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Preface

Integrating Growth Theory and Numerical Solutions

Dynamic, stochastic models with optimizing agents have become a standard tool
for policy design and evaluation at central banks and governments around the world.
They are also increasingly used as the main reference for forecasting purposes. Such
models can incorporate general equilibrium assumptions, as it was the case with
Modern Business Cycle Theory, or different types of market frictions, in the form
of price rigidity or monopolistic competition, as in the New Keynesian Macroeco-
nomics. These models can all be considered as special cases of models of economic
growth, and the theoretical and computational methods contained in this book are a
first step to get started in this area.

The book combines detailed discussions on theoretical issues on deterministic
and stochastic, exogenous and endogenous growth models, together with the com-
putational methods needed to produce numerical solutions. A detailed description
of the analytical and numerical approach to solving each of the different models
covered in the book is provided, and the solution algorithms are implemented in
EXCEL and MATLAB files. These files are provided to illustrate theoretical re-
sults as well as to simulate the effects of economic policy interventions. Theoretical
discussions covered in the book relate to issues such as the inefficiency of the com-
petitive equilibrium, the Ricardian doctrine, dynamic Laffer curves, the welfare cost
of inflation or the nominal indeterminacy of the price level and local indeterminacy
in endogenous growth models, among many others. This integration of theoretical
discussions at the analytical level, whenever possible, and numerical solution meth-
ods that allow for addressing a variety of additional issues that could not possibly
be discussed analytically, is a novel feature of this book.

The Audience

This textbook has been conceived for advanced undergraduate and graduate students
in economics, as well as for researchers planning to work with stochastic dynamic
growth models of different kinds. As described above, some of the applications
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included in the book may be appealing to many young researchers. Analytical dis-
cussions are presented in full detail and the reader does not need to have a spe-
cific previous background on Growth theory. The accompanying software has been
written using the same notation as in the textbook, which allows for an easy under-
standing of how each program file addresses a particular theoretical issue. Programs
increase in complexity as the book covers more complex models, but the reader can
progress easily from the simpler programs in the first chapters to the more com-
plex programs in endogenous growth models or programs for analyzing monetary
economies. No initial background on programming is assumed.

The book is self contained and it has been designed so that the student advances
in the theoretical and the computational issues in parallel. The structure of program
files is described in numerical exercise-type of sections, where their output is also
interpreted. These sections should be considered an essential part of the learning
process, since the provided program files can be easily changed following our indi-
cations so that the reader can formulate and analyze his/her own questions.

Main Ideas

Exogenous and endogenous growth models are thoroughly reviewed throughout the
book, and special attention is paid to the use of these models for fiscal and monetary
policy analysis. The structure of each model is first presented, and the equilibrium
conditions are analytically characterized. Equilibrium conditions are interpreted in
detail, with special emphasis on the role of the transversality condition in guaran-
teeing the stability of the implied solution. Stability is a major issue throughout the
book, and a central ingredient in the construction of the solution algorithms for the
different models.

Even though this is not a book on economic policy, most of the models con-
sidered incorporate a variety of distortionary and non-distortionary taxes, which
allow us to address a number of policy issues. Fiscal policy in non-monetary growth
economies is considered in Chaps. 2–4 (exogenous growth) and Chaps. 6 and 7 (en-
dogenous growth). Characterizing possible dynamic Laffer effects in endogenous
growth models, or the effects of fiscal policy interventions in models with human
capital accumulation are some of the issues considered in this first part of the book.
Chapters 8 and 9 are devoted to the analysis of monetary economies that incor-
porate fiscal policy variables and parameters. This allows for a detailed discussion
of the interaction between fiscal and monetary policy and their coordinate design.
The analysis of each model starts with the characterization of steady state, and a
description of the long-run effects of different policy interventions. Stability condi-
tions are then characterized on either linear or log-linear approximations, and the
general solution approach is particularized in each case to compute the numerical
time series solution to the model under the specific type of policy considered. We
are particularly interested in characterizing the effects of a given policy intervention
along the transition between steady states. Most models are presented and analysed
in continuous and discrete time so that the reader can become familiar with both
formulations. Sometimes, a given model is solved under two different approaches,
so that the reader can get an even better understanding of the solution techniques.
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The illustrations used in the ‘Numerical Exercise’-type sections throughout the
book discuss a variety of characteristics of the numerical solution to each specific
model, including the evaluation of some policy experiments. Most issues considered
in these sections, like the details of the numerical simulation of models with techno-
logical diffusion or Schumpeterian models under uncertainty are presented for the
first time in a textbook, having appeared so far only in research papers.

Brief Description of Contents

The use of rational expectations growth models for policy analysis is discussed
in the Introductory chapter, where the need to produce numerical solutions is ex-
plained. Chapter 2 presents the neoclassical Solow–Swan growth model with con-
stant savings, in continuous and discrete time formulations. Chapter 3 is devoted to
the optimal growth model in continuous time. The existence of an optimal steady
state is shown and stability conditions are characterized. The relationship between
the resource allocations emerging from the benevolent planner’s problem and from
the competitive equilibrium mechanism is shown. The role of the government is ex-
plained, fiscal policy is introduced and the competitive equilibrium in an economy
with taxes is characterized. Finally, the Ricardian doctrine is analyzed. Chapter 4
addresses the same issues in discrete time formulation, allowing for numerical solu-
tions to be introduced and used for policy evaluation. Deterministic and stochastic
versions of the model are successively considered.

Chapter 5 is devoted to solution methods and their application to solving the op-
timal growth model of an economy subject to distortionary and non-distortionary
taxes. The chapter covers some linear solution methods, implemented on linear and
log-linear approximations: the linear-quadratic approximation, the undetermined
coefficients method, the state-space approach, the method based on eigenvalue-
eigenvector decompositions of the approximation to the model, and also some non-
linear methods, like the parameterized expectations model and a class of projection
methods. Special emphasis is placed on the conditions needed to guarantee stability
of the implied solutions.

Chapter 6 introduces some endogenous growth models, in continuous and dis-
crete time formulations. The AK model incorporating fiscal policy instruments is
taken as a basis for analysis, both in deterministic and stochastic versions. The pos-
sibility of dynamic Laffer curves is discussed. A more general model with nontrivial
transition, that includes the AK model as a special case, is also presented. Chapter
7 presents additional endogenous growth models. Stochastic economies with a vari-
ety of products, technological diffusion, Schumpeterian growth, and human capital
accumulation, are all presented in detail and the appropriate solution methods are
explained. Chapters 8 and 9 are devoted to growth in monetary economies. Chapter
8 introduces the basic Sidrauski model and discusses some modelling issues that
arise in practical research in these models. The interrelation between monetary and
fiscal policy in steady state is also discussed. Special attention is paid to character-
ize the feasible combinations of fiscal and monetary policies and to the appropriate
choice of policy targets. The concept of optimal rate of inflation is introduced. The
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possibilities for the design of a mix of fiscal and monetary policy in economies with
and without distorting taxation are discussed. Conditions for the non-neutrality of
monetary policy under endogenous labour supply are examined. The chapter closes
with a description of the Ramsey problem that describes the choice of optimal mon-
etary policy. Chapter 9 characterizes the transitional dynamics in deterministic and
stochastic monetary economies and presents numerical solution methods for de-
terministic and stochastic monetary economies. Specific details are provided de-
pending on whether the monetary authority uses nominal interest rates or the rate
of growth of money supply as a control variable for monetary policy implementa-
tion. Special attention is paid to the possibility of nominal indeterminacy arising as a
consequence of the specific design followed for monetary policy. The chapter closes
with a presentation of Keynesian monetary models, which are increasingly used for
actual policy making. After characterizing equilibrium conditions, a numerical so-
lution approach is discussed in detail.

A more detailed synopsis of the book is provided in Sect. 1.5.

Software

As explained above, MATLAB and EXCEL files are provided to analyze a variety
of theoretical issues. EXCEL files are used to compute a single realization of the
solution to a given model. That is enough in deterministic economies. There are
also MATLAB programs that perform the same analysis. In stochastic economies,
however, characterizing the probability distribution of a given statistic through a
large number of realizations becomes impossible in a spreadsheet, and it is done in
MATLAB programs. All MATLAB and EXCEL files are downloadable from our
Web page: www.ucm.es/info/ecocuan/anc/Growth/growthbook.htm

Antecedents and Acknowledgments

Over the years, we have benefited from working through textbooks on Economic
Growth and Dynamic General Equilibrium Economies [Barro and Sala-i-Martin
(2003), Aggion and Howitt (1999), Stokey and Lucas (1989), Blanchard and Fisher
(1998), Lucas (1987), Sargent (1987), Ljunquist and Sargent (2004), Hansen y
Sargent (2005), Cooley (1995), Turnovsky (2000), Walsh (1998)], who obviously
should not be held accountable for any misconception that might arise in this
volume.

We hope to contribute to the huge literature on Economic Growth by the integra-
tion of theoretical and computational aspects in the analysis of non-monetary and
monetary models of exogenous and endogenous growth. Even though we provide
a detailed discussion of a variety of different solution approaches in Chapter 5, we
have emphasized the use of variations of the Blanchard and Kahn (1980) approach,
in some cases following the applications by Ireland (2004) [see also his Web page:
http://www2.bc.edu/˜irelandp/programs.html]. Recent textbooks on Computational
Methods for Dynamic Economies [Judd (1998), Heer and Maussner (2005),
Marimon and Scott eds. (1997), deJong and Dave (2007), Miranda and Fackler
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(2002), McCandless (2008)] provide additional reading, in some cases with alter-
native approaches to model solution.

The idea that any dynamic model has time series implications that can be put to
test with actual data has traditionally been a central premise in the graduate pro-
grams in Economics at University of Minnesota, and has clearly influenced the
conception of this book. Specially important to us were the teachings of Stephen
Turnovsky, Tom Sargent and Christopher Sims. In that context, it was easy to under-
stand that advances in Economics should come from iterating between theoretical
models and actual data and from there, the need to obtain statistical implications
from any model economy.

Previous versions of parts of this book have been used in advanced undergrad-
uate and graduate courses in Economics and Quantitative Finance at Universidad
Complutense (Madrid, Spain), City University of Yokohama (Yokohama, Japan)
and Keio University (Tokyo, Japan). We appreciate the patience of students working
out details of previous drafts.We thank Yoshikiyo Sakai and Yatsuo Maeda for the
opportunity to discuss this material while still in process. We are greatly indebted
with our friends and colleagues Emilio Domı́nguez, Javier Pérez and Gustavo Mar-
rero for many useful and illuminating discussions. Finally, our deepest gratitude
to our families for their understanding through the long and demanding process of
producing this book.

Alfonso Novales
Esther Fernández

Jesús Ruiz



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Few Time Series Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Some Simple Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Stationarity, Mean Reversion, Impulse Responses . . . . . . . . . 6
1.1.3 Numerical Exercise: Simulating Simple

Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Structural Macroeconomic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Static Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Dynamic Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Stochastic, Dynamic Structural Models . . . . . . . . . . . . . . . . . . 21
1.2.4 Stochastic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.5 Numerical Exercise – Simulating Dynamic, Structural

Macroeconomic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Why are Economic Growth Models Interesting? . . . . . . . . . . . . . . . . . 27

1.3.1 Microeconomic Foundations of Macroeconomics . . . . . . . . . 27
1.3.2 Lucas’ Critique on Economic Policy Evaluation . . . . . . . . . . 33
1.3.3 A Brief Overview of Developments on Growth Theory . . . . . 35
1.3.4 The Use of Growth Models for Actual Policy Making . . . . . . 39

1.4 Numerical Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.1 Why do we Need to Compute Numerical Solutions

to Growth Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.3 Indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4.4 The Type of Questions We Ask and the Conclusions

We Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Synopsis of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 The Neoclassical Growth Model Under a Constant Savings Rate . . . . . 53
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Returns to Scale and Sustained Growth . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



xiv Contents

2.3 The Neoclassical Growth Model of Solow and Swan . . . . . . . . . . . . . 59
2.3.1 Description of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.2 The Dynamics of the Economy . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.3 Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.4 The Transition Towards Steady-State . . . . . . . . . . . . . . . . . . . . 68
2.3.5 The Duration of the Transition to Steady-State . . . . . . . . . . . . 69
2.3.6 The Growth Rate of Output and Consumption . . . . . . . . . . . . 69
2.3.7 Convergence in the Neoclassical Model . . . . . . . . . . . . . . . . . 71
2.3.8 A Special Steady-State: The Golden Rule of Capital

Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4 Solving the Continuous-Time Solow–Swan Model . . . . . . . . . . . . . . . 76

2.4.1 Solution to the Exact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.2 The Linear Approximation to the Solow–Swan Model . . . . . 77
2.4.3 Changes in Structural Parameters . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.4 Dynamic Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 The Deterministic, Discrete-Time Solow Swan Model . . . . . . . . . . . . 85
2.5.1 The Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5.2 Approximate Solutions to the Discrete-Time Model . . . . . . . 87
2.5.3 Numerical Exercise – Solving the Deterministic

Solow–Swan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.5.4 Numerical Exercise – A Permanent Change

in the Savings Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5.5 Numerical Exercise – Dynamic Inefficiency . . . . . . . . . . . . . . 93

2.6 The Stochastic, Discrete Time Version of the Solow–Swan Model . . 95
2.6.1 Numerical Exercise – Solving the Stochastic

Solow–Swan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3 Optimal Growth. Continuous Time Analysis . . . . . . . . . . . . . . . . . . . . . . 101
3.1 The Continuous-Time Version of the Cass–Koopmans Model . . . . . . 101

3.1.1 Optimality Conditions for the Cass–Koopmans Model . . . . . 103
3.1.2 The Instantaneous Elasticity of Substitution

of Consumption (IES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1.3 Risk Aversion and the Intertemporal Substitution

of Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.1.4 Keynes–Ramsey Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.1.5 The Optimal Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.1.6 Numerical Exercise: The Sensitivity of Steady-State

Levels to Changes in Structural Parameters . . . . . . . . . . . . . . . 110
3.1.7 Existence, Uniqueness and Stability of Long-Run

Equilibrium – A Graphical Discussion . . . . . . . . . . . . . . . . . . 112
3.1.8 Suboptimality of the Golden Rule . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.1 The Trajectory for Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Contents xv

3.2.2 Numerical Exercise – Characterizing the Transition
after a Change in a Structural Parameter . . . . . . . . . . . . . . . . . 120

3.3 Interpreting the Central Planners’s Model as a Competitive
Equilibrium Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.3.1 The Efficiency of Competitive Equilibrium . . . . . . . . . . . . . . . 129

3.4 A Competitive Equilibrium with Government . . . . . . . . . . . . . . . . . . . 131
3.4.1 The Structure of the Economy . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4.2 Feasible Stationary Public Expenditure and Financing

Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.4.3 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.4.4 Global Constraint of Resources . . . . . . . . . . . . . . . . . . . . . . . . 136
3.4.5 The Representative Agent Problem . . . . . . . . . . . . . . . . . . . . . 136

3.5 On the Efficiency of Equilibrium with Government . . . . . . . . . . . . . . 138
3.5.1 On the Efficiency of Equilibrium Under Lump-Sum Taxes

and Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.5.2 The Inefficiency of the Competitive Equilibrium

Allocation Under Distortionary Taxes . . . . . . . . . . . . . . . . . . . 140
3.6 The Ricardian Doctrine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.6.1 The Ricardian Doctrine Under Non-Distorting Taxes . . . . . . 146
3.6.2 Failure of the Ricardian Doctrine Under Distorting Taxes . . . 147

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.7.1 Appendix 1 – Log-linear Approximation to the Continuous

Time Version of Cass–Koopmans Model . . . . . . . . . . . . . . . . . 149
3.7.2 Appendix 2 – An Alternative Presentation

of the Equivalence Between the Planner’s
and the Competitive Equilibrium Mechanisms
in an Economy Without Government . . . . . . . . . . . . . . . . . . . . 150

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Optimal Growth. Discrete Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1 Discrete-Time, Deterministic Cass–Koopmans Model . . . . . . . . . . . . 155

4.1.1 The Global Constraint of Resources . . . . . . . . . . . . . . . . . . . . . 155
4.1.2 Discrete-Time Formulation of the Planner’s Problem . . . . . . 157
4.1.3 The Optimal Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.1.4 The Dynamics of the Model: The Phase Diagram . . . . . . . . . 159
4.1.5 Transversality Condition in Discrete Time . . . . . . . . . . . . . . . 161
4.1.6 Competitive Equilibrium with Government . . . . . . . . . . . . . . . 162

4.2 Fiscal Policy in the Cass–Koopmans Model . . . . . . . . . . . . . . . . . . . . 167
4.2.1 The Deterministic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.2.2 Numerical Exercise – Solving the Deterministic

Competitive Equilibrium with Taxes . . . . . . . . . . . . . . . . . . . . 176
4.2.3 Numerical Exercise – Fiscal Policy Evaluation . . . . . . . . . . . . 179

4.3 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.3.1 A Reformulation of the Stability Condition

for the Deterministic Version of the Model . . . . . . . . . . . . . . . 185



xvi Contents

4.3.2 The Intertemporal Government Budget Constraint . . . . . . . . . 187
4.4 Appendix 2: The Ricardian Proposition Under Non-Distortionary

Taxes in Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5 Numerical Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1 Numerical Solutions and Simulation Analysis . . . . . . . . . . . . . . . . . . . 195
5.2 Analytical Solutions to Simple Growth Models . . . . . . . . . . . . . . . . . . 197

5.2.1 A Model with Full Depreciation . . . . . . . . . . . . . . . . . . . . . . . . 197
5.2.2 A Model with Leisure in the Utility Function . . . . . . . . . . . . . 200
5.2.3 Numerical Solutions of the Growth Model

Under Full Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.3 Solving a Simple, Stochastic Version of the Planner’s Problem . . . . . 203

5.3.1 Solving the Linear-Quadratic Approximation
to the Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.3.2 The Log-Linear Approximation to the Model . . . . . . . . . . . . . 210
5.3.3 The Blanchard–Kahn Solution Method for the Stochastic

Planner’s Problem. Log-Linear Approximation . . . . . . . . . . . 212
5.3.4 Uhlig’s Undetermined Coefficients Approach.

Log-Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.5 Sims’ Eigenvalue-Eigenvector Decomposition Method

Using a Linear Approximation to the Model . . . . . . . . . . . . . . 217
5.4 Solving the Stochastic Representative Agent’s Problem

with Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.4.1 The Log-Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . 227
5.4.2 Numerical Exercise: Solving the Stochastic Representative

Agent’s Model with Taxes Through Blanchard and Kahn’s
Approach. Log-Linear Approximation . . . . . . . . . . . . . . . . . . . 228

5.4.3 Numerical Exercise: Computing Impulse Responses
to a Technology Shock. Log-Linear Approximation . . . . . . . 232

5.4.4 Numerical Exercise: Solving the Stochastic Representative
Agent’s Model with Taxes Through the Eigenvector
and Eigenvalue Decomposition Approach.
Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.5 Nonlinear Numerical Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . 238
5.5.1 Parameterized Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.5.2 Projection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.6 Appendix – Solving the Planner’s Model Under Full Depreciation . . 251
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6 Endogenous Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.1 The AK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.1.1 Balanced Growth Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.1.2 Transitional Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.1.3 Boundedness of Time-Aggregate Utility . . . . . . . . . . . . . . . . . 261





xviii Contents

7.3.4 Numerical Exercise: Solving the Model with Varieties
of Intermediate Goods, and the Diffusion Growth Model . . . 332

7.4 Schumpeterian Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.4.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
7.4.2 Computing Equilibrium Trajectories . . . . . . . . . . . . . . . . . . . . 338
7.4.3 Deterministic Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

7.5 Endogenous Growth with Accumulation of Human Capital . . . . . . . . 342
7.5.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.5.2 The Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 347
7.5.3 Analyzing the Deterministic Steady-State . . . . . . . . . . . . . . . . 349
7.5.4 Numerical Exercise: Steady-State Effects of Fiscal Policy . . 352
7.5.5 Computing Equilibrium Trajectories in a Stochastic Setup

Under the Assumption of Rational Expectations . . . . . . . . . . 353
7.5.6 Indeterminacy of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
7.5.7 Numerical Exercise: The Correlation

Between Productivity and Hours Worked in the Human
Capital Accumulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 374

7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

8 Growth in Monetary Economies: Steady-State Analysis
of Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
8.2 Optimal Growth in a Monetary Economy: The Sidrauski Model . . . . 378

8.2.1 The Representative Agent’s Problem . . . . . . . . . . . . . . . . . . . . 380
8.2.2 Steady-State in the Monetary Growth Economy . . . . . . . . . . . 384
8.2.3 Golden Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

8.3 Steady-State Policy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
8.3.1 Optimal Steady-State Rate of Inflation . . . . . . . . . . . . . . . . . . 389
8.3.2 The Welfare Cost of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 392

8.4 Two Modelling Issues: Nominal Bonds and the Timing of Real
Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
8.4.1 Nominal Bonds: The Relationship Between Real

and Nominal Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
8.4.2 Real Balances in the Utility Function: At the Beginning

or at the End of the Period? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.4.3 Numerical Exercise: Optimal Rate of Inflation

Under Alternative Assumptions on Preferences . . . . . . . . . . . 400
8.5 Monetary Policy Analysis Under Consumption and Income Taxes . . 401

8.5.1 Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
8.5.2 Numerical Exercise: Computation of Steady-State Levels

Under Alternative Policy Choices . . . . . . . . . . . . . . . . . . . . . . . 405
8.6 Monetary Policy Under Endogenous Labor Supply . . . . . . . . . . . . . . 406

8.6.1 The Neutrality of Monetary Policy Under Endogenous
Labor Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

8.6.2 Numerical Exercise: Evaluation of Steady-State Policies
with an Endogenous Labour Supply . . . . . . . . . . . . . . . . . . . . . 411



Contents xix

8.7 Optimal Monetary Policy Under Distortionary Taxation
and Endogenous Labor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
8.7.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.7.2 Implementability Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
8.7.3 The Ramsey Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

9 Transitional Dynamics in Monetary Economies:
Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.2 Stability of Public Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
9.3 Alternative Strategies for Monetary Policy: Control of Nominal

Rates vs. Money Growth Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
9.4 Deterministic Monetary Model with the Monetary Authority

Choosing Money Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9.4.1 Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
9.4.2 Solution Through a Log-Linear Approximation . . . . . . . . . . 430
9.4.3 Complex Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

9.5 Deterministic Monetary Model with the Monetary Authority
Choosing Nominal Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

9.6 Transitional Effects of Policy Interventions . . . . . . . . . . . . . . . . . . . . . 441
9.6.1 Solving the Model with Nominal Interest Rates as Control

Variable, Using a Linear Approximation . . . . . . . . . . . . . . . . . 442
9.6.2 Numerical Exercise: Changes in Nominal Interest Rates . . . . 444
9.6.3 Solving the Model with Money Growth as Control

Variable, Using a Linear Approximation . . . . . . . . . . . . . . . . . 445
9.6.4 Numerical Exercise: Gradual vs. Drastic Changes

in Money Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
9.7 The Stochastic Version of the Monetary Model . . . . . . . . . . . . . . . . . . 450

9.7.1 The Monetary Authority Chooses Nominal Interest Rates . . 452
9.7.2 The Monetary Authority Chooses Money Supply Growth . . . 463

9.8 A New Keynesian Monetary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
9.8.1 A Model Without Capital Accumulation: Ireland’s (2004) . . 470
9.8.2 A New Keynesian Monetary Model with Capital

Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
9.9 Appendix: In a Log-Linear Approximation, Et π̂ t+1 = ı̂t − r̂t . . . . . . . 491
9.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

10 Mathematical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
10.1 The Deterministic Control Problem in Continuous Time . . . . . . . . . . 495

10.1.1 Transversality Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
10.1.2 The Discounted Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
10.1.3 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

10.2 The Deterministic Control Problem in Discrete Time . . . . . . . . . . . . . 499
10.3 First Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501



xx Contents

10.3.1 1. First Order Differential Equations with Constant
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

10.3.2 2. First Order Differential Equations with Variable
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

10.4 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.4.1 The 2×2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
10.4.2 Systems with a Saddle Path Property . . . . . . . . . . . . . . . . . . . . 510
10.4.3 Imposing Stability Conditions Over Time . . . . . . . . . . . . . . . . 510

10.5 Some Notes on Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
10.6 Solving a Dynamic Two-Equation System with Complex Roots . . . . 514

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521



Chapter 1
Introduction

This is a book on Growth Theory and on the numerical methods needed to fully
characterize the properties of most Growth models. In this introductory chapter, we
describe the main characteristics of different families of Growth models and their
relevance for policy analysis, which is moving leading economic and financial insti-
tutions throughout the world to increasingly rely on their use for forecasting as well
as for policy evaluation. In particular, we emphasize how the richer structure pro-
vided to Growth models by their Microeconomic foundations allows us to address a
much broader set of policy issues than in more traditional structural dynamic mod-
els. The book gradually builds on by increasing the degree of generality of the mod-
els being considered, as explained below. We cover: (a) neoclassical growth under
a constant savings rate, (b) optimal growth, (c) numerical solution methods, (d) en-
dogenous growth, and (e) monetary growth. Theoretical discussions on each model
are presented, with special attention to characterizing the properties of equilibrium
solutions and their use for fiscal policy considerations, while a specific chapter deals
with monetary policy issues. Algorithms to solve all models considered are pre-
sented, together with EXCEL spreadsheets and MATLAB programs that implement
them. Results obtained by these programs are commented in “Numerical exercise”-
type sections, where some indications are provided on possible modifications of the
enclosed programs. The book has been written with the intention that it may be
accessible to students without an initial background on Growth Theory or mathe-
matical software. Maintaining the same notation used in the analytical presentations
in the book should allow the reader to follow easily the structure of the programs
and quickly learn how to adapt them to alternative specifications or theoretical as-
sumptions.

Growth models incorporate very specific assumptions on the structure of pref-
erences, technology, the sources of randomness, and the policy rules followed by
the economic authority, and characterize the relationship implied by such a struc-
ture between the decisions made by the different agents at each point in time and
the information they have available when making their decisions. Under uncertainty,
agents’ perceptions on the future are an explicit determinant of their actions. Growth
models do not make ad-hoc assumptions on the way how expectations influence
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2 1 Introduction

agents’ decisions. Rather, the solution to the optimization problems posed for each
agent leads to decision rules for the different agents that incorporate expectations of
functions of future variables in a very specific manner. If expectations are assumed
to be rational, expectations in the model become endogenous variables, they are
fully consistent with the structure of the model, and incorporate agents’ perceptions
of possible future changes in policy. Doing that, these models are safe from a strong
criticism made on a traditional approach to economic policy evaluation by Nobel
laureate R.E. Lucas that has been very influential in the last decades. This is the
reason why, as we describe below, these models are increasingly being used in the
research departments of Central Banks and main international economic institutions
to forecast as well as to evaluate the consequences of alternative policy choices.

The counterpart comes from the fact that the type of stochastic control problems
that are integrated into a Growth model lack an analytical solution, so they need to
be solved following a numerical approach, accompanied by Monte Carlo simula-
tion in the case of stochastic Growth models. The numerical solution to the model
then comes in the form of artificial time series that can be analyzed using stan-
dard statistical and econometric tools, and the results compared to those obtained
in corresponding time series data from actual economies. These are the main is-
sues introduced in this chapter, which are later gradually developed throughout the
book. Section 1.1 reviews some statistical concepts using simple time series models,
Sect. 1.2 considers some simple dynamic macroeconomic models in which we in-
troduce additional concepts, as well as the fundamentals of the simulation methods
that will be used through the book. Section 1.3 introduces the main characteristics
of Growth models, in comparison with more traditional dynamic macroeconomic
models. This section motivates the convenience to work with Growth models and
describes their different types, paying attention to the way they deal with the criti-
cism to more traditional policy evaluation. Section 1.4 explains the need to obtain
numerical solutions to Growth models, their potential use, and how this approach
has led to changing the type of policy questions we ask and the type of answers we
get. This introductory chapter ends up with a synopsis of the book, where a reference
is made to the treatment of the issues mentioned along this Introduction.

1.1 A Few Time Series Concepts

Economics is full of statements relating the dynamic properties of key variables.
For instance, we may say that inflation is very persistent, that aggregate consump-
tion and GNP experience cyclical fluctuations, or that hours worked and productivity
move independently from each other. These statements have direct implications in
terms of the time series representations of these variables. Sometimes we are more
specific, as when we state that stock exchange returns are white noise, thereby jus-
tifying the usual belief that they are unpredictable. The unpredictability statement
comes from the fact that the forecast of a white noise process, no matter how far into
the future, is always the same. That forecast is equal to the mean of the white noise
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process, which would likely be assumed to be zero in the case of asset returns. If
returns are logarithmic, i.e., the first difference of logged market prices, then prices
themselves would follow a random walk structure. These properties cannot be ar-
gued separately from each other, since they are just two different forms of making
the same statement on stock market prices. We may also say at some point that the
economy is likely to repeat next year its growth performance from the previous year,
which incorporates the belief that annual GNP growth follows a random walk, its
best one-step ahead prediction being the last observed value. A high persistence in
real wages or in inflation could be consistent with first order autoregressive mod-
els with an autoregressive parameter close to 1. We briefly review in this section
some concepts regarding basic stochastic processes, of the type that are often used
to represent the behavior of economic variables.

1.1.1 Some Simple Stochastic Processes

A stochastic process is a sequence of random variables indexed by time. Each of the
random variables in a stochastic process, corresponding to a given time index t, has
its own probability distribution. These distributions can be different, and any two of
the random variables in a stochastic process may either exhibit dependence of some
type or be independent from each other.

A white noise process is,

yt = ε t , t = 1,2,3, ...

where ε t , t = 1,2, ... is a sequence of independent, identically distributed zero-mean
random variables, known as the innovation to the process. A white noise is some-
times defined by adding the assumption that ε t has a Normal distribution. The math-
ematical expectation of a white noise is zero, and its variance is constant: Var(yt) =
σ2
ε . More generally, we could consider a white noise with constant, by incorporating

a constant term in the process,

yt = a+ ε t , t = 1,2,3, ...

with mathematical expectation E(yt) = a, and variance: Var(yt) = σ2
ε .

The future value of a white noise with drift obeys,

yt+s = a+ ε t+s,

so that, if we try to forecast any future value of a white noise on the basis of the
information available1 at time t, we would have:

Etyt+s = a+Etε t+s = a,

1 That amounts to constructing the forecast by application of the conditional expectation operator to
the analytical representation of the future value being predicted, where the conditional expectation
is formed with respect to the sigma algebra of events known at time t.
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because of the properties of the ε t -process. That is, the prediction of a future value
of a white noise is given by the mean of the process. In that sense, a white noise
process is unpredictable. The prediction of such process is given by the mean of
the process, with no effect from previously observed values. Because of that, the
history of a white noise process is irrelevant to forecast its future values. No matter
how many data points we have, we will not use them to forecast a white noise.

A random walk with drift is a process,

yt = a+ yt−1 + ε t , t = 1,2,3, ... (1.1)

so that its first differences are white noise. If yt = ln(Pt) is the log of some market
price, then its return rt = ln(Pt)− ln(Pt−1), will be a white noise, as we already
mentioned. A random walk does not have a well defined mean or variance.

In the case of a random walk without drift, we have,

yt+s = yt+s−1 + ε t+s, s ≥ 1

so that we have the sequence of forecasts:

Etyt+1 = Etyt +Etε t+1 = yt ,

Etyt+2 = Etyt+1 +Etε t+2 = Etyt+1 = yt ,

and the same for all future variables. In this case, the history of a random walk
process is relevant to forecast its future values, but only through the last observation.
All data points other than the last one are ignored when forecasting a random walk
process.

First order autoregressive processes, AR(1), are of the form,

yt = ρyt−1 + ε t , | ρ |< 1,

and can be represented by,

yt =
∞

∑
s=0

ρsε t−s,

the right hand side having a finite variance under the assumption that Var(ε t) = σ2
ε

only if |ρ| < 1. In that case, we would have:

E(yt) = 0; Var(yt) =
σ2
ε

1−ρ2 .

Predictions from a first order autoregression can be obtained by,

Etyt+1 = ρEtyt +Etε t+1 = ρyt ,

Etyt+2 = Et (ρyt+1)+Etε t+2 = ρ2Etyt+1 = ρ2yt ,

and, in general,
Etyt+s = ρsyt , s ≥ 1
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which is the reason to impose the constraint | ρ |< 1. The parameter ρ is sometimes
known as the persistence of the process. As the previous expression shows, an in-
crease or decrease in yt will show up in any future yt+s, although the influence of
that yt -value will gradually disappear over time, according to the value of ρ. A value
of ρ close to 1 will therefore introduce high persistence in the process, the opposite
being true for ρ close to zero.

The covariance between the values of the first order autoregressive process at two
points in time is:

Cov(yt ,yt+s) = ρsVar(yt), s ≷ 0,

so that the linear correlation is:

Corr(yt ,yt+s) =
Cov(yt ,yt+s)

Var(yt)
= ρs,

which dies away at a rate of ρ. In an autoregressive process with a value of ρ close
to 1, the correlation of yt with past values will be sizeable for a number of periods.

A first order autoregressive process with constant has the representation,

yt = a+ρyt−1 + ε t , | ρ |< 1.

Let us assume by now that the mathematical expectation exists and is finite. Un-
der that assumption, Eyt = Eyt−1, and we have:

Eyt = a+E(ρyt−1)+Eε t = a+ρEyt ,

so that: Eyt = a
1−ρ . To find out the variance of the process, we can iterate on its

representation:

yt = a+ρyt−1 + ε t = a+ρ(a+ρyt−2 + ε t−1)+ ε t

= a(1+ρ+ρ2 + ...+ρs−1)+ρsyt−s

+
(
ρs−1ε t−s+1 + ...+ρ2ε t−2 +ρε t−1 + ε t

)
,

and if we proceed indefinitely, we get

yt = a(1+ρ+ρ2 + ...)+
(
...+ρ2ε t−2 +ρε t−1 + ε t

)
,

since lim
s→∞

ρsyt−s = 0.2 Then, taking the variance of this expression:

Var(yt) = Var
(
...+ρ2ε t−2 +ρε t−1 + ε t

)
=

∞

∑
s=0

ρ2sσ2
ε =

σ2
ε

1−ρ2 ,

so that the variance of the yt -process increases with the variance of the innovation,
σ2
ε , but it is also higher the closer is ρ to 1. As ρ approaches 1, the first order

2 This is the limit of a random variable, and an appropriate limit concept must be used. It suffices
to say that the power of ρ going to zero justifies the zero limit for the product random variable.
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autoregression becomes a random walk, for which this expression would give an
infinite variance. This is because if we repeat for the random walk the same argu-
ment we have made here, we get,

yt = a+ yt−1 + ε t = a+(a+ yt−2 + ε t−1)+ ε t

= as+ yt−s +(ε t−s+1 + ...+ εt−2 + ε t−1 + ε t) ,

so that the past term yt−s does not die away no matter how far we move back into the
past, and the variance of the sum in brackets increases without bound as we move
backwards in time. The random walk process has an infinite variance. Sometimes, it
can be assumed that there is a known initial condition y0. The random walk process
can then be represented:

yt = a+ yt−1 + ε t = a+(a+ yt−2 + ε t−1)+ ε t

= ... = at + y0 +(ε1 + ...+ ε t−2 + ε t−1 + ε t) ,

with E(yt) = ta and Var(yt) = tσ2
ε . Hence, both moments change over time, the

variance increasing without any bound. However, if we compare in a same graph
time series realizations of a random walk together with some stationary autoregres-
sive processes, it will be hard to tell which is the process with an infinite variance.

A future value of the first order autoregression can be represented:

yt+s = a+ρyt+s−1 + ε t+s, | ρ |< 1, s ≥ 1,

which can be iterated to,

yt+s = a(1+ρ+ρ2 + ...+ρs−1)+ρsyt +
(
ρs−1ε t+1 +ρs−2ε t+2 + ...+ εt+s

)
,

so that its forecast is given by,

yt+s = a
1−ρs

1−ρ
+ρsyt .

So, as the forecast horizon goes to infinity, the forecast converges to,

limEtyt+s =
a

1−ρ
,

the mean of the process.

1.1.2 Stationarity, Mean Reversion, Impulse Responses

A stochastic process is stationary when the distribution of k-tuples (yt1 , yt2 , . . . , ytk)
is the same with independence of the value of k and of the time periods t1, t2, . . . , tk
considered. It is a property of any stationary stochastic process that the forecast of
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a future value converges to its mean as the forecast horizon goes to infinity. This is
obviously fulfilled in the case of a white noise process. Another characteristic is that
any time realization crosses the sample mean often, while a nonstationary process
would spend arbitrarily large periods of time at either side of its sample mean. As
we have seen above for the first order autoregression, the simple autocorrelation
function of a stationary process, made up by the sequence of correlations between
any two values of the process, will go to zero relatively quickly, dieing away very
slowly for processes close to nonstationarity.

When they are not subject to an stochastic innovation,3 stationary autoregres-
sive processes converge smoothly and relatively quickly to their mathematical ex-
pectation. The yt -process will converge to a

1−ρ either from above or from below,
depending on whether the initial value, y0, is above or below a

1−ρ . The speed of
convergence is given by the autoregessive coefficient. When the process is subject
to a nontrivial innovation, the convergence in the mean of the process will not be
easily observed. This is the case because the process experiences a shock through the
innovation process every period, which would start a new convergence that would
overlap the previous one, and so on. Under normal circumstances we will just see a
time realization exhibiting fluctuations around the mathematical expectation of the
process, unless the process experiences a huge innovation, or the starting condition

y0 is far enough from a
1−ρ , in units of its standard deviation,

√
σ2
ε

1−ρ2 .

The property of converging to the mean after any stochastic shock is called mean
reversion, and is characteristic of stationary processes. In stationary processes, any
shock tends to be corrected over time. This cannot be appreciated because shocks to
yt are just the values of the innovation process, which take place every period. So,
the process of mean reversion following a shock gets disturbed by the next shock,
and so on. But the stationary process will always react to shocks as trying to return
to its mean. Alternatively, a non stationary process will tend to depart from its mean
following any shock. As a consequence, the successive values of the innovation
process ε t will take yt every time farther away from its mean.

An alternative way of expressing this property is through the effects of purely
transitory shocks or innovations. A stationary process has transitory responses
to purely transitory innovations. On the contrary, a nonstationary process may
have permanent responses to purely transitory shocks. So, if a stationary variable
experiences a one-period shock, its effects may be felt longer than that, but will
disappear after a few periods. The effects of such a one-period shock on a non-
stationary process will be permanent. A white noise is just an innovation process.
The value taken by the white noise process is the same as that taken by its inno-
vation. Hence, the effects of any innovation last as long as the innovation itself,
reflecting the stationary of this process. The situation with a random walk is quite
different. A random walk takes a value equal to the one taken the previous period,
plus the innovation. Hence, any value of the innovation process gets accumulated in
successive values of the random walk. The effects of any shock last forever, reflect-

3 That is, if the innovation ε t has zero variance.
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ing the nonstationary nature of this process. In a stationary first order autoregression,
any value of the innovation ε t gets incorporated into yt that same period. It will also
have an effect of size ρε t on yt+1. This is because yt+1 = ρyt + ε t+1 so, even if
ε t+1 = 0, the effect of ε t would still be felt on yt+1 through the effect it previously
had on yt .

This argument suggests how to construct what we know as an impulse response
function. In the case of a single variables, as with the stochastic processes we con-
sider in this section, that response is obtained by setting the innovation to zero every
period except one, in which the impulse is produced. At that time, the innovation
takes a unit value.4 The impulse response function will be the difference between
the values taken by the process after the impulse in its innovation, and those that
would have prevailed without the impulse. The response of a white noise to an im-
pulse in its own innovation is a single unit peak at the time of the impulse, since
the white noise is every period equal to its innovation, which is zero except at that
time period. In the case of a general random walk, a zero innovation would lead
to a random walk growing constantly at a rate defined by the drift a from a given
initial condition y0. If at time t∗ the innovation takes a unit value, the random walk
will increase by that amount at time t∗, but also at any future time. So the impulse
response is in this case a step function, that takes the value 1 at t∗ and at any time
after that. Consider now a stationary first order autoregression. A unit innovation at
time t∗ will have a unit response at that time period, and a response of size ρs each
period t + s, gradually decreasing to zero.

Another important characteristic of economic time series is the possibility that
they exhibit cyclical fluctuations. In fact, first order autoregressive processes may
display a shape similar to that of many economic time series, although to produce
regular cycles we need a second order autoregressive processes,

yt = ρ1yt−1 +ρ2yt−2 + ε t ,

with ε t being an innovation, a sequence of independent and identically distributed
over time. Using the lag operator: Bsyt = yt−s in the representation of the process:

yt −ρ1yt−1 −ρ2yt−2 =
(
1−ρ1B−ρ2B2)yt = ε t .

The dynamics of this process is characterized by the roots of its characteristic
equation,

1−ρ1B−ρ2B2 = (1−λ+B)(1−λ−B) = 0,

which are given by:

λ+,λ− =
−ρ1 ±

√
ρ2

1 +4ρ2

2ρ2
.

4 When working with several variables, responses can be obtained for impulses in more than one
variable. To make the size of the responses comparable, each innovation is supposed to take a value
equal to its standard deviation, which may be quite different for different innovations.
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Stationary second order autoregressions have the two roots of the characteristic
equation smaller than 1. A root greater than one in absolute size will produce an
explosive behavior. A root equal to one also signals nonstationarity, although the
sample realization will not be explosive. It will display extremely persistent fluctu-
ations, very rarely crossing its mean, as it was the case with a random walk. This is
very clear in the similar representation of a random walk: (1−B)yt = ε t .

Since the characteristic equation is now of second degree, it might have as roots
two conjugate complex numbers. When that is the case, the autoregressive process
displays cyclical fluctuations. The response of yt to an innovation ε t will also display
cyclical fluctuations, as we will see in dynamic macroeconomic models below.

1.1.3 Numerical Exercise: Simulating Simple Stochastic Processes

The Simple simulation.xls EXCEL book presents simulations of some of these sim-
ple stochastic processes. Column A in the Simulations spreadsheet contains a time
index. Column B contains a sample realization of random numbers extracted from
a N(0,1) distribution. This has been obtained from EXCEL using the sequence
of keys: Tools/Data Analysis/Random Number Generator and selecting as options
in the menu number of variables = 1, observations = 200, a Normal distribution
with expectation 0 and variance 1, and selecting the appropriate output range in the
spreadsheet.

A well constructed random number generator produces independent realizations
of the chosen distribution. We should therefore have in column B 200 independent
data points from a N(0,1), which can either be interpreted as a sample of size 200
from a N(0,1) population, or as a single time series realization from a white noise
where the innovation follows a N(0,1) probability distribution. The latter is the inter-
pretation we will follow. At the end of the column, we compute the sample mean and
standard deviation, with values of 0.07 and 1.04, respectively. These are estimates
of the 0 mathematical expectation and unit standard deviation with this sample. Be-
low that, we present the standard deviation of the first and the last 100 observations,
of 1.05 and 1.03. Estimates of the variance obtained with the full sample or with
the two subsamples seem reasonable. A different sample would lead to different
numerical estimates.

Panel 2 contains sample realizations from three different random walks without
drift. The only parameter in such processes is the variance of the innovation, which
takes values 1, 25 and 100, respectively. At a difference of a white noise, an initial
condition is needed to generate a time series for a random walk, because of the
time dependence between successive observations, as can be seen in (1.1) . The
three sample realizations are graphed in the RandomWalks spreadsheet. All exhibit
extreme persistence, crossing the sample mean just once in 200 observations. We
know by construction that these three processes lack a well defined mean and have
a time increasing variance. We can always compute sample averages and standard
deviations, as shown in the spreadsheet at the end of the series, but it is not advisable
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to try to interpret such statistics. In particular, in this case, by drawing different
realizations for the white noise in column B, the reader can easily check how sample
mean and standard deviations may drastically change. In fact, standard deviations
are calculated in the spreadsheet for the first and last 100 sample observations, and
they can turn out to be very different, and different from the tσ2

ε theoretical result.
The point is we cannot estimate that time-varying moment with much precision.

Panel 3 compares a random walk to three first-order autoregressive processes,
with autoregressive coefficients of 0.99, 0.95 and 0.30. As mentioned above, a ran-
dom walk can be seen as the limit of a first order autoregression, as the autoregres-
sive coefficient converges to 1, although the limit presents some discontinuity since,
theoretically, autoregressive processes are stationary so long as the autoregressive
coefficient is below 1 in absolute value, while the random walk is nonstationary.
The autoregressive processes will all have a well-defined mean and variance, which
is not the case for the limit random walk process. The sample time series realizations
for the four processes are displayed in the AR-processes spreadsheet, where it can
be seen that sample differences between the autoregressive process with the 0.99
coefficient and the random walk are minor, in spite of the theoretical differences
between the two processes. In particular, the autoregressive process crosses its sam-
ple mean in very few occasions. That is also the case for the 0.95-autoregressive
process, although its mean reverting behavior is very clear at the end of the sample.
On the other hand, the time series realization from the 0.30-autoregressive process
exhibits the typical behavior in a clearly stationary process, crossing its sample mean
repeatedly.

Panel 4 presents sample realizations from two white noise processes with con-
stant and N(0,1) innovations. As shown in the enclosed graph, both fluctuate around
their mathematical expectation, which is the value of the constant defining the drift,
crossing their sample means very often. Panel 5 contains time series realizations for
two random walk processes with drift. These show in the graph in the form of what
could look as deterministic trends. This is because the value of the drifts, of 1.0 and
3.0, respectively, is large, relative to the innovation variance which is of 25 in both
cases. If the value of the drift is reduced, or the variance of the innovation increased,
the shape of the time series would be different, since the fluctuations would then
dominate over the accumulated effect of the drift, as the reader can check by reduc-
ing the numerical values of the drift parameters5 used in the computation of these
two columns.

Panel 6 presents realizations of a stationary first order autoregression with coeffi-
cient of .90. In the second case we have not included an innovation process, so that it
can be considered as a deterministic autoregression. It is interesting to see in the en-
closed graph the behavior of a stationary process: starting from an initial condition.
In the absence of an innovation, the process will always converge smoothly to its
mathematical expectation. That is not the case in the stochastic autoregression, just
because the innovation variance, of 25, is large relative to the distance between the
initial condition, 150, and the mathematical expectation, 100. The reader can check

5 Or significantly increasing the innovation variance. What are the differences between both cases
in terms of the values taken by the process?
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how reducing the standard deviation used in column S from 5 to 0.5, the pattern
of the time series changes drastically, and the convergence process becomes then
evident.

Panel 7 contains realizations for second order autoregressions. The first two
columns present sample realizations from stationary autoregressions,

Model 1: yt = 10+ .6yt−1 + .3yt−2 + ε t , ε t ∼ N(0,1) (1.2)
Model 2: yt = 30+1.2yt−1 − .5yt−2 + ε t , ε t ∼ N(0,1) (1.3)

and are represented in an enclosed graph. The two time series display fluctuations
around their sample mean of 100, which they cross a number of times. The second
time series, represented in red in the graph can be seen to exhibit a more evident sta-
tionary behavior, with more frequent crosses with the mean. The next three columns
present realizations for nonstationary second order autoregressions. There is an im-
portant difference between them: the first two correspond to processes:

Model 3: yt = .7yt−1 + .3yt−2 + ε t , ε t ∼ N(0,1) (1.4)
Model 4: yt = 1.5yt−1 − .5yt−2 + ε t , ε t ∼ N(0,1) (1.5)

that contain exactly a unit root, the second one being stable.6 The roots of the char-
acteristic equation for Model 3 are 1 and −0.3, while those for Model 2 are 1 and
0.5. The last autoregression

Model 5: yt = .3yt−1 +1.2yt−2 + ε t , ε t ∼ N(0,1) (1.6)

has a root greater than one, which produces an explosive behavior. The two roots
are −0.95 and 1.25.

The Impulse responses spreadsheet contains the responses to a unit shock for the
stochastic processes considered above: a random walk, three first-order autoregres-
sions, two stationary second-order autoregressions, and three nonstationary second-
order autoregressions. The innovation in each process is supposed to take a zero
value in each case for ten periods, to be equal to 1, the standard deviation assumed
for the innovation in all cases at t∗ = 11, and be again equal to zero afterwards.
We compare that to the case when the innovation is zero at all time periods. Im-
pulse responses are computed as the difference between the time paths followed by
each process under the scenario with a shock at t∗ = 11, and in the absence of that
shock. The first-order autoregressions are supposed to start from an initial condi-
tion y0 = 100, when their mathematical expectations is zero, so in the absence of
any shock, they follow a smooth trajectory gradually converging to zero at a speed
determined by its autoregressive coefficient. The second order autoregressions are
assumed to start from y0 = y1 = 100, which is also their mathematical expectations.
So, in the absence of any shock, the processes would stay at that value forever.7

6 The two polynomials can be written as 1−a1B−a2B2 = (1−B)(1−λB), the second root being
1/λ . The reader just need to find the value of λ in each case.
7 We could have done otherwise, like starting the first-order autoregresisons at their mathematical
expectation, and the second-order autoreegressions outside their expected values. The reader can
experiment with these changes.
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The first graph to the right displays impulse responses for a random walk as
well as for the three first order autoregressions considered above, with coefficients
0.99, 0.95 and 0.30. A random walk has the constant, permanent impulse response
that we mentioned above when describing this process. The responses of the first
order autoregressions can be seen to gradually decrease to zero from the initial unit
value. The response is shorter the lower it is the autoregressive coefficient. For high
autoregressive coefficients, the process shows strong persistence, which makes the
effects of the shock to last longer.

The second graph shows the impulse responses of the two stationary second-
order autoregressions. As the reader can easily check, the characteristic equation
for Model 1 has roots −0.32 and 0.92, so it is relatively close to nonstationarity.
The characteristic equation for Model 2 has roots 0.6 ± 0.37417i, with modulus
0.5. This difference shows up in a much more persistent response of Model 1. The
complex roots of Model 2 explain the oscillatory behavior of the impulse response
of this model.

The third graph displays impulse responses for the three nonstationary second
order autoregressions. In the two cases when there is a unit root (Models 3 and 4),
the graph shows a permanent response to the purely transitory, one-period shock.
The response of Model 5 is explosive because of having one root above 1, and its
values are shown on the right Y-axis.

1.2 Structural Macroeconomic Models

In this section we review the main characteristics of structural macroeconomic
models, paying special attention to some of the statistics summarizing their prop-
erties, since they will also be used to analyze Growth models. Structural models
are specified as a system of relationships that include decision rules by economic
agents, policy rules, and identities. The first ones are supposed to have originated
in an optimizing behavior on the part of economic agents, which is never made ex-
plicit. We will focus our attention to dynamic structural models although, to have an
appropriate perspective, we nevertheless start with a reference to static macroeco-
nomic models.

1.2.1 Static Structural Models

A linear, static model is made up by a set of equations in which all variables are sup-
posed to refer to the same time period, so that there is no need to use time indexes.
Nevertheless, the model is interpreted as relating the values taken by endogenous
and exogenous variables at each point in time. A solution to the model is a represen-
tation of endogenous variables as functions of structural parameters and exogenous
variables only. When such a representation exists, the model can be used to actually
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compute implied values for endogenous variables as a function of given values for
exogenous variables and parameters. A necessary condition for a linear, static model
to have a solution is that it must have as many equations as endogenous variables.
An example of such a model, in logged variables, is:

n =
d0 +a2k̄− (w− p)

1−a1
,

n = η (w− p) ,
y = a0 +a1n+a2k̄,

y = [c1(1− τ)y− c2(r−πe)]+ [i1 − i2(r−πe)]+ ḡ,

m̄− p = m1y−m2r.

The equations in this system are: (a) the demand for labor,8 increasing in the
stock of capital and decreasing in the real wage, (b) the supply of labor, increasing
in the real wage, (c) the production function, that determines the supply of goods, (d)
the aggregate demand for goods, made up by the private demand for consumption
and investment (both inversely related to the real rate of interest), plus government
expenditures, which are assumed to be given at ḡ, and (e) the market clearing condi-
tion in the money market, where the supply of real balances is m̄− p, with m̄ fixed by
monetary policy. Market clearing conditions for the labour and goods markets have
already been imposed by using the same notation for demand and supply variables.
Endogenous variables are n,y,w− p, p,r, while exogenous variables are the stock of
capital k̄, expected inflation, πe, money supply, m̄, and government expenditures, ḡ.
The income tax rate, τ, is one of the parameters of the model, together with input
shares in production, or the elasticities in the money demand function.

This model has a recursive structure that allows for a simple analytical solution.
The first two equations, labour demand and supply equations, determine the levels
of employment and the real wage, the third equation determines the level of out-
put, the equilibrium condition in the goods market determines interest rates, and
the equilibrium condition in the money market determines the price level. The solu-
tion is:

w− p = ω0 +ω1k̄; n = ηω0 +ηω1k̄;

ω0 =
d0

1+η(1−a1)
; ω1 =

a2

1+η(1−a1)
;

y = Y0 +K0k̄; Y0 = a0 +
a1d0η

1+η(1−a1)
; K0 =

a2(1+η)

a0 + a1d0η
1+η(1−a1)

;

r = πe +
i1 + ḡ
c2 + i2

−R0Y0 −R0K0k̄; R0 =
1− c1(1− τ)

c2 + i2
;

p = m̄+m2πe − (m1 +m2R0)K0k̄− (m1 +m2R0)Y0 +m2
i1 + ḡ
c2 + i2

.

8 As it would be obtained by a profit-maximizing competitive firm with a Cobb-Douglas technol-
ogy, Y = a0Ka1 La2 ,a1 +a2 ≤ 1, represented in logs by the first relationship, with d0 = ln(a0a1).
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It is immediate to see that an increase of a unit in government expenditures would
raise nominal and real interest rates by 1

c2+i2
, and the price level by m2

c2+i2
, with no

effect on employment or output. An increase in money supply would raise the price
level in the same amount, without affecting any other variable, showing the neutral-
ity of money in this model. Alternative policy exercise could be conducted on the so-
lution without any difficulty, the same way we could explore the potential effects of
changes in the elasticity of an input in the aggregate production function, or changes
in any elasticity in the consumption, investment or money demand functions. There
are two ways to work with this model: (a) the way it is specified, it is better con-
ceived as a long-run model, that is solved under alternative values of exogenous
variables and parameters to obtain long-run equilibria values for endogenous vari-
ables. When values for endogenous variables are calculated again after introducing
some changes in exogenous variables or parameters, we would interpret the result
as the equilibrium that would prevail in the economy after those changes have been
implemented and enough time has passed for the equilibrium to be restored. From
this point of view, the model is silent with respect to short-run adjustments. An al-
ternative use of the model would assume time paths for exogenous variables k̄, πe,
m̄, ḡ, and values for structural parameters like the income tax rate, τ,to compute im-
plied time paths for the vector of endogenous variables, n,y,w− p, p,r. That way, the
implications of this static model could be compared with some statistical properties
observed in time series data. In this particular model, a constant stock of capital is a
short-run type of assumption, that suggests a preference for the first interpretation.
If the model is to be used to relate variables over a long time span, an investment
equation should better be added.

In general, a linear static model can be written: Ay = B+Cx, where x is the kx1
vector of exogenous variables, and y is the n×1 vector of endogenous variables, A is
n×n, B is n×1, and C is n×k. in the previous example: y = (n,y,w− p, p,r)′, x =
(k̄,πe, m̄, ḡ)′, and

A =

⎛

⎜
⎜
⎜
⎜
⎝

1−a1 0 1 0 0
1 0 −η 0 0

−a1 1 0 0 0
0 1− c1(1− τ) 0 0 c2 + i2
0 −m1 0 −1 m2

⎞

⎟
⎟
⎟
⎟
⎠

;

B =

⎡

⎢
⎢
⎢
⎢
⎣

d0
0
a0
i1
0

⎤

⎥
⎥
⎥
⎥
⎦

; C =

⎛

⎜
⎜
⎜
⎜
⎝

a2 0 0 0
0 0 0 0
a2 0 0 0
0 c2 + i2 0 1
0 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Whenever matrix A has full rank, the model has as solution:

y = M +Nx, with M = A−1B, N = A−1C. (1.7)
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Characterizing the solution to a nonlinear static model will usually be much
harder. Such model takes the general form: F(yt ,xt ;θ) = 0, with θ representing the
vector of parameters, for which a representation like (1.7) will generally not exist.
At each point in time, a numerical algorithm to solve nonlinear systems of equations
should then be used to obtain the values of endogenous variables as a function of
the values of exogenous variables and structural parameters. But a complete nonlin-
ear system9 of equations may have no solution, or have multiple solutions. In many
cases, providing an answer to the question of interest in such a model would require
computing a linear, log-linear or polynomial approximation to the F(yt ,xt) = 0 sys-
tem. The linear model above can be thought of as having this origin.

Stochastic models add random shocks to some equations, taking the form:10

Ay = B+Cx+Dε,

where ε is the rx1 vector of exogenous shocks, and D is nxr. If A has full rank, the
model has as solution:

y = M +Nx+Pε, with M = A−1B, N = A−1C, P = A−1D. (1.8)

When such a model admits a short-run interpretation, time series can be com-
puted for endogenous variables, contingent on a given scenario for the future evo-
lution of exogenous variables and on some sample realizations for the exogenous
shocks, given some values for structural parameters. Sample realizations for the
exogenous shocks will be obtained by Monte Carlo simulation, under some as-
sumption on their probability distribution, as it is explained below. Then, the model
relates mean values of endogenous and exogenous variables, and the variance of
endogenous variables to the variance of exogenous variables and innovations. The
model will also have implications regarding the linear correlation coefficients be-
tween pairs of variables.11 The number of innovations in the model, r, will limit the
dimensionality of a statistical system that can be analyzed with the variables of the
model. For instance, if r = 1, then any system with two or more equations, esti-
mated with the time series for exogenous and endogenous variables obtained form
the solution procedure outlined above, would have a singular variance-covariance
matrix for the random error terms. Specifications of this type have been used to ana-
lyze policy design under uncertainty, as in Poole [71], who determined that nominal
interest rates should be the preferred policy instrument when monetary or financial
shocks (i.e., shocks to the LM-equation) are dominant, money supply being the best
control policy when shocks on private or public consumption and investment shocks
prevail (i.e., shocks to the IS-equation).

9 A system with as many equations as endogenous variables.
10 We assume here, for simplicity, that all random shocks are white noise. Extending the model to
incorporate possible autoregressive structures for the shocks is straightforward.
11 If we denote by pi the i-th row of the nxr matrix P, then Var(yi) = p′iΣε pi, Var(y j) =

p′jΣε p j, Cov(yi,y j) = p′iΣε p j, and Corr(yi,y j) = p′iΣε p j√
p′iΣε pi

√
p′jΣε p j

, with Σε being the rxr variance-

covariance matrix of vector ε.
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1.2.2 Dynamic Structural Models

A dynamic macroeconomic model specifies endogenous variables as functions of
predetermined variables (lagged endogenous variables), exogenous variables and
exogenous shocks:

Ayt = B+Cyt−1 +Dxt +Eε t ,

where variables have the same interpretation as above, except for the n× n matrix
C of coefficients in predetermined variables. This first-order vector autoregressive
representation can always be achieved by an appropriate definition of variables.12

The short-term solution to the model would represent current endogenous variables
as a function of exogenous variables, predetermined variables and structural para-
meters, and it would be obtained similarly to the static model, provided matrix A is
invertible:

yt = M +Nyt−1 +Pxt +Qε t ,

with M = A−1B, N = A−1C, P = A−1D, Q = A−1E.
As a static model, it can be simulated over time for specific trajectories of the ex-

ogenous variables, starting from initial conditions for predetermined variables. At a
difference from static models, a dynamic macroeconomic model is intended to cap-
ture short-run fluctuations in endogenous variables, so that it has long- and short-
term implications. The dynamics introduced by the presence of lagged endogenous
variables implies that any policy intervention or structural change generally has non-
trivial effects over some time period. Hence, these models have richer implications
than purely static models, in the form of statistics like: short- and long-run multi-
pliers, cross-correlations or impulse response functions, among others, not unlike
those we have already seen in the statistical review of time series in the previous
section.

The appropriate concept to analyze the implied long-run relationships between
the values of endogenous and exogenous variables is that of steady-state, which we
introduced below. A steady-state is obtained by setting yt = yt−1 = y∗ while setting
exogenous shocks to zero ∀t, and assuming constant exogenous variables at x∗, and
solving the model for y∗ as a function of x∗. Steady-state relationships from dynamic
models are comparable to static models, which justifies their usual long-run inter-
pretation. When long-run effects are the focus of interest, we just need to compare
steady-states before and after a given structural change or policy intervention, that is,
for alternative values of structural parameters or exogenous variables. While a static
model can also establish that comparison, a dynamic model can describe the transi-
tion, i.e., the trajectory followed by endogenous variables between the old and the
new steady-state. A dynamic model can be used to characterize not the duration of
the transition, but also some major characteristics, like the time evolution of the rate
of growth of output, interest rates or productivity along the transition. By describing

12 If, for instance, Ct ,Ct−1 and Ct−2 appear in the model, both, Ct and Ct−1 will form part of vector
yt , while Ct−1 and Ct−2 will be included in vector yt−1. The representation could also be extended
easily to accommodate lagged innovation values.
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the whole transition, dynamic macroeconomic models allow us to evaluate not only
the long-term effects of structural changes and policy interventions, but also the ef-
fects along the transition. The policy maker will usually want to take into account
the short- and the long-term consequences of any policy intervention. What makes
this important is the fact that, as we will repeatedly see throughout this book, it is
usually the case in dynamic models that a given policy intervention has effects of
different sign on the short- than on the long-term, and either one can prevail, de-
pending on the length of the transition, the size of both types of effects, and the rate
of time discount. Hence, focusing on long-term effects alone, as it is done in static
models, can easily provide a misleading answer to the policy analysis.

As an example, let us consider the model,

Ct = α1 +α2Yt−1,

It = β 1 +β 2 (Yt−1 −Yt−2) ,
Yt = Ct + It +Gt ,

where Ct , It , Yt , Gt denote private consumption and investment, output and govern-
ment expenditures, respectively. The model has three equations and can therefore
be used to explain the behavior of three endogenous variables. It seems natural that
these should be consumption, investment and output. Moreover, the first equation
can be labelled the consumption equation, explaining consumption as a function of
last period’s output/income. The second equation can be interpreted as determining
investment as a function of last period’s changes in output, maybe because of adjust-
ment costs of capital. The last equation is the national identity equation in a simple
closed economy. This model is known in macroeconomics textbooks as a multiplier-
accelerator model, since the second (investment) equation captures an acceleration
effect in output. The two lags of output in the consumption and investment equa-
tions are predetermined as of time t, while public expenditures are considered to be
exogenous to the model.

If we have data for current and future government expenditures, G1, G2, G3, ....,
as well as initial conditions on output Y0, Y−1, and parameter values α1, α2, β 1,
β 2, the model contains enough information to provide us recursively with values
for (C1, I1,Y1) , (C2, I2,Y2) , .... We would start obtaining C1 from the consumption
equation, I1 from the investment equation, Y1 from the national income identity, re-
peating the process for each time period. To do so, we will also need numerical
values for the model’s parameters, which may have been previously estimated using
aggregate macroeconomic time series data. Alternatively, we could generate arti-
ficial time series data from the model following the procedure described, starting
from some exogenously given initial conditions, and for hypothetical values of the
structural parameters.

However, as it is well known, not any model is identified. To have the same num-
ber of equations as endogenous variables is a necessary, but not sufficient condition
for the model to explain the behavior of the variables chosen as endogenous. To un-
derstand this, let us now suppose that we chose consumption, output and public ex-
penditures as the endogenous variables. In that case, starting from known parameter
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values and a given path for investment I1, I2, I3, .... as well as initial values Y0, Y−1,
we would again obtain C1 from the consumption equation, but we would be left
with the last equation to obtain values for G1, Y1, which is clearly impossible, re-
flecting the fact that with this choice of endogenous variables, the model would not
be identified.

Coming back to the initial choice of endogenous variables, the iterative process
we described for that case amounts to substituting the consumption and investment
equations into the national income identity, to have the characteristic equation,

Yt − (α2 +β 2)Yt−1 +β 2Yt−2 = (α1 +β 1)+Gt , (1.9)

a second-order difference equation giving the current value of output as a function
of its two previous values, as well as the current value of government expenditures.
As shown in the next section, the second order polynomial in the left hand side of
this equation can display many different types of behavior.

1.2.2.1 Dynamic Behavior of Endogenous Variables

Let us suppose that, starting from initial values for output Y0, Y−1, government ex-
penditures were fixed at a given value G∗, Gt = G∗ ∀t. Even then, output would not
be constant, in general. In fact, we would have:

Y1 = (α2 +β 2)Y0 −β 2Y−1 +(α1 +β 1)+G∗,

Y2 = (α2 +β 2)Y1 −β 2Y0 +(α1 +β 1)+G∗,

Y3 = (α2 +β 2)Y2 −β 2Y1 +(α1 +β 1)+G∗,

and whether output converges or explodes, i.e., whether it is stable or unstable, and
whether it displays oscillations or not, depends just on the values of α2 and β 2. It is
interesting to point out that there is an equilibrium value of output, defined precisely
as that level of output such that if the economy started there, it would never move
away from it. When it exists, that point is also called the steady-state of the system.
This equilibrium level can in fact be easily obtained. To do so, we assume output to
be constant over time in (1.9), to obtain,

Y ∗ =
(α1 +β 1)+G∗

1−α2
,

which can be seen to be directly related to the level chosen for government expen-
ditures. Corresponding to these equilibrium values of government expenditures and
output there would be associated equilibrium values for private consumption and in-
vestment: C∗ =α1 +α2

(α1+β 1)+G∗

1−α2
, I∗ = β 1. An economy could stay at equilibrium

values G∗, Y ∗, C∗, I∗ forever.
However, if the economy stays at its equilibrium values, but government expen-

ditures experiences some deviation from its equilibrium value G∗, to a new value
G∗∗, the economy would then depart from values Y ∗, C∗, I∗. It is then interesting
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to discuss whether the economy would converge to its new equilibrium value
Y ∗∗ = (α1+β 1)+G∗∗

1−α2
or diverge away from it. If the economy converges, it is interest-

ing to know whether it would display oscillations, or it would move along a smooth
convergent path.

More specifically, the roots of the characteristic equation are,

λ+,λ− =
(α2 +β 2)±

√
(α2 +β 2)

2 −4β 2

2
,

so that the general solution to the homogeneous equation,

Yt − (α2 +β 2)Yt−1 +β 2Yt−2 = 0,

is,
Yt = A1λ t

+ +A2λ t
−,

showing that if either λ+ or λ− were greater than 1 in absolute value, then output
will explode. Other possibilities are: (a) λ+ and λ− are real, and less than 1 in
absolute value. Then output converges monotonically to its new equilibrium, (b) λ+
and λ− are conjugate complex numbers, less than 1 in absolute value. Output then
converges to its new equilibrium displaying damped oscillations, (c) λ+ and λ− are
conjugate complex numbers, greater than 1 in absolute value. Output then presents
explosive oscillations..

In summary, the solution will be stable if λ+ and λ− have both modulus less
than 1, while if either one has modulus greater than 1, the solution will be unstable.
The characteristic roots are complex if 4β 2 > (α2 +β 2)

2 .
The model could have been solved for either one of the other two endogenous

variables, consumption and investment. For instance, using the consumption func-
tion to eliminate income values from (1.9), we would obtain,

Ct − (α2 +β 2)Ct−1 +β 2Ct−2 = (α1 +α2β 1)+α2Gt−1,

with the same characteristic equation as in the case of output, so that consumption
will have the same dynamic properties as output in the solution to the model. This
is a consequence of consumption being determined by the level of lagged output
alone.

1.2.2.2 Dynamic Multipliers

In the response of an endogenous variable to a change in the value of an exoge-
nous variable, we distinguish between the initial effect (the impact multiplier), the
response over time (the dynamic multipliers), and the aggregate response over time
(the total long-run multiplier). We must also distinguish between the response to a
transitory change in an exogenous variable and the response to a permanent change.
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In the case of the multiplier-accelerator model, the second order difference output
equation can be written,

Yt = (α2 +β 2)Yt−1 −β 2Yt−2 +(α1 +β 1)+Gt , (1.10)

that in first differences becomes,

∆Yt = (α2 +β 2)∆Yt−1 −β 2∆Yt−2 +∆Gt , (1.11)

as can be seen by subtracting the versions of equation (1.10) corresponding to time
t and t −1.

This equation clearly shows that the impact multiplier of a change in government
expenditures is equal to 1, since any change in Gt translates into a change in output
with coefficient 1. Obtaining the dynamic multipliers can be done by numerical
simulation. Their analytical computation, is somewhat burdensome, since we need
to perform iterative substitutions. We would start by writing (1.11) at time t +1,

∆Yt+1 = (α2 +β 2)∆Yt −β 2∆Yt−1 +∆Gt+1,

∆Yt+2 = (α2 +β 2)∆Yt+1 −β 2∆Yt +∆Gt+2,

and substitute (1.11) to obtain,

∆Yt+1 =
[
(α2 +β 2)

2 −β 2

]
∆Yt−1 −β 2 (α2 +β 2)∆Yt−2

+[∆Gt+1 +(α2 +β 2)∆Gt ] ,

∆Yt+2 = (α2 +β 2)
[
(α2 +β 2)

2 −2β 2

]
∆Yt−1

−β 2

[
(α2 +β 2)

2 +β 2

]
∆Yt−2

+
[
∆Gt+2 +(α2 +β 2)∆Gt+1 +

[
(α2 +β 2)

2 −β 2

]
∆Gt

]
,

where variations in output previous to time t are zero, ∆Yt−1 = ∆Yt−2 = 0.
We must distinguish two different cases:
(a) If the change in government expenditures was permanent, and of size 2, we

would have:
∆Gt = 2, ∆Gt+1 = ∆Gt+2 = ... = 0,

with an output response,

∆Yt = 2, ∆Yt+1 = 2(α2 +β 2) ,

∆Yt+2 = 2
[
(α2 +β 2)

2 −β 2

]
, ...

(b) On the other hand, if the change in government expenditures was purely tran-
sitory, lasting for just one period, and was of size 2, we will have,

∆Gt = 2, ∆Gt+1 = −2, ∆Gt+2 = ... = 0,
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with an output response,

∆Yt = 2, ∆Yt+1 = 2(α2 +β 2 −1) , ∆Yt+2 = 2
[
(α2 +β 2)

2 −α2 −2β 2

]
, ...

All responses should be scaled according to the size of the change in government
expenditures. These algebraic expressions should correspond with the result from
the computations made in the accompanying EXCEL book for specific examples.
In stable models, responses of endogenous variables to a transitory change in an ex-
ogenous variable will go to zero relatively fast. Responses to a permanent shock in
an exogenous variable will take endogenous variables gradually from their previous
steady-state to the new one. In unstable models, in response to either a transitory
or a permanent change in an exogenous variable, endogenous variables will per-
manently diverge. In larger scale models, characterizing the dynamics can be more
complicated, since the reduced form equation explaining the behavior of an endoge-
nous variable may well be of order greater than 2, as it was the case in the previous
example. This is what happens in the model we discuss below.

It is important to bear in mind that multipliers are very easy to handle in linear
models like the one we have considered. In models representing endogenous vari-
ables as implicit, nonlinear functions of exogenous variables, multipliers depend on
the size of the change considered in the exogenous variables, and they may also
depend upon the initial values from which the change is introduced. If the model is
nonlinear, we cannot hope to solve anything similar to the characteristic equation,
to give us the stability properties of the solution. The best we can do is to obtain
the roots of the linearization of the model about a given point, preferable the steady
state of the model, if it can be characterized. Unfortunately, stability of the linearized
approximation does not guarantee stability of the original, nonlinear model. A sec-
ond difficulty arises when actually trying to simulate the nonlinear model for given
trajectories of the exogenous variables, as in the linear model above, since we will
need to solve a nonlinear system of equations each period. As it is well known, even
if it is complete such a system may have no solution, a single solution, or multiple
solutions. Furthermore, the number of solutions may well depend on the range of
values of the variables, so that what it is true one period regarding the nature of the
solution, may not be true at some other points in time.

1.2.3 Stochastic, Dynamic Structural Models

It is sometimes convenient to specify a stochastic model, in which we explicitly ac-
knowledge that the behavior of each endogenous variable cannot be fully explained
by that of the predetermined variables. In that case, we may include random pertur-
bations as additional terms in some or all of the equations. These random variables
will follow some specified probability distribution. For simplicity, it can be assumed
that they are uncorrelated over time, as well as with each other, although this may
not be fully realistic. That way, we would write,
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Ct = α1 +α2Yt−1 + ε1t ,

It = β 1 +β 2 (Yt−1 −Yt−2)+ ε2t ,

Yt = Ct + It +Gt ,

where ε1t is the perturbation in the consumption equation, while ε2t is the per-
turbation in the investment equation. We initially assume E(ε1t) = E(ε2t) = 0,
E(ε1tε1t−s) = E(ε2tε2t−s) = 0 ∀s 	= 0, E(ε1tε2t−s) = 0 ∀s, although we will later
discuss how to cope with violations of some of these properties.

A shock to the consumption equation, i.e., a change in the value of exogenous
innovation ε1t , will have an impact on consumption this period, and also on out-
put, through the aggregate income identity, with no effect on current investment.
However, the increase in output at time t would have an effect on consumption, in-
vestment and output at time t +1 and beyond. An ε2t shock will have an impact on
current investment and output, but not on current consumption. However, dynamic
effects will unfold from time t + 1 on, as in the case of the ε1t shock. These dy-
namic reactions are known as the impulse response functions, provided the shock
takes place in a single period, i.e., that it is a purely transitory shock.

To actually compute numerically the impulse response functions, we start from
the steady-state equilibrium values, with all the random perturbations in the model
equal to the mean (zero), and assume that one of them takes for one period, a value
equal to its standard deviation, with a positive or negative sign, depending on the
type of shock we want to analyze. In addition to accumulating the impulse response
function, if we want to compute the response to a permanent shock, we can also let
the random perturbation take a value equal to its standard deviation from time t on.

That the random perturbations may present some autocorrelation is not hard to
handle, since the equation can be quasi-differenced so that the transformed equation
has an uncorrelated random error. For instance,

Ct = α1 +α2Yt + ε1t ,

ε1t = ρε1t−1 +at ,

is equivalent to,
Ct = α ′

1 +α2Yt −α ′
2Yt−1 +ρCt−1 +at ,

with α ′
1 = α1 (1−ρ) , α ′

2 = α2ρ, E(atat−s) = 0 ∀s 	= 0.
A more important difficulty arises when the random perturbations of the dif-

ferent equations are not uncorrelated with each other. We then need to introduce
some identifying assumption. A popular method consists on establishing a rank of
relevance among endogenous variables, using some ideas on causality. Then, if the
random perturbation in the second equation in the ranking, is projected on the ran-
dom perturbation from the first equation, the residual will be uncorrelated with the
latter, and it can be interpreted as the part of ε2t which is not explained by ε1t .
The random perturbation in the third equation could be projected on the random
perturbations from the first two equations, and the residual would have a similar
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interpretation, and so on. To actually compute the impulse response functions, each
equation in the model (except the first one), must be substituted by a linear combi-
nation of those that precede it in the ranking.13

1.2.4 Stochastic Simulation

In previous sections we have seen how to simulate the model, generating time series
of a pre-specified length for each of the endogenous variables. Necessary inputs for
such a simulation are: values for the structural parameters, time series for each of
the exogenous variables, as many initial conditions as lagged endogenous variables
appear in the model and, in the case of a stochastic model, a time series for each of
the exogenous random shocks. We will obtain a numerical value for each variable
at each given period. However, we have not fully taken into account the fact that
the random shocks in the model follow some specific probability distributions, or
that we may have some uncertainty on the values of the parameters in the equations.
These facts can be taken into account when performing Monte Carlo simulations.

For instance, to fully exploit the fact that the shock in each equation is a random
variable, we simulate the model a large number of times, say 5,000, sampling each
time a different time series for each shock. The general approach to simulation con-
sists on generating realizations for the stochastic shocks in the model, and use the
model to produce stable time series realizations for all the relevant variables in the
economy. That way, a probability distribution for the shocks in the model translates
into a probability distribution for the vector of relevant variables. Given that distri-
bution, characterized through a large number of simulations (numerical solutions),
we will be ready to compute on our set of realizations, the values of any statistic of
interest: (a) output volatility, (b) relative volatility of consumption and investment
to output, (c) correlations of consumption investment and interest rates with output,
(d) cross correlations among any two variables, (e) estimated coefficients in specific
regressions, or (f) responses of a given variable to shocks in any other variable.

