)

MODELLING
N TRANSPOR
"HENOMENA

A Conceptual Approach

Rate of
Accumulation of ¢

Rate of ) = (
Generationof @ / —

) + (

ISMAIL TOSUN

Rate of
Output of ¢

Py

Rate of
Input of ¢

ELSEVIER

(










MODELLING IN TRANSPORT PHENOMENA

A Conceptual Approach






MODELLING IN TRANSPORT PHENOMENA

A Conceptual Approach

ISMAIL TOSUN
Professor of Chemical Engineering

Middle East Technical University
Ankara, Turkey

Elsevier
Amsterdam — Boston — London — New York — Oxford - Paris
San Diego — San Francisco — Singapore — Sydney — Tokyo



ELSEVIER SCIENCE B.V.

Sara Burgerhartsiraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 2002 Elsevier Science B.V. All rights reserved.
This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the
Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for
advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational
institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Clsevier Science via their homepage (http://www elsevier.com) by selecting ‘Customer
support’ and then ‘Permissions’. Alternatively you can send an e-mail to: permissionséelsevier.com, or fax to: (+44) 1865 853333,

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency
Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P OLP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631
5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or
distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and
translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or
part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.
Address permissions requests to: Elsevier Science Global Rights Department, at the mail, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages
should be made.

First edition 2002

British Library Cataloguing in Publication Data
Tosun, Ismail
Modelling in transport phenomena : a conceptual approach
1.Transport theory - Mathematical models
I.Title
530.1'38
ISBN 0444510524

Library of Congress Cataloging-in-Publication Data

Tosun, Ismail.
Modelling in port p ‘2 ptual approach / Ismail Tosun,
p. .
Inclndes bibliographical references and index.
1SBN 0-444-51052-4 (alk. paper)
1. Transport theory. 2. Chemical engineering. I. Title.

TP156.T7 T67 2002
660".2842--dc2 |
2002072188

ISBN: 0-444-51052-4

€ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Printed in The
Netherlands.



To Ayse






Preface

During their undergraduate education, students take various courses on fluid flow,
heat transfer, mass transfer, chemical reaction engineering and thermodynamics.
Most of the students, however, are unable to understand the links between the
concepts covered in these courses and have difficulty in formulating equations,
even of the simplest nature. This is a typical example of not seeing the forest for
the trees.

The pathway from the real problem to the mathematical problem has two
stages: perception and formulation. The difficulties encountered in both of these
stages can be easily resolved if students recognize the forest first. Examination of
trees one by one comes at a later stage.

In science and engineering, the forest is represented by the basic concepts,
i.e., conservation of chemical species, conservation of mass, conservation of momen-
tum, and conservation of energy. For each one of these conserved quantities, the
following inventory rate equation can be written to describe the transformation of
the particular conserved quantity ¢ :

Rate of Rate of Rateof ¢ \ Rate of ¢
( @ In ) - ( @ out ) + ( generation ) - ( accumulation >
in which the term ¢ may stand for chemical species, mass, momentum or energy.

My main purpose in writing this textbook is to show students how to translate
the inventory rate equation into mathematical terms at both the macroscopic and
microscopic levels. It is not my intention to exploit various numerical techniques
to solve the governing equations in momentum, energy and mass transport. The
emphasis is on obtaining the equation representing a physical phenomenon and its
interpretation.

I have been using the draft chapters of this text in my third year Mathematical
Modelling in Chemical Engineering course for the last two years. It is intended as an
undergraduate textbook to be used in an (Introduction to) Transport Phenomena
course in the junior year. This book can also be used in unit operations courses in
conjunction with standard textbooks. Although it is written for students majoring
in chemical engineering, it can also be used as a reference or supplementary text

in environmental, mechanical, petroleum and civil engineering courses.
The overview of the manuscript is shown schematically in the figure below.

vii
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PREFACE ix

Chapter 1 covers the basic concepts and their characteristics. The terms ap-
pearing in the inventory rate equation are discussed qualitatively. Mathematical
formulations of “rate of input” and “rate of output” terms are explained in Chap-
ters 2, 3 and 4. Chapter 2 indicates that the total flux of any quantity is the sum
of its molecular and convective fluxes. Chapter 3 deals with the formulation of the
inlet and outlet terms when the transfer of matter takes place through the bound-
aries of the system by making use of the transfer coefficients, i.e., friction factor,
heat transfer coefficient and mass transfer coefficient. The correlations available in
the literature to evaluate these transfer coefficients are given in Chapter 4. Chapter
5 briefly talks about the rate of generation in transport of mass, momentum and
energy.

Traditionally, the development of the microscopic balances precedes the macro-
scopic balances. However, it is my experience that students grasp the ideas better
if the reverse pattern is followed. Chapters 6 and 7 deal with the application of
the inventory rate equations at the macroscopic level.

The last four chapters cover the inventory rate equations at the microscopic
level. Once the velocity, temperature or concentration distributions are determined,
the resulting equations are integrated over the volume of the system to get the
macroscopic equations covered in Chapters 6 and 7.

I had the privilege of having Professor Max S. Willis of the University of
Akron as my Ph.D supervisor who introduced me to the real nature of transport
phenomena. All that I profess to know about transport phenomena is based on the
discussions with him as a student, a colleague, a friend and a mentor. His influence
can be easily noticed throughout this book. Two of my colleagues, Glniz Giiriiz
and Zeynep Hig¢gsagmaz Katnas, kindly read the entire manuscript and made many
helpful suggestions. My thanks are also extended to the members of the Chem-
ical Engineering Department for their many discussions with me and especially
to Timur Dogu, Tiirker Gtrkan, Giirkan Karakas, Onder Ozbelge, Canan Ozgen,
Deniz Uner, Levent Yilmaz and Hayrettin Yiicel. I appreciate the help provided by
my students, Gitllden Camgi, Yesim Giigbilmez and Ozge Oguzer, for proofreading
and checking the numerical calculations.

Finally, without the continuous understanding, encouragement and tolerance of
my wife Ayse and our children, Cigdem and Burcu, this book could not have been
completed and I am grateful indeed.

Suggestions and criticisms from instructors and students using this book will
be appreciated.

ISMAIL TOSUN (itosun@metu.edu.tr)
Ankara, Turkey
March 2002
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Chapter 1

Introduction

1.1 BASIC CONCEPTS

A concept is a unit of thought. Any part of experience that we can organize into
an idea is a concept. For example, man’s concept of cancer is changing all the time
as new medical information is gained as a result of experiments.

Concepts or ideas that are the basis of science and engineering are chemical
species, mass, momentum, and energy. These are all conserved quantities. A
conserved quantity is one which can be transformed. However, transformation does
not alter the total amount of the quantity. For example, money can be transferred
from a checking account to a savings account but the transfer does not affect the
total assets.

For any quantity that is conserved, an inventory rate equation can be written to
describe the transformation of the conserved quantity. Inventory of the conserved
quantity is based on a specified unit of time, which is reflected in the term, rate.
In words, this rate equation for any conserved quantity ¢ takes the form

Rate of _ Rate of i Rate of
input of ¢ output of ¢ generation of ¢
Rate of
- ( accumulation of ¢ ) (L1-1)

Basic concepts, upon which the technique for solving engineering problems is
based, are the rate equations for the

e Conservation of chemical species,
e Conservation of mass,
e Conservation of momentum,

e Conservation of energy.
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The entropy inequality is also a basic concept but it only indicates the feasibility
of a process and, as such, is not expressed as an inventory rate equation.

A rate equation based on the conservation of the value of money can also be
considered as a basic concept, i.e., economics. Economics, however, is outside the
scope of this text.

1.1.1 Characteristics of the Basic Concepts

The basic concepts have certain characteristics that are always taken for granted
but seldom stated explicitly. The basic concepts are

e Independent of the level of application,

e Independent of the coordinate system to which they are applied,

¢ Independent of the substance to which they are applied.

The basic concepts are applied both at the microscopic and the macroscopic

levels as shown in Table 1.1.

Table 1.1 Levels of application of the basic concepts.

Level Theory Experiment

Microscopic  Equations of Change Constitutive Equations

Macroscopic Design Equations Process Correlations

At the microscopic level, the basic concepts appear as partial differential equa-
tions in three independent space variables and time. Basic concepts at the micro-
scopic level are called the equations of change, i.e., conservation of chemical species,
mass, momentum and energy.

Any mathematical description of the response of a material to spatial gradients
is called a constitutive equation. Just as the reaction of different people to the same
joke may vary, the response of materials to the variable condition in a process
differs. Constitutive equations are postulated and cannot be derived from the
fundamental principles'. The coefficients appearing in the constitutive equations
are obtained from experiments.

Integration of the equations of change over an arbitrary engineering volume
which exchanges mass and energy with the surroundings gives the basic concepts
at the macroscopic level. The resulting equations appear as ordinary differential
equations with time as the only independent variable. The basic concepts at this
level are called the design equations or macroscopic balances. For example, when
the microscopic level mechanical energy balance is integrated over an arbitrary

! The mathematical form of a constitutive equation is constrained by the second law of ther-
modynamics so as to yield a positive entropy generation.
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engineering volume, the result is the macroscopic level engineering Bernoulli equa-
tion.

Constitutive equations, when combined with the equations of change, may or
may not comprise a determinate mathematical system. For a determinate math-
ematical system, i.e., number of unknowns = number of independent equations,
the solutions of the equations of change together with the constitutive equations
result in the velocity, temperature, pressure, and concentration profiles within the
system of interest. These profiles are called theoretical (or, analytical) solutions. A
theoretical solution enables one to design and operate a process without resorting
to experiments or scale-up. Unfortunately, the number of such theoretical solutions
is small relative to the number of engineering problems which must be solved.

If the required number of constitutive equations is not available, i.e., number of
unknowns > number of independent equations, then the mathematical description
at the microscopic level is indeterminate. In this case, the design procedure appeals
to an experimental information called process correlation to replace the theoretical
solution. All process correlations are limited to a specific geometry, equipment
configuration, boundary conditions, and substance.

1.2 DEFINITIONS

The functional notation
¢ =9(tz,Y,2) (1.2-1)

indicates that there are three independent space variables, x, y, z, and one inde-
pendent time variable, t. The ¢ on the right side of Eq. (1.2-1) represents the
functional form, and the ¢ on the left side represents the value of the dependent
variable, .

1.2.1 Steady-State

The term steady-state means that at a particular location in space, the dependent
variable does not change as a function of time. If the dependent variable is ¢, then

Op
P - 2-2
( at):,y,z 0 (1 )

The partial derivative notation indicates that the dependent variable is a func-
tion of more than one independent variable. In this particular case, the independent
variables are (z, y, z) and t. The specified location in space is indicated by the
subscripts (z, y, z) and Eq. (1.2-2) implies that ¢ is not a function of time, 2.
When an ordinary derivative is used, i.e., dp/dt = 0, then this implies that ¢ is a
constant. It is important to distinguish between partial and ordinary derivatives
because the conclusions are very different.
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Example 1.1 A Newtonian fluid with constant viscosity, p, and density, p, is
initially at rest in a very long horizontal pipe of length L and radius R. At t=0,
a pressure gradient |AP|/L is imposed on the system and the volumetric flow rate,
Q, is expressed as

_ wRYJAP| . exp (— A2T)
Q= A 1- 327;————/\4

n

where T is the dimensionless time defined by

and A\ = 2.405, g = 5.520, A3 = 8.654, etc. Determine the volumetric flow rate
under steady conditions.

Solution

Steady-state solutions are independent of time. To eliminate the time from the
unsteady-state solution, we have to let t — oo. In that case, the exponential term
approaches zero and the resulting steady-state solution is
wR*|AP|

8ulL

which is known as the Hagen-Poiseuille law.

Q:

Comment: If time appears in the exponential term, then the term must have a
negative sign to assure that the solution does not blow as t — oo.

Example 1.2 A cylindrical tank is initially half full with water. The water is fed
into the tank from the top and it leaves the tank from the bottom. The volumetric
flow rates are different from each other. The differential equation describing the
time rate of change of the height of water in the tank is given by

dh
E—G—Sx/l—z

where h is the height of water in meters. Calculate the height of water in the tank
under steady conditions.

Solution
Under steady conditions dh/dt must be zero. Then
0=6—8vh

or,

h =0.56m
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1.2.2 Uniform

The term uniform means that at a particular instant in time, the dependent vari-
able is not a function of position. This requires that all three of the partial deriva-
tives with respect to position be zero, i.e.,

), (51)..m (5)
- S ==X =0 1.2-3
(6.’1, y,%,t ay x,z,t a’z z,y,t ( )

The variation of a physical quantity with respect to position is called gradient.
Therefore, the gradient of a quantity must be zero for a uniform condition to exist
with respect to that quantity.

1.2.3 Equilibrium

A system is in equilibrium if both steady-state and uniform conditions are met si-
multaneously. An equilibrium system does not exhibit any variations with respect
to position or time. The state of an equilibrium system is specified completely by
the non-Euclidean coordinates? (P, V,T). The response of a material under equi-
librium conditions is called property correlation. The ideal gas law is an example
of a thermodynamic property correlation that is called an equation of state.

1.2.4 Flux
The flux of a certain quantity is defined by

Flux — Flow of a quantity /Time _ Flow rate (1.2-4)
Area Area

where area is normal to the direction of flow. The units of momentum, energy,
mass and molar fluxes are Pa (N/m?, or kg/ m.s?), W/ m? (J/m2.s), kg/m2.s,
and kmol/ m?.s, respectively.

1.3 MATHEMATICAL FORMULATION OF
THE BASIC CONCEPTS

In order to obtain the mathematical description of a process, the general inventory
rate equation given by Eq. (1.1-1) should be translated into mathematical terms.

1.3.1 Inlet and Outlet Terms

A quantity may enter or leave the system by two means: (z) by inlet and/or outlet
streams, (it) by exchange of a particular quantity between the system and its

2A Euclidean coordinate system is one in which length can be defined. The coordinate system
(P,V, T} is non-FEuclideun.
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surroundings through the boundaries of the system. In either case, the rate of
input and/or output of a quantity is expressed by using the flux of that particular
quantity. The flux of a quantity may be either constant or dependent on position.
Thus, the rate of a quantity can be determined as

(Flux)(Area) if flux is constant

Inlet/Outlet rate = ) . o (1.3-1)
/ Flux dA if flux is position dependent

A

where A is the area perpendicular to the direction of the flux. The differential
areas in cylindrical and spherical coordinate systems are given in Section A.1 in
Appendix A.

Example 1.3 Note that the velocily can be interpreted as the volumetric flux
(m3/m2.s). Therefore, volumetric flow rate can be calculated by the integration
of velocity distribution over the cross-sectional area that is perpendiculaer to the
flow direction. Consider the flow of a very viscous fluid in the space between two

concentric spheres as shown in Figure 1.1. The velocity distribution is given by
Bird et al. (1960) as

= gapmans (7)< (7))

where

E(e)=In (w)

1 —cose

Use the velocity profile to find the volumetric flow rate, Q.
Solution

Since the velocity is in the 0—direction, the differential area that is perpendicular
to the flow direction is given by Eq. (A.1-9) in Appendiz A as

dA = rsinfdrd¢ (1)

Therefore, the volumetric flow rate s

27 pR
Q= / / vg T sinf drdeg (2)
0 kR
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IAFluid in

Figure 1.1 Flow between concentric spheres.

Substitution of the velocity distribution into Eq. (2) and integration gives
nR3(1 - k)3

= ————|AP 3

o= ap (3

1.3.2 Rate of Generation Term

The generation rate per unit volume is denoted by R and it may be either constant
or dependent on position. Thus, the generation rate is expressed as

(R)(Volurme) if R is constant

Generation rate = (1.3-2)
/ / RdV  if R is position dependent
v

where V is the volume of the system in question. It is also possible to have the
depletion of a quantity. In that case, the plus sign in front of the generation term
must be replaced by the minus sign, i.e.,

Depletion rate = — Generation rate (1.3-3)
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Example 1.4 FEnergy generation rate per unit volume as a result of an electric
current passing through a rectangular plate of cross-sectional area A and thickness

L is given by .
i x
R= §Ro SIn (—I—I")

where R is in W/ m3. Calculate the total energy generation rate within the plate.
Solution

Since R is dependent on position, energy generation rate is calculated by integration
of R over the volume of the plate, i.e.,

L frx
Energy generation rate = AR, / sin T dx
0

2ALR,
m

1.3.3 Rate of Accumulation Term

The rate of accumulation of any quantity ¢ is the time rate of change of that
particular quantity within the volume of the system. Let p be the mass density
and ¢ be the quantity per unit mass. Thus,

Total quantity of ¢ = /// ppdV (1.3-4)
v

and the rate of accumulation is given by

Accumulation rate = % ///p(}JdV (1.3-5)
v

If @ is independent of position, then Eq. (1.3-5) simplifies to
Accumulation rate = % (m ) (1.3-6)

where m is the total mass within the system.
The accumulation rate may be either positive or negative depending on whether
the quantity is increasing or decreasing with time within the volume of the system.

1.4 SIMPLIFICATION OF THE RATE
EQUATION

In this section, the general rate equation given by Eq. (1.1-1) will be simplified for
two special cases: (i) steady-state transport without generation, (i7) steady-state
transport with generation.
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1.4.1 Steady-State Transport Without Generation
For this case Eq. (1.1-1) reduces to

Rate of input of ¢ = Rate of output of ¢

Equation (1.4-1) can also be expressed in terms of flux as

// (Inlet flux of )dA = // (Outlet flux of ¢)dA
in Aout

For constant inlet and outlet fluxes Eq. (1.4-2) reduces to

Inlet flux Inlet \ [ Outlet flux Outlet
of ¢ area | of ¢ area
If the inlet and outlet areas are equal, then Eq. (1.4-3) becomes

Inlet flux of ¢ = Outlet flux of ¢

(1.4-1)

(1.4-2)

(1.4-3)

(1.4-4)

It is important to note that Eq. (1.4-4) is valid as long as the areas perpendicular
to the direction of flow at the inlet and outlet of the system are equal to each other.
The variation of the area in between does not affect this conclusion. Equation
(1.4-4) obviously is not valid for the transfer processes taking place in the radial
direction in cylindrical and spherical coordinate systems. In this case either Eq.

(1.4-2) or Eq. (1.4-3) should be used.

Example 1.5 Consider a solid cone of circular cross-section whose lateral surface
1s well insulated as shown in Figure 1.2. The diameters at xt = 0 and x = L are
25cm and 5cm, respectively. If the heat flux at x = 0 is 45 W/ m? under steady
conditions, determine the heat transfer rate and the value of the heat flux at x = L.

Figure 1.2 Heat transfer through a solid circular cone.
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Solution

For steady-state conditions without generation, the heat transfer rate is constant
and can be determined from Eq. (1.3-1) as

Heat transfer rate = (Heat flux)__o (Area),_,

Since the cross-sectional area of the cone is wD?/4, then
0.25)°
Heat transfer rate = (45) [ﬂ‘l—)] =221W

The value of the heat transfer rate is also 2.21 W at z = L. However, the heat flux
does depend on position and its value at x = L is

2.21

(Heat fluz),_; = W

= 1126 W/ m?

Comment: Heat flux values are different from each other even though the heat
flow rate is constant. Therefore, it is important to specify the area upon which a
gwen heat flux is based when the area changes as a function of position.
1.4.2 Steady-State Transport With Generation
For this case Eq. (1.1-1) reduces to
Rate of Rate of Rate of
( input of ¢ ) + < generation of ¢ ) o ( output of ¢ ) (L4-5)

Equation (1.4-5) can also be written in the form

// (Inlet flux of v)dA + /// RV = // (Outlet flux of ) dA (1.4-6)
A Vuyn Avut

where R is the generation rate per unit volume. If the inlet and outlet fluxes
together with the generation rate are constant, then Eq. (1.4-6) reduces to

Inlet flux Inlet LR System \ _ [ Outlet flux Outlet
of v area volume /| of ¢ area

(1.4-7)

in

Example 1.6 An exothermic chemical reaction takes place in a 20 cm thick slab
and the energy generation rate per unit volume is 1 x 108 W/ m®. The steady-state
heat transfer rate into the slab at the left-hand side, i.e., at © = 0, is 280 W.
Calculate the heat transfer rate to the surroundings from the right-hand side of the
slab, i.e., at £ = L. The surface area of each face is 40 cm?.
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Solution
At steady-state, there is no accumulation of energy and the use of Eq. (1.4-5) gives

(Heat transfer rate),_, = (Heat transfer rate),_o + R (Volume)
= 280 + (1 x 10°) (40 x 107#)(20 x 1072) = 1080 W

The values of the heat fluxes at © =0 and = = L are

- 280 _ 3 2

(Heat fluz),_, = 0x10- = 70 x 10° W/ m
1080 s o

(Heat ﬂ’U.I)z=L = W =270 x 10 W/m

Comment: FEven though the steady-state conditions prevail, both the heat transfer
rate and the heat flux are not constant. This is due to the generation of energy
within the slab.
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PROBLEMS

1.1 One of your friends writes down the inventory rate equation for money as

Change in amount \ Service Dollars
( of dollars ) = (Interest) — ( charge ) + ( deposited )

_ [ Checks
written
Identify the terms in the above equation.

1.2 Determine whether steady- or unsteady-state conditions prevail for the
following cases:

a) The height of water in a dam during a heavy rain,
b) The weight of an athlete during a marathon,
¢) The temperature of an ice cube as it melts.

1.3 What is the form of the function ¢(z,y) if 8%¢/8zdy = 07
(Answer: @(z,y) = f(z) + h(y) + C, where C is a constant)

1.4 Steam at a temperature of 200 °C flows through a pipe of 5 cm inside diameter
and 6 cm outside diameter. The length of the pipe is 30 m. If the steady rate of
heat loss per unit length of the pipe is 2W/ m, calculate the heat fluxes at the
inner and outer surfaces of the pipe.

(Answer: 12.7W/m? and 10.6 W/ m?)

1.5 Dust evolves at a rate of 0.3kg/h in a foundry which has the dimensions of
20m x 8 m x4 m. According to ILO (International Labor Organization) standards,
the dust concentration should not exceed 20mg/ m? to protect workers’ health.
Determine the volumetric flow rate of ventilating air to meet the standards of ILO.

(Answer: 15,000 m3/h)

1.6 An incompressible Newtonian fluid flows in the z—direction in space between
two parallel plates that are separated by a distance 2B as shown in Figure 1.3 (a).
The length and the width of each plate are L and W, respectively. The velocity
distribution under steady conditions is given by

2
B0 (3)]
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z — e 2B.e §

Figure 1.3 Flow between parallel plates.

a) For the coordinate system shown in Figure 1.3 (b), show that the velocity
distribution takes the form

=t P G)- ()]

b) Calculate the volumetric flow rate by using the velocity distributions given
above. What is your conclusion?

3
(Answer: b) For both cases Q = 2|aP|B°W |AP| B W)

3ulL

1.7 Anincompressible Newtonian fluid flows in the z—direction through a straight

duct of triangular cross-sectional area, bounded by the plane surfaces y = H,

y = v3z and y = — V3. The velocity distribution under steady conditions is
given by

L _ lap|

* " 4uLH

Calculate the volumetric flow rate.

V3HY|AP|
180 uL

(y— H) (322 —¢?)

(Answer: Q=
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1.8 For radial flow of an incompressible Newtonian fluid between two parallel
circular disks of radius Ry as shown in Figure 1.4, the steady-state velocity distri-
bution is (Bird et al., 1960)

2
w= sy - (5]

where R; is the radius of the entrance hole. Determine the volumetric flow rate.

Flow in

Flow out

Figure 1.4 Flow between circular disks.

4 wb®|AP|
<Answer. Q = § m)



Chapter 2

Molecular and Convective
Transport

The total flux of any quantity is the sum of the molecular and convective fluxes. The
fluxes arising from potential gradients or driving forces are called molecular fluzes.
Molecular fluxes are expressed in the form of constitutive (or, phenomenological)
equations for momentum, energy, and mass transport. Momentum, energy, and
mass can also be transported by bulk fluid motion or bulk flow and the resulting
flux is called convective flux. This chapter deals with the formulation of molecular
and convective fluxes in momentum, energy and mass transport.

2.1 MOLECULAR TRANSPORT

Substances may behave differently when subjected to the same gradients. Consti-
tutive equations identify the characteristics of a particular substance. For example,
if the gradient is momentum, then the viscosity is defined by the constitutive equa-
tion called Newton’s law of viscosity. If the gradient is energy, then the thermal
conductivity is defined by Fourier’s law of heat conduction. If the gradient is con-
centration, then the diffusion coefficient is defined by Fick’s first law of diffusion.
Viscosity, thermal conductivity and diffusion coefficient are called transport prop-
erties.

2.1.1 Newton’s Law of Viscosity

Consider a fluid contained between two large parallel plates of area A, separated
by a very small distance Y. The system is initially at rest but at time ¢ = 0,
the lower plate is set in motion in the x—direction at a constant velocity V by
applying a force F' in the z—direction while the upper plate is kept stationary.
The resulting velocity profiles are shown in Figure 2.1 for various times. At ¢ =0,

15
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the velocity is zero everywhere except at the lower plate which has a velocity V.
Then the velocity distribution starts to develop as a function of time. Finally, at
steady-state, a linear velocity distribution is obtained.

{=% Increasing time

h<
Distance

~
:RC
I
<<
<

Velocity Vv

Direction of
Momentum Flux

Figure 2.1 Velocity profile development in flow between parallel plates.
Experimental results show that the force required to maintain the motion of

the lower plate per unit area (or, momentum flux) is proportional to the velocity
gradient, i.e.,

F V
= = pu = (2.1-1)
A ~— Y
v Transport v
Momentum property Velocity
flux gradient

and the proportionality constant, u, is the viscosity. Equation (2.1-1) is a macro-
scopic equation. Microscopic form of this equation is given by

Tye = —pL—— = — /‘L;sz (21'2)

which is known as Newton’s law of viscosity and any fluid obeying Eq. (2.1-2)
is called a Newtonian fluid. The term %,, is called rate of strain! or rate of
deformation or shear rate. The term 7,, is called shear stress. It contains two
subscripts,  which represents the direction of force, and y which represents the
direction of the normal to the surface on which the force is acting. Therefore, it is
possible to interpret 7, as the flux of z—momentum in the y—direction.

Since the velocity gradient is negative, i.e., v, decreases with increasing y, a
negative sign is introduced on the right-hand side of Eq. (2.1-2) so that the stress
in tension is positive.

1Strain is defined as deformation per unit length. For example, if a spring of original length
L, is stretched to a length L, then the strain is (L — Lo)/Lo.
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In SI units, shear stress is expressed in N/ m?(Pa) and velocity gradient in
(m/s)/ m. Thus, the examination of Eq. (2.1-1) indicates that the units of viscosity
in SI units are

N/ m? N.s (kg.m/s?®).s kg

'L‘:(m/s)/m:Pa'S:F m? m.s

Most viscosity data in the cgs system are usually reported in g/(cm.s), known as
a poise (P), or in centipoise (1 cP = 0.01 P) where

1Pa.s =10 P =10% ¢cP

Viscosity varies with temperature. While liquid viscosity decreases with in-
creasing temperature, gas viscosity increases with increasing temperature. Con-
centration also affects viscosity for solutions or suspensions. Viscosity values of
various substances are given in Table D.1 in Appendix D.

Example 2.1 A Newtonian fluid with a viscosity of 10 cP is placed between two
large parallel plates. The distance between the plates is Amm. The lower plate is
pulled in the positive xz—direction with a force of 0.5N, while the upper plate is
pulled in the negative z— direction with a force of 2N. Each plate has an area of
2.5m2. If the velocity of the lower plate is 0.1 m/ s, calculate:

a) The steady-state momentum fluz,
b) The velocity of the upper plate,
c) Parts (a) and (b) for a Newtonian fluid with =1 cP.

Solution

F=-2 N s aaams e s

!
Il

4 mm

1

a) The momentum fluzx (or, force per unit area) is

F

Ty:z: = z
_05+2
T 25

— > F=05N
V1=0.1n1/S

=1Pa
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b) From Eq. (2.1-2)

Y Va Y
Tyz/ dy=—#/ die = Ve=Vi- (1)
0 Vi 24

Substitution of the values into Eq. (1) gives

(1)(4 x1073)

Vo=01- 10 % 103 =-03m/s (2)

The minus sign indicates that the upper plate moves in the negative x—direction.
Note that the velocity gradient is dv, /dy = —100s™1,

c) Since the momentum fluz is the same irrespective of the fluid, 7,, = 1Pa.

Vo=V — TyzY
_ (D@ x107°%)
=0.1- Tx10-3 = 39m/s 3)

The velocity gradient in this case is dv;/dy = —1000s~!.

Comment: Viscosity is a measure of the ability of the fluid to transfer momen-
tum. Therefore, the decrease in viscosity causes a steeper velocily gradient.

2.1.2 TFourier’s Law of Heat Conduction

Consider a slab of solid material of area A between two large parallel plates of a
distance Y apart. Initially the solid material is at a temperature T, throughout.
Then the lower plate is suddenly brought to a slightly higher temperature T; and
maintained at that temperature. The second law of thermodynamics states that
heat flows spontaneously from the higher temperature 77 to the lower temperature
T,. As time proceeds, the temperature profile in the slab changes, and ultimately
a linear steady-state temperature is attained as shown in Figure 2.3.

~
]

Increasing time

~<
Distance

x T, Temperature T,

Direction of
Energy Flux

Figure 2.3 Temperature profile development in a solid slab between two plates.
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Experimental measurements made at steady-state indicate that the rate of heat
flow per unit area is proportional to the temperature gradient, i.e.,

Q Tl - To
2 - ok (2.1-3)
A S~ Y
N~~~ Transport v
Energy property Temperature
flux gradient

The proportionality constant, k, between the energy flux and the temperature
gradient is called thermal conductivity. In SI units, Q is in W(J/s), A in m?,
dT/dx in K/m, and & in W/(m.K). The thermal conductivity of a material is,
in general, a function of temperature. However, in many engineering applications
the variation is sufficiently small to be neglected. Thermal conductivity values for
various substances are given in Table D.2 in Appendix D.

The microscopic form of Eq. (2.1-3) is known as Fourier’s law of heat conduction

and is given by

dT
qy =-—k @ (21—4)

in which the subscript y indicates the direction of the energy flux. The negative sign
in Eq. (2.1-4) indicates that heat flows in the direction of decreasing temperature.

Example 2.2 One side of a copper slab receives a net heat input at a rate of
5000 W due to radiation. The other face is held at a temperature of 35°C. If
steady-state conditions prevail, calculate the surface temperature of the side receiv-
ing radiant energy. The surface area of each face is 0.05m?, and the slab thickness
is 4 cm.

Solution

5000 W 35°C

>y

Physical properties
For copper: k =398 W/ m.K
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Analysis

System: Copper slab

Under steady conditions with no internal generation, conservation statement for
energy reduces to

Rate of energy in = Rate of energy out = 5000 W

Since the slab area across which heat transfer takes place is constant, the heat flux
through the slab is also constant and is given by

_ 5000
%= 005

Therefore, the use of Fourier’s law of heat conduction, Eq. (2.1-4), gives

= 100,000 W/ m?

0.04 35
100, 000 / dy = — 398 dT
0 TD

or,

T, =45.1°C

2.1.3 Fick’s First Law of Diffusion

Consider two large parallel plates of area A. The lower one is coated with a material
A which has a very low solubility in the stagnant fluid B filling the space between
the plates. Suppose that the saturation concentration of A is p, and A undergoes
a rapid chemical reaction at the surface of the upper plate and its concentration
is zero at that surface. At ¢ = 0 the lower plate is exposed to the fluid B and as
time proceeds, the concentration profile develops as shown in Figure 2.4. Since
the solubility of A is low, an almost a linear distribution is reached under steady
conditions.

C pa=0

Y
)’l Pa= Pa,
X

Direction of
Mass Flux

~
]

{=c0 .
Increasing time

Distance

7‘:0—,
0

[=J

Concentration  p,
o

Figure 2.4 Concentration profile development between parallel plates.
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Experimental measurements indicate that the mass flux of A is proportional to
the concentration gradient, i.e.,

Pa,

ma D
A T L2 Y
S~~~ Transport M~

Mass Concentration
¢ .
flux of A property gradient

(2.1-5)

where the proportionality constant, D4p, is called the binary molecular mass dif-
fusivity (or, diffusion coefficient) of species A through B. The microscopic form of
Eq. (2.1-5) is known as Fick’s first law of diffusion and is given by

— dw
ja,=—Dasp & (2.1-6)

where j4, and w4 represent the molecular mass flux of species A in the y—direction
and mass fraction of species A, respectively. If the total density, p, is constant,
then the term p(dw 4 /dy) can be replaced by dp,/dy and Eq. (2.1-6) becomes

ja,=-Dap—* p = constant (2.1-7)

To measure D4 p experimentally, it is necessary to design an experiment (like the
one given above) in which the convective mass flux is almost zero.

In mass transfer calculations, it is sometimes more convenient to express con-
centrations in molar units rather than mass units. In terms of molar concentration,
Fick’s first law of diffusion is written as

- dﬂfA
JAVI—'DABC-E (21-8)

where J ;‘\y and z 4 represent the molecular molar flux of species A in the y—direction
and mole fraction of species A, respectively. If the total molar concentration, c,
is constant, then the term ¢(dz 4/dy) can be replaced by dcs/dy and Eq. (2.1-8)
becomes

Ji, = —Das—- ¢ = constant (2.1-9)

Diffusion coefficient has the dimensions of m?/s in SI units. Typical values
of Dap are given in Appendix D. Examination of these values indicates that the
diffusion coefficient of gases has an order of magnitude of 107°m?/s under atmo-
spheric conditions. Assuming ideal gas behavior, the pressure and temperature
dependence of the diffusion coefficient of gases may be estimated from the relation

DAB X — (2.1-10)



22 CHAPTER 2. MOLECULAR AND CONVECTIVE TRANSPORT

Diffusion coefficients for liquids are usually in the order of 107°m?/s. On the other
hand, D 4p values for solids vary from 10710 to 10714 m?/s.

Example 2.3 Air at atmospheric pressure and 95°C flows at 20m/s over o flat
plate of naphthalene 80 cm long in the direction of flow and 60cm wide. Experi-
mental measurements report the molar concentration of naphthalene in the air, ca,
as a function of distance x from the plate as follows:

T CA
(cm) ( mol/ m3)
0 0.117
10 0.093
20 0.076
30 0.063
40 0.051
50 0.043

Determine the molar fluz of naphthalene from the plate surface under steady con-
ditions.

Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (B) at 95°C (368K) :

368\ */* L /368\%/?
(DaB)3es = (DaB)3oo (g@) = (0.62 x 1079) (ﬁ)

=0.84 x 1075 m?/s
Assumptions
1. The total molar concentration, ¢, is constant.
2. Naphthalene plate is also at a temperature of 95°C.
Analysis

The molar flur of naphthalene transferred from the plate surface to the flowing
stream is determined from

. dc
JA:l::O = —DAB (d—;) -0 (1)

It is possible to calculate the concentration gradient on the surface of the plate by
using one of the several methods explained in Section A.5 in Appendiz A.
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Graphical method

The plot of cs versus x is given in Figure 2.5. The slope of the tangent to the
curve at £ =0 is — 0.0023 (mol/ m®)/ cm.

0.12

0.10 |~

.
l,__._;.
\

CA (mollm3)
=]
3
T

slope = — 0.0023™,
0.06 -
0.04 1 L L i
0 10 20 30 40 50

x (cm)

Figure 2.5 Concentration of species A as a function of position.

Curve fitting method

Semi-log plot of ca versus x is shown in Figure 2.6.

0.2

0.1
0.08 |-
0.06

¢4 (mol/m3)

0.02¢1+

0.01 ! | I I
0 10 20 30 40 50

x (cm)

Figure 2.6 Concentration of species A as a function of position.
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It appears from Figure 2.6 that a straight line represents the data fairly well. The
equation of this line can be determined by the method of least squares in the form

y=mz+b (2)
where
y=logca (3)

To determine the values of m and b from Egs. (A.6-10) and (A.6-11) in Appendix
A, the required values are calculated as follows:

2

Yi Z; Y T
—0.932 0 0 0
—1.032 10 —10.32 100
—1.119 20 —22.38 400
—-1.201 30 —36.03 900
—1.292 40 —51.68 1600
—1.367 50 —68.35 2500

Yi=-6943 Yz;=150 Yz =-18876 Y z?=5500
2 2 :

The values of m and b are

_ (6)(—188.76) — (150)(~ 6.943) _
"= (6)(5500) — (150)2 =~ 00087
_ (~6.943)(5500) — (150)(— 188.76) _

’= (6)(5500) — (150)2 =-094

Therefore, Eq. (2) takes the form

logca = —0.087x — 0.94 (4)

or,
ca =0.115¢ 0027 (5)

Differentiation of Eq. (5) gives the concentration gradient on the surface of the
plate as

(%) = —(0.115)(0.02) = —0.0023 (mol/m?)/cm = —0.23mol/m*  (6)
z=0

Substitution of the numerical values into Eq. (1) gives the molar flur of naphthalene
from the surface as

T4, |0 = (0.84 x 107%)(0.23) = 19.32 x 10~ " mol/ m?%.s
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2.2 DIMENSIONLESS NUMBERS

Newton’s “law” of viscosity, Fourier’s “law” of heat conduction, and Fick’s first
“law” of diffusion, in reality, are not laws but defining equations for viscosity, u,
thermal conductivity, k, and diffusion coefficient, D4p. The fluxes (s, gy, ja,)
and the gradients (dv,/dy, dT'/dy, dp 4/dy) must be known or measurable for the
experimental determination of u, k, and D 4p.

Newton’s law of viscosity, Eq. (2.1-2), Fourier’s law of heat conduction, Eq.
(2.1-4), and Fick’s first law of diffusion, Egs. (2.1-7) and (2.1-9), can be generalized

as
( Molecular ) _ < Transport ) ( Gradient of ) (22:1)

flux property driving force

Although the constitutive equations are similar, they are not completely analogous
because the transport properties (u, k, D4p) have different units. These equations
can also be expressed in the following forms:

Tye = — ;@(pvz) p = constant pYg = momentum/volume

(2.2-2)
k d, - A A
gy = — ———(pCpT) pCp = constant pCpT = energy /volume
pCp dy

(2.2-3)

— dpy _ I

ja, = — ’DABd—y p = constant p4 = mass of A/volume
(2.2-4)

The term p/p in Eq. (2.2-2) is called momentum diffusivity or kinematic vis-
cosity, and the term k/ pép in Eq. (2.2-3) is called thermal diffusivity. Momentum
and thermal diffusivities are designated by v and «, respectively. Note that the
terms v, a, and D4p all have the same units, m?/s, and Egs. (2.2-2)-(2.2-4) can
be expressed in the general form as

(2.2-5)

Molecular \ (Diffusivity) Gradient of
flux = \Driusvity Quantity /Volume

The quantities that appear in Egs. (2.2-1) and (2.2-5) are summarized in Table
2.1. Since the terms v, a, and D4p all have the same units, the ratio of any two
of these diffusivities results in a dimensionless number. For example, the ratio of
momentum diffusivity to thermal diffusivity gives the Prandt! number, Pr:
C
Prandtl number = Pr = < = 22
a k

The Prandtl number is a function of temperature and pressure. However, its de-
pendence on temperature, at least for liquids, is much stronger. The order of
magnitude of the Prandtl number for gases and liquids can be estimated as

(2.2-6)
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Table 2.1 Analogous terms in constitutive equations for momentum, energy, and
mass (or, mole) transfer in one-dimension.

Momentum  Energy Mass Mole

Molecular flux Tyz 9y Ja, J;y
Transport property I k Dap Dap
d dT d de
Gradient of driving force di?: X —;7’4 d—;—
Diffusivity v a Das 7Das
Quantity/Volume PUz pCpT Pa ca
d d(eCpT) d d
Gradient of Quantity/Volume (g;z) (p d; ) fyﬁ —dEg,‘ci

_ (10%)(10-%) _

Pr 102 =1 for gases
31(10-3
Pr = (—19%0(}—?—)- =10 for liquids

The Schmidt number is defined as the ratio of the momentum to mass diffusivities:

. v i
Schmidt number = Sc = = 2.2-7
Dap pDasn ( )

The order of magnitude of the Schmidt number for gases and liquids can be esti-

mated as

Sc = ——1—0—1— =1 for gases
T o)~ ¢
1073 4 -
Sc = (I—OS—)TIOTQ) =10 for liquids

Finally, the ratio of a to Dy g gives the Lewis number, Le:

« k _ Sc

Lewis number = Le = = — = — 2.2-8
Dap  pCpDap Pr ( )
2.3 CONVECTIVE TRANSPORT
Convective flux or bulk flux of a quantity is expressed as
( Conf;/s;tlve ) = (Quantity/Volume) ( Chiﬁg::}iftic ) (2.3-1)
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When air is pumped through a pipe, it is considered to be a single phase and
a single component system. In this case, there is no ambiguity in defining the
characteristic velocity. However, if the oxygen in the air were reacting, then the
fact that air is composed predominantly of two species, O and N3, had to be taken
into account. Hence, air should be considered a single phase, binary component
system. For a single phase system composed of n components, the general definition
of a characteristic velocity is given by

Ver = Y B vs (2.3-2)

where (3; is the weighting factor and v; is the velocity of a constituent. The three
most common characteristic velocities are listed in Table 2.2. The term V; in the
definition of the volume average velocity represents the partial molar volume of a
constituent. The molar average velocity is equal to the volume average velocity
when the total molar concentration, ¢, is constant. On the other hand, the mass
average velocity is equal to the volume average velocity when the total mass density,
p, is constant.

Table 2.2 Common characteristic velocities.

Characteristic Velocity Weighting Factor Formulation
Mass average Mass fraction (w;) V= Wit
Molar average Mole fraction (z;) v =3 T
Volume average Volume fraction (¢;V;) o™ = Zi c;Viv;

The choice of a characteristic velocity is arbitrary. For a given problem, it is
more convenient to select a characteristic velocity which will make the convective
flux zero and thus yield a simpler problem. In the literature, it is common practice
to use the molar average velocity for dilute gases, i.e., ¢ = constant, and the mass
average velocity for liquids, i.e., p = constant.

It should be noted that the molecular mass flux expression given by Eq. (2.1-
6) represents the molecular mass flux with respect to the mass average velocity.
Therefore, in the equation representing the total mass flux, the characteristic ve-
locity in the convective mass flux term is taken as the mass average velocity. On
the other hand, Eq. (2.1-8) is the molecular molar flux with respect to the mo-
lar average velocity. Therefore, the molar average velocity is considered to be the
characteristic velocity in the convective molar flux term.

2.4 TOTAL FLUX

Since the total flux of any quantity is the sum of its molecular and convective
fluxes, then
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Total \ _ [ Transport Gradient of
flux / — \ property

driving force

v
Molecular flux

Quantity Characteristic
+ ( Volume velocity (2.41)

~
Convective flux
or,

“

Total o Gradient of
( flux ) = (Diffusivity) ( Quantity /Volume )

B an
Molecular flux

Quantity Characteristic
+ < Volume velocity (242)

———

Convective flux

The quantities that appear in Egs. (2.4-1) and (2.4-2) are given in Table 2.3.

N

Table 2.3 Analogous terms in flux expressions for various types of transport in
one-dimension.

Type of Total Molecular Convective Constraint
Transport  Flux Flux Flux onstrain
—p s None
Momentum Tyz dy (pvz) vy
—v M p = const.
dy
daT
-k rm ) None
Energy ey N (pCpT) vy
_aw pép=const.
Y
dw
- p DAB —dﬁ None
Mass Wy Y Pavy
Y dpa
—DABd—y p = const.
dx
—cDyp -d—A None
Mole Nu Y CAVS
v dcy L4
—DABd—y ¢ = const.
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The general flux expressions for momentum, energy and mass transport in dif-
ferent coordinate systems are given in Appendix C.

From Eq. (2.4-2), the ratio of the convective flux to the molecular flux is given
by

Convective flux  (Quantity/Volume)(Characteristic velocity)
Molecular flux  (Diffusivity)(Gradient of Quantity/Volume)

(2.4-3)

Since the gradient of a quantity represents the variation of that particular quantity
over a characteristic length, the “Gradient of Quantity /Volume” can be expressed
as

Difference in Quantity /Volume

Gradient of Quantity/Volume = Characteristic length (2.4-4)
The use of Eq. (2.4-4) in Eq. (2.4-3) gives
Convective flux _ (Characteristic velocity)(Characteristic length) (2.45)

Molecular flux Diffusivity

The ratio of the convective flux to the molecular flux is known as the Peclet number,
Pe. Therefore, Peclet numbers for heat and mass transfers are

L
@
cn L
Pey = —chzeh (2.47)
Dan
Hence, the total flux of any quantity is given by
Molecular flux Pek 1
Total flux = ¢ Molecular flux + Convective flux Pe=~1 (2.4-8)
Convective flux Pe>1

2.4.1 Rate of Mass Entering and/or Leaving the System

The mass flow rate of species 7 entering and /or leaving the system, 7i;, is expressed
as

— Mass Gradient of
i = Diffusivity Mass of i/Volume

~

~
Molecular mass flux of species i

N (Mass ofi) ( Characteristic ) ( Flow ) (2.4.9)

Volume velocity area

"

W
Convective mass flux of species 7

In general, the mass of species ¢ may enter and/or leave the system by two means:
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e Entering and/or leaving conduits,

e Exchange of mass between the system and its surroundings through the
boundaries of the system, i.e., interphase transport.

When a mass of species i enters and/or leaves the system by a conduit(s), the
characteristic velocity is taken as the average velocity of the flowing stream and it
is usually large enough to neglect the molecular flux compared to the convective
flux, i.e., Pey > 1. Therefore, Eq. (2.4-9) simplifies to

. (Massofi Average Flow
= ( Volume ) ( velocity ) < area ) (2.4-10)
or,
|7 = p, (v) A= p; Q| (2.411)

Summation of Eq. (2.4-11) over all species leads to the total mass flow rate, m,
entering and/or leaving the system by a conduit in the form

[in=p(w)a=p0] (2.4-12)

In terms of molar basis, Egs. (2.4-11) and (2.4-12) take the form

[ = ci (V) A =c; Q] (2.4-13)

| =c(v)Ad=cQ)| (2.4-14)

On the other hand, when a mass of species ¢ enters and/or leaves the system as
a result of interphase transport, the flux expression to be used is dictated by the
value of the Peclet number as shown in Eq. (2.4-8).

Example 2.4 Liquid B is flowing over a vertical plate as shown in Figure 2.7.
The surface of the plate is coated with a material A which has a very low solubility
in liguid B. The concentration distribution of species A in the liquid is given by
Bird et al. (1960) as

ea 1 % -uty
up‘rmm»A o

where c4, is the solubility of A in B, n is the dimensionless parameter defined by
nzx(_ﬁﬂﬁ_”s
9uDap2
and T'(4/3) is the gamma function defined by

I(n) = /mﬂ"'le‘ﬁdﬂ n>0

0
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Surface coated with species A

Figure 2.7 Solid dissolution into a falling film.

Calculate the rate of transfer of species A into the flowing liquid.

Solution
Assumptions
1. The total molar concentration in the liquid phase is constant.

2. In the x—direction, the convective flur is small compared to the molecular

Sflux.

Analysis

The molar rate of transfer of species A can be calculated from the expression

w L
”f?,A == / / NA.—:':::O dzdy (1)
0 0
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where the total molar flux of species A at the interface, Na_|z=0, s given by

. 0

By the application of the chain rule, Eq. (2) takes the form

87} (dCA)
Nal,—0=—Dap 5 | — 3
Axla=o AB 5z \dn =0 (3)
The term On/0z is
on_(_pgs \' @
8:0— Q#DABZ

On the other hand, the term dcy/dny can be calculated by the application of the
Leibnitz formula, i.e., Eq. (A.4-3) in Appendiz A, as

dCA CA —’73
A L Ao 5
& = T(4/3) ¢ ®)

Substitution of Egs. (4) and (5) into Eq. (8) yields

Dapca, pgd 13
I'(4/3) \9uDapz

(6)

NA:I:B:O =

Finally, the use of Eq. (6) in Eq. (1) gives the molar rate of transfer of species A

as
. 1 Wea, (3pgé /3 2/3
A= T@/3) (—# ) (DaBL) (7

2.4.2 Rate of Energy Entering and/or Leaving the System

The rate of energy entering and/or leaving the system, E,is expressed as

E= Thermal Gradient of
- diffusivity Energy /Volume

[

-
Molecular energy flux

E L.
" ( nergy) ( Charactgrlstlc ) ( Flow ) (2.415)
Volume velocity area

~

—~
Convective energy flux

As in the case of mass, energy may enter or leave the system by two means:
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e By inlet and/or outlet streams,

e By exchange of energy between the system and its surroundings through the
boundaries of the system in the form of heat and work.

When energy enters and /or leaves the system by a conduit(s), the characteristic
velocity is taken as the average velocity of the flowing stream and it is usually large
enough to neglect the molecular flux compared to the convective flux, i.e., Pey > 1.
Therefore, Eq. (2.4-15) simplifies to

o _ ( Energy Average Flow
E= (Volume) ( velocity area (2.4-16)
Energy per unit volume, on the other hand, is expressed as the product of energy

per unit mass, F, and mass per unit volume, i.e., density, such that Eq. (2.4-16)
becomes

- ( Energy Mass Average Flow \ - .
E= ( Mass > (Volume) ( velocity ) ( area ) =Em (2.4-17)

~

~
Mass flow rate

NOTATION

area, m?

heat capacity at constant pressure, kJ/kg. K
total concentration, kmol/ m3
concentration of species ¢, kmol/ m3

AB diffusion coefficient for system A-B, m?/s
rate of energy, W

total energy flux, W/ m?

force, N

molecular molar flux, kmol/ m?.s
molecular mass flux, kg/m?.s

thermal conductivity, W/m.K

total mass flow rate, kg/s

mass flow rate of species i, kg/s

total molar flux, kmol/ m2.s

total molar flow rate, kmol/s

molar flow rate of species ¢, kmol/ s
pressure, Pa

heat transfer rate, W

volumetric flow rate, m3/s

heat flux, W/ m?

temperature, °C or K

3 SO EEe C o

NR QT ZII >
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t time, s
%4 volume, m3
Vi partial molar volume of species i, m®/kmol
v velocity, m/s
v* molar average velocity, m/s
v™® volume average velocity, m/s
w total mass flux, kg/ m2.s
T rectangular coordinate, m
T; mole fraction of species %
Y rectangular coordinate, m
a thermal diffusivity, m2/s
¥ rate of strain, 1/s
7 viscosity, kg/ m.s
v kinematic viscosity (or, momentum diffusivity), m?/s
m total momentum flux, N/ m?
P total density, kg/ m3
Pi density of species 4, kg/ m3
Tyz flux of x — momentum in the y — direction, N/ m?
wi mass fraction of species 7
Overlines
" per unit mass
- partial molar
Bracket
{a) average value of a
Superscript
sat saturation
Subscripts
AB species in binary systems
ch characteristic
) species in multicomponent systems

Dimensionless Numbers

Le Lewis number

Pey Peclet number for heat transfer
Pey Peclet number for mass transfer
Pr Prandtl number

Sc Schmidt number
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PROBLEMS

2.1 Three parallel flat plates are separated by two fluids as shown in the figure
below. What should be the value of Y3 so as to keep the plate in the middle
stationary?

Vi lms — e

Fluid B (ug = 0.8 cP) Yy
Y;=5cm

Fluid A (up = 1cP)
# —V;=2m/s

(Answer: 2cm)
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2.2 The steady rate of heat loss through a plane slab, which has a surface area
of 3m? and is 7 cm thick, is 72 W. Determine the thermal conductivity of the slab
if the temperature distribution in the slab is given as

T=5z2z+10

where T is temperature in °C and z is the distance measured from one side of the
slab in cm.

(Answer: 0.048 W/ m.K)

2.3 The inner and outer surface temperatures of a 20cm thick brick wall are
30°C and — 5°C, respectively. The surface area of the wall is 25 m?. Determine the
steady rate of heat loss through the wall if the thermal conductivity is 0.72 W/ m. K.

(Answer: 3150 W)

2.4 Energy is generated uniformly in a 6cm thick wall. The steady-state tem-
perature distribution is

T = 145 + 3000 z — 1500 22

where T is temperature in °C and z is the distance measured from one side of
the wall in meters. Determine the rate of heat generation per unit volume if the
thermal conductivity of the wall is 15 W/ m. K.

(Answer: 45kW/m?3)

2.5 The temperature distribution in a one-dimensional wall of thermal conduc-
tivity 20 W/ m. K and thickness 60 cm is

T = 80 + 10~ %% sin(7¢)

where T is temperature in °C, t is time in hours, £ = z/L is the dimensionless
distance with z being a coordinate measured from one side of the wall and L is the
wall thickness in meters. Calculate the total amount of heat transferred in half an
hour if the surface area of the wall is 15 m?.

(Answer: 15,360J)

2.6 The steady-state temperature distribution within a plane wall of 1 m thick
with a thermal conductivity of 8 W/ m. K is measured as a function of position as
follows:
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z T
(m) (°C)
0 30
0.1 46
0.2 59
0.3 70
0.4 79
0.5 85
0.6 89
0.7 90
0.8 89
0.9 86
1.0 80

where z is the distance measured from one side of the wall. Determine the uniform
rate of energy generation per unit volume within the wall.

(Answer: 1920 W/ m?)

2.7 The geothermal gradient is the rate of increase of temperature with depth in
the earth’s crust.

a) If the average geothermal gradient of the earth is about 25°C/ km, estimate the
steady rate of heat loss from the surface of the earth.

b) One of your friends claims that the amount of heat escaping from 1 m? in 4 days
is enough to heat a cup of coffee. Do you agree? Justify your answer.

Take the diameter and the thermal conductivity of the earth as 1.27 x 10 km and
3W/m. K, respectively.

(Answer: a) 38 x 109 kW)

2.8 Estimate the earth’s age by making use of the following assumptions:

(1) Neglecting the curvature, the earth may be assumed to be semi-infinite plane
that began to cool from an initial molten state of T, = 1200°C. Taking the
interface temperature at z = 0 to be equal to zero, the corresponding temperature
distribution takes the form

T =T, erf (2%/&) 1)

where erf(x) is the error function defined by

erf(z) = % /OI e~ du (2)
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(#%) The temperature gradient at z = 0 is equal to the geothermal gradient of the
earth, i.e., 25°C/km.

(i4t) The thermal conductivity, the density and the heat capacity of the earth are
3W/m. K, 5500 kg/ m® and 2000 J/ kg. K, respectively.

