  � 

h 

 

Verticality of web at 
supports for components 
without bearing stiffeners

200���  

but wt
�  

(tw = web thickness) 

Plate curvature 
   

b �

 

Deviation � over plate 
height b 

100b���  

but t
�  
(t = plate thickness) 

 



1. INTRODUCTION 

 

_____
32

Finally, Figure 1.12 illustrates the main notation used in  
Eurocode 3 for the geometric definition of steel sections. In general, the 
following axis convention is used: xx – piece axis; yy – section axis, parallel 
to the flanges; zz – section axis, perpendicular to the flanges. However, it 
should be noted that this notation is not always in agreement with other 
standards, namely with EN 10034 concerning the geometric tolerances of 
steel sections.  

     

h 

b 

y 

z 

tw 
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d h
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Figure 1.12 – Conventions for dimensions and axes of steel cross sections 
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Chapter 2 
 
 

STRUCTURAL ANALYSIS 
 
 
2.1. INTRODUCTION 
 

The design of steel structures classically consists of a two-step 
analysis and verification procedure: i) internal forces and displacements are 
first evaluated based on the principles of equilibrium and compatibility;  
ii) subsequently, these internal forces and displacements are compared 
against corresponding resistance, stiffness and ductility values to ensure 
structural safety and fitness-for-purpose. 

  

� (mm) 

Load factor 

LFEd 

LFRd 
�	

 
Figure 2.1 – Nonlinear analysis 

 
The growing understanding of the behaviour of steel structures, 

coupled with the development of more and more sophisticated and  

Design of Steel Structures: Eurocode 3: Design of
Steel Structures, Part 1-1 – General Rules and Rules for Buildings, First Edition

by Luís Simões da Silva, Rui Simões and Helena Gervásio
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user-friendly design tools, means that the two-steps described above 
progressively become more coupled. Nonlinear design of steel structures 
provides a good example of these developments: the results of the structural 
analysis are directly compared with applied loads (Figure 2.1), thus allowing 
a one-step evaluation of the structure. 

Current practice still consists of a two-step procedure for most design 
situations, leading to the best compromise between accuracy and time. This 
chapter thus focuses on the analysis step, presenting and discussing the 
relevant aspects for standard XXI century design practice, in the framework 
of the Structural Eurocodes. Firstly, in sub-chapter 2.2, the modelling of 
steel structures is discussed. Next, the various methodologies for structural 
analysis are presented, directly related to the susceptibility of the structure to 
nonlinear phenomena. Finally, the classification of cross sections and its 
implications in the choice of design procedures is described. Throughout the 
chapter, several worked examples are presented in detail. 
 
 
2.2. STRUCTURAL MODELLING 
 
2.2.1. Introduction 

 
Steel structures are very often composed by linear members. The 

following figures illustrate the structural framework of a steel industrial 
building (Figure 2.2) and a multi-storey office building (Figure 2.3). 

 

 
Figure 2.2 – Industrial building 
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Figure 2.3 – Multi-storey building  

 
In many applications two-dimensional elements, such as slabs in 

buildings, coexist with linear members, as can be seen in Figure 2.4. The 
slabs may be reinforced concrete, composite steel-concrete or prestressed 
concrete. Other common two-dimensional elements are concrete walls in 
buildings and slabs in decks of composite steel-concrete bridges  
(in reinforced concrete or steel orthotropic solutions). 

  

 
Figure 2.4 – Structural model with two-dimensional elements 
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The modelling of steel structures using linear elements involves the 

consideration of several specific aspects (discussed in sections 2.2.2 to 2.2.5) 
such as the choice of the structural axis of a member, the influence of 
eccentricities, non-prismatic and curved members and the modelling of 
joints. This option is obviously adequate for linear members (beams, 
columns, bracing and cables). With a degree of approximation it may also be 
possible to model two-dimensional elements in this way, provided that the 
analysis results are sufficiently accurate for the intended purpose. Whenever 
it is intended to analyse and design steel structures using the finite element 
method (FEM), combining in the modelling of the structure linear elements 
with two and three-dimensional elements, it is necessary to connect them 
adequately. This aspect will be discussed in section 2.2.6. 

 
2.2.2. Choice of member axis 

 
In modelling linear members it is usual to choose the element’s axis to 

coincide with the centroidal axis. In this case, the internal forces (e.g. 
bending moment, torsional moment) resulting from the structural analysis 
are referred to the centroid of the section. Though this is the usual option, 
this is not compulsory, as long as all subsequent calculations take the chosen 
option into account (Ghali and Neville, 1997). This comment is particularly 
important when applied forces are compared to resistant forces determined 
from normative expressions (EC3-1-1, for example) derived with respect to 
the centroid of the section. 

To illustrate this aspect, consider the H-section column in Figure 2.5.  
 

P

C A 

C’  A’  
e 

P 

 
Figure 2.5 – Influence of the choice of member axis 
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Consider, in addition, that the column bears a vertical concentrated 
load P that acts in the mid-plane of the web, with an eccentricity e with 
respect to the centroid. If the axis of the element coincides with the centroid 
(CC’), the forces at the base plate are: 

 

 
�
�
�

�
�

PN
ePM

C

C

'

' , (2.1) 

 
while if the axis of the element coincides with AA’, the forces at the base 
plate will be given by: 

 

 
�
�
�

�
�

PN
M

A

A

'

' 0
. (2.2) 

 
For asymmetric or monosymetric sections, in which the centroid does 

not coincide with the shear centre, bending loads not aligned with the shear 
centre lead to torsional moments. These should be considered in design  
(CEN, 2005). As an example, consider the beam with a monosymetric I-
section, Figure 2.6a. The ends are simply supported , with rotation around its 
axis restricted but with freedom to warp. A uniformly distributed transverse 
load p acts at the centroid of the cross section. The resulting stress resultants 
(i.e. moments and shear forces) are represented in Figure 2.6b. 

 

y 

z Cc 
Cg 

e 

p 

L 

Mz Vz 

My Vy 

Mt 

pL2/8 

pL/2 

pLe/2 

0 

0 

pL/2 

pLe/2 

 
a)     b) 

Figure 2.6 – Influence of load eccentricity in relation to the shear centre 
 

 
 



2. STRUCTURAL ANALYSIS 

 

_____
38

2.2.3. Influence of eccentricities and supports 
 
A structural model of linear members presents differences between the 

real length of the elements (beams and columns) and the corresponding 
system length. This is because the structural nodes at the intersection of 
converging members normally correspond to their centroid, as is illustrated 
in Figure 2.7. These differences affect the evaluation of both forces and 
displacements, and may result in significant over-estimation of these effects . 
To illustrate this, consider first (Figure 2.7) the evaluation of the maximum 
negative moment acting in the beam. This should be evaluated at points A' 
and B' and not at points A and B, as would result directly from the structural 
model. For a uniformly distributed load, the difference reaches 19% when 

1.0�CLh (that is, for a 6 m span between axes and IPE 600 columns, for 
example) 1. Secondly, the maximum displacement is also significantly lower, 
due to the rigid behaviour in bending of sections AA' and BB'. For a 
uniformly distributed load, the difference reaches 34.4% when 1.0�CLh 2. 

 

 
Figure 2.7 – Influence of eccentricities 

 

                                                      
1 For h/Lc = 0.05 or h/Lc = 0.2 the differences would be of, respectively, 9.75% or 
36%. 
2 For h/Lc = 0.05 or h/Lc = 0.2, the differences would be of, respectively, 18.5% or 
59%. 

LC 

LR

LC 

LR 

A A’ B’ B 

h h 
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In practical terms, with the use of computer programs, it is necessary 
to introduce rigid links and eccentricities in order to obtain the correct values 
of forces and displacements. This aspect is explored in detail in example 2.1. 

The existence of eccentricities is not limited to the case described 
above. In many situations there is a discontinuity at an intermediate section 
of a beam, as illustrated in Figure 2.8. In that case, the structural model 
should consider a node at that section and the elements to the left and to the 
right have different geometrical properties. In addition, due to the vertical 
discontinuity of the centroids, a rigid link should connect them. Normally, 
the forces on the left section will be different from the forces on the right 
section (in the case of the bending moment and axial force, for example), 
This is because the forces are determined in relation to different centroidal 
axes, as can be seen in Figure 2.8. Finally, in the generic case of an arbitrary 
intersection of several elements in space, with non-coincident centroids, 
rigid links must be considered, oriented in space. Equilibrium will be 
satisfied taking account of the eccentricity between centroids.  

 
 

N M + Ne 

N M  

e  

Figure 2.8 – Influence of discontinuities at intermediate sections 
 
2.2.4. Non-prismatic members and members with curved axis 

 
The modelling of non-prismatic members, typically illustrated in 

Figure 2.9, must follow specific modelling rules.  
The first situation (Figure 2.9a), corresponding to a discrete variation 

of cross section, was already discussed in section 2.2.3. 
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L  
a) 

L  
b) 

 

L  
c) 

L  
d) 

Figure 2.9 – Examples of elements with variable cross section 
 

The second situation (Figure 2.9b) corresponds to a continuous 
variation of the cross section. The usual modelling consists of considering 
nodes at the ends of the element and a linear variation of the depth of section 
of the cross section between those points. In this case, the accuracy of the 
results will vary significantly from program to program, depending on how 
the stiffness matrix of the element is calculated.  

The third case (Figure 2.9c) corresponds to a combination of the 
previous case with a discontinuity at a specific cross section. An 
intermediate node must be considered and it is required to know the 
variation of the properties of the cross section between the nodes of the 
element. 
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Finally, in the fourth case (Figure 2.9d), as the variation of the cross 
section is not linear (parabolic, in this case), it is necessary to consider a 
tighter discretization, with a reasonable number of intermediate nodes so that 
the linear approximation between nodes does not introduce a significant 
error. Alternatively, the calculation of the stiffness matrix of the element 
could be done considering the real variation of the cross section along the 
member. 

Figure 2.10 illustrates several discretizations for the determination of 
forces and displacements in a beam, for a uniformly distributed load and 
fixed supports 

  

ho 

c 

p 

L  
a) Real system 

 
b) Mesh 1 – with 3 elements 

 
c) Mesh 2 – with 6 elements 

 
d) Mesh 3 – with 10 elements 

Figure 2.10 – Alternative discretizations for a beam with parabolic variation of the 
depth of the cross section 
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where L = 10 m; p = 10 kN/m; E = 210 GPa  and h0 = 0.50 m. In order to 
explore the influence of the ratio c/h0, two cases were considered: c/h0 = 1  
(c = 0.50 m) and c/h0 = 2 (c = 1.0 m). Figure 2.11 illustrates the bending 
moment diagram and the vertical displacements of the beam ( c/h0 = 1). 

 
58.01 kNm 58.01 kNm 

66.99 kNm 1.75E-04 m 
 

Figure 2.11 – Bending moment diagram and vertical displacements of the beam 
 

Numerically, using a computer program, Tables 2.1 and 2.2 
summarize the various results obtained for the different mesh discretizations, 
which are compared with the analytical solution. 

 
Table 2.1 – Comparison of results for c/h0 = 1 

c/h0 = 1 n 
Msupport (kNm) Mmidspan (kNm) �midspan	 (mm)	

  Error   Error   Error 
Analytical sol. - -58.01 - +66.99 - 0.175 - 

N
um

er
ic

al
 so

lu
tio

n  Mesh 1 3 -71.90 23.9% +44.43 33.7% 0.116 33.7% 
 Mesh 2 6 -60.19 3.8% +52.79 21.2% 0.135 22.9% 
 Mesh 3 10 -61.73 6.4% +63.37 5.4% 0.171 2.3% 
 Mesh 4 20 -59.06 1.8% +66.05 1.4% 0.171 2.3% 
 Mesh 5 40 -58.28 0.5% +66.83 0.2% 0.174 0.6% 
 Mesh 6 80 -58.07 0.1% +67.03 0.1% 0.175 0.0% 

 
In order to obtain an error lower than 5%, a discretization with a 

minimum of 10 elements is required as the the continuous variation of the 
member is replaced by a series of elements of uniform but different depth, 
separated by discontinuities as shown in Fig. 2.8. This requirement increases 
with an increasing ratio c/h0 . 

In case of a member with a curved axis, the curvature influences the 
results (Timoshenko, 1956; Weaver and Gere, 1990), and the classic theory 
of linear members should include a correction to consider this effect. Since 
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most of the commercial programs do not usually contemplate this correction, 
the solution to minimize this problem is to consider a tighter element 
discretization. To illustrate this aspect, consider a curved beam (in the 
horizontal plan) with R radius, subjected to a concentrated vertical load P 
applied at an arbitrary point C, normal to ACB, represented in Figure 2.12. 

 
Table 2.2 – Comparison of results for c/h0 = 2 

c/h0 = 2 n 
Msupport (kNm) Mmidspan (kNm) �midspan(mm)	

  Error   Error   Error 
Analytical sol. - -43.32 - +81.68 - 0.077 - 

N
um

er
ic

al
 so

lu
tio

n  Mesh 1 3 -66.28 53.0% +42.07 48.5% 0.043 44.0% 
 Mesh 2 6 -49.14 13.4% +51.33 37.2% 0.051 33.3% 
 Mesh 3 10 -52.22 20.5% +73.21 10.4% 0.072 6.2% 
 Mesh 4 20 -46.17 6.6% +79.24 3.0% 0.073 5.3% 
 Mesh 5 40 -44.08 1.8% +81.33 0.4% 0.076 0.8% 
 Mesh 6 80 -43.50 0.4% +81.92 0.3% 0.077 -0.5% 
 

 
Figure 2.12 – Influence of the elements’ curvature 

 
Table 2.3 summarizes the results obtained for the analytical solution 

(Nakai and Yoo, 1988) and the several numerical results obtained for various 
discretizations (n = 5, 10, 20, 40 and 80), considering R = 6.366 m,  
L = 10 m, P = 50 kN, � = 90o, � = 18o and � = �’ = 45o. For the various 
discretizations each element is assumed straight, with a change in member 
direction at each node. Mo and To are the bending moment and the torsional 
moment at an arbitrary point m.  
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Table 2.3 – Moments in curved beam 

 Mo (kNm) To (kNm) M (kNm) T (kNm) 

R-F R-R 
Analytical solution 69.55 11.02 69.55 54.91 

Model 1 (n = 5) 69.56 - 62.38 59.68 
Model 2 (n = 10) 70.21 5.53 65.03 60.20 
Model 3 (n = 20) 69.93 8.28 67.35 57.60 
Model 4 (n = 40) 69.76 9.65 68.46 56.27 
Model 5 (n = 80) 69.66 10.33 69.01 55.59 

 
The first two columns present the results for the situation in which one 

of the supports does not restrain torsional deformations (R-F) and the two 
last columns present the same results for the situation in which both supports 
restrain torsional deformations (R-R). 
 
2.2.5. Influence of joints 

 
Steel joints exhibit a behaviour that ranges from rigid to extremely 

flexible. Obviously, the deformability of joints varies in accordance with the 
applied loading: a joint may behave very rigidly when subjected to shear 
force or torsion but show a flexible response when subjected to bending. 
Figure 2.13 illustrates this statement for a typical bolted end-plate  
beam-to-column steel joint: rigid in torsion or shear, semi-rigid under major 
axis bending or axial force and flexible under minor axis bending (Simões da 
Silva, 2008). The corresponding moment (force) – rotation (displacement) 
curves are clearly non-linear, a typical feature of joint behaviour. The 
incorporation of joint behaviour into the structural analysis is thus complex. 

In general terms, a steel joint can be modelled as a six  
degree-of-freedom non-linear spring. This representation is adequate 
whenever the behaviour of the joint can be uncoupled into six independent 
internal forces (two bending moments, a torsional moment, an axial force 
and two shear forces). This assumption is not always adequate, in which case 
the consideration of interaction formulae becomes necessary. The M-N 
interaction is a typical example (Simões da Silva et al., 2004; Cerfontaine, 
2003). 
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Figure 2.13 – Typical 3D behaviour of bolted end-plate beam-to-column steel joint 

 
Deformability in bending is usually critical and mostly influences the 

results from structural analysis (Simões da Silva, 2008). Figure 2.14 
reproduces the typical non-linear bending moment-rotation curve (Mj-�), as 
well as the usual idealized curve characterized by three fundamental 
properties: stiffness (Sj), in particular initial stiffness (Sj,ini), moment 
resistance (Mj,Rd) and rotation capacity (�Cd).  
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Figure 2.14 – Bending-rotation moment curve of a joint 

 
Part 1-8 of Eurocode 3 (CEN, 2005b), based on the so-called 

component method (Weynand et al., 1995), provides procedures for the 
characterization of the rotational behaviour of joints, allowing the 
specification of the corresponding moment-rotation curve or some 
representative properties. Normally, the deformability corresponding to the 
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remaining degrees of freedom is either much lower or the global behaviour 
of the structure does not induce significant internal forces in the other 
directions (as it is the case, for example, of the resistance of a  
beam-to-column joint around the beam’s minor axis). In this case, the 
corresponding degrees of freedom can be safely modelled with either infinite 
or zero stiffness. Figure 2.15a illustrates the modelling of a plane frame 
where it is assumed that the shear deformability is negligible, as well as the 
level of axial force acting in the beams. In case of less sophisticated 
computer programs that do not allow spring elements, the bending flexibility 
of a joint can still be modelled using an equivalent beam stub, as shown in 
Figure 2.15b. 
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Figure 2.15 – Modelling of joints in structural analysis 
 
It should be pointed out that including non-linear springs makes it 

necessary to perform a non-linear analysis, which significantly increases the 
complexity of the structural analysis. In fact, Figure 2.14 shows that the 
moment-rotation curve presents initially an elastic behaviour, followed by a 
plastic response resulting from the progressive yielding of some 
components. Thus, the modelling of joints invariably requires the 
consideration of a non-linear analysis with non-linear springs (unless all 
joints are designed as full-strength, with an adequate overstrength level to 
ensure that they remain elastic for all load combinations). As an alternative 
to performing a non-linear analysis, it is possible to approximate the results 
of a non-linear analysis (with respect to the behaviour of the joints) by a 
linear elastic analysis with linear springs. These linear springs should be 
representative of the joint behaviour up to loading levels corresponding to 
ULS, in an average sense. EC3-1-8 defines such an equivalent elastic 
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stiffness (expression (2.3)), called secant stiffness, illustrated in Figure 2.16, 
and provides estimates of its value for the most usual major axis joint 
typologies. 

 

 
�

inij
j

S
S .� . (2.3) 
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Figure 2.16 – Definition of the secant stiffness of a joint 

 
Table 2.4 illustrates the values of �	for some cases. 
 

Table 2.4 – Stiffness modification coefficient � 

Type of joint 
Beam-to-column 

joints 

Other types of joints 
(beam-to-beam, beam 
splices, column bases) 

Welded 2 3 
Bolted end plates 2 3 

Bolted flange angles 2 3.5 
Base plates - 3 

 
Example 2.1 illustrates the various aspects discussed above. 
The modelling of internal node joints is substantially more complex 

than joints to external columns (Figure 2.15). This is because the 
contribution of the deformability of the column web panel must be 
distributed between the left and right springs of the structural model (see 
Figure 2.17). 
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a) forces outside the web panel b) forces in the intersection  

of the members’ axes 
Figure 2.17 – Modelling of joints in the internal node of a frame  

 
In this case, in a simplified manner, EC3-1-8 divides this contribution 

between the two springs, according to the transformation parameter �		
(CEN, 2005b): 

 
 21 ,1,,2,1 ��� EdbjEdbj MM� ; (2.4) 
 
 21 ,2,,1,2 ��� EdbjEdbj MM� , (2.5) 
 

where 
�1 , (�2) is the value of the transformation parameter for the right (left) 
connection; 
Mj,b1,Ed , (Mj,b2,Ed) is the applied bending moment on the right (left) 
beam, at the intersection of the centre lines of the elements. 
 
Approximate values of �1 and �2 based on the values of the moments 

on the beams M1,Ed and M2,Ed on the periphery of the column web panel are 
indicated in Table 2.5 (CEN, 2005b). This approximate distribution assumes 
a previous knowledge of the bending moments in the left and right beams. 
This requires, in practical terms, an extensive iterative procedure, as the 
properties of the structural model must be altered for each load combination.  

Although it is not the aim of this book to present a deep treatment of 
this subject, nor is it intended to include the quantification of the properties 
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of joints, two methodologies to deal with this aspect are indicated next3: 
 

Table 2.5 – Transformation parameter � 

Type of configuration of the joint  Action Value of � 

Mb1,Ed Mb1,Ed 

Mb1,Ed � � 1 

Mb2,Ed Mb2,Ed Mb1,Ed Mb1,Ed
 

Mb1,Ed = Mb2,Ed � = 0 *) 

Mb1,Ed / Mb2,Ed > 0 � � 1 

Mb1,Ed / Mb2,Ed < 0 � � 2 

Mb1,Ed + Mb2,Ed = 0 � � 2 
*) In this case, the value of � is the exact value, not the approximate value 

 
The first, included in the simplified approach of EC3-1-8, comprises 

the following steps: 
 i) initial structural analysis, assuming, for the characterization of the 

rotational springs representing the joints and for all load 
combinations, � equal to one for the joints in external nodes and 
� equal to zero (equal and opposed moments) for the joints in 
internal nodes; 

ii) for each load combination, verification and correction of the 
assumed values of � and the properties of the joints; 

 iii) structural analysis with the corrected values; 
 iv) repetition of steps ii) and iii) until convergence. 
 
The second approach avoids, on one hand, the iterative process and, 

on the other, perhaps most importantly, the necessity of analysing distinct 
structural models for each load combination by a more sophisticated 
modelling of the nodal zone. Based on Figure 2.18, it can be seen that, in 
reality, the node embraces three contributions for the deformability of that 
zone: the left connection, the right connection and the column web panel. 

 

                                                      
3 Note that the interested reader may find in a forthcoming volume of the ECCS 
Eurocode Design Manuals (Jaspart, 2010), a thorough treatment of the design of 
steel and steel-concrete composite joints. 
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Figure 2.18 – Internal node steel beam-to-column joint  

 
The representative springs for the left and right connections should be 

placed as indicated in Figure 2.18, with an eccentricity equal to half the 
depth of the cross section of the column and with stiffnesses Le

inijS ,  and Ld
inijS , , 

respectively. The spring modelling the shear deformation of the column web 
panel is characterized by a stiffness (axial and rotational) given by: 

 

 
z
A

k vc

�
38.0

1 � ; (2.6) 

 
 1

2
, kEzS S
inij � , (2.7) 

 
where Av is the shear area of the column and z is the lever arm of the joint. 
Several alternative models are possible, such as indicated in Figure 2.19. In 
this case, the value of � is not considered in the characterization of this 
component. More detailed information on this matter can be found in Jaspart 
(1991) or Jordão (2008). Example 2.2 illustrates the aspects of modelling of 
joints in internal nodes. 
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Figure 2.19 – Alternative models for the representation of the column web panel in 
shear  
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2.2.6. Combining beam elements together with two and three 
dimensional elements 

 
Figure 2.20 illustrates a 3D frame composed of steel beams and 

columns and a concrete slab. Since most computer programs currently allow 
the combination of beam and shell elements, it becomes necessary to discuss 
specific modelling aspects related to the connection of these two element 
types.  

 

 
Figure 2.20 – Beam and shell structural model  

 
Firstly, it should be highlighted that the concrete slab usually fulfils a 

dual role: supporting the vertical loads and transmitting them to the steel 
structure but also providing in-plane stiffness that ensures rigid in-plane 
floor behaviour. In some computer programs, this may be implemented using 
constraint equations that impose equal in-plane displacements for a given 
slab. Alternatively, equivalent diagonal bracing may be used to achieve the 
same result, as illustrated in Figure 2.21. 

The concrete slab may also be connected to the steel beams, resulting 
in composite action between steel and concrete. If composite action occurs 
and full interaction is assumed, the shell elements are rigidly connected to 
the beam nodes. For non-composite action the shell elements should be 
allowed to slip freely in the beam’s longitudinal direction. 
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Figure 2.21 – Modelling of in-plane rigid slab behaviour  

 
For all cases, the results are very sensitive to the modelling of the 

eccentricities between the mid-plane of the slab and the centroid of the beam 
elements. Also, in the case of non-composite action, even for reduced 
thicknesses of the slab, its bending stiffness is still sufficient to absorb  
non-negligible bending moments, therefore reducing the bending moments 
in the beams. All these aspects are illustrated in example 2.3.  
 
2.2.7. Worked examples 
 
Example 2.1: Consider the steel frame (E = 210 GPa and S275) represented 
in Figure 2.22, subjected to the indicated loading, already factored. Assume 
that the column bases are fixed. Determine the design internal forces and 
displacements considering the following situations. 
 
a) Full-strength rigid joints between the beams and the columns: 
 a.1) without considering the effect of eccentricities; 
 a.2) considering the effect of eccentricities; 
b) Full-strength semi-rigid joints between the beams and the column; 
c) Partial-strength semi-rigid joints. 
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Figure 2.22 – Steel frame 

_______________________________ 
 
a) Evaluation of the design internal forces and displacements assuming  
full-strength rigid beam-to-column joints. 
 
Assuming full-strength rigid beam-to-column joints, the calculation model 
for the structure is shown in Figure 2.23 that represents the critical cross 
sections and the reference displacements to consider in the analysis of the 
results. 
 

10 m

5 m 

5 m 

2 3 

4 5 6

1 

�2 

�5 

�4 

�1 

�6 

�3 

 
Figure 2.23 – Calculation model without eccentricities 

 
The following diagrams of internal forces are obtained (Figures 2.24 to 
2.26). 
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Figure 2.24 – Bending moment diagram 
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Figure 2.25 – Transverse shear diagram 
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Figure 2.26 – Axial force diagram 
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Table 2.6 indicates the forces and displacements obtained at the critical cross 
sections. 
 

Table 2.6 – Results at the critical cross sections 
 My (kNm) Vz (kNm) Nx (kNm) � (mm) 

1 256.5 208.9 34.5 12.2 
2 253.5 10.5 34.5 43.4 
3 360.9 229.8 34.5 12.4 
4 174.1 158.5 87.0 23.7 
5 219.0 5.3 87.0 41.7 
6 227.3 169.1 87.0 23.2   

In reality, the relevant design internal forces should be calculated taking into 
account the eccentricities that result from the finite dimensions of the cross 
sections, as illustrated in Figure 2.27: 
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5 m 

5 m HEA260 
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Figure 2.27 – Definition of the frame’s eccentricities 

 
The calculation model is illustrated in Figure 2.28. Table 2.7 summarizes the 
internal forces and displacements at the critical cross sections. 
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Figure 2.28 – Calculation model with eccentricities 

 
Table 2.7 – Results at the critical cross sections with eccentricities 

 My (kNm) Vz (kNm) Nx (kNm) � (mm) 

1 - - - - 
1’ 235.9 208.8 35.2 12.0 
2 247.3 10.6 35.2 41.9 
3’ 339.0 230.0 35.2 12.2 
3 - - - - 
4 - - - - 
4’ 158.0 158.5 88.5 23.0 
5 215.5 5.3 88.5 40.8 
6’ 209.6 169.1 88.5 22.5 
6 - - - -  

 
Comparing the results in Tables 2.6 and 2.7, a decrease of 2.4% and 1.6% at 
the midspan moments of both beams and of 3.6% and 2.1%, respectively, for 
the vertical displacements, is noted, as a consequence of the consideration of 
rigid sections. These differences are small in this case, as the ratio 

025.0�CLh  is low (see section 2.2.3). 
However, the bending moment at 1’ compared to 1, 3’ compared to 3, etc., 
shows real benefits i.e lower design moments, when the designer bothers to 
account for eccentricity by including rigid links 1-1’, 3-3’, etc. These 
reductions reach 9.2%. 
 
Based on the design internal forces of Table 2.6, two different joints are 
considered, one at the intermediate beam level and another at the top beam. 
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The joints at both ends of each beam have the same characteristics. The 
joints were calculated according to EC3-1-8, using the commercial program 
COP® (2005).  
 
Figures 2.29 and 2.30 represent the chosen full-strength joints. The joint at 
the intermediate beam consists of an extended end plate with a thickness of 
16 mm, a haunch at the bottom flange and transverse and diagonal stiffeners 
in the column’s web. The dimensions are shown in Figure 2.29. The bolts are 
M20, class 10.9. For this joint an initial stiffness (Sj,ini) of 416125 kNm/rad 
and a secant stiffness (Sj) of 208062 kNm/rad were obtained, and the joint is 
classified as rigid according to EC3-1-8. The joint exhibits a moment 
resistance Mj,Rd = 366.2 kNm, corresponding to a relative resistance of 

02.1,,, �beam
RdyplRdj MM . 

 

 
Figure 2.29 – Full-strength joint at intermediate beam level 
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Figure 2.30 – Full-strength joint at top beam level 

 
At the level of the top beam of the frame, the joint also consists of an 
extended end plate with a thickness of 16 mm, a haunch at the bottom flange 
of the beam and transverse and diagonal stiffeners in the column’s web, with 
the dimensions shown in Figure 2.30. The bolts are also M20, class 10.9. In 
this case the initial stiffness (Sj,ini) is 389646 kNm/rad and the secant stiffness 
(Sj) is 194823 kNm/rad, the joint also being classified as rigid. The joint 
presents a moment resistance of Mj,Rd = 360.0 kNm, and 

00.1,,, �beam
RdyplRdj MM . 

 
Although both joints are classified as rigid according to EC3-1-8, it is 
interesting to assess the relevance of the real stiffness of the joints. The 
calculation model of Figure 2.23 with rigid joints between beams and 
columns, is replaced by the calculation model shown in Figure 2.31. In this 
structural model, the joints are represented by rotational springs, with an 
elastic behaviour characterized by the initial stiffness of the joint or the 
secant stiffness.  
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Figure 2.31 – Steel frame with semi-rigid joints 

 
Table 2.8 represents the internal forces and displacements at the critical cross 
sections, which were calculated considering the secant stiffness of the joints. 
 

Table 2.8 – Results for full-strength joints, evaluated using the secant stiffness 
 My (kNm) Vz (kNm) Nx (kNm) � (mm) 

1 246.2 209.2 33.1 12.8 
2 264.9 10.2 33.1 46.3 
3 348.4 229.6 33.1 12.9 
4 166.9 158.4 84.3 25.1 
5 226.0 5.4 84.3 43.5 
6 220.6 169.2 84.3 24.6  

 
Because the joints are full-strength, the critical cross sections occur in the 
beam and not at the joints. So it is not necessary to consider in the analysis 
the non-linear behaviour of the joint but just assess the effect of its 
flexibility. However, in this case, as the joint is full-strength but with a 
resistance only slightly larger than the plastic moment of the beam, at a load 
level close to ultimate limit state the bending moment developed in the joint 
will be close to its moment resistance. It follows that it will be adequate to 
perform the analysis with the secant stiffness and not with the initial stiffness 
(CEN, 2005b).  
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The consideration of the flexibility of the joints leads to a decrease of 4.0%, 
3.5%, 4.1% and 2.9% in the negative moments of cross sections 1, 3, 4 and 
6, respectively, when compared to the rigid model without eccentricities and 
to an increase of 4.5% and 3.2% in the mispan moments of the beams (cross 
sections 2 and 5, respectively) and of 6.8% and 4.3% of the corresponding 
vertical displacements. Rigid links are not considered to simulate the finite 
dimension of the cross sections as, in this case, its influence is negligible. 
 
b) Evaluation of the design internal forces and displacements considering 
full-strength semi-rigid beam-to-column joints. 
 
Considering a secant stiffness (Sj) of 85000 kNm/rad for the joint at the 
intermediate beam level and a secant stiffness (Sj) of 70000 kNm/rad for the 
joint at the top beam, Table 2.9 presents the internal forces and 
displacements at the critical cross sections, which were calculated using the 
structural model of Figure 2.31. 
 

Table 2.9 – Results for partial-strength joints and secant stiffness 
 My (kNm) Vz (kNm) Nx (kNm) � (mm) 

1 232.4 209.4 30.7 13.6 
2 280.1 9.9 30.7 50.3 
3 331.7 229.3 30.7 13.6 
4 155.6 158.4 80.1 27.1 
5 237.1 5.4 80.1 46.3 
6 209.7 169.2 80.1 26.7  

 
c) Evaluation of the design internal forces and displacements considering 
partial-strength semi-rigid beam-to-column joints. 
 
In the case of joints with partial resistance, consider the configurations that 
are represented in Figures 2.32 and 2.33 for the joints at the intermediate and 
top beam levels, respectively. 
 
The joint at the intermediate beam level consists of an extended end plate 
with a thickness of 15 mm, a haunch at the bottom flange and transverse 
stiffeners in the column’s web, with the dimensions indicated in Figure 2.32 
and. The bolts are M20, class 10.9. For this joint, again using the COP® 
program, an initial stiffness (Sj,ini) of 86728 kNm/rad and a secant stiffness 
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(Sj) of 43364 kNm/rad were obtained, and so the joint is classified as  
semi-rigid. The moment resistance of the joint is Mj,Rd = 236.1 kNm, and so 
the joint is of partial resistance ( 66.0,,, �beam

RdyplRdj MM ). The non-linear 

moment-rotation curve is shown in Figure 2.34. 
 

 
Figure 2.32 – Partial-strength joint at the intermediate beam level 

 

 
Figure 2.33 – Partial-strength joint at top beam level 
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Figure 2.34 – M-� curve of the joints of the intermediate and top beams 

 
At the top beam, the joint also consists of an extended end plate with the 
dimensions indicated in Figure 2.33 and with a thickness of 15 mm. The 
bolts are also M20, class 10.9. In this case the initial stiffness (Sj,ini) is  
23544 kNm/rad and the secant stiffness (Sj) is 11772 kNm/rad, and so the 
joint is classified as semi-rigid. The moment resistance is Mj,Rd = 104.7 kNm, 
and the joint is of partial resistance ( 29.0,,, �beam

RdyplRdj MM ). The non-linear 

moment-rotation curve is represented in Figure 2.34. 
Using partial-strength joints requires a non-linear analysis as the level of the 
bending moment at the joints will certainly reach their plastic resistance.  
Table 2.10 presents the internal forces and displacements in the structure, 
considering the real behaviour of joints, simulated by non-linear springs, 
according to Figure 2.34.  
Finally, Table 2.11 compares the results of the various models (FS/R:  
full-strength rigid joints; FS/SR: full-strength semi-rigid joints; PS/SR: 
partial-strength semi-rigid joints) with the reference case of an elastic 
analysis with rigid joints (Table 2.6), denoted by R in the table . 
 

Table 2.10 – Results for partial-strength joints and real behaviour 
 My (kNm) Vz (kNm) Nx (kNm) � (mm) 

1 177.7 213.5 6.2 33.3 
2 355.2 5.8 6.2 69.6 
3 236.1 225.2 6.2 33.3 
4 79.0 161.2 50.4 94.3 
5 327.9 2.6 50.4 69.7 
6 104.7 166.4 50.4 94.0  



2.2. STRUCTURAL MODELLING 

 

_____ 
63 

Table 2.11 – Comparative summary of results  

 FS/R FS/SR PS/SR Mpl
beam/Mi

R 
M1/M1

R 0.96 0.91 0.69 1.4
M2/M2

R 1.04 1.10 1.40 1.4
M3/M3

R 0.96 0.92 0.65 1.0
M4/M4

R 0.96 0.89 0.45 2.1
M5/M5

R 1.03 1.08 1.50 1.6
M6/M6

R 0.97 0.92 0.46 1.6  
 
The analysis of column R

i
beam

Rdypl MM ,,  in Table 2.11 shows that, neglecting 

the deformability of the joints, the resistance of the beams is governed by the 
hogging moment in section 3. For the full-strength joints of Figures 2.29 and 
2.30, classified as rigid according to EC3-1-8, the maximum influence of the 
flexibility of the joints on the results is 4.1% (inside the 5% maximum 
difference allowed by EC3). Realistic full-strength semi-rigid joints for this 
example are classified according to stiffness close to the rigid boundary. 
Therefore, a limited effect is noted, with maximum variation of 11% on the 
results. Finally, for the partial-strength joints of Figures 2.32 and 2.33, large 
differences are noted. The critical cross sections in terms of cross  
sectional-resistance are now located at mid-span of the beams, with moment 
increases of 40% for the intermediate beam and 50% for the top beam, with 
respect to the rigid solution. The maximum hogging moments are reduced by 
up to 55%. This example highlights the potential advantages of using partial 
strength joints, potentially leading to more balanced and economical 
solutions as long as the rotation capacity of the joints is ensured.  
_____________________________________________________________ 
 
Example 2.2: Consider the frame represented in Figure 2.35 (E = 210 GPa 
and steel grade S275), under the indicated loading. Consider pinned column 
base joints, and full-strength rigid joints at the external nodes. At the internal 
node,  the joint to be used is shown in Figure 2.36. It has an end plate 20 mm 
thick, and M24 class 10.9 bolts. 
 
Using an elastic analysis and neglecting eccentricities in the nodes, 
determine the forces and displacements, considering the following situations: 
a) rigid internal node joint; 
b) internal node joint modelled by two rotational springs;  
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c) internal node joint modelled by three rotational springs. 
 

12 m 

HEA240 HEB400 

IPE360 

  p1 = 15 kN/m 

10 m HEA240 

  p2 = 5 kN/m 

IPE360 

8 m 

Figure 2.35 – Steel frame  
 

 
Figure 2.36 – Detail of the internal node joint 

_______________________________ 
 
Figure 2.37 illustrates the critical cross sections to consider in the analysis, 
as well as the three modelling alternatives for the internal node  
beam-to-column joint. Because of the asymmetry of the structure and of the 
loading, the maximum sagging moment will not occur at points 2 or 4  
(mid-span of the beams). Points 2’ and 4’ have an undefined location and 
correspond to the points of maximum sagging moment. 



2.2. STRUCTURAL MODELLING 

 

_____ 
65 

12 m 

1 

10 m 

8 m 

2 4 5 2’ 4’3e 3d

3p

�2’ �4’ 

 
a) Structural model 

b) c) d)  
Figure 2.37 – Modelling of the internal node joint  

 
a) Determination of the forces and displacements for rigid connections. 
 
Based on Figure 2.37a and modelling the internal node according to  
Figure 2.37b, the bending moment diagram of Figure 2.38 is obtained. 
 

71.3 kNm 

141.6 kNm 

192.0 kNm 

108.1 kNm

15.1 kNm

12.7 kNm 

12.7 kNm 84.0 kNm 

71.3 kNm 

 
Figure 2.38 – Bending moment diagram 
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b) Determination of the forces and displacements for an internal node joint 
modelled by two rotational springs. 
 
In this case, the modelling of the joint at the internal node corresponds to the 
simplified approach of EC3-1-8 (see section 2.2.5).  
 
Using the COP® program, the initial stiffness of the left and right joints, for 

0�� de �� (equal and opposed moments) is given by: 
 

radkNmSS d
inij

e
inij /42590,, �� . 

 
An elastic analysis of the structure leads to kNmM e 0.1623 �  and 

kNmM d 8.783 � , and so the assumed values for �		must be corrected. 
Application of the iterative procedure described in section 2.2.5 yields the 
results of Table 2.12. 
 

Table 2.12 – Iterative process 
 Number of iteration 
 (0) (1) (2) (3) 

�e 0 0.51 0.53 0.53 
�d 0 1.06 1.14 1.14 

Sj.ini 
e 42590 36698 36515 36505 

Sj.ini 
d 42590 32020 31419 31385 

M3 e (kNm) 162.0 157.3 157.0 157.0 
M3 d (kNm) 78.8 73.6 73.3 73.3 

 
 

c) Determination of forces and displacements for an internal node joint 
modelled by three rotational springs. 
 
In this case, the modelling of the internal node joint, schematically 
represented in Figure 2.37d, corresponds to the non-iterative approach (see 
section 2.2.5). 
Using the COP® program, it is necessary to determine the secant stiffness of 
the left and right joints without considering the contribution of the column 
web panel in shear (which is equivalent, in this case, to consider 

0�� de �� ). So, the value of the initial stiffness is identical to the value of 

initial iteration of the previous case: 
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radkNmSS d
inij

e
inij /42590,, �� . 

 
Additionally, it is necessary to determine separately the stiffness of the 
column web panel in shear, without considering the parameter � 	According 
to expressions (2.6) and (2.7), where z is the level arm obtained from Figure 
6.15 of EC3-1-8: 
 

mm
z
Ak vc 72.9

2736.0
1098.6938.038.0 1

1 �
!!

��
�

; 
 

radkNm
k
zES S

inij /152789
1 1

2

, �
!

� . 

 
An elastic analysis of the structure yields kNmM e 3.1613 �  and .9.793 kNmM d �  
Table 2.13 summarises the results (absolute values) for the three approaches, 
for the critical cross sections of Figure 2.37a. Neglecting the stiffness of the 
two joints in the internal node (case (a)), errors of 19%, 35% and 3% in the 
bending moments in the left and right beams and column, respectively, are 
noted. Using the simplified model of EC3 (case (b)), those errors are reduced 
to 3%, 8% and 3%, for the same cross sections. This example highlights the 
importance of taking into account the flexibility of the joints. Additionally, 
the simplified approach of EC3-1-8 yields reasonable results when compared 
to the non-iterative approach. 
 

Table 2.13 – Synthesis of results  
M a) b) c) 

(kNm)  (0) (1) (3)  
1 71.3 75.7 76.7 76.7 74.9 
2’ 141.6 152.9 154.5 154.6 153.6 
2 138.3 151.1 153.0 153.1 151.9 
3e 192.0 162.0 157.3 157.0 161.3 
3p 84.0 83.3 83.6 83.7 81.5 
3d 108.1 78.8 73.6 73.3 79.9 
4 7.7 4.4 6.7 6.8 3.4 
4’ 15.1 16.0 16.8 16.9 15.0 
5 12.7 7.5 7.0 6.9 6.6  

_____________________________________________________________ 
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Example 2.3: Consider the two-storey steel framed building (E = 210 GPa 
and S275) of Figure 2.39, subject to the following factored loads:  
    -  a uniformly distributed load on the 1st floor of 9.0 kN/m2 and on the 2nd 

floor of 6.7 kN/m2 (these loads are applied directly on the primary beams); 
    -  vertical linearly distributed loads on the secondary beams of 50.7 kN/m 

and 40.8 kN/m, respectively on the 1st floor and on the 2nd floor as 
shown in Figure 2.40; 

    -  horizontal linearly distributed loads of 2.96 kN/m and 3.64 kN/m, 
applied at the level of the 1st floor and of the 2nd floor respectively, and 
only in one side of the structure (see Figure 2.40).  

The columns consist of HEA 260 profiles and the primary beams  
(x-direction) are IPE 400 profiles. The secondary beams (y-direction) are 
constituted by IPE 300 and the vertical bracing consists of CHS 26.9/2.3. 
The concrete slab is 13 cm thick and the spacing of the frames in the y 
direction is 5.0 m. Consider rigid beam-to-column joints and column bases. 
Also assume that the beams are non-composite. 
 

 
Figure 2.39 – Two-storey steel framed building 

 
Determine the design internal forces and displacements corresponding to 
ULS for the following modelling alternatives:  
 
a)  structure modelled with beam elements only, neglecting the slab; 
b) structure modelled with beam elements only, considering the in-plane 

contribution of the slab by applying equivalent diagonal bracing; 

z 

x 

y 
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c) structure modelled with beam elements for the beams and columns and 
shell elements for the slab. 

 

40.8 kN/m 

50.7 kN/m 

40.8 kN/m 

50.7 kN/m 

3.64 kN/m 

2.96 kN/m 

10 m 

5 m 

5 m 

5 m 

5 m 

z 

y 
x 

 
Figure 2.40 – Loads on secondary beams 

 
The internal forces and displacements are calculated for three different 
structures, corresponding to the three modelling options. The results 
presented are related to the critical cross sections represented in Figure 2.41, 
and for the middle frame only. 
 

10 m 

5 m 

5 m 

3’ 

4 
5’’ 5 

6 

6’ 

7 

8’ 

8 

3 

�2 

�5 

�4 

�1 

�6 

�3 

3’’ 

1 2 

5’ 

 
Figure 2.41 – Critical cross sections in the middle frame 

_______________________________ 
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a) Structure modelled with beam elements only, neglecting the slab  
(model 1). 
 
Neglecting the slab, the calculation model considers only the bare steel 
frame, as illustrated in Figure 2.42. The joints between the primary beams 
and the columns are rigid. The secondary beams are pinned at both ends.  
 

 
Figure 2.42 – Structural steel model (neglecting the slab) 

 
b) Structure modelled with beam elements only, considering the in-plane 
contribution of the slab by applying equivalent diagonal bracing (model 2). 
 
In this model, represented in Figure 2.43, the in-plane contribution of the 
slab is simulated by an equivalent diagonal bracing. Hence, the steel 
structure is similar to the previous case, apart from the horizontal diagonal 
bracing system, which is introduced in order to provide the equivalent 
stiffness corresponding to a concrete slab 13 cm thick. Bracing members are 
pinned at both ends.  
 

 
Figure 2.43 – Structural steel model with horizontal bracing 
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c) Structure modelled with beam elements for the beams and columns and 
shell elements for the slab (model 3). 
 
In this case the model is illustrated in Figure 2.39. The beams are  
non-composite, so that the slab is simply supported on the beams. 
For model 1, the bending moment, shear force and axial force diagrams are 
illustrated in Figures 2.44 to 2.46. The torsional and beam minor axis 
bending moment diagrams are not represented because they yield negligible 
values.  
 

177.0 kNm 

346.0 kNm
264.5 kNm

18.5 kNm

94.1 kNm 

170.4 kNm

177.0 kNm 
217.6 kNm 

146.4 kNm 

217.6 kNm 

96.0 kNm 

199.5 kNm

222.8 kNm

257.7 kNm

 
Figure 2.44 – Bending moment diagram  

 

69.7 kN

22.5 kN 

216.8 kN 

163.9 kN 

233.1 kN

172.0 kN

48.5 kN 

83.4 kN

 
Figure 2.45 – Shear force diagram 
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-366.2 kN

-833.7 kN

-85.2 kN

34.4 kN

-374.4 kN 

-857.9 kN 

 
Figure 2.46 – Axial force diagram 

 
 
Table 2.14 compares the results (bending moment and axial force) for the 
three models at the critical cross sections. Compared to model 2, the  
mid-span moments show maximum variations of +6.7% and -37.3% for 
model 1 and model 3, respectively. A similar comparison for the hogging 
moments yields maximum variations of +5.8% and -28% for model 1 and 
model 3, respectively. 
 
 

Table 2.14 – Bending moments and axial forces at the critical cross sections  
(beam elements) 

 Model 1 Model 2 Model 3 
 My (kNm) Nx (kN) My (kNm) Nx (kN) My (kNm) Nx (kN) 

1 18.5 833.7 20.8 829.9 14.4 854.9 
2 96.0 857.9 86.9 854.9 79.4 885.2 
3 264.5 34.4 251.7 19.0 179.9 109.1 
3’ 94.1 833.7 89.9 829.9 73.3 854.9 
3’’ 170.4 366.0 161.7 365.8 127.1 381.2 
4 257.7 34.4 241.6 19.0 151.5 109.1 
5 346.0 34.4 327.1 19.0 251.3 109.1 
5’ 146.4 857.9 136.7 854.9 121.0 885.2 
5’’ 199.5 374.1 190.4 371.8 154.7 392.3 
6 177.0 84.2 170.4 42.1 132.3 70.8 
6’ 177.0 366.0 170.4 365.8 132.3 381.2 
7 222.8 84.2 211.4 42.1 130.1 70.8 
8 217.6 84.2 207.0 42.1 169.4 70.8 
8’ 217.6 374.4 207.0 371.8 169.4 392.3 
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Table 2.15 compares the displacements for the three models. Compared with 
model 2, the maximum vertical displacement of the beams differs by  
+20.2% and -29.5% for models 1 and 3, respectively. 
 

Table 2.15 – Displacements � (mm), at the critical cross sections  

 Model 1 Model 2 Model 3 
3 11.8 9.9 9.2 
4 51.1 48.3 34.3 
5 11.3 9.4 9.3 
6 21.2 17.7 17.0 
7 48.6 46.5 32.8 
8 20.7 17.4 16.5  

 
Comparing model 1 with model 2, the differences in bending moment, are 
less than 10%. At almost all critical sections, model 1 gives larger values 
than model 2 and are on the safe side compared to model 2. On the contrary, 
model 3 (apparently the most sophisticated model) presents differences of up 
to 37.3% compared to model 2. Model 3 gives lesser values. These 
differences can be explained by the influence of the bending stiffness of the 
concrete slab itself, as can be seen in Table 2.16. 
 

Table 2.16 – Moments at the critical cross sections (slab elements)  

 
Model 3 

Mx (kNm) My (kNm) Mxy (kNm) 
3 81.1 9.6 0.14 
4 23.4 28.9 0.01 
5 93.2 10.3 0.52 
6 18.7 3.5 0.002 
7 19.8 24.3 0.002 
8 21.9 3.4 0.002 

 
 
However, the results of model 3 are not realistic at ultimate limit state 
because no account is taken of the cracking of concrete in the hogging 
regions. A proper simulation would require a non-linear analysis with 
cracked concrete or an approximate iterative procedure. Since this is not a 
practical approach for common building frames, a good compromise is to use 
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a reduced thickness of the slab. This solution keeps the modelling 
advantages (direct application of the loading on the shell elements, therefore 
reducing significantly the amount of pre-processing work), and also 
simulates the in-plane stiffness of the slab. Table 2.17 compares the results 
for three slab thicknesses. The model with the thinnest slab shows maximum 
differences of 8% when compared with model 2 and the bending moments in 
the slab along the beam direction virtually vanish.  
 

Table 2.17 – Bending moments in the critical sections (beam and shell elements) 

 Model 3 Model 3* (7.5 cm) Model 3** (2.5 cm) 
 Beam Shell Beam Shell Beam Shell 
 Mz (kNm) Mx (kNm) Mz (kNm) Mz (kNm) Mz (kNm) Mz (kNm) 

1 14.4 - 20.6 - 21.7 - 
2 79.4 - 86.1 - 89.7 - 
3 179.9 81.1 238.5 27.3 268.8 1.4 
3’ 73.3 - 88.4 - 96.3 - 
3’’ 127.1 - 150.1 - 172.5 - 
4 151.5 23.4 215.3 8.1 253.6 0.5 
5 251.3 93.2 309.4 29.6 338.6 1.5 
5’ 121.0 - 133.4 - 140.6 - 
5’’ 154.7 - 176.1 - 198.0 - 
6 132.3 18.7 160.3 10.8 177.3 0.6 
6’ 132.3 - 160.3 - 177.3 - 
7 130.1 19.8 185.8 7.0 220.5 0.4 
8 169.4 21.9 196.7 11.6 212.6 0.7 
8’ 169.4 - 196.7 - 212.6 -  

 
Table 2.18 compares the critical buckling loads for the three models. The 
critical modes are similar for all models but the model with beam and shell 
elements is much stiffer for the first two (torsional) modes. This reflects the 
contribution of a stiff 13 cm thick concrete slab. The third mode is a sway 
mode in the x direction and good agreement is observed for the critical 
buckling load between the three models (differences of only -12.6% and  
-4.7% when compared to model 3).  
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Table 2.18 – Critical buckling loads and buckling modes 

 Model 1 Direction Model 2 Direction Model 3 Direction 
1 7.37 T 7.42 T 10.30 T 
2 7.57 T 7.61 T 10.65 T 
3 9.93 X 10.83 X 11.36 X 
4 13.30 T 13.36 T 13.48 T 
5 13.90 T 13.84 T 14.82 T 
6 14.82 T 14.89 T 15.44 T 
7 14.96 T 15.01 T 16.24 X 
8 15.23 T 15.30 T 19.33 T 
9 15.56 T 15.50 T 19.81 T 

10 16.15 X 16.67 T 20.30 T 
 

 
 
2.3. GLOBAL ANALYSIS OF STEEL STRUCTURES 

 
2.3.1. Introduction 

 
The global analysis of a steel structure should provide with sufficient 

accuracy the internal forces and moments and the corresponding 
displacements. Analysis is to be based on appropriate calculations models 
(clause 5.1.1(1)) and the model and the basic assumptions should reflect the 
structural behaviour (clause 5.1.1(2)). In particular, it should ensure that the 
relevant non-linearities for a given limit state are adequately taken into 
account.  

The internal forces and displacements may be determined using either 
a global elastic analysis or a global plastic analysis (clause 5.4.1(1)). Finite 
element analysis is also possible but it is not specifically covered in  
EC3-1-1, reference being made to EC3-1-5 (CEN, 2006c). 

Global elastic analysis is based on the assumption of a linear  
stress-strain relation for steel, whatever the stress level in the structure is 
(clause 5.4.2(1)). In practical terms, global elastic analysis assumes that the 
reference stress caused by the applied forces is lower than the yield stress of 
steel anywhere in the structure. Elastic global analysis may be used in all 
cases (clause 5.4.1(2)), provided that the provisions in clause 5.1 are met. It 
is noted that even though the internal forces and displacements are obtained 
using elastic analysis, the design resistance of the members may be evaluated 
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on the basis of the plastic cross section resistance (clause 5.4.2(2)). Specific 
procedures and a detailed practical example of a multi-storey building 
designed using global elastic analysis are presented in chapter 4. 

Global plastic analysis assumes progressive yielding of some  
cross sections of the structure, normally leading to plastic hinges and a 
redistribution of forces within the structure. In this type of analysis it is 
mandatory that the cross sections where plastic hinges occur possess 
sufficient rotation capacity. Usually, the adopted stress-strain relation for 
steel is a bi-linear elastic-plastic relationship, although more precise 
relationships may be adopted (clause 5.4.3(4)). The use of plastic global 
analysis is subjected to several conditions. These are detailed in chapter 5, 
together with a detailed practical example of an industrial building designed 
using global plastic analysis. 

Global analysis may also be of 1st or 2nd order. In a first order analysis, 
the internal forces and displacements are obtained with reference to the 
undeformed structure (clause 5.2.1(1)). In a 2nd order analysis, the influence 
of the deformation of the structure is taken into account. This should be 
considered whenever it increases the action effects significantly or modifies 
significantly the structural behaviour (clause 5.2.1(2)). The presence of 
compressive forces or stresses may induce 2nd order effects, amplifying 
internal forces and displacements. In terms of global analysis, it is then 
required to assess the structural stability of the frame, an aspect that will be 
detailed in the next section. A second situation where the deformed  
geometry of the structure must be taken into account occurs whenever the 
structure or parts of it present low stiffness, such as is the case of structures 
containing cables. In this case, a large-displacement analysis (or third-order 
analysis in german terminology) should be carried out. This case will not be 
covered in this book, EC3-1-11 (CEN, 2006e) being specifically devoted to 
this.  

Global analysis must also explicitly model imperfections, both at 
global level and member level, although some simplified procedures exist to 
avoid direct modelling of some imperfections (section 2.3.3 and chapter 3). 
Also, the effects of shear lag and of local buckling on the stiffness should be 
taken into account if this significantly influences the global analysis  
(clause 5.2.1(5)). EC3-1-5 presents detailed procedures for such situations, 
although for rolled sections and welded sections with similar dimensions, 
shear lag effects may be neglected. A forthcoming volume of the ECCS 
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Eurocode Design Manuals (Beg et al, 2010) covers shear lag and local 
buckling in detail. Finally, the effects on the global analysis of slip in bolt 
holes and similar deformations of connection devices like studs and anchor 
bolts should be taken into account, where relevant and significant (clause 
5.2.1(6)). 

The choice of the analysis procedure (elastic or plastic, clause 
5.4.1(1)), should take into account all the aspects discussed above  
(non-linear material behaviour, 2nd order effects and imperfections), aiming 
to achieve a good compromise between safety and simplicity of the 
calculation procedures. All of these aspects are discussed and detailed in the 
following sections. Elastic 1st order analysis is the usual choice for most 
practitioners. However, in many cases, it does not ensure results on the safe 
side. A number of simplified procedures based on 1st order analysis were 
therefore developed to incorporate non-linearities and imperfections, 
described in chapters 4 and 5.  
 
2.3.2. Structural stability of frames 

 
2.3.2.1. Introduction 

 
Steel structures are usually slender structures when compared to 

alternatives using other materials. Instability phenomena are potentially 
present, so that it is normally necessary to verify the global stability of the 
structure or of part of it. This verification leads to the need to carry out a  
2nd order analysis, with the consideration of imperfections (clause 5.2.2(2)). 
There is a multiplicity of ways to assess 2nd order effects including 
imperfections. In general terms and according to clause 5.2.2(3), the 
different procedures can be categorized according to the following three 
methods (clause 5.2.2(3)): 

-  global analysis directly accounts for all imperfections (geometrical 
and material) and all 2nd order effects (method 1); 

- global analysis partially accounts for imperfections (global 
structural imperfections) and 2nd order effects (global effects), 
while individual stability checks on members (clause 6.3) 
intrinsically account for member imperfections and local  2nd order 
effects (method 2); 
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- in basic cases, individual stability checks of equivalent members 
(clause 6.3), using appropriate buckling lengths corresponding to  
the global buckling mode of the structure (method 3). 

 
Normally, it is usual to sub-divide the 2nd order effects into P-�	effects 

(for members) and P-�	effects (for the structure). P-� effects correspond to 
the effects of the displacements along the length of a member (Figure 2.47), 
while P-� effects correspond to the effects of the displacements at the ends 
of the members, also illustrated in Figure 2.47. 

 

�	

P P

�	

 
Figure 2.47 – Typical displacements � and � 

 
This subdivision helps to understand the three methods described 

above. In fact, both the P-� and the P-� effects can be approximately 
accounted for, through individual verifications of the stability of equivalent 
members (method 3). However, especially with respect to P-� effects, this 
method requires an accurate determination of the buckling modes and the 
corresponding equivalent lengths, as well as a structural behaviour in which 
the first buckling mode is dominant. It is therefore understandable that EC3 
limits the application of this method to simple cases (that correspond to 
standard cases in which the effective lengths are normally established by 
inspection4). It must also be pointed out that, in this method, imperfections 
are exclusively considered in the context of clause 6.3 in the verification of 
the stability of members.  

                                                      
4 Note that EC3 allows the more generalized use of this methodology, method of the 
equivalent column (clause 5.2.2(8)), leaving as a national option the definition of its 
scope. 
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Method 1 is the most sophisticated method because the global 
analysis, commonly called GMNIA (Geometrical and Material Non-linear 
Analysis with Imperfections), accounts for the 2nd order effects, as well as 
the global imperfections of the structure and local imperfections of the 
members. According to clause 5.2.2(7), if 2nd order effects in individual 
members and relevant member imperfections are totally accounted for in the 
global analysis of the structure, no individual stability check for the 
members according to clause 6.3 is necessary. However, either because of its 
complexity, or for the volume of work that it requires, this method still does 
not constitute the preferential option in design.  

Method 2 constitutes the usual design procedure. The P-� effects and 
the local member imperfections are incorporated in the normative 
expressions for the stability of members, whereas the P-� effects are directly 
evaluated by global analysis and the global imperfections are explicitly 
considered in the analysis of the structure. The individual stability of 
members should be checked according to the relevant criteria in clause 6.3 
for the effects not included in the global analysis (clause 5.2.2(7)). This 
verification may be based on a buckling length equal to the system length as 
a safe estimate, although the non-sway buckling length may also be used. So, 
from this point forward in this chapter, unless explicitly indicated otherwise, 
only the procedures for the determination of P-� effects will be described.  

2nd order effects increase not only the displacements but also the 
internal forces, in comparison to 1st order behaviour. It is thus necessary to 
assess if this increase is relevant and, if so, to calculate (exactly or 
approximately) the real forces and displacements in the structure.  

Usually, the sensitivity of a structure to 2nd order effects is assessed 
indirectly using the elastic critical load of the structure, Fcr. This assessment 
must be done for each load combination, through the ratio between the 
critical load and the corresponding applied loading (Fcr/FEd). EC3 requires 
the consideration of 2nd order effects whenever (clause 5.2.1(3)): 

 
 10�� Edcrcr FF�      (in elastic analysis); (2.8a) 

  
 15�� Edcrcr FF�      (in plastic analysis). (2.8b) 

 
It is noted that a greater limit for �cr for plastic analysis is given 

because structural behaviour may be significantly influenced by non-linear 
material properties in the ultimate limit state (e.g. where a frame forms 
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plastic hinges with moment redistribution or where significant non-linear 
deformations arise from semi-rigid joints). EC3 allows National Annexes to 
give a lower limit for �cr for certain types of frames where substantiated by 
more accurate approaches. 
 
2.3.2.2. Elastic critical load 

 
The elastic critical load of a structure (Timoshenko and Gere, 1961; 

Chen and Lui, 1987) plays a very important role in the evaluation of the 
sensitivity of a structure to 2nd order effects. According to King (2001a), the 
critical load of a structure, although a theoretical value, is of great practical 
interest, as it: 

-  shows the sensitivity of the structure to 2nd order effects through 
the ratio Edcrcr FF�� ; 

- can be calculated much more easily than a 2nd order analysis; 
-  constitutes the basis for a series of approximate methods for the 

evaluation of 2nd order effects, that can be applied to a large 
proportion of cases (except when 0.3�cr� ); 

- reflects the relative sensitivity of each load combination with 
respect to 2nd order effects. 

 
The determination of the critical loads of a framed structure can be 

carried out analytically, using the stability functions of Livesley and 
Chandler (1956) or, in an equivalent way, using commercial software. 
Alternatively, the critical loads can be calculated using approximate 
methods. Both procedures are discussed in detail in the following 
paragraphs. 

Nowadays, the numerical calculation of the elastic critical loads of a 
structure is a standard feature of most commercial software for structural 
analysis. However, in order to obtain reliable results, the following rules 
should be obeyed: 

- the structural model shall adequately reproduce the structure’s 
elastic behaviour. In the modelling of joints, the initial stiffness 
should be used;  

-  the discretization of the members must be adequate, with a 
minimum number of elements for each sinusoidal half-wave of the 
buckling mode (Figure 2.48); 
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Figure 2.48 – Recommended discretization for the evaluation of critical loads 

 
- the determination of the critical loads should be done for each load 

combination and the actions must be specified for a level of 
loading that corresponds to ultimate limit state. So, the program 
will directly provide the quotient �cr, without being necessary to 
evaluate explicitly FEd. Note that FEd, defined in EC3 (clause 5.2) 
as the design load, corresponds in reality to the axial force 
distribution in the structure (Figure 2.49)5; 

 

NEd 

�cr 

 
Figure 2.49 – Definition of the axial loading for the determination of critical load 

 
- because any structure has more than one buckling mode, and the 

2nd and higher critical loads can be relevant to the 2nd order effects, 
more than just the 1st critical load and buckling mode should be 
calculated. In particular, it is convenient to always calculate the 
lowest critical load for a “sway mode” and for a “non-sway mode”, 

                                                      
5 Some authors define FEd as the sum of the (gravity) vertical reactions in the 
structure, which creates difficulties in the interpretation of results for loadings in 
which the total vertical reaction is zero (wind action, for example). 
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illustrated in Figure 2.50. In the case of three-dimensional frames, 
this requirement must be widened to the lowest critical loads and 
buckling modes in each direction. 

 

a) b)  
Figure 2.50 – “Sway mode” (a)) and “Non-sway mode” (b))  

 
 Example 2.4, presented at the end of this sub-chapter, shows in detail 
the determination of critical loads and buckling modes. 

The approximate calculation of critical loads evolved in days where 
computational tools were not readily available to allow exact analysis. 
Nowadays, they still remain quite useful, either for the pre-design phase, or 
for checking to eliminate gross errors in numerical results. The most 
widespread approximate method was developed by Horne (1975) and it is 
applicable to regular frames for the determination of the lowest critical load 
in a “sway mode”. According to this method, �cr is given by: 

 

 
max200

1
�

� �cr ,    (2.9) 

 
in which �max is the maximum value of the “sway” index for each floor, �s, 

given by: 
 

 
h

LU
s

��� �
� ,    (2.10) 

 
and h is the height of the floor, �U and �L are the horizontal displacements at 
the top and at the bottom of the floor, respectively, calculated on the basis of 
a linear elastic analysis of the frame under fictitious horizontal forces applied 
at the level of each floor, equal to 0.5% of the factored total vertical loads 
applied to that floor. This procedure requires therefore the calculation of �cr 
for each floor and each load combination. Note that, in Horne’s original 
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work, equation (2.9) presents 222.2 instead of 200, in order to ensure a safe 
estimate of the critical load6.  