We will obtain a different numerical value for any of these statistics in each of
the simulations we may run. If we ran 5,000 simulations, say, we would obtain as
many values of any of the mentioned statistics, so we will be able to approximate
the probability distribution of that statistic through its empirical density. That way,
we will be perfectly equipped to answer questions like: what is the probability that
in this model, the consumption-output correlation takes a value below 0.92?

Uncertainty on parameter values can also be taken into account by specifying
a priori a probability distribution gathering our beliefs on its possible values. For
each simulation we would then use a different value for that parameter, chosen at
random from its prior probability distribution. There are many probability distribu-
tions programmed in most statistical packages, so that almost any type of parameter

13 Which is known as Cholesky identification strategy, from the way how a factor decomposition
of the variance-covariance matrix of the original innovations is used to produce the linear transfor-
mation of the system of equations.
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uncertainty can be accommodated, to obtain simulations. We will just need to spec-
ify the numerical values of the parameters characterizing the chosen probability
distribution. For instance, we could say that α2 is Normal(0.85,4), and a numerical
value sampled from this distribution can be used in each of the simulations. This is
different from the case with no parameter uncertainty, in which the same value of
α2 would be used in all simulations. Parameter uncertainty makes sense when we
calibrate a model (i.e., when we fix parameter values so that some implied statistics
match their average values in time series data), or when the parameters are estimated
by econometric methods. Theoretically, the number of simulations to be run should
be increased to incorporate the fact that we should run for each parameter value,
a large number of model simulations, all sharing the same numerical value for the
parameter, but a different realization for the random perturbations.

It would be better to specify a single joint probability distribution for the para-
meters, as obtained, for example, from the estimation of a simultaneous equations
econometric model. However, sampling from that distribution can be more compli-
cated. Besides, if the model has not been previously estimated, the researcher may
not have much information on the characteristics of that joint distribution. Never-
theless, the idea in Monte Carlo simulation is to specify as much information as
we may have on the sources of uncertainty in the model in the form of probabil-
ity distributions, to be used in simulation by drawing random realizations for each
simulation from those probability distributions.

Even uncertainty over the paths of the exogenous variables can be taken into
account this way: suppose we believe that, with probability p, government expendi-
tures will increase at a rate of 1% every period over the simulation horizon, increas-
ing at a rate of 2% with probability 1− p. It would be sensible to run two different
simulation exercises, with either path for government expenditures, to attach the
mentioned probabilities to the resulting empirical frequency distribution for the en-
dogenous variable being considered at a given point in time into the future. The
researcher will then have two different empirical distributions for the value of that
variable, each one having a given probability of occurring. Alternatively, a single
Monte Carlo simulation exercise can be run, using one or the other path for govern-
ment expenditures, with probabilities p and 1− p. This way, we would have a single
empirical distribution, possibly with two modes, reflecting the two alternative paths
for government expenditures.

1.2.5 Numerical Exercise – Simulating Dynamic, Structural
Macroeconomic Models

EXCEL book Dynamic responses.xls shows simulation exercises for the dynamic
models considered in the previous sections. The Monotonic spreadsheet considers a
parameterization leading to a second order autoregression for output: Yt − .7Yt−1 +
.1Yt−2 = .3 + Gt , which is stationary, with roots .2 and .5. We consider an initial
situation with government expenditures equal to 20 at all time periods, which leads
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to a steady state value of output of 50.75. We first analyze the effects of a one-period
shock in government expenditures, that changes to a level of 21 at t∗, to return to the
initial level of 20 afterwards. The output impact multiplier can be seen to be equal to
1, with negative dynamic multipliers afterwards that exactly compensate the initial
response. The total long-run multiplier turns out to be zero. This must be the case
in a stationary system, as we already know. The response may last longer than the
initial shock, but it cannot be permanent. The second exercise looks at the effects
of a permanent shock in government expenditures, which are assumed to jump to
the level of 21 and stay there forever. The impact multiplier of output is again equal
to 1, with positive dynamic multipliers, that make up for a total long-run response
of 2.5. The graph to the left shows the output responses to a transitory as well as
to a permanent shock in government expenditures. The graph to the right shows the
output responses to a transitory shock in government expenditures in this and in the
next model, which displays an oscillatory response, as we are about to see.

In the Oscillatory spreadsheet, numerical values for the structural parameters
are chosen so that the second order autoregression for output is Yt − 1.4Yt−1 +
.8Yt−2 = .3 + Gt , whose characteristic equation has two complex conjugate roots
0.7± 0.55678i, with modulus of .8. That explains the oscillatory, damped cyclical
responses that we see now to a shock in government expenditures. In the case of a
permanent shock, the cyclical response takes the process to a new steady state for
output above the previous one, while the response to a transitory shock in govern-
ment expenditures oscillates around the initial steady state for output.

The previous analysis has been performed in models without innovations. We
have just changed the value of an exogenous variable, and examined the responses
of endogenous variables to that shock. The Stochastic G spreadsheet considers a
stochastic economy as in the last section, but with a single shock in government
expenditures. In the spreadsheet we obtain a time series realization of 100 time ob-
servations for Gt out of independent N(60,32) random variable.14 The equations of
the model are used to obtain simulated data for the endogenous variables in the econ-
omy. First, we choose two initial values for output, Y0,Y−1, at its steady-state level.15

The level of consumption at t = 1, C1 is then obtained from the first equation, and the
level of investment from the second equation. Since we already have the whole time
sequence for government expenditures, we can now compute the level of output Y1.
Iterating on this scheme, we compute the whole time series for consumption, invest-
ment and output. To the right of output we have constructed time series for lagged
output. Below the simulated time series data we see sample moments. Government
expenditures have a mean of 60.19, with a standard deviation of 2.85. Average con-
sumption is 92.22, with standard deviation of 2.39, average investment is 0.80 and
average output is 153.20, with standard deviation of 3.98. Volatility is better indi-

14 Alternatively, we could have considered a process with some inertia for Government expendi-
tures, or even change the model to make the value of Government expenditures to be related to the
past level of output, for instance.
15 The choice of the steady-state level as initial condition is arbitrary. However, in this stochastic
version of the model that choice is as good as any other, since the economy is already going to
experience fluctuations due to the stochastic component of government expenditures.
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cated by the coefficients of variation, which is much higher for investment than for
the other variables, a fact consistent with actual data.16

Consumption has a linear correlation coefficient of .69 with output, while the
correlation of investment with output is lower, of .38. This model is so simple that
it is easy to understand the nature of these relationships. From the first equation, the
consumption time series has a unit correlation with lagged output, that has a corre-
lation of .69 with current output. This is where the consumption-output correlation
comes from. So, with the parameter values considered, the model introduces some
persistence in output, as reflected on the correlation of .69 between Yt and Yt−1. This
is also known as the first value of the autocorrelation function of output.17 This per-
sistence in output is possibly the more interesting feature for the model. It should
be noticed that all these numerical values would change for a different realization of
the stochastic process for government expenditures. They would also change if we
change the stochastic process for government expenditures or any of the equations
in the model, but also if we change the value of some structural parameter α1, α2,
β 1, β 2. Changes in structural parameters will be important so long as they imply
noticeable changes in the second order autoregression for output.

To continue illustrating the type of analysis that could be done out of simulated
data, we may wonder about the type of consumption-output relationship emerging
from this model. The model relates exactly lagged output to current consumption,
but that is not the type of consumption function we are used to think about. The
results of estimating such a consumption function, that relates current consumption
to current output, are shown below the previous statistics. Because of the reasons
already mentioned, we get some explanatory power, with a R2 coefficient of .48,
and an estimated slope of β̂ = .42. The first graph below displays residuals as a
function of the explanatory variable, output, with no much evidence of relation-
ship. The graph below shows them as a function of the dependent variable, showing
a positive relationship, consequence of the fact that there is a significant compo-
nent of consumption that remains unexplained by the regression on output and it
is therefore included in the regression residuals. The first graph to the right shows
residuals as a function of time, with no evidence of persistence. Residuals can be
seen to cross their mean value of zero very often. Finally, the graph below shows
the consumption-output scatter diagram and the fitted regression line. Time series
for the fitted consumption values and the implied residuals are shown to the right of
the time series for endogenous variables. Lagged residuals are also displayed and
the first order autocorrelation coefficient of .11 is presented at the end of the series.18

We have included a second spreadsheet Stochastic G (2) differing from the previous
one only in the sample realization for government expenditures, so that the reader
can see what changes can be seen in numerical values of the different statistics as a
consequence of the stochastic nature of the model.

16 Notice the difference between computing relative volatility by the ratios of standard deviations
or through the ratios of the coefficients of variation, the latter option being preferable.
17 The autocorrelation function is the sequence of values Corr(Yt ,Yt−s), for all s.
18 This suggests no evidence of residual autocorrelation, a potential source of misspecification in
the consumption equation.
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The Multiple shocks spreadsheet repeats the exercise, this time considering inno-
vations in the consumption and the investment equations, as well as in the stochastic
process for government expenditures. The process for government expenditures is
the same as in the previous spreadsheets. The linear correlation coefficients of con-
sumption and investment with output are now higher than in previous exercises.
This is due to the fact that the consumption innovation affects both, the level of con-
sumption and also the level of output at each time period, so that there is a common
stochastic component. The same argument explains the higher correlation between
investment and output.

The Impulse responses spreadsheet computes responses to transitory and perma-
nent shocks in each of the endogenous variables: consumption, investment and out-
put. These responses are obtained as follows: initially, all variables are supposed to
be at their steady-state levels. All innovations take a zero value, so that at all effects
it is as if we consider a deterministic model. At some time t = 0, an endogenous
variable takes a value equal to its steady-state level plus an increase (the impulse),
of size equal to one standard deviation, and we compute how all variables evolve
from then on. For the size of the impulses, we take standard deviations from the
stochastic version in the version of the model when only government expenditures
were random.19 Consumption and output are shown to react strongly to an impulse
in consumption. Investment reacts with a one period delay, and the response is very
short. Impulses on investment do not have much effect on either consumption or
output. Consumption and investment show a strong response to output shocks with
a one period delay, the response of investment extending to just one period.

The two previous sections have allowed us to introduce statistical concepts that
will be used throughout the book when analyzing numerical solutions to Growth
models. We have also advanced some of the fundamentals of Monte Carlo simula-
tions of dynamic models, to show how the statistical and econometric analysis of
the set of time series obtained as solution to the model allows us to deduce a much
richer set of implications than could be obtained analytically. We now move into
describing the main characteristics of Growth models, their evolution following a
variety of research interests, how they are equipped to deal with Lucas’ criticism on
policy evaluation, and how their numerical solutions can be obtained and exploited
for policy analysis.

1.3 Why are Economic Growth Models Interesting?

1.3.1 Microeconomic Foundations of Macroeconomics

Growth models try to capture interesting structural, dynamic features of actual
economies. As shown throughout the book, Growth models establish implicit
relationships between decisions made by economic agents at time t, variables

19 This is arbitrary. We should take an impulse of size equal to one standard deviation of the
innovations estimated from actual time series data, since that is the likely single-period fluctuation
in each variable.
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determined in the past, which are known when time t decisions are made, and
current and future exogenous and policy variables. In the case of stochastic models,
these relationships will also include expectations of functions of future variables. In
turn, these relationships generally have specific implications regarding the rate of
growth of the economy. Hence, Growth models can be summarized in the form of
dynamic relationships involving variables and expectations of functions at different
points in time.

But although Growth models imply dynamic macroeconomic models, their struc-
ture is far too rich to be incorporated into the class of models considered in previous
sections. Microeconomic foundations lead to very stylized Growth models, where
specific and detailed assumptions are made about the behavior of each economic
agent (domestic consumers, firms and government, and possibly those of other coun-
tries, as well), their objectives, the constraints they face, the information they have,
the way each market works, and about the implementation of economic policy. The
dynamics of the model are also laid out very carefully, in terms of what is the timing
with which different markets open and close, and the specific moment inside each
time period in which each decision is made and each trade carried out.20

Typically, dynamic optimization problems are solved for each private agent, lead-
ing to a collection of aggregate demand and supply schedules for each commodity
which, together with specific assumptions on how markets work, lead to the forma-
tion of prices. Markets may clear or not, producers of either intermediate or final
goods are sometimes assumed to have some monopolistic power, and agents may
have access to different information sets. So, a growth model can be analyzed not
only under competitive equilibrium assumptions, but under any alternative set of
assumptions as well, or under any sort of friction in the working of markets, or
asymmetry in the information available to different agents. All that is needed for
the model implications to be sorted out is that the whole structure of the economy
regarding all these aspects can be specified in full detail. Economic policy enters
the model in the form of time paths for variables like tax rates, government ex-
penditures, or the rate of growth of money supply, that are taken as exogenous by
private agents when solving their respective optimization problems. That way, the
resulting allocation of resources is a function not only of private agents’ objective
functions and restrictions, but also of the assumptions on the structure of markets
and the imposed combination of fiscal and monetary economic policies. In the case
of stochastic models, the views of private agents on future policy and on the future
evolution of exogenous variables is also a central determinant of their decisions.

Having explicit preferences for private agents, as well as possibly target functions
for the economic authority, has as a major implication the possibility of carrying out
a normative analysis of policy issues. This emphasis on Microfoundations leads to
the somewhat complex structure of Growth models, but also to a significant richness
of analysis. All the aspects of the structure of the model are laid out in detail, so that

20 This is, in fact, very important, since the structure and implications of a model may significantly
change by just a change in assumptions on the timing of decisions, the arrival of information, or
the opening and closing of markets.
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we can figure out what is their relevance to explain a given characteristic of the
model, or to provide a particular answer to a given policy question.21

The significance of this normative approach to economic policy design is evident
and yet, such an analysis could not be addressed in the type of structural macroeco-
nomic models we reviewed in the first sections of this Introduction, where objective
functions for the different agents: consumers, firms and government, do not play
any role. In the simple structural models of Sect. 1.2, it is standard to interpret the
first equation as a consumption function that emerges from utility maximization
by consumers. Similarly, the second equation could be interpreted as a linear func-
tion relating investment to past output as an optimal behavior on the part of profit
maximizing firms. Unfortunately, a rigorous analysis of such optimizing behavior is
generally inconsistent with such structural dynamic macroeconomic models.

Consider a relatively simple version of a time discounted utility maximization
problem by a representative consumer

Max
{Ct , Nt , Kt+1}∞t=0

∞

∑
t=0

β tU(Ct ,1−Nt),

subject to a budget constraint,

(1+ τc)Ct +St ≤ (1− τw)
wt

Pt
Nt +[1+(1− τr)rt ]St−1,

that displays consumption Ct , leisure (defined as total time, which we normalize to
1 unit, minus hours worked, Nt) and savings St , constant tax rates on consumption,
labor and capital income τc,τw,τr, the nominal wage, with wt , the price level, Pt ,
and the real rate of interest, rt . In this stylized version of the models analyzed in
the book, the conditions determining optimal time-t consumption and leisure deci-
sions are:

∂U(Ct ,1−Nt)
∂Ct

= β [1+(1− τr)rt+1]
∂U(Ct+1,1−Nt+1)

∂Ct+1
,

∂U(Ct ,1−Nt )
∂ (1−Nt )

∂U(Ct ,1−Nt )
∂Ct

=
1− τw

1+ τc
wt

Pt
. (1.12)

The first equation is an intertemporal relationship that links optimal current and
future consumption, while the second is a period-by-period relationship between
optimal consumption and leisure (or labor supply). The latter is a labor supply equa-
tion, that shows how the optimal labor supply schedule relates nonlinearly the num-
ber of hours to the after-tax real wage and the level of consumption.22

21 This modelling approach is now commonplace in Macroeconomics. Dynamic models with mi-
croeconomic foundations for aggregate economies are often used in Public Finance, Monetary
Theory, Labour Economics or International Economics, as they are used in Growth theory. The
main difference for the latter is their focus on characterizing the main determinants of short- and
long-run growth.
22 A standard result in intermediate Microeconomics courses.
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Even if we assume a relatively simple logarithmic utility function, the first opti-
mization relationship becomes:

1
Ct

= β [1+(1− τr)rt+1]
1

Ct+1
, (1.13)

making current consumption to depend on future consumption and on the after-tax
rate of return to be obtained the next period on current savings. This makes sense: to
maximize time aggregate utility, the consumer must take into account the fact that
the consumption decision determines current savings, which will be channeled to
firms to invest in physical capital with which to produce output in the future. So, the
current consumption/savings decision conditions the future availability of resources
and hence, the level of utility. The previous equation describes how the consumer
must take these considerations into account by establishing an optimal relationship
between current and future consumption. That relationship will depend on policy
variables as well as on market determined prices, as it is the case of interest rates.
On the other hand, at the aggregate level of the whole economy, given a specific
structure for credit markets, interest rates will also depend on consumers’ decisions
through their influence on the relative demand and supply of credit. This example
shows how, even in simple Growth models, current optimal decisions depend on
prices and on the future state of the economy in a nonlinear fashion.23

In the case of a closed economy in which the government does not exhaust
any resource, the stock of capital at the end of period t, Kt+1, is obtained as the
stock of capital at the beginning of the period, after depreciation24, (1−δ )Kt , plus
savings, St :

Kt+1 = (1−δ )Kt +St , (1.14)

starting from K0 at the beginning of t = 0.
A representative firm maximizing the present value of profits given the available

technology, and operating competitively in the markets for inputs and output, would
equate the marginal product of each input to its relative price. For instance, under a
Cobb-Douglas technology: Yt = AtKα

t N1−α
t :

(1−α)At

(
Kt

Nt

)α
=

wt

Pt
, (1.15)

αAt

(
Nt

Kt

)1−α
= rt +δ = α

(
Yt

Kt

)
, (1.16)

which transforms (1.13) into:25

23 Of course, different utility functions could give raise to different functional forms for the way
how current consumption relates to future consumption and interest rates.
24 With δ being the percent per-period depreciation rate of capital.
25 In consistency with the utility maximization problem above, we can either assume that there is a
single consumer or household in the economy, or interpret labor and capital stock in this equation
in per-capita terms.
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1
Ct

= β
[

1+(1− τr)
(
α
(

Yt+1

Kt+1

)
−δ

)]
1

Ct+1
, (1.17)

a sort of consumption function, where consumption depends in a nonlinear fashion
on a variety of factors, in addition to future income.

In the type of monetary economies discussed later on in this book, where real bal-
ances enter as an argument in the utility function, the following utility maximization
condition is obtained:

U2

(
Ct ,

Mt
Pt

)

U1

(
Ct ,

Mt
Pt

) = (1+ rt)(1+πt)−1, (1.18)

where U1,U2 denote partial derivatives of the utility function with respect to its two
arguments. This is an interesting relationship obtained under utility maximization,
that sets the marginal rate of substitution between consumption and real balances,
on the left hand side, equal to the nominal rate of interest, on the right hand side.
According to this optimality condition, the demand for real balances will exhibit a
negative relationship with the real rate of interest and with the rate of inflation, and
a positive relationship to the level consumption, capturing a transactions demand
aspect of the demand for real balances. So long as the rest of the model generates
a positive consumption-income relationship, then real balances will also be positive
related to income. Therefore, this relationship is very much in the spirit of the stan-
dard money demand function that is usually included in structural macroeconomic
models. In fact, that equation is usually rationalized on the basis of utility maximiz-
ing consumers who demand real balances for their transactions, as we will assume to
be the case when discussing monetary growth models. To be even more specific, let
us assume, for the sake of an illustration, that the utility function is logarithmic and
separable in its two arguments: U

(
Ct ,

Mt
Pt

)
= lnCt+θ ln Mt

Pt
, θ > 0. Equation (1.18)

then becomes: θCt
Mt/Pt

= it , with it being the nominal interest rate, that is: Mt
Pt

= θCt
it

which would be consistent with a demand function in logs:

ln
(

Mt

Pt

)
= β 0 +β 1 lnCt +β 2 ln it ,

with specific restrictions on the consumption and interest rate elasticities.
Time-t state variables are all those that can influence decision variables at that

same time. Some decision variables at time t may become state variables at time
t + 1. This is usually the case of the stock of productive capital. The change in
that stock at time t, investment, will be a decision variable which becomes part of
the state variable at time t +1. The portfolio of assets of the typical consumer is an-
other example. By assuming an optimizing behavior on the part of economic agents,
Growth models usually introduce a recursive structure in the decision process fol-
lowed by each economic agent. Optimizing agents derive decision rules representing
the way how decisions are being made each period as a function of the values of state
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variables. Some of these state variables will be exogenous, and their time evolution
will be known before the time paths for decision variables are characterized. Some
other state variables will be predetermined variables in the sense defined above, i.e.,
past decision variables, and they will be obtained recursively, as decision variables
are characterized period by period.

All this will be shown in detail in a variety of models throughout the book. The
examples in this section are just meant to illustrate the fact that being explicit about
the way how economic agents make their decisions, as well as about the structure of
preferences and the production technology, takes us quite far away from the sort of
dynamic macroeconomic models in the first sections of this Introduction. Advancing
on the Microfoundations of economic agents’ decisions takes us into relationships
where decision or control variables depend on state variables, prices and exogenous
variables26 which are considerably more general than those included in traditional
dynamic macroeconomic models. Variables relate in a highly nonlinear manner and
there is extensive simultaneity, for which linear dynamic representations will gen-
erally be a poor approximation. Not to mention that discussions on efficiency, or
questions regarding policy evaluation or optimal policy design can hardly be ad-
dressed in standard linear representations.

Summarizing, growth models impose a tight structure on the joint time evolution
of the main variables in the economy and the type of dynamic systems summariz-
ing the main characteristics of a growth model are non-linear, and display exten-
sive simultaneity. Non-linearity is essentially unavoidable, at least when we want
to consider the model’s implications regarding price formation27 while specifying a
explicit structure described above. Extensive simultaneity arises in Growth models
because: (a) exogenous shocks spread throughout a model that attempts to explain
how the whole economy works, (b) agents usually make simultaneous decisions
on several variables, (c) decisions made by an agent (the government decides on the
rate of growth of money supply, for instance) condition the decision by another agent
(consumers and firms), who takes them as given. The main consequence is that, un-
der uncertainty, the system summarizing the implications of the stochastic Growth
model will contain expectations of nonlinear functions of future decision, exogenous
and policy variables. That structure is complex enough so that an analytical solution
generally does not exist, and the model’s implications are better analyzed through
statistical and econometric analysis of artificial time series obtained by simulation.

The basic ideas for simulating such a model are similar to those we have already
seen in simple linear dynamic macroeconomic models, but the specific structure of
Growth models introduces major issues regarding the treatment of expectations as

26 And also on conditional expectations of nonlinear functions of future state and decision vari-
ables, in the case of stochastic growth models, as we will see in the next paragraph.
27 Under endogenous prices, optimization problems solved by economic agents do not have a
linear-quadratic structure, implying that their decision rules are non-linear. Since these decisions
are part of the system summarizing the model, that system ends up being nonlinear as well.

Sargent’s Macroeconomic Theory (1979) contains a variety of partial equilibrium models in
which, with exogenous prices, optimization problems have a linear-quadratic structure. In that
simple setup, decision rules are linear functions.



1.3 Why are Economic Growth Models Interesting? 33

well as to guarantee the stability of the obtained solution. However, most statistical
concepts are already present in simpler models, and the previous sections can be
taken as a quick refresher of statistical fundamentals.

1.3.2 Lucas’ Critique on Economic Policy Evaluation

The Microeconomic foundations of Macroeconomic models in general, and Growth
models in particular, make explicit the optimization behavior that is supposed to
underlie the consumption, investment and other equations that form part of a struc-
tural macroeconomic model. But possibly the main reason to work with the type of
models we consider throughout the book is Lucas’ critique. Lucas [57] work was
instrumental in pointing out how, under rational expectations, part of the structure
of a macroeconomic model depends on the views of private agents on the policy
rules being followed by the economic authority now and in the future. The fact that
it is agents beliefs that matter, more than the economic policy actually being imple-
mented suggested the importance of the credibility on policy makers, an issue that
has been fully incorporated in the way how policy makers interact with the public
nowadays. Under the rational expectations view, a policy intervention will only have
the desired effects if it is announced and fully understood by private agents.

Another implication is that a change in private agents’ views on future policy may
easily have market consequences today, even if the change in expectations turns out
later on to be unjustified. Obviously, these issues are fundamental for policy analy-
sis. In particular, Lucas’ criticism on the way the effects of a policy intervention
were analyzed by simulation was devastating, since the structure of the model needs
to be changed according to the policy change being considered, so long as we con-
sider that such change will be known and believed by private agents. The standard
practice until then, of using the same structural model to simulate the effects of
alternative policy choices was shown to be fundamentally inappropriate.

How can we cope with this criticism? Essentially, by not making ad-hoc assump-
tions on either the way how expectations about the future influence agents’ current
decisions or on the expectations formation mechanism.28 Structural macroeconomic
models sometimes postulate that some decisions, like consumption, saving or invest-
ment, depend on expectations of future variables like the rate of inflation or interest
rates, on the basis that such dependence emerges from an optimal behavior that is
never explicitly specified. To this presumption we can add traditional assumptions
on expectations formation, like adaptive expectations or perfect foresight. These

28 Expectations of future variables or functions of variables appearing in a model need to be treated
as new variables, so that a model that includes an explicit role for expectations is not complete
without incorporating some kind of assumption on the way agents form their expectations. The
assumptions on the expectations formation mechanism play the role of additional equations. They
are a crucial part of a stochastic model, as important as the assumptions on the functional form
of the utility function or the aggregate production function, and affect the model implications
regarding the time behavior for the endogenous variables.
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type of mechanisms assume that expectations are formed on the basis of past infor-
mation,29 so they can be eliminated from the model right off. Then, policy changes
do no affect the structure of the model, and we are back in a situation in which the
same model would be used to evaluate alternative policy choices. Lucas’ critique
applies here with full force.

Growth models are very explicit with the information available to each agent
when making decisions, and that has specific implications on the way how expec-
tations enter in the model, characterizing the expectations of which functions are
relevant, how far into the future expectations matter, and how those expectations
influence agents’ decisions. Additionally, a rational agent will form expectations
consistent with the agent’s perception on the structure of the economy, including
future policy rules, and they will be computed using that information. As a conse-
quence, if agents believe that there has been any change in the structure of the model
(values of structural parameters, of future exogenous variables or policy rules), the
expectations will change in consistency with that change in beliefs. So long as cur-
rent decisions may depend on expectations of future variables, they will also be
affected, and prices and quantities transacted in the markets will also adjust. This
is why a different model needs to be used to evaluate the effect of a given policy
intervention, if we accept that such intervention will be understood and believed by
private agents. By taking into account these effects through a combination of ex-
plicit Microeconomic foundations and the assumption of rational expectations, we
are not only safe from Lucas’ criticism, but we also incorporate into the model the
idea that agents beliefs on the future, by themselves, may have a significant impact
on the economy.30

Under uncertainty, the condition describing how consumption should be opti-
mally distributed over time is an extension of the similar condition (1.13) for the
deterministic case,

1
Ct

= βEt

(
1+(1− τr)rt+1

Ct+1

)
= βEt

⎡

⎣
1+(1− τr)

(
α
(

Yt+1
Kt+1

)
−δ

)

Ct+1

⎤

⎦ ,

to which we have added (1.16) . This condition describes how current optimal de-
cisions explicitly depend on expectations about the future, made on the basis of the
information available at the time the decision on current consumption is made. The
future information which is relevant for the current consumption decision is sum-
marized in either of the expressions in brackets above. This is much more precise
that assuming that utility maximization leads to a consumption function in which
the current consumption decision depends on current income and expectations of
future interest rates. It therefore provides a much richer set of implications that can
be tested using actual data.

29 These expectations mechanisms are said to be backward-looking, since they are substituted by
a function of past variables, agents’ views about the future not playing any role.
30 Alternative specifications for limited rationality, in which agents are assumed to form expec-
tations which are partially rational, have been shown to be useful to explain some regularities in
actual time series data.
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This proposal could conceivable be incorporated into any macroeconomic model,
but it is in models with Microeconomic foundations where it is more appropriately
implemented. As we have seen in the example, the formulation of specific dynamic,
stochastic optimization models for each agent leads naturally to decision rules that
include expectations of specific functions of future variables without making the
type of ad-hoc assumption on agents’ behavior and on the role of expectations that
are made in structural macroeconomic models. Being specific about Microeconomic
foundations has its own difficulties, like how to deal with agents’ heterogeneity,31

but this is nevertheless also swept under the rug in standard structural macroeco-
nomic models.

Other technical difficulties, like how to handle nonlinear control stochastic mod-
els or how to deal with stability of solutions should be welcome, since they allow us
to perform policy analysis safely. These are some of the issues discussed throughout
this textbook. As described below, this approach has even changed the way we think
about policy. We can now establish a mapping between the structure assumed for
the model and the results of any policy evaluation exercise. As a consequence, we
may identify when is a given policy intervention appropriate, or which particular
aspects of the structure of the economy are relevant for a given policy question and
which ones are not.

1.3.3 A Brief Overview of Developments on Growth Theory

Let us now briefly summarize some of the main stages in the development of the the-
ory of Economic Growth, to place these issues in perspective, as well as to advance
the structure of his textbook.32 Growth theory started well before Lucas’ criticism on
policy evaluation, and it was initially conceived to gain some insight into the deter-
minants of the rate of growth of actual economies. The theory of Economic Growth
was initially developed at a purely theoretical level, with just a few empirical im-
plications that could attract the interest of researchers. These were mainly related
to the implications of exogenous growth models regarding the rate of growth of an
economy as well as the convergence in income per capita among a set of countries,
that were soon put to test through regression analysis. The neoclassical Exogenous
Growth model with a constant savings rate, introduced in the seminal papers of
Solow [88] and Swan [91] incorporated a constant returns to scale assumption in
the production of the final good, which was shown to imply zero long-run growth
for per-capita variables. This model is able to explain positive long-term growth in
per-capita variables only through some type of exogenous growth in productivity.
Only that way could the model be made consistent with some regularities observed

31 Significant progress has already been done in dealing with agents’ heterogeneity [Rios-Rull [75],
Castañeda et al. [19]], although the representative agent framework is still predominant.
32 This summary is intended to provide an overview to readers unfamiliar with Growth theory. We
do not have any pretension of being fully comprehensive.
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in actual data.33 Exogenous growth refers to the fact that such growth is not be-
ing produced by either the decisions made by private economic agents, or by any
policy intervention. This model is analyzed in Chap. 2 in this textbook, where the
main properties of the long-run equilibrium (steady-state) and the transition paths
are characterized.

Future developments have taken the broadly denominated Theory of Economic
Growth into a variety of branches with noticeably different interests, precisely in
part because of the criticism on traditional policy evaluation methods. The current
denomination of Dynamic, Stochastic, General Equilibrium models (usually re-
ferred to by the DSGE initials) includes a wide variety of models with the type of
Microeconomic foundations described above. These are essentially Growth models
with a zero long-run rate of growth for per-capita variables, possibly after adjust-
ing for exogenous technological growth, and they focus on explaining observed
comovements between variables, once growth has been taken out of actual time
series data. The reference to general equilibrium, was well justified some years ago,
when there was an emphasis in maintaining market clearing and friction free market
assumptions. But a large number of new features are gradually being incorporated
in mainstream research in Macroeconomics in order to explain some data regular-
ities, that make the models depart from the general equilibrium paradigm. This is
why some Exogenous Growth models can be referred to as DSGE models, New
Keynesian Phillips Curve models, Business Cycle models, among other denomi-
nations, that try to make explicit some of their features or implications.34 On the
other extreme, a wide class of Endogenous Growth models maintain the original
motivation of Growth Theory and have made significant advances in explaining
how the rate of growth of the economy depends on agents’ decisions and policy
choices. The reference to Growth theory is increasingly reserved for Endogenous
Growth models which, as explained below, make endogenous variables to have
a statistical character drastically different from exogenous growth models, with
significant implications regarding the effects of policy interventions or structural
shocks in both types of models.

Moving one step further, Ramsey [73], Cass [18] and Koopmans [52] among oth-
ers, brought explicitly into the model a utility maximizing behavior on the part of
consumers. That was an important step forward for at least two reasons: first, the
assumption in the neoclassical growth model of Solow and Swan that the savings
rate was constant over time at an exogenous level essentially precluded the possi-
bility of doing any significant analysis on optimal policy. Under this new modelling

33 As mentioned, the model also had implications regarding the convergence of economies in terms
of per-capita income, which developed a huge empirical literature aiming to test such implications
that is still very much alive, now in reference to more sophisticated growth models that have been
developed since then. Along this line of reasoning, growth theory would not be very different from
other areas of economic theory that imply more or less tight restrictions among the joint behavior
of variables, that can be reduced to parameter testing in relatively simple econometric models.
34 Kydland and Prescott [54] point out: “In other words, modern business cycle models are sto-
chastic versions of neoclassical growth theory. And the fact that business cycle models do produce
normal-looking fluctuations adds dramatically to our confidence in the neoclassical growth theory
model - including the answers it provides to growth accounting and public finance questions.”
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approach, consumers maximized time aggregate utility, making simultaneous deci-
sions every period on consumption and savings which, in turn, provide resources for
capital accumulation on the part of firms. And these decisions are taken under an
intertemporal optimality criterion. Second, being explicit about the objective func-
tions of private agents, allows for the possibility of bringing into the model a new
agent: a benevolent planner who would care about the welfare of consumers and
would allocate resources with that goal in mind, without the need of the markets.
Explicit objective functions and assumptions on the optimizing behavior of private
agents (consumers and firms) allow for addressing very important issues. On the
one hand, since we can characterize the allocation of resources emerging from a
decentralized market mechanism as well as the one that results from the actions of
the benevolent planner, a comparison between them generally allows for discussing
the Pareto efficiency of the decentralized mechanism in different setups. On the
other hand, we can evaluate consumers’ time aggregate welfare under alternative
fiscal or monetary policies, which can then be ordered on the basis of the level of
welfare they achieve. As an example, normative analysis of this kind to compare al-
ternative types of distortionary taxation in different economic environments remains
as one of the more popular policy problems addressed in this framework. More gen-
erally, we could attempt to characterize the optimal mixture of consumption and
income taxes, or the optimal combination of tax and debt financing, or even com-
bine this with the possibility of money financing. Some of these issues are discussed
along the different chapters of this book. Optimal growth is the subject of Chap. 3
where, among other issues, we discuss the efficiency of the competitive equilib-
rium in different setups, and explain how to establish welfare comparisons among
alternative economic policies. These subjects are repeatedly address throughout the
different models considered in subsequent chapters.

Theoretical DSGE models developed initially in the work of a large list of very
significant authors (R.E. Lucas, T. Sargent, R.J. Barro, E. Prescott, F. Kydland,
R. King, R. Phelps, P.M. Romer, among many others), taking advantage of the
methodological basis of standard Growth models. DSGE models have had a tremen-
dous influence in emphasizing the Microeconomic foundations of any model that
pretends to explain the behavior of macroeconomic aggregates. Because of the im-
possibility of producing sustained growth unless imposed on the model from some
exogenous technological improvement these models, that usually incorporate a con-
stant returns to scale technology, are used to understand the behavior of actual
economies as represented in actual, detrended time series data. In fact, different
filters aimed to removing different nonstationarity characteristics in actual data, like
the Hoddrick–Prescott filter have become standard, and are incorporated even in
basic econometric software. We may want to eventually end up by having models
that simultaneously explain long-run growth and fluctuations around that trend, but
it is unquestionable that the current standard practice of focusing on filtered data
has contributed to a huge development in many areas of Macroeconomics, Public
Finance, Monetary Theory, Labour Economics or International Economics.

The so-called Real Business Cycle Theory falls into this category by as-
suming that shocks in productivity are the main source of cyclical fluctuations.
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Alternatively, a large variety of models have been proposed with different assump-
tions on the sources of randomness in the economy or on how markets work, in
order to extend traditional theories in these areas as well as to rationalize different
empirical regularities. The New Keynesian Theory of the Phillips curve Calvo [15],
Gali and Gertler [35], which is now being intensively used in the analysis of a vari-
ety of policy issues is another important example in this class. The Microeconomic
foundations are carefully laid out, and agents do their best, given the constraints
they face. Some producers enjoy some monopoly power and some prices are de-
termined subject to some frictions, which deviates the model from more traditional
general equilibrium approaches. Our discussion on Chaps. 3 and 4 can be seen as
an introduction to the analysis of DSGE models. Monetary DSGE models are the
subject of Chaps. 8 and 9. All the solution methods presented in Chap. 5 are used
throughout the book to solve different models, and can be applied to the analysis of
DSGE models.

On the other hand, under the denomination of Endogenous Growth models, we
have classes of economies in which the rate of growth depends on decisions made by
private agents as well as on policy choices. That allows for addressing a broad num-
ber of interesting issues regarding either the determinants of growth, or the effects
on growth of alternative economic policies. The effect on the long-run rate of growth
of the economy of changes in specific tax rates or changes in the rate of growth of
money supply can be analyzed in these models. By their own nature these questions
could not possibly be addressed in exogenous growth models. A significant peculiar-
ity of endogenous growth models is that, as explained in the corresponding chapter,
they imply intrinsic nonstationarity in per-capita variables, which contain a unit root
even after eliminating deterministic growth components, as it is sometimes observed
in actual data. Therefore, these models may be appropriate to explain empirical non-
stationarity characteristics of actual time series data. The non-stationary, unit root
per-capita time series emerging from Endogenous Growth models would be con-
sistent with a dynamic macroeconomic model specified in first differences, unless
cointegrating relationships are found under the standard tests. But the Endogenous
Growth model itself may have implications on cointegration, as was pointed out
long ago by King, Plosser and Rebelo [51].35 Because of the implied nonstationar-
ity, Endogenous Growth models are also special in that a purely transitory structural
change or policy intervention has permanent effects, at a difference of exogenous
growth models, in which the effects of a purely transitory perturbation may extend
to a number of periods, but they would never be permanent.

Endogenous Growth may arise because of constant or increasing returns to scale
in the cumulative inputs. The addition of public capital to private capital as a produc-
tive input may contribute to aggregate increasing returns and endogenous growth.
It can also come about because an economy produces an ever increasing variety of
intermediate goods through a process of research and development. Similarly, en-
dogenous growth may come about because successful research leads to intermediate

35 In any event, like in any other Growth model, the relationships among per capita variables
emerging from the model will generally be non-linear, and a linear econometric model might be
too poor an approximation to them.
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goods of improved quality, that substitute for the older goods. A further cause of
endogenous growth can be the accumulation of human capital as an input in the
technology producing the final good.36 Endogenous Growth models are presented
in Chap. 5, where their main characteristics are shown and the solution methods
described in detail.

1.3.4 The Use of Growth Models for Actual Policy Making

A few years ago, Coenen and Wieland [21] described how an increasing number
of models had been developed in an attempt to serve as a laboratory for evaluating
the performance of alternative monetary and fiscal policy strategies. These authors
classified existing models in: (a) small-scale backward looking models, (b) large
scale backward-looking models, (c) small-scale models with rational expectations
and nominal rigidities, (d) large-scale models of this type, and (e) small models with
optimizing agents. Given the significance of Lucas’ critique, it is unsurprising that
the main international economic and finance institutions in charge of policy making
include nowadays macroeconomic models with microfoundations among the set of
models they use for policy evaluation and forecasting. An example is the European
Central Bank (ECB), that includes37 the DSGE model by Smets-Wouters [87] in
the set of macroeconomic models for the Euro area used for policy making. The
statement of the Web page at ECB fits very nicely in this introductory chapter,
making reference to the ‘recent developments in the construction and simulation of
DSGE models that combines rigorous microeconomic derivation of the behavioral
equations of macro models which fits the main features of macroeconomic time
series. After pointing out as the main difference with respect to more traditional
macroeconometric models the way how parameters in structural equations relate to
deeper structural parameters in preferences, technology or institutional constraints,
three advantages are singled out: (a) the theoretical discipline, (b) the way they deal
with Lucas’ critique, and (c) the ability to evaluate policy in terms of welfare. The
Smets-Wouters model considers three types of agents: consumers, firms and gov-
ernment, and incorporates some real frictions in consumption and investment, as
well as some price and wage rigidities, and it is shown to compete favorably with
alternative models in forecasting.’

Additional examples of the use of DSGE models for policy are the New Area-
Wide Model (NAWM) at the ECB [Coenen, McAdam and Straub [22]], which
focuses in the analysis of fiscal policy. The International Monetary Fund has its

36 Constant returns to scale in the single cumulative input as a reason for positive long-term growth
is the characteristic of the AK economy, introduced by Rebelo [74]. An explicit role for public
capital as a productive input was proposed by Barro [4]. The model with a variety of intermediate
goods is due to Spence [89], Dixit and Stiglitz [31], Ethier [33] and Romer [77, 78]. Uzawa [95],
Lucas [60] and Caballé and Santos [13] assigned an explicit role to the stock of human capital in
the production of the final good.
37 As shown in its Web page: http://www.ecb.int/home/html/researcher.en.html.
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Global Economy Model (GEM) [Bayoumi, Laxton and Pesenti [8]], and the Fed-
eral Reserve Board has an open economy model named SIGMA [Erceg, Guerrieri
and Gust [32]]. All of them incorporate recent advances on microfoundations, with
some number of nominal and real frictions in an effort to improve their empirical fit
both, in the domestic and the international dimension.

1.4 Numerical Solution Methods

We explain in this section the need to compute numerical solutions to Growth mod-
els. We address two significant issues: the stability of the obtained solution, and the
possible indeterminacy of equilibria. We end up describing how the numerical so-
lutions have led to changing the type of policy questions we raise and the type of
answers we get out of macroeconomic models.

Under the assumption of rationality, expectations become endogenous variables,
and we can analyze how they are influenced by exogenous shocks affecting the
economy, or by the unpredictable component in a policy variable, to mention just
two types of interesting questions. Furthermore, under the particular assumption of
rationality, expectations errors, for which data can be obtained once we have solved
for all variables in the model as well as for the conditional expectations in it, must
satisfy clearly specified conditions. Specifically, a rational expectations error cannot
have autocorrelation, or exhibit any correlation with variables which were contained
in the information set available to agents at time t, properties that can be tested for
as part of the validation of the numerical solution approach followed.

1.4.1 Why do we Need to Compute Numerical Solutions
to Growth Models?

We have described above how the desire to incorporate Microeconomic foundations
into models for the aggregate economy leads to Growth models that are made of the
interaction of economic agents of different types, each solving a particular dynamic,
stochastic optimization problem. We have also seen how the endogenity of prices
leads to nonlinear decision rules that involve expectations of functions of future
variables, and cannot possibly be reduced to the type of aggregate linear functions
usually considered in structural macroeconomic models like those in previous sec-
tions. Except by very few exceptions, the nonlinear stochastic systems summarizing
the properties of Growth models lack an analytical solution, and the model’s im-
plications regarding the behavior of the main variables, their comovements, or their
responses to exogenous shocks or to policy interventions, can only be characterized
through numerical solutions. Hence, we face the need to obtain numerical solutions,
a process which goes significantly beyond the procedures to simulate the linear dy-
namic macroeconomic models above because of stability and indeterminacy issues,
that we address below.
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1.4.2 Stability

To obtain a numerical solution to a nonlinear, stochastic dynamic system, we need
it to be complete, i.e., to have as many equations as decision variables at each point
in time. However, the three aspects of the model: (a) nonlinear, (b) stochastic, and
(c) dynamic, lead to nontrivial issues regarding such computation. First, a com-
plete nonlinear system is not guaranteed to have a solution, or if it does, there is no
guarantee that the solution will be unique. Second, a stochastic system will include
expectations of future variables that should be solved consistently with the structure
of the model, at least under rational expectations, a maintained assumption through-
out this book. Expectations are additional endogenous variables that break down the
completeness of the model, and appropriate methods need to be used to obtain a so-
lution.40 Lastly, an additional issue when solving a dynamic system is the stability
of the solution, which is never guaranteed.

In linear dynamic systems, stability can be obtained through conditions on the
eigenvalues of the transition matrix in the first-order autoregressive representation
of the model. It is not hard to see that in simple models like those in previous sec-
tions, these conditions are obtained from stability conditions on lagged coefficients
of autoregressive representations for endogenous variables. These, in turn, can be
translated into restrictions on admissible values for some structural parameters or
for combinations of them. Unfortunately, the numerical solution to a nonlinear dy-
namic system, which is obtained recursively, providing the values of decision vari-
ables each period as a function of state and exogenous variables, will generally
produce explosive time trajectories, and we lack the tools to characterize conditions
guaranteeing otherwise.

By assuming an optimizing behavior on the part of economic agents, Growth
models imply transversality conditions. These are limit conditions as time increases,
that emerge naturally from those optimization problems, and that are formulated in
terms of conditional expectations in the case of stochastic models. Transversality
conditions usually impose limits on the rates of growth of state variables which, in
turn, impose limits on the range of decisions consistent with stability. They are an
intrinsic part of the solution to dynamic optimization problems, and do not have an
analogue in dynamic models without an explicit underlying optimization structure.
In a growth model, stability conditions are relationships between decision and state
variables that guarantee that the implied numerical solution fulfills the transversality
conditions of the model.

The alternative methods41 reviewed in Chap. 4 to generate numerical solutions
out of stochastic growth models cope with stability in a different manner, and they

is solved, where H(Zt ,Xt ,θ) = (h1(Zt ,Xt ,θ),h2(Zt ,Xt ,θ), ...,hk(Zt ,Xt ,θ)), with the h j(.) func-
tions being cross products of Zt -variables and expressions like the one inside the bracket above,
and A is a kxk matrix of weights, which conditions the statistical efficiency of the implied estimates.
40 For a discussion of analytical solution methods for lineal rational expectations models, see
Whiteman [97].
41 We do not pretend these methods to be superior in any sense to those not covered in the chapter.
They have been chosen because of their relative simplicity. An introduction to more complex, but
possibly more exact methods, is also provided in that chapter.
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provide different degrees of numerical approximation to the true solution. Some
methods solve directly the linear or the log-linear approximation to the original
model. Some other methods use the approximate stability conditions while keeping
some of the nonlinear structure of the original model when computing the numerical
solution.

In the absence of exact stability conditions for general nonlinear systems that
could be added to the model, solution methods achieve a stable solution by adding
approximate stability conditions to the nonlinear, stochastic or deterministic model.
The model needs to be complete to start with because these stability conditions
must be obtained from that complete nonlinear system. The obtained solution is an
approximation to the true solution because it substitutes the stability conditions for
some of the original nonlinear structure of the model. They have a different nature
in endogenous than in exogenous growth models. In the latter, they are formulated
in terms of per capita variables like consumption or the stock of productive capital,
while in endogenous growth models they come out in terms of ratios (sometimes
growth rates) of endogenous variables.

1.4.3 Indeterminacy

The solution to a Growth model can display two types of indeterminacy. Global in-
determinacy refers to the fact that a dynamic general equilibrium model may present
multiple steady-states, as in the well known monetary model of Cagan [14]. Since
the steady-state is usually the solution to a nonlinear system of equations, multiple
solutions might well arise. More generally, in models implying steady-state growth,
global indeterminacy refers to the possible existence of multiple balanced growth
paths, steady-states in which per capita variables grow at a constant rate. In con-
trast, local indeterminacy arises when given a steady-state or a balanced growth
path, there might exist a continuum of trajectories converging to it. We focus here
on explaining how local indeterminacy may arise.

A numerical solution algorithm can be seen as a set of rules to choose the values
of control or decision variables each period as a function of state variables. Most
of these rules will come out of the Growth model, to which we will have added the
appropriate stability conditions. Specifically, the latter provide us with the needed
dependence between initial decisions and states guaranteeing that transversality
conditions are fulfilled. Most often, we have the same number of stability conditions
than decision variables. Then the solution to the model is determinate but, unfortu-
nately, there is not guarantee of such coincidence. When the number of stability
conditions exceeds the number of decision variables, then the system will generally
lack a solution, unless some fortunate dependence exists among the relationships
emerging from the model and the set of stability conditions, that make some of
them redundant.

Finally, when the number of stability conditions falls short of the number of deci-
sion variables, we then have some degrees of freedom to choose decision variables.
Most of them are related to state variables by the growth model, so that they will
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be determinate even in this situation. That will not be the case for expectations vari-
ables, that can be considered as decisions made by economic agents, but that are
not explicitly constrained by the theoretical model.42 Therefore, when the number
of stability conditions is too short, the conditional expectation as of time t of some
function of future variables can be chosen arbitrarily. This is what is known as a
situation in which the solution is indeterminate, since any choice of structure for a
given conditional expectation can be made consistent with a solution to the model. It
is important to notice that this is not a characteristic of numerical solution methods
but rather, of the theoretical model itself. In any event, the solution may be indeter-
minate in some aspects, like those relating to the values taking by some expectations
variables and their associated expectations errors, while being well determined from
the point of view of some other variables or characteristics that define the main ob-
ject of analysis. In such models, a continuum of solutions exist, and the policy maker
should consider the possibility of making the private sector to select one among the
set of solutions, if such a desired solution exists according to some criterion. Be-
cause of the multiplicity of possible solution trajectories, indeterminacy implies a
strong ambiguity regarding policy effects, seriously questioning any normative ex-
ercise unless some model specific argument can be made justifying one among the
continuum of potential solutions.

Under indetermination of equilibria, there is at each point in time the need to
choose values for some control variables. The problem is that the choice at time t
does not condition the choice made at any other point in time, so that the economy
can be displaying significant jumps which can sometimes be interpreted as cycles.
In essence, the situation is as if each of this subset of control variables is drawn each
period from a given probability distribution. Indeterminacy can also give raise to
self-fulfilling prophecies: as an example if, for some reason, consumers believe that
future tax rates will rise, they will attempt to reduce the tax base, which may well
lead the government to the need to effectively increase tax rates so as to maintain the
same revenue. That would be a case in which one among the continuum of possible
equilibria is being chosen on the basis of a purely speculative behavior on the part of
consumers.43 This situation will not arise when the equilibrium is well determined,
since agents then use past information on expectation errors to update their views
on the future of the economy, leaving no role for any unjustified, sudden change in
expectations.

1.4.4 The Type of Questions We Ask and the Conclusions
We Reach

The approach to economic modelling we have described in these sections has had
a tremendous impact on the way we think about the analysis of effects of the dif-

42 Unless we work under the assumption of rational expectations, the model’s implications regard-
ing the way agents’ expectations relate to state variables are generally hard to derive.
43 What is called a bubble equilibrium.
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ferent exogenous shocks in an economy. We can analyze which among the possible
shocks is more likely to produce a given statistical characteristic of the solution, or
which one is more useful in order for a model to replicate a given statistical regular-
ity observed in actual time series data. Similarly, we can characterize the way how
economic policy influences the dynamics of relevant variables, as well as the co-
movements between them. So, it is not surprising that it is in the normative analysis
of economic policy where stochastic, dynamic models with microeconomic founda-
tions have become standard.

As it has already been mentioned, the ability of any dynamic model to provide
information not only on the steady-state, but on the transition between steady-states
as well, allows us to address the separate characterization of short- and long-run
effects of a structural change or a policy intervention. This is a central issue for
optimal policy design exercises, which justifies by itself the need to specify very
carefully the dynamic structure of the relationships among the variables that are
relevant for the question under study.

Even more important, the specific characteristics of Growth models and their nu-
merical solutions allow us to ask questions that could not possibly be addressed in
standard dynamic macroeconomic models. This is because the explicit assumptions
made by Growth models regarding the objective functions of the different economic
agents allow for a normative analysis of a whole variety of issues. Specifically, the
welfare effects44 of any policy intervention or structural change can be nicely ad-
dressed in an appropriately chosen exogenous or endogenous Growth model. Eval-
uating the possible inefficiency introduced by a given policy or market friction also
needs a specification for consumer preferences, or a numerical estimation of the
compensation that should be introduced to make agents as well of as they would be
under the efficient allocation of resources.

But numerical solutions obtained by Monte Carlo simulation allow for evaluat-
ing models across many more dimensions than we used to on the basis of analyt-
ical solutions. Since we can use the vector time series obtained as solution to the
model to compute any univariate or multivariate statistic (like relative volatilities,
cross-correlations between any two variables, estimated regressions or VAR rep-
resentations, impulse response functions, and so on), we can always compare the
frequency distribution obtained for that statistic from a Monte Carlo analysis to its
estimated from actual data, and see how the model fits the data. Needless to say, this
opens the door to the comparison of alternative models on the basis of their ability
to replicate a given set of statistics estimated from actual data.45 Solving Growth
models that differ in some structural characteristic, numerical solutions may also
point out to the relevance of the different features of the model to explain a given
regularity observed in actual data.
44 Welfare should be understood as the discounted time aggregate value of current and future
utility. We are thinking here about a set of identical consumers, who live together forever, a usual
assumption in growth models.
45 However, the appropriate approach to use frequency distributions from the alternative models to
evaluate in probability terms (or in likelihood terms) their ability to fit the data is still very much
open to discussion. And so it is the selection of statistics whose value in actual data should be
replicated by the theoretical models considered.
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All this has led to a significant change in the type of questions we ask to models,
since they can relate to a wide variety of statistical characteristics of the theoret-
ical model that can be estimated from the realizations obtained for the numerical
solution, but could not possibly be characterized analytically.

Suppose that fluctuations in the expenditures/output ratio in a given economy can
be interpreted as controlled deviations around a pre-announced target level. Should
they then be correlated with exogenous supply shocks? 46 This question could be
analyzed by solving the model under different positive and negative values for such
correlation and computing levels of implied welfare. This would have clear implica-
tions on the optimal way to conduct policy. Changes in the expenditure/output ratio
to accommodate supply shocks under a maintained correlation with supply shocks
would have to come together with changes in a given tax rate (on consumption, la-
bor income or capital income, for instance) to balance the budget.47 In principle, we
should expect that the answer to the optimal correlation question might depend on
the type of tax adjustment chosen, so that the answer is two sided: from the point
of view of maximizing private agents’ welfare, it is optimal to maintain such corre-
lation between the expenditures-to-output ratio and supply shocks, and balance the
budget every period by adjusting the fluctuations in expenditures with such tax rate.

This analysis would make sense even if we believe that the random deviations
from a specified target in the expenditures/output ratio is beyond the control of the
economic authority, since there would still be a welfare-maximizing correlation be-
tween these fluctuations and supply shocks. The theoretical analysis in the previous
paragraph would have characterized the optimal expenditure/tax policy. We could
then identify separately supply and fiscal shocks in actual data, possibly through an
structural VAR type of analysis. The estimated correlation between supply shocks
and innovations in the expenditure/output ratio, together with the observation on the
type of taxes which are adjusted most often, would give us the extent to which the
correlation used in actual policy making departs from the value predicted as optimal
by the model.

Beyond this, endogenous growth models allow for analyzing the effects of struc-
tural changes or policy interventions on the long-run rate of growth of the economy,
a question that would again be generally impossible to analyze in standard dynamic
macroeconomic models.

In fact, positive steady-state growth allow endogenous growth models to address
a variety of realistic issues that could not possibly arise in economies with zero long-
term growth. To mention one covered in this textbook, a dynamic Laffer effect may
arise when an economy can afford to lower down taxes while maintaining the same
time path for government expenditures that was planned before the tax cut and still
have a balanced government budget in an intertemporal sense. How could this be? In

46 Exogebous shocks could be modelled as shocks in productivity, as it is done often throughout
the book.
47 Alternatively, we could consider the possibility of maintaining tax rates unchanged and finance
the fluctuations in expenditures by debt management or money injections. Appropriate conditions
guaranteing long-run solvency would then have to be imposed, as it is discussed at different points
in this textbook.
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an endogenous growth economy, the rate of growth may depend on policy variables,
like tax rates. When that is the case, a tax cut will lead to increased growth and pos-
sibly increased revenues, at least after a number of periods, when the higher growth
may have sufficiently increased the income tax base. The tax cut will initially need
of issuing some debt, but the increase in revenues may allow for eventually retiring
that debt, thereby with a balanced intertemporal government budget constraint.

Together with the change in the type of policy questions we address in growth
models, the type of responses we get, even to traditional questions, is now also dif-
ferent. We have seen an example above: characterization of an optimal active expen-
diture policy that links expenditure fluctuations to supply shocks, may well depend
on the strategy for revenue compensation we establish. Conclusions to policy analy-
sis will often be of the sort: “. . . a standard business cycle model is consistent with
the expectations hypothesis of the term structure of interest rates provided monetary
shocks are dominant, while having implications contrary to that hypothesis when
productivity shocks are the main source of randomness in the economy.”48, or “. . .
if the elasticity of intertemporal substitution is above a critical value, then it is better
to adjust labor income taxes over the cycle while maintaining capital income taxes
roughly stable, while the opposite is true if the elasticity of intertemporal substi-
tution of consumption is below that value.” Fully specified economic structures of
the type used in exogenous or endogenous Growth models are likely to lead to such
contingent conclusions.

Some researchers view such relativity as a weakness of economic analysis, sug-
gesting that it would better to discuss policy in simpler models, even if missing some
interesting economic feature, since they allow for neater conclusions. The opposite
is, however, more likely to be true. We may have been too ambitious in attempt-
ing to reach statements with absolute validity, regardless of the type of economy
being studied. In characterizing optimal policy as a function of the structure of the
economy (the source of shocks, the values of structural parameter, etc.) we are aim-
ing at providing our readers a mapping showing the specification of optimal policy
appropriate for each economic structure. Did we really believe that a similar kind
of policy would be optimum for a variety of widely different economies and for any
conceivable policy environment?

A final word to relate to the different statistical properties of variables emerg-
ing from exogenous and endogenous growth models. Time series solving a Growth
model can always display a deterministic trend because of exogenous growth, in the
form of a constant increase in productivity, for instance. This is a deterministic com-
ponent that can be easily dealt with by appropriate statistical methods. We can take
the view that observed trends in per capita variables in actual data are explained by
this mechanism and impose on the theoretical model the observed rate of growth.

48 Of course, the type of results reached by Poole [71] in a static setup, that “in the presence of
supply shocks it is better to implement a monetary policy aimed to maintaining a given growth
rate of money, while leaving interest rates to be determined in the market, the opposite being true
if randomness enters mainly through the demand side” is another result typical from the type of
analysis described in these sections.
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This deterministic trend could be then taken out from both, simulated and actual
data, and compare the statistical properties of detrended actual and artificial time
series.

A more interesting approach would attempt to explain the rate of growth in per-
capita variables sometimes observed in actual data through an endogenous growth
model. An advantage is that such model allows for changes in the rate of growth
because of policy changes, for instance. But a central implication of endogenous
growth models is that per-capita variables have a unit root, even after correcting
for the endogenous rate of growth. That leads sometimes to applying some filter
to remove this stochastic trend from the time series produced from the model, if
such trend is believed not to be present in the data. But the opposite may well hap-
pen: often, when working with exogenous growth models that exclude technological
growth49 actual time series data are filtered to eliminate stochastic trends (i.e., unit
roots) before comparing them with the artificial time series generated as solution to
the theoretical Growth model. An endogenous Growth model would look then very
appropriate to match theory to actual data.

1.5 Synopsis of the Book

Chapter 2 presents the neoclassical growth model of Solow and Swan with a con-
stant savings rate. Section 2.2 examines the relationship between the structure of
returns to scale in cumulative inputs and the steady-state rate of growth. The im-
possibility to have positive long-run growth under decreasing returns to scale in the
cumulative inputs is shown. Section 2.3 shows the main properties of the model, the
dynamics of the economy, the steady-state and the duration of the transition, and
characterizes the rates of growth of per capita variables. A special steady-state, the
Golden Rule, is introduced. Section 2.4 solves the continuous time, deterministic
model. This is a special case, in which an analytical solution exists. The effects of
changes in structural parameters are analyzed. The concept of dynamic inefficiency
is introduced. Section 2.5 describes and solves the deterministic, discrete-time ver-
sion of the model, and performs numerical exercises on the effects of changes
in structural parameters and on characterizing situations of dynamic inefficiency.
Section 2.6 considers the stochastic, discrete-time model, and explains how to ob-
tain numerical solutions.

The problem of optimal growth is considered in Chaps. 3 and 4. The first of these
two chapters introduces the continuous time version of the benevolent planner prob-
lem. At a difference of Chap. 2, an explicit consideration is made of consumers’
preferences, and the savings rate is no longer constant, but rather, the consequence
of optimal decisions at each point in time. Optimality (Keynes–Ramsey) condition
and transversality conditions are characterized and interpreted in detail. Existence
and stability of a unique optimal path is shown, and a numerical exercise is presented

49 And hence, in which per-capita variables display zero growth.
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on the long-run effects of changes in structural parameters. Section 2 presents nu-
merical exercises related to the stability and convergence issues discussed in the
previous section, paying attention to the relevance of the different structural charac-
teristics of the economy in characterizing the transition path between steady-states.
A note of caution is raised about the right way to translate continuous time opti-
mization models into discrete time models. Section 3 show the equivalence between
the allocation of resources that emerges from the problem solved by the benevolent
planner and from the competitive equilibrium mechanism, showing the Pareto effi-
ciency of the latter. Section 4 describes the competitive equilibrium in an economy
with government, and introduces the intertemporal government budget constraint.
The so-called problem of the representative agent is introduced. Section 5 discusses
the potential inefficiency of the competitive equilibrium with government, and how
the inefficiency depends on the type of taxes used and their structure over time.
Section 6 is devoted to the Ricardian doctrine, that states the possible irrelevance
of the financing tools used by the government, showing that it may not hold under
some types of distortionary taxation. Chapter 4 considers the deterministic, discrete
time version of the model with and without government. We describe how to solve
this model paying special attention to the characterization of stability conditions.
Some fiscal policy issues are addressed, describing the way to evaluate the welfare
effects of policy changes. Some numerical exercises on characterizing short- and
long-term effects of policy changes are presented.

Numerical solution approaches are presented in Chap. 5. The first part of the
chapter considers the stochastic optimal growth model of the previous chapter, with-
out taxes. After describing the special cases in which an analytical solution exists,
several solution methods are reviewed. The construction of linear and log-linear ap-
proximations is explained, and the different methods introduced: the Blanchard and
Kahn [10] approach, Uhlig’s [94] method of undetermined coefficients, the method
based on an eigenvalue-eigenvector decomposition, proposed by Sims [86], and nu-
merical exercises are presented that explain how to implement each of these so-
lution methods and discuss some of the results obtained. The way to deal with
stability in each case is explained. The second part of the chapter describes the
implementation of the same methods to solve the stochastic optimal growth model
with different specification for taxes. Numerical exercises are presented to illustrate
the implementation of the methods and to discuss some policy issues. The chapter
closes with nonlinear solution methods like the Parameterized expectations method
by Marcet [62] and Projection methods. Analytical details of these methods are dis-
cussed in their application to some standard Growth models, and programs are again
provided to implement these methods.

Endogenous growth models are introduced in Chap. 6. The AK model is exam-
ined in detail, first in continuous time, in Sect. 6.1, and after that in its discrete
time version, in Sect. 6.2. The absence of transition, the existence of a balanced
growth path along which all per capita variables grow at the same constant rate,
and the inefficiency of the equilibrium mechanism, are shown. The specific char-
acteristics of dealing with stability in endogenous growth models are analyzed
in Sect. 6.3. Section 6.4 shows how transitory policy interventions or structural
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changes in endogenous growth models have permanent effects. Section 6.5 is de-
voted to the analysis of dynamic Laffer curves, a possibility which is specific of
endogenous growth models, and a numerical exercise is presented to illustrate their
occurrence. Section 6.6 describes how to obtain numerical solutions to the stochas-
tic, discrete time version of the AK model, with a numerical exercise illustrating
the implementation of the solution method. Section 6.7 considers Barro [4] version
of the AK model that includes government expenditures and discusses their effects
on the long-run rate of growth of the economy. Section 6.8 introduces the Jones
and Manuelli [47] variant of the AK model that generates a non-trivial transition to
steady-state. The approach to obtain numerical solutions to this model is described.
Section 6.9 is devoted to the stochastic version of the Jones and Manuelli model,
describing the transitional dynamics, characterizing the stability conditions, and ex-
plaining how to compute numerical solutions, which is illustrated with a numerical
exercise.

Chapter 7 reviews some additional mechanisms by which endogenous growth
arises. We start in Sect. 7.2 with an economy without capital accumulation in which
technological progress shows up in the form of the number of varieties of pro-
ducer products, possibly differing in quality [Spence [89], Dixit and Stiglitz [31],
Ethier [33] and Romer [77, 78]. Technological innovation in these models may lead
to either an increase in their number, or in their quality, so the innovation process is
key in this economy. These models can be seen to be equivalent to the AK model
for an appropriate parameter choice. In particular, except in specific versions of
these models there is no transition, per capita variables growing at a constant rate
at all points in time after any structural shock or policy intervention. After that, we
present in Sect. 7.3 an endogenous growth model by Barro and Sala-i-Martin [5] on
technological diffusion between two countries, one being a leader in innovation, as
in the model with varieties of producer products, the second one being a follower,
that adopts the innovations developed in the leading country. The economy of the
follower country displays a non-trivial transition to steady-state. A numerical exer-
cise is presented solving this model and the model of varieties of intermediate goods
in the previous section. We then move in Sect. 7.4 to a model economy with creative
destruction à la Schumpeter [82] following work by Aghion and Howitt [2] and
Howitt and Aghion [42], in which endogenous growth arises from improvement in
the quality of intermediate goods that is achieved through research and development
activities. This model incorporates accumulation of physical capital and displays a
nontrivial transition to steady-state. We close in Sect. 7.5 with a detailed discussion
of an important model by Uzawa [95] and Lucas [60], of a two-sector economy in
which human and physical capital accumulate over time, and where time devoted
to education plays an important role, so that the split of time among that devoted
to producing the final good, to education (i.e., to human capital accumulation) and
leisure is a crucial decision. We include different types of taxes and show that the
economy again exhibits a nontrivial transition, and it is an appropriate framework
to address interesting questions regarding fiscal policy. The competitive equilib-
rium is described in detail and the conditions characterizing steady-state are shown.
The steady-state is shown to take the form of a balanced growth path. A numerical
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exercise is presented to compute the steady-state effects of changes in tax rates. Sta-
bility conditions are characterized, and a method to compute numerical solutions to
the stochastic version of the model is presented, and its implementation is illustrated
in a numerical exercise. The potential indeterminacy in this model is shown, and a
solution approach is shown for such situation.

Chapter 8 introduces monetary exogenous growth models. The first part of
the chapter is devoted to a steady-state (long-run) analysis of monetary policy.
Section 8.2 describes the optimal monetary growth model of Sidrauski [84], the
steady-state is characterized and the possibilities for monetary policy implementa-
tions are analyzed. Special attention is paid to the necessary coordination between
fiscal and monetary policy that emerges from the characterization of the long-run
equilibrium. Section 8.3 characterizes the optimal steady-state rate of inflation and
the welfare cost of inflation. Section 8.4 analyzes two modelling issues: the differ-
ence between including either nominal or real debt in the model, and the timing
by which real balances enter as an argument into the utility function of the repre-
sentative consumer. A numerical exercise is presented to illustrate these two issues.
Section 8.5 considers monetary policy in the presence of consumption and income
taxes. The steady-state is characterized, and a numerical exercise is performed to
compute steady-state values for the main variables under alternative policy choices.
Fiscal policy is shown not to be neutral. The coordination between fiscal and mon-
etary policy is again discussed. Section 8.6 considers monetary policy under an en-
dogenous labor supply. The possible nonneutrality of monetary policy in different
setups is discussed. A numerical exercise is presented, with calculation of the opti-
mal rate of inflation and analyzing the validity of Friedman’s rule on the optimality
of a zero nominal rate of interest. Section 8.7 considers monetary policy under en-
dogenous labor and distortionary taxation. The Ramsey problem is specified and
first order analytical conditions are obtained.

Chapter 9 is devoted to the analysis of the transitional dynamics in monetary
growth economies. Section 9.1 characterizes the transitional dynamics, the class of
feasible monetary policies, and the short- and long-run neutrality of monetary pol-
icy. Section 9.2 analyzes the potential instability of the stock of public debt, and
describes a standard way to impose stability by linking the level of lump-sum trans-
fers to consumers to the stock of public debt outstanding each period. Section 9.3
describes the deterministic, discrete-time version of Sidrauski’s monetary model
under two possibilities, when the monetary authority uses either the nominal rate of
interest or the rate of growth of money supply as a control variable. The potential
indeterminacy of the price level is discussed. The two alternative policy designs are
analyzed in detail in Sects. 9.4 and 9.5. The numerical solution approach for each
case is presented. Section 9.6 discusses the results of some numerical exercises on
the transitional effects of monetary policy interventions. A full model incorporating
money and debt issuing as well as different types of taxes is used to analyze the
effects of different policy interventions. Sudden and gradual changes in the rate of
growth of money supply are shown to have different effects. Section 9.7 introduces
the stochastic version of the monetary growth model. Sections 9.8 and 9.9 con-
sider alternative policy choices, with the monetary authority using either nominal
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interest rates or money supply growth as control variable for the implementation
of monetary policy. The indeterminacy of the price level under a policy of con-
trolling nominal interest rates is again shown. When controlling nominal rates, the
monetary authority is assumed to follow a Taylor’s rule to implement policy, with
different weights assigned to output, inflation, and past interest rates. Numerical ex-
ercises are presented to illustrate the implementation of the solution methods in both
cases. The chapter closes with a discussion of a New Keynesian monetarist model,
of the type which are increasingly being used as one of the reference models in most
central banks around the world. These models are characterized by the existence of
some monopoly power in some firms, as well as some price frictions. We describe
in detail the theoretical foundations and analytically characterize the equilibrium
conditions. After that, we present the application of the numerical solution methods
introduced in the book to the solution of this model, which allow for the analysis of
effects of different policy interventions.



Chapter 2
The Neoclassical Growth Model
Under a Constant Savings Rate

2.1 Introduction

We present in this chapter the first growth model, introduced almost simultaneously
by R.Solow and S.Swan in two different papers published in 1956. In fact, as we will
see, the assumptions embedded in this model imply that, in the long run, and in the
absence of technological growth, economies do not grow in per-capita terms. The
possibility of aggregate growth arises only from either population growth or growth
in factor productivity. Since neither factor is supposed to depend on the decisions
of economic agents, this is known as an exogenous growth model. There are model
economies for which there are steady-states with constant, non-zero growth rates
determined by some decisions made by economic agents, like the level of education,
or by some policy choices, like a given tax rate. These are known as endogenous
growth models and will be studied in later chapters.

Per capita income, the most obvious indicator of the state of a given economy,
displays two different characteristics in most developed countries: (a) it increases
over time, and (b) it experiences cyclical fluctuations around its long-term trend over
relatively short periods of time. The Solow–Swan model focuses on explaining the
first characteristic, long-term growth, even though, as we have already mentioned,
the long-run equilibrium growth rate will be zero unless some conditions are met.
Even in versions of the Solow–Swan model implying zero long-run growth, the
economy will experience non-zero rates of change in the capital stock per worker or
in the level of per-capita income over short periods of time, called transition periods.
To characterize general conditions under which an economy may display non-zero
long-term growth is the goal of the next section.

A stochastic version of growth models is needed if we want the model to re-
produce the statistical characteristics of business cyclical fluctuations in actual
economies. We will also consider a stochastic version of the Solow–Swan growth
model, even though this will still be too simple a model to explain many interesting
empirical observations.

A. Novales et al., Economic Growth: Theory and Numerical Solution Methods, 53
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2.2 Returns to Scale and Sustained Growth

We start by discussing an important fact: the returns displayed by productive factors
in the available aggregate technology will condition the possibilities for the econ-
omy to display sustained long-run growth. This initial discussion is of a general
nature, although it is made under a set of assumptions defining the Solow–Swan
model, to which it applies as a special case.

Assumption 1: The relationship between total output Yt , and the two production
inputs, the stock of physical capital Kt , and labour Lt , at the aggregate level of the
economy, can be interpreted as coming from a Cobb–Douglas technology,

Yt = AKβ
t Lαt , α ,β ≥ 0,

with unrestricted numerical values for the elasticities of the production factors, ex-
cept that they must be non-negative. A denotes a production scale factor, which af-
fects the productivity of both factors. Changes in A will shift the production frontier.
Physical capital tends to accumulate over time through investment. Gross investment
It has two components: (a) net investment, defined as the variation in the stock of
capital, K̇t , and (b) the loss by depreciation Dt :

Gross Investment ≡ It = K̇t +Dt . (2.1)

In the absence of depreciation, the change in capital would be equal to invest-
ment. Under positive depreciation, net investment may be positive, or negative,
when investment is not enough to replace the loss by depreciation.

Assumption 2: The rate of depreciation of physical capital is constant, δ , so that:
Dt = δKt .

Assumption 3: Each worker has a unit of time available each period that is sup-
plied inelastically in the labor market. This allows us to identify the number of
workers and the supply of labor each period.

Assumption 4: We assume that there is full employment in the economy, so that
employment, Lt , and labor supply, Nt , coincide. These first two assumptions allow
us to use in what follows total population, Nt , as an input in the production function
and write the technology in terms of per capita variables or per-worker variables,

Yt

Nt
= A

(
Kt

Nt

)β
Nα+β−1

t , α,β ≥ 0 ⇒ yt = Akβt Nα+β−1
t , (2.2)

where yt = Yt
Nt

,kt = Kt
Nt

denote per capita income and physical capital. As we will
see, the capital-labor ratio kt is the key variable determining the evolution over time
of this economy.

Assumption 5: There is no government in the economy, which is supposed to be
closed to financial or commodity trading with other countries, which implies that
aggregate savings and investment are equal to each other every period, St = It ,∀t.
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Assumption 6: Additionally, and this is a significant restriction, we assume sav-
ings to evolve over time as a constant fraction s of output,

Savings ≡ St = sYt .

Using Assumption 5 and 6 in (2.1) and dividing by Nt , and using (2.2) , we have,

syt =
K̇t

Nt
+δkt = sAkβt Nα+β−1

t . (2.3)

Assumption 7: We assume that labor force and employment (which are equal to
each other at each point in time, by Assumption 2) grow at a constant rate of n,

Nt = N0ent .

We can now use these assumptions to obtain some properties of Growth models.
Taking derivatives with respect to time in the definition of kt , we have,

k̇t =
K̇t

Nt
− ṄtKt

N2
t

=
K̇t

Nt
−nkt . (2.4)

From equations (2.3) and (2.4), we get,

k̇t = sAkβt Nα+β−1
t − (n+δ )kt ,

and, dividing by kt we obtain the growth rate of the per-worker stock of physical
capital, γkt

:

γkt
≡ k̇t

kt
= sAkβ−1

t Nα+β−1
t − (n+δ ) , (2.5)

which will change over time with population and with the level of the capital-labor
ratio. We also have,

γkt
+(n+δ )

sA
= kβ−1

t Nα+β−1
t .

Taking logs, we get,

ln
(γkt

+(n+δ )
sA

)
= (β −1) lnkt +(α+β −1) lnNt , (2.6)

and taking derivatives with respect to time t, we have,

γ̇kt

γkt
+(n+δ )

= (β −1)
k̇t

kt
+(α+β −1)n, (2.7)

where we have used Assumption 7 to imply: Ṅt
Nt

= n.
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We are particularly interested in characterizing a possible state of the economy
in which the growth rate of per capita variables1 can be maintained constant forever.
In such a situation, which we will later define more precisely as steady-state, the left
hand side at (2.6) would be constant. Notice that it is not the levels, but the growth
rates of variables like kt and yt , that remain constant in steady-state. We will denote
them by γkss

,γyss
.

Evaluating (2.7) at such steady-state, we get,

0 = (β −1)γkss
+(α+β −1)n, (2.8)

a condition that any possible steady-state will have to fulfill. It is important to bear
in mind that at this point we have not shown existence of such a steady-state, and
much less its possible uniqueness. We have only shown that (2.8) is a necessary
condition for a steady-state to exist.

We now take logs in (2.3), an expression which is valid at any point in time, to
get,

lns+ lnyt = ln(sA)+β lnkt +(α+β −1) lnNt ,

where lns is constant. That taking derivatives with respect to time,

ẏt

yt
= β

k̇t

kt
+(α+β −1)n ⇒ γyt

= βγkt
+(α+β −1)n,

so that, in steady-state,

γyss
= βγkss

+(α+β −1)n, (2.9)

which describes the relationship between the growth rates of per capita income and
physical capital in a steady-state.