Estimation of the age of the earth, based on the above model, is first used by
Lord Kelvin (1864). However, he knew nothing about radioactivity and heating
of the earth’s crust by radioactive decay at that time. As a result, his estimates,
ranging from 20 to 200 million years, were completely wrong. Today, the geologists
generally accept the age of the earth as 4.55 billion years.

(Answer: 85.3 x 10° year)

2.9 A slab is initially at a uniform temperature T, and occupies the space from
z=0to z = 00. At time ¢ = 0, the temperature of the surface at z = 0 is suddenly
changed to T} (T} > T,) and maintained at that temperature for ¢ > 0. Under
these conditions the temperature distribution is given by

Tl -T z

—— =erf 1

ror = (37z) W
If the surface area of the slab is A, determine the amount of heat transferred into
the slab as a function of time.

(Answer: @ = ZALLZT) 1)

2.10 Air at 20°C and 1atm pressure flows over a porous plate that is soaked in
ethanol. The molar concentration of ethanol in the air, ¢y, is given by

ca=4e 15

where c4 is in kmol/ m® and z is the distance measured from the surface of the
plate in meters. Calculate the molar flux of ethanol from the plate.

(Answer: 0.283 kmol/ m?2. h)

2.11 The formal definition of the partial molar volume is given by

— v
Vi= ( ) 1
6‘“”" ’I‘,P,nj;“ ( )
Substitute n
= (2)

into Eq. (1) and show that the volume fraction is equal to the mole fraction for
constant total molar concentration, ¢, i.e.,

caVi=uz; (3)
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This further implies that the molar average velocity is equal to the volume average
velocity when the total molar concentration is constant.

2.12 For a gas at constant pressure, why does the Schmidt number usually remain
fairly constant over a large temperature range, whereas the diffusion coefficient
changes markedly?

2.13 Gas A dissolves in liquid B and diffuses into the liquid phase. As it diffuses,
species A undergoes an irreversible chemical reaction as shown in the figure be-
low. Under steady conditions, the resulting concentration distribution in the liquid
phase is given by

ca _ cosh{A[1—(z/L)]}

ca, cosh A

in which
kL?

A=
Dagr

where ¢4, is the surface concentration, k is the reaction rate constant and D4p is
the diffusion coefficient.

Gas A

L Liquid B

X

a) Determine the rate of moles of A entering into the liquid phase if the cross-
sectional area of the tank is A.

b) Determine the molar flux at z = L. What is the physical significance of this
result?

A'DABCAOA tanh A b) 0)

(Answer: a) ng = i3






Chapter 3

Interphase Transport and
Transfer Coefficients

In engineering calculations, we are interested in the determination of the rate of
momentum, heat and mass transfer from one phase to another across the phase in-
terface. This can be achieved by integrating the flux expression over the interfacial
area. Equation (2.4-2) gives the value of the flux at the interface as

Interphase _ v Gradient of
( flux > - [(DIHUSlVlty)( Quantity /Volume )

N <Quantity) ( Characteristic )]
Volume velomty interface

Note that the determination of the interphase flux requires the values of the quan-
tity/volume and its gradient to be known at the interface. Therefore, equations
of change must be solved to obtain the distribution of guantity/volume as a func-
tion of position. These analytical solutions, however, are not possible most of the
time. In that case we resort to experimental data and correlate the results by the
transfer coeflicients, namely, the friction factor, the heat transfer coefficient, and
the mass transfer coefficient. The resulting correlations are then used in designing
equipment.

This chapter deals with the physical significance of these three transfer coef-
ficients. In addition, the relationships between these transfer coefficients will be
explained by using dimensionless numbers and analogies.

3.1 FRICTION FACTOR

Let us consider a flat plate of length L and width W suspended in a uniform stream
having an approach velocity v, as shown in Figure 3.1.

41
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f L

Y

Figure 3.1 Flow on a flat plate.

As an engineer we are interested in the determination of the total drag force, i.e.,
the component of the force in the direction of flow, exerted by the flowing stream
on the plate. This force can be calculated by integrating the total momentum flux
at the wall over the surface area. The total momentum flux at the wall, 7|0, is

Tyzly—o = Tyzly—o + (,ov,'uy)|y__0 (3.1-1)

where Tyz| y=0 is the value of the shear stress at the wall. Since the plate is

stationary, the fluid which is in contact with the plate is also stagnant! and both
v, and vy are zero at y = 0. Therefore, Eq. (3.1-1) reduces to

7"yz|y=o = Tyz|y=o =Tw (3.1-2)

and the drag force, Fp, on one side of the plate can be calculated from

W oL
Fp= / / Tw dzdz (3.1-3)
o Jo

Evaluation of the integral in Eq. (3.1-3) requires the value of the velocity
gradient at the wall, which can be obtained from the solution of the equations
of change. Since this is almost an impossible task in most cases, it is customary
in engineering practice to replace 7,, by a dimensionless term called the friction
factor, f, such that

1
Tw=3 pvi.f (3.1-4)
Substitution of Eq. (3.1-4) into Eq. (3.1-3) gives
1, (Y[ 1
Fp = §pvoo o Jo fdzdz = (WL) §pvoo (H (3.1-5)

where (f) is the friction factor averaged over the area of the plate?, i.e.,

////fd:l:dz v_Vlf/ow/oLfdxdz (3.1.6)

1 This is known as the no-slip boundary condition.
2See Section A.2 in Appendix A.
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Equation (3.1-5) can be generalized in the form

Fp = AsnKen(f) | (3.1-7)

in which the terms A.;, characteristic area, and K5, characteristic kinetic energy,
are defined by

A = Wetted surface area for flow in conduits 3.1-8
¢k = ) Projected area for flow around submerged objects (3.1-8)
1
K. = § vah (31'9)
where v.p, is the characteristic velocity.
Power, W, is defined as the rate at which work is done. Therefore,
W, Di
Power = ork _ (Force)(Distance) = (Force)(Velocity) (3.1-10)

Time Time
or,

o

Example 3.1 Advertisements for cars in the magazines give the complete list of
their features, one of which is the friction factor (or, drag coefficient) based on the
frontal area. Sports cars, such as Toyota Celica, usually have a friction factor of
around 0.24. If the car has a width of 2m and o height of 1.5m,

a) Determine the power consumed by the car when it is going at 100km/ h.

b) Repeat part (a) if the wind blows at a velocity of 30km/h opposite to the
direction of the car.

c) Repeat part (a) if the wind blows at a velocity of 30km/h in the direction of
the car.

Solution
Physical properties
For air at 20°C (293K) : p= 1.2kg/ m?
Assumption
1. Airis at 20°C.
Analysis
a) The characteristic velocity is

ver, = (100) (;—23—%) =27.78m/s
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The drag force can be calculated from Eq. (3.1-7) as
1 9
Fp = Ach 5 pven | ()
= (2 x 1.5) [% (1.2)(27.78)2] (0.24) = 333.4N

The use of Eq. (3.1-11) gives the power consumed as

W = FDvch
— (333.4)(27.78) = 9262 W

b) In this case the characteristic velocity is

Therefore, the drag force and the power consumed are

Fp=(2x1.5) [% (1.2)(36.11)2] (0.24) = 563.3N

W = (563.3)(36.11) = 20,341 W

c) In this case the characteristic velocity is

ven = (100 — 30) (%) =19.44m/s

Therefore, the drag force and the power consumed are
1
Fp =(2x1.5) [5 (1.2)(19.44)2} (0.24) = 163.3N
W = (163.3)(19.44) = 3175 W

3.1.1 Physical Interpretation of Friction Factor

According to Newton’s law of viscosity, Eq. (2.1-2), the shear stress at the wall is
expressed as

Tw= %i; (3.1-12)

y=0

The minus sign is omitted in Eq. (3.1-12) because the value of v, increases as the
distance y increases. Substitution of Eq. (3.1-12) into Eq. (3.1-4) gives

p Ovg
pvd, Oy

f= (3.1-13)

1
2

y=0
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The friction factor can be determined from Eq. (3.1-13) if the physical properties of
the fluid (viscosity and density), the approach velocity of the fluid, and the velocity
gradient at the wall are known. Since the calculation of the velocity gradient
requires determination of the velocity distribution in the fluid phase, the actual case
is idealized as shown in Figure 3.2. The entire resistance to momentum transport
is assumed to be due to a laminar film of thickness § next to the wall.

Velocity

distribution Laminar film
of thickness &
[ e
y L \
X
a) Actual case b) Idealized case

Figure 3.2 The film model for momentum transfer.

The velocity gradient in the film is constant and is equal to

Ov, Voo
i =2 3.1-14
dy y=0 é ( )
Substitution of Eq. (3.1-14) into Eq. (3.1-13) and multiplication of the resulting
equation by the characteristic length, L., yields

1 Lch

- = 1-1

5 fRe= =2 (3.1-15)
where the dimensionless term Re is the Reynolds number defined by

Re = 52";’&” (3.1-16)

Equation (3.1-15) indicates that the product of the friction factor with the Reynolds
number is directly proportional to the characteristic length and inversely propor-
tional to the thickness of the momentum boundary layer.

3.2 HEAT TRANSFER COEFFICIENT
3.2.1 Convection Heat Transfer Coefficient

Let us consider a flat plate suspended in a uniform stream of velocity vo, and
temperature T, as shown in Figure 3.3. The temperature at the surface of the
plate is kept constant at T;,.
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Figure 3.3 Flow over a flat plate.

As an engineer we are interested in the total rate of heat transfer from the plate
to the flowing stream. This can be calculated by integrating the total energy flux
at the wall over the surface area. The total energy flux at the wall, ey|y=o’ is

ey|y=0 = qy|y=0 + (péPTvy) y=0 (3.2'1)

where g¢,] y=o 15 the molecular (or, conductive) energy flux at the wall. As a result
of the no-slip boundary condition at the wall, the fluid in contact with the plate
is stagnant and heat is transferred by pure conduction through the fluid layer
immediately adjacent to the plate. Therefore, Eq. (3.2-1) reduces to

ey|y=o = ‘Iy]y=o =qu (3.2-2)

and the rate of heat transfer, (), from one side of the plate to the flowing stream is

Q= /0 " /0 qu dzdz (3.2-3)

Evaluation of the integral in Eq. (3.2-3) requires the determination of the temper-
ature gradient at the wall. However, the fluid motion makes the analytical solution
of the temperature distribution impossible to obtain in most cases. Hence, we usu-
ally resort to experimentally determined values of the energy flux at a solid-fluid
boundary in terms of the convection heat transfer coefficient, h, as

{qw = h (T — Too) | (3.2-4)

which is known as Newton’s law of cooling. The convection heat transfer coef-
ficient, h, has the units of W/ m?. K. It depends on the fluid flow mechanism,
fluid properties (density, viscosity, thermal conductivity, heat capacity) and flow
geometry.

Substitution of Eq. (3.2-4) into Eq. (3.2-3) gives the rate of heat transfer as

w L
Q = (T, — To) /o /0 hdadz = (WL)(h)(Tw — Too) (3.2-5)
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where (h) is the heat transfer coefficient averaged over the area of the plate and is
defined by

//hdzdz L [ b (3.2-6)
WL/O/O zdz 2
/ /da:dz

Equation (3.2-5) can be generalized in the form

Q = Ax(h) (AT),, (3.2-7)

where Ap is the heat transfer area and (AT),, is the characteristic temperature
difference.

3.2.1.1 Physical interpretation of heat transfer coefficient

According to Fourier’s law of heat conduction, Eq. (2.1-4), the molecular energy
flux at the wall is expressed as

orT
—k == .
qQu Jy - (3 2—8)
Combination of Egs. (3.2-4) and (3.2-8) gives
k
h=—ee— & 3.2:9
To —Too 9y |, ( )

The convection heat transfer coefficient can be determined from Eq. (3.2-9) if the
thermal conductivity of the fluid, the overall temperature difference, and the tem-
perature gradient at the wall are known. Since the calculation of the temperature
gradient at the wall requires the determination of the temperature distribution in
the fluid phase, the actual case is idealized as shown in Figure 3.4.

Temperature
distribution Stagnant film

of thickness &,

a) Actual case b) Idealized case

Figure 3.4 The film model for energy transfer.
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The entire resistance to heat transfer is assumed to be due to a stagnant film
in the fluid next to the wall. The thickness of the film, §;, is such that it provides
the same resistance to heat transfer as the resistance that exists for the actual
convection process. The temperature gradient in the film is constant and is equal
to

or = T —Tw (3.2-10)
Jy =0 3,
Substitution of Eq. (3.2-10) into Eq. (3.2-9) gives
heX (3.2-11)
O

Equation (3.2-11) indicates that the thickness of the film, &;, determines the value
of h. For this reason the term h is frequently referred to as the film heat transfer
coefficient.

Example 3.2 Energy generation rate per unit volume as a result of fission within
a spherical reactor of radius R is given as a function of position as

2
R=R,|1- (—)
Ji- (5
where r is the radial distance measured from the center of the sphere. Cooling fluid
at a temperature of Too flows over the reactor. If the average heat transfer coeffi-

cient (h) at the surface of the reactor is known, determine the surface temperature
of the reactor at steady-state.

Solution
System: Reactor
Analysis
The inventory rate equation for energy becomes
Rate of energy out = Rate of energy generation (1)

The rate at which energy leaves the sphere by convection is given by Newton’s law
of cooling as

Rate of energy out = (47 R?)(h) (T — Two) (2)
where T, is the surface temperature of the sphere.

The rate of energy generation can be determined by integrating R over the vol-
ume of the sphere. The result is

2w T R r\2
Rate of energy generation = / / / Ro |1 - (—) 2 sin 6 drdfd¢
o Jo Jo R

8
=15 R,R® (3)
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Substitution of Egs. (2) and (8) into Eq. (1) gives the surface temperature as

2 R,R

Ty =T +

3.2.2 Radiation Heat Transfer Coefficient

The heat flux due to radiation, ¢®*, from a small object to the surroundings wall is
given as
t=co (T} -T3) (3.2-12)
where ¢ is the emissivity of the small object, ¢ is the Stefan-Boltzmann constant
(5.67051 x 10~8 W/ m2.K*), T} and T are the temperatures of the small object
and the wall in degrees Kelvin, respectively.
In engineering practice, Eq. (3.2-12) is written in an analogous fashion to Eq.

(3.2-4) as
¢ =ht (T} -T3) (3.2-13)

where h® is the radiation heat transfer coefficient. Comparison of Egs. (3.2-12)
and (3.2-13) gives

_eo (T - T3)
T O TNi-T;

provided that (T) > (T1 — T2)/2, where (T) = (T} + T2)/2.

hE ~4e0(T)3 (3.2-14)

3.3 MASS TRANSFER COEFFICIENT

Let us consider a flat plate suspended in a uniform stream of fluid (species B)
having a velocity ve, and species A concentration c4_, as shown in Figure 3.5. The
surface of the plate is also coated with species A with concentration c4,,.

Vo
cAd)
— NAw

)’I - Cap
X

- L |

Figure 3.5 Flow over a flat plate.

As an engineer we are interested in the total number of moles of species A
transferred from the plate to the flowing stream. This can be calculated by inte-
grating the total molar flux at the wall over the surface area. The total molar flux
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at the wall, NA,,Iy=0, is

Na,|,_o= Ja,

y=0 yoo T (cA75) ly=0 (3.3-1)

. is the molecular (or, diffusive) molar flux at the wall. For low mass
y:
transfer rates Eq. (3.3-1) can be simplified to®

where J3}
v

—_— ~~ *
NAV‘y:O - NAW - JAv

(3.3-2)

y=0

and the rate of moles of species A transferred, 4, from one side of the plate to

the flowing stream is
W L
7'7,,4 2/ / NAwdiL'dZ (33-3)
0o Jo

Evaluation of N4 requires the determination of the concentration gradient at the
wall. Since this is almost impossible to obtain, in an analogous manner to the
definition of the heat transfer coeflicient, the convection mass transfer coefficient,
ke, is defined by?

| Naw = ke (ca, = )| (33-4)

The mass transfer coefficient has the units of m/s. It depends on the fluid flow
mechanism, fluid properties (density, viscosity, diffusion coefficient) and flow ge-
ometry.

Substitution of Eq. (3.3-4) into Eq. (3.3-3) gives the rate of moles of species A
transferred as

w L
foa = (ca, — caL) /0 /0 ke dodz = (WL) (ko) (ca, —ca_) (3.3-5)

where (k.) is the mass transfer coefficient averaged over the area of the plate and

is defined by
W L
/ / ke dxdz
o Jo

1 W L
kc = = e .
(ke) /W/L WL/O /0 k.dzdz (3.3-6)
dzdz
o Jo

3Note that vy, is the molar average velocity defined by

. c4va, +CBVB,
v, = ——————
v c
At the wall, i.e., y =0, vp, = 0 due to no-slip boundary condition. However, va, # 0 as a result
of the transfer of species A from the surface to the flowing stream. Therefore, vyly=0 # 0.
4Equation (3.3-4) may be called Newton’s law of mass transfer as suggested by Slattery (1999).
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Equation (3.3-5) can be generalized in the form

|'hA = Ap(kc) (Aca).

(3.3-7)

where Ajs is the mass transfer area and (Acy),, is the characteristic concentration
difference.

3.3.1 Physical Interpretation of Mass Transfer Coefficient
The use of Fick’s first law of diffusion, Eq. (2.1-9), in Eq. (3.3-2) gives

aCA
Na, = —Dap ZA 3
a=Pas G| (3:3-8)
Combination of Egs. (3.3-4) and (3.3-8) gives
Dap Oca
ke=———F— —= 3.39
¢ CAW - cAao ay =0 ( )

The convection mass transfer coefficient can be determined from Eq. (3.3-9) if the
diffusion coefficient, the overall concentration difference, and the concentration
gradient at the wall are known. Since the calculation of the concentration gradient
requires the determination of the concentration distribution, the actual case is
idealized as shown in Figure 3.6.

C Aoo
slope = A
y=0 .
: Concentration Stagnant film
E distribution of thickness 3,
H / €A,
y H
L A, \‘ Ay
x .
a) Actual case b) Idealized case

Figure 3.6 The film model for mass transfer.

The entire resistance to mass transfer is due to a stagnant film in the fluid
next to the wall. The thickness of the film, §., is such that it provides the same
resistance to mass transfer by molecular diffusion as the resistance that exists for
the actual convection process. The concentration gradient in the film is constant
and equal to

Oca CAw — CAu

4 = Lo fuw 3.3-10
i > (3.3-10)
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Substitution of Eq. (3.3-10) into Eq. (3.3-9) gives

_Das

ke 3.

(3.3-11)

Equation (3.3-11) indicates that the mass transfer coefficient is directly propor-
tional to the diffusion coefficient and inversely proportional to the thickness of the
concentration boundary layer.

3.3.2 Concentration at the Phase Interface

Consider the transfer of species A from the solid phase to the fluid phase through
a flat interface as shown in Figure 3.7. The molar flux of species A is expressed by
Eq. (3.3-4). In the application of this equation to practical problems of interest,
there is no difficulty in defining the concentration in the bulk fluid phase, c4_,
since this can be measured experimentally. However, to estimate the value of ¢4,
one has to make an assumption about the conditions at the interface. It is generally
assumed that the two phases are in equilibrium with each other at the solid-fluid
interface. If T,, represents the interface temperature, the value of ¢4 is given by
P3*/RT (Assuming ideal gas behavior)  fluid = gas 2319

A {Solubility of solid in liquid at T, fluid = liquid @ )

The Antoine equation is widely used to estimate vapor pressures and it is given in
Appendix D.

Interface

]

[:$ NAw = kc (cAw - cAoo)

Solid Fluid

Figure 3.7 Transfer of species A from the solid to the fluid phase.

Example 3.3 0.5 L of ethanol is poured into a cylindrical tank of 2 L capacity
and the top is quickly sealed. The total height of the cylinder is 1m. Calculate the
mass transfer coefficient if the ethanol concentration in the air reaches 2% of its
saturation value in & minutes. The cylinder temperature is kept constant at 20°C.



3.3. MASS TRANSFER COEFFICIENT 53

Solution
Physical properties

p = 789kg/ m3
For ethanol (A) at 20°C (293K): { M =46
P3*t = 43.6 mmHg

Assumption
1. Ideal gas behavior.
Analysis
The mass transfer coefficient can be calculated from Eq. (3.3-4), i.e.,
Na, = ke(ca, — caw) (1)

The concentration difference in Eq. (1) is given as the concentration of ethanol va-
por at the surface of the liquid, c4,,, minus that in the bulk solution, ca_,. The con-
centration at the liquid surface is the saturation concentration while the concentra-
tion in the bulk is essentially zero at relatively short times so that ¢4, —ca,, =~ ca,,-
Therefore Eq. (1) simplifies to

NAw = kC CA“, (2)
The saturation concentration of ethanol is
. _ P‘iat
AT RT
43.6/760 i ,
- =2
(0.08205) (20 + 273) — 239 * 107 kmol/m 3)

Since the ethanol concentration within the cylinder reaches 2% of its saturation
value in 5 minutes, the moles of ethanol evaporated during this period is

ny = (0.02)(2.39 x 1073)(1.5 x 1073) = 7.17 x 1078 kmol (4)

where 1.5x 1073 m? is the volume of the air space in the tank. Therefore, the molar
fluz at 5 minutes can be calculated as

Na. = (Area)(Time)
. 717x1078
T (2 x1073/1) (5 x 60)
Substitution of Egs. (8) and (5) into Eq. (2) gives the mass transfer coefficient as

~12x1077
T 2.39 x 10-3

=1.2 x 10~  kmol/ m2.s (5)

ke =5x10"5m/s (6)



54 CHAPTER 3. INTERPHASE TRANSPORT

3.4 DIMENSIONLESS NUMBERS

Rearrangement of Eqs. (3.1-4), (3.2-4) and (3.3-4) gives

1
Ty = EfvchA(p'Uch) A(p'vch) = PUg — 0 (34"1)
h N ~ N ~
Go=—==A(PCPT)  A(pCeT)=pCrTu—pCrle  (342)
pLp
NA,,,. =kcACA ACA =CA, — CA, (34-3)

Note that Egs. (3.4-1)-(3.4-3) has the general form

Interphase \ _ [ Transfer Difference in (3.4-4)
flux ~\ coefficient Quantity/Volume '

and the terms fuv./2, h/pC’p, and k. all have the same units, m/s. Thus, the
ratio of these quantities must yield dimensionless numbers:

h
Heat transfer Stanton number = Sty = — (3.4-5)
P Cpuch
ke
Mass transfer Stanton number = Sty = — (3.4-6)
ch

Since the term f/2 is dimensionless itself, it is omitted in Eqs. (3.4-5) and (3.4-6).
Dimensionless numbers can also be obtained by taking the ratio of the fluxes.
For example, when the concentration gradient is expressed in the form

Difference in Quantity/Volume

Gradient of Quantity /Volume = Characteristic length (3.4-7)
the expression for the molecular flux, Eq. (2.2-5), becomes
Molecular flux — (Diffusivity) (Difference in Quantity/Volume) (3.48)

Characteristic length

Therefore, the ratio of the total interphase flux, Eq. (3.4-4), to the molecular flux,
Eq. (3.4-8), is

Interphase flux _ (Transfer coefficient) (Characteristic length)
Molecular flux Diffusivity

(3.4-9)

The quantities in Eq. (3.4-9) for various transport processes are given in Table 3.1.
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Table 3.1 Transfer coefficient, diffusivity and flux ratio for the transport of
momentum, energy and mass.

Interphase Flux

Process Transfer Coefficient Diffusivity Molooulor Flix
Momentum é foen % % f pvc;Lch
h k ALch
Energy - A
pCp pCp k
Mass ke Dag kcLecn
Dan

The dimensionless terms representing the ratio of the interphase flux to the
molecular flux in Table 3.1 are defined in terms of the dimensionless numbers as

1 pvenLlen 1

5 f——“——— = 5 fRe (3.4-10)
hL,
—k—" = Nu (3.4-11)
k.L.
—cZ¢h _ Nuy = Sh (3.4-12)
Das

where Nu is the heat transfer Nusselt number and Nuy is the mass transfer Nusselt
number. The mass transfer Nusselt number is generally called the Sherwood num-
ber, Sh. Equations (3.4-10)-(3.4-12) indicate that the product {fRe/2) is more
closely analogous to the Nusselt and Sherwood numbers than f itself. A summary
of the analogous dimensionless numbers for energy and mass transfer covered so
far is given in Table 3.2.

Table 3.2 Analogous dimensionless numbers in energy and mass transfer.

Energy Mass
Pr= g “SP Se = D:B - PT;LAB
Nu = hl;:h Nuy = Sh = ];;—I;Bh
Sty = h Sty = %éc = vf;
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3.5 TRANSPORT ANALOGIES

Existing analogies in various transport processes depend on the relationship be-
tween the dimensionless numbers defined by Egs. (3.4-10)-(3.4-12). In Section 3.1.1
we showed that

Lch

: (3.5-1)

On the other hand, substitution of Eqs. (3.2-11) and (3.3-11) into Egs. (3.4-11)
and (3.4-12), respectively, gives

%fRe:

L.
Nu = = (3.5-2)
de
and I
Sh = ;" (3.5-3)
Examination of Eqs. (3.5-1)-(3.5-3) indicates that
Interphase flux  Characteristic length (3.5-4)
Molecular flux ~ Effective film thickness '
Comparison of Egs. (3.4-9) and (3.5-4) implies that
Effective film thickness = Diffusivity (3.5-5)

Transfer coefficient

Note that the effective film thickness is the thickness of a fictitious film which would
be required to account for the entire resistance if only molecular transport were
involved.

Using Eqgs. (3.5-1)- (3.5-3), it is possible to express the characteristic length as

Lep = % fRed =Nuéd, = Shé, (3.5-6)
Substitution of Nu = Sty Re Pr and Sh = Sty; Re Sc into Eq. (3.5-6) gives

-;- £8 = Sty Pré, = Sty Scé, (3.5-7)

3.5.1 The Reynolds Analogy

Similarities between the transport of momentum, energy and mass were first noted
by Reynolds in 1874. He proposed that the effective film thicknesses for the transfer
of momentum, energy and mass are equal, i.e.,

§=46,=6. (3.5-8)
Therefore, Eq. (3.5-7) becomes

é— = Sty Pr = Sty Sc (35—9)
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Reynolds further assumed that Pr = Sc = 1. Under these circumstances Eq. (3.5-9)
reduces to

é = Sty = Sty (3.5-10)

which is known as the Reynolds analogy. Physical properties in Eq. (3.5-10) must
be evaluated at T' = (Ty, + Too ) /2.

The Reynolds analogy is reasonably valid for gas systems but should not be
considered for liquid systems.

3.5.2 The Chilton-Colburn Analogy

In the Chilton-Colburn analogy the relationships between the effective film thick-
nesses are expressed as

) §
5= prl/3 = Scl/3 (3.5-11)
Substitution of Eq. (3.5-11) into Eq. (3.5-7) yields
f_ 2/3 _ .
—2" = StH Pr =JH (35—12)
and
g = Sty Sc¥/® = jus (3.5-13)

where jy and jp; are the Colburn j—factors for heat and mass transfer, respec-
tively.

Physical properties in Eqgs. (3.5-12) and (3.5-13) must be evaluated at T =
(T + Too)/2. The Chilton-Colburn analogy is valid when 0.6 < Pr < 60 and
0.6 < Sc < 3000. Note that Egs. (3.5-12) and (3.5-13) reduce to Reynolds analogy,
Eq. (3.5-10), for fluids with Pr =1 and Sc = 1.

As stated in Section 3.1, the drag force is the component of the force in the
direction of mean flow. In general, both viscous and pressure forces contribute to
this force’. In Eq. (3.1-3), only viscous force is considered in the evaluation of
the drag force. The reason for this is that the pressure always acts normal to the
surface of the flat plate and the component of this force in the direction of mean
flow is zero. In the case of curved surfaces, however, the component of normal
force to the surface in the direction of mean flow is not necessarily zero as shown
in Figure 3.8. Therefore, the friction factor for flow over flat plates and for flow
inside circular ducts includes only friction drag, whereas the friction factor for flow
around cylinders, spheres, and other bluff objects includes both friction and form
drags. As a result, f/2 term for flow around cylinders and spheres is greater than

5The drag force arising from viscous and pressure forces are called friction (or, skin) drag and
form drag, respectively.
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the j—factors. The validity of the Chilton-Colburn analogy for flow in different
geometries is given in Table 3.3.

Pressore foree

i e
[
Dircction of mean (low Pressure force

— Flat surface

Figure 3.8 Pressure force acting on curved and flat surfaces.

Table 3.3 Validity of the Chilton-Colburn analogy for various geometries.

Flow Geometry Chilton-Colburn Analogy
fo.
Flow over a flat plate 5 =Jin=jum
Flow over a cylinder JH =M
, , . Nu > 2
Flow over a sphere jg =M if { S:>> 9
Flow in a pipe % =ju =4jm if Re> 10,000 (Smooth pipe)

Example 3.4 Water evaporates from a wetted surface of rectangular shape when
air at latm and 35°C i3 blown over the surface at a velocity of 15m/s. Heat
transfer measurements indicate that for air at 1atm and 35°C the average heat
transfer coefficient is given by the following empirical relation

(h) = 21928

where (h) is in W/ m? K and v, air velocity, is in m/s. Estimate the mass
transfer coefficient and the rate of evaporation of water from the surface if the area
is 1.5m?.
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Solution
Physical properties

For water at 35°C (308K) : P*** = 0.0562 bar

p = 1.1460kg/ m3
v=16.47 x 107m?/s
Cp =1.005kJ/ kg. K
Pr=0.711

Diffusion coefficient of water (A) in air (B) at 35°C (308 K) :

For air at 35°C (308K) :

3/2
(Pas)us = Pasn (o5
= (2.88 x 107°) (%)m =2.81x10"%m?/s
The Schmidt number is
v
Se = Dysp .
- 12(?';17: 1100—5 = 0.586

Assumption
1. Ideal gas behavior.
Analysis

The use of the Chilton-Colburn analogy, jy = jpm, gives

(ko) = 2L (E’z)m _ 210 <&)2/ ’ 1)
e pép SC pép SC

Substitution of the values into Eq. (1) gives the average mass transfer coefficient

as
_(e)s)s ro711\*°
(ke) = 7 1460)(1005) (0.586) = 0.105m/s

Saturation concentration of water is

Pillt
CAe = RT

0.0562

= =2, =3 kmol 3
B3 x 107355 273) ~ 219X 107 kmol/m
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Therefore, the evaporation rate of water from the surface is

na = Alke) (ca, — Cao.)
= (1.5)(0.105)(2.19 x 1073 — 0) = 3.45 x 10~* kmol/ s

NOTATION

A area, m?

Ag heat transfer area, m?

Apr mass transfer area, m?

Cp heat capacity at constant pressure, kJ/kg. K
¢ concentration of species 7, kmol/ m3

Das diffusion coefficient for system A-B, m?/s

Fp drag force, N

friction factor

heat transfer coefficient, W/ m2. K
Chilton-Colburn 7 — factor for heat transfer
Chilton-Colburn j — factor for mass transfer
kinetic energy per unit volume, J/ m?3
thermal conductivity, W/ m.K

mass transfer coefficient, m/s

length, m

molecular weight, kg/kmol

total molar flux, kmol/ m?.s

molar flow rate of species ¢, kmol/s
pressure, Pa

heat transfer rate, W

heat flux, W/ m?

heat flux due to radiation, W/ m?

gas constant, J/ mol. K

energy generation rate per unit volume, W/ m3
temperature, °C or K

time, s

velocity, m/ s

rate of work, W

rectangular coordinate, m

rectangular coordinate, m

rectangular coordinate, m

N @R g,d ﬂﬂﬁmgma‘o'kug'zihgrwks“;'?\
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thermal diffusivity, m?/s

@
A difference
) fictitious film thickness for momentum transfer, m
b fictitious film thickness for mass transfer, m
4y fictitious film thickness for heat transfer, m
€ emissivity
i viscosity, kg/ m.s
v kinematic viscosity (or, momentum diffusivity), m?/s
™ total momentum flux, N/ m?
p density, kg/m3
o Stefan-Boltzmann constant, W/ m?. K*
Tya flux of £ — momentum in the y — direction, N/ m?
Bracket
(a) average value of a
Superscript
sat saturation
Subscripts
A, B species in binary systems
ch characteristic
1 species in multicomponent systems
w surface or wall
00 free-stream

Dimensionless Numbers

Nu Nusselt number for heat transfer

Nuy Nusselt number for mass transfer
Pr Prandtl number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number

Sty Stanton number for heat transfer
Stum Stanton number for mass transfer
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PROBLEMS

3.1 Your friend claims that humid air causes an increase in the gas consumption
of cars. Do you agree?

3.2 Air at 20°C flows over a flat plate of dimensions 50 cm x 25 cm. If the average
heat transfer coefficient is 250 W/ m?. K, determine the steady rate of heat transfer
from one side of the plate to air when the plate is maintained at 40°C.

(Answer: 625 W)

3.3 Air at 15°C flows over a spherical LPG tank of radius 4m. The outside
surface temperature of the tank is 4°C. If the steady rate of heat transfer from the
air to the storage tank is 62,000 W, determine the average heat transfer coefficient.

(Answer: 28 W/ m?. K)

3.4 The volumetric heat generation in a hollow aluminum sphere of inner and
outer radii of 20 cm and 50 cm, respectively, is given by

R =4.5x10* (1+0.67?)

in which ® is in W/ m3 and r is the radial coordinate measured in meters. The
inner surface of the sphere is subjected to a uniform heat flux of 15,000 W/ m?
while heat is dissipated by convection to an ambient air at 25°C through the outer
surface with an average heat transfer coefficient of 150 W/ m2. K. Determine the
temperature of the outer surface under steady conditions.

(Answer: 92.3°C)
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3.5 Inthe system shown below, the rate of heat generation is 800 W/ m3 in Region
A which is perfectly insulated on the left-hand side. Given the conditions indicated
in the figure, calculate the heat flux and temperature at the right-hand side, i.e.,
at = 100 cm, under steady-state conditions.

Rate of heat generation = 800 W / m3

/

v/ <h> =15 W/m2.K

Region A Region B

T,ir= 20°C

«—— 40cm 60cm ————

gy

(Answer: 320W, 41.3°C)

3.6 Uniform energy generation rate per unit volume at ® = 2.4 x 106 W/ m? is
occurring within a spherical nuclear fuel element of 20 cm diameter. Under steady
conditions the temperature distribution is given by

T = 900 — 10, 00072

where T is in degrees Celsius and r is in meters.

a) Determine the thermal conductivity of the nuclear fuel element.
b) What is the average heat transfer coefficient at the surface of the sphere if the
ambient temperature is 35°C?

(Answer: a) 40W/m.K b) 104.6 W/ m?.K)

3.7 A plane wall, with a surface area of 30 m? and a thickness of 20 cm, separates
a hot fluid at a temperature of 170 °C from a cold fluid at 15°C. Under steady-state
conditions, the temperature distribution across a wall is given by

T = 150 — 600 z — 50 z*
where z is the distance measured from the hot wall in meters and T is the temper-
ature in degrees Celsius. If the thermal conductivity of the wall is 10 W/ m. K :

a) Calculate the average heat transfer coefficients at the hot and cold surfaces.
b) Determine the rate of energy generation within the wall.

(Answer: a) (h)not = 300 W/ m2. K, (h)cora = 477W/m?. K b) 6000 W)

3.8 Derive Eq. (3.2-14).
(Hint:Express T} and T in terms of (T’).)
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3.9 It is also possible to interpret the Nusselt and Sherwood numbers as di-
mensionless temperature and concentration gradients, respectively. Show that the
Nusselt and Sherwood numbers can be expressed as

—(9T/8y)y=0.

Nu =
U T ~Too)/Len

and

— (9ca/By)y=0

Sh =
(ca, —can)/Len




Chapter 4

Evaluation of Transfer
Coefficients:
Engineering Correlations

Since most engineering problems do not have theoretical solutions, a large portion
of engineering analysis is concerned with the experimental information which is
usually expressed in terms of engineering correlations. These correlations, however,
are limited to a specific geometry, equipment configuration, boundary conditions,
and substance. As a result, the values obtained from correlations are not exact and
it is possible to obtain two different answers from two different correlations for the
same problem. Therefore, one should keep in mind that the use of a correlation
introduces an error in the order of + 25%.

Engineering correlations are given in terms of dimensionless numbers. For ex-
ample, the correlations used to determine friction factor, heat transfer coefficient
and mass transfer coefficient are generally expressed in the form

f = f(Re)
Nu = Nu(Re, Pr)
Sh = Sh(Re, Sc)

In this chapter, some of the available correlations for momentum, energy, and
mass transport in different geometries will be presented. Emphasis will be placed
on the calculations of force (or, rate of work), heat transfer rate and mass transfer
rate under steady conditions.

65
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4.1 REFERENCE TEMPERATURE AND
CONCENTRATION

The evaluation of the dimensionless numbers that appear in the correlation re-
quires the physical properties of the fluid to be known or estimated. The physical
properties, such as density and viscosity, depend on temperature and/or concen-
tration. Temperature and concentration, on the other hand, vary as a function of
position. Two commonly used reference temperatures and concentrations are the
bulk temperature or concentration and the film temperature or concentration.

4.1.1 Bulk Temperature and Concentration

For flow inside pipes, the bulk temperature or concentration at a particular location
in the pipe is the average temperature or concentration if the fluid were thoroughly
mixed, sometimes called the mizing-cup temperature or concentration. The bulk
temperature and the bulk concentration are denoted by T} and ¢, respectively,

and are defined by
/ / v, T dA

Ty=-2— (4.1-1)
[/’un dA
and
// vcdA
(4.1-2)

Cbz—A_——
//vndA
A

where v, is the component of velocity in the direction of mean flow.

For the case of flow past bodies immersed in an infinite fluid, the bulk temper-
ature and bulk concentration become the free stream temperature and free stream
concentration, respectively, i.e.,

Tb =Too

} For flow over submerged objects (4.1-3)
Cp = Coxo

4.1.2 Film Temperature and Concentration

The film temperature, Ty, and the film concentration, cy, are defined as the arith-
metic average of the bulk and surface values, i.e.,

T+ Ty

Ty )

(4.1-4)



4.2. FLOW PAST A FLAT PLATE 67

and +
¢t

where subscript w represents the conditions at the surface or the wall.

4.2 FLOW PAST A FLAT PLATE

Let us consider a flat plate suspended in a uniform stream of velocity v,, and
temperature T, as shown in Figure 3.3. The length of the plate in the direction
of flow is L and its width is W. The local values of the friction factor, the Nusselt
number and the Sherwood number are given in Table 4.1 for both laminar and
turbulent flow conditions. The term Re, is the Reynolds number based on the
distance = and defined by

TVoof T Voo
I v

Re, =

(4.2-1)

Table 4.1 The local values of the friction factor, the Nusselt number and the
Sherwood number for flow over a flat plate.

Laminar Turbulent

fo 0664Re; (A) 0.0592Re; '/ (D)
Nu, 0.332Re?Pr'/® (B) 0.0296Re!/5Pr'/? (E)
Sh. 0.332Re/2Sc®  (C) 0.0296Re/®Sc!/*  (F)

Re, < 500,000 5 x 10° < Re, < 107

0.6 <Pr<e6o0 0.6 < Sc <3000

The expression for the friction factor under laminar flow conditions, Eq. (A)
in Table 4.1, can be obtained analytically from the solution of the equations of
change. Blausius (1908) was the first to obtain this solution using a mathematical
technique called the similarity solution or the method of combination of variables.
Note that Egs. (B) and (C) in Table 4.1 can be obtained from Eq. (A) by using the
Chilton-Colburn analogy. Since analytical solutions are impossible for turbulent
flow, Eq. (D) in Table 4.1 is obtained experimentally. The use of this equation in
the Chilton-Colburn analogy yields Eqgs. (E) and (F).

The average values of the friction factor, the Nusselt number and the Sherwood
number can be obtained from the local values by the application of the mean value
theorem. In many cases, however, the transition from laminar to turbulent flow
will occur on the plate. In this case, both the laminar and turbulent flow regions
must be taken into account in calculating the average values. For example, if the
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transition takes place at z., where 0 < z, < L, then the average friction factor is
given by

Tc L
(f) = % [/0 (f:r:)lam dz + /‘I (fa:)turb dl‘:l (4.2—2)

c

Change of variable from z to Re, reduces Eq. (4.2-2) to

Re. Rey,
(f) = -R,I?L [/0 (f:c)lam dRe, +/ (fz)turbdRe:c] (42‘3)

Re,.

where Re., the Reynolds number at the point of transition, and Rey,, the Reynolds
number based on the length of the plate, are defined by

Te Voo

Re, = —=—2 (4.2-4)
v
Rey = L (4.2-5)
Substitution of Egs. (A) and (D) in Table 4.1 into Eq. (4.2-3) gives
0.074  1.328Rel/2 —0.074Rel/®
()= - (42:6)
Re/’ eL
Taking Re, = 500, 000 results in
0.074 1743
(f= -P{_ey—5 " Re, (4.2-7)

The average values of the friction factor, the Nusselt number and the Sherwood
number can be calculated in a similar way for a variety of flow conditions. The
results are given in Table 4.2. In these correlations all physical properties must be
evaluated at the film temperature.

Note that once the average values of the Nusselt and Sherwood numbers are
determined, the average values of the heat and mass transfer coefficients are cal-
culated from

_ (Nu)k
(hy = (4.2-8)
(ko) = @zﬁ (4.2-9)

On the other hand, the rate of momentum transfer, i.e., the drag force, the rate
of heat transfer and the rate of mass transfer of species A from one side of the
plate are calculated as

Fp = (WL) (% pv%;,) () (4.2-10)




Table 4.2 Correlations for flow past a flat plate.

Laminar Laminar and Turbulent Turbulent
() 1.328Re; /> (A) 0.074Re;'/°—1743Re;! (D)  0.074Re;/®  (G)
(Nu) 0.664Re)/*Pr'* (B) (0.037Re}®—871)Pr'/* (E) 0.037Rel/°Pr'/* (H)
(Sh) 0.664Re}*Sc'/®* (C) (0.037Rei/®—871)Sc!/3 (F) 0.037Re¥°Sc!/3 (1)
Re,, < 500,000 5 x 10° < Rey, < 108 Rey > 108
0.6 < Pr < 60 0.6 < Sc < 3000

HLVId LV1d V LSVd MO1d TV
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Q = (WL)(A) |Tw — Teol (4.211)

|74 = (WL)(ke) lea, — ca..]| (4.2-12)

Engineering problems associated with the flow of a fluid over a flat plate are clas-
sified as follows:

e Calculate the transfer rate; given the physical properties, the velocity of the
fluid, and the dimensions of the plate.

e Calculate the length of the plate in the direction of flow; given the physical
properties, the velocity of the fluid, and the transfer rate.

e Calculate the fluid velocity; given the dimensions of the plate, the transfer

rate, and the physical properties of the fluid.

Example 4.1 Water at 20°C flows over a 2m long flat plate with a velocity of
3m/s. The width of the plate is 1 m. Calculate the drag force on one side of the
plate.

Solution
Physical properties

p = 999kg/ m3
p=1001 x 10~%kg/ m.s

For water at 20°C (293K) : {
Assumption
1. Steady-state conditions prevail.

Analysis

To determine which correlation to use for calculating the average friction factor
(f), we must first determine the Reynolds number:

_ Lvwp _ (3)(999) _

6
Rez = 1001 x 10-6 ~ 0 X 10

Therefore, both the laminar and the turbulent flow regions exist on the plate. The
use of Eq. (D) in Table 4.2 gives the friction factor as

0.074 1743
(f) = Re;/s " Reg
0.074 1743

_ - -3
6x 109175 ~Gx108 ~ > > 10
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The drag force can then be calculated from Eq. (4.2-10) as
1 2
Fp=(WL){35p,v5% ) (f)
1
= (1x2) [5(999)(3)2] (3x1073) =27N

Example 4.2 Air at a temperature of 25°C flows over a 30cm wide electric
resistance flat plate heater with a velocity of 13m/s. The heater dissipates energy
into the air at a constant rate of 2730 W/ m?. How long must the heater be in the
direction of flow for the surface temperature not to exceed 155°C?

Solution
Physical properties

The film temperature is (25 + 155)/2 = 90 °C.

v=2195x10"%m?/s
For air at 90°C (363K) and latm: { k= 30.58 x 1073 W/m.K
Pr=10.704

Assumptions
1. Steady-state conditions prevail.

2. Both the laminar and the turbulent flow regions exist over the plate.
Analysis

The average convection heat transfer coefficient can be calculated from Newton’s
law of cooling as

4w

2730
T 155-25

To determine which correlation to use, it is necessary to calculate the Reynolds
number. However, the Reynolds number cannot be determined a priori since the
length of the heater is unknown. Therefore, a trial-and-error procedure must be
used. Since we assumed that both the laminar and the turbulent flow regions exist
over the heater, the use of Eq. (E) in Table 4.2 gives

=21W/m?K (1)

(Nu) = (’% = (0.037Re}/* —871) Pr/?

(21)L (13)L 4/5
3058 x 103~ 1 %07 | 3795 % 10-5 — 871 3 (0.704)*/3 2)
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Simplification of Eq. (2) yields
F(L)=L-199L*5+1.13 =0 (3)

The length of the heater can be determined from Eq. (3) by using one of the
numerical methods for root finding given in Section A.7.2 in Appendix A. The
iteration scheme for the Newton-Raphson method, Eq. (A.7-18), becomes

F(Ly)
Lyyi =Ly — ——— 4
RN T ETATR “)
in which the derivative of the function F(L) is
dF ~1/5
= 1-1592L (5)
Assuming L4/5 ~ L, a starting value can be estimated as Ly = 1.14141. Therefore,
0.05930
Lo =1.14141 + m = 1.24914
0.00152
L3 =1.24914 + 052272 25205
0
L4 =1.25205 + 0—5% =1.25205

Since Ly = Ly, the length of the plate is approzimately 1.25m. Now, it is necessary
to check the validity of the second assumption:

(1.25)(13)

— 5
05 x 106 = 14x10° = Checks!

ReL =

Example 4.3 A water storage tank open to the atmosphere is 12m in length and
6m in width. The water and the surrounding air are at a temperature of 25°C,
and the relative humidity of the air is 60%. If the wind blows at a velocity of
2m/s along the long side of the tank, what is the steady rate of water loss due to
evaporation from the surface?

Solution
Physical properties
For air at 25°C (298K) : v = 15.54 x 1075 m?/s
Diffusion coefficient of water (A) in air (B) at 25°C (298K) :

298)3/2

(DaB)2gg = (DaB)31s (3—1§

298

_ -5y [ 499
= (2.88 x 10 )<313

3/2
) =279 x 105 m?/s
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The Schmidt number is

v
Sc =
Dasp
15.54 x 10~6
T279 %105 0.56
For water at 25°C (298K) : P5** = 0.03165 bar

Assumptions
1. Steady-state conditions prevail.

2. Ideal gas behavior.

Analysis
To determine which correlation to use, we must first calculate the Reynolds number:
ReL = L’Uc,o
v
(12)(2) 6
= —tr =154 x10
T554x 1076~ 04X

Since both laminar and turbulent conditions exist, the use of Eq. (F) in Table 4.2
gives

(Sh) = (0.037 Re?/® —871) Scl/3
- [0.037(1.54 x 108)%/5 _ 871] (0.56)1/3 = 2000

Therefore, the average mass transfer coefficient is

<kc) — (Sh)[,?AB

_(2000)(2.79 x 10~%)
a 12
The number of moles of H20 (A) evaporated in unit time is

=4.65x10"3m/s

ng = [c“' —ca azr)]

_A(C)(sat OGC‘SM)—04A( )sat

Saturation concentration of water, c%*, is

qut
RT

cf;{" —

B 0.03165
"~ (8.314 x 10-2)(25 + 273)
Hence, the rate of water loss is
ma =naMa=04Ak,.) ‘thA
= (0.4)(12 x 6)(4.65 x 1073)(1.28 x 1073)(18)(3600) = 11.1kg/h

=1.28 x 1073 kmol/ m*
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4.3 FLOW PAST A SINGLE SPHERE

Consider a single sphere immersed in an infinite fluid. We may consider two cases
which are exactly equivalent: (%) the sphere is stagnant, the fluid flows over the
sphere, (i) the fluid is stagnant, the sphere moves through the fluid.

According to Newton’s second law of motion, the balance of forces acting on a
single spherical particle of diameter Dp, falling in a stagnant fluid with a constant
terminal velocity v;, is expressed in the form

Gravitational force = Buoyancy + Drag force (4.3-1)

D3 D3 D2
(W(f) pp9 = (WTP) pg + <¥> (%pv?) f (4.3-2)

where pp and p represent the densities of the particle and fluid, respectively. In
the literature, the friction factor f is also called the drag coefficient and denoted
by Cp. Simplification of Eq. (4.3-2) gives

or

fi=3 _.__QDP(’;P ) (4.3-3)

Equation (4.3-3) can be rearranged in dimensionless form as

4
fRe% = 3 Ar (4.3-4)
where the Reynolds number, Rep, and the Archimedes number, Ar, are defined by
D
Rep = —<£otP (4.3-5)
L
D}gp(pp —
Ar = _P__(g’_i) (4.3-6)
I

Engineering problems associated with the motion of spherical particles in fluids are
classified as follows:

e Calculate the terminal velocity, v;; given the viscosity of fluid, x, and the
particle diameter, Dp.

e Calculate the particle diameter, Dp; given the viscosity of the fluid, u, and
the terminal velocity, v;.

o Calculate the fluid viscosity, u; given the particle diameter, Dp, and the
terminal velocity, v;.

The difficulty in these problems arises from the fact that the friction factor f in Eq.
(4.3-4) is a complex function of the Reynolds number and the Reynolds number
cannot be determined a priori.
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4.3.1 Friction Factor Correlations

For flow of a sphere through a stagnant fluid, Lapple and Shepherd (1940) pre-
sented their experimental data in the form of f versus Rep. Their data can be
approximated as

24

f = R—eP' Rep <2 (43-7)
18.5
= — 2 < Rep < 500 -
f Re%e S Rep (4.3 8)
f=044 500 < Rep < 2 x 10° (4.3-9)

Equations (4.3-7) and (4.3-9) are generally referred to as Stokes’ law and Newton’s
law, respectively.

In recent years, efforts have been directed to obtain a single comprehensive
equation for the friction factor that covers the entire range of Rep. Turton and
Levenspiel (1986) proposed the following five-constant equation which correlates
the experimental data for Rep < 2 x 10°:

0.413
1+ 16,300 Rep*

4
f= RQ— (1+0.173Re}®7) +

- (4.3-10)

4.3.1.1 Solutions to the engineering problems
Solutions to the engineering problems described above can now be summarized as
follows:

B Calculate v;; given p and Dp
Substitution of Eq. (4.3-10) into Eq. (4.3-4) gives

0.31Re%

Ar = 18 (Rep +0.173 Re}:%%") +
r =18 (Rer #) 1+ 16,300 Rep

(4.3-11)

Since Eq. (4.3-11) expresses the Archimedes number as a function of the Reynolds
number, calculation of the terminal velocity for a given particle diameter and fluid
viscosity requires an iterative solution. To circumvent this problem, it is necessary
to express the Reynolds number as a function of the Archimedes number. The fol-
lowing explicit expression relating the Archimedes number to the Reynolds number
is proposed by Turton and Clark (1987):

Rer = 15 (1 +0.0579 Ar%412) 712

= (4.3-12)

The procedure to calculate the terminal velocity is as follows:
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a) Calculate the Archimedes number from Eq. (4.3-6),

b) Substitute the Archimedes number into Eq. (4.3-12) and determine the Reynolds
number,

¢) Once the Reynolds number is determined, the terminal velocity can be calculated
from the equation

_ kRep
R (4.3-13)

Example 4.4 Calculate the velocities at which a drop of water, 5mm in diameter,
would fall in air at 20°C and the same size air bubble would rise through water at
20°C.

Solution
Physical properties

p = 999kg/ m3
p=1001 x 10~®kg/m.s

p = 1.2047kg/ m?
p=18.17 x 10~%kg/m.s

For water at 20°C (293K) : {

For air at 20°C (293K) : {

Analysis

Water droplet falling in air

To determine the terminal velocity of water, it is necessary to calculate the Archimedes
number using Eq. (4.3-6):

D39p(pp = p)

u2
_ (5% 107%)%(9.8)(1.2047)(999 — 1.2047)
N (18.17 x 10-6)2

Ar =

= 4.46 x 10°

The Reynolds number is calculated from Eq. (4.3-12):

Rep = %’ (1+0.0579 Ar>412) 7121

4.46 x 108

= —— g [1+0.0579 (4.46 x 10°)°412) 7" — 3581

Hence, the terminal velocity is

uRep

pDp

(1817 x 1076)(3581)
T (1.2047)(5 x 10-3)

t=

=10.8m/s
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Air bubble rising in water

In this case, the Archimedes number is

Digp(pp = p)
u?
(5 x 1073)3(9.8)(999)(1.2047 — 999)

- = 6
B (1001 x 10-96)2 =—1.219x 10

Ar =

The minus sign indicates that the motion of a bubble is in the direction opposite to
gravity, i.e., it is rising. The Reynolds number and the terminal velocity are

Ar

0.412
T (14 0.0579 Ar>*'?)

1.219 x 10° _
= %0— [1+0.0579 (1.219 x 106)°412] 114 — 1825

—1.214
Rep

v, = pRep
‘" pDp
(1001 x 1076)(1825)

= 995 x 10-3)  ~ 03Tm/s

B Calculate Dp; given p and v,

In this case Eq. (4.3-4) must be rearranged such that the particle diameter is
eliminated. If both sides of Eq. (4.3-4) are divided by Re‘};, the result is

f -
Ren = Y (4.3-14)

where Y, which is independent of Dp, is a dimensionless number defined by

yo19ler—pp

4.3-1
3 p2} (4.3-15)
Substitution of Eq. (4.3-10) into Eq. (4.3-14) yields
24 0.413
Y = —5 (1+0.173Re3%7) + 4.3-16
Rez ( ) ¥ Rop 716,300 Rep00? (4.3-16)

Since Eq. (4.3-16) expresses Y as a function of the Reynolds number, calculation
of the particle diameter for a given terminal velocity and fluid viscosity requires
an iterative solution. To circumvent this problem, the following explicit expression
relating Y to the Reynolds number is proposed by Tosun and Aksahin (1992) as

v(y)
(6 Y13/20 _ )/6/11)]7/20

Rep = (4.3-17)
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where U(Y') is given by

(4.3-18)

, 0.007  0.0001
T(Y) = exp (3.15 4 2002, 900 0 9)

y1/4 + y1/2 = y3/4
The procedure to calculate the particle diameter is as follows:

a) Calculate Y from Eq. (4.3-15),
b) Substitute Y into Egs. (4.3-17) and (4.3-18) and determine Rep,

¢) Once the Reynolds number is determined, the particle diameter can be calculated
from the equation

_ KRep
Pt

Dp (4.3-19)

Example 4.5 A gravity settling chamber is one of the diverse range of equipment
used to remove particulate solids from gas streams. In a settling chamber, the
entering gas stream encounters an abrupt and large increase in cross-sectional area
as shown in the figure below. As a result of the sharp decrease in the gas velocity,
the solid particles settle down by gravity. In practice, the gas velocity through the

chamber should be kept below 3m/s to prevent the re-entrainment of the settled
particles.

e —
N

/4
Gas inlet \ —> Gas outlet

e— g —

Spherical dust particles having a density of 2200kg/ m3 are to be separated from
an air stream at a temperature of 25°C. Determine the diameter of the smallest

particle that can be removed in a settling chamber Tm long, 2m wide, and 1m
high.