EC3 also suggests this method for sway mode failure  
(clause 5.2.1(4)B), for beam-and-column type plane frames in buildings or 
portal frames with shallow roof slopes7, provided that the axial compression 
in the beams or rafters is not significant8. In this case, parameter �cr, that 
corresponds to the instability mode with lateral displacements (as illustrated 
in Figure 2.50a) can be evaluated by the following simplified expression: 
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where HEd is the total horizontal reaction at the top of the storey9, VEd is the 
total vertical reaction at the bottom of the storey, �H,Ed is the relative 
horizontal displacement between the top and the bottom of a given storey, 
when the frame is loaded with the design horizontal loads, increased with the 
horizontal forces equivalent to the imperfections and hi is the height of the 
storey, such as illustrated in Figure 2.51. 

As an alternative to Horne’s method, Wood (1974) suggested a 
method for the calculation of critical loads based on a beam-and-column 
equivalent system, illustrated in Figure 2.52. According to Wood’s method, 
the relation (LE/L) between the buckling length LE and the real length L is 
evaluated according to distribution coefficients 1�  and 2� , given by: 
                                                      
6 Except for frames with a single floor, in which in that same case the estimates can 
present unsafe results. That is why BS 5950 (BSI, 2000) does not allow the 
application of this method for frames with a single floor. 
7 In Note 1B of clause 5.2.1(4)B it is stated that in the absence of more detailed 
information a roof slope may be taken to be shallow if it is not steeper than 1:2 
(26º). 
8 In Note 2B of clause 5.2.1(4)B it is stated that in the absence of more detailed 
information the axial compression in the beams or rafters may be assumed to be 
significant if 

Ed

y

N
Af

3.0
(  

where NEd is the design value of the compression force and (  is the in-plane non 
dimensional slenderness calculated for the beams or rafters considered as hinged at 
the ends of the system length measured along the beams or rafters. 
9 EC3-1-1 originally defined it as the reaction at the bottom of the storey, now 
corrected in a corrigenda. 
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where Kc is the column stiffness coefficient, given by I/L, K1 and K2 are the 
stiffness coefficients for the adjacent columns, also given by I/L and Kij 

represent the effective stiffness coefficients of the adjacent beams. I denotes 
the moment of inertia (second moment of area) and L is the length of the 
member. 

 
�H,Ed 

VEd 

HEd 

hi 

 
Figure 2.51 – Lateral displacements in an unbraced frame 

 
The Kij stiffness coefficients of the beams depend on the conditions of 

support at the opposite end, presented in Table 2.19 for beams without axial 
force, working in the elastic range. Other situations can be found in 
Boissonnade et al (2006).  

In the case of columns in which the lower end is a connection to the 
exterior, �2 coefficient is zero if the connection is fixed, and equal to 1.0 if it 
is pinned. Similar graphs for elastically restrained columns to horizontal 
displacements can be found in Gonçalves (2000). 

 
Table 2.19 – Kij stiffness coefficients in beams 

Restriction to rotation at the opposite end Kij 
Fixed 1.0 I/L 
Pinned 0.75 I/L 
Equal rotation (single curvature) 0.5 I/L 
Equal rotation but in the opposite way (double curvature) 1.5 I/L 
General case ()a next to the column and )b at the opposite end) 1+0.5()b /)a))I/L 
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a) Frame with no lateral displacements 
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b) Frame with lateral displacements 
Figure 2.52 – Wood’s equivalent frame 

 
The application of this method consists of the following steps: 

-  determination of the equivalent length (Le) for the column to be 
studied, using equation (2.12) and the graphs of Figure 2.52; 

-  determination of the critical load of the column (Ncr), using 
equation (2.13) 

 

  2

2

e
cr L

EIN *
� ;    (2.13) 

 
-  calculation of �cr by: 
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Ed

cr
cr N

N
�� .    (2.14) 

 
This process must be repeated for all columns in order to find the lowest 
critical load multiplier. 

 
2.3.2.3. 2nd order analysis 

 
The 2nd order analysis of structures invariably requires the use of 

computational methods, including step-by-step or other iterative procedures 
(clause 5.2.2(4)). In this case, to ensure reliable results, the guidance 
described in sub-section 2.3.2.2 for the numerical evaluation of the elastic 
critical loads should be followed10. Also, convergence of the results should 
be explicitly checked by imposing adequate error limits on the geometrical 
non-linear calculations. Finally, the results should be compared with a 
reference first order elastic analysis to ensure that the amplified internal 
forces and displacements are within expected limits. Example 2.4 
exemplifies the application of 2nd order elastic analysis in the context of a 
simple two-storey plane frame. 

In order to allow quicker approaches, approximate methods have been 
developed which, in many cases, estimate the exact results with acceptable 
error. Generically, the approach is through a linear combination of buckling 
modes of the structure11 to provide amplification methods of 1st order results 
(Horne, 1985), illustrated in the following equation: 
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II
EdE denotes 2nd order values (only P-�	effects), iq denotes buckling mode  

i and iA  is a constant. It is important to highlight that the results converge to 
the exact solution as long as a sufficient number of buckling modes is used 
and the loading does not approach too much the lowest critical load. In 
practical terms, given the resemblance between buckling modes and  
                                                      
10 This depends on the implementation of second-order effects in each structural 
analysis software. The reader should carefully check the user manual of each 
program. 
11 Note the analogy with the amplification of 2nd order moments and displacements 
of a member under bending and compression (Boissonnade et al., 2006). 
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deformations of the structure under appropriate loading, equation (2.15) can 
be re-written in the following more practical format:  
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where superscripts ()I and ()II denote, respectively, 1st and 2nd order values 
and I

id is the 1st order displacement that corresponds to a loading causing a 
deformation similar to the corresponding buckling mode. 

In the particular case of frames that are susceptible of instability in a 
sway mode, the amplification involves only the lowest buckling mode and is 
given by: 
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where index ap means approximate, index AS denotes the anti-symmetric 
“sway” mode, d, M, V and N denote, respectively, displacement, bending 
moment, shear force and axial force. 

This procedure provides the general framework for several simplified 
methods to assess 2nd order effects, allowing if necessary for the 
development of plasticity. These are described in more detail in chapters 4 
and 5. 
 
2.3.3. Imperfections 

 
In steel structures, irrespective of the care taken in their execution, 

there are always imperfections, such as: residual stresses, eccentricities in 
joints, eccentricities of load, lack of verticality and lack of linearity in  
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members (clause 5.3.1(1)). These imperfections are responsible for the 
introduction of additional secondary forces that must be taken into account 
in the global analysis and in the design of the structural elements. The type 
and amplitude of all imperfections are bounded by the tolerances specified in 
the execution standards such as EN 1090-2 (2008), as described in chapter 1. 

According to EC3-1-1, the imperfections should be incorporated in the 
analysis preferably in the form of equivalent geometric imperfections12 , with 
values which reflect the possible effects of all types of imperfections (clause 
5.3.1(2)). Unless these effects are already included in the resistance formulae 
for member design, the following imperfections should be taken into 
account: i) global imperfections of the frame and ii) local imperfections of 
the members (clause 5.3.1(3)). 

Imperfections for global analysis should be considered with the shape 
and direction that lead to the most adverse effects. So, the assumed shape of 
global and local imperfections may be derived from the elastic buckling 
mode of a structure in the plane of buckling considered (clauses 5.3.2(1)). 
Account should be taken of both in-plane and out-of-plane buckling 
including torsional buckling with symmetric and asymmetric buckling 
shapes (clause 5.3.2(2)). 

For frames sensitive to buckling in a sway mode, the effect of 
imperfections should be allowed for in frame analysis by an equivalent 
imperfection in the form of an initial sway imperfection and individual bow 
imperfections of the members (clause 5.3.2(3)). The global initial sway 
imperfection corresponds to a lack of verticality of the structure, defined by 
an angle � (illustrated in Figure 2.53), given by (clause 5.3.2(3)a)): 

 
 mh ���� 0� , (2.18) 

 
�0 is the basic value, given by 

 
20010 �� , 

 
and �h is the reduction factor for height h applicable to columns and �m is 
the reduction factor for the number of columns in a row, given by: 

 

                                                      
12 That include all imperfections (residual stresses, etc.) exclusively as geometrical 
imperfections. 
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where h is the total height of the structure in metres and m is the number of 
columns in a row, including only those columns which carry a vertical load 
NEd not less than 50% of the average value of the axial force in the columns 
in the vertical plane considered. 

It is noted that for building frames (clause 5.3.2(4)B) sway 
imperfections may be neglected whenever 

 
 EdEd V  H 15.0
 , (2.19) 

 
where HEd is the total horizontal design force and VEd is the total vertical 
design force. The initial sway imperfections should be applied in all relevant 
horizontal directions, but need only be considered in one direction at a time 
(clause 5.3.2(8)). 

 

�	

h h 

�	

 
Figure 2.53 – “Equivalent geometric imperfection” in framework structures  

 
The relative initial local bow imperfections of members for flexural 

buckling in a bending mode are given by 
 

 e0/L, (2.20) 
 

where e0 is the maximum amplitude of the initial lateral displacement and L 
is the length of the member (see Figure 2.54). Table 2.20 summarizes the 
recommended design values for the equivalent initial local bow 
imperfections for the various buckling curves and types of analysis.  
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Table 2.20 – Initial local bow imperfections 

Buckling curve Elastic analysis Plastic analysis 
 e0/L e0/L 

a0 1/350 1/300 
a 1/300 1/250 
b 1/250 1/200 
c 1/200 1/150 
d 1/150 1/100 

 
It is recalled from 2.3.2.1 above that when performing the global 

analysis for determining end-forces and end moments to be used in member 
checks according to clauses 6.3, local bow imperfections may be neglected 
because they are already built-in the resistance formulae. However, they 
should not be neglected for frames sensitive to second-order effects in 
which, for the compressed members, there is at least one moment-resisting 
joint at one member end, and 

 

 
Ed
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Af

5.0�( . (2.21) 

 
NEd is the design value of the compressive force and (  is the in-plane  
non-dimensional slenderness calculated for the member considered as pinned 
at its ends (clause 5.3.2(6)). Whenever the stability of members is accounted 
for by second-order analysis (method 1, clause 5.2.2(3)(a) or clause 
5.2.2(7)a)), the member imperfections e0 given in Table 2.20 should be 
considered (clause 5.3.4(2)). For a second-order analysis taking account of 
lateral torsional buckling of a member in bending, the imperfections may be 
adopted as ke0,d, where e0,d is the equivalent initial bow imperfection of the 
weak axis of the profile considered (clause 5.3.4(3)). A value of k = 0.5 is 
recommended, although the National Annexes may choose different values. 
In general, an additional torsional imperfection need not be allowed. 

For simplicity, the effects of initial sway imperfections and local bow 
imperfections may be replaced by systems of equivalent horizontal forces, 
introduced for each column, as shown in Figure 2.54 (clause 5.3.2(7)). In 
case of multi-storey buildings, the equivalent horizontal forces representing 
the initial sway imperfections should be applied at each floor and roof level, 
in proportion to the vertical loads applied to that level (clause 5.3.2(9)).  
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Figure 2.54 – Imperfections and corresponding equivalent horizontal forces 

 
Imperfections leading to torsional effects on a structure caused by 

anti-symmetric sways at two opposite faces should also be considered 
(clause 5.3.2(10)). 

 
A B 

A B 

A B 

A B 

 
Figure 2.55 – Plan view of translational and torsional effects 

 
In the analysis of bracing systems which are required to provide lateral 

stability within the lengths of beams or compression members, the effects of 
imperfections should be included by means of an equivalent geometric 
imperfection of the members to be restrained, in the form of an initial bow 
imperfection (clause 5.3.3(1)), given by: 

 
 5000

Le m�� , (2.22) 
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where L is the span of the bracing system and  
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in which m is the number of members to be restrained. 

For simplicity, the effects of the initial bow imperfections of the 
members to be restrained by a bracing system may be replaced by the 
equivalent stabilizing force qd, illustrated in Figure 2.56 (clause 5.3.3(2)), 
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where �q is the in-plane deflection of the bracing system due to q plus any 
external loads calculated from first order analysis (�q may be taken as 0 if 
second order theory is used).  
 Where the bracing system is required to stabilize the compression 
flange of a prismatic beam, the force NEd in Figure 2.56 may be obtained 
from: 

 

 
h

M
N Ed

Ed � , (2.25) 
 

where MEd is the maximum moment in the beam and h is the overall depth of 
the beam (clause 3.2.2(3)). It is noted that where a beam is subjected to 
external compression, NEd should include a part of the compression force. 

At points where beams or compression members are spliced, it should 
also be verified that the bracing system is able to resist a local force equal to 

 

 
100

2 Ed
mEd

N
N ��� , (2.26) 

 
where 0��� m�  and 20010 �� , applied to it by each beam or compression 
member which is spliced at that point, see Figure 2.57. It should be further 
verified that the bracing system is able to transmit this force to the adjacent 
points at which that beam or compression member is restrained (clause 
5.3.3(4)). For checking for this local force, any external loads acting on the 
bracing systems should also be included, but the forces arising from the 
imperfection given in expression (2.26) may be omitted (clause 5.3.3(5)). 
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Figure 2.56 – Imperfections for bracing systems 
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Figure 2.57 – Bracing forces at splices in compression elements 

 
2.3.4. Worked example 
 
Example 2.4: Consider the steel frame of example 2.1 (E = 210 GPa) 
subjected to the unfactored loadcases illustrated in Figure 2.58, where: 
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AP – permanent load (�G = 1.35); 
AV1 – imposed load 1 (�Q = 1.50, �0,1 = 0.4, �1,1 = 0.3, �2,1 = 0.2); 
AV2 – imposed load 2 (�Q = 1.50, �0,2 = 0.4, �1,2 = 0.2, �2,2 = 0.0). 
 
Calculate by elastic analysis the design internal forces for the verification of 
the Ultimate Limit State (ULS), and the displacements for the verification of 
the Serviceability Limit State (SLS), according to EC3-1-1. Assume rigid 
joints between the beams and the columns and column bases fully restrained.  
 

AP = 16 kN/m 

AP = 90 kN 

10 m 

5 m 

5 m HEA260 

HEA260 HEA260

HEA260

IPE400 

IPE400 

AV2 = 26.7 kN 

AV2 = 20 kN 

AV1 = 55 kN 

AV1 = 8 kN/m 

AP = 90 kN 

AV1 = 55 kN 

AP = 20 kN/m 

AP = 110 kN 

AV1 = 70 kN 

AV1 = 12 kN/m 

AP = 110 kN 

AV1 = 70 kN 

 
Figure 2.58 – Steel frame 

_______________________________ 
 
i) Calculation of the design internal forces 
 
There are two independent imposed loads (AV1 and AV2), therefore the 
structure is analysed for two load combinations (according to EN 1990) as 
follows: 
 
Combination 1 – Permanent load plus imposed load 1 (AV1) as leading 
variable action. 
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 �22,011 AVAVAPEd QG ��� ��� . 
 
Combination 2 – Permanent load plus imposed load 2 (AV2) as leading 
variable action. 
 


 �11,022 AVAVAPEd QG ��� ��� . 
 
First, additional horizontal forces are calculated due to the imperfections 
defined in clause 5.3.2. In the analysis only global imperfections are 
considered, assuming that local imperfections will be included in the 
buckling design of the members (as stated in clause 6.3).  
The “equivalent geometric imperfection”, corresponding to global 
imperfections of the frame, is given by the angle � and: mh ���� 0� . 
 
Assuming: 20010 �� ;  
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hence, radmh 0029.087.067.020010 �!!�� ���� . 
 
The lack of verticality of the columns, given by imperfection �-	 may be 
simulated by equivalent horizontal forces, applied at the level of each floor 
and proportional to the vertical loads applied at that level. These forces are 
then added to the specified horizontal loads, as described in the following 
paragraphs, for the two load combinations. 
 
Combination 1 (permanent load plus AV1  as leading variable action). 
 
The vertical design load applied at the 1st floor, is given by: 
 


 � 
 � kN0.957702101250.11102102035.1 �!�!!�!�!! , 
 
hence, kNF combi 8.20.9570029.01,1 �!� . 
 
Similarly, the vertical design load applied at the 2nd floor is given by: 
 


 � 
 � kN0.7445521085.1902101635.1 �!�!!�!�!! , 
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hence, kNF combi 2.20.7440029.01,2 �!� . 
 
Adding these forces to the remaining horizontal loads, the horizontal design 
loads are obtained for combination 1, as follows:  
 

kNF combH 8.148.2204.050.11,1 ��!!� . 
 

kNF combH 2.182.27.264.050.11,2 ��!!� . 

 
Combination 2 (permanent load plus AV2 as leading variable action). 
 
Applying the same procedure for combination 2, the vertical design load 
applied at the 1st floor is given by: 
 


 � 
 � kN0.72370210124.05.11102102035.1 �!�!!!�!�!! , 
 
hence,  kNF combi 1.20.7230029.02,1 �!� . 
 
The vertical design load applied at the 2nd floor is given by:  
 


 � 
 � kN0.5735521084.05.1902101635.1 �!�!!!�!�!! , 
 
hence,  kNF combi 7.10.5730029.02,2 �!� . 
 
Adding these forces to the remaining horizontal loads, the horizontal design 
loads are obtained for combination 2, as follows:  
 

kNF combH 1.321.22050.12,1 ��!� . 
 

kNF combH 8.417.17.2650.12,2 ��!� . 
 
Finally, in Figures 2.59 and 2.60 the loadcase arrangements for both 
combinations are presented. The loadcase arrangements already include the 
global imperfections of the frame. 
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Figure 2.59 – Loadcase arrangement for combination 1 
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Figure 2.60 – Loadcase arrangement for combination 2 

 
i-1) Internal forces for combination 1 
 
From a 1st order elastic analysis the internal force diagrams due to vertical 
loads (Figures 2.61 to 2.63) and due to horizontal loads (Figures 2.64 to 
2.66) are obtained. There are no horizontal displacements due to vertical 
loads because of the symmetry of the structure. Thus, Figure 2.68 illustrates 
the structural displacements due only to horizontal loads.  
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Figure 2.61 – Bending moment due to vertical loads (comb. 1) 
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Figure 2.62 – Shear force due to vertical loads (comb. 1) 
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Figure 2.63 – Axial force due to vertical loads (comb. 1) 
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26.6 kNm

49.2 kNm 

52.2 kNm 

18.9 kNm 
33.4 kNm 

49.1 kNm

33.3 kNm 

26.6 kNm 

52.3 kNm 

18.9 kNm

 
Figure 2.64 – Bending moment due to horizontal loads (comb. 1) 

 
 
 

16.5 kN 

9.1 kN 5.3 kN

10.4 kN

9.1 kN

16.5  kN
 

Figure 2.65 – Shear force due to horizontal loads (comb. 1) 
 
 
 

5.3 kN 

15.8 kN 

-9.1 kN

-7.4 kN

-5.3 kN

-15.8 kN 

 
Figure 2.66 – Axial force due to horizontal loads (comb. 1) 
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23.5 mm 

12.4 mm 

 
Figure 2.67 – Structural displacements for combination 1 (horizontal loads) 

 
 
It is now required to check whether 2nd order effects should be taken into 
account in the structural analysis. Being a plane frame with a regular 
structure, the simplified method proposed in clause 5.2.1(4)B is considered. 
The horizontal displacements calculated in the previous paragraph allow to 
assess the factor �cr , for each floor and for combination 1, as follows: 
 
1st floor: HEd = 33.0 kN, VEd = 1701.0 kN, h = 5.00 m and �H,Ed = 12.4 mm.  
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2nd floor:  HEd = 18.2 kN, VEd = 744.0 kN, h = 5.00 m and �H,Ed = 11.1 mm. 
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As �cr is less than 10 (although only for the 1st floor), the design internal 
forces should include global second order effects (P-� effects). 
Alternatively, performing a linear eigenvalue analysis, a value of �cr = 7.2, 
would be obtained. Figures 2.68 to 2.70 illustrate the resulting 2nd order 
internal forces.  
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168.7 kNm 

363.6 kNm
244.0 kNm

2.9 kNm

78.3 kNm 

165.8 kNm

168.7 kNm 
227.9 kNm

156.4 kNm 

227.9 kNm 

115.1 kNm 

207.2 kNm

225.3 kNm

257.2 kNm

 
Figure 2.68 – Elastic 2nd order bending moment diagram 
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18.7 kN 

213.0 kN 
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237.0 kN
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51.7 kN 
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Figure 2.69 – Elastic 2nd order shear force diagram 
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-832.6 kN
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Figure 2.70 – Elastic 2nd order axial force diagram 
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As expected, because of the relatively high value of �cr (= 7.2), the influence 
of 2nd order effects is low, resulting in a maximum increase of the bending 
moment in the columns of 5.2 %. These design internal forces should now be 
directly used to perform the cross section resistance checks and the buckling 
resistance checks according to chapter 6 of EC3-1-1, as it will explained in 
detail in chapter 3. Alternatively, to use method 1 (clause 5.2.2(3)), local 
bow imperfections should also be considered in the evaluation of the design 
internal forces. 
 
i-2) Internal forces for combination 2 
 
Following a similar procedure for combination 2 yields the linear elastic 
results for the vertical loads (Figures 2.71 to 2.73) and the horizontal loads 
(Figures 2.74 to 2.76). Figure 2.77 illustrates the structural displacements 
due to horizontal loads, exclusively. 
 

235.4 kNm235.4 kNm

157.1 kNm 

45.4 kNm

90.2 kNm 

145.1 kNm

157.1 kNm 157.1 kNm

90.2 kNm 

157.1 kNm

45.4 kNm 

145.1 kNm

172.9 kNm

192.1 kNm

 
Figure 2.71 – Bending moments due to vertical loads (comb. 2) 

 

60.5 kN

27.1 kN 

171.0 kN 
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132.0 kN 

27.1 kN 
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Figure 2.72 – Shear forces due to vertical loads (comb. 2) 
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-286.5 kN

-648.0 kN

-60.5 kN

33.3 kN

-286.5 kN 

-648.0 kN 

 
Figure 2.73 – Axial forces due to vertical loads (comb. 2) 
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Figure 2.74 – Bending moments due to horizontal loads (comb. 2) 
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12.2 kN
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Figure 2.75 – Shear forces due to horizontal loads (comb. 2) 
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12.2 kN 

35.8 kN 

-20.9 kN

-16.0 kN

-12.2 kN 

-35.8 kN 

 
Figure 2.76 – Axial forces due to horizontal loads (comb. 2) 

 
 

53.2 mm 

27.8 mm 

 
Figure 2.77 – Structural displacements due to combination 2 (horizontal loads) 

 
The horizontal displacements calculated in the previous paragraph allow to 
assess the factor �cr , for each floor.  
 
1st floor: HEd = 73.9 kN, VEd = 1296.0 kN, h = 5.00 m and �H,Ed = 27.8 mm. 
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2nd floor: HEd = 41.8 kN, VEd = 573.0 kN, h = 5.00 m and �H,Ed = 25.4 mm. 
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so that 2nd order effects can be neglected for this load combination. 
Alternatively, a linear eigenvalue analysis yields a value of �cr = 9.4, 
approximately confirming the previous conclusion. Figures 2.78 to 2.80 
illustrate the final (first order) results for this load combination. 
 

96.3 kNm 

253.4 kNm

117.1 kNm 

65.1 kNm 

15.6 kNm 
101.5 kNm

96.3 kNm 
218.0 kNm

164.6 kNm 

218.0 kNm 

155.4 kNm 

188.8 kNm

175.7 kNm

200.4 kNm

 
Figure 2.78 – Design bending moments 
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119.8 kN 

194.6 kN

144.2 kN 

64.0 kN 

81.4 kN

 
Figure 2.79 – Design shear forces 
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-274.3 kN

-612.2 kN

-81.4 kN

17.4 kN

-298.7 kN 

-683.8 kN 

 
Figure 2.80 – Design axial forces 

  
ii) Structural displacements 
 
Considering, for example, frequent combinations for the verification of the 
serviceability limit state with respect to excessive deformation yields the two 
following combinations for the two imposed loads (AV1 e AV2):   
Combination 1 – Permanent load plus AV1 as leading variable action 
 

2122,211,11 0.03.0 AVAVAPAVAVAPEd !�!����� �� . 

 
Combination 2 – Permanent load plus AV2 as leading variable action 
 

1211,222,12 2.02.0 AVAVAPAVAVAPEd !�!����� �� . 
 
Figures 2.81 and 2.82 illustrate the corresponding displacements. These do 
not include the effects of imperfections nor second order effects, as account 
for is not required . According to section 7 of EC3-1-1, these displacements 
should comply with limit values specified for each project and agreed with 
the client. Adopting the following values (Table 1.5 and Figure 1.4 in 
chapter 1): for vertical deflections (beams in general floors), wmáx = L/250; 
for horizontal deflections between the top and the bottom of storey i,  
�máx = hi/300; and for total horizontal deflection, �máx = h/500, where L is the 
beam span, hi is the height of storey i and h is the total height of the frame, 
gives, for vertical deflections: 
 

mmmmw 40250/1000092.22 ���  (combination 1 - SLS); 
 

mmmmw 40250/1000094.21 ���  (combination 2 – SLS). 
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For the maximum horizontal deflections (combination 2 - SLS): 
 

mmmm 7.16300/500045.3 ����  (relative displacement);  
 

mmmm 0.20500/1000086.6 ����  (total displacement). 
 
 

22.92 mm

22.63 mm

 
Figure 2.81 – Structural displacements for combination 1 (SLS) 

 
 

21.94 mm 

21.46 mm 

6.86 mm 

3.45 mm 

 
Figure 2.82 – Structural displacements for combination 2 (SLS) 
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2.4. CLASSIFICATION OF CROSS SECTIONS 

 
The local buckling of cross sections affects their resistance and 

rotation capacity and must be considered in design. The evaluation of the 
influence of local buckling of a cross section on the resistance or ductility of 
a steel member is complex. Consequently, a deemed-to-satisfy approach was 
developed in the form of cross section classes that greatly simplify the 
problem.  

According to clause 5.5.2(1), four classes of cross sections are 
defined, depending on their rotation capacity and ability to form rotational 
plastic hinges: 

� Class 1 cross sections are those which can form a plastic hinge with 
the rotation capacity required from plastic analysis without reduction 
of the resistance;  

� Class 2 cross sections are those which can develop their plastic 
resistance moment, but have limited rotation capacity because of local 
buckling;  

� Class 3 cross sections are those in which the stress in the extreme 
compression fibre of the steel member, assuming an elastic 
distribution of stresses, can reach the yield strength. However, local 
buckling is liable to prevent development of the plastic resistance 
moment; 

� Class 4 cross sections are those in which local buckling will occur 
before the attainment of yield stress in one or more parts of the  
cross section.  
 
The bending behaviour of members with cross sections of classes 1 to 

4 is illustrated in Figure 2.83, where Mel and Mpl are, respectively, the elastic 
moment and the plastic moment of the cross section. 

The classification of a cross section depends on the width to thickness 
ratio tc of the parts subjected to compression (clause 5.5.2(3)), the applied 
internal forces and the steel grade. Parts subject to compression include 
every part of a cross section which is either totally or partially in 
compression under the load combination considered (clause 5.5.2(4)). The 
limiting values of the ratios tc  of the compressed parts are indicated in 
Tables 2.23 to 2.25 that reproduce Table 5.2 of EC3-1-1. In these tables, the 
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various columns refer to the different types of stress distributions in each 
part of the cross section (webs or flanges); the steel grade is taken into 
account through the parameter yf235�� , where fy is the nominal yield 

strength. 
 

Mpl 

Mel 

M 

�s	

Class 1 Class 2 

Class 3 

Class 4 

 
Figure 2.83 – Cross section behaviour in bending 

 
The various compressed parts in a cross section (such as a web or 

flange) can, in general, be in different classes (clause 5.5.2(5)). In general, a 
cross section is classified according to the highest (least favourable) class of 
its compressed parts (clause 5.5.2(6)). For I or H cross sections and 
rectangular hollow sections, two types of compressed parts are defined: 
internal compressed parts (classified according to Table 2.21) and outstand 
flanges (classified according to Table 2.22); angles and tubular sections are 
classified according to Table 2.23. A cross section which fails to satisfy the 
limits for class 3 should be taken as class 4 (clause 5.5.2(8)).  

EC3-1-1 envisages some exceptions to the general procedure for the 
classification of cross sections described in the previous paragraph:  
i) cross sections with a class 3 web and class 1 or 2 flanges may be classified 
as class 2 cross sections with an effective web in accordance with 6.2.2.4 
(clause 5.5.2(11)); ii) whenever the web is considered to resist shear forces 
only and is assumed not to contribute to the bending and normal force 
resistance of the cross section, the section may be designed as class 2, 3 or 4, 
depending only on the flange class (clause 5.5.2(12)). 

According to EC3, the classification of a cross section is based on its 
maximum resistance to the type of applied internal forces, independent from 
their values. This procedure is straightforward to apply for cross sections 
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subject to compression forces or bending moment, acting separately. 
However, in the case of bending and axial force, there is a range of M-N 
values that correspond to the ultimate resistance of the cross section. 
Consequently, there are several values of the parameter � (limit for classes 1 
and 2) or the parameter � (limit for class 3), both being dependent on the 
position of the neutral axis. Bearing in mind this additional complexity, 
simplified procedures are often adopted, such as: i) to consider the cross 
section subjected to compression only, being the most unfavourable situation 
(too conservative in some cases); or ii) to classify the cross section based on 
an estimate of the position of the neutral axis based on the applied internal 
forces. According to Gardner and Nethercot (2005), for I or H sections 
subject to major-axis bending and axial force with the neutral axis in the web 
(the usual case), the parameter � can be estimated according to the following 
expression: 
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where c is the width of the web (defined in Table 2.21), h is the depth of the 
section, tf is the thickness of the flange, tw is the thickness of the web and r is 
the flange-to-web radius; this procedure corresponds to the classification of 
the cross section for a pair of values consisting on the applied axial force NEd 
and a bending moment  such that the cross section is totally yielded. In case 
of class 3 cross sections, a similar procedure could be developed to 
determine the parameter � by superimposing the direct stresses resulting 
from NEd with a linear stress diagram resulting from bending such that the 
maximum normal stress equals fy. The classification of cross sections 
subjected to bending and axial force will be exemplified in examples 3.13 to 
3.15 in chapter 3. 

Rolled sections of usual dimensions (HEA, HEB, IPE, etc...) belong, 
in general, to classes 1, 2 or 3. Class 4 cross sections are typical of plate 
girders and cold-formed sections. Class 4 cross sections are characterized by 
local buckling phenomena, preventing the cross section from reaching its 
elastic resistance. The usual procedure to deal with structures consisting of 
members of class 4 section is through the use of an effective section, as 
briefly explained in sub-chapter 3.1.  
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Table 2.21 – Maximum width-to-thickness ratios for internal compression parts 

Internal compression parts 

 
 

Class Part subjected 

to bending 

Part subjected to 

compression 

Part subjected to bending and 

compression 

Stress 

distribution 

(compression 

+ve)  
 

1 

 
�72�tc  

 
�33�tc  

if 5.0�� , 
113

396
�

�
�

�tc  

if 5.0�� , 
�

�36
�tc  

 

2 

 
�83�tc  

 
�38�tc  

if 5.0�� , 
113

456
�

�
�

�
tc  

if 5.0�� , 
�

�5.41
�tc  

Stress 

distribution 

(compression 

+ve) 
  

 

3 

 
�124�tc  

 
�42�tc  

if 1��. , 

       
.�

�
33.067.0

42�
tc  

if 1��.  *), 
    
 � 
 �.�.�� 162�tc  

yf235��  fy (N/mm2) 235 275 355 420 460 

�	 1.00 0.92 0.81 0.75 0.71 
*) 1��.  applies where either the compression stress yf��  or the tensile strain Efyy �� . 
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Table 2.22 – Maximum width-to-thickness ratios of outstand flanges 

Outstand flanges

t

c

  

t

c

t

c

t
c

 
Rolled sections Welded sections 

Class 
Part subjected to 

compression 
Part subjected to bending and compression 

Tip in compression Tip in tension 

Stress 

distribution 

(compression 

+ve) 

+

c
 

�c

+

c
-

�c

+

c
-

 

1 �9/ �tc  
�
�9

/ �tc  
��

�9/ �tc  

2 �10/ �tc  
�

�10/ �tc  
��
�10/ �tc  

Stress 

distribution 

(compression 

+ve) 

+

c
 

+

c
-

  
c

 

3 �14/ �tc  �� ktc 21/ �  

For k� see EN 1993-1-5 

yf/235��  fy (N/mm2) 235 275 355 420 460 

� 1.00 0.92 0.81 0.75 0.71 
 
 
The design of structures with class 4 cross sections is outside the 

scope of this Manual. A forthcoming volume of the ECCS Eurocode Design 
Manuals will specifically address this issue (Beg et al, 2010). However, class 
4 cross sections may be treated as class 3 if the width-to-thickness ratios are 
less than the limiting proportions for class 3 when � is multiplied by the  
ratio (2.28):  

 

 
Edcom

M

yf

,

0

�
�

, (2.28) 
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where �com,Ed is the maximum design compressive stress in the part resulting 
from first order or, if necessary, second order analysis (clause 5.5.2(9)). This 
possibility is not allowed when verifying the design buckling resistance of a 
member using clauses 6.3, where the limiting proportions for class 3 should 
always be obtained from Tables 2.23 to 2.25 (clause 5.5.2(10)). 
 

Table 2.23 – Maximum width-to-thickness ratios of angles and tubular sections 

See also Table 2.22 

Angles 

t

h

b

Does not apply to angles in 

continuous contact with 

other components 

Class Section in compression 

Stress 

distribution 

(compression 

+ve) 

+

+

fy

 

3 �� 5.11
2

:15/ �
�

�
t
hbth  

Tubular sections 

t d

Class Section in bending and/or compression 

1 
250/ ��td  

2 
270/ ��td  

3 
290/ ��td  

NOTE: For 290/ ��td  see EN 1993-1-6 

yf/235��

 

fy (N/mm2) 235 275 355 420 460 
� 1.00 0.92 0.81 0.75 0.71 

� 2 1.00 0.85 0.66 0.56 0.51 
 
Example 2.5: Classify the cross sections of Figure 2.85 (dimensions in mm), 
according to EC3-1-1. 
a) IPE 300 in steel grade S 235: i) subjected to bending; ii) subjected to 

compression. 
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b) Square hollow section SHS 200x200x8 mm in steel grade S 275, 
subjected to compression. 

 

IPE 300 

8 

200

200

SHS 200x200x8 mm 

300 

150 

 
Figure 2.84 – Classification of cross sections 

_______________________________ 
 

a-i) Web in bending (Table 2.21): 
 

0.720.172720.351.76.248 �!���� �tc . (Class 1) 
 
Flange in compression (Table 2.22): 
 


 � 0.90.1993.57.101521.72150 �!������ �tc . (Class 1) 
 
The cross section is class 1. 
 
a-ii) Web in compression (Table 2.21): 
 

0.330.133330.351.76.248 �!���� �tc , 
 
but, 0.380.138380.351.76.248 �!���� �tc . (Class 2) 
 
Flanges in compression (Table 2.22): 
 


 � 0.90.1993.57.101521.72150 �!������ �tc . (Class 1) 
 
The cross section is class 2. 
 
b) Web in compression (Table 2.21): 
 
In a rectangular or square hollow section, the net length of a web can be 
approximated by tbc 3�� . 
 


 � 
 � 4.3092.033330.228832003 �!���!���� �ttbtc . 
 
The cross section is class 1. 
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Chapter 3 
 
 

DESIGN OF MEMBERS 
 
 
3.1. INTRODUCTION 
 
3.1.1. General 
 

According to the general framework established in EN 1990 for the 
safety of structures, the safety of steel members at ultimate limit state is 
ensured by applying partial safety factors �M to the various characteristic 
values of resistance. The safety factors are defined in accordance with the 
potential failure modes. For steel members, the following three failure modes 
are considered (clause 6.1(1)): i) resistance of cross sections, whatever the 
class; ii) resistance of members to instability assessed by member checks and 
iii) resistance of cross sections in tension to fracture. Specific partial safety 
factors �M0, �M1 and �M2, deemed to guarantee the reliability targets of  
EN 1990, correspond to each failure mode, respectively. The following 
values of the partial safety factors �Mi are recommended for buildings1:  
�M0 = 1.00; �M1 = 1.00 and �M2 = 1.25 and will be used throughout this book. 
It is noted that for other types of structures, recommended values are given 
in Parts 2 to 6 of EN 1993. For structures not covered by Parts 2 to 6 of 
1993, the National Annexes may define the partial factors �Mi; it is 
recommended in this case to take the partial factors �Mi from EN 1993-2 
(CEN, 2006d). 

                                                      
1 These values were adopted by the majority of the National Annexes. 

This chapter describes the basic theoretical concepts, as well as the 
normative design rules (according to EC3-1-1) concerning the verification of 
the resistance of steel members. In particular, the evaluation of the resistance 

Design of Steel Structures: Eurocode 3: Design of
Steel Structures, Part 1-1 – General Rules and Rules for Buildings, First Edition

by Luís Simões da Silva, Rui Simões and Helena Gervásio
Copyright © 2010 Eccs – European Convention for Constructional Steelwork
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of cross sections of classes 1 to 3 subjected to the various combinations of 
internal forces is presented in accordance with clauses 6.2. Additionally, the 
assessment of the resistance of members subject to instability phenomena is 
also covered in accordance with clauses 6.3. Finally, as in the previous 
chapter, several detailed worked examples are presented. 
 
3.1.2. Resistance of cross sections 
 
3.1.2.1. General criteria 
 

The resistance of cross sections depends on their class (clause 
6.2.1(3)). According to the definition of the four cross section classes (see 
2.4), cross section classes 1 and 2 reach their full plastic resistance, while 
class 3 cross sections only reach their elastic resistance. Class 4 cross 
sections are not able to reach their elastic resistance because of local 
buckling and they are outside the scope of EC3-1-1 and of this book. 
Nevertheless, using the concept of effective section (CEN, 2006c), they are 
effectively treated as class 3 cross sections and their resistance is evaluated 
as an elastic resistance. 

 The design value of an action effect, at each cross section, should not 
exceed the corresponding design resistance, and if several action effects act 
simultaneously, the combined effect should not exceed the resistance for that 
combination (clause 6.2.1(1)). Shear lag effects and local buckling effects 
should be included according to the concept of effective section of EC3-1-5 
(CEN, 2006c). Shear buckling effects should also be considered according to 
EC3-1-5 (clause 6.2.1(2)).  

An elastic verification according to the elastic resistance may be 
carried out for all cross sectional classes provided that the effective cross 
sectional properties are used for the verification of class 4 cross sections 
(clause 6.2.1(4)). In the most general case and as a conservative approach, 
where local longitudinal, transverse and shear stresses coexist at the critical 
point of the cross section, the following yield criterion may be used in the 
context of an elastic verification (clause 6.2.1(5)). 
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where �x,Ed is the design value of the local longitudinal stress, �z,Ed is the 
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design value of the local transverse stress and / Ed is the design value of the 
local shear stress, all values at the point of consideration.  

For classes 1 or 2, the resistance of cross sections may be evaluated on 
the basis of their plastic resistance by finding a stress distribution which is in 
equilibrium with the internal forces and moments without exceeding the 
yield strength. This stress distribution should be compatible with the 
associated plastic deformations (clause 6.2.1(6)).  

For class 3 cross sections, where all the compression parts of a cross 
section are class 3, its resistance should be based on an elastic distribution of 
strains across the cross section. Compressive stresses should be limited to the 
yield strength at the extreme fibres (clause 6.2.1(9)). These extreme fibres 
may be assumed at the midplane of the flanges for ULS checks. However, 
whenever yielding first occurs on the tension side of the cross section, the 
plastic reserves of the tension zone may be utilized by accounting for partial 
plastification when determining the resistance of a class 3 cross section 
(clause 6.2.1(10)). 

For both plastic and elastic verifications of safety, interaction 
formulae on the basis of resistances (NRd, MRd, VRd) are favoured since they 
may lead to less conservative results. As a conservative approximation for all 
cross section classes, a linear summation of the utilization ratios for each 
stress resultant may be used. For class 1, class 2 or class 3 cross sections 
subjected to a combination of NRd, My,Rd, M z,Rd this method may be applied 
by using the following criterion (clause 6.2.1(7)):  

 

 1
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. (3.2) 

 
Class 3 cross sections exhibit a gradual transition from plastic to 

elastic resistance because of residual stress effects and local yielding. This is 
not currently recognized by Eurocode 3 whose provisions result in a sudden 
transition from plastic resistance to elastic resistance. Extensive research is 
being carried out to provide a safe smooth transition between classes 2 and 3 
(Boissonnade et al, 2008).  
 
3.1.2.2. Section properties 
 

The properties of the gross cross section should be determined using 
the nominal dimensions. Holes for fasteners need not be deducted, but 
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allowance should be made for larger openings. Splice materials should not 
be included (clause 6.2.2.1(1)). 

Because of the existence of holes and other openings, it is necessary to 
define the net area of a cross section. Generally, it is defined as its gross area 
less appropriate deductions for all holes and other openings (clause 
6.2.2.2(1)). For calculating net section properties, the deduction for a single 
fastener hole should be the gross cross sectional area of the hole in the plane 
of its axis. For countersunk holes, appropriate allowance should be made for 
the countersunk portion (clause 6.2.2.2(2)).  

In the case of multiple fastener holes, provided that the fastener holes 
are not staggered, the total area to be deducted for fastener holes should be 
the maximum sum of the sectional areas of the holes in any cross section 
perpendicular to the member axis (clause 6.2.2.2(3)). Where the fastener 
holes are staggered (Figure 3.1), the net area Anet should be the minimum of 
(clause 6.2.2.2(4)): 

 
 0dtnA p�  (fracture section 1); (3.3) 
 

 + ""
#

$
%%
&

'
��

p
stdtnA
4

2

0
 (fracture section 2), (3.4) 

 
where,  A is the gross area of the section; 
 np is the number of non-staggered holes in any cross section 

perpendicular to the member axis; 
n is the number of holes extending in any diagonal or zig-zag line 
progressively across the member or part of the member, see  
Figure 3.1; 
t is the thickness; 
do is the hole diameter; 
s is the staggered pitch, the spacing of the centres of two consecutive 
holes in the chain measured parallel to the member axis; 
p is the spacing of the centres of the same two holes measured 
perpendicular to the member axis. 

 
The summation in expression (3.4) represents the number of segments 

between staggered holes, as it is exemplified in example 3.1. 
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Figure 3.1 – Definition of the net area of a cross section  

 
In the case of angles, or other member with holes in more than one 

plane, the spacing p should be measured along the mid-plane of the legs, as 
illustrated in Figure 3.2. 

 

 p
 

Figure 3.2 – Angle with holes in both legs 
 

Cross sections with a class 3 web and flanges with class 1 or 2 may be 
classified and designed as class 2, considering a reduced effective area for 
the web. The effective area is obtained according to Figure 3.3 and the 
following iterative procedure: by replacing the portion of the web in 
compression by a part of wt�20 adjacent to the compression flange and 
another equal part adjacent to the plastic neutral axis of the effective cross 
section. Iteration results from the definition of the neutral axis as being that 
of the effective section (Figure 3.3). 

The resistance of class 4 cross sections is limited by local instability 
phenomena that prevent the development of the elastic resistance of the cross 
section. According to EC3-1-1, local instability phenomena, in class 4 cross 
sections, should be taken into account by replacing the gross section by an 
effective cross section, obtained from a reduced area of the compression 
parts. The effective cross section should be based on effective widths, 
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according to EC3-1-5. The effective cross section of circular hollow sections 
should be obtained from EC3-1-6 (CEN, 2007). Figures 3.4 and 3.5 
represent, in a qualitative way, the effective cross section of a U section 
subject to compression and an I section subject to major axis bending, 
respectively. In these figures, the portions of the gross area to be deducted 
are indicated in black. For the I section, it is assumed that only the web is 
class 4. 
 

20 � tw 
fy

1- compression; 2 - tension; 3 - plastic neutral axis; 4 - neglected part 

20 � tw 

1 

2 

4 

3 

fy

 
Figure 3.3 – Effective class 2 web 
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                   Gross cross section                      Effective cross section 

Figure 3.4 – Class 4 cross section submitted to a compressive axial force 
 

G´
G 

 
                                Gross cross section           Effective cross section 

Figure 3.5 – Class 4 cross section submitted to bending moment 
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An axial compression force in a cross section in class 4 due to the 
possible shift, eN, of the centroid of the effective area, Aeff, relative to the 
centre of gravity of the gross cross section, results in an additional bending 
moment NEdEd eNM �� . 

The analysis of cross sections with class 4 is not included in the scope 
of this book. The analysis may be performed according to EC3-1-3, for cold 
formed sections; according to EC3-1-5, for hot rolled sections and welded 
sections; and according to EC3-1-6, for circular hollow sections. 
 
3.1.3. Buckling resistance of members 
 

In addition to verification of the cross section resistance, the buckling 
resistance of members must also be checked, according to clauses 6.3 and 
6.4. The buckling phenomenon depends on the presence of compressive 
stresses and therefore it must be checked for all members subjected to axial 
compression, bending moment or a combination of both. Shear buckling 
effects should also be considered according to EC3-1-5.  

For a member under pure compression the buckling modes to take into 
account are: i) flexural buckling; ii) torsional buckling and  
iii) torsional-flexural buckling. A member under bending moment must be 
checked against lateral-torsional buckling. A member under a combination 
of compression force and bending moment must be checked against all the 
buckling modes mentioned above. The theoretical background, the design 
rules and several applications relating to the buckling resistance of steel 
members are presented in the sub-chapters 3.5, 3.6 and 3.7. 

 
 
3.2. TENSION 
 
3.2.1. Behaviour in tension 
 

Figure 3.6 illustrates various examples of structures with some 
members that are commonly assumed to be loaded only in tension.  
Figure 3.7 shows typical cross sections of tension members. Simple or  
built-up rolled sections are commonly used in trusses, lattice girders and as 
bracing members. Cables, flats or bars are used in bracing systems. Cables, 
flats or bars are some times used in bridges or long-span roofs; such member 
types are discussed in detail in EC3-1-11 (2006e). 
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Figure 3.6 – Structures with some members in tension 

 

 

 

          
Figure 3.7 – Typical cross sections of members in tension 

 
The behaviour of members in tension is closely related to the  

stress-strain behaviour of steel subjected to uniaxial tensile forces. Recalling 
the stress-strain relationship shown in Figure 1.7, the ultimate cross section 
resistance corresponds to the tensile strength Rm, although the plastic 
resistance is also often considered as the ultimate tensile resistance of the 
member, especially when ductility is of concern.  

Typically, the governing design situation for members subject to 
tension corresponds to the location of the joints (either the connection to 
other parts of the structure or splices within the tension member). In these 
cross sections, either because of bolting or because of a change of  
cross sectional shape, the net area of the cross section must be taken into 
account. The calculation of the net area in tension was described in section 
3.1.2.2. In addition, it is noted that stress concentrations occur in the 
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neighbourhood of holes or discontinuities, as shown in Figure 3.8. 
Bolted or welded connections often induce second-order moments 

because of small eccentricities, as shown in Figure 3.9. These second-order 
effects should be taken into account. Alternatively, careful detailing should 
be specified to eliminate these eccentricities, as illustrated in Figure 3.10. 

 

 
Figure 3.8 – Concentration of tension next to a hole 

  

 
Figure 3.9 – Eccentric connections 

 

 
Figure 3.10 – Welded connections between hollow sections 

 
3.2.2. Design for tensile force  
 

A member exclusively subject to a tension force is under a uniaxial 
stress state. According to clause 6.2.3(1), the design value of the tension 
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force NEd at each cross section, including cross sections in the vicinity of the 
connections, should satisfy: 

 
 0.1

,
�

Rdt

Ed

N
N , (3.5) 

 
where Nt,Rd is the design tension resistance. For sections with holes the 
design tension resistance Nt,Rd should be taken as the smallest of: 

 
� design plastic resistance of the gross cross section, 

 
 0, MyRdpl fAN �� , (3.6) 
  
where A is the gross cross section area, fy is the yield strength of steel 
and �M0 is the partial safety factor. 
 

� design ultimate resistance of the net cross section at holes for 
fasteners, 
 
 2, 9.0 MunetRdu fAN �� , (3.7) 
 
where Anet is the net cross section area, fu is the ultimate strength of 
steel and �M2 is the partial safety factor. 
 
Whenever dissipative behaviour is required under cyclic loading, such 

as in the case of capacity design (CEN, 2004a), the design plastic resistance 
Npl,Rd should be less than the design ultimate resistance of the net section at 
fasteners holes Nu,Rd (clause 6.2.3(3)), that is,  

 
 

0

2
,, 9.0 M

M

u

ynet
RdplRdu f

f
A

ANN
�
�

�0� . (3.8) 

 
In the case of members with Category C preloaded bolted connections 

loaded in shear2, the design tension resistance Nt,Rd at the cross section with 
holes for fasteners should be taken as Nnet,Rd (clause 6.2.3(4)): 

 
 0, MynetRdnet fAN �� . (3.9) 
 
For angles connected by one leg and other unsymmetrically connected 

members in tension (such as T sections or channel sections), the eccentricity 

                                                      
2 Connections slip-resistant at ultimate limit state (clause 3.4.1(1)c of EC3-1-8). 
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in joints and the effects of the spacing and edge distances of the bolts should 
be taken into account in determining the design resistance (clause 3.10.3(1) 
of EC3-1-8). According to clause 3.10.3(2) of EC3-1-8, a single angle in 
tension connected by a single row of bolts, see Figure 3.11, may be treated 
as concentrically loaded over an effective net section for which the design 
ultimate resistance should be determined as follows:  

 

 

 �

2
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,

5.00.2
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Rdu

ftdeN
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� ; (1 bolt) (3.10) 
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Rdu

fAN
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� ; (2 bolts) (3.11) 

 
 

2

3
,

M

unet
Rdu

fAN
�

�
� . (3 bolts or more) (3.12) 

 
In these expressions, 

t is the thickness of the leg of an angle; 
fu is the ultimate strength of steel; 
do is the hole diameter ; 
e2 is the distance of the centre of the fastener holes to the adjacent 
edge of the angle, perpendicular to the direction of load transfer (as 
illustrated in Figure 3.11); 
�M2 is a partial safety factor, defined according to EC3-1-8. 

 
The net area, Anet, is calculated according to sub-section 3.1.2.2  
(clause 6.2.2); in angles of unequal legs, connected by the smaller leg, Anet 

should be taken as equal to the net section area of an equivalent equal-leg 
angle of leg size equal to that of the smaller leg. Parameters �2 and �3 are 
reduction factors which are defined depending on the distance between holes 
(pitch p1), according to Table 3.1; for values of 010 55.2 dpd �� , these 
parameters can be determined by linear interpolation. 
 

Table 3.1 – Reduction factors �2 and �3 

Distance                               p1 05.2 d�  00.5 d
  
2 bolts                                 �2 0.4 0.7 
3 bolts or more                    �3 0.5 0.7 

 



3. DESIGN OF MEMBERS 

 

_____
126

It is reminded that no matter what value is given by (3.10) to (3.12), the 
resistance is limited by (3.6).  
 

d0 
e2

e1 

e1 e1 p1 p1 p1 

 
Figure 3.11 – Angles connected by one leg 

 
Members that comprise angles connected by welding only in one leg 

can be treated as being concentrically loaded. Resistance is determined using 
expression (3.6), but based on an effective cross section area. The area of the 
effective cross section, according to clause 4.13 of EC3-1-8, must be 
evaluated as follows: i) for angles of equal legs or unequal legs that are 
connected by the larger leg, the area of the effective section may be 
considered as equal to the gross area; ii) for angles of unequal legs, 
connected by the smaller leg, the area of the effective section should be 
taken as equal to the gross area of an equivalent angle, with legs that are 
equal to the smaller of the legs. 
 
3.2.3. Worked examples  
 
Example 3.1: Calculate the net area Anet of the bolted section of the plate 
represented in Figure 3.12. Assume a plate with thickness t and the 
remaining dimensions (in mm), as indicated in Figure 3.12. 
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22.5

22.5

45

45

45 
45 

(1)(2)
(3)

225

60 60

d0=15 

 
Figure 3.12 – Net area of a plate 

_______________________________ 
 

The connection is loaded by a concentric axial force, therefore the load may 
be assumed to be uniformly distributed amongst the fasteners. Due to the 
position of the fasteners, the net area is evaluated considering fracture 
sections 1, 2 and 3, as illustrated in Figure 3.12. Fracture section 1 is 
perpendicular to the direction of the force, whereas fracture sections 2 and 3 
include staggered pitches. However, all of these sections correspond to net 
sections subjected to the totality of the applied axial force. Hence, from 
expressions (3.3) and (3.4): 
 
Fracture section 1 tttAnet 195152225)1( �!!�!�1 . 
 

Fracture section 2 ttttAnet 205
454

602154225
2

)2( �
!

!!�!!�!�1 . 

 

Fracture section 3 ttttAnet 230
454

604155225
2

)3( �
!

!!�!!�!�1 . 

 
The net area of the plate is given by the minimum value, tAnet 195� . 

_____________________________________________________________ 
 
Example 3.2: Consider the chord AB of the steel truss, indicated in  
Figure 3.13, assuming it is submitted to a design tensile axial force of  
NEd = 220 kN. The cross section consists of two angles of equal legs, in steel 
grade S 235. Design chord AB assuming two distinct possibilities for the 
connections:  
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a) welded connections;  
b) bolted connections. 
 

A 

B 

 

50 mm
100 mm

�	18 mm 
 

          a) Welded connections                            b) Bolted connections 

Figure 3.13 – Steel truss 

_______________________________ 
 
a) Welded connections 
 
The chord is made up by two angles of equal legs, but the connection is 
made only in one leg of the angle. Thus, according to clause 4.13 of  
EC3-1-8, the effective area can be considered equal to the gross area. 
Therefore, the following conditions must be satisfied: 
 

0
,

M

y
RdtEd

fA
NN

�
�� ,  

 
where 0.10 �M� , yf = 235 MPa and A is the gross area of the section. 

Considering the design axial force, NEd = 220 kN, then: 
 

,
!!

�
0.1

10235
220

3A
kN 224 36.9m1036.9 cmA �!
 � . 
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From a table of commercial profiles, a solution with two angles  
50x50x5mm, with a total area of 26.98.42 cm�! , satisfies the above safety 
requirement. 
 
b) Bolted connections 
 
In this case, the chord, made up by angles of equal legs, is connected by  
2 bolts only in one leg. According to clause 3.10.3 of EC3-1-8, the following 
design conditions must be ensured: 
 

RdtEd NN ,� , with 2
3

4
5
6
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Rdu
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where, 0M�  = 1.0, 2M�  = 1.25, fy = 235 MPa, uf  = 360 MPa, A is the gross 
area of the cross section, Anet is the net area of the bolted section, and 2� is a 
factor obtained from Table 3.1 (or Table 3.8 of EC3-1-8). A first check 
based on the plastic design of the gross cross section leads to:  
 

,
!!

�
0.1

10235
220

3A
kN 224 36.91036.9 cmmA �!
 � . 

 
Hence, the section obtained in the previous design, two angles 50x50x5 mm 
(A = 9.6 cm2), also satisfies this safety requirement. 
 
The second condition (expression (3.11), reproduced above) requires the 
evaluation of the net area Anet, (illustrated in Figure 3.14) and the factor 2� , 
both evaluated according to clause 3.10.3 of EC3-1-8. 

Net area (Anet)

 
Figure 3.14 – Anet in the bolted connection 
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For mmd   180 � , mmd   455.2 0 �  and mmd  905 0 � .  

 
As mmmmp 901001 �� , then 2� =0.70. 

 
The net area of the bolted section made up of two angles is given by: 
 

2
0 8.78.15.026.92 cmdtAAnet �!!���� . 

 
Thus, the design ultimate resistance is given by: 
 

kNN Rdu 2.157
25.1

10360108.77.0 34

, �
!!!!

�
�

.  

 
However, kN2.157kN220 , ��� RduEd NN ; therefore, the chosen cross 

section is not appropriate. By adopting a cross section with enhanced 
resistance, for example, two angles 60x60x6 mm (A = 13.82 cm2 and  
Anet =11.66 cm2), then: 
 

kNNkNN EdRdpl 2208.3240.1102351082.13 34
, ���!!!� � ; 

 

kNNkNN EdRdu 2201.235
25.1

103601066.117.0 34

, ���
!!!!

�
�

. 

 
As kNNkNN RduRdpl 1.2358.324 ,, ��� , failure is non-ductile; however, 

since this is not a design condition, the section defined by two angles 
60x60x6 mm can be accepted. 
_____________________________________________________________ 
 
Example 3.3: Figure 3.15 represents a lattice girder in steel grade S 275, 
supporting a reinforced concrete floor. The loading, applied on the floor and 
transmitted to the truss as concentrated loads applied in the nodes, is defined 
by the following distributed loads: 

 
Permanent action on the floor = 5.75 kN/m2 (�G = 1.35); 
Variable action on the floor = 4.00 kN/m2 (�Q = 1.50). 
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3.0 m 1.5 m 

15.0 m

1.5 m

3.0 m 3.0 m 3.0 m 1.5 m 

Figure 3.15 – Lattice girder 

 
The distance between lattice girders is 3.00 m; the nodes of the truss are 
braced in the perpendicular direction to the plane of the structure; the 
loading already includes the selfweight of the steel truss. Design the tension 
members of the truss, assuming the following alternatives: 

 
a) Square hollow sections (SHS), and welded connections for the members 
of the structure.  
b) HEA profiles in the upper and lower chords (horizontal members) and  
2 UPN channel profiles for the diagonal members. The diagonal members 
are bolted to gusset plates, which are welded to the HEA profiles in the 
upper and lower chords. 
_______________________________ 
 
For design at the ultimate limit state, the following combination of actions is 
considered (according to EN 1990): 

 
2/76.1300.45.175.535.1 mkNpEd �!�!� , 

 
where pEd is the design load, uniformly distributed on the floor. 

 
The concentrated loads, represented in Figure 3.16, were calculated based on 
the influence areas of each node, and considering a distance of 3.00 m 
between the lattice girders. In the same figure, the internal forces in the 
members, obtained by node equilibrium or any other appropriate method, are 
represented. 
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61.9 kN 61.9 kN 
123.8 kN 123.8 kN 123.8 kN 123.8 kN

309.5 kN 309.5 kN 

-247.6 kN

+495.3 kN 

-618.9 kN -742.6 kN

+742.6 kN

+350.2 kN 
-350.2 kN 

+174.9 kN 
-174.9 kN

0.0 kN

0.0 kN

-247.6 kN -618.9 kN

+495.3 kN+742.6 kN

-174.9 kN

+174.9 kN

-350.2 kN 
+350.2 kN 

 
Figure 3.16 – Actions and internal forces on the structure 

 
a) According to the distribution of internal forces illustrated in Figure 3.16, 
two distinct cross sections are adopted: one for the bottom tension chord, 
designed for an axial force of NEd = 742.6 kN, and another for the diagonal 
tension members, designed for an axial force of NEd = 350.2 kN. 

 
The members comprise square hollow sections with welded connections. 
Assuming that the axis of the members, in each node, converges in a point, 
there is no reduction of the resistance due to eccentricities in the connections 
(note, however, that reductions of the resistance due to local stresses in the 
connection may be necessary, as given in EC3-1-8). Hence, the design of the 
tension members is given by: 
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y
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fA
NN

�
�� ,  

 
where 0.10 �M� , yf = 275 MPa and A is the gross area of the cross section. 

 
Considering the design axial forces leads to: 

 
- for the bottom chord, 

 
224
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- for the diagonal members, 

 
224

3

3

7.12107.12
10275

0.12.350
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102752.350 cmmAA
�!�
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,
!!
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From a table of commercial profiles for square hollow cross sections (SHS), 
the following solution is adopted: a SHS 120x120x6.3 mm (A = 28.5 cm2) 
cross section for the bottom chord and a SHS 80x80x5 mm (A = 14.9 cm2) 
cross section for the diagonal members. 
 
b) Taking into account the type of connection, the bottom tension chord is 
designed for an axial force NEd = 742.6 kN, considering the gross cross 
section; while the diagonals in tension are designed for an axial force  
NEd = 350.2 kN, but considering a possible reduction of the resistance in the 
bolted cross section, due to the holes. The design plastic resistance of the 
bottom chord, considering the gross cross section, is given by: 
 

224
3

3

0.27100.27
10275

0.16.742
0.1

10275
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!

!

,

!!
� � . 

 
Similarly, for the diagonal members: 
 

224
3

3

7.12107.12
10275

0.12.350
0.1

102752.350 cmmAA
�!�

!
!


,
!!

� � . 

 
Hence, a HEA 140 (A = 31.42 cm2) cross section is adopted for the bottom 
chord, and a 2 UPN 80 (A = 22.00 cm2) cross section is initially proposed for 
the diagonal members. The overdesign of the section of the diagonal 
members is due to the fact that the dimensions of the bolts required to resist 
the applied axial force (considering the connection illustrated in Figure 3.17) 
are not compatible with the dimensions of smaller UPN cross sections. 

 

 
Figure 3.17 – Connection of the diagonal bars of the truss 

 
In the case of the diagonal members, considering the connection with M20
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 bolts (d0=22 mm) illustrated in Figure 3.17, the design ultimate resistance of 
the bolted cross section should also be checked. The net area of the bolted 
cross section made up of two UPN is given by: 
 

2
0 36.192.26.020.222 cmdtAAnet �!!���� . 

 
The design ultimate resistance is given by: 
 

kNNkNN EdRdu 2.3505.506
25.1

104301036.199.0 34

, ���
!!!!

�
�

.  

 
As the design ultimate resistance in the bolted section exceeds the applied 
axial force, the section defined by two UPN 80 satisfies the safety criterion. 
However, as kNNkNN RduRdpl 5.506605 ,, ��� , the failure of the diagonal 

members would be non-ductile. This situation often occurs in tension 
members with bolted connections. 
 
 
3.3. LATERALLY RESTRAINED BEAMS 

 
3.3.1. Introduction 
 

The resistance of a steel beam in bending depends on the cross section 
resistance or the occurrence of lateral instability. The latter, typical of steel 
members composed of I or H sections bent about the major axis, will be 
discussed in sub-chapter 3.6. 

Whenever one of the following situations occurs in a beam,  
lateral-torsional buckling cannot develop and assessment of the beam can be 
based just on the cross section resistance: 

� the cross section of the beam is bent about its minor z axis; 
� the beam is laterally restrained by means of secondary steel members, 

by a concrete slab or any other method that prevents lateral 
displacement of the compressed parts of the cross section; 

� the cross section of the beam has high torsional stiffness and similar 
flexural stiffness about both principal axes of bending as, for example, 
closed hollow cross sections. 

 
The bending resistance of a cross section can be obtained from its 
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plastic resistance, if the section is compact (class 1 or 2 section), laterally 
braced and made from material with a ductile behaviour, as in the case of 
mild steel. On the other hand, in a slender cross sections (class 3 or 4 
section) the bending resistance must be based on its elastic resistance. 

The web provides most of the shear resistance, as one can see from 
Figure 3.18. A common and conservative treatment assumes that the shear 
stress is uniformly distributed over the depth of the web, and any shear 
resistance of the flanges can be ignored, unless dealing with very thick 
flanges. EC3-1-1 recommends that whenever possible, the shear resistance of 
a steel section should be evaluated based on a plastic distribution of shear 
stress. 

 

 

e. n. a.
My 

�	

Normal stresses - �		 

G 

Vz 

/	

Shear stresses - /		 

/

 
Figure 3.18 – Elastic distributions of normal stresses and shear stresses 
 
In a section subject to bending and shear force, the bending moment 

resistance may have to be reduced to account for the presence of shear.  
I or H sections and rectangular hollow sections are usually chosen for 

beams because they possess high major axis bending resistance and bending 
stiffness. 
 