To obtain the relationship with the rate of growth of consumption, we use the
global constraint of resources of the economy to show the proportionality between
per capita consumption and output:

Ct +St = Yt ⇒Ct + sYt = Yt ⇒Ct/Nt = (1− s)Yt/Nt ⇒ ct = (1− s)yt ,

which implies that both variable grow at the same rate: γcss
= γyss

.
Let us now consider some possibilities:
Case 1: Economy with decreasing returns to scale in each production factor, but

constant returns to scale on the aggregate,

Yt = AKβ
t Lαt , 0 < α,β < 1, α+β = 1,

In this case, the second term at (2.8) is zero, so that,

0 = (β −1)γkss
,

1 In fact, a steady-state is defined by constant rates of growth of appropriately chosen ratios of vari-
ables. In this introductory discussion, it is convenient to define it in terms of per capita variables,
although in a later section of this same chapter we need to define it differently.
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and since β < 1, we will necessarily have,

γkss
= 0.

Hence, if there is any steady state, it will necessarily have to display a zero growth
rate for the stock of physical capital per worker. As a consequence of the previous
relationships between growth rates, in such an economy all per-capita variables will
remain constant in such a steady-state. The constant returns to scale assumption,
together with γkss

= 0, imply in (2.9) that per-capita income does not grow in steady-
state, i.e., γyss

= 0 and, as a consequence, γcss
= 0. Even though the steady-state

condition only allows for a zero steady-state growth rate, that could still be obtained
for different levels of per capita variables (kss,css,yss), leading to multiple steady-
states.

Figure 2.1 shows the values of the growth rate of the capital-labor ratio, by
illustrating the two functions involved in (2.5). The gap between the two curves
provides the growth rate of the capital-labor ratio, which will be positive to the left
of the crossing point, kss, and negative to the right of it. That intersection charac-
terizes the steady-state level of the capital-labor ratio. A monotonically decreasing
marginal productivity of capital implies uniqueness of that steady-state ratio. To the
left of kss the kt -ratio will increase, with growth being higher the farther away to the
left is the level of kt . Something similar can be said about the decrease in kt to the
right of kss.

In fact, this graph shows the existence and uniqueness of a zero-growth steady-
state in an economy with the assumptions described above. It is particularly impor-
tant that we have assumed a constant returns to scale production technology together
with diminishing returns on the cumulative input, the stock of capital. The graph also
illustrates the stability of such steady-state, since the economy will converge to it
from any position above or below the steady-state capital-labor ratio.

α + β = 1; α , β ∈(0, 1);

kt

sAkt
β−1

γkt 
> 0

γkt
<0

γkt
≡ ⎯ = s⎯ − (n+δ) = sAkt

β      −1− ( n+δ)
kt
kt kt

yt

n+δ

Fig. 2.1 Growth rate of capital-labor ratio: Cobb Douglas technology with constant returns to scale
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tk

sA

sA>n+δ

 α + β = 1;α = 0; ⎯ = s⎯ − (n+δ) = sA− ( n+δ);
kt
kt kt

yt

n+δ
γkt

=γk>0

Fig. 2.2 Growth rate of capital-labor ratio: Unit elasticity in cumulative factor

This analysis might suggest that it is not possible to obtain positive growth in
steady-state if the technology is of the constant returns to scale type. The next case
shows that the opposite is true.

Case 2: Let us now consider constant returns to scale in the aggregate, α+β = 1,
as well as in the cumulative factor, physical capital, β = 1. We then have α = 0, and
a linear technology,

Yt = AKt ,

usually known as an AK-technology, which will be studied in detail in Chap. 5.
The second term in (2.8) again becomes zero but, since β = 1, it is possible to
find steady-state situations with γkss

> 0 (actually, with γkss
	= 0) as it can be seen

in Fig. 2.2. Notice again that this argument does not show existence of a non-zero
growth steady-state, but only that such a state is possible.

As we will see in later chapters, a linear technology like this one can generate
endogenous growth. A possible interpretation of this structural feature comes by
considering a second cumulative productive factor, human capital,

Yt = AKβ
t H1−β

t ,

where Ht is a variable including the quality as well as the quantity of labor, i.e., not
only the number of workers, but their education level, work experience, and so on.
If the two types of capital are assumed to be perfect substitutes, then we would end
up with an AK-technology2.

This second case has not considered labor as a second input different from phys-
ical capital. In the next case we show the possibility of positive steady-state growth
in the presence of both inputs: physical capital and labor.

Case 3: Let us consider constant returns to scale in the cumulative factor, β = 1,
and non-zero returns in the labor factor, α > 0, so that we have increasing returns to
scale in the aggregate. As shown by (2.7), under these assumptions, steady-state will

2 See Barro and Sala-i-Martin [6], Chap. 4.



2.3 The Neoclassical Growth Model of Solow and Swan 59

only be possible in an economy without population growth, n = 0. The second term
in (2.8) then again disappears and, since β = 1, there is the possibility of non-zero
growth steady-states, although we cannot prove their existence on general grounds.

An (unproven) general message of this section is that to produce non-zero long-
run growth it is necessary to have either constant or increasing returns to scale in
the cumulative inputs. Although in this section we have just considered one type
of capital, there are interesting models including physical as well as human capital,
both accumulating over time. The condition there is that the elasticities of the two
capital inputs add up to at least 1, as we already saw in our interpretation of the
AK-technology in Case 2.

2.3 The Neoclassical Growth Model of Solow and Swan

This model, introduced by Solow [88]) and Swan [91], describes the time evolution
of an economy in which there is growth from some initial, known conditions. The
model incorporates the assumptions introduced in the previous section, in a case
of decreasing returns in physical capital, but constant returns to scale on the ag-
gregate. As shown in Case 1 above, this economy has a single, stable zero-growth
steady-state.

Hence, we consider in this chapter a closed economy, without government, so
that savings and investment are equal to each other every period, St = It . Firms use
physical capital and labor to produce the single consumption commodity, which can
either be consumed or accumulated in the form of physical capital. Output is only
used as consumption or investment, since there is no public consumption or any
exchange with the foreign sector. Physical capital depreciates at a constant rate δ .
Consumers are endowed with a unit of time which supply inelastically in the labor
market.3 Population Nt grows over time at a constant rate n, so that from an initial
population N0 we have, Nt = N0ent . Prices and salaries are fully flexible, so that the
economy is always in a state of full employment. The full employment assumption,
together with eliminating any age structure in the population,4 makes the labor force
and employment to be equal to each other at each point in time so that we will also
have, Lt = L0ent , which implies L̇t = nLt . When incorporating to the labor force,
each consumer/worker receives an amount of physical capital equal to that owned
by each person already in the labor force.

Aggregate savings are a constant proportion of income each period, St = sYt or,
in per capita terms, st = syt . There is no reason to believe that this should be an op-
timal behavior on the part of consumers. In fact, we do not consider any optimizing
behavior on the part of economic agents or government in the Solow–Swan model
so, the analysis is more positive than normative in character. In the next chapter, we
analyze a model where consumption/savings decisions are taken optimally.

3 That would be the case, for instance, if leisure does not enter as an argument in their utility
function, which we will not specify in this Chapter.
4 Consumers are able to work from the moment they are born.
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2.3.1 Description of the Model

2.3.1.1 Technology

We assume that at the aggregate level, the available technology can be represented
by a first-degree homogeneous production function Y = F(Kt ,Nt). As explained
above, we identify employment with total population. Derivatives are: FKt , FNt ,
FKt Nt > 0, FNt Nt , FKt Kt < 0 and the Hessian is negative definite, so that F is con-
cave. We further assume: F(Kt ,0) = F(0,Nt) = 0, so that we cannot produce any-
thing without using positive amounts of the two inputs, and lim

Kt→0
FKt = lim

Nt→0
FNt =∞,

lim
Kt→∞

FKt = lim
Nt→∞

FNt = 0. These are usually known as Inada conditions.

The more restrictive aspect of this technology is the existence of decreasing re-
turns to scale in each input, which, as we saw in Case 1 in the previous section,
precludes the possibility of positive steady-state growth. The aggregate constant re-
turns to scale assumption allows us to write,

Yt = F(Kt ,Nt) = NtF(Kt/Nt ,1) = Nt f (kt), (2.10)

where kt = Kt/Nt denotes the per capita stock of productive capital or capital-labor
ratio, and f (kt) = F(Kt/Nt ,1). The assumptions on F imply: f ′(kt)>0, f ′′(kt)<0,
f (0) = 0, lim

kt→0
f ′ = ∞, lim

kt→∞
f ′ = 0.

The capital-labor ratio determines output produced per worker Yt/Nt and hence,
income per worker, so it is reasonable to expect that consumption will also be de-
termined by this capital-labor ratio, which is the key variable in this economy.

The marginal productivity for each input is related to the derivatives of f (kt).
First, taking derivatives with respect to Kt ,

FKt = Nt f ′(kt)
∂kt

∂Kt
= Nt f ′(kt)

1
Nt

= f ′(kt) > 0, (2.11)

where subindices denote partial derivatives. On the other hand, taking derivatives at
(2.10) with respect to Nt we get,

FNt = f (kt)+Nt f ′(kt)
(
−Kt

N2
t

)
= f (kt)− kt f ′t (kt). (2.12)

Even though it is not implied by the properties of f (kt), the marginal product
of labor must also be positive: f (kt)− kt f ′t (kt) > 0 since otherwise, it would be in
the benefit of the firm to reduce employment. Finally, it is simple to check that the
concavity of f (kt) is implied by that of F.

A particular technology satisfying the assumptions above is a Cobb–Douglas
production function,

F(Kt ,Nt) = AKα
t N1−α

t with 0 < α < 1,
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where A>0 indicates the level of technology. Aggregate output can be written,

Yt = AKα
t N1−α

t = ANtkαt , (2.13)

so we are in the setup above, with f (kt) = Akαt . Per-capita output is in this case,

yt =
Yt

Nt
= Akαt , 0 < α < 1.

Marginal factor productivity for both factors is positive under this technology,

FKt = f ′(kt) = Aαkα−1
t > 0,

FNt = f (kt)− kt f ′t (kt) = Akαt − ktAαkα−1
t = (1−α)Akαt > 0.

2.3.2 The Dynamics of the Economy

In this simple economy, output (or, equivalently, income) is used either as consump-
tion or in the form of gross investment. The later is used in part to compensate for
depreciated capital, and also as net additions to the stock of capital,

Net investment = K̇t =
dKt

dt
= Gross investment −Depreciation

= It −Dt = It −δKt ,

where we have used the assumption on a constant rate δ of physical capital depre-
ciation, independent of the stock of capital, Dt = δKt .

So, we have the global constraint of resources:

Yt = Ct + It = Ct + K̇t +δKt ,

that is,
K̇t = F(Kt ,Nt)−Ct −δKt .

Dividing by employment,

K̇t

Nt
=

F(Kt ,Nt)
Nt

− Ct

Nt
−δ

Kt

Nt
= f (kt)− ct −δkt ,

and, taking into account that

k̇t =
K̇t

Nt
− Ṅt

Nt
kt =

K̇t

Nt
+nkt ,

we obtain,
f (kt) = ct + k̇t +(n+δ )kt , (2.14)
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the identity that describes the uses of income, in per-capita terms: each worker’s
output is used in part as consumption and as a net addition to the stock of capital,
which may be positive or negative. The rest reflects the need to recover the capital
lost by depreciation, as well as to provide each new worker with the same units of
capital associated to each old worker. The number of workers grows at a rate n,
and population growth acts as some sort of depreciation. In fact, it is impossible to
disentangle in this model the effects of δ and n.

Since Ct = (1− s)Yt , we can divide by Nt to obtain, in per capita terms,

ct = (1− s) f (kt),

and finally,
k̇t = s f (kt)− (n+δ )kt , (2.15)

which is the law of motion of the economy, showing how the stock of capital per
worker increases in those periods in which savings s f (kt) exceeds from capital de-
preciation (δ +n)kt .

2.3.2.1 Technological Growth

Maintaining the above assumptions on savings, capital formation, population
sgrowth and full employment, let us now consider the possibility that there is
exogenous technological growth, in the form of a variable productivity factor Γt ,
that grows at a constant rate γ:

Γ̇t

Γt
= γ , ∀t.

We assume now that the available technology can be represented by an aggre-
gate production function Yt = F(Kt ,ΓtNt), with FKt ,FΓt Nt > 0, second derivatives:
FKt ,Γt Nt > 0, FΓt Nt ,Γt Nt < 0, FKt ,Kt < 0 and a negative definite Hessian, so that F is
concave. Additionally, F(Kt ,0) = F(0,ΓtNt) = 0, so that we cannot produce any-
thing without using positive amounts of the two inputs, and lim

Kt→0
FKt = lim

Γt Nt→0
FΓt Nt =

∞, lim
Kt→∞

FKt = lim
Γt Nt→∞

FΓt Nt = 0.

Introduced this way, technological progress, represented by Γt is said to be of
the labor-saving type, because as Γt grows, we will be able to produce a given
output with a lower amount of the labour input.5 The second input in the production
function, ΓtNt , is then known as effective labor. The more restrictive aspect of this
technology is again the existence of decreasing returns to scale in each input, which
precludes the possibility of positive steady-state growth.

5 It is also sometimes known as neutral in the sense defined by Harrod.
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The aggregate constant returns to scale assumption allows us to write,

Yt = F(Kt ,ΓtNt) = ΓtNtF
(

Kt

ΓtNt
,1
)

= ΓtNt f (kt), (2.16)

where kt = Kt
Γt Nt

denotes now the stock of capital per unit of effective labor, and
f (kt) = F( Kt

Γt Nt
,1). The main variables in the economy can be represented in terms

of this ratio. For instance, from the last equation, we have output per unit of effective
labor:6

yt =
Yt

ΓtNt
= f (kt).

An example of such a production function is, F(Kt ,ΓtNt) = AKα
t (ΓtNt)1−α , with

output:

Yt = AKα
t (ΓtNt)1−α = AΓtNtkαt = ΓtNt f (kt)

with 0 < α < 1 and f (kt) = Akαt ,

so that, output per unit of effective labor is,

yt =
Yt

ΓtNt
= Akαt , 0 < α < 1.

Marginal productivity for each input is again related to the derivatives of f (kt).
First, taking derivatives in (2.16) with respect to Kt ,

FKt = ΓtNt f ′(kt)
∂kt

∂Kt
= ΓtNt f ′(kt)

1
ΓtNt

= f ′(kt) > 0.

On the other hand, taking derivatives in (2.16) with respect to Nt we get,

FNt = Γt f (kt)+ΓtNt f ′(kt)

(
−ΓtKt

(ΓtNt)
2

)

= Γt
[

f (kt)− kt f ′(kt)
]
.

Output is again either consumed or used as gross investment, and we have the
same global constraint of resources as before,

Yt = Ct + It = Ct + K̇t +δKt ,

that is,
K̇t = F(Kt ,ΓtNt)−Ct −δKt .

6 The argument in Sect. 2.2, suggests that, under our maintained assumption of decreasing returns
to scale, the ratios of physical capital and output per unit of effective labour will experience zero
growth in steady-state. In turn, that would imply that per-capita variables like Kt

Nt
or Yt

Nt
= Γt f (kt)

will grow in steady-state at a rate γA. These results are shown in the next section.
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Dividing by the number of effective units of labor, we have,

K̇t

ΓtNt
=

F(Kt ,ΓtNt)
ΓtNt

− Ct

ΓtNt
−δ

Kt

ΓtNt
= f (kt)− ct −δkt ,

where we have used the fact that the homogeneity of degree one of F(., .) allows us
to write: F(Kt ,Γt Nt )

Γt Nt
= F( Kt

Γt Nt
, Γt Nt
Γt Nt

) = F( Kt
Γt Nt t

,1) = f (kt). We denote consumption

per unit of effective labor by ct = Ct
Γt Nt

. Taking into account that

k̇t =
K̇t

ΓtNt
− Γt Ṅt

ΓtNt
kt −

Γ̇tNt

ΓtNt
kt =

K̇t

ΓtNt
− (n+ γ)kt ,

we get,
f (kt) = ct + k̇t +(n+δ + γ)kt , (2.17)

the identity that explores the uses of income, in per-capita terms: each worker’s
output is used in part as consumption and net additions to the stock of capital. The
rest reflects the need to recover the capital lost by depreciation, as well as the need to
provide to each new worker with the same capital per units of effective labor owned
by each old worker. The number of workers grows at a rate n, while the general
level of productivity grows at a rate γ. Again in this model, population growth acts
as some sort of depreciation.

Finally,
Yt = Ct + It = Ct +St = Ct + sYt ,

so that, Ct = (1− s)Yt and, dividing through by ΓtNt we get, in effective units of
labor,

ct = (1− s) f (kt), (2.18)

and
k̇t = s f (kt)− (n+δ + γ)kt , (2.19)

which is the law of motion of the economy, showing how the stock of capital per
unit of effective labor increases in those periods in which per capita savings s f (kt)
exceeds total capital depreciation (n+δ + γ)kt .

2.3.3 Steady-State

Definition 1. In an exogenous growth economy, a steady-state is a vector of values
for the rates of growth of the main variables (physical capital, output and consump-
tion) in units of effective labor, that if it is ever reached, it can be maintained constant
forever.

A steady-state is often referred to as a long-run equilibrium, because of the char-
acteristic of having a constant rate of growth for appropriately defined variables.
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Let us consider again the economy’s law of motion (2.19), from which the growth
rate of capital can be written,

γkt
=

k̇t

kt
= s

f (kt)
kt

− (n+δ + γ) . (2.20)

In steady state, γkt
must be constant, so that f (kt )

kt
must also be constant. Its time

derivative is,
d
[

f (kt )
kt

]

dt
=

kt f ′(kt)− f (kt)
kt

k̇t

kt
=

in steady state
0.

Since kt f ′(kt)− f (kt) is the negative of the marginal product of labor, which
we assumed to be positive, then we will have in steady state k̇t

kt
= 0, which implies

k̇t = 0, and the stock of capital per unit of effective labor will remain constant in
steady-state. That, in turn, implies that the stock of productive capital per worker
will grow at a rate γ. To see the relationship between the growth rates of income and
capital, notice that,

Yt

Nt
= F

(
Kt

Nt
,Γt

)
=

Kt

Nt
F
(

1,
Γt

Kt/Nt

)
,

and, since kt = Kt
NtΓt

is constant in steady-state, output and capital will grow at the
same rate. In units of effective labor, these variables grow at a zero rate, while in
per capita units they grow at a rate γ. In aggregate terms, they grow at a rate n + γ.
Since consumption is proportional to income, consumption per-capita will also grow
at a rate γ, while remaining constant in steady-state in units of effective labor. Even
though per-capita variables experience growth in steady-state, since the common
growth rate, γ , is exogenous to the model, we say this is an exogenous growth model.

Summarizing, steady state is characterized in this economy by k̇t = 0 so that,
from (2.19) , steady state levels of kt are solutions to,

s f (kss)− (n+δ + γ)kss = 0, (2.21)

which defines the value of the stock of capital per unit of effective labor in steady
state, kss. The properties of the solution to this equation like its existence and unique-
ness, or the way how it is affected by structural parameters, depend on the specific
production function assumed. Figure 2.3a shows the possibility of multiple steady-
states. The upper graph presents them by the intersection between the s f (kss) curve
and the (n + δ + γ)kss straight line. The lower graph displays the associated time
derivatives of the stock of capital per unit of effective labor, as defined by (2.19).
However, for standard production functions satisfying the Inada conditions above,
(2.21) will have a single non-zero solution, the steady state then being uniquely de-
fined [Fig. 2.3b]. The stock of capital increases to the left of the steady-state, while
decreasing to the right of it.
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Multiplicity of steady states
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(n+δ+γ)kt (n+δ+γ)kt

kss,1 kss,3kss,2
kt

kt

kt

kt  > 0 kt  > 0kt  < 0 kt  < 0

Uniqueness of steady state
sf(kt)
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kt > 0 kt < 0
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Fig. 2.3

Figure 2.3b shows how kss = 0 is another steady-state. It solves equation (2.21)
because f (0) = 0. At that point, there is zero physical capital, so production is zero
and consumption is also zero. There can be no investment, and savings will be zero
no matter what the savings rate is, since there are no resources. The economy never
leaves this situation, although it has no economic interest.

As an example, let us consider again the Cobb–Douglas production technology
Yt = F (Kt ,ΓtNt) = AKα

t (ΓtNt)1−α ,0 < α < 1, which can also be represented: yt =
Akαt , 0 < α < 1. Steady state is then characterized by,

sAkαss = (n+δ + γ)kss.

The single solution7 to that equation is,

kss =
(

sA
n+δ + γ

) 1
1−α

, (2.22)

so that the steady-state level of physical capital, in units of efficient labor is higher
for higher values of the constant savings rate, while being lower for higher values of
either the rate of population growth, the depreciation rate of physical capital, or the
rate of growth of productivity. It is also higher the higher the value of the elasticity
of physical capital in the production function representing the aggregate technology.

A higher savings rate allows for a more important capital accumulation, leading
to a higher stock of physical capital. On the other hand, a higher rate of depreciation
detracts more resources from net capital accumulation. Higher population requires
more resources to be devoted to provide newborn consumers with the same stock of

7 The equation has another root: kss = 0. This would be a steady-state with zero capital, output and
consumption.
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physical capital as the already existing consumers. Since we are working with vari-
ables in terms of efficient units of labor, technological growth enters the model sym-
metrically with population growth, so the dependence of steady-state levels with re-
spect to this variable is also negative. Finally, a higher elasticity of physical capital
creates a higher incentive for capital accumulation, leading to a higher steady-state
level of physical capital.

Output is increasing on the level of physical capital, so that the steady-state levels
of output and consumption, in efficient units of labor, yss,css, will also depend on
the values of structural parameters, s,n,δ ,γ,α as described for kss. The reader must
be careful not to use the (2.18) representation to extrapolate a similar dependence
of consumption on the values of structural parameters, because of the presence of
the savings rate in that expression. We will get back to this issue in Sect. 2.3.8.

Figure 2.4 shows the dependence of the steady-state on the level of the constant
savings rate. An increase in savings rate will raise the slope of the s f (kt)-curve,
which will intersect the straight line to the right of the current steady-state. So, the
stock of capital per unit of efficient labor will rise and so will do income, investment
and consumption. The Figure shows that there is a limit to such a process. When
s = 1, the s f (kt)-curve coincides with the production function f (kt), and we have
what is known as the subsistence steady-state, k̂, that in which

f
(
k̂
)

= (n+δ + γ) k̂.

In the subsistence steady-state, so much physical capital has been accumulated,
that all output is needed to replace what is lost to physical depreciation as well as
to provide new workers with the same stock of physical capital than older workers.
There are no resources left for consumption, which is hence equal to zero. Each
value of the constant savings rate between 0 and 1 is associated with a steady-state
level of capital per unit of labor between 0 and k̂ . Situations with kss > k̂ are not
sustainable as steady states, since they would imply negative consumption.

ˆ

sf(k) sf(k)

f (k) f (k )
(n+δ+γ)k

(n+δ+γ)k

(n+δ+γ)kss(s)=sf(kss(s))

k

css (s)

kss(s) kss(s = 1)=kkss(s=0)=0

Fig. 2.4 Steady-state as a function of savings rate
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2.3.4 The Transition Towards Steady-State

Outside the steady-state the growth rate of the economy is not constant but, rather,
it behaves according to (2.20), changing with the level of kt . We call transition the
process that unfolds from the starting situation, with a capital stock of k0, towards
the steady-state level.

The first term in that expression, s f (kt)/kt , is a continuous, decreasing function
of kt which starts at infinity for kt = 0, converging to zero for kt = ∞, as can easily
be seen by taking limits.The second term is a constant, represented by a horizontal
straight line in Fig. 2.5. Hence, there is some single value of the capital stock for
which s f (kss)/kss = δ + n + γ and so, γkt

= 0. The point at which the growth rate
of capital per unit of effective labor becomes zero is the single steady-state of the
economy, kss. Since the growth rate γkt

becomes positive for any stock of capital
below the steady-state level, and negative for any capital stock above steady-state,
the model implies a monotonic convergence to steady-state so, the steady-state is
globally stable.

The gap in Fig. 2.5 between the two lines is precisely the growth rate γkt
, which

can be seen to reduce in size as the economy approaches steady-state from either
side. As pointed out in Barro and Sala-i-Martin [6], when kt is relatively low, the
average product of capital, f (kt)/kt , is relatively large, due to the law of diminish-
ing returns. Since consumers save a constant proportion of that product, gross in-
vestment per unit of capital, s f (kt)/kt , which is proportional to the average product
of capital, will also be large. With a constant depreciation rate, that will make k̇t/kt
to be relatively high, and the opposite happens for high levels of kt . Analytically,
changes in γkt

as the stock of capital changes are given by,

∂γkt

∂kt
= s

kt f ′(kt)− f (kt)
k2

t
< 0,

which is negative, since the numerator is equal to minus the marginal product of
labor.

α + β = 1 ; α , β ∈ (0,1);

kt

sAkt
β−1

γkt
>0

γkt
<0

γkt
≡ ⎯ = s⎯ − (n+δ) = sAkt

β      −1− ( n+δ)
kt
kt kt

yt

n+δ

Fig. 2.5 Steady-state determination under Cobb-Douglas technology
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2.3.5 The Duration of the Transition to Steady-State

To have an idea of how fast the economy approaches steady-state, we focus on
analyzing k̇t rather than γkt

. If we construct the linear approximation of the law of
motion for capital around steady-state, we get,

k̇t � [s f (kss)− (δ +n+ γ)kss]+
[
s f ′(kss)− (δ +n+ γ)

]
(kt − kss)

=
[
(δ +n+ γ)ksss f ′(kss)

s f (kss)
− (δ +n+ γ)

]
(kt − kss)

= (αk(kss)−1)(δ +n+ γ)(kt − kss) ,

where to obtain the first equality, we have used the fact that, in steady-state s f (kss) =
(δ +n+ γ)kss and where we have defined the elasticity of output with respect to the
stock of capital,

αk(kt) =
kt f ′ (kt)

f (kt)
∈ (0,1) .

Under constant returns to scale, αk(kt) is also physical capital’s share in income
distribution. In the Cobb–Douglas production function, αk(kt) = α, constant. Bor-
rowing from competitive equilibrium ideas, capital would be rented by firms at a
price equal to its marginal product, and αk(kt) would the proportion of output that
would be devoted to pay back to the owners of capital.

Changes in kt will then be explained by,

k̇t = −(1−αk(kss))(δ +n+ γ)(kt − kss) (2.23)

which depends negatively on the distance to steady-state kss. Hence, the stock of
capital per unit of effective labor changes faster initially, when the economy is far
from steady state, moving more gradually as the economy approaches its steady-
state.8

The solution to the differential equation (2.23) is,

kt − kss = e−(1−αk(kss))(δ+n+γ)t (k0 − kss) = e−µt (k0 − kss) , (2.24)

with µ = (1−αk(kss))(δ +n+ γ) . For instance, if we assume that αk (kss) = 1/3,
and n+δ +γ = 6%, then µ = 4%, so that 4% of the difference between kt and kss is
closed each period. Half of the initial distance to steady-state would then be closed
after 17 periods.

2.3.6 The Growth Rate of Output and Consumption

Because of the global stability of the Solow–Swan model, the model predicts that
any economy is either at steady-state, or converging to it. We consider in this section
an economy outside steady-state. Because of the global stability of the model, that

8 Notice that this is a result on absolute changes in the stock of capital per unit of effective labor,
while the result above was on its rate of growth.
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economy will be in a transition phase towards steady-state. Along the transition, the
behavior of output is characterized by,

γyt
=

ẏt

yt
=

f ′(kt)
f (kt)

k̇t = kt
f ′(kt)
f (kt)

γkt
= αk(kt)γkt

. (2.25)

As an example, if the aggregate technology is of the Cobb–Douglas type, then
capital’s share is αk(kt) = α, and, along the transition,

γyt
= αγkt

,

the growth rates of income and capital behave similarly, decreasing in magnitude as
the economy approaches steady-state.

More generally, we can use (2.20) for γkt
in (2.25) to get,

γyt
= s f ′(kt)− (n+δ + γ)αk (kt) ,

so that,
∂γyt

∂kt
=

f ′′(kt)kt

f (kt)
γkt

− (n+δ + γ) f ′(kt)
f (kt)

(1−αk(kt)) ,

and since 0≤ αk(kt) ≤ 1, then
∂γyt
∂kt

< 0 at those points at which γkt
≥ 0. If, on the

contrary, γkt
< 0, then the sign of

∂γyt
∂kt

is ambiguous. However, in the proximity of

the steady-state, γkt
will be small, and

∂γyt
∂kt

< 0. This means that if the economy
starts with a capital stock below kss, both, kt and yt will increase, but the rate of
growth of income per unit of effective labor, γyt

, will fall down as we approach
steady state, as it is the case with γkt

. If, on the contrary, the initial stock of capital is
above kss, then kt and yt will decrease, but we cannot say anything in general about
the behavior of γyt

. However, once we get close enough to steady-state, γyt
will

gradually increase as the stock of capital keeps falling towards kss. It may surprise
to see that the rate of growth of yt is increasing in spite of the fact that the stock
of capital is falling down to kss, but it is a negative rate of growth. So, what we
have is that as the stock of capital falls down towards steady-state, income per unit
of effective labor is falling towards the new steady-state at a decreasing rate. For a
relatively high kt , depreciation is so high that savings and investment are not enough
to replace depreciation and hence, the stock of capital decreases and output falls. As
the stock of capital decreases from its initially high level, less resources need to be
devoted to compensate for depreciation, and income per unit of effective labor falls
by a lesser amount, until it stabilizes in its new sustainable steady-state.

On the other hand, since the maintained assumption of this model is,

ct = (1− s)yt ,

then,
γct

= γyt
, ∀t,
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at any point outside the steady-state. Growth rates of per-capita variables will be
equal to the growth rates calculated in this section added by γ, while growth rates
for economy-wide aggregates will be the previous ones added by n.

2.3.7 Convergence in the Neoclassical Model

We have so far analyzed the implications of the neoclassical growth model on the
evolution of a specific economy. We have characterized the existence of a single
steady-state or long-run equilibrium and its dependence on the values of some
structural parameters. But the previous discussion has also implications on the
comparative evolution of economies from different countries, so long as these can
be assumed to fulfill the assumptions characterizing the Solow–Swan model. We
are particularly interested on possible implications on whether any two different
economies will tend to be more similar to each other over time or rather, differences
between them will tend to increase.

We say that two economies converge in absolute terms if, starting from a different
initial situation in terms of the endowment of physical capital per unit of effective
labor, k0,k′0, and, hence, in terms of their levels of income per unit of effective la-
bor, the difference between them narrows over time. Let us consider two economies
sharing the same values of the structural parameters, s,n,δ ,γ , but differing in their
initial stocks of capital. The long-run equilibrium (steady-state) levels of physical
capital, consumption and income per unit of efficient labor will be the same in both
economies. Let us assume that one of them, the poor economy, has an initial capital
stock kp

0 lower than that of the rich economy, kr
0. Figure 2.6, that presents the deter-

mination of both growth rates, shows that the growth rate of the poor economy will
be higher than that of the rich economy, so that the respective stocks of capital and,

tk

Absolute Convergence

n+δ+γ

sf(kt)/kt

kssk0
rk0

p

γ p    >γ rkt kt

γ p    kt γ r   kt

Fig. 2.6
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hence, the levels of output (or income) per-unit of effective labor, will become more
similar over time, as both converge to the same steady-state level. As a consequence,
the neoclassical model implies absolute convergence among countries.

This suggests that a regression like,

γkt
= β 0 +β 1 lnkt +ut , β 1 < 0,

which explains the growth rate of the economy as a function of its current situation,
would be an adequate representation of the time series produced by a neoclassical
growth model with either time series or cross-section data. Actually, what we have
seen as an implication of the Solow–Swan model is that the growth rate depends on
the relative distance of income or productive capital from their steady-state values.
Hence, a more appropriate representation would be,

γkt
= β 0 +β 1 (lnkt − lnkss)+ut , (2.26)

where kss could be estimated from its expression9, after having some estimates of
the values of structural parameters.

Empirical analysis does not show evidence on this type of convergence, unless
we limit our consideration to a set of homogeneous economies (states in the US,
OECD countries, province economies in a given country, etc.). One possible reason
for that is that a broader set of economies may display substantial differences among
their savings rates. In Fig. 2.7, we have labelled as poor the economy with the lower
savings rate, which implies, as we already know, a lower capital stock and lower per

Conditional Convergence

kt
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sf(kt)/kt

sr f (kt)/kt

s p f (kt)/kt

kssk0
rk0

p

γ p    <γ rkt kt

γ p    kt

γ r   kt

p kss
r

Fig. 2.7

9 It is clear that, being a constant, the correction on physical capital data would not need to be done
to estimate the regression, so long as we are careful when interpreting the estimated intercept,
although estimates of (2.26) would have a more direct interpretation.
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capita income in steady-state. This figure shows that when economic structures are
different, it is perfectly possible that the rich country may grow faster then the poor
country, if the former is relatively farther away from its steady-state.

This means that empirical analysis should take into account the fact that different
countries may have a different steady-state. This is done by conditioning the time
evolution of γkt

on the determinants of steady-state. The result is then known as
conditional convergence. The neoclassical growth model we have discussed implies
that countries with different structural characteristics will experience conditional
convergence: once we correct for the fact that the two economies have a different
long-run equilibrium, poorer economies should be seen to experience faster growth
than richer ones.

The correction is made by adding to the econometric model a vector zt of vari-
ables determining steady-state kss,

γkt
= β 0 +β 1 lnkt +φ lnzt +ut ,

with φ being a vector of the same dimension as zt . In the neoclassical Solow–Swan
model zt could include the savings rate, depreciation rate, population growth or the
output elasticity of physical capital. Sometimes, other indicators as the level of ed-
ucation in the population, expenditures in infrastructures, and so on, are included in
zt , although these are not justified by the Solow–Swan model. In more elaborated
models where the savings rate and the rate of technological progress are endoge-
nous, and the role of the government is explicitly considered, there will be an even
richer set of variables in zt .

Similar regressions could be estimated for output per unit of effective labor or
for per capita output, if we assume a given value for γ .

2.3.8 A Special Steady-State: The Golden Rule of Capital
Accumulation

We remember that steady-state is defined by the relationships,

s f (kss) = (n+δ + γ)kss,

css = f (kss)− (n+δ + γ)kss,

which we have used in the previous section to show that the steady-state stock of
productive capital moves in parallel with the level of the savings rate s. That is,
for given values of structural parameters n,δ ,γ,α, the implied steady-state levels
of physical capital, output and consumption will depend on the constant value cho-
sen for the savings rate. Since the savings rate affects the stock of capital, and this
influences consumption [see (2.18)], it makes sense to ask about the value of the
savings rate that would maximize the steady-state level of consumption. That level
of savings, and the associated steady-state, are known as the Golden-Rule of capital
accumulation.
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From the last equation, we see that steady-state consumption will be maximum
when ∂css/∂kss = 0, ∂ 2css/∂kss

2 < 0. That happens at the point where,

f ′(kGR
ss ) = n+δ + γ, (2.27)

that is, the point at which the slope to f (k) is parallel to the straight line
(n+δ + γ)k. That determines the Golden-Rule level of physical capital in units of
efficient labor, kGR

ss . The Golden Rule savings rate, sGR, is the value of s for which
the function s f (k) intersects the (n+δ + γ)k straight line at kGR

ss [see Fig. 2.8].
In the Cobb–Douglas case, yt = Akαt , the Golden Rule condition takes the form,

Aαkα−1 = δ +n+ γ,

leading to,

kGR
ss =

(
αA

n+δ + γ

) 1
1−α

,

Slope = n+δ+γ
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Fig. 2.8 Golden Rule determination
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which, by comparison with (2.22) shows that, under this technology, the Golden
Rule is the steady-state arising for a constant savings rate equal to the output elas-
ticity of capital. Since constant returns to scale lead to a competitive equilibrium
allocation with zero profits, and output being distributed to each factor according
to their output elasticities, the Golden Rule can also be interpreted as the result of
following either the rule: “Save all capital income” or, alternatively, “Consume all
labor income”.

In fact, we now show that this is a general result that does not depend on the
available technology, beyond the assumptions made in the Solow–Swan economy.
First, notice, that the two statements above are equivalent in this economy because i)
being a closed economy with no government, what is not consumed it is saved, and
ii) because the constant returns to scale assumption implies that all output (income)
is distributed between the production factors, with no residual profit. Indeed, if we
make savings equal to capital income, we have,

sYt = FKt Kt ⇒ s f (kt) = FKt

Kt

ΓtNt
= f ′(kt)kt ,

and, since any steady-state satisfies: s f (kss) = (n+δ + γ)kss, the condition above
implies,

f ′(kGR
ss ) = n+δ + γ,

so that the only steady state satisfying the described condition is the Golden Rule.
This means that in the Golden Rule there are no income transfers between the capital
and labor factors. To maintain a steady state with capital above kGR

ss there would be
a need for a high level of investment, to recover the capital lost to depreciation.
That way, it will not be enough with capitalists investing all income they receive as
owners of capital, and workers will also have to devote part of their labor income
to investment. There will then be an income transfer from workers to the owners of
capital. The opposite result would arise in a steady-state below kGR

ss .
It would be wrong to interpret the Golden Rule of capital accumulation as an

optimal allocation of resources.10 Since the Golden Rule is the steady-state or long-
run equilibrium offering the maximum consumption, it is clear that, unless the utility
function of consumers presents a bliss point, the Golden Rule should be preferred
to any other possible steady-state. But that is only true if we could place the econ-
omy initially at a steady-state of our choice. Unfortunately, that is not the case. The
economy is endowed with a given stock of capital per unit of efficient labor, k0,
and its structural characteristics, together with a chosen rate of savings s, will deter-
mine the long-run equilibrium. However, to bring the economy to that equilibrium,
the economy will go through a transition process, with physical capital converging
from k0 to kss.

10 The following argument rests on utility comparisons, and we have not specified consumer pref-
erences in this Chapter. It is nevertheless interesting as an introduction to the type of normative
analysis that is done in subsequent chapters. In fact, we will address again the suboptimality of the
Golden Rule in Chap. 3.
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So, suppose that, starting from k0, consumers choose a savings rate of precisely
sGR, the level at which the s f (k)-curve intersects the straight line (n+δ + γ)k at
kGR

ss . The long-run equilibrium or steady-state stock of capital will we kGR
ss , but the

economy will enter into a transition phase towards kGR
ss along which it is quite likely

that it will have to make some sacrifices in terms of consumption. Once the economy
reaches the Golden Rule, consumers will enjoy a higher level of consumption than
can be enjoyed at any other steady-state, but it is unclear that the time aggregate
level of utility along the whole trajectory would be maximized, precisely because of
the initial sacrifice in consumption.

For instance, we could compare utility along the trajectory converging from k0 to
kGR

ss , with the one that would be obtained with a savings rate of s0, the one that would
have allowed for maintaining the initial stock of capital k0, unchanged forever. The
result of such comparison is far from obvious, since it depends on: i) the magnitude
of short-run sacrifices needed to implement a savings rate of sGR, ii) the differences
between the level of utility provided by the Golden Rule level of consumption, and
that corresponding to maintaining a steady-state of k0, iii) the discount applied to
future utility, and iv) how long it takes for the economy to be in the neighborhood
of the Golden Rule, when the savings rate of sGR is implemented.

These effects are far from trivial. To analyze whether consumers’ would be better
off by staying at their current steady-state or by starting a transition trajectory taking
them to the Golden Rule, we need to be able to compute the time series representing
the paths followed by the main variables under each scenario, with which to evaluate
specific utility functions, as it is done in future chapters.

2.4 Solving the Continuous-Time Solow–Swan Model

2.4.1 Solution to the Exact Model

As in many other models that will be reviewed in future chapters, the time evolution
of the stock of capital per worker obeys a nonlinear, first order differential equation,
for which a closed form analytical solution generally does not exist. Such a solution
exists in the Solow–Swan model, however, and we can find continuous functions of
time: kt ≡ k (t) , yt ≡ y(t) , ct ≡ c(t) , st ≡ it ≡ s(t) = syt , describing the exact time
paths for the capital stock, output, consumption and savings or investment.

We start from the law of motion under a Cobb–Douglas technology,

k̇t = sAkαt − (n+δ + γ)kt , (2.28)

with a steady state defined by k̇t = 0, which leads to,

kss =
(

sA
n+δ + γ

) 1
1−α

. (2.29)
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If we introduce a new variable zt = k1−α
t , we have żt = (1−α)k−αt k̇t , and mul-

tiplying through (2.28) by (1−α)k−αt , we get,

żt = (1−α)sA− (1−α)(n+δ + γ)zt ,

a linear differential equation, with solution zt = Meµt + J. To find the values
of the constants M,µ,J we first write the time derivative żt = Mµeµt which,
taken to the equation, yields µ = −(1−α)(n + δ + γ), J = sA

n+δ+γ , so that zt =

Me−(1−α)(n+δ+γ)t + sA
n+δ+γ = k1−α

t . The remaining constant will be determined from
a boundary condition. In this case, since the starting capital stock k0 is given, we
have at t = 0, k1−α

0 = M + sA
n+δ+γ , so that M = k1−α

0 − sA
n+δ+γ , and the solution to

the original law of motion, finally, satisfies

k1−α
t =

(
k1−α

0 − sA
n+δ + γ

)
e−(1−α)(n+δ+γ)t +

sA
n+δ + γ

, (2.30)

from which output, consumption, and investment/savings would be obtained
through yt = kαt , ct = (1 − s)yt , it = st = syt . Notice that, as time passes, we

have lim
t→∞

kt =
(

sA
n+δ+γ

) 1
1−α

, and the economy converges to steady-state, reflecting
the global stability of the exact system.

2.4.2 The Linear Approximation to the Solow–Swan Model

Even the simpler growth models have a complex enough structure that prevents
from computing an exact analytical solution. As we have just seen, the continuous-
time version of the Solow–Swan is an exception. Since we will more often find
the opposite situation, we familiarize now the reader with the standard approach of
finding an approximation to the model, for which an exact solution can often be
found.

Using Taylor’s expansion, we can find the linear approximation to (2.19) around
steady state kss. To do so, we need to consider that equation as a function: k̇t =
Ψ(kt ;θ), where θ = (s,A,n,δ ,α) is the vector of structural parameters, with a linear
approximation:

k̇t � Ψ(kss;θ)+
(
∂Ψ(kt ;θ)

∂kt

)

ss
(kt − kss) ⇒

k̇t � [s f (kss)− (n+δ + γ)kss]+
[
s f ′(kss)− (n+δ + γ)

]
(kt − kss)

=
[
s f ′(kss)− (n+δ + γ)

]
(kt − kss), (2.31)

since the constant term is equal to zero. The coefficient of kt − kss, s f ′(kss)− (n +
δ +γ), is negative, since the s f (kt)-curve crosses the (n+δ +γ)kt-line from above.
Hence, if we start from below steady-state, the difference kt − kss will be negative,
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and k̇t will be positive, indicating that physical capital will accumulate and the econ-
omy will converge to steady state. If we start from above steady state, the difference
kt − kss will be positive, so k̇t will be negative, indicating that physical capital will
diminish while the economy gradually converges to steady state. So,

kt < kss ⇒ k̇t > 0,

kt > kss ⇒ k̇t < 0,

and the linearized model is also globally stable, the stock of capital converging
towards its steady-state level, no matter whether its initial endowment of physical
capital, k0, is above or below steady-state level, kss.

2.4.2.1 Analytical Solution for the Cobb–Douglas Case

We examine now the special case of a Cobb–Douglas technology. We will have the
law of motion for the stock of capital,

k̇t = sAkαt − (n+δ + γ)kt

� [sAkαss − (n+δ + γ)kss]+
[
sαAkα−1

ss − (n+δ + γ)
]
(kt − kss),

which, using the steady state level of the capital-labor ratio kss characterized in
(2.22), leads to,

k̇t �
[
sαAkα−1

ss − (n+δ + γ)
]
(kt − kss) = D(kt − kss), (2.32)

with D = sαAkα−1
ss −(n+δ +γ) =−(1−α)(n+δ +γ) < 0, so that the coefficient

of kt − kss in the linear approximation to the law of motion of the economy is nega-
tive, guaranteeing stability of the implied solution, as we have seen in the previous
paragraph for the more general case.

This linear approximation in the Cobb–Douglas case (2.32) can be solved analyt-
ically. To that end, we try with a linear solution: kt = a+beµt which, plugged into the
differential equation (2.32) , together with a given initial condition k (t = 0) = k0,
leads to,11

kt = kss + eDt (k0 − kss) = (1− eDt)kss + eDtk0, (2.33)

showing that the stock of capital converges to steady state at a rate D, since taking
time derivatives in this expression, we get: k̇t/kt = d(kt−kss)/dt

kt−kss
= D.

11 Substitution of the proposed solution yields, bµeµt = Da+Dbeµt −Dksswhich can hold only if
µ = D,a = kss. Hence, we have: kt = kss + beDt . To determine the value of the constant b we use
the initial condition: k0 = kss +b, so that: b = k0 − kss.
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2.4.3 Changes in Structural Parameters

This section is devoted to analyzing the long-run effects, i.e., the effects on steady-
state levels of the main variables, of permanent changes in the values of structural
parameters. We start by paying special attention to a change in the savings rate,
since that is the parameter more easily linked to a policy intervention in this model,
and extend the discussion to the remaining structural parameters later on.

2.4.3.1 A Change in Savings Rate

Let us assume that, starting at steady-state, with constant levels of the main variables
in units of efficient labor, and a physical capital ratio k1

ss, there is an increase in s,
the constant savings rate. Then, the steady-state level of the physical capital ratio
would increase to a new level k2

ss, since its level depends positively on the value of
the savings rate. A higher savings rate shifts the s f (kt) upwards, while leaving the
(n +δ + γ)kt function unchanged. Therefore, at k1

ss we will no longer be at steady-
state but rather, to the left of it. As a consequence, right after the increase in savings
rate, the stock of capital starts a gradual increase. A similar process is followed
by income, yt = f (kt), its rate of growth instantaneously jumping and becoming
positive at the time of the increase in the rate of savings, and gradually decreasing
back to zero as capital and income converge to their new steady-state levels. Later
on, when the level k2

ss is attained, income per unit of efficient labor will again remain
constant. Consumption ct = (1− s) f (kt) experiences a discontinuity, with an initial
fall due to the increase in s. These effects are shown in Fig. 2.9.

With respect to steady-state effects on consumption, we have from (2.17),

css = f (kss)− (δ +n+ γ)kss,

so that,
∂css

∂ s
=

[
f ′(kss)− (δ +n+ γ)

] ∂kss

∂ s
,

which will be positive so long as,

f ′(kss) > δ +n+ γ,

because ∂kss
∂ s is always positive, as can be seen in (2.29). Initial consumption will

always experience a jump down if a higher savings rate is implemented, but steady-
state consumption can be either above or below the steady-state level of consump-
tion with the old savings rate, as we will show in a numerical exercise in Sect. 2.5.4.
In fact, an examination of (2.27) shows that steady-state consumption will increase
following a rise in savings rate if the initial steady-state had a stock of capital below
that associated to the Golden Rule, decreasing otherwise.

Effects following a fall in savings rate are just the opposite of those discussed
above.
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2.4.3.2 Structural Changes

We extend now the analysis of the previous paragraph, to consider the effects of
changes in the values of the savings rate, s, the rate of growth of population, n, the
rate of depreciation of physical capital, δ , the rate of technological growth, γ , and
the output elasticity of capital, α . These effects can be summarized,
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

kss css yss ωss rss Y/K Y/N Ẏ/Y
s + ? + + − − + 0
n − − − − + + − +
δ − − − − + + − 0
γ − − − − + + − +
α + + + + − − + 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where ωss,rss denote steady state values of the real wage and the real rate of in-
terest. The reader may be familiar with the standard result that, when a firm takes
factor prices as determined outside their control, profit maximization leads to use
the production factors to the point where their marginal products equal their respec-
tive price. Even though we do not enter at this point in any detailed assumption on
the structure of markets for production factors, we use the mentioned properties to
justify considering real wages and interest rates defined by,12

ω t = f (kt)− kt f ′(kt),
rt = f ′(kt),

with similar relationships holding in steady-state. The real rate of interest is in-
versely related to the steady-state stock of capital, while the real wage is positively
related to it:

∂ rss

∂η
=
∂ rss

∂kss

∂kss

∂η
= f ′′(kss)

∂kss

∂η

⇒ sign
(
∂ rss

∂η

)
= −sign

(
∂kss

∂η

)
, η = n,δ ,γ,s,α

∂ωss

∂η
=
∂ωss

∂kss

∂kss

∂η
= −kss f ′′(kss)

∂kss

∂η

⇒ sign
(
∂ωss

∂η

)
= sign

(
∂kss

∂η

)
, η = n,δ ,γ,s,α.

To analyze the effect of a parameter change on consumption and output we use
the relationships:

∂css

∂ξ
= (1− s) f ′(kss)

∂kss

∂ξ
⇒ sign

(
∂css

∂ξ

)
= sign

(
∂kss

∂ξ

)
;ξ = n,δ ,γ,α

∂css

∂ s
= (1− s) f ′(kss)

∂kss

∂ s
− f (kss) ,

∂yss

∂η
= f ′(kss)

∂kss

∂η
; η = n,δ ,γ,s,α ⇒ sign

(
∂yss

∂η

)
= sign

(
∂kss

∂η

)
.

12 This assumption is not a proper element of the Solow–Swan model, which does not leave any
role for a profit maximizing behavior on the part of producers of the single good in the economy.
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The average product of capital Yt/Kt = f (kt )
kt

satisfies: ∂ (Yt/Kt )
∂kt

= − f (kt )−kt f ′(kt )
k2

t
which is negative, since the numerator is equal to the real wage. Hence, average
productivity of capital moves contrary to the capital-labor ratio. On the other hand,
the average product of labor, Yt

Γt Nt
= f (kt), moves in the same direction as the capital-

labor ratio. Finally, the rate of growth of output (or income) can be written: Ẏt/Yt =
ẏt/yt + n + γ, its steady-state value being affected just by population growth and
the rate of technological progress, since the rate of growth of income per unit of
effective labor is zero in steady-state.

As an example, we have already seen that an increase in savings rate raises the
steady-state stock of capital and output. The effect on the steady-state level of con-
sumption depends on whether the initial stock of physical capital is above or below
the Golden Rule level. The real rate of interest and the average productivity of capi-
tal will be lower while the real wage and the marginal product of labor will increase.

A change in savings rate could be thought of as being an economic policy inter-
vention, specially since a higher rate will take the economy to a steady-state with
higher per capita income. However, as discussed in the section devoted to the Golden
Rule, it is far from clear that the sacrifices needed to place the economy on the path
converging to the higher income steady-state are desirable in terms of time aggre-
gate welfare. There is no much more room for policy analysis in the Solow–Swan
setup, since it is hard to believe that the depreciation rate of physical capital or the
rate of growth of population could be controlled by the government13.

2.4.4 Dynamic Inefficiency

If we consider an economy at a steady-state situation under a given savings rate, and
we want that economy to converge to the Golden Rule, all we need to do is to set
the savings rate equal to sGR, since the global stability of the Solow–Swan model
guarantees that any economy will converge to the steady-state associated to the pre-
vailing savings rate. Following such change in savings rate, the economy would start
a transition, along which the level of consumption will be changing every period,
eventually converging to the level achieved at the Golden Rule. However, single-
period consumption along the transition might be not only lower than the Golden
Rule level, but also lower than the level of consumption at the initial steady-state.
This is important, since it is then unclear that consumers’ would prefer entering into
the transition trajectory taking the economy to the Golden Rule, to staying at the
initial steady-state.14

As we pointed out at Sect. 2.3.8, factors influencing that comparison are: the
magnitude of the utility loss along the transition, the difference in the utility levels

13 Even though in some European countries, tax incentives have recently been introduced in an
attempt to increase the birthrate.
14 The reader should not have much problem thinking about an economy which starts outside
steady-state and changes its savings rate to sGR.
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Fig. 2.10 Dynamically inefficient steady-state

at the Golden Rule and at the initial steady-state, the number of periods needed to
reach the Golden Rule, the time discount factor applied to future utility. Let us now
see how all these effects aggregate. Steady-states to the right of kGR

ss , between kGR
ss

and k̂, are dynamically inefficient, since starting from either one of them, a decrease
in the savings rate starts a trajectory along which, at any time period, per-capita
consumption is higher than at the initial state. Starting from either one of these
steady-states, consumers would be happy to change the prevailing savings rate to
sGR forever.

In Fig. 2.11, suppose we start from a savings rate of s and a steady-state stock
of capital equal to kss(s). If we reduce the savings rate to sGR, then per capita con-
sumption will immediately jump from css(s) to ct0 , which is higher than cGR

ss . This
dynamics implies a gradual decrease in the stock of capital, from kss(s) towards
kGR

ss , which will imply, in turn, that per capita consumption will gradually decrease
from ct0 towards cGR

ss . But cGR
ss is still higher than css(s), since the Golden Rule is the

steady-state with the highest consumption. Therefore, the decrease in the savings
rate will have produced a path along which, at each point in time, per capita con-
sumption is higher than the initial consumption level, before the change in savings
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rate. This is true for any steady state to the right of the Golden Rule, which is why
they are said to be dynamically inefficient.

The opposite is the case for steady-states to the left of kGR
ss . Starting from kss(s) in

Fig. 2.10, a permanent increase in savings rate from s to sGR will produce an imme-
diate fall in consumption from css(s) to ct0 . This is lower than initial consumption,
css(s), and also lower than the level of consumption at the Golden Rule. The new
steady-state is given by kGR

ss , and the stability of the model implies that the economy
starts a trajectory with the stock of capital gradually increasing from kss(s) to kGR

ss .
The graph shows how along that trajectory, given the savings rate of sGR, the level of
consumption will gradually increase towards cGR

ss . We know that cGR
ss will be higher

than css(s), since that is the characteristic defining the Golden Rule among all fea-
sible steady-states. However, along the transition, consumption would have spent
some periods below the level of the initial steady state. Hence, it is unclear that
when we compute the associated period-by-period utility and aggregate over time
its discounted value, we will reach a higher or a lower level than the one that would
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be obtained at the initial steady-state. We cannot say whether these steady-states
are dynamically inefficient or not. An informal argument suggests that it is those
steady-states with a low rate of savings which may be dynamically inefficient, since
the associated level of consumption might then be very low. As a consequence, even
though an increase in savings rate will require consumption sacrifices in the short-
run, the opportunity to accumulate physical capital and reach higher levels of output
and consumption may compensate for the short-run sacrifices. The elements men-
tioned in Sect. 2.3.8 will help determine which is the range of values for the saving
rate for which a permanent increase may be welfare improving. A numerical exam-
ination of this issue is performed in a section below for the discrete time version of
the Solow–Swan model, that we introduce next.

2.5 The Deterministic, Discrete-Time Solow Swan Model

2.5.1 The Exact Solution

Theoretical models are built not only to analyze a variety of positive and norma-
tive issues, but also to be confronted with actual data, in an attempt to validate their
implications. The continuous-time version of the Solow–Swan model can be used
to produce time series for physical capital, output, consumption and investment by
sampling at discrete points in time, from the continuous time processes obtained
from (2.30) and the implied expressions for the remaining variables. Discrete sam-
pling amounts to giving discrete values: t = 1,2,3, ... to the time index in those
expressions. This apparently innocuous procedure is subject, however, to potential
pitfalls, that will be illustrated numerically in the next chapter.

An alternative method consists on analyzing directly the discrete version of the
Solow–Swan model. To do so, we could think of directly translating the law of
motion into discrete time by substituting a time difference kt+1 − kt for the time
derivative k̇t , like in:

kt+1 − kt = s f (kt)− (n+δ + γ)kt . (2.34)

Unfortunately, we are about to see that this procedure is also subject to some
flaws. If we start from the discrete time analytical representation of all the assump-
tions characterizing the model, we will end up with a fully justified equation some-
what different from (2.34).

Maintaining the same assumptions on savings, capital formation, population
growth and full employment as in the continuous time version of the model, let
us now consider the possibility that there is exogenous technological growth, in the
form of a variable productivity factor Γt , that grows at a constant rate γ :

Γt = (1+ γ)Γt−1 ,
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from an initial Γ0 level. The aggregate production function is of the form Yt =
F(Kt ,ΓtNt), with the same assumptions on first and second order derivatives as
in the continuous time model. Inada conditions are also assumed to hold. Effective
labor is again defined as ΓtNt .

Because of the aggregate constant returns to scale assumption we again have,

Yt = F(Kt ,ΓtNt) = ΓtNtF
(

Kt

ΓtNt
,1
)

= ΓtNt f (kt),

where kt = Kt
Γt Nt

is the stock of capital per unit of effective labor, and f (kt) =
F( Kt

Γt Nt
,1). Output per unit of effective labor is: yt = Yt

Γt Nt
= f (kt).With the

Cobb–Douglas specification, F(Kt ,ΓtNt) = AKα
t (ΓtNt)1−α , 0 < α < 1, we have

the same expressions as in continuous time: Yt = AKα
t (ΓtNt)1−α = AΓtNtkαt =

ΓtNt f (kt), with f (kt) = Akαt and output per unit of effective labor: yt = Yt
Γt Nt

= Akαt .
In the discrete time version of the model investment is defined by: It = Kt+1 −

(1−δ )Kt , so the National Income identity becomes,

Ct + It = Ct +[Kt+1 − (1−δ )Kt ] = F(Kt ,ΓtNt) = Yt ⇒

⇒ Ct

ΓtNt
+

[
Kt+1

Γt+1Nt+1

Γt+1Nt+1

ΓtNt
− (1−δ )

Kt

ΓtNt

]
=

Yt

ΓtNt
,

which, maintaining the assumption of constant population growth,15 Nt =
(1+n)t N0, and constant technological growth, Γt = (1+ γ)t A0, leads to the law of
motion in per capita variables,

ct +[(1+n)(1+ γ)kt+1 − (1−δ )kt ] = f (kt) . (2.35)

If we again consider a closed economy in which no external sector or government
could finance private investment, we will have equality between savings and invest-
ment each period St = It , and if we add the crucial assumption of the Solow–Swan
model that the savings rate is constant, we have, St = sYt ,

Ct + sYt = Yt ⇒Ct = (1− s)Yt ,

with a similar relationship in per capita terms, ct = (1− s)yt = (1− s) f (kt), which
allows us to write (2.35) as,

kt+1 =
1

(1+n)(1+ γ)
s f (kt)+

1−δ
(1+n)(1+ γ)

kt . (2.36)

Now we can see the point we raised before. This equation can be written,

kt+1 − kt = s f (kt)− [n+(1+n)γ]kt+1 −δkt , (2.37)

15 Notice the different analytical representation for growth rates, relative to the exponential func-
tions used in the continuous-time version of the model.
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which shows some differences with respect to (2.34). The latter was just a rough
approximation to the continuous time model, expression (2.37) being the correct
discrete-time version of the model.

This difference equation allows us to obtain a numerical solution to the model
given an initial condition on the single state variable in the economy, the stock of
capital, k0, a specific functional form for the available technology, f (kt), and a given
parameterization. Indeed, if we assume, for instance, f (kt) = Akαt , then we could
substitute the numerical value defining the initial condition on k0 for kt in (2.37)
to obtain the level of k1. We would then use k1 as kt in the equation, to obtain the
level of k2, and so on. The time series for output would be obtained from yt =
f (kt) = Akαt , investment, which is equal to savings in this closed economy without
government would be given by it = st = syt , while the time series for consumption
would be obtained by: ct = (1 − s)yt = yt − it . This is the exact solution to the
deterministic, discrete-time version of the Solow–Swan model.

An argument similar to the one we made in the continuous time case, shows
that zero is the only possible steady-state rate of growth of the stock of capital per
worker. The steady state of this economy is found by making kt+1 = kt = kss,

kss =
1

(1+n)(1+ γ)
s f (kss)+

1−δ
(1+n)(1+ γ)

kss ⇒ (2.38)

⇒ [n+δ +(1+n)γ]kss = s f (kss) .

Once again, we have one such expression for each possible constant value of
the savings rate, each one leading to a different steady-state. For instance, with a
Cobb–Douglas technology, yt = Akαt , we would get,

kss =
(

sA
n+δ +(1+n)γ

) 1
1−α

, (2.39)

slightly different from the expression we obtained in the continuous time formu-
lation of the model. In general, the product nγ will be small, so both expressions
will lead to a similar steady-state. Since the power is positive, (2.39) shows that the
steady-state level of the stock of capital is higher for higher savings rates or higher
technology levels, as well as for lower depreciation rates or lower rates of population
growth, as in the continuous time case.

2.5.2 Approximate Solutions to the Discrete-Time Model

As the continuous-time model, the discrete-time version of the Solow–Swan econ-
omy can be solved exactly through the use of (2.36), as we will show in a sec-
tion below. That is an exception, since nonlinearities in growth models will usually
preclude the existence of an exact solution. To familiarize the reader with that prac-
tice, we proceed in this section to obtain the solution to the linear and the quadratic
approximations to the model.
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Considering the nonlinear difference equation in (2.36) as a function kt+1 =
Ψ(kt ;θ) and using Taylor’s expansion and (2.38), the linear approximation to that
equation around steady-state is,

kt+1 − kss = Ψ(kss)+
(
∂Ψ(kt ;θ)

∂kt

)

ss
(kt − kss)

⇒ kt+1 �
(

1
(1+n)(1+ γ)

s f (kss)+
1−δ

(1+n)(1+ γ)
kss

)

+
(

1
(1+n)(1+ γ)

s f ′(kss)+
1−δ

(1+n)(1+ γ)

)
(kt − kss)

= kss +
s f ′(kss)+(1−δ )
(1+n)(1+ γ)

(kt − kss) ,

which, in the special case of a Cobb-Douglas technology, f (kt) = Akαt , 0 < α < 1,
becomes,

kt+1 � kss +
sαA(kss)α−1 +(1−δ )

(1+n)(1+ γ)
(kt − kss) = kss +D(kt − kss) , (2.40)

with

D =
sαA(kss)α−1 +(1−δ )

(1+n)(1+ γ)

= α
n+δ +(1+n)γ
(1+n)(1+ γ)

+
1−δ

(1+n)(1+ γ)
, (2.41)

where we have used (2.39) to obtain the last expression and, finally, the linear
approximation,

kt+1 − kss ∼= D(kt − kss)

=
[
(1+αn)− (1−α)δ

(1+n)(1+ γ)
+α

γ
1+ γ

]
(kt − kss) . (2.42)

Iterating from an initial condition k0, we get,

kt = kss +Dt (k0 − kss) , (2.43)

which will converge to steady state so long as | D |< 1, i.e., if:

(1−α)(n+δ +(1+n)γ) > 0,

which is clearly the case, since 0 < α < 1. Therefore, under this condition, the
linearized system is stable. As time passes, the capital stock converges to its
steady-state level, kss, with independence of the initial stock of capital, as we have
already shown to happen in the continuous time version of the model.
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For a better approximation, we could also use a second order Taylor’s expansion
to (2.36), by adding to the linear approximation a second order term

1
2

(
∂ 2Ψ(kt ;θ)

∂ (kt)
2

)

ss

(kt − kss)
2 =

1
2

1
(1+n)(1+ γ)

s f ′′(kss)(kt − kss)
2 ,

which, in the case of a Cobb–Douglas technology, leads to the approximation,

kt+1 � kss +
[
(1+αn)− (1−α)δ

(1+n)(1+ γ)
+α

γ
1+ γ

]
(kt − kss)

+
1
2

α (α−1)
(1+n)(1+ γ)

sAkα−2
ss (kt − kss)

2 . (2.44)

In the numerical exercise in the next section, this approximation is compared to
the linear approximation above.

2.5.3 Numerical Exercise – Solving the Deterministic
Solow–Swan Model

In the Discrete spreadsheet in the Solow deterministic.xls file, time series are ob-
tained for a deterministic, discrete-time version of the Solow–Swan economy from
an initial capital stock of k0 = 20. Aggregate technology is supposed to be of the
Cobb–Douglas type, with a capital share of α = 0.36, and a technological constant
A = 5.0. Depreciation of physical capital is δ = 7.5%, savings are 36.0% of out-
put each period, and we assume zero population growth, n = 0. Since the savings
rate is equal to the output elasticity of capital, the steady-state in this economy will
be the Golden Rule.16 With these parameter values, steady state levels turn out to
be: kss = 117.94,yss = 27.85,css = 17.82,sss = iss = 10.02. Therefore, the economy
starts to the left of the steady-state, with a stock of capital well below the steady-state
level. The constant savings rate is relatively high, and capital accumulates quickly
because the level of savings initially exceeds from total depreciation expenditures.17

After 16 periods, the economy has covered half the initial distance to steady-state,
with a stock of capital above 70 units. The Discrete spreadsheet presents time se-
ries for 260 periods, and the discrete time model is solved using the exact solution
(2.36), as well as using the solutions to the linear and quadratic approximations
(2.43), (2.44) to the discrete-time model. The resulting time series for the stock of
capital under the different approaches are reported in the first panel. The time se-
ries for output, savings and consumption that are obtained under the exact solution
are shown in panel 2, while panels 3 and 4 display the similar time series obtained

16 This is not necessary for the exercise, as the reader may see by changing the value of either the
savings rate or the output share of capital.
17 Which are obtained by adding the depreciation loss to the need to provide new workers with the
same stock of capital than the older ones.
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under the linear and quadratic approximations to the model. Notice that, according
to the model, output is obtained each period from the stock of capital accumulated
at the end of the previous period. As in subsequent exercises, this is organized in
the spreadsheet by making output to be a function of the stock of capital in the pre-
vious row. That is, in the row corresponding to time t we have kt+1 and variables
like yt ,ct . [The same exercise can be reproduced by Matlab file: Solow stochastic.m
by setting the variance parameter sigmae to zero] Consumers’ preferences do not
play any role in this exercise. Nevertheless, to familiarize the reader with the type of
welfare evaluation that will often be performed in the next chapters, consumers are

supposed to have a constant relative risk aversion utility function, U(ct) = c1−σ
t −1
1−σ ,

with risk aversion coefficient of σ =3.0, and a time discount factor β = .95, and we
compute single-period as well as time-aggregate, discounted utility.

We also present percent errors from the linear and the quadratic approximation,
both for the stock of capital and for consumption. The approximation error for the
capital stock starts around 17% in the initial periods, when the economy is far away
from steady-state, increasing during the first periods up to 40% of the actual value,
and quickly going to zero over time. These clearly excessive errors steam from the
fact that the initial condition is far away from the steady-state, the point around
which we have done the approximations to the law of motion of the economy. The
approximation error for consumption starts at around 6%, and increases in the initial
phase of the transition to steady-state, decreasing to zero as time passes. As can be
seen in the reported time series and the accompanying graph (Comparing solutions
spreadsheet), approximation errors for the linear and the quadratic approximations
are very similar, so that the contribution of the quadratic term to the linear approxi-
mation is minor.

For the sake of comparison, we also compute in panel 1 the time series that would
be obtained by observing the continuous process at regular intervals of time. We
report time series obtained from the exact solution to the continuous-time model
(2.30), as well as those obtained form the solution to the linear approximation to
that model (2.32) . Unfortunately, as we already mentioned, and it will be discussed
in the next chapter, this latter approach of extracting discrete numerical observa-
tions from a continuous process is potentially subject to significant pitfalls. In this
case, however, the exact continuous and discrete solutions are very similar to each
other, while the continuous linear approximation is very close to the discrete linear
approximation.

The Increasing time path and Decreasing time path spreadsheets present two
transition economies. Both share the same parameter values: α = 0.36, A = 3.0.
δ = 7.5%, s = 0.30, n = 0.01, γ = .01. The implied steady-state is: kss = 33.504,
yss = 10.621, css = 7.435, sss = iss = 3.186. Since the savings rate is lower than the
output elasticity of capital, this steady-state falls below the Golden Rule, which is in
this case: kGR = 44.547. In the first economy, initial capital is k0 = 30.0, converg-
ing to steady-state from below, as it was the case with the economy in the Discrete
spreadsheet. The second economy starts from k0 = 45.0, converging to steady-state
from above. In these two exercises, we present in Panel 1 the time series for the stock
of capital, investment, consumption, output and output growth, as well as single
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period utility and its discounted value using the exact solution. The last column
shows the time series for the stock of capital that would be obtained observing the
continuous solution at discrete intervals of time. In Panel 2 we show the full so-
lution obtained from the linear approximation (2.42) to the discrete-time problem,
while Panel 3 displays the solution obtained from the discrete quadratic approxima-
tion (2.44). Approximation errors are much smaller in these two economies, as a
consequence of their relative proximity to steady-state.

2.5.4 Numerical Exercise – A Permanent Change
in the Savings Rate

The discrete-time version of the Solow–Swan economy is numerically solved in the
Change savings.xls file to simulate the effects of a permanent increase in the con-
stant savings rate. The analytical details of this structural change were described in
Sect. 2.4.3 [Matlab file: change savings.m performs the same exercise]. Two dif-
ferent parameter structures are analyzed, and in each of the two implied model
economies we consider a permanent increase in the savings rate. The exercise is
performed twice, to analyze the effects of changes of different size in the savings
rate. Effects from a permanent fall could be discussed similarly.

Consumption always falls immediately after the jump in savings rate. In one of
the two economies, long-run consumption ends up above its steady-state level before
the rise in savings rate, while in the other economy, steady-state consumption after
the increase in savings rate is below the steady-state level of consumption for the ini-
tial, lower savings rate. As we saw in Sect. 2.4.3, the long-run effect on steady-state
consumption of a permanent change in savings rate depends on whether the initial
steady-state is above or below the Golden Rule. Steady-state consumption may end
up being higher under a higher savings rate because that may allow for a more in-
tense accumulation of capital stock, leading to higher output, which may leave more
resources available for consumption, even after providing for the reposition of the
stock of capital lost to depreciation.

Assuming a Cobb–Douglas technology, parameter values for the first economy
are δ = 0.075,n = 0.01,A = 3.0,α = 0.36,γ = 0.0. The population starts at t = 0
from an initial value of 100. In the C− increases(large) spreadsheet, the initial sav-
ings rate is s = 0.20 , which is in place until period t = 11, when it increases to
s = 0.35. The steady state stock of capital under the initial savings rate is kss = 21.19,
which allows for steady-state output: yss = Akαss = 9.006. A percentage of 20% of
this, 1.801 units of commodity, are devoted to investment, the remaining 7.205 units
of commodity being consumed. The 1.801 units of commodity being invested al-
low for recovering the depreciation loss of 7.5% of kss, in addition to providing
the 1% new consumers/workers being born every period, with the 21.19 units of
steady state capital. In other words, 1.801 is precisely equal to 8.5% of steady-state
capital (n+δ + γ = 0.085), as we know it should be the case. Under the new sav-
ings rate of s = 0.35, the steady-state level of physical capital is 50.80 units, with
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output: yss = Akαss = 12.338. Investment is 35% of output, or 4.318 units of commod-
ity, with consumption equal to 8.020 units of commodity every period in the new
steady-state. So, the new, higher savings rate, allows for such an increase in the stock
of capital that resources left for consumption after the reposition of depreciated cap-
ital are higher than those that could be consumed under the old, lower savings rate
of 20%. We assume the representative consumer in the economy has a constant,

relative risk aversion utility function on current consumption: U(ct) = c1−σ
t −1
1−σ , with

σ = 3.0, and a discount factor on future utility of β = 0.95.
We solve the economy in three ways: first, we provide in Panel 1 the exact so-

lution, obtained from the difference equation (2.36) .The second method uses the
linear approximation (2.43) to steady-state to obtain the stock of capital as a func-
tion of the distance between the previous period stock of capital and the steady-state
level [Panel 2]. The third solution approach uses the second order approximation
around steady-state (2.44) [Panel 3].

The savings rate is supposed to change at t = 11. It is central to the exercise to
examine how the stock of physical capital is computed at that period. At that point
in time, the economy is no longer in steady state. The new value of the savings
rate must be used in equations (2.36) , (2.43), (2.44) , when computing the exact
solution, or the solutions to the linear and quadratic approximations to the model,
respectively. Additionally, in (2.43) and (2.44) , the steady-state level of capital un-
der the new, higher savings rate must replace the steady-state level obtained under
the old savings rate. The value of the D-constant in the linear approximation does
not need to be updated in this case, since it is not affected by changes in savings
rate. Changes in the rate of depreciation, the output elasticity of capital or popula-
tion growth would change the value of D.

Graphs under the Comparing solutions and Approximation error spreadsheets
shows that numerical differences among solution methods can be relatively large if
the change in savings rate is sizeable. In particular, the quadratic term does not add
anything significant to the linear approximation, both being very similar. That is the
case in this first simulation, in which the savings rate jumps from 20% to 35%, and
the percent approximation error approaches 4% for a few periods after the change,
to then gradually decrease towards zero.

In all cases, output is obtained using the analytical representation for the Cobb–
Douglas production function, savings is obtained as a proportion of income, in-
vestment is equal to savings, and consumption is the proportion of output which is
not saved. Growth in per-capita output is also computed under the three solution
approaches, and it is displayed in the Output growth spreadsheet for the first exper-
iment. Numerical values for single period utility are also reported. These are also
discounted and aggregated over time. The resulting level of welfare is 9.804 under
the linear approximation and to 9.802 under the exact solution.

Graphs to the right of the simulated data display the time behavior of the main
variables after the savings rate increases from 20% to 35%. Growth of output per
unit of efficient labor jumps from 0% to 2.2% the period when savings rate increases,
smoothly decreasing to zero afterwards.
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The C− increases (small) spreadsheet presents an experiment in the same eco-
nomic structure as above, but with a smaller increase in savings rate, which moves
from 30% to 35% at t = 11. For the sake of comparison, we have maintained the
same ranges in the graphs displaying the responses of the main variables in the
spreadsheets that contain the two changes considered in savings rate. It is quite evi-
dent that the effects of the 5-point increase in savings considered in the second case
are rather smaller than those of the 10-point increase considered in the first analysis.

The C−decreases (small) spreadsheet presents a case in which steady-state con-
sumption decreases following an increase in the savings rate from 30% to 35%. Re-
maining parameters are δ = 2.5%,n = 1.0%,A = 5.0,α = 0.25. The steady state
stock of capital under the initial savings rate is kss = 149.98, which allows for
steady-state output: yss = Akαss = 17.50. A percentage of 30% of these, 5.249 units
of commodity, are devoted to investment, the remaining 12.248 units of commodity
being consumed. The resources being saved allow for recovering the depreciation
loss of 2.5% of kss, in addition to providing the 1% new consumers/workers be-
ing born every period with the 149.98 units of steady state capital. In other words,
5.249 is equal to 3.5% of steady-state capital (n+δ + γ = 0.035). Under the new
savings rate of s = 35%, the steady-state level of physical capital is 184.20 units,
with output: yss = Akαss = 18.42. Investment is 35% of output, or 6.447 units of
commodity, with consumption equal to 11.973 units of commodity every period in
the new steady-state. So, in this case, the higher savings rate leads to an increase
in capital accumulation, but the implied growth in per capita income is not enough
to allow for higher steady-state consumption once capital depreciation is accounted
for. We maintain the same preferences but consider a discount factor β = 0.90.

The C−decreases (large) spreadsheet presents the same exercise above, except
for a somewhat increase in savings rate, from s = 30% to s = 40%.

2.5.5 Numerical Exercise – Dynamic Inefficiency

The Dynamic inefficiency.xls file [Matlab file: Dynamic inefficiency.m performs the
same exercise] presents the transition trajectories for a number of economies differ-
ing in the level of their savings rate. Growth in technology is not considered in this
exercise, so γ = 0. Each economy is supposed to be initially at steady-state. At some
point, the savings rate experiences a permanent change, jumping to the level corre-
sponding to the Golden Rule, where it stays forever. As we already know, that level
is equal to the output elasticity of physical capital, which is taken to be 0.36 in this
exercise. After the change in savings rate, the stock of capital quickly approximates
the level corresponding to the Golden Rule. If the savings rate was initially above
0.36, the stock of capital will exponentially decrease after the fall in savings rate,
the opposite being the case if the savings rate increases from an initial steady value
below 0.36.

After presenting the parameter values in the Simulations spreadsheet, we provide
the different levels of the savings rate considered, together with their associated
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steady-state levels of physical capital and consumption, the single period utility in
the steady-state prior to the change in savings rate and the time aggregate utility
that would obtain by staying at that steady-state, i.e., the time aggregate level of
utility with no change in savings rate. Steady-state consumption is zero for s = .0
or s = 1.0, so the level of utility cannot be computed in this case for some utility
functions.