Solution
Physical properties

p=1.1845kg/ m3

For air at 25°C (298K) : {I‘= 18.41 x 105 kg/m. s
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Analysis

For the minimum particle size that can be removed with 100% efficiency, the time
required for this particle to fall a distance H must be equal to the time required to
move this particle horizontally a distance L, i.e.,

H L

AT W

where (v) represents the average gas wvelocity in the settling chamber. Taking
(v) = 3m/s, the settling velocity of the particles can be calculated as

H
w=w(7)
1
= (3) <?> =0.43m/s
The value of Y is calculated from Eq. (4.3-15) as
(9.8)(2200 — 1.1845)(18.41 x 10~)

= = 4. 4
3 (1.1845)2(0.43)° 7

Substitution of the value of Y into Eq. (4.3-18) gives

.052 . .0001
\II(Y):exp<3,15+005 0.007  0.000 9)

y1/4 + Y1/2 ~ T y3/4
0.052 4 0.007  0.00019
(4.74)1/4 © (4.74)1/2  (4.74)%/4

= exp [3.15 + ] =243

Therefore, the Reynolds number and the particle diameter are

110
ReP = ( ) 17/20
(6Y13/20 _ yo/11) /
24.3
B ey = 255
[6(4.74)13/20 — (4.74)8/11]
pp - LBer
Pl
-6
_ (1841 x1079)(2.85) _ o) o6

(1.1845)(0.43)
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B Calculate p; given Dp and v,

In this case Eq. (4.3-4) must be rearranged so that the fluid viscosity can be
eliminated. If both sides of Eq. (4.3-4) are divided by Re%, the result is

f=X (4.3-20)
where X, which is independent of p, is a dimensionless number defined by

X = é gDp(pp ~ p)

4.3-21
Substitution of Eq. (4.3-10) into Eg. (4.3-20) gives
24 0.413
X = =— (1+0.173Rep®7) + 4.3-22
Rep | ")+ 1716, 300 R (43-22)

Since Eq. (4.3-22) expresses X as a function of the Reynolds number, calculation
of the fluid viscosity for a given terminal velocity and particle diameter requires
an iterative solution. To circumvent this problem, the following explicit expression
relating X to the Reynolds number is proposed by Tosun and Aksahin (1992) as

Y X >05 (4.3-23)

Rep = i{—“ (14120 x—20/11)

The procedure to calculate the fluid viscosity is as follows:

a) Calculate X from Eq. (4.3-21),
b) Substitute X into Eq. (4.3-23) and determine the Reynolds number,
¢) Once the Reynolds number is determined, the fluid viscosity can be calculated
from the equation

__ Dpup

Ror (4.3-24)

Example 4.6 One way of measuring fluid viscosity is to use a falling ball viscome-
ter in which a spherical ball of known density is dropped into a fluid-filled graduated
cylinder and the time of fall for the ball for a specified distance is recorded.

A spherical ball, 5mm in diameter, has a density of 1000kg/m3. It falls
through a liquid of density 910kg/ m® at 25°C and travels a distance of 10cm
in 1.8 min. Determine the viscosity of the liquid.

Solution

The terminal velocity of the sphere is

— Distance
'~ Time

10 x 10~2 4
—(—13)—@—)——9.2le0 m/s
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The value of X is calculated from Eq. (4.3-21) as
x4 gDP(PP2— p)
3 P
_4(98)(5x 1073)(1000 — 910)
3 (910)(9.26 x 10-4)2

Substitution of the value of X into Eq. ({.3-23) gives the Reynolds number as

= 7536

24 —20/11\ /1
Rep = = (1+120X )

24
~ 7536

Hence, the viscosity of the fluid is

4/11
[1 +120(7536) "2/ “] —=32x 1072

_ Dpup
Rep
(5 x 1073)(9.26 x 10-%)(910)

= 39 % 103 =1.32kg/ m.s

4.3.1.2 Deviations from ideal behavior

It should be noted that Egs. (4.3-4) and (4.3-10) are only valid for a single spherical
particle falling in an unbounded fluid. The presence of container walls and other
particles as well as any deviations from spherical shape affect the terminal velocity
of particles. For example, as a result of the upflow of displaced fluid in a suspension
of uniform particles, the settling velocity of particles in suspension is slower than the
terminal velocity of a single particle of the same size. The most general empirical
equation relating the settling velocity to the volume fraction of particles, w, is given
by

v,(.suspension) —(1—w)® (4.3-25)

v, (single sphere)

where the exponent n depends on the Reynolds number based on the terminal
velocity of a particle in an unbounded fluid. In the literature, values of n are

reported as
[ 465-500 Rep <2
~1230-2.65 500 <Rep <2x 10°

The particle shape is another factor affecting terminal velocity. The terminal
velocity of a non-spherical particle is less than that of a spherical one by a factor
of sphericity, ¢, 1.e.,

(4.3-26)

vy(non-spherical)
= 1 4.3-27
vy (spherical) ¢ < ( )

Sphericity is defined as the ratio of the surface area of a sphere having the same
volume as the non-spherical particle to the actual surface area of the particle.
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4.3.2 Heat Transfer Correlations

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for
the steady-state conduction is possible! and the result is expressed in the form

Nu =2 (4.3-28)

In the case of fluid motion, contribution of the convective mechanism must be
included in Eq. (4.3-28). Correlations for including convective heat transfer are as
follows:

Ranz-Marshall correlation

Ranz and Marshall (1952) proposed the following correlation for constant surface
temperature:

Nu =2+ 0.6 Rel*Pr'/® (4.3-29)

All properties in Eq. (4.3-29) must be evaluated at the film temperature.

‘Whitaker correlation

Whitaker (1972) considered heat transfer from the sphere to be a result of two
parallel processes occurring simultaneously. He assumed that the laminar and
turbulent contributions are additive and proposed the following equation:

Nu=2+ (0.4 Rel/? +0.06 Refﬁ) Pro4 (o /iy, ) (4.3-30)

All properties except p,, should be evaluated at To,. Equation (4.3-30) is valid for
3.5 < Rep < 7.6 x 10*
0.71 < Pr <380
1.0 < oo/ < 3.2

4.3.2.1 Calculation of the heat transfer rate

Once the average heat transfer coefficient is estimated by using correlations, the
rate of heat transferred is calculated as

Q = (7D%) (h) |Tw ~ Too] (4.3-31)

Example 4.7 An instrument is enclosed in a protective spherical shell, 5cm in
diameter, and submerged in a river to measure the concentrations of pollutants. The
temperature and the velocity of the river are 10°C and 1.2m/ s, respectively. To
prevent any damage to the instrument as a result of the cold river temperature, the
surface temperature is kept constant at 32°C by installing electrical heaters in the
protective shell. Calculate the electrical power dissipated under steady conditions.

ISee Example 8.9 in Chapter 8.
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Solution
Physical properties

p = 1000kg/ m3
p=1304 x 10%kg/m.s
k = 587 x 1073 W/ m. K
Pr=932

For water at 32°C (305K) : = 769 x 10~kg/ m.s

For water at 10°C (283K) :

Analysis

System: Protective shell

Under steady conditions, the electrical power dissipated is equal to the rate of heat
loss from the shell surface to river. The rate of heat loss is given by

Q = (7D}) (h) (T — Ts) (1)
To determine (h), it is necessary to calculate the Reynolds number

Rep = Dpvop

(5 x 1072)(1.2)(1000) )
= T moaxiwoe HEx10 )

The Whitaker correlation, Eq. ({.3-30), gives

Nu =2+ (0.4Re}{* +0.06 Re}/ 3) Pro (uy, Juy,)

or,

Nu =2+ [0.4(46 x 104)1/2 + 0.06 (4.6 x 104)2/3] (9.32)04

(1304 x 106

1/4
769 x 10—6) =456 (3)

The average heat transfer coefficient is

(h) = Nu (5’“;)

587 x 10~2
= (456) (W) = 5353 W/ m?. K (4)

Therefore, the rate of heat loss is calculated from Eq. (1) as
Q = [n(5 x 1072)%] (5353)(32 — 10) = 925 W (5)
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4.3.3 Mass Transfer Correlations

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for
the steady-state diffusion is possible? and the result is expressed in the form

Sh =2 (4.3-32)

In the case of fluid motion, contribution of convection must be taken into con-
sideration. Correlations for convective mass transfer are as follows:

Ranz-Marshall correlation

For constant surface composition and low mass transfer rates, Eq. (4.3-29) may be
applied to mass transfer problems simply by replacing Nu and Pr with Sh and Sc,
respectively, i.e.,

Sh = 2 + 0.6 Re}/2 Sc!/? (4.3-33)

Equation (4.3-33) is valid for
2 < Rep £ 200
0.6 <Sc <27
Frossling correlation

Frossling (1938) proposed the following correlation:

Sh =2+ 0.552Re}/% 5c'/3 (4.3-34)

Equation (4.3-34) is valid for
2 <Rep <800

0.6 < Sc < 2.7
Steinberger and Treybal (1960) modified Frossling correlation as

Sh = 2 + 0.552 Re%%3 Sc*/3 (4.3-35)

which is valid for
1500 < Rep < 12,000

0.6 <Sc<1.85

28ee Example 8.13 in Chapter 8.
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Steinberger-Treybal correlation

The correlation originally proposed by Steinberger and Treybal (1960) includes a
correction term for natural convection. The lack of experimental data, however,
makes this term very difficult to calculate in most cases. The effect of natural
convection becomes negligible when the Reynolds number is high and Steinberger-
Treybal correlation reduces to

Sh = 0.347 Re%%2 5c1/3 (4.3-36)

Equation (4.3-36) is recommended for liquids when
2000 < Rep < 16,900
4.3.3.1 Calculation of the mass transfer rate

Once the average mass transfer coefficient is estimated by using correlations, the
rate of mass of species A transferred is calculated as

ma = (1D}) (ko) lca, — canl Ma (4.3-37)

Example 4.8 A solid sphere of benzoic acid (p = 1267 kg/ m®)with a diameter of
12mm is dropped in a long cylindrical tank filled with pure water at 25°C. If the
height of the tank is 3m, determine the amount of benzoic acid dissolved from the
sphere when it reaches the bottom of the tank. The saturation solubility of benzoic
acid in water is 3.412kg/ m3.

Solution
Physical properties

p = 1000 kg/ m3
For water (B) at 25°C (298K) : { p =892 x 107%kg/m.s
Dap=121x10"9m?/s

The Schmidt number is
7
Sc =
pDasp
_ 892 x 106 _
~ (1000)(1.21 x 10-9)

737

Assumptions

1. Initial acceleration period is negligible and the sphere reaches its terminal
velocity instantaneously.
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2. The diameter of the sphere does not change appreciably. Thus, the Reynolds
number and the terminal velocity remain constant.

3. Steady-state conditions prevail.
4. Physical properties of water do not change as a result of mass transfer.
Analysis

To determine the terminal velocity of the benzoic acid sphere, it is necessary to
calculate the Archimedes number using Eq. (4.3-6):

3 _
A — ngpigp p)
(12 x 107%)3(9.8)(1000)(1267 — 1000)
B (892 x 10-6)2

The Reynolds number is calculated from Eq. (4.3-12):

= 5.68 x 108

Rep = % (1 +0.0579 AI0.412)—1-214
6
= &E%lz_g [1+0.0579 (5.68 x 10°)°412] 712™ — 4056
Hence, the terminal velocity is
Vy = ,U-R,ep
pDp

(892 x 107%)(4056)
~ (1000)(12 x 10-3)

Since the benzoic acid sphere falls the distance of 3 m with a velocity of 0.3 m/s,
then the falling time is

=0.3m/s

Distance
Time
3
= ﬁ =10s
The Sherwood number is calculated from the Steinberger-Treybal correlation, Eq.
(4.3-36), as
Sh = 0.347 Re%02 8c!/3

= 0.347 (4056)%-52(737)1/3 = 541

The average mass transfer coefficient is

(ke) = Sh (%‘7’3)

1.21 x 10~° 5
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The rate of transfer of benzoic acid (species A) to water is calculated by using Eq.
(4.3-37):

g = (1D3) (ke) (ca, — caw) Ma = (7D3) (ke) (Pa,, — Pa.,)
= (12 x 107%)?] (5.46 x 107°)(3.412 — 0) = 8.43 x 10 3 kg/s

The amount of benzoic acid dissolved in 10s is

My =14t
= (8.43 x 1078)(10) = 8.43 x 10" " kg

Verification of assumption # 2

The initial mass of the benzoic acid sphere, M,, is

m(12 x 1073)3

o[22

] (1267) = 1.146 x 10~ 3 kg

The percent decrease in the mass of the sphere is given by

( 8.43 x 107

m) x 100 = 0074%

Therefore, the assumed constancy of Dp and v, is justified.

4.4 FLOW NORMAL TO A SINGLE
CYLINDER

4.4.1 Friction Factor Correlations

For cross flow over an infinitely long circular cylinder, Lapple and Shepherd (1940)
presented their experimental data in the form of f versus Rep, the Reynolds num-
ber based on the diameter of the cylinder. Their data can be approximated as

6.18
f=—% Rep<2 (4.4-1)
Rey
f=12 10* < Rep < 1.5 x 10° (4.4-2)

The friction factor f in Eqgs. (4.4-1) and (4.4-2) is based on the projected area of
a cylinder, i.e., diameter times length, and Rep is defined by

Rep = D1;L°°" (4.4-3)
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Tosun and Akgahin (1992) proposed the following single equation for the friction

factor that covers the entire range of the Reynolds number in the form

_ 618 59 8/5 5
f= R8/9(1+036R ) Rep < 1.5 x 10

Once the friction factor is determined, the drag force is calculated from

Fo = (0D) (30%) f

(4.4-4)

(4.4-5)

Example 4.9 A distillation column has an outside diameter of 80cm and a
height of 10m. Calculate the drag force exerted by air on the column if the wind

speed is 2.5m/s.
Solution
Physical properties

=1.1845kg/ m3

For air at 25°C (298K) : { = 1841 x 10°kg/m.s

Assumption

1. Air temperature is 25°C.

Analysis
From Eq. (4.4-3) the Reynolds number 1s
ReD = Dvoop
o
_ (0.8)(2.5)(1.1845) 5
= Tgdix 105 - L#x10
The use of Eq. ({.4-4) gives the friction factor as

618 5/9\8/5
f_R8/9(1+O36Re )

_ 6.18
T (1.29 x 105)8/9

Therefore, the drag force is calculated from Eq. (4.4-5) as

Fp = (DL) (lpvﬁo) f

8/5
[1+0.36(1.29 x 105)5/9] =12

= (0.8 x 10) [ (1.1845)(2.5) ] (1.2) =35.5N
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4.4.2 Heat Transfer Correlations

As stated in Section 4.3.2, the analytical solution for steady-state conduction from
a sphere to a stagnant medium gives Nu = 2. Therefore, the correlations for
heat transfer in spherical geometry require that Nu — 2 as Re — 0. In the case
of a single cylinder, however, no solution for the case of steady-state conduction
exists. Hence, it is required that Nu — 0 as Re — 0. The following heat transfer
correlations are available in this case:

Whitaker correlation

Whitaker (1972) proposed a correlation in the form

Nu = (0.4 Re}/? +0.06 Re",;/s') Pro (u /p,) (4.4-6)

in which all properties except p,, are evaluated at T,,. Equation (4.4-6) is valid
for
1.0 < Rep < 1.0 x 10°

0.67 < Pr < 300
0.25 < proo /oy < 5.2

Zhukauskas correlation

The correlation proposed by Zhukauskas (1972) is given by

Nu = C Re}; Pr"*(Pry, / Pry, ) /4 (4.4-7)

where

036 if Pr>0

and the values of C and m are given in Table 4.3. All properties except Pr,, should
be evaluated at T, in Eq. (4.4-7).

_{0.37 if Pr<10

Table 4.3 Constants of Eq. (4.4-7) for the circular eylinder in cross flow.

ReD C m
1-40 0.75 0.4
40 — 1000 0.51 0.5

1x 103 — 2 x 10° 0.26 0.6
2 % 105 — 1 x 108 0.076 0.7
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Churchill-Bernstein correlation

Churchill and Bernstein (1977) proposed a single comprehensive equation that
covers the entire range of Rep for which data are available, as well as for a wide
range of Pr, which is in the form

0.62Re'/? pr!/3 5/814/°
Nu =03+ LELS. [ (%_0) ] (4.4-8)
[1 +(0.4/ Pr)2/3] '

where all properties are evaluated at the film temperature. Equation (4.4-8) is
recommended when
Rep Pr > 0.2

4.4.2.1 Calculation of the heat transfer rate

Once the average heat transfer coefficient is estimated by using correlations, the
rate of heat transferred is calculated as

Q = (mDL)(h) |Ty — Tl (4.4-9)

Example 4.10 Assume that a person can be approzimated as a cylinder of 0.3 m
diameter and 1.8 m height with a surface temperature of 30°C. Calculate the rate
of heat loss from the body while this person is subjected to a 4m/s wind with a
temperature of —10°C.

Solution
Physical properties

The film temperature is (30 — 10)/2 = 10°C

p=16.7x10"%kg/ m.s
v=1244 x 10~m?/s
k=2328x10"3W/m.K
Pr=0.72

v=14.18 x 10~m?/s
For air at 10°C (280K) : { k£ =24.86 x 1073W/m.K

For air at —10°C (263K) :

Pr=10.714
- -6
For air at 30°C (303K) : {llir_zlg'gf x 10~ kg/m.s

Assumption

1. Steady-state conditions prevail.
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Analysis
The rate of heat loss from the body can be calculated from Eq. (4.4-9):
Q = (rDL)(h) (Tw ~ To) (1)

Determination of (h) in Eq. (1) requires the Reynolds number to be known. The
Reynolds numbers at To, and Ty are

_ ° _Dve _ (03)(4) 4
at T = —10°C Rep = S 1944 x10-6 — 9.65 x 10
at Tf =10°C Rep = Dve = (03)(4) = 8.46 x 10*

T 14.18 x 106

Whitaker correlation

The use of Eq. (4.4-6) gives the Nusselt number as

Nu = (0‘4 Rel/? +0.06 Re2D/3) Pro (u /p,)

16.7 x 10~6 )‘/“

— [04(9.65 x 10%)1/2 + 0.06 (9.65 x 104)%] (0.72)° (m

= 214

Hence, the average heat transfer coefficient is

(h) = Nu <%)
= (214) <§_g80me-_3) =16.6W/m? K

Substitution of this result into Eq. (1) gives the rate of heat loss as

Q= (mx0.3x1.8)(16.6) [30 — (— 10)] = 1126 W
Zhukauskas correlation

Since Rep = 9.65 x 10* and Pr < 10, from Table 4.3 the constants are: C = 0.26,
m = 0.6 and n = 0.37. Hence, the use of Eq. ({.4-7) gives

Nu = 0.26 Re%® Pro%(Pr,, / Pr,,)/*

1/4
= 0.26 (9.65 x 10%)%-6(0.72)%-37 <g'_¥) — 296
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Therefore, the average heat transfer coefficient and the rate of heat loss from the

body are
k
= V —_
(h) = Nu (D)

-3
= (226) <-2—32—80’;L) =17.5W/m% K

Q= (mx0.3x1.8)(17.5)[30 — (—10)] = 1188 W
Churchill-Bernstein correlation
The use of Eq. (4.4-8) gives
0.62Rey)* Pr'/? Rep \*/%]"°
1+ 04/ Pr)m]”4 [ (%Too) ]

Nu = 0.3+

=03+

4/5
0.62 (8.46 x 10%)1/2(0.714)!/3 [1 (8_46 y 104>5/8] / "

[1+ (0.4/0.714)2/3)/* 28,200

The average heat transfer coefficient and the rate of heat loss from the body are

(h) = Nu (%)

-3
— (340) (24.86 x 10

=28.2 2,
03 ) 28.2W/m? K

Q = (m x 0.3 x 1.8) (28.2) [30 — (— 10)] = 1914 W
Comment: The heat transfer coefficient predicted by the Churchill- Bernstein cor-
relation is T0% greater than the one calculated using the Whitaker correlation. It
1s 1mportant to note that no two correlations will exactly give the same result.

4.4.3 Mass Transfer Correlations

Bedingfield and Drew (1950) proposed the following correlation for cross- and
parallel-flow of gases to the cylinder in which mass transfer to or from the ends of
the cylinder is not considered:

Sh = 0.281 Re}/? 5c%44 (4.4-10)

Equation (4.4-10) is valid for

400 < Rep < 25,000
0.6 <Sc<26
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For liquids the correlation obtained by Linton and Sherwood (1950) may be used:

Sh = 0.281 Re%f Sc!/3 (4.4-11)

Equation (4.4-11) is valid for

400 < Rep < 25,000
Sc < 3,000

4.4.3.1 Calculation of the mass transfer rate

Once the average mass transfer coefficient is estimated by using correlations, the
rate of mass of species A transferred is calculated as

|74 = (7DL) (ko) [ca, = can| Ma| (4.412)

where M 4 is the molecular weight of species A.

Example 4.11 A cylindrical pipe of 5cm outside diameter is covered with a thin
layer of ethanol. Air at 30°C flows normal to the pipe with a velocity of 3m/s.
Determine the average mass transfer coefficient.

Solution
Physical properties
Diffusion coefficient of ethanol (A) in air (B) at 30°C (303K) :

303\ /2
(DAB)sos = (DAB)313 (m)

303

3/2
_ ~5. 2
313) 1.38 x 1075 m?/s

= (1.45 x 1079) (

For air at 30°C (303K) : v = 16 x 1075m?/s

The Schmidt number is
_ 1%
" Das
16 x 10~°
T 1.38x 105

Sc

=1.16

Assumptions

1. Steady-state conditions prevail.

2. Isothermal system.
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Analysis

The Reynolds number is

ReD =

_(5x107H)(3) _ ane
= lgx10-6 0978

The use of the correlation proposed by Bedingfield and Drew, Eq. (4.4-10), gives

Sh = 0.281 Re} % Sc™4
= 0.281 (9375)1/2(1.16)%4* = 29

Therefore, the average mass transfer coefficient is

(k.) = Sh (D—g‘i)

-5

4.5 FLOW IN CIRCULAR PIPES

The rate of work done, W, to pump a fluid can be determined from the expression
W:mW=m(/VdP) (4.5-1)

where 7 and V are the mass flow rate and the specific volume of the fluid, re-
spectively. Note that the term in parenthesis on the right-hand side of Eq. (4.5-1)
is known as the shaft work in thermodynamics®. For an incompressible fluid, i.e.,
V = 1/p =constant, Eq. (4.5-1) simplifies to

W = Q|AP| (4.5-2)

where Q is the volumetric flow rate of the fluid. Combination of Eq. (4.5-2) with
Eq. (3.1-11) gives

Fp (v) = Q |AP| (4.5-3)
or,
1
(w02 (00 ) 1] 00 = @ 18 (454)
Expressing the average velocity in terms of the volumetric flow rate
Q

3Work done on the system is considered positive.
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reduces Eq. (4.5-4) to

32 pLfQ?

|AP| = 12D5

(4.5-6)

Engineering problems associated with pipe flow are classified as follows:

e Determine the pressure drop, |AP|, or the pump size, W, given the volumetric
flow rate, Q, the pipe diameter, D, and the physical properties of the fluid,
p and p.

e Determine the volumetric flow rate, Q; given the pressure drop, |AP|, the
pipe diameter, D, and the physical properties of the fluid, p and u.

e Determine the pipe diameter, D; given the volumetric flow rate, Q, the pres-

sure drop, |AP|, and the physical properties of the fluid, p and u.

4.5.1 Friction Factor Correlations

4.5.1.1 Laminar flow correlation

For laminar flow in a circular pipe, i.e., Re = D(v)p/u < 2100, the solution of the
equations of change gives?

1%
" Re

The friction factor f appearing in Eqs. (4.5-6) and (4.3-7) is also called the
Fanning friction factor. However, this is not the only definition for f available
in the literature. Another commonly used definition for f is the Darcy friction
factor, fp, which is four times larger than the Fanning friction factor, i.e., fp = 4f.
Therefore, for laminar flow

f (4.5-7)

64

fo=1

(4.5-8)

4.5.1.2 Turbulent flow correlation

Since no theoretical solution exists for turbulent flow, the friction factor is usually
determined from the Moody chart (1944) in which it is expressed as a function
of the Reynolds number, Re, and the relative pipe wall roughness, ¢/D. Moody
prepared this chart by using the equation proposed by Colebrook (1938)

1 ¢/D 1.2613
77 = 4les (3.7065 * Rev/T ) (45-9)

where € is the surface roughness of the pipe wall in meters.

4See Section 9.1.3.1 in Chapter 9.
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4.5.1.3 Solutions to the engineering problems

I. Laminar flow

For flow in a pipe, the Reynolds number is defined by

D(w)p _ 4pQ
- _2P% 51
Re . 7D (4.5-10)
Substitution of Eq. (4.5-10) into Eq. (4.5-7) yields
4dmuD
= 4.5-11
M Calculate |AP| or W; given Q and D
Substitution of Eq. (4.5-11) into Eq. (4.5-6) gives
128 L Q
|AP| = —Di (4.5-12)
The pump size can be calculated from Eq. (4.5-2) as
: 128 uLQ?
W="-""-= 4.5-1
— Dt (4.5-13)
B Calculate Q; given |AP| and D
Rearrangement of Eq. (4.5-12) gives
wD4|AP|
Q= T8l (4.5-14)

B Calculate D; given Q and |AP]

Rearrangement of Eq. (4.5-12) gives

_ [128pLQ\"*
D= (W) (4.5-15)
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I1. Turbulent flow
B Calculate |AP| or W; given Q and D

For the given values of Q and D, the Reynolds number can be determined using Eq.
(4.5-10). However, when the values of Re and £/D are known, determination of f
from Eq. (4.5-9) requires an iterative procedure since f appears on both sides of
the equation. To avoid the iterative solutions, efforts have been directed to express
the friction factor, f, as an explicit function of the Reynolds number, Re, and the
relative pipe wall roughness, ¢/D.

Gregory and Fogarasi (1985) compared the predictions of the twelve explicit
relations with Eq. (4.5-9) and recommended the use of the correlation proposed
by Chen (1979):

1 /D 5.0452
_ = — 5-1
77 4log (3.7065 e log A) (4.5-16)
where 1.1098 0.8981
Ao e/D + 7.1490 (4.5-17)
2.5497 Re

Thus, in order to calculate the pressure drop using Eq. (4.5-16), the following
procedure should be followed through which an iterative solution is avoided:

a) Calculate the Reynolds number from Eq. (4.5-10),

b) Substitute Re into Eq. (4.5-16) and determine f,

¢) Use Eq. (4.5-6) to find the pressure drop. Finally, the pump size can be
determined by using Eq. (4.5-2).

Example 4.12 What is the required pressure drop per unit length in order to
pump water at a volumetric flow rate of 0.03m>/s at 20°C through a commercial
steel pipe (¢ = 4.6 x 107° m) 20cm in diameter?

Solution
Physical properties

p =999 kg/ m3

For water at 20°C (293K) : {,u. — 1001 x 10~5kg/m. s

Analysis
The Reynolds number is determined from Eq. (4.5-10) as
4pQ

wuD

_ (4)(999)(0.03)

~ m(1001 x 10-6)(0.2)

Re =

=191 x 103
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Substitution of this value into Egs. (4.5-17) and (4.5-16) gives

e/D 1.1098 71490 %8981
A= +
2.5497 Re

-5 1.1098 0.8981
_ [(4.6 x 10 /0.2)] ( 7.1490 ) 138 x 10~

2.5497 191 x 103
1 e/D  5.0452
77~ Thlee (3.7065 Re 8 A)

(4.6 x 1075/0.2)  5.0452 »
o - : =15.14
H [ 3.7065 o1 x 107 108188 x 107%)| =15.1

Hence, the friction factor is

f=436x10"3
Thus, Eq. (4.5-6) gives the pressure drop per unit pipe length as
|AP| _ 32p7Q?
L — m2D5
_ {(32)(999)(4.36 x 10-3)(0.03)?
= T2(0.2)5 =40Pa/m

W Calculate Q; given |AP| and D

In this case rearrangement of Eq. (4.5-6) gives

f= (2)2 (4.5-18)

[72D5 | AP
Y=\ (4.5-19)

Substitution of Egs. (4.5-10) and (4.5-18) into Eq. (4.5-9) yields

where Y is defined by

__ e/D_, pD
Q= —4Y log (3.7065 + py> (4.5-20)

Thus, the procedure to calculate the volumetric flow rate becomes:

a) Calculate Y from Eq. (4.5-19),
b) Substitute Y into Eq. (4.5-20) and determine the volumetric flow rate.

Example 4.13 What is the volumetric flow rate of water in m3/s at 20°C
that can be delivered through a commercial steel pipe (¢ = 4.6 x 1075 m) 20cm in
diameter when the pressure drop per unit length of the pipe is 40Pa/m?
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Solution
Physical properties

o [ p=999kg/ m*
For water at 20°C (293K) : {,LL — 1001 x 10~S kg/m. s
Analysis

Substitution of the given values into Eq. (4.5-19) yields

V= w2 D5 |AP)|
32pL

_[72(0.2)5(40) _
= ——(32)(999) =1.99 x 103

Hence, Eq. ({.5-20) gives the volumetric flow rate as

_4Ylog <€/_D +£)

1l

Q
3.7065  pY

(4.6 x 1075/0.2) (1001 x 1076)(0.2)
3.7065 (999)(1.99 x 10-3)

= —(4)(1.99 x 10~%) log [

=0.03m>/s
B Calculate D; given Q and |AP|

Swamee and Jain (1976) and Cheng and Turton (1990) presented explicit equa-
tions to solve problems of this type. These equations, however, are unnecessarily
complex. A simpler equation can be obtained by using the procedure suggested by
Tosun and Akgahin (1993) as follows. Equation (4.5-6) can be rearranged in the
form

f=(DN)® (4.5-21)
where N is defined by
=2 |AP|\"/®
N=[—=1 5-2
(32pLQ2> 4522

For turbulent flow, the value of f changes between 0.00025 and 0.01925. Using an
average value of 0.01 for f gives a relationship between D and N as

0.4
D= — 4.5-23
N (45-23)

Substitution of Eq. (4.5-21) to the left-hand side of Eq. (4.5-9), and substitution
of Egs. (4.5-10) and (4.5-23) to the right-hand side of Eq. (4.5-9) gives

D= Q%E ({ [log(aN) + 5.806 <;5—N)] - 0.171}2> o (4.5-24)
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The procedure to calculate the pipe diameter becomes:

a) Calculate N from Eq. (4.5-22),
b) Substitute N into Eq. (4.5-24) and determine the pipe diameter.

Example 4.14 Water at 20°C is to be pumped through a commercial steel pipe
(€ = 4.6 x 1075 m) at a volumetric flow rate of 0.03m3/s. Determine the diameter
of the pipe if the allowable pressure drop per unit length of pipe is 40Pa/m.

Solution
Physical properties

o _f p=999kg/ m?
For water at 20°C (293K) : {# — 1001 x 105 kg/m. s
Analysis

Equation (4.5-22) gives

N = 72 |AP)| 1/
T \32pLQ2

n2(40) 1/5 B
- [@_2%99—9)(0_%?} ~1.69

Hence, Eq. (4.5-24) gives the pipe diameter as

D= 0;;3? ({ [log(sN) +5.806 (ﬁﬁ)} - 0.171}2) o
5

_ 01;6% ( { [log [(4.6 x 107°)(1.69)] + 5.806 ((9;3)0(:);31)(()1_.29))]

o\ —1/5
—0.171}> =02m

4.5.2 Heat Transfer Correlations

For heat transfer in circular pipes, various correlations have been suggested
depending on the flow conditions, i.e., laminar or turbulent.

4.5.2.1 Laminar flow correlation

For laminar flow heat transfer in a circular tube with constant wall temperature,
Sieder and Tate (1936) proposed the following correlation:

Nu = 1.86 [Re Pr (D/L)]*® (1/p1,,)* ™ (4.5-25)
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in which all properties except p, are evaluated at the mean bulk temperature.
Equation (4.5-25) is valid for

13 < Re < 2030

0.48 < Pr < 16, 700
0.0044 < p/p,, <9.75

The analytical solution® to this problem is only possible for very long tubes, i.e.,
L/D — oo. In this case the Nusselt number remains constant at the value of 3.66.

4.5.2.2 Turbulent flow correlations

The following correlations approximate the physical situation quite well for the
cases of constant wall temperature and constant wall heat flux:

Dittus-Boelter correlation

Dittus and Boelter (1930) proposed the following correlation in which all physical
properties are evaluated at the mean bulk temperature:

Nu = 0.023Re}/® Pr" (4.5-26)

where

"= 0.4 for heating
7 10.3 for cooling

The Dittus-Boelter correlation is valid when
0.7 < Pr <160
Re > 10,000
L/D>10
Sieder-Tate correlation

Sieder and Tate (1936) correlation is

Nu = 0.027Re}/® Pr'/® (u/p,, )" (4.5-27)

in which all properties except p,, are evaluated at the mean bulk temperature.
Equation (4.5-27) is valid for

0.7 < Pr <16,700

Re > 10,000
L/D>10

5See Section 9.3.1.2 in Chapter 9.
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Whitaker correlation

The equation proposed by Whitaker (1972) is

Nu = 0.015Re%:* Pro42 (u/p, )" (4.5-28)

in which the Prandtl number dependence is based on the work of Friend and
Metzner (1958), and the functional dependence of p/p,, is from the work of Sieder
and Tate (1936). All physical properties except u,, are evaluated at the mean bulk
temperature. The Whitaker correlation is valid for

2,300 < Re < 1 x 10°

0.48 < Pr < 592
0.44 < pi/p,, <25
4.5.2.3 Calculation of the heat transfer rate

Once the average heat transfer coefficient is calculated from correlations by using
Eqgs. (4.5-25)-(4.5-28), then the rate of energy transferred is calculated as

Q = (nDLY(R)AT L (4.5-29)

where ATy s, logarithmic mean temperature difference, is defined by

(Tw - Tb)in - (Tw - Tb)out
(Tw - Tb)in
In [(Tw - Tb)o'u,l]

ATyp = (4.5-30)

The derivation of Eq. (4.5-29) is given in Section 9.3 in Chapter 9.

Example 4.15 Steam condensing on the outer surface of a thin-walled circular
tube of 65 mm diameter maintains a uniform surface temperature of 100°C. Qil
flows through the tube at an average velocity of 1m/s. Determine the length of the
tube in order to increase oil temperature from 40°C to 60°C. Physical properties
of the oil are as follows:

p=124x10"3kg/m.s
At 50°C: { v =4.28 x 10~°m?/s
Pr =143

At 100°C: p=9.3x103kg/m.s
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Solution
Assumptions

1. Steady-state conditions prevail.

2. Physical properties remain constant.

3. Changes in kinetic and potential energies are negligible.
Analysis

System: Oil in the pipe

The inventory rate equation for mass becomes
Rate of mass in = Rate of mass out = = p(v)(wD?/4) (1)
On the other hand, the inventory rate equation for energy reduces to
Rate of energy in = Rate of energy out (2)

The terms in Eq. (2) are ezpressed by

Rate of energy in = m C’p(Tbm ~Tref) + ®*DL{R)ATp (3)
Rate of energy out = m Cp(Ty,,, — Tref) (4)

Since the wall temperature is constant, the expression for ATy, Eq. (4.5-30),

becomes
To,ur — Tb,,,
ATy = ———— (5)

< Tw - Tbi" )
In{ /———
Tw - Tbuut

Substitution of Eqs. (1), (3), (4) and (5) into Eq. (2) gives

L . 1 <v)p CP T'W - Tbin
=i (mn ©
Noting that Sty = (h)/((v)pCp) = Nu /(RePr), Eq. (6) becomes
L 11 n To—Th,, \ _ 1 RePr In T, — T, )
D 4SSty \Ty-Ts,/ 4 Nu Tw — Ts,,,

To determine Nu (or, (h)), first the Reynolds number must be calculated. The
mean bulk temperature is (40 4 60)/2 = 50°C and the Reynolds number is

Re = %v)_
_ (65 1073)(1)

428 x 10-5 1519 = Laminar flow
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Since the flow is laminar, Eq. (4.5-25) must be used, i.e.,
Nu = 1.86 [Re Pr (D/L)]'* (u/p,,)* ™ 8)
Substitution of Eq. (8) into Eq. (7) yields

3/2

—0.14
Rep (n/#w) o (Lo = Do,
DN T @86 \Ty -1,

= (1519)(143) [
= 2602
The tube length is then

(124 x 107%/9.3 x 1073~ 1 /100 — 40 3/2
(4)(1.86) 100 — 60

L = (2602)(65 x 10~3) = 169m

Example 4.16 Air at 20°C enters a circular pipe of 1.5cm internal diameter
with a velocity of 50m/s. Steam condenses on the outside of the pipe so as to keep
the surface temperature of the pipe at 150°C.

a) Calculate the length of the pipe required to increase air temperature to 90°C.
b) Discuss the effect of surface roughness on the length of the pipe.

Solution
Physical properties
The mean bulk temperature s (20 + 90)/2 = 55°C

For air at 20°C (293K) : p = 1.2047kg/ m*

p=19.8x 10~6kg/m.s
For air at 55°C (328K) : { v =18.39 x 107m?/s
Pr =0.707
For air at 150°C (423K) : p = 23.86 x 107 %kg/ m.s

Analysis
a) System: Air in the pipe
The inventory rate equation for mass reduces to
Rate of mass of air in = Rate of mass of air out =m (1)

Note that for compressible fluids like air, both density and average velocity depend
on temperature and pressure. Therefore, using the inlet conditions

= (nD?/4) (p(v));n1er

- [”_(0"311_5)2] (1.2047)(50) = 1.06 x 102 kg/s
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In problems dealing with the flow of compressible fluids, it is customary to define
mass velocity, G, as )

m_ 2)
1 = P) (
The advantage of using G is the fact that it remains constant for steady flow of
compressible fluids through ducts of uniform cross-section. In this case

G = (1.2047)(50) = 60.24kg/ m?.s

G=

The inventory rate equation for energy is written as
Rate of energy in = Rate of energy out (3)

Equations (3)-(5) of Example 4.15 are also applicable to this problem. Therefore,
we get

£ . _1- R,e Pr ln Tw - Tbtn (4)
D 4 Nu Tw—Ts
The Nusselt number in Eq. ({) can be determined only if the Reynolds number is
known. The Reynolds number is calculated as
DG

m

_ (0.015)(60.24) .
~ 19.80 x 10-6 45,636 = Turbulent flow

The value of L depends on the correlations as follows:

out

Re

Dittus-Boelter correlation
Substitution of Eq. (4.5-26) into Eq. (4) gives

I Re®2pro6 Ty —Ts,,
D~ 0002 (Tw =T,
0.2 0.6 —_
_ (45,636)°2(0.707)°° | (150 20) ~58.3

0.092 150 — 90

Therefore, the required length is
L = (58.3)(1.5) = 87cm
Sieder-Tate correlation

Substitution of Eq. (4.5-27) into Eq. (4) gives

—-0.14
L B Re%2 Pr?/3 (I-L/P'w) ) Tw —Ts,,
D~ 0.108 "\T, T,
_ (45,636)°2(0.707)%/% (19.80 x 10~ ‘0'“1 150 — 20\ _ 0
B 0.108 23.86 x 106 150-90/
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Therefore, the required length is

L = (49.9)(1.5) = 75cm
Whitaker correlation
Substitution of Eq. (4.5-28) into Eq. (4) gives

—0.14
L Re017 pr0-58 (#/#w) Ty —Th,
D~ 0.06 " (Tw _ T,,m)
_ (45,636)°17(0.707)°58 (19.80 x 10~° '°'“l 150 - 20\ _ .
- 0.06 23.86 x 10-6 "\150-90/) =

Therefore, the required length is
L = (67)(1.5) = 101cm
b) Note that Eq. (4) is also expressed in the form
L 11 Tw — Tp,
ol N (ol el 1108
D~ 45 " (T,,, - Tbm) )

The use of the Chilton-Colburn analogy, i.e., f/2 = Sty Pr?/ 3 reduces Eq. (5) to
L 1P (Tw ~ T, )

D 2 f T — Tb,.,
_ 1(0.707)>3 /150 — 20 _ 0.3068 (©)
=27 f "\10-90)7 " f

The friction factor can be calculated from the Chen correlation, Eq. (4.5-16)

i 3.7065  Re

B 6/D 1.1098+ 7.1490 0.8981
 \ 2.5497 Re

For various values of ¢/D, the calculated values of f, L/D and L are given as
follows:

where

o

D f LD

0 0.0053 57.9 86.9
0.001 0.0061 50.3 75.5
0.002 0.0067 45.8 68.7
0.003 0.0072 42.6 63.9
0.004 0.0077 39.8 59.7
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Comment: The increase in surface roughness increases the friction factor and
hence power consumption. On the other hand, the increase in surface roughness
causes an increase in the heat transfer coefficient with a concomitant decrease in
pipe length.

4.5.3 Mass Transfer Correlations

Mass transfer in cylindrical tubes is encountered in a variety of operations such as
wetted wall columns, reverse osmosis, and cross-flow ultrafiltration. As in the case
of heat transfer, mass transfer correlations depend on whether the flow is laminar
or turbulent.

4.5.3.1 Laminar flow correlation

For laminar flow mass transfer in a circular tube with a constant wall concentration,
an analogous expression to Eq. (4.5-25) is given by

Sh = 1.86 [Re Sc (D/L)]*/* (4.5-31)

Equation (4.5-31) is valid for

[ReSc(D/L)*? > 2
4.5.3.2 Turbulent flow correlations
Gilliland-Sherwood correlation

Gilliland and Sherwood (1934) correlated the experimental results obtained from
wetted wall columns in the form

|Sh = 0.023 Re®83 5044 (4.5-32)

which is valid for
2,000 < Re < 35,000

06<8Sc<25
Linton-Sherwood correlation

The correlation proposed by Linton and Sherwood (1950) is given by

Sh = 0.023 Re®® 5c1/2 | (4.5-33)

Equation (4.5-33) is valid for
2,000 < Re < 70,000
0.6 < Sc < 2,500
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4.5.3.3 Calculation of the mass transfer rate

Once the average mass transfer coefficient is calculated from correlations given by
Egs. (4.5-31)-(4.5-33), then the rate of mass of species 4 transferred is calculated
as

|74 = (*DL)(ke) (Aca) Lpy Ma| (4.5-34)

where M4 is the molecular weight of species A, and (Aca),,,, logarithmic mean
concentration difference, is defined by

_ (can — CA,,)in ~ (ca, — cay)out
(Aca)pp = l { (Ca. —cay)in ]

(CAw = €4y )out

(4.5-35)

The derivation of Eq. (4.5-34) is given in Section 9.5 in Chapter 9.

Example 4.17 A smooth tube with an internal diameter of 2.5cm is cast from
solid naphthalene. Pure air enters the tube at an average velocity of 9m/s. If the
average air pressure is 1 atm and the temperature is 40°C, estimate the tube length
required for the average concentration of naphthalene vapor in the air to reach 25%
of the saturation value.

Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (B) at 40°C (313K) :

313\ %/
(DAB)als = (DAB)soo (ﬁ)
3/2
= (0.62 x 107°) (%) =6.61 x1075m?/s

For air at 40°C (313K) : v = 16.95 x 1075 m?/s
The Schmidt number is
v
" Dasn

16.95 x 1076
~ 6.61x 10-°

Sc

=2.56

Assumptions

1. Steady-state conditions prevail.

2. The system is isothermal.
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Analysis

System: Air in the naphthalene tube

If naphthalene is designated as species A, then the rate equation for the conservation
of species A becomes

Rate of moles of A in = Rate of moles of A out (1)

The terms in Eq. (1) are expressed by
Rate of moles of A in = nDL{k.)(Aca)Lm (2)
Rate of moles of A out = Q(ca, Jout = (7rD2/4)<v)(CAb)out (3)

Since the concentration at the wall is constant, the erpression for (Aca)ia, Eq.
(4.5-35), becomes
(CAb )ou.t

(Aca)Lm = (4)
| 4w
=]

- (CAb )ou,t

Substitution of Eqs. (2)-(4) into Eq. (1) gives

Lo ]

D T 4 (kc) CA,
_ 1 _ (v
=TI In(1 - 0.25) = 0.072 < P ) (5)
Note that Eq. (5) can also be expressed in the form
L 1 ReSc
L _oams (gL ) =oon (Re52) ©
The value of L depends on the correlations as follows:
Chilton-Colburn analogy
Substitution of Eq. (3.5-13) into Eq. (6) gives
L 2 . 2/3
— =0.072 - 7
D 0.072 7 Sc (7)

The Reynolds number is

_ (2.5 x107%)(9)

16.95 x 10-6 13,274 = Turbulent flow
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The friction factor can be calculated from the Chen correlation, Eq. (4.5-16).

Taking €/D = 0,
< E/D > 1.1098 <7.1490)0.8981
A= +
. Re

0.8981
= <_——7'1490) =1.16 x 103

e/D 50452
= —dlog (3.7065 " "Re l°gA)

5.0452
—4log [— 13,274

log(1.16 x 10-3)] = f=0.0072

Hence Eq. (7) becomes

L (0.072)(2)(2.56)%/%
D~ 0.0072 =374

The required length is then

L = (37.4)(2.5) = 93.5cm
Linton-Sherwood correlation
Substitution of Eq. (4.5-33) into Eq. (6) gives

L
D= 3.13 Re%17 §c%/3

= 3.13 (13, 274)%17(2.56)%/3 = 29.4

The tube length is
L =(29.4)(2.5) = 73.5cm

4.5.4 Flow in Non-Circular Ducts

The correlations given for friction factor, heat transfer coefficient, and mass transfer
coefficient are only valid for ducts of circular cross-section. These correlations can
be used for flow in non-circular ducts by introducing the concept of hydraulic
equivalent diameter, D), defined by

Flow area
Dr =4 (Wetted perimeter) (4.5-36)

The Reynolds number based on the hydraulic equivalent diameter is

Rep = D”—f;’)—p (4.5-37)
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so that the friction factor, based on the hydraulic equivalent diameter, is related

to Rep in the form

=0 (R%) (4.5-38)

where 2 depends on the geometry of the system. Since 2 = 1 only for a circular
pipe, the use of the hydraulic equivalent diameter has not been recommended for
laminar flow (Bird et al., 1960; Fahien, 1983). The hydraulic equivalent diameter
for various geometries is shown in Table 4.4.

Table 4.4 The hydraulic equivalent diameter for various geometries.

Geometry Dy,

le—— O~ ——>f

2b
_—IT;_ 2ab
a+b
4
——
@
A3
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Example 4.18 Water flows at an average velocity of 5m/s through a duct of
equilateral triangular cross-section with one side, a, being equal to 2cm. FElectric
wires are wrapped around the outer surface of the duct to provide a constant wall
heat flux of 100 W/ cm?. If the inlet water temperature is 25°C and the duct length
is 1.5m, calculate:

a) The power required to pump water through the duct,
b) The exit water temperature,
c) The average heat transfer coefficient.

Solution
Physical properties

p = 997 kg/ m3
For water at 25°C (298K) : ¢ 1 =892 x 10~%kg/m.s
Cp =4180J/kg. K

Assumptions
1. Steady-state conditions prevail.
2. Changes in kinetic and potential energies are negligible.
3. Variations in p and Cp with temperature are negligible.
Analysis

System: Water in the duct
a) The power required is calculated from Fq. (8.1-11)

W = Fot) = |(3ar) (01 ] 1)

The friction factor in Eq. (1) can be calculated from the modified form of the Chen
correlation, Eq. (4.5-16)

1 e/D  5.0452
7o “4‘°g<m - —ReT‘°gA>

D \ 11008 1490 0-8981
A= e/ N 7.1490 (3)
2.5497 Re;,

The hydraulic equivalent diameter and the Reynolds number are

(2)

where

Dy =

=1.155cm

SleGle
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Rey = D0
I

-2
- LABXI0T)ONON _ 64 508 = Turbulent flow

892 x 106
Substitution of these values into Eqs. (3) and (2) and taking €/D =~ 0 gives

0.8981
A= (7.1490)

Re h

0.8981
= (ngéi—g) =28x 1074

= —4log (— 5§2j2 log A)

o glog [ 5:0452
= & |” 64,548

L
NZi
log(2.8 x 10-4)] = f=0.0049

Hence, the power required is calculated from Eq. (1) as
W = {(3)(2 x 1072)(1.5) [é (997)(5)2] (0.0049)} (5) =27.5W

b) The inventory rate equation for mass is

\/§a2>

Rate of mass in = Rate of mass out = m = p(v) ( 1

= (997)(5) [M] — 0.863kg/ s

The inventory rate equation for energy reduces to
Rate of energy in = Rate of energy out (5)
The terms in Eq. (5) are expressed by
Rate of energy in = mCp(Th,, — Tres) + Qu (6)
Rate of energy out = . Cp(Ts,,, — Tref) (7)

where Q, is the rate of heat transfer to water from the lateral surfaces of the duct.
Substitution of Eqs. (6) and (7) into Eq. (5) gives

Quw
T, = T, -
bout bin Tt mCr
g5, (D@50(00) _

(0.863)(4180)
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c) The mean bulk temperature is (25 + 50)/2 = 37.5°C. At this temperature
k=628x10°W/m.K and  Pr=4.62

The use of the Dittus-Boelter correlation, Eq. (4.5-26), gives

Nu = 0.023 Re}/° pr®*
= 0.023 (64, 548)"/°(4.62)"* = 299

Therefore, the average heat transfer coefficient is

(h) = Nu (-Dk—h>

-3
— (299) ( 628 x 10

4.6 FLOW IN PACKED BEDS

The chemical and energy industries deal predominantly with multiphase and mul-
ticomponent systems in which considerable attention is devoted to increasing the
interfacial contact between the phases to enhance property transfers and chemical
reactions at these extended surface interfaces. As a result, packed beds are exten-
sively used in the chemical process industries. Some examples are gas absorption,
catalytic reactors, and deep bed filtration.

4.6.1 Friction Factor Correlations

The friction factor for packed beds, fp, is defined by

& Dp|AP|
1—€¢ pv2L

fpb = (4.6-1)

where ¢ is the porosity (or, void volume fraction), Dp is the particle diameter, and
v, is the superficial velocity. The superficial velocity is obtained by dividing the
volumetric flow rate to the total cross-sectional area of the bed. Note that the
actual flow area is a fraction of the total cross-sectional area.

Example 4.19 Water flows through an annulus at o volumetric flow rate of
5m3/ min. The diameters of the inner and the outer pipes are 30cm and 50cm,
respectively. Calculate the superficial velocity.
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Solution

If the inside and outside pipe diameters are designated by D; and D,, respectively,
the superficial velocity, v,, is defined by

Vo = Q = 0
" nD2/4 " 7(0.5)2/4

= 25.5m/ min

The actual average velocity, (v)qet, in the annulus is

(D) ast = Q _ 5
“ T m(D2-D2) /4~ w[(0.5)2 - (0.3)%] /4

= 40 m/ min

Comment: The superficial velocity is always less than the actual average velocity
by a factor of porosity, which is equal to [1 — (D;/D,)?] in this ezample.

For packed beds, the Reynolds number is defined by

_ Dpvop 1
Repb = 0 1_e (46—2)

For laminar flow, the relationship between the friction factor and the Reynolds
number is given by

150
E R 10 4.6-3
fob Reys epp < ( )

which is known as the Kozeny-Carman equation.
In the case of turbulent flow, i.e., Rep, > 1000, the relationship between Reps
and fps is given by the Burke-Plummer equation in the form

foo=175]  Rep > 1000 (4.6-4)

The so-called Ergun equation (1952) is simply the summation of the Kozeny-
Carman and the Burke-Plummer equations

fpo = hlS_O +1.75 (4.6-5)

€pb

Example 4.20 A column of 0.8 m? cross-section and 30 m height is packed with
spherical particles of diameter 6 mm. A fluid with p = 1.2kg/ m® and p = 1.8 x
1075 kg/ m.s flows through the bed at a mass flow rate of 0.65kg/s. If the pressure
drop is measured as 3200 Pa, calculate the porosity of the bed:

a) Analytically,
b) By using Newton-Raphson method.
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Solution
Assumption

1. The system is isothermal.

Analysis
The superficial velocity through the packed bed s
0.65
Vo = (1—2—)(0—85 = 0677m/s

Substitution of the values into Egs. (4.6-1) and (4.6-2) gives the friction factor
and the Reynolds number as a function of porosity in the form

63 DP IAPI
1-¢ pv2L

€ [(6x107%)(3200)] _ €
T 11— [(1.2)(0.677)2(30)] =1.164 (T?E) (1)

fpb =

_ Dpup 1
1—e¢

_ [(e x 1?:3((2.(?_757)(1.2)] L0 (1 L e) (2)

Substitution of Egs. (1) and (2) into Eq. (4.6-5) gives
€ —0.476 2 +2.455¢ — 1.979 = 0 (3)

a) Equation (3) can be solved analytically by using the procedure described in Sec-
tion A.7.1.2 in Appendiz A. In order to calculate the discriminant, the terms M
and N must be calculated from Egs. (A.7-5) and (A.7-6), respectively:

(3)(2.455) — (0.476)2

M . —0.793
v = (9(0.476)(2455) + 2247)(1.979) +(2)(0.476)° _ o9

Therefore, the discriminant is
A =M+ N?
= (0.793)* + (0.799)% = 1.137

Since A >0, Eq. (8) has only one real root as given by Eq. (A.7-7). The terms S
and T in this equation are calculated as

S = (N-l-\/Z)I/3

- (0.799 n \/Tﬁ) Y 13
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T = (N - \/Z)l/3
- (0799 - \/TT:ﬁ) Y 0644

Hence the average porosity of the bed is
0.476

€ =1.231 — 0.644 + 3 = 0.746
b) Equation (8) is rearranged as
F(e) = €3 — 0.476 €% + 2.455¢ — 1.979 = 0 (4)
From Eq. (A.7-18) the iteration scheme is
€kl = €k — s;(,ek) (5)
de

€k

The derivative of the function F is given by

U 3¢ 09526+ 2.455
de
Assuming a starting value of 0.7, the calculation scheme is
0.151
=074+ ——=0.74
€ = 0.7+ 3950 0.746
0.003
=0.746 — —— =0.