3.3.2. Design for bending 
 
3.3.2.1. Elastic and plastic bending moment resistance 
 

The elastic bending resistance of a cross section is attained when the 
normal stress in the point furthest away from the elastic neutral axis (e. n. a.) 
reaches the yield strength fy; the corresponding bending moment is denoted 
the elastic bending moment Mel. The bending moment that is able to totally 
plastify a section is denoted as the plastic bending moment Mpl.  

In the calculation of the plastic bending moment of a steel cross 
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section (assuming equal yield strengths in tension and compression), the 
plastic neutral axis (p.n.a.) is located at the centroid only if the section is 
symmetrical, as for the case of rectangular sections, I sections or H sections 
with equal flanges. In case of non-symmetric cross sections, such as a  
T-section, the neutral axis moves in order to divide the section in two equal 
areas. Figure 3.19 represents, for two distinct cross sections (I section with 
equal flanges and T section), the diagrams of normal stresses that correspond 
to the elastic limit (elastic bending moment) and to complete plastification 
(plastic bending moment). For both cross sections, the elastic bending 
moment and the plastic bending moment around the horizontal axis are given 
by: 
 

 yelyel fWf
v
IM �� ; (3.13) 

 
 
 � yplytctytcycpl fWfSSdfAdfAM ����� , (3.14) 

 
where, I is the second moment of area about the elastic neutral axis 

(coincident with the centroid of the cross section); 
v is the maximum distance from an extreme fibre to the same axis; 

vIWel �  is the elastic bending modulus; 
Ac and At are the areas of the section in compression and in tension, 
respectively (of equal value); 
fy is the yield strength of the material; 
dc and dt are the distances from the centroid of the areas of the section 
in compression and in tension, respectively, to the plastic neutral axis; 
Wpl is the plastic bending modulus, given by the sum of first moment 
of areas Ac and At, in relation to the plastic neutral axis 
( tcpl SSW �� ). 

For symmetric sections the previous calculations are simpler because the 
plastic neutral axis coincides with the elastic neutral axis and, consequently, 
dc = dt. 

When a cross section is subjected to bi-axial bending, an interaction 
formula between the two bending moments must be obtained. Such formulae 
can be found in the literature for the majority of standard cross sectional 
shapes. In general, these were obtained as particular cases of interaction 
formulae between axial force (N) and bi-axial bending (My - Mz); therefore 
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only a brief description and discussion of these formulae will be presented in 
sub-chapter 3.7. For practical applications, EC3-1-1 provides interaction 
formulae for bi-axial bending, in the elastic and plastic ranges, which are 
applicable for the design of usual cross sections in steel structures.  

 

dc

e. n. a. M 

 fy

 fy

 fy

 fy 
 M = Mel  M = Mpl 

 M 

<fy

 fy

 fy

 fy 
 M = Mel  M = Mpl 

 I or H section 

T section 

G 

G 
e. n. a.

p. n. a. 

 At 

 Ac 

d

d

dt

p. n. a. 

 At 

 Ac 

 
Figure 3.19 – Elastic and plastic bending moment cross sectional resistance 

 
3.3.2.2. Uniaxial bending 
 

In the absence of shear forces, the design value of the bending 
moment MEd at each cross section should satisfy (clause 6.2.5(1)):  
 

 0.1
,

�
Rdc

Ed

M
M , (3.15) 

 
where Mc.Rd is the design resistance for bending. The design resistance for 
bending about one principal axis of a cross section is determined as follows 
(clause 6.2.5(2)): 
 

� Class 1 or 2 cross sections 
 
 0, MyplRdc fWM �� ; (3.16) 
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� Class 3 cross sections  
  
 0min,, MyelRdc fWM �� ; (3.17) 
 

� Class 4 cross sections 
  
 0min,, MyeffRdc fWM �� , (3.18) 
 
where, Wpl is the plastic section bending modulus; 

Wel,min is the minimum elastic section bending modulus; 
Weff,min is the minimum elastic bending modulus of the reduced 
effective section; 
fy is the yield strength of the material; 
�M0 is the partial safety factor. 
 

3.3.2.3. Bi-axial bending 
 

Design for bi-axial bending can be verified by plastic (class 1 or 2 
cross sections) or elastic (class 3 and 4 cross sections) interaction formulae, 
according to clause 6.2.9, as described next: 
 

Class 1 or 2 sections  0.1
,,

,

,,

, �
2
2
3

4

5
5
6

7
�

2
2
3

4

5
5
6

7
��

Rdzpl

Edz

Rdypl

Edy

M
M

M
M

, (3.19) 

 
where � and � are parameters that are dependent of the cross section’s shape 
and Mpl,y,Rd and Mpl,z,Rd are the plastic moments of resistance about y and z, 
respectively. Parameters � and � can conservatively take the value 1.0; in 
alternative, they can take the values defined in clause 6.2.9(6), that is, � = 2 
and � = 1 for I or H sections, � = � = 2 for circular hollow sections and  
� = � = 1.66 for rectangular hollow sections. 
 

Class 3 or 4 sections 
0

,
M

y
Edx

f
�

� � , (3.20) 

 
where �x,Ed is the design value of the longitudinal stress evaluated by elastic 
theory, based on the gross cross section, for class 3 sections, and on a 
reduced effective cross section, for class 4 sections. The holes for bolts or 
other connection elements must be considered according to the next  
sub-section. 
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3.3.2.4. Net area in bending 
 

Holes in the tension flange for bolts or other connection members may 
be ignored if condition 02, 9.0 MyfMunetf fAfA �� 
  is satisfied, 

where Af,net and Af are the net section and the gross area of the tension flange, 
respectively, and �M2 is a partial safety factor (defined according to  
EC3-1-8). A similar procedure must be considered for holes in the tensioned 
part of a web, as described in clause 6.2.5(5). The holes in the compressed 
parts of a section may be ignored, except if they are slotted or oversize, 
provided that they are filled by fasteners (bolts, rivets, etc...). 

 
3.3.3. Design for shear 
 

According to clause 6.2.6, the design value of the shear force, VEd, 
must satisfy the following condition: 
 

 0.1
,

�
Rdc

Ed

V
V

, (3.21) 

 
where Vc,Rd is the design shear resistance. 

Considering plastic design, in the absence of torsion the design shear 
resistance, Vc,Rd, is given by the design plastic shear resistance, Vpl,Rd, , given  

by the following expression: 
 

 
 � 0, 3 MyvRdpl fAV �� , (3.22) 
 

where Av is the shear area, defined in a qualitative manner for an I 
section subjected to shear in Figure 3.20. The shear area corresponds 
approximately to the area of the parts of the cross section that are parallel to 
the direction of the shear force. Clause 6.2.6(3) provides expressions for the 
calculation of the shear area for standard steel sections; additionally, the 
shear area is specified in the tables of commercial profiles.  

Considering elastic design, the verification of resistance to shear force 
is given by the following criterion: 
 

 
 � 0.1
3 0

�
My

Ed

f �
/

, (3.23) 

 
where, /Ed is the design value of the local shear stress at a given point, 
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obtained from: 

tI
SVEd

Ed �/ ; 

VEd is the design value of the shear force; 
S is the first moment of area about the centroidal axis of that portion 
of the cross section between the point at which the shear is required 
and the boundary of the cross section; 
I is the second moment of area about the neutral axis; 
t is the thickness of the section at the given point. 

 

 y
G

VEd

z

Av

 
Figure 3.20 – Shear area for a I cross section 

 
 For some I or H sections, the shear stress in the web/Ed can be 
calculated more simply from clause 6.2.6(5). 

The shear buckling resistance of webs should be verified, for 
unstiffened webs when 
 � ��72�ww th , where hw and tw represent the 
depth and the thickness of the web, respectively, � is a factor defined in 
EC3-1-5, which may be conservatively taken as 1.0, and �	is given by the 

relation 
 �yf235 . 

Fastener holes need not be allowed for in the shear verification except 
in verifying the design shear resistance at connection zones as given in  
EC3-1-8 (clause 6.2.6(7)). 

 
3.3.4. Design for combined shear and bending 
 

In an elastic stress analysis, the interaction between bending and shear 
force may be verified by applying a yield criterion. This procedure, valid for 
any type of cross section, requires calculation of elastic normal stresses (�) 
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and elastic shear stresses (/), based on formulas from the theory of the 
elasticity, at the critical points of the cross section. The following condition 
(from von Mises criterion for a state of plane stress) has then to be verified: 
 

 
0

22 3
M

y
Misesvon

f
�

/�� ���� . (3.24) 

 
For plastic analysis, there are several models for combining shear and 

bending. The model used by EC3-1-1 evaluates a reduced bending moment 
obtained from a reduced yield strength (fyr) along the shear area. Figure 3.21 
illustrates the model for bending moment–shear force interaction for a I or H 
section of equal flanges, considering bending about the y-axis); Figure 3.22 
illustrates graphically the interaction curves for the same combination of 
forces and for the same cross section. 
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Figure 3.21 – Model for bending moment - shear force interaction in a I or H section 
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Figure 3.22 – Bending moment – shear force interaction diagrams for I or H sections 
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In general, when a section is subjected to bending moment and shear 

force, the design plastic bending resistance should be reduced to allow for 
the presence of the shear force. However, for low values of shear force, this 
reduction is not very significant, (as seen from the interaction curves 
represented in Figure 3.22). Also, as this reduction is counterbalanced by 
strain- hardening of steel, it may be assumed that for low values of shear it is 
not necessary to reduce the design plastic bending resistance. Thus,  
clause 6.2.8 establishes the following interaction criterion between bending 
moment and shear force:  

� When %50�EdV of the plastic shear resistance Vpl,Rd, it is not 
necessary to reduce the design moment resistance Mc,Rd, except where 
shear buckling reduces the cross section resistance. 

� When %50
EdV  of the plastic shear resistance Vpl,Rd, the value of 
the design moment resistance should be evaluated using a reduced 
yield strength 
 � yf��1  for the shear area, where 
 �2

, 12 �� RdplEd VV� . 
 
In I or H sections with equal flanges, under major axis bending, the 

reduced design plastic moment resistance My,V,Rd may be obtained from: 
 

 
0

2

,,, 4 M

y

w

w
yplRdVy

f
t

A
WM

�
�

"
"

#

$

%
%

&

'
�� ,    but  RdcyRdVy MM ,,,, � , (3.25) 

 
where www thA �  is the area of the web (hw is the depth of the web and tw is 
the thickness) and My,c,Rd is the design resistance for bending moment about 
the y axis. 
 
3.3.5. Worked examples 
 
Example 3.4: The beam represented in Figure 3.23, with a length L = 6.0 m, 
is laterally restrained along its length by a floor. Assume a design load for 
the ultimate limit state comprising two concentrated loads P = 70.0 kN, as 
indicated in Figure 3.23. Design the beam using a HEA section (and 
alternatively an IPE section) in grade S 235 steel, according to EC3-1-1. 
Verify also the serviceability limit state of deformation for a characteristic 
combination (according to EN 1990), considering 300Lmáx ��  and 
assuming that the 70.0 kN loads were factored for the ultimate limit state 
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with a factor of 1.50. The beam-column joints, with web cleats, may be 
assumed as pinned. 
 

1.5 m 3.0 m 1.5 m

P = 70.0 kN P = 70.0 kN

 
Figure 3.23 – Simply supported steel beam 

_______________________________ 
 
i) Diagrams of internal forces 
 
Figure 3.24 illustrates the bending moment and shear force diagrams 
corresponding to design loads for ULS (disregarding the eccentricities at the 
supports). The beam is laterally restrained. Therefore its design depends on 
the verification of the resistance of the cross sections and the verification of 
the serviceability limit state of deformation. From Figure 3.24, the critical 
cross sections are those where the concentrated loads are applied. Hence, the 
design values are MEd = 105.0 kNm and VEd = 70.0 kN. 

 

VE d 
70.0 kN  

70.0 kN 

105.0 kNm 

MEd 

 
Figure 3.24 – Diagrams of internal forces 

 
ii) Preliminary design for bending  
 
Assuming class 1 or 2 cross sections, the following solution is obtained: 

 
0.110235kNm0.105 3

, !!�� yplEd WM .cm8.446m108.446 336
, �!
, �
yplW  
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In order to satisfy this condition, a HEA 220 section (Wpl,y = 568.5 cm3) and, 
alternatively, a IPE 270 section (Wpl,y = 484 cm3) are selected. 
 
iii) Cross section classification (Tables 2.23 and 2.24) 

  
For the HEA 220: 

 

Web in bending  0.72172727.21
7

152
�!���� �

t
c . 

 
Flange in compression 

 
 0.91990.8

11
18272220

�!���
��

� �
t
c . 

 
Hence, as previously assumed, the HEA 220 cross section in bending is  
class 1 (the IPE 270 cross section is also class 1). 

 
iv) Verification of shear force 

 
The shear area of the HEA 220 section is given by Av = 20.67 cm2, hence: 

 

kNVVkNV RdplRdcEd 4.280
0.1

3102351067.200.70
34

,, �
!!!

����
�

. 
 

As 0.720.10.172729.26 �!��� ��ww th  (conservatively taking  
� = 1.0), it is not necessary to verify the shear buckling resistance of the 
web. Therefore the HEA 220 cross section meets the requirements 
concerning shear force. The alternative solution, constituted by a IPE 270 
section, with Vc,Rd = Vpl,Rd = 300.4 kN, also satisfies the same condition. 
 
v) Bending – shear force interaction 
 
As kNVkNV RdplEd 2.140%500.70 , ��� , it is not necessary to reduce the 

bending resistance to account for the shear force. The alternative solution, 
constituted by an IPE 270 section, also satisfies this condition. 
 
vi) Verification of the serviceability limit state of deformation 
 
The verification of the maximum vertical deflection is performed for the 
following load: 70/1.50 = 46.7 kN (as the 70 kN load was factored for the 
ultimate limit state with a coefficient of 1.50). For a simply supported beam 
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with length L subjected to two concentrated loads, as indicated in  
Figure 3.23, the maximum vertical deflection, at mid-span, is given by 


 �IELPmáx 38411 3�� , where IE  is the bending stiffness of the cross 
section. For the HEA 220 cross section, the vertical deflection is 

mmLmmmáx 203004.25 ���� , therefore the cross section is not acceptable. 
By adopting a HEA 240 cross section, then 

 

mmLmmmmáx 20
300

7.171077.1
10776310210384

67.4611 2
86

3

���!�
!!!!

!!
� �

�
� . 

 
For the alternative solution, constituted by an IPE 270 cross section, a value 
of mm8.23max �� is obtained, which is also not acceptable. Thus, assuming 
an IPE 300 cross section, then .mm20300mm5.16max ��� L�  Therefore a 
HEA 240 cross section (A = 76.84 cm2) or, alternatively, an IPE 300 cross 
section (A = 53.81 cm2), is suitable for this application. It is noted that the 
limitation of deflection might be overcome by applying suitable precamber, 
as long as part of the applied loads are permanent. 
_____________________________________________________________ 
 
Example 3.5: The continuous beam represented in Figure 3.25 is laterally 
restrained along its length by a composite floor. It is assumed that this 
restraint is sufficient to prevent lateral-torsional buckling in both positive 
and negative moment regions.  

 

2.0 m

A B DC E F 

2.0 m 2.0 m 2.0 m 2.0 m 
4.0 m 6.0 m

 
Figure 3.25 – Continuous beam 

 
The beam is subjected to the following loads that include an estimate of the 
self-weight of the beams: 

 
Dead loads: Uniformly distributed = 70 kN/m (�G = 1.35); 
 Concentrated in section B = 260 kN (�G = 1.35). 
Live loads: Uniformly distributed = 60 kN/m (�Q = 1.50). 
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These loads are applied in a floor supported by secondary beams, shown in 
section in Figure 3.25. Therefore, the loads are transmitted to the continuous 
main beam as point loads, applied at the support sections of the secondary 
beams. Design the main beam assuming a HEA cross section, in grade S 275 
steel. For the design of the beam consider an elastic analysis and a 
redistribution of the negative moments with a maximum value of 15%, as 
indicated in clause 5.4.1(4)B. 
_______________________________ 
 
i) Diagrams of internal forces – Assuming that the live load may be applied 
in one span or in both spans simultaneously, and that the bending moment is 
the critical load effect, three load combinations are defined for the 
verification of the ultimate limit state of resistance, as indicated in Figures 
3.26 to 3.28. 

 
Load combination 1 – Maximum negative moment at the intermediate 
support. 
 

mkN5.18450.16035.170 �!�!

kN0.35135.1260 �!

 
Figure 3.26 – Load combination 1 

 
Load combination 2 – Maximum positive moment in the first span. 
 

mkN0.7000.170 �!

kN0.35135.1260 �! mkN5.18450.16035.170 �!�!

 
Figure 3.27 – Load combination 2 

 
Load combination 3 – Maximum positive moment in the second span. 
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kN0.26000.1260 �!

mkN5.18450.16035.170 �!�!

mkN0.7000.170 �!

 
Figure 3.28 – Load combination 3 

 
Considering the reactions of the secondary beams on the main beam and by 
performing an elastic analysis it is observed that the most unfavourable 
combination, regarding the maximum bending moment, is load  
combination 1. The arrangements for load combination 1 and the 
corresponding internal forces are indicated in Figure 3.29. 

 

195.3 kN 109.8 kN

524.7 kN

390.6 kNm

+
+

-
-

478.8 kN

259.2 kN 

658.8 kNm

298.8 kNm

518.4 kNm

+ +

-

VEd 

MEd

720.0 kN 369.0 kN 369.0 kN

 
Figure 3.29 – Diagrams of elastic internal forces for load combination 1 
 

The redistribution of the negative bending moment, at the intermediate 
support, is based on the elastic bending moment diagram. Hence, in order to 
optimize the bending moments a maximum redistribution of 15% is allowed, 
according to clause 5.4.1(4)B. The redistribution of internal forces 
corresponds to an additional system of internal forces, self-equilibrated, 
which is represented in Figure 3.30. 
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kNm8.988.65815.0 �!

+�MEd 

 
Figure 3.30 – Redistribution of bending moments 

 
The resulting design internal force diagrams are represented in Figure 3.31. 
By inspection, it is observed that the maximum values of the bending 
moment and the shear force occur in Section C (intermediate support). The 
design values are thus: MEd = 560.0 kNm and VEd = 500.0 kN. 
 

220.0 kN 
93.3 kN

500.0 kN

440.0 kNm

+
+

-
-

462.3 kN

275.7 kN 

560.0 kNm

364.7 kNm

551.3 kNm

+ +

-

VEd 

MEd 

 
Figure 3.31 – Design internal forces after redistribution 

 
ii) Preliminary design for bending 

 
Assuming that the cross section is class 1 or 2, then: 

 
0.110275kNm0.560 3

, !!�� yplEd WM  
 

336
, cm4.2036m104.2036 �!
, �
yplW . 

 
Using a table of commercial profiles, a HEA 360, with Wpl,y = 2088 cm3 and 
shear area Avz = 48.96 cm2, is selected. 

 
iii) Verification of the cross section class (Tables 2.23 and 2.24) 
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Web in bending 
 

2.6692.072721.2610261 �!���� �tc . (Class 1) 
 

Flange in compression 
 

3.892.0997.6
5.17

272102300
�!���

��
� �

t
c . (Class 1) 

 
Thus, the cross section is class 1 and the initial assumption in the preliminary 
design is correct. 

 
iv) Verification of the shear force 

 
The shear area of the HEA 360 cross section is Av = 48.96 cm2, hence: 

 

3
0.500

0
,,

M

yv
RdplRdcEd

fA
VVkNV

�
����  

       kN3.777
30.1

102751096.48 34

�
!

!!!
�

�

 

 
Shear buckling (for unstiffened webs) needs not be considered (clause 
6.2.6(6)) provided that (conservatively assuming 0.1�� ): 

 
.2.66

0.1
92.072725.31

10
315

�!����
�
�

w

w

t
h  

 
Thus, the resistance to shear force is satisfied. 

 
v) Bending – shear force interaction 

 
The section to the left of the intermediate support (section C) is subjected to 
the maximum bending moment and the maximum shear force. Therefore, it 
is clearly the most critical cross section in terms of bending-shear force 
interaction. However, as 

 
kNVkNV RdplEd 7.3883.77750.050.00.500 , �!�!�� , 

 
then according to clause 6.2.8, it is necessary to reduce the bending moment 
resistance of the cross section. Therefore, for the HEA 360 cross section, as 


 � 
 � 082.013.7770.500212 22
, ��!��� RdplEd VV� , the design plastic 
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bending resistance of the cross section is given by: 
 


 �
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As kNmMkNmM RdVyEd 6.5680.560 ,, ��� , the bending resistance is 

verified. 
 
vi) Verification of the serviceability limit state of deformation 
 
By inspection of the continuous beam, the maximum vertical deflection 
occurs in the span of 6 m. Considering a load combination similar to load 
combination 3 (see Figure 3.28), but with the loads unfactored 
(corresponding to the characteristic combination of actions), a deflection of 
14.9 mm is obtained. Considering a maximum allowable vertical deflection 
of L/300, then 
 

mmmLmmmáx 2010230063009.14 2 �!���� �� .  
 
Therefore, a HEA 360 in grade S 275 steel is suitable for this application. 
_____________________________________________________________ 

 
Example 3.6: The beam represented in Figure 3.32 is subjected to a vertical 
concentrated load of 20.0 kN and a horizontal concentrated load of 6.0 kN, 
both already factored. Both loads are applied at the free end of the cantilever. 
Assuming that the deformation is not critical, design the cantilever beam 
using a rectangular hollow section in grade S 275 steel, considering: 

 
a) plastic design; 
b) elastic design. 
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 x 

 z 
3.0 m

 20.0 kN 
y 

A 

B 

6.0 kN 

 
Figure 3.32 – Cantilever beam 

_______________________________ 
 

As a rectangular hollow section has high resistance and bending stiffness 
about both axis (y and z) and high torsional stiffness, it is assumed that the 
beam is not susceptible to lateral-torsional buckling. Being a cantilever 
beam, with a considerable length, it is also assumed that resistance to shear 
force is not critical. As deformations are also not critical in this example, the 
design of the beam is based only on resistance to bi-axial bending of the 
most critical cross section (section A at the support). The design bending 
moments are My,Ed = 60.0 kNm and Mz,Ed = 18.0 kNm. 

 
a) As the design is based on the plastic bending resistance, the section should 
be class 1 or 2. Because the cross section is subject to bi-axial bending, a 
preliminary design for bending about each axis separately is performed first:  
 

.2.218102.218

00.1
10275

60

336
,

3
,

0

,
,,

cmmW

WfW
MkNmM

ypl

ypl

M

yypl
RdcEdy

�!
,

!!
����

�

�  

 

.5.65105.65

00.1
10275

18

336
,

3
,

0

,
,,

cmmW

WfW
MkNmM

zpl

zpl

M

yzpl
RdcEdz

�!
,

!!
����

�

�  

 
Based on these results and bearing in mind that both bending moments My,Ed 

 and Mz,Ed act simultaneously, a RHS 200x100x8 mm is proposed with  
Wpl,y = 286.0 cm3, Wpl,z = 174.0 cm3 and A = 45.10 cm2. 
 
For this cross section, the plastic verification of the bi-axial bending
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 resistance is given by clause 6.2.9.1(6). With 
 

kNmfWM MyyplRdypl 7.7800.110275100.286 36
0,,, �!!!�� �� , 

 
kNmfWM MyzplRdzpl 9.4700.110275100.174 36

0,,, �!!!�� �� , 
 
and	� = � = 1.66 (rectangular hollow section), the following condition must 
be satisfied: 
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The classification of the section in bi-axial bending can be done considering 
the most unfavourable situation, where the longest side is totally 
compressed: 

 
36.3092.0333322

8
83200

�!���
!�

� �
t
c

. (Class 1) 
 

The cross section is class 1, therefore the design can be made considering the 
plastic resistance and a RHS 200x100x8 cross section is acceptable. 

 
b) An elastic design is based on the elastic bending resistance, therefore the 
cross section need not be higher than class 3. If the cross section is class 4, 
the resistance should be obtained from a reduced effective cross section. As 
the section is under bi-axial bending, a preliminary design about each axis 
separately is performed first: 
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Based on the previous conditions and as My,Ed and Mz,Ed act simultaneously, a 
RHS 250x150x6.3 mm is adopted with Wel,y = 334.0 cm3, Wel,z = 252.0 cm3  
and A = 48.60 cm2. 
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The elastic resistance to bi-axial bending, according to clause 6.2.9.2, 
requires the verification of the following condition:  
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where �x,Ed is the design value of the local longitudinal stress, given by: 
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As MPaMPaEdx 2751.251, ��� , the safety of the cross section is 

verified. 
 

The classification of the cross section is made under a conservative 
assumption, which considers that the longest side is totally under uniform 
compression (as would happen in plane bending around z), hence: 
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Thus, cross section RHS 250x150x6.3 mm is class not higher than 3, and 
elastic design is appropriate for this application. 
 
As MPaMPaEdx 2751.251, ��� , the safety of the cross section is 

verified. 
 

The classification of the cross section is made under a conservative 
assumption, which considers that the longest side is totally under uniform 
compression (as would happen in plane bending around z), hence: 

 
64.3892.042427.36

3.6
3.63250

�!���
!�

� �
t
c .  

 
Thus, cross section RHS 250x150x6.3 mm is class not higher than 3, and 
elastic design is appropriate for this application. 
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3.4. TORSION 

 
3.4.1. Theoretical background 
 
3.4.1.1. Introduction 
 

Torsion results from forces that do not pass through the shear centre of 
the cross section. Although torsion is not a predominant internal force in 
steel structures (compared to bending moment, shear or axial force), the 
analysis and design of steel members under torsion is covered by EC3-1-1. 
On the other hand, some of the instability phenomena that may occur in steel 
members (particularly lateral-torsional buckling of beams) depend on the 
behaviour in torsion. Consequently, the general concepts of the behaviour of 
steel members subjected to torsion are presented, including the main 
formulations for the calculation of stresses and deformations. 

Generally, when a member is subjected to a torsional moment T, the 
cross sections rotate around the longitudinal axis of the member (axis that is 
defined by the shear centre of the cross sections) and warp, that is, they undergo 
differential longitudinal displacements, and plane sections no longer remain 
plane. If warping is free, which happens when the supports do not prevent it and 
the torsional moment is constant, the member is said to be under uniform torsion 
or St. Venant torsion. Conversely, if the torsional moment is variable or warping 
is restrained at any cross section (usually at the supports), the member is under 
non-uniform torsion (Kollbrunner and Basler, 1969; Hirt et al., 2006). 

Uniform torsion induces distortion that is caused by the rotation of the 
cross sections around the longitudinal axis. As a consequence, shear stresses 
appear which balance the applied torsional moment T; under these 
circumstances, the resistance to the torsional moment T exclusively results 
from St Venant’s torsion, Tt. Although longitudinal warping displacements 
may exist, they do not introduce stresses. 

In non-uniform torsion, besides the St. Venant shear stresses, 
longitudinal strains also exist (because warping varies along the member). 
These longitudinal strains generate self-equilibrating normal stresses at the 
cross sectional level that, depending on the level of restriction to warping, 
vary along the member. The existence of varying normal stresses implies (by 
equilibrium in the longitudinal direction) the existence of additional shear 
stresses that also resist to torsional moments, leading to:  
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 wt TTT �� . (3.26) 
 

 The applied torsional moment T is thus balanced by two terms, one 
due to the torsional rotation of the cross section (Tt) and the other caused by 
the restraint to warping, designated by warping torsion (Tw). 

In cross sections of circular shape, because they exhibit rotational 
symmetry with respect to the shear centre C (that coincides with the  
centroid G), only uniform torsion exists (Figure 3.33). 

In thin-walled closed cross sections (the most appropriate to resist 
torsion), uniform torsion is predominant. Therefore, in the analysis of  
thin-walled closed cross sections subjected to torsion, the warping torsion 
(Tw) is normally neglected. 

  

Tt T=Tt 

x

z
T

C

y

 
Figure 3.33 – Member under uniform torsion 

 
In members with thin-walled open cross sections (such as I or H 

sections), so that only the uniform torsion component appears, it is necessary 
that the supports do not prevent warping and that the torsional moment is 
constant. On the opposite, if the torsional moment is variable or warping is 
restrained at some cross sections (usual situation), the member is under non-
uniform torsion. (Figure 3.34). 
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Figure 3.34 – Member with I section under non-uniform torsion 
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3.4.1.2. Uniform torsion 
 

For a member under uniform torsion, the angle of rotation per unit length 
( dxd� ) is related to the torsional moment through the following equation: 

 

 
T

t

IG
T

dx
d

�
� , (3.27) 

 
where, G is the shear modulus; 

IT is the torsion constant; 
TIG  is the pure torsional rigidity; 

x a variable with the direction of the longitudinal axis of the member. 
 
The shear stresses due to uniform torsion are obtained according to 

different methodologies (some are exact and others approximate), depending 
on the shape of the cross section. For cross sections with circular shape, the 
shear stresses vary linearly with the distance to the shear centre. In  
thin-walled closed cross sections (such as square or rectangular hollow 
sections), Bredt’s theory is used, the shear stresses varying along the cross 
section such that the shear flow (q) is constant. In thin-walled open cross 
sections (sections composed by rectangles with hi/ti>10, where hi and ti are 
the height and the thickness of the rectangles that constitute the section) 
approximate expressions are used for the evaluation of the maximum stress. 

Table 3.2 indicates the expressions for the calculation of the shear 
stresses /t due to uniform torsion and for the calculation of the torsion 
constant IT for typical steel cross section shapes. Figure 3.35 illustrates the 
corresponding distributions of shear stresses. 

 
Table 3.2 – Shear stresses and torsion constant for typical steel cross section shapes 

Section Shear stress Torsion constant 
Circular (solid or hollow) r

I
T

p
t �/  

pT II �  

Thin-walled closed 

tA
T

m
t 2

�/  
8

�

t
ds
AI m

T

24
 

Thin-walled open 
máxi

T
t t

I
T

,max, �/  +
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�
n

i
iiT thI

1

3

3
1
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where, 24RI p *�  is the polar moment of inertia (in case of circular 

hollow sections with internal radius Ri and external radius Re, 

 � 244

iep RRI �� * ); 

R is the radius of the cross section; 
r is the distance to the shear centre in a circular shaped cross section; 

 Am is the area defined by the middle line in a thin-walled closed 
cross section; 

 t is the thickness at a point on a thin-walled closed section; 
s is a coordinate that is defined along the outline of a thin-walled 
closed section; 
ti and hi represent the thickness and the height of the ith rectangle, 
which composes a thin-walled open cross section; hi may be 
measured between the middle lines of the adjacent rectangles. 

 

/t 

9t  
R 

9t  t 
9t

/t ti

C
C

/t 
C

/t,max 

ti,max

 
     a) Circular section        b) Rectangular hollow section               c) I section 

Figure 3.35 – Shear stresses due to uniform torsion for typical steel cross section 
shapes 

 
3.4.1.3. Non-uniform torsion 
 

Consider again the I section cantilever beam, fixed at one end and free 
at the other, subjected to a torsional moment T, constant along its length, 
illustrated in Figure 3.34. As the fixed end cannot warp, the cross sections 
along the member undergo different longitudinal deformations, generating 
the torsional component which results from the restriction to warping, the 
warping torsion Tw. Because cross sections also rotate around the 
longitudinal axis (especially next to the free end), there is also uniform 
torsion. Thus, in this case, the resistance to torsion is given by the sum of 
both effects ( wt TTT �� ), the warping torsion component, Tw, being 
significantly larger than the uniform torsion component, Tt, in sections near 
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the built-in end. Close to the free end the opposite occurs (see diagram of 
torsional moments illustrated in Figure 3.34). 

In short, a generic section at a distance x from the support is subjected 
to the following deformations: 

� �(x) rotations around the axis of the member, due to uniform torsion 
Tt; 

� Transverse displacements of the upper flange (vsup(x)) and lower 
flange (vinf(x)) due to bending in its own plane (around z), due to the 
additional component Tw, as it is illustrated in Figure 3.36. 

 
In the cross section of a member under non-uniform torsion, shear 

stresses /t also appear due to �(x) rotations, which are obtained according to 
the uniform torsion theory. Because of the lateral bending of the flanges 
normal stresses �w appear and additional shear stresses /w, illustrated in 
Figure 3.37. The normal stresses �w are calculated from the pair of moments 
Msup or Minf, based on the so-called bimoment mhMB sup�  ( mhM inf� ). 

Shear stresses/w, which develop in the flanges, are due to the pair of shear 
forces Vsup and Vinf, statically equivalent to the warping torsion, Tw, as 

mw hVT sup�  ( mhVinf� ). The calculation of these stresses (�w and /w) is not 

detailed in this book, further information being available in Trahair (1993) 
and Hirt et al. (2006). 

 
vsup (x)

hm/2

hm/2

vinf (x)

� (x)z

 y T

 
Figure 3.36 – Deformation in an I section under non-uniform torsion 
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Figure 3.37 – Stresses due to warping torsion Tw  

 
To derive the differential equation of a member subject to torsion, 

consider again the cantilever beam illustrated in Figure 3.34. For a generic 
section at a distance x from the built-in end and the deformed configurations 
illustrated in Figure 3.36, the following relations can be established: 
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where Ifz is the second moment of the flange area with respect to the z axis. 
As this is a member with uniform cross section, equations (3.28) to (3.30) 
lead to: 
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IE
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The warping torsion, Tw, given by the couple of forces Vsup and Vinf, 

which are hm distance apart, is given by the following equation:  
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 � 
 �
3
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IE
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��
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where 
 �22

mfzW hII �  is the warping constant and WIE  is the warping 

stiffness of the section. 
Neglecting the second moment of the web area in relation to z axis 

(which implies 2zfz II � ), the warping constant of a I or H section of equal 

flanges can be obtained through the simplified expression 42
mzW hII � . 

The warping constant of a I or H section of unequal flanges can be obtained 
from the following general expression: 

 
 
 � 21 mzffW hII �� �� , (3.34) 

 
where 
 �ftfcfcf III ��� , Ifc and Ift are the second moments of area in 

relation to the minor axis z of the compression and tension flanges, 
respectively, and hm is the distance between the shear centres of the flanges. 
For the calculation of the warping constant of a generic section the reader is 
referred to Trahair (1993) or Hirt et al. (2006); for usual cross sections the 
expressions indicated in Table 3.3 can be used. 

Combining equations (3.27) and (3.33) yields the differential equation 
of non-uniform torsion: 

 
 
 � 
 � 
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3

3

)(
dx

xdIE
dx

xdIGxTxTT WTwt
��

���� . (3.35) 
 
The solution of the differential equation (3.35), based on a torsional 

moment diagram T, on the shape of the cross section and on the support 
conditions, leads to the rotation �(x) at each cross section along the member 
and, consequently, to the components of uniform torsion Tt and of torsion 
due to the restriction to warping Tw; having calculated the two components 
of torsion, the various internal stresses (/t, /w and �w) can be determined as 
described previously. 
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Table 3.3 – Warping constant for typical cross sections 

Section IW 

Circular (solid or hollow) 0 

Thin-walled closed � 0 

I or H of equal 
flanges 

hw

b

tw

tf

tf

 

24

32 bht mf  

I or H of unequal 
flanges 

hm

b1

tw

tf

tf

b2

 

3
2

3
1

3
2

3
1

2

12 bb
bbht mf

�
 

Channel 

hm

b

tw

tf

tf

 

wmf

wmfmf

thtb
thtbhbt

�
�

6
23

12

23

 

L, T or cross-shaped sections  
0 

 
3.4.1.4. Cross section resistance in torsion 
 

For the majority of cross sectional shapes, the torsional stresses are 
obtained according to elastic theory. Therefore the interaction with other 
internal forces, such as axial force, bending moment and shear force may be 
performed by the application of the von Mises criterion on the critical points 
of the cross section, usually the web to flange connections. A general 
procedure consists on the evaluation of the: 
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� elastic normal stresses � due axial force N and bending moments 
My and Mz; 

� normal stresses �w due to the warping torsion Tw in open cross 
sections; 

� shear stresses due to shear forces Vz and Vy; 
� shear stresses due to uniform torsion Tt; 
� shear stresses due to warping torsion Tw, 

 
followed by the subsequent comparison of the equivalent stress, obtained at 
the critical points of the cross section by the von Mises criterion (as 
described in the clause 6.2.1(5)), with the yield strength fy of the material. 

In more compact cross sections (class 1 or 2 cross sections) a plastic 
interaction formula may be used; however, these formulae are quite 
complex, due to the large number of cross sectional shapes and combinations 
of internal forces. The procedures prescribed in EC3-1-1 for the interaction 
between torsion and other internal forces for standard cross sections are 
presented in the following section.  

As an example, the derivation of an interaction formula between 
bending moment and a torsional moment in a thin-walled closed cross 
section is presented next. In a thin-walled closed cross section subjected to a 
torsional moment T, the shear stresses /t are given by: 

 

 
tA

T

m
t 2

�/ , (3.36) 

 
where Am is the area that is limited by the centre line of the cross section’s 
wall and t is the thickness of the wall. 
 

 tf 

b m

hm 

tw
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Figure 3.38 – Thin-walled closed rectangular section 
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The torsional moment, given by the moment of the resultant of the 

shear stresses in relation to the shear centre of the section (in this case, it 
coincides with the centroid), is given by: 
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As wwtfft tt ,, // �  and ftwtwf tt ,, // �,� , the applied torsional 

moment T is given by: 
 

 mmwwt bhtT ,2/� , (3.38) 
 

Setting 3, ywt f�/ , the torsional moment resistance Tpl is given by: 
 

 32 ymmwpl fbhtT � . (3.39) 
 

After the evaluation the shear stresses ft ,/ and wt ,/ due to the applied 

torsional moment T, reduced resistant normal stresses, wb,�  and fb,�  can 

be obtained by the application of the von Mises criterion, along the flanges 
and webs of the cross section through the following expressions: 
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The bending moment is given by: 
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 (3.42) 

 
After several mathematical transformations, the following formula is 
obtained: 
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that corresponds to the plastic interaction formula between bending  
moment M and torsional moment T, applicable to the cross sectional shape of 
Figure 3.38. 
 
3.4.2. Design for torsion 
 

The design of members subjected to a torsional moment should 
comply with the following condition (clause 6.2.7): 
 

 0.1�
Rd

Ed

T
T

, (3.44) 

 
where TEd is the design value of the torsional moment and TRd is the design 
torsional resistance of the cross section, evaluated according to the 
formulations presented previously. 

For verification of (3.44) in cross sections under non-uniform torsion, 
the design value of the torsional moment, TEd, should be decomposed into 
two components: 
 
 EdwEdtEd TTT ,, �� , (3.45) 
 
where Tt,Ed is the internal component of uniform torsion (or St. Venant’s 
torsion) and Tw,Ed is the internal component of warping torsion. Therefore, in 
the cross section of a member under non-uniform torsion, the following 
stresses appear: 

� Shear stresses /t,Ed due to the component of uniform torsion Tt,Ed. 
� Shear stresses /w,Ed due to the component of warping torsion Tw,Ed and 

also normal stresses �w,Ed, due to bimoment BEd.  
The resistance to torsion should be verified by combining the previous 

stresses (and all other stresses that result from other internal forces) using the 
von Mises yield criterion, according to equation (3.1), given in  
clause 6.2.1(5). 
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The stresses due to bimoment BEd should be taken into account in the 
evaluation of the plastic moment resistance of a cross section under the 
combination of bending moment and torsional moment. 

The decomposition of the design value of the torsional moment TEd 
into the Tt,Ed and Tw,Ed components, described in sub-section 3.4.1.3, depends 
fundamentally on the support conditions, on the diagram of torsional 
moments and on the shape of the cross section of the members.  
Clause 6.2.7(7) proposes as a simplification that for closed hollow cross 
sections (the most appropriate to resist torsion), the effect of the warping 
torsion, Tw,Ed, can be neglected, whereas in open cross sections (like I or H 
sections) the effect of the component of uniform torsion, Tt,Ed, can be 
neglected. 

For the verification of the safety of cross sections under shear force 
VEd and torsional moment TEd, clause 6.2.7(9) gives the following criterion: 
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where Vpl,T,Rd is the reduced design plastic shear resistance, to account for the 
torsional moment. For I or H sections: 
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for channel sections, 
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and in hollow sections, 
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In these expressions, Vpl,Rd is the design plastic shear resistance, evaluated 
according to clause 6.2.6. 
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The resistance of sections simultaneously under bending moment, 
shear force and torsional moment, must be evaluated in accordance with 
clause 6.2.8, already described in section 3.3.4, by replacing the design 
plastic shear resistance, Vpl,Rd, with the reduced design plastic shear 
resistance, Vpl,T,Rd, to account for the torsional moment. 

 
3.4.3. Worked examples 

 
Example 3.7: Calculate the constant for uniform torsion IT, and the warping 
constant IW, of the thin-walled steel cross sections illustrated in Figure 3.39 
(dimensions in mm).  
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10 

10

IPE 300 

8

300

200 280 
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8
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               i)         ii)       iii)         iv)           v) 

Figure 3.39 – Thin-walled steel cross sections 
_______________________________ 
 
i) T Section 
 
As 
 � 
 � 105.2010205 ���webii th  and 
 � 
 � 100.2010200 ���flangeii th , the 

cross section can be considered a thin-walled section. As this is an open 
section, the torsion constant is given by: 
 


 � 4633

1

3 10135.01020010205
3
1

3
1 mmthI

n

i
iiT !�!�!!�� +

�
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For a T section, according to Table 3.3, the warping constant is 0�WI . 

 
ii) IPE 300 Section 
 
As 
 

 � 
 �
 � 107.401.77.10300 ����webii th , 
 
and 
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 � 
 � 100.147.10150 ���flangeii th , 
 
the IPE 300 can be considered a thin-walled section. Thus, the torsion 
constant is given by: 
 


 �
 �
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7.1015021.77.10300
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46
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The warping constant (I section of equal flanges) is given by: 
 


 � 69
3232

109.125
24
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�� , 

 
or, alternatively, by the simplified expression given after (3.33): 
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iii) Thin-walled rectangular open section 
 
The open section can be considered thin-walled because 

 � 
 �
 � 100.2488200 ����shorterlegii th ; as such, the torsion constant  is 

given by: 
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The warping constant is given by: 69102.2386 mmIW !� . This value is 
obtained by applying a general formulation described in Nakai and  
Yoo (1988) and not detailed here. 
 
iv) Thin-walled closed rectangular section 
 
The torsion constant for a thin-walled closed section is given by: 
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and the warping constant is 0�WI . 
 
v) Circular hollow section 
 
For a circular hollow section, the torsion constant is given by the polar 
moment of inertia: 
 


 � 
 �
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2

2822802280
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Alternatively, the torsion constant can also be obtained from Table 3.2: 
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For a circular hollow section the warping constant is 0�WI . 
_____________________________________________________________ 
 
Example 3.8: Verify the safety of the cantilever beam A-B, illustrated in 
Figure 3.40, according to EC3-1-1. The beam, constituted by a rectangular 
hollow section (RHS 300x200x8 mm) in grade S 355 steel, is subjected to a 
design load of 60.0 kN, applied with an eccentricity of 0.80 m. Calculate also 
the rotation about the x-axis of the section B of beam A-B. 
 

 x 

 z 
RHS 300x200x8 mm 

3.0 m 

60.0 kN

0.8 m 

 y 

A 

B 

C

 
Figure 3.40 – Cantilever beam 

_______________________________ 
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For the given load arrangement, the beam is under bending moment, shear 
force and torsional moment. Despite the warping of the sections being 
prevented, particularly next to the clamping section, being a closed hollow 
section, the warping torsion, Tw,Ed, can be neglected. The applied torsional 
moment is then totally resisted by the component of uniform torsion or  
St. Venant’s torsion. Because the beam is composed by a section with high 
torsional and lateral bending stiffness, it may be assumed that it is not 
susceptible to lateral-torsional buckling; thus, its resistance depends 
exclusively on the resistance of the cross sections. The critical cross section 
is section A, subjected to the following design internal forces: 
 

kNM Edy 180360, �!� , 
 

kN60, �EdzV  and kNmTEd 4880.060 �!� . 
 
The main geometric characteristics of the RHS 300x200x8 mm cross section 
are: 
 
A = 76.75 cm2, Iy = 9717 cm4, Wpl,y = 779.3 cm3, Wel,y = 647.8 cm3 and  
IT = 10560 cm4. The main characteristics of grade S 355 steel are:  
E = 210 GPa, G = 81 GPa and fy = 355 MPa. 
 
According to EC3-1-1, the interaction of forces can be checked by one of the 
following procedures: i) Elastic interaction as given by clause 6.2.7(5) or  
ii) Plastic interaction according to the criteria established in clauses 6.2.7  
and 6.2.8. 
 
A RHS 300x200x8 mm, in grade S 355 steel, is class 1 in bending: 
 


 � 7.2681.033330.22883200 �!���!�� �tc , for the horizontal 
leg and 
 � 3.5881.072725.34883300 �!���!�� �tc , at the 
vertical leg. 
 
i) Elastic interaction 
 
According to this procedure, the elastic maximum stresses due to the three 
internal forces are calculated at the critical points of the cross section, and 
then they are combined using the von Mises yield criterion. 
By inspection of the elastic stress diagrams of Figure 3.41, the critical points 
are the points of connection between the vertical legs and the horizontal legs. 
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At these points, the normal stresses due to bending and the shear stresses due 
to shear force and uniform torsion are given by: 
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The shear stress at the critical points is given by: 
 

MPaEdtEdvEd 2.625.537.8,, ����� /// . 

 

�:;; < MPa 

My,Ed

8.7 MPa

�:;; < MPa 

15.2 MPa 

53.5 MPa 

53.5 MPa 

TEd 
Vz,Ed 

8.7 MPa  
          �x,Ed Stresses               /v,Ed Stresses                                /t,Ed Stresses 

Figure 3.41 – Distributions of stresses at section A 
 

From the von Mises yield criterion, according to clause 6.2.7(5): 
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Therefore, the RHS 300x200x8 mm, in grade S 355 steel, satisfies the 
condition.  
 
ii) Plastic interaction 
 



3.4. TORSION 

 

_____ 
171 

The procedure is according to clauses 6.2.7 and 6.2.8. The design  
plastic moment resistance of the cross section, not reduced by shear, is given 
by: 
 

.1807.276

0.110355103.779

,
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The shear area is given by: 
 

205.46
300200
30075.76

cm
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�
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The design plastic shear resistance is given by: 
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The reduced plastic shear resistance of a rectangular hollow section, to 
account for the presence of a torsional moment, is given by: 
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As kNVkNV RdTplEd 7.3484.6975.05.060 ,, �!��� , it is not necessary to 

reduce the design plastic moment resistance due to shear force and torsional 
moment. Thus, a RHS 300x200x8 mm, in grade S 355 steel, is suitable for 
this application. 
 
iii) Calculation of the rotation about the x-axis of the section B of the  
beam A-B 
 
For the beam under uniform torsion (TEd = Tt), the rotation of section B is 
obtained by the integration of expression (3.27). As the torsional moment is 
constant and section A does not rotate, the rotation is given by:  
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3.5. COMPRESSION 
 
3.5.1. Theoretical background 
 
3.5.1.1. Introduction 

The resistance of a steel member subject to axial compression depends 
on the cross section resistance or the occurrence of instability phenomena, 
such as flexural buckling, torsional buckling or flexural-torsional buckling. 
In general, the design for compression is governed by the second condition 
(instability phenomena) as steel members are usually of medium to high 
slenderness. 

The cross section resistance to axial compression should be based on 
the plastic capacity (plastic axial force) in compact sections (class 1, 2 or 3), 
but taking into account the local buckling resistance through an effective 
elastic capacity in class 4 sections. 
 The buckling resistance should be evaluated according to the relevant 
buckling mode and relevant imperfections of real members, as described in 
the following sections. 
 
3.5.1.2. Elastic critical load 
 

Buckling is an instability phenomenon that is characterized by the 
occurrence of transverse deformations in members under compression forces. 
In steel structures, instability phenomena assume particular importance, 
because of the relatively high slenderness of compressed members. 

The elastic critical load (Euler’s critical load) is derived from the 
theory of elastic stability, as the value of the axial force at which an  
initially-perfect elastic member may start exhibiting deformations that are 
not exclusively axial. Buckling of a compressed member, free from 
imperfections, is illustrated in a simplified way in Figure 3.42; the critical 
load corresponds to the point of bifurcation of equilibrium. This 
phenomenon, rigorously called buckling due to compression in a bending 
mode, will be simply referred in this book as flexural buckling.  

The elastic critical load of a pinned column, with uniform cross 
section and subjected to constant axial force, is evaluated as shown below. In 
this formulation the following conditions (ideal design conditions) are 
assumed: 
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� material with linear elastic behaviour; 
� member free from geometric imperfections and from residual stresses; 
� perfectly centred load; 
� small displacement theory. 

 
 

 y(x) 

N

 y(x) 

 L 

N 

 y 

 x 

N 

0

Ncr

(z) 

 
Figure 3.42 – Buckling in a pinned member (Euler’s column) 

 
For small deformations, the condition for equilibrium of moments 

(around z), along the member in Figure 3.42, is given by the following equation: 
 

 02

2

�� yN
dx

ydIE , (3.50) 
 
where E is the modulus of elasticity of the material and I is the second 
moment of area with respect to the z axis, perpendicular to the plane where 
the deformation occurs. Equation (3.50) is a linear homogeneous differential 
equation of constant coefficients. The solution of this equation is: 
 
 )(cos)(sin 21 xkDxkDy �� , (3.51) 
 
with 
 �IENk �2 . From the support conditions: 
 
 00)0( 2 �,�� Dxy ; (3.52) 
 
 *nLk  or DLkDLxy ��,�,�� 00)(sin0)( 11 . (3.53) 
 
The critical load is obtained from 
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IE

N
L

n
knLk ��,�

2

22
2 *

* , (3.54) 

 

and 
2

22

L
IEnNcr

*
�  (with n = 1, 2, …). The lowest critical load, which 

corresponds to the deformed configuration illustrated in Figure 3.42, is given 
by: 
 

 2

2

L
IENcr

*
� . (3.55) 

 
It can be concluded that for a perfect member, the resistance to buckling 
depends on the bending stiffness of the cross section, on its length and on the 
support conditions. 

For other support conditions, the critical load is obtained by the 
solution of a fourth-order differential equation (similar to equation (3.50)), 
considering adequate support conditions. As an alternative to solving the 
differential equation, the critical load may be obtained from equation (3.55), 
replacing the real length L by the buckling length LE. The buckling length LE 
of a member is defined as the length of a fictitious equivalent pinned 
member with the same critical load. Figure 3.43 illustrates the buckling 
lengths for isolated members, for several support conditions. 
 

L 
0.7 L 2 L

0.5 L

L 

 
Figure 3.43 – Buckling length LE as a function of the real length L of the column 

 
By dividing Euler’s critical load by the area of the cross section (A), 

the critical stress is obtained: 
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2

2

2
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IE

E
cr �� , (3.56) 

 
where, iLE�( is the slenderness coefficient and AIi �  is the radius of 

gyration of the section. 
In a member without imperfections, composed of a material with 

elastic-perfectly plastic behaviour (such as may be assumed for mild steel), 
failure will only occur by buckling in the elastic range if Euler’s critical 
stress is lower than the yield stress fy. For a short member (with a low 
slenderness coefficient (), failure occurs by yielding of the cross section, 
when the applied stress equals the yield stress, that is, when yfAN ��� . 

The limit between the two types of behaviour is defined by a value of the 
slenderness coefficient, denoted as (1, given by: 
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ycr f
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. (3.57) 

 
Based on the slenderness coefficient (1, the non-dimensional 

slenderness coefficient (  is defined as: 
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(( . (3.58) 

 
The behaviour of a compressed member, without imperfections, for 

the full slenderness range, is represented in Figure 3.44. 
 

2

2

(
*� E

�

A
N

��

i
LE�(

yf
E*( �1

yf��

 
Figure 3.44 – �	- (		relationship of a compressed member 
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In compressed members of thin-walled open cross section (and hence 

low torsional stiffness), other instability phenomena may also occur – 
torsional buckling or flexural-torsional buckling (Trahair, 1993; Hirt et al., 
2006). Torsional buckling is due to the rotation of cross sections around the 
axis of the member, as illustrated in Figure 3.45a; flexural-torsional buckling 
consists of the simultaneous occurrence of torsional and bending 
deformations along the axis of the member (Figure 3.45b). 

 

C = G�

G y 

z

C

�	

 
  a) Torsional buckling   b) Flexural-torsional buckling 

Figure 3.45 – Torsional buckling and flexural-torsional buckling 
 
The instability phenomena illustrated in Figure 3.45 are characteristic 

of thin-walled open cross sections, such as channels, L sections or cruciform 
cross sections. For compressed members constituted by I or H sections, the 
most critical instability mode is usually flexural buckling.  

For members with symmetric cross section with respect to the y axis, 
the torsional buckling critical load is given by: 
 

 "
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For the same type of cross sections, the flexural-torsional buckling 

critical load is given by: 
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where, iC is the radius of polar gyration given by 
 � AIIyi zyCC ��� 22 ; 

TIG  is the stiffness of the section in uniform torsion; 
IT is the torsion constant; 

WIE  is the warping stiffness; 
IW is the warping constant; 
LET is an equivalent length that depends on the restrictions to torsion 
and warping at the end sections; 
Ncr,y is the critical load for flexural buckling about the y axis; 
� is a factor given by 
 �21 CC iy��� , where yC is the distance along 
the y axis between the shear centre and the centroid of the section. 

 
The calculation of the critical loads in compressed non-prismatic 

members and/or for variable axial force is briefly addressed in chapter 4. 
Further guidance can be found in Allen and Bulson (1980) or Hirt et al. 
(2006). 
 
3.5.1.3. Effect of imperfections and plasticity 
 

In real structures, imperfections are unavoidable and result in 
deviations from the theoretical behaviour previously described; under these 
circumstances, the critical load, in general, is not reached. Imperfections can 
be divided into two types: i) geometrical imperfections (lack of linearity, 
lack of verticality, eccentricity of the loads) and ii) material imperfections 
(residual stresses). 

To assess the effect of geometrical imperfections, consider the slender 
pinned member of Figure 3.46a, with a sinusoidal initial deformed 
configuration, represented by the following expression:  
 
 "

#
$

%
&
'�

L
xey *

sin00
. (3.61) 

 
The differential equation for equilibrium of a pinned member with an initial 
deformation is given by: 
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 � 002

2

��� yyN
dx

ydIE . (3.62) 
 
Introducing expression (3.61) in equation (3.62) and considering the 
boundary conditions 
 � 00 �y  and 
 � 0�Ly , leads to the following solution: 
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where Ncr is the Euler critical load. The total deformation of the member is 
obtained as a function of the applied axial force N: 
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Its maximum value, denoted by e, and obtained for 2Lx � , is given by: 
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a) Initial sinusoidal configuration  b) Load – lateral displacement relation 

Figure 3.46 – Column with initial geometrical imperfection 
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An initial deformation, even for low values of the axial force N, 
generates bending moments given by: 
 

 
 � 
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which cause a progressive increase of the lateral displacements. The relation 
between the maximum lateral displacement e and the applied axial force N 
(expression (3.65)) is represented in Figure 3.46b. For a member with a 
deformed initial configuration, the transverse displacements start to increase 
for low values of the axial force N (without bifurcational behaviour) and 
asymptotically approach infinity as the applied load tends to the critical load. 

Residual stresses develop due to differential cooling after hot rolling 
and any other kind of process involving heat (like welding and flame cutting, 
for example), shearing and cold-forming and cold-bending; despite being a 
self-equilibrated system, as illustrated in Figure 3.47 for an I section, these 
stresses change the load-deformation relationship for the cross section as a 
whole. 

 

0.3 fy

0.2 fy 

Compression

Tension
 

Figure 3.47 – Typical residual stresses in a rolled member with a I cross section 
 
Figure 3.48 illustrates the results of experimental tests on axially 

compressed members with several slenderness coefficients (  and compares 
them with the theoretical behaviour (ECCS, 1976). It can be observed that 
for low values of ( , failure occurs essentially by plastification of the 
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section and values of yf� higher than 1.0 are obtained experimentally due 

to strain-hardening. For high values of ( , failure occurs by buckling in the 
elastic range, the imperfections not having much influence. For intermediate 
values of ( , failure occurs by elastic-plastic instability, and it is in this 
slenderness domain that imperfections have more influence (the 
experimental results deviate most from the theoretical curve). 
 

curvesEuler´

yf
�

(0.1

0.1

 
Figure 3.48 – Results of experimental tests in real members 

 
The resistance of compressed members is based on the “European 

design buckling curves” (ECCS, 1977) that relate the ratio yf�> �  with 

the non-dimensional slenderness ( . These (five) curves were the result of 
an extensive experimental and numerical research programme (ECCS, 1976) 
that accounted for all imperfections in real compressed members (intial out-
of-straightness, eccentricity of the loads, residual stresses). These 
imperfections were defined statistically following an extensive measurement 
campaign (Strating and Vos, 1973) that justified the adoption of a sinusoidal 
geometrical imperfection of amplitude L/1000 in the numerical simulations3. 
The analytical formulation of the buckling curves, briefly explained in the 
following paragraphs, was derived by Maquoi and Rondal (1978), based on 
the Ayrton-Perry formula, considering an initial sinusoidal deformed 

                                                      
3 This geometrical imperfection accounts for initial out-of-straightness (Gaussian 
distribution with  an average e0 = L/1176.5 and coefficient of variation of 23.5 %) 
and eccentricity of the loads (Gamma distribution with ( = 2.798 and k = 1.663). 
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configuration corresponding to an “equivalent initial deformed 
configuration” where the amplitude is calibrated in order to reproduce the 
effect of all the imperfections.  

Consider the compressed column of Figure 3.46a with a sinusoidal 
initial deformed configuration given by expression (3.61). Assuming that the 
column is free from residual stresses, plastification of the fibres that are most 
distant from the neutral axis occurs when the following condition is met: 
 
 y
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W
eN

A
N

�� maxmax , (3.67) 

 
where, Nmax is the maximum value of axial compression N (limited by the 

resistance to buckling); 
e is the maximum lateral deformation; 
A is the area; 
Wel is the elastic bending modulus. 
 

Equation (3.67) can be written in a non-dimensional form, by replacing e 
with the expression given by (3.65) and dividing all terms by fy:  
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Defining plNN max�> yields: 
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or 
 

 
 �
 � �>>(>> ����
elW
Ae0211 , (3.70) 

 
which constitutes the basic form of the Ayrton-Perry equation (Maquoi and 
Rondal, 1978). �  represents the generalized initial imperfection that can be 
used to estimate the effects on the buckling phenomenon of initial 
imperfections such as residual stresses, initial out-of-straightness or 
eccentrically applied forces. Because the influence of some of these initial 
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imperfections is linked with the length of the member, it has been chosen to 
express �  as follows (Maquoi and Rondal, 1978): 
 
 
 �2.0�� (�� , (3.71) 
 
where the imperfection factor � depends on the shape of the cross section, 
buckling plane, etc., and 0.2 defines the length of the plateau along which  
� = 1.0. Based on the previous relations, the Ayrton-Perry equation (3.70) 
can be written in the form: 
 

 
 �
 � 
 �2.011 2 ����� (>�>�>(> . (3.72) 
 
Equation (3.72) is a quadratic equation in >, ad its minimum solution is 
given by: 
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� , (3.73) 
 
with  
 

 
 �? @22.015.0 ((�� ���� . (3.74) 
 
By multiplying the numerator and the denominator of the previous 

expression by the conjugated term 22 (�� �� , the expression from  

EC3-1-1 is obtained, which gives the >	factor (reduction factor accounting 
for the risk of flexural buckling) as a function of the non-dimensional 
slenderness coefficient (  and of the imperfection factor �: 
 

 22
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(��
>

��
� . (3.75) 

 
Metals present, in general, an elastic-plastic behaviour, and in the case 

of mild steel (except for the effect of residual stresses) a perfect elastic-
plastic behaviour is normally adopted (Figure 3.49a). However, in materials 
like stainless steel or aluminium the behaviour is closer to the one illustrated 
in Figure 3.49b. 
 



3.5. COMPRESSION 

 

_____ 
183 

1

�	

�	

E 

�p 
ET = 0 

�	

�

E 

�p 

ET 
1 

1

 
                  a) Perfect elastic-plastic                              b) Elastic-plastic 

Figure 3.49 – Behaviour of metals 
 
For members with low slenderness and of stainless steel or aluminium 

(or other material with similar behaviour), failure can occur when some 
points of the section have already exceeded the limit stress of proportionality 
�p (�p � fy in case of mild steel); in these cases, the stability analysis must 
include the interaction between the geometric and material non-linearities 
(plasticity effect). The plasticity effect in the study of instability in the 
elastic-plastic range can be taken into account by the reduction of the 
modulus of elasticity. If the limit stress of proportionality is exceeded, the 
modulus of elasticity E must be replaced by the tangent modulus ET, as 
illustrated in Figure 3.49b, the critical load being defined by: 
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� . (3.76) 

 
If ET is variable, an iterative process is necessary. 
 
3.5.2. Design for compression 
 

According to clause 6.2.4(1), the cross section resistance of axially 
compressed members is verified by the following condition: 
 

 0.1
,

�
Rdc

Ed

N
N

, (3.77) 

 
where NEd is the design value of the axial compression force and Nc,Rd is the 
design resistance of the cross section for uniform compression, given by 
(clause 6.2.4(2)): 
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� Class 1, 2 or 3 cross sections  
 

 0, MyRdc fAN �� ; (3.78) 
 

� Class 4 cross section  
 
 0, MyeffRdc fAN �� , (3.79) 
 
where A is the gross area of the cross section, Aeff is the effective area of a 
class 4 cross section, fy is the yield strength of steel and �M0 is a partial safety 
factor. In evaluating Nc,Rd, holes for fasteners can be neglected, provided they 
are filled by fasteners and are not oversize or slotted (clause 6.2.4(3)). 

In compression members it must also be verified that:  
 
 RdbEd NN ,� , (3.80) 
 
where Nb,Rd is the design buckling resistance of the compression member 
(clause 6.3.1.1(1)) and this generally controls design. The design flexural 
buckling resistance of prismatic members is given by: 
 

� Class 1, 2 or 3 cross sections  
 
 1, MyRdb fAN �>� ; (3.81) 
 

� Class 4 cross sections  
 
 1, MyeffRdb fAN �>� , (3.82) 
 
where >	is the reduction factor for the relevant buckling mode and �M1 is a 
partial safety factor (clause 6.3.1.1(3)). The reduction factor > is obtained 
from the following expression: 
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In this expression, 
 �? @22.015.0 ((�� ����  and (  is the non-
dimensional slenderness coefficient, given by: 
 

� Class 1, 2 or 3 cross sections  
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� Class 4 cross sections  
 

 
1(

(
AA

i
L

NfA effcr
cryeff �� , (3.85) 

 
where, �  is the imperfection factor; 

Ncr is the elastic critical load (Euler’s critical load) for the relevant 
buckling mode; 
Lcr is the length of the corresponding buckling mode; 
i is the radius of gyration of the cross section; 


 � �*( 9.931 �� yfE ; 

yf235��     with fy in N/mm2. 
 

The effect of imperfections is included by the imperfection factor �, 
which assumes values of 0.13, 0.21, 0.34, 0.49 and 0.76 for curves a0, a, b, c 
and d (European design buckling curves), respectively. These curves, 
mathematically represented by equation (3.83), are illustrated in Figure 3.50. 
The imperfection factor �		and the associated buckling curve to be adopted 
in design of a given member depends on the geometry of the cross sections, 
on the steel grade, on the fabrication process and on the relevant buckling 
plane, as described in Table 3.4. 

 

 
Figure 3.50 – Buckling curves according to EC3-1-1 
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Table 3.4 – Selection of the buckling curve 
 
 

Cross section 
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According to clause 6.3.1.2(4), for values of the non-dimensional 
slenderness 2.0�(  or if 04.0�crEd NN , the effect of buckling can be 

neglected, and members are designed based only on the cross section 
resistance. 