Below that, we present time series over 250 periods along the convergence trajec-
tories for the stock of capital. To compute them, we have used the law of motion for
capital after a permanent switch to the Golden Rule of savings, starting from a stock
of capital equal to the steady-state level before the change in savings rate. The panel
below the trajectories for the stock of capital presents the consumption trajectories
in their convergence to the Golden Rule steady-state: ct = (1−sGR)yt = (1−α)Akαt .
Below them, we show the discounted levels of utility along the transition, under con-

stant relative risk aversion (CRRA) preferences, U(ct) = c1−σ
t −1
1−σ ,σ > 0 . A value

σ = 1.00 is chosen as default to approximate logarithmic differences. Finally, we
aggregate over time the discounted utility series, to compare those sums with the
utility consumers would have by staying at the initial steady-states, with no change
in savings rate. As we can see in Fig. 2.12, the former is higher for all economies
that start with a savings rate above the Golden Rule level. For these economies,
changing from the old savings rate to the Golden Rule rate of savings would be
preferable. The same would be the case for economies starting with a low savings
rate, between .0 and .10 in our numerical exercise. All these are the dynamically
inefficient steady-states. Economies with a constant savings rate between .10 and
.36 are not dynamically inefficient.

We should bear in mind that what we have shown in this section is that there
are steady-states which are dominated, in terms of welfare, by trajectories that start
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when the savings rate experiences a once-and-for-all change from its initial level to
the level associated with the Golden Rule steady-state. We have not shown in any
sense that such trajectories leading to the Golden Rule are optimal in any sense.
That is, converging to the Golden Rule is not necessarily the best an economy can
do, although we have shown that it is sometimes preferable to staying at the current
steady-state. To conclude on optimality, we need an specific analysis which is the
object of the next chapter. There, we will characterize the optimal trajectory from
any given initial situation. We will also show that, possibly against a first impression,
converging to the Golden Rule is a suboptimal strategy, in the sense that it involves
too much capital accumulation early on. The optimal trajectory takes the economy
into a trajectory converging to a steady-state with a level of capital below that of the
Golden Rule.

2.6 The Stochastic, Discrete Time Version
of the Solow–Swan Model

To end the presentation of the constant savings rate growth model, we consider a
stochastic version of the Solow–Swan economy that incorporates a random produc-
tivity factor. This is only one of the possibilities to make the model stochastic. We
consider a technology, f (kt) = θ tAkαt ,0 < α < 1, where θ t denotes a stochastic
process with a known probability distribution. Following the same argument as in
the deterministic version of the economy, we find the law of motion,

kt+1 =
1

(1+n)(1+ γ)
sθ tAkαt +

1−δ
(1+n)(1+ γ)

kt . (2.45)

We assume E (θ t) = 1 and Var(θ t) = σ2, although a more general case, with
time-varying moments could also be considered. The stochastic properties of the
θ t-process will determine those of the main variables in the economy: output, con-
sumption and investment. In particular, if θ t displays cycles, as it would be the case
if it obeys a second order autoregression with complex roots in its characteristic
equation, so will output and consumption.

The same analysis we made of the deterministic, discrete-time version of the
model applies to this stochastic case. Hence, we just need to combine the same
law of motion for capital (2.36) with the new, stochastic functional form for the
technology.

The steady-state in a stochastic economy is obtained assuming that each sto-
chastic processes takes its mean value every single period. In our case, the single
stochastic productivity shock would take its mean value of 1, producing the same
condition (2.39) characterizing steady state as in the deterministic case. Hence, the
steady state levels of the stock of capital, output and consumption in units of effi-
cient labor will be the same as in the deterministic case.
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Then, the law of motion of this stochastic economy (2.45) can be approximated
around steady state, to obtain,

kt+1 = kss +
(

1
(1+n)(1+ γ)

sθ ssAαkα−1
ss +

1−δ
(1+n)(1+ γ)

)
(kt − kss)

+
1

(1+n)(1+ γ)
sθ ssAkαss (θ t −θ ss)

= kss +
(

n+δ + γ
(1+n)(1+ γ)

α+
1−δ

(1+n)(1+ γ)

)
(kt − kss)

+
n+δ + γ

(1+n)(1+ γ)
kss (θ t −1) . (2.46)

2.6.1 Numerical Exercise – Solving the Stochastic
Solow–Swan Model

Excel file Solow stochastic.xls presents a numerical solution for a stochastic ver-
sion of the Solow–Swan model [Matlab file Solow stochastic.m performs the same
numerical exercise]. We assume that randomness comes in the economy through a
productivity shock with a first-order autoregressive structure,

lnθ t = ρ lnθ t−1 + ε t , ε t ∼ N(0,σ2
ε), 0 < ρ < 1, θ 0 = 1,

which is consistent with θ ss = 1. ε t is the innovation in the logged-productivity
shock. We consider in this simulation: ρ = .90,σε = .10, which imply E (lnθ t) =
0,Var(lnθ t) = (0.229)2. Parameter values are: s = 0.36,δ = 0.075,n = 0.0,A =
5.0,α = 0.36, so the steady-state is the Golden Rule. Technological growth is not
considered.18 This is not necessary for the exercise, and can be changed without any
problem. We assume the representative consumer in the economy has a constant,

relative risk aversion utility function on current consumption: U(ct) = c1−σ
t −1
1−σ , with

σ = 3.0, and a discount factor on future utility of β = 0.90. Deterministic steady-
state levels are computed following the expressions in the text. The steady-state
stock of capital is 143.41 units, which allows for steady-state production oscillating
around 29.88. Two-thirds of this amount is devoted to consumption, as it is approx-
imately the case in developed economies, while the remaining one-third is devoted
to investment. The solution starts with a time series realization for the innovation
ε t from a Normal distribution with zero mean and σε = .10, obtained with the ran-
dom number generator included in the Tools/Data Analysis tab of EXCEL. Then
the implied time series for the logged productivity shock lnθ t is obtained using the
autoregressive structure, from an initial condition lnθ 0 = 0.

18 It would be simple to incorporate it into the simulation, but it would not change the qualitative
aspects of the discussion.
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The time series for the productivity shock θ t is then taken to either (2.46) or
(2.45), to obtain either an approximate solution or an exact solution to the model for
the stock of physical capital starting from an initial condition k0. We take as initial
condition the steady-state stock of capital, so the generated numerical solution will
display fluctuations around steady-state for all variables: stock of physical capital,
output, investment and consumption. The production technology is then used to
obtain a time series for output, while consumption and savings/investment emerge
from the constant-savings rate assumption. The fact that we can generate all the time
observations for θ t without need of computing a single value for kt reflects the fact
that the productivity shock is exogenous in this economy.

It is interesting to bear in mind that the structure of the productivity shock will
also determine the volatilities of these variables, as well as the correlations among
them. Ratios to output, or deviations from an estimated cyclical component can
be computed on this simulated data the same way it is usually done in time series
analysis of actual data. Sometimes, standard deviations and correlations using these
transformations are used to see how a theoretical model matches the data. Main
statistics are shown below the simulated time series. The linear approximation is
seen to produce time series with statistical properties very similar to those obtained
under the exact solution. The relative volatility of consumption to output is similar to
the one usually observed in actual data for most economies, which is not the case for
the investment volatility, which is well higher than that of output in actual time series
data. We also present correlation coefficients between interest rates, consumption
and investment, with output.

Unfortunately, this model, where no agent takes any optimal decision, is so sim-
ple that the linear correlation coefficients between either consumption or investment
and output are 1.0, as a consequence of the fact that the two variables are an exact
proportion of output each period, with independence of the fluctuations experienced
by the latter variable. For the correlation coefficient to depart from one, we would
need different sources of randomness in the two variables considered, which is not
the case in this model.

Regression models between some variables, like consumption and output, or in-
vestment and output, could also be estimated using the set of time series provided
by a numerical solution, the same way it is done with actual data. However, the
simplicity of the random element in this model economy would also lead to trivial
regressions. An exception is a relationship attempting to relate investment to the real
rate of interest. This would be defined by the marginal product of capital, as it has
been calculated in the spreadsheet. The nonlinear functions of capital defining these
two variables allow for a non-trivial regression, Investmentt = α+β . Real interest
ratet +ut , which is shown below the table of correlation coefficients.

The important point, however, is that although the EXCEL file presents a single
time series realization for the endogenous variables, we could conceivably com-
pute as many of these realizations as we wished. The reason is that dealing with a
stochastic economy, we could repeat the process starting from a new, different real-
ization for the productivity time series, by using again the random number generator
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tool of EXCEL. In fact, the Stochastic(2),(3) and (4) spreadsheets are identical to
the Stochastic spreadsheet except by the realization of the productivity shock.19 By
sampling repeatedly from the stochastic process for productivity, we could get a
large number of realizations for each statistic of interest, like the relative volatil-
ity of consumption to output. A simple example would be the four values for the
estimated slope of the investment regression in the different spreadsheets. Com-
puting the numerical value of this statistic for each of 10,000 realizations, say, we
could approximate arbitrarily well its probability distribution through the obtained
frequency distribution. This should not be surprising. Everything in the model is
stochastic, even each sample statistic. The model can be seen as a mapping from
the probability structure for the innovation in the productivity shock to the probabil-
ity distribution of any model characteristic. With actual time series data we have a
single sample available, so we can compute a single numerical value for any given
statistic, and the interesting point becomes how to compare the single value ob-
tained from actual time series data to the probability distribution estimated from the
theoretical model.

2.7 Exercises

Exercise 1. In the (2.29) expression, fix numerical values for three of the parameters
A,n,s,α,δ , and discuss how the steady-state value of kss changes with changes in
the remaining parameter. Draw a graph summarizing each of these analyses.

Exercise 2. In the deterministic, discrete-time version of the Solow-Swan econ-
omy, assume a Cobb-Douglas technology, with parameter values δ = 0.10,
n = 0.02, A = 1,α = 0.33,s = 0.25, and compute the steady state value of capital.
Take an initial value for capital k0 < kss and compute the converging path towards
steady state. Repeat the exercise for an initial condition k0 > kss. Repeat the exer-
cise changing the value of one parameter, and draw the trajectories that obtain for
different values of that parameter. Numerically obtain the rate of convergence to
steady state in each case.

Exercise 3. For a given parameterization, including an initial value of the stock of
capital, k0, and a Cobb-Douglas technology, compare the time series for kt obtained
from propagating the linear approximation (2.40) as well as the exact, nonlinear
mechanism.

Exercise 4. Show that the second order linear approximation to the law of motion
of the discrete time, deterministic version of the Solow–Swan model around steady
state is,

19 The reader can copy the spreadsheet and use the random number generator to write a different
realization on top of the old one. All the calculations in the spreadsheet will change, providing a
different set of time series for all the variables in the economy. We need to be careful about the fact
that EXCEL does not automatically update the regression results.
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kt+1 = kss +
(

1
1+n

s f ′(kss)+
1−δ
1+n

)
(kt − kss)+

1
1+n

s f ′′(kss)(kt − kss)
2

Solve the model assuming a Cobb-Douglas technology under a given parame-
terization using this approximation, and compare the implied time series with those
obtained from the first order approximation. Would the second order approximation
still be the same for the deterministic and stochastic versions of the model?



Chapter 3
Optimal Growth. Continuous Time Analysis

3.1 The Continuous-Time Version of the Cass–Koopmans Model

Maintaining the same structure of the neoclassical growth model of Solow and Swan
we have reviewed in the previous chapter, Cass [18] and Koopmans [52] charac-
terized the optimal rate of capital accumulation in order to maximize some social
welfare criterion. That amounts to specifying the optimal distribution of output be-
tween consumption and savings each period, taking into account the fact that sav-
ings decisions provide resources for gross investment, thereby conditioning future
production possibilities and growth. We are still in a one-good economy, where the
single commodity is produced and can either be consumed or used as an input for
future production. The stock of the commodity being used in production is physical
capital, which is not reversible. It is subject to some constant rate of depreciation,
δ , but it cannot be converted back into consumption.

Other than for this optimality consideration, we maintain all other structural as-
sumptions of the Solow–Swan model, including the one on decreasing returns on
the productive factors. As shown in the previous chapter, that precludes the pos-
sibility of positive steady-state growth, since we assume at this point that there is
no technological progress in the economy. The main difference with the Solow and
Swan model is that we now consider that the consumption/savings decision, which
determines the physical capital accumulation process and hence, the time evolu-
tion of per capita income, is endogenous. The savings rate is therefore no longer
constant.

The simplest interpretation of the model would be as an economy populated by
identical agents living forever. They all own the same units of physical capital, have
access to the same production technology and have the same preferences defined
on the stream of current and future consumption. There is continuous population
growth, at a rate n > 0,Nt = N0ent . Existing consumers give continuously away
some resources to endow new agents at birth with the same units of capital they
already own. It seems sensible to believe that a benevolent economic planner in this
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economy might be interested in maximizing the time aggregate utility of the typical
consumer,

Max
ct

∫ ∞

0
e−θ tU(ct)dt,

subject to,
k̇t = f (kt)− (n+δ )kt − ct , (3.1)

and given the initial state of the economy, k0. As in the previous chapter, lower case
variables denote per capita variables, f (kt) represents the available technology, and
subindices t denote functions of time. The restriction in this optimization problem
is the law of motion of the stock of physical capital per worker under a time varying
savings rate, which we already obtained in the previous chapter. θ is the social rate
of time discount, that is, the discount applied to the utility of future consumption. It
reflects the rate at which society is willing to substitute future for current utility. We
assume the utility function satisfies: U ′ > 0, U ′′ < 0, U ′(0) =∞, U ′(∞) = 0. Assum-
ing θ > 0, we depart from Ramsey who, interpreting the maximization problem as
that solved by a central planner, argued that there was no ethical case for discounting
the future [Blanchard and Fischer [11], p. 82].

A second interpretation would correspond to a Robinson Crusoe type of econ-
omy, in which a single, infinitely lived agent has access to a production technology.
No trading of any type will arise, since there are no other agents in the economy.
This single economic agent would maximize time aggregate utility, and the problem
would be identical to the one above, with n = 0.

The model could still be interpreted as that of an economy with a continuum
of generations who live over an infinitesimal time interval, the size of successive
generations growing at a rate n. Under this interpretation, an alternative plausible
formulation of the planner’s problem would use the so-called Benthamite welfare
function, in which the felicity function becomes NtU(ct), so that the number of
family members receiving the given utility level is taken into account. Assuming
Nt = N0ent , the Benthamite formulation is equivalent to reducing the rate of time
preference to θ − n in our model, because the larger the family at later dates in-
creases the weight given to the utility of the representative individual of a later
generation. The results would then be slightly different from those shown in this
chapter.

Along our discussion we will follow the first interpretation, making references
to the planner’s economy and the representative agent living in it. The whole point
of the analysis is to characterize the optimal allocation of resources every period
between current consumption and savings. The latter will contribute to capital ac-
cumulation and to the generation of additional resources in the future. Solving the
model amounts to determining the optimal path for the stock of capital starting from
an initial level of k0. Trajectories for all other variables can be obtained as exact
functions of the one followed by physical capital.
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3.1.1 Optimality Conditions for the Cass–Koopmans Model

The Hamiltonian for the dynamic optimization planner’s problem is,

H(kt ,ct ,λ t) = e−θ t [U(ct)+λ t ( f (kt)− (n+δ )kt − ct)] ,

where consumption is the control variable, the stock of capital is the state variable,
and the current value multiplier λ t is the co-state variable. The multiplier has the
standard interpretation of being the shadow price of the state variable, kt : how much
would the planner be willing to pay, in utility units, to have one more unit of physical
capital per worker at time t.

Since the marginal utility at zero is equal to infinity, the optimal level of con-
sumption will be strictly positive every period, and optimality conditions can be
written [see Mathematical Appendix],

U ′(ct)−λ t = 0, (3.2)

f ′(kt)− (n+δ )−θ +
λ̇ t

λ t
= 0, (3.3)

lim
t→∞

e−θ tλ t kt = 0. (3.4)

The social value at time t of an additional unit of capital per worker is, along the
optimal trajectory, equal to the marginal utility of consumption. This result, which
agrees with the nature of λ t as being the shadow price of capital, is not a hypothesis
we have imposed on the model, but rather, a property of its solution.

From (3.2) and (3.3) we get,

dU ′(ct)/dt
U ′(ct)

= (n+δ )+θ − f ′(kt) (3.5)

that is,

ċt =
U ′(ct)
U ′′(ct)

[
(n+δ )+θ − f ′(kt)

]
(3.6)

which is known as the Keynes–Ramsey rule.
The trajectory solving the previous system of optimality conditions will be op-

timal from the point of view of a central planner having maximization of the rep-
resentative consumer’s welfare as a reasonable goal of economic policy. In the next
sections, we analyze whether a steady state exists in this economy and if so, whether
the optimal trajectory converges to it. Even though the transition towards steady-
state can last for a long time, economic policy issues have often been analyzed only
at steady-state, due to the difficulty of characterizing the behavior of the economy
along the transition. Indeed, transition paths are hard to describe analytically, and
we will learn later on how to use numerical solution methods to characterize the
main properties of transition trajectories to steady-state. Transitions may arise fol-
lowing a policy intervention on an economy which was initially at steady-state, or
because a structural change has taken place in such an economy.
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3.1.2 The Instantaneous Elasticity of Substitution of Consumption
(IES)

Growth models deal with intertemporal consumption and savings decisions. Sac-
rificing some consumption today allows for higher capital accumulation which, in
turn, will lead to higher resources in the future. The main question is then how to op-
timally distribute a given stream of income over time. Resources can be transferred
to the future as explained, while they cannot be brought from the future into the
present except in the presence of developed credit markets. When the representative
consumer experiences a positive income shock at time t, he/she has a continuum of
possibilities, since current consumption can be increased by any fraction of ∆y be-
tween 0 and 1, saving the rest so as to enjoy higher consumption thereafter. At one
end, current consumption would increase by the full size of the income shock, ∆y,
leaving none of the increase for the future. Alternatively, the income increase will
spread over time in the form of higher consumption over a number of periods.

Two related concepts determine the optimal rate at which resources should be
transferred over time: the elasticity of the marginal utility (EMU) with respect to
consumption, i.e., the percent change in marginal utility associated to a one per cent
change in the level of consumption,

EMU = −d(ln(U ′(ct)))
d(ln(ct))

= −dU ′(ct)
dct

ct

U ′(ct)
= −ctU ′′(ct)

U ′(ct)
= σ (ct) > 0.

Under a linear utility function, the EMU becomes zero, the marginal utility not
changing with the level of consumption although, more generally, the elasticity of
the marginal utility of consumption will be a function of the level of consumption.

A related concept, the intertemporal elasticity of substitution of consumption,
IES, considers the relationship between changes over time in consumption and the
size of the implied changes in marginal utility. This is different from a more standard
elasticity concept like the EMU , which is intended to compare changes in marginal
utility because of a change in the level of consumption at a given point in time:

IES = γ (ct) = −
(
∂ (rate of change in U ′(ct))
∂ (rate of change in ct)

)−1

= −
(
∂ (U̇ ′(ct)/U ′(ct))

∂ (ċt/ct)

)−1

.

If indifference curves for the representative consumer are close to linear, then
marginal utility will be almost constant. As a consequence, the percent change in the
marginal utility of consumption will be small, relative to any possible change in the
level of consumption, and the intertemporal elasticity of substitution of consumption
will be high. In that case, concentrating consumption at a given point in time would
not affect the marginal utility by much, so the consumer would be almost indifferent
as to when to consume, except for the effect of a possible time discount factor. In
response to a positive income shock, consumption would rise by the size of the
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shock, with no significant increase in capital accumulation coming from saving part
of the increase in income.

The opposite will be observed for a low IES of consumption, when an increase in
consumption would produce a strong fall in marginal utility. Consequently, in that
case a positive income shock will generally be followed by a small consumption
increase. Most of the rise in income will be saved, leading to further capital accu-
mulation, which will allow for increased consumption thereafter. In this case, con-
sumption is smoother than under a high IES, when consumption tends to replicate
income fluctuations. Hence, the volatility of consumption will be close to the volatil-
ity of income under a high IES, while being significantly lower than the volatility of
income when the intertemporal elasticity of substitution of consumption is small.

A special case is that of a Constant Relative Risk Aversion (CRRA) utility
function,

U(ct) =
c1−σ

t −1
1−σ

, σ > 0, (3.7)

which leads to an elasticity of the marginal utility of consumption:

EMU = σ (ct) = −ctU ′′(ct)
U ′(ct)

= −ct
−σc−σ−1

t

c−σt
= σ ,

and an intertemporal elasticity of substitution of consumption

IES = γ (ct) = −
(
∂ (U̇ ′/U ′)
∂ (ċt/ct)

)−1

= −
(
∂ (−σ(ċt/ct))
∂ (ċt/ct)

)−1

= 1/σ =
1

EMU
,

so that both elasticities are then constant, one being the inverse of the other one.
As a special case of our previous remark, it is interesting to see the connection

between the value of σ in the CRRA utility and the volatility of consumption. If σ
is close to zero, utility is a linear function of the level of consumption and the con-
sumer does not get much compensation from future consumption relative to what
he/she misses by sacrificing current consumption. Since the marginal utility is in-
dependent of the level of consumption, the consumer is indifferent as to when to
consume and the presence of a discount factor will lead to exhausting immediately
any unexpected income rise. In this case, there is not much incentive to transfer re-
sources over time through savings and capital accumulation, and consumption will
be as volatile as income. Alternatively, when σ is large, changes in consumption
over time lead to strong changes in marginal utility. But a volatile marginal utility
is contrary to the goal of maximizing the time aggregate level of utility, so the con-
sumer will want changes in consumption to be minimum, preferring to spread out
over time the benefits of an unexpected income rise. A similar behavior will arise
following an unexpected income shortage. The consumer has a strong incentive to
transfer consumption over time, and the consumption path gets smoother, since in-
come fluctuations are smoothed out over time through positive and negative savings.

The inverse relationship between the instantaneous elasticity of substitution
of consumption and the elasticity of the marginal utility of consumption can be
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extended to more general utility functions, although just as an approximation. Let
us consider two points in time, t < s, s = t + ∆t, with consumption levels cs,
ct , cs = ct + ε, and ε ≶ 0, and small relative to ct .

IES−1 =
1

γ (ct)
= −∂ {ln(U ′(cs)/U ′(ct))}

∂ {ln(cs/ct)}

= −∂ {ln(U ′(cs)/U ′(ct))}
∂ε

(
∂ ln(cs/ct)

∂ε

)−1

. (3.8)

Using Taylor’ expansion for the marginal utility of consumption,

U ′(cs) = U ′(ct)+U ′′(ct)(cs − ct) = U ′(ct)+U ′′(ct)ε,

that is,
U ′(cs)
U ′(ct)

= 1+
U ′′(ct)
U ′(ct)

ε.

Furthermore, ln(cs/ct) = ln(1+ ε/ct) � ε/ct and ln(U ′(cs)/U ′(ct)) =
ln
(

1+ U ′′(ct )
U ′(ct )

ε
)
� U ′′(ct )

U ′(ct )
ε. Taking derivatives with respect to ε and plugging

into (3.8),

IES−1 =
1

γ (ct)
�−ct

U ′′(ct)
U ′(ct)

= EMU.

3.1.3 Risk Aversion and the Intertemporal Substitution
of Consumption

The parameter σ in the previous family of utility functions may be known to the
reader as the risk aversion parameter. Indeed, in the theory of decision under un-
certainty, absolute risk aversion is defined as ARA(ct) =−U ′′(ct )

U ′(ct )
, while relative risk

aversion is defined by RRA(ct) = −U ′′(ct )
U ′(ct )

ct , just like the elasticity of the marginal
utility of consumption. In general, both are functions of the level of consumption.
However, for the family of utility functions considered above, the relative risk aver-
sion becomes a constant,

RRA = −U ′′(ct)
U ′(ct)

ct = σ ,

which is why that family is known as the constant relative risk aversion family
(CRRA) of utility functions.

There is some similarity between the way utility maximization decisions are
made under uncertainty at a given point in time, and the way they are made over
time, even in the absence of uncertainty. A risk averse consumer with a high value
of the σ parameter will dislike facing uncertainty on the level of consumption. When
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offered a lottery with alternative consumption levels, each with a given probability,
he/she will glad to change that lottery for a certain level of consumption, below the
expected consumption level provided by the lottery. The difference between them
can be interpreted as the risk or insurance premium the consumer is willing to pay
to pass the risk away to someone else. As we have already seen, in a world with no
uncertainty, a consumer with a high value of σ will tend to smooth out consumption
by spreading the effects of any positive or negative income shock over time. The ef-
fect is, in both cases, a less volatile consumption stream than the one implemented
by a consumer with a low value of σ , the relative risk aversion coefficient for the
CRRA family of utility functions, which is then also the inverse of the IES.

3.1.4 Keynes–Ramsey Condition

These concepts allow us for an interesting interpretation of the Keynes–Ramsey
condition. Using the instantaneous elasticity of substitution of consumption, we can
write that condition as,

ċt

ct
= γ (ct)

[
f ′(kt)− (n+δ )−θ

]
, (3.9)

which shows that optimal consumption increases, decreases or stays constant at each
point in time, depending on whether the marginal product of physical capital net of
total depreciation, f ′(kt)− (n+δ ) is greater, lower, or equal to the social rate of
time discount, θ .

Let us accept for a while [as we will see in Sect. 3.3] that the equilibrium real
rate of interest should be equal to the marginal product of capital net of depreciation:
rt = f ′(kt)−(n+δ ). The intuition for such result is clear, since both capture the real
return, i.e., the return in units of the consumption commodity, to two different types
of investment: productive and financial investment. The Keynes–Ramsey condition
states that if the real rate of interest was equal to the discount rate, then it would be
optimal to maintain consumption constant.

On the other hand, when the market valuation of the future, as indicated by rt ,
is above the subjective value of time, given by θ , the consumer will find preferable
to sacrifice some current consumption, investing the proceeds to enjoy higher future
consumption. The consumption path will then be increasing, ċt > 0. The opposite
will be the case when the market valuation of the future is below the subjective
value, in which case, the consumer will prefer to maintain current consumption
above future consumption, with ċt < 0.

But by how much would consumers adjust their consumption paths to the gap be-
tween the market and the subjective valuation of the future? According to Keynes–
Ramsey condition,

rt −θ =
1

γ (ct)
ċt

ct
,



108 3 Optimal Growth. Continuous Time Analysis

which becomes:
rt −θ = σ

ċt

ct
,

under constant relative risk aversion preferences. For a given spread between rt
and θ , consumption growth will be higher for those consumers with a higher IES,
in agreement with the discussion in the previous section. Consumers with a low σ
have a high intertemporal elasticity of consumption, and they will adjust their paths
much more to a given gap between the private and the market valuation of time.
The opposite will be the case for consumers with a high σ , who will barely adjust
their paths to changes in the difference between the real interest rate and the time
discount factor.

3.1.5 The Optimal Steady-State

Since this model shares the same structure than the Solow–Swan model, we already
know that whichever steady-states there may be, they will all involve zero growth:
ċt = k̇t = 0, with the levels of per-capita consumption and income, as well as the
capital stock per worker, staying constant over time. Aggregate variables, however,
will grow at the same rate than the population, n. We now have two relationships
characterizing the time evolution of the economy: (a) the law of motion (3.1), an
equation in k̇t which we also had in the Solow–Swan model, which acts now as
a restriction to the planner’s problem, and (b) the Keynes–Ramsey rule (3.9), an
equation in ċt which is specific to the optimal economic planning problem.

The two equations are of a different character. On the one hand, making k̇t = 0
in the law of motion of the economy, we get,

f (kss) = (n+δ )kss + css ,

which describes a curve in the (c,k)-plane:

css = f (kss)− (n+δ )kss , (3.10)

which satisfies,

∂css

∂kss
= f ′ (kss)− (n+δ ) ,

∂ 2css

∂k2
ss

= f ′′ (kss) < 0.

All the points in this curve are consistent with a zero growth rate for the stock
of capital. However, (3.10) is the long-run version of just one of the two optimality
conditions. The optimizing behavior has additionally provided us with the Keynes–
Ramsey condition, so the optimal steady-state will be characterized by the per capita
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levels of physical capital and consumption, kss and css satisfying, in addition to
(3.10), equation

f ′ (kss) = n+δ +θ , (3.11)

which is obtained by imposing ċt = 0 in the Keynes–Ramsey condition. The struc-
ture of the system is such that equation (3.11) gives us the stock of capital at the
optimal steady state, and then (3.10) yields the associated level of consumption. If
the production function is concave, the solution is unique.

The Golden Rule, kGR, defined in the previous chapter, was the point on curve
(3.10) with the highest level of consumption. The Golden Rule does not solve the
planner’s problem, since it satisfies just one of the long-run optimality equations,
but not the other. From the definition of Golden Rule,

f ′ (kGR) = n+δ . (3.12)

we see that the optimal steady-state has a level of capital below kGR for any θ > 0.
Therefore, the optimal steady-state is a point on curve (3.10), to the left of the
Golden Rule. As we anticipated in the previous chapter, the Golden Rule involves
too much capital accumulation. It allows for a higher level of consumption once
steady-state is reached, but it asks for too much consumption sacrifice earlier on.
[See Fig. 3.1].

In the planner’s problem the savings rate is allowed to vary over time, so that the
representative consumer will generally be better off than in a comparable Solow–
Swan economy, since the resource allocation in that economy could also be attained
in the planner’s economy as a special case.

Whether there is more than one of such optimal steady-states and whether the
economy converges to any of them from any given initial condition can be dis-
cussed by analyzing the behavior of the two (ct ,kt)-time functions defined by the
two differential equations in ċt , k̇t , which we do next.

c

cGR

css

kss kGR k

f(k) − ( n+δ)k

Fig. 3.1 Steady-state relationship between consumption and physical capital
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3.1.6 Numerical Exercise: The Sensitivity of Steady-State Levels
to Changes in Structural Parameters

The Steady-state spreadsheet in the CK continuous time.xls file shows how steady-
state levels differ between economies with different structural parameters. The same
analysis can be done through the CK c steady state.m Matlab file. We consider in
all cases an economy with a Cobb–Douglas technology and a constant, relative risk
aversion utility function like (3.7). The exercise is designed to display changes in
the steady-state levels of the main variables under a permanent change in a single
structural parameter, maintaining all the other parameters unchanged. The result can
be interpreted either as steady-state differences between two economies differing in
the value of a single structural parameter, or as the comparison between final and
initial steady state levels for a given economy subject to structural change.

In the latter case, suppose an economy which is at steady-state, in which a
permanent change occurs in the value of a structural parameter. After the struc-
tural change, the steady-state will be different, so the economy will no longer be in
steady state, and a transition period will start, which might take the economy along
a convergence path to the new steady-state. Such transition trajectory will be char-
acterized in an exercise below. At this point, we just focus on steady-state changes
produced by the permanent change in a structural parameter.

Each panel in the spreadsheet is devoted to analyzing steady-state effects of
changes in a specific structural parameter. The initial steady-state is underlined
in red in each panel. Under each panel, a graph displays the variation induced in
steady-state capital stock and output as a consequence of the change in the struc-
tural parameter. A second graph does the same with consumption and single period
utility. Under the assumed Cobb–Douglas technology, output follows a behavior
parallel to that of the capital stock, and the same can be said for consumption and
single period utility, but it is still instructive to see the numerical sensitivity of each
pair of variables. A third graph displays the behavior of investment both, in absolute
terms, as well as a share of output. The latter characterizes the distribution of re-
sources in the economy, consumption taking the part of output which is not devoted
to investment.

We have considered a reasonable range of values for each parameter. By that
we mean that the implied steady-state distribution of resources is not very much at
odds with what is observed in actual economies. Even though there is always some
discussion about what these values should be, we take a conservative position, by
considering a wide range of parameter values in each case. The reader will gradually
understand how steady-state properties are affected by the values of some structural
parameters. In this exercise, it may be specially interesting to pay attention to how
(a) the share of output devoted to investment is a linear function of the output elas-
ticity of capital1, and (b) the optimal distribution of resources between consumption

1 The steady-state stock of capital is kss =
(

α
n+δ+θ

) 1
1−α

. Under the assumed technology, yt = kαt ,

steady-state output and consumption satisfy: yss = f (kss) = kαss, css = yss − (n+δ )kss.
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and investment is affected by the depreciation rate of physical capital and, specif-
ically, by how the economy reacts to very high depreciation rates by reducing the
stock of capital, rather than by sacrificing too much consumption.

Analyzing further the results, we can see how an increase in the discount applied
to future utility decreases the steady-state stock of capital as well as steady-state
output. The lower production also leads to a decrease in steady-state consumption
and a larger fall in steady-state utility. A higher time discount implies that the con-
sumer cares less about future consumption, which leads him/her to reduce capital
accumulation.

A higher value of the output elasticity of capital increases the productivity of
this factor, stimulating its accumulation over time. In steady-state, an economy with
a higher output share of capital has a higher stock of capital and produces more
output, which also allows for higher consumption. Investment is increasing in the
output elasticity of capital, moving from an initial share of 14% of output for low
elasticity values, to about 20% of output for the higher admissible values of this
parameter.

A higher rate of population growth or a higher rate of depreciation of physical
capital limit the possibilities for capital accumulation, which is lower in steady-
state the higher are either one of these two parameters. As a consequence, steady-
state output is also lower for higher depreciation or higher population growth. In
our numerical examination, we have taken the depreciation rate to a limit value of
100% which, even if unrealistic, it is nevertheless sometimes used in theoretical
models. We would then have full depreciation of physical capital, with the stock
of capital being equal to investment every period. A higher depreciation is quickly
seen in the figure to take the steady-state stock of capital to very low levels, since
many resources are needed to replace what is lost to depreciation, and none would
be left for consumption. As shown in the second graph, consumption stabilizes at
a strictly positive level. Steady-state investment is low for very low depreciation
rates, since then there is not need to make much replacement of physical capital.
The investment share of output increases with the rate of depreciation, stabilizing at
just below 30% of output. It is interesting to see this stable behavior of investment, as
a fraction of output, even when depreciation is complete. This has a direct reflection
on consumption stabilizing at just above 70% of output. For large depreciation rates,
output would be very low, as shown in the table, and so would be consumption and
investment. Reasonable depreciation rates for annual data would be in the 5–15%
range. There, investment falls between 17% and 23% of output, the remaining share
of output being devoted to consumption.

Finally, the intertemporal elasticity of substitution of consumption or, what is
the same, the degree of curvature of the utility function as represented by σ , is

So that the investment to output ratio is:

1− css

yss
= α

n+δ
n+δ +θ

=
α

1+ θ
n+δ

,

smaller than the output share of capital, α. It will approach α only if the rate of time discount is
small, relative to total depreciation.
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inconsequential for the steady-state allocation of resources, affecting only the level
of utility attainable with the steady-state level of consumption, which does not
change with the value of this parameter.

3.1.7 Existence, Uniqueness and Stability of Long-Run
Equilibrium – A Graphical Discussion

Existence and uniqueness of the optimal steady state are readily seen, since (3.11)
determines a unique level of the stock of capital per worker which, taken to (3.10) ,
determines the optimal steady-state level of consumption. Hence, there is a single
optimal steady state.

To discuss stability, it is necessary to remember that equations (3.1) and (3.9)
characterize the dynamics of the economy. Imposing ċt = 0 in equation (3.9) , we
obtain (3.11) , that divides the (c,k) space into two regions. To the left of kss, the
marginal product is greater than f ′ (kss), and hence the function f ′ (k)− (n+δ +θ)
will be positive and, as shown in (3.9) , consumption will increase. That happens
whenever the stock of capital is below its level at the optimal steady state. Further-
more, the rate of growth of consumption will be higher the further below kss we are.
The opposite happens whenever the stock of capital is above the optimal steady-
state level, consumption then decreasing at a higher rate the farther away the stock
of capital is from the optimal steady state [See Fig. 3.2].

On the other hand, imposing k̇t = 0 in equation (3.1) , we obtain c = f (k)−
(δ +n)k that also divides the (c,k) space into two regions. First, we need to char-
acterize the shape of the curve. It goes through the origin, since over that line, k = 0
implies c = 0. As we saw before, partial derivatives are, ∂c

∂k = f ′(k)−(δ+n); ∂ 2c
∂k2 =

f ′′(k),so that the curve is everywhere concave, with a maximum at f ′(k) = (δ +n),
i.e., at the Golden Rule. The line crosses the c = 0 axis at the non-zero solution
to equation f (k)− (δ +n)k = 0. For instance, in the case of a Cobb–Douglas
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Fig. 3.2 Direction of changes in consumption
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technology, that happens at: Akα = (δ +n)k, i.e., k =
(

A
n+δ

) 1
1−α

, a well defined
stock of capital, corresponding to the subsistence steady-state of the Solow–Swan
economy. Points to the right of this stock of capital are clearly not feasible, since
they would imply negative consumption. At any point below the line in the feasible
region, we have c < f (k)− (δ +n)k so that from (3.1) we obtain that k̇ > 0 and
the stock of capital increases. The rate of accumulation of physical capital is higher
the farther away we are from the curve. The opposite happens anywhere above the
curve, physical capital then decreasing, because of investment being below what
would be needed to replace what is lost by depreciation [See Fig. 3.3].

We can then see how the (c,k) space gets split into four regions, as in the phase
diagram in Fig. 3.4. Starting from a point like A in region I, we move into region II,
in the direction of zero capital and high consumption, which is clearly not feasible.
As the stock of physical capital decreases, so does output, and it is not possible
to maintain an ever increasing level of consumption. The same result would arise
starting from point B. If the economy starts at C, then the stock of capital will ac-
cumulate and consumption will increase for a while. Indeed, the Keynes–Ramsey
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condition shows that consumption increases everywhere to the left of kss. However,
once it enters into region III, consumption will decrease. When it goes to the right
of the Golden Rule, condition (3.5) shows that the marginal utility of consump-
tion starts growing faster than θ , while the stock of capital would remain bounded.
The transversality condition then fails to hold while the economy converges to the
subsistence steady-state of the Solow–Swan economy. It is clear that while being
feasible, a trajectory of accumulating capital while bringing consumption to zero
cannot possibly be optimum. Starting at D, in region IV will bring the economy into
region III, with the same result we just saw, while starting at E would eventually
bring the economy into region II.

It is just when we start from a point like F that the rates at which capital ac-
cumulates and consumption increases are just adequate to move the economy into
the direction of the optimal steady state. If we start from just above or below F
that will not work, and we will get either unfeasible or suboptimal results. There is
a sequence of points like F along a curve, called the stable manifold. For similar
reasons, the stable manifold extends to the left of the optimal steady-state level of
capital and below the k̇ = 0 curve. For each possible level of the stock of capital
there is a single level of consumption which is consistent with the economy con-
verging to the optimal steady state. That trajectory is the solution to the planner’s
problem.

Trajectories converging to the optimal steady state satisfy the transversality con-
dition, since λT = λ ss, kT = kss are constant and finite in steady-state, so that,

lim
T→∞

e−θTλ sskss = 0.

Since all agents share the same preferences, the resource allocation made by the
solution to the planner’s problem is also Pareto-optimum, since in it, everybody
alive receives the same amount of resources, so that there is no way to increase the
level of utility of a given consumer, without decreasing that of another one. On the
contrary, any other trajectory will not be Pareto-optimum, since we could improve
the level of welfare for each consumer, without decreasing that of a single agent.

3.1.8 Suboptimality of the Golden Rule

We can now take again the discussion on optimality we made when introducing the
Golden Rule in the previous chapter. Among all steady-states that can be achieved
with alternative values of a constant savings ratio, the Golden Rule is the one pro-
viding the highest level of consumption. In principle, achieving the highest possi-
ble steady-state level of consumption might seem a sensible goal under monotone
preferences. Imposing a constant savings rate sGR will start a transition path tak-
ing the economy from the initial stock of physical capital k0 to the Golden Rule
level, kGR, as we saw in the previous chapter. But the point is that attaining the
Golden Rule might ask for a larger consumption sacrifice along the transition than
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that needed along the transition path that would take the economy from k0 to the
optimal steady-state level kss. Since the intertemporal welfare function weights cur-
rent versus future utility, it is unclear whether converging to kGR might be optimal.
Because of this trade-off between the short- and the long-run several issues, like
the speed of convergence towards steady-state or the rate of time discount, play a
central role in characterizing an optimal path.

In fact, by solving the planner’s problem in the previous sections, we have shown
that converging to kGR will generally not be optimal. Moreover, since the only dif-
ference between the conditions characterizing the optimal steady state kss and the
Golden Rule kGR depends on the rate of time discount θ , we know that the Golden
Rule will be the optimal steady-state only when θ = 0, i.e., when future utility is
valued as much as current utility. At the Golden Rule, future utility receives too
much weight2, and because of this emphasis on future levels of utility, the Golden
Rule involves too much capital accumulation early on.

Rather, optimality requires starting a convergent trajectory leading to the optimal
steady state kss. Analytical expressions for the optimal trajectory would be obtained
by integration of the two differential equations (law of motion and Keynes–Ramsey
rule) subject to two boundary conditions,

k0 given,

lim
T→∞

e−θTλT kT = 0 (transversality condition) , (3.13)

a hard analytical problem. The economy is placed on that trajectory by adequately
choosing the initial consumption level c0. That will determine a specific savings
rate at each point in time, converging also to a long-run equilibrium level. Being
the solution to the planner’s problem, that trajectory guarantees a higher level of
welfare than any other alternative path, including the one converging to the Golden
Rule steady-state. That is due to the fact that, because of time discount, consump-
tion along the transition gets more weight than steady-state consumption. Once it is
reached, the Golden Rule will yield higher utility than the optimal steady-state, but
that utility will be heavily discounted in the time aggregate objective function.

3.2 Stability and Convergence

The Keynes–Ramsey condition for an economy with a Cobb–Douglas technology,
yt = Akαt , 0 < α < 1, and a constant, relative risk aversion utility function with
parameter σ , becomes,

2 Alternatively, it can be said that the utility of future generations receives too much weight. Along
the Golden Rule, individuals from successive generations all receive the same weigh in the utility
function. However the size of generations grows at a rate n, thereby future generations receiving a
higher weight in the planner’s objective function.
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ċt

ct
=

1
σ

[
αAk−(1−α)

t − (n+δ +θ)
]
,

which, for the case A = 1, can be written, in terms of the logged variables, as,

d lnct

dt
=

1
σ

[
αe−(1−α) lnkt − (n+δ +θ)

]
.

On the other hand, the law of motion of the economy (3.1), can also be written
in logs,

d lnkt

dt
= e−(1−α) lnkt − elnct−lnkt − (n+δ ) .

In Appendix (3.7) we show that the dynamic system made up by these two dif-
ferential equations admits the log-linear approximate representation around steady
state values,

( d lnct
dt

d lnkt
dt

)

=
(

0 −η
−h θ

)

︸ ︷︷ ︸

(
lnct − lncss
lnkt − lnkss

)
,

D

with h = (1−α)(n+δ )+θ
α > 0, η = 1−α

σ (n+δ +θ) > 0, where the coefficient matrix
D has determinant −ηh < 0. Hence, the system admits a saddle point trajectory
leading to steady-state. Eigenvalues of the transition matrix are,

µ1, µ2 =
θ ±

√
θ 2 +4ηh
2

,

with µ1 > θ > 0, while µ2 < 0.
The continuous-time dynamic system can be written,

ẋt ∼= Dxt .

with x being the vector of deviations around steady-state: xt = (lnct − lncss, lnkt −
lnkss) and D the matrix above. The solution to this system is,

xt ∼= eDtx0. (3.14)

Let Γ be the matrix having as columns the right-eigenvectors of D. Then, its
inverse matrix, Γ−1, will be the matrix having as rows the left-eigenvectors of D.
Using expressions in the Mathematical Appendix for the eigenvectors of a 2× 2
matrix,

Γ =
(

x1 y1
x2 y2

)
=

(
1 1

−µ1
η

−µ2
η

)
,

Γ−1 =
(

u1 v1
u2 v2

)
=

η
µ1 −µ2

( −µ2
η −1
µ1
η 1

)

.
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So, using the results in the Mathematical Appendix on the spectral decomposition
of a matrix and the representation of matrix exponential function, we can write the
solution (3.14) to the system of differential equations as:

xt ∼= eDtx0 =
(
ΓeΛΓ−1

)t
x0 = ΓeΛ tΓ−1x0,

that is,
(

lnct − lncss
lnkt − lnkss

)
=

η
µ1 −µ2

(
1 1

−µ1
η

−µ2
η

)(
eµ1t 0

0 eµ2t

)

×
( −µ2

η −1
µ1
η 1

)(
lnc0 − lncss
lnk0 − lnkss

)
,

or,

lnct − lncss = eµ1tb11 + eµ2tb12,

lnkt − lnkss = eµ1tb21 + eµ2tb22,

with,

b11 = − 1
µ1 −µ2

[µ2 (lnc0 − lncss)+η (lnk0 − lnkss)] ,

b12 =
1

µ1 −µ2
[µ1 (lnc0 − lncss)+η (lnk0 − lnkss)] ,

b21 =
µ1

(µ1 −µ2)η
[µ2 (lnc0 − lncss)+η (lnk0 − lnkss)] ,

b22 = − µ2
(µ1 −µ2)η

[µ1 (lnc0 − lncss)+η (lnk0 − lnkss)] .

The transversality condition (3.13) implies b21 = 0, because the term eµ1tb21
grows at a rate faster than θ . This zero condition amounts to: µ2 (lnc0 − lncss) +
η (lnk0 − lnkss) = 0, so that stability requires that initial consumption must be
chosen by:

lnc0 = lncss −
η
µ2

(lnk0 − lnkss) . (3.15)

Furthermore, notice that this condition also implies: b11 = 0. Then, using (3.15)
in the expressions for b12 and b22, we obtain:

b12 =
1

µ1 −µ2
[µ1 (lnc0 − lncss)−µ2 (lnc0 − lncss)] = lnc0 − lncss,

b22 = − µ2
(µ1 −µ2)η

[
−ηµ1

µ2
(lnk0 − lnkss)+η (lnk0 − lnkss)

]

= lnk0 − lnkss,
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and the solution finally becomes,

lnct − lncss = eµ2t (lnc0 − lncss) = −eµ2t η
µ2

(lnk0 − lnkss) ,

lnkt − lnkss = eµ2t (lnk0 − lnkss) .

for a level of c0 chosen as a function of the initial condition on k0 according to
(3.15) .

Hence, if we impose the stability condition to choose initial consumption,
then the solution to the system of linear differential equations: lnct − lncss =
eµ2t (lnc0 − lncss) , implies that the relationship between consumption and the stock
of capital is the same at all time periods,

lnct = lncss −
η
µ2

(lnkt − lnkss) t = 0,1,2,3, ....

so that the stability condition holds every period. This is the case because we are
working with the linear approximation to the system of differential equations.

As an alternative way to discuss stability, which could be used in systems of any
dimensionality, we can write the solution to system (3.14):

xt = ΓeΛ tΓ−1x0, (3.16)

as,
zt = eµt z0, (3.17)

after premultiplying in (3.16) by Γ−1 and defining zt = Γ−1xt , t = 0,1,2, . . . Each
element in zt as a linear combination of deviations from steady-state for both vari-
ables, lnct − lncss, lnkt − lnkss, and (3.17) shows a set of two equations representing
the model. The system will be stable, in the sense of satisfying the transversality
condition, only if the elements in the diagonal of Λ , i.e., the eigenvalues of D, are
less than θ . But that is only the case for µ2, as we know and hence, in each equation
above there is an explosive term.

The only way to avoid the explosive path is by fixing z1t = 0 ∀t, which amounts
to setting to zero each period the inner product of the first row in Γ−1 times the
vector of variables in deviations from steady-state. That is, we need to set to zero
each period the inner product of the left-eigenvector of D associated to the unstable
eigenvalue, times the vector of variables in deviations from steady-state. Since that
vector is (− µ2

η ,−1), we reach the same stability condition (3.15) as in the previ-
ous discussion. Needless to say, had we assumed that µ1 was the stable eigenvalue,
with µ2 being unstable, we would have concluded the need to set to zero the in-
ner product of the second row of Γ−1 (that is, the left-eigenvector associated to
the unstable eigenvalue) and the vector of deviations from steady-state. As we will
discussed below, we should generally expect a relationship between the number of
stability conditions and the number of control or decision variables, since stability
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Fig. 3.5 Stability in Cass-Koopmans model

conditions are used when computing a numerical solution to the model, to obtain
initial conditions for decision variables (like consumption) as functions of the initial
conditions for state variables (like the stock of capital). [See Fig. 3.5].

3.2.1 The Trajectory for Income

Paths for the remaining variables can be obtained from those for the stock of capital
and consumption. In the case of output, with our assumptions on technology, we
have,

yt = kαt ⇒ lnkt =
lnyt

α
,

so that the stock of physical capital and per capita income are proportional to each
other at each point in time and, consequently, also in steady-state, so that,

lnkss =
lnyss

α
,

so income will grow at the same rate than the stock of capital.
Over time, we will have,

lnyt − lnyss = eµ2t (lny0 − lnyss) , (3.18)

and finally,
lnyt =

(
1− eµ2t) lnyss + eµ2t lny0, µ2 < 0,

showing that the initial distance to steady-state in terms of income closes down at
a rate µ2, which is therefore the convergence speed to steady-state, whose value
increases with the product ηh.

Hence, the rate of growth of income is an inverse function of its initial state:
the farther away is an economy from steady-state, the higher will be the growth in
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income, assuming it starts below steady-state, k0 < kss. The rate at which the gap
between initial capital and consumption and their steady-state values is closed in-
creases with n,δ ,θ , and decreases when σ ,α increase, as it can be seen by the way
how µ2 depends on these structural parameters. A numerical exercise on the sensi-
tivity of the speed of convergence to changes in structural parameters is performed
in the next section.

We can calculate the length of time needed to cover half the distance3 from the
initial capital stock to the steady-state,

lnyt − lnyss =
1
2

(lny0 − lnyss) ⇒ eµ2t(lny0 − lnyss) =
1
2

(lny0 − lnyss)

⇒ t =
ln 1

2
µ2

.

From the previous expression we also see that any set of economies sharing the
same values for the structural parameters n,δ ,β ,θ ,σ will not only converge to the
same steady state, but they will do it at a speed inversely related to their initial in-
come. A poor country will grow more rapidly than a rich country with the same
steady state. The reason is that, having less capital, the initial productivity of invest-
ment is higher. As a consequence, and according to this model, in a cross-section
regression of the growth rate of income on initial income, we should have a negative
coefficient, as we already saw before.

On the other hand, if two countries converge to different steady-states, we will
no longer be able to make any statement about their relative speed of convergence.
We should in this case consider the notion of conditional convergence, as discussed
previously.

The reader is asked in an exercise at the end of the chapter to repeat the analysis
on stability and convergence in this section for a general production function.

3.2.2 Numerical Exercise – Characterizing the Transition
after a Change in a Structural Parameter

In this exercise we compute numerical values for some characteristics related to the
transition of a planner’s economy to the optimal steady-state. We make the same
assumptions on preferences and technology as in the previous numerical exercise.

3.2.2.1 The Speed of Convergence to Steady-State

We start by examining how the rate at which the economy converges to steady-state
changes with changes in the numerical values of structural parameters. This is done

3 Or any other fraction of that distance, of course.
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in the Speed of Convergence spreadsheet in the CK continuous time.xls file. We
take as benchmark parameter values A = 1, θ = 0.04, α = 0.30, n = 0, δ = 0.10,
σ = 2, we have h = 0.367, η = 0.049, with h,η defined as described in the previous
section. With these parameter values, the stable eigenvalue is µ2 =−0.1155, which
gives the rate at which the economy converges to steady-state. The length of time to
cover half the distance to steady-state is 6.0, while 12.0 time units would be needed
to cover 75% of the initial distance.

In each panel we change the value of a single parameter, maintaining all the oth-
ers at their benchmark values. The first analysis presents changes in the speed of
convergence to steady-state with changes in the discount factor applied to future
utility. Underlined in red is the initial situation. For each vector of parameter val-
ues we compute the stable eigenvalue, which determines the speed of convergence
towards steady-state. Finally, the number of periods needed to close either half the
initial gap to steady-state or 75% of it, is obtained. The convergence speed starts at
9.0% when future utility is not discounted, i.e., when it is valued as much as current
utility (θ = 0). Convergence to steady-state goes faster for higher values of the dis-
count factor, the relationship between these two variables being essentially linear.
When future utility is discounted, more resources are invested to allow for more re-
sources in the future. That way, we can compensate for the heavier discount applied
to future utility. As a consequence, the stock of capital accumulates more rapidly,
and we have a faster convergence to steady-state.

As the output elasticity of capital increases in the second analysis presented, less
capital is needed to produce the same amount of output. There is less incentive
to accumulate capital, and the economy moves more slowly towards steady-state.
A special case will be considered in chapter 6, when we will allow for a unit value
of the output elasticity of capital. The speed of convergence to steady-state goes
then to infinity, meaning that the economy jumps immediately to steady-state. In
other words, there is no transition to steady-state.

Population growth can be considered as a sort of depreciation of physical capital,
so we deal with the next two analysis simultaneously. As depreciation increases,
more resources need to be devoted to investment to maintain the stock of capital
unchanged. Then, physical capital needs to accumulate more intensively because
a larger proportion is lost to depreciation. The higher depreciation and the more
intense accumulation of capital go in opposite directions, and our numerical exercise
shows how, at least for reasonable parameter values, the second effect dominates,
and the economy converges to steady-state faster under higher depreciation.

As the elasticity of intertemporal substitution of consumption increases, the con-
cavity of the assumed CRRA utility function decreases. Agents are relatively indif-
ferent to consumption changes, so it is not surprising that the economy converges
faster to steady-state.

3.2.2.2 A First Note of Caution

The next exercise is the first instance in which we compute time series for the en-
dogenous variables in the continuous time version of the Cass–Koopmans economy.
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To compute the actual time series, the logged stock of capital is obtained by
using the condition that the initial gap to the steady-state is closed at a rate
µ2 : lnkt − lnkss = eµ2t (lnk0 − lnkss) . Logged-consumption in the initial period is
chosen by imposing the stability condition: lnc0 = lncss − η

µ2
(lnk0 − lnkss) . After

that, lnct − lncss = eµ2t (lnc0 − lncss) is used each period. As we saw in the previous
section, this condition guarantees stability. Output is obtained from capital each pe-
riod using the specification for the production function, and investment is obtained
as the difference between output and consumption. Finally, the level of utility as
well as its discounted value each discrete time period, are obtained and aggregated
over time.

Investment can be seen to follow a different behavior in its convergence to steady-
state for the two risk aversion parameter values. Under a less concave utility, in-
vestment is relatively low initially, gradually increasing along the convergence to
its steady-state level. The opposite happens for a more concave utility, for which
investment is higher initially, then decreasing along the convergence path. What
happens is that under the less concave utility, agents consume a large part of the
amount by which output is initially above its steady state level, investing a rela-
tively low amount of resources. As a consequence, the stock of capital decreases
to its steady-state level faster than under the more concave utility. Agents with the
latter preferences prefer to invest a greater share of output and maintain a lower
consumption than those consumers with the less concave preferences.

It is clear then how distinct degrees of risk aversion determine different con-
vergence paths for all the variables in the economy. After computing discrete time
series for all variables, we have obtained time series for single period discounted
utility for each agent, and we have aggregated the resulting values at the bottom
of each series. According to this exercise, it would look as if maximized welfare
is 2.37881 for agent A, and 1.96739 for agent B. These values are not comparable
among themselves. They are an estimate of the highest level of welfare that can be
achieved by each consumer, given his preferences and his initial stock of capital. It
should then be the case that each consumer prefers the optimal consumption trajec-
tory we have computed than the one we have determined for the other type of agent.
But that seems not to be the case in this spreadsheet for several reasons that are
worthwhile considering. Indeed, to the right of the graphs, we have also computed
single period and discounted utility for each agent, under the optimal consumption
time series for the other consumer. We obtain 2.37227 for agent A, and 1.96852 for
agent B, so it would look as if the latter prefers better the consumption trajectory that
maximizes welfare for agent A, which would be an obvious inconsistency in our so-
lution. This is a consequence of the fact that each consumption trajectory we report
is a log-linear approximation to the optimal consumption trajectory for each of the
two values of the risk aversion parameter we have considered. The farther away we
start from steady-state, the larger will be the approximation error. On the other hand,
if the two consumers are not very different form each other, the approximation error
could be enough to explain that one consumer might prefer the approximate optimal
consumption trajectory we have computed for the other consumer. In fact, because
of the approximation error, none of them is exactly an optimal trajectory for either
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consumer. Finally, dealing with continuous time as being a discrete variable is an
unavoidable source of error that can only be reduced by partitioning the time unit
into a large number of observations. The problem cannot be solved by taking care of
a single one of these conditions. For instance, if we start very close to steady-state
but consumers are not very different from each other, we could still have this para-
dox. By refining the partition of each time unit we reduce the approximation error,
but we do not fully eliminate it.

In the next spreadsheet, Risk aversion (long horizon), we have repeated the ex-
ercise, with the same parameterization, this time refining the time interval, which
has now a length of 0.025. So, we observe the system 40 times each time period.
We consider two consumers with degrees of risk aversion σ = 1.2 and σ = 10, and
start in each case with a stock of capital 5% above its steady-state level. Welfare
is estimated by numerically integrating the discounted utility function over 8000
observations (which amount to 125 time periods), and adding for each observation
from that point on the steady-state level of utility. We again compute the level of
welfare of each consumer under the consumption trajectory obtained for the other
consumer. Discounted utility for agent B is initially larger when calculated for agent
A’s consumption series, since consumption is higher for agent A. However, as in-
dicated in yellow, at t = 7.9, the ordering reverses, and stays that way to infinity.
So, as expected, when evaluated between t = 0 and t = ∞, agent B prefers his own
welfare maximizing consumption stream.

The apparent paradox in the previous analysis (Convergence. Risk aversion) was
due to the three factors we already mentioned: (a) too rough a partition of the time
unit, (b) relatively similar consumers, and (c) an initial condition relatively far from
steady state. In the Risk aversion (long horizon) spreadsheet we have considered
even more similar consumers, but started closer to steady state (5% above it) and
used a finer partition of the time unit, and the paradoxical result goes away. The
reader can check that starting farther away from steady state could again bring
the paradoxical result, as it would be the case if we consider still more similar
consumers.

3.2.2.4 A Change in Output Elasticity of Capital: Transition
Between Steady States

In the Change in output share of k spreadsheet in CK continuous time.xls we present
the short- and the long-run effects of a change in the output elasticity of physical
capital, from an initial value of α = 0.30, to α = 0.31. The same analysis can be per-
formed with the CK c change structural parameters.m MATLAB file. We maintain
the same assumptions on preferences and technology as in previous exercises. We
assume the economy is initially in steady-state, when the change in output elasticity
occurs, and describe what happens from that period on. After describing on the left
side of the spreadsheet the benchmark parameter values, A = 1, θ = 0.04, n = 0,
δ = 0.10, σ = 2, we calculate steady state levels for the capital stock, consumption
and output before and after the change in α. The increase in the output elasticity
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of capital implies a better capacity to produce output, which allows for increases
in steady state levels from kss = 2.9706, css = 1.0892, iss = .2971, yss = 1.3863 to
kss = 3.1647, css = 1.1128, iss = .3165, yss = 1.4292.

The point of the exercise is that even if the economy is initially at steady-state,
a change in a structural parameter like the output elasticity of capital, changes the
steady-state levels. As a consequence, the economy is no longer at steady-state and,
since the system is stable, a transition starts by which the economy converges from
its initial situation to the new steady-state. In the spreadsheet we have labelled as
t = 0 the time at which α changes. The stock of capital at the beginning of t = 0
was decided at the end of the previous period, when the structural change was still
unknown, so kt was still at the old steady-state level, defined by kss = 2.9706. Then,
α changes, and the economy must position on the stable manifold converging to the
new steady-state, kss = 3.1647.

We must now compute the eigenvalues of the transition matrix under the new
parameter values, which is why the values in the spreadsheet are slightly different
from those in the previous sections. We now have: h = 0.3516, η = 0.0483, with
eigenvalues for the coefficient matrix in the log-linear approximation: µ1 = 0.1518,
µ2 = −0.1118. As in the previous numerical exercises, we do not know the ex-
act representation of the stable manifold that would take the economy towards its
new steady-state, but we have a linear approximation for it in the form of the sta-
bility condition that links consumption to the stock of capital every period, both in
deviations from steady-state. That relationship is again estimated through the left
eigenvectors of the matrix of coefficients in the linear approximation to the model,
when written as a first order vector autoregression. That is described in the spread-
sheet, and the stabilizing constant is estimated at 0.4319, so that the stable manifold
can be approximated by,

lnct − lncss = 0.4319(lnkt − lnkss) ,

which gives us the level of consumption at t = 0.
An increase in the output elasticity of physical capital increases the marginal

product for that production factor, creating a strong incentive for capital accumula-
tion. The initial response of the economy is then a large raise in investment together
with a fall in consumption. Production increases initially because of the change in
technology. Afterwards, the output increase is also due to the larger stock of capital.
The consumption recovery is explained by the increase in production. The marginal
product of capital gradually diminishes as the economy approaches its new steady-
state and, as a consequence, investment decreases somewhat to its new steady-state
level. The type of response experienced by investment is known as an overshooting,
by which the initial reaction of the variable is so large that goes beyond its long-run
level, to which it must move later through an adjustment in the opposite direction to
the initial change.
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3.3 Interpreting the Central Planners’s Model as a Competitive
Equilibrium Economy

The centralized economy analyzed in previous sections, where a planner makes de-
cisions that imposes on private agents, leads to an allocation of resources that can
also be obtained under the competitive equilibrium mechanism in an economy with-
out government. This theoretical equivalence means that an analyst who was given
time series for consumption, capital and output extracted from either one of these
economies, would not be able to say which one had produced them. Together with
the argument in Sect. 3.1.8, this result implies the Pareto efficiency of the com-
petitive equilibrium allocation, which arises because we have not introduced any
externality or friction in our model economy.

We assume there are complete financial markets, i.e., any agent can borrow or
lend as many units of the consumption commodity as he/she can, at the prevailing
rate of interest. There is a set of identical consumers, who are endowed with a unit
of labor every period, and derive utility from consumption. Leisure does not enter as
an argument in the utility function. The single firm in the economy owns the stock of
physical capital, Kt , and uses that factor, together with labor, Nt , to produce the only
consumption commodity. It issues some stock, vt , which is bought by consumers.
Each unit of stock gives ownership rights to one unit of capital and yields a real
return of rt . The firm faces competitive markets for inputs and output, so that it treats
the real rate of return on capital, rt , wages, ω t , and the price of the consumption
commodity as given. There is no uncertainty, and the aggregate technology displays
constant returns to scale.

3.3.0.5 Consumer’s Problem

The representative consumer chooses consumption every period, as well as the units
of stock in his/her portfolio, so as to maximize time-aggregate, discounted utility,

Max
ct ,vt

∫ ∞

0
e−θ tU(ct)dt,

subject to,
v̇t + ct = ω t +(rt −n)vt , (3.19)

Initial wealth, v0, is given, and the consumer takes prices ω t ,rt as given. The
consumer uses salaries, together with the real return on its portfolio, to pay for
consumption as well as for the changes in his/her portfolio. If there is a reduction in
the size of the portfolio, the consumer will have the proceeds from selling stock as
additional resources to pay for consumption. Population growth is subtracted from
the real return on assets because of the need to provide newly born consumers each
period with the same portfolio as all other consumers.



3.3 Interpreting the Central Planners’s Model as a Competitive Equilibrium Economy 127

Maximization of the Hamiltonian,

H (ct ,ν t ,qt ,ω t ,rt) = e−θ t {U(ct)+qt [ω t +(rt −n)vt − ct − τ t ]} ,

leads to optimality conditions,

state equation C1 : U ′(ct) = qt ,

co− state equation (Euler) C2 : q̇t/qt = n+θ − rt ,

transversality condition C3 : lim
t→∞

e−θ tqtvt = 0.

Noting that C1 implies q̇t = U ′′(ct)ċt , we can write C2 as,

ċt

ct
= γ (ct) [rt − (n+θ)] , (3.20)

with γ (ct) being the intertemporal elasticity of consumption, γ (ct) = U ′(ct )
U ′′(ct )ct

.

Optimal consumption and savings choices are characterized by (3.19) ,(3.20) to-
gether with the transversality condition C3.

3.3.0.6 The Problem of the Firm

The single firm in the economy maximizes the present value of current and future
profits,

Max
Kt ,Lt

V0 ≡
∫ ∞

0
e−

∫ t
0 rsds [F(Kt ,Lt)−ω tLt − (δKt + K̇t)

]
dt,

given the initial stock of capital, K0, where ω t denote real salaries. Normalizing
the output price to 1, profits are obtained as the difference between output rev-
enues on the one hand, and the aggregate of wage payments and gross investment,
on the other. Gross investment is the sum of net investment, K̇t , plus depreciation
expenditures.

To solve the optimization problem of the firm, we write the present value of
firm´s profits V0 above as,

V0 =
∫ ∞

0
e−

∫ t
0 rsds [F(Kt ,Lt)−ω tLt −δKt ]dt −

∫ ∞

0
e−

∫ t
0 rsdsK̇tdt. (3.21)

To compute the last term, we need to recall the expression for a parametric inte-
gral function,

I(t) =
∫ b(t)

a(t)
f (x, t)dx,

whose derivative with respect to the parameter t is given by Leibniz’s rule:

dI(t)
dt

=
∫ b(t)

a(t)

∂ f (x, t)
∂ t

dx+ f (b(t), t)
db(t)

dt
− f (a(t), t)

da(t)
dt

.
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Integrating by parts4 in:
∫ ∞

0 e−
∫ t

0 rsdsK̇t dt, and applying Leibniz’s rule, we get:
∫ ∞

0
e−

∫ t
0 rsdsK̇tdt =

[
e−

∫ t
0 rsds ·Kt

]∞

0
+

∫ ∞

0
e−

∫ t
0 rsdsrtKt dt

= −K0 +
∫ ∞

0
e−

∫ t
0 rsdsrtKt dt,

where we have applied the transversality condition, lim
t→∞

e−
∫ t

0 rsdsKt = 0.

Therefore, the objective function for the firm (3.21) can be written:

V0 = K0 + e−
∫ t

0 rsds [F(Kt , Lt)−ω tLt − (rt +δ )Kt ]dt, (3.22)

showing that the trajectories for labor and the stock of capital, {Kt ,Lt}∞t=0 , maxi-
mizing (3.22) are the same as those maximizing single period profits, F(Kt ,Lt)−
ω tLt − (rt +δ )Kt . This is the case because decisions at a point in time do not affect
any variable entering into the objective function at any other point in time.

To maximize F(Kt ,Lt)−ω tLt − (rt +δ )Kt , the firm chooses Kt , Lt such that,

∂F(Kt ,Lt)
∂Kt

= rt +δ ;
∂F(Kt ,Lt)

∂Lt
= ω t .

We can now use the relationships obtained when discussing the Solow–Swan
model, to write conditions above as,

F1 : ∂F/∂Kt ≡ f ′(kt) = δ + rt , (3.23)
F2 : ∂F/∂Lt = f (kt)− f ′(kt)kt = ω t , (3.24)

which implies that the firm hires workers and capital to the point where marginal
products are equal to relative prices ω t and rt . Because of the constant returns to
scale assumption, single period profits are zero, so that V0 = K0, showing that the
present value of the ownership rights on the firm, i.e., the present value of profits is
equal to the initial stock of capital.

Definition 2. Given an initial condition k0,a competitive equilibrium is a vector of
continuous functions of time defined over (0,∞) {c∗t , k∗t , ω∗

t , r∗t , N∗
t , v∗t }∞t=0 such

that,

• Given ω∗
t , r∗t , the time functions c∗t , v∗t solve the representative consumer’s

problem,
• Given ω∗

t , r∗t , the time functions for capital k∗t maximizes firm’ profits each
period,

• The labor market clears, with equality of labor supply and demand. Since labor
is supplied inelastically, labor market clearing means that labor demand is equal
to total population, L∗

t = Nt = N0ent , ∀t,

4 To integrate by parts, we define: u = e−
∫ t

0 rsds and: υ = Kt , so that: dυ = K̇t dt, and applying
Leibniz’s rule: du = e−

∫ t
0 rsdsrt dt.
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• The units of stock owned by consumers are equal to the stock of capital owned
by the firm, v∗t = k∗t , ∀t.

3.3.0.7 Global Constraint of Resources

Taking (3.23) to (3.19) and using the fact that, in equilibrium, v∗t = k∗t ∀t, we obtain,

k̇t = f (kt)− (n+δ )kt − ct ,

which is known as the global constraint of resources, and it is precisely the con-
straint faced by the benevolent planner, that we saw in Sect. 3.1. This is in fact a
reflection of Walras’ law. As a consequence of equilibrium conditions, that require
clearing of the labor market and the market for physical capital, the market for the
consumption commodity also clears. That means that total production of the sin-
gle commodity in the economy is equal, in equilibrium, to the sum of private con-
sumption and gross investment, the latter being the aggregate of net investment and
depreciation expenditures,

f (kt) = ct +[k̇t +(n+δ )kt ].

3.3.1 The Efficiency of Competitive Equilibrium

In previous sections we have seen two different resource allocation mechanisms:
on the one hand, the planner’s mechanism, which maximizes social welfare. On the
other hand, the competitive equilibrium mechanism, where consumers maximize
utility and firms maximize profits taking prices as given. Prices are then determined
by market clearing conditions. Interesting questions are:

• Is the competitive equilibrium mechanism able to achieve the same allocation of
resources as the one emerging under the planner’s mechanism?

• Is a planner needed to achieve efficiency in resource allocation, or can markets
achieve efficiency by themselves through the competitive equilibrium mecha-
nism?

The following theorems answer these two questions. Let us start by recalling the
optimality conditions for the planner’s problem:

P1) U ′(ct)−λ t = 0,

P2) f ′(kt)− (δ +n)−θ +
λ̇
λ t

= 0,

P3) lim
t→∞

λ t e−θ t kt = 0.
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Theorem 1. Welfare Theorem 1: Let the vector of time functions {c∗t , k∗t , N∗
t , r∗t ,

ω∗
t , γ∗t } be a competitive equilibrium. Then, {c∗t , k∗t } solve the planner’s prob-

lem. Hence, the resource allocation obtained under the competitive equilibrium is
Pareto-efficient.

Proof. Define λ t = qt , and C1 implies P1. If we substitute F1 into C2, we obtain
P2. Finally, since in competitive equilibrium, vt = kt , then C3 implies P3. Hence, the
competitive equilibrium time functions for consumption and physical capital solve
the planner’s problem. The same argument we made above to obtain the global
constraint of resources shows that the constraint to the planner’s problem is satisfied
every period, so the competitive equilibrium allocation of resources as summarized
by {c∗t ,k

∗
t } is a solution to the planner’s problem.

Theorem 2. Welfare Theorem 2: Let {c∗t , k∗t } be a solution to planner’s prob-
lem (so, it is a Pareto-efficient resource allocation). There are price functions
{r∗t , ω∗

t } and time functions for labor and units of stock held {N∗
t , v∗t } such that

{c∗t , k∗t , N∗
t , r∗t , ω∗

t , v∗t } is a competitive equilibrium.

Proof. From the given sequence for the stock of capital, let us define prices,

ω∗
t = f (k∗t )− k∗t f ′(k∗t ), ∀t

r∗t = f ′(k∗t )−δ , ∀t

and time functions,

L∗
t = Nt = N0ent , ∀t

v∗t = k∗t , ∀t.

Let us further define a sequence of shadow prices qt = U ′(c∗t ). With these defini-
tions, C1 holds by construction. P2, together with the definitions of r∗t and qt , imply
that C2 holds. The definitions of v∗t and qt , together with P3, imply C3. Finally, the
definitions of r∗t and ω∗

t imply that F1 and F2 hold.

Once we introduce the definition of r∗t into P2, we get the competitive equilib-
rium differential equation for ct . The law of motion for kt in competitive equilibrium
is the planer’s global constraint of resources, so the time functions for consumption
and the stock of capital are the solutions to the same system of differential equa-
tions as in the benevolent planner’s problem. Since the firm is using the same stock
of capital and the same labor than under the planner solution, output will be the
same. Depreciation is also the same in both solutions, and so is investment, which
is equal to savings in this closed economy without government. Hence, the level
of output being produced and its decomposition between private consumption and
savings are exactly the same as under the planner’s solution.
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3.4 A Competitive Equilibrium with Government

3.4.1 The Structure of the Economy

We consider again an economy subject to no uncertainty, with an aggregate technol-
ogy displaying constant returns to scale. We introduce a government of a simple
kind, that it cannot directly influence consumers’ utility or the production tech-
nology. It will, however, take some resources away from the economy, reducing
aggregate consumption and investment possibilities. The government finances its
activities by issuing bonds paying a certain real return rt , and by levying per-capita
lump-sum taxes τ t on consumers. We do not consider money in the economy. Con-
sumers are all identical to each other, endowed with a unit of labor every period.
Leisure does not enter as an argument in their utility function. The single firm in the
economy uses physical capital, Kt , and labor, Nt , to produce the only consumption
commodity. The firm is the owner of the stock of physical capital. It issues some
stock, vt , which is bought by consumers. Each unit of stock gives ownership rights
to one unit of capital and yields a real rate of return rt . This must be equal to the
return on government bonds since, in the absence of uncertainty, one of the two
markets would otherwise disappear.

3.4.1.1 Consumer’s Problem

The representative consumer chooses every period consumption and the number of
stock and government bonds in his/her portfolio so as to maximize time-aggregate,
discounted utility,

Max
ct , at

∫ ∞

0
e−θ tU(ct)dt,

subject to,
ȧt + ct + τ t = ω t +(rt −n)at , (3.25)

where at = vt + bt denotes total assets, the aggregate of stock on the firm, vt , and
government bonds, bt . Initial wealth, a0, is given, and the consumer takes real wages
and interest rates {ω t ,rt}∞t=0 as given.

Maximization of the Hamiltonian,

H (ct ,at ,qt ,ω t ,rt) = e−θ t {U(ct)+qt [ω t +(rt −n)at − ct − τ t ]} ,

leads to optimality conditions,

state equation Cg1 : U ′(ct) = qt ,

co− state equation (Euler) Cg2 : q̇t/qt = n+θ − rt ,

transversality condition Cg3 : lim
t→∞

e−θ tqtat = 0,

the last one being the transversality condition for the consumer’s problem.
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Euler’s equation Cg2 is a first order, homogeneous, variable coefficient differen-
tial equation which integrates to [see Mathematical Appendix],

qt = q0 · e−
∫ t

0(rs−(n+θ))ds,

so that the transversality condition can be written,

lim
t→∞

e−θ tqtat = lim
t→∞

q0 · e−
∫ t

0(rs−n)dsat = 0,

or,
lim
t→∞

e−
∫ t

0(rs−n)dsvt + lim
t→∞

e−
∫ t

0(rs−n)dsbt = 0.

Unless we allow for a negative stock of government bonds, i.e., for the govern-
ment to make loans to consumers, both terms will be non-negative, and we must
have,

lim
t→∞

e−
∫ t

0(rs−n)dsvt = lim
t→∞

e−
∫ t

0(rs−n)dsbt = 0, (3.26)

for the transversality condition of consumer’s problem to hold.
It is also interesting to use the consumer’s budget constraint to represent the

time evolution of his/her portfolio of assets. Using the results in the Mathematical
Appendix for non-homogeneous, variable coefficient, first order differential equa-
tions, we get,

at =
[

a0 +
∫ t

0
e−

∫ z
0 (rs−n)ds (ωz − cz − τz)dz

]
e
∫ t

0(rs−n)ds

= a0e
∫ t

0(rs−n)ds +
∫ t

0
e
∫ t

z (rs−n)ds (ωz − cz − τz)dz,

showing that at each point in time, the stock of assets is the capitalized value of (a)
the initial stock of assets, a0, and (b) past single period differences between wage
revenues ω t and expenditures, ct + τ t .