€3 = 0.746 3414 0.745

Since € = €3, the value of porosity is 0.746.

4.6.2 Heat Transfer Correlation
Whitaker (1972) proposed the following correlation for heat transfer in packed beds:

Nug = (04Rejf® +0.2Re2(*) Pr (4.6-6)

The Nusselt number in Eq. (4.6-6) is defined by

(h)Dp €

k T—_e (4.6-7)

Nupb =

Equation (4.6-6) is valid when

3.7 < Reps < 8000
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0.3 <e<0.74
Pr~ 0.7

All properties in Eq. (4.6-6) are evaluated at the average fluid temperature in the
bed.

4.6.2.1 Calculation of the heat transfer rate

Once the average heat transfer coefficient is determined, the rate of heat transfer
is calculated from

Q = a,V(R)ATLum (4.6-8)

where V is the total volume of the packed bed and a, is the packing surface area
per unit volume defined by

_6(-¢

ay = Dr (4.6-9)

4.6.3 Mass Transfer Correlation

Dwivedi and Upadhyay (1977) proposed a single correlation for both gases and
liquids in packed and fluidized beds in terms of the j—factor as

0.765 0.365
€M, = 4.6-10
Mps (Re;b)o.sz (Re;b)°'386 ( )

which is valid for 0.01 < Rey, < 15,000. The terms jas,, and Rej, in Eq. (4.6-10)
are defined by

k
i = () s o
and D

el = P:"" (4.6-12)

4.6.3.1 Calculation of the mass transfer rate

Once the average mass transfer coefficient is determined, the rate of mass transfer
of species A, m 4, is given by

|4 = 0oV (ke)(Aca) LM | (4.6-13)

Example 4.21 Instead of using a naphthalene pipe as in Example 4.17, it is sug-
gested to form a packed bed of porosity 0.45 in a pipe, 2.5 cm in internal diameter,
by using naphthalene spheres of 5mm in diameter. Pure air at 40°C flows at a
superficial velocity of 9m/s through the bed. Determine the length of the packed
bed required for the average concentration of naphthalene vapor in the air to reach
25% of the saturation value.
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Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (B) at 40°C (313K) :

313\%/?
(DAB)313 = (DAB)soo (ﬁ)
313

3/2
it — -6 2
300) 6.61x 107°m*/s

= (0.62 x 107%) (

For air at 40°C (313K) : v = 16.95 x 107 m?/s

The Schmidt number is

v

" Das

~16.95x 107°
6.61 x 106

Sc

= 2.56

Assumptions

1. Steady-state conditions prevail.
2. The system is isothermal.

3. The diameter of the naphthalene spheres does not change appreciably.
Analysis

System: Air in the packed bed

Under steady conditions, the conservation statement for naphthalene, species A,
becomes
Rate of moles of A in = Rate of moles of A out (1)

The terms in Fq. (1) are expressed by

Rate of moles of A in = a,V{k:)(Aca)Lm (2)
Rate of moles of A out = Q (ca,)our = (TD?/4) vo(ca, )out (3)

Since the concentration at the surface of the naphthalene spheres is constant, the
expression for (Aca)Lm, Bq. (4.5-35), becomes

(CA,, )out
CA,
In [_—_
CAw — (CAb)OM

(Aca)m =

' (4)
|
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Substitution of Egs. (2)-(4) into Eq. (1) and noting that V = (nD?/4)L gives

e ®

Note that for a circular pipe, i.e., a, = 4/D, the above equation reduces to Eq. (5)
in Example 4.17.
The interfacial area per unit volume, a,, is calculated from Eq. (4.6-9) as

6(1—¢)
Dp
6(1 — 0.45)

_ _ -1
= T 0.005 660 m

ay =

To determine the average mass transfer coefficient from Eq. (4.6-10), first it is
necessary to calculate the Reynolds number
* Dpy,
Rey, = ——
et »
_(0.005)(9)

T 16.95x 10-6 2655

Substitution of this value into Eq. (4.6-10) gives

0.765 0.365

(Re;b)0.82 (Re;b)0.386

0.765 0.365
= + = 0.0186
(2655)0.82 (2655)0‘386

ejMpb =

in which ejum,, is given by Eq. (4.6-11). Therefore, the average mass transfer
coefficient is

vO
(ko) = 0.0186 —=

(0.0186)(9)

= (0.45)(2.56)28 ~ O-2m/s

The length of the bed is calculated from Eq. (5) as

9

Comment: The use of a packed bed increases the mass transfer area between air
and solid naphthalene. This in turn causes a drastic decrease in the length of the
equipment.
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NOTATION

SEIEOMD BESESSTITHICQCOUIT eI EEITIES Q>

area, m?

packing surface area per unit volume, 1/ m
heat capacity at constant pressure, kJ/kg. K
concentration of species i, kmol/m3
diameter, m

hydraulic equivalent diameter, m

particle diameter, m

diffusion coefficient for system .A-B, m?/s
drag force, N

friction factor

mass velocity, kg/ m?.s

acceleration of gravity, m/s?
Chilton-Colburn j — factor for heat transfer
Chilton-Colburn j — factor for mass transfer
thermal conductivity, W/ m.K

mass transfer coefficient, m/s

length, m

mass, kg

mass flow rate, kg/s

molecular weight, kg/kmol

molar flow rate, kmol/s

pressure, Pa

heat transfer rate, W

volumetric flow rate, m3/s

heat flux, W/ m?

gas constant, J/ mol. K

temperature, °C or K

time, s

volume, m?

velocity, m/s

superficial velocity, m/s

terminal velocity, m/s

work, J; width, m

rate of work, W

rectangular coordinate, m

difference

porosity

surface roughness of the pipe, m
viscosity, kg/ m.s

kinematic viscosity, m?/s
density, kg/ m?
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Overlines
~ per mole
" per unit mass
Bracket
(a) average value of a
Superscript
sat saturation
Subscripts
A B species in binary systems
b bulk
c transition from laminar to turbulent
ch characteristic
f film
% species in multicomponent systems
in inlet
LM log-mean
out out
pb packed bed
w wall or surface
00 free-stream

Dimensionless Numbers

Ar Archimedes number

Pr Prandtl number

Nu Nusselt number

Re Reynolds number

Rep Reynolds number based on the diameter

Rep, Reynolds number based on the hydraulic equivalent diameter

Rey, Reynolds number based on the length

Re, Reynolds number based on the distance z

Sc Schmidt number

Sh Sherwood number

Sty Stanton number for heat transfer

Stum Stanton number for mass transfer
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PROBLEMS

4.1 Air at atmospheric pressure and 200 °C flows at 8 m/ s over a flat plate 150 cm
long in the direction of flow and 70 cm wide.

a) Estimate the rate of cooling of the plate so as to keep the surface temperature
at 30°C.
b) Calculate the drag force exerted on the plate.

(Answer: a) 1589 W b) 0.058 N)

4.2 Water at 15°C flows at 0.15m/ s over a flat plate 1 m long in the direction of
flow and 0.3 m wide. If energy is transferred from the top and bottom surfaces of the
plate to the flowing stream at a steady rate of 3500 W, determine the temperature
of the plate surface.

(Answer: 35°C)
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4.3 Fins are used to increase the area available for heat transfer between metal
walls and poorly conducting fluids such as gases. A simple rectangular fin is shown
below.

A /IB
k24 W
—>z e

If one assumes,
e T =T(z) only,
e No heat is lost from the end or from the edges,

e The average heat transfer coefficient, (h), is constant and uniform over the
entire surface of the fin,

The thermal conductivity of the fin, &, is constant,

The temperature of the medium surrounding the fin, Ty, is uniform,

The wall temperature, T, is constant,

the resulting steady-state temperature distribution is given by

ror., ©h [A <1-%>}

Tw — Too “cosh A
where
_[2(h) L2
A= kB

If the rate of heat loss from the fin is 478 W, determine the average heat transfer co-
efficient for the following conditions: T, = 175°C; Ty, = 260°C; k = 105 W/ m. K;
L=4cm; W =30cm; B =5mm.

(Answer: 400 W/ m?.K)
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4.4 Consider the rectangular fin given in Problem 4.3. One of the problems
of practical interest is the determination of the optimum values of B and L to
maximize the heat transfer rate from the fin for a fixed volume, V, and W. Show
that the optimum dimensions are given as

/3 1/3
(RyV2\' kV

B >~ ~ | ——

opt ( kW2 and  Lope = { 75377

4.5 Consider the rectangular fin given in Problem 4.3. If a laminar flow region
exists over the plate, show that the optimum value of W for the maximum heat
transfer rate from the fin for a fixed volume, V, and thickness, B, is given by

2/5
_ k { Voo
Wofpt =1.2 V4/5.B 6/5 [(%) Prl/3 7]

where ky is the thermal conductivity of the fluid.

4.6 A thin aluminum fin (k = 205 W/ m. K) of length L = 20cm has two ends
attached to two parallel walls which have temperatures T,, = 100°C and T, = 90°C
as shown in the figure below. The fin loses heat by convection to the ambient air
at T, = 30°C with an average heat transfer coefficient of (k) = 120W/m? K
through the top and bottom surfaces (heat loss from the edges may be considered
negligible).

T H
T, B :
' :
---------------------------- ;/::'--E
X ¥, S
v . H
| -
G 2z B =025 mm E
T :
&
S
\Q/

e pezoem—

One of your friends assumes that there is no internal generation of energy within
the fin and determines the steady-state temperature distribution within the fin as

T—To _

m = eNz — 2Qsinh Nz
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in which N and 2 are defined as

_ 2k
N=vVis
eNL— TL_Too
Q= TO—TOO
2sinh NL

a) Show that there is indeed no internal generation of energy within the fin.
b) Determine the location and the value of the minimum temperature within the
fin.

(Answer: z=0.1cm, T = 30.14°C)

4.7 Rework Example 4.8 by using the Ranz-Marshall correlation, Eq. (4.3-33),
the Frossling correlation, Eq. (4.3-34), and the modified Frossling correlation, Eq.
(4.3-35). Why are the resulting Sherwood numbers differ significantly from the
value of 5417

4.8 In an experiment carried out at 20°C, a glass sphere of density 2620 kg/ m3
falls through carbon tetrachloride (p = 1590kg/ m3 and p = 9.58 x 10~*kg/ m.s)
with a terminal velocity of 65cm/s. Determine the diameter of the sphere.

(Answer: 21 mm)

4.9 A CO2 bubble is rising in a glass of beer 20cm tall. Estimate the time
required for a bubble of 5 mm in diameter to reach the top if the properties of CO2
and beer can be taken as equal to that of air and water, respectively.

(Answer: 0.545s)

4.10 Show that the use of the Dittus-Boelter correlation, Eq. (4.5-26), together
with the Chilton-Colburn analogy, Eq. (3.5-12), yields

f = 0.046 Re ™02

which is a good power-law approximation for the friction factor in smooth circular
pipes. Calculate f for Re = 10%, 105 and 107 using this approximate equation
and compare the values with the ones obtained by using the Chen correlation, Eq.
(4.5-16).

4.11 For laminar flow of an incompressible Newtonian fluid in a circular pipe,
Eq. (4.5-12) indicates that the pressure drop is proportional to the volumetric flow
rate. For fully turbulent flow show that the pressure drop in a pipe is proportional
to the square of the volumetric flow rate.

4.12 The purpose of the blood pressure in a human body is to push blood to
the tissues of the organism so that they can perform their function. Each time
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the heart beats, it pumps out blood into the arteries. The blood pressure reaches
its maximum value, i.e., systolic pressure, when the heart contracts to pump the
blood. In between beats, the heart is at rest and the blood pressure falls down to
a minimum value, diastolic pressure. An average healthy person has systolic and
diastolic pressures of 120 and 80 mmHg, respectively. Human body has about 5.6
L of blood. If it takes 20 s for blood to circulate throughout the body, estimate the
power output of the heart.

(Answer: 3.73W)

4.13 Water is in isothermal turbulent flow at 20°C through a horizontal pipe
of circular cross-section with 10 cm inside diameter. The following experimental
values of velocity are measured as a function of radial distance 7:

‘s Uy
(cm) (m/s)
0.5 0.394
1.5 0.380
2.5 0.362
3.5 0.337
4.5 0.288

The velocity distribution is proposed in the form

n
Vz = Umax (1 - %)

where V.. is the maximum velocity and R is the radius of the pipe. Calculate
the pressure drop per unit length of the pipe.

(Answer: 12.3Pa/m)
4.14 In Example 4.15, the length to diameter ratio is expressed as
11 (To-T,
D 485ty Ty —Tp,.,
Use the Chilton-Colburn analogy, i.e.,
£ = Sty Pr2/ 3
2
and evaluate the value of L/D. Is it a realistic value? Why?

4.15 Water at 10°C enters a circular pipe of internal diameter 2.5cm with a
velocity of 1.2m/s. Steam condenses on the outside of the pipe so as to keep the
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surface temperature of the pipe at 82 °C. If the length of the pipe is 5 m, determine
the outlet temperature of water.

(Answer: 51°C)

4.16 Dry air at 1 atm pressure and 50 °C enters a circular pipe of 12cm internal
diameter with an average velocity of 10cm/s. The inner surface of the pipe is
coated with a thin absorbent material which is soaked with water at 20°C. If the
length of the pipe is 6 m, calculate the amount of water vapor carried out of the
pipe per hour.

(Answer: 0.067 kg/ h)

4.17 A column with an internal diameter of 50 cm and a height of 2m is packed
with spherical particles of 3mm in diameter so as to form a packed bed with
€ = 0.45. Estimate the power required to pump a Newtonian liquid (g = 70 x
1073 kg/ m.s; p = 1200kg/ m?®) through the packed bed at a mass flow rate of
1.2kg/s.

(Answer: 39.6 W)

4.18 The drag force, Fp, is defined as the interfacial transfer of momentum from
the fluid to the solid. In Chapter 3, power, W, is given by Eq. (3.1-11) as

W = Fpven (1)
For flow in conduits, power is also expressed by Eq. (4.5-2) in the form
W =90 |AP| (2)

a) For flow in a circular pipe, the characteristic velocity is taken as the average
velocity. For this case, use Egs. (1) and (2) to show that

Fp = A|AP| (3)

where A is the cross-sectional area of the pipe.

b) For flow through packed beds, the characteristic velocity is taken as the actual
average velocity or, interstitial velocity, i.e.,

v,
Veh = —ee (4)

in which v, is the superficial velocity and ¢ is the porosity of the bed. Show that
Fp =cA|AP| (5)

where A is the cross-sectional area of the packed bed.
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c) In fluidization, the drag force on each particle should support its effective weight,
i.e., weight minus buoyancy. Show that the drag force is given by

Fp = AL(1 —€)(pp — p)ge (6)

where L is the length of the bed, p and pp are the densities of the fluid and solid
particle, respectively. Note that in the calculation of the buoyancy force, the volume
occupied by solid particles should be multiplied by the density of suspension, i.e.,
ep+ (1 —€)pp, instead of p.

Combine Egs. (5) and (6) to get

B2 o1~ (o - ) (7)

which is a well-known equation in fluidization.

4.19 A 15x90m lawn is covered by a layer of ice of 0.15 mm thick at —4°C. The
wind at a temperature of 0°C with 15% relative humidity blows in the direction
of the short side of the lawn. If the wind velocity is 10 m/s, estimate the time
required for the ice layer to disappear by sublimation under steady conditions.
The vapor pressure and the density of ice at — 4 °C are 3.28 mmHg and 917 kg/ m?,
respectively.

(Answer: 33 min)






Chapter 5

Rate of Generation in

Momentum, Energy and
Mass Transfer

In Chapter 1, the generation rate per unit volume is designated by R. Integration
of this quantity over the volume of the system gives the generation rate in the
conservation statement. In this chapter, explicit expressions for & will be developed
for the cases of momentum, energy, and mass transport.

5.1 RATE OF GENERATION IN MOMENTUM
TRANSPORT

In general, forces acting on a particle can be classified as surface forces and body
forces. Surface forces, such as, normal stresses (pressure) and tangential stresses,
act by direct contact on a surface. Body forces, however, act at a distance on a
volume. Gravitational, electrical and electromagnetic forces are examples of body
forces.

For solid bodies Newton’s second law of motion states that

(5.1-1)

Summation of forces \ [ Time rate of change of
acting on a system 7\ momentum of a system

in which forces acting on a system include both surface and body forces. Equa-
tion (5.1-1) can be extended to fluid particles by considering the rate of flow of

133
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momentum into and out of the volume element, i.e.,

Rate of B Rate of + Summation of forces
momentum in momentum out acting on a system
Time rate of change of
= (5.1-2)
momentum of a system

On the other hand, for a given system, the inventory rate equation for momentum
can be expressed as

Rate of Rate of + Rate of momentum
momentum in momentum out generation
Rate of momentum

= ( accumulation ) (5.1-3)

Comparison of Egs. (5.1-2) and (5.1-3) indicates that

( Rate of momentum ) B ( Summation of forces )

generation acting on a system (5.1-4)

in which the forces acting on a system are the pressure force (surface force) and
the gravitational force (body force).

5.1.1 Momentum Generation As a Result of Gravitational
Force

Consider a basketball player holding a ball in his hands. When he drops the ball,
it starts to accelerate as a result of gravitational force. According to Eq.(5.1-4),
the rate of momentum generation is given by

Rate of momentum generation = Mg (5.1-5)

where M is the mass of the ball and g is the gravitational acceleration. Therefore,
the rate of momentum generation per unit volume, R, is given by

(5.1-6)

5.1.2 Momentum Generation As a Result of Pressure Force

Consider the steady flow of an incompressible fluid in a pipe as shown in Figure 5.1.
The rate of mechanical energy required to pump the fluid is given by Eq. (4.5-3)
as

W = Fp(v) = Q|AP| (5.1-7)

Since the volumetric flow rate, Q, is the product of average velocity, (v), with the
cross-sectional area, A, Eq. (5.1-7) reduces to

A|AP| - Fp =0 (5.1-8)
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System boundary

Figure 5.1 Flow through a pipe.

For the system whose boundaries are indicated by a dotted line in Figure 5.1,
the conservation of mass states that

Tin = Thout (5.1-9)

or,
(p(0)A);, = (P A) e = (V)in = (V)our (5.1-10)

On the other hand, the conservation statement for momentum, Eq. (5.1-3), takes
the form

< Rate of ) B ( Rate of ) n ( Rate of momentum ) —0
momentum in momentum out generation

(5.1-11)
and can be expressed as

(m(v));, — [(M(v)) e + FD] + R(AL) =0 (5.1-12)

where R is the rate of momentum generation per unit volume. Note that the rate
of momentum transfer from the fluid to the pipe wall manifests itself as a drag
force. The use of Eqs. (5.1-9) and (5.1-10) simplifies Eq. (5.1-12) to

R(AL) — Fp =0 (5.1-13)

Comparison of Egs. (5.1-8) and (5.1-13) indicates that the rate of momentum
generation per unit volume is equal to the pressure gradient, i.e.,

__|AP|

=7

(5.1-14)

5.1.3 Modified Pressure

Equations (5.1-6) and (5.1-14) indicate that the presence of pressure and/or gravity
forces can be interpreted as a source of momentum. In fluid mechanics, it is



136 CHAPTER 5. RATE OF GENERATION

customary to combine these two forces in a single term and express the rate of
momentum generation per unit volume as

|AP|
R=—nr 5.1-15
R i7 ( )
where P is the modified pressure! defined by
P =P+ pgh (5.1-16)

in which A is the distance measured in the direction opposite to gravity from any
chosen reference plane.

5.1.3.1 Physical interpretation of the modified pressure

Consider a stagnant liquid in a storage tank open to the atmosphere. Let z be the
distance measured from the surface of the liquid in the direction of gravity. The
hydrostatic pressure distribution within the fluid is given by

P = Poym + pgz (5.1-17)
For this case the modified pressure is defined as
P=P—pgz (5.1-18)
Substitution of Eq. (5.1-18) into Eq. (5.1-17) gives
P = P,,,, = constant (5.1-19)

The simplicity of defining the modified pressure comes from the fact that it is
always constant under static conditions whereas the hydrostatic pressure varies as
a function of position. Suppose that you measure a pressure difference over a length
L of a pipe. It is difficult to estimate whether this pressure difference comes from
a flow situation or hydrostatic distribution. However, any variation in P implies a
flow. Another distinct advantage of defining modified pressure is that the difference
in P is independent of the orientation of the pipe as shown in Table 5.1.

5.2 RATE OF GENERATION IN ENERGY
TRANSPORT

Let us consider the following paradox: “One of the most important problems that
the world faces today is energy shortage. According to the first law of thermodynam-
ics, energy 18 converted from one form to another and transferred from one system
to another but its total is conserved. If energy is conserved, then there should be
no energy shortage.”

I The term P is also called equivalent pressure, dynamic pressure and piezometric pressure.
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Table 5.1 Pressure difference in flow through a pipe with different orientation.

Geometry Pa—Ps Py —Pp

(P — P)9H (Pm — p)9H

(Pm —P)9H (P — p)gH + pgLsinf

(pm — P)gH (om — P)9H + pgL

Ll
FLOW

The answer to this dilemma lies in the fact that although energy is conserved,
its ability to produce useful work decreases steadily as a result of the irreversibilities
associated with the transformation of energy from one form into another?. These
irreversibilities give rise to energy generation within the system. Typical examples

ZNote that 1,000 J at 100°C is much more valuable than 1,000 J at 20 °C.
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are the degradation of mechanical energy into thermal energy during viscous flow
and degradation of electrical energy into thermal energy during transmission of an
electric current.

Generation of energy can also be attributed to various other factors such as
chemical and nuclear reactions, absorption radiation, and presence of magnetic
fields. Energy generation as a result of chemical reaction will be explained in detail
in Chapter 6.

The rate of energy generation per unit volume may be considered constant in
most cases. If it is dependent on temperature, it may be expressed in various forms

such as
a-+bT

R = (5.2-1)
§Ro eaT

where a and b are constants.

5.3 RATE OF GENERATION IN MASS
TRANSPORT

5.83.1 Stoichiometry of a Chemical Reaction

Balancing of a chemical equation is based on the conservation of mass for a closed

thermodynamic system. If a chemical reaction takes place in a closed container, the

mass does not change even if there is an exchange of energy with the surroundings.
Consider a reaction between nitrogen and hydrogen to form ammonia, i.e.,

N2 +3H; = 2NH;3 (5.3-1)
If Ay = Ny, A2 = Hy and A3 = NHj, Eq. (5.3-1) is expressed as
Al +3A4,=2A, (5.3—2)

It is convenient to write all the chemical species on one side of the equation and give
a positive sign to the species which are regarded as the products of the reaction.
Thus,

2A3— A1 -3A4;=0 (5.3-3)

or,
D> Ai=0 (5.3-4)
i=1

where ¢; is the stoichiometric coefficient of i** chemical species (positive if species
is a product, negative if species is a reactant), s is the total number of species in the
reaction, and A; is the chemical symbol for the i** chemical species, representing
the molecular weight of species.
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Each chemical species, A;, is the sum of the chemical elements, E;, such that
t
A=) BB (5.3-5)
i=1

where 3;; represents the number of chemical elements F; in the chemical species
A;, and t is the total number of chemical elements. Substitution of Eq. (5.3-5)
into Eq. (5.3-4) gives

s t t 3
Zai Zﬂji Ej = Z ( oy ﬂj,-) EJ‘ =0 (5.3—6)
i=1 I=1 1

i=1 i=

Since all the E; are linearly independent®, then

8
> B =0 i=1,2, ..t (5.3-7)

i=1

Equation (5.3-7) is used to balance chemical equations.

Example 5.1 C(Consider the reaction between No and Hy to form NHj

ay No +asHy +a3NH; =0
Show how one can apply Eq. (5.8-7) to balance this equation.
Solution
If Ay =N,, A; =H, and A3 =NHg, the above equation can be expressed as

a1 A1+ Ay +a3 A3 =0 (1)
Ifwelet Ey =N (j=1) and E; = H (j = 2), then Eq. (5.3-7) becomes

o1 Eii+o02 B2 +03E13=0 for j=1 (2)

a1 By +azEsp +a3E;3 =0 for j=2 (3)

3The expression

n

Z ;T = a1T] +ax2 + ... + QnTn

i=1
where {a1,a2,...,an} is a set of scalars, is called a linear combination of the elements of the set
S = {z1,22,...,zn} . The clements of the set S is said to be linearly dependent if there exists a set
of scalars {ay, @2, ..., an} with elements o; not all equal to zero, such that the linear combination
n n
5~ aizi =0 holds. If 3 a;z; = 0 holds for all a; =0, then the set S is linearly independent.

i=1 i=1



140 CHAPTER 5. RATE OF GENERATION

or,
a1(2) + a2(0) + a3(1) =0 (4)
a1(0) + a2(2) + 3(3) =0 (5)
Solutions of Egs. (4) and (5) give
1 3
012—503 (12=—§(13 (6)
If we take az = 2, then a; = — 1 and ag = — 3. Hence, the reaction becomes

N2 +3Hy = 2NH;3

Comment: Stoichiometric coefficients have units. For ezample, in the above
equation the stoichiometric coefficient of Hy indicates that there are 3 moles of Ha
per mole of Na.

5.3.2 The Law of Combining Proportions

Stoichiometric coefficients have the units of moles of ¢ per mole of basis species,
where basis species is arbitrarily chosen. The law of combining proportions states
that

moles of 7 reacted

o l f . . .
(moles of i/mole of basis species) moles of basis species (5.3-8)

or,
i T, (5.3-9)

Q;

where ¢ is called the molar extent of the reaction?. Rearrangement of Eq. (5.3-9)

gives
6310

Note that once € has been determined, the number of moles of any chemical species
participating in the reaction can be determined by using Eq. (5.3-10).

The molar extent of the reaction should not be confused with the fractional
conversion variable, X, which can only take values between 0 and 1. The molar
extent of the reaction is an extensive property measured in moles and its value can
be greater than unity.

It is also important to note that the fractional conversion may be different for
each of the reacting species, i.e.,

X;= (5.3-11)

4The term ¢ has been given various names in the literature, such as, degree of advancement,
reaction of coordinate, degree of reaction and progress variable.
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On the other hand, molar extent is unique for a given reaction. Comparison of
Egs. (5.3-10) and (5.3-11) indicates that

ni,
(- ai)
The total number of moles, nr, of a reacting mixture at any instant can be
calculated by the summation of Eq. (5.3-10) over all species, i.e.,

£ =

(5.3-12)

np =nr, + &€ (53—13)
where nr, is the initial total number of moles and a = >, ;.
Example 5.2 A system containing 1 mol A,, 2 mol Ay and 7 mol A3z undergoes

the following reaction

Ay(9) + Az(g) +3/2 A3(9) — Adlg) + 3 As(g)

Determine the limiting reactant and fractional conversion with respect to each re-
actant if the reaction goes to completion.

Solution

Since n; > 0, it is possible to conclude from Eq. (5.3-10) that the limiting reactant
has the least positive value of n;, /(— ;). The values given in the following table
indicate that the limiting reactant is A,.

Species n;, /(— ;)

A, 1
As 2
Az 4.67

Note that the least positive value of n;, [(— ;) is also the greatest possible value
of €. Since the reaction goes to completion, species A, will be completely depleted
and € = 1. Using Eq. (5.3-12), fractional conversion values are given as follows:

Species X
Ay 1
Az 0.50
Az 0.21

Example 5.3 A system containing 3 mol A) and 4 mol As undergoes the fol-
lowing reaction

2 Ax(g) + 3 A2(g) — As(9) +2 A4(g)

Calculate the mole fractions of each species if € = 1.1. What is the fractional
conversion based on the limiting reactant?
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Solution

Using Eq. (5.8-10), the number of moles of each species is expressed as
ny =3-2¢=3-(2)(1.1) = 0.8 mol
ng =4—3¢=4—(3)(1.1) = 0.7mol
ng = € = 1.1 mol

ng = 2¢ = (2)(1.1) = 2.2mol

Therefore, the total number of moles is 4.8 moles and the mole fraction of each
species 18

T = %—g = 0.167
9 = 4—; = (.146
z3 = %—% = (0.229
T4 = % = 0.458
The fractional conversion, X, based on the limiting reactant Ag is
x="1 "40'7 =0.825

Molar concentration of the i** species, ¢;, is defined by

N
C; = V (53—14)
Therefore, division of Eq. (5.3-10) by the volume V gives
n; _ n,;o i
VTV +Q,V (5.3-15)
or,
¢ =¢, + a; € (53—16)

where ¢;, is the initial molar concentration of the i** species and £ is the intensive

extent of the reaction in moles per unit volume. Note that £ is related to conversion,
X, by

R (5.3-17)

The total molar concentration, ¢, of a reacting mixture at any instant can be
calculated by the summation of Eq. (5.3-16) over all species, i.e.,

5319

£=
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where ¢, is the initial total molar concentration.
When more than one reaction takes place in a reactor, Eq. (5.3-10) takes the
form

Nij = Nij, + &5 €5 (5.3-19)

where

n;; = number of moles of i*" species in the j'* reaction
nyj, = initial number of moles of i** species in the j** reaction
a;; = stoichiometric coefficient of i*® species in the 7" reaction

£; = extent of the j** reaction

Summation of Eq. (5.3-19) over all reactions taking place in a reactor gives
Enij = Zniju + Zaijej (5.3-20)
J J J

or,

n; = n;, + Zaijej (5.3—21)
J

Example 5.4 The following two reactions occur simultaneously in a batch reac-
tor:

CaHg = CoHy + Hp
CoHg + Hy = 2CHy

A mizture of 85 mol % CoHg and 15% inerts is fed into a reactor and the reactions
proceed until 25% CoHy and 5% CH, are formed. Determine the percentage of each
species in a reacting mizture.

Solution

Basis: 1 mole of a reacting mizture
Let €y and ¢4 be the extents of the first and second reactions, respectively. Then,
the number of moles of each species can be expressed as

NCyHg = 0.85 — €1 — &2

NcyHy = €1

Ny, = €1 — €2
ncy, = 2€2
Ninert = 0.15

The total number of moles, nr, is

nr=1+¢
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The mole fractions of CoHy and CHy are given in the problem statement. These
values are used to determine the extent of the reactions as

TCuH, = 1 ilal =025 = ¢ =0333
262
= =0. ~0.0
Zow, = Toe- =005 = ep=0033

Therefore, the mole fractions of CoHg, Hy and the inerts are
0.85—-¢, —e2  0.85-0.333 — 0.033

TOaMe = e T 1+0.333 = 0.363
T M
Tinert = 1—_%; =0.112
5.3.3 Rate of Reaction
The rate of a chemical reaction, r, is defined by
r= TI/- EZ—i (5.3-22)

where V is the volume physically occupied by the reacting fluid. Since both V" and
de/dt are positive, the reaction rate is intrinsically positive. Note that the reaction
rate has the units of moles reacted per unit time per unit volume of the reaction
mixture. The reaction rate expression, 7, has the following characteristics:

e It is an intensive property,
e It is independent of the reactor type,
e It is independent of a process.

Changes in the molar extent of the reaction can be related to the changes in
the number of moles of species ¢ by differentiating Eq. (5.3-10). The result is

de = = dn, (5.3-23)

o4}

Substitution of Eq. (5.3-23) into Eq. (5.3-22) gives

11 dn,;
@V a (5.3-24)
If the rate of generation of species ¢ per unit volume, R;, is defined by
1 dn;
=7 7# (5.3-25)
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then
Ri=a;r (5.3-26)

Therefore, R; is negative if ¢ appears as a reactant; R; is positive if ¢ is a product.

Example 5.5 For the reaction
3A-B+C

express the reaction rate in terms of the time rate of change of species A, B, and

C.

Solution

Application of Eq. (5.3-24) gives the rate as

11dns
3V dt

If V is constant, then Eq. (1) reduces to

=2 &e (1)

. dnpg 1 dne
- dt

1
1%
ldca deg dec

i ST @

Comment: The rate of reaction is equal to the time derivative of a concentration
only when the volume of the reacting mizture is constant.

In the case of several reactions, R; is defined by

R = Z Qij T (5.3-27)
J

where 7; is the rate of j'* reaction.

The reaction rate is a function of temperature and concentration and is assumed
to be the product of two functions, one is dependent only on the temperature and
the other is dependent only on the concentration, i.e.,

(T, ;) = k(T)f(c:) (5.3-28)

The function £(7T') is called the rate constant and its dependence on the temperature
is given by

E(T) = AT™e= &/RT (5.3-29)
where A is a constant, £ is the activation energy, R is the gas constant and T is
the absolute temperature. The power of temperature, m, is given by

0 from the Arrhenius relation
m=< 1/2  from the kinetic theory of gases (5.3-30)
1 from statistical mechanics
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In engineering practice the Arrhenius relation, i.e.,
k(T) = Ae™ 8/RT (5.3-31)

is generally considered valid® and the rate constant can be determined by running
the same reaction at different temperatures. The data from these experiments are
found to be linear on a semi-log plot of k versus 1/7.

The function f(c;) depends on the concentration of all the species in the chem-
ical reaction. Since the reaction rate is usually largest at the start of the reaction
and eventually decreases to reach a zero-rate at equilibrium, the function f(c;) is
taken to be a power function of the concentration of the reactants.

If f(c;) were a power function of the products of the reaction, the reaction
rate would increase, rather than decrease with time. These reactions are called
autocatalytic.

For normal decreasing rate reactions

ﬂm=Hq‘ (5.3-32)

where c; is the concentration of a reactant. Thus, the constitutive equation for the
reaction rate is

r=k H ¢’ (5.3-33)

The order of a reaction, n, refers to the powers to which the concentrations are
raised, i.e.,

n= 271' (5.3-34)

It should be pointed out that there is no necessary connection between the order
and the stoichiometry of the reaction.

NOTATION

area, m?

concentration, kmol/ m3
activation energy, kJ/kmol
D drag force, N

acceleration of gravity, m/s?
elevation, m

reaction rate constant
length, m

S INCIAL N

~ o >Q

SDeviations from the Arrhenius relationship are discussed by Maheswari and Akella (1988).



NOTATION

M mass, kg

™ mass flow rate, kg/s

n number of moles, kmol

nij number of moles of i** species in the j* reaction

P pressure, Pa

P modified pressure, Pa

Q volumetric flow rate, m3/s

T rate of a chemical reaction, kmol/ m>.s

4 rate of generation (momentum, energy, mass) per unit volume

T temperature, °C or K

t time, s

1% volume, m?

v velocity, m/s

w rate of work, W

X fractional conversion

x; mole fraction of species 1

z rectangular coordinate, m

o stoichiometric coefficient of species %

o stoichiometric coefficient of #*" species in the j'®

a 20

A difference

£ molar extent of a reaction, kmol

& intensive extent of a reaction, kmol/ m3

p density, kg/ m>

Prm density of manometer fluid, kg/m®
Bracket

(a) average value of a
Subscripts

atm atmospheric

mn inlet

0 initial

out out

T total
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Chapter 6

Steady-State Macroscopic
Balances

The use of correlations in the determination of momentum, energy and mass trans-
fer from one phase to another under steady-state conditions was covered in Chap-

ter 4.

Although some examples of Chapter 4 make use of steady-state macroscopic

balances, systematic treatment of these balances for the conservation of chemical
species, mass and energy was not presented. The basic steps in the development
of steady-state macroscopic balances are as follows:

Define your system: A system is any region which occupies a volume and has
a boundary.

If possible, draw a simple sketch: A simple sketch helps in the understanding
of the physical picture.

List the assumptions: Simplify the complicated problem to a mathematically
tractable form by making reasonable assumptions.

Write down the inventory rate equation for each of the basic concepts relevant
to the problem at hand: Since the accumulation term vanishes for steady-state
cases, macroscopic inventory rate equations reduce to algebraic equations.
Note that in order to have a mathematically determinate system, the number
of independent inventory rate equations must be equal to the number of
dependent variables.

Use engineering correlations to evaluate the transfer coefficients: In macro-
scopic modeling, empirical equations that represent transfer phenomena from
one phase to another contain transfer coefficients, such as the heat transfer
coefficient in Newton’s law of cooling. These coefficients can be evaluated by
using engineering correlations given in Chapter 4.

Solve the algebraic equations.

149
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6.1 CONSERVATION OF CHEMICAL
SPECIES

The inventory rate equation given by Eq. (1.1-1) holds for every conserved quantity
. Therefore, the conservation statement for the mass of the i** chemical species
under steady conditions is given by

)=0 @1

of 7 in of 7 out of mass 17

( Rate of mass ) 3 ( Rate of mass ) ( Rate of generation

The mass of i may enter or leave the system by two means: () by inlet or outlet
streams, (44) by exchange of mass between the system and its surroundings through
the boundaries of the system, i.e., interphase mass transfer.

/ (1)ing
/

()i ——— SYSTEM > (M) oy

Figure 6.1 Steady-state flow system with fixed boundaries.

For a system with a single inlet and a single outlet stream as shown in Figure
6.1, Eq. (6.1-1) can be expressed as

(1724)in = (1724 g & ()i + | D 0375 | MiViye =10 (6.1-2)

2

in which the molar rate of generation of species ¢ per unit volume, R;, is expressed
by Eq. (5.3-27). The terms (1;),, and (0;),,, represent the inlet and outlet mass
flow rates of species 4, respectively, and M; is the molecular weight of species i.
The interphase mass transfer rate, (1;),,,,, is expressed as

(1) iny = Ant (e} (Aci)cp Ms (6.1-3)

where (Ac;),, is the characteristic concentration difference. Note that (7i;),,,, is
considered positive when mass is added to the system.
As stated in Section 2.4.1, the mass flow rate of species i, 7;, is given by

i = pi{v)A = p;Q (6.1-4)



6.1. CONSERVATION OF CHEMICAL SPECIES 151

Therefore, Eq. (6.1-2) takes the form

(Q0)in = (QP)gus £ Ant (k) (Aci)oy Mi+ | D aijry | MiVays =0 (6.1-5)
i

Sometimes it is more convenient to work on molar basis. Division of Egs. (6.1-2)
and (6.1-5) by the molecular weight of species i, M;, gives

(12) i = (12) g £ (M) + Z aijTj | Voys =0 (6.1-6)

and

(Qi)in —(Q ) pue = Ans{ke) (Aci)y, + Zaur, Ve =0|  (6.17)

where n; and ¢; are the molar flow rate and molar concentration of species 1,
respectively.

Example 6.1 The liguid phase reaction
A+2B—-C+2D

takes place in an isothermal, constant-volume stirred tank reactor. The rate of
reaction is expressed by

r=kcacg with k= 0.025 L/ mol. min
The feed stream consists of equal concentrations of species A and B at a wvalue

of 1mol/L. Determine the residence time required to achieve 60% conversion of
species B under steady conditions.

Solution
Assumption

1. As a result of perfect mizing, concentrations of species within the reactor are
uniform, i.e., (¢i)our = (Ci)sys-
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Analysis

System: Contents of the reactor

Since the reactor volume is constant, the inlet and outlet volumetric flow rates are
the same and equal to Q. Therefore, the inventory rate equation for conservation
of species B, Eq. (6.1-7), becomes

Q(cB)in — Qcn,,, —(2kca,,,cB,,.) Voys =0 (1)

where ca,,, and cp,,, represent the molar concentration of species A and B in the
reactor, respectively. Dropping the subscript “sys” and defining the residence time,
7, as T =V/Q reduces Eq. (1) to

(CB)in —Ccp — (2kCACB)T =0 (2)
or,
_(eB)in—cB
- QkCACB (3)

Using Eq. (5.8-17), the extent of the reaction can be calculated as

_ (CB)in

$= Cap)

= Q)_(z()_fil = 0.3 mol/L (4)

Therefore, the concentrations of species A and B in the reactor are
ca =(cA)in+aA£=1—0.3=0.7mol/L (5)
¢ = (¢B)in +apé =1-(2)(0.3) = 0.4 mol/L (6)
Substitution of the numerical values into Eq. (8) gives

1-04
T = 0 = 42.9min

(2)(0.025)(0.7)(0.4)

6.2 CONSERVATION OF MASS

Summation of Eq. (6.1-2) over all species gives the total mass balance in the form

[1in — Tioue £ 1ins = 0] (6.2-1)

3 (Z, aij r,-) M;=0 (6.2-2)

i

Note that the term
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since mass is conserved. Equation (6.2-2) implies that the rate of production of
mass for the entire system is zero. However, if chemical reactions take place within
the system, an individual species may be produced.

On the other hand, summation of Eq. (6.1-6) over all species gives the total
mole balance as

Viys =0 (6.2-3)

Nin — Nout & Ning + [Z (ZJ Qij T j)

i

In this case the generation term is not zero because moles are not conserved.

Example 6.2 A liquid phase irreversible reaction
A—- B

takes place in a series of 4 continuous stirred tank reactors as shown in the figure
below.

@
®

L

L L | | I L1 . ®
@ ® @ ®

The rate of reaction is given by

200
7 =kcy with k=3 x10%exp (— 4_T_)

in which k is in h™! and T is in degrees Kelvin. The temperature and the volume
of each reactor are given as follows:

Reactor Temperature Volume
No (°C) (L)
1 35 800
2 45 1000
3 70 1200
4 60 900
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Determine the concentration of species A in each reactor if the feed to the first
reactor contains 1.5mol/L of A and the volumetric flow rates of the streams are
given as follows:

Stream Volumetric Flow Rate
No (L/h)
1 500
7 200
9 50
11 100
Solution
Assumptions

1. Steady-state conditions prevail.

2. Concentrations of species within the reactor are uniform as a result of perfect
mixing.

3. Liquid density remains constant.
Analysis
Conservation of total mass, Eq. (6.2-1), reduces to
Min = Moyt (1)
Since the liquid density is constant, Eq. (1) simplifies to
Qin = Qout (2)

Only four out of eleven streams are given in the problem statement. Therefore, it
s necessary to write the following mass balances to calculate the remaining seven
streams:

Q1 = Qg = 500
500 + 100 = Q,
Q2+ Q10 = Q3
Q3+ 50 = Q4
Qg = Qs

Qs = Qg + 200

200 = 50 + Qlo

Simultaneous solution of the above equations gives the volumetric flow rate of each
stream as:
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Stream Volumetric Flow Rate
No (L/h)

500
600
750
800
700
500
200
700

50
150
100

— O © 00 3O O W N

—

For each reactor, the reaction rate constant is

k =3 x 10°exp [- %} =0.359h™"  for reactor # 1
k =3 x 10°exp [— @% =0551h"  for reactor # 2
k=3 x 10%exp [—- (—77431—273—) =1.443h™'  for reactor # 3
k=3x10%exp [-— @%J =0.999h~! for reactor # 4

For each reactor, the conservation statement for species A, Eq. (6.1-7), can be
written in the form

(500)(1.5) + 100 c4, — 600 ca, — (0.359 c4,)(800) = 0
600 ca, + 150 ca, — 750 ca, — (0.551 ca,)(1000) = 0
750ca, + 50 ca, — 800 ca, — (1.443 ¢4, )(1200) = 0
700 ca, — 700 ca, — (0.999 c4,)(900) = 0

Simplification gives

8.872ca4, —c4, =75
4dca, —8.673ca, +ca, =0
15¢ca4, —50.632¢c4, +ca, =0
Cas —2.284¢c4, =0
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The above equations are written in matriz notation' as
8.872 0 -1 0 ca, 7.5
4 —8.673 0 1 ca, | | O
0 15 —50.632 1 cas | 0
0 0 1 —2.284 CA, 0
Therefore, the solution is
ca, (8872 0 -1 0o 17'[75
CA, _ 4 —8.673 0 1 0
CAs - 0 15 —50.632 1 0
CA, | 0 0 1 —2.284 0
[ 0.115 —0.004 —0.002 -0.003 7.5
_ 0.054 -0.119 -0.002 -0.053 0
- 0.016 -0.036 —-0.021 —-0.025 0
| 0.007 -0.016 -—0.009 -0.449 0

The multiplication gives the concentrations in each reactor as

ca 0.859
ca, | _ | 0.402
cay | T | 0120
ca, 0.053

6.3 CONSERVATION OF ENERGY

The conservation statement for total energy under steady conditions takes the form
Rate o.f _ Rate of " Rate of energy \ _ 4 (6.3-1)
energy in energy out generation

The first law of thermodynamics states that total energy can neither be created

nor destroyed. Therefore, rate of generation term in Eq. (6.3-1) equals zero.

Energy may enter or leave the system by two means: (i) by inlet and/or out-
let streams, (i) by exchange of energy between the system and its surroundings
through the boundaries of the system in the form of heat and work.

For a system with a single inlet and a single outlet stream as shown in Figure
6.2, Eq. (6.3-1) can be expressed as

(Ein + Qine + W) - Eout =0 (63—2)
where the interphase heat transfer rate, Q.mt, is expressed as

Qine = An(h) (AT),, (6.3-3)

!'Matrix operations are given in Section A.9 in Appendix A.
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in which (AT),, is the characteristic temperature difference. Note that Q'im is
considered positive when energy is added to the system. In a similar way, W is
also considered positive when work is done on the system.

o
T

E, > SYSTEM —— > E

out

Figure 6.2 Steady-state flow system with fixed boundaries interchanging energy
in the form of heat and work with the surroundings.

As stated in Section 2.4.2, the rate of energy entering or leaving the system, E,
is expressed as

E=Em (6.3-4)
Therefore, Eq. (6.3-2) becomes

(Et)in — (E™)our + Qine + W =0 (6.3-5)

To determine the total energy per unit mass, E, consider an astronaut on the space
shuttle Atlantis. When the astronaut looks at the earth, (s)he sees that the earth
has an external kinetic energy due to its rotation and its motion around the sun.
The earth also has an internal kinetic energy as a result of all the objects, i.e.,
people, cars, planes, etc., moving on its surface which the astronaut cannot see.
A physical object is usually composed of smaller objects, each of which can have
a variety of internal and external energies. The sum of the internal and external
energies of the smaller objects is usually apparent as internal energy of the larger
objects.

The above discussion indicates that the total energy of any system is expressed
as the sum of its internal and external energies. Kinetic and potential energies
constitute the external energy, while the energy associated with the translational,
rotational, and vibrational motion of molecules and atoms is considered as the
internal energy. Therefore, total energy per unit mass can be expressed as

E=U+Ex+Ep (6.3-6)

where U, Ex and Ep represent internal, kinetic and potential energies per unit
mass, respectively. Substitution of Eq. (6.3-6) into Eq. (6.3-5) gives

ot Qe+ W =0 (63-7)

ou

[(U+EK +Ep) r‘n]m - [(0+EK +Ep) m]
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The rate of work done on the system by the surroundings is given by

W= W, + (PVi)in—~(PVM)ou (6.3-8)
S~ ~ ~ s
Shaft work Flow work

In Figure 6.2, when the stream enters the system, work is done on the system by
the surroundings. When the stream leaves the system, however, work is done by
the system on the surroundings. Note that the boundaries of the system are fixed
in the case of a steady-state flow system. Therefore, work associated with volume
change is not included in Eq. (6.3-8).

Substitution of Eq. (6.3-8) into Eq. (6.3-7) and the use of the definition of
enthalpy, i.e., H=U+PV, gives

m

[(1-} + Ex + Ep) m] - [(H +Ex + Ep) m] A QW =0| (639

which is known as the steady-state energy equation.
Kinetic and potential energy terms in Eq. (6.3-9) are expressed in the form

Bx = %v2 (6.3-10)
and R
Ep = gh (63—11)

where ¢ is the acceleration of gravity and h is the elevation with respect to a
reference plane.

Enthalpy, on the other hand, depends on temperature and pressure. Change in
enthalpy is expressed by

dH = CpdT + V(1 - BT)dP (6.3-12)

where 3 is the coefficient of volume exzpansion and is defined by
1 (8V 1 ap)
=== === = 6.3-13
g 14 <6T>P p <3T P ( )

8= 0 for an incompressible fluid
~ 1 1/T for an ideal gas

Note that
(6.3-14)

When the changes in the kinetic and potential energies between the inlet and
outlet of the system are negligible, Eq. (6.3-9) reduces to

(H 1)in — (H 1) out + Qine + Wi = 0 (6.3-15)

In terms of molar quantities, Egs. (6.3-9) and (6.3-15) are written as

(8 + B+ Bp)i| —[(H+Ex+Ep)i] +Quu+W,=0| (6316)

m
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and

(H 2)in — (H?)out + Qine + W =0 (6.3-17)

6.3.1 Energy Equation Without Chemical Reaction

In the case of no chemical reaction, Egs. (6.3-9) and (6.3-16) are used to determine
energy interactions. If kinetic and potential energy changes are negligible, then
these equations reduce to Egs. (6.3-15) and (6.3-17), respectively. The use of the
energy equation requires the enthalpy change to be known or calculated. For some
substances, such as steam and ammonia, enthalpy values are either tabulated or
given in the form of a graph as a function of temperature and pressure. In that case
enthalpy changes can be determined easily. If enthalpy values are not tabulated,
then the determination of enthalpy depending on the values of temperature and
pressure in a given process are given below.

6.3.1.1 Constant pressure and no phase change

Since dP = 0, integration of Eq. (6.3-12) gives

T
A= CpdT (6.3-18)
Trc[

in which H is taken as zero at Tyos. Substitution of Eq. (6.3-18) into Eq. (6.3-15)
gives

T.‘,", N Tnut ~ . .

Min ( Cp dT) — Mout (/ Cp dT) 4+ Qine + W5 =0 (6.3-19)
T,.cf Trc[

If Cp is independent of temperature, Eq. (6.3-19) reduces to

minéP (Tm - ref) - moutéP(Tont - Tref) + Qint + Ws =0 (63—20)

Example 6.3 It is required to cool a gas composed of 75 mole % N3, 15% CO, and
10% O from 800°C to 350°C. Determine the cooling duty of the heat exchanger
if the heat capacity ezpressions are in the form

Cp(J/mol.K)=a+bT+cT?+dT® T [=]K

where the coefficients a, b, ¢ and d are given by

Species a bx 102 ¢x10° dx10°
Ny 28.882 —0.1570 0.8075 —2.8706
0O, 25.460 1.5192 —0.7150 1.3108

CO2 21.489 5.9768 —3.4987 7.4643
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Solution
Assumptions

1. Ideal gas behavior.

2. Changes in kinetic and potential energies are negligible.

3. Pressure drop in the heat exchanger is negligible.
Analysis
System: Gas stream in the heat exchanger
Since Niny = 0 and there is no chemical reaction, Eq. (6.2-3) reduces to

Nin = Nout = N (1)

Therefore, Eq. (6.3-19) becomes

R Toue - Tin -
Qint :7’1-( deT— deT)

T,.c/ Tre[
Toul -
-7 ( Cp dT) (2)
Tin
or,
- Tont -
Qint = CpdT (3)
Ti

where Qint = Qint /1, Tin = 1073K, and Tpyy = 623K.
The molar heat capacity of the gas stream, Cp, can be calculated by multiplying

the mole fraction of each component by the respective heat capacity and adding
them together, i.e.,

Cp = izi (a; + b:T + ¢;T? + d;T?)
= ;431 +0.931 x 10727 4 0.009 x 107572 — 0.902 x 107°7%  (4)
Substitution of Eq. (4) into Eq. (3) and integration gives
Qin, = — 15,662 /mol

The minus sign indicates that heat must be removed from the gas stream.
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6.3.1.2 Constant pressure with phase change

When we start heating a substance at constant pressure, a typical variation in
temperature as a function of time is given in Figure 6.3.

T
P = const.

- phase
Tref °-Pp

t

Figure 6.3 Temperature-time relationship as the substance transforms from the
~v—phase to c—phase.

Let T;.; be the temperature at which phase change from the y—phase to the
o—phase, or vice versa, takes place. If we choose the y—phase enthalpy as zero at
the reference temperature, then enthalpies of the ¢— and y—phases at any given
temperature 7' are given as

T
/ (Cp)y dT o — phase
~ Tre
A= ! (6.3-21)
. Trer
—A- / (Cp)ydT ~ — phase
T

where A = H, — 192, at the reference temperature.

Example 6.4 One way of cooling a can of coke on a hot summer day is to wrap
a piece of wet cloth around the can and expose it to a gentle breeze. Calculate the
steady-state temperature of the can if the air temperature is 35 °C.

Solution
Assumptions
1. Steady-state conditions prevail.

2. Ideal gas behavior.
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Analysis

System: Wet cloth and the coke can

The inventory rate equation for energy becomes
Rate of energy in = Rate of energy out (1)

Let the steady-state temperature of the cloth and that of coke be T,,. The rate of
energy entering the system is given by

Rate of energy in = Ag(h)(Too — Tw) (2)

in which Ay and T, represent the heat transfer area and air temperature, respec-
tively. On the other hand, the rate of energy leaving the system is expressed in the
form

Rate of energy out = ny P\A +(Cp)a(Too — Tw)] (3)
where 1 g represents the rate of moles of water, i.e., species A, evaporated and is
gen by

g = Ap(ke)(ca, — cal) (4)
in which Ay represents the mass transfer area. Substitution of Egs. (2), (3) and
(4) into Eq. (1) and using

An = Aum
CA, X 0

S\A > (C'P)A(Too —Tw)

gives
_ _ By (k6>
The ratio (kc)/(h) can be estimated by the use of the Chilton-Colburn analogy, i.e.,
JH = Jm, as
Stw _ (Se\* (k) _ 1 (Pr)\¥ ©)
Sty \Pr (hy ~ pCp \Sec
The use of Eq. (6) in Eq. (5) yields
ca,ha [Pr\?/3
Too — Ty = _AALﬁ_ (_r) (7
(pCp)p \Sc/p

where the properties p, Cp, Pr and Sc belong to air, species B. The concentration
of species A at the interface, ca,, is given by

ca, = Pi (8)
Y RT,
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It should be remembered that the quantities c4,, and A A must be evaluated at T,
whereas pg, Cp,, Prp and Scg must be evaluated at Ty = (T, + Too)/2. Since
T, is unknown, a trial-and-error procedure will be used in order to determine T,
as follows:

Step 1: Assume Ty, = 15°C
Step 2: Determine the physical properties:

o [ Ps** =0.01703 bar
For water at 15°C (288K) : {;\A — 2466 x 18 = 44,388 kJ/ kmol

The saturation concentration is
sat
Py

"4 = R,
0.01703

- =711 x 1074k 3
(8.314 x 10-2)(15 + 273) 7.11 x 10~ kmol/ m

The film temperature is Ty = (35 + 15)/2 = 25°C.
p = 1.1845 kg/ m?
v=1554 x 1076m?/s
Cp =1.005kJ/ kg. K
Pr=0.712

The diffusion coefficient of water in air is

For air at 25°C (298K) :

298

3/2
s - -5, 2
313) 268 x107°m*/s

Dap = (2.88 x 1079) (
The Schmidt number is
v
" Das
_ 15.54 x 10-6
© 2.68 x 10-5

Sc

=0.58

Step 3: Substitute the values into Eq. (7) and check whether the right and left
sides are equal to each other:

Too — T = 35— 15 =20
cata (Pr)*? (7.1 x 107)(44,388) (0‘712 A
(pCr)s \S¢)p —  (L1845)(1.005) \ 058/ ~

Since the left- and right-hand sides of Eq. (7) are quite different from each other,
another value of T, should be assumed.
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Assume Ty, = 11°C

. [ Pt = 0.01308 bar
For water at 11°C (284K) : { Sp = 2475.4 x 18 = 44, 557kJ/ kmol

The saturation concentration is

P;;a.t
‘4w = RT,

0.01308

= 5.54 x 10™% kmol/ m®
B3 x 10-7) (115 273) ~ >4 X 107 kmol/m

The film temperature is Ty = (35+ 11)/2 = 23°C.

p = 1.1926kg/ m®
v=1536 x 107%m?/s
Cp =1.005kJ/ kg. K
Pr=0.713

For air at 23°C (296 K) :

The diffusion coefficient of water in air is

206\ %/2
Dap = (2.88 x 107%) (3—15) =265x10"5m?/s
The Schmidt number is
v
Sc =
Dap
15.36 x 10~
T 265x10-5 0.58

The left- and right-hand sides of Eq. (7) now become

ca,ia (3)2/3_ (5.54 x 10~%)(44,557) [0.713 2/3_23 o
(pCp)p \Sc/p  (1.1926)(1.005) 0.58 e

Therefore, the steady-state temperature is 11°C.