In compression members with open cross sections, then according to 
clause 6.3.1.4(1), account should be taken of the possibility that resistance to 
torsional or flexural-torsional buckling could be less than the resistance to 
flexural buckling. The design process for these members is very similar to 
that for flexural buckling, the non-dimensional slenderness coefficient (  
being replaced by the non-dimensional slenderness coefficient T( , evaluated 
by the following expressions (clause 6.3.1.4(2)): 
 

� Class 1, 2 or 3 cross sections  
 
 cryT NfA�( ;  (3.86) 
 

� Class 4 cross sections  
 
 cryeffT NfA�( , (3.87) 
 
where Ncr is the lower of the values Ncr,T and  Ncr,TF Ncr,T is the elastic critical 
load for torsional buckling (expression (3.59)) and Ncr,TF is the elastic critical 
load for flexural-torsional buckling (expression (3.60)). For both 
phenomena, the imperfection coefficient �	can be taken as corresponding to 
flexural buckling about the z axis, obtained from Table 6.2 of EC3-1-1, 
reproduced in Table 3.4 above. 

Annex BB.1 provides guidelines that allow quantification of the 
buckling length for members in triangulated and lattice structures. In general, 
for the evaluation of the buckling resistance of chord members, a buckling 
length equal to the real length L may be adopted, for both in-plane and  
out-of-plane buckling; in some particular cases lower values can be adopted, 
provided that they are properly justified. In the case of chord members with I 
or H sections, the in-plane buckling length of the structure can be reduced to 
0.9 L. In the case of chords with tubular sections, a buckling length equal to 
0.9 L may be considered, for in-plane and out-of-plane buckling.  

For web members, in general a buckling length equal to the real length 
L should be considered. For some types of members (except for those made 
of angles, for which clause BB.1.2 is applicable) a lower value can be 
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adopted (equal to 0.9 L) for the in-plane buckling length of the structure, as 
long as the chords supply appropriate end restraint and the end connections 
provide adequate fixity (at least two bolts, in case of bolted connections) in 
accordance with clause BB.1.1(3). 

In the definition of the real length L, particularly for chord members, 
the following rules should be followed: i) in the plane of the structure, the 
real length L of a bar is the distance between connections, or more generally 
as the distance between structural nodes, depending on the structural 
modeling; ii) for out-of-plane buckling, the real length L corresponds to the 
distance between connections (or structural nodes), but only if the nodes are 
braced in the perpendicular direction to the plane of the structure; otherwise 
a longer length should be considered, in the limit, the total length of the 
chord between supports. 

Uniform built-up compression members must be analysed and 
designed according to clause 6.4. Closely spaced built-up members, shown 
in Figure 3.51 (clause 6.4.4), can be designed against buckling as a single 
member, as long as interconnection is provided (by bolts or welding) along 
its length, with a maximum spacing of 15 imin (or 70 imin in the case of 
members connected by pairs of battens as specified in the same clause 6.4.4), 
where imin is the minimum radius of gyration of the cross section of one 
chord or one angle. 

 

 
Figure 3.51 – Closely spaced built-up members 

 
3.5.3. Worked Examples 

 
Example 3.9: Design the column BD of the steel structure represented in 
Figure 3.52, using a HEB cross section in S 355 steel, according to EC3-1-1. 
The column is fixed at the base and hinged at section B (with respect to the 
two principal axis of the cross section). Cross section B is fixed in both 
horizontal directions, in the plane of the structure (due to the beam itself) and 
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in the perpendicular plane (because of secondary bracing members). Loading 
is already factored for ULS. 
 

10.0 m

8.0 m 

2.0 m

80.0 kN/m
800.0 kN

A 

B

D

C 

z

x

(y)

 
Figure 3.52 – Design of a column 

_______________________________ 
 
i) Design value of the applied compressive axial force NEd   

kNN Ed 0.1376800
2

12
10

0.80 2

��!� . 

 
ii) Preliminary design – Assuming class 1,2 or 3 cross sections, yields: 
 

0.1103550.1376 3
0, !!���� AfANkNN MyRdcEd �  

 
224 76.381076.38 cmmA �!
, � . 

 
As it is expected that buckling resistance will govern the member design, a 
HEB 240 in S 355 steel is proposed (class 1 in pure compression), with the 
following properties (geometrical and mechanical):  
 
A = 106 cm2, b = 240 mm, h = 240 mm, tf = 17 mm, tw = 10 mm,  
Iy = 11260 cm4, iy = 10.31 cm, Iz = 3923 cm4, iz = 6.08 cm, fy = 355 MPa and  
E = 210 GPa. 
 
iii) Buckling lengths – According to the support conditions, the buckling 
lengths are equal in both planes, given by: 
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Buckling in the plane of the structure (plane x-z) - mLEy 6.50.87.0 �!� . 
 
Buckling in the perpendicular plane (plane x-y) - mLEz 6.50.87.0 �!� . 
 
Because the buckling lengths are equal in both planes, the orientation of the 
cross section is arbitrary. For constructional reasons, the section is placed as 
shown in Figure 3.52, with the strong axis (y axis) in the perpendicular 
direction to the plane of the structure. 
 
iv) Determination of the slenderness coefficients 
 

4.76
10355
10210

3

6

1 �
!
!

� *( ; 

 

32.54
1031.10

6.5
2 �

!
��

�
y

Ey
y i

L
( ; 71.0

1
��

(
(

( y
y ; 

 

11.92
1008.6
6.5

2 �
!

��
�

z

Ez
z i

L
( ; 21.1

1
��

(
(

( z
z . 

 
v) Calculation of the reduction factor >min  

2.10.1 ��
b
h     and    mmmmt f 10017 ��  

 

).49.0(
)34.0(

��
��

,
�
�

ccurvezaroundbending
bcurveyaroundbending  

 
As yz (( �  and b curvec curve �� � zmin >> ��, . 
 


 �? @ 48.121.12.021.149.015.0 2 ���!�!�z� ; 
 

43.0
21.148.148.1

1
22

�
��

�z> ; 

 
43.0�� zmin >> .  

 
vi) Safety verification 
 

kNfAN MyRdb 1.16180.1103551010643.0 34
1, �!!!!�� ��> . 
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As kNNkNN RdbEd 1.16180.1376 , ��� , 
 
safety is verified. The solution for the problem consists of a HEB 240 in  
S 355 steel. 
_____________________________________________________________ 
 
Example 3.10: Consider the lattice beam of example 3.3, in S 275 steel, 
with the internal forces represented in Figure 3.53. In order to complete its 
design, design the compressed members, considering the same types of cross 
sections, that is: 

 
a) Square hollow sections (SHS), with welded connections between the 

members of the structure. 
 

b) HEA sections in the chords (horizontal members) and sections built up 
from 2 channels in the diagonals, bolted to gusset plates welded to the 
HEA profiles in the upper and lower chords. 

_______________________________ 
 

61.9 kN 61.9 kN
123.8 kN 123.8 kN 123.8 kN 123.8 kN

309.5 kN 309.5 kN 

-247.6 kN

+495.3 kN 

-618.9 kN -742.6 kN

+742.6 kN

+350.2 kN 
-350.2 kN 

+174.9 kN 
-174.9 kN

0.0 kN

0.0 kN

-247.6 kN -618.9 kN

+495.3 kN+742.6 kN

-174.9 kN

+174.9 kN

-350.2 kN 
+350.2 kN 

 
Figure 3.53 – Actions and internal forces on the lattice girder of example 3.3 

 
Based on the axial force diagrams represented in Figure 3.53, the most 
compressed chord member is under an axial force of 742.6 kN and it is 
simultaneously one of the longest members, with L = 3.00 m; concerning the 
diagonals, the most compressed member, with a length L = 2.12 m, is under 
an axial force of 350.2 kN. For the definition of the buckling lengths of the 
members, it is assumed that all the nodes of the truss are braced in the 
direction perpendicular to the plane of the structure. 
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a) Design with square hollow section (SHS) profiles 
 

i) Preliminary design, assuming a class 1, 2 or 3 cross section, gives: 
 
Upper chord, 
 

224
3

3

0.27100.27
10275

0.16.742
0.1

102756.742 cmmAA
�!�

!
!


,
!!

� � . 
 
Diagonals, 
 

224
3

3

7.12107.12
10275

0.12.350
0.1

102752.350 cmmAA
�!�

!
!


,
!!

� �
. 

 
Based on a table of commercial profiles of square hollow sections (SHS), a 
SHS 120x120x8 mm (A = 35.5 cm2) is proposed for the upper chord and a 
SHS 80x80x6.3 mm (A = 18.4 cm2) is proposed in the diagonals, with areas 
slightly above the minimum required by the above conditions; this is because 
verification of resistance to buckling is expected to govern. The following 
additional geometrical properties apply to the proposed sections: 
 
SHS 120x120x8 mm: I = 738 cm4, i = 4.56 cm; 
 
SHS 80x80x6.3 mm: I = 165 cm4, i = 3.00 cm. 
 
ii) Cross section classification 
 
For the proposed sections (square hollow sections of constant thickness), in  
S 275 steel, in compression: 
 
SHS 120x120x8 mm: mmthc 96831203 �!���� . 
 

4.3092.0333312
8
96

�!����, �
t
c . (Class 1) 

 
SHS 80x80x6.3 mm: mmthc 1.613.63803 �!����  
 

4.3092.033337.9
3.6
1.61

�!����, �
t
c . (Class 1) 

 
Therefore both cross sections are class 1. 
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iii) Verification of the buckling resistance 
 

iii-1) Upper chord using a SHS 120x120x8 mm 
 

81.86
10275
10210

3

6

1 �
!
!

� *( ;  

 
mLLE 70.200.39.09.0 �!��  (according to Annex BB.1); 

 

21.59
56.4

1070.2 2

�
!

��
i

LE( ;   682.0
1

��
(
(( ; 

 
Hot-finished square hollow section   aCurve, , so 21.0�� ; 
 


 �? @ 783.0682.02.0682.021.015.0 2 ���!�!�� ; 
 

856.0
682.0783.0783.0

1
22

�
��

�> ; 

 

kN
fA

N
M

y
Rdb 7.835

0.1
10275105.35856.0 34

1
, �

!!!!
��

�

�
>

. 

 
As kNNkNN RdbEd 7.8356.742 , ��� , a SHS 120x120x8 mm, in  

S 275 steel, is adopted.  
 

iii-2) Compressed diagonals using SHS 80x80x6.3 mm 
 

81.86
10275
10210

3

6

1 �
!
!

� *( ;  

 
mLLE 12.2��  (according to Annex BB.1); 

 

67.70
00.3

1012.2 2

�
!

��
i

LE( ;  814.0
1

��
(
(( ; 

 
Hot-finished square hollow section   aCurve, , so 21.0�� ; 
 


 �? @ 896.0814.02.0814.021.015.0 2 ���!�!�� ; 
 

787.0
814.0896.0896.0

1
22

�
��

�> ; 
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kN
fA

N
M

y
Rdb 2.398

0.1
10275104.18787.0 34

1
, �

!!!!
��

�

�
> . 

 
As kNNkNN RdbEd 2.3982.350 , ��� , a SHS 80x80x6.3 mm, in S 275 

steel, is adopted. 
 
b) Design with HEA profiles for the chords and sections built up from 2 
channels for the diagonals. 

 
i) Preliminary design assuming a class 1, 2 or 3 cross section, yields the 
same result as for the previous case, that is, for the upper chord 

20.27 cmA 
  and for the diagonals 27.12 cmA
 . 
 
Based on a table of commercial profiles, a HEA 180 (A = 45.25 cm2) cross 
section is proposed for the upper chord and a cross section built-up from 2 
UPN 100 (A = 27.00 cm2), 10 mm apart (thickness of the gusset plate) is 
proposed for the diagonals (see Figure 3.54). The areas of the cross sections 
are larger than the minimum areas required by the above conditions, because 
the verification of the buckling resistance is expected to govern. The relevant 
geometrical properties of the HEA 180 section and of the UPN 100 section 
are as follows:  
 
HEA 180: Iy = 2510 cm4, iy = 7.45 cm; Iz = 924.6 cm4, iz = 4.52 cm. 
 
UPN 100: Iy = 206 cm4, iy = 3.91 cm; Iz = 29.3 cm4, iz = 1.47 cm;  
b = 50 mm; h = 100 mm; ys = 1.55 cm (distance from the centroid to the outer 
face of the web). 
 
ii) Cross section classification 
 
-HEA 180 in S 275 steel, under pure compression:  
 
Web: 36.3092.033333.206122 �!���� �tc , (Class 1) 
 
Flanges: 28.892.0996.75.972 �!���� �tc . (Class 1) 
 
Therefore the section is class 1. 
 
-UPN 100 in S 275 steel, under pure compression: 
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Web: 36.3092.033337.10664 �!���� �tc , (Class 1) 
 
Flanges: 28.892.0992.45.85.35 �!���� �tc . (Class 1) 
 
Therefore the cross section is class 1. 
 
iii) Verification of the buckling resistance 

 
iii-1) Upper chord with a HEA 180 
 

81.86
10275
10210

3

6

1 �
!
!

� *( ;  

 
mLLE 00.3��  (for out-of-plane buckling, according to Annex BB.1); 

 

37.66
52.4

1000.3 2

�
!

��
i

LE( ;  765.0
1

��
(
(( ;  

 
)49.0(;2.1 �,� �ccurvezaroundbendingbh  

 

 �? @ 931.0765.02.0765.049.015.0 2 ���!�!�� ; 

 
684.0

765.0931.0931.0

1
22

�
��

�> ; 

 

kN
fA

N
M

y
Rdb 2.851

0.1
102751025.45684.0 34

1
, �

!!!!
��

�

�
>

. 

 
As kNNkNN RdbEd 2.8516.742 , ��� , a HEA 180, in S 275 steel, is 

adopted. 
 
iii-2) Diagonals with a cross section built-up from 2 UPN 100 
 
In order to avoid buckling of the individual members the members must be 
connected with a maximum spacing of cmcmi 05.2247.11515 min �!�  (clause 
6.4.4). 
The second moment of area about z of the built-up cross sections (Figure 
3.54) is obtained as follows: 
 


 �
 � 42 07.1725.055.15.133.292 cmI z ��!�!� . 
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10 mm

 y 

z

 
Figure 3.54 – Detail in the diagonals of the truss 

 
As this is less than Iy for the built-up section, as the buckling lengths in-plane 
and out-of-plane are, in this case, equal (according to Annex BB.1) and the 
relevant buckling curve (curve c) is the same, it is concluded that out-of-
plane buckling is critical (buckling about z). Continuing the calculation: 
 


 � cmAIi zz 52.25.13207.172 �!�� ; 
 

81.86
10275
10210

3

6

1 �
!
!

� *( ; mLLE 12.2�� ; 

 

13.84
52.2

1012.2 2

�
!

��
i

LE( ;  969.0
1

��
(
(( ; 

 
Cross section built-up from 2 UPN   , Curve c, so 49.0�� ; 
 


 �? @ 158.1969.02.0969.049.015.0 2 ���!�!�� ; 
 

558.0
969.0158.1158.1

1
22

�
��

�> ; 

 

kN
fA

N
M

y
Rdb 3.414

0.1
10275100.27558.0 34

1
, �

!!!!
��

�

�
> . 

 
As kNNkNN RdbEd 3.4142.350 , ��� , the section built-up from 2 

channels UPN 100, in S 275 steel, is adopted.  
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3.6. LATERALLY UNRESTRAINED BEAMS 
 
3.6.1. Introduction 
 

The design of a beam subject to bending and shear must be performed in 
two steps: i) verification of the resistance of the cross section and  
ii) check on member stability. The cross section resistance, depending of  
cross sectional shape and cross section class, has already been explained in the 
sub-chapter 3.3; in the same sub-chapter, the local cross section instability 
(including verification of the class of the section) and instability caused by 
shear forces were also discussed. In this sub-chapter, the resistance of members 
against instability phenomena caused by a bending moment will be presented. 
In standard cross sectional shapes, such as I or H bent around the major axis (y 
axis), the typical instability phenomenon is lateral-torsional buckling.  

 
3.6.2. Lateral-Torsional Buckling 
 
3.6.2.1. Introduction  
 

Consider a member subject to bending about the strong axis of the cross 
section (the y axis). Lateral-torsional buckling is characterised by lateral 
deformation of the compressed part of the cross section (the compressed flange 
in the case of I or H sections). This part behaves like a compressed member, 
but one continuously restrained by the part of the section in tension, which 
initially does not have any tendency to move laterally. As seen in Figure 3.55, 
where this phenomenon is illustrated for a cantilever beam, the resulting 
deformation of the cross section includes both lateral bending and torsion. This 
is why this phenomenon is called lateral-torsional buckling. 

 

 
Figure 3.55 – Lateral-torsional buckling of a cantilever beam 
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3.6.2.2. Elastic critical moment 
 

To obtain the elastic critical moment, consider the simply supported 
beam of Figure 3.56, with the supports preventing lateral displacements and 
twisting but allowing warping and bending rotations around the  
cross sectional axes (y and z), submitted to a constant bending moment My. 
Consider the following assumptions: 

� perfect beam, without any type of imperfections (geometrical or 
material); 

� doubly symmetric cross section; 
� material with linear elastic behaviour; 
� small displacements ( 1cos;sin �� ��� ). 

 

v

z´

�	

L

z z´ 

 My 

x´

x 

My 

Plant – segment A-C 

x´ 
y

y´ 

My
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z 
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w 

Initial position

Deformed position

Mz´

b) Internal forces at-section C 

v 

T y

y´ 
y 

My 
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My 

a) Elevation 

A B

x

C 

 
Figure 3.56 – Lateral-torsional buckling in a doubly symmetric I section under 

constant bending moment. 
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Consider the deformed configuration of Figure 3.56 and the set of 
three differential equations of equilibrium, defined in the system of axis 
x’,y’,z’ (deformed position) where the unknown quantities are the 
displacements wv,,� . According to small displacement theory, the properties 
of the cross sections in the undeformed position can be considered. 

For bending about the y’ axis, yyy MMM ��A �cos , hence: 
 

 
 � 0
2

2

�� yy M
dx

xwdIE . (3.88) 
 

For bending around the z’ axis, considering yyz MMM �� ��A sin , 

the following equation is obtained: 
 

 

 � 
 � 0
2

2

�� yz Mx
dx

xvdIE � . (3.89) 
 

For torsion around the x’ axis, using equation (3.35) (differential 
equation for non-uniform torsion) and considering 


 � 
 �dxdvMdxdvMT yy �� sin : 
 

 

 � 
 � 
 � 0
3

3

���
dx

xdvM
dx

xdIG
dx

xdIE yTW
��

. (3.90) 
 

Equation (3.88) is the usual differential equation for major-axis 
bending and depends only on the vertical displacement of the beam, w(x). 
Equations (3.89) and (3.90) are coupled. Differentiating equation (3.90) once 
with respect to x and replacing 
 � 22 dxxvd  from equation (3.89), the 
following differential equation is obtained: 
 

 
 � 
 � 
 � 0
2

2

2

4

4

��� x
IE

M

dx
xdIG

dx
xdIE

z

y
TW ��� , (3.91) 

 
where 
 �x� is the rotation of a cross section at a distance x from the origin, 
around the axis of the beam. The solution of this fourth order differential 
equation, with constant coefficients, is of the type: 
 
 
 � xnxn eDeDxmDxmDx ����� 4321 cossin� , (3.92) 
 
with 
 



3. DESIGN OF MEMBERS 

 

_____
200

baam ���� 2 ; baan ��� 2 ; 
W

T

IE
IG

a
2

� ; 
Wz

y

IEIE
M

b
2

� , (3.93) 

 
where m and n are positive real quantities. Constants D1, D2, D3 and D4 in 
expression (3.92) are obtained from the boundary conditions of the problem. 
The cross sections at the supports cannot rotate around the axis of the beam 
and therefore 
 � 
 � 00 ���� Lxx �� . Since these sections are free to warp, 
moments Msup or Minf (see Figure 3.37) do not develop. Considering  
Msup = Minf = 0 in expression (3.28) and differentiating expression (3.29) 
twice, it is concluded that 
 � 
 � 00 ��AA��AA Lxx �� . Introducing the 
boundary conditions 
 � 
 � 000 ��AA�� xx ��  in expression (3.91), gives: 
 
 432 ;0 DDD ��� . (3.94) 
 
The conditions 
 � 
 � 0��AA�� LxLx ��  lead to the system of equations: 
 
 

.0sinh2sin
0sinh2sin

2
4

2
1

41

��
��
nLnDmLmD

nLDmLD  (3.95) 

 
In order to obtain a non-trivial solution (D1 and D4 non-simultaneously equal 
zero), the determinant of the system of equations (3.95) must vanish, that is: 
 
 
 �
 �
 � 022sinhsin 22 �� nmnLmL . (3.96) 
 
As m and n are positive real quantities and as nLsinh = 0 only if 0�nL , to  
obtain a non-trivial solution it is necessary that: 
 
 0sin �mL . (3.97) 
 
The lowest solution to equation (3.97) is given by Lm *� . Using the first 
of the expressions (3.93), yields: 
 

 
2

2 "
#
$

%
&
'����

L
baa * . (3.98) 

 
Finally, introducing in expression (3.98) the values of a and b from 
expression (3.93), the critical value of the moment My, denoted as E

crM  
(critical moment of the “standard case”) is obtained: 
 

 ""
#

$
%%
&

'
��

T

W
zT

E
cr IGL

IEIEIG
L

M 2

2

1 ** , (3.99) 
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where Iz is the second moment of area in relation to z axis (weak axis), IT is 
the torsion constant, IW the warping constant, L is the length between 
laterally braced cross sections of the beam and E and G are the longitudinal 
modulus and the shear modulus of elasticity, respectively. Expression (3.99), 
in spite of being derived for a member with an I or H cross section, is valid 
for members with other doubly symmetric cross sections. 

The constant of uniform torsion IT and the warping constant Iw for 
standard cross sections are usually supplied by steel producers, in tables of 
profiles. Alternatively, they can be obtained from Tables 3.2 and 3.3. 

By inspection of expression (3.99), it is observed that the critical 
moment of a member under bending depends on several factors, such as: 

� loading (shape of the bending moment diagram); 
� support conditions; 
� length of the member between laterally braced cross sections;  
� lateral bending stiffness; 
� torsion stiffness; 
� warping stiffness. 

 
Besides these factors, the point of application of the loading also has a 

direct influence on the elastic critical moment of a beam. A gravity load 
applied below the shear centre C (that coincides with the centroid, in case of 
doubly symmetric I or H sections) has a stabilizing effect (Mcr,1>Mcr), 
whereas the same load applied above this point has a destabilizing effect 
(Mcr,2<Mcr), as illustrated in Figure 3.57. The calculation of the critical 
moment for design of a beam must also incorporate this effect. 

 
Mcr

P

C

Mcr,2<Mcr 

P

CP 

Mcr,1>Mcr 

C 

Figure 3.57 – Effect of the point of load’s application 
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Expression (3.99) is valid for the calculation of the elastic critical 

moment of a simply supported beam, with a doubly symmetric cross section 
and subjected to a constant bending moment (the “standard case”). However, 
in reality, other situations often occur, such as beams with non-symmetrical 
cross sections, with other support conditions, subject to different loading 
patterns and, consequently, subject to different bending moment diagrams. 
The derivation of an exact expression for the critical moment for each case is 
not practical, as this implies the computation of differential equations of 
some complexity. Therefore, in practical applications approximate formulae 
are used, which are applicable to a wide set of situations. For the estimation 
of the elastic critical moment in situations not covered in this book, the user 
is advised to look at specific bibliography (Trahair, 1993; Boissonnade et al, 
2006; Hirt et al., 2006) or to use other types of computational processes such 
as the finite element method. 

According to Trahair (1993), the critical moment between laterally 
braced cross sections of beams of doubly symmetric transverse section, such 
as I or H sections, subject to bending around the strong axis (y axis), for 
several types of loadings applied at the shear centre of the cross sections, can 
be estimated by multiplying the elastic critical moment for constant bending 
moment ( E

crM  obtained from expression (3.99)) by a factor �m defined in 
Table 3.5:  
 
 E

crmcr MM �� . (3.100) 
 

Expression (3.100) assumes that the extreme sections (supports or 
other laterally braced cross sections) prevent lateral displacements and 
twisting but allow warping and bending rotations around the  
cross sectional axes (y and z). In case of enhanced support conditions that are 
totally or partially restrained against lateral bending or warping, the critical 
moment can also be conservatively obtained using expression (3.100).  
 The point of application of the loads relatively to the shear centre of 
the cross section has a significant influence in the value of the critical 
moment. In the case of simply supported I or H beams, with concentrated 
loads at half-span or uniformly distributed loads then, according to Trahair 
(1993), the critical moment can be estimated through the following 
expression: 
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where �m is the factor defined in Table 3.5 ( 35.1�m�  for a central 
concentrated load and 13.1�m�  for a uniform distributed load), yQ is the 
distance between the point of application of the loads and the centroid (in 
this case it coincides with the shear centre), and 22

, LIEN zzcr *� , where 

Iz the second moment of area in relation to z and L is the distance between 
laterally braced sections. For gravity loads, the yQ distance must be taken as 
negative or positive depending on the loads being applied above or below 
the shear centre. 

 
Table 3.5 – Factors for the calculation of the critical moment in spans of beams with 

length L and doubly symmetric section 
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In cantilever beams under a concentrated load at the free end or under 
a linearly distributed load along the span, the elastic critical moment can be 
estimated from expressions (3.102) and (3.103), respectively (Trahair, 1993). 
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where the parameters � and K are defined by: 
 

 
*

� K
h
y

m

Q2
�      and     

2

2

LIG
IE

K
T

W*
� , (3.104) 

 
and hm is the distance between the centres of the flanges, see Figure 3.37 and 
the remaining symbols are as defined previously.  

In the case of a continuous beam with an overhang, the restraints at 
the supports are different from those of a fully fixed cross section, so that 
expressions (3.102) and (3.103) are not applicable. At the supports of the 
beam shown in Figure 3.58, although the rotation around the axis of the 
beam might be restrained, rotation by lateral bending and by warping will 
only be prevented if the beam in the adjacent span is infinitely rigid. As this 
generally does not happen, restraint to rotation by lateral bending and by 
warping at the supports should not be considered. Consequently, the critical 
moment of the segment comprising the overhang, subject to a concentrated 
load at the free end or under a linearly distributed load along its span, with 
the lateral displacement and rotation about beam axis restrained, can be 
estimated according to expressions (3.105) and (3.106), respectively 
(Trahair, 1993). 
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where parameters �, K and the remaining symbols have been defined in the 
previous paragraphs.  

 
Figure 3.58 – Cantilever beam at the end of a continuous beam 

 
As an alternative to some of the previous expressions, the elastic 

critical moment can be estimated using expression (3.107), proposed by 
Clark and Hill (1960) and Galéa (1981). This is applicable to members 
subject to bending about the strong axis, with cross sections  
mono-symmetric about the weak z axis (see Figure 3.59), for several support 
conditions and types of loading. 
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Figure 3.59 –Sections mono-symmetric about the weak axis  
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 (3.107) 
where, 
� C1, C2 and C3 are coefficients depending on the shape of the bending 

moment diagram and on support conditions, given in Tables 3.6 and 3.7 
for some usual situations (Boissonnade et al, 2006); in the Tables 3.6 and 
3.7 the support conditions are those of the “standard case”, however, 
lateral bending restraints and warping restraints may be taken into 
account through the parameters kz and kw described below; 

� kz and kw are effective length factors that depend on the support 
conditions at the end sections. Factor kz is related to rotations at the end 
sections about the weak axis z, and kw refers to warping restriction in the 
same cross sections. These factors vary between 0.5 (restrained 
deformations) and 1.0 (free deformations), and are equal to 0.7 in the case 
of free deformations at one end and restrained at the other. Since in most 
practical situations restraint is only partial, conservatively a value of  
kz = kw = 1.0 may be adopted; 

� 
 �sag zzz �� , where za and zs are the coordinates of the point of 

application of the load and of the shear centre, relative to the centroid of 
the cross section; these quantities are positive if located in the 
compressed part and negative if located in the tension part; 

� 
 �
 � "
"
#

$
%
%
&

'
��� 8 dAIzzyzz y

A
sj

225.0  is a parameter that reflects the 

degree of asymmetry of the cross section in relation to the y axis. It is 
zero for beams with doubly symmetric cross section (such as I or H cross 
sections with equal flanges) and takes positive values when the flange 
with the largest second moment of area about z is the compressed flange, 
at the cross section with maximum bending moment; 

The remaining factors have the previous defined meanings. 
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Table 3.6 – Coefficients C1 and C3 for beams with end moments 
Loading and 

support conditions 
Diagram of 
moments 

kz C1 C3 
0�f�  0�f�  

 
 
 
 
 
 
 
 
 
 
 

.M  M 

 

.	�	�G 1.0 
0.5 

1.00
1.05

1.000 
1.019 

.	�	�HIJ 1.0 
0.5 

1.14
1.19

1.000 
1.017 

.	�	�GI: 1.0 
0.5 

1.31
1.37

1.000 
1.000 

.	�	�GIJ 1.0 
0.5 

1.52
1.60

1.000 
1.000 

.	�	K 1.0 
0.5 

1.77
1.86

1.000 
1.000 

.	�	�GIJ 1.0 
0.5 

2.06
2.15

1.000 
1.000 

0.850 
0.650 

.	�	�GI: 1.0 
0.5 

2.35
2.42

1.000 
0.950 

f�2.13.1 �

f��77.0  

.	�	�HIJ 1.0 
0.5 

2.60
2.45

1.000 
0.850 

f��55.0  

f��35.0  

.	�	�G 1.0 
0.5 

2.60
2.45

f��  

f�7.0125.0 ��

f��  

f�7.0125.0 ��  

� In beams subject to end moments, by definition 02 �gzC . 

� 
ftfc

ftfc
f II

II
�

�
�� , where fcI  and ftI  are the second moments of area of the 

compression and tension flanges respectively, relative to the weak axis of the section (z 
axis); 

� C1 must be divided by 1.05 when 0.1�
T

W

w IG
IE

Lk
* , but 0.11 
C . 

 
Expression (3.107) also allows to estimate the elastic critical moment 

of beams with other support conditions (including cantilever beams) and 
other loading conditions, such as combinations of end moments with 
transverse loads, taking the parameters C1, C2, C3, kz and kw from 
Boissonnade et al (2006). 
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Table 3.7 – Coefficients C1, C2 and C3 for beams with transverse loads  

Loading and 
support conditions 

Diagram of 
moments 

kz C1 C2 C3 

p 

 
 

1.0 
0.5 

1.12 
0.97 

0.45 
0.36 

0.525 
0.478 

P

 
 

1.0 
0.5 

1.35 
1.05 

0.59 
0.48 

0.411 
0.338 

P 

d d d d 

P 

  

1.0 
0.5 

1.04 
0.95 

0.42 
0.31 

0.562 
0.539 

 
In case of mono-symmetric I or H cross sections, Tables 3.6 and 3.7 

must only be used if the following condition is verified: 9.09.0 ��� f� . 

 
3.6.2.3 Effect of imperfections and plasticity  
 

In the previous sub-section the elastic critical moment was obtained 
for an ideal member with constant bending moment (the “standard case”), 
and formulae were also presented, some exact and some approximate, for the 
calculation of the elastic critical moment in members with other support 
and/or loading conditions. 

In the verification of the lateral-torsional buckling resistance, the 
effect of the following geometrical imperfections should be considered: 

� the initial lateral displacements; 
� the initial torsional rotations; 
� the eccentricity of the transverse loads relative to the shear centre of 

the cross sections; 
� residual stresses. 

 
Due to the presence of geometrical imperfections the real behaviour of 

a member diverges from the theoretical behaviour and the elastic critical 
moment is never reached.  

Considering the analogy between Ncr and Mcr, the lateral-torsional 
behaviour of beams in bending is similar to a compressed column. Therefore: 

� The resistance of short members depends on the value of the cross 
section bending resistance (plastic or elastic bending moment 
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resistance, depending of its cross section class). 
� The resistance of slender members depends on the value of the critical 

moment (Mcr), associated with lateral-torsional buckling. 
� The resistance of members with intermediate slenderness depends on 

the interaction between plasticity and instability phenomena. 
 

The effect of geometrical imperfections may be introduced into the 
design procedure of a member under major axis bending in a similar way to 
that for design of a member under pure compression. Consider a single 
member with the end conditions of Figure 3.56 under pure bending My,Ed 
constant along the span (the “standard case”) and composed of a  
doubly-symmetric I or H cross section. Consider an initial lateral 
deformation of sinusoidal shape equivalent to the one represented by the 
expression (3.61)), with a maximum value e0,d. Based on a second order 
elastic analysis (Boissonnade et al, 2006), the buckling limit state may be 
defined by the first yield criterion of longitudinal stress as follows: 
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where Mcr is the elastic critical moment, My,Rd and Mz,Rd are the elastic bending 
moment resistances around y and z respectively, Ncr,z is the elastic critical 
buckling load about the z axis and h is the depth of the cross section between 
flange centroids. In expression (3.108) the second and third terms represent the 
effect of the second order bending moments and the warping moments, 
respectively, due to the spatial member deformation (see Figure 3.56). 

Setting My,Ed equal to the lateral-torsional buckling resistance given by 
RdyLT M ,> , expression (3.108) yields the maximum value of the lateral 

imperfection e0,d, as a function of the reduction factor LT> : 
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where Wy and Wz are the elastic bending modulus about y and z, respectively, 



3. DESIGN OF MEMBERS 

 

_____
210

z(  is the the slenderness for flexural buckling with respect to the z axis and 

 � 5.0

, crRkyLT MM�(  is the slenderness for lateral-torsional buckling, 

where My,Rk is the characteristic cross section bending resistance with respect 
to the y axis. 

As for compressed members, residual stresses and other geometrical 
imperfections also affect the lateral-torsional resistance of beams. In a 
simplified way, all these imperfections are taken into account through the 
equivalent imperfection concept. The equivalent lateral imperfection given 
by expression (3.109) has an analogous meaning to that of expression (3.70) 
for flexural buckling, despite depending on different parameters. As a 
consequence, for lateral-torsional buckling, it is possible to define a similar 
procedure to the one derived for flexural buckling under pure compression 
(expression (3.80)). To apply this procedure to the design of a member under 
pure bending it was necessary to calibrate the equivalent lateral 
imperfections for real members. Based on extensive numerical, experimental 
and parametric simulations (Boissonnade et al, 2006) it was concluded that 
the design of the majority of steel members (including members composed 
by rolled and welded I or H sections) could be done according to the 
European buckling curves, previously obtained for the design of members 
under pure axial compression. This is presented in the following section. 
 
3.6.3. Lateral-Torsional Buckling Resistance 
 

The verification of resistance to lateral-torsional buckling of a 
prismatic member consists of the verification of the following condition 
(clause 6.3.2.1(1)): 
 
 0.1

,
�

Rdb

Ed

M
M , (3.110) 

 
where MEd is the design value of the bending moment and Mb,Rd is the design 
buckling resistance, given by (clause 6.3.2.1(3)): 
 
 1, MyyLTRdb fWM �>� , (3.111) 
 
where : Wy = Wpl,y for class 1 and 2 cross sections; 
  Wy = Wel,y for class 3 cross sections; 
  Wy = Weff,y for class 4 cross sections; 
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  >LT is the reduction factor for lateral-torsional buckling. 
 

In EC3-1-1 two methods for the calculation of the reduction 
coefficient >LT in prismatic members are proposed: a general method that can 
be applied to any type of cross section (more conservative) and an alternative 
method that can be applied to rolled cross sections or equivalent welded 
sections. 
  
i) General method  
 

According to the general method (clause 6.3.2.2), the reduction factor 
>LT is determined by the following expression:  
 

 
 � 5.022

1

LTLTLT

LT
(��

>
��

� ,      but 0.1�LT> , (3.112) 

  
with: 
 �? @22.015.0 LTLTLTLT ((�� ���� ; 
 LT�  is the imperfection factor, which depends on the buckling curve; 
 ? @ 5.0

cryyLT MfW�( ; 
 crM the elastic critical moment. 
  

The buckling curves to be adopted depend on the geometry of the 
cross section of the member and are indicated in Table 3.8. For the 
imperfection factors LT�  associated to the various curves, the values given 
in section 3.5.2 for members in compression should be adopted. 

 
Table 3.8 – Buckling curves for lateral-torsional buckling (General method) 

Section Limits Buckling curve 
I or H sections 2�bh  a 

rolled 2�bh  b 
I or H sections 2�bh  c 

welded 2�bh  d 
Other sections --- d 

 
ii) Alternative method – Rolled or equivalent welded sections 
 

According to this second method, defined in clause 6.3.2.3, the 
reduction factor >LT is determined by the following expression: 
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with  
 �? @2

0,15.0 LTLTLTLTLT (�((�� ���� ; 
 0,LT( and � are parameters to be defined in the National Annexes; the 

recommended values are: 4.00, �LT(  (maximum value) and 
75.0
� (minimum value);  

 LT�  is the imperfection factor that depends on the appropriate 
buckling curve (defined as in the general method); 

 LT(  the coefficient of non-dimensional slenderness (defined as in the 
general method); 

 crM  the elastic critical moment. 
 

The relevant buckling curves are indicated in Table 3.9. 
 

Table 3.9 – Buckling curves for lateral-torsional buckling (Alternative method) 

Section Limits Buckling curve (EC3-1-1) 

I or H sections 2�bh b 
rolled 2�bh c 

I or H sections 2�bh c 
welded 2�bh d 

 
According to this second method, the shape of the bending moment 

diagram, between braced sections, can be taken into account by considering 
a modified reduction factor >LT, mod:  
 

f
LT

LT
>

> �mod, ,     but 0.1mod, �LT> . (3.114) 

 
The parameter f can be obtained from the following expression, or 

from an alternative process provided in the National Annexes: 
 

 
 � 
 �? @28.00.2115.01 ����� LTckf (       but 0.1�f , (3.115) 
 
where kc is a correction factor, defined according to Table 3.10. 
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Table 3.10 – kc correction factors 

Diagram of bending moments kc 
.	�	�G 

 
11 �.��

1.0 
 

.� 33.033.1
1  

M0 

.M M

 

 

 

 
 
 
 

0.94 
 

0.90 
 

0.91 

M0 

.M M

 

 

 

 
 
 
 

0.86 
 

0.77 
 

0.82 

. - ratio between end moments, with -1�.�1. 

 
In Table 3.10, three sets of bending moment diagrams are presented. 

The first refers to beam spans subject to concentrated bending moments 
applied in the extreme sections. The second set of diagrams may be induced 
by uniformly distributed load and moments in the extreme sections. For the 
third set, the diagrams correspond to central point loads and moments in the 
extreme sections. The support conditions are not relevant as they are 
reproduced in the bending moment diagrams. The values of kc presented in 
Table 3.10 correspond to some typical situations; some are exact values and 
other are approximate. More detailed information on kc values may be 
obtained from Boissonnade et al (2006). 

 
iii) Conditions for ignoring the lateral-torsional buckling verification 
 

The verification of lateral-torsional buckling for a member in bending 
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may be ignored if at least one of the following conditions is verified: 

0,LTLT (( �  or 2
0,LTcrEd MM (� (clause 6.3.2.2(4)). 

 
iv) Methods for improving the lateral-torsional buckling resistance  
 

In practical situations, for given geometrical conditions, support 
conditions and assumed loading, the lateral-torsional buckling behaviour of a 
member can be improved in two ways: 

� by increasing the lateral bending and/or torsional stiffness, by 
increasing the section or changing from IPE profiles to HEA or HEB 
or to closed hollow sections (square, rectangular or circular);  

� by laterally bracing along the member the compressed part of the 
section (the compressed flange in the case of I or H sections). 

 
Usually, the second option is more economical, although sometimes it 

is not feasible. The bracing members must connect the compressed zone of 
the cross sections with points with negligible transverse displacement. 

Clause 6.3.2.4 presents a simplified methodology for the verification 
of lateral-torsional buckling in beams with discrete lateral restraint to the 
compression flange. This is based on the slenderness of that flange. 

For non-prismatic members, the resistance to lateral-torsional buckling 
must be obtained according to clause 6.3.4, described in chapter 4. 

 
3.6.4. Worked examples  

 
Example 3.11: Consider the beam of example 3.4 (Figure 3.60), supported 
by web cleats and loaded by two concentrated loads, P = 70.0 kN (design 
loads). Design the beam using a HEA profile (and alternatively an IPE 
profile), in S 235 steel (E = 210 GPa and G = 81 GPa), according to  
EC3-1-1. Consider free rotation at the supports with respect to the y-axis and 
the z-axis. Also assume free warping at the supports but consider that the 
web cleats do not allow rotation around the axis of the beam (x axis). 
Assume: 

 
a) unbraced beam; 
b) beam braced at the points of application of the concentrated loads. 
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1.5 m 3.0 m 1.5 m 

P = 70.0 kN P = 70.0 kN

 
Figure 3.60 – Simply supported beam with two concentrated loads 

_______________________________ 
 
i) Diagrams of internal forces 
 
The internal forces diagrams are represented in the Figure 3.61.  
 

VEd 
70.0 kN 

70.0 kN

105.0 kNm 

MEd 

 
Figure 3.61 – Diagrams of internal forces 

 
ii) Bending and shear force 
 
In example 3.4, the verification of the cross section resistance to bending and 
shear force led to a HEA 220 with Wpl,y = 568.5 cm3 (or alternatively to a IPE 
270 with Wpl,y = 484 cm3). 
 
iii) Lateral-torsional buckling without intermediate bracing 
  
iii-1) General method 
  
Considering a HEA profile, a HEA 240 is adopted to allow for the effect of 
lateral-torsional buckling. The required geometric characteristics of this 
cross section are: Wpl,y = 744.6 cm3, Iy = 7763 cm4, Iz = 2769 cm4,  
IT = 41.55 cm4 and IW = 328.5 x 103 cm6. The mechanical characteristics of 
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the material are defined by: fy = 235 MPa, E = 210 GPa and G = 81 GPa. 
Since the support conditions correspond to the “standard case” and the 
loading is constituted by two concentrated loads, applied in the upper flange, 
the elastic critical moment can be obtained from expression (3.107).  
As L = 6.00 m, considering kz = kw = 1.0, C1 = 1.04 and C2 = 0.42  
(Table 3.7), and zg = 115 mm, expression (3.107) gives: 
  

,� kNmM cr 5.231   87.0�LT( . 
  
Since 21.0�LT�  (H rolled section, with 2�bh ),  
  

75.095.0 �,� LTLT >� . 
  
The design buckling resistance is given by: 
  

kNmMkNmM EdRdb 0.1052.131
0.1
10235106.74475.0

3
6

, ���
!

!!!� �  . 
  
Alternatively, using a IPE profile, a IPE 400 is required, giving a design 
buckling resistance of kNmM Rdb 0.131, � . 
  
 
The cross section class of a HEA 240 is obtained as follows (Table 5.2):  
  
Web in bending,  0.72172729.21

5.7
164

�!���� �
t
c  .  (Class 1) 

  
Flange in compression, 
  

91999.7
12

2125.72240
�!���

��
� �

t
c . (Class 1) 
  
The HEA 240 is class 1 (IPE 400 is also class 1), confirming the use of Wpl,y. 
 
iii-2) Alternative method applicable to rolled or equivalent welded sections 
  
As the alternative method is less conservative, consider initially a HEA 220 
profile in S 235 steel (pre-designed based on the cross section resistance). 
From L = 6.00 m, C1 = 1.04, C2 = 0.42, kz = kw = 1.0, zg = 105 mm,  
Iz = 1955 cm4, IT = 28.46 cm4, IW = 193.3 x 103 cm6, Wpl,y = 568.5 cm3,  
E = 210 GPa, G = 81 GPa and fy = 235 MPa, the elastic critical moment, 
(expression (3.107)) is given by: 
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kNmM cr 8.158�   92.0�, LT      ( . 
  
As 34.0�LT�  (rolled H section, with 2�bh ), 
  

74.091.0 �,� LTLT >� , considering 4.00, �LT(  and 75.0�� . 
  
In addition, assuming 94.0�ck (approximate value, obtained from  
Table 3.10 for a beam span under a uniformly distributed load) 97.0�, f , 
giving 76.0mod, �LT> . 
  
The lateral-torsional buckling moment resistance is given by: 
  

kNmMkNmM EdRdb 1055.101
0.1
10235105.56876.0

3
6

, ���
!

!!!� � . 
  
Consequently, even with a less conservative method, the HEA 220 is not a 
solution to the problem. Using the alternative method, the HEA 240 profile 
gives kNmM Rdb 2.140, � . By using an IPE profile, an IPE 360 would be 

sufficient, with a lateral-torsional buckling resistance of 
kNmM Rdb 8.111, � . A HEA 240 and an IPE 360 are both class 1 in 

bending. 
 
iv) Lateral-torsional buckling with intermediate restraints 
  
If the beam is laterally braced at the points of application of the loads 
(through secondary beams or other devices that prevent the lateral 
displacement of the compressed flange and, consequently, the rotations of 
those sections around the axis of the beam), the lateral-torsional buckling 
behaviour is improved. The problem now consists on the evaluation of the 
resistance to lateral-torsional buckling of a beam segment 3.00 m long, under 
a constant bending moment (MEd = 105.0 kNm), as shown in Figure 3.62. 
The elastic critical moment of the beam is not aggravated by the fact that the 
loads are applied at the upper flange, because these are applied at sections 
that are laterally restrained. 
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1.5 m 3.0 m 1.5 m

P = 70.0 kN P = 70.0 kN

  

105.0 kNm

 MEd 

 
Figure 3.62 – Laterally braced beam 

 
iv-1) General method 
 
For the HEA 220 profile in S 235 steel (minimum section, governed by 
plastic resistance to bending), with L = 3.00 m, C1 = 1.0, kz = kw = 1.0,  
Iz = 1955 cm4, IT = 28.46 cm4, IW = 193.3 x 103 cm6, Wpl,y = 568.5 cm3,  
E = 210 GPa, G = 81 GPa and fy = 235 MPa, the elastic critical moment 
(expression (3.107) is given by: 
 

,� kNmM cr 3.551  49.0�LT( . 
 
As 21.0�LT�  (rolled H section, with 2�bh ), 
 

93.065.0 �,� LTLT >� . 
 
The lateral-torsional buckling resistance is given by: 
 

kNmMkNmM EdRdb 0.1052.124
0.1
10235105.56893.0

3
6

, ���
!

!!!� � ,  

 
and a HEA 220 is adequate. By using a profile from the IPE series, an  
IPE 300 is sufficient, with a lateral-torsional buckling resistance given by 

kNmM Rdb 2.120, � . Both sections, in S 235 steel, are class 1. 

 
iv-2) Alternative method applicable to rolled or equivalent welded sections 
  
The application of this method leads to the same solution, with 
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kNmM Rdb 9.128, �  for a HEA 220 and kNmM Rdb 3.123, �  for a IPE 300 profile. 

 
v) Final considerations 
 
By adding the verification of the deformation limit state, carried out in 
example 3.4, Table 3.11 summarizes the several possibilities for the design 
of the beam. 
 

Table 3.11 – Summary table 

 Criteria Unbraced beam Braced beam 
Cross-section 
resistance HEA 220 or IPE 270 

LTB (General 
method) HEA 240 or IPE 400 HEA 220 or IPE 300 

LTB (Alternative 
method) HEA 240 or IPE 360 HEA 220 or IPE 300 

Deformations HEA 240 or IPE 300 
Solution HEA 240 or IPE 360 HEA 240 or IPE 300 

 
_____________________________________________________________ 
 
Example 3.12: Design the beam represented in Figure 3.63, using an IPE 
section in S 355 steel (E = 210 GPa and G = 81 GPa). Assume that the 
loading is already factored for ULS. Consider that the beam is free to rotate 
around its principal axes at sections A and C and also free to warp; also 
consider however that sections A, B, C and D are restrained from rotating 
around the axis of the beam (laterally braced sections by the secondary 
beams). 

 

4.5 m 3.0 m 

250 kN 250 kN
150 kN

4.5 m

A  B C D

 
Figure 3.63 – Continuous beam with a cantilever span 
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_______________________________ 
  
i) Diagrams of internal forces 
  
Figure 3.64 illustrates the internal force diagrams. 

 

VE d 
75.0 kN 150.0 kN

337.5 kNm

ME d 

175.0 kN

450.0 kNm

 
Figure 3.64 – Diagrams of internal forces 

 
ii) Resistance to bending and transverse shear 
 
Preliminary design for bending, assuming class 1 or 2 cross sections, gives: 
 

0.1103550.450 3
,0, !!��� yplMyyplEd WfWkNmM �  

 
336

, 6.1267106.1267 cmmW ypl �!
, � . 
 
From a table of commercial profiles, an IPE 450 is adopted, with  
Wpl,y = 1702 cm3. 
 
Verification of the cross section class (Table 5.5): 
 
Web in bending, 
 

3.5881.072723.404.98.378 �!���� �tc . (Class 1) 
 
Compressed flange, 
 

3.781.0997.4
6.14

2124.92190
�!���

��
� �

t
c . (Class 1) 
 
As both parts are class 1, the cross section is class 1. 
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The resistance to transverse shear leads to (shear area Av = 50.85 cm2): 
 

kN
fA

VkNV
M

yv
RdplEd 2.1042

30.1
103551085.50

3
175

34

0
, �

!

!!!
����

�

�
. 

 
The verification of the shear buckling of the (unstiffened) web (clause 
6.2.6(6)), conservatively considering 1�� , is not required, since: 
 

3.58
0.1
81.072728.44

4.9
8.420

�!����
�
�

w

w

t
h

. 

 
The interaction between bending moment and transverse shear must be 
verified at section C (left). However, according to clause 6.2.8, 
 

kNVkNV RdplEd 1.5212.104250.050.00.175 , �!�!�� , 
 
it is not necessary to reduce the bending moment resistance. 

 
iii) Lateral-torsional buckling  
  
Lateral-torsional buckling is verified by the general method proposed in 
clause 6.3.2.2. According to the restraint conditions at sections A to D, three 
segments have to be considered. Examination of the shape and the maximum 
values of the bending moment diagrams, no segment should be excluded 
from the verification of lateral-torsional buckling. The elastic critical 
moments are calculated using expression (3.100) (they could equally be 
obtained from expression (3.107)). It is noted that for segment CD 
expressions (3.105) and (3.106) are not applicable because they assume that 
the free end of the cantilever does not have restrictions to lateral bending and 
to warping. 
  
The required geometrical characteristics of a IPE 450 are the following:  
Iz = 1676 cm4, IT = 66.87 cm4, IW = 791 x 103 cm6 and Wpl,y = 1702 cm3. The 
mechanical properties of S 355 steel are: fy = 355 MPa, E = 210 GPa and  
G = 81 GPa. 
  
Segment A-B 
  
Expression (3.100), yields: 
  

,� 00.0� ,� 75.1m� ,� kNmM cr 5.842 85.0�LT( . 
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As 34.0�LT�  (rolled I section, with 2�bh ), 
  

70.097.0 �,� LTLT >� . 
  
The lateral-torsional buckling moment resistance is given by: 
  

kNmM Rdb 9.422
0.1
1035510170270.0

3
6

, �
!

!!!� � . 
  
so that 
  
 kNmMkNmM EdRdb 5.3379.422, ��� . 
  
Segment B-C  
  
According to Table 3.5, ,�� 75.0450/5.337� 71.2�m� . As �m must 
be smaller than or equal to 2.5, 50.2�m� ; expressiom (3.100) yields: 
  

kNmM cr 6.1203� 71.0�, LT( . 
  
As 34.0�LT�  (rolled I section, with 2�bh ), 
  

78.084.0 �,� LTLT >� . 
  
The lateral-torsional buckling moment resistance is given by: 
  

kNmM Rdb 3.471
0.1
1035510170278.0

3
6

, �
!

!!!� � , 
  
so that 
  

kNmMkNmM EdRdb 0.4503.471, ��� .  
  
Segment C-D  
  
Expression (3.100) yields: 
  

,� 00.0� ,� 75.1m� ,� kNmM cr 4.1671 60.0�LT( . 
  
As 34.0�LT�  (rolled I section, with 2�bh ), 
  

83.075.0 �,� LTLT >� . 
  
The lateral-torsional buckling moment resistance is given by: 
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kNmM Rdb 5.501
0.1
1035510170283.0

3
6

, �
!

!!!� � , 
  
and 
  

kNmMkNmM EdRdb 0.4505.501, ��� . 
  
It can be concluded that the IPE 450 section in S 355 steel is satisfactory. 
 
 
3.7. BEAM-COLUMNS 
 
3.7.1. Introduction  
 

Figure 3.65 shows examples of members subject to bending and axial 
force. The behaviour of such members results from the combination of both 
effects and varies with slenderness. At low slenderness, the cross sectional 
resistance dominates. With increasing slenderness, pronounced second-order 
effects appear, significantly influenced by both geometrical imperfections 
and residual stresses. Finally, in the high slenderness range, buckling is 
dominated by elastic behaviour, failure tending to occur by flexural buckling 
(typical of members in pure compression) or by lateral-torsional buckling 
(typical of members in bending) (Boissonnade et al, 2006).  

   
Figure 3.65 – Steel members subjected to bending and axial force 

 
The behaviour of a member under bending and axial force results from 

the interaction between instability and plasticity and is influenced by 
geometrical and material imperfections. The behaviour is therefore very 
complex, a thorough explanation being outside the scope of this book. An 
excellent and detailed overview of the behaviour of beam-columns and the 



3. DESIGN OF MEMBERS 

 

_____
224

background to the interaction stability rules presented in EC3-1-1 can be 
found in Boissonnade et al (2006). The verification of the safety of members 
subject to bending and axial force is made in two steps: 

� Verification of the resistance of cross sections. 
� Verification of the member buckling resistance (in general governed 

by flexural or lateral-torsional buckling). 
 
These two aspects are treated in the following sections. 
 
3.7.2. Cross section resistance 
 
3.7.2.1. Theoretical background 
 

The cross section resistance is based on its plastic capacity (class 1 or 
2 sections) or on its elastic capacity (class 3 or 4 cross sections). When a 
cross section is subjected to bending moment and axial force (N + My,  
N + Mz or even N + My + Mz), the bending moment resistance should be 
reduced, using interaction formulas. The interaction formulae to evaluate the 
elastic cross section capacity are the well known formulae of simple beam 
theory, valid for any type of cross section. However, the formulae to 
evaluate the plastic cross section capacity are specific for each cross section 
shape. 

For a cross section subjected to N + M, a general procedure may be 
established to evaluate the plastic bending moment resistance MN,Rd, reduced 
by the presence of an axial force N. This method, applied to a cross section 
with a generic shape and gross area A, composed by a material with a yield 
strength fy (Figure 3.66), involves the definition of an area yc fNA �  in 

compression, located in such a way that the areas A1 and A2 are equal 
( 
 � 221 yfNAAA ��� ). The reduced plastic bending moment resistance 
MN,Rd is given by the product of the force yt fAF 1�  (equal to yc fAF 2� ) 

and the distance d between the centroid of areas A1 and A2, as shown in 
Figure 3.66. 
 
 dfAM yRdN 1, � . (3.116) 
 

The application of the general procedure allows the derivation of exact 
interaction formulae for specific cross sectional shapes. Although the 
interaction formulae are easy to obtain by applying the general method, the 
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resulting formulae differ for each cross sectional shape and are often not 
straightforward to manipulate. 
 

My 
zen N

fy

 fy 

 fy

A1  

A2 

G1 

G2 

d
Ac 

N 

Ft 

Fc

 
Figure 3.66 – Bending moment-axial force plastic interaction 

 
Historically, several approximate formulae have been developed, a 

thorough review being found in Villette (2004). Recently, Villette (2004) 
proposed an accurate general formula, applicable to most standard cross 
sections, with an axis of symmetry with respect to the axis of bending, given 
by: 
 

 0.1
,

,,
�"

"
#

$
%
%
&

'
�

plan

Rdpl

Ed

Rdpl

Ed

N
N

M
M

�

, (3.117) 

 
where, 
 

 
1

101.182.10.1
�

�
"
"
#

$
%
%
&

'
���

plpl
plan w

k
w
k� . (3.118) 

 

 �elplpl WWw �  is the ratio between the plastic bending modulus and the 

elastic modulus and 
 �ivk �  is the ratio between the maximum distance v 
from an extreme fibre to the elastic neutral axis and the radius of gyration i 
of the section about the axis of bending. In equation (3.117), MEd and NEd are 
the design bending moment and the design axial force, respectively; Mpl,Rd 

and Npl,Rd are the plastic bending moment resistance and the plastic resistance 
to axial force, respectively; these symbols have the same meaning 
throughout this sub-chapter. 
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For a circular hollow section, the following exact expression may be 
established (Lescouarc’h, 1977):  
 

 
 �
2

1
sin,,

n
MM RdplRdN

�
�

* , (3.119) 
 
where RdplEd NNn ,� ; this symbol has the same meaning throughout this 

sub-chapter. 
For sections under axial force and bi-axial bending (N + My + Mz) the 

interaction is substantially more complex. Villette (2004) reports several 
approximate formulae available in the literature. Interaction formulae for 
axial force and bi-axial bending have usually the following general format:  
 

 0.1
,,

,

,,

, �
2
2
3

4

5
5
6

7
�

2
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3

4

5
5
6

7
��

RdzN

Edz

RdyN

Edy

M
M

M
M

, (3.120) 

 
where MN, y, Rd and MN, ,z, Rd are the plastic moments of resistance reduced due 
to the design axial force, for bending about the y and z axes, respectively.  
 For I or H cross sections subjected to N + My + Mz, Villette (2004) 
proposed an accurate formula, where the parameters � and � are given by: 
 
 
 � planyn ,5.00.1 �� �� ; (3.121) 
 

 
 �5.0,0.1
1

��

�
�

planzn
n

�� , (3.122) 

 
�y,plan and �z,plan are given by expression (3.118) for  
N + My and N + Mz, respectively.  

For rectangular hollow cross sections subjected to N + My + Mz, 
equation (3.120) also applies, with the parameters �y and �z given by 
(Villette, 2004): 
 

 213.11
7.1

n�
�� ��            (if 8.0�n ); (3.123) 

 
 6�� ��            (if 8.0
n ). (3.124) 
 

Bi-axial bending may be treated as a particular case of the previous 
interaction formulas, by taking NEd = 0. 
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3.7.2.2. Design resistance 
 

Clause 6.2.9 provides several interaction formulae between bending 
moment and axial force, in the plastic range and in the elastic range. These 
are applicable to most cross sections. 
 
i) Class 1 or 2 sections 
 

In class 1 or 2 cross sections, the following condition should be 
satisfied (clause 6.2.9.1(2)):  
 
 RdNEd MM ,� , (3.125) 
 
where MEd is the design bending moment and MN,Rd represents the design 
plastic moment resistance reduced due to the axial force NEd. 

For rectangular solid sections under uni-axial bending and axial force, 
MN,Rd is given by (clause 6.2.9.1(3)): 
 

 
2
2

3

4

5
5

6

7

"
"
#

$
%
%
&

'
��

2

,
,, 1

Rdpl

Ed
RdplRdN N

N
MM ,  (3.126) 

 
illustrated by the solid line in Figure 3.67. This figure also indicates, 
qualitatively, the normal stress diagrams for several combinations of MEd and 
NEd, where fy is the yield strength, Mel,Rd is the elastic resistance to bending 
moment and the remaining symbols were defined above.  
 

-fy

NEd 

MEd 

Mpl,RdMel,Rd

Npl,Rd +fy

-fy 

-fy

+fy
-fy

MEd 

NEd 

-fy

 
Figure 3.67 – M + N interaction diagram in a rectangular solid section 
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For low values of axial force, the reduction of the plastic moment 
resistance is not significant, as can be seen in Figure 3.67. For doubly 
symmetric I or H sections, clause 6.2.9.1(4) states that:  

� it is not necessary to reduce the plastic moment resistance about y if 
the two following conditions are satisfied: 

 
 RdplEd NN ,25.0�     and    05.0 MywwEd fthN �� . (3.127) 
 

� it is not necessary to reduce the plastic moment resistance about z if 
the following condition is verified: 

 
 0MywwEd fthN �� , (3.128) 
 

where hw and tw are the height and the thickness of the web, 
respectively. 

 
For I or H sections, rolled or welded, with equal flanges and where 

fastener holes are not to be accounted for, the reduced plastic moment 
resistances, MN,y,Rd and MN,z,Rd about the y and z axis respectively can be 
obtained from clause 6.2.9.1(5): 
 
     

a
nMM RdyplRdyN 5.01

1
,,,, �

�
�      but RdyplRdyN MM ,,,, � ;  (3.129) 

 
 RdzplRdzN MM ,,,, �           if an � ; (3.130a) 
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,,,, 1
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a
anMM RdzplRdzN

  if an � , (3.130b) 

 
where 
 � AtbAa f2�� , but 5.0�a .  
 

For circular hollow sections  
 
 
 �7.1

,, 1 nMM RdplRdN �� . (3.131) 
 

For rectangular hollow sections of uniform thickness and for welded 
box sections with equal flanges and equal webs and where fastener holes are 
not to be accounted for, the reduced plastic moment resistances, can also be 
obtained from clause 6.2.9.1(5): 
 
 

w
RdyplRdyN a

nMM
5.01

1
,,,, �

�
�     but  RdyplRdyN MM ,,,, � ; (3.132) 
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f

RdzplRdzN a
nMM

5.01
1

,,,, �
�

�     but    RdzplRdzN MM ,,,, � , (3.133) 

 
where 5.0�wa  and 5.0�fa are the ratios between the area of the webs and 

of the flanges, respectively, and the gross area of the cross section. 
In a cross section under bi-axial bending and axial force, the N + My + 

Mz interaction can be checked by the following condition: 
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, (3.134) 

 
where � and �	are parameters that depend on the shape of the cross section 
and MN,y,Rd and MN,z,Rd are the reduced plastic moments resistances around y 
and z, respectively, evaluated as previously described. The values of � and � 
are given as follows in clause 6.2.9.1(6): 

� I or H sections n5;2 �� �� , but 1
� ; 
� circular hollow sections 2�� �� ; 

� rectangular hollow sections 
213.11

66.1
n�

�� �� , but 6�� �� . 

 
ii) Class 3 or 4 cross sections 
 

In class 3 or 4 cross sections, the interaction between bending and 
axial force requires that the following condition be checked: 
 

 
0

,
M

y
Edx

f
�

� � , (3.135) 

 
where �x,Ed is the design value of the local longitudinal stress due to bending 
moment and axial force, taking into account the fastener holes where 
relevant. This stress is evaluated by an elastic stress analysis, based on the 
gross cross section for class 3 cross sections, and on a reduced effective 
cross section for class 4 sections. Additionally, in class 4 cross sections the 
bending moments due to the shift of the centroidal axis on the reduced 
effective cross section should be taken into account, see clause 6.2.9.3(2). 

The calculation of the effective area in class 4 cross sections should be 
in accordance with EC3-1-5. 
 
iii) Interaction of bending, axial and shear force 
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The interaction between bending, axial and shear force should be 
checked as follows (clause 6.2.10): 

� When %50�EdV of the design plastic shear resistance Vpl,Rd, no 

reduction need be made in the bending and axial force resistances 
obtained from clause 6.2.9.  

� When %50�EdV of Vpl,Rd, then the design resistance to the 

combination of bending moment and axial force should be calculated 
using a reduced yield strength for the shear area. This reduced strength 
is given by 
 � yf��1 , where 
 �2

, 12 �� RdplEd VV� . 

 
3.7.3. Buckling resistance 
 
3.7.3.1. Theoretical Background  
 

For a member under bending and compression, besides the first-order 
moments and displacements (obtained based on the undeformed 
configuration), additional second-order moments and displacements exist 
(“P-�” effects); these should be taken into account. Figure 3.68 illustrates 
the behaviour of a member, with an initial bow imperfection defined by a 
transverse displacement e0, subject to bending moment and axial 
compression; the bending moment diagram includes the first order moments 
and the second order moments that result from the lateral deformation. 