Moving the exponential term to the right to the left hand side and taking limits,
we get,

lim
t→∞

e−
∫ t

0(rs−n)dsat = a0 + lim
t→∞

∫ t

0
e−

∫ z
0 (rs−n)ds (ωz − cz − τz)dz,

the left hand side being equal to zero because of the transversality condition, so we
end up with,

a0 =
∫ ∞

0
e−

∫ z
0 (rs−n)ds (cz + τz −ωz)dz,

showing that the initial stock of assets allows the consumer to enter into a sequence
of future deficits ct +τ t −ω t , so long as their present value remains below the initial
stock of assets. If the present value of future deficits were less than initial assets, the
consumer could have increased consumption at some point in time by running a
higher deficit, achieving a higher level of welfare. On the other hand, the consumer
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will not be able to run a sequence of deficits whose discounted present value is
above its current stock of assets, since he will not be able to finance its consumption
and tax expenditures.

As a matter of fact, any time period can be taken as the initial time, so we can
write,

at = −
∫ ∞

t
e−

∫ z
t (rs−n)ds (ωz − cz − τz)dz,

which is sometimes called the forward solution to the consumer’s budget constraint,
with an interpretation similar to that of the previous equation.

3.4.1.2 Firm’s Problem

The firm chooses sequences of capital stock and employment to maximize the
present value of profits,

Max
Kt , Nt

∫ ∞

0
e−

∫ t
0 rsds [F(Kt ,Nt)−ω tNt −δKt − K̇t

]
dt,

given the initial stock of capital, K0.
As shown in the previous section, optimality conditions for this problem are,

Fg1 : ∂F/∂Kt ≡ f ′(kt) = δ + rt ,

Fg2 : ∂F/∂Nt = ω t ⇔ f (kt)− f ′(kt)kt = ω t .

A standard argument can be used to show that the constant returns to scale as-
sumption implies that maximized profits are zero, with total revenues being distrib-
uted either in the form of wage payments or as return on issued stock.

3.4.1.3 The Government

The government spends at each point in time Gt units of the consumption commod-
ity which, unfortunately, do not contribute to increase private agents’ utility or to
improve the available production technology. The government budget constraint is,

Ḃt +Tt = rtBt +Gt ,

where the left hand side describes the sources of revenues: issuing debt plus levy-
ing lump-sum taxes. The right hand side displays expenditures: interest payments,
plus public consumption.

Using lower case letters to denote per capita variables, dividing by population in
the government budget constraint and using the relationship

ḃt =
d
(

Bt
Nt

)

dt
=

Ḃt

Nt
−nbt ,
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we get the government budget constraint in per capita terms,

ḃt = (rt −n)bt +gt − τ t , (3.27)

where τ t = Tt/Nt denote per-capita lump-sum taxes.
A similar analysis to the one we did for the consumer leads to,

bt =
[

b0 +
∫ t

0
e−

∫ z
0 (rs−n)ds (gz − τz)dz

]
e
∫ t

0(rs−n)ds

= b0e
∫ t

0(rs−n)ds +
∫ t

0
e
∫ t

z (rs−n)ds (gz − τz)dz,

showing that at each point in time, the stock of outstanding debt is equal to the
capitalized value of initial debt, plus the present value of past deficits.

Moving the last exponential term to the left and taking limits,

lim
t→∞

e−
∫ t

0(rs−n)dsbt = b0 + lim
t→∞

∫ t

0
e−

∫ z
0 (rs−n)ds (gz − τz)dz,

and using the transversality condition on the left hand side,

b0 = −
∫ ∞

0
e−

∫ z
0 (rs−n)ds (gz − τz)dz,

showing that the initial debt outstanding requires that the aggregate of the positive
and negative budget balances of the government over individual periods must have
a positive present value, equal to the initial stock of debt.

Finally, since any time period can be taken as the initial time, we have,

bt = −
∫ ∞

t
e−

∫ z
t (rs−n)ds (gz − τz)dz, (3.28)

the forward solution to the differential equation for government debt.
So, at each point in time, the present value of current and future government

surplus must be equal to current outstanding debt. A current stock of debt below
the present value of the sequence of budget surplus would generally be inefficient,
because the government would then have some room to decrease taxes, presumably
contributing to an increase in consumers’ welfare, so the proposed solution would be
suboptimal. On the other hand, a level of current debt above the present value of the
intertemporal financing capacity of the government would mean that the government
will be at some point unable to honor its payment commitments and, consequently,
investors will refuse to hold any of that debt.
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3.4.2 Feasible Stationary Public Expenditure and Financing
Policies

Let us assume that the economy is at time t in steady-state, and that the government
wants to follow from then on a policy of constant expenditures and lump-sum taxes
in per-capita terms, gt = g, τ t = τ ∀t. What levels of public consumption and taxes
are sustainable in the long-run under this stationary policy?

From the forward solution for the stock of debt, we have,

bt = −
∫ ∞

t
e−

∫ z
t (rs−n)ds (gz − τz)dz =

∫ ∞

t
e−(r−n)(z−t) (τz −gz)dz,

which, for t = 0 implies,

b0 =
∫ ∞

0
e−(r−n)z (τz −gz)dz =

τ−g
r−n

,

i.e., a fiscal policy is sustainable in steady state if the present value of a single period
surplus is equal to the initial stock of debt. If, initially, the government has some
debt outstanding, it would only be feasible to sustain a public financing policy with
surplus. Policies that are exactly feasible are those that maintain a constant surplus
by an amount enough to allow the government to eventually retire its initial debt.
There are many other feasible policies, which could consist on initially financing
public expenditures by issuing more debt and cutting down taxes to increase them
later on, but we have just characterized feasible policies with constant taxes.

3.4.3 Competitive Equilibrium

Definition 3. A competitive equilibrium with government is a vector of continuous
functions of time c∗t , k∗t , N∗

t , b∗t , v∗t , g∗t , r∗t , τ∗t , ω∗
t , defined on (0,∞) , such that,

• Given r∗t , ω∗
t , τ∗t , the time functions for consumption and assets c∗t , v∗t , b∗t solve

consumer’s utility maximization problem,
• Given r∗t , ω∗

t , the time functions for the stock of capital and labor k∗t , N∗
t solve

the firm’s profit maximization problem,
• Factor markets clear at each point in time, v∗t = k∗t , N∗

t = Lt = L0ent , all t.
• The government budget constraint (3.27) holds every period,

The following theorem relates the equilibrium level of the real interest rate to the
rate at which consumers discount future utility. This relationship was already used
in Sect. 3.1.4.

Theorem 3. If the resource allocation implied by a competitive equilibrium is com-
patible with the existence of an optimal steady-state, we will have at that point a
constant real rate of interest, given by r∗ = θ +n. Furthermore, r∗ = f ′(k∗)−δ .
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Proof. At steady-state, q̇t = 0 which, taken to Cg2, implies a constant interest rate,
rss = θ + n. Condition Fg1, evaluated at steady-state, directly implies the second
statement in the theorem.

3.4.4 Global Constraint of Resources

As in the economy without government, we can use equilibrium conditions to con-
solidate the budget constraints for the consumer and the government into a single,
global constraint of resources in the economy, the only constraint a benevolent cen-
tral planner would face in this economy, similar to (3.1).

Subtracting the government budget constraint from the consumer budget con-
straint, and taking into account that ȧt = v̇t + ḃt , we get

gt + v̇t + ct = ω t +(rt −n)vt ,

which, using the equilibrium condition vt = kt , can be written,

gt + k̇t + ct = ω t +(rt −n)kt . (3.29)

On the other hand, from profit maximizing conditions Fg1 and Fg2 we get:

yt = f (kt) = ω t + f ′(kt)kt = ω t +(rt +δ )kt ,

which, taken to (3.29) , lead to:

gt + k̇t + ct = yt − (δ +n)kt ,

that is,
yt = ct +gt + k̇t +(δ +n)kt , (3.30)

which is the global constraint of resources in the economy. This constraint is a re-
flection of Walras’ law, showing that the market for the single commodity clears,
with output being allocated into private consumption, public consumption, and
investment.

3.4.5 The Representative Agent Problem

In the previous section we have characterized the competitive equilibrium allocation
by solving optimization problems for the typical consumer and for the single firm in
the economy. There are situations in which we can reach the same allocation through
a simpler method, which consists on solving a single optimization problem, for the
so-called representative agent in the economy. This problem is a convenient artifi-
cial construction, but it does not represent any specific agent. The household and
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the productive sectors are consolidated into a single worker-entrepeneur agent, who
takes care of production and makes the consumption/savings decisions.5 Under this
approach, two agents are considered in the economy, the government and the repre-
sentative agent. The budget constraint for the latter includes tax payments, but not
government expenditures. The latter appear in the government’s budget constraint.6

Let us consider an economy with a government that buys a sequence gt ≥ 0
of commodity units which finances through lump-sum taxes. We will consider the
sequence gt to be exogenously given. For simplicity, we will also assume that these
expenditures do not contribute to production or yield any utility to the consumer.
For all practical purposes, we can think that public purchases of the commodity are
‘thrown to the sea’. The government is allowed to issue some debt, bt ≥ 0. That
way, it can spend more at some points in time than what is collected through the
lump-sum tax. The government budget constraint would then be,

ḃt = (rt −n)bt +gt − τ t . (3.31)

The representative agent problem would be,

Max
ct

∫ ∞

0
e−θ tU(ct)dt,

subject to the sequence of constraints:

ḃt + k̇t +(δ +n)kt + ct + τ t = f (kt)+(rt −n)bt , (3.32)

where the paths for {τ t ,rt} , as well as k0,b0, are given.
By using state and co-state equations as in optimal control problems solved in

previous sections, it is easy to obtain as optimality conditions,

ċt = γ(ct)
[
(n+δ )+θ − f ′(kt)

]
, (3.33)

ċt = γ(ct) [θ +n− rt ] , (3.34)

together with (3.32), (3.31) and transversality conditions,

lim
t→∞

e−θ tU ′(ct)kt = lim
t→∞

e−θ tU ′(ct)bt = 0. (3.35)

The two budget constraints for the consumer and the government imply,

ct + k̇t +(n+δ )kt +gt = f (kt) . (3.36)

5 Turnovsky [93], p.228.
6 In the simpler situations, the government is supposed to act passively, just taking care of ex-
penditures and revenues. Alternatively, the government may be considered to conduct an optimal
policy exercise, thereby designing policy optimally, so a to maximize consumers’ welfare. This is
the so-called Ramsey Problem, usually subject to technical difficulties.
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The solution to the representative agent problem is a vector of time functions
(kt ,bt ,ct) satisfying (3.33) ,(3.34) ,(3.35) ,(3.32) ,(3.36). It is not hard to show that
the allocation of resources implied by this solution (i.e., the centralized solution)
coincides with that of the competitive equilibrium mechanism: Plugging Fg1 into
Cg2 we get (3.33). Using Cg1 into Cg2 we obtain (3.34). Furthermore, (3.25), to-
gether with the profit maximizing conditions Fg1 and Fg2, the equilibrium condition
vt = kt and the fact that at = bt + vt lead to (3.32). Plugging Cg1 into Cg3 and using
at = bt +vt we obtain (3.35). Finally, the global constraint of resources characteriz-
ing feasible competitive equilibrium allocations is the same as the one for the rep-
resentative agent problem (3.36). Therefore, the competitive equilibrium allocation
can be obtained as the solution to the representative agent problem. Defining factor
prices by their marginal products, it is straightforward to show that the resource allo-
cation that emerges as solution to the representative agent problem can be obtained
as the competitive equilibrium allocation of an economy where identical consumers
and a single firm solve their respective utility and profit maximization problems.

3.5 On the Efficiency of Equilibrium with Government

As explained in Sect. 3.3 the solution to the planner’s problem in an economy with
identical consumers is Pareto efficient. In this section we discuss the efficiency of
the competitive equilibrium allocation under different tax systems, by comparing
the implied allocation of resources with that obtained from the planner’s problem.
Since decisions are determined by marginal rates of substitution that emerge from
first order conditions to the optimization problem of each agent, much of what we
will do is to compare marginal rates of substitution for the representative agent
and for the planner. However, we will see some exceptions to the proposition that
the competitive equilibrium allocation can be obtained by solving the associated
representative agent problem.

3.5.1 On the Efficiency of Equilibrium Under Lump-Sum Taxes
and Debt

In an economy with private and public consumption, a benevolent planner would
choose time paths for both types of consumption so as to maximize the time aggre-
gate utility of consumers,7

Max
ct ,gt

∫ ∞

0
e−θ tU(ct)dt,

7 Note that the planner chooses not only private but also public consumption. On the other hand, at
a difference of a government, the planner does not have anything to do with taxes or debt, but only
with allocating physical resources in the economy.
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subject to the sequence of constraints:

ct + k̇t +(n+δ )kt +gt = f (kt) , ct ≥ 0, gt ≥ 0.

The Hamiltonian is,

H (ct ,kt ,qt ,gt) = e−θ t {U(ct)+qt [ f (kt)− (n+δ )kt −gt − ct ]} ,

and the conditions characterizing the optimal solution,

ct : U ′(ct) = qt , (3.37)
gt : qtgt = 0, (3.38)
qt : q̇t/qt = n+δ +θ − f ′(kt), (3.39)

lim
t→∞

e−θ tU ′(ct)kt = 0.

where we have used the fact that the planner chooses not only ct , but gt as well.
The general condition for private consumption would be of the type, ct

∂H(.)
∂ct

= 0,
but the assumptions made on the utility function guarantee that the level of con-
sumption must be strictly positive every single period. Hence, condition (3.37) has
been obtained under the assumption ct > 0,∀t. On the other hand, there is nothing
in the model that precludes zero public consumption, so the associated optimality
condition is (3.38), gt

∂H(.)
∂gt

= 0. Since we have U ′(ct) > 0 for any finite level of
consumption, then (3.37) and (3.38) imply gt = 0.

In the previous section we have shown that in an economy where the government
finances public purchases of the consumption commodity by raising lump-sum taxes
and issuing debt, the competitive equilibrium allocation can be characterized by
solving the associated representative agent problem. In spite of their similarity, if
the level of public consumption entering the (3.36) condition for the representative
agent is strictly positive, the competitive allocation of resources will differ from the
planner’s allocation. As a consequence, the competitive equilibrium allocation is
inefficient except if gt = 0,∀t. This is because consumers would prefer zero public
consumption, if they had a choice.

The competitive equilibrium allocation in a Cass–Koopmans economy with a
government which is financed through lump-sum taxes and debt issuing would be
efficient if, rather than ‘throwing them to the sea’, purchases gt of the consumption
commodity by the government were returned to consumers in the form of a lump-
sum transfer. The government’s budget constraint would remain:

ḃt = (rt −n)bt +gt − τ t ,

while the representative agent’s budget constraint would become:

ḃt + k̇t + ct +(n+δ )kt + τ t = f (kt)+(rt −n)bt +gt ,
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where the consumption units purchased by the government appear as part of the
available resources to the private agent. The two budget constraints then imply the
global constraint of resources in the economy, and the representative agent problem
collapses to the planner’s problem with zero public consumption, showing the effi-
ciency of the competitive equilibrium allocation. All we need is to make sure that
the sequence of government financing is feasible, i.e., (a) that the government bud-
get constraint holds every period, and (b) that the stock of debt does not violate the
transversality condition.

3.5.2 The Inefficiency of the Competitive Equilibrium Allocation
Under Distortionary Taxes

The possibility of an inefficient competitive equilibrium allocation is even higher
under consumption or income taxes. Under lump-sum taxes, marginal rates of sub-
stitution are the same as those without government, the inefficiency coming only
from the presence of positive government expenditures not returned to consumers.
The presence of income or consumption taxes will generally distort the marginal
rates of substitution, making the competitive equilibrium allocation of resources to
depart from that solving the planner problem. In summary, there are generally two
reasons for inefficiency of the competitive equilibrium under income and consump-
tion taxes: a positive level of government consumption that is ‘thrown to the sea’,
and the presence of distortionary taxes.

To focus on the inefficiency produced by proportional taxation, we will assume
that government expenditures are returned to consumers every period as a lump-sum
tax. For simplicity, we assume the government is not allowed to issue bonds.

3.5.2.1 The Inefficiency of the Competitive Equilibrium Allocation
Under Consumption Taxes

We assume that the government finances public expenditures with a consumption
tax,

τc
t ct = gt . (3.40)

The representative agent then solves the problem,

Max
ct

∫ ∞

0
e−θ tU(ct)dt,

subject to the constraint:

k̇t +(1+ τ t
c)ct = f (kt)− (n+δ )kt +gt , (3.41)
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where gt is the transfer received from the government, equal in size to the revenues
obtained from the consumption tax. Maximization of the Hamiltonian:

H (ct ,at ,qt ,ω t ,rt) = e−θ t {U(ct)+qt [ f (kt)− (n+δ )kt +gt − (1+ τc
t )ct ]} ,

leads to optimality conditions,

U ′(ct) = (1+ τ t
c)qt , (3.42)

q̇t/qt = n+δ +θ − f ′(kt) (3.43)

lim
t→∞

e−θ t U ′(ct)
(1+ τc

t )
kt = 0, (3.44)

From (3.42) and (3.43) we obtain,

− τc
t

1+ τc
t

τ̇c
t

τc
t
+

U ′′(ct)ct

U ′(ct)
ċt

ct
= n+δ +θ − f ′(kt), (3.45)

with U ′′(ct )ct
U ′(ct )

being the elasticity of marginal utility. This equation will be different
from the one for the planner’s problem unless τ̇ t = 0, ∀t, implying that the compet-
itive equilibrium resource allocation will not be Pareto-efficient. The consumption
tax is distortionary only if the tax rate changes over time, affecting then to the
relative price of the consumption commodity over time, while a constant consump-
tion tax rate produces no distortion. It should be clear that adding a lump-sum tax
would alter the consumer’s budget constraint accordingly, with no change in the
optimality conditions. The presence of government debt in the budget constraint
would not alter the optimality conditions either. With government debt in the econ-
omy, we would just add an optimality condition and a transversality condition, both
determining the optimal debt trajectory.

Alternatively, let us assume a constant consumption tax rate. Our assumption
that tax revenues are fully returned to consumers as a lump-sum transfer is crucial to
obtain the global constraint of resources faced by the benevolent planner from (3.40)
and (3.41). The two assumptions together lead to the efficiency of the competitive
equilibrium allocation. For that, we just need to show that it can be obtained as the
solution to the representative agent problem, since we have just seen the equivalence
between the solutions to this and to the planner’s problem.

The consumer’s problem is now,

Max
ct at

∫ ∞

0
e−θ tU(ct)dt,

subject to,
v̇t +(1+ τc

t )ct = ω t +(rt −n)vt +gt , (3.46)

where the aggregate of stock on the firm, vt , is the only asset we consider. Initial
wealth, v0, is given, and the consumer takes real wages and interest rates {ω t ,rt}∞t=0
as given. Maximization of the Hamiltonian,
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H (ct ,vt ,qt ,ω t ,rt ,τc
t ) = e−θ t {U(ct)+qt [ω t +(rt −n)vt − (1+ τc

t )ct ]} ,

leads to optimality conditions,

state equation Cgτ1 : U ′(ct) = (1+ τc
t )qt ,

co− state equation (Euler) Cgτ2 : q̇t/qt = n+θ − rt ,

transversality condition Cgτ3 : lim
t→∞

e−θ tqtvt = 0.

From these, we obtain,

− τc
t

1+ τc
t

τ̇c
t

τc
t
+

U ′′(ct)ct

U ′(ct)
ċt

ct
= n+θ − rt .

Now, since the consumption tax does not enter the optimization problem of the
firm, the same conditions Fg1 and Fg2 we obtained without the tax, hold again.
Plugging them, together with the equilibrium condition υ t = kt , into the consumer’s
budget constraint, we get the budget constraint for the representative agent prob-
lem, (3.41). Equation (3.45) can be obtained using Fg1 and Cgτ1 in Cgτ2. Finally,
the two remaining conditions characterizing competitive equilibrium, the govern-
ment’s budget constraint and the global constraint of resources, are the same as in
the representative agent’s problem. So, the competitive equilibrium allocation can
be obtained as solution to the representative agent’s problem, which, under a con-
stant consumption tax, produces the same solution as the planner’s problem. The
competitive equilibrium allocation is then Pareto-efficient.

3.5.2.2 Leisure in the Utility Function

On the other hand, if we consider leisure as an argument in the utility function, then
the marginal rate of substitution between consumption and leisure at each point in
time t would be distorted by the presence of the consumption tax rate even if this
was constant over time. It can be shown that, as in the previous case, the resource
allocation obtained under the competitive equilibrium mechanism is the same as
that from the representative agent’s problem. So, in this section we use the latter to
illustrate the distortion produced by the consumption tax.

We consider a representative agent who has a unit endowment of time every
period, and solves the problem,

Max
ct , lt

∫ ∞

0
e−θ tU(ct ,ht)dt,

subject to the constraint:

k̇t +(1+ τc
t )ct = f (kt , lt)− (n+δ )kt +dt ,



3.5 On the Efficiency of Equilibrium with Government 143

where ht + lt = 1, ht being the proportion of hours enjoyed as leisure, while lt de-
notes the proportion of hours devoted to production.8 We assume that the utility
function satisfies usual assumptions guaranteeing concavity.

Maximization of the Hamiltonian:

H (ct ,qt , lt ,ht ,dt ,τc
t ) = e−θ t

{
U(ct ,ht)+qt

[
f (kt , lt)− (n+δ )kt +dt

−(1+ τc
t )ct

]}
,

leads to optimality conditions,

Uc(ct ,ht) = (1+ τ t
c)qt , (3.47)

q̇t/qt = n+δ +θ − ∂ f (kt , lt)
∂kt

, (3.48)

Uh(ct ,ht) = qt
∂ f (kt , lt)
∂ lt

, (3.49)

where Ux(·) = ∂U(·)
∂x , x = c,h, together with (3.44).

From (3.47) and (3.48) we obtain (3.50), and plugging (3.47) in (3.49), we obtain
(3.51):

− τc
t

1+ τc
t

τ̇c
t

τc
t
+

Ucc(ct ,ht)ct

Uc(ct ,ht)
ċt

ct
+

Uch(ct ,ht)ht

Uc(ct ,ht)
ḣt

ht
= n+δ +θ − ∂ f (kt , lt)

∂kt
, (3.50)

Uh(ct ,ht)
Uc(ct ,ht)

=
1

1+ τc
t

∂ f (kt , lt)
∂ lt

, (3.51)

where Ucc(ct ,ht) = ∂Uc(ct ,ht )
∂ct

,Uch(ct ,ht) = ∂Uh(ct ,ht )
∂ct

.
As it was the case in the model without leisure, we see that if the consumption

tax remains constant over time, it produces no distortion on the accumulation of
capital. However, the last equation shows that, even if the consumption tax rate was
constant, it will affect the marginal rate of substitution between consumption and
leisure at each point in time. Therefore, the solutions to the representative agent’s
and the planner’s problem will not be the same. The consequence is that even if the
competitive equilibrium allocation of resources can be obtained as the solution to
the former (which is the case), it will not be Pareto-efficient.

8 The production function has now the form: Yt = F(Kt ,Lt lt) where Lt lt is the total number of
hours worked. Homogeneity of the production function allows us to normalize,

Yt

Nt
= F

(
Kt

Nt
,

Lt

Nt
lt

)
.

In equilibrium, Nt = Lt , and the production function can be written in per capita terms as, yt =
F(kt , lt) , where kt denotes, as usual, the capital-labor ratio.
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3.5.2.3 The Inefficiency of the Competitive Equilibrium Allocation
Under Income Taxes

Let us assume that the government finances its expenditures with a tax on labor
income, at a rate τw

t , and a tax on capital income, at a rate τr
t . The government’s

budget constraint will be,
gt = τωt ω t + τr

t rtvt . (3.52)

For simplicity, we will not consider leisure as an argument in the utility function,
we will not consider debt issuing, and we will assume that tax revenues are used
by the government to purchase gt units of the consumption commodity that are then
returned to consumers as a lump-sum transfer.

The consumer’s problem is now,

Max
ct

∫ ∞

0
e−θ tU(ct)dt,

subject to,
v̇t + ct = (1− τωt )ω t +((1− τr

t )rt −n)vt +gt , (3.53)

where the aggregate of stock on the firm, vt , is the only asset in the economy. Initial
wealth, v0, is given, and the consumer takes real wages and interest rates {ω t ,rt}∞t=0
as given. Maximization of the Hamiltonian,

H (ct ,vt ,qt ,ω t ,rt ,τc
t ) = e−θ t

{
U(ct)+qt

[
(1− τωt )ω t+

((1− τr
t )rt −n)vt +gt − ct

]}
,

leads to optimality conditions,

state equation Cgτy1 : U ′(ct) = qt ,

co− state equation (Euler) Cgτy2 : q̇t/qt = n+θ − (1− τr
t )rt ,

transversality condition Cgτy3 : lim
t→∞

e−θ tqtvt = 0.

From these, we obtain,

U ′′(ct)ct

U ′(ct)
ċt

ct
= n+θ − (1− τr

t )rt . (3.54)

showing the distortion introduced by tax on capital income. That distortion will re-
main even if the tax rate was constant over time. As a consequence, the competitive
equilibrium allocation of resources will differ from that obtained form the planner’s
problem, and it will be Pareto-inefficient.

In this case, we cannot consider a representative agent problem whose solution
leads to the same allocation of resources than the competitive equilibrium mecha-
nism, except if the tax rates on labor and capital income are the same. To see this,
notice that neither tax rate affect the firm’s problem, so that conditions Fg1 and Fg2
will still hold. Plugging them, together with the equilibrium condition kt = vt into
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the consumer’s budget constraint, we get,

ct + k̇t = (1− τω)
(

f (kt)− kt f ′ (kt)
)
+(1− τr)

(
f ′ (kt)−δ

)
kt −nkt +gt , (3.55)

which is different from the budget constraint faced by a representative agent subject
to a tax on income9 at a rate τy,

ct + k̇t = (1− τy)( f (kt)−δkt)−nkt +gt . (3.56)

However, in the special case τω = τr = τy, the two budget constraints, (3.55) and
(3.56) would coincide. Nevertheless, as we have already seen, the solution to this
problem would differ from the solution to the planner’s problem, thereby leading to
an inefficient allocation of resources.

Using (3.52), Fg1 and Fg2, together with the equilibrium condition kt = vt , in
(3.55) we get,

ct + k̇t +(n+δ )kt = f (kt) ,

the global constraint of resources for the planner’s problem. This is due to the
fact that the government is returning to consumers the revenues raised through
the income tax. The only source of inefficiency is then the presence of the in-
come tax. If tax revenues were not fully returned to consumers, then the last
argument could not be made, and we would reach a global constraint of the type,
ct + k̇t +(n+δ )kt +(gt −dt) = f (kt) , with an additional difference from the plan-
ner’s problem, which amounts to a second reason for inefficiency of the competitive
equilibrium allocation of resources.

Summarizing, the presence of consumption and taxes on factor incomes will al-
ter the marginal rates of substitution with respect to the case of zero tax rates, and
the competitive equilibrium allocation will be inefficient. The distortion produced
by the consumption tax goes away is the consumption tax rate is constant. Allowing
for the government to complement its financing strategy with lump-sum taxes and
debt issuing will not alter this basic result. The competitive equilibrium allocation
would not be efficient either if the government returned its proceeds to consumers
in the form of lump-sum transfers, since the marginal rates of substitution charac-
terizing the competitive equilibrium allocation of resources are distorted by the time
varying consumption tax as well as by income tax rates. If the government uses tax
revenues to purchase some units of the consumption commodity, gt , and some of
these are not returned to consumers as a lump-sum transfer, we will have a second
reason for inefficiency of the competitive equilibrium allocation of resources. The
representative agent problem and the planner’s problem lead to the same alloca-
tion of resources except in the presence of capital income taxes. The competitive
equilibrium allocation of resources can be obtained as solution to the representative
agent’s problem except if factor incomes are subject to different tax rates.

9 By discounting depreciation from output, we are considering depreciation allowances in the tax
base. The alternative formulation would be,

ct + k̇t = (1− τy) f (kt)− (n+δ )kt +gt .
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3.6 The Ricardian Doctrine

3.6.1 The Ricardian Doctrine Under Non-Distorting Taxes

Let us consider again a situation in which the government finances public consump-
tion through a combination of lump-sum taxes and debt issuing. We are going to
show that the way how the government splits its revenue raising between taxes and
debt issuing is irrelevant in this model, so long as the bond issuing policy be feasible,
i.e., so long as the transversality condition holds,

lim
t→∞

e−
∫ t

0(rs−n)dsbt = 0.

This neutrality proposition should be understood in the sense that the competitive
process of allocating resources between consumption and investment (or savings) is
independent of the way how savings are split between bonds and equities. The ir-
relevance from the public financing policy in real terms is known as the Ricardian
Doctrine: consumers are indifferent between paying higher taxes today and main-
taining lower debt holdings in their portfolios, or the alternative of paying lower
taxes today, to the cost of having to buy a bigger amount of public debt. The rea-
son is that a larger bond emission today will require of more taxes in the future,
so that the government can retire the outstanding debt at maturity. According to the
Ricardian doctrine, the consumer is indifferent, in terms of present value of dispos-
able income, between both alternatives.

For simplicity, in this section we assume zero population growth (n=0). Similarly
to our analysis in previous sections, we can integrate the law of motion that for
financial assets emerges from the representative consumer budget constraint,

ȧt = ω t − ct − τ t + rtat ,

to have,
at +

∫ ∞

t
e−

∫ z
t rsdsωzdz =

∫ ∞

t
e−

∫ z
t rsds (cz + τz)dz,

showing that, each period, the consumer portfolio of assets, plus the present value
of his current and future labor income, is equal to the present value of current and
future consumption, plus the present value of taxes.

Using (3.28), we get,

vt +
∫ ∞

t
e−

∫ z
t rsdsωzdz =

∫ ∞

t
e−

∫ z
t rsds (cz +gz)dz,

showing that the equity issued by the firm, plus the present value of the sequence
of current and future wage income, is equal to the present value of the sequences of
private and public consumption. Also,

∫ ∞

t
e−

∫ z
t rsdsczdz = vt +

∫ ∞

t
e−

∫ z
t rsdsωzdz−

∫ ∞

t
e−

∫ z
t rsdsgzdz, (3.57)
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showing that the feasible consumption sequences are those whose present value
does not exceed from the value of current equity holdings, augmented by the present
value of labor income, minus the present value of public consumption.

These latter conditions are alternative versions of the consumer’s intertemporal
budget constraint. Existence of perfect capital markets, where the consumer can
either borrow or lend as much as he/she wishes, at the current market rate of interest,
has allowed us to collapse the sequence of single period budget constraints into
the single intertemporal constraint above, without losing any relevant information.
Perfect capital markets allow the consumer to distribute over time the present value
of current and future income anyway he/she wishes.

It is important to see that neither bonds nor taxes appear in the intertemporal
budget constraint, either at a single point in time or in present value. Consumers’
decisions are affected by the level of current and future public expenditures, which
detracts resources from consumption and investment, as shown in (3.57), but not by
the way expenditures are financed, be that through lump-sum taxes or by issuing
public debt. This is the Ricardian Doctrine, which is considered part of the neo-
classical doctrine, suggesting that it may not be worthwhile to disturb consumers
with taxes, since the public deficit can be equally financed by issuing debt. Under
the Ricardian Doctrine, no way of financing government expenditures is superior
to any other. This result may not hold in economies with finitely lived agents, in
some monetary economies, or in the presence of distorting taxation, as we are about
to see.

3.6.2 Failure of the Ricardian Doctrine Under Distorting Taxes

In Sect. 3.5.2 we have seen that distortionary taxes (consumption taxes, labor in-
come taxes and capital income taxes) alter the marginal rates of substitution, except
in some special cases. The consumption tax is not distortionary if the tax rate is
constant over time, and the labor income tax is not distortionary when labor supply
is wage-inelastic. In the first case, the consumption tax does not affect the marginal
rate of substitution between current and future consumption, so that there is always
a time varying lump-sum tax leading to the same consumption path than a constant
tax rate on consumption. In the second case, since the labor supply is inelastic, the
labor income tax acts as a lump-sum tax. Consequently, it is always possible to find
a lump-sum tax producing the same consumption path that it is obtained under the
labor income tax.

Since the consumption tax and the labor income tax can be substituted by a lump-
sum tax, the Ricardian equivalence holds in both cases. In all remaining situations,
there is no lump-sum tax leading to the same consumption trajectory than the distor-
tionary tax. This is because, at a difference of the lump-sum tax, distortionary taxes
change the intertemporal marginal rate of substitution of consumption over time, or
the marginal rate of substitution between consumption and leisure at a given point
in time. We show next that the Ricardian equivalence fails indeed to hold in such
situations.
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Let us assume that the consumer faces taxes on consumption, capital income and
labor income, at rates τc

t ,τr
t ,τωt . Let {c′t ,a

′
t} be the paths for consumption and total

assets chosen by the private agent under distortionary taxes, τ=(τc
t ,τωt ,τr

t ). So, they
satisfy the representative consumer budget constraint:

ȧ′t +(1+ τc
t )c′t = (1− τωt )ω t +(1− τr

t )rta′t ,

where total financial assets are,

a′t = bt + v′t ,

with v′t being the equity issued by the firm. We allow for the possibility that the path
for public debt, bt , be the same than under the lump-sum tax system. Distortionary
taxes and the stock of debt must satisfy the government budget constraint,

ḃt = rtbt +gt −
(
τc

t c′t + τωt ω tn′t + τr
t rta′t

)
,

where n′z denotes employment. This budget constraint can be written,

ḃt = (1− τr
t )rtbt +gt − It ,

where It = τc
t c′t + τωt ω tn′z + τr

t rtv′t denotes total revenues.
Solving this first order differential equation [see Mathematical Appendix], we

get,

bt = −
∫ ∞

t
e−

∫ z
t (1−τr

s)rsds (gz − Iz)dz, (3.58)

while if we integrate the consumer’s budget constraint, we get,

a′t = −
∫ ∞

t
e−

∫ z
t (1−τr

s)rsds [(1− τωz
)
ωzn′z −

(
1+ τc

z
)

c′z
]

dz.

Substituting a′t by bt + v′t and using (3.58):

v′t = −
∫ ∞

t
e−

∫ z
t (1−τr

s)rsds [(1− τωz
)
ωzn′z −

(
1+ τc

z
)

c′z −gz + Iz
]

dz,

and using the definition of It ,

v′t +
∫ ∞

t
e−

∫ z
t (1−τr

s)rsdsωzn′zdz =
∫ ∞

t
e−

∫ z
t (1−τr

s)rsds (gz + c′z − τr
zrzv′z

)
dz,

which can be written,
∫ ∞

t
e−

∫ z
t (1−τr

s)rsdsc′zdz = v′t +
∫ ∞

t
e−

∫ z
t (1−τr

s)rsdsωzn′zdz

−
∫ ∞

t
e−

∫ z
t (1−τr

s)rsds (gz − τr
zrzv′z

)
dz.
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The equation illustrates very clearly the failure of the Ricardian equivalence
proposition to hold whenever τr

t 	= 0, because of the last term at the right hand
side of the equation. But even more importantly, the Ricardian proposition will not
hold even if τr

t = 0, because consumers’ decision on consumption, leisure and pri-
vate assets will then be distorted relative to the case of a pure lump-sum tax. The
point is that distortionary taxes other than τr

t appear implicitly in the previous equa-
tion through the consumption, labor and asset holding decisions, which is the reason
behind the failure of the Ricardian equivalence proposition.

3.7 Appendix

3.7.1 Appendix 1 – Log-linear Approximation to the Continuous
Time Version of Cass–Koopmans Model

By a log-linear approximation we understand an approximate representation of
the economy which is linear in logged variables. We obtain in this appendix the
log-linear representation of the two differential equations characterizing Cass–
Koopmans model, for the case of a Cobb–Douglas technology, yt = kαt ,

d lnct

dt
=

1
σ

[
αe−(1−α) lnkt − (n+δ +θ)

]
, (3.59)

d lnkt

dt
= e−(1−α) lnkt − elnct−lnkt − (n+δ ) . (3.60)

Since in steady-state, d lnct
dt = d lnkt

dt = 0, steady-state levels of consumption and
physical capital must satisfy,

e−(1−α) lnkss =
n+δ +θ

α
⇒ kss =

(
α

n+δ +θ

) 1
1−α

,

elncss−lnkss = e−(1−α) lnkss − (n+δ ) =
n+δ +θ

α
− (n+δ )

=
(1−α)(n+δ )+θ

α
≡ h > 0,

and we can build the linear approximation of the two equations around steady-state
using Taylor’s expansion, and using the fact that,

d
d lnkt

(
e−(1−α) lnkt

)
= −(1−α)e−(1−α) lnkt ,

d
d lnkt

(
elnct−lnkt

)
= −elnct−lnkt ,

d
d lnct

(
elnct−lnkt

)
= elnct−lnkt ,
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so we have, for (3.59),

d lnct

dt
�− 1

σ
α (1−α)e−(1−α) lnkss (lnkt − lnkss) ,

where,

− 1
σ
α (1−α)e−(1−α) lnkss = −1−α

σ
(n+δ +θ) ≡−η < 0,

so we finally have,
d lnct

dt
= −η (lnkt − lnkss) ,

while for (3.60) we have,

d lnkt

dt
∼= −elncss−lnkss (lnct − lncss)

−
[
(1−α)e−(1−α) lnkss − elncss−lnkss

]
(lnkt − lnkss)

= −h(lnct − lncss)−
[
(1−α)

n+δ +θ
α

−h
]
(lnkt − lnkss)

= −h(lnct − lncss)+θ (lnkt − lnkss) ,

with a matrix representation,
( d lnct

dt
d lnkt

dt

)
∼=

(
0 −η
−h θ

)(
lnct − lncss
lnkt − lnkss

)
.

3.7.2 Appendix 2 – An Alternative Presentation of the Equivalence
Between the Planner’s and the Competitive Equilibrium
Mechanisms in an Economy Without Government

In Sect. 3.4 we showed the equality between the resource allocations achieved un-
der the competitive equilibrium and under the planner’s mechanisms in an economy
without government. There, we assumed that the firm was the owner of the stock of
capital, hiring labor to produce output. In the alternative presentation in this appen-
dix, we assume that consumers are the owners of physical capital, so the firm must
hire that productive factor from them, with the real rate of interest being the rental
price.

We will assume that there are complete markets in the economy. There is a set
of identical consumers, who are endowed with a unit of labor every period and
have preferences on consumption. Leisure does not enter as an argument in the
utility function. The single firm in the economy uses physical capital, Kt , and labor,
Nt , to produce the only consumption commodity in the economy. The firm issues
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some stock, ν t , which is bought by consumers. Each unit of stock gives ownership
rights to one unit of capital and yields a real return of rt . The firm faces competitive
markets for inputs and output, treating the real return on capital, rt , real wages, ω t ,
and the price of the consumption commodity as given. There is no uncertainty, and
the aggregate technology displays constant returns to scale.

Each consumer uses all his savings to purchase productive capital. The aggregate
budget constraint for all consumers is,

Ct +St = ω tNt + rtKt .

Since this is a closed economy with no government, gross investment is equal to
savings,

St = It = K̇t +δKt ,

and we get,
Ct + K̇t +δKt = ω tNt + rtKt ,

which, following an argument similar to that in the previous chapter, can be written
in per capita terms as,

ct + k̇t +(n+δ )kt = ω t + rtkt . (3.61)

The representative consumer takes prices {ω t ,rt}∞t=0 as given, and chooses con-
sumption and investment to solve the problem,

Max
ct , kt

∫ ∞

0
e−θ tU(ct)dt,

subject to (3.61), and given k0.
Maximization of the Lagrangian,

L(ct ,kt ,λ t ,ω t ,rt) = e−θ t [U(ct)+λ t (ω t + rtkt − ct − (n+δ )kt)] ,

leads to optimality conditions,

Ca1 : e−θ tU ′(ct) = λ t ,

Ca2 : λ̇ t/λ t = δ +n− rt +θ ,

Ca3 : lim
t→∞

e−θ tλ t kt = 0.

Combining Ca1 and Ca2 we get,

ċt

ct
= γ (ct) [rt − (n+δ +θ)] , (3.62)

with γ (ct) being the intertemporal elasticity of substitution of consumption,
γ (ct) = U ′(ct )

U ′′(ct )ct
. Optimal consumption and savings choices are characterized by

(3.61) ,(3.62) , together with the transversality condition Ca3.
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The single firm in the economy maximizes the present value of its cash-flow
stream,

Max
Kt , Lt

∫ ∞

0
e−

∫ t
0 rsds [F(Kt ,Lt)−ω tLt − rtKt)]dt,

given the initial stock of capital, K0.
Notice the difference between the problems for the consumer and the firm in

this appendix and those considered in previous sections. Now, the firm does not
own the stock of capital, so it must rent it at a price rt . On the other hand, since the
consumer owns the stock of capital, he must also support the cost of depreciation, as
it shows in his budget constraint. In previous sections, the firm was the owner of the
capital stock and it had to bear the cost of depreciation. Then, the firm maximized
the present value of profits, as opposed to maximizing the present value of the cash-
flow stream when it does not own the stock of capital.

Optimality conditions for this problem are,

Fa1 : ∂F/∂Kt ≡ f ′(kt) = rt , (3.63)
Fa2 : ∂F/∂Nt = f (kt)− f ′(kt)kt = ω t , (3.64)

which implies that the firm hires workers and capital to the point where marginal
products are equal to ω t and rt .

Definition 4. Given an initial condition k0, a competitive equilibrium is a vector of
continuous functions of time, defined over (0,∞) {ct , kt , ω t , rt , Nt}∞t=0 such that,

• Given price functions ω t ,rt , the time functions ct ,kt solve the representative con-
sumer’s problem,

• Given price functions ω t ,rt , the time function for capital kt maximizes firm’
profits each period,

• The labor market clears, with equal supply and demand of labor. Since labor is
supplied inelastically, this means that labor demand is equal to total population,
Lt = Nt ,

• The market for physical capital clears, the stock of capital owned by consumers
being equal to the stock of capital the firm wants to rent.

For a competitive equilibrium allocation, (3.61) ,(3.62) ,(3.63) , and (3.64) all
hold. Plugging (3.63) and (3.64) into (3.61) we get,

ct + k̇t +(n+δ )kt = f (kt), (3.65)

the equilibrium condition in the market for the consumption commodity. It states
that produced output is equal to consumption plus total gross investment. So,
Walras’ law holds: market clearing in the markets for labor and physical capital
imply market clearing in the market for the consumption commodity.

Theorem 4. The resource allocation achieved under the competitive mechanism
and the planner’s mechanism, are the same.
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Proof. Let us assume that the vector of time functions {ct ,kt ,ω t ,rt ,Nt} is a compet-
itive equilibrium. As we have just seen, then (3.65) holds. Furthermore, substituting
(3.64) in (3.62) we get,

ċt

ct
= γ (ct)

[
f ′(kt)− (n+δ +θ)

]
. (3.66)

But (3.65) and (3.66) are precisely the differential equations characterizing the
time paths {ct ,kt} in the planner’s allocation, so that the resource allocation emerg-
ing under the competitive equilibrium allocation coincides with that obtained under
the centralized resource allocation mechanism, for a same initial condition k0.

Let us now consider an initial stock of capital k0 and the solution to the plan-
ner’s problem, {ct ,kt}. So, these two time functions satisfy (3.65) and (3.66) ,
and a function λ t can be defined by (3.2) so that (3.3) and (3.4) also hold. From
them, let us define time functions for real wages and interest rates {ω t ,rt} through
(3.63) ,(3.64) and introduce an auxiliary variable qt by qt = λ t . Then, the first and
second conditions in the definition of a competitive equilibrium hold by construc-
tion. Finally, since the {ct ,kt}-functions solving the planner’s problem include the
aggregate stock of capital in the economy and the whole population, then, defining
prices as indicated, we guarantee that the labor market and the market for productive
capital, both clear. Hence, the resource allocation solving the planner’s problem can
be achieved as the one emerging in a competitive equilibrium, so long as prices are
defined as above.

3.8 Exercises

Exercise 1. In the Steady-state spreadsheet, contained in the CK continuous time.
xls file, change the benchmark parameter values and check how the graphs display-
ing the sensitivity of steady-state levels to structural parameters change. Are the
results you obtain what you expected?

Exercise 2. In the Speed of convergence spreadsheet, contained in the CK
continuous time.xls file, change the benchmark parameter values and check how
the graphs displaying the sensitivity of steady-state levels to structural parameters
change. Are the results you obtain what you expected?

Exercise 3. In the continuous time Cass–Koopmans model, assume there is a gov-
ernment that purchases some of the units of output produced in the economy with
the revenues obtained taxing consumption at a rate τc and levying income taxes at a
rate τy.The government does not issue any debt. The utility function of consumers
is of the CRRA family. The available technology exhibits constant returns to scale
in physical capital and labor. Show that the transition matrix in the log-linear ap-
proximation to the model does not depend on either one of the tax parameters, so
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that the stability condition is the same as that in Sect. 3.2. Notice that once the gov-
ernment decides on the values of the tax rates on consumption and income, public
expenditures are endogenously determined.

Exercise 4. Discuss the stability of the Cass–Koopmans model using a linear ap-
proximation to the model around steady-state under the assumption of a production
technology using physical capital and labor inputs and displaying constant returns
to scale. To do so, use Taylor’s expansion in Keynes–Ramsey’s rule as well as in the
budget constraint, to obtain linear approximations representing ċt and k̇t as functions
of ct − css and kt − kss, and examine the eigenvalues of that linear representation.



Chapter 4
Optimal Growth. Discrete Time Analysis

4.1 Discrete-Time, Deterministic Cass–Koopmans Model

In this chapter we present the discrete time version of some of the issues discussed
in the previous chapter. We introduce a government in the economy, and define
and characterize the competitive equilibrium. The intertemporal government budget
constraint, the relationship between the competitive equilibrium allocation and that
of the benevolent planner mechanism, and the Ricardian doctrine, can be all ana-
lyzed in discrete-time in a similar fashion as we have done in the continuous time
version of the model. Dealing with all the details of the discrete time version of the
Cass–Koopmans economy is very instructive in order to be able to formulate alter-
native, more complex growth models, as well as to perform policy analysis, as we
do towards the end of the chapter. It is particularly important to get familiar with
the formulation and use of the transversality condition and with the characterization
of stability conditions. As we will see below, stability conditions are crucial to gen-
erate a numerical solution for this model in the form of a set of time series for the
endogenous variables.

The discrete time formulation also allows us to consider a stochastic version of
the economy, as we do in the following chapter. This is important, since a stochastic
version of the economy is needed to characterize the influence of exogenous shocks
on the trajectories followed by the endogenous variables, their volatilities, correla-
tions with other variables, or any other statistic.

4.1.1 The Global Constraint of Resources

In line with the continuous time version of the model, we maintain for the discrete
time version a gross population rate of growth equal to n, and a linear depreciation
rate for physical capital equal to δ .

A. Novales et al., Economic Growth: Theory and Numerical Solution Methods, 155
c© Springer-Verlag Berlin Heidelberg 2009
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The global constraint of resources in the economy is,

Ct +Kt+1 − (1−δ )Kt = F (Kt ,Nt) ,

which states that consumption plus investment is equal to output each period. This
is because we consider a closed economy, with no government. The stock of capital
chosen at the end of period t is denoted by Kt+1, and it will be used in production
at time t +1. Dividing by population, which is equal to employment because of the
maintained assumption on full employment, we get,

Ct

Nt
+

Kt+1

Nt+1

Nt+1

Nt
− (1−δ )

Kt

Nt
=

F (Kt ,Nt)
Nt

= F
(

Kt

Nt
,1
)

= f (kt),

where kt = Kt
Nt

, and we have used the constant returns to scale property of the aggre-
gate production technology, as we did in the Solow-Swan model. We thus have the
global constraint of resources in per capita terms,

ct +(1+n)kt+1 − (1−δ )kt = f (kt) ,

which can be written in the form of the law of motion for the stock of capital per
worker,

kt+1 =
1

1+n
[ f (kt)+(1−δ )kt − ct ] = h(kt ,ct), (4.1)

the stock of capital at the end of each period being a nonlinear function of last
period’s capital and the current period level of consumption.

As in continuous time, the intertemporal elasticity of substitution of consump-
tion considers changes in marginal utility between two different points in time, as
opposed to changes in marginal utility between two different levels of consump-
tion at a given point in time, as it is the case with the EMU . Given two points in
time t and s,s > t,s = t +∆t, the intertemporal elasticity of substitution of consump-
tion IES in discrete time is defined as the inverse of the ratio between the percent
change in the slope of the indifference curve and the percent change in consumption
between t and s:

IES = γ (ct) = −
(
∂ ln(rate of change in U ′)
∂ ln(rate of change in c)

)−1

= −
[
∂ {ln(U ′(cs)/U ′(ct))}

∂ {ln(cs/ct)}

]−1

� −
[
∆(U ′(cs)/U ′(ct))

∆(cs/ct)
.

cs/ct

U ′(cs)/U ′(ct)

]−1

.

In discrete time, the logarithmic rate of change is used to approximate the time
derivative. With a CRRA utility, the EMU , which maintains the same definition as
with continuous time, is equal to σ , while for the IES we have,
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IES = γ (ct) = −
[
∂ {ln(U ′(cs)/U ′(ct))}

∂ {ln(cs/ct)}

]−1

= −
[
∂
{

ln
(
c−σs /c−σt

)}

∂ {ln(cs/ct)}

]−1

= −
[
∂ {−σ [ln(cs)− ln(ct)]}
∂ {ln(cs)− ln(ct)}

]−1

= 1/σ =
1

EMU
,

the same inverse relationship we found in the continuous time version of the model.

4.1.2 Discrete-Time Formulation of the Planner’s Problem

The benevolent planner chooses sequences of consumption and physical capital to
solve the problem,

Max
{ct ,kt+1}∞t=0

∞

∑
t=0

β tU(ct),

subject to (4.1), given the initial capital stock, k0.
The discounted Lagrangian for this problem is,

L({ct ,kt+1,λ t}) =
∞

∑
t=0

β t
[
U(ct)+λ t

[
f (kt)− ct − (1+n)kt+1

+(1−δ )kt

]]
,

in which the terms involving kt+1 are,

...+β t {U(ct)+λ t [ f (kt)− ct − (1+n)kt+1 +(1−δ )kt ]}
+β t+1 {U(ct+1)+λ t+1 [ f (kt+1)− ct+1 − (1+n)kt+2 +(1−δ )kt+1]}+ ...

Necessary conditions for optimality are obtained by taking derivatives in the
Lagrangian with respect to ct and kt+1,

β t (U ′(ct)−λ t
)

= 0, t = 0,1,2,3, ... (4.2)

−β tλ t (1+n)+β t+1λ t+1
(

f ′(kt+1)+1−δ
)

= 0, t = 0,1,2,3, ... (4.3)

where we have assumed interior solutions, i.e., ct ,kt+1 > 0, ∀t. Excluding the possi-
bility of zero consumption in the optimality conditions, we get the equality between
marginal utility and the shadow price of capital each period.

Substituting (4.2) in (4.3), we obtain the Keynes-Ramsey condition for the
discrete-time version of the planner’s economy, also known as Euler equation:

U ′(ct)(1+n) = βU ′(ct+1)
[

f ′(kt+1)+1−δ
]
. (4.4)
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Under a CRRA utility, the condition becomes,

cσt+1

βcσt
=

f ′(kt+1)+1−δ
1+n

,

the left hand side being the marginal rate of substitution of consumption between t
and t +1. For logarithmic preferences (σ = 1) , the condition further simplifies to,

ct+1

βct
=

f ′(kt+1)+1−δ
1+n

.

From the second optimality condition for successive time periods we get,

λ t+1

λ t
=

1+n
β ( f ′(kt+1)+1−δ )

,

the co-state equation in discrete time.1

4.1.3 The Optimal Steady-State

In steady-state, we will have λ t = λ t+1, and,

f ′(kss) =
1+n
β

−1+δ . (4.5)

Redefining the discount factor as β = 1
1+θ ,(4.5) can be written

f ′(kss) = n+θ +δ +nθ ,

very similar to the condition obtained in the continuous time version of the model,
specially taking into account that the product nθ will usually take a very small
value. Once again, we see that the optimal steady-state falls to the left, i.e., with
lower capital than the Golden Rule, showing that the suboptimality of the Golden
Rule arises from too much capital accumulation early on, that is, from a too high
savings rate.

In steady-state, the law of motion for capital becomes,

css = f (kss)− (n+δ )kss,

1 Which, by redefining the discount factor as β = 1
1+θ , can be written,

λ t+1 −λ t

λ t
=

n+θ +δ +nθ − f ′(kt+1)
f ′(kt+1)+1−δ

,

in terms of the rate of change of the Lagrange multiplier, so that it can be compared to the similar
condition in the continuous time model.
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the same functional relationship as in the continuous time version of the model.
Hence, the relationship can again be represented by a concave curve in the (c,k)-
space, with a maximum at f ′(k) = n + δ , and a zero at the subsistence level of
capital, at which f (kss) = (n+δ )kss. The only change with respect to the continuous
time analysis is that (4.5) leads to a stock of capital slightly to the left of the level
determined for the continuous time version of the model. However, the product nδ
should be expected to be small, and so will be the difference between the two steady-
states.

4.1.4 The Dynamics of the Model: The Phase Diagram

To analyze the dynamics of the model, let us consider again the Keynes-Ramsey
condition, for the case of CRRA preferences,

ct+1 = ct

[
β

1+n

(
f ′(kt+1)+1−δ

)
]1/σ

= g(kt ,ct), (4.6)

and the budget constraint,

kt+1 =
1

1+n
[ f (kt)+(1−δ )kt − ct ] = h(kt ,ct), (4.7)

a system of two equations giving us the laws of motion for consumption and capital,
kt+1 = h(kt ,ct), ct+1 = g(kt ,ct).2

As in continuous time, the so-called phase diagram is constructed on the basis of
two curves, relating kt to ct . Each curve corresponds to one of the two zero-change
cases: kt+1 = kt (the budget constraint), ct+1 = ct (the Keynes-Ramsey condition).

First, we impose ct+1 = ct in (4.6) to get a curve characterized by,

f ′(kt+1) =
1+n
β

− (1−δ ) , (4.8)

which is, in fact, an implicit relationship between kt and ct because of the depen-
dence of kt+1 on these two variables, as shown in the budget constraint. Notice that
1+n
β − (1−δ ) > 0 because the marginal product of capital must be positive for any

positive capital stock. To write this relationship as a curve in the (ct , kt)-space, we
make the total differential of (4.8) equal to zero:

f ′′(kt+1)
∂kt+1

∂kt
dkt + f ′′(kt+1)

∂kt+1

∂ct
dct = 0, (4.9)

2 The g(kt ,ct) function is obtained after using the budget constraint to eliminate kt+1.
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and we obtain the slope of the curve by:

∂ct

∂kt
= −∂kt+1/∂kt

∂kt+1/∂ct
,

where partial derivatives must be computed from (4.8), that is:

∂ct

∂kt
= −∂kt+1/∂kt

∂kt+1/∂ct
= −

1
1+n ( f ′ (kt)+1−δ )

−1/(1+n)
= f ′ (kt)+1−δ , (4.10)

which is therefore a positive relationship in the (ct ,kt)-space, because f ′ (kt)+ 1−
δ > 0, ∀kt .

From (4.7) and (4.8) the equation for the g(kt ,ct)-curve itself is:

kt+1 =
1

1+n
[ f (kt)+(1−δ )kt − ct ] =

(
f ′
)−1

(
1+n
β

− (1−δ )
)

.

This line will have a negative intercept with the vertical axis at kt = 0, because at
that point we would have: f ′

(
− ct

1+n

)
= 1+n

β −(1−δ ) > 0, and the marginal product
function is defined only over the positive real line. The curve has a positive slope,
as shown by (4.10) , and along it, ct → ∞ as kt → ∞. So, it will cross the horizontal
axis, and it will do it only once, because of the strict concavity of f .

For any point to the right of the line described by (4.8) there is a point on that
line with the same value of kt and a higher ct , for which f ′(kt+1) = 1+n

β − (1−δ ) .

So, if the point to the right of the line as a lower ct and the same kt , its value of
1

1+n [ f (kt)+(1−δ )kt − ct ] will be higher, and the marginal product will be lower
than on the line, where it was equal to 1+n

β − (1−δ ) . Hence, at that point to the

right of the line, f ′(kt+1) < 1+n
β − (1−δ ) and, according to the Keynes-Ramsey

condition, we will have ct+1 < ct , and the opposite happens at any point to the left
of the (4.8)-line.

On the other hand, when kt+1 = kt , the budget constraint gives us,

ct = f (kt)− (δ +n)kt ,

an increasing and concave function. Consumption is higher at any point above
the curve than it is on the curve, so that ct > f (kt)− (δ + n)kt , which, taken to
the budget constraint, it implies: kt+1 < kt . The opposite happens at any point below
the curve. Hence, we have the phase diagram shown in the graph, which describes
the existence of a single stable manifold taking the economy to the optimal steady-
state, as it was the case in the continuous time version of the economy. [See Fig. 4.1].

The final sections of the chapter are devoted to the numerical computation of a
trajectory converging to the steady-state from a given initial condition, in an econ-
omy with taxes.
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Stable manifold

kt

ct

kss

css

kt+1−kt = 0

ct+1−ct = 0

Fig. 4.1 Stability in discrete-time version of Cass-Koopmans model

4.1.5 Transversality Condition in Discrete Time

The transversality condition for the infinite horizon problem is obtained by taking
limits in the similar condition for the finite horizon problem. The finite horizon
problem is,

Max
{ct ,kt+1}T

t=0

T

∑
t=0

β tU(ct),

subject to the same sequence of budget constraints up to time T ,

kt+1 =
1

1+n
[ f (kt)+(1−δ )kt − ct ] ,

having as Lagrangian,

L({ct ,kt+1,λ t}) =
T

∑
t=0

β t {U(ct)+λ t [ f (kt)− ct − (1+n)kt+1 +(1−δ )kt ]} ,

with first-order conditions,

β t [U ′(ct)−λ t
]
= 0, t = 0,1,2,3, ...

−β tλ t (1+n)+β t+1λ t+1
[

f ′(kt+1)+1−δ
]
= 0, t = 0,1,2,3, ...

and a transversality condition which is obtained when taking derivatives of the
Lagrangian with respect to the stock of capital with the highest time index, kT+1,

−βTλT (1+n) ≤ 0, and βTλT kT+1 (1+n) = 0.
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This condition implies that at the end of the maximization period, either the con-
sumer does not want to maintain any capital stock or its value, as measured by its
shadow price, will be zero. Usually, it will be the case that kT+1 = 0.

The transversality condition for the infinite horizon problem is obtained by taking
limits in the one for the finite horizon problem, to obtain,

lim
T→∞

[
−βTλT (1+n)

]
≤ 0, and lim

T→∞
βTλT kT+1 = 0.

Taking into account the relationship between discount factors for the continuous
and discrete time problems: β ≈ e−θ , we see the equivalence between the formula-
tion of the transversality condition in both cases.

4.1.6 Competitive Equilibrium with Government

4.1.6.1 The Government

As we did in the continuous time analysis, we now introduce a government in
the competitive equilibrium model of an economy with a firm and identical con-
sumers, maintaining the assumption that there is no uncertainty. We assume that
the government consumes Gt units of the commodity each period, an exogenous
sequence which is not linked to the aggregate level of income for the whole econ-
omy. To finance these expenditures, the government can either issue bonds or levy
non-distortionary, lump-sum taxes.

The government’s budget constraint is:

Gt + rtBt = Tt +Bt+1 −Bt , ∀t = 0,1,2, ....

with Bt being the stock of public debt outstanding at time t. These were issued and
purchased by the private sector at time t −1. rt is the rate of return paid at time t on
bonds issued at time t −1, which is announced and known before hand.

The government budget constraint in per capita terms, is:

gt + rtbt = τ t +(1+n)bt+1 −bt , ∀t = 0,1,2, .... (4.11)

with τ t = Tt
Nt

.
Our goal is to characterize in this economy the allocation of resources emerging

under the competitive equilibrium mechanism, and the way how this distribution of
resources depends on the level of public consumption.

4.1.6.2 The Problem of the Household

The consumer is allocated with a unit of time every period. Under the assumption
that consumption is the only argument in his/her utility function, the unit of time is
supplied inelastically in the labor market.
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We denote by vt the units of firm’s stock owned by the representative consumer,
while at denotes total financial assets (public debt plus firms’ stock):

at = bt + vt . (4.12)

The consumer’s budget constraint at time t is:

ct +(1+n)at+1 −at + τ t = ω t + rtat , (4.13)

so that the following optimization problem is solved each period:

Max
{ct ,bt ,vt}∞t=0

∞

∑
t=0

β tU (ct) ,

subject to (4.12), (4.13), and given a0.
The discounted Lagrangian for this problem is:

L({ct ,at+1,bt ,vt ,λ t ,µ t}) =
∞

∑
t=0

β tU(ct)

+
∞

∑
t=0

β tλ 1t [ω t +(1+ rt)at − ct − (1+n)at+1 − τ t ]

+
∞

∑
t=0

β tλ 2t [at −bt − vt ] .

with first order conditions:
ct : U ′(ct) = λ 1t , (4.14)

bt : β tλ 2t ≤ 0, β tλ 2tbt = 0, (4.15)

vt : β tλ 2t ≤ 0, β tλ 2t vt = 0, (4.16)

at+1 : (1+n)λ 1t = βλ 1t+1 (1+ rt+1)−λ 2t . (4.17)

If the consumer demands a positive number of bonds and stock (bt+1, vt+1 > 0),
then λ 2t = 0. Plugging this condition, together with (4.14) into (4.17), we get:

(1+n)U ′(ct) = βU ′(ct+1)(1+ rt+1) . (4.18)

The transversality condition is :

lim
t→∞

β tλ 1tat+1 = 0 ⇔ lim
t→∞

β tλ 1t (bt+1 + vt+1) = 0, (4.19)

which will hold only if:

lim
t→∞

β tλ 1tbt+1 = 0, (4.20)

lim
t→∞

β tλ 1t vt+1 = 0, (4.21)

since bt+1 > 0 and vt+1 > 0.
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We can obtain a more intuitive representation for the transversality conditions by
noting that optimality conditions imply (1+n) λ 1t = β λ 1t+1 (1+ rt+1) , which
leads to the first order difference equation: λ 1t+1 = (1+n)λ 1t

β (1+rt+1) . Iterating backwards
on this equation, we get:

λ 1t =
(1+n)t

β t∏t
s=1(1+ rs)

λ 10.

Plugging this result into (4.20) and (4.21) we finally obtain the conditions:

lim
t→∞

(1+n)t

∏t
s=1(1+ rs)

bt+1 = 0, (4.22)

lim
t→∞

(1+n)t

∏t
s=1(1+ rs)

vt+1 = 0. (4.23)

4.1.6.3 The Problem of the Firm

The single firm uses labor and physical capital as factors to produce the single good
in the economy. The firm owns the stock of physical capital, and pays a wage ω t to
the Lt workers hired at time t. The firm chooses the amount of physical capital and
the number of workers to use every period in production in order to maximize the
discounted present value of profits:

Max
{Kt , Lt}

V0 = F(K0,L0)−ω0L0 −δK0 − (K1 −K0)

+
∞

∑
t=1

1
∏t

s=1(1+ rs)
[F(Kt ,Lt)−ω tLt −δKt − (Kt+1 −Kt)] ,

where single period profits are defined as the difference between output revenues
and the aggregate of wage payments and gross investment. Being the owner of cap-
ital, the firm takes care of depreciation expenditures.

The present value of profits can be written,

Max
{Kt , Lt}

V0 = F(K0,L0)−ω0L0 −δK0

+
∞

∑
t=1

1
∏t

s=1(1+ rs)
[F(Kt ,Lt)−ω tLt −δKt ]

−(K1 −K0)−
∞

∑
t=1

1
∏t

s=1(1+ rs)
[Kt+1 −Kt ] .
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But,

(K1 −K0)+
∞

∑
t=1

1
∏t

s=1(1+ rs)
[Kt+1 −Kt ]

=
[

K1 +
K2

1+ r1
+

K3

(1+ r1)(1+ r2)
+ ...

]

−
[

K0 +
K1

1+ r1
+

K2

(1+ r1)(1+ r2)
+ ...

]

= −K0 +K1
r1

1+ r1
+K2

r2

(1+ r1)(1+ r2)
+ ...

= −K0 +
∞

∑
t=1

rtKt

∏t
s=1(1+ rs)

.

Therefore, the objective function for the firm becomes:

V0 = F(K0,L0)−ω0L0 +(1−δ )K0 +
∞

∑
t=1

1
∏t

s=1(1+rs)

[
F(Kt ,Lt)−ω tLt
−(rt +δ )Kt

]
.

Note that, at time t = 0, the firm chooses the amount of work, but not the stock
of capital K0, which is exogenously given. We can see that V0 is no longer a dy-
namic function, in the sense that each term depends only on variables determined at
time t. There is no connection between decisions made at time t and future profits.
Therefore, the first order conditions for the profit maximization problem coincide
with those for the static problem of profit maximization for a single period:

rt +δ =
∂F(Kt ,Lt)

∂Kt
= f ′(kt), t = 1,2,3... (4.24)

ω t =
∂F(Kt ,Lt)

∂Lt
= f (kt)− kt f ′(kt), t = 0,1,2,3... (4.25)

where small case letters denote again per capita variables.

4.1.6.4 Competitive Equilibrium

A competitive equilibrium is a vector of time series: {ct , kt , gt , bt , vt , Lt , Nt , ω t , rt ,
τ t}∞t=0, such that:

1. Given prices and taxes {ω t ,rt ,τ t}∞t=0 , then {ct ,at ,bt ,vt}∞t=0 solve the problem of
the representative consumer.

2. Given prices {ω t ,rt}∞t=0 , then {kt ,Lt}∞t=0 solve the firm’s problem.
3. Factor markets are in equilibrium, vt = kt , Nt = Lt , ∀t.
4. The set of time series {gt ,rt ,bt ,τ t}∞t=0 satisfy the government budget constraint

every period.
5. The transversality conditions (4.22) ,(4.23) hold.
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Once again, the fact that the competitive equilibrium allocation satisfies the gov-
ernment’s as well as the consumer’s budget constraints, implies that the market for
the single commodity in the economy is in equilibrium:

ct +(1+n)kt+1 − (1−δ )kt +gt = f (kt) . (4.26)

with total output being distributed among private and public consumption, and in-
vestment. This represents the global constraint of resources in the economy.

4.1.6.5 The Optimal Steady State

The optimal steady state is a dynamic, competitive equilibrium in which per capita
variables remain constant over time: ct+1 = ct = css, kt+1 = kt = kss. Being exoge-
nously chosen by the government, public per capita consumption must also remain
constant for a steady state to exist.

The steady state rate of interest is determined from condition (4.18), particular-
ized at steady-state:

rss =
1
β
−1.

Plugging this result into (4.24), again particularized at steady-state, we obtain
that the steady-state stock of capital satisfies:

f ′(kss) =
1
β
−1+δ ,

showing that the steady-state stock of capital is independent from public consump-
tion, while being affected by the time discount factor and the depreciation rate of
capital. Besides, it takes the same value as in the economy without government, so
that the presence of government expenditures does not affect the capital accumula-
tion process, at least in the long-run.3

From (4.26), we get steady-state consumption:

css = f (kss)− (n+δ )kss −gss,

where it can be seen how public consumption crowds out private consumption.
Steady-state real wages are obtained from (4.25):

ωss = f (kss)− kss f ′(kss).

Finally, if the government chooses exogenously a path for public debt, bss ∀t,
then the lump-sum tax must be determined from the government budget constraint
so as to finance public expenditures and interest payments:

τss = gss + rssbss.

3 Remember the equivalence: β = 1
1+θ .
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4.1.6.6 The Representative Agent Problem

As in continuous time, the competitive equilibrium allocation in an economy with
consumers and firms solving their respective optimization problems can be charac-
terized as the optimal allocation for a representative consumer-entrepreneur agent,4

Max
{ct ,bt+1,kt+1}∞t=0

∞

∑
t=0

β tU (ct) ,

subject to,5

ct +(1+n)kt+1 − (1−δ )kt +(1+n)bt+1 − τ t = f (kt)+(1+ rt)bt . (4.27)

Optimality conditions for this problem are,

(1+n)U ′(ct) = βU ′(ct+1)(1+ rt+1) ,
(1+n)U ′(ct) = βU ′(ct+1)

(
1−δ + f ′(kt+1

)
,

lim
t→∞

(1+n)t

∏t
s=1(1+rs)

(bt+1 + kt+1) = 0.

together with (4.27).
The competitive equilibrium allocation is characterized by these same condi-

tions, together with the government budget constraint (4.11) and the consumption
commodity market clearing condition (4.26).

A proof analogous to that in Sect. 3.5 can be made to show that the competitive
equilibrium allocation in this economy is not efficient if the government implements
positive expenditures, gt > 0, unless they are returned to consumers as a lump-sum
transfer.

4.2 Fiscal Policy in the Cass–Koopmans Model

4.2.1 The Deterministic Case

Let us consider an economy in which the private sector (consumers and the firm)
is modeled as a representative composite worker-entrepreneur. That is, we consider
that the whole private sector can be represented as a single representative agent
interested in maximizing his/her time aggregate welfare, with preferences repre-
sented by a constant relative risk aversion utility function, with parameter σ > 0.
The agent has access to a technology to produce consumption commodity using

4 The proof is analogous to that in Sect. 3.4.
5 Where it can be seen that, at a difference of the planner’s problem, government expenditures do
not appear.
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labor and capital as inputs. The single good in the economy can either be consumed
or saved in the form of physical capital. The production technology is represented
by a function with decreasing returns to scale in each of the two production factors,
but constant returns to scale in the aggregate.

The government implements a time sequence of expenditures, which do not af-
fect the production technology or the utility of the representative agent. Using the
expression we introduced previously, public consumption is ’thrown to the sea’.6

Government expenditures are financed through taxes on output and consumption, at
flat rates, τy

t ,τc
t . We assume that government expenditures are decided every period

on the basis of tax revenues, so as to keep a balanced budget. This is the only source
of revenues: the government does not print any money, and there is not bond issuing.
The single-period government budget constraint is,

gt = τy
t yt + τc

t ct , t = 0,1,2,3, ... (4.28)

Note that government expenditures are not exogenously given in this model. Be-
ing determined by tax revenues, they will change with consumption and output.

In Sect. 3.5.2 we discussed in the continuous time version of the competitive
equilibrium allocation can be obtained as the solution to the representative agent’s
problem when the tax rate on labor income and capital income is the same, τy. We
use this result to characterize the competitive equilibrium allocation of an economy
operating under consumption and income taxes by solving the simpler optimization
problem of the representative agent.

With population growth equal to n, and a linear depreciation rate for physical
capital equal to δ , the budget constraint of the representative agent is,

(1+ τc
t )ct +(1+n)kt+1 − (1−δ )kt =

(
1− τy

t
)

f (kt) , (4.29)

where we have used the constant returns to scale property to write the aggregate
production technology Yt = F(Kt ,Nt) in per capita terms as yt = f (kt).

The representative agent solves the problem,

Max
{ct ,kt+1}∞t=0

∞

∑
t=0

β t c1−σ
t −1
1−σ

,

subject to (4.29) and given the initial capital stock, k0.
The Lagrangian for this problem is,

L({ct ,kt+1,λ t}) =
∞

∑
t=0

β t
[

c1−σ
t −1
1−σ

+λ t

[ (
1− τy

t
)

f (kt)− (1+ τc
t )ct

−(1+n)kt+1 +(1−δ )kt

]]
.

We assume in what follows that the constant returns to scale production function
is of the Cobb-Douglas type, so that per capita output can be written,

yt = f (kt) = Akαt , 0 < α < 1.

6 As a consequence, the competitive equilibrium allocation will not be efficient.
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Necessary conditions for optimality are obtaining by taking derivatives in the
Lagrangian with respect to ct and kt+1, to obtain, assuming interior solutions
(ct ,kt+1 > 0, ∀t),

β t [c−σt −λ t (1+ τc
t )
]
= 0, (4.30)

−β tλ t (1+n)+β t+1λ t+1
[(

1− τy
t+1

)
Aαkα−1

t+1 +1−δ
]
= 0. (4.31)

We also have the transversality condition,

lim
t→∞

β tλ t kt+1 = 0.

Condition (4.30) can also be written,

c−σt

1+ τc
t

= λ t ,

which, substituted in (4.31) leads to,

ct+1 =
[

β
1+n

1+ τc
t

1+ τc
t+1

[(
1− τy

t+1

)
Aαkα−1

t+1 +1−δ
]
] 1
σ

ct , (4.32)

the version of the Keynes-Ramsey condition under income and consumption taxes.
This condition is the extension of the standard equality, at each point in time, be-
tween the marginal rate of substitution of consumption and the marginal product
of capital net of taxes and depreciation, that relationship changing over time as a
function of possible changes in the consumption tax rate.

4.2.1.1 Solving the Representative Agent Problem

For an initial condition k0, and given time series for {τc
t ,τ

y
t }, a competitive equilib-

rium is a set of real functions {ct ,kt+1} defined on (0,∞), such that: (1) given τc
t ,τ

y
t

the vector of functions {ct ,kt+1} solves the utility maximization problem of the
representative agent, (2) the commodity market clears, and (3) the budget constraint
(4.28) for the government is satisfied in every period. The competitive equilibrium
allocation will not be efficient because a positive level of public consumption is
‘thrown to the sea’, and because there is distortionary taxation in the economy. This
can be shown by an argument parallel to that in Sect. 3.5.

Together with the transversality condition, the budget constraint (4.29) satisfied
with equality and the Keynes-Ramsey condition (4.32) form a system of non-linear
difference equations characterizing the optimal time paths for physical capital and
consumption, starting from an initial condition k0. We could think of solving this
system of equations directly. Even though it is a system of two non-linear equa-
tions each period for which no analytical solution exists, values for consumption
and capital stock for every period can be obtained using any numerical solution
algorithm for nonlinear systems included in a mathematical computer library. The
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budget constraint is a relationship between ct and kt+1, given kt , while the Keynes-
Ramsey condition relates ct+1 and kt+1, given ct . This suggests that starting form
the initial condition k0, a given choice of initial consumption c0 would allow us
to compute k1 from the budget constraint, to then obtain c1 from Keynes-Ramsey
condition, and the procedure could be iterated to obtain full time series for both
variables. The trouble is that, with all probability, the obtained solution would not
converge to steady state, due to the fact that we would not be imposing any stability
condition. Such condition is necessary to guarantee that the transversality condition
will hold. If initial consumption could be chosen arbitrarily, as described in the pre-
vious paragraph, we could have a continuum of solutions, since any possible choice
of initial consumption would start a trajectory taking the economy to steady state.
That is a characteristic of globally stable systems. The phase diagrams discussed for
the continuous and the discrete time version of the model show that the planner’s
problem has a saddle-point structure, characterized by the existence of a single sta-
ble manifold, i.e., a single trajectory converging to steady-state. The economy will
be on a stable path, converging to steady state only if initial consumption is cho-
sen appropriately, and there is a single choice guaranteeing stability. That specific
choice of initial consumption is determined by the stability condition we discuss
next.

4.2.1.2 Stability

A stability condition will guarantee that the set of time series for the relevant
variables obtained as a solution to the representative agent problem, converges to
steady-state levels. To characterize such condition, we start by constructing the
linear approximation to the system around steady-state. With a production tech-
nology displaying decreasing returns to scale in the cumulative factor (physical
capital), the only growth rate which is sustainable on the long-run is zero, as we
saw in chapter 2. Hence, in steady-state, per capita variables will stay constant,
ct = css, kt = kss, yt = yss, ∀t.

For simplicity, we assume the government uses constant income and consump-
tion tax rates,

τy
t = τy, τc

t = τc, ∀t.

This assumption is more strict than needed, but it should be clear that existence
of a zero growth rate steady state requires of a sufficiently stable behavior of tax
rates.

Taking these assumptions to (4.32), we obtain the steady state level of physical
capital,

kss =

[
(1− τy)Aα

1+n
β − (1−δ )

] 1
1−α

,

a function of the tax rate on income, which is not affected by the tax rate on con-
sumption. Hence, consumption taxes do not affect the long-run process of physical
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capital accumulation. Plugging this expression into the budget constraint, we get,

css =
1

1+ τc [(1− τy)Akαss − (n+δ )kss] .

We can now approximate the first order conditions around steady-state. We first
write the budget constraint,

kt+1 −
1− τy

1+n
Akαt − 1−δ

1+n
kt +

1+ τc

1+n
ct = 0, (4.33)

and consider it as a function G(kt+1,ct+1,kt ,ct) = 0, whose linear approximation is,

(kt+1 − kss)−
[

1
1+n

(
(1− τy)Aαkα−1

ss +1−δ
)
]
(kt − kss)

+
1+ τc

1+n
(ct − css) = 0.