Comment: Whenever a gas flows over a liquid, the temperature of the liquid
decreases as a result of evaporation. This process is known as evaporative cooling.
The resulting steady-state temperature, on the other hand, is called the wet-bulb
temperature.
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6.3.1.3 Variable pressure and no phase change

Enthalpy of an ideal gas is dependent only on temperature and is expressed by Eq.
(6.3-18). Therefore, in problems involving ideal gases, variation in pressure has no
effect on the enthalpy change. In the case of incompressible fluids, Eq. (6.3-12)
reduces to r

H= CpdT + V(P = Prj) (6.3-22)

Trc/

in which the enthalpy is taken zero at the reference temperature and pressure. At
low and moderate pressures, the second term on the right-side of Eq. (6.3-22) is
usually considered negligible.

Example 6.5 A certain process requires a steady supply of compressed air at
600kPa and 50°C at the rate of 0.2kg/s. For this purpose, air at ambient con-
ditions of 100kPa and 20°C is first compressed to 600kPa in an adiabatic com-
pressor, then it is fed to a heat exchanger where it is cooled to 50°C at constant
pressure. As cooling medium, water is used and it enters the heat exchanger at
15°C and leaves at 40°C. Determine the mass flow rate of water if the rate of
work done on the compressor is 44kJ/s.

r System boundary

: Compressor Heat Exchanger :
100 kPa : : 600 kPa
20°C : : 50°C
H,0 :
W, =44 kifs T, =40°C  T;=15°C
Solution
Assumptions

1. Steady-state conditions prevail.
Changes in kinetic and potential energies are negligible.

There is no heat loss from the heat exchanger to the surroundings.

Ll

Heat capacities of air and water remain essentially constant at the values of
1kJ/ kg. K and 4.178kJ/ kg. K, respectively.
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Analysis
System: Compressor and heat exchanger
Conservation of total mass, Eq. (6.2-1), reduces to
Ty = 1he = 1h (1)
Therefore, Eq. (6.3-15) becomes
Mair(H1 — Ha)air — Qint + W, =0 (2)

in which the enthalpy change of the air and the interphase heat transfer rate are
given by

(Hl - ﬁ?)air = (C'P)air(Tl - T?)air (3)
Qint = (MCP)1,0(Tout — Tin) 1,0 (4)

Substitution of Egs. (3) and (4) into Eq. (2) and rearrangement gives

(ThC'P)air(Tl - T2)air + Ws
(CP)H,0(Tout — Tin)Hy0

(02)(1)(20 — 50) + 44
= Taim@o 1)~ S04ke/s (©)

MH,0 =

Comment: Defining of a system plays a crucial role in the solution of the problem.
Note that there is no need to find out the temperature and pressure at the exit of the
compressor. If, however, one chooses the compressor and heat exchanger as two
separate systems, then the pressure and temperature at the exit of the compressor
must be calculated.

6.3.2 Energy Equation With Chemical Reaction

6.3.2.1 Thermochemistry

Thermochemistry deals with the changes of energy in chemical reactions. The
difference between the enthalpy of one mole of a pure compound and the total
enthalpy of the elements from which it is composed is called the heat of formation,
AH ¢, of the compound. The standard heat of formation, AITI‘;, is the heat of
formation when both the compound and its elements are at standard conditions as
shown in Figure 6.4. The superscript © implies the standard state. Since enthalpy
is a state function, it is immaterial whether or not the reaction could take place at
standard conditions.
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Elements in their ~ 1 mole of compound in its
standard states AH 'f standard state
(T, 1 atm) (T, 1 atm)

Figure 6.4 Calculation of the standard heat of formation, AI:IJ‘?

The standard state is usually taken as the stable form of the element or com-
pound at the temperature of interest, T', and under 1atm (1.013 bar). Therefore,
the word standard refers not to any particular temperature, but to unit pressure
of 1atm. The elements in their standard states are taken as the reference state
and are assigned an enthalpy of zero. The standard heat of formation of many
compounds are usually tabulated at 25°C and can readily be found in the Perry’s
Chemical Engineers’ Handbook (1997) and thermodynamics textbooks. For exam-
ple, the standard heat of formation of ethyl benzene, CgHjg, in the gaseous state is
29,790 J/ mol at 298 K. Consider the formation of ethyl benzene from its elements
by the reaction

8C(s) + 5Ha(g) = CsHio(g)

The standard heat of formation is given by
(Aot = Heyn,, — 8HE — 5 HE, = 29,790 J/ mol
Since HZ = HY, =0, it follows that
(AH)cuit0 = e,y = 29,790/ mol

It is possible to generalize this result in the form

(afg) = Az (6.3-23)

. 1
T

The standard heat of formation of a substance is just the standard heat of reaction
in which one mole of it is formed from elementary species. Therefore, the standard
heat of reaction, AH?,,, is the difference between the total enthalpy of the pure
product mixture and that of the pure reactant mixture at standard conditions as
shown in Figure 6.5.

Products in their
rxn standard states

Reactans in their
standard states

(T, | atm) (T, | atm)

Figure 6.5 Calculation of the standard heat of reaction, AHZ,,,.
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The standard heat of reaction can be calculated as

AH?,, = oHy (6.3-24)

Substitution of Eq. (6.3-23) into Eq. (6.3-24) gives

AHZ,, =) ai(AHY): (6.3-25)

Note that the standard heat of formation of an element is zero.
If heat is evolved in the reaction, the reaction is called exothermic. If heat is
absorbed, the reaction is called endothermic. Therefore,

AH?

rTn

{ >0 for an endothermic reaction (6.3-26)

< 0 for an exothermic reaction

If the standard heat of reaction is known at 298 K, then its value at any other
temperature can be found as follows: The variation of the standard heat of reaction
as a function of temperature under constant pressure is given by

_ ( OAH?,,

dAH? ) dT (6.3-27)
or P=1

rem T

The term (AH?,,/0T)p can be expressed as
OAH?, .\ 8 o) . [OH?
(%57), = 7 (Som) =5 (5F),
=Y aCp =ACH (6.3-28)

Substitution of Eq. (6.3-28) into Eq. (6.3-27) and integration gives

T
AH? (T)=AHZ (T =298K) + ACS dT (6.3-29)
298

6.3.2.2 Energy balance around a continuous stirred tank reactor

An energy balance in a continuous stirred tank reactor (CSTR) with the following
assumptions is a good example to the energy balance with chemical reaction:

1. Steady-state conditions prevail.
2. Stirring does not contribute much energy to the system, i.e., W, ~ 0.

3. Volume of the system is constant, i.e., inlet and outlet volumetric flow rates
are equal.
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4. As a result of perfect mixing, temperature and concentration of the system
are uniform, i.e., Cour = Coys aNd Tyt = Tiys.

5. Changes in kinetic and potential energies are negligible.

Since chemical reaction is involved in this case, it is more appropriate to work
on molar basis. Therefore, Eq. (6.3-17) simplifies to

(H 2)in = (H )out + Qine = 0 (6.3-30)

Any molar quantity of a mixture, ¥, can be expressed in terms of partial molar
quantities?, 1/; as

b= = (6.3-31)
Multiplication of Eq. (6.3-31) by molar flow rate, n, gives
=Y (6.3-32)

Therefore, Eq. (6.3-30) is expressed as

[Z 7 Hi (T, - [ 7 Hy(T)
On the other hand, macroscopic mole balance for species i, Eq. (6.1-6), is

(ﬁi)in - (ﬁi)aut + ‘/sys Zaij Ty = 0 (63—34)

J

+ Qint =0 (6.3-33)

out

Multiplication of Eq. (6.3-34) by H;(T) and summation over all species gives

lz 7 H;(T) [Z nH
where the heat of reaction is defined by

Hygnj = Z o H, (6.3-36)

- Vsys ZT] (_AHrIn,j) = O (6.3'35)
J

out

Subtraction of Eq. (6.3-35) from Eq. (6.3-33) yields

{an [Hl(ﬂn) - FIZ(T)] } + Qint + Vsys ZTJ' (—AHra:n,j) =0 (63'37)

in

2Partial molar quantities, unlike molar quantities of pure substances, depend also on the
composition of the mixture.
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Dividing Eq. (6.3-37) by the volumetric flow rate, @, gives

{Zci [E,,(Tm) - ﬁ,(T)]} + Q:Qnt + TZT]’ (—AHrg;n’j) =0 (63—38)

i

where T is the residence time defined by

‘/sys
= 6.3-39
r=-2 (6.3-39)
Partial molar heat capacity of species i, Cp,, is related to the partial molar
enthalpy as ~
= 0H;
= | == 6.3-40
o= (57), (6340
If Cp, is independent of temperature, then integration of Eq. (6.3-40) gives
Hi(T:n) — Hi(T) = Cp,(Tin — T) (6.3-41)
Substitution of Eqs. (6.3-40) and (6.3-41) into Eq. (6.3-38) yields
C Qint _ 42
(CP)in(Tin = T) + =5~ + T 15 (~AHpgn ;) =0 (6.3-42)
j
where ~
(CpP)in = Z(Ci)inCPi (6.3-43)

i
It should be noted that the reaction rate expression in Eq. (6.3-42) contains a
reaction rate constant, k, expressed in the form

k=Ae &/RT (6.3-44)

Therefore, Eq. (6.3-42) is highly nonlinear in temperature.

Once the feed composition, stoichiometry and order of the chemical reaction,
heat of reaction, and reaction rate constant are known, conservation statements for
chemical species and energy contain five variables, namely, inlet temperature, T;,,
extent of reaction, £, reactor temperature, T', residence time, 7, and interphase heat
transfer rate, Q;ne. Therefore, three variables must be known while the remaining
two can be calculated from the conservation of chemical species and energy. Among
these variables T;, is the variable associated with the feed, £ and T are the variables
associated with the product, 7 and Qim are the variables of design.

Example 6.6 A liquid feed to a jacketed CSTR consists of 2000mol/ m® A and
2400 mol/ m3 B. A second-order irreversible reaction takes place as

A+B—-2C
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The rate of reaction is given by
r=kcacg

where the reaction rate constant at 298K is k = 8.4 x 107 m3/ mol. min, and the
activation energy ts 50,000J/ mol. The reactor operates isothermally at 65°C.
The molar heat capacity at constant pressure and the standard heat of formation
of species A, B, and C at 298K are given as follows:

. o AH®
Species (1 ggl. K)  (kJ/ Ir{ol)
A 175 ~60
B 130 —75
c 110 — 90

a) Calculate the residence time required to obtain 80% conversion of species A.
b) What should be the volume of the reactor if species C are to be produced at a
rate of 820 mol/ min?

c) If the feed enters the reactor at a temperature of 25°C, determine the rate of
heat that must be removed from the reactor to maintain isothermal operation.

d) If the heat transfer coefficient is 1050 W/ m?. K and the average cooling fluid
temperature is 15°C, estimate the required heat transfer area

Solution
Assumptions

1. As a result of perfect mizing, concentrations of the species within the reactor
are uniform, i.e., (¢;)out = (€i)sys-

2. Solution nonidealities are negligible, i.e., Cp, = épl,; AH,., = AH?

TIN

3. There is no heat loss from the reactor.
Analysis

System: Contents of the reactor

a) Since the reactor volume is constant, the inlet and outlet volumetric flow rates
are the same and equal to Q. Therefore, the inventory rate egquation for conserva-
tion of species A, Eq. (6.1-7), becomes

Q (CA)in - QcAﬂya - (k cAauucBnya)V?yS = 0 (1)
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where ca,,, and cp,,, Tepresent the molar concentrations of species A and B in
the reactor, respectively. Dropping the subscript “sys” and dividing Eq. (1) by the
volumetric flow rate, Q, gives

_ (ca)in —ca
- kCACB (2)

Using Eq. (5.8-17), the extent of reaction can be calculated as

(CA)in
(= a)
(2000)(0.8)

= “——— = 1600mol/ m® (3)

Therefore, the concentrations of species A, B, and C in the reactor are

£ = Xa

ca = (ca)in + @4 & = 2000 — 1600 = 400 mol/ m> (4)
¢ = (¢B)in + ap € = 2400 — 1600 = 800 mol/ m® (5)
ce = (¢¢)in + ac € = (2)(1600) = 3200 mol/ m® (6)

If ky and ko represent the rate constants at temperatures of Ty and T,, respectively,

then £ /1 .
kz = ky exp [— R (Fz - ﬁ)] (7)

Therefore, the reaction rate constant at 65°C (338K) is

50,000 ( 1 1
k=84 -6 = - =
8.4x 10 exp [ 8.314 (338 298)]

= 9.15 x 10~° m*®/ mol. min (8)
Substitution of numerical values into Eq. (2) gives

L 2000 — 400
"~ (9.15 x 10-5) (400)(800)

= 54.6 min

b) The reactor volume, V, is given by
V=10

The volumetric flow rate can be determined from the production rate of species C,
i.e.,

820

= 82 —_—
ccQ@=80 = Q=455

= 0.256 m3/ min
Hence, the reactor volume is

V = (54.6)(0.256) = 14 m3
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c) For this problem, Eq. (6.3-42) simplifies to
Qint = — Q(CP)in(Tin — T) = V (kcacp) (— AHZ,,) 9)
The standard heat of reaction at 298K is
AH?, (298) = Za, AH$);
= (— 1)(—60) + (—1)(—75) + (2)(—90) = — 45kJ/ mol

The standard heat of reaction at 338K is given by Eq. (6.3-29)

338
AH®, (338) = AH®, (298K) + ACS dT
298

where
ACS = Za,-é,”;i
= (—1— 1)(175) + (— 1)(130) + (2)(110) = —85J/mol. K
Hence
AHZ. (338) = — 45,000 + (—85)(338 — 298) = — 48,400 J/ mol
On the other hand, the use of Eq. (6.3-43) gives
(CPin = Z(cz)mop
= (2000)(175) + (2400)(130) = 662,000 J/ m®. K

Therefore, substitution of the numerical values into Eq. (9) yields

Qint = — (0.256)(662, 000)(25 — 65)
— (14) [(9.15 x 107°)(400)(800)] (48,400) = — 13 x 10° J/ min
The minus sign indicates that the system, i.e., reactor, loses energy to the sur-
roundings.

d) The application of Newton’s law of cooling gives

Qi'nt AH (h)( reactor — coolan!)

or,
13 x 108

(1050)(65 — 15)(60) — -1 m’

Ay =
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NOTATION

A
Ay
Apm
Cp
C
Dasp

Iy b b
AN

P XSS NATHII OO VI IFITIR O

&8

R

area, m?

heat transfer area, m?

mass transfer area, m?

heat capacity at constant pressure, kJ/kg. K
concentration, kmol/ m3
diffusion coefficient for system A-B, m?/s
total energy, J

kinetic energy, J

potential energy, J

rate of energy, J/s

activation energy, J/mol
acceleration of gravity, m/s?
enthalpy, J

elevation, m

reaction rate constant

mass transfer coefficient, m/s
mass flow rate, kg/s
molecular weight, kg/kmol
molar flow rate, kmol/s
pressure, Pa

heat transfer rate, W
volumetric flow rate, m3/s
rate of a chemical reaction, kmol/ m?.s
gas constant, J/ mol. K
temperature, °C or K

time, s

internal energy, J

volume, m3

velocity, m/s

rate of work, W

rate of shaft work, W
fractional conversion

mole fraction of species %

stoichiometric coefficient of species 4

stoichiometric coefficient of i** species in the j** reaction
coefficient of volume expansion, Eq. (6.3-13), K~!
difference

heat of formation, J/ mol

heat of reaction, J

latent heat of vaporization, J

viscosity, kg/ m.s
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v kinematic viscosity, m?/s
3 intensive extent of a reaction, kmol/ m3
p density, kg/ m3
T residence time, s
Overlines
~ per mole
) per unit mass
— partial molar
Bracket
{a) average value of a
Superscripts
o standard state
sat saturation
Subscripts
AB species in binary systems
ch characteristic
f film
1 species in multicomponent systems
m inlet
int interphase
7 reaction number
out out
ref reference
sys system

Dimensionless Numbers

Pr Prandtl number
Sc Schmidt number
Sty Stanton number for heat transfer
Sty Stanton number for mass transfer
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PROBLEMS

6.1 2520 kg/ h of oil is to be cooled from 180 °C to 110 °C in a countercurrent heat
exchanger as shown in the figure below. Calculate the flow rate of water passing
through the heat exchanger for the following cases:

a) The cooling water, which enters the heat exchanger at 15°C, is mixed with
water at 30°C at the exit of the heat exchanger to obtain 2415kg/h of process
water at 60 °C to be used in another location of the plant.
b) The cooling water, which enters the heat exchanger at 30°C, is mixed with
water at 30°C at the exit of the heat exchanger to obtain 2415kg/h of process
water at 60 °C to be used in another location of the plant.

0Oil
l H,0 at 30°C
H,0 :l:
e Heat Exchanger 2415 kg/h H,0
60°C
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Assume that oil and water have constant heat capacities of 2.3 and 4.2kJ/kg. K,
respectively.

(Answer: a) 1610kg/ h)

6.2 The following parallel reactions take place in an isothermal, constant-volume
CSTR:
A— 2B r=kica k; =13s"!

3A - C r = kocy k2=0.4s‘1
Pure A is fed to the reactor at a concentration of 350 mol/ m?.

a) Determine the residence time required to achieve 85% conversion of species A
under steady conditions.
b) Determine the concentrations of species B and C.

(Answer: a) T =2.27s b) cg = 309.9 mol/ m3, cc = 47.7mol/ m?)

6.3 Species A undergoes the following consecutive first-order reactions in the
liquid phase in an isothermal, constant-volume CSTR:

Al pH

where k; = 1.5s7! and ky = 0.8s7!. If the feed to the reactor consists of pure A,
determine the residence time required to maximize the concentration of species B
under steady conditions.

(Answer: 0.913s)

6.4 An isomerization reaction

A=B

takes place in a constant-volume CSTR. The feed to the reactor consists of pure
A. The rate of the reaction is given by

T = k]CA - kgCB

For the maximum conversion of species A at a given residence time, determine the
reactor temperature.

<Answer: T &/R )

~ In {427 [(E2/61) - 1]}

6.5 Two electronic components (k = 190 W/ m. K) are to be cooled by passing
0.2m3/ s of air at 25°C between them. To enhance the rate of heat loss, it is pro-
posed to install equally spaced rectangular aluminum plates between the electronic
components as shown in Figure 6.6.
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X ¥,

B }

12em o ! B=025mm

f

&
’},o
/\‘\ }
i L]

|-———L=2cm ————"l

Figure 6.6 Schematic diagram for Problem 6.5.

The rate of heat loss from the electronic component at the left, i.e., z = 0, must be
500 W and the temperature should not exceed 80 °C; while the other component
must dissipate 2kW with a maximum allowable temperature of 90 °C. Determine
the number of the plates that must be placed per cm between the electronic com-
ponents (Use the temperature distribution given in Problem 4.6).

(Answer: One possible solution is 10 fins per cm)

6.6 As shown in Example 6.4, the wet-bulb temperature can be calculated from

: 2/3
T - T, = SAvia (—Pf) (1)
(pCp)p \Sc/ g

by a trial-and-error procedure because both ¢4, and X 4 must be evaluated at T,
whereas pg, Cp,, Prp and Scp must be evaluated at the film temperature. In
engineering applications, an approximate equation used to estimate the wet-bulb
temperature is given by

T2 —TooTw+¢=0 (2)
where N
Pi* TooMara (Pr\?/3
~ T PoMsCr (§Z) B ®
Develop Eq. (2) from Eq. (1) and indicate the assumptions involved in the deriva-
tion.

6.7 An exothermic, first-order, irreversible reaction

A— B
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takes place in a constant-volume, jacketed CSTR.

a) Show that the conservation equations for chemical species A and energy take
the form

Q(ca)in —cal —kcaV =0 (1)
(Q(CP)ip + Au(h)] (Tin = T) + Vkca (= AHrzn) =0 (2)

where T, is a weighted mean temperature defined by

7 — 2CP)inTin+ A(h)T.
" Q(CP)in + Au(h)

in which (h) is the average heat transfer coefficient, T is the cooling fluid temper-
ature, Ay is the heat transfer area.

b) Show that the elimination of ¢4 between Egs. (1) and (2) leads to

k Q V(CA)in

{Q (CP)in + AH<h'>] (Tm - T) + Q+kV

(-AHppp) =0 (4)

c) In terms of the following dimensionless quantities

£ 1 1
b=z (ﬁ - T)

Ay = Ae” E/RTm

_ [Q(CP)in + AW T

Q(CA)in(_AHrzn)

=224
1 RTn2x
5y EVAnL

show that Eq. (4) takes the form

6 __ 6 =
= 50-59) ®)

d) To determine the roots of Eq. (5) for given values of v and S, it is more
convenient to rearrange Eq. (5) in the form

F(#)=In [meg)] (6)

Examine the behavior of the function in Eq. (6) and conclude that

€

e At least one steady-state solution exists when 5 > 0.25,
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e Two steady-state solutions exist when 8 < 0.25 and ¥ = Y51 < Ymax ©7)
Ymin <Y = Ymax>

e Three steady-state solutions exist when 8 < 0.25 and v,;n < ¥ < Ymax:

where v,;, and v,,,, are defined by

= (D [ ()]
S Y )

The existence of more than one steady-state solution is referred to as multiple
steady-states. For more detailed information on this problem see Kauschus et al.
(1978).



Chapter 7

Unsteady-State Macroscopic
Balances

In this chapter we will consider unsteady-state transfer processes between the
phases by assuming no gradients within each phase. Since the dependent vari-
ables, such as temperature and concentration, are considered uniform within a
given phase, the resulting macroscopic balances are ordinary differential equations
in time.

The basic steps in the development of unsteady macroscopic balances are sim-
ilar to those for steady-state balances given in Chapter 6. These can be briefly
summarized as follows:

e Define your system.

If possible, draw a simple sketch.

List the assumptions.

Write down the inventory rate equation for each of the basic concepts relevant
to the problem at hand.

o Use engineering correlations to evaluate the transfer coefficients.

Write down the initial conditions: The number of initial conditions must be
equal to the sum of the order of differential equations written for the system.

Solve the ordinary differential equations.

181



182 CHAPTER 7. UNSTEADY-STATE MACROSCOPIC BALANCES

7.1 APPROXIMATIONS USED IN
MODELLING OF UNSTEADY-STATE
PROCESSES

7.1.1 DPseudo-Steady-State Approximation

As stated in Chapter 1, the general inventory rate equation can be expressed in
the form

Rate of Rate of Rate of Rate of
. - + . = . (7.1-1)
iput output generation accumulation
Remember that the molecular and convective fluxes constitute the input and output
terms. Among the terms appearing on the left side of Eq. (7.1-1), molecular

transport is the slowest process. Therefore, in a given unsteady-state process, the
term on the right side of Eq. (7.1-1) may be considered negligible if

Rate of Rate of
( molecular transport ) > ( accumulation ) (7.1-2)
or,
e Gradient of Difference in quantity
(Diffusivity) ( Quantity /Volume ) (Area) > Characteristic time (7.1-3)
Note that the “Gradient of Quantity/Volume” is expressed in the form
i . .
Gradient of Quantity/Volume = Difference in Quantity/Volume (7.1-4)

Characteristic length

On the other hand, volume and area are expressed in terms of characteristic length
as

Volume = (Characteristic length)? (7.1-5
Area = (Characteristic length)? (7.1-6

~— e

Substitution of Egs. (7.1-4)-(7.1-6) into Eq. (7.1-3) gives

(Diffusivity)(Characteristic time)
(Characteristic length)?2

>1 (7.1-7)

In engineering analysis, the neglect of the unsteady-state term is often referred
to as the pseudo-steady-state (or, quasi-steady-state) approximation. However, it
should be noted that the pseudo-steady-state approximation is only valid if the
constraint given by Eq. (7.1-7) is satisfied.
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Example 7.1 We are testing a 2cm thick insulating material. The density,
thermal conductivity, and heat capacity of the insulating material are 255kg/ m3,
0.07W/m. K, and 1300J/ kg. K, respectively. If our experiments take 10 min, is it
possible to assume pseudo-steady-state behavior?

Solution

For the pseudo-steady-state approzimation to be valid, Eq. (7.1-7) must be satisfied,
i.€e.,

The thermal diffusivity, c, of the insulating material is

k

& = ——

0.07
- _911x10" " m?
(255)(1300) 1107 m?/s

Hence,

2.11 x 10~7) (10)(60
"t;h:( 22(2)( ) 03241
2, (2% 10-2)

which indicates that we have an unsteady-state problem at hand.

7.1.2 No Variation of Dependent Variable Within the
Phase of Interest

In engineering analysis it is customary to neglect spatial variations in either tem-
perature or concentration within the solid. Although this approximation simplifies
the mathematical problem, it is only possible under certain circumstances as will
be shown in the following development.

Let us consider the transport of a quantity ¢ from the solid phase to the fluid
phase through a solid-fluid interface. Under steady conditions without generation,
the inventory rate equation, Eq. (1.1-1), for the interface takes the form

Rate of transport of ¢ from | [ Rate of transport of ¢ from (7.1-8)
the solid to the interface - the interface to the fluid )

Since the molecular flux of ¢ is dominant within the solid phase, Eq. (7.1-8) reduces
to

( Molecular flux of ¢ from > _ ( Flux of ¢ from > (7.1-9)

the solid to the interface the interface to the fluid
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or,
Transport Gradient of
property driving force /| _ ..
_ Transfer Difference in (7.1-10)
- coefficient Quantity /Volume Fluid )

The gradient of driving force is expressed in the form

Difference in driving force

Gradient of driving force = (7.1-11)

Characteristic length

On the other hand, “Difference in Quantity /Volume” can be expressed as
< Difference in ) _ (Transport property) ( Difference in ) (7.1-12)

Quantity /Volume Diffusivity driving force

Substitution of Egs. (7.1-11) and (7.1-12) to the left- and right-hand sides of Eq.
(7.1-10), respectively, gives

Characteristic Transfer Transport
B; length coefficient property
1=

( Transport ) Diffusivity
solid

(7.1-13)

property

fluid

in which Bi designates the Biot number defined by

Bi (Difference in driving force), ;.. 4
'= (Difference in driving force) 11,4 (7.1-14)

Therefore, the Biot numbers for heat and mass transfer are defined as

Biy = \MLen (7.1-15)
ksolia
R (kc>Lch
Biy = 4————— 7.1-16
(DAB)solid ( )

It is important to distinguish the difference between the Biot and the Nusselt
(or, the Sherwood) numbers. The transport properties in the Biot numbers, Egs.
(7.1-15) and (7.1-16), are referred to the solid, whereas the transport properties in
the Nusselt and the Sherwood numbers, Eqs. (3.4-11) and (3.4-12), are referred to
the fluid.

When the Biot number is small, one can conclude from Eq. (7.1-14) that

Difference in Difference in
( driving force ) < ( driving force ) (7.1-17)
solid fl‘u.id

Therefore, dependent variables may be considered uniform within the solid phase
only if Bi « 1.
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7.2 CONSERVATION OF CHEMICAL
SPECIES

The conservation statement for the mass of the i** chemical species is given by

< Rate of mass ) N ( Rate of mass ) < Rate of generation )

of 7 in of 7 out of mass 1

_ < Rate of accuml.llatlon ) (7.2-1)
of mass ¢

For a system with a single inlet and a single outlet stream as shown in Figure 7.1,
Eq. (7.2-1) can be expressed as

. . . d(mi)s s
(mi)'in - (mi)out + (mi)int + VsysMi ;ai]""j = Ty (72-2)
/ (M) ing
()i ——> SYSTEM > (M) g

Figure 7.1 Unsteady-state flow system exchanging mass with the surroundings.

The interphase mass transfer rate, (7;)in¢, is considered positive when mass is
added to the system and is expressed by

(14)ine = Amlke) (Aci) , Mi (7.2-3)

Substitution of Eq. (7.2-3) into Eq. (7.2-2) gives

a(m;)sys
(Q pi)in - (Qpi)out + AM(kC) (Aci)Ch M; + VsysMi Zaij i = ( dt) )
J

(7.2-4)
In terms of molar basis, Egs. (7.2-2) and (7.2-4) take the form

- . . d(n;)sys
(1)in — (Mi)out £ (Mi)ine + Vays Z QT = % (7.2-5)

2
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and

d(ni)sys

(Q¢i)in — (i) pu T Amlkc) (Aci) o + Voys Z Qi ==

J

(7.2-6)

7.3 CONSERVATION OF TOTAL MASS

Summation of Eq. (7.2-2) over all species gives the total mass balance in the form

dmgys

min - mout + mint = dt

(7.3-1)

Note that the term ), a;; M; is zero since mass is conserved. On the other hand,
summation of Eq. (7.2-5) over all species gives the total mole balance as

dngys
dt

hin - hout * hint + qus E a_] r; =
J

(7.3-2)

where

aj = Zaij (73—3)

The generation term in Eq. (7.3-2) is not zero because moles are not conserved.
This term vanishes only when @; = 0 for all values of j.

Example 7.2 An open cylindrical tank of height H and diameter D is initially
half full of a liquid. At time t = 0, the liquid is fed into the tank at a constant
volumetric flow rate of Qin, and at the same time it is allowed to drain out through
an orifice of diameter D, at the bottom of the tank. Express the variation of the
liguid height as a function of time.

Solution

Assumptions
1. Rate of evaporation from the liquid surface is negligible.
2. Liquid s incompressible.

3. Pressure distribution in the tank is hydrostatic.
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-
lel

Orifice of diameter D,

Analysis

System: Fluid in the tank
The inventory rate equation for total mass, Eq. (7.3-1), reduces to

P Qin — p(vo)Ap = i(‘thp) (1)

where (v,) is the average velocity through the orifice, i.e., the volumetric flow rate
divided by the cross-sectional area; A, and A are the cross-sectionel areas of orifice
and the tank, respectively. Since p and A are constant, Eq. (1) becomes

dh
in — (Vo)Ap = A —
In order to proceed further, (v,) must be related to h.

For flow in a pipe of uniform cross-sectional area A, the pressure drop across

an orifice is given by
C, 2|1AP
(v} = N 3)
Vi—gty »

where B is the ratio of the orifice diameter to the pipe diameter, |AP)| is the pres-
sure drop across the orifice, and C, is the orifice coefficient. The value of C,
s generally determined from experiments and given as a function of 3 and the
Reynolds number, Re,, defined by

DO(UO>P
7

For B < 0.25, the term /1 — BI is almost unity. On the other hand, when Re, >
20,000, ezperimental measurements show that C, ~ 0.61. Hence, Eq. (3) reduces

Re, = (4)
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to

() = 0.61 3'-%51 (5)

Since the pressure in the tank is hydrostatic, |AP| ~ pgh and Eq. (5) becomes

(vo) = 0.61y/2gh = 2.7V (6)

Substitution of Eq. (6) into Eq. (2) gives the governing differential equation for
the liquid height in the tank as

2.7 (%‘2) (- vR) = ‘;—}; (7)
where
Q= -2%2— (8)

Note that the system reaches steady-state when dh/dt = 0 at which point the liquid
height, hg, is given by
hy = Q? (9)

Now, it is worthwhile to investigate two cases:
Case (i) Liquid level in the tank increases

At t =0, the liquid level in the tank is H/2. Therefore, the liquid level increases,
i.e., dh/dt >0 in Eq. (7), if

02> H/2 (10)
Rearrangement of Eq. (7) gives
! 1 (AN [ dn
dt = — [ — 11
/0 2.7 (Ao) /1-1/29—\/;7: ( )
Integration of Eq. (11) yields
A H Q- JH/?
t=074( = =—-Vh+Qn | — Y2 12
(&)[ 2 “( Q-vh )] (12

Equations (9) and (10) indicate that hy > H/2. When hy > H, steady-state
condition can never be achieved in the tank. The time required to fill the tank, ty,

ty=0.74 (Ai)[ —g——\/ﬁ+an (%*_— ‘%)J (13)

If H/2 < hy < H, then the time, to, required for the level of the tank to reach
99% of the steady-state value is

too = 0.74 (Ai) [ —121 —v0.99Q + Qln (Qﬂ% mﬂ (14)
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Case (it) Liguid level in the tank decreases

The liguid level in the tank decreases, i.e., dh/dt <0 in Eq. (7), if
Q% < H/2 (15)

Fquation (12) is also valid for this case. Equations (9) and (15) imply that hy <
H/2. Since hs cannot be negative, this further implies that it is impossible to empty
the tank under these circumstances. The time required for the level of the tank to
reach 99% of the steady-state value is also given by Eq. (14).

The ratio h/H is plotted versus t/[0.74(A/A,)VH)] with Q/v/Has a parameter
in the figure below.
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Example 7.3 A liquid phase irreversible reaction
A— B

takes place in a CSTR of volume V. The reactor is initially empty. At t = 0,
a solution of species A at concentration ca, flows into the reactor at a constant
volumetric flow rate of Qin. No liquid leaves the reactor until the liquid volume
reaches a value of V. The rate of reaction is given by

r=kcy

If the reaction takes place under isothermal conditions, express the concentration
of species A within the reactor as a function of timne.
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Solution

Assumptions

1. Well mized system, i.e., the temperature and the concentration of the contents
of the reactor are uniform.

2. The density of the reaction mizture is constant.
Analysis

System: Contents of the reactor

The problem should be considered in three parts: the filling period, the unsteady
state period, and the steady-state period.

i) The filling period

During this period, there is no outlet stream from the reactor. Hence, the conser-
vation of total mass, Eq. (7.3-1), is given by

AMmgys
== Y3 1
P Qin dt ( )
Since Qin and p are constant, integration of Eq. (1) and the use of the initial
condition, mgy, =0 at t =0, gives

Mays = Qinpt (2)
Since Mgys = pViys, £q. (2) can also be expressed as
Vays = Qint (3)

From Eq. (3), the time required to fill the reactor, t*, is calculated as t* = Vp/Qin,
where Vr is the volume of the reactor.
The inventory rate equation based on the moles of species A, Eq. (7.2-6),

reduces to
dn A

e (4)

where Vyys, the volume of the reaction mizture, is dependent on time. The molar
concentration can be expressed in terms of the number of moles as

Qin CA, — k CAVsys =

A
Vous (5)

CA =

such that Eq. (4) can be rearranged in the form

A d t
_"_A;zf dt (6)
0

o Qinca, —kna
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Integration gives
SinCho (1 _ exp(—kt)) (7

Substitution of Eq. (7) into Eq. (5) and the use of Eq. (3) gives the concentration
as a function of time as

c
ca = ﬁ[l—exp(—kt)} 0<t<Vr/Qum (8)
The concentration c at the instant the tank is full, i.e., at t =t* = Vy/Qiy, s

» Qin ° kV;
cAzk—VCTA {l—exp (— Q::)] 9)

1) The unsteady-state period

Since the total volume of the reactor Vr is constant, then the inlet and outlet
volumetric flow rates are the same, i.e.,

Qin = Qour = @ (10)
The inventory rate equation on the moles of species A, Eq. (7.2-6), is

d(caVr)

Qca, —Qca—kcaVr= T (11)
Equation (11) can be rearranged in the form
1 dCA
slea, —ca(l+kr)] = —= (12)
where 7 1is the residence time defined by
Vr
T=—= 13
: (13)
Equation (12) is a separable equation and can be written in the form
CA t
T / dea = / dt (14)
e Ca, —ca(l+kT) L

A
Integration of Eq. (14) gives the concentration distribution as

_ca, R ca, T+ kr)(t —t*)
CA”1+kr+(CA_1+kr)e"p[ . (15)
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ii1) The steady-state period

The concentration in the tank reaches its steady-state value, c4,, as t — oco. In
this case, the exponential term in Eq. (15) vanishes and the result is

— CAO
T 14 kT

(16)

CA‘

Note that Eq. (16) can also be obtained from Eq. (12) by letting dca/dt =0. The
time required for the concentration to reach 99% of its steady-state value, too, is

foo = £+ :kT In {100 [1 - (1 ;::") [1- exp(——kr)]] } (17)

When kT < 1, i.e., a slow first-order reaction, Eq. (17) simplifies to

too —t* =467 (18)

Example 7.4 A sphere of naphthalene, 2cm in diameter, is suspended in air at
90°C. Estimate the time required for the diameter of the sphere to be reduced to
one-half its initial value if:

a) The air is stagnant,
b) The air is flowing past the naphthalene sphere with a velocity of 5m/s.

Solution
Physical properties

p% = 1145kg/ m3
For naphthalene (species A) at 90°C (363K) : { M4 = 128
P53t = 11.7mmHg

Diffusion coefficient of species A in air (species B):

363

3/2
209 — -6, 2
300) 8.25 x 107° m*/s

(DAB)SGS = (062 X 10_5) (

For air at 90°C (363K) : v = 21.95 x 1076m?/s
The Schmidt number is

124
DaB
21.95 x 10~8

= o5 x10-6 26

Sc =

Assumptions

1. Pseudo-steady-state behavior.
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2. Ideal gas behavior.
Analysis
System: Naphthalene sphere

The terms appearing in the conservation of species A, Eq. (7.2-2), are

(mA)in = (mA)out =0
(Ma)iny = — (7D3) (ke) (ca, — can,) Ma
r=20

(’I’I’I,A)s,y'g = Vsys Pi = (FD:}?/G) pi

Therefore, Eq. (7.2-2) reduces to

d D3
— (mD%) (ke) (ca, — can) Ma = i (W'—pra)

Taking ca,, = 0 and rearrangement gives

. I /D° dDp

T 2Maca, Doy2 (ke)

where D, is the initial diameter of the naphthalene sphere.

193

(2)

The average mass transfer coefficient, (k.), can be related to the diameter of the
sphere, Dp, by using one of the mass transfer correlations given in Section 4.3.5.

The use of the Ranz-Marshall correlation, Eq. (4.3-33), gives
Sh = 2 4+ 0.6 Re}/ > Sc¢!/3

a) When air is stagnant, i.e., Rep =0, Eq. (3) reduces to

Sh = M =92 = (kc)
Danp

_2Dap
=5

Substitution of Eq. (4) into Eq. (2) and integration gives

,_ 3 _ PaDs

32 MA CA, DAB
The saturation concentration of naphthalene, cy4,,, is

Pza.t
“Aw T RT

_ 11.7/760 - » )
~ 10.08205)(90 + 273) 5.17 x 107 kmol/ m

3)
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Substitution of the values into Eq. (5) gives the required time s

3 (1145)(0.02)? B s
b= 3 (18517 x 10-N(8.25 x 10-5) 200 X 107s =3 days

b) When air flows with a certain velocity, the Ranz-Marshall correlation can be

expressed as ,
1/2
(_’%)ﬂ =2+0.6 (D_F:’°_°) gcl/3

AB
or,

1
(kc) = D_P (a + ,B‘\/ DP) (7)
where the coefficients o and 8 are defined by
a=2Dsp=2(825x107%) =1.65x 1073 (8)

B =06Dap (veo/v)"/?ScM/3

5 1/2
— -6 1/3 _ -3
= (0.6)(8.25 x 107) ( T 0_6) (2.66)'/3 = 3.27 x 10 9)
Substitution of Egs. (7)-(9) into Eq. (2) gives
L 1145 0.02 Dp ) D
T (2)(128)(5.17 x 1077) Joo; \1.65x10-5+327x 10-3y/Dp/

Analytical evaluation of the above integral is possible and the result is
t =3097s ~ 52 min
Verification of the pseudo-steady-state approximation

Dapt . (8.25 x 10_6)(3097)
D% - (2 x 10—2)2

7.4 CONSERVATION OF MOMENTUM

According to Newton'’s second law of motion, the conservation statement for linear
momentum is expressed as

=64>1

_( Forces acting
- ( on a body ) (7.4-1)

In Section 4.3, we considered the balance of forces acting on a single spherical
particle of diameter Dp, falling in a stagnant fluid with a constant terminal velocity

Time rate of change of
linear momentum of a body
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vy. In the case of an accelerating sphere an additional force, called fluid inertia
force, acts besides the gravitational, the buoyancy, and the drag forces. This force
arises from the fact that the fluid around the sphere is also accelerated from the
rest, resulting in a change in the momentum of the fluid. The rate of change of
fluid momentum shows up as an additional force acting on the sphere, pointing
in the direction opposite to the motion of the sphere. This additional force has a
magnitude equal to one-half the rate of change of momentum of a sphere of liquid
moving at the same velocity as the solid sphere. Therefore, Eq. (7.4-1) is written
in the form

Time rate of change of ([ Gravitational
linear momentum of a sphere | — force

B ( Buoyancy ) 3 < Drag ) 3 < Fluid inertia ) (7.4.2)

force force force

and can be expressed as

mD}y dv nwD} nD3 nD% 1 5, mD3  dv
A g A - Z 2 Y 74
5 PPy G PP~ g PY 2 )(2m f-—rgy (143

where pp and Dp represent the density and diameter of the solid sphere, respec-
tively, and p is the fluid density. Simplification of Eq. (7.4-3) gives

dv_

3
Dp(pp+0.5p) = = Dp(pp = p) g = 7 pV*f (7.4-4)

The friction factor f is usually given as a function of the Reynolds number, Rep,
defined by

Rep = (74—5)

Therefore, it is much more convenient to express the velocity, v, in terms of Rep.
Thus, Eq. (7.4-4) takes the form

D% dRe 3
(pp +0.5p) —#—P — P = Ar- 1 fRe% (7.4-6)

where Ar is the Archimedes number defined by Eq. (4.3-6). Note that when the
particle reaches its terminal velocity, i.e., dRep /dt = 0, Eq. (7.4-6) reduces to Eq.
(4.3-4). Integration of Eq. (7.4-6) gives

2 Rep -1
t= (’“’—Jroj’i)& /0 <Ar—% fRe3,> dRep (7.4-7)

A friction factor — Reynolds number relationship is required to carry out the
integration. Substitution of the Turton-Levenspiel correlation, Eq. (4.3-10), into
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Eq. (7.4-7) gives

(pp +0.5p) D}
“

t =

-1

2
0.31 Rep ) dRep (7.4-8)

1+ 16,300 Rep %

Rep
x / (A': —18Rep —3.114Re}:%7 —
0

Equation (7.4-8) should be evaluated numerically.
Example 7.5 Calculate the time required for a spherical lead particle, 1.5 mm in
diameter, to reach 60% of its terminal velocity in air at 50°C.
Solution
Physical properties

p = 1.0928 kg / m?
p=19.57 x 10~ %kg/m.s

For lead at 50°C : p = 11,307 kg/ m3

For air at 50°C (323K) : {

Analysis

When the particle reaches its terminal velocity, the value of the Reynolds number
can be calculated from Eq. (4.3-12). The Archimedes number is

3 -
Ar = ngpipzp p)
(1.5 x 1073)3(9.8)(1.0928)(11, 307)
(19.57 x 10-6)?

=1.067 x 106

Substitution of this value into Eq. (4.3-12) gives the Reynolds number under steady
conditions as

Replv_:v‘ = % (]_ +0.0579 Ar0.412)—l.214

067 x 106
- 1—6—1;‘—1 [1+0.0579 (1.067 x 10°)
In this problem it is required to calculate the time for the particle to reach a Reynolds
number of

-1.214
°"“2] = 1701

Rep = (0.6)(1701) = 1021
Therefore, the required time can be calculated from Eq. (7.4-8) as

_(11,307)(1.5 x 1073)?

‘ 19.57 x 10—6 ! (1)
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where

-1

2
0.31Rep ) dRep

1+ 16,300 Rep "%

Rep
I= / (1.067 x 10° — 18 Rep —3.114 Re}:%7 —
0

The value of I can be determined by using one of the numerical techniques given in
Section A.8-4 in Appendiz A. The use of the Gauss-Legendre quadrature is shown
below. According to Eq. (A.8-13)

Rep=-10%(u+1)

and the five-point quadrature is given by

where the function F(u) is given by

1

F =
W) 80,789 (u + 1)2

1+18.22(u + 1)~1.09

1.067 x 106 — 9189 (u + 1) — 95602 (u + 1)1-657 —

The values of w; and F(u;) are given up to three decimals in the following table:

i U; w; F(u;) x 108 w; F(u;) x 10°
0 0.000 0.569 1.044 0.594
1 +0.538 0.479 1.187 0.569
2 —0.538 0.479 0.966 0.463
3 +0.906 0.237 1.348 0.319
4 —0.906 0.237 0.940 0.223

S wiF(u;) = 217 x 10-6

Therefore, the value of I can be calculated from Eq. (2) as

I= 1—022~1 (217x107%) =1.11 x 1073

Substitution of this value into Eq. (1) gives

(11,307)(1.5 x 1073)2 (1.11 x 1073)
19.57 x 10—

= 1.44s
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7.5 CONSERVATION OF ENERGY

The conservation statement for total energy under unsteady-state conditions is

given by
( Rate of ) B ( Rate of ) _ ( Rate of energy ) (751)

energy in energy out accumulation

For a system shown in Figure 7.2, following the discussion explained in Section 6.3,
Eq. (7.5-1) is written as
[(U + Ex + Ep)m] - [((Af + Ex + Ep)m] . =+ Qint +W
ou
_d
Tdt

e
7

Ejy—— SYSTEM — E,

mn

[(0 + By + Ep)m] o (159)

ys

w

Figure 7.2 Unsteady-state flow system exchanging energy in the form of heat
and work with the surroundings.

Note that, contrary to the steady-state flow system, the boundaries of this sys-
tem are not fixed in space. Therefore, besides shaft and flow works, work associated
with the expansion or compression of the system boundaries must be included in
W so that it takes the form

W = —Psw%

+ s+ (PVm)m - (Pf/m) (7.5-3)

out
V]

A B °

where terms A, B, and C represent, respectively, work associated with the expan-
sion or compression of the system boundaries, shaft work, and flow work.

Substitution of Eq. (7.5-3) into Eq. (7.5-2) and the use of the definition of
enthalpy, i.e., H = U + PV, gives

Vigs
dt

d A A .
=— |[(U+ Ex + Ep)m 7.5-4
= (0 + B + Ep) ]W (7.5-4)

+ W,

[(f:f + Ex + Ep)m] T [(I:I +Ex + Ep)m] ot + Qint — Piys
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which is known as the general energy equation. Note that under steady conditions,
Eq. (7.5-4) reduces to Eq. (6.3-9). In terms of molar quantities, Eq. (7.5-4) is
written as

[(ﬁ +Ex + Ep)n] - [(IE{ +Ex + Ep)fz] 7t Qint — Pays dl;"ty’ + W,
- % [(U + Ex + Ep)nLys (7.5-5)

When the changes in the kinetic and potential energies between the inlet and
outlet of the system as well as within the system are negligible, Eq. (7.5-4) reduces

to
PN . . st s . d
(Hm)in - (Hm)out + Qint - Psys _dty + ”(3 = E(Um)sys (75-6)

The accumulation term in Eq. (7.5-6) can be expressed in terms of enthalpy as

d (Um)sys = i [(H' — PV) m] oys

dt dt
d , » dViys dP,
== EZ(HTn)sys - Psys dty - ‘/sys dstys (75-7)
Substitution of Eq. (7.5-7) into Eq. (7.5-6) gives
Sy 2y . 2 dPsys M d 3
(Hm)in - (Hm)out + Qine + V.«:ys —_—dt + W, = E(Hm)sys (7.5-8)
On molar basis, Eq. (7.5-8) can be expressed as
- - ) dPyys d -~
(Hn)in - (Hn)out + Qint + Vsys 7 + Ws = d_t(Hn)sys (75'9)

Example 7.6 Air at atmospheric pressure and 25°C is flowing at a velocity
of 5m/s over a copper sphere, 1.5cm in diameter. The sphere is initially at a
temperature of 50°C. How long will it take to cool the sphere to 30°C? How much
heat s transferred from the sphere to the air?

Solution
Physical properties

pu=1841x10"%kg/m.s
v=1554x10"5m?/s
k=25.96 x 107 W/m. K
Pr = 0.712

For air at 25°C (298K) :
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For air at 40°C (313K) : p =19.11 x 10~®kg/ m.s

p = 8924 kg/ m®
For copper at 40°C (313K) : { Cp = 3871/ kg. K
k=39TW/m.K

Assumptions
1. No temperature gradients exist within the sphere, i.e., Bi < 1.
2. The average heat transfer coefficient on the surface of the sphere is constant.
3. The physical properties of copper are independent of temperature.
4. Pseudo-steady-state behavior.
Analysis
System: Copper sphere
For the problem at hand, the terms in Eq. (7.5-8) are
Min = Mour = 0
W, =0
Qine = — (mD3)(h)(T — Too)
dPyys
dt
Mays = (TD3/6) peu,

f{sys = <éP)Cu(T - Tref)
where T is the copper sphere temperature at any instant and T, is the air temper-

ature.
Therefore, Eq. (7.5-8) becomes

3 A
—wDL(R)(T — Too) = <“€P> (pCp)cu%:]t: (1)

Integration of Eq. (1) with the initial condition that T =T; at t =0 gives

t= 55 (pCr)oin (’:f,j:) (2)

To determine the average heat transfer coefficient, (h), first it is necessary to cal-
culate the Reynolds number:

Rep = 2PV=
(0.015)(5)

= T554x 108 — 1826
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The use of the Whitaker correlation, Eq. (4.3-30), gives
Nu = 2+ (0.4Re}/? +0.06 Ref/*) P04 (uoo/pr,,)/*

18.41 x 10—6) 174

_ 1/2 2/3 04 292>~ 2V
2+ [0.4(4826) +0.06 (4826) ] (0.712) (19.11 X 10-6

=40.9

The average heat transfer coefficient is

s ()

25.96 x 10~3 -

Therefore, the time required for cooling is

(0.015)(8924)(387) (50— 25\ _
=T e <3o = 25) = 1908

The amount of energy transferred from the sphere to the air can be calculated from

t t
. i ., —_ 2 —
Qin = /0 Qin dt = 7D () /0 (T = Too) dlt 3)

Substitution of Eq. (2) into Eq. (3) and integration yields

Qint = (ﬂlgf)) (POP)Cu (Ti ~ Teo) {1 T [_ —%} } @

Note that from Eq. (2)

exo | — 6 (h)t _T- Too
’ { Dp(pCp)cu| Ti—Too ©
Substitution of Eq. (5) into Eq. ({) gives
w D3 A
Qune = (752 ) (eCrlon (T ~ 1) ©)
= [ﬂ()(()sl_f))s] [(8924)(387)] (50 — 30) = 122]

Verification of assumptions

e Assumption # 1

(h)Dp
kC‘u.

(71)(0.015)

=357 = 0.0027 « 1

Bi =
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e Assumption # 4

=100>1

at 397 (196)
D%~ [(8924)(387)] (0.015)2

Comment: Note that Eq. (6) can simply be obtained from the first-law of thermo-
dynamics written for a closed system. Considering the copper sphere as a system,

AU = Qint + W = QinL=AU=mOvAT’:mépAT

Example 7.7 A solid sphere at a uniform temperature of 11 is suddenly im-
mersed in a well-stirred fluid of temperature T, in an insulated tank (T\ > T,).

a) Determine the temperatures of the sphere and the fluid as a function of time.
b) Determine the steady-state temperatures of the sphere and the fluid.

Solution

Assumptions

1. The physical properties of the sphere and the fluid are independent of tem-
perature.

2. The average heat transfer coefficient on the surface of the sphere is constant.

3. The sphere and the fluid have uniform but unequal temperatures at any in-
stant, i.e., Bi « 1 and mizing is perfect.

Analysis

a) Since the fluid and the sphere are at different temperatures at a given instant, it
s necessary to write two differential equations: one for the fluid, and one for the
sphere.

System: Solid sphere
The terms in Eq. (7.5-8) are

Min = Moy =0

W, =0
Qint = — (mD3)(h)(Ts — Ty)
dPyys
dt 0

Mgys = (”D:}P/G) Ps

Hsys = OP,, (Ts - Tref)
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where Dp 1is the diameter of the sphere, subscripts s and f stand for the sphere
and the fluid, respectively. Therefore, Eq. (7.5-8) becomes

dT:
—¢ (T, - — 8
b (T~ T = 5 1)
where 6 th
DpCp,p,
System: Fluid in the tank
The terms in Eq. (7.5-8) are
min = mout =0
W, =0
Qine = (D) (h)(Ts — Ty)
dPuys
= 0
Msys = M§f
f{s‘ys = éP;(Tf —Tref)
Hence, Eq. (7.5-8) reduces to
dTy
b (Ts_Tf>_‘W (3)
where (hyx D2
s
y =l ()
mePj

From Eq. (1), the fluid temperature, T}, is given in terms of the sphere temperature,

Ts, as
1 dT

Ty =Ts + '(Z dt (5)
Substitution of Eq. (5) into Eq. (8) gives

d*T, dT,s

o + ¢ e 0 (6)
where

Two nitial conditions are necessary to solve this second-order ordinary differential
equation. One of the initial conditions s

at t=0 T,=T (3)
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The other initial condition can be obtained from Eq. (5) as

dT
dt

The solution of Eq. (6) subject to the initial conditions defined by Eqs. (8) and (9)
is

at t=0

= ¢,(T, — T1) 9)

Ts=T ~ %(Tl —Tp) [1 — exp (— ¢t)] (10)
The use of Eq. (10) in Eq. (5) gives the fluid temperature in the form
T, -T,

Ty=T - 3 [¢s + ¢ exp (—(bt)] (11)
b) Under steady conditions, i.e., t — 0o, Egs. (10) and (11) reduce to
T + ¢,T,
Tssz_,ToQ:% (12)

Comment: Note that the final steady-state temperature, To,, can simply be ob-
tained by the application of the first law of thermodynamics. Taking the sphere and
the fluid together as a system, we get

D% .
AU = —=p;Cp,(Teo = T1) +msCp/(Teo = To) =0 (13)

Noting that
D3 p,C
¢s _mDp psCr, (14)
‘i’s 6 mep,

Equation (13) reduces to

Z_I(Too ‘Tl)+(Too—To)=0 (15)

Solution of Eq. (15) results in Eq. (12).