 

e 

e0

L 

N 

y 

x 

N 

(z) 

e0 

N

e 

M 

M N M+N y(x)

1st order elastic behaviour 

M = 0 

M > 0 

M = 0 
M > 0

Real behaviour 

 
Figure 3.68 – Behaviour of a member subjected to bending and compression  
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In the past, various interaction formulae have been proposed to 
represent this situation over the full slenderness range. The present approach 
of EC3-1-1 is based on a linear-additive interaction formula, illustrated by 
expression (3.136). According this approach, the effects of the axial 
compression and the bending moments are added linearly and the non-linear 
effects of the axial compression are taken into account by specific interaction 
factors. 
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where N, My and Mz are the applied forces and Nu, Muy and Muz are the design 
resistances, that take in due account the associated instability phenomena.  

The development of the design rules, and in particular those adopted 
by EC3-1-1, is quite complex, as they have to incorporate two instability 
modes, flexural buckling and lateral-torsional buckling (or a combination of 
both), different cross sectional shapes and several shapes of bending moment 
diagram, among other aspects. These formulae, based on second-order 
theory, have to incorporate several common concepts, such as that of 
equivalent moment, the definition of buckling length and the concept of 
amplification. These formulae were mainly based on doubly-symmetric cross 
sections, although recent investigations (Kaim, 2004) have shown that they 
could give good approximate solutions for mono-symmetric sections. 

Following Boissonade et al (2006), for a member under NEd + My,Ed + 
Mz,Ed, disregarding the complex coupling between instabilities in both 
principal planes, the elastic flexural stability in both planes (x-y plane and  
x-z plane) can be expressed by the following equations:  
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where Cmy and Cmz are the equivalent moment factors relating to the My and 
Mz diagrams respectively and Ly and Lz are parameters defined by the 
following expressions: 
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The general formulae expressed by (3.137) and (3.138) are based on 

elastic second-order theory, so are only valid for class 3 cross sections.  
Class 1 and class 2 cross sections may buckle in an elasto-plastic flexural 
buckling mode, leading to the following modified equations:  
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  (3.142) 
 
where Cyy , Cyz , Czy and Czz are parameters introduced to simulate plasticity 
effects and �* and �* are factors that depend on the material’s non-linear 
behaviour.  

The formulae given above represent the behaviour of members in 
which the potential failure mode is flexural buckling in one of the principal 
planes. This would be the case in thin-walled closed sections and sections 
with lateral restraint. In members of open section without lateral restraint, 
lateral-torsional buckling is a potential failure mode. Consider an I or H 
section of doubly-symmetric cross section, with support conditions as shown 
in Figure 3.56 (the “standard case”), subject to axial compression and 
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uniform bending moment My,Ed. Assuming a lateral sinusoidal bow 
imperfection, see expression (3.61), and a first yield failure criterion, the 
buckling formula is the following (Kaim, 2004): 
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 (3.143) 
 
where Mcr(N) is the critical lateral-torsional buckling moment under the 
additional effect of the axial compression (Boissonnade et al, 2006), My,Rd 

and Mz,Rd are the elastic resistance moments about y and z respectively, and 
the remain symbols are as defined before. 

Equation (3.143) describes theoretically the lateral-torsional buckling 
mode of a member under axial compression and in-plane My bending 
moment. This needs to be simplified into a more appropriate format for 
design. Expressions (3.136) to (3.143) are the basis for the two design 
approaches for beam-columns given in EC3-1-1. In developing these, some 
simplifications have been made and several parameters calibrated by 
numerical and experimental investigations. The two approaches, termed 
Method 1 and Method 2, are described in the following sub-section.  
 
3.7.3.2. Design resistance 
 

In sub-chapter 2.3, several procedures provided in EC3-1-1 were 
described for the verification of the global stability of a steel structure, 
including the different ways of considering the second order effects (local  
P-�	 effects and global P-�	 effects). Local P-�	 effects are generally taken 
into account according to the procedures given in clause 6.3; global  
P-�	effects are either directly considered in the global analysis of the 
structure, or they are indirectly considered, by an appropriate increase of the 
buckling lengths of the members.  



3. DESIGN OF MEMBERS 

 

_____
234

The instability of a member of doubly symmetric cross section, not 
susceptible to distortional deformations, and subject to bending and axial 
compression, can be due to flexural buckling or to lateral torsional buckling. 
Therefore, clause 6.3.3(1) considers two distinct situations: 

� Members not susceptible to torsional deformation, such as members of 
circular hollow section or other sections restrained from torsion. Here, 
flexural buckling is the relevant instability mode. 

� Members that are susceptible to torsional deformations, such as 
members of open section (I or H sections) that are not restrained from 
torsion. Here, lateral torsional buckling tends to be the relevant 
instability mode. 

 
Consider a single span member of doubly symmetric section, with the 

“standard case” end conditions shown in Figure 3.56. The member is subject 
to bending moment and axial compression. The following conditions should 
be satisfied: 
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where: NEd, My,Ed and Mz,Ed are the design values of the axial compression 

force and the maximum bending moments along the member about y 
and z , respectively; 
�My,Ed and �Mz,Ed are the moments due to the shift of the centroidal 
axis on a reduced effective class 4 cross section;  
>y and >z are the reduction factors due to flexural buckling about y and 
z, respectively, evaluated according to clause 6.3.1 or in sub-chapter 
3.5; 
>LT is the reduction factor due to lateral-torsional buckling, evaluated 
according to clause 6.3.2 or in sub-chapter 3.6 (>LT = 1.0 for members 
that are not susceptible to torsional deformation); 
kyy , kyz , kzy and kzz are ,interaction factors that depend on the relevant 
instability and plasticity phenomena, obtained through Annex A 
(Method 1 ) or Annex B (Method 2); 

iyRk AfN � , iyRki WfM �,  and �Mi,Ed are evaluated according to 
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Table 3.12, depending on the cross sectional class of the member. 
 

Table 3.12 – Values for the calculation of NRk, Mi,Rk and �Mi,Ed 

Class 1 2 3 4 
Ai A A A Aeff 
Wy Wpl,y Wpl,y Wel,y Weff,y 
Wz Wpl,z Wpl,z Wel,z Weff,z 

�My,Ed 0 0 0 eN,y NEd 
�Mz,Ed 0 0 0 eN,z NEd 

 
In EC3-1-1 two methods are given for the calculation of the 

interaction factors kyy , kyz , kzy and kzz; Method 1, developed by a group of 
French and Belgian researchers, and Method 2, developed by a group of 
Austrian and German researchers (Boissonnade et al, 2006). 

In members that are not susceptible to torsional deformation, it is 
assumed that there is no risk of lateral torsional buckling. The stability of the 
member is then verified by checking against flexural buckling about y and 
about z. This procedure requires application of expressions (3.144a) (flexural 
buckling around y) and (3.144b) (flexural buckling around z), considering 
>LT = 1.0 and calculating the interaction factors kyy , kyz , kzy and kzz for a 
member not susceptible to torsional deformation. 

In members that are susceptible to torsional deformation, it is assumed 
that lateral torsional buckling is more critical. In this case, expressions 
(3.144a) and (3.144b) should be applied, with >LT evaluated according to 
clause 6.3.2 or sub-chapter 3.6, and calculating the interaction factors for a 
member susceptible to torsional deformation. 

According to Method 1, a member is not susceptible to torsional 
deformations if yT II 
 , where IT and Iy are the torsion constant and the 

second moment of area about y, respectively. If the section is such that 
yT II � , but there are lateral restraints along the member, this situation could 

still be considered as not susceptible to torsional deformations, if the 
following condition is verified:  
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where C1 is a coefficient that depends on the shape of the bending moment 
diagram between laterally braced sections (obtained according to sub-section 
3.6.1.2), Ncr,z and Ncr,T represent the elastic critical loads for flexural buckling 
about z and for torsional buckling, respectively, and 0( is the non 
dimensional slenderness coefficient for lateral torsional buckling, assessed 
for a situation with constant bending moment. If condition (3.145) is not 
satisfied, the member must be considered as a member susceptible to 
torsional deformations. 

Next, the following tables from Annex A are presented, for the 
calculation of the interaction factors according to Method 1. In Table 3.13 
the values of the interaction factors kij are indicated. 
 

Table 3.13 – Interaction factors kij according to Method 1 

Interaction Elastic sectional 
properties 

Plastic sectional properties 

factors (Class 3 or 4 sections) (Class 1 or 2 sections) 
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In Table 3.14 some auxiliary terms are given. The information 

includes the calculation of factors Cyy, Cyz, Czy and Czz; these depend on the 
degree of plasticity in the cross section at collapse of the member.  

These terms assume distinct values, depending on whether the 
member is susceptible or not to torsional deformations. 
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Table 3.14 – Auxiliary terms for the calculation of the interaction factors kij of the 
previous table 

 Auxiliary terms: 
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4 The corresponding formula which is presented in EC3-1-1 contained incorrections 
that were corrected in Corrigendum N1620E to EN 1993-1-1. 
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Table 3.14 (cont.) – Auxiliary terms for the calculation of the interaction factors kij 
of the previous table 

 Auxiliary terms (continuation): 

 �zy ((( ,maxmax � ; 

�0(  non dimensional slenderness for lateral torsional buckling due to uniform 
bending moment, that is, taking 0.1�.y  in Table 3.15; 

�LT(  non dimensional slenderness for lateral torsional buckling; 
 

If 4

,,
10 112.0 "

"
#

$
%
%
&

'
�"

"
#

$
%
%
&

'
��

Tcr

Ed

zcr

Ed

N
N

N
NC( :  0,mymy CC � ; 0,mzmz CC � ; 0.1�mLTC ; 

If 4

,,
10 112.0 "

"
#

$
%
%
&

'
�"

"
#

$
%
%
&

'
��

Tcr

Ed

zcr

Ed

N
N

N
N

C( :  
 �
LTy

LTy
mymymy a

a
CCC

�

�

�
���

1
1 0,0, ; 

0,mzmz CC � ; 1

11
,,

2 


"
"
#

$
%
%
&

'
�"

"
#

$
%
%
&

'
�

�

Tcr

Ed

zcr

Ed

LT
mymLT

N
N

N
N

aCC ; 

yelEd

Edy
y W

A
N

M

,

,��  for class 1, 2 or 3 cross sections; 

yeff

eff

Ed

Edy
y W

A
N

M

,

,��  for class 4 cross sections; 

ycrN ,  is the elastic critical load for flexural buckling about y;  

zcrN ,  is the elastic critical load for flexural buckling about z; 

TcrN ,  is the critical load for torsional buckling; 

TI  is the constant of uniform torsion or St. Venant’s torsion; 

yI  is the second moment of area about y; 
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ck
C  where kc is taken from Table 3.10. 

 
In Table 3.15, the Cmi,0 factors are given, which allows one to obtain 

the factors for equivalent uniform moment, Cmi, as described in Table 3.14; 
these coefficients should be assessed based on the corresponding bending 
moment diagrams (about y or about z), between braced sections. 
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Table 3.15 – Equivalent factors of uniform moment Cmi,0 

  Diagram of moments Cmi,0
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Mi,Ed(x) is the maximum moment My,Ed or Mz,Ed 
according to the first order analyses  

x�  is the maximum lateral deflection �z (due to 

My,Ed) or �y (due to Mz,Ed) along the member 
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According to Method 2, the following members may be considered as 

not susceptible to torsional deformation: 
N members with circular hollow sections;  
N members with rectangular hollow sections (but, according to some 

authors (Kaim, 2004), only if zbh (10� , where h and b are the 

depth and width of the cross section respectively, and z(  is the non 
dimensional slenderness relative to the z axis); 

N members with open cross section, provided that they are torsionally 
and laterally restrained. According to Boissonnade et al, (2006) a 
member with open I or H section, restrained by continuous restraints, 
may be classified as not susceptible to torsional deformation if the 
conditions predicted in the Annex BB.2 of EC3-1-1 are fulfilled; other 
situations must be demonstrated (Boissonnade et al, (2006).  

 
 Members of open section, such as I or H sections, are considered as 
members susceptible to torsional deformations if they are not adequately 
torsionally and laterally restained. Laterally restrained means that the cross 
section is laterally restrained at the compression level. 

For the calculation of the interaction factors according to Method 2, 
tables from Annex B are presented. Tables 3.16 and 3.17 indicate the interaction 
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factors kij. Table 3.18 indicates the equivalent uniform moment factors, Cmi, 
evaluated from the diagram of bending moments between braced sections. 

 
Table 3.16 – Interaction factors kij in members not susceptible to torsional 

deformations according to Method 2 

Interaction 
factors  

Typeof 
section 

Elastic sectional properties 
(Class 3 or 4 sections) 

Plastic sectional properties 
(Class 1 or 2 sections) 
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In I or H sections and rectangular hollow sections under axial compression and 
uniaxial bending (My,Ed), kzy may be taken as zero. 

 
To illustrate the calculation of the equivalent uniform moment factors 

Cmi (Table 3.18), consider a member under bi-axial bending and axial 
compression, with the support sections restrained from rotating around its 
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axis (fork conditions) and laterally braced at some intermediate sections. It is 
assumed that the intermediate bracings prevent not only torsional 
deformation, but also transverse displacements of the cross sections where 
they are applied.In this case, the factor Cmy should be assessed based on the 
bending moment diagram My along the total length of the member; and 
factors Cmz and CmLT should be assessed based on the bending moment 
diagrams Mz and My respectively, between laterally braced sections.  

 
Table 3.17 – Interaction factors kij in members susceptible to torsional deformations 

according to Method 2 
Interaction 

factors 
Elastic sectional properties Plastic sectional properties 

(Class 3 or 4 sections) (Class 1 or 2 sections) 
kyy kyy of Table 3.16 kyy of Table 3.16 

kyz kyz of Table 3.16 kyz of Table 3.16 
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kzz kzz of Table 3.16 kzz of Table 3.16 
  

Table 3.18 – Equivalent factors of uniform moment Cmi 

Diagram of Range Cmy, Cmz and CmLT 
moments  Uniform loading Concentrated load 

.	M 
M 

 

 
11 �.��  

 
4.04.06.0 
.�  

� Mh Mh 

Ms  
hss MM��  

10 �� s� 11 �.�� 4.08.02.0 
� s�  4.08.02.0 
� s�  

 
01 ��� s�

10 �.� 4.08.01.0 
� s� 4.08.0 
� s�  

01 �.�� 
 � 4.08.011.0 
�.� s� 
 � 4.08.02.0 
�.� s�  

� Mh Mh 

Ms 

shh MM��  

10 �� h� 11 �.�� h�05.095.0 �  h�10.090.0 �  

 
01 ��� h�

10 �.� h�05.095.0 � h�10.090.0 �  

01 �.�� 
 �.�� 2105.095.0 h� 
 �.�� 2110.090.0 h�  

In the calculation of �s or �h parameters, a hogging moment should be taken as negative 
and a sagging moment should be taken as positive. 
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Table 3.18 (cont.)  – Equivalent factors of uniform moment Cmi 
For members with sway buckling mode, the equivalent uniform moment factor should be 
taken as 9.0�myC  or 9.0�mzC , respectively. 

Factors Cmy, Cmz and CmLT should be obtained from the diagram of bending moments 
between the relevant braced sections, according to the following: 
         Moment factor                   bending axis                   points braced in direction 
                Cmy                                                 y-y                                    z-z 
                Cmz                                                 z-z                                    y-y 
                CmLT                                              y-y                                    y-y

 
3.7.4. Worked examples 

 
Example 3.13: Consider column A-B that supports a steel cantilever B-C, 
represented in Figure 3.69. The column is fixed at section A, while the top 
section (B) is free to rotate, but restrained from horizontal displacements in 
both directions. The column has a rectangular hollow section SHS 
200x150x8 mm in S 355 steel (E = 210 GPa and G = 81 GPa). Assuming 
that the indicated loading is already factored for ULS, verify the column 
according to EC3-1-1. 

 

3.00 m 

15.0 kN/m

A  

B

920.0 kN

6.00 m 

C 

 z  

 x  

 (y)  

 z  

 y 

(x) 

Transverse section of column A-B 

SHS 200x150x8 mm 

 
Figure 3.69 – Structure with members of rectangular hollow section 

_______________________________ 
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i) Internal force diagrams 
 
For the given design loading, the internal force diagrams are represented in 
Figure 3.70. 
 

+

-

VEd MEd 

33.8 kNm 965.0 kN 

NEd 

- 

16.9 kN

67.5 kNm 

+

 
Figure 3.70 – Internal force diagrams 

 
ii) Verification of the cross section resistance 
 
The relevant geometrical characteristics of a SHS 200x150x8 mm are the 
following: A = 52.75 cm2, Wpl,y = 358.8 cm3, Wel,y = 297.1 cm3, Iy = 2971 cm4, 
iy = 7.505 cm, Wpl,z = 293.7 cm3, Wel,z = 252.6 cm3, Iz = 1894 cm4,  
iz = 5.992 cm and IT = 3643 cm4. 
 
As the cross section of the member is already known, the verification of its 
class is carried out according to clause 5.5. For a member subjected to 
varying bending and compression, the class of the cross section may vary 
along the member. While this does not introduce any type of difficulty in the 
verification of the cross section resistance (each section is designed 
according to its own class), it is more difficult to define the class of the cross 
section for the verification of the member’s stability, as this is a global 
verification. In this example, a simplified approach is adopted, whereby the 
class of the cross section is verified for the most unfavourable situation 
(compressed section only). Thus, for the longer side, according to Table 2.23 
(Table 5.2 in EC3-1-1), 
 


 � 
 � 7.2681.033330.228832003 �!���!���� �ttbtc .  (Class 1) 
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The cross section is class 1 in compression and can be treated as a class 1 
cross section for any other combination of stresses. 
 
The resistance to bending about the y axis, combined with the axial force, is 
obtained from expression (3.132), according to clause 6.2.9.1(5): 
 

Rdypl
w

RdyplRdyN M
a

nMM ,,,,,, 5.01
1

�
�

�
� . 

 
For the critical cross section (top of the column), subjected to NEd = 965.0 kN 
and My,Ed = 67.5 kNm,  
 

52.0
0.1103551075.52

965
34

,
�

!!!
��

�
Rdpl

Ed

N
N

n ; 

 

5.05.055.0
75.52

8.015275.522
�,��

!!�
�

�
� ww a

A
tbAa ; 

 

kNmM Rdypl 4.127
0.1
10355108.358

3
6

,, �
!

!!� � . 
 
The reduced design plastic moment resistance is given by: 
 

RdyplRdyN MkNmM ,,,, 5.81
5.05.01

52.014.127 ��
!�

�
!�  

 
kNmM RdyN 5.81,, �, . 

 
so that, 
 

kNmMkNmM RdyNEd 5.815.67 ,, ��� . 
  
Shear must be verified in any cross section, since the member is under 
constant shear. From clause 6.2.6(3): 
 

214.30
2015

2075.52 cm
hb

hAAv �
�

!
�

�
� , leading to: 

 

kN
fA

V
M

yv
Rdpl 7.617

30.1
103551014.30

3

34

0
, �

!

!!!
��

�

�
. 

 
As kNVkNV RdplEd 7.6179.16 , ��� , the resistance to shear is satisfactory. 
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For the verification of the shear buckling of the web, according to clause 
6.2.6(6), with 1�� , 
 


 � 
 � 3.58720.228832003 ���!���� ��tthth ww , 
 
and so verification is not required. 
 
The verification of the interaction of bending and compression with shear, 
according to clause 6.2.8, must be done for cross section B. As 
 

kNVkNV RdplEd 9.3087.61750.050.09.16 , �!�!�� , 
 
it is not necessary to reduce the resistance of the section due to this 
interaction.  
 
iii) Verification of the stability of the member 
  
For the beam-column subject to uniaxial bending (about y) and compression, 
using a class 1 section, the following conditions must be verified: 
 

0.1
1,

,

1
��

MRkyLT

Edy
yy

MRky

Ed

M
M

k
N
N

�>�>
; (3.146a) 

 

0.1
1,

,

1
��

MRkyLT

Edy
zy

MRkz

Ed

M
M

k
N
N

�>�>
. (3.146b) 

 
The interaction factors kyy and kzy can be obtained using one of the methods 
given in clause 6.3.3, Method 1 or Method 2; for the sake of comparison, 
both are used in this example.  
 
iii-1) Method 1 
 
Since the member has a rectangular hollow section with  
IT = 3643 cm4 > Iy = 2971 cm4, the member is not susceptible to torsional 
deformation, so flexural buckling constitutes the relevant instability mode. 
Therefore it is not necessary to verify lateral-torsional buckling and 

0.1�LT>  in expressions (3.146). The following steps are required to 
calculate the interaction factors kyy and kzy.  
- Step 1: characteristic resistance of the section 
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kNfAN yRk 6.1872103551075.52 34 �!!!�� � ; 
 

kNmfWM yyplRky 4.12710355108.358 36
,, �!!!�� � . 

 
- Step 2: reduction coefficients due to flexural buckling, y>  and z>  
  
Plane xz (buckling about y):  
 

mL yE 2.40.67.0, �!� ; 
 

74.0
81.09.93

1
10505.7

2.41
2

1

, �
!

!
!

��
�(

(
y

yE
y i

L
; 

 
21.0��  Curve a (Table 6.2); 

 
83.083.0 �,� y>� . 

 
Plane xy (buckling about z): 
 

mL zE 2.40.67.0, �!� ; 
 

92.0
81.09.93

1
10992.5

2.41
2

1

, �
!

!
!

��
�(

(
z

zE
z i

L
; 

 
21.0��  Curve a (Table 6.2); 

 
72.000.1 �,� z>� . 

 
- Step 3: calculation of the auxiliary terms, including factors Cyy and Czy 

(factors that depend on the degree of plasticity of the section in the 
collapse situation), defined in Table 3.14 (Table A.1 of EC3-1-1). 

 

kN
L

IE
N

yE

y
ycr 8.3490

2.4
10297110210

2

862

2
,

2

, �
!!!!

��
�**
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kN
L

IE
N

zE

z
zcr 4.2225

2.4
10189410210

2
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2
,
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, �
!!!!

��
�**
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94.0

8.3490
96583.01

8.3490
9651

1

1

,

, �
!�

�
�

�

�
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ycr

Ed
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, �
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zcr

Ed
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Ed
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>
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)5.1(21.1
1.297
8.358

,

, ����
yel

ypl
y W

W
w ; 

 

)5.1(16.1
6.252
7.293

,

, ����
zel

zpl
z W

W
w ; 

 

52.0
0.16.1872

965

1
���

MRk

Ed
pl N

N
n

� ; 

 

 � 
 � 92.092.0,74.0max,maxmax ��� zy ((( . 

 
As the member is not susceptible to torsional deformations, in accordance 
with Table 3.14, the equivalent factors of uniform moment are defined by 
Cmy = Cmy,0 and CmLT = 1.0, where Cmy,0 is the factor obtained based on  
Table 3.15 (Table A.2 of EC3-1-1). For a linear bending moment diagram, 
with My,Ed,base = -33.8 kNm and My,Ed,top = 67.5 kNm, 
 

50.05.678.33,,,, �����. topEdybaseEdyy MM ; 
 


 �


 � 
 � ;60.0
8.3490

96533.050.036.05.021.079.0

33.036.021.079.0
,

0,

�!��!��!��

��.�.��
ycr

Ed
yymy N

N
C

 

 
60.00, �� mymy CC . 

 
As 00 ��,�,� LTLTLTyT dbaII , factors Cyy and Czy are given by: 
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- Step 4: interaction factors kyy and kzy  
Based on all the calculated auxiliary terms, considering that the cross section 
is class 1, expressions in Table 3.13, give the following interaction factors kyy 
and kzy:  

69.0
13.1
1
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Finally, expressions (3.146) yield:  
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;0.199.0
0.14.1270.1
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The rectangular hollow section 200x150x8 mm in S 355 steel is verified 
according to Method 1. 
 
iii-2) Method 2 
 
As the member has a rectangular hollow section, due to its high lateral 
bending and torsional stiffness the verification of lateral torsional buckling is 
not required, and 0.1�LT> . Because Method 2 only differs from Method 1 
with respect to the interaction factors, the calculation of these factors is done 
directly. 
As the member is not susceptible to torsional deformations, the interaction 
factors must be obtained from Table 3.16 (Table B.1 of EC3-1-1). 
 
For a linear bending moment diagram, with My,Ed,base = -33.8 kNm and  
My,Ed,top = 67.5 kNm, 
 

50.05.678.33,,,, ����� topEdybaseEdyy MM� . 
 
Table 3.18 (Table B.3 of EC3-1-1) gives: 
 


 � )40.0(40.050.04.06.0 
��!��myC . 
 
Based on the previous calculations for Method 1 and for a class 1 section, 
interaction factors kyy and kzy are given by: 
 


 �
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as 60.08.0153.0
1

�
2
2
3

4

5
5
6

7
���

MRky

Ed
myyy N

N
Ck

�>
, 

 
53.0�yyk . 

 
According to Method 2, for a rectangular hollow section subject to 
compression and uniaxial bending about y, may be assumed 0�zyk . 

Expressions (3.146) become: 
 

0.190.0
0.14.1270.1

5.6753.0
0.16.187283.0

0.965
��

!
!�

!
; 

 
0.172.0

0.16.187272.0
965

��
!

. 

 
so that the rectangular hollow section 200x150x8 mm in S 355 steel is also 
verified by Method 2. It is noted that, for this case, Method 2 yields less 
conservative results than Method 1. 
_____________________________________________________________ 
 
Example 3.14: Verify the safety of column A-B of a typical industrial 
building, illustrated in Figure 3.71. The column’ section is an IPE 360  
(E = 210 GPa and G = 81GPa) in S 355 steel. For a given load combination, 
the column is subjected to the factored design internal forces shown in 
Figure 3.71. It can be assumed that shear is small enough to be neglected in 
the verification of the member. The structure is assumed to be a sway frame. 
So, in accordance with the second method described in 2.3.2.1 (5.2.2(7)b of 
EC3-1-1), the design internal forces (given in Figure 3.71) were obtained 
from a second order analysis and the buckling length in the plane of the 
framework (plane xz) to be used in the design checks is given by LE,y = 6.0 
m, equal to the real length. For the buckling length in the xy plane, consider 
that the column is braced at the bottom, at mid-height and at the top. 

 
 
 
 
 
 



3.7. BEAM-COLUMNS 

 

_____ 
251 

My,Ed = 220.0 kNm NEd = 280.0 kN 

Bending moment Axial force 

-

- 

A 

6.0 m 

3.0 m

3.0 m

x

z

(y)

B 

C 

 
Figure 3.71 – Column subjected to major-axis bending and compression 

_______________________________ 
 
Geometrical characteristics of the IPE 360: A = 72.73 cm2, h = 360 mm,  
b = 170 mm, Wel,y

 = 903.6 cm3, Wpl,y = 1019 cm3, Iy = 16270 cm4,  
iy = 14.95 cm, Wel,z = 122.8 cm3, Wpl,z = 191.1 cm3, Iz = 1043 cm4,  
iz = 3.79 cm, IT = 37.32 cm4 and IW = 313.6x103 cm6. 
 
i) Cross section classification 
 
EC3-1-1 does not provide criteria for the definition of the cross sectional 
class to be considered in the verification of the stability of a member, for the 
common case in which the class varies along the member as a consequence 
of varying internal forces. On the basis of engineering judgement it was 
decided to classify the critical section, that is, the top cross section. As this 
section is subjected to bending and compression, the position of the neutral 
axis for the situation of complete plastification of the section, which is 
necessary for the classification of the web, depends on the relation between 
the bending moment and the axial force. According to sub-chapter 2.4, in 
order to estimate the position of the neutral axis, several procedures can be 
considered. 
To define the position of the neutral axis based on the applied forces, the 
calculation of the distribution of normal stresses is required. This calculation 
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can be carried out based on an elastic stress analysis, assuming that the 
maximum stress does not reach the yield stress, giving: 
 


 �
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Elastic neutral axis 
MEd 

-281.9 MPa

204.9 MPa 

Normal stresses IPE 360 

G 
(NE d) 

360 mm 

170 mm 

298.6 mm 

-240.4 MPa

163.4 MPa 

 
Figure 3.72 – Normal stresses at the critical section 

 
Based on the normal stress diagram illustrated in Figure 3.72, the parameter 
�	
which corresponds to the percentage of the web in compression) defined 
in Table 2.23 (Table 5.2 of EC3-1-1), is given by:  
 

60.0
4.1634.240

4.240
�

�
�� . 

 
Alternatively the position of the neutral axis can be estimated based on 
expression (2.27), giving: 
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For the web in bending and compression (using the value of � obtained by 
the second process), 
 

6.41
167.013

81.0396
113

3963.3786.298 �
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!
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���

�
�tc . (Class 1) 
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Compressed flange, 
 


 � 3.781.0990.57.1218282170 �!������ �tc . (Class 1) 
 
Therefore, the section is class 1. If the cross section class were established 
based on the internal forces at section A (compression only), the class of the 
member for the stability check would be 4. Consequently the resistance of 
the cross section A should be checked; as the design axial force,  
NEd = 280 kN is very small compared with the cross section capacity and also 
as the analysis of cross section of class 4 is outside of the scope of this 
publication, this verification is not performed here. 
 
ii) Verification of the cross section resistance 
 
Based on the internal force diagrams, section B is the critical cross section, 
with My,Ed = 220.0 kNm and NEd = 280.0 kN. Since 
 

kNAfN MyRdpl 9.25810, �� � , 
 

kNNkNN RdplEd 5.64525.00.280 , ��� ,  
 
and 
 

kNfthkNN MywwEd 1.4755.00.280 0 ��� � , 
 
according to clause 6.2.9.1(4) it is not necessary to reduce the plastic 
bending resistance, which is therefore given by: 
 

kNmMkNm
f

WM Edy
M

y
yplRdypl 0.2207.361 ,

0
,,, ����

�
. 

 
iii) Verification of the stability of the member 
 
In this example only Method 2 is applied. As the member is susceptible to 
torsional deformations (thin-walled open cross section), it is assumed that 
lateral-torsional buckling constitutes the relevant instability mode. Since 
Mz,Ed = 0, the following conditions must be verified:  
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The following steps are required to calculate the interaction factors kyy and 
kzy.  
- Step 1: characteristic resistance of the section 
 

kNfAN yRk 9.2581103551073.72 34 �!!!�� � ; 
 

kNmfWM yyplRky 7.36110355101019 36
,, �!!!�� � . 

 
- Step 2: reduction coefficients due to flexural buckling, y>  and z>  
 
Plane xz - LE,y = 6.0 m. 
 

53.0
81.09.93

1
1095.14

61
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; 

 
21.0��  Curve a (Table 6.2); 

 
90.068.0 �,� y>� . 

 
Plane xy - LE,z = 3.0 m, assuming that secondary beams prevent 
displacements of the braced cross sections in the y direction. 
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81.09.93

1
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zE
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34.0��  Curve b (Table 6.2); 

 
58.018.1 �,� z>� . 

 
- Step 3: calculation of the >LT using the alternative method applicable to 

rolled or equivalent welded sections (clause 6.3.2.3) 
 
The length between braced sections is L = 3.0 m. Using expression (3.100) 
and Table 3.5 for a member subjected to unequal end moments, gives: 
  

,�� 50.0� ,� 30.1m� ,� kNmM cr 9.644 75.0�LT( . 
  
As 49.0�LT�  (rolled I or H sections with ,� 2bh  curve c and, from 
clause 6.3.2.3, taking 4.00, �LT(  and, 75.0�� , gives: 
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79.080.0 �,� LTLT >� . 

 
The correction factor kc, according to Table 3.10 (Table 6.6 of EC3-1-1), 
with . = 0.50, is given by: 
  

86.0
33.033.1

1
�

.�
�ck .  

 
From expression (3.115), 
 


 � 
 �? @ 93.08.075.00.2186.015.01 2 ��!�!�!��f , 
 
The modified lateral-torsional buckling reduction factor is obtained: 
 

85.093.079.0mod, ��LT> . 
 
- Step 4: interaction factors kyy and kzy.  
Because the member is susceptible to torsional deformations, the interaction 
factors are obtained from Table 3.17 (Table B.2 of EC3-1-1). 
First, the equivalent factors of uniform moment Cmy and CmLT are obtained 
based on the bending moment diagram, between braced sections according to 
the z direction in case of Cmy and laterally in case of CmLT. The factor Cmy is 
taken for a non-sway structure, in accordance with the second method 
described in 2.3.2.1 (5.2.2(7)b of EC3-1-1), that was adopted in this 
example. Assuming a member braced in z direction and laterally at the base, 
mid-height and top, the factors Cmy and CmLT must be calculated based on the 
bending moment diagram in the upper half of the column (most 
unfavourable); since the bending moment diagram is linear, defined by 
My,Ed,base = 0, M1/2height = -110 kNm and My,Ed,top = -220 kNm, based on  
Table 3.18, 
 


 � 
 � 5.0220110,,2/1 �����. topEdyheight MM ; 
 


 � )40.0(80.05.04.060.0 ��!��� mLTmy CC . 
 
The interaction factors kyy and kzy are given by: 
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 �


 � ;83.0
0.19.258190.0

0.2802.053.0180.0
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1
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7
!

!��!�
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2
2
3

4

5
5
6

7
���
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Ed
ymyyy N

NCk
�>

(
 

 

as 90.08.0183.0
1

�"
"
#

$
%
%
&

'
���

MRky

Ed
myyy N

NCk
�>

, 

 
giving 83.0�yyk . 
 


 �


 � 97.0
0.19.258158.0

0.280
25.080.0

04.11.0
1

25.0
1.0

1
1

�2
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4
5
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��
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��
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as 
 � 97.0
25.0

1.0197.0
1

�2
3

4
5
6

7
�

�
�
MRkz

Ed

mLT
zy N

N
C

k
�>

, 

  
then 97.0�zyk . 
  
Finally, the verification of expressions (3.144) yields: 
 

0.171.0
0.17.36185.0

0.22083.0
0.19.258190.0

0.280
��

!
!�

!
; 

 

0.188.0
0.17.36185.0

0.22097.0
0.19.258158.0

0.280
��

!
!�

!
. 

 
It is concluded that the IPE 360 is adequate.  
_____________________________________________________________ 
 
Example 3.15: Consider the beam-column of Figure 3.73, whose section is 
an IPE 500 profile in S 275 steel. Assume that the end sections are restrained 
from rotating around the axis of the member. The design loading consists of 
a concentrated load PEd = 320 kN, support reactions of 160 kN, an axial 
compressive force NEd = 520 kN and two pairs of equal end moments  
My,Ed = 160 kNm and Mz,Ed = 20 kNm, as shown in Figure 3.73. Verify the 
member according to EC3-1-1. 
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4.0 m

2.0 m
x 

y 

z 

320 kN

20 kNm

160 kNm 

160 kNm 

520 kN 

520 kN 

160 kN 

160 kN

20 kNm

2.0 m

 
Figure 3.73 – Member under bi-axial bending and compression 

_______________________________ 
 
The required geometrical properties of the IPE 500 section are the following: 
A = 115.5 cm2, Avz = 59.87 cm2, h = 500 mm, b = 200 mm, Wel,y = 1928 cm3, 
Wpl,y = 2194 cm3, Iy = 48200 cm4, iy = 20.43 cm, Wel,z = 214.2 cm3,  
Wpl,z = 335.9 cm3, Iz = 2142 cm4, iz = 4.31 cm, IT = 89.29 cm4 and  
IW = 1249x103 cm6. 

 
i) Internal force diagrams 
 
For the design loading, the internal force diagrams are represented in the 
Figure 3.74. 
 

520 kN
-

160 kNm 

+

160 kNm

160 kNm 20 kNm 

160 kN -

160 kN + 

-

- 

NEd 

VEd 

MEd 
My

Mz

20 kNm 

 
Figure 3.74 – Diagrams of internal forces 
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ii) Cross section classification 
 
Web in bending and compression - the value of � may be obtained by 
expression (2.27): 
 


 � 718.010211016
10275102.10

520
2
1

2
10500

10426
1 33

33

3

3 �""
#

$
%%
&

'
!�!�

!!!
!�

!
!

� ��
�

�

�� , 

 

7.43
1718.013

92.0396
113

3968.412.10426 �
�!

!
�

�
���

�
�tc . (Class 1) 

 
Compressed flange, 
 


 � 28.892.0996.40.162122.102200 �!������ �tc . (Class 1) 
 
Therefore, the IPE 500 section in S 275 steel is class 1. 
 
iii) Verification of the cross section resistance 
 
According to the internal force diagrams, the critical sections are the end and 
mid-span sections, subjected to forces NEd = 520 kN (compression),  
VEd = 160 kN, My,Ed = 160 kNm and Mz,Ed = 20 kNm. The following steps are 
required to verify the cross section resistance. 
 
- Step 1: shear resistance 
 
As 287.59 cmAvz � , the shear resistance is given by: 
 

kN
fA

V
M

yvz
Rdpl 6.950

30.1
102751087.59

3

34

0
, �

!

!!!
��

�

�
, 

 
so that, 
 

kNVkNV RdplEd 6.950160 , ��� . 
 
According to clause 6.2.6(6), with 1�� , there is no need to calculate the 
shear buckling resistance of the web since, 
 

2.660.192.072729.452.10468 �!���� ��ww th . 
 
- Step 2: bending resistance 
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The bending moment and compression with shear force interaction must be 
verified at the end or mid-span sections.  
 

kNVkNV RdplEd 3.4756.95050.050.0160 , �!�!�� . 
 
Hence, when considering the combination of bending moment with axial 
force, it is not necessary to reduce the resistance of the cross section due to 
shear. 
 
The plastic axial force is given by: 
 

kNfAN MyRdpl 3.317610275105.115 34
0, �!!!�� �� . 

 
As  
 

kNNkNN RdplEd 1.79425.0520 , ���   
 
and with mmhw 468�  and mmtw 2.10� : 
 

kNfthkNN MywwEd 4.6565.0520 0 ��� � , 
 
it is concluded from clause 6.2.9.1(4) that it is not necessary to reduce the 
design plastic moment resistance about the y axis due to the axial force, so: 
 

kNmMM RdyplRdyN 4.603
0.1
10275102194

3
6

,,,, �
!

!!�� � . 
 
Similarly, as 
 

kNfthkNN MywwEd 7.1312520 0 ��� � ,  
 
it is also not necessary to reduce the design plastic moment resistance about 
the z axis, so: 
 

kNmMM RdzplRdzN 4.92
0.1
10275109.335

3
6

,,,, �
!

!!�� � . 
 
Bi-axial bending and compression according to expression (3.134): 
 

0.1
,,

,

,,

, �
2
2
3

4

5
5
6

7
�

2
2
3

4

5
5
6

7
��

RdzN

Edz

RdyN

Edy

M
M

M
M

.  (3.147) 

 
As 16.0

3.3176
520

,
���

Rdpl

Ed

N
N

n  and for a IPE: 
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2�� , 1      180.016.055 �,��!�� �� n .  

 
so that expression (3.147) yields, for the left end section of the  
beam-column: 
 

0.129.0
4.92

20
4.603

160 12

��23
4

56
7�23

4
56
7

, 

 
The IPE 500 section in S 275 steel has sufficient capacity to resist the 
applied forces. 
  
iv) Verification of the stability of the member 
  
For the member subject to a combination of bi-axial bending with 
compression, and with a class 1 cross section, expressions (3.144) must be 
verified: 
 

0.1
1,

,

1,

,

1
���

MRkz

Edz
yz

MRkyLT

Edy
yy

MRky

Ed

M
M

k
M
M

k
N
N

��>�>
; 

 

0.1
1,

,

1,

,

1
���

MRkz

Edz
zz

MRkyLT

Edy
zy

MRkz

Ed

M
M

k
M
M

k
N
N

��>�> . 

 
The interaction factors kyy kyz, kzy and kzz can be obtained from either  
Method 1 or Method 2; in this example both methods are applied. 
 
iv-1) Method 1 
 
As the member has a thin-walled open section with IT = 89.29 cm4  
< Iy = 48200 cm4 and there is no lateral bracing along the member, the 
section is susceptible to torsional deformations. Therefore, lateral-torsional 
buckling must be considered as the relevant instability mode. The following 
steps are required to calculate the interaction factors kyy and kzy.  
- Step 1: characteristic resistance of the cross section 
  
The characteristic resistances of the cross section are given by: 
 

kNfAN yRk 3.317610275105.115 34 �!!!�� � ; 
 
 



3.7. BEAM-COLUMNS 

 

_____ 
261 

kNmfWM yyplRky 4.60310275102194 36
,, �!!!�� � ; 

 
kNmfWM yzplRkz 4.9210275109.335 36

,, �!!!�� � . 
 
- Step 2: reduction coefficients due to flexural buckling y> and z>  
  
Plane xz (buckling around y): 
 

mL yE 00.4, � ; 
 

23.0
92.09.93

1
1043.20

00.41
2

1

, �
!

!
!

��
�(

(
y

yE
y i

L
; 

 
21.0��  Curve a (Table 3.4 or Table 6.2 of EC3-1-1); 

 
99.053.0 �,� y>� . 

 
Plane xy (buckling around z):  
 

mL zE 00.4, � ; 
 

07.1
92.09.93

1
1031.4

00.41
2

1

, �
!

!
!

��
�(

(
z

zE
z i

L
; 

 
34.0��  Curve b (Table 3.4 or Table 6.2 of EC3-1-1); 

 
55.022.1 �,� z>� . 

 
- Step 3: calculation of the auxiliary terms, including factors Cyy and Czy, 
defined in Table 3.14 (Table A.1 of EC3-1-1) 
 

kN
L

IE
N

yE

y
ycr 6.62437

00.4
104820010210

2

862

2
,

2

, �
!!!!

��
�**

; 

 

kN
L

IE
N

zE

z
zcr 7.2774
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10214210210

2

862

2
,

2

, �
!!!!

��
�**
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00.1
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1

1

,

, �
!�

�
�

�

�

�
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Ed
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91.0

7.2774
52055.01

7.2774
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, �
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zcr

Ed
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Ed

z

N
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N
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L ; 

 

)5.1(14.1
1928
2194

,

, ����
yel

ypl
y W

W
w ; 

 

5.157.1
2.214
9.335

,

, ����
zel

zpl
z W

W
w , so 5.1�zw ; 

 

16.0
0.13.3176

520

1
���

MRk

Ed
pl N

N
n

�
; 

 

 � 
 � 07.107.1,23.0max,maxmax ��� zy ((( . 

 
The critical moment for a uniform moment (“standard case”) is given by: 
 

0"
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The coefficient of non-dimensional slenderness concerning lateral-torsional 
buckling with uniform moment (“standard case”), is calculated using the 
following expression: 
 

87.0
0.806

10275102194 36
,

0 �
!!!

��
�

E
cr

yypl

M

fW
( . 

 
The critical torsional buckling critical, Ncr,T, is obtained from expression 
(3.59): 
 

"
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$
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'
�� 2
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IE
IG

i
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, where 
 � AIIyi zyCC ��� 22 . 
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Since yC = 0, because the centroid coincides with the shear centre of the 
cross section and LET = 4.00 m, gives:  
 


 � 22 86.4355.1152142482000.0 cmiC ���� ; 
 

.4.5371
00.4

101249102101029.891081
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1
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*
 

 
For the applied bending moment diagram, represented in Figure 3.74, the 
coefficient of moments (taken as coefficient �m defined in Table 3.5) takes 
the value C1 = 1.71. The verification of the condition: 
 

,24.0
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shows that the beam-column is constituted by a cross section that is 
susceptible of undergoing torsional deformations; this determines the way of 
quantifying the equivalent uniform moment factors Cmi.  
For the design bending moment diagrams, factors Cmy,0 and Cmz,0 are obtained 
from Table 3.15 (Table A.2 of EC3-1-1), as follows: 
 

mmzx 05.1�� �� ; 
 


 � kNmMxM EdyEdi 160,, �� ; 
 

00.12020 ��.z ; 
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 �
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Next, the uniform moment equivalent factors Cmy, Cmz and CmLT, are 
calculated according to Table 3.14 (Table A.1 of EC3-1-1), considering a 
member susceptible to torsional deformations. 
 
As kNmM Edy 160, �  (maximum absolute value of the bending moment 

along the member) and considering that this is a member that has a class 1 
cross section, gives:  
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The critical bending moment and the slenderness coefficient LT( , obtained 
based on expression (3.101), assuming that the load is applied on the upper 
flange, are given by: 
 

,0.788 kNmM cr �  
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Because this is an I rolled section, with 2�bh , the imperfection coefficient 
is given by �LT = 0.34 (curve b); by applying the general method that is 
referred in clause 6.3.2.2, we obtain:  
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The calculation of the auxiliary terms bLT, cLT, dLT and eLT, according to  
Table 3.14 (Table A.1 of EC3-1-1), is done next: 
 

kNmM Edy 160, �  (maximum bending moment, in absolute value, about y), 
 

kNmM Edz 20, �  (maximum bending moment, in absolute value, about z), 
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With the previously calculated parameters, factors Cyy, Cyz Czy and Czz are 
obtained from Table 3.14 (Table A.1 of EC3-1-1), through the following 
expressions: 
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Based on the previously calculated auxiliary terms, with a class 1 cross 
section, through the expressions mentioned in Table 3.13 (Table A.1 of  
EC3-1-1), the interaction factors kyy, kyz, kzy and kzz are given by: 
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Based on the determined parameters, expressions (3.144) give: 
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A IPE 500 in S 275 steel is verified, according to Method 1. 
 
iv-2) Method 2 
 
As the beam-column has a cross section that is susceptible to torsional 
deformations (thin-walled open section, not laterally restrained), the stability 
of the member depends exclusively of its resistance to lateral-torsional 
buckling. As Method 2 only differs from Method 1 in the calculation of the 
interaction factors, the calculation of these factors is done directly. 
 
The coefficients of equivalent uniform moment are calculated from Table 
B.3 or from Table 3.18. For the bending moment diagram around y: 
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For the bending moment diagram around z: 
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Coefficient CmLT is given by: 
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8.0�� mymLT CC . 
 
Based on the previous parameters and on the parameters that were obtained 
in the application of Method 1, the interaction factors kyy, kyz, kzy and kzz are 
calculated from Table 3.17 (Table B.2 of EC3-1-1), through the following 
expressions: 
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then 95.0�zyk . 
 
Expressions (3.144) give. 
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A IPE 500 in S 275 steel is verified according to Method 2. 
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Chapter 4 
 
 

ELASTIC DESIGN OF STEEL STRUCTURES 
 
 
4.1. INTRODUCTION 

 
The first step in the design of a steel structure is the evaluation of 

internal forces and displacements for the various load combinations. It was 
seen in chapter 2 that, according to EC3-1-1, structural analysis can be 
elastic or take into account the nonlinear behaviour of steel. Depending on 
the method of analysis, EC3-1-1 gives specific requirements regarding 
second-order effects and the consideration of imperfections. It is the purpose 
of this chapter to present and discuss procedures for the design of steel 
structures within the framework of elastic analysis, complemented by the 
presentation of a real design example. 

For most steel structures, elastic analysis is the usual method of 
analysis. This is in great part the result of the widespread availability of 
software that can easily perform linear elastic analysis. Furthermore, given 
current computer processing power and the user-friendliness of structural 
analysis software, 3D linear elastic analysis has become the standard in most 
design offices. This chapter therefore develops the design example using this 
approach.  

Elastic design of steel structures comprises the following design steps: 
i) conceptual design, including the pre-design stage during which the 
structural members and joints are approximately sized; and ii) 
comprehensive verification and detailing, when systematic checks on the 
safety of all structural members and joints are carried out using more 
sophisticated procedures. 

 

Design of Steel Structures: Eurocode 3: Design of
Steel Structures, Part 1-1 – General Rules and Rules for Buildings, First Edition

by Luís Simões da Silva, Rui Simões and Helena Gervásio
Copyright © 2010 Eccs – European Convention for Constructional Steelwork
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In the past, preliminary design was often based on simplified 
structural models. A typical methodology for non-seismic regions was to 
pre-design the beams as simply-supported for gravity loading and to  
pre-design the columns for simplified sub-frames and a wind-based load 
combination using, for example, the wind-moment method (Hensman and 
Way, 2000), a very popular method in the UK. Nowadays, it is much more 
efficient to generate a more sophisticated structural model that already 
represents the entire structure or part of it and to carry out a linear elastic 
analysis, even with a crude assignment of cross sections. The 
implementation from the beginning of a realistic structural model that is 
good enough for the second stage of design (only with the addition of further 
detailing) results in increased speed and a significant reduction in 
uncertainties from a very early stage. The conceptual pre-design is therefore 
reduced to a very early search for the best structural system, at a stage when 
the modular basis of the architectural layout is still being defined. This 
should ideally be carried out with hand sketches and hand calculations, in 
what is often referred to as “calculations on the back of an envelope”. 
Alternatively, very efficient pre-design tools exist that allow speedy 
estimates of alternative solutions, including cost estimates and member sizes. 

A crucial conceptual decision in the design of multi-storey  
steel-framed buildings is the structural scheme to resist horizontal forces and 
to provide overall stability. In general, resistance to horizontal forces may be 
provided by frame action, resulting in moment-resisting frames. 
Alternatively, vertical bracing schemes, consisting of diagonal members 
acting in tension or shear walls, can be used. Provisions for vertical bracing 
need to be considered at the conceptual stage, particularly to avoid potential 
conflict with the fenestration (Lawson et al, 2004 – 332). Bracing in often 
located in the service cores to overcome this, but bracing in other areas is 
often necessary for the stability of the structure. Cross-flats provide a neat 
solution for residential buildings because they can be contained in the walls, 
and tubular struts may be used as an architectural feature in open areas 
(Lawson et al, 2004 – 332). In addition, a horizontal bracing system is also 
required to carry the horizontal loads to the vertical bracing. According to 
Brown et al (2004 – 334), usually the floor system will be sufficient to act as 
a horizontal diaphragm, without the need for additional horizontal steel 
bracing. All floor solutions involving permanent formwork, such as metal 
decking fixed by through-deck welding to the beams, with in-situ concrete 
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infill, provide an excellent rigid diaphragm to carry horizontal loads to the 
bracing system. Floor systems involving precast concrete planks require 
proper consideration to ensure adequate load transfer. Thorough guidance 
for the detailing of bracing systems for multi-storey buildings can be found 
in Brown et al (2004). 

If a frame with bracing can be considered as laterally fully-supported, 
both systems (frame and bracing) can be analyzed separately. Each system is 
then analyzed under its own vertical loads, and all the horizontal loads are 
applied on the bracing system. Otherwise, the frame and any bracing should 
be analyzed as a single integral structure. Figure 4.1 illustrates a braced and 
an unbraced frame. 
 

   
 a) Braced frame b) Unbraced frame  

Figure 4.1 – Braced and unbraced frames 
 

It is therefore required to classify a structure as braced or unbraced. 
It is generally accepted that a structure is defined as braced if the following 
condition is satisfied: 

 
 unbrbr SS 5
 , (4.1) 

 
where Sbr is the global lateral stiffness of the structure with the bracing 
system and Sunbr is the global lateral stiffness of the structure without the 
bracing system. Usually, a braced structure is not sensitive to global  
2nd order (P-��	effects. 
 
 
4.2. SIMPLIFIED METHODS OF ANALYSIS 
 
4.2.1. Introduction 

 
The influence of second-order effects was extensively discussed in 
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chapter 2. Rigorous assessment of the behaviour of steel structures requires a 
full second-order analysis that takes into account P-� and P-� effects. It was 
also established that the relevance of second-order effects may be indirectly 
assessed using the elastic critical load multiplier of the structure. Using 
elastic analysis, the consideration of second-order effects is mandatory 
whenever:  

 
 10�� Edcrcr FF� , (4.2) 

 
where Fcr and FEd were defined in chapter 2, section 2.3.2. 

Simplified methods of analysis that approximate non-linear effects are 
often used. They allow the analysis of a structure based on linear elastic 
analyses, require less sophisticated software and are less time-consuming. In 
the context of elastic design of steel structures, two simplifications may be 
considered: i) simplified treatment of plasticity using linear elastic analysis 
(in particular cases where second-order effects are not relevant);  
ii) simplified consideration of second-order effects using linear elastic 
analysis (where plastic redistribution is not allowed): 

i) Limited plastic redistribution of moments may be allowed in 
continuous beams. If, following an elastic analysis, some peak 
moments exceed the plastic bending resistance by up to 15 % (clause 
5.4.1(4)B), the parts in excess of the bending resistance may be 
redistributed in any member, provided that:  
-  the internal forces and moments remain in equilibrium with the 

applied loads; 
-  all the members in which the moments are reduced have class 1 or 

class 2 cross sections; 
-  lateral torsional buckling of the members is prevented. 
 
Example 3.5 (chapter 3) illustrates this limited plastic redistribution. 
 
ii) Several simplified methods based on linear elastic analysis provide 
sufficiently accurate internal forces and displacements while taking 
into account second-order effects. The theoretical basis of these 
methods was explained in sub-section 2.3.2.3. EC3 describes the two 
following methods: a) the amplified sway-moment method; and b) the 
sway-mode buckling length method. A brief description of the two 
methods is presented in the following sections.  
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4.2.2. Amplified sway-moment method 

 
The amplified sway-moment method (Boissonnade et al, 2006) is one 

that uses linear elastic analysis coupled with the amplification of the  
so-called sway moments by a sway factor. This depends on the ratio of the 
design vertical applied load and the lowest elastic critical load associated 
with global sway instability. The linear elastic analysis must include the 
horizontal external loads and the equivalent horizontal loads representing 
frame imperfections. Subsequently, the resistance and the stability of both 
the frame and its components are checked. For the stability checks, the  
non-sway effective lengths are used for the columns. For simplicity and as a 
conservative option, the real length of each column is usually taken as its 
non-sway buckling length. Finally, out-of-plane stability also has to be 
checked. 

The amplified sway moment method comprises the following steps 
(Demonceau, 2008): 

i) a linear elastic analysis is carried out for a modified frame with 
horizontal supports at all floor levels (Figure 4.2a); it results in a 
distribution of bending moments in the frame and reactions at the 
horizontal supports; 

ii) a second linear elastic analysis is carried out for the original frame 
subjected to the horizontal reactions obtained in the first step 
(Figure 4.2b); the resulting bending moments are the “sway” 
moments; 

iii) approximate values of the second-order internal forces M, V and 
N and displacements d are obtained by adding the results from the 
two elastic analyses according to equations (4.3): 
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where �cr.S is the critical load multiplier for the lowest sway 
buckling mode; 

iv) finally, the maximum elastic resistance of the frame is reached 
with the formation of the first plastic hinge. 

 
In normative terms, this approach is summarized in clause 5.2.2(4). 

For frames where the first sway buckling mode is predominant, first order 
elastic analysis should be carried out with subsequent amplification of 
relevant action effects (e.g. bending moments) by appropriate factors. For 
single storey frames designed on the basis of elastic global analysis  
(clause 5.2.2(5)), second order sway effects due to vertical loads may be 
calculated by increasing the horizontal loads HEd (e.g. wind) and equivalent 
loads VEd� due to imperfections and other possible sway effects according to 
first order theory, by the factor:  

 

 

cr�
11

1

�
, (4.4) 

 
provided that �cr � 3.0, where �cr may be calculated according to Horne’s 
method (equation (2.11), clause 5.2.1(4)B). This is provided that the axial 
compression in the beams or rafters is not significant. For multi-storey 
frames, second order sway effects may be calculated in a similar way 
provided that all storeys have a similar distribution of vertical loads, 
horizontal loads and frame stiffness with respect to the applied storey shear 
forces (clause 5.2.2(6)). 

Example 4.1 illustrates the application of the amplified sway moment 
method. 
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R3

R2

R1

 
a) Modified no-sway frame with horizontal supports (NS) 

R3 

R2 

R1 

 
b) Original sway frame subjected to the horizontal reactions (S) 

Figure 4.2 – Amplified sway moment method 
 
4.2.3. Sway-mode buckling length method 

 
The sway-mode buckling length method (Boissonnade et al, 2006) 

verifies the overall stability of the frame and the local stability of its 
members by column stability checks. These use buckling lengths appropriate 
to the global sway buckling mode for the whole structure. The method is 
based on the following two (conservative) assumptions: i) all the columns in 
a storey buckle simultaneously and ii) the global frame instability load 
corresponds to the stability load of the weakest storey in the frame. Because 
the method does not explicitly consider the increase in moments at the ends 
of the beams and in the beam-to-column joints arising from second-order 
effects, an amplification of the sway moments is usually considered for these 
parts of the structure. 

The sway-mode buckling length method comprises the following steps 
(Demonceau, 2008): 

i)  a first-order elastic analysis is carried out for the frame; 
ii)  the sway moments in the beams and beam-to-column joints are 

amplified by a nominal factor of 1.2; 
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iii) the columns are checked for in-plane buckling using the sway 
mode buckling length, usually obtained from expression 2.12 and 
Figure 2.52. It must also be remembered to check out-of-plane 
buckling.  

 
In normative terms, this approach is summarized in clause 5.2.2(8), 

where the stability of a frame is to be assessed by a check with the 
equivalent column method according to clauses 6.3. The buckling length 
values should be based on a global buckling mode of the frame accounting 
for the stiffness behaviour of members and joints, the presence of plastic 
hinges and the distribution of compressive forces under the design loads. In 
this case, internal forces to be used in resistance checks are calculated 
according to first order theory without considering imperfections. 

Example 4.1 illustrates the application of the sway-mode buckling 
length method. 
 
4.2.4. Worked example 
 
Example 4.1: Consider the steel frame of example 2.4 (E = 210 GPa) 
subjected to the unfactored loads illustrated in Figure 4.3, where: 
 
AP – permanent load (�G = 1.35); 
AV1 – imposed load 1 (�Q = 1.50, �0,1 = 0.4, �1,1 = 0.3, �2,1 = 0.2); 
AV2 – imposed load 2 (�Q = 1.50, �0,2 = 0.4, �1,2 = 0.2, �2,2 = 0.0). 
 
Assume rigid connections between the beams and the columns, column bases 
fully restrained and an elastic analysis. Calculate the design internal forces 
for the verification of the Ultimate Limit State (ULS), using the following 
simplified methods of analysis: 
 
a) amplified sway-moment method; 
b) sway-mode buckling length method (equivalent column method). 
 
The results are presented for the critical cross sections in Figure 4.4. 
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 AP = 16 kN/m 

 AP = 90 kN 

10 m 

5 m 

5 m HEA 260 

HEA 260 HEA 260

HEA 260

IPE 400

IPE 400 

 AV2 = 26.7 kN 

 AV2 = 20 kN 

 AV1 = 55 kN 

 AV1 = 8 kN/m 

 AP = 90 kN 

 AV1 = 55 kN 

 AP = 20 kN/m 

 AP = 110 kN 

 AV1 = 70 kN 

 AV1 = 12 kN/m 

 AP = 110 kN 

 AV1 = 70 kN 

 
Figure 4.3 – Steel frame 
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Figure 4.4 – Critical cross sections 

_______________________________ 
 
a) Amplified sway-moment method 
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The two load combinations, corresponding to the two independent imposed 
loads AV1 and AV2, with global imperfections already included, were defined 
in example 2.4 (Figures 2.59 and 2.60).  
In example 2.4, �cr was calculated for both load combinations, leading to the 
following values: 
 
Load combination 1 - 82.7�cr� . 
Load combination 2 - 26.10�cr� . 
 
For load combination 1, as �cr is less than 10, a 2nd order elastic analysis is 
required. For load combination 2, as �cr is larger than 10, the design forces 
and moments may be obtained directly by a linear elastic analysis. 
Consequently, analysis using the amplified sway-moment method will be 
carried out for load combination 1 only. 
The first step of this method consists of a linear elastic analysis of a modified 
frame with horizontal supports at each floor level, as shown in Figure 4.5; in 
this case, the horizontal reactions are equal to the horizontal loads as the 
vertical loads have no horizontal effects. The resulting internal forces are 
summarized in Table 4.1. 
 

33.6 kN/m 

204.0 kN 204.0 kN

45.0 kN/m 

18.2 kN 

14.8 kN 

253.5 kN 253.5 kN

18.2 kN 

14.8 kN 

 
Figure 4.5 – Modified no-sway frame and load arrangement for load combination 1 

 
In a second step, the sway moments (and other internal forces) are calculated 
by performing a linear elastic analysis on the original (sway) frame loaded 
by the horizontal reactions obtained in the previous step (Figure 4.6). The
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 resulting internal (sway) forces are summarized in Table 4.1. 
 

18.2 kN 

14.8 kN 

 
Figure 4.6 – Original sway frame subjected to the horizontal reactions (load comb. 1)  

 
The approximate values of the second-order internal forces are obtained by 
adding the results from the first step (see Figures 2.61 to 2.63) with the 
results of the second step (see Figures 2.64 to 2.66) amplified by the 
following factor (expression (4.4)): 
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Table 4.1 and Figures 4.7 to 4.9 illustrate the final results. 
 
Table 4.1 – Bending moments and axial forces at the critical cross sections (ASM) 

 No-sway Sway 2nd Order 
 My (kNm) Nx (kN) My (kNm) Nx (kN) My (kNm) Nx (kN) 

1 60.3 -850.5 -49.2 15.8 3.7 -832.3 
2 -60.3 -850.5 -49.1 -15.8 -116.8 -868.7 
3 -309.0 41.9 52.3 -7.4 -248.9 33.4 
3’ -119.9 -850.5 33.4 15.8 -81.5 -832.3 
3’’ 189.0 -372.0 -18.9 5.3 167.3 -365.9 
4 253.5 41.9 0 -7.4 253.5 33.4 
5 -309.0 41.9 -52.2 -7.4 -369.0 33.4 
5’ 119.9 -850.5 33.3 -15.8 158.2 -868.7 
5’’ -189.0 -372.0 -18.9 -5.3 -210.7 -378.1 
6 -200.9 -78.0 26.6 -9.1 -170.3 -88.5 
6’ -200.9 -372.0 26.6 5.3 -170.3 -365.9 
7 219.1 -78.0 0 -9.1 219.1 -88.5 
8 -200.9 -78.0 -26.6 -9.1 -231.5 -88.5 
8’ 200.9 -372.0 26.6 -5.3 231.5 -378.1  
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170.3 kNm 

369.0 kNm
248.9 kNm

3.7 kNm

81.5 kNm 

167.3 kNm

170.3 kNm 
231.5 kNm

158.2 kNm 

231.5 kNm 

116.8 kNm 

210.7 kNm

219.1 kNm

253.5 kNm

 
Figure 4.7 – Design bending moment diagram (ASM) 

 

67.5 kN

17.0 kN 

213.0 kN 

161.9 kN 

237.0 kN

174.1 kN

55.0 kN 

88.5 kN

 
Figure 4.8 – Design shear forces (ASM) 

 

-365.9 kN

-832.3 kN

-88.5 kN

33.4 kN

-378.1 kN

-868.7 kN 

 
Figure 4.9 – Design axial forces (ASM) 
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b) Sway-mode buckling length method (SMBL) 
 
According to this method, the internal forces to be used in the resistance 
checks of the columns are calculated according to first order theory, without 
considering imperfections. Figure 4.10 shows the resulting load arrangement 
for load combination 1. The second and third columns in Table 4.2 
summarize the corresponding internal forces. 
 

33.6 kN/m 

204.0 kN 204.0 kN

10 m 

5 m 

5 m 

45.0 kN/m 

16.0 kN 

12.0 kN 

253.5 kN 253.5 kN

 
Figure 4.10 – Load arrangement for load combination 1 

 
In a second step the sway moments and the other sway internal forces on the 
beams and joints are obtained as for the amplified sway moment method 
(Figure 4.11). 
 

18.2 kN 

14.8 kN 

 
Figure 4.11 – Original frame subjected to the horizontal reactions (load comb. 1) 
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Finally the design internal forces on beams and beam-to-column joints are 
obtained by adding the internal forces obtained by a first-order analysis for 
the load arrangement, excluding horizontal loads, represented in Figure 4.10, 
to the amplified sway moments and other sway effects (obtained from  
Figure 4.11) by a nominal factor of 1.2. 
Table 4.2 and Figures 4.12 to 4.14 represent the design internal forces for the 
columns (1st Order - Original frame) and the beams and beam-to-column 
joints (2nd Order).  
 