From the expression for kss we see that the first bracket is equal to 1
β , so that we

get,

kt+1 − kss =
1
β

(kt − kss)−
1+ τc

1+n
(ct − css) . (4.34)

On the other hand, considering the optimality condition for the representative
agent problem, (4.32), as a function F (kt+1,ct+1,kt ,ct) = 0, it can be approxi-
mated by,

ct+1 − css =
1
σ
Ω

1
σ −1
ss

[
β

1+n
(1− τy)Aα (α−1)kα−2

ss

]
css (kt+1 − kss)

+Ω
1
σ
ss (ct − css) ,

where Ωss denotes the bracketed expression in (4.32), Ωss = β
1+n ((1− τy)Aαkα−1

ss
+ 1 − δ ). Particularizing (4.32) at steady-state, we get: Ωss = 1.

So we have,

(ct+1 − css)−
1
σ

β
1+n

(1− τy)Aα (α−1)kα−2
ss css (kt+1 − kss) = ct − css. (4.35)

These two approximations can be written in matrix form,
(

1 0
− 1
σ

β
1+n (1− τy)Aα (α−1)kα−2

ss css 1

)(
kt+1 − kss
ct+1 − css

)

=
( 1

β − 1+τc

1+n
0 1

)(
kt − kss
ct − css

)
, (4.36)

which can be abbreviated,
B0zt+1 = B1zt ,



172 4 Optimal Growth. Discrete Time Analysis

where zt = (kt − kss, ct − css) , and B0, B1 are the 2x2 coefficient matrices in (4.36).
Since B0 is invertible,

B0 =
(

1 0
M 1

)
⇒ B−1

0 =
(

1 0
−M 1

)
,

with,

M = − 1
σ

β
1+n

(1− τy)Aα (α−1)kα−2
ss css > 0.

And we can also write the linear approximation to the optimality conditions of
the model with taxes as,

(
kt+1 − kss
ct+1 − css

)
=

(
1
β − 1+τc

1+n

− 1
β M 1+M 1+τc

1+n

)(
kt − kss
ct − css

)

=
(

d11 d12
d21 d22

)(
kt−1 − kss
ct−1 − css

)
. (4.37)

where the 2×2 matrix of coefficients D =
(

d11 d12
d21 d22

)
, has as characteristic equa-

tion,
µ2 − (d11 +d22)µ+(d11d22 −d12d21) = 0,

with roots,

µ =
(d11 +d22)±

√
(d11 +d22)

2 −4(d11d22 −d12d21)

2
.

Using the discussion in the Mathematical Appendix and following an argu-
ment similar to the one used in Sect. 3.2, we use the spectral decomposition of
D, D = ΓΛΓ−1 and expressions for the matrix of right eigenvectors and its inverse

Γ=
(

x1 y1
x2 y2

)
, Γ−1 =

(
u1 v1
u2 v2

)
to represent the dynamics of the solution as,

(
kt − kss
ct − kss

)
= ΓΛΓ−1

(
kt−1 − kss
ct−1 − kss

)

=
(

x1 y1
x2 y2

)(
µ1 0
0 µ2

)(
u1 v1
u2 v2

)(
kt−1 − kss
ct−1 − kss

)
, (4.38)

where, in terms of parameter values, x1 = 1, x2 = µ1−d11
d12

; y1 = 1, y2 = µ2−d11
d12

;

u1 = µ2−d11
µ2−µ1

, v1 = − d12
µ2−µ1

; u2 = − µ1−d11
µ2−µ1

and v2 = d12
µ2−µ1

.
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Iterating over time, we get the full trajectory from starting values k0,c0,

(
kt − kss
ct − kss

)
= ΓΛtΓ−1

(
kt−1 − kss
ct−1 − kss

)

=
(

x1 y1
x2 y2

)(
µ t

1 0
0 µ t

2

)(
u1 v1
u2 v2

)(
k0 − kss
c0 − kss

)
.

The characteristic equation for this system satisfies the conditions described in
the Mathematical Appendix on models with a saddle point structure, so that the two
roots satisfy: |µ1|> 1/

√
β , |µ2|< 1. For reasons that will become clear shortly, we

call µ2 the stable eigenvalue, µ1 being the unstable eigenvalue7.
The matrix product in the previous expression is:

kt − kss = x1µ t
1 [u1(k0 − kss)+ v1(c0 − css)]

+y1µ t
2 [u2(k0 − kss)+ v2(c0 − css)] ,

ct − css = x2µ t
1 [u1(k0 − kss)+ v1(c0 − css)]

+y2µ t
2 [u2(k0 − kss)+ v2(c0 − css)] .

The transversality condition on the capital stock is,

lim
t→∞

β t 1
1+ τc ktc−σt = lim

t→∞
β t kt = 0,

where we have used the fact that consumption will not go to zero along the optimal
trajectory. Since |βµ1| > 1 while |βµ2| < β , the transversality condition will hold
only if the coefficient on the unstable eigenvalue, µ1, in the equation for kt − kss
is set equal to zero. But, as shown above, x1 = 1, so that it is the bracketed term
accompanying µ t

1 which must be zero. In the consumption equation, the same con-
dition must hold, because x2 depends on the values of the structural parameters, and
cannot be chosen to be zero:

u1(k0 − kss)+ v1(c0 − css) = 0, (4.39)

7 The rate of growth along the solution is clearly related to the absolute values of the µ1,µ2 roots.
The critical rate of growth below which the solution is stable is model–specific. The requirement for
a well–defined solution to exist is that the objective function remains bounded, which will require
upper bounds on its variable arguments. Those bounds will depend on the functional form of the
objective function. Sometimes, as in the Cass–Koopmans model, transversality conditions take care
of that. In other cases, transversality conditions may be needed for feasibility or optimality even
when the objective function is bounded, so that extra upper bounds on growth rates will then need
to be added, to guarantee that transversality conditions hold. Note that a linear approximation to
the set of first order conditions for the representative agent problem amounts to a linear-quadratic
approximation to that problem. Hence, given a quadratic approximation to the objective function

(i.e.,
∞
∑

t=0
β tU(ct)�

∞
∑

t=0
β t(ac̃2

t +bc̃t +d), where c̃t = ct −css), it is clear that the sum will converge

for solutions of the type c̃t = µ t c̃0, only if |µ| < 1/
√
β .
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so that stability requires that initial consumption c0 be chosen by:

c0 − css = −u1

v1
(k0 − kss) =

µ2 −d11

d12
(k0 − kss).

If the initial consumption choice is made according to this stability condition,
then the dynamics of the system thereafter is given by,

kt − kss = y1µ t
2 [u2(k0 − kss)+ v2(c0 − css)] , (4.40)

ct − css = y2µ t
2 [u2(k0 − kss)+ v2(c0 − css)] , (4.41)

so that,

ct − css =
y2

y1
(kt − kss) =

µ2 −d11

d12
(kt − kss), (4.42)

where we can see that stability requires that the same condition between capital
stock and consumption, in deviations from steady state levels, must hold at each
point in time as at time 0. This is the stability condition we were looking for. Ad-
ditionally, it is easy to see that, even though we have not imposed them explicitly,
conditions (4.40) and (4.41) will also hold at time t = 0.

Consequently, the dynamics of the system can be simplified to,

kt − kss = µ t
2 [y1(u2(k0 − kss)+ v2(c0 − css))] = µ t

2 (k0 − kss) ,

ct − css =
µ2 −d11

d12
µ t

2 (k0 − kss) = µ t
2 (c0 − css) ,

showing that both, consumption and the stock of capital smoothly converge from
their initial values to their steady state levels along this linear approximation.

The numerical solution to the model could be computed from the linear approx-
imation, using the stability condition to calculate initial consumption, c0. This is
because of the property above that the linear approximation will satisfy the sta-
bility condition at any time period, if it is imposed at t = 0. However, the linear
approximation may be a crude approximation to the nonlinear economy, so this
procedure is not advisable. As an alternative, we could solve using one of the two
equations in the linear approximation, together with the stability condition, at any
time period. A better approach is to use each period the stability condition and the
nonlinear global constraint of resources (4.29). That way, we preserve some of the
nonlinearity in the original model. The solution so obtained will, in fact, be seen to
converge towards steady-state. The condition not being used will not hold exactly
each period. On the other hand, if a solution is obtained directly from the two non-
linear conditions, without imposing stability at any point, the resulting time series
will eventually diverge away from steady-state. That would be the case because we
would not be taking proper care of the transversality condition. It is important to
realize that the potential instability issues do not have anything to do with the sto-
chastic nature of the problem, arising also in deterministic economies like the one
considered in this chapter.
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In more complex deterministic models, the stability conditions can be seen as
picking the stable initial values for the decision variables as functions of the exoge-
nous initial values of the state variables. If we have less stability conditions than
decision variables in the system8, we will only be able to solve the model as a func-
tion of a given, arbitrary, starting value for one or more decision variables9, and
they will all be stable. Since any such an arbitrary choice will produce stable paths
converging to steady-state, the solution is indeterminate, in the sense of Benhabib
and Perli [9] and Xie [98]. The system is then said to be globally stable. On the
other hand, the system does not have a solution when there are more independent
stability conditions than control variables to be chosen. The stable subspace will
then reduce to the steady state, if it exists, and the economy will be globally un-
stable, getting into divergent paths as soon as it experiences even slight deviations
from steady state. Finally, the solution will be unique when the set of stability con-
ditions can be used to represent all the control variables as functions of state and
exogenous variables, the system of equations having a unique solution. In the pre-
vious model we have one state variable and one decision variable, so one stability
condition produces a unique solution.

To obtain a solution to this model, in the form of a set of time series for the
relevant variables, we proceed as follows,

1. Give numerical values to structural parameters, β , δ , A, α, n, σ , as well as to the
initial condition, k0, and policy parameters, τy, τc,

2. Obtain steady state levels for physical capital and consumption, kss, css,
3. Numerically evaluate the transition matrix in (4.37), and compute its eigenvalues

and eigenvectors,
4. Starting from k0, use the stability condition to obtain the value for initial con-

sumption, c0, placing the economy on the trajectory converging to steady-state,
5. Obtain k1 from the budget constraint, and c1 from the stability condition. Repeat

the process for every time period t.

As we have already mentioned, a numerical solution computed from the two
nonlinear equations, the budget constraint and the Keynes-Ramsey rule, will be ex-
plosive. As seen above, that would require an arbitrary choice of initial consumption,
with no hope that the solution might be stable. The model can be solved applying
each period the stability condition, together with the budget constraint. The Keynes-
Ramsey condition, which is not being used to compute the solution, will not hold
exactly, reflecting the numerical approximation error produced by having used an
approximation to the stability condition. The model could also be solved imposing
the stability condition at each period and using either one of the equations in the
linear approximation to the model. Although we have shown above that the linear

8 After using equations that involve only contemporaneous values of decision variables (as it may
be the case with some identities) to eliminate some of these decision variables from the problem.
9 Initial consumption, in the Cass–Koopmans economy considered in this chapter. We will get back
to this issue in the Mathematical Appendix.
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approximation expands the stability condition towards the future, it is interesting to
point out that if we impose the stability condition just in the initial period and use
the equations in the linear approximation to compute the solution, it will converge
to steady-state, but it will eventually end up by abandoning it.

4.2.2 Numerical Exercise – Solving the Deterministic Competitive
Equilibrium with Taxes

In the CK Taxes deterministic.xls file we solve the deterministic, discrete time ver-
sion of the representative consumer’s problem, in an economy where the govern-
ment makes some nonzero consumption each period, financed with the proceeds
from consumption and income taxes, as characterized in the previous section. The
same analysis can be implemented using MATLAB file CK d transition.m. This ex-
ercise is extremely important to understand the role of stability conditions when
computing numerical solutions for deterministic and stochastic optimization prob-
lems, like those involved in planner problems or when characterizing the competi-
tive equilibrium allocation of resources.

Benchmark values for structural parameters are, A = 1, β = .90, α = .33, n = .0,
δ = .07, σ = 0.50, and tax rates: τc = 20.0%, τy = 12.478%. Under this parameter-
ization, steady state levels are kss = 2.007, css = 0.801, yss = 1.258, and government
revenues: gss = 0.3172. Steady state investment is equal to the difference between
disposable income and consumption iss = (yss − τyyss − τccss)− css = .1405. This
figure is equal to (δ + n)kss, the aggregate of the depreciation loss of physical cap-
ital, plus what must be given away to the consumers being born every period to
maintain constant the stock of capital per worker, nkss, as it should be to make the
steady state sustainable.

Below the benchmark parameter values and tax rates, steady-state levels for the
main endogenous variables are shown in the first columns of the spreadsheet. Be-
low them, the reader can find the numerical values for the elements of the transi-
tion matrix in the linear approximation to the model, as well as its eigenvalues and
eigenvectors, used to estimate the linear approximation to the stable manifold for the
competitive equilibrium under the chosen parameterization. The M-constant in the
spreadsheet is the same as in the previous section. With the mentioned benchmark
parameter values, the approximate stability condition is estimated at,

ct − css = 0.2868(kt − kss), ∀t.

The first case considered in Panel 1 presents an economy with an initial stock
of capital equal to the steady-state level, k0 = kss. Then, we choose per capita con-
sumption from the stability condition, which positions the economy on the stable
manifold. But, since the stock of capital is at its steady-state level, the economy
is positioned right at steady-state, with k0 = kss, c0 = css. After the initial pe-
riod, we use the budget constraint to find next period’s stock of capital, and the
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Keynes-Ramsey condition to find the associated level of consumption. Since the
economy starts right at steady-state, the implied numerical solution is trivial, the
economy never leaving the steady-state. Notice that some relationship other than
Keynes-Ramsey condition needs to be used to calculate initial consumption c0, be-
cause of the dependence on previous period consumption in that equation.

The second case in Panel 1 considers an economy which starts to the left of the
optimal steady-state, i.e., with a stock of capital below that of steady-state. As in
the previous case, the stability condition is used to compute c0, and the full nonlin-
ear structure of the economy is used as the propagation mechanism from t = 0 on.
We use sequentially the budget constraint, an equation of the form kt+1 = f (kt ,ct)
to find end-of-period capital, and Keynes-Ramsey condition, which has the form
ct+1 = f (kt+1,ct) to find the level of consumption next period. So, starting from k0,
the stability condition gives us c0, the budget constraint provides us with k1, the
Keynes-Ramsey condition with c1, and we iterate over time. Since we start to the
left of the steady-state, the linear approximation to the stability condition chooses
a level of consumption below that of steady-state. From that point on, capital stock
and consumption increase, as it should be the case in order to converge to steady
state. However, after some point in time shown in red in the spreadsheet, the econ-
omy changes its direction, with the stock of capital decreasing and consumption in-
creasing above the steady-state level. In terms of the stability graph, we have moved
from the lower-left region to the upper-left region and, as indicated in the enclosed
graph, the economy moves toward the vertical axis, with decreasing capital and
ever increasing consumption, a clearly unfeasible situation, which has a clear re-
flection in the numerical solution. This happens because we have not positioned the
economy on the stable manifold except at t = 0, being outside it for the remaining
periods.

One might think that the previous situation arises because we have started far
from steady-state. The third case in Panel 1 starts again to the right and below
steady-state, but very close to it, using again the stability condition to obtain ini-
tial consumption, and the full nonlinear structure of the economy as the propagation
mechanism from that point on. Once again, the economy starts moving in the right
direction towards the steady-state, but it reaches a point where the stock of capi-
tal falls quickly to zero. The only difference with the previous case is that it takes
longer to depart from the convergent trajectory. In fact, the reader can check that the
same result arises by arbitrarily choosing the initial level of consumption, i.e., the
level in cells M24 or P24.

Panel 2 exploits the linear approximation to the model, losing the information
contained in the nonlinearity aspects of the economy. Both, the stock of capital and
consumption are obtained from the linear approximation (4.34) to the model. How-
ever, initial consumption cannot be obtained that way, so the stability condition is
used just at t = 0, to choose c0. In the first case, initial capital is at steady-state level,
so our mechanism positions the economy at steady-state, which is never left. In the
second case, the economy starts with a stock of capital below that of steady-state.
From then on, (4.37) propagates the system forwards into the future. The use of
the fully linearized system takes the economy to steady-state, so long as we use the
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stability condition to compute initial consumption. The accompanying graph shows
smooth, gradual transition paths for the stock of capital and consumption. As shown
in the third case, starting farther away from steady-state just requires more periods
for convergence, but stability prevails. The only problem in this panel is that purely
numerical approximation errors in EXCEL throw the trajectories away from steady-
state after having been arbitrarily close to it for a large number of periods. The size
of errors clearly depends on how far is the initial condition from steady-state.

We compute in Panel 3 the numerical solution using again the linear approxi-
mation to the model, as we did in Panel 2. The difference is that we now use the
stability condition every period, not just at time 0, to obtain the consumption time
series. We obtain the same time series for consumption and capital as in Panel 3,
where we used the stability condition just at t = 0, for the same initial condition,
The third column computes the consumption times series again, but using the other
equation in the linear approximation, rather than the stability condition. The point is
that the linear approximation cannot be used to compute initial consumption, so the
stability condition is used instead to obtain c0. But then, as we saw in the previous
section, the stability condition will hold forever, so it is not surprising that the two
linear approaches to computing consumption in this panel produce the same stable
solution. After the consumption time series, we present the percent approximation
error in consumption and physical capital from using the linear approximation to the
model rather than its nonlinear structure, as reflected in the Keynes-Ramsey condi-
tion and the budget constraint. Approximation errors become negligible after a finite
number of periods.

In Panel 4, the stability condition is used at all time periods to obtain the level of
per capita consumption, while the budget constraint is used to obtain end-of-period
stock of capital, as kt+1 = f (kt ,ct). This mechanism would leave the economy at
steady-state if it started from there, as shown in the first situation considered. In
the second case, the economy starts from a stock of capital below steady-state. The
stability condition guarantees convergence to steady-state, no matter what the initial
stock of capital is. There is an unavoidable numerical approximation error in the fact
that we use as stability condition that of the linearly approximated system. However,
the solution is in this case a better approximation to the true solution than that found
in Panel 2 when starting from the same initial stock of capital, since in that case, we
did not use any of the true, nonlinear structure the model, as we do in this Panel 4.

To the far right we present a first graph comparing the trajectories obtained un-
der the linear approximation in Panel 3 and the more nonlinear solution in Panel
4. A second graph shows the smooth converging paths for consumption and the
stock of capital, as well as the trajectory that would follow the stock of capital if
we started farther away from steady-state. The consumption trajectories calculated
under the stability condition or using the Keynes-Ramsey condition, and the lev-
els of utility provided by them, are seen to be very similar to each other. In the
‘%-deviation in C’ column we show the percent difference between the level of
per capita consumption that would arise from the exact calculation provided by the
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Keynes-Ramsey condition, and the level that is obtained under the stability condition
to the linear approximation to the model. These alternative consumption trajectories
are shown in the last graph. When the economy starts close to steady-state, the ap-
proximation error is small, of 0.50%, becoming negligible after just 6 periods. The
last case in Panel 4 considers an economy starting farther away from steady-state.
That does not have any substantial implications regarding convergence, except for
the fact that it takes longer to reach the steady state and that the numerical approx-
imation error in consumption is initially rather large, but again becomes negligible
after very few periods.

4.2.3 Numerical Exercise – Fiscal Policy Evaluation

In the excel file CK solution changes in tax.xls, we use the model introduced in the
previous section to analyze the effects of different changes in government’s fiscal
policy. The Steady State spreadsheet shows long-run effects, while the Transition
spreadsheet contains short- and also long-run effects. In all cases, we compute the
welfare effects of policy changes. We start in this section by presenting the measure
we use to evaluate welfare effects, as used by Lucas [59].

4.2.3.1 Measuring Welfare Effects

We measure the welfare effect, ∆W , of a fiscal policy change as the additional con-
sumption which should be given to the representative consumer each period along
the old consumption path, to make him indifferent between the old policy and the
new one. A negative value of ∆W would mean that there is a welfare loss associated
to the fiscal reform. We measure the consumption compensation as a percentage of
the level of output prior to the fiscal reform. We further assume that the tax change
takes place on a steady-state economy.

Let cI
ss, yI

ss denote steady-state consumption and output under the initial tax pol-
icy, while cN

t denotes period’s t consumption under the new fiscal policy. Tax reform
is implemented at t = 0, when the economy is at steady state. Rather than staying
at css forever, the economy will start a transition towards the new steady-state, with
a consumption trajectory denoted by ct , t = 0,1,2, ... The effect on welfare is thus
measured as ∆W =100 ∆c

yI
ss
.

The consumption compensation ∆c must satisfy:

∞

∑
t=0

β t
(
cI

ss +∆c
)1−σ −1

1−σ
=

∞

∑
t=0

β t
(
cN

t
)1−σ −1
1−σ

.
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Defining η = ∆c
cI

ss
, we can write, ∆W =100ηcI

ss
yI

ss
, and the previous equation

becomes:
∞

∑
t=0

β t
(
(1+η)cI

ss
)1−σ −1

1−σ
=

∞

∑
t=0

β t
(
cN

t
)1−σ −1
1−σ

,

which implies a level of η :

η =

[
(1−β )(1−σ)

(
∑∞t=0β

t (cN
t )1−σ−1

1−σ

)
+1

] 1
1−σ

cI
ss

−1,

and,

∆W =100.

⎛

⎜
⎜
⎜
⎜
⎝

[
(1−β )(1−σ)

(
∑∞t=0β

t (cN
t )1−σ−1

1−σ

)
+1

] 1
1−σ

cI
ss

−1

⎞

⎟
⎟
⎟
⎟
⎠

cI
ss

yI
ss

. (4.43)

If the analysis is restricted to long-run effects, then cN
t = cN

ss, and η then becomes:

η =
cN

ss

cI
ss
−1,

so that,

∆Wss =
ηcI

ss

yI
ss

·100 =
(

cN
ss

cI
ss
−1

)
cI

ss

yI
ss
·100. (4.44)

Structural parameter values are given on the left side of the Steady State spread-
sheet: A = 1, β = .90, α = .33, n = .0, δ = .07, σ = 0.50. Three questions are
analyzed in that spreadsheet: i) the long-run effects of a change in the income tax
rate, keeping constant the consumption tax rate (in fact, we assume τc = 0), ii) the
long-run effects of a change in the consumption tax rate, keeping constant the in-
come tax rate (specifically, we assume τy = 0). In both cases, we can see that tax
revenues and hence, public consumption, both change. Finally, we analyze the long-
run effects of simultaneous changes in both tax rates keeping tax revenues constant.

4.2.3.2 Long-Run Effects of a Tax Reform

In Panel 1 in the Steady-state spreadsheet we start from a situation with zero con-
sumption taxes, and compute changes in the capital stock, private and public con-
sumption, production, after-tax income, and the weight of public consumption on
total output, as the consumption income tax rate increases from zero, while keep-
ing the income tax rate fixed at zero. We also compute the welfare cost of that tax
increase. A similar study is performed in Panel 2. In that case, it is the income tax
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rate which starts at zero and gradually increases, while the consumption tax stays at
zero. In all cases, we use the steady-state expressions for capital stock and consump-
tion characterized in the previous section. The same analysis can be implemented
with the CK d long run tax changes.m MATLAB file. Output is yss = f (kss) = Akαss,

investment: iss = (n + δ )kss, revenues are τccss + τyyss, utility: Uss = c1−σ
ss −1
1−σ , and

disposable income: yd
ss = (1− τy)yss. Welfare cost is obtained from (4.44) .

Below the numerical results we present some graphs summarizing these two
analysis. The blue line shows steady-state responses of different variables to changes
in the income tax rate, while the red line shows the response to changes in the con-
sumption tax rate. An increase in the consumption tax has no long-run effect on
the accumulation process for physical capital and hence, on the long-run stock of
capital. As a consequence, steady-state output and investment do not change either.
Steady-state investment is obtained by applying the depreciation rate anf popula-
tion growth to the steady-state stock of capital. Tax revenues increase, which allows
for a raise in public consumption. The latter crowds out private consumption in a
one-to-one basis, since there is no change in output or investment. This substitution
reduces consumers’ utility level. The welfare cost of the consumption tax increases
monotonically with the tax rate.

The main difference between an increase in either tax rate is the way they affect
productivity, which is not affected by a consumption tax. An increase in the income
tax rate produces a reduction in the after tax marginal product of labor, which dis-
courages capital accumulation and leads to a reduction in the steady-state levels of
the stock of capital and output. The lower disposable income leads to a reduction in
private consumption and utility. For similar tax rates, the negative effect on growth
and welfare of an income tax is greater than that of a consumption tax. It is inter-
esting to notice that tax revenues do not increase monotonically with an income tax,
being highest when income taxes are of about 67%, and decreasing for higher in-
come tax rates. This is what is known as Laffer’s curve. In spite of this reduction
in revenues for higher tax rates, the share of public consumption in production is
always increasing. The welfare cost again increases monotonically with the income
tax rate.

At a difference of the analysis in Panels 1 and 2, we consider in Panels 3 and 4
the real effects produced by simultaneous tax changes that keep tax revenues con-
stant. We consider two levels of revenues: 0.317 and 0.550. Results for both cases
are jointly summarized in a set of graphs below the numerical calculations. To char-
acterize the association between both tax rates, we write the budget constraint for
the economy with taxes in steady-state:

(1+ τc)css +(n+δ )kss = (1− τy)Akαss,

that is,

css = yss − (τyyss + τccss)− (n+δ )kss = yss −gss − (n+δ )kss,
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and solve in (4.28) for τc:

τc =
gss − τyyss

yss −gss − (n+δ )kss
.

To obtain the first tax combination, we assume that there are not income taxes,
and compute how large should the consumption tax rate be in order to allow for
financing the predetermined level of expenditures. For instance, when expenditures
are 0.317 and the income tax rate is zero, the consumption tax rate must be of 37.1%.
To compute alternative tax combinations, we successively increase the income tax
rate in intervals of 5%, and compute the consumption tax rate needed to finance
the predetermined level of expenditures. We can see that the increase in revenues
produced by the raise in income taxes leads to consumption tax rate cuts. As the
income tax raises, implied revenues from this tax alone could be even higher than
public expenditures, which leads to the need to implement negative consumption
taxes, i.e., the government would then be subsidizing purchases of the consumption
commodity. This is the case, for instance, when public expenditures are 0.317 and
the income tax rate is 30% or higher.

When the government introduces a tax reform by reducing the consumption tax
at the cost of increasing the income tax so as to maintain constant revenues, the
stock of capital decreases, since the after-tax marginal product of capital is now
lower. Since the firm owns a lower stock of the production factor, output falls. The
reduction in after-tax income because of the higher income tax leads to a reduction
in private consumption, in spite of the fact that the consumption tax is now lower.
The level of utility consequently, diminishes. Hence, the consumer would prefer
a tax mixture with zero income taxes. The welfare cost of fully eliminating the
consumption tax by income taxes is increasing and convex. That is, starting from
a situation where public expenditures are fully financed by consumption taxes, the
welfare cost of increasing the income tax from 0% to 10% is more than twice the
cost of increasing the tax rate from 0% to 5%. Notice that, even though tax revenues
remain constant, they decrease, as a percentage of output, as the government uses
more intensively the income tax relative to the consumption tax.

When we repeat the analysis for a level of public expenditures of 0.550 we see
that, in order to maintain revenues unchanged, an increase in income taxes may
need to come together with an increase in the consumption tax. For instance, when
τy = 0.65, then τc = 0.135, while when τy = 0.70, then τc = 0.183. This is the case
because, from the point of view of the income tax, we are in the decreasing region of
Laffer’s curve. The qualitative effects of tax changes are similar to those of the pre-
vious analysis, except for output and the stock of capital, which are now monoton-
ically decreasing in the income tax rate. It is particularly striking the fact that the
welfare cost of replacing the consumption tax by the income tax in a given amount
is the same, with independence of the level of public expenditures (tax revenues).

The reader can use positive tax rates where these have been set to zero in Panels
1 and 2 in the spreadsheet, and check that the results shown in the graphs change as
expected.
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4.2.3.3 Short- and Long-Run Effects of a Tax Reform Experiment

In the Transition spreadsheet, we start by characterizing the short- and the long-run
effects of a permanent increase in either tax rate, keeping the other tax rate constant,
with implied changes in steady-state tax revenues. The same analysis can be done
with the CK d long short run tax changes.m MATLAB file. In Panel 1, the con-
sumption tax rate is raised from 20.0% to 22.0%, while the income tax rate stays
at 12.48%. Government revenues increase from 0.317 to 0.330. In Panel 2, the in-
come tax rate is raised from 12.48% to 14.48%, the consumption tax rate staying at
20.0%. Government revenues then increase from 0.317 to 0.335. Finally, we charac-
terize in panel 3 the short- and long-run effects of an increase in the income tax rate,
accompanied of a reduction in the consumption tax from 20.0% to 17.32%, so that
steady-state government revenues and expenditures remain constant at 0.317. Along
the transition, however, government revenues change, initially increasing with the
tax rise, and converging afterwards to their steady-state level before the tax change.
Tax reform is implemented at t = 10. Structural parameter values are the same as in
the steady-state analysis described above. To compute short-term effects we need to
obtain the transition paths for the endogenous variables, as they converge from the
initial steady state to the new one, after the change in tax rates takes place. To do so,
we implement the numerical solution method described in the previous section.

Below the description of each policy experiment, we report steady state levels for
the endogenous variables before and after the tax change, as well as the transition
matrix for the linear approximation and the stabilizing constant needed to relate
consumption to the stock of capital, as described in the previous section. We do
this twice, before and after the change in tax rates. We use the stability condition
obtained under the initial steady state right until the period of the tax change, when
we switch to the stability condition obtained under the new steady state.

The first tax reform consists of an increase in the consumption tax from 20% to
22%, while keeping the income tax fixed at 12.48%. The stock of capital, the level of
output and after-tax income remain unchanged, in the short- as well as in the long-
run. Consumption decreases in the period when the tax change is introduced, to the
steady-state level associated to the new tax rate. This translates into a permanent
fall in utility from period t = 10 on. All effects following a change in consumption
taxes take place in a single period, as can be seen in the graphs below the numerical
computations. The elasticity of consumption to changes in the consumption tax rate
is below one, which implies that consumption tax revenues increase at t = 10, re-
maining at their new level from then on. The welfare cost of the mentioned increase
in the consumption tax rate amounts to 1.04% of initial production in the form of
additional consumption every period.

In the second tax experiment, the income tax rate increases from 12.48% to
14.48%, while keeping the consumption tax constant at 20%. Effects are displayed
in the graphs below the numerical computations, with the τc-constant label. As a
consequence of the tax hike, the after-tax marginal productivity of capital decreases,
and so does the accumulation of physical capital. This translates into a fall in the
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level of production starting at t = 11, since production at the time the tax reform is
introduced, t = 10, is determined by the stock of capital chosen at t = 9, under the
initial tax rates. Production then converges to its new steady-state level which, as
already explained, is lower than before the tax increase. After-tax income decreases
from t = 10, leading to a reduction in private consumption and utility. Tax revenues
increase drastically at the time of the tax increase, in spite of the fact that revenues
obtained from the consumption tax, decrease. In the following periods, tax revenues
decrease somewhat, converging to their new steady-state level, which is above the
initial level of revenues. Something similar happens with the output share of public
expenditures. We find that the welfare cost of this tax reform amounts to an addi-
tional consumption of 1.66% of initial output every period. We again get the result
that a change in the income tax has a more negative effect on welfare that a change
in the consumption tax having the same effect on revenues.

In the last experiment, a consumption tax cut to 17.425% is introduced so that
government revenues remain constant in the long-run when the income tax rate is
raised from 12.48% to 14.48%. Effects of this policy experiment are displayed in the
graphs below panel 2, with the τc-adjusting label. Consumption is seen to increase
at the time of the tax reform, decreasing afterwards while it converges to its new
steady-state level. Steady-state consumption is below the initial steady-state but, as
expected, it is above the one obtained when the consumption tax did not adjust to
maintain constant revenues. There are now two effects on consumption: a positive
one, from the reduction in the consumption tax, and a negative one, because the
increase in the income tax reduces disposable income. We can see that the first effect
dominates in the short-run, so consumption initially increases, while the second
effect is stronger in the long-run, since the steady-state level of consumption is lower
after the tax reform. This behavior of consumption also leads to an increase in single
period utility in the short-run, decreasing thereafter to end below its initial steady-
state level. Aggregating over time, we see that the welfare cost of this tax reform
amounts to an additional consumption of 0.24% of initial production, less than the
welfare cost we obtained when the consumption tax was kept constant. Notice that
even though tax revenues remain unchanged in the long-run, they increase in the
short-run and stay above their initial steady-state level for a number of periods.

In order to maintain tax revenues unchanged in the short- as well as in the long-
run, then we would need to allow for changes in the consumption tax along the
transition of the economy between steady-states. We would then have to redefine
the vector of variables in the model to include the consumption tax next to the stock
of capital and consumption in period t. The transition matrix would then be of di-
mension 3× 3. Computing the numerical solution for a model of that kind would
amount to characterizing approximate stability conditions and using them, together
with part of the nonlinear structure of the model, to compute time series for the en-
dogenous variables in the economy. A general discussion on stability follows in the
next section.
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4.3 Appendices

4.3.1 A Reformulation of the Stability Condition
for the Deterministic Version of the Model

Condition (4.42) is the approximate linear representation of the stable manifold
for this problem, which we characterized graphically in previous sections, and it is
called the stability condition of the system.10 This condition imposes orthogonality
between the row of Γ−1 associated to the unstable eigenvalue, and the vector of ini-
tial deviations with respect to steady-state (k0−kss,c0−css). In fact, the row of Γ−1

associated to the unstable eigenvalue of D, µ1, is: (u1,v1) = d12
µ2−µ1

( µ2−d11
d12

;−1),
where we have skipped the proportionality constant when imposing the orthogonal-
ity condition: (u1,v1)′(k0 − kss, c0 − css) = 0.

That the stability condition satisfying the transversality condition can be writ-
ten this way is not casual. The linear approximation to the deterministic, dynamic
system (4.36) can be written,

B0x̃t+1 = B1x̃t ,

with x̃t the vector of deviations around steady-state. In the tax reform analysis in the
previous section, x̃t = (kt − kss, ct − css).

Provided B0 is invertible, we have,

x̃t+1 = B−1
0 B1x̃t = Dx̃t ,

and using the spectral decomposition of D:

x̃t+1 = Dx̃t = ΓΛΓ−1x̃t , (4.45)

or,
z̃t+1 = Λz̃t ,

after premultiplying in (4.45) by Γ−1 and defining z̃t = Γ−1x̃t . Each element in z̃t
is a linear combination of deviations from steady-state for all variables in x̃t . By
repeated substitutions, taking into account the diagonal structure of Λ, we get,

z̃t = Λt z̃0 ,

a system of linear equations which will be stable, in the sense of satisfying the
transversality conditions, only if the elements in the diagonal of Λ, i.e., the eigen-
values of D are less than 1/

√
β .

In the tax reform analysis, the system is 2x2, and each element in z̃t is a linear
combination of deviations from steady-state for both variables, kt − kss,ct − css. We
have already shown that, in that system, the µ1-eigenvalue has absolute value greater
than 1 so the system becomes explosive.

10 Even though we did not compute it that way. Rather, we obtained the linear approximation to
the model, and obtained the exact stability condition for this approximated model.
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The only way to avoid the explosive path is by fixing z̃1t = 0 ∀t, which amounts
to setting to zero each period the inner product of the first row in Γ−1 (which is the
left- eigenvector associated to the explosive eigenvalue) times the vector of variables
in deviations from steady state. Needless to say, had we assumed that µ1was the
stable eigenvalue, with µ2 being unstable, we would have concluded the need to set
to zero the inner product of the second row of Γ−1 and the vector of deviations from
steady-state.

Some observations are worthwhile at this point:

• There are infinite linear trajectories passing through the optimal steady state, all
having the form: ct −css = b(kt −kss) for a certain range of slope values, b. If we
choose ct each period to satisfy any one of these conditions, given the stock of
capital kt chosen at the end of the previous period, the economy will converge to
the optimal steady state. The solution procedure described in the previous section
can be seen as selecting, among all those linear trajectories, the one approximat-
ing better the true model, at least in a neighborhood of the optimal steady-state,
since it is not possible to characterize that stable manifold analytically. In fact,
in the numerical exercises we present in EXCEL files, we check the amount by
which the Keynes-Ramsey condition, not used in the generation of the solution,
is not fulfilled by the numerical solution. The stable root takes care that the law
of motion for the stock of capital takes kt in the right direction, towards kss, so we
obtain stable time series for the stock of capital as well as for consumption. How-
ever, these time series would satisfy just part of the model, the budget constraint,
but not the Keynes-Ramsey condition.

• The discussion in this section generalizes to more general models, as we will
have a chance to see in subsequent chapters. In general, we will have a vector
x̃t of q variables in deviations with respect to steady-state, r of which will be
control or decision variables, the remaining q− r being state variables. In the
Cass–Koopmans model, r = 1,q = 2, with consumption as the single control or
decision variable, and the stock of capital as the state variable. For the model to
have a single stable solution, it is necessary to have as many stability conditions
as control variables, r, so that the matrix of coefficients D in the first order vector
autoregression (4.45) will need to have q− r stable eigenvalues, i.e., less than
1/

√
β in absolute value, and r unstable eigenvalues, and the rows of matrix Γ−1

associated to the unstable eigenvalues will provide us with stability conditions,
just like we have done in the Cass–Koopmans model.

• As we will see in the next chapter, in stochastic models, stability conditions
generate a set of relationships between stochastic shocks to the model and
expectation errors, which can be interpreted as approximating the way ratio-
nal expectations errors depend on the innovations to the exogenous stochastic
processes. Additionally, these relationships allow the researcher to generate time
series for the expectations errors from the time series for the exogenous processes
once the model has been solved. In turn, these time series can be used for imple-
menting rationality tests on the expectations errors: zero mean, no serial corre-
lation, and lack of correlation with any variable contained in the information set
available to the agent when forming their expectations. If the numerical solution
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is a good approximation to the true solution, the expectations data should not
fail these rationality tests. Unfortunately, this type of validation of the numerical
solution is not very often implemented in practice.

4.3.2 The Intertemporal Government Budget Constraint

We present in this section an intertemporal analysis of the government budget con-
straint, following the lines of the presentation we made on the continuous time ver-
sion of the model. The reader will recognize that the qualitative results we reach and
the expressions we obtain are similar to those we obtained in Sect. 3.4. Familiariza-
tion with the analytic details of this presentation is needed to discuss more general
questions relating to government financing in discrete time models. For simplicity,
we assume zero population growth (n = 0).

4.3.2.1 Government Budget Constraint

We can rewrite (4.11) as:

bt+1 = gt +(1+ rt)bt − τ t , (4.46)

and for the following period:

bt+2 = gt+1 +(1+ rt+1)bt+1 − τ t+1,

and the two expressions together lead to:

bt+2 = gt+1 +(1+ rt+1) [gt +(1+ rt)bt − τ t ]− τ t+1,

so that the present value of the level of debt outstanding at period t +2, is:

bt+2

(1+ rt+1)(1+ rt)
=

gt+1 − τ t+1

(1+ rt+1)(1+ rt)
+

gt − τ t

(1+ rt)
+bt .

Repeating the process for the stock of debt outstanding at time t +3, we get:

bt+3 = gt+2 +(1+ rt+2)bt+2 − τ t+2

= gt+2 +(1+ rt+2) [gt+1 +(1+ rt+1) [gt +(1+ rt)bt − τ t .]− τ t+1]

−τ t+2,
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so that the present value of debt outstanding at time t +3 is:

bt+3

(1+ rt+2)(1+ rt+1)(1+ rt)
=

gt+2 − τ t+2

(1+ rt+2)(1+ rt+1)(1+ rt)

+
gt+1 − τ t+1

(1+ rt+1)(1+ rt)
+

gt − τ t

(1+ rt)
+bt .

Repeating the process T times, we obtain that the present value of debt outstand-
ing at time t +T +1:

bt+T+1

∏T
s=0(1+ rt+s)

=
T

∑
j=0

gt+ j − τ t+ j

∏ j
s=0(1+ rt+s)

+bt .

Taking limits on T :

lim
T→∞

bt+T+1

∏T
s=0(1+ rt+s)

=
∞

∑
j=0

gt+ j − τ t+ j

∏ j
s=0(1+ rt+s)

+bt = 0, (4.47)

and using the fact that the transversality condition implies: lim
T→∞

bt+T+1
∏T

s=0(1+rt+s)
= 0, we

get,

bt =
∞

∑
j=0

τ t+ j −gt+ j

∏ j
s=0(1+rt+s)

,

so that, in each period, the present value of current and future government budget
surplus must be equal to the stock of debt outstanding.

Likewise, it is possible to write equation (4.47) as,

∞

∑
j=0

gt+ j

∏ j
s=0(1+rt+s)

+bt =
∞

∑
j=0

τ t+ j

∏ j
s=0(1+rt+s)

, (4.48)

showing that, each period, the present value of the stream of current and future
government expenditures, added to the current stock of debt outstanding, must be
equal to the present value of current and future tax revenues.

Alternatively, we could have integrated the government budget constraint to-
wards the past. Then, the stock of public debt at time t could be written:

bt = gt−1 +(1+ rt−1)bt−1 − τ t−1,

which, plugged into (4.46), allows us to obtain the level of debt outstanding in period
t +1,

bt+1 = gt +(1+ rt) [gt−1 +(1+ rt−1)bt−1 − τ t−1]− τ t .

Repeating the process a number of times, we get:

bt+1 = (gt − τ t)+
t

∑
j=1

[
j−1
∏

s=0
(1+ rt−s)(gt− j − τ t− j)

]
+

t
∏

s=0
(1+ rt−s)b0, (4.49)
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showing that the stock of debt outstanding at the end of period t is the result of
capitalizing: i) the initial stock of debt, and ii) the government budget deficit or
surplus from previous periods. This latter effect can be either negative or positive
each time period t, so that each period, the stock of debt can be either above or
below initial debt, b0.

4.3.2.2 Sustainable Steady-State Expenditures and Financing Policies

Steady-state is a dynamic, competitive equilibrium, along which per capita variables
remain constant over time. In particular, rt = rss, gt = gss, τ t = τss must remain
constant. We want to characterize steady-state feasible fiscal policies. The steady-
state version of the present value government budget constraint, integrated towards
the past (4.49), is:

bt+1 = (1+ r)t+1 b0 +
t

∑
j=0

(1+ r) j (g− τ)

= (1+ r)t+1 b0 +(g− τ)

[
(1+ r)− (1+ r)t+1

1− (1+ r)

]

= (1+ r)t+1 b0 +
g− τ

r

[
(1+ r)t+1 − (1+ r)

]
.

But bt+1 must satisfy the transversality condition (4.22):

lim
t→∞

1
(1+r)t bt+1 = 0,

which is equivalent to:

lim
t→∞

1
(1+r)t

[
(1+ r)t+1 b0 +

g− τ
r

[
(1+ r)t+1 − (1+ r)

]]
= 0,⇔

(1+ r) lim
t→∞

[
b0 +

g− τ
r

[
1− (1+ r)−t]

]
= 0,⇔

b0 +
g− τ

r

[
1− lim

t→∞
(1+ r)−t

]
= 0,⇔

b0 =
τ−g

r
.

Only if b0 = τ−g
r will the transversality constraint hold. In fact, any steady-state

policy involving a period-by-period budget surplus in an amount τ−g ≥ rb0 will be
feasible. In the absence of initial debt outstanding, the only feasible policy would
be one of maintaining a balance government budget forever. With strict inequality,
the transversality condition will be violated, with lim

t→∞
1

(1+r)t bt+1 < 0. That would be
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a feasible, albeit suboptimal steady-state fiscal policy, since the government could
have afforded running larger deficits at some point, presumably leading to an in-
crease in consumers’ welfare.

4.4 Appendix 2: The Ricardian Proposition
Under Non-Distortionary Taxes in Discrete Time

We use now the discrete time representation to show that the Ricardian proposi-
tion holds in the Cass–Koopmans economy under non-distortionary taxation. The
proposition states that the way how government expenditures, gt , are financed is
irrelevant, provided that the bond issuing policy associated to each alternative fi-
nancing strategy be feasible, i.e., that the transversality condition (4.19) holds. This
implies that the distribution of resources between consumption and savings implied
by the competitive equilibrium mechanism is independent of the way how savings
are split into government bonds and firm’s stock.

The irrelevance of government financing is known as the Ricardian doctrine:
consumers are indifferent between paying higher taxes today and holding a lower
stock of debt in their portfolio, or paying less taxes today, but being forced to hold
more debt in their portfolios. As we have seen in previous sections, in the absence of
uncertainty and with perfect capital markets, the sequence of single-period budget
constraints can be integrated in a time aggregated present value budget constraint,
this being the only constraint faced by the consumer. A similar consideration holds
for the sequence of single-period government budget constraints. Joint consideration
of both intertemporal constraints leads to the Ricardian proposition.

We now proceed to integrating the consumer budget constraint towards the fu-
ture. For simplicity, we assume zero population growth (n = 0). From (4.13) we
obtain:

at+1 = (1+ rt)at +(ω t − τ t − ct) . (4.50)

Analogously,

at+2 = (1+ rt+1)at+1 +(ω t+1 − τ t+1 − ct+1) . (4.51)

Plugging (4.51) into 4.50), we get:

at+2

(1+ rt+1)(1+ rt)
=
ω t+1 − τ t+1 − ct+1

(1+ rt+1)(1+ rt)
+
ω t − τ t − ct

(1+ rt)
+at .

After T substitutions,

at+T+1

∏T
s=0(1+rt+s)

=
T

∑
j=0

ω t+ j − τ t+ j − ct+ j

∏ j
s=0(1+rt+s)

+at ,
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and, by continuous substitutions,

lim
T→∞

at+T+1

∏T
s=0(1+rt+s)

=
∞

∑
j=0

ω t+ j − τ t+ j − ct+ j

∏ j
s=0(1+rt+s)

+at = 0,

since the transversality condition holds. From this expression, we get:

∞

∑
j=0

ω t+ j

∏ j
s=0(1+rt+s)

+at =
∞

∑
j=0

τ t+ j + ct+ j

∏ j
s=0(1+rt+s)

, (4.52)

showing that each period, the stock of assets held by the consumer, plus the present
value of his/her current and future labor income, must be equal to the present value
of current and future consumption, plus the present value of taxes.

Combining the budget constraints for the government (4.48) and the consumer
(4.52), both integrated towards the future, we get:

∞

∑
j=0

gt+ j −ω t+ j

∏ j
s=0(1+rt+s)

+bt −at = −
∞

∑
j=0

ct+ j

∏ j
s=0(1+rt+s)

⇔

∞

∑
j=0

ω t+ j

∏ j
s=0(1+rt+s)

+ vt =
∞

∑
j=0

ct+ j +gt+ j

∏ j
s=0(1+rt+s)

,

so that the present value of the stock issued by the firm, plus the present value of the
sequence of current and future labor income, must be equal to the present value of
public and private consumption:

∞

∑
j=0

ct+ j

∏ j
s=0(1+rt+s)

=
∞

∑
j=0

ω t+ j

∏ j
s=0(1+rt+s)

+ vt −
∞

∑
j=0

gt+ j

∏ j
s=0(1+rt+s)

,

showing that the feasible sequences of consumption are those whose present value
remains below the sum of current holdings of firm’s stock plus the present value of
labor income, net of the present value of public consumption. In this latter expres-
sion, neither bonds nor taxes appear, either at a given point in time, or in present
value form. That means that consumer’s decisions are affected by the level of cur-
rent and future government expenditures, but not by the way how these are financed,
be that by issuing debt or through lump-sum taxes.

4.5 Exercises

Exercise 1. In the discrete time version of the Cass–Koopmans economy, show the
inefficiency of the competitive equilibrium mechanism by showing that the implied
allocation of resources does not coincide with the one that is obtained from the plan-
ner’s problem when there is a government that purchases gt units of the consumption
commodity which are ‘thrown to the sea’, financing them with a lump-sum tax and
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debt issuing. Start by showing that the competitive equilibrium allocation can be
obtained as the solution to a representative agent problem. Repeat the exercise for
an economy in which the government uses a consumption tax at a rate τc, and taxes
all income at the same tax, τy. Identify the several reasons for inefficiency of the
competitive equilibrium allocation in this economy.

Exercise 2. In the discrete time version of the Cass–Koopmans economy, show the
inefficiency of the competitive equilibrium mechanism by showing that the implied
allocation of resources does not coincide with the one that emerges from the plan-
ner’s problem when there is a government that purchases gt units of the consump-
tion commodity which are returned to consumers as a lump-sum transfer, financing
them with a consumption tax, a capital income tax, and issuing debt. Identify the
several reasons for that inefficiency. Explain why it is not possible to characterize
the competitive equilibrium allocation through a representative agent problem in
this economy.

Exercise 3. In the deterministic version of the Cass–Koopmans economy, suppose
that the production function has constant returns to scale and the utility function is
U(ct) = ln ct . There is a government that implements a lump-sum transfer to con-
sumers, financed by a consumption tax. Suppose that the government keeps constant
the level of the lump-sum transfer along the transition, so that it is the tax rate that
gets adjusted over time.

• Set up the set of equations characterizing the resource allocation under the com-
petitive equilibrium mechanism

• Notice that, since Walras’ law holds, it is not necessary to impose the budget
constraint of the consumer and yet, the competitive equilibrium allocation sat-
isfies that equation. Notice that the system made up by the Euler equation and
the equation characterizing equilibrium in the market for the consumption com-
modity also characterizes the time paths for consumption and capital. Hence, the
time path for both variables is independent of monetary policy instruments. Once
consumption and capital have been determined, the consumption tax rate can be
solved from the government budget constraint.

• Choose a set of parameters and calculate implied steady state values for con-
sumption, capital and output.

• Choose arbitrary initial conditions for the stock of capital and consumption and
get time series for these variables using the two non-linear conditions: the global
resources constraint and the Keynes–Ramsey condition. Check that the result-
ing time series will be explosive, because of not having imposed any stability
condition.

• With the same initial conditions, solve the model using the linear approximation.
Check that the solution is again unstable.

• Characterize the stability condition for the model under the chosen parameteriza-
tion. Generate time series for the relevant variables using the stability condition
and either one of the equations in the linear approximation. Check that we obtain
convergence, no matter which of the equation in the linear approximation is used.
Also, check that the other equation in the linear approximation holds.
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• Solve the model using the stability condition and either the global resources con-
straint or the Keynes–Ramsey condition. Check that the obtained time series are
stable in either case. Check that the condition not being used, is not satisfied by
the set of time series we have obtained.

• Solve the model using the two non-linear conditions: the global resources con-
straint and the Keynes–Ramsey condition, after having imposed the stability con-
dition at t = 0, to compute c0,c0 = φk0. Check that the solution is unstable.

• Solve the model using conditions kt −kss = (k0 − kss)µ t
2, ct −css = (c0 − css)µ t

2,
after having imposed the stability condition at t = 0 to compute c0. Check that the
implied time series are stable. Check that stability arises even without imposing
stability at t = 0.

In the next two exercises, the ratio of government expenditures to output (G/Y),
rather than government expenditures themselves, are kept constant.

Exercise 4. In the discrete-time version of the Cass–Koopmans economy, consider
a Cobb-Douglas production function with constant returns to scale and a utility
function with a constant intertemporal elasticity of substitution of consumption. The
government tax consumption and income from the representative agent, using the
revenues to purchase the single good produced in the economy.

1. Characterize analytical expressions for steady state values for consumption, the
stock of capital, output and government expenditures. Show in a graph how these
values depend on each of the two tax rates. Let us assume that the tax rate on con-
sumption is initially 0.2 while the income tax rate is 0.15. Compute the welfare
long-term gains or losses, in terms of consumption, from a permanent change in
either one of the two tax rates.

2. Characterize different combinations of tax rates on consumption and income that
can be used to finance in steady-state the same ratio of government expendi-
tures/output than with τc = 0.2 and τy = 0.15. Compute steady-state values ob-
tained under each of these fiscal policies for each variable in the economy. What
is among them the tax policy that maximizes utility while maintaining the ratio
of expenditures/output? (second-best policy)

3. Assume now that initial tax rates are τc = 0.2 and τy = 0.15. Characterize the
short- and long-term effects from a change in each of the two tax rates.

4. Assume that initial tax rates are τc = 0.2 and τy = 0.15. The government modifies
tax policy while maintaining ratio of government expenditures/output constant in
steady-state. Characterize the short- and long-term effects from an increment in
each tax rate. Do ratio of government expenditures/output remain constant during
the transition to the new steady-state? What type of change in tax rates should
the government introduce to maximize time-aggregate discounted utility while
maintaining steady-state government expenditures/output ratio constant?

Exercise 5. In the discrete-time version of the Cass–Koopmans economy, consider
a Cobb-Douglas production function with constant returns to scale and a utility
function with a constant intertemporal elasticity of substitution of consumption.
Consider a time discount parameter of β = 0.99, a depreciation rate δ = 0.025,
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zero population growth, n = 0, output elasticity with respect to capital of 0.33 and
an intertemporal elasticity of substitution of consumption 1/σ = 1/3. The govern-
ment tax consumption and income from the representative agent, using the revenues
to purchase the single good produced in the economy.

1. Let us assume that the tax rate on consumption is τc = 0.2 while the tax rate
on income is τy = 0.30. Characterize steady-state levels for private and public
consumption, the stock of capital, output and utility. What is the composition of
aggregate demand in this economy?

2. Starting from the previous situation, let us assume that the government reduces
the tax rate on income to τy = 0.25, while adjusting the tax rate on consump-
tion so that the steady-state level of tax revenues/output ratio remains constant.
Characterize and provide an interpretation for the short- and long-term effects of
fiscal policy on private consumption, output, investment, public expenditures, the
stock of capital, and the utility level. What are the computed welfare gains when
(a) only long-term effects are taken into account, (b) when short-term effects are
also taken into account?

3. So long, we have assumed that the government tax at the same rate income from
labor and from renting capital. Let us now assume that both revenue sources are
taxed differently, while maintaining the consumption tax in the model. Charac-
terize the steady-state in this economy and discuss the effects of a reduction in
government expenditures. (Hint: write and solve the decentralized competitive
general equilibrium problem).



Chapter 5
Numerical Solution Methods

5.1 Numerical Solutions and Simulation Analysis

To learn about the causes of aggregate fluctuations is one of the basic goals of
Macroeconomics. One of the main characteristics of aggregate fluctuations is that
business cycles are neither regular nor predictable. Because of that, most economists
consider that there are different shocks impinging on the economy, which are differ-
ent in nature and intensity. These shocks do not follow a known pattern. Observed
fluctuations in actual economies are the result of such shocks and the propagation
mechanisms associated to them. There are different schools of thought in Macro-
economics whose main difference relates to the type of specific shocks which are
accountable for economic fluctuations as well as in the description of their propaga-
tion mechanisms.

The simplest model to explain aggregate fluctuations is the stochastic version
of the Cass–Koopmans economy, whose deterministic version has been studied in
the previous chapter. We can consider that the economy is subject to a productivity
shock, although alternative shocks could also be considered. This would be a supply
type of shock, although it does not need to be the only source of randomness in
the economy. An example of a demand shock would be a given variable in the
utility function that evolves over time according to a given stochastic process. In
this chapter we will consider just supply shocks, since they are the most often used
in the literature.

As we are about to see, agents take decisions under uncertainty on the basis
of their expectations on future values of nonlinear functions of state and decision
variables. To assume rationality implies that those expectations cannot be made to
follow arbitrary processes over time. They become endogenous variables, and they
need to be determined jointly with the rest of the endogenous variables in the model
when computing a numerical solution.

Dynamic, stochastic general equilibrium models (DSGE models) do not usually
have analytical solution, except in some cases like the model in McCallum [65]
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which we describe at the beginning of this chapter. In general, DSGE models will
have to be analyzed through numerical solutions using simulation analysis.

The goal of this chapter is to familiarize the reader with the basic details of some
of the main methods to obtain numerical solutions to the type of stochastic, growth
models discussed along the book. The methods we present can be used to find stable
solutions for any system of stochastic, nonlinear difference equations. The optimiza-
tion problems we are introducing to characterize either the behavior of the different
economic agents operating under a competitive equilibrium mechanism, or the deci-
sions on resource allocation made by a benevolent planner, all lead to such a system
of equations, so numerical solutions can be found for them using the methods we
are about to discuss. When solving these models, it is crucial to be aware of the fact
that a stable solution, i.e., a solution in which per capita variables do not explode
too fast, cannot be found unless we impose on the solution the appropriate stability
conditions. Lack of stability does not arise because of excessive fluctuations around
steady state in a stochastic economy. In fact, if the right stability conditions are
imposed, fluctuations around steady-state will be stable no matter how wide they
are. Given its importance, we will emphasize how stability is dealt with under each
solution approach. The method introduced in the previous chapter to characterize
the dynamic evolution of the deterministic version of the Cass–Koopmans economy
is just a special case of the more general collection of methods we present in this
chapter.

Computing a numerical solution to set of equations summarizing the main prop-
erties of a model economy is just the first step in model simulation. A numerical
solution is a set of time series, one for each relevant variable in the model economy,
satisfying each period all the conditions in the model. Simulation is a procedure by
which a numerical solution is found for each specific time series realization of the
vector stochastic process of the exogenous shocks affecting the economy. By repro-
ducing a large number of these sample realizations, we can approximate arbitrar-
ily well the probability distribution of the vector stochastic process of endogenous
variables.

Once a specific sample realization for the vector of state and decision variables
has been obtained, we can then summarize the properties of their joint distribution
in the form of standard statistics: sample means, standard deviations, coefficients of
variation, simple and partial autocorrelation functions, correlation coefficients be-
tween pairs of variables, regression coefficients, cross correlation functions, vector
autoregressive representations (VAR), impulse responses in a subset of variables,
decompositions of variance, spectral density matrices, etc. For each of these point
statistics we will obtain as many realizations as numerical solutions we get for the
model, i.e., as many as sample realizations we draw in our simulations from the
probability distribution for the exogenous random shocks.

To simulate a model, we first need to assign numerical values to its structural
parameters. Then simulation allows us to characterize the model’s properties, which
the researcher will want to compare with their analogue, computed from actual data.
Before that, he/she will have selected a set of such characteristics as relevant for the
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question under analysis. The comparison could be established in terms of mean
values, or through probability statements. There is, hence, some sense in which the
artificial economy is estimated and tested, since after the mentioned comparison, we
will conclude wether or not the model is adequate to explain the issue in mind.

Stochastic properties for the endogenous variables in the model depend on three
assumptions: (a) the structure of the model, (b) the values assumed for the structural
parameters, (c) the law of motion for the exogenous shocks. In this chapter, we focus
on (b) and (c).

We start the chapter by reviewing two simple growth model that admit a closed
form analytical solution. This is not often the case, and it is the simplicity of the
model, because of some specific assumptions, that allow for a closed form solution
to exist. We introduce them as baseline models for comparison, as well as to fa-
miliarize the reader with the widespread need for numerical solutions. The second
part of the chapter considers a simple, stochastic version of the planner’s problem
introduced in the previous chapter. The only random component of the model will
come around again through a technology shock. We will use this model to illustrate
a variety of numerical solution approaches, even though some of them will not be
used anywhere else in the book. However, understanding the details of their imple-
mentation in this simple setup will allow the reader to design their application in
more complex economic environments. In the third part of the chapter, we consider
a stochastic version of the representative agent’s problem with consumption and in-
come taxes, which is solved under two of the approaches discussed previously. The
numerical solution to the model is used to undergo some analysis concerning the
design of optimal fiscal policy. Along the chapter, we do not discuss calibration or
parameter estimation. The interested reader can consult the books by DeJong and
Dave [27] or Canova [16].

5.2 Analytical Solutions to Simple Growth Models

We present in this section two benevolent planner models having analytical solution.
This is the case because the assumption of full depreciation of capital every period
eliminates much of the dynamics in the model, investment being equal to the stock
of capital every period.

5.2.1 A Model with Full Depreciation

A simple growth model that admits an analytical solution is considered in
McCallum [65]. We consider an economy with a single good, which can be either
consumed or saved in the form of productive physical capital. In a closed econ-
omy, private investment and savings coincide, and gross investment is equal to the
aggregate of net investment and depreciation replacement. Thus, we have,
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Ct +St = Yt ,

St = It ,

Kt+1 = (1−δ )Kt + It .

Preferences of the representative consumer in the economy can be represented
through a constant relative risk aversion utility function,

U(Ct) =
C1−σ

t −1
1−σ

, σ > 0.

We also assume that the technology for the production of the single good in the
economy, Yt = θ tKα

t , is stochastic, due to the presence of an exogenous, stochastic
productivity factor θ t , an i.i.d. random variable with E (θ t) = 1. The state of the
technology evolves over time according to the law of motion,

ln(θ t) = ρ ln(θ t−1)+ ε t , ε t , ∼
iid

N(0,σ2
ε),

where a constant is not needed, precisely because of the assumption on E (θ t) .
Under the assumed autoregressive process, ln(θ t) has an unconditional probability

distribution which has expectation zero and variance σ2
ε

1−ρ2 . Conditional on infor-
mation up to time t − 1 it has a Normal distribution (so long as ε t is Normal) with
Et−1 (ln(θ t)) = ρ ln(θ t−1), Vart−1 (ln(θ t)) = σ2

ε , a smaller variance than that of
the unconditional distribution.

Investment takes one period to be productive: at time t, decisions are made on
ct and kt+1. Hence, output at time t depends on kt , the decision on physical capital
made the previous period.

We assume that population does not grow and we normalize total population to
be equal to one, so per capita variables and aggregate variables are the same. From
now on, all variables are expressed in terms per capita.

In what follows, we consider a special case characterized by two conditions, both
important for the model to have an analytical solution: (a) capital fully depreciates
every period, δ = 1, so that the stock of capital available for production at time t +1
is equal to investment at time t : Kt+1 = It , kt+1 = It/N (N = 1 being population
size), and (b) utility is of the logarithmic type, σ = 1.

A representative agent in the economy chooses consumption and end of period
stock of capital to maximize its time aggregated, discounted, constant relative risk
aversion utility function, subject to the technological possibilities and an initial con-
dition on the stock of capital:

Max
{ct ,kt+1}∞t=0

E0

∞

∑
t=0

β t ln(ct)

subject to: ct + kt+1 = θ t kαt , (5.1)
ln(θ t) = ρ ln(θ t−1)+ ε t , ε t , ∼

iid
N(0,σ2

ε),

ct ,kt > 0, given k0,θ 0.
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The Lagrangian for this utility maximization problem is (in the case σ = 1),

L({ct ,kt ,λ t}∞t=0) = E0

∞

∑
t=0

β t [ln(ct)+λ t (θ t kαt − ct − kt+1)] ,

with first order conditions,

1
ct

= λ t , t = 0,1,2, ... (5.2)

λ t = βαEt
(
θ t+1λ t+1kα−1

t+1
)
, t = 0,1,2, ..., (5.3)

together with the budget constraint, ct + kt+1 = θ t kαt , t = 0,1,2, ... For each time t,
these two equations, together with the budget constraint, form a system giving us the
optimal values of ct ,kt+1,λ t , as functions of the two states of the economy, θ t ,kt .

From (5.2) and (5.3) we get,

1
ct

= αβEt

(
θ t+1kα−1

t+1

ct+1

)

, t = 0,1,2, .... (5.4)

A linear guess for the optimal decision rules, of the type:

ct = aθ t kαt ,

kt+1 = bθ t kαt ,

plugged into (5.4) leads to,

1
aθ t kαt

= αEt

(
βθ t+1kα−1

t+1

aθ t+1kαt+1

)

=
αβ

abθ t kαt
, t = 0,1,2, ...,

which implies that: b = αβ .
Taking the optimal decision rules to the representative agent’s budget constraint

leads to,
aθ t kαt +bθ t kαt = θ t kαt ,

which implies that: a = 1−αβ > 0.
So, in this special case, we get a closed form solution:

ct = (1−αβ )θ t kαt = (1−αβ )yt , t = 0,1,2, ..., (5.5)
kt+1 = αβθ t kαt = αβyt , t = 0,1,2, ...

The steady state for this model is obtained by assuming ct ,kt ,λ t are constant
over time, equal to css,kss,λ ss, and the random productivity shock takes its expected
value of one every period. That way, we get,

θ ss = 1, kss = (αβ )
1

1−α , yss = (αβ )
α

1−α , css = (1−αβ )yss.
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5.2.2 A Model with Leisure in the Utility Function

Let us denote labor by lt , and normalize available time to one unit. If we include
leisure 1− lt into a separable logarithmic utility function,

U(ct ,nt) = υ lnct +(1−υ) ln(1− lt), 0 < υ < 1,

and labor in the production technology for the single good in the economy,

yt = θ t kαt l1−α
t ,

the problem of the representative agent becomes,

Max
{ct ,kt+1,n}∞t=0

E0

∞

∑
t=0

β t [ν lnct +(1−ν) ln(1− lt)]

subject to,
ct + kt+1 = θ t kαt l1−α

t , ct ,kt > 0, (5.6)

and given k0, with Lagrangian,

L({ct ,kt , lt ,λ t}∞t=0) = E0

∞

∑
t=0

β t
[

(υ lnct +(1−υ) ln(1− lt))
+λ t

(
θ t kαt l1−α

t − ct − kt+1
)
]
,

and first order conditions,

υ
ct

= λ t , (5.7)

1−υ
1− lt

= (1−α)λ tθ t kαt l−αt , (5.8)

λ t = αβEt

(
λ t+1θ t+1k−(1−α)

t+1 l1−α
t+1

)
, (5.9)

ct + kt+1 = θ t kαt l1−α
t . (5.10)

With a logarithmic utility function and full depreciation, the income and substi-
tution effects of a wage rate change just offset each other, leaving the leisure choice
unaffected [King, Plosser, Rebelo [51], McCallum [65]]. As a consequence, labor
will be constant along the optimal trajectory, lt = l, and an examination of the global
constraint of resources (5.10) suggests that ct and kt+1 will be proportional to the
product θ t kαt , that is,

ct = aθ t kαt , kt+1 = bθ t kαt . (5.11)

First, we use (5.7) to write (5.9),

υ
ct

= αβEt

(
υ

ct+1
θ t+1k−(1−α)

t+1 l1−α
t+1

)
,
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and using our guess (5.11),

υ
aθ t kαt

= αβEt

(
υθ t+1k−(1−α)

t+1 l1−α
t+1

aθ t+1kαt+1

)

= αβ
υ l1−α

abθ t kαt
,

where we have used the fact that, in our guess, labor is constant over time. Equation
above implies,

b = αβ l1−α .

Using again twice our guess in (5.10) we get,

a = (1−αβ ) l1−α .

Finally, taking these expressions for a and b to (5.7)–(5.8), we get a constant
equilibrium level of labor,

l =
(1−α)υ

(1−α)υ+(1−υ)(1−αβ )
.

Hence, we have shown our guess to be right. In this special example, consump-
tion and physical capital fluctuate according to,

ct = (1−αβ ) l1−αθ t kαt = (1−αβ )yt ,

kt+1 = αβ l1−αθ t kαt ,

experiencing fluctuations due to the presence of the technology shock in both deci-
sion rules.

Since the optimal level of employment is constant over time, steady-state
employment is also equal to that level. Steady-state levels for the remaining
variables are:

θ ss = 1, kss = l(αβ )
1

1−α , yss = l(αβ )
α

1−α , css = (1−αβ )yss.

Steady-state levels for the stock of capital, consumption and output are different
in the two economies we have just analyzed, because of the presence of labor in
the production function in the second model. Since time series for the main vari-
ables experience fluctuations around steady-state levels, single period values for a
given variable are different in the two models. However, relative fluctuations, i.e.,
percent fluctuations relative to steady-state, are the same in both economies. As a
consequence, coefficients of variation, cross-correlations with output as well as the
way how output is split between consumption and investment (which is equal to the
stock of capital in this economy) are the same in both economies. This is a reflection
of the fact that under logarithmic preferences and full depreciation, adding leisure
separably as an input in the utility function does not contribute to the ability of the
model to explain business cycle fluctuations. We have seen that in such model, la-
bor supply turns out to be inelastic, which is the implicit assumption made when
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leisure does not enter as an argument in the utility function. In fact the latter model
is obtained as a special case of the more general model that includes leisure as an
argument in the utility function, when υ = 1, as the reader can easily check using
the Simple-models.xls spreadsheet.

5.2.3 Numerical Solutions of the Growth Model
Under Full Depreciation

In Simple models.xls we present a sample realization for each of the two economies
considered in this section. The McCallum spreadsheet contains the model without
leisure in the utility function, while the McCallum with leisure spreadsheet con-
tains the model with leisure as an argument in the utility function. We consider a
production function: yt = θ tAkαt , with A = 1, a logarithmic utility function by as-

suming σ = 1.0 in: U(ct) = c1−σ
t −1
1−σ , full depreciation, δ = 1, and zero population

growth,n = .0. Benchmark parameter values are: ρ = .90,α = .33,β = .90,σε =
.01. Steady-state levels are computed using the expressions in this section under the
box displaying parameter values. We start by using the random number generator
in Excel to produce a sample realization with 538 observations for the innovation
in the first order autoregression for the logged productivity shock. To that end, we
simulate a N(0,1) random variable which is then multiplied by σε . From that, the
productivity shock itself is readily obtained. After that, time series for the stock of
capital, output and consumption are obtained by using expressions for the analyt-
ical solution in the two models. Finally, relative fluctuations are calculated as the
difference between the time series for each variable and its steady-state level, as a
percentage. Graphs displaying the obtained time series for consumption and capital,
together with that for output, are shown. The strong output correlations of consump-
tion and the stock of capital implied by these models are evident in the graphs. We
also present graphs for the relative deviations in some variables around steady-state
levels. Similar graphs are obtained in the McCallum with leisure spreadsheet, where
a time graph, as well as a scatter diagram of relative deviations on capital stock and
output are displayed.

Below the time series, we present sample mean, standard deviation and volatil-
ity relative to output for each variable. The coefficient of variation is also shown,
which allows for some volatility comparisons across variables. The decomposition
of output between consumption (70.3%) and investment (29.7%) is also calculated.
Notice that, under full depreciation, investment and the stock of capital are the same
each period. Finally, the cross correlation function between each variable and out-
put is calculated. The cross-correlation of output with itself is obviously symmetric,
since it reduces to the simple autocorrelation for output. All these figures should be
expected to experience some changes if we use a different sample realization of the
productivity shock, as the reader can easily check as an exercise.
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5.3 Solving a Simple, Stochastic Version
of the Planner’s Problem

To illustrate the similarities and differences among different solution methods, we
use the stochastic version of the standard Brock–Mirman growth model [Brock,
W.A. and L.J. Mirman [12]], represented by the planner´s problem1,

Max
{ct ,kt+1}∞t=0

E0

∞

∑
t=0

β tU(ct) = E0

∞

∑
t=0

β t c1−σ
t −1
1−σ

,

for some σ > 0, where a constant relative risk aversion time separable utility func-
tion has been assumed. The discounted, time aggregate utility function is maximized
subject to the global constraint of resources,

ct + kt+1 − (1−δ )kt = θ t kαt , 0 < α < 1, (5.12)

given k0.
The law of motion of the stochastic productivity is supposed to be,

lnθ t = ρ lnθ t−1 + ε t , 0 < ρ < 1, ε t ∼
iid

N(0,σ2
ε), given θ 0, (5.13)

and the Lagrangian for the optimization problem is,

L({ct ,kt ,θ t}∞t=0) = E0

∞

∑
t=0

β t
[

c1−σ
t −1
1−σ

+λ t

(
θ t kαt − ct − kt+1

+(1−δ )kt

)]

for which optimality conditions are, under the assumption that ct > 0, since an infi-
nite marginal utility at the origin implies that consumption will be strictly positive
every period, and kt+1 > 0,

c−σt = λ t ,

λ t = β Et
[
λ t+1

(
αθ t+1kα−1

t+1 +1−δ
)]

,

together with (5.12) .
Eliminating the Lagrange multiplier we get,

c−σt = β Et
[
c−σt+1

(
αθ t+1kα−1

t+1 +1−δ
)]

, (5.14)

together with the transversality condition,

lim
t→∞

E0
(
β tλ t kt+1

)
= lim

t→∞
E0

(
β t c−σt kt+1

)
= 0.

1 There is no externality of any kind in this model, so welfare theorems apply, and the solution
to the planner’s problem leads to the same allocation of resources as the competitive equilibrium.
This, in turn, can be obtained as the solution to the representative agent problem.
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Steady state level for per-capita variables are given by,

kss =
(

αβ
1−β (1−δ )

) 1
1−α

, (5.15)

css =
(

αβ
1−β (1−δ )

) α
1−α

−δ
(

αβ
1−β (1−δ )

) 1
1−α

, (5.16)

where we have already used θ ss = 1.
In the next sections we discuss different approaches to finding a numerical so-

lution to optimization problems like the one considered in this section. A first ap-
proach is to construct the best linear-quadratic approximation to the optimization
problem we want to solve. A linear-quadratic problem has a quadratic objective
function and linear constraints. Consequently, decision rules are linear and hence,
very simple to use for data generation. The drawback is that we solve a problem dif-
ferent from the one we originally had posed. The undetermined coefficients method
by H. Uhlig, Blanchard and Kahn’s method and the eigenvalue-eigenvector decom-
position method proposed by C.A. Sims use a log-linear approximation to the op-
timality conditions for the original optimization problem. So, they use the actual,
non-linear structure of the model, although they approximate the set of first-order
conditions. As discussed in the previous chapter, stability conditions are needed in
order to obtain non-explosive paths for the endogenous variables, and the differ-
ent solution methods differ essentially in the way stability conditions are imposed
on the numerical solution. Alternatively, a linear approximation to the optimality
conditions, rather than a log-linear approximations, could be used to produce the
solution. This will generally be analytically simpler, although approximation errors
will be larger.

The previous methods are said to be linear, since they end up using linear sys-
tems to relate control to state variables. After introducing the planner’s problem with
taxes, we will present two nonlinear solution methods: (a) the parameterized expec-
tations method, that uses again the first order conditions to the original problem, but
approximates the conditional expectations that appear in the first order conditions by
exponential polynomials, and (b) the class of projection methods, that parameterize
the decision rules or control equations as polynomial functions of state variables.

5.3.1 Solving the Linear-Quadratic Approximation
to the Planner’s Problem

To implement this simple solution method (Kydland and Prescott [53], Dı́az-
Giménez, J. [30]), we start by substituting (5.12) into the utility function, to obtain,

U(kt+1,kt , lnθ t) =
(θ t kαt +(1−δ )kt − kt+1)

1−σ −1
1−σ

.



5.3 Solving a Simple, Stochastic Version of the Planner’s Problem 205

The quadratic approximation around steady-state to the utility function above
can be written,

U (kt+1,kt , lnθ t) � U (zss)+
∂U
∂ zt

|zt=zss (zt − zss)

+
1
2

(zt − zss)
′
(

∂ 2U
∂ zt∂ z′t

|zt=zss

)
(zt − zss) ,

where zt = (kt+1,kt , lnθ t) , which amounts to,

U(ct) = U (kt+1,kt , lnθ t) ∼= U(kss,kss, lnθ ss)

+
∂U
∂kt+1

| (kss,kss,lnθ ss)(kt+1 − kss)+
∂U
∂kt

|(kss,kss,lnθ ss) (kt − kss)

+
∂U
∂ lnθ t

| (kss,kss,lnθ ss)(lnθ t − lnθ ss)+
1
2

(zt − zss)
′
(
∂ 2U
∂ zt∂ z′t

∣
∣
∣
∣
(kss,kss,lnθ ss)

)

(zt − zss)

= B1(kt+1 − kss)+B2(kt − kss)+B3(lnθ t − lnθ ss)

+
1
2

(zt − zss)
′
(

∂ 2U
∂ zt∂ z′t

∣
∣
∣
∣
(kss,kss,lnθ ss)

)

(zt − zss)

where,

U(kss,kss, lnθ ss) =
(kαss −δkss)

1−σ −1
1−σ

,

and after some tedious algebra, we get the gradient vector,

∂U
∂kt+1

= (θ t kαt +(1−δ )kt − kt+1)
−σ (−1)

⇒ B1 ≡
∂U
∂kt+1

|(kss,kss,lnθ ss)= −(kαss −δkss)
−σ ,

∂U
∂kt

= (θ t kαt +(1−δ )kt − kt+1)
−σ (

αθ t kα−1
t +1−δ

)

⇒ B2 ≡
∂U
∂kt

|(kss,kss,lnθ ss)=
1
β

(kαss −δkss)
−σ = −B1

1
β

,

∂U
∂ lnθ t

= (θ t kαt +(1−δ )kt − kt+1)
−σ

(
elnθ t kαt

)

⇒ B3 ≡
∂U
∂ lnθ t

|(kss,kss,lnθ ss)= (kαss −δkss)
−σ kαss = −B1kαss,
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where we have used the identity elnθ t = θ t to obtain ∂U
∂ lnθ t

= ∂U
∂θ t

∂θ t
∂ lnθ t

= ∂U
∂θ t

θ t ,

as well as the two facts: [θ t kαt +(1−δ )kt − kt+1] |(kss,kss,lnθ ss)= kαss − δkss, and(
αθ t kα−1

t +1−δ
)
|(kss,kss,lnθ ss)= 1/β .