Example 7.8 A spherical steel tank of volume 0.5m? initially contains air at
7bar and 50°C. A relief valve is opened and air is allowed to escape at a constant
flow rate of 12 mol/ min.

a) If the tank is well insulated, estimate the temperature and pressure of air within
the tank after 5 minutes.

b) If heating coils are placed in the tank to maintain the air temperature constant
at 50°C, estimate the pressure of air and the amount of heat transferred after 5
minutes.

Air may be assumed an ideal gas with a constant Cp of 29 J/ mol. K.
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Solution
a) System: Contents of the tank
Assumptions
1. Properties of the tank contents are uniform, i.e., f[out = flsys.

2. Heat transfer between the system and its surroundings is almost zero. Note
that the insulation around the tank does not necessarily imply that Qint = 0.
Since the tank wall is in the surroundings, there will be heat transfer between
the tank wall and air remaining in the tank during the evacuation process.
Heat transfer may be considered negligible when (i) the mass of the wall is
small, (i7) process takes place rapidly (remember that heat transfer is a slow
process).

Analysis

Since Nyp = Niny = 0 and there is no chemical reaction, Eq. (7.3-2) reduces to

. _ dnsys _ dnsys
- Nout = di = -12 = dt (1)
Integration of Eq. (1) yields
Ngys = No — 121 (2)

where n, is the number of moles of air initially present in the tank, i.e.,

A (7)(0.5)

o= = - 130. |
n RT, (8314 X 10_5)(50 + 273) 30.3mo

On the other hand, the inventory rate eguation for energy, Eq. (7.5-5), takes the
form

= d(nT)gys
— Hout Mout = 4
dUsys 77 GNays
= nsys dty + Usys dty (3)
Substitution of Egs. (1) and (2) into Eq. (3) gives
- - dU4ys
—12(Hout — Ugys) = (no — 121) ——d—ty— (4)

Since H = U+ PV = U+RT, the use of the first assumption enables us to express
the left-hand side of Eq. (4) as

Hout - 033/.9 = }::Isys - Usys
= (Usys + RToys) = Usys = RTsys ()
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On the other hand, the right-hand side of Eq. (4) is expressed in terms of temper-

ature as .
dUsys A deys

a7Vt ©
Hence, substitution of Egs. (5) and (6) into Eq. (4) gives
A Ts 3
—12R Tyys = (n, — 12t) Cy d—# (7
For an ideal gas X
Cp=Cyv+R = %‘izfy—l (8)
where R
2
=By ©)

G, 20-8314

Note that Eq. (7) is a separable equation. Substitution of Eq. (8) into Eq. (7) and
rearrangement yields

b dt Tove 4T,
~12(y -1 — = e 1
O )/0 no — 12t /T Toye (10)
Integration gives
o —128\77}
Tsys = Ta (nn—> (11)

The variation of pressure as a function of time can be estimated by using the ideal
gas low, i.e.,

sys R Tsys
Pyys = E__BT}/_ 12)
Substitution of Egs. (2) and (11) into Eq. (12) gives
RT, o~ 128\
Poys = (no —12 t) (n ) (13)
14 o
Since RTo/V = P,/n,, Eq. (13) reduces to
o — 12¢7
Psys =Po (n—n““) (14)

Substitution of the numerical values into Eqs. (11) and (14) gives Tsys and P
respectively, after b minutes as

ys»

130.3 — (12)(5)

Tsy_q = (50 + 273) [ 130.3

1.4-1
] = 2624K
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130.3 — (12)(5)
130.3
Comment: Note that Eq. (11) can be rearranged in the form

-1
Loys _ (."&)7 (15)

T, No

1.4
Py =17 [ ] = 2.95bar

The use of the ideal gas law to express the number of moles gives

TSyS — <P3y$)7_1 ( T, )7_1 = Tsys —_ <Psys ) G (16)
T, P, Tsys T, P,
which is a well-known equation for a closed system undergoing a reversible adiabatic

(or, isentropic) process. Therefore, the gas remaining in the tank undergoes a
reversible adiabatic expansion throughout the process.

b) System: Contents of the tank
Assumption
1. Properties of the tank contents are uniform, i.e., I;Tou, = I;Tsys.

Analysis
Equation (7.3-2) becomes

. . dnsys _ dnsys
Nout = at = -12= at (17)
Integration of Eq. (17) yields
Nays = No — 121 (18)
where n, i3 the number of moles of air initially present in the tank, i.e.,
PV .
N = ° = (7)(0 5) = 1303 mOl

RT,  (8.314 x 10-5)(50 + 273)

In this case the process is tsothermal and, as a result, the pressure of the system
can be directly calculated from the ideal gas law, i.e.,

R Tsys
Psys = ( Vy ) Nsys (19)

The use of Eq. (18) in Eq. (19) results in

Pyys = (R__Tsy3> (no — 12¢)

Vv

=P, —12 (R—r{r/y—) t (20)
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Substitution of the numerical values gives
(12)(8.314 x 10°)(50 + 273)(5)
0.5

The amount of heat supplied by the heating coils is determined from the inventory
rate equation for energy, Eq. (7.5-5). Simplification of this equation is

P=7- = 3.78 bar

d(n(j )sys
dt

dngys

Tdt

— oyt Nout + Qint =

= Usys (21)

Since the process is isothermal, Usy, remains constant. Substituting Eq. (17) into
Eq. (21) and using the fact that Hoy = Hgy, yields

Qint = 12 (Hays — Usys) = 12R Tay,
= (12)(8.314)(50 + 273) = 32,225J/ min

Therefore, the amount of heat transferred is
Qint = Qint t = (32,225)(5) = 161,125]

7.5.1 Unsteady-State Energy Balance Around a
Continuous Stirred Tank Reactor

An unsteady-state energy balance in a continuous stirred tank reactor (CSTR)
follows the same line as the steady-state case given in Section 6.3.2.2. Using the
same assumptions, the resulting energy balance becomes

lzhiﬁi(ﬂn) - [Zfliﬁi(T)

On the other hand, the macroscopic mole balance for species ¢, Eq. (7.2-5), is

b ; d(ni sys
()i — (1) e + Viys ; Qi Ty = '—# (7.5-11)

(7.5-10)

+ Qint = (% {Zn,I:L(T)

out sy9

Multiplication of Eq. (7.5-11) by H;(T) and summation over all species gives

Frner], - o)

in out

= Vays Z’"J’(—AHﬂ:n,j)
J

- [Z 1?,-(:1’)%] (7.5-12)

ys
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Subtraction of Eq. (7.5-12) from Eq. (7.5-10) yields

Z (hi)in [}—I’L(ﬂn) - HI(T)] + Qint + ‘/sys er(—AHrzn,j)

i J

= [Z ni(T) dﬁ;ET)] (7.5-13)

Dividing Eq. (7.5-13) by the volumetric flow rate, Q, gives

S (@)oo [E(Tin) = ()] + 28 40 5 (- A )

i J

=T [Z i(T) %} (7.5-14)

where 7 is the residence time. Expressing the partial molar enthalpy of species ¢
in terms of the partial molar heat capacity by Eq. (6.3-41) gives

(CP)in(Tin = T) + Qgt + Ter(—AHmn,j) = T(Cp)syg% (7.5-15)
where

(Cplin = Z(Ci)mc—'ﬂ (7.5-16)

(Cp)ays = Z(ci)syséPi (7.5-17)

i

Note that Eq. (7.5-15) reduces to Eq. (6.3-42) under steady conditions. On the
other hand, for a batch reactor, i.e., no inlet and outlet streams, Eq. (7.5-15) takes
the form

dT

— (7.5-18)

Qinz + Vsys Z"j(_AHrzn,j) = sz(CP)sys

J

It is important to note that Egs. (7.5-15) and (7.5-18) are valid for systems in
which pressure remains constant.

Example 7.9 The reaction described in Example 6.6 is to be carried out in a
batch reactor which operates adiabatically. The reactor is initially charged with
2000 moles of species A and 2400 moles of species B at a temperature of 25°C.
Determine the time required for 80% conversion of A if the reactor volume is 1 m3.
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Solution
System: Contents of the reactor
The conservation statement for species A, Eq. (7.2-5), is

dnA

'—kCACBVZW (1)
or,
dnA
—knAnB—VW (2)

The number of moles of species A and B in terms of the molar extent of the
reaction, €, s given by

na=mna, +ase=2000-c¢ (3)
ng =ng, +ape =2400 — ¢ (4)
The molar extent of the reaction can be calculated from Eq. (5.3-12) as

na,

€= X4
(—aa)
_ (_2@01)&8_) — 1600 mol 5)
Substitution of Egs. (3) and (4) into Eq. (2) and rearrangement gives
1600
t=V / de (6)
0 k (2000 — €)(2400 — €)

Note that Eq. (6) cannot be integrated directly since the reaction rate constant, k,
is dependent on € via temperature.

The energy equation must be used to determine the variation of temperature
as a function of the molar extent of the reaction. For an adiabatic reactor, i.e.,
Qint =0, Eq. (7.5-18) reduces to

P(-BHZ) = Crlon S ")

Substitution of Egs. (5.3-22) and (7.5-17) into Eq. (7) yields

(~ AHE) & < [(Z niac"p..) +aCpe| o (8)

In this problem
AC% = —85J/mol. K (9)
> i, Cp, = (2000)(175) + (2400)(130) = 662,000 (10)

AHZ,, = — 45,000 — 85 (T — 298) (11)
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Substitution of Egs. (9)-(11) into Eq. (8) and rearrangement gives

/E de B /T dT (12)
o 662,000 —85ec  Jygs 45,000 + 85 (T — 298)
Integration gives
45,000¢
T =2 bt A
98+ 562,000 — 85¢ (13)

Now it is possible to evaluate Eq. (6) numerically. The use of Simpson’s rule with
n =38, i.e., Ae = 200, gives

(mol/ m) (f{) [£(2000 — £)(2400 — ¢)]~! x 104
0 298 248
200 312 121.9
400 326.7 63.3
600 342.2 34.9
800 358.6 20.5
1000 376 12.9
1200  304.4 8.9
1400 414 6.9
1600 434.9 6.5

The application of Eq. (A.8-12) in Appendiz A reduces Eq. (6) to

2
t= % (248 + 4 (121.9 + 34.9 + 12.9 + 6.9)

+ 2(63.3420.5+8.9) +6.5] x 107% = 7.64min (14)

7.6 DESIGN OF A SPRAY TOWER FOR THE
GRANULATION OF MELT

The purpose of this section is to apply the concepts covered in this chapter to a
practical design problem. A typical tower for melt granulation is shown in Figure
7.3. The dimensions of the tower must be determined such that the largest melt
particles solidify before striking the walls or the floor of the tower. Mathematical
modelling of this tower can be accomplished by considering the unsteady-state
macroscopic energy balances for the melt particles in conjunction with their settling
velocities. This enables one to determine the cooling time and thus, the dimensions
of the tower.
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Melt Air
feed /\‘;

Cooling ———T

air —> Solid product
O

ORI

Figure 7.3 Schematic diagram of a spray cooling tower.

It should be remembered that mathematical modeling is a highly interactive
process. It is customary to build the initial model as simple as possible by making
assumptions. Experience gained in working through this simplified model gives a
feeling and confidence for the problem. The process is repeated several times, each
time relaxing one of the assumptions and thus making the model more realistic. In
the design procedure presented below, the following assumptions are made:

1. The particle falls at a constant terminal velocity.
2. Energy losses from the tower are negligible.

3. Particles do not shrink or expand during solidification, i.e., solid and melt
densities are almost the same.

4. The temperature of the melt particle is uniform at any instant, i.e., Bi <« 1.
5. The physical properties are independent of temperature.
6. Solid particles at the bottom of the tower are at a temperature T, the solid-
ification temperature.
7.6.1 Determination of Tower Diameter

The mass flow rate of air can be calculated from the energy balance around the

tower:
Rate of energy | [ Rate of energy lost 761
gained by air ~ \ by the melt particles (7.6-1)
or,
ma(CPa) [(Ta)am - (Ta)in] =Tm {ann [(Tm)in - Ts] + 5‘} (7‘6‘2)

where the subscripts @ and m stand for the air and the melt particle, respectively,
and A is the latent heat of fusion per unit mass.
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Once the air mass flow rate, 1h,, is calculated from Eq. (7.6-2), the diameter
of the tower is calculated as

. wD? [ 41, )
Mg = (T) VapPq = D= m (76—3)

7.6.2 Determination of Tower Height

Tower height, H, is determined from
H = 'Ugt (7.6-4)

The terminal velocity of the falling particle, v;, is determined by using the formulas
given in Section 4.3. The required cooling time, ¢, is determined from the unsteady-
state energy balance around the melt particle.

7.6.2.1 Terminal velocity

The Turton-Clark correlation is an explicit relationship between the Archimedes
and the Reynolds numbers as given by Eq. (4.3-12), i.e.,

]—1.214

Rep = % [1+0.0579 Ar®*2 (7.6-5)
The Archimedes number, Ar, can be calculated directly when the particle diam-
eter and the physical properties of the fluid are known. The use of Eq. (7.6-5)
then determines the Reynolds number. In this case, however, the definition of
the Reynolds number involves the relative velocity, v,, rather than the terminal
velocity of the melt particle, i.e.,

_ DPvT'pa

Rep (7.6-6)

Ha

Since the air and the melt particle flow in countercurrent direction to each other,
the relative velocity, v,, is

Up = Uy + Vg (7.6-7)

7.6.2.2 Cooling time

The total cooling time consists of two parts: the cooling period during which
the melt temperature decreases from the temperature at the inlet to 7, and, the
solidification period during which the temperature of the melt remains at 7.

1) Cooling period: Considering the melt particle as a system, the terms appearing
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in Eq. (7.5-8) become

Min = Mout = 0

W, =0
Qint = — (*D3)(h) (T — (Ta))
dPys 0
dt

Moge = (xD3/6) pr
f{sys = CAme (Tm - Tref)

where (T,) is the average air temperature, i.e., [(Ta)in + (Ta)out] /2. Hence, Eq.
(7.5-8) takes the form

6 (W) Ty — (Ta)) = DppyC,, m

g (7.6-8)

Equation (7.6-8) is a separable equation and rearrangement yields

Dpmep / dTy,
dt = ——m 7.6-9
-/ C6(R)  Jimy Tm — (Ta) (769)

Integration of Eq. (7.6-9) gives the cooling time, ), as

(7.6-10)

_ DPmePrn (Tm)in - <Ta)
b= 6 (h) In [ Ts — (Tw) ]

The average heat transfer coefficient, (k) in Eq. (7.6-10) can be calculated from
the Whitaker correlation, Eq. (4.3-30), i.e

Nu =2+ (0.4Re}/” +0.06 Re}/*) PO (soo/pr,))'/* (7.6-11)

i) Solidification period: During the solidification process, solid and liquid
phases coexist and temperature remains constant at T,. Considering the parti-
cle as a system, the terms appearing in Eq. (7.5-8) become

Min = Moy = 0

W, =0
Qint = — (WD%)(h)(Ts —(Ta))
AdPyys _
dt 0
Mgys = My + My
H =0 R . . .
Tref::Ts = f] ____;\ = (mH)sys=m1H,+m5H3=—/\ms
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where m; and m, represent the liquid and solidified portions of the particle,
respectively. Therefore, Eq. (7.5-8) reduces to

dmg

BT, — (Ta) = A 2

(7.6-12)

Integration of Eq. (7.6-12) gives the time required for solidification, ¢, as

_ XmeP
2= ST — (1) (7.6:13)

Therefore, the total time, ¢, in Eq. (7.6-4) is

t =1t +t (7.6-14)

Example 7.10 Determine the dimensions of the spray cooling tower for the
following conditions:
Production rate = 3000kg/ h
Dp =2mm
Pm = 1700kg/ m3
v, =2m/s
(To)in = 10°C
(Ta)ou.t =20°C
(T)in = 110°C
T, =70°C
A =186kJ/ kg
Cp, = 1.46kJ/kg. K

Solution
Physical properties

The average air temperature is (10 4 20)/2 = 15°C.

p=12kg/m3

p=1793 x 1076 kg/m.s
For air at 15°C (288K) : { k =25.22 x 107* W/ m. K

Cp = 1.004

Pr =0.714
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Analysis
The mass flow rate of air, My, is calculated from Eq. (7.6-2) as
titm {Cpp [(Tm)in = To] + A}

o (épn) [(Ta)out - (Ta)inl
(3000) [(1.46)(110 — 70) + 186]
(1.004)(20 — 10)

= 73,028kg/h
The use of Eq. (7.6-8) gives the tower diameter as

A1,

TPaVa

(4)(73,028)
7(1.2)(2)(3600)

D =

3.3m

The use of Eq. (4.3-6) gives the Archimedes number as

D39pa(Prm — Pa)

p
(2 x107%)%(9.8)(1.2)(1700 — 1.2)
- (17.93 x 10-6)2

Ar =

=4.97 x 10°

Hence, the Reynolds number and the relative velocity are

Ar —1.214

75 [1+0.0579 Ar®412]

497 x 108
18

Rep =

[1+0.0579 (4.97 x 10%)%412] 711 — 1134

_ Mo Rep

~ p.Dp

(17.93 x 107%)(1134)
(1.2)(2 x 10-3)

Therefore, the terminal velocity of the particle is

Ur

=8.5m/s

Ut =V —V, =85—-2=6.5m/s
The use of the Whitaker correlation, Eq. (7.6-11), with pe/p,, = 1, gives
Nu = 2+ (0.4Re}{” +0.06 Ref13) PrO4 (. /1)

=24+ [0.4 (1134)1/2 + 0.06(1134)2/3] (0.714)°4 = 19.5
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Hence, the average heat transfer coefficient is

o-n(4)

25.22 x 1073 5

The time required for cooling and solidification can be calculated from Egs. (7.6-10)
and (7.6-13), respectively:

_ Dpp,Cp, In [(Tm)in - (Ta)]

TS T, — (Ta)
(2 x107%)(1700)(1460) 110 -13\ .
(6)(246) : < 70— 15 ) =18s

o = :\meP
276 ()T, — (Tu))
__ (186,000)(1700)(2 x 10-%)

©)46) 0 —15)  ~ °°
Therefore, the tower height is
H=(6.5)(18+78)=624m

NOTATION

A area, m?

A mass transfer area, m?

Cy heat capacity at constant volume, kJ/kg. K

Cp heat capacity at constant pressure, kJ/kg. K

c concentration, kmol/ m3

Das diffusion coefficient for system A-B, m?/s

Ex kinetic energy, J

Ep potential energy, J

E rate of energy, J/s

£ activation energy, J/ mol

f friction factor

g acceleration of gravity, m/s?

H enthalpy, J

h elevation, m; heat transfer coefficient, W/ m?. K

k thermal conductivity, W/ m. K

ke mass transfer coefficient, m/s
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length, m

mass flow rate, kg/s
molecular weight, kg/kmol
molar flow rate, kmol/s
pressure, Pa

heat transfer rate, W
volumetric flow rate, m3/s
rate of a chemical reaction, kmol/ m®.s
gas constant, J/ mol. K
temperature, °C or K
time, s

internal energy, J

volume, m3

velocity, m/s

rate of work, W

rate of shaft work, W
fractional conversion

mole fraction of species ¢

thermal diffusivity, m?/s

stoichiometric coefficient of i*" species in the j** reaction

Cp/Cy

difference

heat of reaction, J

molar extent of a reaction, kmol
latent heat, J

kinematic viscosity (or, momentum diffusivity), m?/s

density, kg/m®
residence time, s

per mole
per unit mass
partial molar

average value of a

Superscripts

0
S

sat

standard state
solid
saturation



REFERENCES 219

Subscripts
A, B species in binary systems
a air
ch characteristic
1 species in multicomponent systems
n inlet
mnt interphase
7 reaction number
m melt
out out
P particle
sYs system
w surface or wall
0 free-stream

Dimensionless Numbers

Ar Archimedes number

Biy Biot number for heat transfer
Biy Biot number for mass transfer
Pr Prandt]l number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number
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PROBLEMS

7.1 Two perfectly stirred tanks with capacities of 1.5 and 0.75 m3 are connected
in such a way that the effluent from the first passes to the second. Both tanks are
initially filled with salt solution of 0.5kg/L in concentration. If pure water is fed
to the first tank at a rate of 75 L/ min, determine the salt concentration in the
second tank after 10 minutes?

(Answer: 0.423kg/L)

7.2 Two vertical tanks placed on a platform are connected by a horizontal pipe
5cm in diameter as shown in Figure 7.4. Each tank is 2m deep and 1 m in diameter.
At first, the valve on the pipe is closed and one tank is full while the other one is
empty. When the valve is opened, the average velocity through the pipe is given
by

(v) = 2Vh
where (v) is the average velocity in m/s and h is the difference between the levels

in the two tanks in meter. Calculate the time for the levels in the two tanks to
become equal.
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[ et |

Figure 7.4 Schematic diagram for Problem 7.2
(Answer: 4.7 min)

7.3 a) A stream containing 10% species A by weight starts to flow at a rate of
2kg/ min into a tank, originally holding 300 kg of pure B. Simultaneously, a valve
at the bottom of the tank is opened and the tank contents are also withdrawn at a
rate of 2kg/ min. Considering perfect mixing within the tank, determine the time
required for the exit stream to contain 5% species A by weight.

b) Consider the problem in part (a). As a result of the malfunctioning of the exit
valve, tank contents are withdrawn at a rate of 2.5 kg/ min instead of 2kg/ min.
How long does it take for the exit stream to contain 5% species .4 in this case?

(Answer: a) 104 min b) 95.5 min)

7.4 The following levels were measured for the flow system shown in Figure 7.5.
The cross-sectional area of each tank is 1.5 m?.

t hy ho
( min) (cm) (cm)
0 50 30
1 58 35
2 67 40
3 74 46
4 82 51
5 89 58
6 96 64

a) Determine the value of Q;y.
b) If the flow rate of the stream leaving the first tank, @, is given as

Q=8vhi

determine the value of 3.
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Q;, = constant

'
f
hy
|

hz

Figure 7.5 Schematic diagram for Problem 7.4

(Answer: a) 0.2m?3/min b) 0.17 m5/2/ min)

7.5 Time required to empty a vessel is given for four common tank geometries
by Foster (1981) as shown in Table 7.1. In each case, the liquid leaves the tank
through an orifice of cross-sectional area A,. The orifice coefficient is C,. Assume
that the pressure in each tank is atmospheric. Verify the formulas in Table 7.1.

7.6 For steady flow of an incompressible fluid through a control volume whose
boundaries are stationary in space, show that Eq. (6.3-9) reduces to

AP A{v)?
— _+_ ——

5 5 +g Ah+ (Af] - Qint) =W, (1)

where A represents a difference between the outlet and inlet values.

a) Using the thermodynamic relations

dU = TdS — PdV (2)
and
ds = d%f"‘ + dSgen ®3)
show that
dEy, = T d8gen = dU — dQin 4)

where Eu, the friction loss per unit mass, represents the irreversible degradation
of mechanical energy into thermal energy, and Sy, is the entropy generation per
unit mass.
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Table 7.1 Time required to empty tanks of different geometries.

Geometry Time

 —
g 7TD2\/}—£

I '= JZic.A,
L

R ——
T ‘e 2 wh3/2 tan?
d ! “Vg 5C,A,

P
/ § L [D¥2 - (D - h)*?]
. = \/; 3C,4,
h
X

—D—|
T L [ZmR3(D-06h)
h Vg 3C,A,
4

T

b) Substitute Eq. (4) into Eq. (1) to obtain the engineering Bernoulli equation
(or, macroscopic mechanical energy equation) for an incompressible fluid as

A Alv)? . .
—P+(Tv)+gAh+Ev_Ws=0 (5)

¢) To estimate the friction loss for flow in a pipe, consider steady flow of an in-
compressible fluid in a horizontal pipe of circular cross-section. Simplify Eq. (5)
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for this case to get
E, = 1AP| (6)
p

Compare Eq. (6) with Eq. (4.5-6) and show that the friction loss per unit mass,
E,, for pipe flow is given by

B = 2fL(U>2

=24 @

7.7 A cylindrical tank, 5m in diameter, discharges through a mild steel pipe
system (e = 4.6 x 1075 m) connected to the tank base as shown in the figure below.
The drain pipe system has an equivalent length of 100m and a diameter of 23 cm.
The tank is initially filled with water to an elevation of H with respect to the
reference plane.

D
h
d
L. |
, | ]
eference

plane 0 et @

a) Apply the Bernoulli equation, Eq. (5) in Problem 7.6, to the region between
planes “1” and “2” and show that

2gh
4 fLeq

e

where L., is the equivalent length of the drain pipe.

(v2)? =

b) Consider the tank as a system and show that the application of the unsteady-
state macroscopic mass balance gives

@RS o

Analytical integration of Eq. (2) is possible only if the friction factor f is constant.

c) At any instant, note that the pressure drop in the drain pipe system is equal
to pg(h — H*). Use Egs. (4.5-18)-(4.5-20) to determine f as a function of liquid
height in the tank. Take H* = 1m, H = 4m and the final value of h as 1.5m.
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d) If f remains almost constant, then show that the integration of Eq. (2) yields

t=<§>2 §<1+4ﬂ’“>(\/— VE) 3)

Calculate the time required for A to drop from 4m to 1.5 m.

e) Plot the variations of (v;) and h as a function of time on the same plot. Show
that dh/dt is negligible at all times in comparison with the liquid velocity through
the drain pipe system.

(Answer: ¢) 0.0039 d) 7.7 min)

7.8 Consider draining of a spherical tank of diameter D with associated drain
piping as shown in the figure below. The tank is initially filled with water to an
elevation of H with respect to the reference plane.

a) Repeat the procedure given in Problem 7.7 and show that

4 2 4fLeg B2 2
t=— <1+ y )[\/ﬁ(?—gth+Xe)

—\/_(——2X1H+X2>]

where

X1=H"+R
X2 = X7 -
b) A spherical tank, 4m in diameter, discharges through a mild steel pipe system

(¢ = 4.6 x 107°m) with an equivalent length of 100m and a diameter of 23 cm.
Determine the time to drain the tank if H* = 1m and H = 4.5m.

(Answer: b) 4.9 min)
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7.9 Suspended particles in agitated vessels are frequently encountered in the
chemical process industries. Some examples are mixer-settler extractors, catalytic
slurry reactors and crystallizators. The design of such equipment requires the mass
transfer coefficient to be known. For this purpose, solid particles (species A) with
a known external surface area, A,, and total mass, M,, are added to an agitated
liquid of volume V and the concentration of species A is recorded as a function of
time.

a) Consider the liquid as a system and show that the unsteady-state macroscopic
mass balance for species A is

M\ d
(o (1) (et —ca) =V 52 )

where M is the total mass of solid particles at any instant and ¢52* is the equilibrium
solubility. Rearrange Eq. (1) in the form

174 dIn(c’3* — ca)
o) = = LI E @)

and show how one can obtain the average mass transfer coefficient from the exper-
imental data.

b) Another way of calculating the mass transfer coefficient is to choose experimental
conditions so that only a small fraction of the initial solids is dissolved during a
run. Under these circumstances, show that the average mass transfer coefficient
can be calculated from the following expression:

174 C;a.t
(k(:) = (A)t In (C’Aat — CA) (3)

where (A) is the average surface area of the particles. Indicate the assumptions
involved in the derivation of Eq. (3).

7.10 Consider Problem 7.9 in which the average mass transfer coefficient of sus-
pended particles is known. Estimate the time required for the dissolution of solid
particles as follows:

a) Write down the total mass balance for species A and relate the mass of the
particles, M, to concentration of species A, cg4, as

M Vv
E =1- (E) CA (1)
b) Substitute Eq. (1) into Eq. (1) in Problem 7.9 to get
dé
dt = o 373 (2)

1-@a+8%67""(1-0)



PROBLEMS 227

where
c
9 = cs‘:t
A

Vcsa.t
a 4 B A

T (ko) A, M,

c) Show that the integration of Eq. (2) leads to
t= i () (222E2)
- 6p° 1+8) \u?—ug+ 3

1 -1
tAE {w —1+u[(2/8) 1]

where
wWd=1-(1+p%9 (5)

7.11 Rework Example 7.3 if the rate of reaction is given by
r=kc4 (1)
a) For the filling period show that the governing differential equation is given by

d
t%—i—ktc%—{—c,q:c,qo (2)

Using the substitution

Chap = k—u—(‘i-z (3)
show that Eq. (1) reduces to
d [ du
E(tgt_) —caku=0 (4)

Solve Eq. (4) and obtain the solution as

I (2/ca kt
cq= 4] Lo 5 (2y/ca ki) (5)
kt I, (2 cakt)
Note that Eq. (2) indicates that cq = ca, at t = 0. Obtain the same result from
Eq. (5).

b) Show that the governing differential equation for the unsteady-state period is
given in the form
CA CA,

dCA 2 _
T‘f‘kc‘q'{'?—'? (6)
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where 7 is the residence time. Using

1
ca=ca, +— (7)
z
show that Eq. (6) reduces to
dz
E —Bz=k (8)
where ]
B=2kca, + - 9)

Note that c4, in Eq. (7) represents the steady-state concentration satisfying the

equation .
¢
kh, + = (10)

Solve Eq. (8) and obtain
1
(¢ = ca) ™" + (k/B)] exp B(¢ — )] - (k/8)

where ¢’ and t* represent the concentration and time at the end of the filling
period, respectively.

ca=ca, + [ (11)

7.12 For creeping flow, i.e., Re <« 1, a relationship between the friction factor
and the Reynolds number is given by Stokes’ law, Eq. (4.3-7).

a) Substitute Eq. (4.3-7) into Eq. (7.4-7) and show that

el ) o

b) Show that the time required for the sphere to reach 99% of its terminal velocity,

too, 1s given by
2

-~ Dr
too = 394 (pp +0.5p) (2)

and investigate the cases under which initial acceleration period is negligible.

c) Show that the distance travelled by the particle during unsteady-state fall is
given by

(pp — p) D} 18 ut
=ty —v, 2 _FI7P )y S -l
i 7 P |~ (op T 050 D% ®
where v; is the terminal velocity of the falling particle and is defined by
- D2
vy = .(_pP__p)g*P (4)

181
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7.13 When Newton’s law is applicable, the friction factor is constant and is given
by Eq. (4.3-9).

a) Substitute Eq. (4.3-9) into Eq. (7.4-7) and show that

v 1-—exp(—1t)
v, 1+exp(—t) o

where the terminal velocity, v;, and =y are given by

v =174 (pp = p)9Dp (2)
p
~~1 =1.51 (”P+0‘5p> i (3)
p Ve

b) Show that the distance travelled is

2’1);

s=tut =tIn [1—“"—"(—‘7—“] (4)

2

7.14 Consider two-dimensional motion of a spherical particle in a fluid. When
the horizontal component of velocity is very large compared to the vertical compo-
nent, the process can be modelled as a one-dimensional motion in the absence of a
gravitational field. Using unsteady-state momentum balance show that

2 Repo d
‘= 4ppD% / Re;: (1)
3# Rep fReP

where Rep, is the value of the Reynolds number at ¢ = 0.

a) When Stokes’ law is applicable, show that the distance travelled by the particle
is given by
voppD% 18 ut
= 2LP7P - 2
Tl g
where v, is the value of velocity at ¢t = 0.
b) When Newton’s law is applicable, show that the distance travelled by the particle

is given by
3.03ppD ot
=== <1 + 555 ZPDP> )

7.15 Coming home with a friend to have a cold beer after work, you find out that
you had left the beer on the kitchen counter. As a result of the sunlight coming
from the kitchen window, it was too warm to drink.
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One way of cooling the beer is obviously putting it into a freezer. However, your
friend insists that placing a can of beer in a pot in the kitchen sink, and letting
cold water run over it into the pot and then into the sink shortens the cooling time.
He claims that the overall heat transfer coefficient for this process is much greater
than that for a can of beer sitting idly in the freezer in still air. He supports this
idea by presenting the following data of Horwitz (1981):

Freezer ~Tap Water

Cooling medium temperature { °C) —21 13

Initial temperature of beer (°C) 29 29

Final temperature of beer { °C) 15 15

Time elapsed (min) 21.1 8.6
Surface area of can = 0.03 m?

Quantity of beer in can = 0.355kg
Heat capacity of beer = 4.2kJ/kg. K

a) Do you think that your friend is right? Show your work by calculating the heat
transfer coefficient in each case. Ignore the cost and availability of water.

b) Calculate the time required to cool the beer from 29°C to 4°C in the freezer.

¢) Suppose that you first cool the beer to 15°C by the running water and then
place the beer in the freezer. Calculate the time required to cool the beer from
29°C to 4°C in this case.

(Answer: a) (h) (freezer) = 129W/m2. K, (h) (tap water) = 200W/m?. K
b) 44.5min c¢) 32 min)

7.16 M kg of a liquid is to be heated from T to T3 in a well stirred, jacketed
tank by steam condensing at T in the jacket. The heat transfer area, A, the
heat capacity of tank contents per unit mass, Cp, and the overall heat transfer
coefficient, U, are known. Show that the required heating time is given by

L_MCp, (T, T
T UA \T,-T

(1)
Indicate the assumptions involved in the derivation of Eq. (1).

7.17 In Problem 7.16, assume that hot water, with a constant mass flow rate m
and inlet temperature T;,, is used as a heating medium instead of steam.

a) Show that the outlet temperature of hot water, T,,;, is given by

Tin —T
Tout =T + Q (1)
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where A
Q = exp (fr]z_C> (2)

in which T is the temperature of the tank contents at any instant and C is the
heat capacity of hot water.

b) Write down the unsteady-state energy balance and show that the time required
to increase the temperature of the tank contents from T3 to T5 is given by

_ MCp ([ Q Tin — Ty
=56 (o) (7223) ®

c) Bondy and Lippa (1983) argued that when the difference between the outlet
and inlet jacket temperatures is less than 10% of the ATy between the average
temperature of the jacket and the temperature of the tank contents, Eq. (1) in
Problem 7.16 can be used instead of Eq. (3) by replacing T, by the average jacket
temperature. Do you agree? For more information on this problem see Tosun and
Aksahin (1993).

7.18 600kg of a liquid is to be heated from 15°C to 150°C in a well stirred,
jacketed tank by steam condensing at 170 °C in the jacket. The heat transfer surface
area of the jacket is 4.5 m? and the heat capacity of the liquid is 1850 J/ kg. K. The
overall heat transfer coefficient, U, varies with temperature as follows:

T U
(°C) (W/ m?.K)
15 390
30 465
60 568
90 625
120 664
150 680

a) Calculate the required heating time.

b) Correlate the data in terms of the expression

B
U=A-3

where T is in degrees Kelvin, and calculate the required heating time.

(Answer: a) 11.7min; b) 13.7 min)

7.19 500kg of a liquid is to be heated from 15°C to 150°C in a well stirred,
jacketed tank by steam condensing at 170 °C in the jacket. The heat transfer surface
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area of the jacket is 4.5m? and the heat capacity of the liquid is 1850J/kg. K.
Calculate the average overall heat transfer coefficient if the variation of liquid
temperature as a function of time is recorded as follows:

t T
(min)  (°C)

0 15
59
90

112

129

140

150

OGO O N

1
1

(Answer: 564 W/ m? K)

7.20 An insulated rigid tank of volume 0.1 m? is connected to a large pipeline
carrying air at 10 bar and 120°C. The valve between the pipeline and the tank is
opened and air is admitted to the tank at a constant mass flow rate. The pressure
in the tank is recorded as a function of time as follows:

t P
( min) (bar)
5 1.6
10 2.1
15 2.7
20 3.3
25 3.9
30 44

If the tank initially contains air at 1bar and 20°C, determine the mass flow
rate of air entering the tank. Air may be assumed an ideal gas with a constant Cp
of 29.J/ mol. K.

(Answer: 7.25g/ min)

7.21 An insulated rigid tank of volume 0.2m® is connected to a large pipeline
carrying nitrogen at 10bar and 70°C. The valve between the pipeline and the
tank is opened and nitrogen is admitted to the tank at a constant mass flow rate
of 4g/s. Simultaneously, nitrogen is withdrawn from the tank, also at a constant
mass flow rate of 4g/s. Calculate the temperature and pressure within the tank
after 1 minute if the tank initially contains nitrogen at 2 bar and 35°C. Nitrogen
may be assumed an ideal gas with a constant Cp of 30J/ mol. K.

(Answer: 326.8K, 2.12bar)
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7.22 A rigid tank of volume 0.2m? initially contains air at 2bar and 35°C. On
one side it is connected to an air supply line at 10 bar and 70°C, on the other side
it is connected to an empty rigid tank of 0.8 m*® as shown in the figure below. Both
tanks are insulated and initially both valves are closed. The valve between the
pipeline and the tank is opened and air starts to flow into the tank at a constant
flow rate of 10 mol/ min. Simultaneously, the valve between the tanks is also opened
so as to provide a constant flow rate of 6 mol/ min to the larger tank. Determine
the temperature and pressure of air in the larger tank after 2 minutes. Air may be
assumed an ideal gas with a constant Cp of 29J/ mol. K.

r

r—V=02m3

Air supply D
Line

V=0.8m3

(Answer: 482.3K, 0.6 bar)

7.23 Metering pumps provide a constant liquid mass flow rate for a wide variety
of scientific, industrial and medical applications. A typical pump consists of a
cylinder fitted with a piston as shown in Figure 7.19. The piston is generally
located on the end of a long screw which itself is driven at a constant velocity by
a synchronous electric motor.

—— Pump cylinder

Drive

——{><]——> Flow

a) Assume that the manufacturer has calibrated the pump at some reference tem-
perature, T..;. Write down the unsteady-state mass balance and show that the
reference mass flow rate, 7.y, delivered by the pump is given by

. dVy.
Myef = —pref dtf (1)

where p,.s and Vyes are the density and the volume of the liquid in the pump
cylinder at the reference temperature, respectively. Integrate Eq. (1) and show



234 CHAPTER 7. UNSTEADY-STATE MACROSCOPIC BALANCES

that the variation in the liquid volume as a function of time is given by

o mref
Vres = Veey =~ < Pres ) t @

where V%, is the volume of the cylinder at ¢t = 0.

b) If the pump operates at a temperature different from the reference temperature,
show that the mass flow rate provided by the pump is given by

M=~ (V) 3)

where p and V are the density and the volume of the pump liquid at temperature
T, respectively. Expand p and V in a Taylor series in T about the reference
temperature T,.s and show that

pV = Prerref - Prerref (B — BT — Tref) (4)
where 3, the coefficient of volume expansion, is defined by
1 {oV 1 6p)
= —= —_— = - = —_— 5
g |4 <6T>P P (GT P )

in which the subscripts L and C represent the liquid and the cylinder, respectively.
Indicate the assumptions involved in the derivation of Eq. (4).

c) Show that the substitution of Eq. (4) into Eq. (3) and making use of Egs. (1)
and (2) gives the fractional error in mass flow rate as

i e ar
BBl (B =B T~ Tup) + (1) B =BG O
where V.
= —rel
Ro=——4 (M)

Note that the first and the second terms on the right-side of Eq. (6) represent,

respectively, the steady-state and the unsteady-state contributions to the error
term.

d) Assume that at any instant the temperature of the pump liquid is uniform and
equal to that of the surrounding fluid, i.e., the cylinder wall is diathermal, and
determine the fractional error in mass flow rate for the following cases:

e The temperature of the fluid surrounding the pump, T, is constant. Take
Be=4x10°K™, 8, =11x 103K, and T; — Tyef = 5K.

e The temperature of the surrounding fluid changes at a constant rate of 1 K/ h.
Take V2, = 500cm® and R, = 25cm®/h.
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e The surrounding fluid temperature varies periodically with time, i.e.,
Tf =Tres + Asinwt (8)
Take A =1°C and w = 8rh™.
e) Now assume that the liquid temperature within the pump is uniform but dif-

ferent from the surrounding fluid temperature as a result of a finite rate of heat
transfer. If the temperature of the surrounding fluid changes as

T =T + (Tref - TOO)e—ﬂ To < T-ref (9)

where T, is the asymptotic temperature and 7 is the time constant, show that the
fractional error in mass flow rate is given by

¢ - Ve o
e GUET R P ¢‘—1+<—Rf —t) T o)
The terms f and ¢ are defined as
m_mref 1
f=-— 11
Mres (B — BN Tres — Too) (1
UA
¢ = Ve (12)
P

where A is the surface area of the liquid being pumped, U is the overall heat
transfer coefficient, and Cp is the heat capacity of the pump liquid.

f) Show that the time, t*, at which the fractional error function f achieves its
maximum absolute value is given by

¢—T
This problem is studied in detail by Eubank et al. (1985).

7.24 A spherical salt, 5cm in diameter, is suspended in a large, well-mixed tank
containing a pure solvent at 25°C. If the percent decrease in the mass of the sphere
is found to be 5% in 12 minutes, calculate the average mass transfer coefficient.
The solubility of salt in the solvent is 180kg/ m® and the density of the salt is
2500 kg/ m3.

(Answer: 8.2 x 107%m/s)

7.25 The phosphorous content of lakes not only depends on the external loading
rate but also on the interactions between the sediments and the overlying waters.
The model shown in Figure 7.6 is proposed by Chapra and Canale (1991) in which
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the sediment layer gains phosphorous by settling and loses phosphorous by recycle
and burial.

m;, Qour
LAKE
(P))
/Y
Settling Recycle
Y
SEDIMENT LAYER
(Py)
Burial

Figure 7.6 Schematic diagram for Problem 7.25

Show that the governing equations for the phosphorous concentrations in the
lake, P;, and in the sediment layer, P;, are given as

. dPp;
Min — Qoutpl - UaA2P1 + A2(kc>rP2 = Vl E}' (1)
dP:
vs A2 Py — Ag(ke)r Py — Aake)o P2 = Vo d—: (2)
where

m;, = loading rate = 2000 kg /year
Q,ou: = outflow volumetric flow rate = 80 x 10% m3 /year
v, = settling velocity of phosphorous = 40m/year
Ay = surface area of the sediment layer = 4.8 x 108 m?
(kc)r = recycle mass transfer coefficient = 2.5 x 1072 m/year
(kc)p = burial mass transfer coefficient = 1 x 1073 m/year
Vi = volume of the lake = 53 x 108 m3
Vo = volume of the sediment layer = 4.8 x 105 m3

and determine the variation of P; in mg/m? as a function of time if the initial
concentrations are given as P; = 60mg/ m® and P, = 500,000 mg/ m3.

(Answer: P = 22.9 — 165.4¢ 5311t 4 202.5¢~0-081 ")



Chapter 8

Steady-State Microscopic
Balances Without
Generation

So far we have considered macroscopic balances in which quantities such as temper-
ature and concentration varied only with respect to time. As a result, the inventory
rate equations are written by considering the total volume as a system and the re-
sulting governing equations turn out to be the ordinary differential equations in
time. If the dependent variables such as velocity, temperature and concentration
change as a function of both position and time, then the inventory rate equations
for the basic concepts are written over a differential volume element taken within
the volume of the system. The resulting equations at the microscopic level are
called the equations of change.

In this chapter we will consider steady-state microscopic balances without in-
ternal generation. Therefore, the governing equations will be either ordinary or
partial differential equations in position. It should be noted that the treatment
for heat and mass transport is different from the one for momentum transport.
The main reasons for this are: (i) momentum is a vector quantity while heat and
mass are scalar, (i7) in heat and mass transport the velocity appears only in the
convective flux term, while it appears both in the molecular and convective flux
terms for the case of momentum transfer.

237
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8.1 MOMENTUM TRANSPORT

Momentum per unit mass, by definition, is the fluid velocity and changes in velocity
can result in momentum transport. For fully developed flow! through conduits,
velocity variations take place in the direction perpendicular to the flow since no-
slip boundary conditions must be satisfied at the boundaries of the conduit. This
results in the transfer of momentum in the direction perpendicular to the flow
direction.

The inventory rate equation for momentum at the microscopic level is called
the equation of motion. It is a vector equation with three components. For steady
transfer of momentum without generation, the conservation statement for momen-
tum reduces to

(Rate of momentum in) — (Rate of momentum out) =0 (8.1-1)

When there is no generation of momentum, this implies that both pressure and
gravity terms are zero. Hence, flow can only be generated by the movement of
surfaces enclosing the fluid and the resulting flow is called Couette flow. We will
restrict our analysis to cases in which the following assumptions hold:

1. Incompressible Newtonian fluid,
2. One-dimensional?, fully developed laminar flow,

3. Constant physical properties.

The last assumption comes from the fact that temperature rise as a result of viscous
dissipation during fluid motion, i.e., irreversible degradation of mechanical energy
into thermal energy, is very small and cannot be detected by ordinary measuring
devices in most of the cases. Hence, for all practical purposes the flow is assumed
isothermal.

8.1.1 Plane Couette Flow

Consider a Newtonian fluid between two parallel plates that are separated by a
distance B as shown in Figure 8.1. The lower plate is moved in the positive
z—direction with a constant velocity of V' while the upper plate is held stationary.

! Fully developed flow means there is no variation of velocity in the axial direction. In this way,
the flow development regions near the entrance and exit are not taken into consideration.
2 One-dimensioneal flow indicates that there is only one non-zero velocity component.
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k@

— 1 g v

Figure 8.1 Couette flow between two parallel plates.

The first step in the translation of Eq. (8.1-1) into mathematical terms is to
postulate the functional forms of the non-zero velocity components. This can be
done by making reasonable assumptions and examining the boundary conditions.
For the problem at hand, the simplification of the velocity components is shown in
Figure 8.2.

One-dimensional flow -
vx='vy=0 | vz=0 (%02 1)

|
Large aspect ratio
W/B>>1

v

Steady-state

Y

Vy,=0,(x,28)

dvy/ 0= 0 " Y=
v
Fully developed flow _
B, /2 =0 | %e=v

Figure 8.2 Simplification of the velocity components for Couette flow between
two parallel plates.

Since v, = v,(z) and v, = v, = 0, Table C.1 in Appendix C indicates that the
only non-zero shear-stress component is 7,. Therefore, the components of the



240 CHAPTER 8. STEADY MICROSCOPIC BALANCES WITHOUT GEN.

total momentum flux are expressed as

dv,
Moz = Taz + (PV:) Ve = Taz = —p — (8.1-2)
Tyz = Tyz + (pq_)z)'uy =0 (813)
Mez = Tzz + (P'Uz) Vz = Pvf (8'1'4)

For a rectangular differential volume element of thickness Az, length Az and width
W, as shown in Figure 8.1, Eq. (8.1-1) is expressed as

(Tazl, WAZ + mo|, WAZ) — (T2l p, WAZ + Tz, p, WAZ) =0 (8.1-5)

Following the notation introduced by Bird et al. (1960), “in” and “out” directions
for the fluxes are taken in the direction of positive z— and z—axes. Dividing Eq.
(8.1-5) by WAz Az and taking the limit as Az — 0 and Az — 0 gives

. lelz - WZZI;+A: . WTZI:: - WZZI::+A:: _
Alirl].o Az * Alalclgo Az =0 (8.1-6)
or,
aﬂzz d'ﬂ'x; _
52 T de = 0 (8.1-7)
Substitution of Eqs. (8.1-2) and (8.1-4) into Eq. (8.1-7) and noting that dv,/0z = 0
yields
d (dv,
The solution of Eq. (8.1-8) is
v,=Ciz+Cy (81-9)

where C and C; are constants of integration. The use of the boundary conditions

at z=0 v, =V (8.1-10)
at z=208 v, =0 (8.1-11)
gives the velocity distribution as
V, T
Z o1 -
v B (8.1-12)

The use of the velocity distribution, Eq. (8.1-12), in Eq. (8.1-2) indicates that
the shear stress distribution is uniform across the cross-section of the plate, i.e.,

_ MY

Ter =5 (8.1-13)
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The volumetric flow rate can be determined by integrating the velocity distri-
bution over the cross-sectional area, i.e.,

w B
Q= / / v, dzdy (8.1-14)
o Jo

Substitution of Eq. (8.1-12) into Eq. (8.1-14) gives the volumetric flow rate in the
form

o= WY o~

Dividing the volumetric flow rate by the flow area gives the average velocity as

Q Vv
(vz) = WB_ 2 (8.1-16)

8.1.2 Annular Couette Flow

Consider a Newtonian fluid in a concentric annulus as shown in Figure 8.3. The
inner circular rod moves in the positive z—direction with a constant velocity of V.

Fluid at P, \ ( Fluid at £,

Hod of radius k&

Figure 8.3 Couette flow in a concentric annulus.
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For the problem at hand, the simplification of the velocity components is shown
in Figure 8.4. Since v, = v,(r) and v, = vy = 0, Table C.2 in Appendix C indicates
that the only non-zero shear-stress component is 7,,. Therefore, the components
of the total momentum flux are given by

dv,

Tz = Trz + (Pvz) Vp =Tpz = — U dr (81'17)
Mo, = Toz + (pv)vg =0 (8.1-18)
Tez = Tzz + (PV) Uy = p’uf (8.1-19)

One-dimensional flow

A

v=v,(56,21)

'Dr = 'De =0
; |
Angular symmetry

A

V,=0,(52 1)

]

(56,2 1) =v(r0+mz1)

!

Steady-state S v, =, (r2)
v, /61 =0 A

v
Fully developed flow
vy /0z=0

Y

vz=vz(r)

Figure 8.4 Simplification of the velocity components for Couette flow in a
concentric annulus.

For a cylindrical differential volume element of thickness Ar and length Az, as
shown in Figure 8.3, Eq. (8.1-1) is expressed as
(22l 2mrAr + 7,4, 217 AZ) — [7r,z|z+Az 2mrAr
+ Trzlopar 2m(r + Ar)Az] =0 (8.1-20)
Dividing Eq. (8.1-20) by 27rArAz and taking the limit as Ar — 0 and Az — 0

gives

. sz’z - 7rzzlz+Az . (rﬂ"l‘l)lr - (TWT‘Z)Ir-{—Ar
dmr (P ¢ i, Ar -0 G
or,
Om.,  d(rmy;)
"5, + e 0 (8.1-22)
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Substitution of Egs. (8.1-17) and (8.1-19) into Eq. (8.1-22) and noting that
Ov, [0z = 0 gives the governing equation for velocity as

Iz(ir [7‘ (‘Z’: )] =0 (8.1-23)
The solution of Eq. (8.1-23) is
v, =Cilnr + Cy (8.1-24)
where € and (5 are integration constants. The use of the boundary conditions
at =R v,=0 (8.1-25)
at 7=kR v, =V (8.1-26)
gives the velocity distribution as
UT/E = llg/Tm (8.1-27)
The use of the velocity distribution, Eq. (8.1-27), in Eq. (8.1-17) gives the
shear stress distribution as
Trs = — (%:-) % (8.1-28)

The volumetric flow rate is obtained by integrating the velocity distribution
over the annular cross-sectional area, i.e.,

27 R
Q =/ / v, T drdf (8.1-29)
0 KR
Substitution of Eq. (8.1-27) into Eq. (8.1-29) and integration gives
R2V [ 1— k2
= —2K? -
0= "5 | 2+ (8:1-50)
Dividing the volumetric flow rate by the flow area gives the average velocity as
Q 1% 1 2 K2
J= = — — 1-31
) = T =) ~ 2 [ln(l/fc) 1-52] (8.1-31)

The drag force acting on the rod is
Fp=—"Trs|,—pg 27kRL (8.1-32)
The use of Eq. (8.1-28) in Eq. (8.1-32) gives

_ 2mulLV
" Ink

Fp (8.1-33)
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8.1.2.1 Investigation of the limiting case

Once the solution to a given problem is obtained, it is always advisable to in-
vestigate the limiting cases if possible, and compare the results with the known
solutions. If the results match, this does not necessarily mean that the solution is
correct, however, the chances of it being correct are fairly high.

In this case, when the ratio of the radius of the inner pipe to that of the outer
pipe is close to unity, i.e., K — 1, a concentric annulus may be considered to be a
thin-plane slit and its curvature can be neglected. Approximation of a concentric
annulus as a parallel plate requires the width, W, and the length, L, of the plate
to be defined as

W =nR(1+kK) (8.1-34)

B=R(l-k) (8.1-35)

Therefore, the product W B is equal to

WB = nR*(1 — k?) = nR? = iwfi—i (8.1-36)
so that Eq. (8.1-30) becomes
WBV . 1 K2
Q= 5 ll-»ml [— i 2 (l_——n_2>} (8.1-37)
Substitution of ¥ = 1 — « into Eq. (8.1-37) gives
_WBV 1 (1-1)?
e=— iimo{ In(1 — ) 2[1-(1-«,0)? (8.1-38)
The Taylor series expansion of the term In{1 — ¢) is
1 o 14
ln(1-1/))=—1,[)—§1,[) —§¢ - -1<y<1 (8.1-39)

Using Eq. (8.1-39) in Eq. (8.1-38) and carrying out the divisions yields

L Y )

2 40|92 12 29 478
or,
WBV . 2 WBV
Q= —5— lim (1 +3¥+ ) - (8.1-41)

Note that Eq. (8.1-41) is equivalent to Eq. (8.1-15).
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8.2 ENERGY TRANSPORT WITHOUT
CONVECTION

The inventory rate equation for energy at the microscopic level is called the equation
of energy. For a steady transfer of energy without generation, the conservation
statement for energy reduces to

(Rate of energy in) = (Rate of energy out) (8.2-1)

The rate of energy entering and leaving the system is determined from the energy
flux. As stated in Chapter 2, the total energy flux is the sum of the molecular
and convective fluxes. In this case we will restrict our analysis to cases in which
convective energy flux is either zero or negligible compared with the molecular flux.
This implies transfer of energy by conduction in solids and stationary liquids.