Table 4.2 – Bending moments and axial forces at the critical cross sections 
 1st Order - Original frame Sway 2nd Order 
 My (kNm) N (kN) My (kNm) N (kN) My (kNm) N (kN) 
1 -18.4 -836.9 - - 18.4 -836.9 
2 -102.0 -864.1 - - -102.0 -864.1 
3 -264.0 36.0 52.3 -7.4 -201.2 27.1 
3’ -91.7 -836.9 - - -91.7 -836.9 
3’’ 172.3 -367.3 - - 172.3 -367.3 
4 253.6 36.0 0 -7.4 253.6 27.1 
5 -353.9 36.0 -52.2 -7.4 -416.5 27.1 
5’ 148.1 -864.1 - - 148.1 -864.1 
5’’ -205.8 -376.7 - - -205.8 -376.7 
6 -177.6 -86.0 26.6 -9.1 -145.7 -96.9 
6’ -177.6 -367.3 - - -177.6 -367.3 
7 219.1 -86.0 0 -9.1 219.1 -96.9 
8 -224.1 -86.0 -26.6 -9.1 -256.0 -96.9 
8’ 224.1 -376.7 - - 224.1 -376.7   

177.6 kNm 

416.5 kNm
201.2 kNm

18.4 kNm

91.7 kNm 

172.3 kNm

145.7 kNm 
256.0 kNm

148.1 kNm 

224.1 kNm 

102.0 kNm 

205.8 kNm

219.1 kNm

253.6 kNm

 
Figure 4.12 – Design bending moment diagram for load combination 1 (SMBL) 
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70.0 kN

22.0 kN 

203.5 kN 

156.9 kN 

246.5 kN

179.1 kN

50.0 kN 

86.0 kN

 
Figure 4.13 – Design shear diagrams for load combination 1 (SMBL) 

 

-367.3 kN 

-836.9 kN

-96.9 kN

27.1 kN 

-376.7 kN

-864.1 kN 

 
Figure 4.14 – Design axial force diagrams for load combination 1 (SMBL) 

 
In the third step, the columns are checked for in-plane buckling using the 
sway mode buckling length. Figure 4.15 illustrates the shape of the lowest 
buckling mode and the numbering of the columns. 
Considering Wood’s equivalent frame (sub-section 2.3.2.2) for a frame with 
lateral displacements (Figure 2.52b), the stiffness coefficients for the 
columns are given by: 
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where Ic is the in-plane second moment of area (Iy = 10450 cm4 for HEA 
260) of the columns of the columns and Lc is the length of the column. 
 

1 2 

3 4 

 
Figure 4.15 – Lowest sway buckling mode 

 
The effective stiffness coefficients of the adjacent beams are given by  
(Table 2.19): 
 

70.34
1000
2313050.15.12212 �!���

b

b

L
I

KK , 

 
where Ib is the in-plane second moment of area (Iy = 23130 cm4 for IPE 400) 
of the beam and Lb is the length of the beam. 
 
The distribution coefficients for the upper (�1) and lower (�2) ends of 
columns 1 and 2 are given by (eqs. (2.12)): 
 

55.0
70.349.209.20

9.209.20

121

1
1 �

��
�

�
��

�
�

KKK
KK

c

c� ; 

 
02 ��  (fixed base). 

 

From Figure 2.52b: mL
L

L
E

E 30.600.526.126.1 �!�,� . 
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Similarly, the distribution coefficients for the upper (�1) and lower (�2) ends 
of columns 3 and 4 are given by (eqs. (2.12)): 
 

38.0
70.349.20

9.20

12
1 �

�
�

�
�

KK
K

c

c� ; 

 

55.0
70.349.209.20

9.209.20

222

2
2 �

��
�

�
��

�
�

KKK
KK

c

c� . 

 

From Figure 2.52b: mL
L
L

E
E 00.700.540.140.1 �!�,� . 

 
Finally, the columns would be checked according to clause 6.3.3 for the 
internal forces represented in Figures 4.11 to 4.13, and the equivalent lengths 
LE, calculated above. 
 
Table 4.3 compares the approximate second-order results obtained using 
both methods with the results of an “exact” second-order elastic analysis. 
 

Table 4.3 – Comparative synthesis of results 

 Linear 
elastic 

2nd 
Order 

Amplified sway 
method 

Sway mode buckling 
length method 

 My (kNm) My 
(kNm) My (kNm) � (%) My (kNm) � (%) 

1 11.0 2.9 3.7 +27.6 18.4 +534.5 
2 -109.3 -115.1 -116.8 +1.5 -102.2 -11.2 
3 -256.4 -244.0 -248.9 +2.0 -201.2 -17.5 
3’ -86.4 -78.3 -81.5 +4.1 -91.7 +17.1 
3’’ 170.0 165.8 167.3 +0.9 172.3 +3.9 
4 253.5 257.2 253.5 -0.8 253.6 -1.4 
5 -360.9 -363.6 -369.0 +1.5 -416.5 +14.5 
5’ 153.1 156.4 158.2 +1.2 148.1 -5.3 
5’’ -207.8 -207.2 -210.7 +1.7 -205.8 -0.7 
6 -174.1 -168.7 -170.3 +0.9 -145.7 -13.6 
6’ -174.1 -168.7 -170.3 +0.9 -177.6 +5.3 
7 219.0 225.3 219.1 -2.5 219.1 -2.8 
8 -227.3 -227.9 -231.5 +1.6 -256.0 +12.3 
8’ 227.3 227.9 231.5 +1.6 224.1 -1.7  
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4.3. MEMBER STABILITY OF NON-PRISMATIC MEMBERS AND 
COMPONENTS 
  
4.3.1. Introduction 

 
Chapter 3 has dealt with the resistance of prismatic members to 

instability under the usual combinations of applied loads. However, steel 
structures may include non-prismatic members and members with 
intermediate partial restraint. These are neither directly covered by the 
stability checks described in chapter 3 nor in clauses 6.3.1 to 6.3.3 of  
EC3-1-1. Since these situations are commonly used in conjunction with 
elastic analysis, the following section describes specific procedures for non-
prismatic members and members with intermediate partial restraint. 
Subsequently, the General Method (clause 6.3.4) is described and discussed. 
It is a general procedure for lateral and lateral-torsional buckling of 
structural components such as: i) single members which may be built-up or 
have complex support conditions and ii) plane frames or sub-frames 
composed of such members subject to compression and/or in-plane bending, 
but which do not contain rotating plastic hinges. 

 
4.3.2. Non-prismatic members 

 
The verification of the stability of non-prismatic members is more 

complex than for prismatic members for the two following reasons:  
i) analytical expressions for the elastic critical loads are not readily available; 
and ii) the choice of the critical section for the application of the buckling 
resistance formulae is not straightforward. 

Consider the beam-column of Figure 4.16, composed of a  
non- prismatic member with L = 7.0 m, simply-supported at the ends with 
fork supports (the “standard case”, see Figure 3.56). The welded cross 
section varies from an equivalent IPE 360 at one end to a cross section with 
similar flange width and thickness, equal web thickness and a total depth of  
200 mm. S 235 steel grade was assumed. The uniformly distributed loading 
is applied at the shear centre of the cross section. 
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p = 12 kN/m 

7.0 m 

N N 

IPE 360 

IPE 360 mod. 
(h = 200 mm) 

M = 73.5 kNm 

Figure 4.16 – Double-symmetric tapered I section beam  
 
Table 4.4 and Figure 4.17 compare the “exact” numerical results from 

a linear eigenvalue analysis (LEA) with analytical results obtained using the 
classical elastic critical load formulae for prismatic members. Table 4.4 
presents lower and upper bound results for the smaller and larger cross 
sections, respectively. Maximum differences of -50 % and +88 % are noted 
for flexural buckling about the y axis. 

 
Table 4.4 – Elastic critical loads 

Buckling mode 
Numerical 

(LEA) 
Analytical 

Amin (x=7 m) Amax (x=0 m) 

Compression 
Ncr (kN) 

Flexural 
yy 

3489.7 
1754.4          

(-49.7%) 
6566.3   
(88.2%) 

Flexural 
zz 

438.5 
440.2           
(0.4%) 

440.5          
(0.5%) 

Torsional 1976.8 
2755.3          
(39.4%) 

1546.6         
(-21.8%) 

Bending 
Mcr (kNm) 

Lateral-
torsional 

104.7 118.6           
(13.2%) 

143.5          
(37.0%) 

 
Table 4.5 compares the numerical results from a geometrical and 

material nonlinear analysis with imperfections (GMNIA) against the 
analytical results obtained using the beam-column interaction formulae 
(expressions (3.144)), evaluated using the “exact” values (numerical LEA) 
for the elastic critical loads and the properties of the cross sections for the 
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following locations along the length of the member: x = {0; L/2; L}; and  
x = 3.92 m (position of the critical cross section from a 3D GMNIA 
calculation). For all cases, the reference loading is NEd = 80 kN and  
My,Ed = My,max = 73.5 kNm. �LT is calculated according to the General Case 
from EC3-1-1 (see section 3.6.2) and Method 1 (Annex A) is adopted. Even 
using the “exact” values for the elastic critical loads, a maximum difference 
of -41 % is noted. 
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Figure 4.17 – Variation of the elastic critical loads with reference cross section  

 
 

Table 4.5 – Buckling resistance 

Case 
Numerical 
(GMNIA) 

Analytical (clause 6.3.3) 
x=0 m x=3.5 m x=3.92 m x=7.0 m 

expression 
(3.144 a)) 

1.14 
0.74 

(-35.6%) 
0.77 

(-33.0%) 
0.76 

(-33.8%) 
0.67 

(-41.4%) 
expression 
(3.144 b)) 

1.14 
0.72 

(-37.3%) 
1.10 

(-4.0%) 
1.09 

(-4.8%) 
0.99 

(-13.8%) 
 

The utilization ratio � of a member is defined as the ratio between the 
applied internal forces and the resistance evaluated according to the various 
procedures, always assuming proportional loading. � corresponds to the 
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inverse of the buckling resistance, i.e., � = 1/Buckling Resistance.  
Figure 4.18 illustrates the variation of the utilization ratio � along the 
member for the 3D GMNIA calculation and for each buckling mode, using 
clause 6.3.3 considering the applied internal forces at each position and the 
“exact” values for the elastic critical loads. 
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Figure 4.18 – Utilization ratio � (%) for the relevant modes 

 
Nowadays, several possibilities exist to evaluate the elastic critical 

load of non-prismatic steel members: i) the use of tables for standard cases; 
ii) methods that approximate the elastic critical load using formulae for 
prismatic members with an appropriate equivalent cross section or 
equivalent length and iii) numerical calculations by performing a linear 
eigenvalue analysis. 

For a range of web-tapered I-section steel columns, commonly used in 
elastically designed portal frames (Figure 4.19b), illustrated in Figure 4.19, 
Hirt and Crisinel (2001) present expressions for the elastic critical load of 
axially loaded non-prismatic members of double symmetric cross section. 

Flexural buckling about the strong axis of the cross section occurs for: 
 

 2
,

2

L
EI

N eqy
cr

*
� , (4.5) 

 
where 

 
 max,, yyeq ICI � , (4.6) 
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and C is a coefficient that depends on the parameter r, defined as the ratio 
between the minimum and the maximum moments of inertia of the column, 

 
 max,min, yy IIr � . (4.7) 

 

L

L1 

L1 

Imax 

Imax 

Imin 

Imax 

Imax 

Imin 

Imin 

Imax 

Imin 

N 

x0 
O  

a) b) c) d) 
Figure 4.19 – Non-prismatic I-section columns (b, tf and tw are all constant) 

 
For a tapered column (Figure 4.19b), 

 
 rC 92.008.0 �� . (4.8) 

 
For the column shown in Figure 4.19c, 

 

 
 � 
 �
2

132.4432.092.008.0 "
#

$
%
&

'�����
L
L

rrrC       
 �LL 5.01 � , (4.9) 

 
while for the column shown in Figure 4.19d, 

 

 
 � 
 � "
#

$
%
&

'�����
L
L

rrrrC 162.162.05.033.017.0    
 �LL 5.01 � . (4.10) 

 
According to Galea (1986), the elastic critical moment of beams 

subjected to a uniform bending moment and fork supports (the “standard 
case”, see Figure 3.56) may be obtained using the expression for prismatic 
beams (expression (3.99)) as long as equivalent geometrical properties are 
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used, given by: 
 

 2
max 283.0434.0283.0 �� ��� hheq , (4.11) 

 
where hmax is the maximum depth of the member and �	(= hmin/hmax)	is the 
tapering ratio, and 

 
 zeqz II �, , (4.12a) 

 

 
2

min,max,
,

TT
eqT

II
I

�
� . (4.12b) 

 
This procedure is equally valid for non uniform bending moment 
distributions by modifying the uniform elastic critical moment using 
adequate coefficients (see chapter 3). For fully-restrained rotation about the 
weak axis of the cross section at the ends of the member, expression (4.11) 
should be replaced by: 

 
 2

max 26.040.034.0 �� ��� hheq . (4.13) 
 

Trahair (1993) provides expressions for the elastic critical moment of 
tapered and stepped beams. 

Finally, performing a linear eigenvalue analysis is nowadays relatively 
simple and free software is available (LTBeam, 1999; CUFSM, 2004).  

Example 4.2 illustrates the evaluation of the buckling resistance of a 
non-prismatic member. 
 
4.3.3. Members with intermediate restraints 

 
Figure 4.20 illustrates the common situation of a member with partial 

bracing that only prevents transverse displacements of the tension flange. 
These partial bracings are very effective in increasing the resistance to  
out-of-plane buckling.  

Following King (2001a), for prismatic members with a  
mono-symmetric cross section (minor-axis) (Figure 4.20a), the elastic 
critical load for pure compression in a torsional mode is given by: 
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in which  
 

 2222 aiii zys ��� , (4.15) 
 

where: IT, Iz and IW are, respectively, the torsional constant, the second 
moment of area with respect to the minor axis of the cross section and 
the warping constant; 
iy and iz are the radius of gyration with respect to the y and z axes, 
respectively; 
Lt is the length of the segment between effectively braced sections 
(laterally and torsional restrained, similar to fork supports), see Figure 
4.20; 
a is the distance between the restricted longitudinal axis (for example, 
the centroid of the purlins) and the shear centre of the beam (see 
Figure 4.21). 

 

Compressed flange 

a) 

Lt 
 

Compressed flange 

b) 

Lt  

Compressed flange 

c) 

          total bracing (bracing in both flanges, 
thus preventing torsional deformation) 

partial bracing 

Lt 
Lh 

 
Figure 4.20 – Partial and total bracing 
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a

 
Figure 4.21 – Reference and bracing axes  

 
The elastic critical moment for lateral-torsional buckling, Mcr0, for an 

uniform moment and standard bracing conditions at each end of the segment 
(no transverse displacement, no rotation around the longitudinal axis and 
free rotation in plan) is given by: 

 

 cr
s

cr N
a

i
M ""

#

$
%%
&

'
�

2

2

0 , (4.16) 

 
where Ncr is the elastic critical load in a torsional mode (expression (4.14). 

For mono-symmetric cross sections with uniform flanges, the elastic 
critical moment for an arbitrary bending moment diagram is given by 

 

 02
1

cr
t

cr M
cm

M ""
#

$
%%
&

'
� , (4.17) 

 
where mt is the equivalent uniform moment factor and c is the equivalent 
cross section factor. In case of a linear variation of the bending moment 
diagram, mt depends on the ratio �t between the smaller and the larger 
bending moments acting at the ends of the member (sagging moment 
positive), defined according to Figure 4.22 
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but �t � -1,0 so �t = -1,0  
Figure 4.22 – Value of �t 
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and the ratio �, defined as, 

 

 
crT

crE

N
N

�� , (4.18) 

 
where, NcrT, is given by the equation (4.14) and NcrE is defined by the 
following expression: 

 

 2

2

t

z
crE L

EIN *
� . (4.19) 

 
Table 4.6 defines mt as a function of �t, where �t is the ratio between the 
lower and the higher values of the end moments (when �t < -1,		�t = -1.0) 
and ��y : 

 
Table 4.6 – Equivalent uniform moment factor mt 

    y 
�t 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

-1.0 1.0 0.76 0.61 0.51 0.44 0.39 0.35 0.31 0.28 0.26 0.24 0.22 0.21 
-0.9 1.0 0.78 0.63 0.52 0.45 0.40 0.36 0.32 0.30 0.28 0.26 0.24 0.23 
-0.8 1.0 0.80 0.64 0.53 0.46 0.41 0.37 0.34 0.32 0.30 0.28 0.27 0.26 
-0.7 1.0 0.81 0.66 0.55 0.47 0.42 0.39 0.36 0.34 0.32 0.30 0.29 0.28 
-0.6 1.0 0.83 0.67 0.56 0.49 0.44 0.40 0.38 0.36 0.34 0.33 0.32 0.31 
-0.5 1.0 0.85 0.69 0.58 0.50 0.46 0.42 0.40 0.38 0.37 0.36 0.35 0.34 
-0.4 1.0 0.86 0.70 0.59 0.52 0.48 0.45 0.43 0.41 0.40 0.39 0.38 0.37 
-0.3 1.0 0.88 0.72 0.61 0.54 0.50 0.47 0.45 0.44 0.43 0.42 0.41 0.41 
-0.2 1.0 0.89 0.74 0.63 0.57 0.53 0.50 0.48 0.47 0.46 0.45 0.45 0.44 
-0.1 1.0 0.90 0.76 0.65 0.59 0.55 0.53 0.51 0.50 0.49 0.49 0.48 0.48 
0.0 1.0 0.92 0.78 0.68 0.62 0.58 0.56 0.55 0.54 0.53 0.52 0.52 0.52 
0.1 1.0 0.93 0.80 0.70 0.65 0.62 0.59 0.58 0.57 0.57 0.56 0.56 0.56 
0.2 1.0 0.94 0.82 0.73 0.68 0.65 0.63 0.62 0.61 0.61 0.60 0.60 0.60 
0.3 1.0 0.95 0.84 0.76 0.71 0.69 0.67 0.66 0.65 0.65 0.65 0.64 0.64 
0.4 1.0 0.96 0.86 0.79 0.75 0.72 0.71 0.70 0.70 0.69 0.69 0.69 0.69 
0.5 1.0 0.97 0.88 0.82 0.78 0.76 0.75 0.75 0.74 0.74 0.74 0.74 0.74 
0.6 1.0 0.98 0.91 0.85 0.82 0.81 0.80 0.79 0.79 0.79 0.79 0.79 0.79 
0.7 1.0 0.98 0.93 0.89 0.87 0.85 0.85 0.84 0.84 0.84 0.84 0.84 0.84 
0.8 1.0 0.99 0.95 0.92 0.91 0.90 0.90 0.89 0.89 0.89 0.89 0.89 0.89 
0.9 1.0 1.00 0.98 0.96 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 
1.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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The equivalent section factor, c, is equal to 1.0 for prismatic members. 
For all the other cases, namely when the variation of the bending 

moment is not linear (Figure 4.23), the factor mt is given by (Singh, 1969): 
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 RdScEdSy MM .,     is the maximum of    
4.

4,

3.

3,

2.

2, ,,
Rdc

Edy

Rdc

Edy

Rdc

Edy

M
M

M
M

M
M

 

 
and  

 

 RdEcEdEy MM .,      is the maximum of  
5.

5,
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1, ,
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. 

 
Note that only positive values of LSE are considered. In equation (4.20), 
My,Edi and Mc,Rdi represent the applied bending moments and the 
corresponding resistance moments at 5 equally-spaced cross sections along 
the segment, as shown in Figure 4.23. 
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Figure 4.23 – Definition of the cross sections for non linear moment variation 
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In case of tapered or haunched members (Figures 4.20b and c) with 

prismatic flanges, equations (4.14) to (4.21) remain valid with the following 
changes: 

-  a is defined at the smallest cross section, whenever 0.1�LT( ; 
otherwise, the largest cross section should be used; 

-  Mcr0 is calculated using the properties of the smallest  
cross section; 

-  for 0.1�LT( , and for tapered members (Figure 4.20b), 0cc � , 
where c0 is given by Table 4.7 (Horne et al., 1979). r is the ratio 
between the minimum distance and the maximum distance between 
the centroids of the flanges, tf is the average thickness of the two 
external flanges and D is the minimum height of the  
cross section; 

 
Table 4.7 – Equivalent section factor, c0 

D/tf 
r 

1.5 2.0 2.5 3.0 
20 1.162 1.271 1.355 1.425 
22 1.128 1.219 1.290 1.350 
24 1.108 1.186 1.249 1.304 
26 1.094 1.164 1.222 1.272 
28 1.084 1.149 1.202 1.249 
30 1.077 1.137 1.187 1.232 
32 1.072 1.128 1.176 1.219 
34 1.067 1.121 1.167 1.208 
36 1.064 1.115 1.160 1.200 
38 1.061 1.110 1.154 1.193 
40 1.059 1.106 1.149 1.187 
42 1.057 1.103 1.144 1.182 
44 1.055 1.100 1.141 1.178 

 
-  in the case of haunched members,  
 

 
 � qcc 11 0 ��� , (4.22) 
 
 where q is the ratio between the length of the haunch, Lh, and the 

total length of the member, Lt; 
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-  for 0.1�LT( , c = 1.0 and the maximum value of LT( should be 
used; this usually occurs at the largest cross section; 

-  for members with a third flange (internal), equations (4.14) to 
(4.21) must be determined with IW and Iz calculated ignoring that 
internal flange; IT, however, should include that flange. 

 
Example 5.2 (chapter 5) illustrates the application of this procedure to 

a haunched member in a pitched-roof portal frame. 
 
4.3.4. General method 

 
The general method given in clause 6.3.4(1) concerns the overall 

resistance to out-of-plane buckling. It applies to any structural component 
such as: i) single members which may be built-up or have complex support 
conditions and ii) plane frames or sub-frames composed of such members 
and subject to compression and/or in-plane bending, but which do not 
contain rotating plastic hinges. The resistance can be verified by ensuring 
that (6.3.4(2)): 

 
 1/ 1, 
Mkultop ��> , (4.23) 

 
�ult,k is the minimum factor on the design loads needed to reach the 
characteristic resistance of the most critical cross section of the structural 
component, considering its in-plane behaviour. No account is taken of lateral 
or lateral-torsional buckling. Account is taken of all effects due to  
in-plane geometrical deformation and imperfections, global and local, where 
relevant. For example where �ult,k is determined by a cross section check: 
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�op is the reduction factor for the non-dimensional slenderness to take into 
account lateral and lateral-torsional buckling and �M1 is the partial safety 
factor for instability effects (adopted as 1.0 in most National Annexes). 

The global non dimensional slenderness op(  for the structural 
component, used to find the reduction factor �op in the usual way using an 
appropriate buckling curve, should be determined from (clause 6.3.4(3)): 

 
 opcrkultop ,, /��( � , (4.24) 
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where �cr,op is the minimum factor on the in-plane design loads needed to 
reach the elastic critical resistance of the structural component with respect 
to lateral or lateral-torsional buckling. No account is taken in-plane flexural 
buckling.  

In the determination of �cr,op and �ult,k, finite element analysis may be 
used. 

According to clause 6.3.4(4), �op may be taken either as: i) the 
minimum value of � (for lateral buckling, according to clause 6.3.1) or �LT 
(for lateral-torsional buckling, according to clause 6.3.2); or ii) an 
interpolated value between � and �LT (determined as in i)), by using the 
formula for �ult,k corresponding to the critical cross section. It is noted that 
ECCS TC8 (2006) recommends the use of the first option only. Further 
information on the application of i) and ii) is given in EC3-1-1, by Notes in 
clause 6.3.4(4).  

The method uses a Merchant-Rankine type of empirical interaction 
expression to uncouple the in-plane effects and the out-of-plane effects. 
Conceptually, the method is an interesting approach because it deals with the 
structural components using a unique segment length for the evaluation of 
the stability with respect to the various buckling modes (Muller, 2004). In 
addition, for more sophisticated design situations that are not covered by 
code rules but need finite element analysis, the method simplifies this task. It 
is noted that EN 1993-1-6 (CEN, 2007) specifies a similar approach, the 
MNA/LBA approach, that may be seen as a generalisation of the stability 
reduction factor approach used throughout many parts of Eurocode 3 (Rotter 
and Schmidt, 2008). 

Apart from the doctoral thesis of Müller (2004), this method was not 
widely validated and there is scarce published background documentation to 
establish its level of safety. Within Technical Committee 8 of ECCS, the 
need to explore deeply the field and limits of the application of the General 
method was widely recognized (Snijder et al, 2006; Boissonnade et al, 
2006). In particular, several examples have been carried out at the University 
of Graz (Greiner and Offner, 2007; Greiner and Lechner, 2007), comparing 
advanced finite element analyses (GMNIA) using beam elements with the 
general method. Simões da Silva et al (2009) have demonstrated analytically 
that the method yields the same result as the application of clause 6.3.2 for 
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the lateral-torsional buckling resistance of beams and approximately the 
same level of safety for prismatic columns and beam-columns. 

For the General Method, the following options are possible: 
i) for the evaluation of the in-plane resistance, either: (i.1) to use 

clause 6.3.3 (equation (3.144a)) with �LT = 1, for both Methods 1 
and 2 and the cross section interaction formulae from clause 6.2.9 
for the check of the end sections of the member; or i.2) to carry 
out constrained in-plane GMNIA numerical calculations (beam 
or shell elements); 

ii) for the evaluation of the out-of-plane elastic critical load, either: 
ii.1) to use available theoretical results. For beam-columns with 
constant bending moment1, Trahair (1993) proposes the 
following equation: 
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where Mcr is the elastic critical bending moment, Ncr,z is the 
elastic critical compressive buckling force in a bending mode 
about the z-z axis and Ncr,T is the elastic critical compressive 
buckling force in a torsional mode; or ii.2) to perform a 
numerical LEA (beam or shell elements).  

 
Table 4.8 summarizes the various options. 
 
Example 4.2 illustrates the application of the General Method to a 

non-prismatic member. 
 
 

                                                      
1 For other bending moment diagrams, see Trahair (1993). 
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Table 4.8 – Flowchart for the application of the General Method 

General Method (Clause 6.3.4 of EC3-1-1)

In-plane resistance Out-of-plane
elastic critical load

Analytical Numerical

Clause
6.3.3 

(in-plane) 
with

>LT=1

Cross
section

resistance
at end

sections

GMNIA 
in-plane

calculations

LEA 
calculations

Interaction formulae
e.g. from Trahair (1993)

�cr,op�ult,k

Analytical Numerical

�    �LT

opcrkultop ,, /��( �

�op = 
Minimum (�, �LT)

�op = 
Interpolated (�, �LT)

( Nmax
GM; My,max

GM )

Min.

1/ 1, 
Mkultop ��>

 
 

4.3.5. Worked example 
 
Example 4.2: Consider the beam-column of Figure 4.24. Assume a welded 
cross section that varies from an equivalent IPE 360 at one end to a cross 
section with similar flange width and thickness, equal web thickness and a 
total depth of 200 mm at the other end. Consider simply-supported ends with 
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fork supports (the “standard case”, see Figure 3.56). Assume steel grade  
S 235. A uniformly distributed load is applied at the shear centre. For 
simplicity of calculation of the cross sectional properties, the throat thickness 
of the welds is neglected. Assuming that the loading is already factored for 
ULS, verify the safety of the beam-column using the following procedures: 
 
a) Clause 6.3.3 
 a.1) considering the properties of the cross section at xcr according to 

the cross section resistance verification, except for the calculation of 
the critical loads, where an appropriate equivalent cross section is 
considered, see expressions (4.5) to (4.13); 

 a.2) considering the properties of the cross section at the following 
locations along the length of the member: x = {0; xcr; L}.  

b) General Method (clause 6.3.4)  
 b.1) analytical approach: considering the properties of the cross 

section at the critical position, xcr, according to the cross section 
resistance verification; 

 b.2) numerical approach. 
 

p = 12 kN/m 

7.0 m 

N = 80 kN N = 80 kN 

IPE 360 

IPE 360 mod. 
(h = 200 mm) 

 
Figure 4.24 – Double-symmetric tapered I section beam 

_______________________________ 
 
The internal force diagrams, the classification of the cross sections and the 
verification of the cross section resistance are identical for all design 
procedures. These verifications are presented in items i) to iii). 
 
i) Internal force diagrams 
 
The internal force diagrams are represented in Figure 4.25. 
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M = 73.5 kNm 

N = 80.0 kN  
Figure 4.25 – Design internal force diagrams 

 
ii) Cross section classification 
 
Geometrical characteristics of an equivalent welded IPE 360: A = 69.95 cm2, 
h = 360 mm, b = 170 mm, Wel,y

 = 862.4 cm3, Wpl,y = 973 cm3, Iy = 15524 cm4, 
iy = 14.90 cm, Wel,z = 122.5 cm3, Wpl,z = 188.9 cm3, Iz = 1041 cm4,  
iz = 3.86 cm, IT = 28.93 cm4 and IW = 313.6x103 cm6. 
 
Geometrical characteristics of an equivalent welded modified IPE 360 with a 
total depth of 200 mm: A = 57.15 cm2, h = 200 mm, b = 170 mm,  
Wel,y

 = 414.8 cm3, Wpl,y = 465 cm3, Iy = 4148 cm4, iy = 8.52 cm,  
Wel,z = 122.4 cm3, Wpl,z = 186.3 cm3, Iz = 1041 cm4, iz = 4.27 cm,  
IT = 26.2 cm4 and IW = 91.2x103 cm6. 
 
The cross section is classified according to clause 5.6 of EC3-1-1 and Tables 
2.21 and 2.22, neglecting the welds at the web-flange junction. Figure 4.26 
illustrates the variation of the cross sectional class along the member. 
 

Class 3 Class 1 

x = 0.68 m 

Class 2 

x = 0.99 m 

x  

h(x = 0.68) = 344.5 mm 

- fy - 0.43fy 

fy fy 

305.0 mm 

 
Figure 4.26 – Cross section classification 
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iii) Verification of the cross section resistance 
 
The cross sectional resistance is checked using clauses 6.2.8 (bending and 
shear) and 6.2.9 (bending and axial force). For example, for x > 0.68 m 
(class 1 or 2 cross sections), the interaction diagram for bending and axial 
force, obtained from expressions (3.129) (clause 6.2.9.1(5)), is illustrated in 
Figure 4.27: 
 

N 

My 

(Nmax; My,max = MNy,Rd) 

(NEd; My,Ed) 
MNy,Rd < Mpl,y,Rd 

MNy,Rd = Mpl,y,Rd 

 
Figure 4.27 – Cross section plastic interaction diagram 

 
The pair of forces (Nmax; My,max) in Figure 4.27 are obtained by solving the 
following system of equations (expression (3.129)): 
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From Figure 4.27, the utilization ratio � of the cross section is given by the 
ratio between the norm of the applied internal forces and the norm of the 
bending and axial force resistance along the same load vector: 
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For a class 3 cross section, the utilization ratio � of the cross sections is 
given by 
 

1
,

, ���
yyel

Edy

y

Ed

fW
M

fA
N

� . 

 
Figure 4.28 shows the resulting variation of the utilization ratio along the 
length of the member. The critical cross section is located at x = 4.14 m with 
a value of 0.46 (� 1).  
 

0.
05

 

0.
18

 
0.

15
 0.
06

 

0.
46

 

Class 3 Class < 3 x = 4.14 m 

 
Figure 4.28 – Variation of the utilization ratio along the length of the member 

 
iv) Verification of the buckling resistance of the member 
 
a) Clause 6.3.3 
 
a.1) Considering cross section properties at xcr and equivalent cross section 

properties for critical loads 
 
The critical position was chosen according to the cross section verification, 
i.e. xcr = 4.14 m. The properties of the cross section (class 1) at this position 
are: A = 62.38 cm2, h = 265.4 mm, b = 170 mm, Wel,y

 = 589.4 cm3,  
Wpl,y = 661 cm3, Iy = 7819 cm4, iy = 11.20 cm, Wel,z = 122.5 cm3,  
Wpl,z = 187.4 cm3, Iz = 1041 cm4, iz = 4.09 cm, IT = 27.3 cm4 and  
IW = 166.0x103 cm6. 
 
Considering the properties at xcr, the values of the characteristic resistance 
are given by (class 1 or 2 cross sections): 
 

kNAfN yRk 9.1465�� ; 
 

kNmfWM yyplRky 3.155,, �� . 
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Flexural buckling 
 
The equivalent second moment of area about the strong axis is given by 
expressions (4.6) to (4.8):  
 


 �
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The flexural buckling reduction factor >y about the y axis is given by: 
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The flexural buckling reduction factor >z about the z axis is given by: 
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Lateral-torsional buckling 
 
The equivalent cross sectional properties are obtained considering the 
following equivalent depth of the member (expression (4.11)): 
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From expression (4.12), 
 
 



4. ELASTIC DESIGN OF STEEL STRUCTURES 

 

_____
308

4min,max,
, 56.27

2
93.2819.26

2
cm

II
II TT

eqTT �
�

�
�

�� . 
 
Considering Iz = Iz,min, and IW = f (heq), the elastic critical moment is  
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From expression (3.100) and Table 3.5 the lateral-torsional buckling 
reduction factor >LT is given by: 
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Finally, also considering equivalent cross section properties from  
Galea (1986) (expressions (4.11) and (4.12), Ncr,T is obtained. For this 
calculation, Iy = f (heq):  
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Buckling resistance – application of the interaction formulae  
 
The design forces for the verification of the buckling resistance are  
NEd = 80 kN and My,Ed = My,max = 73.5 kNm. 
 
– Auxiliary terms (Table 3.14): 
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– Cmy,0 factor (for a uniformly distributed load): 
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Because IT = 27.3 cm4 < Iy = 7819 cm4, the member is susceptible to  
lateral-torsional buckling. 
 

kNmMM Ecrcr 31.115,0, �= ; 
 

160.10 �( . 
 
Because yc = 0 (distance between the shear centre and the centroid of the 
cross section), Ncr,TF � Ncr,T =1929.7 kN. Since 12.11 �C (Table 3.7), from 
expression (3.145): 
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As 160.120.0 0lim,0 ��� (( , lateral-torsional buckling has to be taken into 

account. 
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– Interaction factors (class 1 cross section): From Table 3.13, 
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– Interaction formulae: 
 
The interaction formulae (3.144) give: 
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It is concluded that the beam-column does not satisfy safety using this 
procedure. 
 
a.2) Using the properties at the locations x = {0; xcr; L} 
 
The design forces for verification of the buckling resistance are NEd = 80 kN 
and My,Ed = My,max = 73.5 kNm. The plastic resistance is considered at  
x = {xcr; L} (class 1 cross sections), while at x = 0 m, the elastic resistance is 
considered (class 3 cross section). 
 
For the verification of the buckling resistance, the process is analogous to 
a.1). However, critical loads are calculated considering the properties of the 
cross sections at the specified locations. The application of the interaction 
formulae give: 
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– Design at x = 0 m: 
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– Design at x = xcr = 4.14 m: 
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– Design at x = L = 7 m: 
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These results are also unsafe. 
 
b) General Method 
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b.1) Analytical approach: using the properties at the critical cross section, xcr  
In-plane buckling resistance 
 
The analytical expressions for in-plane buckling are evaluated using the 
properties of the cross section at x = 4.14 m. To calculate 	ult,k, clause 6.3.3 
is considered (equation (3.144a)) with �LT = 1 (see Table 4.8); to calculate 
�op, �LT is calculated according to the General Case (clause 6.3.2.2) and 
Method 1 (Annex A) is adopted.  
 
The application of the interaction formulae gives: 
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Out-of-plane elastic critical load 
 
Figure 4.29 compares the “exact” numerical results from a linear eigenvalue 
analysis with the analytical results obtained using equation (4.25). The 
analytical results are calculated considering the bending moment 
corresponding to each position and the maximum bending moment at  
x = L/2. For the evaluation of �cr,op, the numerical value is considered, as 
equation (4.25) is not simple to apply. 
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Figure 4.29 – Elastic critical load multiplier 
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The load multiplier of the numerical model is �cr,op=1.482, which results in 
 

 � 
 �


 � 
 �.9.108;6.1185.73;80482.1
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Buckling resistance  
 
The non linear in-plane load multiplier and the out-of-plane elastic critical 
load multiplier are �ult,k = 1.819 and �cr,op = 1.482, respectively. The global 
non dimensional slenderness op(  is (see equation (4.24)): 
 

108.1/ ,, �� opcrkultop ��( . 
 
For x = 4.14 m, both the buckling curves for lateral-torsional buckling and 
out-of-plane flexural buckling are c (Table 3.8): 
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�op is calculated as: 
 

480.0);();( �=� LTzLTzop terpolatedinnimummi >>>>> . 
 
Application of equation (4.23) gives: 
 

.1873.01/819.1480.01/ 1, ��!1
Mkultop ��>  
 
Therefore, according to this method, the buckling resistance is not verified. 
The utilization ratio is 1/0.873=1.15, i.e., 15% higher than permitted. 
 
b.2) Numerical approach 
 
Considering the applied loads, the load multipliers for in-plane GMNIA and 
LEA calculations are �ult,k = 1.993 and �cr,op = 1.482, respectively. The global 
non dimensional slenderness op(  is (see equation (4.24)): 
 

.160.1/ ,, �� opcrkultop ��(  
 
The buckling curve for flexural buckling out-of-plane is always c along the 
member, while for lateral-torsional buckling the buckling curve is d at  
x = [0; 0.88] m and c at x = [0.88; 7.0] m (at x = 0.88 m, h/b = 2). Although 
the position of the critical cross section for an in-plane GMNIA calculation 
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is x = 4.13 m, both buckling curves for lateral-torsional buckling are 
considered for comparison. The reduction factors � and �LT are given by: 
 
– Curve c for FBzz and curve c for LTB: 
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– Curve c for FBzz and curve d for LTB: 
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�op is calculated as: 
 
– Curve c for FBzz and curve c for LTB: 
 

.454.0);();( �=� LTzLTzop terpolatedinnimummi >>>>>  
 
– Curve c for FBzz and curve d for LTB: 
 

393.0);( �� LTzop nimummi >>> , 
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where 
 is obtained from (the cross section is class 1): 
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The derivation of the formulae presented above for the interpolated value 
between � and �LT can be found in Simões da Silva et al (2010).  
 
Finally, the application of equation (4.23) leads to: 
 
– Curve c for FBzz and curve c for LTB: 
 

1904.01/9972.1454.01/ 1, ��!1
Mkultop ��> . 
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– Curve c for FBzz and curve d for LTB: 
 
Considering �LT = minimum (�LT ;�LT), 
 

.1783.01/9927.1393.01/ 1, ��!1
Mkultop ��>  
 
Or considering �LT = interpolation (�LT ;�LT), 
 

.1794.01/9927.1393.01/ 1, ��!1
Mkultop ��>  
 
For all alternatives, the buckling resistance is not verified. 
 
v) Comparison of results  
 
Table 4.9 summarizes the results from the several methods and compares 
them to a full 3D GMNIA calculation. Firstly, all methods yield conservative 
results when compared to the “exact” GMNIA calculation. Secondly, the 
location of the cross section for consideration of geometrical properties has 
significant influence in results – the utilization ratio varies from 116% to 
151%. Regarding the General Method, it is much simpler to apply and does 
not suffer from using inconsistent geometrical properties in the verification. 
Finally, the difficult choice of the buckling curve for tapered members 
results in a great scatter of results. 
 

Table 4.9 – Comparison of results 

Method Utilization 
ratio 

Diff. 
(%) 

GMNIA 0.88 - 
x = xcr  + Equivalent  properties 
for critical loads  1.22 39.0 

x = 0 1.16 32.8 
x = xcr 1.23 40.8 

Clause 6.3.3 

x = L 1.51 72.7 
General Method  (theoretical) - xcr 1.15 30.8 

ZZ – curve c; LT – curve c 1.11 26.4 
Minimum 1.28 45.9 

General 
Method 
(numerical) 

ZZ – curve c; 
LT – curve d Interpolated  1.26 43.9   
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4.4. DESIGN EXAMPLE 1: ELASTIC DESIGN OF BRACED STEEL 
FRAMED BUILDING 
 
4.4.1. Introduction 
 

The building analyzed in this case study is based in the steel-framed 
structure shown in Figure 4.30, a building used as a test facility and erected 
at Cardington (UK), in 1993. The structure was designed as a typical modern 
multi-storey office building. 
 

 
Figure 4.30 – Side elevation view 

 
The building has an area of 21 m by 45 m and a total height of 33 m. 

Along the length, there are 5 bays, each 9 m long. Across the width there are 
3 bays of 6 m, 9 m and 6 m. The building has 8 storeys. The height of the 
first storey is 4.335 m from the ground floor to the top-of-steel height. All 
the other storeys have a height of 4.135 m from top-of-steel to top-of-steel. 

On the south elevation there is a two storey ground floor atrium, 9 m x 
8 m. At each side of the building there is a 4 m x 4.5 m void, to provide 
fireman’s access and an escape stairwell. Additionally, on the west side, 
there is another 4 m x 2 m void, for a goods lift. In the middle of the building 
there’s a central lift core, 9 m x 2.5 m. Figure 4.31 represents the typical 
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floor plan of the building. All slabs are lightweight composite slabs with a 
thickness of 130 mm. 
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Figure 4.31 – Plan of the 3rd to 7th floor 

 
4.4.2. Description of the structure 
 

The structure is designed as a braced frame with lateral restraint 
provided by cross bracing of flat steel plates, around the three vertical access 
shafts. Figure 4.32 to 4.34 and Tables 4.10 to 4.12 represent the various 
structural floor plans and the geometry of the beams. 
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Figure 4.32 – Plan of the 1st floor 
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Table 4.10 – Geometric characteristics of the beams (1st floor) 

Beams Cross-section Steel grade 
A1 –  F1, A4 – F4 IPE 400 S 355 
A1 – A4, B1 – B2, B3 – B4, C2a – C4, 
D2a – D4, E1 – E2, E3 – E4, F1 – F4 

IPE 400 S 355 

C1 – C2a, D1 – D2a IPE 600 S 355 
B2 – B3, E2 – E3 IPE 600 S 355 
A2 – B2, A2a – A’2a, A2b – A’2b, A3 
– A’3, A’2 - A’3 

IPE 400 S 355 

E’2a – E’3, E’2b – F2b, E’3 – F3 IPE 400 S 355 
C2a – D2a, C2b – D2b, C3 – D3 IPE 400 S 355 
All others secondary beams IPE 360 S 355  
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Figure 4.33 – Plan of the 2nd floor 

 
Table 4.11 – Geometric characteristics of the beams (2nd floor) 

Beams Cross-section Steel grade 
A1 –  F1, A4 – F4 IPE 400 S 355 
A1 – A4, B1 – B2, B3 – B4, C2a – C4, 
D2a – D4, E1 – E2, E3 – E4, F1 – F4 

IPE 400 S 355 

C1 – C2a, D1 – D2a 2 x HEA 700 S 355 
B2 – B3, E2 – E3 IPE 600 S 355 
A2 – B2, A2a – A’2a, A2b – A’2b, A3 
– A’3, A’2 - A’3 

IPE 400 S 355 

E’2a – E’3, E’2b – F2b, E’3 – F3 IPE 400 S 355 
C2a – D2a, C2b – D2b, C3 – D3 IPE 400 S 355 
All others secondary beams IPE 360 S 355   
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Figure 4.34 – Plan of the 8th floor 

 
Table 4.12 – Geometric characteristics of the beams (3rd to 8th floors) 

Beams Cross-section Steel grade 
A1 –  F1, A4 – F4 IPE 400 S 355 
A1 – A4, B1 – B2, B3 – B4, C1 – C4, 
D1 – D4, E1 – E2, E3 – E4, F1 – F4 

IPE 400 S 355 

B2 – B3, E2 – E3 IPE 600 S 355 
A2 – B2, A2a – A’2a, A2b – A’2b, 
A3 – A’3, A’2 - A’3 

IPE 400 S 355 

E’2a – E’3, E’2b – F2b, E’3 – F3 IPE 400 S 355 
C2a – D2a, C2b – D2b, C3 – D3 IPE 400 S 355 
All others secondary beams IPE 360 S 355  

 
Table 4.13 details the geometrical characteristics of the columns (S 355). 
 

Table 4.13 – Geometric characteristics of the columns 
Columns Ground floor – 

2nd floor 
2nd floor – 5th 

floor 
5th floor – 8th 

floor 
B2, C2, D2, E2, C2b, 
C’2b, D2b, B3, C3, D3, 
E3 

HEB 340 HEB 320 HEB 260 

 Ground floor – 
4th floor 

4th floor – 8th 
floor 

 

B1, C1, D1, E1, A2, F2, 
A3, F3, B4, C4, D4, E4, 
A’2a, A2b, A’3, E’2a, 
F2b, E’3 

HEB 320 HEB 260 

 

 Ground floor – 
8th floor 

  

A1, A4, F1, F4 HEB 260    
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4.4.3. General safety criteria, actions and combinations of actions 
 
4.4.3.1. General safety criteria 
 

Actions are classified, according to EN 1990, by their variation in time 
as: i) permanent actions (G) (e.g. self-weight), ii) variable actions (Q) (e.g. 
imposed loads on buildings floors, wind loads, snow loads) and  
iii) accidental actions (A) (e.g. explosions). 

The actions considered in this design example are described in the 
following paragraphs. All actions are quantified according to the relevant 
parts of EN 1991-1. In addition, the recommended values are always adopted 
whenever the specific choice is left to the National Annexes. 

 
4.4.3.2. Permanent actions 
 

The permanent actions include the self-weight of the structural 
elements and also the non-structural elements, such as coverings, partitions, 
thermal insulation, etc.  

The self-weight of the structural elements includes the weight of the 
steel structure (78.5 kN/m3) and the self-weight of a lightweight concrete slab 
(12.5 kN/m3) with a constant thickness of 130 mm. 
 
4.4.3.3. Imposed loads 
 

The characteristic value of the imposed load depends of the category 
of the loaded area of the building. For an office building and according to 
Table 6.1 of EN 1991-1-1, the category of the loaded area is B, the 
corresponding characteristic values being given by: qk = 2.0 to 3.0 kN/m2 and 
Qk = 1.5 to 4.5 kN. qk is intended for the determination of global effects and 
Qk for local effects. According to EN 1991-1-1, the characteristic value of 
the imposed load is given by the National Annexes; however, the 
recommended values are underlined.  

Accessible roofs with occupancy according to category B are 
categorized according to clause 6.3.4.1 (Table 6.9) as category I. In this case, 
the imposed load for the roof is given in Table 6.1 for the category of loaded 
area B: qk = 2.0 to 3.0 kN/m2 and Qk = 1.5 to 4.5 kN. 

In buildings with fixed partitions, their self-weight should be taken 
into account as a permanent load. In the case of movable partitions, and 
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provided that the floor allows for lateral distribution of loads, their  
self-weight may be taken into account as a uniformly distributed load, qk, 
that must be added to the imposed load on the floor (clause 6.3.1.2 (8) of  
EN 1991-1-1). In this design example, the partition walls were considered to 
be movable with a self-weight less than 1 kN/m per wall length, so that the 
value of the corresponding uniformly distributed load is 0.5 kN/m2 (clause 
6.3.1.2(8) of EN 1991-1-1).  

 
4.4.3.4. Wind actions 
 
i) Wind forces 
 

The quantification of the wind actions on the building follows  
EN 1991-1-4 (CEN, 2005e). Two main directions are assumed for the wind: 
) = 0o and ) = 90o. According to clause 5.3(3), the wind forces are calculated 
by the vectorial summation of the external forces, Fw,e, and the internal 
forces, Fw,i, given by expressions (4.26) and (4.27), respectively 
 
 ref

surfaces
edsew AwccF +�,  (4.26) 

 
and 
 
 ref

surfaces
iiw AwF +�, , (4.27) 

 
where cscd is the structural factor, Aref is the reference area of the individual 
surfaces, and we and wi are the external and internal pressures on the 
individual surfaces at reference heights ze and zi, respectively for external 
and internal pressures, given by the following expressions: 
 
  peepe czqw )(�  (4.28) 
 
and 
 
 piipi czqw )(� , (4.29) 
 
qp(z) is the peak velocity pressure, and cpe and cpi are the pressure 
coefficients for the external and internal pressures, respectively. 

The structural factor cscd is defined in clause 6.1(1). For multistory 
steel buildings with rectangular plan layout and vertical external walls, with 
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regular distribution of stiffness and mass, the structural factor, cscd, may be 
taken from Annex D of EN1991-1-4. For h = 33 m and b = 21 m () = 0o), 
cscd = 0.95, and for b = 45 m () = 90o), cscd = 0.89.  
  
ii) Calculation of reference height 
 

The reference heights, ze, for vertical windward walls of rectangular 
plan buildings (side D in Figures 4.37 and 4.38) depend on the aspect ratio 
h/b and are always the upper heights of the different parts of the walls 
(clause 7.2.2(1)). For ) = 0o (see Figure 4.37), b = 21 m < h = 33 m  
< 2b = 42 m, therefore the height of the building may be considered in two 
parts, comprising a lower part extending upwards from the ground to a 
height equal to b and an upper part consisting of the remainder. The resulting 
shape of the velocity pressure profile is shown in Figure 4.35. 
 

b 

b 
qp(z) = qp(h) ze = h 

h qp(z) = qp(b) 

ze = b 

 
Figure 4.35 – Velocity pressure distribution on face D () = 0o) 

 
For ) = 90o (see Figure 4.38), h = 33 m < b = 45 m, and the shape of 

the velocity pressure profile is shown in Figure 4.36 and should be 
considered to be one part. 
 

h 

b
qp(z) = qp(ze) 

ze = h 

 
Figure 4.36 – Velocity pressure distribution on face D () = 90o) 
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For the determination of the velocity pressure distribution for the 

leeward wall and sidewalls (faces A, B, C and E) the reference height may be 
taken as the height of the building. 

 
iii) Calculation of external and internal pressure coefficients 
 

External and internal pressure coefficients are determined according to 
clause 7.2 of EN 1991-1-4. Internal and external pressures shall be 
considered to act at the same time (clause 7.2.9). The worst combination of 
external and internal pressures shall be considered.  

According to clause 7.2.2(2), the façades are divided in different 
pressure zones, defined as a function of e, where e is the lesser of b or 2h. 
For wind direction � = 0o (see Figure 4.37): 
 

e = min(21; 66) = 21 m < d = 45 m 
 
and for wind direction � = 90o (see Figure 4.38): 
 

e = min(45; 66) = 45 m > d = 21 m. 
 

    d 

b 
) = 0o 

E D A B C h 

   d
    e/5     4/5 e     d-e 

 
Figure 4.37 – Pressure zones for wind direction ) = 0o 

 
b d 

) = 90o 

E 

D 

A B h d 

e/5 d - e/5 

 
Figure 4.38 – Pressure zones for wind direction ) = 90o 
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The resulting external pressure coefficients, cpe, for zones A, B, C, D 
and E are obtained from Table 7.1 of EN 1991-1-4 and are represented in 
Table 4.14. 
 

Table 4.14 – External pressure coefficients cpe 
 zone A B C D E 

) = 0O h/d  = 0.73 -1.20 -0.80 -0.50 +0.76 -0.43 
) = 90O h/d = 1.57 -1.20 -0.80 - +0.80 -0.53 

 
 

According to clause 7.2.2(3), the lack of correlation of wind pressures 
between the windward and leeward sides may be taken into account by 
multiplying the resulting force by a factor, f, that depends on the relation h/d 
for each case. Therefore, by linear interpolation between f = 1.0 for h/d 
 5 
and f = 0.85 for h/d � 1, the following factors are obtained: for ) = 0o,  
f = 0.84, and for ) = 90o, f = 0.87. 

The internal pressure coefficients, cpi, depend on the size and 
distribution of the openings in the building envelope. For buildings without a 
dominant face and where it is not possible to determine the number of 
openings, then cpi should be taken as the more onerous of +0.2 and -0.3.  

Considering the values for external pressure coefficients from  
Table 4.14, the external and internal pressure coefficients are represented in  
Figure 4.39a and b, respectively, for ) = 0o and ) = 90o, according to the 
worst case for each face of the building. 
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                              a) ) = 0o                                                                                    b)	) = 90o 
Figure 4.39 – External and internal coefficients 

 
(*) the values for faces D and E are obtained by multiplying the external coefficient 
by f = 0.84 for ) = 0o, and f = 0.87 for ) = 90o. 
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iv) Calculation of the peak velocity pressure qp(z) 
 

The peak velocity pressure qp(z), at height z, is given by the following 
expression (clause 4.5): 
 
 ? @ bemvp qzczvzIzq )()(

2
1)(71)( 2 ��� � , (4.30) 

 
where Iv(z) is the turbulence intensity, � is the air density, vm(z) is the mean 
wind velocity, ce(z) is the exposure factor and qb is the basic velocity 
pressure. Both options in expression (4.30) may be used to calculate the peak 
velocity pressure. In this design example only the first will be applied, 
because EN 1991-1-4 only provides one graph for a limited range of cases 
for the direct determination of the exposure factor. 

The air density �  depends on the altitude, temperature and barometric 
pressure to be expected in the region during wind storms. EN 1991-1-4 
recommends the value 1.25 kg/m3.  
 
 Calculation of mean wind velocity (vm) 
 

The mean wind velocity is given by (clause 4.3.1), 
 
 borm vzczczv )()()( � , (4.31) 
 
where cr(z) is the roughness factor and co(z) is the orography factor, taken as 
1.0 unless otherwise specified in clause 4.3.3, and vb is the basic wind 
velocity. The roughness factor is specified in clause 4.3.2 and is given by: 
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zmax may be taken as 200, zmin is the minimum height, z0 is the roughness 
length, both defined in Table 4.1 of EN 1991-1-4 as a function of the terrain 
category, and kr is the terrain factor, depending on the roughness length zo 
and given by: 
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019.0 , (4.33) 

 
where z0,II = 0.05 m. The basic wind velocity vb is calculated from  
(clause 4.2): 



4.4. DESIGN EXAMPLE 1: ELASTIC DESIGN OF BRACED STEEL FRAMED BUILDING 

 

_____ 
327 

 
 ,0,bseasondirb vccv �  (4.34) 
 
where cdir and cseason are directional and  seasonal factors, respectively, which 
may be given by the National Annexes. The recommended value, for each 
case, is 1. The fundamental value of the basic wind velocity, vb,0, is also 
given in the National Annexes as a function of the regional wind maps. 
Assuming vb,0 = 30 m/s, then vb = vb,0 = 30 m/s. 

Assuming a terrain of category II (i.e., area with low vegetation and 
isolated obstacles), from Table 4.1 of EN1991-1-4, zo = zo,II = 0.05 and  
zmin = 2 m, thus kr = 0.19. From (4.32), with zmin < z = 33 < zmax,  
 23.1

05.0
33ln19.0)33( �"

#
$

%
&
'!��zcr

 

 
and from (4.31), 
 

9.363000.123.1)33( �!!��zvm m/s. 
 
For zmin < z = 21 < zmax,  
 15.1

05.0
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#
$

%
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'!��zcr

 

 
and from (4.31), 
 

5.343000.115.1)21( �!!��zvm m/s. 
 
 Calculation of turbulence intensity (Iv)  

The turbulence intensity is given by (clause 4.4(1)): 
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 (4.35) 

 
where kI is the turbulence factor.  
 

The recommended value for kI is 1.0, thus for zmin < z = 33 < zmax,  
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and for zmin < z = 21 < zmax,  
17.0

05.0
21ln0.1

0.1
�
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%
&
'!

�vI . 

 
Finally, from (4.30), for z = 33 m and z = 21 m: 

 

? @ 56.17449.3625.1
2
115.071)33( 2 �!!!!���zq p N/m2 = 1.74 kN/m2; 

? @ 16.16295.3425.1
2
117.071)21( 2 �!!!!���zq p N/m2 = 1.63 kN/m2. 

 
v) Calculation of external and internal pressures 
 

The external and internal pressures are obtained from expressions 
(4.28) and (4.29) and are indicated in Table 4.15. Note that external 
pressures are already multiplied by the structural factor, cscd, from 
expression (4.26). In Figures 4.40 and 4.41 the resulting values are 
represented for ) = 0o and	) = 90o. 

 
Table 4.15 – External and internal pressures 

D  A B C z < 21 z > 21 E 

csds x we -1.98 -1.32 -0.83 +0.99 +1.06 -0.60 ) = 0O wi +0.35 +0.35 +0.35 +0.33 +0.35 +0.35 
csds x we -1.85 -1.24 - +1.08 -0.71 ) = 90O wi  +0.35 +0.35 - +0.35 +0.35  

 
1.18 1.67 2.33 

B A C D E F 
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4 

4.20 m 16.80 m 24.00 m 

1.18 1.67 2.33 

0.95 0.71 (z > 21 m) 
D E 

A 

A 

B 

B 

C 

C 

0.64 (z < 21 m) 

 

Figure 4.40 – Wind pressures (kN/m2) on walls, ) = 0o 
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Figure 4.41 – Wind pressures (kN/m2) on walls, ) = 90o 

 
4.4.3.5. Summary of basic actions  
 

The resulting actions for this design example are summarized in  
Table 4.16. 
 

Table 4.16 – Summary of actions 
Action no. Description Type Value 

LC1 Self-weight of 
structural elements 

Permanent 
action 

varies 

LC2 Imposed load on office 
buildings (Cat. B) 

Variable 
action 

qk
1 = 3.0 kN/m2 

LC3 Movable partitions Variable 
action 

qk
2 = 0.5 kN/m2 

LC4 Wind direction ) = 0o Variable 
action 

varies (see 
Figure 4.40) 

LC5 Wind direction ) = 90o Variable 
action 

varies (see 
Figure 4.41)  

 
4.4.3.6. Frame imperfections 
 

Frame imperfections are considered as equivalent horizontal loads, 
according to clause 5.3.2 of EN 1993-1-1. Thus, global initial sway 
imperfections are given by (expression (2.18)): 
 
 mh ���� 0� , (4.36) 
 
where: 20010 �� ; 
	 �h is the reduction factor for height h, given by hh 2��  but 
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 0.1
3
2

�� h� ; 

 h is the height of the structure (m); 
 �m is the reduction factor for the number of columns in a row, 
 given by:  
 

 "
#
$

%
&
' ��

mm
115.0� ; 

 
 and m is the number of columns in a row. 
 
Hence, for this structure, h = 33 m and �h = 0.67. The number of columns 
changes according to the frame considered. In Table 4.17, the initial 
imperfection (�) for each frame is presented (see Figure 4.32). 
  

Table 4.17 – Initial imperfections  
Frame m �	

A 7 0.00253 
B 4 0.00265 
C 5.5 0.00258 
D 5.5 0.00258 
E 4 0.00265 
F 7 0.00253 
1 6 0.00256 
2 8 0.00251 

2b 5 0.00259 
3 8 0.00251 
4 6 0.00256 

 
 

The equivalent horizontal load at each floor is given by (Figure 2.54): 
 
 �!� EdEd VH  , (4.37) 
 
where VEd is the total design vertical load in each floor. The design vertical 
load in each floor is given by LC1 and LC2 + LC3. The relevant values, in 
each direction, are listed in Tables 4.18 to 4.19. These values are added to 
 the relevant combinations. 
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Table 4.18 – Equivalent horizontal forces in transversal frames 
Frame  kN	 1st floor 2nd floor 3rd - 7th floor 8th floor 

A 
L1 

VEd 165.1 218.1 206.8 214.8 
HEd 0.42 0.55 0.52 0.54 

LC2+LC3 
VEd 208.7 269.2 264.9 241.2 
HEd 0.53 0.68 0.67 0.61 

B 
L1 

VEd 406.9 387.8 373.4 390.6 
HEd 1.08 1.03 0.99 1.04 

LC2+LC3 
VEd 682.6 648.4 636.3 511.5 
HEd 1.81 1.72 1.69 1.36 

C 
L1 

VEd 254.4 412.3 373.2 401.4 
HEd 0.66 1.06 0.96 1.04 

LC2+LC3 
VEd 355.4 582.5 540.9 477.4 
HEd 0.92 1.50 1.40 1.23 

D 
L1 

VEd 254.4 412.3 362.3 401.3 
HEd 0.66 1.06 0.93 1.05 

LC2+LC3 
VEd 355.2 582.2 563.6 476.9 
HEd 0.92 1.50 1.45 1.23 

E 
L1 

VEd 406.6 388.1 374.0 391.6 
HEd 1.08 1.03 0.99 1.04 

LC2+LC3 
VEd 682.9 649.8 638.4 514.5 
HEd 1.81 1.72 1.69 1.36 

F 
L1 

VEd 179.5 228.9 217.0 224.6 
HEd 0.45 0.58 0.55 0.57 

LC2+LC3 
VEd 238.2 299.7 294.1 265.1 
HEd 0.60 0.76 0.74 0.67 

 
 
According to clause 5.3.2(8), the initial sway imperfections should be 
applied in all relevant horizontal directions, but they need only be considered 
in one direction at a time. 
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Table 4.19 – Equivalent horizontal forces in longitudinal frames 

Frame  kN	 1st floor 2nd floor 3rd - 7th floor 8th floor 

1 
L1 

VEd 265.1 560.6 301.7 314.6 
HEd 0.68 1.44 0.77 0.81 

LC2+LC3 
VEd 383.2 832.1 474.9 400.9 
HEd 0.98 2.13 1.22 1.03 

2 
L1 

VEd 554.4 506.4 553.9 629.9 
HEd 1.39 1.27 1.39 1.58 

LC2+LC3 
VEd 833.7 757.1 914.2 810.5 
HEd 2.09 1.90 2.29 2.03 

2b 
L1 

VEd 98.1 121.0 227.3 200.6 
HEd 0.25 0.31 0.59 0.52 

LC2+LC3 
VEd 117.7 120.8 295.9 212.8 
HEd 0.30 0.31 0.77 0.55 

3 
L1 

VEd 454.7 558.2 514.1 567.3 
HEd 1.14 1.40 1.29 1.42 

LC2+LC3 
VEd 726.0 852.3 806.2 667.5 
HEd 1.82 2.14 2.02 1.68 

4 
L1 

VEd 294.6 301.5 298.6 311.8 
HEd 0.75 0.77 0.76 0.80 

LC2+LC3 
VEd 462.2 469.7 470.0 394.8 
HEd 1.18 1.20 1.20 1.01 

 
 
4.4.3.7. Load combinations 
 

The rules and methods for the definition of the load combination are 
given in Annex A1 of EN 1990.  

The recommended values of the reduction factors � for the actions 
considered are indicated in Table 4.20 according to clause A1.2.2. 
 

Table 4.20 – Reduction factors � 
Type of action �0 �1 �2 
Imposed load in buildings: category B 0.7 0.5 0.3 
Wind loads on buildings 0.6 0.2 0.0  

 
Thus, the following load combinations are considered for the Ultimate Limit 
State (ULS) of resistance: 
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i) Combination 1 
Ed1 = 1.35 x LC1 + 1.5 [(LC2 + LC3) + 0.6 x LC4]. 
 
ii) Combination 2 
Ed2 = 1.35 x LC1 + 1.5 [(LC2 + LC3) + 0.6 x LC5]. 
 
iii) Combination 3 
Ed3 = 1.00 x LC1 + 1.5 x LC4. 
 
iv) Combination 4 
Ed4 = 1.00 x LC1 + 1.5 x LC5. 
 
v) Combination 5 
Ed5 = 1.35 x LC1 + 1.5 [LC4 + 0.7 x (LC2 + LC3)]. 
 
vi) Combination 6 
Ed6 = 1.35 x LC1 + 1.5 [LC5 + 0.7 x (LC2 + LC3)]. 
 
Other combinations for ULS may have been considered, however, they were 
not critical for the structure. 
Regarding the serviceability limit states, limits for vertical deflections and 
sway are considered under the frequent values of the load combinations, 
considering a reversible limit state (Annex A1 of EN 1990): 
 
i) Combination 7   
Ed7 = 1.00 x LC1 + 0.5 x (LC2 + LC3). 
 
ii) Combination 8   
Ed8 = 1.00 x LC1 + 0.2 x LC4. 
 
iii) Combination 9   
Ed9 = 1.00 x LC1 + 0.2 x LC5. 
 
iv) Combination 10   
Ed10 = 1.00 x LC1 + 0.2 x LC4 + 0.3 x (LC2 + LC3). 
 
v) Combination 11   
Ed11 = 1.00 x LC1 + 0.2 x LC5 + 0.3 x (LC2 + LC3). 
 