The elements of the Hessian

(
∂ 2U
∂ zt∂ z′t

∣
∣
∣
∣
(kss,kss,lnθ ss)

)

are,

∂ 2U
∂k2

t+1
= −σ (θ t kαt +(1−δ )kt − kt+1)

−σ−1

⇒ A11 ≡
∂ 2U
∂k2

t+1
|(kss,kss,lnθ ss)= −σ (kαss −δkss)

−σ−1

= σB1
1

kαss −δkss
.

∂ 2U
∂kt+1∂kt

= σ (θ t kαt +(1−δ )kt − kt+1)
−σ−1 (αθ t kα−1

t +1−δ
)

⇒ A12 ≡
∂ 2U

∂kt+1∂kt
|(kss,kss,lnθ ss)=

σ
β

(kαss −δkss)
−σ−1

= −A11

β
.

∂ 2U
∂kt+1∂ lnθ t

= σ (θ t kαt +(1−δ )kt − kt+1)
−σ−1 elnθ t kαt

⇒ A13 ≡
∂ 2U

∂kt+1∂ lnθ t
|(kss,kss,lnθ ss)

= σ (kαss −δkss)
−σ−1 kαss = −A11kαss.

∂ 2U
∂k2

t
= −σ (θ t kαt +(1−δ )kt − kt+1)

−σ−1 (αθ t kα−1
t +1−δ

)2

+(θ t kαt +(1−δ )kt − kt+1)
−σ α (α−1)elnθ t kα−2

t

⇒ A22 ≡
∂ 2U
∂k2

t
|(kss,kss,lnθ ss)= − σ

β 2 (kαss −δkss)
−σ−1

+(kαss −δkss)
−σ−1α (α−1)kα−2

ss

= A11

(
1

β 2 − α (α−1)kα−2
ss

σ

)
.
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∂ 2U
∂kt∂ lnθ t

= −σ (θ t kαt +(1−δ )kt − kt+1)
−σ−1 elnθ t kαt ×

(
αθ t kα−1

t +1−δ
)

+(θ t kαt +(1−δ )kt − kt+1)
−σ αelnθ t kα−1

t

⇒ A23 ≡
∂ 2U

∂kt∂ lnθ t
|(kss,kss,lnθ ss)= A11

kαss

β
−B1αkα−1

ss .

∂ 2U
∂ lnθ 2

t
= −σ (θ t kαt +(1−δ )kt − kt+1)

−σ−1
(

elnθ t kαt
)2

+(θ t kαt +(1−δ )kt − kt+1)
−σ elnθ t kαt

⇒ A33 ≡
∂ 2U
∂ lnθ 2

t
|(kss,kss,lnθ ss)= −σ (kαss −δkss)

−σ−1 k2α
ss

+(kαss −δkss)
−σ kαss = kαss (A11kαss −B1) ,

and we have the approximation to the utility function,

U (kt+1,kt , lnθ t) ∼= Constants+(B1,B2,B3)

⎛

⎝
kt+1 − kss
kt − kss

lnθ t − lnθ ss

⎞

⎠

+
1
2

(kt+1 − kss,kt − kss, lnθ t − lnθ ss)

×

⎛

⎝
A11 A12 A13
A12 A22 A23
A13 A23 A33

⎞

⎠

⎛

⎝
kt+1 − kss

kt − kss
lnθ t − lnθ ss

⎞

⎠ ,

which is quadratic, so that we can impose the certainty-equivalence principle2.
Hence, we initially ignore the stochastic nature of the problem, to impose the first
order condition,

∂U
∂kt+1

= 0,

which implies,

0 = β t
[
B1 +A11k̃t+1 +A12k̃t +A13 lnθ t

]

+β t+1
[
B2 +A22k̃t+1 +A12k̃t+2 +A23 lnθ t+1

]

2 The certainty-equivalence principle is also know as the separation principle, since it states that in
linear-quadratic problems (optimization problems with quadratic objective functions subject to lin-
ear constraints) we can separate the control problem from the estimation problem. That implies that
we need to solve just the deterministic version of the problem, to then add conditional expectations
in the decision rules in front of any term involving future decision or control variables.
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where tildes denote deviations with respect to steady-state values and we have used
that lnθ ss = 0, or,

βA12k̃t+2 +(A11 +βA22) k̃t+1 +A12k̃t = −A13 lnθ t −βA23 lnθ t+1

⇒ k̃t+1 +
A11 +βA22

βA12
k̃t +

1
β

k̃t−1 = − A13

βA12
lnθ t−1 −

A23

A12
lnθ t ,

where we have used the fact that B1 +βB2 = 0.
The lag operator B can be used to write the polynomial on the left hand side

of the equation as:
(

1+ A11+βA22
βA12

B+ 1
β B2

)
k̃t+1. This polynomial can be factored

as (1−µ1B)(1−µ2B) , the two roots µ1,µ2, being related through µ1 + µ2 =
−A11+βA22

βA12
, µ2 = 1

µ1β
. They are defined by,

µ1,µ2 =
−A11+βA22

βA12
±

√(
A11+βA22
βA12

)2
−4 1

β

2 1
β

Since −A11+βA22
βA12

= 1+ 1
β −

β
σ α(α−1)kα−2

ss > 0, we can use the argument in sec-
tion Systems with a saddle path property in the Mathematical Appendix to show that
one root falls inside the unit interval, 0 < µ1 < 1, while the second root µ2 > 1/β ,
so that the equation as,

(1−µ1B)(1−µ2B) k̃t+1 = − A13

βA12
lnθ t−1 −

A23

A12
lnθ t ,

whose solution can be represented,3

(1−µ1B) k̃t+1 = − A13

βA12

1
1−µ2B

lnθ t−1 −
A23

A12

1
1−µ2B

lnθ t

≡ A13

βA12

∞

∑
i=1

1
µ i

2
lnθ t−1+i +

A23

A12

∞

∑
i=1

1
µ i

2
lnθ t+i.

Up to this point we have solved the optimal deterministic control problem. Ap-
plication of the certainty equivalence principle amounts to taking conditional expec-
tations in the optimal decision rule above. Expectations are taken conditional on the
information available at time t, on the basis of which the decision on k̃t+1 is made.
We get,

3 We are using the fact that, for µ2 > 1, 1
1−µ2B = − 1

µ2B−1 = − B−1

µ2−B−1 = − B−1

µ2

1
1− 1

µ2
B−1

= − B−1

µ2
∑∞s=0

1
µs

2
B−s = −∑∞s=1

1
µs

2
B−s, so that 1

1−µ2B Xt = −∑∞s=1
1
µs

2
Xt+s.
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(1−µ1B) k̃t+1 =
A13

βA12

∞

∑
i=1

1
µ i

2
Et (lnθ t−1+i)+

A23

A12

∞

∑
i=1

1
µ i

2
Et (lnθ t+i)

=
A13

βA12

∞

∑
i=1

1
µ i

2
ρ i−1 lnθ t +

A23

A12

∞

∑
i=1

1
µ i

2
ρ i lnθ t

=

(
A13

βA12

1
1− ρ

µ2

+
A23

A12

ρ
1− ρ

µ2

)
1
µ2

lnθ t ,

and, finally,

k̃t+1 = µ1k̃t +
1

µ2 −ρ
A13 +βρA23

βA12
lnθ t ,

an equation that allows us to generate data for k̃t and, from that time series, data
for kt .

As we can see, the decision rule we have used for the stock of capital is linear,
as opposed to the way how we generate consumption data from the stock of capital
through the budget constraint, which incorporates a non-linear technology. It is also
important to notice that we can obtain the whole time series for the stock of capital
without need of computing any consumption data point, showing the sequential na-
ture of the problem and also the fact that the stock of capital is exogenous relative
to the consumption decision.

The Simple planner problem.xls file computes a single sample realization for the
planner’s problem without taxes, using the linear-quadratic approximation described
in this section and a benchmark parameterization that we will consider in illustra-
tions of other solution methods. We consider a production function: yt = θ tAkαt ,
with A = 1, a risk aversion parameter σ = .5, a depreciation rate, δ = .1, and zero
population growth, n = .0, and benchmark parameter values: ρ = .90,α = .33,β =
.90,σε = .01. Time series for the stock of capital, consumption, output and invest-
ment are obtained using the expressions presented above. Below the time series
realizations we present standard statistics: mean, standard deviation, coefficient of
variation, relative volatility to output, correlation coefficient with output, and the
cross-correlation function with output for lags from −2 to +2. We also present
graphs displaying the sample realizations for pairs of endogenous variables.

The lq.m MATLAB program also computes a single numerical realization
from the solution to the planner’s model using an extension of the method described
in this section to the case when consumption and income taxes are considered.
The optimal growth model or planner’s model is discussed in the second part of
this chapter. The interested reader can set the two tax rates to zero in the initial
section of the program on parameter values, to obtain the numerical realization
of the solution to the model without taxes we have just analyzed. The methods.m
MATLAB program can be used to compute an arbitrarily large number of sample
realizations using the linear-quadratic approximation among a variety of alterna-
tive solution methods that we describe in this chapter, after setting consumption
and income taxes to zero. If the reader does not feel comfortable with MATLAB
programming, staying with a single realization may be enough for a while. Each
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run of the MATLAB program will change the sample realization of the productivity
shock, producing numerical values for the statistics for the main variables different
from those obtained with previous realizations.

In this section we have solved the linear-quadratic problem that approximates
best the original problem we are interested on. So, we have computed the exact
solution to an approximate problem. In the alternative methods described in the
next sections, we consider different approximations to the optimality conditions of
the original optimization problem.

5.3.2 The Log-Linear Approximation to the Model

We now proceed to describe how to compute a log-linear approximation to the sim-
ple growth model introduced above. This type of approximation will be used in
the next sections. In this approach, we start from the optimality conditions to the
representative agent problem (5.12), (5.14) and (5.13):

ct + kt+1 − (1−δ )kt = θ t kαt , 0 < α < 1,

c−σt = β Et
[
c−σt+1

(
αθ t+1kα−1

t+1 +(1−δ )
)]

,

lnθ t = ρ lnθ t−1 + ε t , 0 < ρ < 1, ε t ∼
iid

N(0,σ2
ε), given θ 0.

To construct the log-linear approximation to the model, we start by using identi-
ties like: xt = elnxt , c−σt = e−σ lnct and introduce auxiliary variables: x̃t ≡ ln(xt/xss),
which are differences in logged values of the original variables with respect to
their steady-state levels. Another useful identity is xt = xssex̃t , which is approxi-
mated by: xt = xssex̃t � xss(1+ x̃t). Additional approximations used are of the type,
(a) x−σt = x−σss e−σ x̃t � xss(1 − σ x̃t), (b) xt+1zt+1 � xss(1 + x̃t+1)zss(1 + z̃t+1) �
xsszss(1+ x̃t+1 + z̃t+1).

This allows us to write condition (5.12),

0 = cssec̃t + kssek̃t+1 −θ sseθ̃ t kαsse
α k̃t − (1−δ )kssek̃t ,

0 ∼= css (1+ c̃t)+ kss

(
1+ k̃t+1

)
−θ sskαss

(
1+α k̃t + θ̃ t

)

−(1−δ )kss

(
1+ k̃t

)
,

0 ∼= [css + kss −θ sskαss − (1−δ )kss]+ cssc̃t + kssk̃t+1 −θ sskαssα k̃t

−(1−δ )kssk̃t −θ sskαssθ̃ t ,

where the first bracket is equal to zero, because the budget constraint holds every
period so, in particular, it also holds in steady-state. Adding the fact that θ ss = 1 and
dividing through kss we get,
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0 ∼= css

kss
c̃t + k̃t+1 −

(
αkα−1

ss +1−δ
)

k̃t − kα−1
ss θ̃ t ,

and using the steady-state relationship αkα−1
ss +1−δ = 1

β , we get,

0 ∼= css

kss
c̃t + k̃t+1 −

1
β

k̃t −
1
α

(
1
β
−1+δ

)
θ̃ t . (5.17)

Condition (5.14) can be written as,

c−σss e−σ c̃t = βEt

[
c−σss e−σ c̃t+1

(
αθ sseθ̃ t+1kα−1

ss e(α−1)k̃t+1 +(1−δ )
)]

= β
(
c−σss αθ sskα−1

ss
)

Et

(
e−σ c̃t+1eθ̃ t+1e(α−1)k̃t+1

)

+βc−σss (1−δ )Et

(
e−σ c̃t+1

)

⇒ c−σss (1−σ c̃t) = β
(
c−σss αθ sskα−1

ss
)

Et

[(
1−σ c̃t+1 + θ̃ t+1+

(α−1) k̃t+1

)]

+βc−σss (1−δ )Et (1−σ c̃t+1)

⇒ 0 �
[
c−σss −β

(
c−σss αθ sskα−1

ss
)
−β (1−δ )c−σss

]
− c−σss σ c̃t

+β
(
c−σss αθ sskα−1

ss
)

Et

(
σ c̃t+1 − θ̃ t+1 +(1−α) k̃t+1

)

+βc−σss (1−δ )σEt c̃t+1,

where, again, the constant has been set to zero because it is the steady-state repre-
sentation of Euler equation, so,

−σ c̃t +β
(
αθ sskα−1

ss
)

Et

(
σ c̃t+1 − θ̃ t+1 +(1−α) k̃t+1

)
+β (1−δ )σEt c̃t+1 � 0.

(5.18)
Finally, the law of motion of the technology shock can be written as,

θ̃ t+1 + lnθ ss ∼= ρθ̃ t +ρ lnθ ss + εsseε̃t+1

⇒ Et θ̃ t+1 ∼= ρθ̃ t , (5.19)

since lnθ ss = 0, εss = 0.
Substituting (5.19) in (5.18):

0 � σ c̃t −σEt (c̃t+1)+ [1− (1−δ )β ]ρθ̃ t − [1− (1−δ )β ] (1−α) k̃t+1 � 0,
(5.20)

since αkα−1
ss +1−δ = 1

β .
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5.3.3 The Blanchard–Kahn Solution Method for the Stochastic
Planner’s Problem. Log-Linear Approximation

This solution method (Blanchard and Kahn [10]) uses the log-linear approximation
obtained in the previous section. Equations (5.17) and (5.20) can be written in matrix
form:

[(
1
β − (1−δ )

)
(1−α) 1

β σ
1 0

]

︸ ︷︷ ︸
A

[
k̃t+1

Et c̃t+1

]

︸ ︷︷ ︸
Et s0

t+1

=

[
0 1

β σ
1
β − css

kss

]

︸ ︷︷ ︸
B

[
k̃t
c̃t

]

︸ ︷︷ ︸
s0
t

+

⎡

⎣

(
1
β − (1−δ )

)
ρ

(
1
β − (1−δ )

)
1
α

⎤

⎦

︸ ︷︷ ︸
C

θ̃ t ,

that is,
Ets0

t+1 = Ds0
t +F θ̃ t , (5.21)

where D = A−1B and F = A−1C.
This solution approach starts from the observation that the D matrix has one

stable eigenvalue, the other one being unstable, which allows the solution to the
optimization problem to be unique, characterized by the stable manifold. Our strat-
egy is to find an analytical approximation to that manifold in a neighborhood of
the steady-state, and use that approximation to produce time series for the relevant
variables in the economy. Without loss of generality, we will denote |µ1| < 1 and
|µ2| > 1/β . The orthogonal decomposition for D is D = ΓΛΓ−1. Premultiplying

(5.21) by Γ−1 =
[

u1 v1
u2 v2

]
, we get:

Γ−1Ets0
t+1 = ΛΓ−1s0

t +Γ−1F θ̃ t ,

that is,
[

u1 v1
u2 v2

][
k̃t+1

Et c̃t+1

]

=
[
µ1 0
0 µ2

][
u1 v1
u2 v2

][
k̃t
c̃t

]
+

[
u1 v1
u2 v2

][
F1
F2

]

︸ ︷︷ ︸
Q

θ̃

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1k̃t+1 + v1Et c̃t+1︸ ︷︷ ︸
Et s1

1,t+1

= µ1(u1k̃t + v1c̃t)︸ ︷︷ ︸
s1
1,t

+Q1θ̃ t [A]

u2k̃t+1 + v2Et c̃t+1︸ ︷︷ ︸
Et s1

2,t+1

= µ2(u2k̃t + v2c̃t)︸ ︷︷ ︸
s1
2,t

+Q2θ̃ t [B]

where Q1 = u1F1 + v1F2, Q2 = u2F1 + v2F2.
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Equation [A] provides us with a stable solution for the conditional expectation
Ets1

1,t+1, while equation [B] yields an unstable solution for the conditional expec-
tation Ets1

2,t+1 because of the autoregressive coefficient being greater than one in
absolute value. To get a stable solution for equation [B], we need to solve it for-
wards. The equation can be written as, Ets1

2,t+1 = µ2s1
2,t +Q2θ̃ t . Solving for s1

2,t we
get:

s1
2,t =

1
µ2

Ets1
2,t+1 −

Q2

µ2
θ̃ t , (5.22)

where −1 < 1
µ2

< 1.

Writing (5.22) at time t +1:

s1
2,t+1 =

1
µ2

Et+1s1
2,t+2 −

Q2

µ2
θ̃ t+1. (5.23)

Substituting (5.23) into (5.22) and applying the law of iterated expectations,
together with the fact that Et θ̃ t+ j = ρ jθ̃ t , we get:

s1
2,t =

1
µ2

2
Ets1

2,t+2 −
(

1+
ρ
µ2

)
Q2

µ2
θ̃ t . (5.24)

Writing (5.22) at time t +2:

s1
2,t+2 =

1
µ2

Et+2s1
2,t+3 −

Q2

µ2
θ̃ t+2, (5.25)

and substituting (5.25) into (5.24) and applying again the law of iterated expecta-
tions as well as the fact that Et θ̃ t+ j = ρ jθ̃ t , we get:

s1
2,t =

1
µ3

2
Ets1

2,t+3 −
(

1+
ρ
µ2

+
(
ρ
µ2

)2
)

Q2

µ2
θ̃ t . (5.26)

Repeating the substitution process for infinite periods and taking limits, we
would finally get the forward solution to equation [B],

s1
2,t = lim

j→∞

1

µ j
2

Ets1
2,t+ j

︸ ︷︷ ︸
=0

− Q2

µ2
θ̃ t

∞

∑
j=0

(
ρ
µ2

) j

︸ ︷︷ ︸
µ2

µ2−ρ

=
Q2

ρ−µ2
θ̃ t , (5.27)

which provides us with the stability condition for the optimization problem of the
representative agent:

s1
2,t =

Q2

ρ−µ2
θ̃ t .

The stability condition relates s1
2,t , a linear combination of the state and the con-

trol variable, to the productivity shock θ̃ t . The definition of s1
2,t = u2k̃t +v2c̃t can be
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used to write the stability condition above as:

c̃t = −u2

v2
k̃t +

Q2/v2

ρ−µ2
θ̃ t , (5.28)

which relates the decision variable at each point in time, c̃t , to the two state variables,
k̃t , θ̃ t , all in logs and in deviations with respect to steady state levels.

Using now the stability condition in equation [A]:

u1k̃t+1 + v1Et

[
−u2

v2
k̃t+1 +

Q2/v2

ρ−µ2
θ̃ t+1

]

= µ1

[
u1k̃t + v1

(
−u2

v2
k̃t +

Q2/v2

ρ−µ2
θ̃ t

)]
+Q1θ̃ t .

Since k̃t+1 is a time t−decision, we have: Et k̃t+1 = k̃t+1. Solving for k̃t+1 and
applying the expectations operator on θ̃ t+1, we get:

k̃t+1 = µ1k̃t +

(
Q1 − ρ−µ1

ρ−µ2

Q2v1
v2

u1 − v1u2/v2

)

︸ ︷︷ ︸
G

θ̃ t , (5.29)

which gives us the solution for the logged capital stock at each point in time t, in
deviations from steady-state, given a realization for the productivity shock. Using
(5.13), (5.29) and (5.28), we can represent the solution to the log-linearized system
in matrix form,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
k̃t+1
θ̃ t+1

]
=

[
µ1 G
0 ρ

][
k̃t
θ̃ t

]
+

[
0
1

]
ε t+1 [E1]

c̃t =
[
− u2

v2

Q2/v2
ρ−µ2

][ k̃t
θ̃ t

]
[E2]

,

with G =
Q1−

ρ−µ1
ρ−µ2

Q2v1
v2

u1−v1u2/v2
. which is known as a state-space representation, with [E1]

being the state equation and [E2] the observation equation.
Given k̃0 and specific values for the structural parameters, together with a sample

realization for the productivity innovation, {ε t}T
t=0, time series for {k̃t+1, θ̃ t}T

t=0 can
be readily obtained from [E1]. The consumption time series {c̃t}T

t=0 can then be ob-
tained from [E2]. We could also use recursively the law of motion of the technology
shock, together with the nonlinear global constraint of resources and the stability
condition [E2], to obtain {k̃t+1, θ̃ t , c̃t}T

t=0, given k̃0 and {ε t}T
t=0.

The CK solution BK.xls file computes a single sample realization for the plan-
ner’s problem with taxes, using an extension of the approach described in this sec-
tion, which will be presented in detail in the second part of the chapter. There,
we analyze some numerical results obtained under the benchmark parameterization
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used along the chapter. The interested reader may use at this point that spreadsheet
to obtain time series for the stock of capital, consumption, output and investment
by setting the two taxes to zero in the second box to the left of the Stochastic-BK
spreadsheet (τc = τy = .0). The Revenues series will of course be then equal to zero
each period. Seven alternative parameterizations are used in the file, in order to an-
alyze the effect of parameter changes on volatility and cross-correlations among
variables, as it will be discussed in the second part of the chapter. The Stochastic-
BK(2) spreadsheet implements the same analysis on a different sample realization
for the productivity shock, so that the reader can appreciate how numerical values
of the main statistics change with the sample realization of the productivity shock.

Expressions programmed in the file appear more complex than those in this sec-
tion because they correspond to the economy with consumption and income taxes,
to be described later on. The same can be said for the Blanchard Kahn.m MATLAB
program, which computes a single numerical realization from the solution to the
planner’s model with taxes using the extension of the Blanchard–Kahn’s approach
described in this section. The interested reader can set the two tax rates to zero
in the initial section of the program on parameter values, to obtain the numerical
realization of the solution to the model without taxes we have just analyzed. The
methods.m MATLAB program can be used to compute an arbitrarily large number
of sample realizations using the Blanchard–Kahn’s approach among a variety of
alternative solution methods.

A computationally more efficient solution method, which reaches the same time
numerical time series than Blanchard–Kahn’s is Uhlig’s method, which we describe
in the next section.

5.3.4 Uhlig’s Undetermined Coefficients Approach.
Log-Linear Approximation

This approach (Uhlig [94]) starts from the log-linear approximation of the condi-
tions characterizing the solution ((5.17) and (5.20) obtained above):

0 ∼= α1c̃t +α2k̃t+1 +α3k̃t +α4θ̃ t , (5.30)
0 � β 1c̃t +β 2Et c̃t+1 +β 3θ̃ t +β 4k̃t+1, (5.31)

with α1 = css
kss

, α2 = 1, α3 = − 1
β , α4 = − 1

α

(
1
β −1+δ

)
, β 1 = σ , β 2 = −σ , β 3 =

[1− (1−δ )β ]ρ , β 4 = − [1− (1−δ )β ] (1−α) .

The fact that there are two state variables in this economy θ̃ t , k̃t , suggests that the
two decision variables, c̃t , k̃t+1 should be, each period, functions of the two states,

k̃t+1 = ηkkk̃t +ηkθ θ̃ t , (5.32)

c̃t = ηckk̃t +ηcθ θ̃ t ,
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and also, taking conditional expectations as of time t,

Et k̃t+1 = ηkkk̃t +ηkθ θ̃ t ,

Et c̃t+1 = ηckEt k̃t+1 +ηcθEt θ̃ t+1 = ηck

(
ηkkk̃t +ηkθ θ̃ t

)
+ηcθρθ̃ t

= ηckηkkk̃t +(ηckηkθ +ηcθρ) θ̃ t ,

which taken to the log-linear approximation (5.30)–(5.31) gives us,

0 = α1

(
ηckk̃t +ηcθ θ̃ t

)
+α2

(
ηkkk̃t +ηkθ θ̃ t

)
+α3k̃t +α4θ̃ t ,

0 = β 1

(
ηckk̃t +ηcθ θ̃ t

)
+β 2

[
ηckηkkk̃t +(ηckηkθ +ηcθρ) θ̃ t

]

+β 3θ̃ t +β 4

(
ηkkk̃t +ηkθ θ̃ t

)
,

and for these equations to hold we need to have,

0 = α1ηck +α2ηkk +α3, (5.33)

0 = α1ηcθ +α2ηkθ +α4, (5.34)

0 = β 1ηck +β 2ηckηkk +β 4ηkk, (5.35)

0 = β 1ηcθ +β 2 (ηckηkθ +ηcθρ)+β 3 +β 4ηkθ . (5.36)

From (5.33), we have,

ηck = −α2ηkk +α3

α1
, (5.37)

which taken to (5.35) yields,

0 = −β 1
α2

α1
ηkk −

β 1
α1

α3 −β 2

(
α2ηkk +α3

α1

)
ηkk +β 4ηkk

⇒ 0 = β 1α3 +(β 1α2 +β 2α3 −β 4α1)ηkk +β 2α2η2
kk,

a quadratic equation in ηkk which must be solved to obtain the value of this para-
meter. Equation (5.37) will then give us the value of ηck. These two, taken to (5.34)
and (5.36) will provide us with the values of ηcθ and ηkθ . Only one of the roots of
the quadratic equation in ηkk is less than one.4 That is the stable root, since ηkk is
the coefficient of k̃t in equation (5.32) , which gives us the time path for k̃t+1. The
other root would clearly produce an explosive path for k̃t , and it is not used. This

4 Using the definitions of the α and β coefficients, the second degree equation in ηkk can be

written: σ
[
η2

kk −
(

1+ 1
β + [1−(1−δ )β ](1−α)

σ
css
kss

)
ηkk + 1

β

]
= 0 and an argument similar to that used

in section Systems with a saddle path property in the Mathematical Appendix can be used to show
that one of the roots is greater than 1/β , while the other root is less than one.
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is the way stability is imposed in this solution approach. After tedious algebra, the
solution for the elasticities with respect to the technology shocks are,

ηkθ = − (β 1 +ρβ 2)α4 −α1β 3
β 1α2 −β 2 (α1ηck −α2ρ)−β 4α1

,

ηcθ = −α2ηkθ +α4

α1
.

Once we have the four η-parameters, generating the time series for the stock of
capital, consumption and output is straightforward.

The Simple planner problem.xls file computes a single sample realization for the
planner’s problem without taxes, following the undetermined coefficients method
as described in this section, with the same benchmark parameterization considered
with other solution methods. Time series for the stock of capital, consumption, out-
put and investment are obtained using the expressions presented in this section. The
uhlig.m MATLAB program also computes a single numerical realization from the
solution to the planner’s model using an extension of the method described in this
section to the case when consumption and income taxes are considered. The inter-
ested reader can set the two tax rates to zero in the initial section of the program
on parameter values, to obtain the numerical realization of the solution to the model
without taxes we have just analyzed. As it was the case with the Blanchard–Kahn’s
approach, the methods.m MATLAB program can be used to compute an arbitrar-
ily large number of sample realizations using the undetermined coefficients method
among a variety of alternative solution methods.

5.3.5 Sims’ Eigenvalue-Eigenvector Decomposition Method
Using a Linear Approximation to the Model

The previous two numerical solution methods (Uhlig’s undetermined coefficients
method and Blanchard–Kahn’s method) could be implemented on a linear approx-
imation to the optimality conditions of the stochastic planner’s problem. Linear
approximations are somewhat easier to obtain analytically, but they lead to larger
approximation errors than log-linear approximations. The reason is that the lat-
ter produce stability conditions which are linear in the logs of the main variables
in the economy, so that they are nonlinear in the levels of the original variables.
Allowing for nonlinearity in the relationships between control and state variables
reduces somewhat the numerical errors of linear approximations.

To familiarize the reader with both approximations to the planner’s problem,
we describe the method in this section [Sims [86]] using the linear approxima-
tion, although a log-linear approximation would be preferable, for the same rea-
sons described in the previous paragraph. In fact, we describe its implementation on
the log-linear approximation at the end of the section. A linear approximation was
also used in the previous chapter to solve the deterministic version of the planner’s
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problem with taxes, so that the linear approximation considered here can be seen as
the extension to the stochastic case, of the solution approach there.

The dynamics of the model could be summarized in the system formed by the
Euler condition:

1
cσt

= βEt

[
1

cσt+1

(
αθ t+1kα−1

t+1 +1−δ
)
]

(5.38)

together with the global constraint of resources,

ct + kt+1 − (1−δ )kt ≤ f (θ t ,kt) = θ t kαt , 0 < α < 1 (5.39)

with θ t being a random shock to productivity, having a lognormal distribution
characterized by,

ln(θ t) = ρ ln(θ t−1)+ ε t , ε t ∼
iid

N
(
0,σ2

ε
)
, given θ 0,

and given the initial capital stock, k0.
We also have the transversality condition,

lim
t→∞

β tE0 (λ t kt+1) = 0, (5.40)

which clearly shows the additional difficulty we face in this stochastic model: the
optimality condition above involves the conditional expectation of a nonlinear func-
tion of state and decision variables, for which we do not have a closed form analyt-
ical expression.

The linear approximation to the global constraint of resources is,5

0 = (kt+1 − kss)−
[
αθ sskα−1

ss +1−δ
]
(kt − kss)

+(ct − css)− kαssθ ss (lnθ t − lnθ ss) ,

which simplifies to:

0 = (kt+1 − kss)−
1
β

(kt − kss)+(ct − css)− kαssθ ss (lnθ t − lnθ ss) ,

because of the steady-state equality: 1 = β
(
αθ sskα−1

ss +1−δ
)
.

On the other hand, we take into account that the conditional expectation of a
given function can be written: Etgt+1 = g+1 − ξ t+1, Etξ t+1 = 0, an identity that
defines the expectations error ξ t+1 as the difference between the realized value of
the function at time t + 1 and the expectation formed at time t.6 The steady-state
value of the expectations error is equal to zero: ξ ss = 0. In this model, if we take
as function gt+1 = 1

cσt+1

(
αθ t+1kα−1

t+1 +1−δ
)
, we can follow the same argument

5 Note that θ t+1 = elnθ t+1 , so that ∂θ t+1
∂ lnθ t+1

= elnθ t+1 = θ t+1.

6 A similar expression applies to any future expectation, the higher time index showing up in the
definition of function g(.) : Et gt+k = gt+k −ξ t+k, with Etξ t+k = 0.
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as in the previous chapter, to obtain the linear approximation to (5.38) around the
deterministic steady-state:

0 = (ct+1 − css)−
1
σ

(Ωss)
1
σ −1 cssβα (α−1)θ sskα−2

ss (kt+1 − kss)

−(Ωss)
1
σ (ct − css)−

1
σ

(Ωss)
1
σ −1 cssβαθ sskα−1

ss (lnθ t+1 − lnθ ss)

+β
css

σ
Ω1/σ

ss ξ t+1,

where Ωss = β
[
αθ sskα−1

ss +1−δ −ξ ss
]
= 1, so that the linear approximation can

be simplified to,

(ct+1 − css)−
1
σ

cssβα (α−1)θ sskα−2
ss (kt+1 − kss)

−(ct − css)−
1
σ

cssβαθ sskα−1
ss (lnθ t+1 − lnθ ss)+β

css

σ
ξ t+1 = 0.

Finally, the law of motion for the technology shock does not need a linear ap-
proximation, because of our choice of lnθ t , rather than θ t , as the relevant variable.
So, using again the fact that θ ss = 1, lnθ ss = 0, we have,

lnθ t+1 − lnθ ss = ρ (lnθ t − lnθ ss)+ ε t ,

and we can represent the full system in matrix form,

A

⎛

⎝
kt+1 − kss
ct+1 − css
lnθ t+1 − lnθ ss

⎞

⎠ = B

⎛

⎝
kt − kss
ct − css
lnθ t − lnθ ss

⎞

⎠+Φ
(
ε t+1
ξ t+1

)
,

with A =

⎛

⎝
1 0 0
M 1 M kss

α−1
0 0 1

⎞

⎠ ;

B =

⎛

⎝
1
β −1 Akαss

0 1 0
0 0 ρ

⎞

⎠ ;Φ=

⎛

⎝
0
0
1

0
−β css

σ
0

⎞

⎠ ,

and M = − 1
σ cssβα (α−1)θ sskα−2

ss .
We have,

A−1 =

⎛

⎝
1 0 0
−M 1 −M kss

α−1
0 0 1

⎞

⎠ ;
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A−1B =

⎛

⎜
⎝

1
β −1 kαss

−M 1
β M +1 −M

(
kαss +ρ kss

α−1

)

0 0 ρ

⎞

⎟
⎠ ;

A−1Φ =

⎛

⎝
0 0

−M kss
α−1 −β css

σ
1 0

⎞

⎠ ,

so that the dynamics of the system can be represented as,

⎛

⎝
kt+1 − kss
ct+1 − css
lnθ t+1 − lnθ ss

⎞

⎠ =

⎛

⎜
⎝

1
β −1 kαss

−M 1
β M +1 −M κ̄

0 0 ρ

⎞

⎟
⎠

⎛

⎝
kt − kss
ct − css
lnθ t − lnθ ss

⎞

⎠

+

⎛

⎝
0 0

−M kss
α−1 −β css

σ
1 0

⎞

⎠
(
ε t+1
ξ t+1

)
,

where κ̄ =
(

kαss +ρ kss
α−1

)
, with the transition matrix, i.e., the matrix of autoregres-

sive coefficients, having one root equal to ρ, which is less than one. The other
two roots are those of the upper 2×2 submatrix. Its characteristic equation is:
µ2 −

[
1
β +(M +1)

]
µ+ 1

β = 0, and the argument in section Systems with a saddle

path in the Mathematical Appendix shows that one of the roots is above 1/β while
the other is below one. The single root above 1/β is unstable, while the other two
roots are stable. The eigenvector associated to the unstable eigenvalue defines the
single stability condition in this system, in the form of a linear relationship between
deviations from steady-state of consumption, capital and the technology shock.

The spectral representation for the autoregressive coefficient matrix,
⎛

⎜
⎝

1
β −1 kαss

−M 1
β M +1 −M

(
kαss +ρ kss

α−1

)

0 0 ρ

⎞

⎟
⎠ = ΓΛΓ−1,

can be used to transform the model,

Γ−1

⎛

⎝
kt+1 − kss
ct+1 − css
lnθ t+1 − lnθ ss

⎞

⎠ = ΛΓ−1

⎛

⎝
kt − kss
ct − css
lnθ t − lnθ ss

⎞

⎠

+Γ−1

⎛

⎝
0 0
−M kss

α−1 −β css
σ

1 0

⎞

⎠
(
ε t+1
ξ t+1

)
.
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Defining a vector of transformed variables, z̃t = Γ−1

⎛

⎝
kt − kss
ct − css
lnθ t − lnθ ss

⎞

⎠ , we get,

z̃t+1 = Λz̃t +Q
(
ε t+1
ξ t+1

)
, (5.41)

with Q =

⎛

⎝
q11 q12
q21 q22
q31 q32

⎞

⎠ = Γ−1

⎛

⎝
0 0

−M kss
α−1 −β css

σ
1 0

⎞

⎠ .

For the autoregressive system in z̃t to be stable, we need to eliminate in (5.41)
the equation corresponding to the row of Λ associated to the single unstable eigen-
value of the coefficient matrix. Without loss of generality, let us assume that we
have ordered eigenvalues decreasingly along the diagonal of Λ, so that the unstable
eigenvalue is the (1,1) element in Λ. If we represent by γ i j the (i, j)−element in
Γ−1, we will impose the condition:

z̃1t = γ11 (kt − kss)+ γ12 (ct − css)+ γ13 lnθ t = 0, ∀t, (5.42)

a constraint imposing a linear dependence between deviations from steady state in
the stock of capital, consumption, and the logged productivity shock. In that sense,
it is similar to (5.28) , the stability condition we derived following the Blanchard–
Kahn approach.

The previous condition amounts to,

q11ε t+1 +q12ξ t+1 = 0, ∀t. (5.43)

describing an approximate linear relationship between the expectations error ξ t+1
and the single exogenous shock in the model, ε t+1, at each point in time.

To actually compute a numerical solution, we start by producing a time series for
the technology shock. Then a strategy similar to the deterministic case, always im-
posing the stability condition as part of the solution algorithm, will provide us with
a set of stable time series solving the model. There are some differences, however,
in that the stability condition involves the productivity shock, so we should do the
following:

1. Parameterize the model and find eigenvalues and eigenvectors of the transition
matrix of the linear approximation, written as a first order vector autoregression,

2. Generate a time series for the technology shock from its assumed stochastic
process. Assuming Normality for the innovation ε t will give us a lognormal tech-
nology shock.

3. Use the stability condition to obtain initial consumption, c0, from the initial cap-
ital stock k0, and get k1 from the global constraint of resources. Iterate on this
step to generate full time series for the stock of capital and consumption.

4. Use Euler’s equation to compute rational expectations errors. In this model, with
a single Euler condition, expectations errors ξ t+1 are obtained as the difference
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between 1
cσt+1

(
αθ t+1kα−1

t+1 +1−δ
)

and 1
βcσt

. Rationality tests can then be run on

the ξ t-time series.

The last step is clearly specific of stochastic models, and it is crucial. We are
assuming that agents form expectations rationally, meaning that they make an ef-
ficient use of the available information. As a consequence, a rational expectations
error must fulfill three conditions: (a) have zero mean, (b) be serially uncorrelated,
besides (c) being uncorrelated with any variable contained in the information set
available to the agent at the time the conditional expectation was made. The latter
condition may be tricky sometimes, since time indices may be misleading, as it is
the case with the stock of capital kt+1, a variable which is decided at time t, so that
it satisfies, Etkt+1 = kt+1. As with previous solution methods, the methods.m MAT-
LAB program can be used to compute an arbitrarily large number of sample realiza-
tions from the solution to the planner’s problem using Sims’ eigenvalue-eigenvector
approach.

5.3.5.1 Numerical Exercise: Solving the Stochastic Representative Agent’s
Model Through the Eingenvector-Eigenvalue Decomposition
Approach

Numerical solutions for the planner’s problem without taxes using the eigenvalue-
eigenvector decomposition are obtained in CK stochastic.xls. The four simulations
presented differ in the value of the risk aversion parameter as well as in the autore-
gressive coefficient for the productivity shock. At the left side of the spreadsheet we
present computations needed to estimate the stability condition, which will be used
to produce the value of consumption each period (decision or control variable) as a
function of the productivity shock and the stock of capital available at the beginning
of the period (the two state variables).

Starting from a capital stock at the level of the deterministic steady-state, and
given a sample realization for the productivity shock, the (k0,θ 0)-pair is used to
obtain c0. The global constraint of resources is then used to compute k1, and the
process is iterated over time to. Output is obtained each period from the stock of
capital available at the beginning of the period and the productivity shock, and in-
vestment is calculated as the difference between output and consumption. Once we
have time series data for all variables, the expectations error is calculated as the dif-
ference between the realized value of the function inside the conditional expectation,

1
cσt+1

(
Aαθ t+1kα−1

t+1 +1−δ
)

and its expectation as of time t, 1
βcσt

.

The benchmark parameterization used is β = 0.90, α = 0.33, δ = 0.07, σε =
0.001. Simulation 1.1 uses σ = 1.50, ρ = 0.90, simulation 2.1 uses σ = 1.50,
ρ = 0.99, and the last two simulations use σ = 5.0 with ρ = 0.90 and ρ = 0.99, re-
spectively. The spreadsheet can accommodate values other than A = 1, n = .0, which
have been used throughout the previous section.

As usual, below the time series, we compute steady-state values, standard de-
viations and coefficients of variation for the main variables, as well as their con-
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temporaneous and cross-correlations with output, and the percent decomposition of
output between consumption and investment. We also present in the spreadsheet ra-
tionality tests for the expectations error, i.e., for the forecast error associated to the
expectation of the nonlinear function of state and decision variables appearing in
the Keynes–Ramsey condition. In spite of the widespread use of numerical solution
methods for linear and nonlinear models under the assumption that economic agents
form their expectations rationally, this hypothesis is seldom subject to test. This is
unfortunate, because failure to satisfy rationality should preclude using a particular
sample solution for economic policy analysis or any other use. So, this should be
taken as a necessary, although not sufficient condition, to accept that the numerical
approximation necessarily involved in any solution method is acceptable.

We suggest implementing two types of test: on the one hand, if agents use the
available information rationally, expectations errors should not have information in
common with variables which were known at the time the expectation was formed.
This means that the correlation between the expectations error and variables in the
information set at time t should be zero. With a sample size of T = 538, the standard
deviation for each of these correlations can be approximated by 1/

√
T = .043, so

none of the correlations shown in the table are statistically significant.

Contemporaneous correlations between the rational
expectation error and variables in the information set

ct yt it kt

S1.1 .003 .007 .017 .000
S2.1 −.057 −.057 −.048 −.057
S3.1 .015 .016 .017 .013
S4.1 .040 .040 .039 .041

The second test examines the expectations error autocorrelation function, which
should not be significant at any lag, since that would suggest somewhat systematic
patterns in the errors, against the assumption of an efficient use of the available
information. With a sample size of T = 538, the standard deviation for each value
of the autocorrelation function of the expectations error can again be approximated
by 1/

√
T = .043, so again none of the autocorrelations violate this condition.

Sample autocorrelation function for the rational
expectations error

Lag 0 1 2 3 4 5 6

S1.1 1.0 −.024 −.014 .027 .017 −.050 .037
S2.1 1.0 −.007 .008 .053 .038 −.031 .056
S3.1 1.0 −.027 −.016 .026 .016 −.051 .036
S4.1 1.0 −.028 −.012 .033 .020 −.051 .038
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Even though the autocorrelation function of the expectations error, as well as its
correlations with time t variables have turned out not to be significant for the sam-
ple realization of the productivity innovation in the Excel file, that may not be the
case for different sample realizations, as the reader may easily check by generating
alternative time series from an independent N(0,1) distribution on top of the one
in the spreadsheet. Finally, an statement would have to be made on the values of
these statistics once a large number of sample realizations, 5,000 say, have been ob-
tained. We would then have that same number of estimates for each of the statistics
in the previous tables, and the analyst would have to conclude on their individual
and global significance. The MATLAB programs provided with this textbook pro-
duce that large number of realizations for each variable in the model, from which
a frequency distribution can be obtained for any statistic. That is different from the
numerical exercises provided in Excel files, in which a single realization is provided
in most cases for a given parameterization. In this case, we just want the reader to
fully understand the process of computing time series realization for all variables in
the model.

5.3.5.2 Solving the Planner’s Problem with the Eigenvalue-Eigenvector
Decomposition Under a Log-Linear Approximation

As it is the case with the other methods, the eigenvalue-eigenvector decomposition
can also be used on a log-linear approximation. The reader is asked in an exercise
at the end of the chapter to check that such an approximation takes the form:

A

⎛

⎝
lnkt+1 − lnkss
lnct+1 − lncss
lnθ t+1 − lnθ ss

⎞

⎠ = B

⎛

⎝
lnkt − lnkss
lnct − lncss
lnθ t − lnθ ss

⎞

⎠+Φ
(
ε t+1
ξ t+1

)
, (5.44)

A =

⎛

⎜
⎝

1 0 0(
1
β − (1−δ )

)
(1−α) σ

β −
(

1
β − (1−δ )

)

0 0 1

⎞

⎟
⎠ ;

B =

⎛

⎜
⎝

1
β − css

kss

(
1
β − (1−δ )

)
1
α

0 σ
β 0

0 0 ρ

⎞

⎟
⎠ ;Φ=

⎛

⎝
0
0
1

0
−β
0

⎞

⎠ .

Pre-multiplying the log-linear approximation (5.44) by the inverse of matrix A
would lead to a first order autoregressive representation for the vector of variables
in deviations with respect to steady-state. The same steps described to obtain the
solution using the linear approximation can then be followed to obtain the numerical
solution using the approximation above. The resulting time series will not be the
same under both approximations even if the same sample realization was used for
the technology shock.
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The methods.m file contains a main MATLAB program solving the planner’s
problem under consumption and income taxes by different solution methods:
the linear-quadratic approximation, Uhlig’s undetermined coefficients method,
Blanchard–Kahn’s method, the eigenvalue-eigenvector decomposition implemented
on either the linear or the log-linear approximation to the model, and the parame-
terized expectations method that we introduce below.

5.4 Solving the Stochastic Representative Agent’s Problem
with Taxes

In this second part of the chapter we consider a more complex economy, including
consumption and income taxes, which will allow us to perform some exercises deal-
ing with optimal fiscal policy design. For the sake of an illustration, we also allow
for nonzero population growth and a level of technology A different from 1. Most
expressions in these sections reduce to their analogue in the first part of the chapter
if we set taxes and population growth to zero, and the technology level to 1. We
will again assume that productivity is random, the production function being of the
form, yt = θ tAkαt , where θ t follows a stationary stochastic process. There would be
alternative ways of making the representative agent’s problem stochastic, but the so-
lution could always be obtained by simple adaptation of the procedures we outline
in the previous sections.

Under constant consumption and income taxes, the government’s budget con-
straint is,

τcct + τyyt = gt

while the stochastic version of the representative agent’s problem considered in the
previous chapter becomes,

Max
{ct , kt+1}∞t=0

E0

[
∞

∑
t=0
β t c1−σ

t −1
1−σ

]

subject to: (1+ τc)ct +(1+n)kt+1 − (1−δ )kt ≤ (1− τy)θ t A kαt , (5.45)

given k0, with lnθ t = ρ lnθ t−1 + ε t , ε t ∼
iid

N(0,σ2
ε). The population rate of growth

is n.
The Lagrangian for this optimization problem is,

L({ct ,kt+1,θ t}∞t=0) =
∞

∑
t=0
β t

{
c1−σ

t −1
1−σ

+λ t [(1− τy)θ t A kαt

−(1+ τc)ct − (1+n)kt+1 +(1−δ )kt ]
}

,
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with first order conditions,

c−σt = (1+ τc)λ t (5.46)
(1+n)λ t = βEt

{
λ t+1

[
(1− τy)θ t+1 A αkα−1

t+1 (5.47)
+(1−δ )]} ,

lim
t→∞

E0β tλ t kt+1 = 0,

where a conditional expectation operator has been written in front of all terms in-
volving future values of state or decision variables.

Hence, given tax rates τc,τy, and a realization for the productivity shock,
{θ t}∞t=0 , the solution to the optimization problem is a set of time series
{ct ,kt+1,yt ,gt}∞t=0 satisfying,

(a) The budget constraint,

(1+ τc)ct +(1+n)kt+1 − (1−δ )kt = (1− τy)θ t A kαt , (5.48)

(b) The law of motion for the productivity shock,

lnθ t = ρ lnθ t−1 + ε t , ε t ∼
iid

N(0,σ2
ε),

(c) The government’s budget constraint, τcct + τyyt = gt , and
(d) The Euler equation, which is obtained by using (5.46) to eliminate the

Lagrange multiplier in (5.47):

(1+n)
c−σt

1+ τc = β Et

[
c−σt+1

1+ τc

(
(1− τy)αθ t+1 A kα−1

t+1 +(1−δ )
)
]

, (5.49)

where the consumption tax rate, being constant over time, can be eliminated. There-
fore, it does not distort the allocation of resources over time. This set of stochastic,
dynamic equations fully characterize the time evolution of the economy in per capita
terms.

The deterministic steady state is attained when ct = ct+1 = css, kt = kt+1 = kss,
yt = yt+1 = yss, θ t = θ t+1 = 1, ε t = ε t+1 = 0 so that we get from (5.49):

1+n = β
[
(1− τy)αAkα−1

ss +1−δ
]
, (5.50)

which leads to:

kss =

[
(1− τy)αA

1+n
β − (1−δ )

] 1
1−α

, (5.51)

decreasing in τy but independent of τc. The steady-state stock of capital increases
with the output elasticity of capital, α, the time discount factor β and the level of
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technology A, while decreasing with n and δ . The same parameter dependence holds
for output, which is given by:

yss = A kαss.

Finally, from (5.48) we get the steady state level of consumption:

css =
kss

1+ τc

[
(1− τy)Akα−1

ss − (n+δ )
]
. (5.52)

which is inversely related to the tax rate on consumption. This condition also shows
that consumption expenditures are independent of τc. The consumption tax implies
a split of total expenditures between actual consumption and consumption taxes.

5.4.1 The Log-Linear Approximation

Following the same steps as in the model without taxes, we leave as an exercise for
the reader to show that the loglinear approximation to the Euler condition is,

0 =
1+n
β

σ c̃t −
1+n
β

σEt c̃t+1 +
(

1+n
β

− (1−δ )
)
(
ρθ̃ t − (1−α)k̃t+1

)
, (5.53)

while the log-linear approximation to the budget constraint (5.48) is:

(1+ τc)
css

kss
c̃t +(1+n)k̃t+1 =

1+n
β

k̃t +
(

1+n
β

− (1−δ )
)

1
α
θ̃ t , (5.54)

where tildes denote deviations in logged variables with respect to steady-state
values.

Equations (5.53) and (5.54) can be written in matrix form:
[(

1+n
β − (1−δ )

)
(1−α) 1+n

β σ
1+n 0

]

︸ ︷︷ ︸
A

[
k̃t+1

Et c̃t+1

]

︸ ︷︷ ︸
Et s0

t+1

=

[
0 1+n

β σ
1+n
β −(1+ τc) css

kss

]

︸ ︷︷ ︸
B

[
k̃t
c̃t

]

︸ ︷︷ ︸
s0
t

+

⎡

⎣

(
1+n
β − (1−δ )

)
ρ

(
1+n
β − (1−δ )

)
1
α

⎤

⎦

︸ ︷︷ ︸
C

θ̃ t .

The Blanchard–Kahn’s method, and the undetermined coefficients method can be
applied on this approximation. The Blanchard Kahn.m and uhlig.m MATLAB pro-
grams compute a single sample realization from each of them for the model above,
as explained in the first part of the chapter. We now describe the implementation
details just for the Blanchard–Kahn’s method.
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5.4.2 Numerical Exercise: Solving the Stochastic Representative
Agent’s Model with Taxes Through Blanchard and Kahn’s
Approach. Log-Linear Approximation

The same argument in section (5.3.3) can be followed to show that there is again
one unstable eigenvalue above 1/β , and one stable eigenvalue below 1. We start by
computing D = A−1B,F = A−1C. Then, eigenvalues for D are obtained and matrix
Γ having as columns the right eigenvectors of D is inverted. Vector Q is defined by
Q = Γ−1F, and we reach the same expression for the stability condition,

ĉt = −u2

v2
k̃t +

Q2/v2

ρ−µ2
θ̃ t , (5.55)

as in the case with no taxes, where (u2,v2) is the row of Γ−1 associated to the
unstable eigenvalue. We will again have a state-space representation,

⎧
⎪⎪⎨

⎪⎪⎩

[
k̃t+1

θ̂ t+1

]
=

[
µ1 G
0 ρ

][
k̃t

θ̂ t

]
+

[
0
1

]
ε t+1 [E1]

ĉt =
[
− u2

v2

Q2/v2
ρ−µ2

][ k̃t

θ̂ t

]
[E2]

,

with G =
Q1−

ρ−µ1
ρ−µ2

Q2v1
v2

u1−v1u2/v2
, where [E1] is the state equation and [E2] the observation

equation, although the numerical values of µ1, µ2, Q1, Q2, u1, v1, u2, v2, G will
generally depend on the values of the population rate growth, the level of technology
and the consumption and income tax rates.

The Stochastic-BK spreadsheet in CK solution BK.xls presents a numerical sim-
ulation of the solution to the representative agent’s problem using the Blanchard–
Kahn approach. Benchmark parameter values used in simulation #1, are A = 1,
β = .90, α = .33, n = .0, δ = .07, σ = 1.50, ρ = .90, σε = .01, and tax rates:
τc = 20.0%, τy = 12.478%. Under this parameterization, steady state levels are
kss = 2.007, css = 0.801, yss = 1.258. Steady state investment is equal to the differ-
ence between disposable income and consumption iss = (yss−τyyss−τccss)−css =
.1405 which, since n = 0, is equal to the depreciation loss of physical capital, δkss,
as it should be to make the steady state sustainable. Following the same notation as
in the previous section, the A, B, C matrices are calculated, as well as D = A−1B,
F = A−1C. Then, eigenvalues for D are obtained and matrix Γ having as columns the
right eigenvectors is inverted. Eigenvalues and eigenvectors are calculated follow-
ing the expressions in the Matrix Algebra section of the Mathematical Appendix.
Vector Q is obtained as Γ−1F, and the coefficients for the stability condition (5.55)
are obtained, together with the G constant in the state-space representation.

The first data column gives the sample realization from the random number gen-
erator for a N(0,1) distribution, and the second column takes those figures as the
realization for the innovation in the technology process, corrected by the desired
standard deviation. Using the assumed first order autoregressive stochastic process
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and the sample realization for the innovation, a time series for the technology shock
is obtained. Equation (5.54) is used to obtain a time series for the stock of capital,
and the stability condition gives us the time series for consumption. To generate
these time series, it is important to remember that in the previous section, tildes
denote deviations in logged per capita variables with respect to their steady-state
levels.

The way how initial conditions are chosen and the time conventions followed to
generate the time series, are crucial to maintain the right model dynamics. The first
entry for the stock of capital, associated to t = 0, is the stock of capital which will
be available for production at time t = 1. In our standard notation, this is k̃1, but the
convention followed in the spreadsheet is that data are written at the time the corre-
sponding decisions are being made. So, in the row for t = 1 we compute the values
of decision variables k̃2, ĉ1, both as function of the states k̃1 (which is in the t = 0
row), and θ̂ 1, according to (5.55) and (5.54) and then, we produce the data for
y1, i1. Output is obtained using the representation of the aggregate technology, and
investment comes as the difference between disposable income and consumption.
Finally, we compute tax revenues for each period. The reader should make sure to
understand the way how these time relationships are entered into the spreadsheet.
On top of the time series data we present graphs of the capital stock, consumption
and investment, each of them compared with output. We display time graphs as well
as scatter diagrams. We will produce simulations obtained under different parame-
terizations, and some results are summarized in the tables below.

Below the set of time series, we present sample statistics for the variables in
the economy. Since they are calculated with a single realization, these numerical
values must be understood as being random draws from the probability distribution
for the corresponding population statistics. We compute sample means, standard
deviations, coefficients of variation, and contemporaneous correlation with output as
well as cross correlations with output at lags from −3 to 3, for the innovation in the
technology process, the technology shock itself, consumption, the stock of capital,
output, investment and tax revenues. The convention we follow is that for negative
lags the variable under consideration is lagged, while output is lagged for positive
lags. As a further summary of statistical properties, we estimate of each simulation
a least-squares regression of per capita consumption on disposable income.

Since we start with the steady-state capital stock at time t = 0 and the solution
is stable, the time series for all variables display fluctuations around their respective
steady-state, so the sample means provide an estimate of steady state values, and
that is the case across all simulations. Estimation errors may generally be larger in
simulations producing more volatility, as a general consequence of the statistical
problem of estimating a sample mean.

Volatility is a central characteristic of models intended to explain business cycle
characteristics. The stock of capital is the variable with the highest sample stan-
dard deviation, but that does not mean that it is highly volatile, since each variable
fluctuates around a different sample mean. In fact, coefficients of variation indicate
that, as it is the case in most growth models designed to display cyclical fluctua-
tions, it is investment the more volatile variable, while the remaining variables have
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more comparable coefficients of variation. Consumption is somewhat less volatile
than output in all parameterizations, another robust empirical fact in most developed
economies. Below the contemporaneous correlations with output, we show the out-
put decomposition in consumption, investment and public expenditures (or tax rev-
enues). Consumption amounts to about two thirds of output, as it is approximately
the case in most developed economies.

Coefficients of variation for different parameterizations
σ ρ σε θ t ct yt it kt gt

S1 : 1.5 .90 .01 2.3% 2.8% 3.3% 8.7% 3.5% 3.0%
S2 : 0.5 .90 .01 2.3% 3.1% 3.9% 13.4% 5.4% 3.4%
S3 : 5.0 .90 .01 2.3% 2.7% 3.1% 7.0% 2.8% 2.9%
S4 : 1.5 .90 .05 12.0% 14.7% 17.2% 44.3% 18.4% 15.8%
S5 : 1.5 .99 .01 3.7% 4.9% 5.2% 8.5% 5.0% 5.1%
S6 : 1.5 .90 .002 0.5% 0.6% 0.7% 1.7% 0.7% 0.6%
S7 : 1.5 .50 .10 11.6% 9.7% 15.2% 69.7% 15.8% 11.9%

Relative to the first simulation, S1, simulation S2 considers a less concave utility
function, while maintaining the values of all other parameters. As expected from the
discussion on the intertemporal elasticity of substitution of consumption in the pre-
vious chapter, this variable becomes more volatile for a more linear utility function,
as it is the case with output. The increase in volatility in investment and the stock of
capital is larger. The opposite happens in simulation S3, which increases the concav-
ity of the utility function, with the consequence of less volatile variables. However,
the decrease in volatility relative to the first simulation is minor. Decreasing con-
cavity reduces the correlations with output, which increase when the utility function
is more concave (except for capital stock). The next table shows correlations with
output of the main variables in the economy.

Contemporaneous correlations with output
σ ρ σε ct yt it kt gt

S1 : 1.5 .90 .01 .969 1.00 .834 .886 .993
S2 : 0.5 .90 .01 .924 1.00 .791 .918 .984
S3 : 5.0 .90 .01 .981 1.00 .851 .870 .996
S4 : 1.5 .90 .05 .969 1.00 .840 888. .993
S5 : 1.5 .99 .01 .991 1.00 .849 .934 .998
S6 : 1.5 .90 .002 .968 1.00 .833 .885 .993
S7 : 1.5 .50 .10 .838 1.00 .870 .770 .975

There are two ways how the technology shock may become more volatility: the
more obvious is to increase the variance of the innovation, as we do in simulation
S4. An alternative is to increase the coefficient of the autoregressive process, which
increases the persistence as well as the variance of the technology shock, even if
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the variance of the innovation of that process stays the same, as we do in simula-
tion S5. Their effects are quite different, as can be appreciated in the values of the
sample statistics as well as in Consumption the graph that presents all consumption
time series together. The graphs of the main variables, shown on the upper part of
the spreadsheet also illustrate noticeable differences. Increasing the variance of the
innovation increases volatility in a quite obvious manner, while increasing volatility
through a greater persistence of the process does not produce what we would call
a more volatile consumption process. The sample variance increases in this case
because the increased persistence makes the consumption process not to cross its
sample mean often, staying at one side of that value for a large number of periods.
This is what increases the sample variance under such high persistence. Simulation
S4 shows an excessively high coefficient of variation for output relative to actual
data, because of the persistent position at a given side of the mean value, with no
mean crossing. The same observation applies to simulation S7, this time because of
a too large innovation variance.

On the opposite side, reducing the innovation variance as in simulation S6 sta-
bilizes all series, not only in terms of a lower sample variance, but also in terms of
the observed sample range. Under the smaller innovation variance, sample averages
are more precise estimates of steady-state values. The graphs for the consumption,
investment and output series for this simulation, shown in the spreadsheet on top of
the data, clearly show variables smoothly oscillating around their central value. The
reader will notice the evident differences between the graphs for this case and those
for the previous simulations. Finally, we increase variance in simulation S7 while
reducing persistence. This is the opposite of what we did in simulation S4. We use
a combination of parameters (standard deviation for the innovation and persistence
parameter) such that the variance of the random productivity process itself (labelled
theta in the spreadsheet) is the same in both cases. In spite of sharing the same
innovation variance, the volatility of consumption and output as measured by the
coefficients of variation is larger in simulation S4, while investment is more volatile
in simulation S7. However, the type of high volatility that arises in simulation S7 is
very unlike that observed in actual time series data, so the parameterization of the
stochastic process for the technology shock in this case would not seem appropriate.

Examination of the Consumption graph having the respective sample variances
in mind will also show the reader the very distinct shapes that can generate rela-
tively large variances, and also that identifying variance with volatility is not always
justified. Simulations S4 and S5 have both large variance, with high coefficients of
variation for consumption, for instance, and the time behavior of this variable is
rather different between both cases.

Changes in σ2
ε have a smaller impact on contemporaneous correlations with out-

put than changes in ρ.
The Stochastic-BK(2) spreadsheet contains results obtained with the same S1

to S7 parameterizations, but a different sample realization of the innovation in the
productivity process. Comparing the estimated statistics in both spreadsheets, the
reader will appreciate some numerical differences, due to the fact that a different
sample realization for the productivity innovation is used. Numerical values for the
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parameters are the same. It is important to bear in mind that the numerical solu-
tions in the Excel files we present are in most cases just a single sample realization
for each parameterization. Actually, a large number of such realizations, 5,000 say,
should be generated for each parameterization. That way, we can compute the value
of each single statistic 5,000 times, with which we can compute the frequency dis-
tribution for that statistic. That will be a quite precise estimate of the unknown prob-
ability distribution for that statistic, and probability statements can then be obtained
as desired. In particular, probability statements on the significance of each single
statistic can readily be obtained. The methods.m MATLAB program provided with
this text, and the library that is associated with it, produce precisely that large num-
ber of sample realizations for each variable in the model, from which frequency
distributions for any statistic can be obtained.

5.4.3 Numerical Exercise: Computing Impulse Responses
to a Technology Shock. Log-Linear Approximation

The BK-impulse spreadsheet in the CK-solution BK.xls file presents impulse re-
sponses to a transitory, one period technology shock for the benchmark parameteri-
zation used in the previous numerical exercise, that illustrated the Blanchard–Kahn
solution approach. Notice that we compute responses to an instantaneous, single
period increase in the innovation ε t to the stochastic process, rather than in the
technology shock θ t itself. A single period innovation ε t will translate into a se-
quence of shocks in technology, because of the persistence of the stochastic process
lnθ t = ρ lnθ t−1 + ε t . Precisely this autoregressive structure would seriously diffi-
cult to think of a single-period shock in θ t , which is not the case considered here.

What we do is to assume that the innovation ε t in the productivity process is equal
to zero every period, with all variables at their deterministic steady-state values,
until at some point in time, ε t takes a positive value. To normalize the analysis, it is
a standard practice to assume that value is one standard deviation, .01 according to
our parameterization. After that, the innovation is again equal to zero forever. This
impulse, a one-period shock, produces a time reaction in the technology shock θ t
extending to a large number of periods, until it gradually gets back to zero again. The
same equations used to solve the model in the previous exercise are used to generate
time series for consumption, investment and output taking the generated time series
for the technology shock. A first way to compute impulse responses is by taking
the difference between the value of a given variable at any point in time after the
shock, and its value prior to the shock.7 Output displays the largest instantaneous
response, followed by consumption. The response of consumption is bigger after
a few periods. The response of capital stock gradually builds up over time, as an
accumulation of the single period responses of investment. Revenues are a linear
combination of output and consumption, so their time shape combines those of the
two variables.
7 Later on we will introduce a different approach to compute impulse responses.
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All responses converge to zero, as a reflection of the stability of the system: the
effect of a purely transitory shock may be felt for a number of periods, depending
on the persistence of the exogenous stochastic processes impinging on the econ-
omy, but they must be transitory. The fact that the responses converge all to zero
means that the steady-state is unchanged by the one period technology innovation,
as it should be expected. These are, however, unnormalized responses, and are not
appropriate to discuss which is the variable that experiences the largest reaction to a
technology shock. The reason is that a .05 response, say, may be small for output,
and large for investment. To normalize responses, it is customary to put them in
units of their respective standard deviations. This is very reasonable, since the stan-
dard deviation measures the average fluctuation experienced by a variable. How-
ever, standard deviations should not be computed on the process of responding to a
shock, which is a transition process displaying the convergence to the new steady-
state. Rather, we should estimate them from a numerical solution obtained under
the same parameterization. This is the one used for simulation S1 in the Stochas-
tic BK spreadsheet in CK solution BK.xls, from where we borrow the values of the
sample standard deviations, although acknowledging that they have been estimated
with a single realization of the numerical solution.8 With this normalization, we see
in the graph to the right a largest response by investment, of about 0.50 standard
deviations, while the maximum responses by consumption and output are of 0.20
and 0.30 standard deviations. The difference is that the largest output reaction is
immediate, which is not the case for consumption.

In the second panel, to the right, we compute step responses, i.e., the reaction
of each variable to a permanent one-standard deviation increase in the innovation
technology. Unnormalized responses are interesting now because they give us the
size of permanent effects. What happens is that the permanent shock of one stan-
dard deviation, 0.01, in the technology innovation alters steady-state levels, in the
amount shown in the spreadsheet and the graph: output increases by 0.23 units in
the long-run (a 18.6% increase), consumption by 0.14 units (17.8%), investment by
0.03 units (a 23.7% increase) and revenues (and hence, government expenditures)
by 0.06 units (18.2%). The sum of the long-run increments in the last three variables
amounts to that in output. The steady-state stock of capital increases by 0.48 units
(a 23.8% increase). Normalized responses tell us that these are large increments, of
about 6 standard deviations for the stock of capital, output, consumption and rev-
enues, and of about 3 standard deviations in investment. These responses may look
large, but the permanent increase of 0.01 units in ε t amounts to adding a constant
to the process for lnθ t . The assumed Cobb–Douglas technology: yt = Aθ t kαt , can
be written in logs: lnyt = lnA + lnθ t +α lnkt , so the permanent increase in the
productivity shock amounts to an 1% increase in the level of productivity, with A
moving from 1.0 to 1.01. The BK impulse response.m program does the same exer-
cise described in this section.

8 Notice that if we change the value of any structural parameter, these standard deviations would
have to be estimated again.
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5.4.4 Numerical Exercise: Solving the Stochastic Representative
Agent’s Model with Taxes Through the Eigenvector and
Eigenvalue Decomposition Approach. Linear Approximation

We use in this section the eigenvalue-eigenvector decomposition to solve the
representative agent’s problem with taxes, whose optimality conditions are
(5.49) ,(5.48). We leave as an exercise for the reader to check, following an ar-
gument similar to that in (5.3.5) that the linear approximation to (5.49) is:

0 = (ct+1 − css)−
1
σ

css
β

1+n
(1− τy)Aα (α−1)θ sskα−2

ss (kt+1 − kss)

−(ct − css)−
1
σ

css
β

1+n
(1−τy)Aαθ sskα−1

ss (lnθ t+1 − lnθ ss)+
β

1+n
css

σ
ξ t+1,

while that for (5.48) is:

0 = (kt+1 − kss)−
1
β

(kt − kss)+
1+ τc

1+n
(ct − css)

−1− τy

1+n
Akαssθ ss (lnθ t − lnθ ss) .

We can represent the full system in matrix form,
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We have,
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A−1B =

⎛
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with a transition matrix,
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where k̃t ≡ kt − kss, c̃t ≡ ct − css, ln θ̃ t ≡ lnθ t − lnθ ss, κ̂ ≡
(

1−τy

1+n Akαss +ρ kss
α−1

)
.

We obtain the spectral representation for the autoregressive coefficient matrix,
⎛

⎜
⎝
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and we follow the procedure described in 5.3.5 to estimate the stability condition,
which will allow us to obtain the level of consumption compatible each period with
the predetermined stock of capital and the realization of the productivity shock.

A numerical solution to this model following the procedure above is described
in CK stochastic taxes.xls. The benchmark parameterization used is A = 1, β =
0.90, α = 0.33, n = 0, δ = 0.07, σ = 1.50, ρ = 0.90, σε = 0.001, and tax
rates: τc = 20.0%,τy = 15.0%. Under this parameterization, steady state levels are
kss = 1.921, css = 0.767, iss = 0.134, yss = 1.240. Under the benchmark parameter-
ization, the stability condition is estimated, ct = css +0.2868(kt −kss)+0.3087lnθ t ,
but the numerical values of the coefficients in this condition change with the para-
meterization. Consumption and the stock of capital must be positively related along
this condition, as can be seen in the stability graph we discussed in the previous
chapter. They either increase or decrease simultaneously as they approach their
steady-state values. The stable manifold lies along the first and third quadrants. If
the economy is in the first one, kt − kss and ct − css will both be positive, and we
move towards steady-state by simultaneously reducing their positive values to zero.
If the economy falls in the third quadrant, both differences will then be negative,
and we move towards steady-state by simultaneously reducing the absolute values
of those differences.
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We start by generating the time series for the technology shock, which does not
need of any other information, reflecting its exogenous nature. Then, starting from
an initial condition for the capital stock, which we take to be that the initial capital
stock is at its steady-state level, k0 = kss, the stability condition is used to choose
initial consumption so as to place the economy on the stable manifold or, at least, on
the linear approximation to it. That implies a choice for investment (output minus
consumption minus public expenditures) and hence, a given level for the stock of
capital at the end of the period, which is obtain from the single period budget con-
straint. By using the budget constraint, we keep some of the nonlinear structure of
the original model, thereby obtaining a better numerical approximation.

Below the set of time series, we present sample statistics for the variables in the
economy. Since they are calculated with a single realization, these numerical values
must be understood as being random draws from the probability distribution for
the corresponding population statistics. The variables considered are the innovation
in the technology process, the technology shock itself, consumption, the stock of
capital, output, investment and tax revenues, for which we compute sample means,
standard deviations, coefficients of variation, and contemporaneous as well as cross
correlations with output at lags from −2 to +2. The convention we follow is that for
negative lags the variable under consideration is lagged, while output is lagged for
positive lags.

We also compute two other parameterizations, considering a higher tax on con-
sumption τc = 30% while maintaining the income tax at τy =15%, and a higher
tax on income τy = 20% with the original consumption tax of τc = 20%. Simula-
tions S1 and S3 share the consumption tax. The capital stock time series is the same
in simulations S1 and S2, which share the same income tax. Obviously, the same
is the case for the output time series. Consumption is proportionally lower in S2
because of the higher consumption tax. However, consumption expenditures, i.e.,
the aggregate of real consumption and the consumption tax, are the same in S1 and
S2. Consequently, the investment time series is also the same in both simulations.
Increasing the income tax in S3 introduces some distortions. The Output, Consump-
tion, and Investment graphs display the time series obtained for these variables in
the three simulations.

Coefficients of variation, cross-correlations with output and the decomposition
of output in private consumption, investment and public investment, are invariant
to changes in the consumption tax. On the other hand, the increase in the income
tax lowers steady-state levels of the stock of capital, output and consumption with
minor changes in volatility, except for the lower volatility of investment. A larger
proportion of output goes now into investment and public expenditures, while a
lower proportion is devoted to consumption. Cross-correlations with output increase
slightly.

We also present in the spreadsheet rationality tests for the expectations error, as
explained when solving the model without taxes by this solution method. With a
sample size of T = 538, the standard deviation for each of the correlations between
the expectations error and variables in the information set at time t, or autocorre-
lations can be approximated by 1/

√
T = .043, so none of the correlations shown

in the table are statistically significant.
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Contemporaneous correlations between the rational
expectation error and variables in the information set

ct yt it kt gt gt/yt

.012 .013 .019 .006 .014 −.018

The second test examines the expectations error autocorrelation function, which
should not be significant at any lag, since that would suggest somewhat systematic
patterns in the errors, against the assumption of an efficient use of the available in-
formation. Since the sample realization for the innovation in the productivity shock
is the same in the three simulations, the expectations errors for any two of the three
simulations have correlation equal to one. Hence, we present the sample autocorre-
lation function for just one of the simulations. The fourth lag in the sample auto-
correlation functions in the table is the only one violating this condition. It would
be hard to explain why this might arise, but there not being any significance in any
other lag, we do not take this as a serious evidence against rationality.

Sample autocorrelation function for the rational
expectations error

Lag 0 1 2 3 4 5 6

S1 1.0 .009 −.031 −.052 .114 −.029 −.022

The analysis in CK stochastic taxes structural parameters.xls uses as bench-
mark parameterization A = 1, β = 0.90, α = 0.33, n = 0, δ = 0.07,σε = 0.001.
Simulation 1.1 uses σ = 1.50, ρ = 0.90, simulation 2.1 uses σ = 1.50, ρ = 0.99,
and the last two simulations use σ = 5.0 with ρ = 0.90 and ρ = 0.99. The sample
realization for the innovation in the productivity shock is the same as that in the
previous analysis, which helps producing an autocorrelation function for the expec-
tations error very similar to the one in the table above.

Contemporaneous correlations between the rational
expectation error and variables in the information set

ct yt it kt gt gt/yt

S1.1 .012 .014 .015 .010 .014 −.012
S2.1 −.019 −.019 −.017 −.019 −.019 .005
S3.1 .009 .012 .017 .001 .011 −.019
S4.1 .042 .042 .040 .045 .042 −.027

The contemporaneous correlations between the expectations error and variables
known at time t are not significant for this sample realization, although a more
complete analysis using a large number of realizations should be done.
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5.5 Nonlinear Numerical Solution Methods

Functional equations are a well known instrument in dynamic analysis in Eco-
nomics. Bellman’s equation is an example of a functional fixed-point equation.
Euler’s equation, that arises as an optimality condition in the control problems we
are discussing in this book is another example of a functional equation. Functional
equations are hard to solve because the unknown is not a vector in R

n, but a function
whose domain contains an infinite number of points. In general, functional equations
lack closed solutions, and cannot be solved exactly.

Up to this point, we have discussed how to solve these functional equations
through linear methods. In this section, we will describe and analyze briefly two
nonlinear numerical solution methods: (a) the parameterized expectations approach
by den Haan and Marcet [28], Marcet and Lorenzani [63], and (b) a class of solution
methods known as Weighted Residual Methods or Projection Methods, to which we
will find accurate approximate solutions. A good textbook where these methods can
be studied in more detail is Judd [48]. Books discussing nonlinear and other meth-
ods are Marimon and Scott [64], Miranda and Fackler [68], Adda and Cooper [1],
Ljunqvist and Sargent [56], Heer and Mausoner [41], Canova [16], or DeJong and
Dave [27].

5.5.1 Parameterized Expectations

The parameterized expectations method was introduced in den Haan and
Marcet [28]. In this solution method, each conditional expectation in the opti-
mality conditions is represented by an exponential polynomial function of the state
variables. The parameters in these polynomial representations are estimated using
time series data generated from an initial parameter choice, as explained below.

The optimality condition involving conditional expectations in the basic growth
model is,

c−σt = β Et
[
c−σt+1

(
αθ t+1kα−1

t+1 +1−δ
)]

, (5.56)

and we parameterize that conditional expectation as a polynomial function of the
two states of the economy,

Et
[
c−σt+1

(
αθ t+1kα−1

t+1 +1−δ
)]

=Ψ(kt ,θ t ,a) = a1ka2
t θ

a3
t , (5.57)

where a denotes the parameter vector a = (a1,a2,a3) . The steady state of this model
has been calculated previously: (5.15)–(5.16).

The solution method starts by giving values to σε and ρ and obtaining a time
series of data for the innovation in the productivity process. We also need to choose
initial values a0

1,a
0
2,a

0
3 to the a1,a2,a3-parameters. This solution approach requires

a numerical convergence procedure, which is not always well behaved, so that the
choice of starting parameter values is crucial.
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It is standard to use as initial conditions a0
1,a

0
2,a

0
3 the values of these parame-

ters under full depreciation, δ = 1, and logarithmic utility, σ = 1. As shown in
Sect. 5.2.1, the stochastic model has then a closed form analytical solution, given by
(5.5). Under these assumptions, we get, from (5.57) and (5.56):

β−1c−1
t = a1ka2

t θ
a3
t ,

and using (5.5):
1

β (1−αβ )θ t kαt
= a1ka2

t θ
a3
t ,

from where we obtain:

a1 =
1

β (1−αβ )
,

a2 = −α,

a3 = −1.