8.2.1 Conduction in Rectangular Coordinates

Consider the transfer of energy by conduction through a slightly tapered slab as
shown in Figure 8.5. If the taper angle is small and the lateral surface is insu-
lated, energy transport can be considered one-dimensional in the z—direction®, i.e.,
T =T(z).

Figure 8.5 Conduction through a slightly tapered slab.

Table C.4 in Appendix C indicates that the only non-zero energy flux component

is e, and it is given by .
e: =g, =—k = (8.2-2)
The negative sign in Eq. (8.2-2) implies that positive z—direction is in the direction
of decreasing temperature. If the answer turns out to be negative, this implies that
the flux is in the negative z—direction
For a differential volume element of thickness Az, as shown in Figure 8.5,

Eq. (8.2-1) is expressed as
(Ag:)l, — (Ag:)lon, =0 (8.2-3)

3The z—direction in the rectangular and cylindrical coordinate systems are equivalent to each
other.
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Dividing each term by Az and taking the limit as Az — 0 gives

Ag.)l. — (Aq.
lim ( q )Iz ( q )|z+Az
Az—0 Az

=0 (8.2-4)

or,

d(Ag:)

o 0 (8.2-5)

Since flux times area gives the heat transfer rate, Q, it is possible to conclude from
Eq. (8.2-5) that
Agq, = constant = Q (8.2-6)

in which the area A is perpendicular to the direction of energy flux. Substitution
of Eq. (8.2-2) into Eq. (8.2-6) and integration gives

/0 (T)dT = Q/ o (8.2-7)

where C is an integration constant. The determination of Q and C requires two
boundary conditions.

If the surface temperatures are specified, i.e.,

at z=20 T=T,

(8.2-8)
at z=1L T = TL
the heat transfer rate as well as the temperature distribution as a function of
position are given in Table 8.1.

On the other hand, if one surface is exposed to a constant heat flux while the
other one is maintained at a constant temperature, i.e.,

aT
at z=0 —k— =
d % (8.2-9)

at z=1L T=TL

the resulting heat transfer rate and the temperature distribution as a function of
position are given in Table 8.2. It should be noted that the boundary conditions
given by Egs. (8.2-8) and (8.2-9) are not the only boundary conditions available for
energy transport. For different boundary conditions, Eq. (8.2-7) should be used to
determine the constants.
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Table 8.1 Heat transfer rate and temperature distribution for one-dimensional
conduction in a plane wall for the boundary conditions given by Eq. (8.2-8).

Heat Transfer

Constants Rate Temperature Distribution
To > z
/ K(T)dT /T K(T)dT / _dz_
Ty, T __Jo A(Z)
None ——L—'-(;;—‘ (A) T, - 12 dz (E)
) 4 S e [
/z dz
k(T,-T 7,-T A(z
¢ —LTZL) B) T, = ;z) )
/0 Az) /0 A(z)
T, o
A / k(T) dT / " (@) ar
T, T z
A I (9) T~ I (G)
/T k() ar
k k(T,—Tp)A T,-T =z
N L (®) T,-T, L e

Table 8.2 Heat transfer rate and temperature distribution for one-dimensional
conduction in a plane wall for the boundary conditions given by Eq. (8.2-9).

Heat Transfer

Constants Rate Temperature Distribution
T L g,
None Al _~q0 (A / k(T)dT = A|,_¢% —_— E
Iz_Oq ( ) T, ( ) I ._.Oq . A(Z) ( )
Al,0 % L dz
Eo Aot (B) r-n=—22 [ ®
T z
4 Ao (©) [ HDa=al(1-7)  ©
Tw L
k Ags (D) ro1, =% (1-%) (H)
A Go L A 7




248 CHAPTER 8. STEADY MICROSCOPIC BALANCES WITHOUT GEN.

Example 8.1 Consider a solid cone of circular cross-section as shown in Figure

8.6. The diameter at z =0 is 8cm and the diameter at 2 = L is 10cm. Calculate

the steady rate of heat transfer if the lateral surface is well insulated and the thermal

conductivity of the solid material as a function of temperature is given by
k(T)=400-0.07T

where k is in W/ m.K and T is in degrees Celsius.

iﬁ— L=40cm —‘—!

35°C

Figure 8.6 Conduction through a solid cone.
Solution

The diameter increases linearly in the z—direction, i.e.,
D(2) =0.052z +0.08

Therefore, the cross-sectional area perpendicular to the direction of heat fluz is
gven as a function of position in the form

D2
Az) = WT - %(0.05,: +0.08)>2

The use of Eq. (A) in Table 8.1 with T, = 80°C, Tt = 35°C and L = 0.4m gives
the heat transfer rate as

80
(400 — 0.07T) dT
35

/0.4 dz
. 7(0.057+0.082/4

Example 8.2 Consider the problem given in Example 2.2. Determine the tem-
perature distribution within the slab.
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Solution

With Ty, = 35°C, g, = 100,000W/m?, k =398 W/ m.K and L = 0.04m, Eq. (H)
in Table 8.2 gives the temperature distribution as

T-3=

(100, 000)(0.04) z
398 ( - 0.04)

or,
T =451-2513=

Example 8.3 In rivers ice begins to form when water is cooled to 0°C and con-
tinues to lose heat to the atmosphere. The presence of ice on rivers not only causes
transportation problems but also floods on its melting. Once the ice cover is formed,
its thickening depends on the rate of heat transferred from the water, through the
ice cover, to the cold atmosphere. As an engineer you are asked to estimate the
increase in the thickness of the ice block as a function of time.

Solution
Assumptions

1. Pseudo-steady-state behavior.

2. River temperature is close to 0°C and the heat transferred from water to ice
is negligible. This assumption implies that the major cause of ice thickening
is the conduction of heat through the ice.

Analysis

System: Ice block

Since the density of ice is less than that of water, it floats on the river as shown in
Figure 8.7. The temperatures T,, and Ts represent the melting temperature (0°C)
and the top surface temperature, respectively.

Air, T,
T,
7
v )
zl Ice i
7

—> Water

River bqlhmz

Figure 8.7 Ice block on a river.
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The temperature distribution in the ice block under steady conditions can be deter-
mined from Eq. (H) in Table 8.1 as

T —T z
== 1
T —T, L (1)
Therefore, the steady heat flur through the ice block is given by
dT
qz = — k -d—Z
k(Tm —T5)

= 2Am oS 2
- 2)

For the ice block, the macroscopic inventory rate equation for energy is
— Rate of energy out = Rate of energy accumulation (3)

If the enthalpy of liguid water at T,, is taken as zero, then the enthalpy of solid ice

18
T,

Hie=-5— [ Cpdr (4)
T
Negligible
Therefore, Eq. (3) is expressed as
d .
~g. A== [ALp(-Y)] (5)

For the unsteady-state problem at hand, pseudo-steady-state assumption implies
that Eq. (2) holds at any given instant, i.e.,

k(Th —Ts)
2l) = ——F7—
lt) =~ ©)
Substitution of Eq. (6) into Eq. (5) and rearrangement gives
L k t
/ LdLZ_T/(Tm—Ts)dt )
0 pAJo
Integration yields the thickness of the ice block in the form
9 ¢ 1/2
L= [—’f / (T — Ts)dtJ (8)
pAJo

8.2.1.1 Electrical circuit analogy

Using the analogy with Ohm’s law, i.e., current = voltage/resistance, it is custom-
ary in the literature to express the rate equations in the form
_ Driving force

e = Resistance -
Rate Resistance (8.2-10)
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Note that Eq. (D) in Table 8.1 is expressed as
T, - TL

) = 8.2-11
@=2= (5.211)
kA
Comparison of Eq. (8.2-11) with Eq. (8.2-10) indicates that
Driving force =T, — T}, (8.2-12)
L Thickness
ist = — = 2=
Resistance kA  (Transport property)(Area) (8.2-13)

Hence, the electric circuit analog of the plane wall can be represented as shown
in Figure 8.8. Note that the electrical circuit analogy holds only if the thermal
conductivity is constant. In the case of a composite plane wall, the resulting
electrical circuit analogs are shown in Figure 8.9.

L
R=—
kA
T, Q U3

Figure 8.8 Electrical circuit analog of the plane wall.

Ry Rp
— A B ’ﬁ
T T VV VY VYVYV .
] 2 T, 0 T2
Rp

2

—
L

Figure 8.9 Electrical circuit analogs of composite plane walls in series and
parallel arrangement.
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Example 8.4 For the composite wall shown in Figure 8.10, related thermal con-
ductivities are given as kqa = 35W/m. K, kg = 12W/m.K, k¢ = 23W/m.K,
and kp = 5W/m.K.

a) Determine the steady-state heat transfer rate.

b) Determine the effective thermal conductivity for the composite walls. This makes
it possible to consider the composite wall as a single material of thermal conductivity
kes s, rather than four different materials with four different thermal conductivities.

T} = 300°C 6 lcm B Ty=22°C
| A * D 1_]
3cm C /vI
] 1m

}- 10cm r}- 20 cm ,]L 8 cm—/

Figure 8.10 Heat conduction through a composite wall.

Solution

a) An analogous electrical circuit for this case is shown below:
Rp
—AM— —AM—;

Re

The equivalent resistance, R,, of the two resistances in parallel is

Thus, the electrical analog for the heat transfer process through the composite wall
can be represented as shown below:

R4 R, Rp
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Using Eq. (8.2-13) the resistances are calculated as follows:

La 0.1
R = = = Vu.
AT kaAd~ (35)(0.09 x 1) 0.032K/W
L 0.2
RB‘kBA_(uxu%x1)”02mK/W
L 0.2 B
RC‘km4"@$QMxn"”2%K“V
Rp=-tp . ___008 =0.178K/W

T koA (5)(0.09 x 1)

-1 -1
1 1
=(mrm) =(oomtomm) =omex/w

The total resistance of the entire circuit is
Y R=Ra+ Ro,+ Rp=0.032+0.142 + 0.178 = 0.352 K/ W

Hence, the heat transfer rate is

. Th—-T, 300-22
« Y. R 0.352 o

b) Note that

L
R =
by kerr A

S5L
» MITATR

Therefore, the effective thermal conductivity is

L _ 01+024008
/1= 10.09 x 1)(0.352)

=12W/m. K

8.2.1.2 Transfer rate in terms of bulk fluid properties

Consider the transfer of thermal energy from fluid A, at a temperature T4 with
an average heat transfer coefficient (h4), through a solid plane wall with thermal
conductivity &, to fluid B, at a temperature Tp with an average heat transfer
coefficient (hg), as shown in Figure 8.11.
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SO

o
\ T, Cold fluid “B”
K——

Hot fluid “A” Tg

>z

Figure 8.11 Heat transfer through a plane wall.

When the thermal conductivity and the area are constant, the heat transfer
rate is calculated from Eq. (8.2-11). The use of this equation, however, requires
the values of T, and T, be known or measured. In common practice, it is much
easier to measure the bulk fluid temperatures, T4 and Tg. It is then necessary to
relate T, and Ty, to T4 and T'g.

The heat transfer rates at the surfaces z = 0 and z = L are given by Newton’s
law of cooling with appropriate heat transfer coefficients and expressed as

Q = A(ha)(Ta — To) = A(hg)(TL — Tg) (8.2-14)

Equations (8.2-11) and (8.2-14) can be rearranged in the form

1

TA - To = Q (m) (82—15)
T,—T, =Q (Aik> (8.2-16)
n—%=Q<M;J (8.2-17)

Addition of Egs. (8.2-15)-(8.2-17) gives

: 1 L 1
Ta—Tg =Q<m+ﬂ+m) (8.2-18)
or,
Q=71 (8.2-19)
Aha) " Ak T Ahg)

in which the terms in the denominator indicate that the resistances are in series.
The electrical circuit analogy for this case is given in Figure 8.12.
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1 L 1
A<hA> kA A <hB>
T : T
A 0 B

Figure 8.12 Electrical circuit analogy.

Example 8.5 A plane wall separates hot air (A) at a temperature of 50°C from
cold air (B) at —10°C as shown in Figure 8.13. Calculate the steady rate of heat
transfer through the wall if the thermal conductivity of the wall is

a) k=0.7W/m.K
b) k=20W/m.K

H=3m
Air : Air
T P T
T, = 50°C Tg = -10°C
Vo = 10 m/s W=10m v = 15 m/s
XA Y,/ /
L__J_Z L=20cm

Figure 8.13 Conduction through a plane wall.
Solution
Physical properties

v=1791x10"%m?/s
For air at 50°C (323K) :{ k=27.80 x 1073 W/m.K
Pr=10.708

v=12.44 x 10~%m?/s
For air at —10°C (263K) : { k=23.28 x 10 W/ m.K
Pr=10.72
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v =16.33 x 1074 m?/s
For air at 33.5°C (306.5K) : { £ =26.59 x 107*W/m.K

Pr=0.711
v =13.30 x 10~ m?/s
For air at 0°C (273 K) :{ k=2407x 103 W/ m. K
Pr=10.717
Analysis

The rate of heat loss can be calculated from Eq. (8.2-19), i.e.,

. WH(T4 — Th)
@=-7 L L, 1 (1)
(ha) ~ k  (hs)
The average heat transfer coefficients, (ha) and (hp), can be calculated from the
correlations given in Table 4.2. However, the use of these equations require physical
properties to be evaluated at the film temperature. Since the surface temperatures
of the wall cannot be determined a priori, as a first approzimation, the physical
properties will be evaluated at the fluid temperatures.

Left-side of the wall

Note that the characteristic length in the calculation of the Reynolds number is
10m. The Reynolds number is

Re:ﬂ’ﬁ

(10)(10)

_ . 6
= T791x10-6 — 06> 10 (2)

Since this value is between 5 x 10% and 108, both laminar and turbulent conditions
exist on the wall. The use of Eq. (E) in Table 4.2 gives the Nusselt number as

(Nu) = (0.037Re}/® - 871) Pr'/3
- [0.037 (5.6 x 106)4/5 — 871] (0.708)1/3 = 7480 3)

Therefore, the average heat transfer coefficient is

i)
— (7480) <M

10 ) =20.8W/m? K (4)
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Right-side of the wall

The Reynolds number is
Lepvoo

Re =
v

__oas) 6
= Tadx 1o - A0

The use of Eq. (E) in Table 4.2 gives
(Nu) = (0.037Re}/® — 871) Pr'/®
- [0.037 (12.1 x 106)%/5 — 871] (0.72)'/% = 14,596

Therefore, the average heat transfer coefficient is

(i) = %) (7= )

23.28 x 1073
= (14, 596) <—"‘1—0"'—

a) Substitution of the numerical values into Eq. (1) gives
O = (10)(3) [50 — (= 10))

=1 0 T

208 0.7 34

):34W/m2.K

= 4956 W

257

(8)

Now we have to calculate the surface temperatures and check whether it is appropri-
ate to evaluate physical properties at the fluid temperatures. The electrical circuit

analogy for this problem is shown below:

1 L 1
A<hy> Ak A<hg>

TA T ] T2 TB

The surface temperatures Ty and Ty can be calculated as

Ty, =T — ———
VT AT A(ha)

4956 .
B Q
=T+ 2y

4956 \
——10-*-@0—)@——5 C

(10)
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Therefore, the film temperatures at the left- and right-sides of the wall are (42 +
50)/2 = 46°C and (— 10— 5)/2 = —7.5°C, respectively. Since these temperatures
are not very much different from the fluid temperatures, the heat transfer rate can
be considered equal to 4956 W.

b) For k =20W/m.K, the use of Eq. (1) gives

0= (10)1(3) [5%‘; - 10)] = 20,574 W (11)

20820 " :
The surface temperatures Ty and T, can be calculated as

$
To=Ta= Tnmy

20,574

=0~ Goye0s)

~17°C (12)

T, =T + “——A (hB>

20,574
(30)(34)
In this case, the film temperatures at the left- and right-sides are (17 + 50)/2 =
33.5°C and (—10 + 10)/2 = 0°C, respectively. Since these values are different

from the fluid temperatures, it is necessary to recalculate the average heat transfer
coefficients.

Left-side of the wall

=10+ ~10°C (13)

Using the physical properties evaluated at 33.5°C, the Reynolds number becomes

Re — Lervoo
14
_ _(10(10) 6
= Earaqoms = 6110 (14)
The Nusselt number is
(Nu) = (0.037Re¥/® —871) Prl/3
= [0.087 (6.1 x 108)/° — 871] (0.711)/ = 8076 (15)

Therefore, the average heat transfer coefficient is

(ha) = (Nu) ( L’“)

26.59 x 1073
= (8076) (——1)8—0> =21.5W/m% K (16)
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Right-side of the wall

Using the physical properties evaluated at 0°C, the Reynolds number becomes

Re = Lepvso
124

__(oas) 6
= 3301078 = 113 %10 (17)

The use of Eq. (E) in Table 4.2 gives

(Nu) = (0.037Re?/® —871) Pr'/?
- [0.037(11.3 x 106)4/5 _ 871] (0.717)1/3 = 13,758 (18)

Therefore, the average heat transfer coefficient is

(ha) = (Nu) ( L’;)

24.07 x 103
= (13,758) ('——‘10—“

) =33.1W/m2 K (19)

Substitution of the new values of the average heat transfer coefficients, Eqs. (16)
and (19), into Eq. (1) gives the heat transfer rate as

(10)(3) [50 — (= 10)]

Q=TT =20,756W (20)
215~ 20 ' 331
The surface temperatures are
Q
Th=Ts— —71—
20, 756
=50 — ——=x ~18°C 21
50~ &0y @) @)
_ Q
B=T5 % )
20, 756
=10 + o ~ 11°C 22
0+ 530)(33.1) (22)

Since these values are almost equal to the previous values, then the rate of heat loss
is 20,756 W.

Comment: The Biot numbers, i.e., {h)Lcn/k, for this problem are calculated as
follows:
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Left Side Right Side

Part (a) 5.9 9.7
Part (b) 0.2 0.3

Note that the physical significance of the Biot number was given by Eq. (7.1.14),
i.e.,

(Difference in driving force),,,;,

Bi= (Difference in driving force) 1,4

Therefore, when Bi is large, the temperature drop between the surface of the wall
and the bulk temperature is small and the physical properties can be calculated at the
bulk fluid temperature rather than the film temperature in engineering calculations.
On the other hand, when Bi is small, the temperature drop between the surface of
the wall and the bulk fluid temperature is large and the physical properties must be
evaluated at the film temperature. Evaluation of the physical properties at the bulk
fluid temperature for small values of Bi may lead to erroneous results especially if
the physical properties of the fluid are strongly dependent on temperature.

8.2.2 Conduction in Cylindrical Coordinates

Consider a one-dimensional transfer of energy in the r—direction in a hollow cylin-
drical pipe with inner and outer radii of Ry and Rg, respectively, as shown in Figure
8.14. Since T' = T'(r), Table C.5 in Appendix C indicates that the only non-zero
energy flux component is e, and it is given by

daT
er =qr=—%k o (8.2-20)

For a cylindrical differential volume element of thickness Ar, as shown in Figure
8.14, Eq. (8.2-1) is expressed in the form

(Agr)l, — (Agr)l,yn, =0 (8.2-21)
Dividing Eq. (8.2-21) by Ar and taking the limit as Ar — 0 gives

le (Aqr)|r B <Aq"')|r+Ar
Ar—0 AT

-0 (8.2-22)

or

d(Aq,-) _
& 0 (8.2-23)

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that

A g, = constant = @ (8.2-24)
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v dr

Figure 8.14 Conduction in a hollow cylindrical pipe.

The area A in Eq. (8.2-24) is perpendicular to the direction of energy flux in the

r—direction and is given by
A=2nrL (8.2-25)

Substitution of Egs. (8.2-20) and (8.2-25) into Eq. (8.2-24) and integration gives

T Q
/0 K(T)dT = — (%—L> Inr+C (8.2-26)

where C is an integration constant.
If the surface temperatures are specified, i.e.,

at r=R; T=1
at =Ry T=T,

(8.2-27)

the heat transfer rate as well as the temperature distribution as a function of
position are given in Table 8.3.
On the other hand, if one surface is exposed to a constant heat flux while the
other one is maintained at a constant temperature, i.e.,
at =R, -k g =q
dr (8.2-28)
at =R, T=1T,
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the resulting heat transfer rate and the temperature distribution as a function of
position are given in Table 8.4.

Table 8.3 Heat transfer rate and temperature distribution for one-dimensional
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-27).

Heat Transfer

Constants Rate Temperature Distribution
T2 T r
oL / K(T)dT / KT)dT In (——)
T T RZ
None 7 (A) T = (©)
In (= In (=
() [ e (7))
T
o Lk(Ty — T)) -1 " (R—)
TR B) : = (D)

n (2 T2_T‘:1n 2!
Ry R,

Table 8.4 Heat transfer rate and temperature distribution for one-dimensional
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-28).

Heat Transfer

Constants Rate Temperature Distribution
T> r
None 2rR1Lgr  (A) K(T)dT = ¢ Ry In (F) (€)
T 2
Q1 Ry T
k 2rR1Lqy  (B) To—-T=—=In(— (D)
k Ry

8.2.2.1 Electrical circuit analogy

Equation (B) in Table 8.3 can be expressed as
Q' _ T] - T2
- ln(Rz/Rl)
2nLk

Comparison of Eq. (8.2-29) with Eq. (8.2-10) indicates that the resistance is given
by

(8.2-29)

In(Ry/Ry)

Resistance = oLk

(8.2-30)
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At first, it looks as if the resistance expression for the rectangular and the cylindrical
coordinate systems are different from each other. However, the similarities between
these two expressions can be shown by the following analysis.

Note that the logarithmic-mean area, Ap g, can be defined as

A2 — A1 . 27FL(R2 - R])

Ay = = 8.2-31
M T A) T n(Ro/E) (8230
Substitution of Eq. (8.2-31) into Eq. (8.2-30) gives
. _R—-R
Resistance = %A (8.2-32)
Note that Egs. (8.2-13) and (8.2-32) have the same general form of
Resistance = Thickness (8.2-33)

(Transport property)(Area)

The electrical circuit analog of the cylindrical wall can be represented as shown in
Figure 8.15.

Ry-R)

kAry

Ty Ty

_—0

Figure 8.15 Electrical circuit analog of the cylindrical wall.

Example 8.6 Heat flows through an annular wall of inside radius R; = 10cm
and outside radius Ry = 15cm. The inside and outside surface temperatures are
60°C and 30°C, respectively. The thermal conductivity of the wall is dependent
on temperature as follows:

T=30°C k=42W/m.K
T=60°C k=49W/m.K

Calculate the steady rate of heat transfer if the wall has a length of 2m.
Solution
Assumption

1. The thermal conductivity varies linearly with temperature.
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Analysis

The variation of the thermal conductivity uith temperature can be estimated as
49 — 42
=42 — ) (T'- 30
* (60 - 30> (T'=30)
=35+0.233T

The heat transfer rate is estimated from Eq. (A) in Table 8.8 with Ry = 10cm,
Ry =15cm, T} = 60°C and T = 30°C:

T2 Tl
onL | k(T)dT 2xL | KT)dT
Q T — T
In (Rl/Rz) ll’l (R2/R1)
27(2) %

— 35+ 0.2337)dT = 42,291 W
ln(lS/lO) 30 ( + ) ’

8.2.2.2 Transfer rate in terms of bulk fluid properties

The use of Eq. (8.2-29) in the calculation of the heat transfer rate requires surface
values 77 and T3 be known or measured. In common practice, the bulk tempera-
tures of the adjoining fluids to the surfaces at R = R; and R = Ry, i.e.,, T4 and
Tpg, are known. It is then necessary to relate 77 and T to T4 and Ts.

The heat transfer rates at the surfaces R = R; and R = R, are expressed in
terms of the heat transfer coefficients by Newton’s law of cooling as

Q = A (ha)(Ta — T)) = Az(hp) (T2 — Tp) (8.2-34)
The surface areas A; and A; are expressed in the form
Ay =2rR L and Ay =27wRyL (8.2-35)
Equations (8.2-29) and (8.2-34) can be rearranged in the form

Ta—T =Q (m) (8.2-36)
T, -Ty=Q <R2L;Izl) (8.2-37)
Ty—Tp = Q (712(%?)) (8.2-38)

Addition of Eqgs. (8.2-36)-(8.2-38) gives

. 1 Ry — R 1
Ty —Tp = )
A B=0Q (Al(hA) + Ak + Az(hs)) (8.2-39)
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or,

Q- _ T4 —Tg
- 1 n Ry — R, " 1
Ailha) Armk Az(hB)

(8.2-40)

in which the terms in the denominator indicate that the resistances are in series.
The electrical circuit analogy for this case is given in Figure 8.16.

] R2_R1 ]
A1 <hA> kALM Az <hB>

Ty Tg

_——_>Q

Figure 8.16 Electrical circuit analogy for Eq. (8.2-40).

In the literature, Eq. (8.2-40) is usually expressed in the form
Q = AlUA(TA - TB) = A2UB(TA - TB) (82—41)

where the terms U4 and Up are called the overall heat transfer coefficients. Com-
parison of Eq. (8.2-41) with Eq. (8.2-40) gives U4 and Ug as

Ua = (hlA) + (RzA_Lﬁllc) - (h::)lAz]_l
- F <h1A)  BalnlfalB) <hf)1R2]—l (8.2-42)
and
Us = :<hf)2A1 " (R2A_Lﬁlk) 2 <h13)]_1
_ [(hf)le + Rzln(fz/Rl) + <h13)]_1 (8.2-43)

Example 8.7 Consider a cylindrical pipe of length L with inner and outer radii
of Ry and Rs, respectively, and investigate how the rate of heat loss changes as a
function of insulation thickness.

Solution

The immediate reaction of most students after reading the problem statement is
“What’s the point of discussing the rate of heat loss as a function of insulation
thickness? Adding insulation thickness obviously decreases the rate of heat loss.”
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This conclusion is true only for planar surfaces. In the case of curved surfaces,
however, close examination of Eq. (8.2-32) indicates that while addition of insu-
lation increases the thickness, i.e., Ry — Ry, it also increases the heat transfer
area, i.e., Appyr. Hence, both numerator and denominator of Eq. (8.2-32) increase
when the insulation thickness increases. If the increase in the heat transfer area is
greater than the increase in thickness, then resistance decreases with a concomitant
increase in the rate of heat loss.
For the geometry shown in Figure 8.17, the rate of heat loss is given by

5 Ta—Ts
RS S X (Y D ) i 1)
wRiL(ha) | 2nLk, | 2nLk T 2nBsL{hp)

~ )

X
where k, and k; are the thermal conductivities of the wall and the insulating
material, respectively.

/_\\ "-\\\
; \
-9
i i a <

k

W I

by

Figure 8.17 Conduction through an insulated cylindrical pipe.

Note that the term X in the denominator of Eq. (1) is dependent on the insulation
thickness. Differentiation of X with respect to R3 gives

dx 1 (1 1
dR; ~ 2nL (ngi (he) Rg) 7 (hs) ()

To determine whether this point corresponds to a minimum or a mazimum value,
it is necessary to calculate the second derivative, i.e.,

£x - (hg) >0 (3)
2 3
dR3 Ra=k;/(hg) 2nL k;
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Therefore, at Ry = k;/(hg), X has the minimum value. This implies that the
rate of heat loss will reach the mazimum value at Ry = Re, = ki/(hp), where
R, s called the critical thickness of insulation. For Ry < Rz < R, addition
of insulation causes an increase in the rate of heat loss rather than a decrease. A
representative graph showing the vartation of the heat transfer rate with insulation
thickness is given in Figure 8.18.

0

R, R R* Ry

Figure 8.18 Rate of heat loss as a function of insulation thickness.

Another point of interest is to determine the value of R*, the point at which
the rate of heat loss is equal to that of the bare pipe. The rate of heat loss through
the bare pipe, QQ,, is

Ta—Tsg (4)
1 + In (Rz/Rl) + 1
27TR1L(hA> 27TLkw 27TR2L<I‘I,B>

Qo:

On the other hand, the rate of heat loss, Q*, when Rz = R* is

Nk TA _TB
@=— E (/R (R i (5)
9nRiL(ha) | 2nLke onLk; | 2nR*L{hg)
Fquating Egs. (4) and (5) gives
R* (hp)R* R*\ _
B ki In <R2) =1 (6)

R* can be determined from Eq. (6) for the given values of Rz, (hg), and k;.

Comment: For insulating materials, the largest value of the thermal conductivity
is in the order of 0.1W/m.K. On the other hand, the smallest value of (hg) is
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around 3W/m?. K. Therefore, the mazimum value of the critical radius is approz-
imately 3.3cm, and in most practical applications, this will not pose a problem.
Therefore, critical radius of insulation is of importance only for small diameter
wires or tubes.

Example 8.8 Steam (fluid A) flows in a pipe of R; = 30cm and Ry = 45cm.
The pipe is surrounded by fluid B. Calculate the overall heat transfer coefficients
and sketch the representative temperature profiles for the following cases:

a) (ha) =10W/m? K; (hg) = 5000 W/ m?. K; k = 2000 W/ m? K

b) (ha) = 5000 W/ m2.K; (hp) = 8000W/m2. K; k = 0.02W/m?2. K

c) (ha) = 5000W/m?2 K; (hg) = 10 W/ m? K; k = 2000 W/ m? K

Solution

a) Note that the dominant resistance to heat transfer is that of fluid A. Therefore,
one expects the largest temperature drop in this region. Hence Egs. (8.2-42) and
(8.2-483) give the overall heat transfer coefficients as

Usy = <<—1—)>_1 = (ha) = 10W/m2 K

ha
(B T (B2 1060 )
UB_((M)RI) —<hA)<R2)— e = 6.67W/m% K

The expected temperature profile for this case is shoun below.

Ty

Ty

b) In this case the dominant resistance to heat transfer is that of the pipe wall.
The overall heat transfer coefficients are

k 0.02

Ug = - ~0. 2,

A= Rn(Ra/R:)  (03)in(s/30) ~ 16W/m K
k 0.02

Up = =0.11W/m% K

~ R:In(R,/R;) _ (0.45) In(45/30)

The expected temperature profile for this case is shown below:



8.2. ENERGY TRANSPORT WITHOUT CONVECTION 269

Ty ———————
T \
7,

¢) The dominant resistance to heat transfer is the resistance of fluid B. Hence, the
overall heat transfer coefficients are

Ua = ((hf)le)-l = (hs) (%) = (103’# = 15W/ m2.K

Up = (é—))—l = (hp) = 10W/m2. K

The expected temperature profile for this case is shown below:

TA—\l
T, \ T,

.

Comment: The region with the largest thermal resistance has the largest tem-
perature drop.

8.2.3 Conduction in Spherical Coordinates

Consider one-dimensional transfer of energy in the r—direction through a hollow
sphere of inner and outer radii of Ry and R, respectively, as shown in Figure 8.19.
Since T' = T'(r), Table C.6 in Appendix C indicates that the only non-zero energy
flux component is e, and it is given by
daT
r=gp = —k — 2-44
er=qr = (8.2-44)
For a spherical differential volume element of thickness Ar as shown in Fig. 8.19,
Eq. (8.2-1) is expressed in the form

(Ag:)l, — (Agr)|,yn, =0 (8.2-45)
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” o
o

lrrar

TB N <IIB>

Figure 8.19 Conduction through a hollow sphere.

Dividing Eq. (8.2-45) by Ar and taking the limit as Ar — 0 gives

Al = (Ag)]s s
i (A — (Ag)l A
Ar—0 Ar

=0 (8.2-46)

or,
d(Aqr)
dr

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that

~0 (8.2-47)
Agq, = constant = Q (8.2-48)

The area A in Eq. (8.2-48) is perpendicular to the direction of energy flux in the
r—direction and it is given by

A = 4mr? (8.2-49)
Substitution of Egs. (8.2-44) and (8.2-49) into Eq. (8.2-48) and integration gives
- .
- (2)1
[0 k(T)dT = <47r -+ o (8.2-50)

where C is an integration constant.
If the surface temperatures are specified, i.e.,

at r =R, T=T

(8.2-51)
at 7= Ry T=T

the heat transfer rate as well as the temperature distribution as a function of
position are given in Table 8.5. On the other hand, if one surface is exposed to
a constant heat flux while the other one is maintained at a constant temperature,
i.e.,

dT q

— =q

dr (8.2-52)
at r= Ry T=T,

at T:R1 —k
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the resulting heat transfer rate and the temperature distribution as a function of
position are given in Table 8.6.

Table 8.5 Heat transfer rate and temperature distribution for one-dimensional
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-51).

Heat Transfer

Constants Temperature Distribution

Rate
i ’ 11
47r/ k(T) dT / wTyar 1oL
None ?—1 (A) T;,l = ; i (C)
— KT)dT —— — =
Ry Ry /T2 @ R, 2
1 1
47TIC(T1 bl Tz) T - T2 r 2
k —_— B = D
T B poperr
R] R2 1 2

Table 8.6 Heat transfer rate and temperature distribution for one-dimensional
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-52).

Heat Transfer

Constants Rate Temperature Distribution
r 1 1
None 4tR%2q, (A) / k(T)dT = quf <_ — _R._) (C)
T r 2
aR? /1 1
k arR2q;  (B) T, =20 (; _ R_z) D)

Example 8.9 A spherical metal ball of radius R s placed in an infinitely large
volume of motionless fluid. The ball is maintained at a temperature of Tr while
the temperature of the fluid far from the ball is T .

a) Determine the rate of heat transferred to the fluid.
b) Determine the temperature distribution within the fluid.
c) Determine the Nusselt number.

Solution
Assumptions

1. Steady-state conditions prevail.
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2. The heat transfer from the ball to the fluid takes place only by conduction.
3. The thermal conductivity of the fluid is constant.
Analysis

a) The use of Eq. (B) in Table 8.5 with Ty = Tr, T2 = T, R1 = R and Re = 0
gives the rate of heat transferred from the ball to the fluid as

_ 4k (TR - Too)
N 1/R

b) The temperature distribution can be obtained from Eq. (D) of Table 8.5 in the
form

Q =4rRk(Tr — Teo) (1)

T-Tw R

= T 2

Th — T T 2)
c) The amount of heat transferred can also be calculated from Newton’s law of
cooling, Eq. (3.2-7), as

Q = 47 R*(h)(Tr — Too) (3)
Equating Egs. (1) and (3) leads to
W _1_2
k R D (4)
Therefore, the Nusselt number is
Nu= % =2 (5)

8.2.3.1 Electrical circuit analogy
Equation (B) in Table 8.5 can be rearranged in the form

T -T;
In(Rz/R,)
471'kR1R2

Comparison of Eq. (8.2-53) with Eq. (8.2-10) indicates that the resistance is given
by

Q (8.2-53)

R2 . Rl !
47l'kR1R2

In order to express the resistance in the form given by Eq. (8.2-13), let us define a
geometric mean area, Agas, as

Acym = VA1A2

= 4/ (471'R%) (47|'R%) =41 R, R2 (82-55)

Resistance =

(8.2-54)
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so that Eq. (8.2-54) takes the form

) Ry — Ry Thickness
Resist = = .2-
esistance kAcum (Transport property) (Area) (8.2-56)

The electrical circuit analog of the spherical wall can be represented as shown
in Figure 8.20.
kAGu

T, T2

—

Figure 8.20 Electrical circuit analog of the spherical wall.

8.2.3.2 Transfer rate in terms of bulk fluid properties

The use of Eq. (8.2-53) in the calculation of the transfer rate requires surface values
T; and 75 to be known or measured. In common practice, the bulk temperatures
of the adjoining fluids to the surfaces at r = Ry and r = Rs, i.e., T4 and Tg, are
known. It is then necessary to relate 73 and T to T4 and T'g.

The procedure for the spherical case is similar to that for the cylindrical case
and left as an exercise to the students. If the procedure given in Section 8.2.2.2 is
followed, the result is

. Ta—Tp
Q=—7 TR-R 1
s T Aok T Aalhe)

(8.2-57)

Example 8.10 Consider a spherical tank with inner and outer radii of R; and
Rs, respectively, and investigate how the rate of heat loss varies as a function of
insulation thickness.

Solution

The solution procedure for this problem is similar to Exzample 8.7. For the geometry
shown in Figure 8.21, the rate of heat loss is given by

- dn(Ta — Tg)
T T RoR BB, 1 (1)
R2(ha) RiRsk,  RaRsk; Ri(hp)
X

where ky and k; are the thermal conductivities of the wall and the insulating
material, respectively.
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1

///Rz
R;
T, <h,> Th, <hp>
A A 5 B
/yj

Figure 8.21 Conduction through an insulated hollow sphere.

Differentiation of X with respect to R3 gives

dXx 2k;
— =0 = Ry = — 2
dRs3 7 (hB) 2)

To determine whether this point corresponds to a minimum or a mazimum value,
it is necessary to calculate the second deriwative, i.e.,

2X B
AR | py—ok,/(hm)

>0 (3)

Therefore, the critical thickness of insulation for the spherical geometry is given by

Rer = (hB) (4)

A representative graph showing the variation of heal transfer rate with insulation
thickness is given in Figure 8.22.

Another point of interest is to determine the value of R*, the point at which
the rate of heat loss is equal to that of the bare pipe. Following the procedure given
in Ezample 8.7, the result is

(5 -2 (5-)

R* can be determined from Eq. (5) for the given values of Rz, (hp), and k;.
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R, R R* Ry

cr

Figure 8.22 Rate of heat loss as a function of insulation thickness.

Example 8.11 Consider a hollow steel sphere of inside radius R; = 10cm and
outside radius Ry = 20 cm. The inside surface is maintained at a constant temper-
ature of 180°C and the outside surface dissipates heat to ambient temperature at
20°C by convection with an average heat transfer coefficient of 11 W/ m2. K. To
reduce the rate of heat loss, it is proposed to cover the outer surface of the sphere
by two types of insulating materials X and Y in series. Fach insulating material
has a thickness of 3cm. The thermal conductivities of the insulating materials X
and Y are 0.04 and 0.12W/ m. K, respectively. One of your friends claims that
the order in which the two insulating materials are put around the sphere does not
make a difference in the rate of heat loss. As an engineer, do you agree?

Solution
Physical properties

For steel: k=45W/m.K
Analysis

The rate of heat loss can be determined from Eq. (8.2-57). If the surface is first
covered by X and then Y, the rate of heat loss is
- 47 (180 — 20)
@=—71 T om 0.03 1
(45)(0.1)(0.2) ~ (0.04)(0.2)(0.23) = (0.12)(0.23)(0.26) ~ (0.26)2(11)
=91.6W

On the other hand, covering the surface first by Y and then X gives the rate of
heat loss as
- 47 (180 — 20)
@=—"01 + 0.03 " 0.03 P
(45)(0.1)(0.2) ~ (0.12)(0.2)(0.23) ~ (0.04)(0.23)(0.26) = (0.26)2(11)
=103.5W

Therefore, the order of the layers with different thermal conductivities does make
a difference.
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8.2.4 Conduction in a Fin

In the previous sections we have considered one-dimensional conduction examples.
The extension of the procedure for these problems to conduction in two- or three-
dimensional cases is straightforward. The difficulty with multi-dimensional con-
duction problems lies in the solution of the resulting partial differential equations.
An excellent book by Carslaw and Jaeger (1959) gives the solutions of conduction
problems with various boundary conditions.

In this section first the governing equation for temperature distribution will be
developed for three-dimensional conduction in a rectangular geometry. Then the
use of area averaging? will be introduced to simplify the problem.

Fins are extensively used in heat transfer applications to enhance the heat
transfer rate by increasing heat transfer area. Let us consider a simple rectangular
fin as shown in Figure 8.23. As an engineer we are interested in the rate of heat
loss from the surfaces of the fin. This can be calculated if the temperature distri-
bution within the fin is known. The problem will be analyzed with the following
assumptions:

1. Steady state conditions prevail.
2. The thermal conductivity of the fin is constant.
3. The average heat transfer coefficient is constant.

4. There is no heat loss from the edges and the tip of the fin.

fe— Az —»

Figure 8.23 Conduction in a rectangular fin.

4The first systematic use of the area averaging technique in a textbook can be attributed to
Slattery (1972).
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For a rectangular volume element of thickness Az, width Ay and length Az, as
shown in Figure 8.23, Eq. (8.2-1) is expressed as

(gl Dy Dz + qyf, Dz Az + g:|, Az Dy)
—(Gzlyin Ay Dz + qy|y+Ay Az Az + g, p, Az Ay) =0 (8.2-58)

Dividing by Az Ay Az and taking the limit as Az — 0, Ay — 0 and Az — 0 gives

], — Ql, — ¢ . 2~ 9zlatns
T Gzlstnq vly vly+Ay+ P Pk R =0 (8.2-59)

+ lim

Azx—0 Az Ay—0 A’y Az—0 Az
or,
0¢: , Ogy , 0¢: _
Oz * dy * 0z =0 (8.2:60)

From Table C.4 in Appendix C, the components of the conductive flux are given
by

Gz = —kg—z (8.2-61)
gy = —k g% (8.2-62)
P %% (8.2-63)

Substitution of Eqs. (8.2-61)-(8.2-63) into Eq. (8.2-60) gives the governing equation
for temperature as

8*T 9*T  8*T

The boundary conditions associated with Eq. (8.2-64) are

at z=DB/2 —k —g—z— = {(h)(T - Teo) (8.2-65)

at z=—B/2 k g—:— = (h)(T — Ts) (8.2-66)
aT

at y=0 5-=0 (8.2-67)

or

aoy=W  5=0 (8.2-68)

at z=0 T="Ty (8.2-69)

at z=1L or =0 (8.2-70)
0z

where T, is the temperature of the fluid surrounding the fin.
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If the measuring instrument, i.e., the temperature probe, is not sensitive enough
to detect temperature variations in the z—direction, then it is necessary to change
the scale of the problem to match that of the measuring device. In other words, it
is necessary to average the governing equation up to the scale of the temperature
measuring probe.

The area-averaged temperature is defined by

B/2
/ / T dzdy B/2
—=wsl, |
T T L
B/2
Note that although the local temperature, T, is dependent on z, y and z, the
area-averaged temperature, (T'), depends only on z.

Area averaging is performed by integrating Eq. (8.2-64) over the cross-sectional
area of the fin. The result is

B/2 82T B/2 82T B/2 82
— dzdy+ / / dzdy + / / — dzdy =0 (8.2-72
/ /8/2 0z? B/2 53! B/2 022 y=0{ )

/ (%
—_— - — dx
0 Oz y=W ay y=0
B/2
( / / dedy) =0 (8.2-73)
B/2

The use of the boundary conditions defined by Egs. (8.2-65)-(8.2-68) together with
the definition of the average temperature, Eq. (8.2-71) in Eq. (8.2-73) gives

W[ ) (Tle=p/2 — Too) — -(%)- d2<T)

T dzdy (8.2-71)

oT

BJ/2 oT
— d +/ —_—
x=-B/2) v -B/2 ( Oy

z=B/2 oz

(Tle=—n/2 — T )} =0 (8.2-74)

Since T'|z—p/2 = T|z=-pB/2 as a result of symmetry, Eq. (8.2-74) takes the form

2
k4 dg) 2 (Tloep)z — Too) = 0 (8.2-75)

Note that Eq. (8.2-75) contains two dependent variables, (T) and T'|,~p/2, which
are at two different scales. It is generally assumed, although not expressed explic-
itly, that

(T) ~ T|e=p/2 (8.2-76)
This approximation is valid for Biy < 1. Substitution of Eq. (8.2-76) into Eq.
(8.2-75) gives

d*(T)
k dz2

(h) ((T) - Teo) (8.2-77)

| 0o




8.2. ENERGY TRANSPORT WITHOUT CONVECTION 279

Integration of Egs. (8.2-69) and (8.2-70) over the cross-sectional area of the fin
gives the boundary conditions associated with Eq. (8.2-77) as

at z=0 (T)=T, (8.2-78)
at -1 A0 _ (8.2-79)
dz

It is important to note that Eqs. (8.2-64) and (8.2-77) are at two different scales.
Equation (8.2-77) is obtained by averaging Eq. (8.2-64) over the cross-sectional
area perpendicular to the direction of energy flux. In this way the boundary condi-
tion, i.e., the heat transfer coefficient, is incorporated into the governing equation.
Accuracy of the measurements dictates the equation to work with since the scale
of the measurements should be compatible with the scale of the equation.
The term 2/B in Eq. (8.2-77) represents the heat transfer area per unit volume
of the fin, i.e.,
2 2LW  Heat transfer area

B~ BLW Fin volume

The physical significance and the order of magnitude® of the terms in Eq. (8.2-77)
are given in Table 8.7.

(8.2-80)

Table 8.7 The physical significance and the order of magnitude of the terms in
Eq. (8.2-77).

Term Physical Significance Order of Magnitude
d*(T) . k(T — Too)
k e Rate of conduction —Iz
2(h) (T) - Toy) Rate of heat transfer from 2(h) (T — Two)
B o the fin to the surroundings B

Therefore, the ratio of the rate of heat transfer from the fin surface to the rate of
conduction is given by
Rate of heat transfer  2(h)(T,, — Too)/B  2(h)L?

Rate of conduction  k(T, — Too)/L2 kB (8:2-81)

5The order of magnitude or scale analysis is a powerful tool for those interested in mathe-
matical modelling. As stated by Astarita (1997), “Very often more than nine-tenths of what one
can ever hope to know about a problem can be obtained from this tool, without actually solving
the problem; the remaining one-tenth requires painstaking algebra and/or lots of computer time,
it adds very little to our understanding of the problem, and if we have not done the first part
right, all that the algebra and the computer will produce will be a lot of nonsense. Of course,
when nonsense comes out of a computer people have a lot of respect for it, and that is exactly
the problem.” For more details on the order of magnitude analysis, see Bejan (1984), Whitaker
(1976).
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Before solving Eq. (8.2-77), it is convenient to express the governing equation
and the boundary conditions in dimensionless form. The reason for doing this is
the fact that the inventory equations in dimensionless form represent the solution
to the entire class of geometrically similar problems when they are applied to a
particular geometry.

Introduction of the dimensionless variables

_ <T> — Too
0= (8.2-82)
z
&= I (8.2-83)
_[2(h)L?
A= B (8.2-84)
reduces Eqs. (8.2-77)-(8.2-79) to
d*6
— =A% 2
at £€=0 6=1 (8.2-86)
db
at £€=1 — =0 8.2-87
3 T3 ( )
The solution of Eq. (8.2-85) is
6 = Cy sinh(A€) + C; cosh(A¢) (8.2-88)

where C) and Cy are constants. Application of the boundary conditions, Eqs.
(8.2-86) and (8.2-87), gives the solution as

__ cosh A cosh(A{) — sinh A sinh(A¢)

0 _
cosh A (8.2-89)
The use of the identity
cosh(z — y) = cosh z coshy — sinh z sinh y (8.2-90)
reduces the solution to the form
cosh [A(1 — £)]
J= s
wosh A (8.2-91)




8.2. ENERGY TRANSPORT WITHOUT CONVECTION 281

8.2.4.1 Macroscopic equation

Integration of the governing differential equation, Eq. (8.2-77), over the volume of
the system gives the macroscopic energy balance, i.e.,

B/2 d2 B/2
/ / / d:z:dydz = / / / — Teo) dzdydz
BJ2 BJ2 B

(8.2-92)
Evaluation of the integrations yields
&(T) ¢
BW -k 2L =  2Wh) | (T)-Tw) dz (8.2-93)
dz |,_
z=0 N 0
Rate of energy entering into the Rate of energy loss from the top and bottom
fin through the surface at 2=0 surfaces of the fin to the surroundings

Note that Eq. (8.2-93) is simply the macroscopic inventory rate equation for ther-
mal energy by considering the fin as a system. The use of Eq. (8.2-91) in Eq.
(8.2-93) gives the rate of heat loss from the fin as

Qloss = BWHKTw - 5°°>AtanhA (8.2-94)

8.2.4.2 Fin efficiency

The fin efficiency, 7, is defined as the ratio of the apparent rate of heat dissipation
of a fin to the ideal rate of heat dissipation if the entire fin surface were at T, i.e.,

L L
2W() [ (1) -To)ds [ (T)-To)ds
0 0
= = 2-9
T T~ To)l (= Tw)L (8299
In terms of the dimensionless quantities, Eq. (8.2-95) becomes
1
n= / 6dg (8.2-96)
0
Substitution of Eq. (8.2-91) into Eq. (8.2-96) gives the fin efficiency as
tanh A
= 8.2-97
: (8297)

The variation of the fin efficiency as a function of A is shown in Figure 8.24. When
A — 0, this means that the rate of conduction is much larger than the rate of heat
dissipation. The Taylor series expansion of 7 in terms of A gives

2

n_l——A2+BA4 315 EICIN (8.2-98)
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Therefore, n approaches unity as A — 0, indicating that the entire fin surface is at
the wall temperature.

1 1

0.1

0.1 1 10
A

Figure 8.24 Variation of the fin efficiency, 7, as a function of A.

On the other hand, large values of A corresponds to cases in which the heat
transfer rate by conduction is very slow and the rate of heat transfer from the fin
surface is very rapid. Under these conditions the fin efficiency becomes

Equation (8.2-99) indicates that n approaches zero as A — 0.
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Since the fin efficiency is inversely proportional to A, it can be improved either
by increasing k and B, or by decreasing (h) and L. If the average heat transfer
coefficient, (h), is increased due to an increase in the air velocity past the fin, the
fin efficiency decreases. This means that the length of the fin, L, can be smaller
for the larger (h) if the fin efficiency remains constant. In other words, fins are not
necessary at high speeds of fluid velocity.

8.2.4.3 Comment

In general, the governing differential equations represent the variation of the de-
pendent variables, such as temperature and concentration, as a function of position
and time. On the other hand, the transfer coefficients, which represent the inter-
action of the system with the surroundings, appear in the boundary conditions. If
the transfer coefficients appear in the governing equations rather than the bound-
ary conditions, this implies that these equations are obtained as a result of the
averaging process.

8.3 ENERGY TRANSPORT WITH
CONVECTION

Heat transfer by convection involves both the equation of motion and the equation
of energy. Since we restrict the analysis to cases in which neither momentum nor
energy is generated, this obviously limits the problems we might encounter.

Consider Couette flow of a Newtonian fluid between two large parallel plates
under steady conditions as shown in Figure 8.25. Note that this geometry not only
considers flow between parallel plates but also tangential flow between concentric
cylinders. The surfaces at x = 0 and x = B are maintained at T, and T}, re-
spectively, with T, > T). It is required to determine the temperature distribution
within the fluid.

| —v

Figure 8.25 Couette flow between parallel plates.
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The velocity distribution for this problem is given by Eq. (8.1-12) as

Uy T
= =1-= 8.3-1
On the other hand, the boundary conditions for the temperature, i.e.,
at z=0 T="T, (8.3-2)
at z=B T=T (8.3-3)

suggest that T = T'(z). Therefore, Table C.4 in Appendix C indicates that the
only non-zero energy flux component is e, and it is given by
dT

ez =q,=—k T (8.3-4)

For a rectangular volume element of thickness Az, as shown in Figure 8.25, Eq.
(8.2-1) is expressed as

Qeleg WL ~ gzl n. WL =0 (8.3-5)
Dividing each term by WL Az and taking the limit as Az — 0 gives
. 4zl — qI|x+Az _
A% A (830
or,
dg:
P 0 (8.3-7)

Substitution of Eq. (8.3-4) into Eq. (8.3-7) gives the governing equation for tem-
perature in the form

d*T
o 0 (8.3-8)
The solution of Eq. (8.3-8) is
T=Ci+Cyz (8.3—9)

The use of boundary conditions defined by Eqgs. (8.3-2) and (8.3-3) gives the linear
temperature distribution as

T-T,
-1,

(8.3-10)

byl &

8.4 MASS TRANSPORT WITHOUT
CONVECTION

The inventory rate equation for transfer of species A at the microscopic level is
called the equation of continuity for species A. Under steady conditions without
generation, the conservation statement for the mass of species A is given by

(Rate of mass of A in) — (Rate of mass of A out) =0 (8.4-1)
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The rate of mass of A entering and leaving the system is determined from the
mass (or, molar) flux. As stated in Chapter 2, the total flux is the sum of the
molecular and convective fluxes. For a one-dimensional transfer of species A in the
z—direction in rectangular coordinates, the total molar flux is expressed as

) d
Na, = —cDap—2 4+ cavl (8.4-2)
dz N~
N e

Convective

Molecular flux fAux

where v} is the molar average velocity defined by Eq. (2.3-2). For a binary system
composed of species A and B, the molar average velocity is given by
« _ Cava, tcgvp, Ny, + Np,

_ (8.4-3)
ca+Cp c

v,

As we did for heat transfer, we will first consider the case of mass transfer without
convection. For the transport of heat without convection, we focused our attention
on conduction in solids and stationary liquids simply because energy is transferred
by collisions of adjacent molecules and the migration of free electrons. In the case
of mass transport, however, since species have individual velocities®, the neglect
of the convection term is not straightforward. It is customary in the literature
to neglect the convective flux in comparison with the molecular flux when mass
transfer takes place in solids and stationary liquids. The reason for this can be
explained as follows. Substitution of Eq. (8.4-3) into Eq. (8.4-2) gives

z

dx
Na, =-—cDap TzZA' +24(Na, + NB,) (8.4-4)

Since z 4 is usually very small in solids and liquids, the convective term is considered
negligible. It should be kept in mind, however, that if 4 is small, this does not
imply that its gradient, i.e., dz4/dz, is also small.

Another point of interest is the equimolar counterdiffusion in gases. The term
“equimolar counterdiffusion” implies that for every mole of species A diffusing
in the positive z—direction, one mole of species B diffuses back in the negative
z—direction, i.e.,

NA, = -—NB‘ = CAVA, = —CBVUB, (84—5)
Under these circumstances the molar average velocity, Eq. (8.4-3), becomes

_ Na, +(=Na,)

c

v;

0 (8.4-6)

and the convective flux automatically drops out in Eq. (8.4-2).

8 Transport of mass by diffusion as a result of random molecular motion is called a Brownian
motion.
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8.4.1 Diffusion in Rectangular Coordinates

Consider the transfer of species .4 by diffusion through a slightly tapered slab as
shown in Figure 8.26.

Figure 8.26 Diffusion through a slightly tapered conical duct.