Additional load combinations should be considered for accidental design 
situations such as fire. Although the fire resistance of this building is not 
treated in this volume of the ECCS Eurocode Design Manuals, load 
combinations 12 to 14 would be required for the fire design of the structure, 
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using the frequent value for the dominant variable action: 
 
i) Combination 12   
Ed12 = LC1 + 0.5 x (LC2 + LC3). 
 
ii) Combination 13   
Ed13 = LC1 + 0.2 x LC4 + 0.3 x (LC2 + LC3).  
iii) Combination 14   
Ed14 = LC1 + 0.2 x LC5 + 0.3 x (LC2 + LC3). 
 
A forthcoming volume of this collection (Franssen and Vila Real, 2010) 
deals specifically with the fire design of buildings. 
 
4.4.3.8. Load arrangement 
 
According to clause 6.2.1(1) of EN 1991-1-1, for the design of a floor 
structure within one storey or a roof, the imposed load shall be taken into 
account as a free action applied at the most unfavourable part of the 
influence area of the action effects considered. Figure 4.42 represents the 
most unfavourable load arrangement for the imposed loads. 
 

B A C D E F 

1 

2 

3 

4 

 
Figure 4.42 – Load arrangement for the analysis of the shadow areas 

 
The distribution of the load to the secondary beams is represented in  
Figure 4.43.  
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Figure 4.43 – Load distribution in the secondary beams 

 
For the design of the columns or the walls, loaded by several storeys, the 
total imposed loads on the floor of each storey should be assumed to be 
distributed uniformly over the whole floor area, but the total value may be 
reduced by a factor �n according to the following expression (clause 
6.3.1.2(11) of EN 1991-1-1) 
 

 

 � 
 � 775.0

8
70.028222 0 �

!��
�

!��
�

n
n

n
�

� , (4.38) 
 
where n is the number of storeys (>2) and �0 is given according to  
Annex A1 (Table A1.1) of EN 1990.  
 
4.4.4. Structural analysis 
 
4.4.4.1. Structural model 
 
The structural model for the analysis is a 3D model, represented in  
Figure 4.44. All steel elements (columns, bracing elements and beams) are 
defined by beam elements. The main direction of the structure is in plane zy. 
Beams in plane zy are rigidly connected to the steel columns. Beams in plane 
zx are hinged at both ends. Elements defining the bracing system are also 
hinged at both ends. 
 
Although the steelwork is the main supporting structure, the concrete slab 
has a strong influence on the global stiffness of the structure, as will be 
discussed over the next paragraphs.  
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There are several ways of modeling the concrete slab, as it was shown in 
example 2.3. If the software allows the use of shell elements together with 
beam elements, then the slab can be modeled by those elements. However, 
proper attention needs to be given to the real behaviour of the composite 
structure; whether or not composite action arises through connection of the 
slab to the steel beams. If there is no composite action then the slab can be 
modeled by a horizontal bracing system, using beam elements connecting the 
main columns. The cross section of these elements needs to be equivalent to 
the stiffness provided by the real concrete slab. This simplified procedure 
was adopted in the example. 
 

 
Figure 4.44 – 3D structural model 

 
4.4.4.2. Linear elastic analysis 
 
The linear elastic analysis was performed with a commercial structural 
analysis program, Sofistik® (2009), and the internal forces and moments 
were determined.  
 
4.4.4.3. Susceptibility to 2nd order effects: elastic critical loads 
 
For design purposes, the internal forces and moments should be determined 
using a 2nd order analysis if relevant. Thus, the classification of the structure 
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must be checked first. This is done by computing the elastic critical load 
factor (�cr), as discussed in chapter 2. Second-order effects must be 
considered whenever �cr � 10. 
 
Numerical calculation of �cr  
In Table 4.21, the values of the first 5 elastic critical loads factors �cr are 
indicated for each combination.  
 

Table 4.21 – Elastic critical load factors 
	 �cr 1 �cr 2	 �cr 3	 �cr 4	 �cr 5	

Combination 1 7.96 8.22 8.28 8.40 8.67 
Combination 2 8.01 8.08 8.48 8.57 8.66 
Combination 3 21.11 25.15 28.28 28.62 29.38 
Combination 4 13.14 14.21 18.56 18.84 19.98 
Combination 5 9.87 10.16 10.23 10.39 10.62 
Combination 6 8.58 9.37 10.07 10.14 10.17  

 
For combinations 1, 2, 5 and 6 the values of �cr are smaller than 10. 
According to clause 5.2.1, the frame requires a second-order analysis for 
load combinations 1, 2, 5 and 6.  As a result, the 2nd order sway effects must 
be taken into consideration in the design and analysis. Moreover, 
combinations 1, 2 and 6 exhibit more than one buckling mode with a critical 
load factor lower than 10. 
 

 
Figure 4.45 – 1st buckling mode for combination 1 – frontal view  
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Figure 4.45 represents the 1st buckling mode for combination 1. The first 
buckling mode is clearly a local bucking mode. The same happens to the 
other critical load factors indicated in Table 4.21, although not represented 
graphically. This indicates that the structure is not very susceptible to  
2nd order effects. Nevertheless, a 2nd order elastic analysis is performed to 
prove this statement. 
 
4.4.4.4. 2nd order elastic analysis 
 
Second order effects are calculated by a numerical analysis. In Table 4.22, 
the results obtained for load combination 1, using a 1st order and a 2nd order 
numerical analysis, are compared for column E1. For the bending moments, 
the moments at both ends of the elements are indicated. 
 

Table 4.22 – Comparative results for column E1 (combination 1) 

1st Order 2nd Order  

MEd (kNm) NEd (kN) MEd (kNm) �	
Q�	 NEd (kN) �	
Q�	

1st floor 25/14 1699 25/11 0/-21.4 1704 +0.3 
2nd floor 62/47 1492 74/55 19.4/17.0 1496 +0.3 
3rd floor 69/28 1261 69/29 0/3.6 1262 +0.1 
4th floor 51/25 1052 54/28 5.9/12.0 1053 +0.1 
5th floor 53/27 841 56/29 5.7/7.4 841 0 
6th floor 54/29 630 57/32 5.6/10.3 630 0 
7th floor 55/26 417 59/30 7.3/15.4 417 0 
8th floor 69/63 201 72/66 4.3/4.8 201 0 

 
 
The same comparison in made for beam E1 to E4 in 4th floor, and the results 
are indicated in Table 4.23. 
 

Table 4.23 – Comparative results for beam E1 to E4 (combination 1) 

1st Order 2nd Order   

MEd (kNm) NEd (kN) MEd (kNm) � (%) NEd (kN) � (%) 

E1-E2 +114/-106 61 +114/-111 0/4.7 39 -36.1 
E2-E3 +168/-269 155 +163/-256 -3.0/-4.8 139 -10.3 
E3-E4 +113/-105 61 +114/-110 0.9/4.8 50 -18.0 
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Tables 4.22 and 4.23 show that 2nd order effects are indeed negligible. 
 
4.4.5 Design checks 
 
4.4.5.1. General considerations 
 
The design checks on all members and joints, under all load combinations, 
are the last step in a structural design procedure. In this design example, the 
following checks are made, for the ultimate limit state: 
 i) cross section resistance; 
 ii) stability of beams; 
 iii) stability of columns. 
 
Although an essential design check, the joints are not checked in this 
example because the design of joints is outside the scope of this manual. A 
companion volume (Jaspart, 2010) deals in detail with the design of joints. In 
this case, although all the structure was verified, the design checks are 
illustrated for two members only: column E1 (see Figure 4.46 and  
Table 4.24) and beam E1-E4 on the 4th floor (see Figure 4.47 and  
Table 4.25) for load combination 1. 
 
Column E1 has a total height of 33.28 m, comprising all the floors of the 
building, and it is composed of a HEB 320 from the ground floor to the  
4th floor and a HEB 260 from the 4th floor to the 8th floor. 
 
The selected beam has two side spans with a length of 6.00 m and an  
IPE 400 cross section, and a central span with a length of 9.00 m and an  
IPE 600 cross section. 
 
Taking the 2nd order results from Tables 4.22 and 4.23, the design internal 
forces (NEd, Vz,Ed and My,Ed) for the selected members are represented in 
Figures 4.46 and 4.47. 
 
The following paragraphs present the checks according to EC3-1-1 for the 
selected members. For the sake of simplification, the detailed calculations 
are omitted. However, the detailed procedures have been presented in 
chapter 3. 
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Figure 4.46 – Internal forces on column E1 for load combination 1 (local axes) 
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 My,Ed
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163.0 kNm

113.6 kNm 
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109.7 kNm 99.2 kNm 111.4 kNm 

 
Figure 4.47 – Internal forces on beam E1-E4 in the 4th floor for load combination 1 

 
4.4.5.2. Cross section resistance 
 
The utilization levels for the applied forces are summarized in Table 4.24 for 
the critical sections (class 1) along column E1. The values of Vz,Ed are such 
that the interaction NEd+My,Ed+Vz,Ed can be neglected. 
 

Table 4.24 – Utilization levels for column E1 
1st 

floor 
2nd 

floor 
3rd 

floor 
4th 

floor 
5th 

floor 
6th 

floor 
7th 

floor 
8th 

floor 
 

HEB 
320 

HEB 
320 

HEB 
320 

HEB 
320 

HEB 
260 

HEB 
260 

HEB 
260 

HEB 
260 

NEd 0.30 0.26 0.22 0.18 0.20 0.15 0.10 0.05 

My,Ed 0.03 0.10 0.09 0.07 0.12 0.13 0.13 0.16 

Vz,Ed 0.03 0.05 0.04 0.04 0.05 0.05 0.05 0.07 

NEd+My,Ed 0.04 0.11 0.10 0.08 0.14 0.13 0.13 0.15 
 

 
Table 4.25 indicates the utilization levels for the cross section of beam  
E1-E4 (class 1) on the 4th floor. Again, the values of Vz,Ed are such that the 
interaction NEd+My,Ed+Vz,Ed can be neglected.  
 

Table 4.25 – Utilization levels for beam E1-E4 
1st span (L = 6.00 m) 2nd span (L = 9.00 m) 3rd span (L = 6.00 m)  

IPE 400 IPE 600 IPE 400 

NEd 0.01 0.03 0.02 

My,Ed 0.25 0.21 0.24 

Vz,Ed 0.09 0.08 0.09 

NEd+My,Ed 0.25 0.21 0.24 
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4.4.5.3. Buckling resistance of beams 
 
For the lateral torsional buckling check, beam E1-E4 is assumed to be lateral 
restrained by secondary beams, every 3.00 m. Table 4.26 gives the LTB 
resistance ratios for beam E1-E4. 
 

Table 4.26 – Beam E1-E4 LTB ratios 
1st span (L = 6.00 m) 2nd span (L = 9.00 m) 3rd span (L = 6.00 m)  

IPE 400 IPE 600 IPE 400 

LTB ratio 0.32 0.26 0.33 
 

 
4.4.5.4. Buckling resistance of columns and beam-columns 
 
For the buckling check, it is assumed that column E1 is restrained at each 
floor level. According to the analysis procedures carried out in this example, 
a buckling length equal to the distance between floors (system length) were 
adopted, although lower values would be permitted. In Table 4.27, the 
buckling resistance ratios for column E1 are presented. The column was 
assumed to be “susceptible to torsional deformations”. 
 

Table 4.27 – Column E1 buckling ratios 
1st 

floor 
2nd 

floor 
3rd 

floor 
4th 

floor 
5th 

floor 
6th 

floor 
7th 

floor 
8th 

floor 
 

HEB 
320 

HEB 
320 

HEB 
320 

HEB 
320 

HEB 
260 

HEB 
260 

HEB 
260 

HEB 
260 

Buckling 
ratio 0.46 0.42 0.39 0.32 0.42 0.35 0.28 0.23 
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Chapter 5 
 
 

PLASTIC DESIGN OF STEEL STRUCTURES 
 
 
5.1. GENERAL PRINCIPLES OF PLASTIC DESIGN 

 
5.1.1. Introduction 

 
The mechanical properties of steel to EN 10025 (2004) and  

EN 10210-1 (1994)) make it particularly suitable for the use of plastic 
design: a long yield plateau, guaranteed ultimate strains of 15% ( yu �� 15
 ), 
a minimum over-strength of 10.1
yu ff  (clause 3.2.2) and a behaviour 

that reasonably approximates to an elastic-plastic constitutive law. It is 
therefore usually possible to assess the cross section resistance assuming 
total yielding. For many a structure it is also possible to evaluate the global 
resistance by taking advantage of its redundancy and the progressive 
formation of plastic hinges until a mechanism is reached. This possibility 
results in more economical structures. 

Plastic design of steel structures may assume different degrees of 
complexity and sophistication (Hill, 1950; Neal, 1977; Horne and Morris, 
1981). In this chapter, only methods of analysis and structural models based 
on beam theory are presented. In addition, the plastic design methods are 
framed in the context of the general principles of EC3-1-1. Consequently, 
although the use of advanced analysis methods is possible, a two-step 
procedure is assumed: structural analysis followed by code checks 
concerning the cross section resistance and member stability. 

Plastic analysis of structures can be carried out with different levels of 
sophistication. In practical terms, the chosen approach depends on purpose: 
for preliminary design or a quick check on a project, manual methods are 

Design of Steel Structures: Eurocode 3: Design of
Steel Structures, Part 1-1 – General Rules and Rules for Buildings, First Edition

by Luís Simões da Silva, Rui Simões and Helena Gervásio
Copyright © 2010 Eccs – European Convention for Constructional Steelwork
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preferable, using a calculator and/or a excel worksheet; whereas for thorough 
verification, computational methods and structural analysis programs are 
used. In the first case, methods of plastic limit analysis are invariably used, 
as they allow non-computational approaches, while in the second case the 
analysis is usually non linear elastic-plastic. However, a good knowledge of 
the basic principles of plastic analysis is relevant in both cases, and so these 
principles are briefly presented in the following paragraphs. 

As bending predominates, plastic collapse corresponds to the 
formation of a mechanism due to the progressive appearance of plastic 
hinges. In a hyperstatic structure, failure occurs (unless some partial 
mechanism is formed) after the formation of r+1 plastic hinges, where r is 
the degree of redundancy of the structure. In addition, classical theory 
assumes that at collapse, the following conditions are satisfied: i) an 
equilibrium condition and ii) a yield condition. Equilibrium requires that a 
statically admissible distribution of bending moments is achieved. The yield 
condition requires that at all sections the bending moment does not exceed 
the plastic moment of resistance.  

The methods of plastic analysis can be based on: i) the static theorem 
or maximum principle, leading to a lower bound (safe) estimate of the plastic 
collapse load because the formation of a mechanism is not enforced; or ii) 
the kinematic theorem or minimum principle, leading to an upper bound 
(unsafe) estimate of the plastic collapse load of the structure, because a 
statically admissible moment distribution is not enforced. The interested 
reader may find further information on this matter in Heyman (1971),  
Neal (1977) or Horne (1979). 
 
5.1.2. Plastic limit analysis: method of mechanisms 

 
The method of mechanisms is an upper bound method that allows an 

expeditious determination of the plastic collapse load for a given 
mechanism. The method uses the principle of virtual work to establish the 
equation of equilibrium between the total external work produced by 
external forces and the internal work at the sections where plastic hinges are 
formed. The virtual work equation is generically shown in equation (5.1): 

 
 ++ � )�� piip MF . (5.1) 
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where Fi represents the external loading, �i		is the corresponding 
displacement at the point of load application i, Mp is the plastic moment, 	 is 
the corresponding plastic rotation and �p is the load multiplier that 
corresponds to failure of the structure. 

Being an upper bound method, this approach requires the 
consideration of all possible mechanisms to ensure that the correct plastic 
collapse load is obtained. Since the search for all possible mechanisms in a 
larger structure can prove itself difficult, a way of minimizing this difficulty 
consists in the systematic search of all possible mechanisms through the 
combination of elementary mechanisms (Horne and Morris, 1981). 

Elementary mechanisms can be defined as those that result in a 
single displacement, either a beam mechanism or a “sway” mechanism. In 
a systematic way, three types of elementary mechanisms are identified: node 
mechanisms, beam mechanisms and frame mechanisms. A node 
mechanism, illustrated in Figure 5.1a, consists on the rotation of the node 
with hinges at the ends of the elements that converge in that node. A beam 
mechanism is the one that involves at least one hinge along the length of the 
bar without any axial displacement of its nodes, as illustrated in Figure 5.1b. 
Finally, a frame mechanism is that which implies the sway displacement of 
some of the nodes of the frame (Figure 5.1c). 
 

)	
)

)	
)	

)	

)	

 
a) node   b) bar   c) frame 

Figure 5.1 – Elementary mechanisms 
 

In a general way, if r is the degree of redundancy of the structure and 
p is the total number of potential locations of plastic hinges, the number of 
elementary mechanisms, m, is given by: 

 
 rpm �� . (5.2) 
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Several alternative sets of linearly independent elementary mechanisms are 
possible. However, whenever three or more members converge into one 
node, it is necessary to include node mechanisms in the set of elementary 
mechanisms. The total number of global potential mechanisms is given by: 

 

 
)!1()!1(

!
1 ���

�� rpr
pC p

r . (5.3) 

 
Pitched-roof portal frames represent a common type of structure that 

is usually designed using plastic analysis. To illustrate the method, consider 
the example in Figure 5.2, reproduced from Davies and Brown (1996). 

 

20� kN  

L/2 

h 

20� kN  

60� kN 

20� kN  

h/2 

L/2 
A 

B 

C 

D 

E 

 
Figure 5.2 – Pitched-roof portal frame 

 
Since the degree of redundancy of the structure is r = 3 and the total number 
of potential plastic hinge locations is p = 5, the number of elementary 
mechanisms is: 

 
 2��� rpm , 

 
so that the total number of global potential mechanisms is given by (equation 
(5.3)): 

 

 5
)!1()!1(

!
1 �

���
�� rpr

pC p
r .  

 
A valid potential mechanism is represented in Figure 5.3 with plastic hinges 
at points B, C, D and E.  
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Figure 5.3 – Mechanism 1 

 
Considering Mp = 300 kNm leads to the following virtual work equation:  

 

 	)		(	hLh
������ 2230020

2
60

2
20 )�)�)� ,  

 
and 

 

 
Lh �

�
60)1(� . (5.4) 

 
The second potential mechanism, illustrated in Figure 5.4, consists of plastic 
hinges at points A, C, D and E. 
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Figure 5.4 – Mechanism 2 

 
The virtual work equation is:  
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and 
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Lh 53

240)2(

�
�� . (5.5) 

 
Finally, the third potential mechanism presents plastic hinges at points A, B, 
D and E (Figure 5.5). The virtual work equation is: 

 
 )(30020 )))))� ����h ,  
 

and 
 

 
h

20)3( �� . (5.6) 
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Figure 5.5 – Mechanism 3 

 
Note that, by symmetry, there would be two mechanisms identical to (1) and 
(2), in which the plastic hinge would be formed at point A (or B), instead of 
E (or D), respectively. Assuming 6�h m and 18�L m, the critical 
mechanism is mechanism (2), as it leads to the lowest load factor, �(2) = 2.22, 
which corresponds to the bending moment diagram of Figure 5.6. 
 

300 kNm

300 kNm  

300 kNm 

100 kNm 300 kNm

 
Figure 5.6 – Bending moment diagram at collapse 
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5.1.3. Code requirements for plastic analysis 

 
The use of plastic global analysis must comply with several 

requirements. In contrast to elastic global analysis, plastic global analysis 
can only be used (clause 5.4.1(3)) where the structure exhibits sufficient 
rotation capacity at the plastic hinge locations. These may occur either in the 
members or in the connections and should allow the necessary  
re-distributions of bending moments (clause 5.4.3(2)). In addition, plastic 
global analysis can only be used where the stability of the members at plastic 
hinges is assured (clause 5.4.3(3)). 

Where a plastic hinge occurs in a member, the cross section of the 
member should be doubly symmetrical or monosymmetrical but with the 
plane of symmetry coincident with the plane of rotation of the plastic hinge 
(clause 5.4.1(3)). Note that this restriction results from insufficient validation 
of solutions with asymmetric sections. In addition, at plastic hinge locations, 
the cross section of the member that contains the plastic hinge should have a 
rotation capacity that is not less than the corresponding required rotation at 
the plastic hinge location (clause 5.6(1)). 

By adopting the concept of a discrete plastic hinge, cross sections 
must also fulfil the following additional requirements (clauses 5.6(2) to (5)) 
in order to ensure an adequate capacity for plastic re-distribution of forces: 

 
i) for a prismatic member, it can be assumed that the rotation 

capacity at a plastic hinge is adequate if:  
 - the member has a class 1 cross section at the plastic hinge 

location; 
 - where a transverse force that exceeds 10% of the shear 

resistance of the cross section is applied to the web at the plastic 
hinge location, web stiffeners must be provided within a distance 
along the member of h/2 from the plastic hinge location, where h 
is the depth of the cross section at this location. 

ii) for non-prismatic members, the following additional criteria must 
be satisfied:  

 - adjacent to plastic hinge locations, the thickness of the web 
should not be reduced for a distance each way along the 
member from the plastic hinge location of at least 2d, where d 
is the clear depth of the web at the plastic hinge location; 
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 - adjacent to plastic hinge locations, the compression flange 
should be Class 1 for a distance each way along the member 
from the plastic hinge location of not less than the greater of: 

 - 2d, where d is the clear depth of the web at the plastic 
hinge location; 

 - the distance to the adjacent point at which the moment 
in the member has fallen to 0.8 times the plastic 
moment resistance at the point concerned; 

 - elsewhere in the member the compression flange should be  
class 1 or class 2 and the web should be class 1, class 2 or class 3. 

iii) for all members, any fastener holes in tension adjacent to plastic 
hinge locations should satisfy equation (5.7) or clause 6.2.5(4) for 
a distance each way along the member from the plastic hinge 
defined in the previous paragraph: 

 

 
02

. 9.0

M

yf

M

unetf fAfA
��


 . (5.7) 

 
In cases where methods of global plastic analysis are used that consider 

the real stress and strain behaviour along the member, including the combined 
effect of local, member and global stability, it is not necessary for cross sections 
to fulfil the above requirements from clauses 5.6(2) to (5) (clause 5.6(6)). 

When the plastic hinge occurs in a joint, the joint should either have 
sufficient strength to ensure the hinge remains in the member (full strength 
joint) or should exhibit sufficient rotation capacity (clause 5.4.1(3)). In this 
latter case, part 1-8 of EC3 specifies the general principles for the 
determination of the rotation capacity of a joint between I and H sections 
(see EC3-1-8, clause 6.4). In addition, it establishes that the rotation capacity 
of a joint does not need to be verified whenever the moment resistance of the 
connection, MjRd, is at least 1.2 times higher than the plastic moment 
resistance of the cross section of the connected member. 

As was already mentioned in section 5.1.1, plastic global analysis can 
show several levels of sophistication in the incorporation of the effects of 
material non-linearity. In clause 5.4.3(1), the following methods are 
explicitly foreseen: 

 
-  elastic-plastic analysis with plastified sections and/or joints as 

plastic hinges; 
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-  non-linear plastic analysis considering the partial plastification of 
members in plastic zones; 

-  rigid plastic analysis neglecting the elastic behaviour between 
hinges. 

 
In all cases, for the steel grades specified in section 3 of EC3-1-1 it is 
possible to use the bilinear stress-strain relationship of Figure 5.7 (clause 
5.4.3(4)). Alternatively, more precise stress-strain relationships can be 
adopted (EC3-1-5, clause C.6).  
 

�	

�	

fy 

��/��  = E 

 
Figure 5.7 – Bilinear stress-strain relation 

 
Plastic global analysis should also account for significant second order 

effects and the global stability of the structure (clause 5.4.3(6)), as already 
discussed in sub-chapter 2.3. This aspect will be further discussed in  
sub-chapter 5.2. Note that rigid-plastic analysis can only be applied in the 
cases where the second order effects do not have to be considered (clause 
5.4.3(5)). 

Finally, Table 5.1 summarizes the normative references to EC3 
specifically concerning global plastic analysis. 
 

Table 5.1 – Normative references 

Clauses Description 
5.4.1(3), 5.4.3(2), 5.4.3(3) General requirements 

5.2.1(3), 5.4.3(1), 5.4.3(5)-(6) Types of analysis  
5.4.3(4), 1-5-C.6 Properties of steel  

5.4.1(3), 5.6(1), 5.6(4)-5.6(6), 
6.2.5(4) 

Cross section requirements for global plastic 
analysis 

5.6(2) Prismatic members 
5.6(3) Non-prismatic members 



5. PLASTIC DESIGN OF STEEL STRUCTURES 

 

_____
352

 
5.2. METHODS OF ANALYSIS 
 
5.2.1. Introduction 

 
Plastic analysis of structures is mostly used for low-rise buildings. 

This follows from the requirements described in paragraph 5.1.3 that 
necessitate geometrically and materially non-linear elastic-plastic analysis 
with imperfections (usually denoted GMNIA) whenever the structure shows 
significant susceptibility to second order effects. This is more likely as the 
number of storeys increases. Second-order analysis is essential whenever the 
effects of the deformed geometry significantly increase the forces or 
displacements or significantly modify the structural behaviour  
(clause 5.2.1(2)). 

Plastic design of steel structures is often used in the design of  
pitched-roof portal frames. It was this type of structures that made plastic 
analysis of structures popular in the UK from 1950’s onwards, with the 
publication of "The Steel Skeleton" (Baker et al., 1956). Throughout this 
chapter, without loss of generality, this type of structure is used to exemplify 
the relevant aspects of plastic design of steel structures, always with 
reference to EC3. Firstly, in this sub-chapter, procedures for the plastic 
analysis of pitched-roof portal frames are given, in which the global analysis 
is first order. The problem is thus simplified since it deals only with material 
non-linearity, either from a pre-design point of view using simple 
approximate methods, or in the context of an incremental elastic-plastic 
computational analysis. Secondly, procedures for the incorporation of 
second order effects (geometric non-linearity) are presented and discussed. 
Reference is made to simplified methods and to more thorough 
computational analysis, illustrated with simple examples. 
 
5.2.2. Approximate methods for pre-design 

 
Pitched-roof portal frames are characterized by a small degree of 

redundancy and a small number of members, therefore being particularly 
suitable for manual methods of analysis. Following Davies and Brown 
(1996), a pre-design method that can be easily programmed in an Excel 
worksheet is briefly presented in this section. 
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Consider the portal frame of Figure 5.8, in which, for ease of 
presentation, the loading is assumed in a simplified manner. 
 

FV 
F3 

F1 
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L1 L2 

h1 

h1
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h2 

h2
’ 

A E 

B 

C 

D 

 
Figure 5.8 – Structural model 

 
Consider the equivalent statically determinate structure of Figure 5.9, in 
which M, V and H represent the statically redundant unknown internal forces 
of the frame. 
 

FV

F3

F1

F2 

FV

 
a) real loading 

 

M
V

H

V

HM 

 

 

 
b) statically redundant unknown internal forces 

Figure 5.9 – Equivalent statically determinate structure 
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The corresponding internal force diagrams are shown in Figure 5.10. 
 

x y y x 

0.5FvL2 – 0.5F3h2’ 

–H (h1 + h1’) – M  + VL 1 

– M  – Hh1’ + VL 1 
– M  

a) 

b) 

0 

0.5FvL1 + 0.5F3h1’ 

F1h1 + 0.5FvL1 + 0.5F3 (h1 + h1’) 

– F2h2 + 0.5FvL2 – 0.5F3 (h2 + h2’) 

A B C D 

E 

A B C D E 

– H (h2 + h2’) – M  – VL2 

– M – Hh2’ – VL2 

 
Figure 5.10 – Internal force diagrams: a) real loading; b) statically redundant 

internal forces 
 

Knowing the applied loads and the statically redundant internal forces 
M, V and H, the real internal force diagrams are obtained as the sum of the 
diagrams of Figure 5.10. In the context of a plastic analysis, the plastic 
mechanism requires four plastic hinges. Assuming that the structure is 
formed of the same steel profile throughout, with a plastic bending moment 
resistance Mp, the real bending moment diagram should show four cross 
sections at Mp and all the other cross sections with lower values. Here, the 
method differs from elastic analysis by the force method, as it is not 
necessary to impose conditions of compatibility of deformations, but only to 
ensure the verification of the plastic mechanism. According to the topology 
of the structure (4 elements) and the applied loads (concentrated loads acting 
exclusively in the nodes of the structure), there are only 5 potential locations 
for the plastic hinges, while the necessary number of plastic hinges will be 4 
(degree of redundancy + 1). Thus, the number of mechanisms is given by 
(expression 5.3): 
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which are illustrated in Figure 5.11. 
 

M1 M2 M3 

M4 M5

 
Figure 5.11 – Potential mechanisms 

 
Equations (5.8) represent the values of the bending moment as a 

function of M, V and H for all possible locations of the plastic hinges: 
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Assuming that mechanism 4 is the real mechanism, equations (5.8) yield: 
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 (5.9) 

 
It is noted that, for a compatible mechanism, the signs attached to Mp should 
always alternate for consecutive plastic hinges. Assuming L1 = L2 = 23.5 m, 
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h1 = h2 = 7 m, h1’ = h2’ = 2.88 m, FV = 110 kN, F1 = F2 = F3 = 55 kN, 
equations (5.9) give the required minimum plastic moment resistance, 
without considering the influence of other internal forces, namely axial 
force. 
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It is further required to check that the plastic moment is not exceeded at B. 

 
.3.5519.4985.05.0 1

'
1

'
131 kNmkNmVLHhMhFLFM VB �������  (5.11) 

 
If mechanism 2 was chosen instead as the critical mechanism, the required 
minimum plastic moment would be 

 
 kNmM p 7.288� , (5.12) 

 
but the verification 

 
pVD MkNmVLHhMhFLFM �������� 5.12925.05.0 2

'
2

'
232 , (5.13) 

 
shows that the yield criterion is violated, and mechanism 2 is not the true 
failure mechanism. 

In practical terms, pitched-roof portal frames commonly consist of 
different cross sections for the columns and for the rafters, with haunched 
segments in the rafters next to the eaves and apex connections. Loads act 
through purlins and sheeting rails, rather than directly onto the frame, and 
two distinct combinations of actions usually need to be considered. 
Consider therefore the typical pitched-roof portal frame of Figure 5.12, 
where the parameters ci represent the positions of the purlins. Also assume 
that the plastic moment of the column is �	times larger than that of the 
rafter. 
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Figure 5.12 – Structural model 
 
For this frame, the possible positions of the plastic hinges are represented in 
Figure 5.13. 
 

 
Figure 5.13 – Potential locations of plastic hinges 

 
Consider, firstly, the symmetrical loading indicated in Figure 5.14. It 

represents the load combination where the leading variable action is the 
imposed load (or, alternatively, the snow load, in case it is more critical). 
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q

p

Figure 5.14 – Load combination where the leading variable action is the imposed 
loading 

 
Using the same equivalent statically determinate system as the previous case, 
Figure 5.15 shows the resulting bending moment diagrams for the real 
loading and the statically indeterminate unknown internal forces: 
 

x y y x 

2

2
1Lp BC

y  

– H (h1 + h1’) – M +  VL1 

– M 

a) 

b) 

– H (h2 + h2’) – M – VL 2 

– H h1’ – M + VL1 – H h2’ – M  – VL2 


 �
2

2
11 aLp BC

y
�  
 �

2

2
22 aLpCD

y
�  2

2
2L

pCD
y  

 
Figure 5.15 – Bending moment diagrams: a) real loading; b) statically indeterminate 

unknown internal forces 
 
Expressions (5.14) summarize the total bending moment for all the potential 
locations of the plastic hinges: 
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where BC

yp  and CD
yp correspond to uniformly distributed gravity loads1 in 

members BC and CD, respectively. Assuming, L1 = L2, h1 = h2, h1’ = h2’ and 
that the plastic hinges are formed in A, B’ and in segment B�-C�, leads to 
(where, by symmetry, V = 0): 
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where 
 

 

 �


 �
2
2
3

4

5
5
6

7
"
"
#

$
%
%
&

'
""
#

$
%%
&

'
����

�
�

1

'
11

1

22
1

1212
L
xhh

b

xLp
M

BC
yraft

p
��

. (5.16) 

 
The position of the plastic hinge can be obtained by minimization of 

raft
pM with respect to x, 

 

                                                      
1 Per projected length. 
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 0�
dx

dM raft
p , (5.17) 

 
leading to (with L1 = 23.5 m, h1 = 7 m, h1� = 2.88 m, a1 = 4.5 m, b1 = 1.2 m, 
a3 = 1.5 m , b3 = 0.8 m, � = 1.0 e py

BC = py
CD = 15.64 kN/m) 

 
 mx 50.4� . (5.18) 
 

Of the two solutions of equation (5.17), one is normally negative, and so 
only the other will be relevant. As the position of the plastic hinge should 
coincide with the location of a purlin, the final definition of the plastic hinge 
is easily established by inspection. Assuming that the spacing between the 
purlins is 2.2 m leads to: 
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and the corresponding bending moment diagram of Figure 5.16. 
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Figure 5.16 – Bending moment diagram at collapse 

 
Consider next the load combination where the leading variable action is 
wind, typically represented in Figure 5.17. The actions to be considered in 
each member are summarized in equations (5.20), where x and y represent 
the global coordinates of the structure, 
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Figure 5.17 – Load combination where the leading variable action is wind 
 
In this case, the bending moment diagrams for the equivalent statically 
determinate structure are represented in Figure 5.18, leading to the following 
expressions for the potential locations of the plastic hinges: 
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Figure 5.18 – Bending moment diagrams: a) real loading; b) statically indeterminate 

unknown internal forces 
 

 



5. PLASTIC DESIGN OF STEEL STRUCTURES 

 

_____
362


 �

 �


 �


 � 
 �


 � 
 �


 �

 �


 �B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

�

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

�

�

������

������

������

����

��
�

��
�

�

����

��

����

��
�

��
�

�

����

������

������

������

.
22

22

22

2

2

2

2

2

2

22

22

22

2
'
22

2
2

2
2

2
'
2

2
2

2

2
'
22

2
2

2
2'

2
'
2

2
2

22
2

22'
2

2
22''

1

'
1

2

1

'
1

2

11
1

11'
1

2
11''

1
'
1

2
1

1
'
11

2
1

2
1'

1
'
1

2
1

2

1
'
11

2
1

2
1

VLhhHMLphpM

VLhyHMLpypM

VLhbHMLpbpM

VLHhMLpM

aLV
L

aLHhMaLpM

Vx
L
xHhMxpM

MM

Vx
L
xHhMxpM

aLV
L

aLHhMaLpM

VLHhMLpM

VLhbHMLpbpM

VLhyHMLpypM

VLhhHMLphpM

CDDE
xE

CDDE
x

DE
y

CDDE
xD

CD
D

CD
D

CDCD
x

C

BCBC
x

BC
B

BC
B

BCAB
xB

BCAB
x

AB
y

BCAB
xA

 (5.21) 

 
where, 

 
 11 cossin �� BC

y
BC
x

BC ppp ��   

  (5.22) 
 22 cossin �� CD

y
CD
x

CD ppp �� . 
 

Whenever the gravity load combination is critical it is useful to check what 
is the load multiplier that corresponds to the plastic collapse of the structure, 
for the wind combination, instead of calculating the required plastic moment. 
Applying a load factor �	to the wind actions (only to the wind action 
because the gravity loading is favourable), and assuming plastic hinges at B�, 
C, D�� and E, the following system of equations is obtained: 
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For px

AB = px
DE = 10.26 kN/m, px

BC = -0.40 kN/m, px
CD = 1.71 kN/m ,  

py
AB = py

DE = 0 , py
BC = 1.25 kN/m e py

CD = -9.42 kN/m, the following results 
are obtained: 
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This means that the structure is safe for the wind load combination and the 
wind loads have to be 8.87 times the design values to cause collapse using 
the Mp values from (5.19).  
The final choice of the cross sections should take into account the axial force. 
From the values of Mp given by equations (5.19), to compensate for the 
detrimental influence of the axial force, the bending and axial force plastic 
interaction expressions (3.129) for I or H-sections (clause 6.2) can be used, 
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where RdplEd NNn ,�  and 
 � AtbAa f2�� , but 5.0�a , where A 

represents the area of the cross section, b is the width of the flanges and tf is 
the thickness of the flange. Approximately, the required minimum plastic 
moment resistance is obtained by replacing the value of plastic moment 
given by (5.19) and solving for Mpl,y,Rd from equation (5.25a) 

Finally, it must be pointed out that there are speedy procedures for the 
plastic pre-design of pitched-roof portal frames, either as tables (Salter et al., 
2004), or as very simple sequential procedures, using nomograms. 

 
5.2.3. Computational analysis 

 
Material non linear analysis (MNA) with an elastic-plastic constitutive 

law (Figure 5.7) requires an incremental procedure whereby a load factor is 
progressively increased from a reference loading, for each load combination, 
until a maximum is reached. For each load increment, an iterative procedure 
usually based on a Newton-Raphson scheme is required to ensure 
convergence of the results to the “true” solution. Figure 5.19 illustrates 
schematically the analysis procedure. 
 

 load F 

�F2 

�F1 

deflection w 

iterations

ite
ra

tio
ns

 

 
Figure 5.19 – Incremental non linear procedure 

 
Consequently, the plastic analysis of a structure using computational 

methods requires a careful interpretation of the results and it often does not 
lead to the same results as manual methods. This latter aspect, apparently 
surprising, results mainly from the two following reasons: i) the numerical 
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nature of computational methods inevitably leads to numerical errors and ii) 
manual methods normally assume, a priori, a set of simplifications that are 
not present in computational methods.  

This first aspect is better understood by realising that, numerically, the 
assessment of the plastification of a section is a discontinuous process, 
depending on the discretization of the structure into elements. Figure 5.20 
illustrates this statement. The bending moment diagram for the trapezoidal 
load illustrated in Figure 5.20 is given by: 

 

 
120

22
40

34
26

)(
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23 pLxpLxpx
L
pxM ����� . (5.26) 

 
Considering L = 10 m and a plastic moment resistance of Mp = 60 kNm, the 
analytical solution predicts the formation of a plastic hinge for a load level of 
p = 5.348 kN/m at a distance x = 6.432 m. 
 

L 

p 
2p

x Mmax 

 
Figure 5.20 – Plastic analysis of a hinged fixed-ended beam 

 
The numerical solution with a 4 element mesh discretization locates 

the plastic hinge at x = 5.00 m and a load factor �pl = 1.00, whereas a mesh 
discretization of 10 elements provides x = 6.00 m and �pl = 0.90. This small 
example highlights the importance of adequately assessing the sensitivity of 
the results to mesh discretization. 
  Concerning the second aspect, the yield criterion (von Mises, Tresca, 
etc.) can be implemented: i) directly from the stress state at all points along 
the depth of a cross section, thus dealing properly with an arbitrary  
three-dimensional stress distribution, such as biaxial bending and axial 
compression or ii) indirectly through generalized force-displacement 
relations that reproduce more closely manual analysis. This latter situation is 
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normally implemented in commercial codes through bilinear or non-linear 
spring elements, which have the additional disadvantage of requiring the 
previous knowledge of the potential locations of plastic hinges. The simple 
plane frame of Figure 5.21 can be used to compare these two situations. 
Considering L = 15 m, h = 10 m, S275 steel, a plastic moment resistance of 
Mp

col = 118.1 kNm and Mp
b = 60.7 kNm, in the columns and in the beam 

respectively, and V = 10H, the analytical solution using elastic-plastic 
analysis leads to the formation of the first two plastic hinges for �G = 3.125 
in points A and D and the collapse mechanism for �p = 3.576 with two 
additional plastic hinges in B and C (frame mechanism).  
 

H 

V V 

L 

h 

A 

B C

D 

 

fy 

�

Mp 

�	

)	

M 

a) 

b) 

 
Figure 5.21 – Alternative implementations of yield criteria  

 
 Numerically, using beam non-linear finite elements and the von 
Mises’ yield criterion (Figure 5.21a), defined through a generalized  
stress-strain relation, the plastic hinges are formed sequentially for load 
factors �G = 3.38 and MD = 110.2 kNm (ND =346.9 kN), �2 = 3.385 and  
MA = 110.9 kNm (NA = 331.2 kN), �H = 3.475 and MB = 60.6 kNm  
(NB = 17.3 kN), whereas the collapse load is reached for a load factor  
�p = 3.479 and MC = 60.6 kNm (NC = 17.4 kN), again with the formation of a 
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frame mechanism. Alternatively, using bilinear spring elements and an 
equivalent moment-rotation relation (Figure 5.21b), the first plastic hinges 
are formed for a load factor �1 = 3.125 and MA = MD = 118.1 kNm  
(NA = 307.4 kN and ND = 317.6 kN), whereas the collapse load is reached for 
a load factor �p = 3.575 and MB = MC = 60.7 kNm (NB = NC = 17.9 kN). 
Note that the analytical solution coincides almost exactly with the numerical 
solution with spring elements. Secondly, comparing both numerical 
solutions, identified as (1) and (2), the load factor �	is different, for the 
formation of the first hinge ( 
 � 38.31

1 ��  vs 
 � 125.32
1 �� ), and for the plastic 

collapse of the structure ( 
 � 479.31 �p�  vs 
 � 575.32 �p� ). The same conclusion 

is reached by comparing the plastic moments at points A and D, where the 
bending and axial force interaction is significant ( kNmM D 2.110)1( �  vs 

kNmM D 1.118)2( � ). 
An additional difficulty with computational analysis is to ensure that 

“false” mechanisms are not formed that may lead to wrong plastic collapse 
loads. Firstly, it is frequent that some programs lead to wrong mechanisms, 
particularly for symmetric loadings, in which the direction of rotation of one 
of the plastic hinges is opposite to the bending moment that causes it. This 
error can be easily avoided, as long as the program checks that the product of 
the bending moment at the plastic hinge location and its corresponding 
rotation is always positive2. Secondly, in case transitory plastic hinges3 
occur, the behaviour of the plastic hinge during unloading must be elastic 
and maintain the residual plastic rotation, as is shown in Figure 5.22. 
 

)	

M 

 
Figure 5.22 – Behaviour of plastic hinge in the unloading 

 
                                                      
2 That is, the rotation must always have the same direction of the bending moment 
3 That is, the situation in which somewhere along the analysis, the plastic hinge 
inverts the direction of the rotation 
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To illustrate this last aspect, consider the two-span continuous beam of 
Figure 5.23, with a section of plastic moment of 6.75 kNm, area A = 80 cm2 
and second moment of area I = 40 cm4, reproduced from Davies and Brown 
(1996). 
 

3 m  1 m  1 m 1 m 

13 kN 
7 kN

4.62

6.75 6.50 
6.75

6.50 6.75 

a)

b)

D 

 
Figure 5.23 – Continuous beam with transitory plastic hinge 

 
 Figure 5.24 illustrates the analytical result for this case, which gives 
the first plastic hinge at D for a load factor � = 0.893. That hinge unloads 
elastically so that the correct collapse mechanism can be reached for a load 
factor of 1.0. All the non-linear finite element commercial programs that 
were tested by the authors led to the wrong result of the false mechanism of 
Figure 5.24. 

The several aspects of computational analysis will be illustrated and 
discussed in detail in the context of a design example in sub-chapter 5.4. 
 

0.5 

1.0

1.0 2.0 

1st Plastic hinge 

False mechanism 
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(mm) �	

�	�	K R<H
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Figure 5.24 – Load factor-vertical displacement diagram 
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5.2.4. 2nd Order effects  

 
5.2.4.1. Introduction 

 
Sub-chapter 2.3 highlighted the need to account for 2nd order effects. 

Plastic design of steel structures normally leads to optimized and, 
consequently, slender structures. Therefore, it is often required to verify the 
global stability of the structure using a 2nd order analysis and considering 
imperfections (clause 5.2.2(2)). This requirement is compulsory for plastic 
analysis whenever (clause 5.2.1(3)): 

 
 15�� Edcrcr FF� . (5.27) 

 
It is noted that in the determination of the 2nd order effects a computational 
2nd order analysis can always be used and there are approximate methods of 
more limited scope available in the literature. 

Because the sensitivity of a structure to 2nd order effects is assessed 
indirectly from the elastic critical load of the structure, Fcr, the following 
sub-section presents approximate expressions for the elastic critical load of 
pitched-roof portal frames. Subsequently, some considerations on 
computational second-order analysis of steel frames are also presented. 
Finally, simplified approximate methods are also briefly described. 
 
5.2.4.2. Elastic critical load 

 
As already discussed in sub-section 2.3.2.2, the elastic critical load of 

a structure plays an important role in evaluating the sensitivity of a structure 
to 2nd order effects. In case of pitched-roof portal frames, Horne’s and 
Wood’s methods are not adequate as the axial force in the rafter is usually 
sufficient to affect significantly the stability of the frame. According to  
King (2001b), the critical load of single-span pitched-roof portal frames can 
be estimated, for hinged column-bases, by: 
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and  
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�cos

LLraft �      
traft
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R �      

col

raft
L L

L
R � , (5.29) 

 
where, Lcol is the length of the column; 

Lraft is the real length of the rafter (span between columns measured 
along the rafter); 
R is the ratio between the stiffness of the column and the stiffness of 
the rafter, given by: 
 

 LI RRR � ; (5.30) 
 
Ncol is the compressive force in the column; 
Nraft is the compressive force in the rafter; 
Ncol.cr.E is the elastic critical Euler load of the column; 
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EI
N

*
� ; (5.31) 

 
Nraft.cr.E is the elastic critical Euler load of the rafter (equation 5.31, 
replacing column by rafter). 
 
In case of nominally hinged column-bases, where a rotational stiffness 

of 10% of the column’s stiffness is assumed, the elastic critical load of the 
structure is given by: 
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whereas in the case of nominally rigid column-bases, where the rotational 
stiffness is equal to the column’s stiffness, the following expression should 
be used: 
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Note that, in case the pitched-roof portal frame is asymmetric, the 

elastic critical load must be taken as the lowest of the critical loads for the 
two sets column-rafter, left or right. Similarly, Silvestre et al (2000) derived 
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alternative expressions for the lowest critical loads in symmetric and  
anti-symmetric modes that include the flexibility of the connections. For the 
common case of rigid eaves and apex connections, the lowest critical loads 
are given by (Nogueiro et al., 2000): 
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and 0,col�  and 0,raft�  are given by: 
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and 
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col

EI
LK

S 1� ; (5.38) 

 
 �sinLH RR � , (5.39) 

 
where K1 is the stiffness of the column-base connection. 

Table 5.2 compares both methods (equations (5.28) to (5.39)) with 
numerical results, for a frame with L = 15 m, IPE 450 rafters, HEB 280 
columns, h = 5.0 m, h’ = 1.58 m, for gravity loading (see Figure 5.14). The 
following cases are compared: (A) hinged column-bases and real rotational 
stiffness of the eaves and apex connections; (B) semi-rigid column-bases, 
with Sj,ini = 5000 kNm/rad and the remaining connections as in (A); (C) rigid 
column-bases and remaining connections as in (A); and (D) all the 
connections rigid. 
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Table 5.2 – “Exact” and approximate elastic critical loads 

Behaviour of 
connections 

“Exact” (numerical)	 Approximate (analytical)	
ASM
cr� 	 SM

cr� 	 ASM
cr� 	 SM

cr� 	

A 22.98 49.23 21.45 55.45 
B 35.18 46.52 31.94 53.00 
C 43.57 39.32 44.59 40.51 
D 43.63 42.92 44.59 40.51 

 
In case of pitched-roof portal frames with multiple spans, approximate 
formulae can be found in King (2001b) or Camotim and Silvestre (2000). 
 
5.2.4.3. 2nd order computational analysis 

 
Geometrical non linear analysis (GNA) presents the additional 

complexity of potential unstable behaviours, typically represented in  
Figure 5.25. This unstable behaviour results from the bifurcational nature of 
stability problems. Numerically, unstable behaviours require more 
sophisticated numerical algorithms such as the arc-length method. This 
requires the specification of convergence criteria that define when 
equilibrium is reached. These criteria may be specified in terms of 
displacements, strains, forces, stresses or work. The selection of the proper 
convergence criterion is extremely important. Tolerances that are too small 
can result in an unnecessary number of iterations, while tolerances that are 
too slack can lead to wrong results. In general, in geometrically non linear 
analysis, narrow tolerances are necessary, such as to maintain the solution in 
the correct equilibrium path, while in the case of predominantly materially 
non linear problems, wider tolerances are preferable, as it can be necessary 
to tolerate locally high residuals. 

The 2nd order elastic-plastic analysis of a structure using 
computational methods directly provides the values of forces and 
displacements for the verifications of safety for the structure. 
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Figure 5.25 – Unstable behaviour  

 
5.2.4.4. Simplified methods for analysis 

 
Simplified methods of analysis that approximate material and 

geometrical non linear effects constitute a common choice for designers. 
They allow the analysis of a structure based on first-order methods. 

The Merchant-Rankine method is a simplified approach that assesses 
the ultimate load factor of a structure through a formula that takes into 
account the interaction between plasticity (�p) and stability (�cr) in an 
empirical way. 

 

 
crpf ���
111

�� . (5.40) 

 
In practical terms, the Merchant-Rankine method can be used (Horne, 1963) 
to obtain an estimate of the 2nd order effects in global plastic analysis using a 
1st order elastic-plastic approach with amplification of the total applied 
loading by: 

 

 

cr�
11

1

�
. (5.41) 

 
It is noted that this approach is not equivalent to the amplification described 
in sub-section 2.3.2.3, as it amplifies the totality of the loading and not just 
the sway components. Secondly, the Merchant-Rankine method requires the 
additional verification of out-of-plane stability. 
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Recently, Demonceau (2008) proposed a promising simplified method 
of analysis that consists on the use of an Ayrton-Perry formulation to assess 
the ultimate load factor of steel and composite frames. In contrast to the 
Merchant-Rankine method, it recognizes the fact that the different types of 
plastic mechanisms are not affected in the same way by the second-order 
effects developing in a structure, therefore leading to a better agreement with 
the true behaviour of the frame. 

In the context of pitched-roof portal frames, the axial compression in 
the rafters is often significant (recall clause 5.2.1(4)B), and the structure 
usually presents two similar critical loads, corresponding to symmetric and 
anti-symmetric buckling modes (Figure 5.26). 
 

  
Figure 5.26 – Symmetric and anti-symmetric buckling modes in pitched-roof portal 

frames 
 

In this case, the simplified procedure for 2nd order elastic analysis 
described in sub-section 2.3.2.3 and expressions (2.17) is not valid and the 
elastic amplification must be done for both modes, as illustrated in Figure 5.27.  
 

R R 
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Figure 5.27 – Amplification in the symmetric and anti-symmetric modes 

 
The 2nd order effects are given by: 
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where indexes NS, S and AS denote, respectively, no-sway, sway in a 
symmetric mode and sway in an anti-symmetric mode. 

For pitched-roof portal frames, Silvestre and Camotim (2005) report 
that amplification only with the anti-symmetric mode (equations (2.17)) 
underestimate the 2nd order effects by 10%. The more rigid the column-base 
connections are, the greater the error. In contrast, the evaluation of the  
2nd order effects using expressions (5.42) usually overestimates results by 
less than 3.5%. Example 5.1 compares the “exact” 2nd order elastic results 
(numerical) with approximate results (amplified). 

In the case of plastic global analysis, the amplification defined by 
expressions (5.42) is more complex, as the separation of the 1st order 
moments into sway and no-sway (or symmetrical and anti-symmetrical) 
components is not obvious. 

 
5.2.5. Worked example 
 
Example 5.1: Consider the pitched-roof portal frame of Figure 5.28 (S 355 
steel), subject to the indicated loading (already factored), which was already 
pre-designed (Figure 5.16) in section 5.2.2. Determine the design forces and 
displacements of the structure for the following situations: 
 
a) 1st order elastic analysis; 
b) Elastic analysis considering 2nd order effects (P–�); 
 b.1) exact; 
 b.2)  approximate; 
c) 1st order elastic-plastic analysis; 
d) Elastic-plastic analysis considering 2nd order effects (P–�); 
 d.1) exact; 
 d.2)  approximate; 
e) Elastic-plastic analysis considering 2nd order effects (P–� and P–�). 
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P1 = 6.075 kN/m 

P2 = 9.28 kN/m 

23.5 m 23.5 m 

2.88 m 

7 m 

IPE 600 IPE 600

HEA 550 HEA 550

P3 = 1.22 kN P3 = 1.22 kN 

 
Figure 5.28 – Pitched-roof portal frame 

_______________________________ 
 
a) 1st order elastic analysis 
 
Figures 5.29 to 5.31 represent the internal force diagrams for the indicated 
loading. Note that, for the chosen cross sections, the plastic moments in the 
columns and rafters are, respectively. 
 

kNmM raft
p 8.1246�  and kNmM col

p 0.1640� . 

 

1526.4 kNm 
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1061.7 kNm 1061.7 kNm 

 
Figure 5.29 – Bending moment diagram, linear elastic analysis 
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Figure 5.30 – Shear force diagram, linear elastic analysis 
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574.7 kN 363.6 kN 

378.8 kN378.8 kN 

609.8 kN 366.7 kN 

617.9 kN 

609.8 kN 

363.6 kN 
366.7 kN 

617.9 kN 

 
Figure 5.31 – Axial force diagram, linear elastic analysis 

 
Figure 5.32 represents the deformation for the same loading. 
 

0.35 m 

 
Figure 5.32 – Displacements in the structure, linear elastic analysis 

 
b.1) Elastic analysis considering 2nd order effects in an “exact” way 
 
An eigenvalue analysis leads to the critical loads of Table 5.3. For 
comparison, results obtained using the approximate expressions (5.33) and 
(5.34) are also presented. 
 

Table 5.3 – Critical loads 

 �cr
1 �cr

2 �cr
3 �cr

4 �cr
5 

“Exact” 7.32 10.14 18.82 20.95 28.25 
Eq. 5.33 6.48 - - - - 
Eq. 5.34 7.98 8.73 - - -  

 
The corresponding buckling modes are illustrated in Figure 5.33. 
 

 
Figure 5.33a – 1st (ASM) and 2nd (SM) buckling modes 
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Figure 5.33b – 3rd and 4th buckling modes 

 
The lowest critical loads indicate that the structure is sensitive to 2nd order 
effects. A 2nd order computational analysis leads to the results of Figure 5.34. 
 

1602.8 kNm 

460.4 kNm 

2325.3 kNm 

1719.6 kNm1719.6 kNm 

2325.3 kNm 

1602.8 kNm 
620.1 kNm 620.1 kNm 

1162.7 kNm 1162.7 kNm 

 
Figure 5.34 – Bending moment diagram; 2nd order “exact” elastic analysis 

 
b.2) Elastic analysis considering 2nd order effects in an approximate way 
 
According to equations (2.17), it is necessary to decompose the internal 
forces in the sway component and an anti-symmetric mode. However, in this 
case, the applied loading causes a deformation that is similar to the 
symmetric buckling mode, and so the amplified bending moment diagram 
coincides with the 1st order bending moment diagram (Figure 5.35): 
 

1526.4 kNm 

381.5 kNm

2221.9 kNm 

1658.2 kNm 1658.2 kNm 

2221.9 kNm 

1526.4 kNm 
544.4 kNm 544.4 kNm 

1061.7 kNm 1061.7 kNm 

 
Figure 5.35 – Amplified bending moment diagram (equations (2.17)) 

 
Alternatively, according to equations (5.42), both symmetric and  
anti-symmetric modes must be amplified. The no-sway diagrams (Figure 5.36) 
are obtained from an elastic analysis considering the real loading of the 
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structure, but fixing the horizontal displacement of nodes B and D. 
 

505.3 kNm 

1035.2 kNm 

483.4 kNm483.4 kNm 

1035.2 kNm 

763.0 kNm 

271.8 kNm 271.8 kNm 

763.0 kNm 

 
Figure 5.36 – 1st order bending moment diagram, I

NSM  

 
By applying the value of the horizontal reactions to the portal frame, the 
symmetric component of the bending moment diagram is obtained, 
represented in Figure 5.37. As stated before, the anti-symmetric component 
is zero because of the symmetry of the structure and of the loading. 
 

886.8 kNm

1186.7 kNm 

1174.7 kNm1174.7 kNm 

1186.7 kNm 

763.4 kNm 

789.9 kNm 789.9 kNm 

763.4 kNm 

 
Figure 5.37 –1st order bending moment diagram, I

SM  
 

Amplifying the bending moment diagrams of Figure 5.36 and 5.37 according 
to equations (5.42) gives the results of Table 5.4 that also summarizes the 
“exact” results, for comparison. 
 

Table 5.4 – 2nd order effects 
My (kNm) Exact Eqs. 2.17 Error (%) Eqs. 5.42 Error (%) 

A 1719.57 1658.15 -3.57 1786.67 3.90 
B’ 1602.75 1526.44 -4.76 1609.97 0.45 
B 2325.31 2221.86 -4.45 2387.87 2.69 

B’’ 1162.67 1061.73 -8.68 1148.15 -1.25 
C 460.44 381.51 -17.14 478.52 3.93 

D’’ 1162.67 1061.73 -8.68 1148.15 -1.25 
D 2325.31 2221.86 -4.45 2387.87 2.69 
D’ 1602.75 1526.44 -4.76 1609.97 0.45 
E 1719.57 1658.15 -3.57 1786.67 3.90  
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c) 1st order elastic-plastic analysis 
 
The bending moment diagram that corresponds to the formation of the first 
plastic hinge is represented in Figure 5.38. Table 5.5 summarizes the values 
corresponding to the formation of each plastic hinge; the locations referred 
to in Table 5.5 are shown in Figure 5.12(a). 
 

1526.6 kNm 

381.6 kNm 

2221.9 kNm 

1650.1 kNm1650.1 kNm 

2221.9 kNm 

1526.6 kNm 
544.4 kNm 544.4 kNm 

1061.8 kNm 1061.8 kNm 

Figure 5.38 – Bending moment diagram that corresponds to the formation of the 
first plastic hinge (� =1.00), 1st order elastic-plastic analysis 

 
Table 5.5 – 1st order elastic-plastic analysis 

My (kNm) � = 1.000 � = 1.070 
A 1650.10 1612.06 
B’ 1526.56 1653.50
B 2221.92 2392.49 

B’’ 1061.76 1144.94
C 381.58 425.57 

D’’ 1061.76 1144.94 
D 2221.92 2392.49
D’ 1526.56 1653.50 
E 1650.10 1612.06 

 
 
The collapse mechanism is represented in Figure 5.39. 
 

� = 1.07 

� = 1.00 � = 1.00 

� = 1.07 

 
Figure 5.39 – Collapse mechanism and sequence of formation of the plastic hinges  

 



5.2. METHODS OF ANALYSIS 

 

_____ 
381 

Careful examination of the bending moments at sections A and E for a load 
factor �=1.00 or sections B’ and D’ for load factor �=1.07 reveals that the 
moments are, respectively, 1650 kNm and 1653 kNm instead of the plastic 
moment of the column section given earlier as 1640 kNm. This difference 
might very easily result from lack of convergence, as was discussed in 
sections 5.2.3 and 5.2.4 or from the extrapolation from the “exact” Gauss 
point results to nodal results. However, in this case, because of the presence 
of a compressive axial force, the plastic moment is modified by the  
bending-axial force plastic interaction. Secondly, it is noted that the moment 
at A and E go down between a load level of 1.00 and 1.07 because of 
unloading occurring at A and E. 
 
d.1) Elastic-plastic analysis, considering 2nd order effects in an “exact” way 
 
A 2nd order elastic-plastic analysis leads to the results represented in Figures 
5.40 and 5.41. 

 

1543.7 kNm 

441.2 kNm

2239.9 kNm 

1652.2 kNm 1652.2 kNm 

2239.9 kNm 

1543.7 kNm 
595.3 kNm 595.3 kNm 

1118.1 kNm 1118.1 kNm 

 
Figure 5.40 –Bending moment diagram that corresponds to the formation of the first 

plastic hinge (� = 0.965), 2nd order elastic-plastic analysis 
 

� = 1.020 

� = 0.965 � = 0.965 

� = 1.020 

 
Figure 5.41 – Collapse mechanism with the indication of the load factors that 

correspond to formation of the plastic hinges 
 
Table 5.6 summarizes the results for the two load levels that correspond to 
the formation of plastic hinges. Similarly to the previous case, the plastic 
moment is modified by the bending-axial force plastic interaction and 
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unloading occurs at A and E. 
 

Table 5.6 – 2nd order elastic-plastic analysis 
My (kNm) � = 0.965	 � = 1.020 

A 1652.20 1612.58
B’ 1543.71 1654.53
B 2239.91 2386.79

B’’ 1118.05 1195.33
C 441.18 485.73

D’’ 1118.05 1195.33
D 2239.91 2386.79
D’ 1543.71 1654.53
E 1652.20 1612.58  

 
d.2) Elastic-plastic analysis considering 2nd order effects in an approximate 
way (Merchant-Rankine method) 
 
From sub-section 5.2.4.4, with load amplification from equation (5.41), the 
plastic hinges are found to form as shown in Figure 5.42. Table 5.7 
compares the detailed results with the “exact” values.   
 

� = 0.925 

� = 0.865 � = 0.865 

� = 0.925 

 
Figure 5.42 – Collapse mechanism and load factors corresponding to the formation 

of the plastic hinges 
 

Table 5.7 – Approximate 2nd order elastic-plastic analysis 
 Exact Eqs. 5.41 

My 
(kNm) 

1st hinge 
(� = 0.965) 

2nd hinge 
(� = 1.020) 

1st hinge 
(� = 0.865)

Error 
(%) 

2nd hinge 
(� = 0.925)

Error 
(%) 

A 1652.20 1612.58 1646.19 -0.36 1612.06 -0.03 
B’ 1543.71 1654.53 1529.51 -0.92 1652.79 -0.11 
B 2239.91 2386.79 2226.11 -0.62 2395.84 0.38 

B’’ 1118.05 1195.33 1063.74 -4.86 1146.53 -4.08 
C 441.18 485.73 382.24 -13.36 426.41 -12.21 

D’’ 1118.05 1195.33 1063.74 -4.86 1146.53 -4.08 
D 2239.91 2386.79 2226.11 -0.62 2395.84 0.38 
D’ 1543.71 1654.53 1529.51 -0.92 1652.79 -0.11 
E 1652.20 1612.58 1646.19 -0.36 1612.06 -0.03  
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Similarly to the two previous cases, the plastic moment is modified by the 
bending-axial force plastic interaction and unloading occurs at A and E. 
Figure 5.43 shows the variation in horizontal displacement at the apex of the 
frame with load factor. A decrease of about 5% in the resistance of the frame 
is observed due to 2nd order effects. The different responses show that plastic 
analysis can result in a significant economy in terms of quantity of steel, 
when compared to an elastic analysis. 
 

0,5
0,55

0,6
0,65

0,7
0,75

0,8
0,85

0,9
0,95

1
1,05

1,1
1,15

1,2

0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

�

� (m)

Elastic-Plastic - 1st order

Elastic-Plastic - 2nd order

Elastic - 1st order

Elastic - 2nd order

 
Figure 5.43 – Load factor-horizontal displacement diagram at the apex 

 
Finally, Table 5.8 summarizes the results for all the analysis at a load factor 
� = 1, corresponding to ULS. 
 

Table 5.8 – Comparative summary of results 
 Elastic 

1st Order	
Elastic

2nd Order	
Elastic-Plastic

 1st Order 
Elastic-Plastic  

2nd Order 
 � = 1.00	 � = 1.00	
 My (kNm) My (kNm) My (kNm) N (kN) My (kNm) N (kN) 

A 1658.15 1719.57 1650.10 371.68 1613.18 357.58 
B’ 1526.44 1602.75 1526.56 365.86 1614.49 363.74 
Bcol 2221.86 2325.31 2221.92 363.55 2331.64 362.22 
Braft 617.86 636.83 
B’’ 1061.73 1162.67 1061.76 609.72 1166.23 623.40 
C 381.51 460.44 381.58 574.65 467.56 591.91 

D’’ 1061.73 1162.67 1061.76 609.72 1166.23 623.40 
Draft 2221.86 2325.31 2221.92 617.86 2331.64 636.83 
Dcol 363.55 362.22 
D’ 1526.44 1602.75 1526.56 365.86 1614.49 363.74 
E 1658.15 1719.57 1650.10 371.68 1613.18 357.58  
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e) 2nd order elastic-plastic analysis, considering both P–� and P–�-		
2nd order effects 
 
In order to explicitly include in the analysis the local bow imperfections  
(P–�	effects�, it is necessary to calculate first the equivalent horizontal 
forces, according to section 2.3.3 and Table 2.22, represented in Figure 5.44. 
 

dist
colF  dist

colF  

conc
colF  

conc
raftF  conc

colF  

conc
colF  

dist
raftF  dist

raftF  

conc
raftF  

conc
raftF  

conc
raftF  

conc
colF   

Figure 5.44 – Equivalent local bow imperfections 
 
where,  
 

82.0�dist
raftF kN/m, 76.9�conc

raftF kN, 70.1�dist
colF kN/m and 95.5�conc

colF kN. 
 
Table 5.9 compares the results of 2nd order elastic-plastic analyses with and 
without P-� effects, considered as equivalent horizontal forces. Increased 
bending moments are observed at the eaves of the frame, the collapse 
mechanism being formed for a load factor of 1.00. 
 

Table 5.9 – Comparative results for 2nd order elastic-plastic analyses 
 Elastic-Plastic 

 2nd Order (P-�) 
Elastic-Plastic 

2nd Order (P-�	and P-�) 
 � = 1.00	 � = 1.00	
 My (kNm) N (kN) My (kNm) N (kN) 

A 1613.18 357.58 1612.00 384.95 
B’ 1614.49 363.74 1646.85 363.90 
Bcol 2331.64 362.22 2364.17 360.80 
Braft 636.83 650.10 
B’’ 1166.23 623.40 1164.95 628.05 
C 467.56 591.91 420.65 597.08 

D’’ 1166.23 623.40 1164.95 628.05 
Draft 2331.64 636.83 2364.17 650.10 
Dcol 362.22 360.80 
D’ 1614.49 363.74 1646.85 363.90 
E 1613.18 357.58 1612.00 384.95  
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5.3. MEMBER STABILITY AND BUCKLING RESISTANCE 
  
5.3.1. Introduction 

 
In the context of the two-step analysis and verification procedure that 

still constitutes standard design practice for most steel structures, the 
previous sub-chapter (5.2) presented methods of analysis that provide 
realistic and adequate estimates of the design internal forces and 
displacements. The aim of the present sub-chapter is to describe the 
verification procedures for members and components that contain potential 
plastic hinges, being an essential feature of plastic design. 

The verification phase embodies all the effects that result from 
geometric non-linearities and imperfections, enabling the verification of the 
cross section resistance. The verification of the stability of members and 
components includes out-of-plane buckling. Because of the complexity of 
such verifications and potential loss of resistance and therefore economy, a 
common procedure is to prevent out-of-plane buckling by the use of 
adequate bracings. General criteria for the verification of the stability of 
members with plastic hinges, as well as rules for bracings, are presented 
below. Subsequently, the detailed procedures for the verification of the 
stability of members with plastic hinges are presented. Finally, at the end of 
this sub-chapter, the several procedures are illustrated through worked 
examples. 

 
5.3.2. General criteria for the verification of the stability of members 
with plastic hinges 

 
The verification of safety of members or components containing 

plastic hinges addresses: 
-  prismatic and non-prismatic members; 
-  the presence of bracings that restrict only some displacements or 

part of the cross section.  
 
Normally, the stability of a member is checked as a series of 

effectively braced segments, considering the internal force diagrams along 
each segment. Figure 5.45 typifies the typical situation of a prismatic column 
in a single-storey building, being designed using plastic analysis. The 
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column length shown contains one plastic hinge. Side rails and other 
components provide intermediate bracing of varying effectiveness. 
 

se
gm

en
t B

 
se

gm
en

t A
 

plastic 
hinge 

lateral and torsional 
bracing 

 
Figure 5.45 – Generic member containing one plastic hinge and bracings 
 
The verification procedure distinguishes between segments not 

containing plastic hinges (segment A), already discussed in section 3.7.3 and  
sub-chapter 4.3, and segments containing plastic hinges (segment B) that are 
discussed in section 5.3.4 below. Additionally, as already mentioned in 
section 5.1.3, plastic design requires bracing at the plastic hinge locations to 
prevent out-of-plane rotation of the plastic hinge. This issue is discussed 
next in section 5.3.3. 
 
5.3.3. Bracings 

 
In plastic design it is customary to guarantee that out-of-plane 

buckling is prevented through adequate bracing. The bracing must provide 
effective restraint to lateral displacements of the compressed flange about the 
minor axis of the cross section, and should prevent the rotation of the cross 
section about the longitudinal axis of the member. Three types of bracing 
can contribute to avoiding out-of-plane buckling: 

-  lateral bracing, which prevents transverse displacements (with 
respect to the minor axis of the cross section) of the compression 
flange; 
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-  torsional bracing, which prevents the rotation of a cross section 
around its longitudinal axis; 

-  partial bracing, of the tension flange, which, although not fully 
preventing out-of-plane buckling, is equivalent to an elastic 
support. 

 
In practical terms, bracings can be achieved using purlins and  

side-rails. Figure 5.46 illustrates typical bracing solutions: (a) lateral bracing, 
provided by a purlin bolted to the compression flange; and (b) lateral and 
torsional bracing of a member. 
 

  
        a) lateral   b) lateral and torsional 

Figure 5.46 – Typical bracing 
 
Bracing can also be achieved by a slab connected to the compression flange, 
as illustrated in Figure 5.47. In this case, the bracing is continuous along the 
member and it simultaneously prevents the transverse displacement and the 
torsional rotation of the cross section. 
 

 

 
Figure 5.47 – Typical lateral and torsional bracing of the compression flange by a slab 
 

At each rotating plastic hinge, the cross section should have effective 
lateral and torsional restraint with appropriate resistance to lateral forces and 
torsion induced by local plastic deformations of the member at this location 
(clause 6.3.5.2(1)). According to clause 6.3.5.2(2), effective restraint should 
be provided according to the following rules: 
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-  for members carrying either bending moment or bending and axial 
force, by lateral restraint to both flanges. This may be provided by 
lateral restraint to one flange and a stiff torsional restraint to the 
cross section preventing the lateral displacement of the 
compression flange relative to the tension flange, as illustrated in 
Figure 5.46b; 

-  for members carrying either bending moment alone or bending and 
axial tension in which the compression flange is in contact with a 
floor slab, by lateral and torsional restraint to the compression 
flange (e.g. by connecting it to a slab, as shown in Figure 5.47). 
For cross sections that are more slender than rolled I and H cross 
sections the distortion of the cross section should be prevented at 
the plastic hinge location (e.g. by means of a web stiffener also 
connected to the compression flange with a stiff joint from the 
compression flange into the slab).  

 
In case it is not practicable to provide effective restraint at the plastic hinge 
location, it should be placed within a distance of h/2 along the length of the 
member, where h is its overall depth at the plastic hinge location (clause 
6.3.5.2(4)). 

The design of bracing systems must satisfy the requirements of 
clauses 6.3.5.2(3) and (5), as well as the provisions in clause 5.3.3 
concerning imperfections, already presented in section 2.3.3. Firstly, the 
bracing system must resist the effects of local forces Qm applied at each 
stabilized member at the plastic hinge locations, given by: 

 

 
100

5.1 ,Edf
mm

N
Q �� , (5.43) 

 
where Nf,Ed is the axial force in the compression flange of the stabilized 
member at the plastic hinge location and �m is defined in clause 5.3.3(1) as:  
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#
$

%
&
' ��

mm
115.0� , (5.44) 

 
where m is the number of members to be restrained. In this verification all 
the external forces acting directly on the bracings should also be included 
(clause 5.3.3(5)). Secondly, at each plastic hinge location, the connection 
(e.g. bolts) of the compression flange to the resisting element at that point 
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(e.g. purlin), and any intermediate element (e.g. diagonal brace) should be 
designed to resist a local force of at least 2.5% of Nf,Ed (defined in 
6.3.5.2(5)B), transmitted by the flange in its plane and perpendicular to the 
web plane, without any combination with other loads. As a practical rule, a 
secondary member will have adequate rigidity to work as bracing as long as 
the depth of the cross section is at least 25% of the depth of the braced 
member (Salter et al., 2004). 
 
5.3.4. Verification of the stability of members with plastic hinges 

 
5.3.4.1. Introduction 

 
The verification of the stability of a segment containing plastic hinges 

requires adequate rotation capacity. This can be achieved by limiting the 
slenderness of the cross sections adjacent to the plastic hinge in order to 
avoid premature out-of-plane instability (lateral buckling). Note that the 
direct application of the methodology presented in section 3.7.3 and in  
sub-chapter 4.3 is not possible in this case, as the presence of plastic hinges 
was not contemplated in the underlying research (Horne et al., 1979). 

According to EC3, the plastic design of structures is possible if  
out-of-plane buckling is prevented (clause 6.3.5.1) through: 

-  bracings at the points where rotating plastic hinges are formed that 
fulfil the conditions described in the previous section 5.3.3; 

-  guaranteed stability of the segments adjacent to plastic hinges.  
 

This requirement can be stated in the following way: 
 

 stablesegment LL � . (5.45) 
 

This verification leads to more restrictive results than the evaluation of the 
out-of-plane stability of segments not containing plastic hinges due to the 
additional requirement of adequate rotation capacity at the cross section 
where the plastic hinge is formed. Note that it is still necessary to verify the 
in-plane stability of the member or component (equations (3.144), 
with 0.1�LT> , as for members not containing plastic hinges. 

In the particular case of prismatic segments with I or H cross section, 
in which �40�fth , subjected to a linearly varying bending moment and 
without significant axial force ( RdplEd NN .05.0� ), the stable length is given 
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by (clause 6.3.5.3(1)): 
 

 
 ��
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where, 
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.

min,�� . (5.47) 

 
Equation (5.46) is very easily applicable but, besides its restricted scope of 
application, it leads to quite conservative results. In the following  
sub-sections, more general procedures for the verification of equation (5.45) 
are presented, according to Annex BB.3. 

 
5.3.4.2. Prismatic members constituted by hot-rolled or equivalent welded I 
sections  

 
In the case of prismatic members formed of hot-rolled or 

equivalent welded I-sections, the stable length Lstable of equation (5.45) is 
given by (clause BB.3.1.1(1)): 
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where: NEd is the design value of the axial force in the member (in kN); 

iz is the radius of gyration; 
C1 is a factor that depends on the loading and on the conditions of 
support (indicated in section 3.7.3); 
A is the area of the cross section (in m2); 
Wpl,y is the plastic modulus of the section around the major axis (in 
m3); 
IT is the torsion constant (in m4); 
fy is the yield stress of steel, in MPa. 
 
This expression is valid as long as the segment is braced at the plastic 

hinge location and the other end fulfils one of the following conditions 
concerning bracings: 
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-  lateral bracing of the compression flange, with that flange is in 
compression all along the length of the segment; 

-  torsional bracing. 
 

As there are many situations in which partial bracings exist along the tension 
flange, it is possible to take advantage of that situation to achieve longer 
stable lengths. In this case, and with reference to Figure 5.48, it is necessary 
to cumulatively satisfy the following criteria:  

 
 mLL �2 ; (5.49a) 

 
 ssegment LL � , (5.49b) 

 
that is, the distance of the plastic hinge to the first bracing of the tension 
flange (L2) should be smaller than the stable length Lm defined in equation 
(5.48) and the total length of the segment should be smaller than the stable 
length Ls, as long as there is at least one intermediate partial bracing (bracing 
to the tension flange). 
 

 

L2 � Lm 

Lsegment �Ls 

plastic 
hinge 

lateral and rotational
bracing 

 
Figure 5.48 – Definition of stable length with partial bracings 

 
The stable length Ls is, in case of a uniform bending moment acting 

along the segment, given by (clause BB.3.1.2(1)): 
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where h is the depth of the cross section. In case of a bending moment with a 
linear gradient and a compressive axial force acting along the segment, Ls is 
given by (clause BB.3.1.2(2)): 
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where Cm is the modification factor for a linear moment gradient (defined in 

sub-section 5.3.4.4); 
a is the distance between the centroid of the member where the plastic 
hinge is formed and the centroid of the restraint member. 
 

Finally, in the case of a bending moment with a non-linear gradient and a 
compressive axial force acting along the segment, Ls is given by (clause 
BB.3.1.2(3)): 

 
 kns LCL � , (5.52) 

 
where Cn is the modification factor for a non-linear moment gradient 
(defined in sub-section 5.3.4.4). Note that generally Ls > Lm. 
 
5.3.4.3. Haunched or tapered members made of rolled sections or equivalent 
welded I sections  

 
In the case of haunched or tapered members made of rolled 

sections or equivalent welded I sections, the procedure is analogous to the 
previous case. The maximum stable length Lstable of equation (5.45) is given 
by (clause BB.3.2.1(1)), for a three flange haunch: 
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whereas for a two flange haunch, Lm is given by: 
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where NEd is the design value of the axial force in the member (in kN) 

iz is the minimum radius of gyration in the segment; 
C1 is a factor that depends on the loading and on the conditions of 
support (indicated in section 3.7.3);  

typl AIW 2
, is the maximum value in the segment; 

A is the cross section area (in m2) at the point where typl AIW 2
, is 

maximum for the tapered member; 
Wpl,y is the major axis plastic section modulus of the member (in m3); 
It is the torsion constant of the member (in m4); 
fy is the yield stress of steel, in MPa. 
 

These expressions are valid as long as the bracing fulfils the requirements 
given in 5.3.4.2 above for expression (5.48) to be valid. 

In case of partial bracings along the tension flange, the procedure is 
similar to that given above in 5.3.4.2, both equations (5.49) being required. 
In this case, and referring to Figures 5.49 and 5.50, the stable length Ls, in 
case of a moment with or without linear gradient and a compressive axial 
force acting along the segment, is given by (clause BB.3.2.2(1)): 

 
for a three flange haunch, 

 

 
c

LC
L kn

s � , (5.55) 
 

whereas for a two flange haunch, 
 

 
c

LC
L kn

s 85.0� , (5.56) 
 

where: Cn is the modification factor for a non-linear moment gradient 
(defined in sub-section 5.3.4.4); 
Lk is the length derived for a prismatic member with a cross section 
equal to the shallowest cross section, given by equation (5.50); 
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c is the taper factor (defined in sub-section 5.3.4.4). 
 

 

Section AA’ 

� Lm 

A A’ 

plastic 
hinge 

lateral and rotational 
bracing 

 
Figure 5.49 – Three flange haunch 

 
 
 

 

 Section AA’ 

� Lm 

A A’ 

plastic 
hinge 

lateral and rotational 
bracing 

 
Figure 5.50 – Two flange haunch 

 
Note that, according to clause 6.3.5.3(2)B, where a rotated plastic hinge 
location occurs immediately adjacent to one end of a haunch, the tapered 
segment need not be treated as a segment adjacent to a plastic hinge location 
if the following criteria are satisfied: 

-  the restraint at the plastic hinge location should be within a 
distance h/2 along the length of the tapered segment, not the 
uniform segment; 

-  the compression flange of the haunch remains elastic throughout its 
length. 
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5.3.4.4. Modification factors for moment gradients in members laterally 
restrained along the tension flange 

 
In the case of members along laterally restrained the tension flange, 

the modification factor for linear moment gradients is given by (clause 
BB.3.3.1): 
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C
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� , (5.57) 

 
where �t is is the ratio of the algebraically smaller end moment to the larger 
end moment as illustrated in Figure 5.51, and: 

 

 
�
�

201
101

0 �
�

�B ; (5.58a) 

 

 
�*

�
10

5
1

�
�B ; (5.58b) 

 

 
��* 201

5.0
1

5.0
2 �

�
�

�B , (5.58c) 

 
�	is defined as: 
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where NcrT, is given by equation (4.14) and NcrE is defined by equation 
(4.19). 
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Figure 5.51 – Value of �t 
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The modification factor for non linear moment gradients is given by 

(clause BB.3.3.2): 
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, (5.60) 

 
where the values of Ri (i = 1,...,5) are calculated at the ends, quarter points 
and mid-length of the segment and are given by: 
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a has the same meaning as in equation (5.51) and the index i denotes 5 
equally-spaced cross sections along the segment, as shown in Figure 5.52. 
 

 Rs RE 

R1 R2 R3 R4 R5 
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R2 R3 
R5 
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R4 
R1 R2 R3 

R5 

RS=RE 

R3 R4 R1 R2 
R5 

RE 

RS  
Figure 5.52 – Definition of the cross sections for a non linear moment variation 

 
Only positive values of Ri  should be included as well as only positive values 
of (RS – RE). RE is the greater of R1 or R5 and RS is the maximum value of Ri 
anywhere in the length L. 

The taper factor is given by (clause BB.3.3.3), for tapered members or 
segments (Figure 5.53a): 
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whereas for haunched members or segments (Figure 5.53b or c): 
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where, according to Figure 5.53: 
 hh is the additional (vertical) depth of the haunch or taper; 

hmax is the maximum depth of cross section within the length Ly; 
hmin is the minimum depth of cross section within the length Ly; 
hs is the vertical depth of the un-haunched section; 
Lh is the length of haunch within the length Ly; 
Ly is the length between points at which the compression flange is 
laterally restrained. 
 

The quotient h/tf must be calculated for the cross section with the shallowest 
depth. Note that equations (5.62) and (5.63) are only valid for members with 
prismatic flanges for which bh 2.1
  and 20
fth  (clause BB.3.3.3(1)B). 

 

Ly 

 restriction 

hmax 

hmin 

Ly 

Lhhs

Ly hh

Lhhs 

hh 

 
a) tapered segment b) haunched segment c) haunched segment  

Figure 5.53 – Dimensions for the definition of the taper factor 
 
 
 

5.3.5. Worked Examples 
 
Example 5.2: Consider the rafter in Figure 5.54a (S 355 steel), subject to the 
design internal force diagrams indicated in Figure 5.54b. These forces are 
already factored and include the P-�	and P�� 2nd order effects. Assume that 
the purlins consist of Z sections with a depth of 200 mm, connected to the 
top flange of the rafter by a connection with two bolts and with the layout 
indicated in Figure 5.54. Verify the safety of the rafter. 
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23.68 m 
8 @ 2.20 m 

2 @ 2.25 m 
1.50 m 
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IPE 600 
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B’’ 
C 

3 @ 1.50 m  1.80 m 

B3 B2 B1 

0.8 m 

1.
20

 m
 

 
a) Detail of the rafter 

- 2364.17 

- 1164.95 

+ 420.65
B B’’ 

C 

M(x) = – 7.76x2 + 301.43x – 2364.17 

X C’ 

x 

 
b1) Bending moment diagram 

- 650.10 - 628.05 - 597.08 

B B’’ 

C 

NB’’C(x) = 1.61x – 635.32 

x 

NBB’’(x) = 4.90x – 650.10  
b2) Axial force diagram 

Figure 5.54 – Rafter 
_______________________________ 
 
The relevant geometrical properties of the cross section with the shallowest 
depth (IPE 600) are as follows: A = 156.0 cm2, Avz = 83.78 cm2, h = 600 mm, 
b = 220 mm, tw = 12 mm, tf = 19 mm, Iy = 92080 cm4, iy = 24.3 cm,  
Wel,y = 3069 cm3, Wpl,y = 3512 cm3, Iz = 3387 cm4, iz = 4.66 cm,  
Wel,z = 307.9 cm3, Wpl,z = 485.6 cm3, IT = 165.4 cm4 and IW = 2846x103 cm6. 
Note also that an IPE 600 is a class 1 cross section in pure bending.  
For the internal force diagrams of Figure 5.54b, the rafter does not contain 
any plastic hinge (as RdyplEdy MM ,,, � ), and so its stability should be 

verified according to sub-chapter 4.3. Examination of the bending moment 
diagram shows that the compression flange is laterally restrained between 
points X and C, whereas between points B and X the lateral bracing is only 
partial, provided by the connection of the purlins to the tension flange. 
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Also note that for rafters, according to Salter et al. (2004), the point of zero 
moment X (x = 10.91 m) can be assumed as a virtually braced section, as the 
following conditions are verified: i) the rafter is an IPE (IPE 600); ii) the 
connections between the purlins and the rafter have at least two bolts and  
iii) the depth of the purlin is greater than 25% of the depth of the rafter 

 �mm 15.06.025.02.0 �!� . 

 
i) Verification of the in-plane stability  
 
According to King (2001b), in pitched-roof portal frames, the rafters resist: 
i) a relatively low compressive axial force and ii) relatively high bending 
moments. The latter occur far from the mid-span of the member where the 
amplification of the moment by the axial force is maximum, so the 
verification of in-plane buckling is not critical. Besides, because the forces 
presented in Figure 5.54b correspond to the results of the analysis already 
considering the P–� and P–�	2nd order effects (see example 5.1, case e), it is 
only necessary to check the cross sectional resistance. 
The classification of the cross sections must be done in bending and axial 
force, leading to the results in Table 5.10.  
 

Table 5.10 – Classification of the cross sections 
 B B’’ C’ C 

M y,Ed (kNm) 2364.17 1164.95 561.88 420.65 

N Ed (kN) 650.10 628.05 604.07 597.08 

Classification Class 3 Class 2 Class 2 Class 2 
 

 
Cross section B is class 3 because of the web, whereas the flanges are class 1; 
so, according to clause 5.5.2(11), the cross section can be classified as class 2, 
as long as an effective cross section is considered. The calculation of the 
effective cross section implies an iterative procedure according to clause 
6.2.2.4; however, in this example the plastic neutral axis of the effective cross 
section is assumed to be located at the level of the intermediate flange. Hence, 
the effective cross section is represented in Figure 5.55. Neglecting the 
contribution of the intermediate flange gives Aeff = 205 cm2 and  
Weff,pl,y = 8257 cm3, and therefore Mpl,y,Rd = 2931.10 kNm. The verification of 
the cross section resistance of cross section B using equations (3.129) leads to: 
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a
nMM RdyplRdyN 5.01

1
,,,, �

�
�  = 3542.75 kN,  

 
however, as MN,y,Rd > Mpl,y,Rd then, M N,y,Rd = M pl,y,Rd = 2931.10 kN. 
 

20�tw 

20�tw 

tw 

 
Figure 5.55 – Effective class 2 cross section 

 
Table 5.11 summarizes the results for the other critical cross sections. 
 

Table 5.11 – Cross section resistance 
 B B’’ C’ C 

M N,y,Rd (kNm) 2931.10 1246.76 1246.76 1246.76 
 

 
ii) Verification of the out-of-plane stability 
 
The verification of the out of plane stability can take advantage of the partial 
bracing provided by the purlins. Between points B and X, the purlins prevent 
lateral displacements of the tension flange only, so that it is necessary to 
restrain the compression flange. Adopting the bracing positions detailed in 
Figure 5.54a, six distinct segments must be considered: BB1, B1B2, B2B’’, 
B’’B3, B3X and XC, with lengths mLLL BB

t
BB

t
BB
t  50.1

''
2211 ��� , 

mL BB
t  80.13

''

� , mL XB
t  61.43 �  and mLXC

t  77.12� , respectively. 
Considering firstly the segment between points B and B1, in which there are 
partial bracings to the tension flange and the segment is tapered with a 
varying depth between 1.20 m and 1.00 m, it is necessary, first, to determine 
the elastic critical loads for the compression force in a bending mode and in 
a torsional mode. Equations (4.19), (4.15) and (4.14) give, successively 
(considering the properties of the shallowest cross section): 
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Next, the critical moment is calculated through equations (4.16) and (4.17). 
The elastic critical moment for lateral-torsional buckling for a uniform 
bending moment and standard bracing conditions (equation (4.16)) is given 
by: 
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The elastic critical moment for the applied loading (non linear variation of 
bending moment) implies the subdivision of the segment into 4 sections of 
equal length, such as indicated in Figure 5.56, 
 

1.50 m B B1 

R1

R2 
R3 

R4 R5 

 
Figure 5.56 – Bending moment diagram in segment BB1 

 
and the determination of the applied bending moments and the bending 
resistance at those sections, summarized in Table 5.12. 
 

Table 5.12 – Applied bending moments and bending resistance 
 R1 R2 R3 R4 R5 

My,Edi 2364.20 2252.20 2142.50 2034.90 1929.50 

Mc,Rdi 2931.10 2807.55 2686.34 2567.45 2441.30 
My,Edi/Mc,Rdi 0.807 0.802 0.798 0.793 0.790 
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Equations (4.20) and (4.21) lead to: 
 

005.0807.0802.0
.

,

.

, ����""
#

$
%%
&

'
��

RdEc

EdEy

RdSc

EdSy
SE M

M
M
M

L , 

 
but as LSE < 0, this term is neglected. 
 

%%
&

'
����"

"
#

$
%
%
&

'
�

4.

4,

3.

3,

2.

2,

1.

1,

min,

. 343
12
1

Rdc

Edy

Rdc

Edy

Rdc

Edy

Rdc

Edy

Edy

Rdc
t M

M
M
M

M
M

M
M

M
M

m  

989.0
5.

5, �""
#

$
�

Rdc

Edy

M
M

. 

 
From Table 4.7, by interpolation, c = c0 = 1.015 , leading to: 
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The lateral-torsional buckling resistance of the rafter is verified according to 
clause 6.3.2, with mLBB

t  50.11 �  and kNmM BB
cr  10.154411 � . Hence: 

 

44.0,, �
!

�
cr

yypleff
LT

M
fW

(  , 91.0�LT> ; 

 
, kNmkNmfWM MyypleffypleffLTRdb  20.2364 16.26721,,,,, ��!!� �> . 
 
Table 5.13 summarizes the verification of the lateral-torsional buckling 
resistance for the other segments. 
 

Table 5.13 – Verification of the lateral-torsional buckling resistance 

 Lt NcrT Mcr0 Mcr (LT >LT	 Mb,Rd	 MEd /Mb,Rd	

B1B2 1.50 36125.2 12686.7 12585.0 0.45 0.91 2289.0 0.84 
B2B’’ 1.50 35023.0 9684.1 10313.9 0.42 0.92 1690.2 0.91 
B’’B3 1.80 24506.1 6776.1 8182.9 0.39 1.00 1246.9 0.93 
B3X 4.61 4248.0 1174.6 2542.1 0.70 0.78 977.0 0.79  

 
The flexural buckling resistance of the rafter is given by:  
 

1.. / MyeffzzRdb fAN �>� .   (5.64) 
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However, since NEd/Ncr < 0.04 (clause 6.3.1.2(4)), flexural buckling can be 
neglected. The same condition applies for segments BB1, B1B2, B2B’’ and 
B’’B3 . For segment B3X, NEd/Ncr > 0.04, so that 
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kNkNfAN MyzzRdb  93.632 04.23781.. ��!!� �> . 

 
In this case, the buckling resistance considering the combined effect of 
bending and axial force (equation (3.144b)), with kzy = 0.92, yields: 
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For segment XC the situation is simpler, as the purlins provide total bracing 
and it is only required to check the out-of-plane stability between purlins 
( mLBX

Ez  2.2, � ). The maximum moment Mmax = 561.88 kNm, occurs at  

x = 19.41 m, between purlins P9 (x = 17.7 m) and P10 (x =19.9 m). Then, 
considering the sub-segment between purlins P9 and P10, application of 
equations (4.19), (4.16) and (4.17) leads to: 
 
NcrT = 16604.5 kN; Mcr0 = 4591.27 kNm; Mcr = 4635.30 kNm 
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Similarly, the flexural buckling resistance of the sub-segment is given by: 
 

62.0�Z( , 83.0�z> , 
 

kNkNfAN MyzzRdb  93.610 99.45841.. ��!!� �> . 
 
Finally, the buckling resistance considering the combined effect of bending 
and axial force, with kzy = 0.99, is obtained from: 
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_____________________________________________________________ 
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Example 5.3: Consider the column in Figure 5.57 (steel grade S355), 
subject to the design forces shown; these are already factored. Verify the 
safety of the column. 
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Figure 5.57 – Detail of the column 

_______________________________ 
 
The relevant geometrical properties of the cross section (HEA 550) are the 
following: A = 211.8 cm2, Avz = 83.72 cm2, h = 540 mm, b = 300 mm,  
tw = 12.5 mm, tf = 24 mm, Iy = 111900 cm4, iy = 22.99 cm, Wel,y = 4146 cm3, 
Wpl,y = 4622 cm3, Iz = 10820 cm4, iz = 7.15 cm, Wel,z = 721.3 cm3,  
Wpl,z = 1107 cm3, IT = 351.5 cm4 and IW = 7189x103 cm6. Also note that a 
HEA 550 is a class 1 cross section in pure bending. According to the internal 
force diagrams of Figure 5.57 (see example 5.1), the column contains two 
plastic hinges, one at each end of the member, and so its stability should be 
verified according to section 5.3.4. Examination of the bending moment 
diagram shows that the compression flange is braced by S4 between points A 
and X, whereas between points X and B’ the lateral bracing is only partial, 
provided by the connection of the side-rails to the tension flange.  
The verification of the in-plane stability is performed using equations 
(3.144), with >LT =1. As the column cross section is class 1, �My,Ed = 0. 
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However, for both equations, NEd/Ncr < 0.04, and so it is not necessary to 
check the in-plane buckling resistance of the column, but only the cross 
sectional resistance. Application of equations (3.129) gives: at cross section 
A: M N,y,Rd = M pl,y,Rd = 1640.81 kNm; and at cross section B’: 
M N,y,Rd = M pl,y,Rd = 1640.81 kNm. 
The verification of the out-of-plane stability can take advantage of the partial 
bracing provided by the side-rails, according to equations (5.49). 
Specifically, 
 

mLmL ��  50.22 ; 
 

ssegment LmL ��  10.6 . 
 
where Lm and Ls are given by equations (5.48) and (5.51), respectively. 
Equation (5.48) gives: 
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For the calculation of Ls, it is first necessary to determine Cm; applying 
equations (4.19), (4.16), (4.17), (5.59) and (5.58) in succession gives: 
 

; 8.6026
1.6

101082010210
2

862

2

2

kN
L
EIN
t

z
crE �

!!!!
��

�**  

 
; 19493715.799.22 22222222 cmaiii zys �������  

 



5. PLASTIC DESIGN OF STEEL STRUCTURES 

 

_____
406

 

�"
"
#

$
%
%
&

'
��� t

t

w

t

z

s
crT GI

L
EI

L
aEI

i
N 2

2

2

22

2
1 **  


 ��!�!!
!!

� �� 928
2

62

10718937.01010820
1.6

10210
1949.0
1 *  

kN 8.7745
1949.0

105.3511077.80 86

�
!!!

�
�

; 
 

78.0
8.8411
4.6666

���
crT

crE

N
N� ; 

 

530.0
79.0201
79.0101

201
101

0 �
!�
!�

�
�
�

�
�
�B ; 

 

369.0
79.010

79.05
10

5
1 �

�
�

�
�

*�*

�
B ; 

 

102.0
79.0201

5.0
79.01

5.0
201
5.0

1
5.0

2 �
!�

�
�

�
�

�
�

�
*��*

B . 

 
According to Figure 5.51, 
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and, from equation (5.57), 
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From expression (5.50), 
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Finally, from equation (5.51), 
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Note that the use of equation (5.46) would lead to the more conservative 
result of mmLstable  10.6 49.3 ��  so that this calculation would show the 
structural arrangement to be inadequate. Also, with %5%8.4, ��RdplEd NN  
and 4065.27 ��fth � , the use of equation (5.46) is at the limit of the scope 

of application. 
 
 
5.4. DESIGN EXAMPLE 2: PLASTIC DESIGN OF INDUSTRIAL 
BUILDING 
 
5.4.1. Introduction  
 
The plastic design of a typical single-span pitched-roof portal frame 
industrial building is presented in this design example. This is a type of 
structure that is particularly suitable for the application of plastic analysis 
and well illustrates all the aspects presented in this chapter. The design 
example focuses only on the design of a representative transverse frame as a 
plane frame. The design of secondary members such as sheeting, purlins and 
side-rails and the longitudinal stability of the building are not treated in this 
example. 
In the presentation of this example, the following design sequence is 
adopted: 
 • General description, where the geometrical requirements for the 

structure are established. 
 • Quantification of actions, load combinations and general safety 

criteria, where the self-weight of the structure is estimated and all the 
other permanent actions, imposed loads, snow, wind and temperature 
actions are quantified. 

 • Pre-design, where the dimensions of the structural members are 
defined and the details are presented. 
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 • Structural analysis, where the various relevant analyses are presented 
in detail, with a particular emphasis on plastic analysis of the structure. 

 • Code checks, where the normative requirements of EN 1993-1-1 are 
thoroughly verified. 

 • Synthesis, where the design results are summarized and a summary 
of the bill of quantities is presented. 

 
5.4.2. General description  
 
The industrial building is 140 m long, has a span (centre to centre) of 47 m, a 
height of 7 m, a rafter slope of �	= 7º and a spacing between frames of 7.5 m, 
as illustrated in Figure 5.58. The steel cross sections consist of hot-rolled  
I-sections. 
 

23.5 m 23.5 m 

2.88 m 

7 m 

47.0 m 

7o 7o 

 
Figure 5.58 – Portal frame 

 
The rafters include 4.5 m long eaves haunches and 1.5 m long haunches 
close to the apex connection. The column bases are assumed rigid and  
full-strength. The steel used is S355J2 according to EN 10025-2 (2002). The 
building is located at an altitude of 610 m. Assume a basic wind velocity of 
vb,0 = 37.27 m/s. 
 
5.4.3. Quantification of actions, load combinations and general safety 
criteria 
 
5.4.3.1. General criteria 
 

The quantification of the actions and their combinations was made 
according to EN 1990 (2002), EN 1991-1-1 (2002), EN 1991-1-3 (2003) and 
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EN 1991-1-4 (CEN, 2005e), considering the permanent actions that 
correspond to the self-weight of the structure and non-structural members, 
the variable actions corresponding to imposed loads, snow and wind and the 
imperfections. 
 
5.4.3.2. Permanent actions 
 

In quantifying the permanent actions, not only is the self-weight of 
structural members considered, but also the self-weight of the purlins and 
that of the roof sheeting, which are estimated as 0.35 kN/m2. Additionally, a 
permanent action that corresponds to permanent suspended equipment with a 
value of 0.25 kN/m2 is also considered. For each frame, considering the 
spacing of 7.5m, a total value of 4.5 kN/m is obtained. 

 
5.4.3.3. Imposed loads 
 

The imposed load on the roof is given according to EN 1991-1-1. 
Considering that the roof is not accessible, except for repairing/maintenance 
operations (H category), the characteristic value of the uniformly distributed 
imposed load qk, (defined in the National Annexes), must be between  
0.0 kN/m2 and 1.0 kN/m2, in horizontal plan (clause 6.3.4.2). In this case, 
taking a value of qk = 0.5 kN/m2, and considering the spacing between frames 
of 7.5 m, a total value of 3.75 kN/m is obtained. 
 
5.4.3.4. Snow loads 
 

According to EN 1991-1-3, the quantification of the snow action is 
given by (clause 5.2.): 
 
 kte SCCS !!!� 1L , (5.65) 
 
where 
1 is the snow load shape coefficient, Ce is the exposure coefficient, Ct 
is the thermal coefficient and Sk is the characteristic value of the snow 
action, at the level of the ground, for a given location. For the Iberian 
Peninsula, Sk is given by: 
 

 
2
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1)209.0498.0( AZSk , (5.66) 
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where Z is a coefficient that depends on the location of the building and A is 
the altitude above the sea level (in metres). In this case, 
1 = 0.8 
 (since 0º < �	< 30º); Ce = 1.0; Ct = 1.0; Z = 1.0 and as A = 610 m,  
S = 0.65 kN/m2 in horizontal plan. Considering the distance between frames 
of 7.5 m, a total value of 4.875 kN/m is obtained. 
 
5.4.3.5. Wind loads 
 
The quantification of wind forces in the building is made according to  
EN 1991-1-4. According to clause 5.3(3), the wind forces are calculated by 
the vectorial summation of external forces, Fw,e, and internal forces, Fw,i, 
given by expressions (5.267),  
 
 ref

surfaces
edsew AWccF !!� +, , (5.67a) 

 
and 
 
 ref

surfaces
iiw AWF !� +, , (5.67b) 

 
where cscd is the structural factor, Aref is the reference area of the individual 
surface, and We and Wi are the external and internal pressures on the 
individual surface at reference heights ze and zi, for external and internal 
pressures respectively, given by the following expressions: 
 
 peepe czqW !� )( , (5.68a) 
 
and 
 
 piipi czqW !� )( , (5.68b) 
 
qp(z) is the peak velocity pressure, and cpe and cpi are the pressure 
coefficients for the external and internal pressures, respectively. 
The structural factor (cscd) is given by clause 6.2(1), and in case of buildings 
with a height lower than 15 m this coefficient can be taken as 1 (clause 
6.2(1)). 
 
i) Calculation of the peak velocity pressure of the wind (qp(z)) 
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The peak velocity pressure of the wind is given by (clause 4.5 and 
expression (4.8)): 
  
 bep qzczq !� )()( , (5.69) 
 
where ce(z) is the exposure factor and qb is the basic velocity pressure of 
wind, given by:  

 2

2
1

bb v�q !� , (5.70) 
 
in which � is the density of the wind air (recommended value of 1.25 kg/m3) 
and vb is the basic wind velocity. The latter is calculated according to clause 
4.2 and expression (4.1) of EN 1991-1-4: 
 
 0,bseasondirb vccv !!� , (5.71) 
 
where cdir and cseason are directional and season factors, respectively, which 
may be given by the National Annexes. The recommended value, for each 
case, is 1. The fundamental value of the basic wind velocity, vb,0, is also 
given in the National Annexes and in this case, it is given as vb,0 = 37.27 m/s 
for this location. Expression (4.32) gives vb = vb,0 = 37.27 m/s. The basic 
velocity pressure follows from expression (5.70)4, 
 

qb = 0.87 kN/m2. 
 
The exposure factor ce(z) is function of the terrain category and the height 
above the terrain, z. Since z = 7 m, considering a flat terrain where  
c0(z) = 1.0 (clause 4.3.3) and terrain category II (area with low vegetation 
such as grass and isolated obstacles (trees, buildings) with separations of at 
least 20 obstacle heights), the value of ce(z) can be taken from Figure 4.2 of 
EN 1991-1-4 as ce(z) = 2.1.  
Finally, from expression (5.69), the peak velocity pressure is given by  
qp(z) = 1.827 kN/m2. 
 
ii) Calculation of the external pressure coefficients (cpe)  
External pressure coefficients change according to the direction of the wind 
and the area of the wall or roof, as illustrated in Figures 5.59 and 5.60.  

                                                      
4 1 N = 1 kg.m/s2 
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Figure 5.59 – Pressure zones on the walls 
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Figure 5.60 – Pressure zones on the roof 

 
The external pressure coefficients (clause 7.2.2) depend on the relation 
between the height, h, of the building and the length, b. In this case, with  
h = 7 m < b = 140 m, the reference height ze is equal to h and, as the ratio 
between the height of the building and the width, d = L = 47 m, h/d � 0.25, 
the pressure coefficients indicated in Table 5.14 are obtained: 
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Table 5.14 – External pressure coefficients on the walls (cpe) 

 A B C D E 
cpe -1.20 -0.80 -0.50 +0.70 -0.30 

 
 
The external pressure coefficients on the roof are given by clause 7.2.5 and 
depend on the slope	�- of the roof. For a slope of 7°, the pressure 
coefficients are obtained by interpolation and are indicated in Table 5.15 for 
the transverse wind direction ()	�		0°) and for the longitudinal wind 
direction ()	�	90°): 

 
Table 5.15 – External pressure coefficients on the roof (cpe) 

�	�	7° F G H I J 

)	�	0° -1.54/0.04 -1.12/0.04 -0.54/0.04 -0.56/-0.48 -0.04/-0.48 

)	�	90° -1.54 -1.30 -0.68 -0.58 -  
 
From Table 5.15, there are two possible situations for transverse wind, 
which are represented in Figure 5.61 (a1 and a2). For the longitudinal wind, 
consider a current frame in zone I (b). 
 
The internal pressure coefficients (cpi) depend on the dimensions of the 
openings in the building and on the distribution of those openings along the 
building. Assuming a uniform distribution of the openings, according to 
clause 7.2.9, we can assume for the value of cpi, and for any direction of the 
wind, the most unfavourable situation between the value of +0.2 and –0.3. 
The external and internal pressures must act simultaneously. From the 
analysis of the previous coefficients the most unfavourable situation is 
considered for each direction of the wind, leading to the final coefficients 
given in Figure 5.62.  
 
iii) Calculation of wind forces 
 
These coefficients lead to the forces represented in Figure 5.63, for both 
wind directions, calculated from expressions (5.68) and (5.67): 
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0.30 0.70 

0.70 0.30 

(a1) 

(a2) 

0.50 

(b) 

0.50 

0.58 0.58 

0.04 0.48 

0.56 
0.54 0.04 

1.12 

e/10 

e/10 

 
Figure 5.61 – External pressure coefficients on the walls and roofs: (a) wind in 

transverse direction (
 = 0°); (b) wind in longitudinal direction (
 = 90°). 

0.50 

0.16 0.68 

(a) 

0.50 

 

0.70 

0.78 0.78 

(b) 

0.70 

 
Figure 5.62 – Final pressure coefficients: (a) wind in transverse direction (
 = 0°); 

(b) wind in longitudinal direction (
 = 90°) 
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6.85 kN/m 6.85 kN/m 

2.19 kN/m 9.32 kN/m 

(a) 
 

9.59 kN/m 

10.69 kN/m 

(b) 

10.69 kN/m 

9.59 kN/m 

 
Figure 5.63 – Wind force: (a) in transverse direction (
 = 0°); (b) in longitudinal 

direction (
 = 90°) 
 
5.4.3.6. Summary of basic actions 
 
The resulting actions for this design example are summarized in Table 5.16. 
 

Table 5.16 – Summary of actions 
Action no. Description Type Value 

LC1 Self-weight of 
structural elements 

Permanent 
action 

p = 4.5 kN/m 

LC2 Imposed load on roof Variable 
action 

qk = 3.750 kN/m 

LC3 Snow load Variable 
action 

qk  = 4.875 kN/m 

LC4 Wind direction 
 = 0o Variable 
action 

varies (see 
Figure 5.63a) 

LC5 Wind direction 
 = 90o Variable 
action 

varies (see 
Figure 5.63b)  

 
5.4.3.7. Imperfections 
 

The global imperfections are considered as equivalent horizontal 
forces. From expression (2.18), with �0 = 1/200, �h = 0.756 and �m = 0.866, 
� = 0.003273. Hence, Fi = 0.30 kN for loadcase 1 (LC1). The equivalent 
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horizontal forces are applied at the top of the columns in the most 
unfavourable direction. Table 5.17 summarizes the imperfections for the 
remaining loadcases.  

 
Table 5.17 – Values of imperfections by loading 

 LC2 LC3 LC4 LC5 
Fi (kN) 0.22 0.32 0.45 0.65  

 
5.4.3.8. Load combinations 
 

The design values of the applied forces are obtained from the 
fundamental combinations, given by (EN 1990, 2002): 
 

 ik,iQ,i

n

ik,Q,gk,jG,jd Q��
Q�P�G�E ,0211 !!�!�!�!�
�

. (5.72) 
 
The values of �G,j and �g are taken as 1.35 or 1.0 for the unfavourable or 
favourable permanent actions, respectively. In case of variable actions, �Q,i is 
always taken as 1.5. Reduced values of variable actions are obtained by 
multiplying the characteristic values by the corresponding reduction 
coefficients, �0,i. In case of an imposed load on a roof, the reduction 
coefficients are �0,i = 0. For snow, considering the altitude H � 1000 in CEN 
Member States (except Finland, Iceland, Norway and Sweden), the reduction 
coefficients are �0 =0.5, �1 =0.2 and �2 =0.0. In case of wind the reduction 
coefficients are: �0 =0.6, �1 =0.2 and �2 =0.0. As the imposed and the snow 
loads have the same direction, only the imposed load will be used as the 
leading variable action, because it is more unfavourable. In this case, three 
leading variable actions are considered: imposed load (Qimposed), transverse 
wind (Qwind,tranv.) and longitudinal wind (Qwind,long.), leading to three 
fundamental combinations. According to EN 1990: 
 
Combination 1 – Imposed load as leading variable action 
In this case, because the longitudinal or the transverse wind pressures are 
favourable for this combination, the corresponding reduced values are zero: 
 
 Ed1 = 1.35 x P + G UK x Qimposed + G UK x	K UK x Qsnow . (5.73) 
 
Combination 2 – Transverse wind as leading variable action 
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In this case, as the permanent actions have a favourable effect, �G = 1.0: 
 
 Ed2 = G KK x P + G UK x Qwind,tranv . (5.74) 
 
Combination 3 – Longitudinal wind as leading variable action 
 
Also in this case, the permanent actions have a favourable effect, �G = 1.0: 
 
 Ed3 = G KK x P + G UK x Qwind,long . (5.75) 
 
Figures 5.64 to 5.66 illustrate the three load combinations. 
 

p = 6.075 kN/m 

q = 9.56 kN/m 

 
Figure 5.64 – Load combination 1 

 

qw,tran = 10.30 kN/m qw,tran =10.30 kN/m 

qw,tran = 3.30 kN/m qw,tran = 14.00 kN/m 

p = 4.50 kN/m p = 4.50 kN/m 

  
Figure 5.65 – Load combination 2 
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qw,long = 14.39 kN/m qw,long = 14.39 kN/m 

qw,long = 16.04 kN/m qw,long = 16.04 kN/m 

p = 4.50 kN/m p = 4.50 kN/m 

 
Figure 5.66 – Load combination 3 

 
Additionally, a load combination 4 for the verification of the serviceability 
limit states (SLS) is also considered: 
 
 Ed4 = G K x P + G K x Qimposed . (5.76) 
 
5.4.4. Pre-design 
 

The pre-design follows the methodology presented in section 5.2.2. 
Firstly, only load combinations 1 and 2 need to be considered as, by 
inspection, combination 3 is less severe than combination 2. In addition, the 
following assumptions are made: 

- the plastic moment of the column, Mp.col, is 1.32 times the plastic 
moment at the rafter, Mp.raft (arbitrary choice, corresponding to usual ratios 
between plastic moment of the column and rafter, respectively); 

- the haunch at the eaves connection has a length (a1) of 4.5 m and a 
depth (b1) of 1.2 m, see Figure 5.12; 

- the haunch at the apex connection has a total length (2 x a3) of 3.0 m 
and a depth (b3) of 0.80 m, see Figure 5.12. 

Considering first load combination 1 (without imperfections), the 
resulting factored vertical loads are (see Figure 5.14): 
 
 BC

yp  = CD
yp  = 15.40 kN/m.  

 
Introducing these values in equations (5.14) leads to the bending moment 
diagram of Figure 5.67. 
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1416.1 kNm 

1416.1 kNm1416.1 kNm 

1416.1 kNm 
944.1 kNm 944.1 kNm 

 
Figure 5.67 – Diagram of collapse moments 

 
The minimum plastic moments for the columns and rafters are, respectively, 
Mp.col, = 1416.1 kNm and Mp.raft, = 944.1 kNm, leading to the selection of 
HEA 550 and IPE 600 cross sections in S355 steel for the columns and 
rafters, respectively. 

Similarly, for load combination 2 (without imperfections), the 
resulting factored member loads (expressions (5.20)) are: 
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Introducing these values in equations (5.21) and solving for the load factor, gives: 
 

 

B
B
�

B
B
�

�

��
��
��

�

kNH
kNV

kNmM
p

9.790
0.542

1247
87.8�

,  

 
so this combination is not critical. 

Note that, for both combinations, the axial force is very low (< 5% of 
Npl), so that the bending and axial force plastic interaction is negligible. 

For a simplified assessment of 2nd order effects, expressions (5.34) to 
(5.39) are first evaluated to provide the lowest elastic critical loads for the 
symmetric and anti-symmetric modes, for load combination 1: 
 
 �cr

1 =7.98  
 �cr

2 =8.73  
 
The 2nd order effects can be accounted for as described in sub-section 5.2.4.4. 
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Amplifying the 1st order bending moments according to expression (5.41), 
 
 ,

98.7
11

1
III MM

�

"
#
$

%
&
' ��   

 
and solving again equations (5.21), now with respect to the load factor, yields: 
 
 .0.104.1 ��II

p�   
 
Table 5.18 summarizes the plastic resistances of the chosen cross sections.  
 

Table 5.18 – Plastic resistance of the cross sections 
Cross section A (m2) Wpl,y (m3) Mpl,y (kNm) Npl  (kN) Vpl  (kN) 

HEA 550 211.8E-4 4622E-6 1640.8 7518.9 1715.9 
IPE 600 156E-4 3512E-6 1246.8 5538.0 1717.1 

 
Having pre-designed the cross sections, it is necessary to detail the positioning 
of the purlins, side-rails, lateral and torsional bracings and connections.  
Figure 5.68 illustrates the detailing of column AB and rafter BC. 
 

23.68 m 
8 @ 2.20 m 

2 @ 2.25 m 
1.50 m 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

IPE 600 
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Figure 5.68 – Detailing of column AB, rafter BC and position of additional effective restraints 



5.4. DESIGN EXAMPLE 2: PLASTIC DESIGN OF INDUSTRIAL BUILDING  

 

_____ 
421 

 
5.4.5. Structural analysis 
 
5.4.5.1. Linear elastic analysis 
 

Linear elastic analysis is carried out initially for the ULS load 
combinations to provide a reference solution and preclude gross errors. The 
three load combinations defined for the ultimate limit states (ULS), as well 
as the load combination for the serviceability limit state (SLS), lead to the  
1st order elastic bending moment diagrams of Figures 5.69 to 5.72  
(see example 5.1 for detailed results of the several types of analysis for load 
combination 1) 
 

1526.4 kNm 

381.5 kNm 

2221.9 kNm 

1658.15 kNm1658.15 kNm

2221.9 kNm 

1526.4 kNm 
544.4 kNm 544.4 kNm 

1061.7 kNm 1061.7 kNm 

 
Figure 5.69 – Bending moment diagram (LEA) for C1 

 

623.2 kNm 

83.8 kNm 

777.9 kNm 

103.6 kNm 960.3 kNm 

385.8 kNm 
178.6 kNm 

199.1 kNm 346.5 kNm 

 
Figure 5.70 – Bending moment diagram (LEA) for C2 

 

1069.0 kNm 

218.5 kNm 

1597.1 kNm 

1085.2 kNm 1085.2 kNm 

1597.1 kNm 
1069.0 kNm 747.0 kNm 747.0 kNm 

 
Figure 5.71 – Bending moment diagram (LEA) for C3 
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1062.7 kNm 

1154.5 kNm1154.5 kNm 

1062.7 kNm 
379.1 kNm 379.1 kNm 

1546.8 kNm 1546.8 kNm 
739.2 kNm 739.2 kNm 

265.8 kNm 

 
Figure 5.72 – Diagram of bending moments (LEA) for C4 

 
Similarly, Figures 5.73 to 5.76 represent the deformations for the four load 
combinations. 
 
 

0.35 m 

 
Figure 5.73 – Displacements (LEA) for C1 

 

0.10 m 
0.03 m 0.05 m 

 
Figure 5.74 – Displacements (LEA) for C2 

 
0.24 m 

 
Figure 5.75 – Displacements (LEA) for C3 
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0.25 m 

 
Figure 5.76 – Displacements (LEA) for C4 

 
Table 5.19 summarizes the results for all load combinations and relevant 
cross section locations:  
 

Table 5.19 – Results from the 1st order elastic analyses 
 Combination 1 Combination 2 Combination 3 Combination 4 

My Nx My Nx My Nx My �	
(kNm) (kN) (kNm) (kN) (kNm) (kN) (kNm) (mm) 

A 1658.2 378.8 960.3 11.2 1085.2 255.2 1154.5 0 
B’ 1526.4 366.7 178.6 23.4 1069.0 267.3 1062.7 26.7 
Bcol 2221.9 363.6 385.8 26.5 1597.1 270.4 1546.8 27.3 Braft 617.9 168.4 478.7
B’’ 1061.7 609.8 346.5 170.8 747.0 481.1 739.2 30.1 
CB’’ 381.5 574.7 83.8 181.1 218.5 491.4 265.8 246 CD’’ 574.7 167.6 491.4 
D’’ 1061.7 609.8 199.1 157.3 747.0 481.1 739.2 30.1 
Draft 2221.9 617.9 777.9 154.9 1597.1 478.7 1546.8 27.3 Dcol 363.6 167.0 270.4 
D’ 1526.4 366.7 623.2 163.9 1069.0 267.3 1062.7 26.7 
E 1658.2 378.8 103.6 151.8 1085.2 255.2 1154.5 0 

 
Table 5.19 shows that on the basis of elastic analysis, the frame would be 
under-designed (the applied bending moment at A, for load combination 1, is 
1658 kNm, higher than the plastic moment resistance of 1640 kNm). 

 
5.4.5.2. 2nd Order effects 
 
The determination of the critical loads is reproduced in Table 5.20. These 
results indicate that the structure is sensitive to 2nd order effects since 
(expression (5.27)): 
 

32.7min �cr� < 15. 
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Consequently, 2nd order effects must be considered. 
 

Table 5.20 – Critical loads 

 �cr
1 �cr

2 �cr
3 �cr

4 �cr
5 

C1 7.32 10.14 18.82 20.95 28.25 
C2 24.42 30.81 55.71 65.44 75.04 
C3 9.40 12.58 24.19 27.63 41.72  

 
Table 5.21 summarizes the results of the 2nd order elastic analysis 

(described in detail in example 5.1 for load combination 1). 
 
 

Table 5.21 – Results of the 2nd order elastic analysis 
 Combination 1 Combination 2 Combination 3 Combination 4 

My Nx My Nx My Nx My �	
(kNm) (kN) (kNm) (kN) (kNm) (kN) (kNm) (mm) 

A 1719.6 379.8 953.5 11.3 1049.6 254.4 1183.4 0 
B’ 1602.8 366.6 181.3 24.7 1034.1 266.9 1097.8 27.2 
Bcol 2325.3 362.8 387.6 27.6 1548.1 270.3 1594.6 27.7 Braft 641.9 170.3 466.8
B’’ 1162.7 627.9 340.7 170.0 700.2 471.5 785.8 31.0 
CB’’ 460.4 596.5 76.8 180.9 184.4 483.4 301.9 267.0 CD’’ 596.5 168.5 483.4 
D’’ 1162.7 627.9 192.5 157.7 700.2 471.5 785.8 31.0 
Draft 2325.3 641.9 763.0 149.8 1548.1 466.8 1594.6 27.7 Dcol 362.8 166.9 270.3 
D’ 1602.8 366.6 608.4 164.2 1034.1 266.9 1097.8 27.2 
E 1719.6 379.8 94.5 151.2 1049.6 254.4 1183.4 0 

 
5.4.5.3. Elastic-plastic analysis 
 
The 1st order elastic-plastic analysis leads to the results of Table 5.22, for 
�	= 1.0. As the 2nd order effects are not negligible, the design forces 
correspond to the results of the 2nd order elastic-plastic analysis, summarized 
in Table 5.23. Finally, in Table 5.24 the history of the formation of plastic 
hinges is summarized, for each combination. 
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Table 5.22 – Results of the 1st order elastic-plastic analysis (�	= 1.0) 

 Combination 1 Combination 2 Combination 3 
My Nx My Nx My Nx 

(kNm) (kN) (kNm) (kN) (kNm) (kN) 
A 1650.1 371.7 960.3 15.2 1085.2 259.1 
B’ 1526.6 365.9 178.6 24.2 1069.0 268.1 
Bcol 2221.9 363.6 385.8 26.5 1597.1 270.4 
Braft 617.9 168.4 478.7 
B’’ 1061.8 609.7 346.6 170.8 747.0 481.1 
CB’’ 381.6 574.7 83.8 181.1 218.5 491.4 
CD’’ 574.7 167.6 491.4 
D’’ 1061.8 609.7 199.1 157.3 747.0 481.1 
Draft 2221.9 617.9 777.9 154.9 1597.1 478.7 
Dcol 363.6 167.0 270.4 
D’ 1526.6 365.9 623.2 164.7 1069.0 268.1 
E 1650.1 371.7 103.6 155.7 1085.2 259.1   

 
Table 5.23 – Results of the 2nd order elastic-plastic analysis (�	= 1.0) 

 Combination 1 Combination 2 Combination 3 
My Nx My Nx My Nx 

(kNm) (kN) (kNm) (kN) (kNm) (kN) 
A 1613.2 357.6 953.5 15.3 1049.6 258.4 
B’ 1614.5 363.7 181.3 25.5 1034.1 267.7 
Bcol 2331.6 362.2 387.6 27.6 1548.1 270.3 
Braft 636.8 170.3 466.8 
B’’ 1166.2 623.4 340.7 170.0 700.2 471.5 
CB’’ 467.6 591.9 76.8 180.9 184.4 483.4 
CD’’ 591.9 168.5 483.4 
D’’ 1166.2 623.4 192.5 157.7 700.2 471.5 
Draft 2331.6 636.8 763.0 149.8 1548.1 466.8 
Dcol 362.2 166.9 270.3 
D’ 1614.5 363.7 608.4 165.0 1034.1 267.7 
E 1613.2 357.6 94.5 155.2 1049.6 258.4  

 
Table 5.24 – Formation of plastic hinges 

 Combination 1 Combination 2 Combination 3 
1st  plastic hinge � = 0.965 (A/E) � = 1.75 (A) � = 1.605 (A/E) 
2nd  plastic hinge � = 1.020 (B’/D’) � = 2.75 (D’) � = 1.635 (B’/D’) 
3rd plastic hinge - (*) - 
(*) Note that for Combination 2 there was not numerical convergence  
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5.4.6. Code checks 
 
5.4.6.1. General considerations 
 

The verifications to carry out for each load combination (ULS) are the 
following: 

i) cross sectional resistance; 
ii) buckling resistance of the rafters; 
iii) buckling resistance of the columns. 

 
5.4.6.2. Cross section resistance 
 

It is first noted that the cross sectional resistance to bending (clause 
6.2.5) was guaranteed a priori by the 2nd order elastic-plastic analysis. 
According to the results of Table 5.22, the critical load combination is 
combination 1, for all cross sections. Consequently, it suffices to verify the 
resistance of the cross sections for this combination. The cross section 
resistance for load combination 1 was checked in examples 5.2 and 5.3, for 
the rafter and for the column, respectively. Note that, for all cases, 

RdplEd VV ,5.0� , and so the verification of the combined action of the axial 

force, bending moment and shear force is not necessary (clause 6.2.10).  
 

5.4.6.3. Buckling resistance of the rafters 
 

From Figures 5.69 to 5.71, it is observed that the bending moments for 
combination 1 have opposite signs when compared to those from 
combinations 2 and 3. The verification of the buckling resistance of the 
rafters for combination 1 was performed in example 5.2. The verification of 
the buckling resistance of the rafters for the other combinations follows a 
similar procedure. Only the results for combination 3 are presented, being 
the most unfavourable combination. 

The cross section classification depends on the applied forces given in 
Table 5.23. These lead to the classification and the cross sectional 
resistances indicated in Table 5.25. 
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Table 5.25 – Classification of cross sections for combination 3  
 Btrav B’’ C’ C 
My,Ed (kNm) 1548.1 700.2 383.3 184.4 
NEd (kN) 466.8 471.5 479.8 483.4 
Classification 2(*) 1 1 1 
Mpl,y,Rd (kNm) 2712.6 1246.8 1246.8 1246.8 
Npl,Rd (kN) 7099.3 5538.0 5538.0 5538.0 

(*) based on the effective section   
The verifications of the in plane stability of the rafters, for this 

combination, can be done as in example 5.2 or based on equations (3.144). 
Considering that the rafter corresponds to a non-prismatic member, 
equations (3.144) are not strictly applicable. However, they can be safely 
applied as follows. 

First, determine the reduction coefficients for buckling by 
compression in both bending modes, >y and >z. In a conservative manner, 
assume a prismatic cross section (IPE 600), the maximum axial force,  
NEd = 483.4 kN, and a buckling length Ly = 23.7 m (total length of the rafter) 
and Lz = 2.20 m (maximum distance between purlins). According to clause 
6.3.1, the following reduction coefficients are obtained: 
 
 48.0�y>    and   0.1�z> .  
 
Then, determine the interaction coefficients kyy and kzy (see Annex B.2) 
  
 03.1�yyk    and    62.0�zyk .  
 
Finally, apply equations (3.144) at two distinct cross section locations: at 
section C’, where the maximum negative moment occurs in the rafter  
(x = 17.93 m) and at section B’’, where the maximum positive moment 
occurs in the prismatic part of the rafter (see Figure 5.68 and Figure 5.77).  
 

700.2 kNm 

344.5 kNm 

B B’’ C X 
C’ 

x 

 
Figure 5.77 – Bending diagram in the rafter for Combination 3 



5. PLASTIC DESIGN OF STEEL STRUCTURES 

 

_____
428

 
For the first case ( kNmM C

Edy 5.344'
, �  and kNmM C

Rky 8.1246'
, � ): 
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whereas for the second case ( kNmM B

Edy 2.700''
, �  e kNmM B

Rky 8.1246''
, � ),  
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, 

 
and so in-plane buckling is verified. 
 
 The verification of the out of plane stability can take advantage of the 
partial bracing provided by the purlins. From the analysis of the bending 
moment diagram (Figure 5.77 and Figure 5.68), it can be seen that the 
compressed flange is laterally braced between points B and X, whereas 
between points X and C the lateral bracing is only partial, provided by the 
connection of the purlins to the tension flanges. Thus, from the analysis of 
the detailing of the rafter, six distinct segments must be considered: 
segments BP2, P2B’’, B’’P4, P4P5, P5,X and XC, with lengths 

mLL BP
t

BP
t  25.2

''
22 �� , mLL PP

t
PB

t  20.2544
''

�� , mL XP
t  04.15 �  and 

mLXC
t  74.13� , respectively. 

From equations (4.14) to (4.19) the results summarized in Table 5.26 are 
obtained. Note that segment XC had to be divided into two new segments 
XC’ and C’C, with additional bracing at the compression flange, in order to 
satisfy the buckling verification. For simplicity, the bracing is positioned at 
C’, at the point of maximum moment of the initial segment, as illustrated in 
Figure 5.78. 
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23.68 m 

17.93 m 
5.75 m 

B C 
B’’ X C’ 

 
Figure 5.78 – Final detailing of rafter BC 

 
Table 5.26 – Lateral-torsional buckling verification 

 Lt NcrT Mcr0 Mcr (LT >LT	 Mbr	 MEd /Mbr	
BP2 2.25 15901.1 6387.8 6681.3 0.63 0.82 2185.5 0.71 
P2B’’ 2.25 15901.1 4396.8 4678.9 0.64 0.82 1574.1 0.69 
B’’P4 2.20 16604.5 4591.3 5072.7 0.60 0.84 1540.3 0.45 
P4P5 2.20 16604.5 4591.3 7305.3 0.41 0.92 1148.2 0.33 
P5X 1.04 72204.1 19964.9 40761.4 0.17 1.00 1246.9 0.09 
XC’ 7.99 1817.1 502.4 742.0 1.30 0.43 534.5 0.72 
C’C 5.75 2946.3 814.7 978.7 1.13 0.52 646.2 0.59  

 
In segments BP2, P2B’’, B’’P4, P4P5 and P5X, NEd/Ncr < 0.04 and, 

according to clause 6.3.1.2(4), buckling by compression can be neglected. 
For segments XC’ and C’C, the buckling resistance considering the 
combined effect of bending and axial force is given by expression (3.144b), 
leading to values of 0.98 and 0.80, respectively, so that structural adequacy 
is confirmed. 
 
5.4.6.4. Buckling resistance of the columns 
 

According to the results of Table 5.23, the critical combination is 
combination 1, for all cross sections. It suffices to verify the buckling 
resistance of the columns for this combination. The buckling resistance of 
the columns for combination 1 was verified in example 5.3.  
 
5.4.7. Synthesis 
 

The adopted solution corresponds to the use of 25.3 kg/m2 of steel in 
the main structure of the building, not including, therefore, purlins, side-rails 
and longitudinal bracing. For each frame, this density of steel corresponds to 
189.75 kg/m or, in terms of total quantities of the used steel, to  
8.92 ton/frame. 
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