If the taper angle is small, mass transport can be considered one-dimensional in
the z—direction. Since z4 = z4(2), Table C.7 in Appendix C indicates that the
only non-zero molar flux component is N4, and it is given by

NA —JA =—CDAB— (8.4—7)
dz
Note that the negative sign in Eq. (8.4-7) implies that positive z—direction is in
the direction of decreasing concentration. If the answer turns out to be negative,
this implies that the flux is in the negative z—direction.
Over a differential volume element of thickness Az, as shown in Figure 8.26,
Eq. (8.4-1) is written as

(ANa ), = (ANa ) 4, =0 (8.4-8)
Dividing Eq. (8.4-8) by Az and taking the limit as Az — 0 gives

AN — (AN
lim ( Az)lz ( Az)|z+Az

Aim s =0 (8.49)

or,

d(ANg4,)
dz

Since flux times area gives the molar transfer rate of species A, n 4, it is possible
to conclude that

=0 (8.4-10)

AN,4, = constant = ny (8.4-11)

in which the area A is perpendicular to the direction of mass flux.
Substitution of Eq. (8.4-7) into Eq. (8.4-11) and integration gives

/ DAB TTA d.’EA nA/ A (8.4—12)
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where K is an integration constant. The determination of 74 and K requires two
boundary conditions. Depending on the type of the boundary conditions used, the
molar transfer rate of species A as well as the concentration distribution of species
A as a function of position are determined from Eq. (8.4-12).

If the surface concentrations are specified, i.e.,

at z2=0 Ta =24,
(8.4-13)
at z=1L TA =124,

the molar transfer rate and the concentration distribution of species A are given
in Table 8.8.

Table 8.8 Rate of transfer and concentration distribution for one-dimensional
diffusion in rectangular coordinates for the boundary conditions given by
Eq. (8.4-13).

Molar Transfer

Constants Concentration Distribution
Rate
on LA, z
C/ DAdeA / DAdeA / _dZ_
TAL Ta 0 A(z)
None —LJ—— (A) A = 2 P (E)
z ° z
—-— Dapdzx / —-—
/0 A(2) / ABTEA Jy AG)
/" dz
cDap(za, —T4,) Ta, —TA o A(2)
D = B = = F
A8 /L dz ®) Tp, —TA, /L dz (F)
o A(z) o A(z)
TAg TA,
Ac/ Dapdzry / Dapdzxa
TAL TA _Z
A L (C) Ta, T L (G)
/ DAdeA
Ta,
Das cDap(za, —x4,)A Ta, —Ta 2
2 D e H
4 3 (D) Tt _ 2 (H)

Example 8.12 Two large tanks are connected by a truncated conical duct as
shoun in Figure 8.27. The diameter at z = 0 is 6mm and the diameter at
z = 0.2m is 10mm. Gas compositions in the tanks are given in terms of mole
percentages. The pressure and temperature throughout the system are 1atm and
25°C, respectively, and Dap = 3 x 1075 m?/s.
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a) Determine the initial molar flow rate of species A between the vessels.
b) What would be the initial molar flow rate of species A if the conical duct were
replaced with a circular tube of 8 mm diameter?

fe—————20 cm ———>

90% A 25% A
10% B 75% B

Figure 8.27 Diffusion through a conical duct.

Solution

Since the total pressure remains constant, the total number of moles in the conical
duct does not change. This implies that equimolar counterdiffusion takes place
within the conical duct and the molar average velocity is zero. FEquation (B) in
Table 8.8 gives the molar flow rate of species A as

_ CDAB(on —_ :EAL)

np = 1
A /0.2 dz (1)
o Az)
The variation of the diameter as a function of position is represented by
D(z) = 0.006 + 0.02 2 (2)
so that the area is .
A(2) = 7 (0.006 +0.02 z)? (3)
Substitution of Eq. (3) into Eq. (1) and integration gives
) cDap(za, —Ta,)
na= 42441 )
The total molar concentration is
i
‘T RT
101.32 108
= 01325 x 10 = 0.041kmol/ m? (5)

(8.314 x 103)(25 + 273)
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Therefore, the initial molar flow rate of species A is

(41)(3 x 107%)(0.9 — 0.25)

. _ -7
ng = YCYVE) =1.88 x 10" "mol/s (6)
b) From Eq. (D) in Table 8.8
) c¢Dap(ra, —za,)A
ng = 7
_ (41)(3 x 1075)(0.9 — 0.25) [7(0.008)? /4]

= 2. ~" mol

03 2.01 x 107" mol/s  (7)
8.4.1.1 Electrical circuit analogy
The molar transfer rate of species A is given by Eq. (D) in Table 8.8 as

C - C
fia = LEA (8.4-14)

Dagh
Comparison of Eq. (8.4-14) with Eq. (8.2-10) indicates that

Driving force = ca, — ¢4, (8.4-15)
Thickness
ist = = 4-1
Resistance DapA  (Transport property)(Area) (8.416)

8.4.1.2 Transfer rate in terms of bulk fluid properties

Since it is much easier to measure the bulk concentrations of the adjacent solu-
tions to the surfaces at z = 0 and z = L, it is necessary to relate the surface
concentrations, x4, and z4,, to the bulk concentrations.

For energy transfer, the assumption of thermal equilibrium at a solid-fluid
boundary leads to the equality of temperatures and this condition is generally
stated as, “temperature is continuous at a solid-fluid boundary.” In the case of
mass transfer, the condition of phase equilibrium for a nonreacting multicompo-
nent system at a solid-fluid boundary implies the equality of chemical potentials
or partial molar Gibbs free energies. Therefore, concentrations at a solid-fluid
boundary are not necessarily equal to each other with a resulting discontinuity in
the concentration distribution. For example, consider a homogeneous membrane
which is chemically different from the solution it is separating. In that case, the
solute may be more (or, less) soluble in the membrane than in the bulk solution.
A typical distribution of concentration is shown in Figure 8.28. Under these condi-
tions, a thermodynamic property H, called the partition coefficient, is introduced
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which relates the concentration of species in the membrane at equilibrium to the
concentration in bulk solution. For the problem depicted in Figure 8.28, the par-
tition coefficients can be defined as

H =2 (8.4-17)
CA.'
+_ SA
HY = 2~ (8.4-18)
CA.‘
N G L
BN 3
Ec“. E
y A :
: y
: A
s ~S——ci,
b fe—L—f

Figure 8.28 Concentration distribution across a membrane.

The molar rate of transfer of species across the membrane under steady condi-
tions can be expressed as

na = Ak;(cx, —ca,) = AkF(ch — c‘A"b) (8.4-19)
On the other hand, the use of Eqs. (8.4-17) and (8.4-18) in Eq. (8.4-14) leads to
ADap(H ¢y, — H*c})

ha = I (8.4-20)

Equations (8.4-19)-(8.4-20) can be rearranged in the form
¢p, ~ g, = 4 (Ak;) I x - (8.4-21)

L
H ¢, —H%¢t =17 .
Cy, Ch, =na (ADAB) (8.4-22)
. 1

e —ch =i (Ak; | x B (8.4-23)
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Multiplication of Eqs. (8.4-21) and (8.4-23) by H~ and HY, respectively, and the
addition of these equations with Eq. (8.4-22) gives

_ (HYY .,
| = \7=)

1 L +(§i 1
Ak ADABH_ H- Ak:

8.4.2 Diffusion in Cylindrical Coordinates

Consider one-dimensional diffusion of species A in the radial direction through a
hollow circular pipe with inner and outer radii of Ry and R», respectively, as shown
in Figure 8.29.

Figure 8.29 Diffusion through a hollow cylinder.

Since 4 = x4(r), Table C.8 in Appendix C indicates that the only non-zero molar
flux component is N4 and it is given by

d
Na, =J4 =—cDap di;‘ (8.4-25)

For a cylindrical differential volume element of thickness Ar, as shown in Figure
8.29, Equation (8.4-1) is expressed in the form

(ANa)l, = (ANa)lrynr =0 (8.4-26)
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Dividing Eq. (8.4-26) by Ar and taking the limit as Ar — 0 gives

AN - (AN,
llm ( Ar)"r ( Ar)‘r-{-Ar
Ar—0 Ar

=0 (8.4-27)
or,
d(ANa,)
dr

Since flux times area gives the molar transfer rate of species A, 74, it is possible
to conclude that

=0 (8.4-28)

AN, = constant = n4 (8.4-29)

Note that the area A in Eq. (8.4-29) is perpendicular to the direction of mass flux,
and is given by
A=2nrL (8.4-30)

Substitution of Egs. (8.4-25) and (8.4-30) into Eq. (8.4-29) and integration gives

zA
C/ DAB(.’EA)d.’EA = — ( ) Inr+ K (84—31)
A oL

where K is an integration constant.
If the surface concentrations are specified, i.e.,

at r=R TpA =24
' ‘ (8.4-32)
at r =Ry Ta=24a,

the molar transfer rate and the concentration distribution of species A are given
in Table 8.9.

Table 8.9 Rate of transfer and concentration distribution for one-dimensional
diffusion in a hollow cylinder for the boundary conditions given by Eq. (8.4-32).

Molar Transfer

Constant R Concentration Distribution
ate
ZAg TA,
27rLc/ Dypdzs / Dagdra In <_r_)
None = 7 (A) = }}:2 (9]
1H<R;) / DABd.’EA ln(R;)
QWLCDAB(ZEAZ—-.’EAJ TA, —TA ln( )
DaB (B) = (D)

GGG

Ry Ta, —Ta,
In <R2> In ( )
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8.4.3 Diffusion in Spherical Coordinates

Consider one-dimensional diffusion of species A in the radial direction through a
hollow sphere with inner and outer radii of R; and Rj, respectively, as shown in
Figure 8.30.

NAI‘lr+Ar

/ ' NArlr |‘"A"'l

Figure 8.30 Diffusion through a hollow sphere.

Since z4 = z4(r), Table C.9 in Appendix C indicates that the only non-zero molar
flux component is N4, and it is given by

d .
Na, =~cDap % (8.4-33)

For a spherical differential volume element of thickness Ar, as shown in Figure
8.30, Eq. (8.4-1) is expressed in the form

(ANa )\, = (ANA, )|y, =0 (8.4-34)
Dividing Eq. (8.4-34) by Ar and taking the limit as Ar — 0 gives

. (ANAr)lr - (ANAT')IT-}-AT
lim
Ar—0 Ar

=0 (8.4-35)

or,
d(AN4,)
A A 8.4-
e 0 (8.4-36)
Since flux times area gives the molar transfer rate of species A, n4, it is possible

to conclude that
AN,4, = constant = ny (8.4-37)

Note that the area A in Eq. (8.4-37) is perpendicular to the direction of mass flux,

and is given by
A = 4nr? (8.4-38)

Substitution of Egs. (8.4-33) and (8.4-38) into Eq. (8.4-37) and integration gives

TA hA 1
C/o Dap(ra)dza = (4_7r) - + K (8.4-39)
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where K is an integration constant.
If the surface concentrations are specified, i.e.,

at =R TA=2Z
! A (8.4-40)
at r=Ry TA=T4,

the molar transfer rate and the concentration distribution of species A are given

in Table 8.10.

Table 8.10 Rate of transfer and concentration distribution for one-dimensional
diffusion in a hollow sphere for the boundary conditions given by Eq. (8.4-40).

Molar Transfer

Constant Rate Concentration Distribution
TA, TA
Ame / Dapdza Dapdz, 1_ 1
None e (a) == L
1 1 ZTAy 1 _ 1
Ry, Ry - Dapdza Ry, Ry
2
L1
dmrcDap(za, — a,) Ta—Ta, r R,
D B = D
a5 TSI @ et )
Ry Ry Ry 2

Example 8.13 Consider the transfer of species A from a spherical drop or a
bubble of radius R to a stationary fluid.

a) Determine the molar rate of species A transferred to the fluid.
b) Determine the concentration distribution of species A within the fluid.
¢) Determine the Sherwood number.

Solution
Assumptions
1. Steady-state conditions prevail.
2. The concentration at the surface of the sphere is constant at ca,, .

3. The concentration of species A far from the sphere is ca_,.
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Analysis

a) The use of Eq. (B) in Table 8.10 with c4, = ca,, ca, = ca,,, R1 = R and
Ry = 00 gives the molar rate of transfer of species A to the fluid as

. 4nDap(ca, —ca,.)
nNag = 1 =4W'DABR(CA'u —CAm) (1)

R

b) The concentration distribution is obtained from Eq. (D) of Table 8.10 in the
form
Ca —CA_ R

L (2)

CA, —CA, T
c) The molar transfer rate can also be calculated from Eq. (3.3-7) as
na =4nR*(k;)(ca, — can,) (3)

Equating Egs. (1) and (3) leads to

(ke) 1 2
= — = — 4
Dap R D “)
Therefore, the Sherwood number is
(ke)D
Sh = =2 5
Dan (8)

8.4.4 Diffusion and Reaction in a Catalyst Pore

At first, it may seem strange to a student to have an example on a reaction in
a catalyst pore in a chapter which deals with “steady-state microscopic balances
without generation.” In general, reactions can be classified as heterogeneous
and homogeneous reactions. A heterogeneous reaction occurs on the surface and is
usually a catalytic reaction. A homogeneous reaction, on the other hand, occurs
throughout a given phase. In Chapter 5, the rate of generation of species ¢ per
unit volume as a result of a chemical reaction, R;, was given by Eq. (5.3-26) in the
form

Ri=oyr (8.4-41)

in which the term r represents a homogeneous reaction rate. Therefore, a ho-
mogeneous reaction rate appears in the inventory of chemical species, whereas a
heterogeneous reaction rate appears in the boundary conditions.

Consider an idealized single cylindrical pore of radius R and length L in a
catalyst particle as shown in Figure 8.31. The bulk gas stream has a species A
concentration of c4,. Species A diffuses through the gas film and its concentration
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at the pore mouth, i.e., z = 0, is ca,. As the species A diffuses into the catalyst
pore, it undergoes a first-order irreversible reaction

A—- B

on the interior surface of the catalyst.

Figure 8.31 Diffusion and reaction in a cylindrical pore.

The problem will be analyzed with the following assumptions:
1. Steady-state conditions prevail.
2. The system is isothermal.
3. The diffusion coefficient is constant.

For a cylindrical differential volume element of thickness Ar and length Az, as
shown in Figure 8.31, Eq. (8.4-1) is expressed as

(Na,|,2rrAz+ Ny, |, 2rrAr)
— [Na,lpyar 20(r + AT)Az + Na, |0, 20mAT] =0 (8.4-42)

Dividing Eq. (8.4-42) by 2rArAz and taking the limit as Ar — 0 and Az — 0
gives

TN — (rN N \)
1 (*Na)l, — (Na )l 4 ar + lim Al = Naliyas —0  (8443)
T Ar—0 Ar Az—0 Az
or,
19 AN,
- or (rNa,) + 9 = 0 (8.4-44)
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Since the temperature is constant and there is no volume change due to reaction,
the pressure and hence the total molar concentration, ¢, remains constant. Under
these conditions, from Table C.8 in Appendix C, the components of the molar flux
become’

aCA

Na,=-Dap 3= (8.4-45)
aCA

Na, = —Dap — £ (8.4-46)

Substitution of Eqgs. (8.4-45) and (8.4-46) into Eq. (8.4-44) gives the governing
equation for the concentration of species A as

2
19 (T 3&) Ly (8.4-47)

T Or or 022

The boundary conditions associated with Eq. (8.4-47) are

at r=0 24_g (8.4-48)
or

at =R —Danr %L: =k%cy (8.4-49)

at =0 Ca = C4a, (8.4-50)

at z=1 L4 _g (8.4-51)
0z

The term k° in Eq. (8.4-49) is the first-order surface reaction rate constant. In
writing Eq. (8.4-51) it is implicitly assumed that no reaction takes place on the
surface at z = L. Since there is no mass transfer through this surface, 9c4/9z =0

As we did in Section 8.2.4, this complicated problem will be solved by making
use of the area averaging technique. The area-averaged concentration for species

A is defined by
2m
/ / cardrdf

1 2 R
_Jo - /0 /0 cardrdd (8.4-52)
/ / rdrdf

Although the local concentration, cg4, is dependent on 7 and z, the area-averaged
concentration, (ca), depends only on z.

Area averaging is performed by integrating Eq. (8.4-47) over the cross-sectional
area of the pore. The result is

2 aCA 2w R 62CA
/ / rar( ) dd0+/0 [ Soraro =0 (8.4-53)

7From the stoichiometry of the reaction, the molar average velocity is zero.
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Since the limits of the integration are constant, the order of differentiation and
integration in the second term of Eq. (8.4-33) can be interchanged to get

2r pR o2 2t rR 2
0%ca d? 5 d*{c4)
- = 4-54
/0 822 r drdf 72 (/0 /0 CA 'rdrdg) TR 12 (8.4-54)

Substitution of Eq. (8.4-54) into Eq. (8.4-53) yields

d*{ca)
dz2

8c,4 2
Br + 7R

r=R

onR =0 (8.4-55)

The use of the boundary condition given by Eq. (8.4-49) leads to

d2<CA) 2 s
dzz = E k CAIr:R (84—56)

Das

Note that Eq. (8.4-56) contains two dependent variables, (c4) and c4|r=g, which
are at two different scales. It is generally assumed, although not expressed explic-
itly, that

CAlr:R >~ <CA) (8.4—57)

This approximation is valid for Biyy < 1. Substitution of Eq. (8.4-57) into Eq.
(8.4-56) gives

= 2 kS(ca) (8.4-58)

Integration of Eqgs. (8.4-50) and (8.4-51) over the cross-sectional area of the
pore gives the boundary conditions associated with Eq. (8.4-58) as

at z=0 {ca) = ca, (8.4-59)
at 2= Hea g (8.4-60)
dz

Equations (8.4-47) and (8.4-58) are at two different scales. Equation (8.4-58) is ob-
tained by averaging Eq. (8.4-47) over the cross-sectional area perpendicular to the
direction of mass flux. As a result, the boundary condition, i.e., the heterogeneous
reaction rate expression, appears in the conservation statement.
Note that the term 2/R in Eq. (8.4-58) is the catalyst surface area per unit
volume, i.e.,
2 27nRL  Catalyst surface area
R 7RI ™7 Pore volume

Since heterogeneous reaction rate expression has the units of moles/(area)(time),
multiplication of this term by a, converts the units to moles/(volume)(time).

The physical significance and the order of magnitude of the terms in Eq. (8.4
58) are given in Table 8.11.

(8.4-61)



8.4. MASS TRANSPORT WITHOUT CONVECTION 299

Table 8.11 The physical significance and the order of magnitude of the terms
in Eq. (8.4-58).

Term Physical Significance Order of Magnitude
d?
Dap d(:;‘) Rate of diffusion Dip 5
2k* 2k%c
](;A) Rate of reaction 7 a

Therefore, the ratio of the rate of reaction to the rate of diffusion is given by

Rate of reaction 2k°ca, /R 2k°L?

Rate of diffusion =~ Dapca,/L?  RDasp

(8.4-62)

In the literature, this ratio is often referred to as the Thiele modulus or the Damkdh-

ler number® and expressed as
2ksL2
A=y DA (8.4-63)

Before solving Eq. (8.4-58), it is convenient to express the governing equation
and the boundary conditions in dimensionless form. Introduction of the dimen-
sionless quantities

9= <:") (8.4-64)

Aa

z
€=7 (8.4-65)

reduces Eqs. (8.4-58)-(8.4-60) to
2
% =A% (8.4-66)
at £=0 6=1 (8.4-67)
do

at £=1 i 0 (8.4-68)

Note that these equations are exactly equal to the equations developed for the fin
problem in Section 8.2.4. Therefore, the solution is given by Eq. (8.2-91), i.e.,

0 COShCLASSA_ ) (8.4-69)

8 While the Thiele modulus is preferred in the analysis of mass transport in a porous medium,
the Damkohler number is used for packed bed analysis.



300 CHAPTER 8 STEADY MICROSCOPIC BALANCES WITHOUT GEN.

8.4.4.1 Macroscopic equation

Integration of the microscopic level equations over the volume of the system gives
the equations at the macroscopic level. Integration of Eq. (8.4-58) over the volume
of the system gives

L 27 R d2(c > L 27 R )
/ / / Dan A 1 rdods = / / / 2 kr(ca)rdrdédz  (8.4-70)
0o Jo 0 dz? 0o Jo o R

Carrying out the integrations yields

2 d(cA> 3 L
7R _DAB —— = 2’R'R]C (CA>dZ (84—71)
dz z=0 0
Rate of moles of ;;ecies A entering Ratec of conversion of species A

into the pore through the surface at z=0 to species B at the catalyst surface

Note that Eq. (8.4-71) is simply the macroscopic inventory rate equation for the
conservation of species .4 by considering the catalyst pore as a system. The use of
Eq. (8.4-69) in Eq. (8.4-T1) gives the molar rate of conversion of species A, 714, as

7®R®Dap cAoAtanhA
L

ng =

(8.4-72)

8.4.4.2 Effectiveness factor

The effectiveness factor, 7, is defined as the ratio of the apparent rate of conversion
to the rate if the entire internal surface were exposed to the concentration c4_, i.e.,

2nR kS /0L<CA)dz /OL(CA)dz

= 2nRk3ca, L - ca, L (8.4-73)

In terms of the dimensionless quantities, Eq. (8.4-73) becomes

1
n= / 6 dg (8.4-74)
0
Substitution of Eq. (8.4-69) into Eq. (8.4-74) gives the effectiveness factor as
tanh A
= a‘;\ (8.4-75)

Note that the effectiveness factor for a first-order irreversible reaction is exactly
identical with the fin efficiency. Therefore, Figure 8.24, which shows the variation
of 7 as a function of A, is also valid for this case.
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When A — 0, this means that the rate of diffusion is much larger than the rate

of reaction. The Taylor series expansion of 7 in terms of A gives
1 2 17
=1--A2+ A - —
7 3V TN T3
Therefore,  approaches unity as A — 0, indicating that the entire surface is
exposed to a reactant. On the other hand, large values of A corresponds to cases
in which diffusion rate is very slow and the surface reaction is very rapid. Under

these conditions the effectiveness factor becomes

A%+ (8.4-76)

n= A (8.4-77)

As A — o0, n approaches zero. This implies that a good part of the catalyst surface
is starved for a reactant and hence not effective.

8.5 MASS TRANSPORT WITH
CONVECTION

In the case of mass transfer, each species involved in the transfer has its own
individual velocity. For a single phase system composed of the binary species A
and B, the characteristic velocity for the mixture can be defined by several ways
as stated in Section 2.3. If the mass transfer takes place in the z—direction, the
three characteristic velocities are given in Table 8.12.

Table 8.12 Characteristic velocities in the z—direction for a binary system.

Velocity Definition
va, +PpY Wa, +W
Mass average v, = PAYA. T PBYB. _ 7VA, B. (A)
PatpB P
CAVA, + CBYB, _ Na, + Np,

Molar average vy =

cq+Cp c

Volume average v® =caVava, +¢gVpvp, =VaNa, +VeNp, (C)

Hence, the total mass or molar flux of species A can be expressed as

dw
Wa. = —pDas d_A + pavs (8.5-1)
z LAz
Nt ! ~
Molecular flux COnﬁrj;twe
dz 4 .
Ny, =—cDap—— + cav; (8.5-2)

z dz
N ——

Convective
Molecular flux

flux
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d
NA, = — DAB —dc7A + CA'UZ- (8'5-3)
— Convective

Molecular flux Aux

The tricky part of the mass transfer problems is that there is no need to have
a bulk motion of the mixture as a result of external means, such as pressure drop,
to have a non-zero convective flux term in Egs. (8.5-1)-(8.5-3). Even in the case of
the diffusion of species A through a stagnant film of B, non-zero convective term
arises as can be seen from the following examples.

It should also be noted that if one of the characteristic velocities is zero, this
does not necessarily imply that the other characteristic velocities are also zero. For
example, in Section 8.4, it was shown that the molar average velocity is zero for
an equimolar counterdiffusion since N4, = — Npg,. The mass average velocity for
this case is given by

Wa, +W
v, = —x T 7B (8.5-4)
p
The mass and molar fluxes are related by
N, = D 8.5-5)
tz T M'i. ( ‘U

where M is the molecular weight of species 7. The use of Eq. (8.5-5) in Eq. (8.5-4)
gives

MaNy, + MpN Nyg(Myg—M
_Ma A,p sNB, _ A, ( ,; B) (8.5.6)

which is non-zero unless M4 = Mp.

Vz

8.5.1 Diffusion Through a Stagnant Gas

8.5.1.1 Evaporation from a tapered tank

Consider a pure liquid 4 in an open cylindrical tank with a slightly tapered top
as shown in Figure 8.32. The apparatus is arranged in such a manner that the
liquid-gas interface remains fixed in space as the evaporation takes place. As an
engineer, we are interested in the rate of evaporation of A from the liquid surface
into a mixture of .4 and B. For this purpose, it is necessary to determine the
concentration distribution of A in the gas phase. The problem will be analyzed
with the following assumptions:

1. Steady-state conditions prevail.

2. Species A and B form an ideal gas mixture.

3. Species B has a negligible solubility in liquid .A.
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ATZ ........... iz

Liquid A

Figure 8.32 Evaporation from a tapered tank.

4. The entire system is maintained at a constant temperature and pressure, i.e.,
the total molar concentration in the gas phase, ¢ = P/RT), is constant.

5. There is no chemical reaction between species A and B.

If the taper angle is small, mass transport can be considered one-dimensional in
the z—direction and the conservation statement for species A, Eq. (8.4-1), can be
written over a differential volume element of thickness Az as

(ANa ), = (ANa )l yn, =0 (8.5-7)
Dividing Eq. (8.5-7) by Az and letting Az — 0 gives
(ANAz)Iz - (ANAz)|z+Az

Al}}Bo Az =0 (8:5-8)
or,
d(AN4,)
—dz— =0 (8.5-9)
Equation (8.5-9) indicates that
ANa, =n4 = constant (8.5-10)

In a similar way, the rate equation for the conservation of species B leads to
A Np, = constant (8.5-11)
Since species B is insoluble in liquid A, i.e., Ng_|.=0 = 0, this implies that
Ng,=0 for 0<2z2<L (8.5-12)

From Table 8.12, the total molar flux of species A is given by

JVAz = -—CDAB ddi;- + CA'U: (8'5'13)
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in which the molar average velocity is given by

Na + N, N
vr= AT B A (8.5-14)
* c c

which indicates non-zero convective flux. The use of Eq. (8.5-14) in Eq. (8.5-13)

results in D d
CL/Ap AT A
= - - 8.5-15
Na, 1 _z, dz ( )

Substitution of (8.5-15) into Eq. (8.5-10) and rearrangement gives

L T
dz AL dxy
; — = —-¢D 8.5-16
na | Al c AB/% —— (8.5-16)
or,
. _ CDAB I—IAL
nag = T dz In <1 . .’L'AO> (8.5 17)
o A(z)

Since 74 is constant, Eq. (8.5-17) holds for 0 < z < L.
Note that z4,, i.e., the value of z4 at z = 0, is the mole fraction of species
A in the gas mixture that is in equilibrium with the pure liquid .A at the existing
temperature and pressure. The use of Dalton’s and Raoult’s laws at the gas-liquid
interface indicates that
Psa.t
A

P

Ta, = (8.5-18)

where P is the total pressure.

Example 8.14 One way of measuring the diffusion coefficients of vapors is to
place a small amount of liquid in a vertical capillary, generally known as the Stefan
diffusion tube, and to blow a gas stream of known composition across the top as
shoumn in Figure 8.33. Show how one can estimate the diffusion coefficient by
observing the decrease in the liquid-gas interface as a function of time.

GasB—»

L(z)

Liquid A ~—1—

Figure 8.33 The Stefan diffusion tube.
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Solution
Assumptions
1. Pseudo-steady-state behavior.
2. The system is isothermal.
3. The total pressure remains constant.
4. The mole fraction of species A at the top of the tube is zero.
5. No turbulence is observed at the top of the tube.
Analysis

System: Liquid in the tube

The inventory rate equation for mass of A gives

— Rate of moles of A out = Rate of accumulation of moles of A (1)
or,
. d Pi
—fia = - L
na=— {(H )A MA:I (2)

where p& is the density of species A in the liquid phase and A is the cross-sectional
area of the tube.

The rate of evaporation from the liquid surface, 4, can be determined from Eq.
(8.5-17). For A = constant and x4, =0, Eq. (8.5-17) reduces to

. ACDAB
ng = ———T—

In(l -z4,) (3)

It should be kept in mind that Eq. (8.5-17) was developed for a steady-state case.
For the unsteady problem at hand, the pseudo-steady-state assumption implies that
Eq. (3) holds at any given instant, i.e.,

Aa(t) = — 2S48 10— g,) (4)

Substitution of Eq. (4) into Eq. (2) gives

t pfi L
—cDABln(l—on)/ dt=——/ LdL (5)
0 Ma Ji,

or,
2M4scDypIn(l —
AC ABLn( on)] t4 L2 (©)
Pa

-
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Therefore, the diffusion coefficient is determined from the slope of the L? versus t
plot. Alternatively, rearrangement of Eq. (6) yields
L L
t p pal
. A (L — L)+ A_ 7
L-—Lo QMACDABln(l—:L‘AO) MACDABIH(l—-an)

In this case, the diffusion coefficient is determined from the slope of the t/(L — L,)
versus (L — L,) plot. What is the advantage of using Eq. (7) over Eq. (6)?

Example 8.15 To decrease the evaporation loss from open storage tanks, it is
recommended to use a tapered top as shown in Figure 8.84. Calculate the rate of
ethanol loss from the storage tank under steady conditions at 25°C.

j—1.5m —

_f_
L=05m

0 il

Ethanol (4)

| |
i 2m >

Figure 8.34 Evaporation from a tapered tank.
Solution
Physical properties
Diffusion coefficient of ethanol (A) in air (B) at 25°C (298K) :

298)"‘/2

(DaB)agg = (DaB)ays (m

298

— =5y [ 299
— (1.45 x 107%) (313

3/2 i
) =1.35 x 10~°m?/s
P5#t = 58.6 mmHg
Analysis

In order to determine the molar flow rate of species A from Eq. (8.5-17), it is first
necessary to express the variation of the cross-sectional area in the direction of z.
The wvariation of the diameter as a function of z is

D(z) =D, — (DL;—D—L) z (1)
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where D, and Dy are the tank diameters at z=0 and z= L, respectively. There-

fore, the variation of the cross-sectional area is

7 D?(z)
4

o (252)

Az) =

(2)

Substitution of Eq. (2) into Eq. (8.5-17) and integration gives the molar rate of

evaporation as
_ WCDAB(DO - DL) ln(l - .’EAO)

ng=
an( L
DL Do
The numerical values are
D,=2m
DL =1.5m
L=05m
Pt 586
ZA, P = % = 0.077
P 1

=41 x 1073 kmol/ m® = 41 mol/ m®

T RT ~ (0.08205)(25 -+ 273)
Substitution of these values into Eq. (3) gives

_ m(41)(1.35 x 107%)(2 ~ 1.5) In(1 — 0.077) _ ;. 104 mol/s

ng =
1 1
009 (1)
Comment: When Dy — D,, application of L’Hopital’s rule gives
- Do - DL _ . N2
o, T 1 T, T T e
D, D, D?
and Eq. (3) reduces to
’ITD2 4 CDAB

which is Eq. (4) of Example 8.14.

(3)
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8.5.1.2 Evaporation of a spherical drop

A liquid (.A) droplet of radius R is suspended in a stagnant gas B as shown in Figure
8.35. We want to determine the rate of evaporation under steady conditions.

NA"’r+Ar

NAr!’ I«—Ar‘-l

Figure 8.35 Mass transfer from a spherical drop.

Over a differential volume element of thickness Ar, as shown in Figure 8.35,
the conservation statement for species A, Eq. (8.4-1), is written as

(ANg ), — (ANa ), yar =0 (8.5-19)
Dividing Eq. (8.5-19) by Ar and taking the limit as Ar — 0 gives

lj (ANAr),r - (ANAr)|r+A1‘
im
Ar—0 Ar

=0 (8.5-20)
or,
d(AN,,)
dr

Since flux times area gives the molar transfer rate of species A, n4, it is possible
to conclude that

=0 (8.5-21)

A N4, = constant =ng4 (8.5-22)

Note that the area A in Eq. (8.5-22) is perpendicular to the direction of mass flux
and is given by

A = 4mr? (8.5-23)

Since the temperature and the total pressure remain constant, the total molar

concentration, ¢, in the gas phase is constant. From Table C.9 in Appendix C, the
total molar flux of species A in the r—direction is given by

d
Na, =—DuB —dcTA + cavh (8.5-24)

Since species B is stagnant, the molar average velocity is expressed as

Na,+ Np,  Na,
=LA (8.5-25)

v

*
r



8.5. MASS TRANSPORT WITH CONVECTION 309

which indicates non-zero convective flux. Using Eq. (8.5-25) in Eq. (8.5-24) results
in

_ CDAB dCA
Ny, = ccs dr (8.5-26)
Substitution of Eq. (8.5-26) into Eq. (8.5-22) and rearrangement gives
0 oo
d d
—47rc’DAB/ A _ m/ = (8.5-27)
et C—Cxp R T

A

where ¢, is the saturation concentration of species A in B at r = R in the gas
phase. Carrying out the integrations in Eq. (8.5-27) yields

ng=4mcDypRIn ( ) (8.5-28)

*
C—Cy

Example 8.16 A benzene droplet with a diameter of 8 mm is suspended by a wire
in a laboratory. The temperature and pressure are maintained constant at 25°C
and 1atm, respectively. Estimate the diffusion coefficient of benzene in air if the
variation of the droplet diameter as a function of time is recorded as follows:

¢ D
(min) ( mm)

5 7.3
10 6.5
15 5.5
20 4.4
25 2.9

Solution

Physical properties
pa = 879kg/ m3

For benzene (A) : ¢ My =178
P35t = 94.5 mmHg

Assumptions

1. Pseudo-steady-state behavior.

2. Air 1s insoluble in the droplet.
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Analysis

System: Benzene droplet

The inventory rate equation for mass of A gives

— Rate of moles of A out = Rate of accumulation of moles of A (1)

L
oo_ 4|4 a3 Pa

47pk
:_p‘iR2ﬁ 2)
Mg dt

or,

where pf“ is the density of species A in the liquid phase.

The rate of evaporation from the droplet surface, 14, can be determined from
Eq. (8.5-28). However, remember that Eq. (8.5-28) was developed for a steady-
state case. For the unsteady problem at hand, the pseudo-steady-state assumption
implies that Eq. (8.5-28) holds at any given instant, i.e.,

1'7.,4(t)=41rcDABR(t)ln( ¢ ) (3)

®
C—Cy

Substitution of Eq. (3) into Eq. (2) and rearrangement gives

Pf{ R d c t d
- RAR=c¢Dypln t 4
Ma /R e <C—CZ)/0 ®
where R, is the initial radius of the liquid droplet. Carrying out the integrations
in Eq. (4) yields
R2=Rg_[20’DAfMA ln( c *>j| : (5)
A
Since ,
P Pg
o= —— * = ——— 6
c RT and cy RT (6)
Eq. (5) takes the form
2¢Dap M P
2 _ p2 AB /M4
R°= R, - pfi ln(P—Pj“‘)} t (7)

The plot of R? versus t is shown below.
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14 §
12

10

R2 x 10% (m2)
[=:]

61

44

2“

0 -+ + 4 t —+
0 300 600 900 1200 1500

t(s)

The slope of the straight line is —9.387 x 10~° m?/s. Hence,

2¢Dap My P -
2 In ( o Pm) =9.387 x 10 ° (8)
Pa A

The total molar concentration is

p 1
=or = = 0.041 1/ m3
“TRT ~ (0.08205)(25 + 273) 0.041kmol/m (9)

Substitution of the values into Eq. (8) gives the diffusion coefficient as

879

760
2(0.041)(78) In <m)

Dap = 9.387 x 10~ °
=9.72x10"%m?/s

8.5.2 Diffusion Through a Stagnant Liquid

Consider a one-dimensional diffusion of liquid A through a stagnant film of liquid
B with a thickness L as shown in Figure 8.36. The mole fractions of A at z =0
and z = L are known. As an engineer, we are interested in the number of moles of
species A transferring through the film of B under steady conditions.
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{ L >

XAL

ny

Figure 8.36 Diffusion of liquid .A through a stagnant liquid film B.

Over a differential volume of thickness Az, the conservation statement for
species A, Eq. (8.4-1), is written as

NAzle_ NA;|z+AzA = 0 (85"29)

Dividing Eq. (8.5-29) by A Az and letting Az — 0 gives

Na.l. — Na.| +A
’ zlz ziz z =0 8. 3
AI::TO Az (8.5-30)

or,
dNa,

dz

To proceed further, it is necessary to express the total molar flux of species A, i.e.,
Ny, either by Eq. (8.5-2) or by Eq. (8.5-3).

=0 = Na, = constant (8.5-31)

8.5.2.1 Analysis based on the molar average velocity

From Eq. (8.5-2), the total molar flux of species A is given as

d
Ny, = —cDyp % + cav, (8.5-32)

It is important to note in this problem that the total molar concentration, ¢, is not
constant but dependent on the mole fractions of species A and B. Since species B
is stagnant, the expression for the molar average velocity becomes

«_ Na, +Np, Ng,

: —= = (8.5-33)

v
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Substitution of Eq. (8.5-33) into Eq. (8.5-32) gives the molar flux of species A as

C'DAB d:I:A

Ny =-— —_—
A l—CEA dz

z

(8.5-34)

Since the total molar concentration, ¢, is not constant, it is necessary to express
¢ in terms of mole fractions. Assuming ideal solution behavior, i.e., the partial
molar volume is equal to the molar volume of the pure substance, the total molar
concentration is expressed in the form

1 1
Vmiz B fo/A + JJBVB

C =

(8.5-35)

Substitution of zg = 1 — x4 yields

1
= Vot (Va=Va)on
Combining Eqgs. (8.5-34) and (8.5-36) and rearrangement gives

L TA d
N, / dz= —Dag / L %4 (8.5-37)
0 zTA, [VB+(VA—VB)£EA] (l—cl:A)

(8.5-36)

c

Integration of Eq. (8.5-37) results in

Das l—xz4, Ve + (Va— Vg)za,
NAz = < In —In|= = ~
LVy 1—z4, Ve + (Va — VB)za,
_ Das ), (CBL) (8.5-38)
LV, ¢B,

8.5.2.2 Analysis based on the volume average velocity

The use of Eq. (8.5-3) gives the total molar flux of species A as
d
NA‘ = —C'DAB-% +CA'U: (85—39)

From Eq. (C) in Table 8.12, the volume average velocity is expressed as
v: = ‘_/.ANA; + VBNB:
=V sNa, =VaNa, (8.5-40)
Using Eq. (8.5-40) in Eq. (8.5-39) yields

D d
Ny = AB CA

—_T4ar 74 .5-41
N 1 —Vaca dz (8.5-41)
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Rearrangement of Eq. (8.5-41) results in

L CA d
Na, / dz = —Dag / . - (8.5-42)
0 ca, 1- VACA

Integration of Eq. (8.5-42) leads to

1-V,
Ny, = 2421, ( ACAL) (8.5-43)

LVA 1 “VACAO

The use of the identity from Eq. (8.5-35), i.e.,

1-—- VACA = VBCB (85—44)
simplifies Eq. (8.5-43) to
Na, = 248y (C—Bi> (8.5-45)
LV, ¢B,

which is identical with Eq. (8.5-38).

Example 8.17 Cyclohezane (A) is diffusing through a 1.5mm thick stagnant
benzene (B) film at 25°C. If z4, = 0.15 and z4, = 0.05, determine the molar
flux of cyclohexane under steady conditions.

Solution
Physical properties

— 3
For cyclohezane (A) : {’0 4 =0.779g/cm

My=84
= 3
For benzene (B) . {3/31 = 0.?'879 g/ cm
B =

Analysis

The molar volumes of species A and B are

7, = Ma
Pa

_ 8 3

=070 = 107.8cm”/ mol

7y = M2
PB
78

- — 3
= 0879 88.7cm”/ mol
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The values of the total molar concentration at z =0 and z = L are calculated from
Eq. (8.5-36) as

1
Co = = - -
VB + (VA — VB)Q;AO
_ 1 3 » "
"~ 88.7+ (107.8 — 88.7)(0.15) 10.9 x 107" mol/ cm
1
Cr, = = — -
Ve+(Va—VB)za,

1
"~ 88.7+ (107.8 — 88.7)(0.05)

=11.2 x 103 mol/ cm?

Therefore, the use of Fq. (8.5-38) gives the molar flur of cyclohexane through
benzene layer as

Na, = 'D—’EB In (CBL>
LV4 cgB,

2.09 x 10~° (11.2 x 1073)(1 — 0.05)
(0.15)(107.8) [(10.9 x 10-3)(1 - 0.15)

=18 x 107" mol/cm?.s

8.5.3 Diffusion With Heterogeneous Chemical Reaction

An ideal gas A diffuses at steady-state in the positive z—direction through a flat
gas film of thickness 4 as shown in Figure 8.37. At z = § there is a solid catalytic
surface at which A undergoes a first-order heterogeneous dimerization reaction

2A—-B

As an engineer, we are interested in the determination of the molar flux of species
A in the gas film under steady conditions. The gas composition at z =0, i.e., 24,
is known.

The conservation statement for species A, Eq. (8.4-1), can be written over a
differential volume element of thickness Az as

Nal,A= Na,l,;a,A=0 (8.5-46)
Dividing Eq. (8.5-46) by A Az and letting Az — 0 gives

Na, |z — Ny, |z+Az

Jim < =0 (8.5-47)

or,

= =0 = N4, = constant (8.5-48)
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T B ==pIRE )

. — ]

Figure 8.37 Heterogeneous reaction on a catalyst surface.

The total molar flux can be calculated from Eq. (8.5-2) as
JVAz = -—CDAB dx—A + CA'U:
dz

in which the molar average velocity is given by

. Na,+Np,
V=

(8.5-49)

(8.5-50)

The stoichiometry of the chemical reaction implies that for every 2 moles of A
diffusing in the positive z—direction, 1 mole of B diffuses back in the negative
z—direction. Therefore, the relationship between the fluxes can be expressed as

1
“N4 =-N
2 A, B,

The use of Eq. (8.5-51) in Eq. (8.5-50) gives

05N,
B C

*
z

v

Substitution of Eq. (8.5-52) into Eq. (8.5-49) gives

Ns = — _¢Dap dza
4T T 10524 dz
Since N4, is constant, Eq. (8.5-53) can be rearranged as
4 FAs dx
N / dz=—cD / —t
A 0 AB Ta, 1-05:1:,4
or,

Na

_2cDap In 1-0.5z4,
T4 1-0.5z4,

(8.5-51)

(8.5-52)

(8.5-53)

(8.5-54)

(8.5-55)
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Note that although x4, is a known quantity, the mole fraction of species A in
the gas phase at the catalytic surface, z4,, is unknown and must be determined
from the boundary condition. For heterogeneous reactions, the rate of reaction is
empirically specified as

at z=9 NA, =k%cqa =kczp (85—56)

where k£° is the surface reaction rate constant. Therefore, x4, is expressed from
Eq. (8.5-56) as

Na,
mAg - Cks (85‘57)
Substitution of Eq. (8.5-57) into Eq. (8.5-55) results in
N _ QCDAB In 1—0.5(NA’/C1CS) (8 5—58)
AT 75 1-05z4, ‘

which is a transcendental equation in N4,. It is interesting to investigate two
limiting cases of Eq. (8.5-58).

Case (i) k° is large
Since In(1 — z) ~ — z for small values of z, then
In[1-05(Nga,/ck®)) ~—05(Na,/ck?) (8.5-59)

so that Eq. (8.5-58) reduces to

2CDAB Az 1
[P —_— -
Na. 5 <A2+1)l“(1—0.5%) (8.5-60)

in which A represents the ratio of the rate of heterogeneous reaction to the rate of
diffusion and it is given by
ko

A=
Das

(8.5-61)

Case (1) k* = o0

This condition implies instantaneous reaction and Eq. (8.5-58) takes the form

N,, = 2¢Pas ln( ! ) (8.5-62)

. 5 1-05z,,

When k£° = o0, once species A reaches the catalytic surface, it is immediately
converted to species B so that z4, = 0. Note that Eq. (8.5-62) can also be obtained
from Eq. (8.5-55) by letting z4, = 0.
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8.5.3.1 Comment

The molar average velocity is given by Eq. (8.5-52) and since both N4, and c are
constants, v} remain constant for 0 < z < §. On the other hand, from Eq. (8.5-6)
the mass average velocity is

_ MuyNy, + MpNp,
N p

Expressing Ng, in terms of N4, by using Eq. (8.5-51) reduces Eq. (8.5-63) to
_ Na,(My—05Mp)

Uz

(8.5-63)

v, 8.5-64
; ( )

As a result of the dimerization reaction M4 = 0.5 Mg and we get
v, =0 (8.5-65)

In this specific example, therefore, the mass average velocity can be determined
on the basis of a solution to a diffusion problem rather than a conservation of
momentum.

NOTATION

area, m?>

catalyst surface area per unit volume, 1/ m
heat capacity at constant pressure, kJ/kg. K
total concentration, kmol/ m3
concentration of species i, kmol/ m?
diameter, m

diffusion coefficient for system A-B, m?/s
total energy flux, W/ m?

drag force, N

enthalpy, J; partition coeflicient

heat transfer coefficient, W/ m?. K
molecular molar flux, kmol/ m?.s

thermal conductivity, W/ m.K

surface reaction rate constant

length, m

mass flow rate, kg/s

molecular weight, kg/kmol

total molar flux, kmol/ m?.s

total molar flow rate, kmol/s

molar flow rate of species ¢, kmol/s

5'3'2§3'b‘?€a~%;~m§1@ Pbg ng,é:;_\,
W
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pressure, Pa

heat transfer rate, W

volumetric flow rate, m3/s

heat flux, W/ m?

radius, m; resistance, K/ W

gas constant, J/ mol. K

temperature, °C or K

time, s

overall heat transfer coefficient, W/ m? K
velocity of the plate in Couette flow, m/s; volume, m
mass average velocity, m/s

molar average velocity, m/ s

volume average velocity, m/s

width, m

total mass flux, kg/m?.s

mole fraction of species ¢

3

difference

fin efficiency; effectiveness factor
latent heat of vaporization, J
viscosity, kg/ m.s

kinematic viscosity, m?/s

total momentum flux, N/ m?
density, kg/m?

T AR >3 D gége.e*e <qwqa:o-e 0O

Tij shear stress (flux of j — momentum in the ¢ — direction), N/ m?
w mass fraction

Overlines
~ per mole

N

per unit mass
— partial molar

Bracket
{a) average value of a
Superscript
sat saturation
Subscripts
A B species in binary systems
ch characteristic
GM geometric mean
1 species in multicomponent systems
mn inlet
LM log-mean

miz mixture
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out out
w wall or surface
00 free stream

Dimensionless Numbers

Biy Biot number for heat transfer
Biy Biot number for mass transfer
Nu Nusselt number

Pr Prandtl number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number
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PROBLEMS

8.1 When the ratio of the radius of the inner pipe to that of the outer pipe is
close to unity, a concentric annulus may be considered to be a thin plate slit and its
curvature can be neglected. Use this approximation and show that Eqs. (8.1-12)
and (8.1-15) can be modified as

U_szl_lifc(%_l)

2 _ 2
Q=7rRV(21 k%)

to determine the velocity distribution and volumetric flow rate for Couette flow in
a concentric annulus with inner and outer radii of kR and R, respectively.

8.2 The composite wall shown below consists of materials A and B with thermal
conductivities k4 = 10W/m.K and kp = 0.8 W/ m. K. If the surface area of the
wall is 5m?, determine the interface temperature between A and B.

40°C A B 14°C

«—10 cm 20cm

b

(Answer: 39°C)
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8.3 A spherical tank containing liquid nitrogen at 1atm pressure is insulated
with a material having a thermal conductivity of 1.73 x 1073 W/ m. K. The inside
diameter of the tank is 60 cm, and the insulation thickness is 2.5 cm. Estimate the
kilograms of nitrogen vaporized per day if the outside surface of the insulation is
at 21°C. The normal boiling point of nitrogen is ~196 °C and its latent heat of
vaporization is 200 kJ/ kg.

(Answer: 7.95kg/day)

8.4 For a rectangular fin of Section 8.2.4 the parameters are given as: T, =
175°C, T, = 260°C, k =105W/m. K, L =4cm, W = 30cm, B = 5mm.

a) Calculate the average heat transfer coefficient and the rate of heat loss through
the fin surface for A = 0.3,0.6,0.8,1.0,3.0,6.0, and 8.0.

b) One of your friends claims that as the fin efficiency increases, the process
becomes more reversible. Do you agree?

8.5 Show that the mass average velocity for the Stefan diffusion tube experiment,
Example 8.16, is given by

v —MADABln !
=T ML 1—2x4,

where M is the molecular weight of the mixture. Note that this result leads to the
following interesting conclusions:

1) The mass average velocity is determined on the basis of a solution to a diffusion
problem rather than a conservation of morentum.
i1} No-slip boundary condition at the wall of the tube is violated.

For a more thorough analysis of the Stefan diffusion tube problem, see Whitaker
(1991).

8.6 Repeat the analysis given in Section 8.4.4 for a zerc-order reaction in the
following way:

a) Show that the concentration distribution is given by

9:1+A2<€2—2—§) (1)

where
0= (::) 2)
=7 ®)

2ksL2
A=/ ——MM—
\ BDagp ca, @
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b) Plot 8 versus ¢ for A = 1, /2, and /3. Show why the solution given by Eq. (1)
is valid only for A < /2.

¢) For A > /2, only a fraction ¢ (0 < ¢ < 1) of the surface is available for
the chemical reaction. Under these circumstances show that the concentration
distribution is given by

62

9=1+A2<—2——¢>§) 0<E<¢ (5)

8.7 Consider a spherical catalyst particle of radius R over which a first-order

heterogeneous reaction
A— B

takes place. The concentration of species A at a distance far away from the catalyst
particle is c4__.

a) Show that the concentration distribution is
CA -1 A2 E
CAo, - 1+A2) r

k*R
Dasr

where A is defined by
A=

b) Show that the molar rate of consumption of species A, n4, is given by

: A?
ng = 4WDAB (W) CADQR

8.8 Consider a spherical carbon particle of initial radius R, surrounded by an
atmosphere of oxygen. A very rapid heterogeneous reaction
2C+05—2CO

takes place on the surface of the carbon particle. Show that the time it takes for
the carbon particle to disappear completely is

po L R pe
481n2 CD02_CO

where p is the density of carbon.






Chapter 9

Steady-State Microscopic
Balances With Generation

This chapter is the continuation of Chapter 8 with the addition of the genera-
tion term in the inventory rate equation. The breakdown of the chapter is the
same as Chapter 8. Once the governing equations for the velocity, temperature
or concentration are developed, the physical significance of the terms appearing in
these equations are explained and the solutions are given in detail. Obtaining the
macroscopic level design equations by integrating the microscopic level equations
over the volume of the system is also presented.

9.1 MOMENTUM TRANSPORT

For steady transfer of momentum, the inventory rate equation takes the form

Rate of Rate of
momentum in momentum out
( Rate of

momentum generation

) =0 @

In Section 5.1 it was shown that momentum is generated as a result of forces acting
on a system, i.e., gravitational and pressure forces. Therefore, Eq. (9.1-1) may also
be expressed as

( Rate of . ) : < Rate of ) n ( Forces acting ) —0 (9.1.2)
momentum 1n momentum out on a system

As in Chapter 8, our analysis will again be restricted to cases in which the following
assumptions hold:

325
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1. Incompressible Newtonian fluid.
2. One-dimensional, fully developed laminar flow,

3. Constant physical properties.

9.1.1 Flow Between Parallel Plates

Consider the flow of a Newtonian fluid between two parallel plates under steady con-
ditions as shown in Figure 9.1. The pressure gradient is imposed in the z—direction
while both plates are held stationary.

"2 ]

Figure 9.1 Flow between two parallel plates.

Velocity components are simplified according to Figure 8.2. Since v, = v,(2)
and v; = vy = 0, Table C.1 in Appendix C indicates that the only non-zero shear-
stress component is 7;,. Hence, the components of the total momentum flux are
given by

dv,
Moz = Taz + (PV2) Vg = Taz = — dz.')z (9.1-3)
Tyz = Tyz + (Pvz) vy =0 (9.1-4)
Taz = Tz + (V) v, = pv? (9.1-5)

The pressure, on the other hand, may depend on both z and z. Therefore, it is
necessary to write the z— and z—components of the equation of motion.

z—component of the equation of motion

For a rectangular differential volume element of thickness Az, length Az and width
W, as shown in Figure 9.1, Eq. (9.1-2) is expressed as

(Ple — Pletaz) WAz+ pgW Az Az =0 (9.1-6)
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Dividing Eq. (9.1-6) by W Az Az and taking the limit as Az — 0 gives

: Pla: - Plx+Aa: _
Aim, Az +rg=0 (9.1-7)
or,
oP
OF — b0 (9.1-8)

Note that Eq. (9.1-8) indicates the hydrostatic pressure distribution in the
z—direction.

z—component of the equation of motion

Over the differential volume element of thickness Az, length Az and width W, Eq.
(9.1-2) takes the form

(ﬂ”|z WAz + 7z.|, W Az) - (7rzz|z+Az W Az + 7fa:z|z+Aa: WAZ)
+(Pl, = Plya)WAzZ=0 (9.19)

Dividing Eq. (9.1-9) by Az Az W and taking the limit as Az — 0 and Az — 0
gives

. 7rzz' - Trzzl . 7ra:z| - Tr::zl
lim z z+Az + lm ] x+Ax
Az—0 Az Az—0 Az

or,
on,.  dmy, OP _

B+ =0 (9.1-11)

Substitution of Eqgs. (9.1-3) and (9.1-5) into Eq. (9.1-11) and noting that 8v,/8z =0

yields

d?v, OP
12 71:? = E (9 ].—].2)
—_— =~

f=) f=,2)

Since the dependence of P on z is not known, integration of Eq. (9.1-12) with
respect to z is not possible at the moment. To circumvent this problem, the effects
of the static pressure and the gravitational force are combined in a single term
called the modified pressure, P. According to Eq. (5.1-16), the modified pressure
for this problem is defined as

P =P—pgz (9.1-13)
so that

oP 0P

el vl 20 (9.1-14)
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and

oP 0P
5 =9 (9.1-15)
Combination of Egs. (9.1-8) and (9.1-14) yields
oP
= = 0 (9.1-16)

which implies that P = P(z) only. Therefore, the use of Eq. (9.1-15) in Eq.
(9.1-12) gives
d?v, dpP

H dl‘2 = 71; (91-17)
— =~
f{=) f(2)

Note that while the right-side of Eq. (9.1-17) is a function of z only, the left-side
is dependent only on z. This is possible if and only if both sides of Eq. (9.1-17)
are equal to a constant, say A. Hence,

dp

hali A= —

dz = L
where P, and P, are the values of P at z = 0 and z = L, respectively. Substitution
of Eq. (9.1-18) into Eq. (9.1-17) gives the governing equation for velocity in the
form