To estimate the parameters in Ψ(.) when depreciation is not complete and/or
utility is not logarithmic, a gradual procedure needs to be implemented. First, only
the δ = 1 assumption is relaxed slightly, making δ = .90, say, and using the previous
values as initial conditions: a0

1 = 1
β (1−αβ ) , a0

2 = −α,a0
3 = −1. Then, we solve the

non-linear estimation problem,9

S
(
a0) = Argmin

a0
E

[(
ct+1

(
a0

))−σ (
αθ t+1

(
kt+1

(
a0

))α−1 +1−δ
)
−

a1kt
(
a0

)a2 θ a3
t

]2

,

(5.58)

to find the a0-vector that minimizes the mean square of adjustment errors. In this
expression we have made explicit the dependence of the capital stock and consump-
tion series on the parameter values being used in the expectations polynomial. Once
we have an a0-vector, the conditional expectation disappears from the model, and
the variables can be propagated over time using the law of motion for kt (the global
constraint of resources), and the law of motion for θ t together with the relationship,

c−σt = βΨ(kt ,θ t ,a) = βa1kt
(
a0)a2 θ a3

t . (5.59)

This is how it works: starting from {k0,θ 0}, (5.59) gives us c0, and the law
of motion for capital, i.e., the global constraint of resources, gives us k1 which,
taken to (5.59) together with θ 1, allows us to obtain c1 and k2, and so on. Hence,
the initial parameter values a0 allow us to produce time series consumption and
physical capital. Those time series will not satisfy (5.56) exactly, and the point
is to iterate on vector a so as to minimize the sample average of those errors, as

9 Initially, the σ parameter may be set up to 1, but that might change in subsequent iterations, as
explained below.
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indicated at (5.58). Being the difference between the value of the nonlinear function
whose conditional expectation appears in (5.56) and the numerical value of the
polynomial representing the conditional expectation itself, these can be interpreted
as expectations errors. In fact, however, the differences include expectations errors
plus the error in specifying the representation for the conditional expectation.

The nonlinear estimation procedure can be implemented through a Gauss–
Newton algorithm. To that end, we need to estimate a linear regression from the
initial residuals on the components of the gradient of the function to be fitted,
Ψ(kt ,θ t ,a) . The estimated coefficients in that regression are the corrections to in-
troduce on the initial estimates of a = (a1,a2,a3), to obtain new values, and the
procedure is iterated until convergence.

In our model the gradient of Ψ(kt ,θ t ,a) is,

∂Ψ
∂a

=

⎛

⎜
⎝

∂Ψ
∂a1
∂Ψ
∂a2
∂Ψ
∂a3

⎞

⎟
⎠

a0=(a0
1,a0

2,a0
3)

=

⎛

⎜
⎜
⎝

k
a0

2
t θ

a0
3

t

a0
1k

a0
2

t θ
a0

3
t lnkt

a0
1k

a0
2

t θ
a0

3
t lnθ t

⎞

⎟
⎟
⎠ .

Each of these elements is a time series that can be evaluated, as a function of the
initial estimations. The initial residuals are defined as,

û0
t = c−σt+1

(
αθ t+1kα−1

t+1 +1−δ
)
− c−σt

= c−σt
(
θ tαkα−1

t +1−δ
)
−Ψ

(
kt−1,θ t−1,a0) ,

and we estimate the regression,

û0
t =

(
∂Ψ
∂a

|a0

)′
b+ vt ,

where b is a 3×1-vector, to then introduce the correction,

ai+1 = ai + b̂, (5.60)

and the process starts again until the convergence criteria are fulfilled. Den Haan
and Marcet [28] suggest working with a different sequence, ã, which is obtained
using the correction scheme,

ãi+1 = λai +(1−λ )ai+1,

for some 0 < λ < 1 chosen beforehand, where ai+1 is first obtained from (5.60).
Once vector a0 has been found, we allow for a slight variation in σ from its initial

value σ = 1 in the direction of the desired value of σ , using as initial conditions in
each step the a0-vector obtained for the previous value of σ .The process is repeated
several times until we reach the a0-vector associated to the desired value of σ .
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To estimate this model, an alternative procedure consists on using as initial con-
ditions the numerical a0-vectors reported by Den Haan and Marcet [28] for several
depreciation rates, and start changing values for the structural parameters, one at a
time, as desired. The MATLAB routines provided with this book estimate the ex-
pectations polynomial and solve the model allowing for departures from the σ = 1
value used by Den Haan and Marcet for the risk aversion parameter. That possibility
has not been considered in this section either. It also allows for a consumption and
an income tax, not considered in their paper. The method is implemented in Matlab
programs marcet.m, marcet1.m, marcet2.m. Marcet.m estimates the parameters in
the exponential polynomial used to approximate the conditional expectation in the
model, marcet1.m solves the planer’s problem using the fminunc.m MATLAB mini-
mization routine, while marcet2.m does the same using a Gauss–Newton algorithm.

Finally, we remind the reader that methods.m is a main MATLAB program
solving the planner’s problem under consumption and income taxes by different
solution methods: the linear-quadratic approximation, Uhlig’s undetermined co-
efficients method, Blanchard–Kahn’s method, the eigenvalue-eigenvector decom-
position implemented on either the linear or the log-linear approximation to the
model, and the parameterized expectations method.

5.5.2 Projection Methods

In this section we describe solution methods based on projections that use interpo-
lation techniques. A good reference for these methods is McGrattan [67]. After a
general description of these methods, we will particularize them to the solution of
deterministic and stochastic versions of the optimal Cass–Koopmans growth model.

The goal of this type of problems is to find a function C : R
m −→ R

n satisfying a
functional equation F(C) = 0, where F : D1 −→ D2 with D1 and D2 being function
spaces. In our case, C is a vector of decision or control variables which are functions
of the state variables, and this vector must satisfy the set of first order conditions for
the optimization problem we consider. In the case of the Cass–Koopmans model, C
includes the consumption decision, which is a function of the two state variables in
the economy, the stock of capital K and the structural shock θ . The solution will
therefore be a function: C(K,θ) : R

2 −→ R, satisfying the Euler equation for the
problem under the assumption of rational expectations.

Since finding function C is generally impossible, our goal is to find an approx-
imation Cd(x;µ) defined on x ∈ Ω, with x being the vector of state variables, that
depends on a finite dimensional parameter vector µ = (µ1,µ2, ...,µd)

′ . The method
of weighted residuals assumes that Cd is a finite linear combination of a family of
previously chosen basis functions Ψi(x):

Cd(x;µ) =Ψ0(x)+
d

∑
i=1

µ iΨi(x) (5.61)



242 5 Numerical Solution Methods

Families of basis functions are usually quite simple:

• Monomials: Ψ0(x) = 1,Ψi(x) = xi, i = 1,2, ...,d
• A family of orthogonal polynomials.10 An example is the family of Chebychev

polynomials:

Ψ0(x) = 1,Ψ1(x) = x, Ψi(x) = 2xΨi−1(x)−Ψi−2(x), i = 2,3, ...,d

These polynomials are defined on the interval [−1,1]. If the domain of a state
variable x is [a,b], the transformation z = 2 x−a

b−a − 1 is applied before computing
Chebychev polynomials.11

These polynomials are more useful than monomials for a large choice of the
number of basis functions, d. The reason is that for large d, it is hard to distinguish
between xd and xd+1, which implies that the approximation provided by the Cd(x;µ)
function will barely improve with an additional basis function of type xd+1. How-
ever, this is not the case with orthogonal polynomials since, precisely because of
their orthogonality, they can be easily distinguished from each other.

• Finite element methods, that use piecewise linear functions, also called polyno-
mial splines:

Ψi(x) =
x− xi−1

xi − xi−1
for x ∈ [xi−1,xi] (5.62)

=
xi+1 − x
xi+1 − xi

for x ∈ [xi,xi+1]

= 0 otherwise

for a pre-specified grid of xi-points on the range of sample values of variable x.

Let us now define residual equation, R(x;µ) defined by the functional equation
evaluated at the approximate solution Cd(x;µ):

R(x;µ) = F
(

Cd(x;µ)
)

(5.63)

10 Let Ψi(x),Ψ j(x) be two polynomials from a same family of basis functions. The two polynomi-
als are said to be orthogonal to each other if there is a weighting function W (x) such that:

∫ b

a
W (x)Ψi(x)Ψ j(x)dx = 0, ∀i 	= j.

A family of polynomials is said to be orthogonal if any two polynomials in the family are
orthogonal to each other. The weighting function that makes Chebychev polynomials orthogonal
to each other, is: W (x) = 1√

1−x2
.

11 Stable solutions will always have control and state variables moving in a bounded space. The
[a,b] interval can be chosen allowing for relatively wide fluctuations around steady-state. Violation
of that assumed range by the numerical solution may point out to potential instability problems.
Otherwise, the range can be widened and the solution algorithm implemented again.
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The problem is to choose the vector µ so that the residual equation R(x;µ) is as
close to zero as possible, in the sense of a weighted integral:

∫

Ω
φ i(x)R(x;µ)dx = 0, i = 1,2, ...,d (5.64)

with φ i(x) being the weight functions. These functions can take different forms,
and the procedure followed to find the µ1, ...,µd coefficients will be different in
each case. According to the choice of weight functions, we will have the following
methods:

1. Least squares method, defined by φ i(x) = ∂R(x;µ)
∂µ i

. This set of weights can be in-
terpreted as first order conditions to the problem:

Min
µ

∫

Ω
[R(x;µ)]2 dx

2. Collocation method, defined by φ i(x) = δ (x−xi), with δ being Dirac delta func-
tion. This set of weighting functions makes the residual function to be zero at d
points: x1,x2, ...,xd , called collocation points:

R(xi;µ) = 0, i = 1,2, ..,d

3. Galerkin method, defined by φ i(x) =Ψi(x). This method forces the residual func-
tion to be orthogonal to each basis function.

5.5.2.1 Solving the Deterministic Cass–Koopmans Optimal Growth Model

The Ramsey–Cass–Kopmans optimal growth model was studied in Chap. 2, where
we saw that the model can be summarized in the optimization problem:

Max
{ct ,kt‘+1}

∞

∑
t=0

β t c1−σ
t −1
1−σ

, σ > 0

subject to:

(1+n)kt+1 − (1−δ )kt + ct = Akαt , α,δ ∈ (0,1), A > 0,n ≥ 0,

given k0.
The Euler condition for this problem is:

β
[c(kt)]

σ
{
αA

[ 1
1+n (Akαt − (1−δ )kt − c(kt))

]α−1 +(1−δ )
}

[
c
( 1

1+n (Akαt − (1−δ )kt − c(kt))
)]σ −1 = 0. (5.65)
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Our goal is to find the c(kt) function satisfying the functional equation (5.65).
Since that is not possible, we will find the vector of coefficients µ such that the
function Cd(kt ;µ) approximately satisfies that functional equation.

To that end, we are going to use the Collocation method.

• Step1: Implementation of the algorithm starts by computing the values xi of the
state variable that we want to use to define the Dirac delta functions. These are
the points at which the Collocation method will force the Residual functional to
be exactly zero, providing us then with the values of the µ-coefficients. We first
choose the relevant range of values for the state variable k, on which we want to
approximate the function Cd(kt ;µ). Let that interval be k ∈ [kmin,kmax] , where
kmin = kss(1−λ ),kmax = kss(1 +λ ), where kss is the steady-state level of k and
λ ∈ (0,1). The value chosen for λ determines the range on which we approxi-
mate the decision rule. We want to cover a wide range, but the algorithm is based
on an approximation around steady-state, which suggests choosing a moderate
value of λ . We then choose the xi points in this interval to be the Chebychev
nodes, which are defined as:

ki =
kmax + kmin

2
+

kmax − kmin

2
cos

(
d − i+0.5

d
π
)

, i = 1,2, ...,d

where we compute a number of nodes equal to d, the highest order of the poly-
nomial function we plan to use in the Cd(kt ;µ) approximation. Chebychev nodes
are not equally spaced: they are closer to each other at both ends of the interval,
and more disperse12 towards the center of the interval.13

• Step 2: We choose as basis functions Chebychev14 polynomials Ψi−1(.), so that:

Cd(k;µ) =
d

∑
i=1

µ iΨi−1
(
k̂
)

(5.66)

where the original state variable, k, has been transformed so that k̂ = 2 k−kmin
kmax−kmin

−1
takes values in [−1,1].

• Step 3: We evaluate the residual functional (5.65) at each Chebychev node:

R(ki ;µ) =
β
[
Cd(ki;µ)

]σ [
αA(k′i)

α−1 +(1−δ )
]

[Cd (k′i;µ)]σ
−1,

12 Let us suppose that kmin = 0 and kmax = 100, and that we choose d = 10. Chebychev nodes are
then: 0.62, 5.45, 14.65, 27.30, 42.18, 57.82, 72.70, 85.35, 94.55 and 99.38.
13 According to Rivlin’s theorem, ‘Chebychev node polynomial interpolants are very nearly opti-
mal polynomial approximants’.
14 Using Chebychev nodes and Chebychev polynomials is just one among the many alterna-
tive choices available. Chebychev nodes have been shown to provide a superior approximation
than alternatives like equally-spaced nodes. Similarly, to compute the approximated decision rule,
we could use monomials, splines or a family of orthogonal polynomials other than Chebychev
polynomials.
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i = 1,2, ...,d

where k′i =
1

1+n

(
Akαi − (1−δ )ki −Cd(ki;µ)

)
.

This way, we have d equations in d unknowns: µ1,µ2, ...,µd . We have reduced
the problem of finding a function Cd(ki;µ), to the problem of finding a zero to
this nonlinear system of d equations and d unknowns.

• Step 4: Once we have the values of the µ-coefficients, we can compute the
approximation to the policy function: c = Cd(k;µ) and hence the value of the
Residual functional over the whole range of values of the state variable k. By con-
struction, the functional will be zero on Chebychev nodes, but not elsewhere. The
number of basis functions (Chebychev polynomials) used to construct Cd(k;µ) is
increased if a chosen tolerance level, like 10−5, is violated at some point over the
range of k, and the algorithm is then implemented again. To perform this exer-
cise, a relatively fine grid of equally spaced values of k is used. Once the Cd(k;µ)
functional provides us with a good enough approximation for some order d, we
can represent the decision rule as a curve in the (c,k)-plane.

We know from Chapter 4 that when n = 0,δ = 1,σ = 1, there is an analyti-
cal solution to the optimization problem which has the form: c = (1−αβ )Akα .
Therefore, we can compare the goodness of fit of the Cd-function by compar-
ing the exact to the approximate solution. In general, the optimization problem
will not have an exact solution, but the goodness of fit of the approximation can
still be evaluated by computing the magnitude of the residual equation at points
in the [kmax,kmin]-interval. Under the collocation approach, the residual equation
will be exactly zero at the interpolation nodes, but it will not be equal to zero, in
general, at any other point of the interval above.

• Step 5: Simulation: (a) Given an initial value for the stock of capital k0, we
compute c0 = Cd(k0 ;µ), (b) Given {c0,k0} and using the constraint of re-
sources, we obtain: k1 = 1

1+n

[
Akα0 +(1−δ )k0 − c0

]
, (c) Given k1, we compute

c1 = Cd(k1 ;µ), and repeat the procedure.

5.5.2.2 The Stochastic Cass–Koopmans Optimal Growth Model

In this section we illustrate the application of projection methods to the stochas-
tic optimal growth model. As an alternative to the collocation method used to ap-
proximate the decision rule in the deterministic version of the model, we will use
Galerkin’s method to approximate the decision function in the stochastic version of
the model.

The stochastic optimal growth model can be summarized in the optimization
problem:

Max
{ct ,kt+1}

E0

∞

∑
t=0

β t c1−σ
t −1
1−σ

, σ > 0
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subject to:

(1+n)kt+1 − (1−δ )kt + ct = Aθ t kαt , α ∈ (0,1),δ ∈ [0,1], A > 0,n ≥ 0
lnθ t = ρ lnθ t−1 + ε t , |ρ| < 1,ε t ∼

iid
N(0,σ2

ε)

given k0.
The Euler condition for this problem is:

βEt

{
[c(kt ,θ t)]

σ {
αA(kt+1)α−1θ t+1 +(1−δ )

}

[c(kt+1,θ t+1)]
σ

}

−1 = 0 (5.67)

where kt+1 = 1
1+n (θ tAkαt − (1−δ )kt − c(kt ,θ t)) , θ t+1 = exp(ρ lnθ t + ε t+1), and

we need to find a function c(kt ,θ t) satisfying the functional equation (5.67). That
is, we must find the vector of coefficients µ such that the approximating function
Cd(kt ,θ t ;µ) makes (5.67) to be as close to zero as possible.

Since ε follows a Normal distribution, θ can take any value between 0 and ∞,
so that it does not have a compact support. If we transform θ into z = tanh(lnθ),
this new z variable falls in the interval [−1,1]. Notice that the hyperbolic tangent
function (tanh) can also be expressed:

z = tanh(lnθ) =
elnθ − e− lnθ

elnθ + e− lnθ =
θ 2 −1
θ 2 +1

which implies: θ =
√

1+z
1−z . With this transformation, we can write the approximating

function as:

Cd(k,z;µ) =
d

∑
i=1

µ iΨi(k,z).

On the other hand, the autoregressive process for the structural shock can be
written:

zt = tanh
(
ρ tanh−1(zt−1)+

√
2σευ t

)

where υ t = εt√
2σε

, E(υ t) = 0, Var(υ t) = 1/2, and tanh−1(.) is the hyperbolic arc
tangent function. If we denote by J the Jacobian of the transformation of ε t into υ t ,

the density function for υ is obtained: g(υ) = 1
|J| f (ε) = 1

1/
√

2σε
1√

2
√
πσε

e
− ε2

2σ2
ε =

1√
π e−υ

2
. The interest of this transformation becomes evident below.

Solving this stochastic problem requires us to face two additional difficulties, as
compared with the deterministic problem:

1. We have additional state variables in the form of exogenous random variables,
and the set of basis functions would in principle be made up by the products of
each element in the set of basis functions for k :

[
Ψ0(k),Ψ1(k), ...,Ψdk(k)

]
by all

the elements in the set of basis functions for z :
[
Ψ0(z),Ψ1(z), ...,Ψdz(z)

]
. But the
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implied number of elements grows very quickly with the orders dk,dz, and would
the number of equations to be solved for the µ-coefficients.

To maintain the problem tractable, we use the so-called set of complete poly-
nomials, instead of all the products of basis functions for k and z. For instance,
if we choose as basis functions the monomials

{
ki
}dk

i=0 and
{

z j
}dz

j=0 , the com-
plete set of basis functions that we could use in the case dk = dz = 2 would
be

{
1, k, z, k2, z2, zk

}
instead of

{
1, k, z, k2, z2, zk, z2k, zk2, z2k2

}
, with 6 coef-

ficients, less than the 9 polynomials we would obtain through all cross products.
If dk = dz = 3, we would need to compute 10 coefficients, rather than 16, and
so on. The same reduction in dimensionality would be achieved with any other
choice of basis functions.

2. The second difficulty comes from the need to evaluate a conditional expectation.
Given the N(0,1/22) distribution for υ , such expectation can be written as:

1√
π

∫ ∞

−∞

[
Cd(k,z;µ)

]σ

[Cd(k′,z′;µ)]σ

(

αA
(
k′
)α−1

√
1+ z′

1− z′
+(1−δ )

)

e−υ
2
dυ

where:

k′ =
1

1+n

[

Aka

√
1+ z
1− z

+(1−δ )−Cd(k,z;µ)

]

, and

z′ = tanh
(
ρ tanh−1(z)+

√
2σευ

)
.

We approximate the value of this integral using an m-point quadratic rule. This is
a rule by which abscissae and weights can be obtained to obtain a good numerical
approximation to certain integral functions, e−υ

2
being one of them [See Press

et al. [72]]. The transformation of ε into υ is justified by leading to the specific
functional form for the integrand above. The abscissae are the values of υM on
the [−∞,∞] interval on which the integral is evaluated, while ωM,M = 1,2, ...,m
are the weights being applied to each of those values to approximate the integral
by the expression:

R(k,z;µ) � β√
π

m

∑
M=1

[
Cd(k,z;µ)

]σ

[Cd(k′,z′M;µ)]σ

×
(

αA
(
k′
)α−1

√
1+ z′M
1− z′M

+(1−δ )

)

ωM −1

where z′M = tanh
(
ρ tanh−1(z)+

√
2σευM

)
.

Press et al. [72] suggest using the Gauss–Hermite quadratic rule, which is
based on Hermite polynomials:15 Φ0(x) = 1,Φ1(x) = x, Φi(x) = 2xΦi−1(x)

15 Note the similarity, but also the differences, with respect to Chebychev polynomials.
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− iΦi−2(x), i = 2,3, . . . . These are orthogonal polynomials with respect to the
e−υ

2
weights:

∫ ∞
−∞ e−x2Φi(x)Φ j(x) = 0, i 	= j. Abscissae are then obtained as

the roots of the m-th Hermite polynomial: x1,x2, ...,xm, while the weights are the
solution to the system:

⎛

⎜
⎜
⎝

Φ0(x1) ... Φ0(xm)
Φ1(x1) ... Φ1(xm)

... ... ...
Φm−1(x1) ... Φm−1(xm)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ω1
ω2
...
ωm

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

∫ ∞
−∞ e−x2Φ0(x)dx

0
...
0

⎞

⎟
⎟
⎠ ,

where
∫ ∞
−∞ e−x2Φ0(x)dx =

√
π.

5.5.2.3 Implementation of Galerkin’s Method

Once we have made decision on how to solve these two difficulties, to implement
Galerkin’s method we need to make two last choices: (a) the number and type of
basis functions for each state variable that we will use to compute the complete set
of polynomials, (b) the grid of points in the space of state variables, the (k,z)-space
in this case, on which we want to compute the Residual functional. Here, we need
to decide first on the number of points in that grid, and then on a way to select them
on the product space of values for the state variables.

1. Step 1: We choose the set of Chebychev polynomials as basis functions for each
state variable, and compute a complete set of polynomials. For instance,

(a) if dk = dz = 2, we choose: Cd=6(k,z;µ) = ∑6
i=1 µ iΨi(k̂,z), with Ψ1(k̂,z) =

1, Ψ2(k̂,z) = Ψ1(k̂), Ψ3(k̂,z) = Ψ1(z), Ψ4(k̂,z) = Ψ2(k̂), Ψ5(k̂,z) = Ψ2(z),
Ψ6(k̂,z) = Ψ1(k̂)Ψ1(z), where Ψi(k̂), Ψi(z) are Chebychev polynomials for k̂
and z, with k̂ = 2 k−kmin

kmax−kmin
−1.

(b) if dk = dz = 3, we choose: Cd=10(k,z;µ) =∑10
i=1 µ iΨi(k̂,z), where Ψ1(k̂,z) to

Ψ6(k̂,z) are the same as in the previous example, and Ψ7(k̂,z) =Ψ3(k̂), Ψ8(k̂,z)
=Ψ3(z), Ψ9(k̂,z) =Ψ2(k̂) Ψ1(z), Ψ10(k̂,z) =Ψ1(k̂) Ψ2(z), and so on.

2. Step 2: We consider the following intervals: k ∈ [kmin,kmax], where kmin =
kss(1− λ ), kmax = kss(1 + λ ), λ ∈ (0,1) ; ln(θ) ∈ [− 2

1−ρ σε ,
2

1−ρ σε ], i.e., an
interval of two standard deviations around its mathematical expectation of zero,
and choose points in these intervals as Chebychev nodes, with orders dk,dz:

ki =
kmax + kmin

2
+

kmax − kmin

2
cos

(
dk − i+ .5

dk
π
)

,

with i = 1,2, ...,dk

lnθ j =
2

1−ρ
σε cos

(
dz − i+ .5

dz
π
)

, j = 1,2, ...,dz

z j = tanh(lnθ j), j = 1,2, ..,dz
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3. We compute the abscissae and weights (υM,ωM,M = 1,2, ...,m) for an m-point
Gauss–Hermite quadrature as explained above, and approximate the expectation
integral by:

β√
π ∑

m
M=1

[Cd(ki,z j ;µ)]σ

[Cd(k′,z′M ;µ)]σ
(
αA(k′)α−1

√
1+z′M
1−z′M

+(1−δ )
)
ω−1

M , where k′ = 1
1+n

[
Aka

√
1+z
1−z +(1−δ )−Cd(k,z;µ)

]
, and z′ = tanh(ρ tanh−1(z) +

√
2σευM). In

fact, this is done at the same time the system of d Residual functional equations
is solved:

0 =
dk

∑
i=1

dz

∑
j=1

{

ΨD(ki,z j;µ)

[
β√
π

m

∑
M=1

[
Cd(ki,z j;µ)

]σ

[Cd(k′,z′M;µ)]σ

×
(

αA
(
k′
)α−1

√
1+ z′M
1− z′M

+(1−δ )

)

ωM −1

]}

, (5.68)

D = 1,2, ...,d

where16 ΨD(ki,z j;µ), D = 1,2, ...,d, is each of the d polynomials in the com-
plete set of basis functions previously chosen. This system of d equations will
provide us with µ-coefficients: µ1,µ2, ...,µd , and we will have the approxima-
tion to the decision rule:

Cd(k,z;µ) =
d

∑
D=1

µDΨD(k,z;µ)

As in the deterministic model, we can evaluate the goodness of fit of the approx-
imation provided by this function by analyzing the residual equation for a relatively
fine grid of (k,z)-pairs.

Finally, we can simulate the solution as follows: (a) Given k0,θ 0, we can obtain:
z0 = tanh(lnθ 0), c0 from the approximating function c0 =Cd(k0,z0 ;µ), and k1 from
the global constraint of resources:

k1 =
1

1+n
[θ 0Akα0 +(1−δ )k0 − c0] ,

and (b) A single draw from a Normal distribution with expectation 0 and variance σ2
ε

provides us with the value of ε1. We can then compute θ 1 : θ 1 = exp(ρ lnθ 0 + ε1),
and z1 = tanh(lnθ 1), c1 = Cd(k1,z1;µ), k2 from the global constraint of resources,
and iterate on this procedure.

16 In general, we compute µ by solving a system of equations of the form:
∫
ΩWi(x)R(x;µ)dx =

0, i = 1,2, ...,d. In particular, Galerkin’s method consists on choosing as weights the basis poly-
nomials: W (x) ≡Ψ(x), which in this case will be the complete set of polynomials for (k,z).
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5.5.2.4 Numerical Exercise: Solving the Deterministic and Stochastic Optimal
Growth Model by Projection Methods

Deterministic optimal growth model

Matlab program coll cheb.m computes a numerical solution to the optimal growth
model using the Collocation method and Chebychev polynomials. Parameter values
are: α = 0.36, β = 0.96, σ = 1.5,δ = 0.1,n = 0,A = 1, which can be changed, as
desired. The program starts with three basis functions (d = 3), but iterates until a
number of basis functions is found providing a satisfactory approximation. Initial
values of the µ-coefficients are: µ0 = 0,µ1 = css,µ2 = 0.1 kss

css
, taken from DeJong

and Dave [27]. Given the definition of Cd(k;µ), this choice leads to an initial ap-
proximation: c =Cd(k;µ) = css +0.1 kss

css
. The system of nonlinear equations defined

at each of the Chebychev nodes is solved, to obtain the values of the µ-coefficients.
By construction, the Residual functional will be equal to zero at each of the

Chebychev nodes. But, in order to have a well-defined decision rule, we want the
Residual functional to be as close to zero as possible on the whole range of values
of the state variable k. The following block of equations in the program chooses an
equally spaced 100-point grid on the range of values of k on which to compute the
numerical value of the Residual functional for the vector of µ-coefficients previ-
ously obtained. The number of basis functions is then increased while the tolerance
bound is violated at some point of the grid, and the algorithm implemented again
with the increased value of d. The program uses a default tolerance bound of 10−7.17

Once we have the Cd(k;µ) function approximating the decision rule, we compute
time series, using this function to obtain the value of consumption each period. To
display some transition, the initial condition for the stock of capital is set 10% above
its steady-state level. The final graph presents: (a) the approximated policy function
c(k)≡Cd(k;µ), (b) the values of the Residual functional on the grid of values for the
state variable k, (c) the time series for consumption and capital, smoothly converging
to their steady-state levels form the initial conditions in this deterministic version
of the model. Under a choice of parameter values: σ = 1.0,δ = 1.0,n = 0, the
model has an analytical solution, and a graph compares in that case the exact and
approximate solutions in a scatter diagram, showing the close similarity between
them.

Stochastic optimal growth model

Programs g cheb s 3.m, g cheb s 4.m and g cheb s 5.m compute a numerical solu-
tion to the stochastic version of the optimal growth model using 3, 4 and 5 basis
functions, respectively, for each of the state variables, k and z. At a difference of the
deterministic case, now we do not perform iterations on this order to improve the fit
of the approximating polynomial function. Values for structural parameters are as in

17 This can be easily changed in the program.
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the deterministic case, adding a 0.90 autoregressive coefficient for the productivity
shock, and a 0.001 standard deviation for the innovation in that process.

These programs follow the steps described above for the stochastic optimal
growth model, with the µ-coefficients obtained by Galerkin’s method, using a
complete set of Chebychev polynomials as basis functions and an m-point Gauss–
Hermite quadrature to compute the numerical approximation to the expectation inte-
gral. Chebychev nodes are used in the range of values defined for the state variables
to evaluate the decision rule that appears in the expectation integral. The number of
values of each state variable to construct the grid is arbitrary, and it does not need to
be the same for both variables. The programs show where the default choice for this
number can be changed. The more points are chosen to construct the grid the bet-
ter will be the polynomial approximation to the decision rule, albeit with increased
computational cost. The herm.m program computes numerical values for Hermite
polynomials which are then used to compute the abscissae and weights of the m-
point Gauss–Hermite quadrature. The choice of initial values for the µ-parameters
is important, specially the first ones.18 Values provided in the program have been
obtained by running a few iterations that used the µ-coefficients from the determin-
istic problem as initial guess. The Cds 3, Cds 4.m and Cds 5.m Matlab functions
compute the value of the decision variable c through the approximating function
Cd , given a set of µ-parameters. The res.m program is used, as in the deterministic
problem, to compute numerical values for the residual at the chosen points of the
grid, and the program calls the Matlab fsolve.m routine to solve for the values of
the µ-coefficients. Once we have them, the Cds 3, Cds 4.m and Cds 5.m Matlab
functions are again used to compute the value of the approximated decision rule on
a relatively fine grid of points in the sample space.

Once we have the µ-coefficients, the approximating function Cd is used to evalu-
ate the optimal decision rule on a finer grid of values in the (k,z)-space of state vari-
ables, than that used to compute the m-point Gauss–Hermite quadrature. The final
graph shows the approximated decision rule, the values of the Residual functional
in the (k,z)-space, and the time series realizations for consumption and physical
capital. Changing the program to produce an arbitrary number of sample realiza-
tions for the µ-coefficients already obtained is straightforward.

5.6 Appendix – Solving the Planner’s Model
Under Full Depreciation

The conditions characterizing the stochastic, dynamic equilibrium in McCallum’s
model are:

β t

ct
= αEt

(
β t+1θ t+1kα−1

t+1

ct+1

)

, (5.69)

18 This may be the most sensitive parte of the numerical algorithm for the projection method, and
finding initial values can sometimes be tricky. It is strongly advisable to start solving simplified
versions of the model, to gain some insight into appropriate initial values for the µ-coefficients.
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ct + kt+1 = θ t kαt . (5.70)

From (5.70) we get:
θ t+1

ct+1
=

1
kαt+1

+
kt+2

ct+1kαt+1
.

Substituting this expression in (5.69), we get:

1
ct

= αβ
1

kt+1
Et

(
1+

kt+2

ct+1

)
.

The previous expression can be written:

Xt = αβ +αβEt (Xt+1) , (5.71)

where Xt = kt+1
ct

.
Equation (5.71) shifted one period to the future becomes:

Xt+1 = αβ +αβEt+1 (Xt+2) . (5.72)

If we take conditional expectations as of time t and applying the law of iterated
expectations:

Et (Xt+1) = αβ +αβEt (Xt+2) .

If we shift one period forward (5.72) and take conditional expectations in the
resulting expression, we obtain:

Et (Xt+1) = αβ +(αβ )2 +(αβ )2 Et (Xt+3) .

Repeating the process indefinitely, we obtain:

Et (Xt+1) = αβ
∞

∑
i=0

(αβ )i + lim
T→∞

(αβ )T Et (Xt+T ) ,

where limT→∞ (αβ )T Et (Xt+T ) = 0 because αβ < 1. Therefore,

Et (Xt+1) =
αβ

1−αβ
. (5.73)

Using (5.73) in (5.71), we get:

Xt =
αβ

1−αβ
.

Since Xt = kt+1
ct

, we obtain from the previous expression:

ct =
1−αβ
αβ

kt+1. (5.74)
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Using (5.74) in (5.70), we get:

kt+1 = θ tαβkαt , (5.75)

and substituting this expression in (5.74):

ct = θ t (1−αβ )kαt . (5.76)

Expressions (5.75) and (5.76) coincide with those obtained in the section.

5.7 Exercises

Exercise 1. Solve the simple model with full depreciation considered in Sect. 5.2
with and without leisure in the utility function, for A = 3, and n = 0.01. Main-
tain other parameter values as in that section. Generate a sample realization for the
productivity shock with ρ = 0.9, and a Normal innovation with σε = 0.01. Start-
ing from an initial capital stock equal to the steady-state level, compute time series
for the stock of capital, consumption and output. Obtain the main statistics used
to characterize business cycle properties: mean, standard deviation and coefficient
of variation for each series, as well as cross-correlations with output at up to ±2
lags. Using the same realization for the productivity shock, repeat the exercise in
the model which includes leisure as an argument in the utility function.

Exercise 2. Obtain the analytical details of the log-linear quadratic approximation
to the planner’s problem without taxes.

Exercise 3. Obtain the analytical details for implementation of the eigenvector-
eigenvalue decomposition on a linear approximation to the planner’s problem with-
out taxes for A 	= 1 and n > 0.

Exercise 4. Obtain the analytical details for implementation of the eigenvector-
eigenvalue decomposition on a log-linear approximation to the representative
agent’s problem without taxes. Compute sample realizations for the main vari-
ables using the linear and the log-linear approximations and compare the time
series obtained. (Note: For this exercise to be meaningful, the same sample real-
ization for the productivity shock needs to be used. That is easily done in Excel.
Using MATLAB, it will be necessary to first save the sample realization for the
productivity shock used with one of the approximations, to then load it into the
program computing the other approximation to the model).

Exercise 5. Show that the log-linear approximation to the representative agent’s
problem with consumption and income taxes is as described in Sect. 5.3.5.

Exercise 6. Show that the linear approximation to the economy with taxes is as
described in Sect. 5.4.4.
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Exercise 7. Repeat exercise 4 considering consumption and income taxes in the
economy.

Exercise 8. Obtain the analytical details of the linear-quadratic approximation to the
planner’s problem with positive income and consumption taxes. Obtain numerical
solutions for this model using the same parameter values as those considered in the
CK solution BK.xls file.

Exercise 9. In the discrete-time version of the Cass–Koopmans economy, consider a
Cobb–Douglas production function with constant returns to scale and a utility func-
tion with a constant intertemporal elasticity of substitution of consumption. Con-
sider a time discount parameter of β = 0.99, a depreciation rate δ = 0.025, zero
population growth, n = 0, output elasticity with respect to capital of 0.33 and an
intertemporal elasticity of substitution of consumption 1/σ = 1/3. The government
levies a tax of 20% on consumption as well as a tax of 15% on income from the
representative agent, using the revenues to purchase the single good produced in the
economy.

1. Let us assume that there is uncertainty in the economy due to the fact that pro-
ductivity follows a random process, satisfying the assumptions specified in this
chapter. Characterize the response of the different variables to a transitory change
in productivity of size equal to one standard deviation of that process. Let us
assume that the coefficient in the first-order autoregression for the productivity
shock is 0.95, and the standard deviation for the innovation is 0.01, and interpret
the obtained results.

2. Do 5 simulation of 101 periods each. Characterize the following properties of
an economic cycle: volatility for output and for each component of aggregate
demand, as well as correlations of each of these variables with output.

3. Let us assume that fiscal policy consists of an 25% income tax, together with a
consumption tax, in such a way that tax revenues in steady-state is the same as
before the tax change. Repeat the analysis in point 1, using the same realization
for the innovation to used in point 1. What do you see in the results?

Exercise 10. Consider the same model as in the previous exercise, and suppose that
the government implements a constant public expenditures policy. The income tax
rate changes over time so that the budget constraint holds as an equality each time
period. Compute a sample realization for the productivity shock and for the main
variables in the model, and estimate their cyclical properties, under the assump-
tion that in steady-state, the income tax rate is 15% and the consumption tax rate
is 20%. For the same realization of the productivity shock, suppose now that the
consumption tax rate is 25% while the income tax rate adjusts every period so that
tax revenues remain constant at their steady-state level. Compare the paths for the
main variables and the estimated values for the main statistics with those obtained
in the first case. (advanced)

Exercise 11. In the Cass–Koopmans model with consumption and income taxes,
consider that the government chooses one of the two tax rates as well as the level
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of public expenditures, as in the previous exercise. There are two sources of uncer-
tainty: a productivity shock, and a shock on the level of public expenditures. Both
shocks are uncorrelated. Should public expenditures be cyclic or anticyclic in order
to maximize welfare? (advanced)

Exercise 12. Check that for a given sample realization of the productivity shock,
the numerical solutions provided by the Blanchard–Khan and Uligh methods are
identical.
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convenience, we will sometimes work with normalized per capita variables, that
are obtained from the original variables after extracting from them the effect of
the endogenous, constant rate of growth. In what follows we denote with tildes,
c̃t , k̃t , ỹt , per capita variables that grow in steady-state while denoting without tildes,
ct ,kt ,yt , the variables obtained after taking out from the former their growth trends.2

Under constant relative risk aversion preferences, the planner’s problem is to
maximize the discounted, time aggregate utility of the typical consumer, subject to
the aggregate constraint of resources in the economy,

max U0 =
∫ ∞

0
e−θ t c̃1−σ

t −1
1−σ

, σ > 0

subject to dk̃t/dt = Ak̃t − (n+δ ) k̃t − c̃t , and given k̃0, (6.1)

with Hamiltonian

H = e−θ t
(

c̃1−σ
t −1
1−σ

+λ t
[
Ak̃t − (n+δ ) k̃t − c̃t

]
)

,

and first order conditions,

order condition :
∂H
∂ c̃t

= 0 ⇒ c̃−σt = λ t ⇒ c̃t = λ−1/σ
t , (6.2)

co-state equation : λ̇ t = θλ t − eθ t ∂H
∂ k̃t

⇒

λ̇ t = λ t [θ −A+(n+δ )] , (6.3)
transversality condition : lim

T→∞
e−θTλT k̃T = 0,

which imply a growth rate for consumption

γ c̃t
=

dc̃t/dt
c̃t

= − 1
σ
λ̇ t

λ t
= − 1

σ
(θ +δ +n−A) = γ c̃, ∀t, (6.4)

which happens to be constant over time, γ c̃. Consumption will actually grow if A >
θ +δ +n, decreasing otherwise.

The dependence of the growth rate of consumption from structural parameters
can be written

γ c̃σ +θ = A− (δ +n) ,

with the standard interpretation that the cost of one unit less of consumption at time t
is equal to the benefit of saving that unit in the form of physical capital. Specifically,
the rate of growth is higher for lower values of θ and σ , that raise the willingness
to save, and for a higher productivity A.

2 Without loss of generality, we will not use this convention with Hamiltonian or Lagrange multi-
pliers.
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According to (6.4), the optimal time evolution of consumption is

c̃t = c̃0eγ c̃t = c̃0e−
1
σ (θ+δ+n−A)t ,

while (6.1) gives us the growth rate for physical capital,

γ k̃t
=

dk̃t/dt
k̃t

= A− (n+δ )− c̃t

k̃t
, ∀t . (6.5)

6.1.1 Balanced Growth Path

At this point, we remember the notion of steady state:

Definition. Steady state is a trajectory along which all the relevant per capita
variables either stay constant or grow at a constant rate.

Hence, in steady-state γ k̃t
is constant, but that can only happen in (6.5) if k̃t grows

at the same constant rate than c̃t , i.e., γ k̃ = γ c̃ = − 1
σ (θ +δ +n−A). Furthermore,

since the technology is linear, ỹt will also have to grow in steady state at the same
rate than per capita consumption and physical capital: γ ỹ = γ k̃ = γ c̃. So, the steady-
state takes the form of a balanced growth path, with all per capita variables growing
at the same constant rate, γ = − 1

σ (θ +δ +n−A).
On the other hand, from (6.3) we have that along the optimal trajectory for con-

sumption and the stock of capital,

λ t = λ 0e−(A−(δ+n)−θ)t ,

and the transversality condition becomes

lim
T→∞

e−θTλ 0e−(A−(δ+n)−θ)T k̃T = lim
T→∞

λ 0e−(A−δ−n)T k̃T = 0, (6.6)

which imposes an upper bound of A− δ − n on the rate of growth of the stock of
physical capital per worker.

6.1.2 Transitional Dynamics

We show in this section that the AK model lacks any transitional dynamics. So far,
we have shown that the steady-state for this economy takes the form of a balanced
growth path, with all per capita variables growing at the same constant rate. We will
now show that physical capital and output grow at the same rate than consumption at
any point in time. The argument consists on integrating the global constraint of re-
sources forwards, using the transversality condition as terminal condition. This will
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lead to a linear relationship between per capita consumption and physical capital
every period, from which the equality of growth rates is immediate.

Having already shown that consumption grows at the same rate every period,
we will then have that all per capita variables grow at a constant rate at all time
periods, so the economy is always on steady-state. Furthermore, from our previous
argument, that steady-state will take the form of a balanced growth path, with the
same, constant rate of growth for per capita variables at all time periods.

We already know from (6.4) that consumption grows at a constant rate γ c̃ = (A−
δ −n−θ)/σ no matter whether the economy is at steady-state or not. Multiplying
the differential equation (6.1) through by e−(A−δ−n)t and integrating between 0 and
any arbitrary time T, we have,

∫ T

0

[
dk̃t

dt
− (A−δ −n) k̃t

]
e−(A−δ−n)tdt = −c̃0

∫ T

0
e[γ c̃−(A−δ−n)]tdt.

Integrating by parts the first term on the left-hand side,

∫ T

0

dk̃t

dt
e−(A−δ−n)tdt =

[
e−(A−δ−n)t k̃t

]T

0

+
∫ T

0
(A−δ −n) k̃t e−(A−δ−n)tdt,

so that

e−(A−δ−n)T k̃T − k̃0 = −c̃0
1

γ c̃ − (A−δ −n)

(
e[γ c̃−(A−δ−n)]T −1

)
.

Multiplying through by e(A−δ−n)T , and taking into account that γ c̃−(A−δ −n) =
(A−δ −n) 1−σ

σ − θ
σ , we have, at any point in time:

k̃T = Me(A−δ−n)T − c̃0

γ c̃ − (A−δ −n)
eγ c̃T

= Me(A−δ−n)T +
c̃0

φ
e(A−δ−n−θ) T

σ , (6.7)

where M = k̃0 + c̃0
γ c̃−(A−δ−n) , φ = (A−δ −n)− γ c̃.

If we now take (6.7) to the transversality condition (6.6), we have

lim
T→∞

λ 0e−(A−δ−n)T k̃T = lim
T→∞

(
λ 0M +

c̃0

φ
λ 0e[

A−δ−n−θ
σ −(A−δ−n)]T

)
= 0,

for which the following two conditions must hold: (1) M = 0, (2) (A−δ −n)×
(1−σ) < θ .

The first condition, in turn, implies

γ c̃ = (A+δ +n)− c̃0

k̃0
⇒ c̃0 = k̃0 [(A−δ −n)− γ c̃] = φ k̃0,
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defining a link between the initial levels of consumption and physical capital. But
taking M = 0 to (6.7), which applies to any point in time, we have

k̃t =
c̃0

φ
e(A−δ−n−θ) t

σ =
1
φ

c̃t , ∀t,

showing that the same relationship between the initial values of physical capital
and consumption holds at all points in time. This is an important relationship that
guarantees that the stock of capital does not grow too quickly. It also implies that
physical capital and consumption grow every period at the same constant rate k̃t =
k̃0eγ c̃t . As a consequence, so does output,

γ c̃ = γ k̃ = γ ỹ = γ.

A lower consumption growth would allow for more capital accumulation, but
with lower time aggregate utility. A more rapid consumption growth would lead to
less intense capital accumulation which would in turn be unable to provide enough
resources so as to maintain the rate of growth of consumption.

Since all per capita variables grow at a constant rate at all time periods, the econ-
omy is always in steady state. Starting from an initial condition k̃0, the economy
jumps immediately to the steady-state, per capita variables growing at a rate γ at all
time periods. Following any structural change or a policy intervention that changes
γ ,3 the economy will jump immediately from the old to the new steady-state with
the new growth rate, since there is no transition between steady states.

To end this section let us make two comments on convergence in economies with
an AK production technology. First, since the rate of growth of output is constant at
all time periods, two countries differing in any parameter A,δ ,θ ,n,σ will perma-
nently grow at different rates.

Second, economic growth is independent from income, so a relatively poor econ-
omy will not grow faster than a richer one. Therefore, there is neither absolute nor
conditional convergence among AK economies.

6.1.3 Boundedness of Time-Aggregate Utility

Aggregate utility over a finite interval of time (0,T ) is

U0 =
∫ T

0
e−θ t c̃1−σ

t −1
1−σ

dt.

If the integrand grows too quickly, U0 would grow with T without bound, and the
welfare maximization problem would become meaningless. To avoid this situation,
some restriction among structural parameters may be needed.

3 In this simple version of the AK economy policy interventions do not directly affect the rate of
growth, which depends on the values of A,n,δ ,θ ,σ . Later on, we will see that policy choices may
also affect growth.
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Since c̃t grows at a rate γ, we have

U0 =
∫ T

0
e−θ t (c0eγt)1−σ −1

1−σ
dt.

The constant term in the utility function has as integral

−
∫ T

0
e−θ t 1

1−σ
dt =

1
θ

1
1−σ

e−θ t |T0 =
1
θ

1
1−σ

(
e−θT −1

)
,

which remains bounded when T → ∞ for any values of the structural parameters.
On the other hand, the term in consumption integrates to

1
γ (1−σ)−θ

c1−σ
0

1−σ

(
e[γ(1−σ)−θ ]T −1

)
,

which will remain bounded as T grows provided4

θ > γ (1−σ) ,

which using the expression for the rate of growth: γ = (A−δ −n−θ)/σ , can be
seen to hold if and only if

θ > (1−σ) (A−δ −n) , (6.8)

meaning that, if σ < 1, the discount rate must be relatively large for welfare to be
bounded.5 On the other hand, if σ > 1, then any value of the discount rate leads to a
bounded time aggregate utility, so long as growth is positive, i.e., if A > θ +δ +n.
In this endogenous growth economy, when σ < 1, welfare can become unbounded
for a sufficiently large level of productivity, in which case, there would not be much
need for a planner. That economy would be able to produce enough resources to
allow for consumption to grow over time in such a way that time aggregate utility
becomes infinite.

6.2 The Discrete Time Version of the Model

As in previous chapters, we now develop the model in discrete time formulation.
Qualitative results will be the same as in the continuous time version but, as dis-
cussed in Chap. 3, discrete time should be used for numerical simulations.

4 A quite natural condition, that requires that the rate of growth of the consumption argument in
the single period utility function be lower than the rate of time discount, θ .
5 But this is exactly the same condition (2) we obtained before to guarantee that the transversality
condition will hold, although the latter also requires the linear relationship between consumption
and capital we characterized in the previous section.
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The constraint of resources at the level of the whole economy is, in discrete time,

Ct +(Kt+1 − (1−δ )Kt) ≤ Yt ⇒ Kt+1 = AKt −Ct +(1−δ )Kt ,

which, in per capita terms, amounts to,

k̃t+1 =
1

1+n

(
Ak̃t − c̃t +(1−δ ) k̃t

)
. (6.9)

Assuming that the preferences of the typical consumer can be represented by a
constant relative risk aversion utility function

U(c̃t) =
c̃1−σ

t −1
1−σ

, σ > 0,

the problem solved by the representative agent is6

max U0 =
∞

∑
t=0

β t c̃1−σ
t −1
1−σ

, (6.10)

subject to the constraint of resources (6.9) and the structure of the production tech-
nology: ỹt = Ak̃t .

The optimization problem of the representative consumer is (6.10), subject to
(6.9) and c̃t , k̃t+1 ≥ 0, with k̃0 given. The Lagrangian of the problem is

L =
∞

∑
t=0

β t
(

c̃1−σ
t −1
1−σ

−λ t
[
(1+n)k̃t+1 −Ak̃t + c̃t − (1−δ ) k̃t

]
)

,

with optimality conditions,7

∂L
∂ c̃t

= 0 ⇒ c̃−σt = λ t , t = 0,1,2, . . . ,

∂L
∂ k̃t+1

= 0 ⇒−(1+n)λ t +β (A+1−δ )λ t+1 = 0,

for t = 0,1,2, . . . ,

Transversality Condition : lim
t→∞

(1+n)β tλ t k̃t+1 = 0.

6 Since there are no taxes, money or any public expenditures in this simple version of the AK
economy, the planner’s problem is the same as that of the representative agent.
7 As usual, the transversality condition comes from taking derivatives in the finite horizon version
of the Lagrangian with respect to k̃T+1, and imposing the condition,

lim
T→∞

βT k̃T+1
∂L

∂ k̃T+1
= 0,

the partial derivative of the Lagrangian with respect to the last period’s stock of capital being equal
to λ T .
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These conditions lead to

λ t =
1
β

1+n
A+1−δ

λ t−1 =
(

1+n
β (A+1−δ )

)t

λ 0,

c̃t =
(
β

A+1−δ
1+n

)1/σ
c̃t−1 =

(
β

A+1−δ
1+n

)t/σ
c̃0, (6.11)

where per capita consumption c̃t can be seen to grow at a constant gross rate every
period

1+ γ c̃t
= 1+ γ c̃ =

(
β

A+1−δ
1+n

)1/σ
,

which is actually positive if A+1−δ > 1+n
β , being negative otherwise.

Condition (6.11) shows that the marginal rate of substitution between current and
future consumption is equal, under the optimal solution, to the marginal product of
capital, net of depreciation8: c̃σt

β c̃σt−1
= A+1−δ

1+n . In other words, capital is accumulated
to the point where the relative preference for current versus future consumption is
equal to the net return of using an additional unit of physical capital in production.

From the global constraint of resources, the growth rate of physical capital in a
given period is

1+ γ k̃t
=

k̃t+1

k̃t
=

1
1+n

(
A+(1−δ )− c̃t

k̃t

)
,

which will be constant if and only if c̃t and k̃t grow at the same rate at all time
periods. Therefore, a constant growth of physical capital requires that its rate of
growth be the same as that of per capita consumption

γ k̃ = γ c̃ .

Furthermore, the AK−technology implies that per capita income satisfies a sim-
ilar property

1+ γ ỹ =
ỹt

ỹt−1
=

k̃t

k̃t−1
= 1+ γ k̃ = 1+ γ c̃ =

(
β

A+1−δ
1+n

)1/σ
,

so that the three variables, consumption, physical capital and output stay on a bal-
anced growth path from the initial time, growing at the same constant rate in all
time periods. We will refer to this common growth rate as γ. The economy is there-
fore at steady-state at all time periods, and there is no transition to steady-state, as
we already saw in the continuous time version of the model. Following any policy
intervention or any structural change that might alter the steady-state rate of growth,

8 This would be physical depreciation as well as the loss of resources due to providing the newly
born with the same stock of capital as owned by existing workers.
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the economy will start growing at the new rate in the very first period after the pol-
icy intervention. The same comments we made in Sect. 6.1.2 on the fact that the AK
model implies neither absolute nor conditional convergence could be made here.

6.2.1 The Transversality Condition and Bounded Utility

The transversality condition corresponding to the previous optimization problem is,
in steady-state:

lim
t→∞

(1+n)β tλ t k̃t+1 = 0

⇒ lim
t→∞

β t
(

1+n
β (A+1−δ )

)t (
β

A+1−δ
1+n

)(t+1)/σ
λ 0k̃0 = 0,

which will be the case so long as

lim
t→∞

(
1+n

A+1−δ

)t (
β

A+1−δ
1+n

)t/σ
= lim

t→∞
β t/σ

(
A+1−δ

1+n

) 1−σ
σ t

= 0,

which will happen provided,9

(
A+1−δ

1+n

)1−σ
<

1
β

, (6.12)

which places an upper bound on the rate of growth: 1 + γ < 1/β
1

1−σ when σ < 1,

or a lower bound, 1+ γ > 1/β
1

1−σ when σ > 1.
It is interesting to note that, as in the continuous time version of the model,

the condition guaranteeing that the transversality condition holds, (6.12) , is the
same condition guaranteeing that maximized welfare remains finite. Indeed, once
we know the growth rate of consumption, welfare can be written

∞

∑
t=0

β t c̃1−σ
t −1
1−σ

=
∞

∑
t=0

β t

(
β A+1−δ

1+n

) 1−σ
σ t

c1−σ
0 −1

1−σ

=
c1−σ

0
1−σ

∞

∑
t=0

[

β
(

A+1−δ
1+n

)1−σ
] t
σ

− 1
1−σ

∞

∑
t=0

β t ,

which will be bounded so long as condition (6.12) holds. Positive growth at the same
time than bounded welfare requires here that either: 1+n

β < A + 1− δ < 1+n
β 1/(1−σ) , if

σ < 1, or just the left hand inequality, if σ ≥ 1.

9 The similarity between restriction (6.12) and the analogue constraint we found in the continuous
time version of the model is evident.
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6.2.2 Absence of Transitional Dynamics: Relationship
Between the Stock of Physical Capital and Consumption

As in the continuous time version, it is not hard to show that this economy is always
in steady state so that, following any structural change or policy intervention, there
is not transitional dynamics between steady-states. The argument will be the same
as in the continuous time version of the model, by integrating the global constraint
of resources subject to the transversality condition as a terminal condition.

First of all, (6.11) shows that per capita consumption grows at a constant rate
every period. With regards to the stock of capital, we have from (6.9)

k̃t+1 =
A+1−δ

1+n
k̃t −

1
1+n

c0

(
β

A+1−δ
1+n

)t/σ
, (6.13)

a non-homogeneous difference equation, with characteristic root µ = A+1−δ
1+n , so

that the solution to the homogeneous part of the equation is: k̃t = M
(

A+1−δ
1+n

)t
, for

a given constant M to be determined from boundary conditions. A particular solu-

tion to the full equation may adopt the form, k̃t = H
(
β A+1−δ

1+n

)t/σ
, for a particular

constant H.
Plugging this analytical expression into (6.13) we get

H =
c0

(A+1−δ )− (1+n)
(
β A+1−δ

1+n

)1/σ ,

so that the complete solution to the non-homogeneous equation is

k̃t = M
(

A+1−δ
1+n

)t

+H
(
β

A+1−δ
1+n

)t/σ
.

To determine the remaining constant, M, we take this expression to the transver-
sality condition,10

lim
t
β tλ t k̃t+1 = lim

t→∞
β t c−σ0

(
β

A+1−δ
1+n

)−t
[

M
(

A+1−δ
1+n

)t+1

+H
(
β

A+1−δ
1+n

)(t+1)/σ
]

= c−σ0 lim
t→∞

[

M
A+1−δ

1+n
+Hβ

t+1
σ

(
A+1−δ

1+n

)t 1−σ
σ + 1

σ
]

10 When it is not needed, in what follows we skip the 1+n factor from the transversality condition.
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= c−σ0

⎡

⎣ lim
t→∞

(
M

A+1−δ
1+n

)
+H

(
β

A+1−δ
1+n

) 1
σ

× lim
t→∞

[

β
(

A+1−δ
1+n

)1−σ
] t
σ
⎤

⎦ .

The condition that guarantees a bounded level of welfare also implies that the
last term in this expression converges to zero, so that the transversality condition
will hold if, in addition to that condition, we have M = 0, implying an equilibrium
path for physical capital is

k̃t =
1

(A+1−δ )− (1+n)
(
β A+1−δ

1+n

)1/σ

(
β

A+1−δ
1+n

)t/σ
c0,

which, using (6.11) can also be written

k̃t =
1

(A+1−δ )− (1+n)
(
β A+1−δ

1+n

)1/σ c̃t = φ c̃t ,

or
c̃t = [(A+1−δ )− (1+n)(1+ γ)] k̃t , t = 0,1,2, . . . .

Hence, as in the continuous time version of the model, we again have two neces-
sary conditions for the transversality condition to hold. One of them also guarantees
boundedness of the time aggregate utility function. The second condition imposes
a linear relationship between per capita consumption and physical capital at each
point in time, so that the two variables grow at the same rate. Since consumption
grows at a constant rate at all time periods, so does physical capital, and the steady
state takes the form of a balanced growth path.

6.3 Stability in the AK Model

We apply in this section the same arguments as in previous chapters to characterize
stability conditions for the AK economy. As described in previous chapters, im-
posing the appropriate stability conditions is crucial in order to obtain acceptable
solutions. This is now specially important because of the growing nature of per
capita variables in the AK economy. The linearity of the AK model makes unnec-
essary to compute any further approximation on which to discuss stability. Because
of that, we obtain as the single stability condition for this model exactly the same
relationship between per capita consumption and capital that we obtained above for
the transversality condition to hold. This is just a reflection of the fact that stabil-
ity conditions restrict the time paths of the main variables so that the transversality
condition holds.
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In terms of detrended variables ct ,kt , defined by

c̃t = (1+ γ)t ct , k̃t = (1+ γ)t kt ,

the optimality conditions we found in the previous section for the optimization prob-
lem of the representative agent can be written

ct+1 = ct , (6.14)

kt+1 =
A+1−δ

(1+n)(1+ γ)
kt −

1
(1+n)(1+ γ)

ct , (6.15)

or, in matrix form

(
ct+1
kt+1

)
=

(
1 0
− 1

(1+n)(1+γ)
A+1−δ

(1+n)(1+γ)

)(
ct
kt

)
= B

(
ct
kt

)
. (6.16)

As we can see, in this deterministic version of the model, optimal detrended con-
sumption will remain constant, thereby getting an extreme form of the consumption
smoothing property, while the stock of physical capital will evolve according to
(6.15).

Since the transition matrix B of this system is lower triangular, its eigenvalues
are just the diagonal elements, 1 and A+1−δ

(1+n)(1+γ) , the latter being greater than 1, if the
transversality condition is to be satisfied, as shown in (6.12). The unit eigenvalue is
characteristic of endogenous growth models, in which per capita variables display
non-zero growth along the steady state, which adopts the form of a balanced growth
path. The unit eigenvalue shows up in the form of a unit root in the determination
of optimal consumption above. The second eigenvalue, being greater than 1, will
provide us with a stability condition. Since k0 is given and c0 is free, that struc-
ture guarantees a well-determined solution, provided we choose initial consumption
on the stable path, as we saw in the Cass–Koopmans model. The associated eigen-

vectors are, respectively,
(
φ
1

)
and

(
0
1

)
, where φ is the same constant as in the

previous section: φ = A + 1− δ − (1 + n)(1 + γ), as can be seen by solving the
systems

(
1 0
− 1

(1+n)(1+γ)
A+1−δ

(1+n)(1+γ)

)(
x
1

)
= 1

(
x
1

)
,

that defines the first eigenvalue and eigenvector, and

(
1 0
− 1

(1+n)(1+γ)
A+1−δ

(1+n)(1+γ)

)(
y
1

)
=

A+1−δ
(1+n)(1+ γ)

(
y
1

)
,
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that defines the second eigenvalue and eigenvector, having normalized the eigenvec-
tors to have a unit second component.11

The spectral decomposition of the transition matrix B, is B = ΓΛΓ−1, where Λ is
the diagonal matrix made up by the two eigenvalues, 1 and A+1−δ

(1+n)(1+γ) , while matrix

Γ has as columns the right eigenvectors:
(
φ 0
1 1

)
, with inverse matrix

(
1
φ 0

− 1
φ 1

)

.

Using this decomposition, the autoregressive representation can be iterated to
(

ct
kt

)
= Bt

(
c0
k0

)
=

(
ΓΛΓ−1)t

(
c0
k0

)
= ΓΛtΓ−1

(
c0
k0

)

=
(
φ 0
1 1

)(
1 0

0
(

A+1−δ
(1+n)(1+γ)

)t

)(
1
φ 0

− 1
φ 1

)(
c0
k0

)

=

(
c0

c0
φ −

(
A+1−δ

(1+n)(1+γ)

)t
( c0
φ − k0)

)

, (6.17)

which could in principle be used to produce time series for consumption and cap-
ital. However, the initial optimal level of consumption, c0 is still unknown, since
consumption is a decision variable and c0 must be chosen optimally as a function of
the initial state of the economy.

Using the representation for the per capita stock of physical capital from (6.17),
we can see that the transversality condition holds if and only if

lim
t→∞

β tλ t k̃t+1 = lim
t→∞

β t c̃−σt k̃t+1

= lim
t→∞

(
(
β (1+ γ)−σ

)t
c−σ0

(
1+ γ)t+1kt+1

)

11 There is nothing specific of the normalization we use. In fact, if we normalized the eigenvectors

to have unit norm, these would be

⎛

⎝
φ√

1+φ2

1√
1+φ2

⎞

⎠ and
(

0
1

)
, and the system could be written

(
ct
kt

)
=

⎛

⎝
φ√

1+φ2
0

1√
1+φ2

1

⎞

⎠

(
1 0

0
[

A+1−δ
(1+n)γ

]t

)(
1
φ

√(
1+φ2) 0
− 1
φ 1

)(
c0
k0

)

=

(
c0

1
φ c0 +

(
k0 − c0

φ

)[
A+1−δ
(1+n)γss

]t

)

,

the same representation we obtained before, so the same argument could be made to characterize
the single stable trajectory. Normalizing the eigenvectors to have their second component equal to
one would again give raise to the same characterization of stability.
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=
c1−σ

0 (1+ γ)
φ

lim
t→∞

(
β (1+ γ)1−σ)t

+
(

k0 −
c0

φ

)
c−σ0 lim

t→∞

{
[
β (1+ γ)−σ

]t (1+ γ)t+1

×
(

A+1−δ
(1+n)(1+ γ)

)t+1
}

=
c1−σ

0 (1+ γ)
φ

lim
t→∞

(
β (1+ γ)1−σ)t

+
(

k0 −
c0

φ

)
A+1−δ

1+n
c−σ0

× lim
t→∞

(
β (1+ γ)−σ

)t
(

A+1−δ
1+n

)t

= 0, (6.18)

where we have used: c̃t = (1+ γ)t ct , c̃0 = c0, k̃t+1 = (1+ γ)t+1k0 and (6.17). Since
β (1 + γ)1−σ is less than 1 under condition (6.12), the first limit in the previous
expression is equal to zero. On the other hand, for the second limit we have

lim
t→∞

(
β (1+ γ)−σ

)t
(

A+1−δ
1+n

)t

= lim
t→∞

(
(1+ γ)−σβ

A+1−δ
1+n

)t

= 1,

where we have used the expression for the steady-state rate of growth: 1 + γ =
(
β A+1−δ

1+n

) 1
σ

. Therefore, the second limit in (6.18) will be zero if and only if c0 =
φk0. This condition characterizes the only equilibrium trajectory along which the
transversality condition holds. Together with (6.15), this relationship implies: kt =
k0 for all t, so that the proportionality between detrended consumption and capital
ct = φkt holds at any point in time.

As in the Cass–Koopmans model, to eliminate the unstable trajectories that vio-
late the transversality condition it is enough to choose appropriately the initial level
of consumption, c0 = φk0. We refer to this as the stability condition, which selects
the only stable trajectory satisfying equilibrium conditions. We have just shown that,
as it is the case in the general discussion in Chap. 3 for exogenous growth models,
this condition amounts to making equal to zero at all time periods the cross prod-
uct of the left eigenvector12 associated to the unstable eigenvalue, i.e., the second

eigenvalue,
(
− 1
φ 1

)
, and the column vector of variables

(
ct
kt

)
.

Summarizing, we have been able to find a stable solution to the system because
of the existence of an eigenvalue greater than one in absolute value since then, the
associated eigenvector determines the unstable direction. Eliminating this direction

12 Remember that the left eigenvectors are obtained as the rows in the inverse of the matrix that
has the right eigenvectors as columns.
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at all time periods, we find the initial consumption value guaranteeing stability of the
implied solution. The stability condition is in this case a necessary but not sufficient
condition for the transversality condition to hold.

6.4 Effects from Transitory Changes in Policy Parameters

We show in this section that policy interventions, even if transitory, produce per-
manent effects in the AK-economy. This runs contrary to the implication in an
exogenous growth model, like the standard Cass–Koopmans model, where transi-
tory interventions have purely transitory effects. In the Cass–Koopmans model, the
effects may be longer lasting than the own policy intervention, but they are not
permanent in any case.

We maintain the same assumptions on preferences and technology, but we now
assume that the government raises income taxes at a rate τ t . The government uses
tax revenues to finance some lump-sum transfers to consumers, g̃t . Government
expenditures are therefore endogenous, being a function of output, as opposed to a
case when government expenditures are given, and the tax rate adjust each period
so that tax revenues equal expenditures at each point in time. The budget constraint
of the representative agent would now be

(1+n)k̃t+1 = (1− τ t)Ak̃t − c̃t +(1−δ ) k̃t + g̃t , (6.19)

and the Lagrangian for the utility maximization problem is

L =
∞

∑
t=0

β t
{

c̃1−σ
t −1
1−σ

−λ t
[
(1+n)k̃t+1

− (1− τ t)Ak̃t + c̃t − (1−δ ) k̃t − g̃t
]
}

,

with optimality conditions

∂L
∂ c̃t

= 0 ⇒ c̃−σt −λ t = 0, t = 0,1,2, . . . ,

∂L
∂ k̃t+1

= 0 ⇒−(1+n)λ t +β ((1− τ t+1)A+1−δ )λ t = 0,

for t = 0,1,2, . . . ,

and transversality condition,

lim
T→∞

βTλT k̃T+1 = 0,
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leading to the optimality condition

c̃t+1

c̃t
=

[
β

(1− τ t+1)A+1−δ
1+n

]1/σ
,

which, together with the global constraint of resources,

(1+n) k̃t+1 = Ak̃t − c̃t +(1−δ ) k̃t ,

provide us with a system of two non-linear difference equations in c̃t , k̃t .
The first equation shows that consumption grows at a time varying rate:

1+ γ c̃t+1
=

c̃t+1

c̃t
=

[
β

(1− τ t+1)A+1−δ
1+n

]1/σ

from the initial period. The growth rate depends negatively on the proportional tax
rate on income, which originates the endogenous growth denomination of this econ-
omy, since policy decisions affect growth.

6.4.1 A Policy Intervention

We consider now the effects in the AK economy of a transitory policy intervention.
For simplicity, we will assume the tax policy

τ = τ0, t 	= t∗, (6.20)
τ = τ1, t = t∗, τ0 < τ1,

where the income tax rate is increased for just one period t∗, being constant in all
other periods. A similar analysis could be used to discuss the effects of changes in
the tax rate which are maintained over a finite number of periods but, for simplicity,
we consider here a single-period policy intervention.

Under a fiscal policy that maintains a constant tax rate we can consider a possible
steady-state, with all per capita variables growing at a constant rate. Furthermore, as
it is the case without taxes, there is no transitional dynamics in the economy, so any
change in the rate of growth is achieved immediately, with no gradual adjustments.
As a consequence, the higher tax rise will lower the rate of growth of per capita
variables at time t∗, the rate of growth returning to its value prior to the policy
intervention as soon as the tax rate returns at time t∗ +1 to its starting value of τ0.

We maintain the assumption of a constant relative risk aversion utility function.
In the absence of policy intervention we would have a rate of growth 1 + γ 0 =
[
β (1−τ0)A+1−δ

1+n

]1/σ
, and if denote by

{
k̃0

t , c̃
0
t
}

and
{

k̃1
t , c̃

1
t
}

the optimal trajectories
for physical capital and consumption without the transitory policy intervention or
under the policy intervention, respectively, we have
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k̃0
t = (1+ γ 0)t k0,

c̃0
t = (1+ γ 0)t c0 = (1+ γ 0)t ((1− τ0)A+1−δ − (1+n)(1+ γ 0)

)
k0.

Under the policy intervention, we will have

k̃1
t = (1+ γ 0)t k0, t < t∗,

k̃1
t = (1+ γ 0)t−1(1+ γ1)k0, t ≥ t∗,

where we have used the fact that the tax rate is changed for just one period, the

duration of the policy intervention. In that expression, 1+ γ1 =
[
β (1−τ1)A+1−δ

1+n

]1/σ

is smaller than 1 + γ 0, as a consequence of the rise in tax rates, so that physical
capital will be permanently lower after the tax raise.

We also have the consumption path:

c̃1
t = c̃0

t = (1+ γ 0)t [(1− τ0)A+1−δ − (1+n)(1+ γ 0)
]

k0, t < t∗,

c̃1
t =

1+ γ1

1+ γ 0 c̃0
t

= (1+ γ 0)t−1(1+ γ1)
[
(1− τ0)A+1−δ − (1+n)(1+ γ 0)

]
k0, t ≥ t∗.

The difference between the trajectories after and before the tax rise is

k̃1
t

k̃0
t

=
c̃1

t

c̃0
t

= 1, t < t∗;

k̃1
t

k̃0
t

=
c̃1

t

c̃0
t

=
1+ γ1

1+ γ 0 < 1, t ≥ t∗,

showing that, in fact, a permanent effect is produced on the levels of per capita
variables following a single-period policy intervention.

6.4.2 A Comparison with the Cass–Koopmans Economy

Let us now consider for comparison the effects of a similar policy intervention on
an economy of the Cass–Koopmans type. We again consider a single period change
in the tax rate. With a budget constraint for the representative consumer,

(1+n)kt+1 = (1− τ t) f (kt)− ct +(1−δ )kt +gt , (6.21)

where f (kt) fulfills the standard Inada properties, and relative risk aversion prefer-
ences, we have first order conditions,
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ct+1

ct
=

[
β

1+n

(
(1− τ t+1) f ′(kt+1)+1−δ

)
]1/σ

, (6.22)

together with (6.21) and the transversality condition limt→∞β t c−σt kt+1 = 0.
From (6.22), the steady-state of this economy under a constant tax rate τ is

given by

f ′(kss (τ)) =
1+n
β − (1−δ )

1− τ
,

css (τ) = (1− τ) f (kss (τ))− (n+δ )kss (τ) ,

with kss (τ) and css (τ) both decreasing in the tax rate τ .13

Let us suppose that the government has been running a policy of income taxes at
a rate τ0. The economy will then be on a trajectory smoothly converging to kss (τ0),
either increasing towards that value (if k0 happens to be below kss (τ0)), or decreas-
ing, otherwise. As we saw in previous chapters, given k0, the planner will choose an
initial level of consumption on the convergence manifold, and trajectories for ct ,kt
would start from those initial values to converge towards css (τ0) ,kss (τ0).

Now, suppose that at time t∗ there is a transitory change in τ, as in (6.20). Given
the previous period values kt∗ ,ct∗−1, the current period values kt∗+1,ct∗ will be given
by the stability condition we characterized in Chap. 4, with τ = τ1, and (6.21),

kt∗+1 (τ1) =
(1− τ0) f (kt∗)− ct∗ (τ1)+(1−δ )kt∗

1+n
. (6.23)

If the economy was accumulating capital towards its steady-state, the stock of
capital kt∗+1 could either be above or below kt∗ , depending on the size of the
change in tax rate. The value of ct∗ from the stability condition will guarantee that
(kt∗+1,ct∗) is on the new stable manifold, which will be different from that at time
t∗ −1. Consumption ct∗ can also fall either above or below ct∗−1. At time t∗+1, the
laws of motion (6.22), (6.23) for kt∗+2 and ct∗+1 will again involve τ0, rather than
τ1. Steady state values will again be css (τ0) ,kss (τ0) , and the value of ct∗+1 will be
on the stable manifold converging now from the current position to the same steady-
state we had before the policy intervention. The levels of consumption and capital
will be different at each point in time from those that would have prevailed with-
out the policy intervention, but their trajectories converge to the same steady-state.
Hence, those differences will decrease over time.14

13 To show this, first notice that the marginal product of capital changes directly with the tax rate.
Furthermore,

∂c∗ (τ)
∂τ

=
∂k∗ (τ)
∂τ

(
(1− τ) f ′(k∗ (τ))−δ

)
− f (k∗ (τ)) < 0 .

The sign of this expression comes from ∂k∗(τ)
∂τ < 0 and (1− τ) f ′(k∗ (τ))− δ > 0, since the latter

is the marginal product of capital net of taxes and depreciation, which will coincide in equilibrium
with the real interest rate in the economy, which must be positive.
14 For any ε > 0, there is always a time period tε such that t > tε ⇒|

(
k0

t /k1
t
)
−1 |< ε .
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6.5 Dynamic Laffer Curves

An increase in tax rates, implemented on a low level of taxes, should be expected
to lead to an increase in tax revenues. However, in a static setup, the Laffer curve
captures the possibility that a raise on an already high level of the tax rate might
actually lower revenues. That could be the case because the decrease produced in the
after tax rate of return on capital might discourage capital accumulation sufficiently
so that an implied lower level of income, subject to the higher tax, could give raise to
lower tax revenues. Hence, the Laffer curve may display a typical inverted-U shape,
revenues increasing with the tax rate up to a given level, above which revenues will
fall if tax rates are further raised.

In a dynamic framework, Ireland [43] used an AK model to analyze the possibil-
ity that income tax rates could be lowered down while the government being able to
finance a given stream of public expenditures. In that setup, the Laffer curve relates
the present value of tax revenues to the level of the tax rate, while the present value
of government expenditures is kept constant. It is clear that for that to be the case,
we must lower the tax rate associated to a distortionary tax, since only then the rate
of growth of the economy might positively respond to the decrease in taxes. The
lower tax rates will produce budget deficits in the short-run, which will require to
issue some debt for a number of periods. If the economy grows faster because of the
decrease in the tax rate, then the additional resources produced over the long-run
might allow the government to retire the debt issued to finance the short-run budget
imbalance. This is because the present value of tax revenues have in fact increased
after the tax cut. This possibility is the analog, in an intertemporal framework, of
the decreasing part of the Laffer curve.15

We consider a linear AK technology, Yt = AKt , A > 0, a standard rule for capital
accumulation: Kt+1 = (1− δ )Kt + It , and a CRRA utility function with parameter
σ > 0 and a discount factor β ∈ (0,1). At each time period t, the government charges
a proportional income tax τ t and gives each consumer a lump-sum transfer of g̃t =
Gt/Nt units of commodity. The government can finance a given deficit each period
by issuing discounted, one-period bonds, in an amount Bt+1. Each bond is sold at
a price 1/Rt in terms of the period-t consumption commodity, thereby giving the
owner the claim to one unit of consumption at time t + 1. Rt is then the real rate of
return between time t and t +1, and it is known with certainty at time t.

Defining per capita government debt bt = Bt/Nt , the budget constraint for the
representative agent is

(1− τ t)Ak̃t +(1−δ )k̃t +bt + g̃t ≥ c̃t +(1+n)k̃t+1 +(1+n)bt+1/Rt . (6.24)

Consumers takes their initial stocks of physical capital, and bonds, k0,b0 > 0,
as well as the sequences {τ t , g̃t ,Rt}∞t=0 as given when maximizing their lifetime
aggregate utility subject to the sequence of budget constraints (6.24).

15 The reader can find in Novales and Ruiz [69] the analysis of dynamic Laffer effects in an
endogenous growth model with human capital accumulation.
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First order conditions for the representative agent problem are

c̃t : c̃−σt = λ t ,

k̃t+1 : β t (1+n)λ t = β t+1λ t+1 [(1− τ t+1)A+(1−δ )] ,

bt+1 : β t (1+n)λ t
1
Rt

= β t+1λ t+1,

together with the transversality condition,16

lim
T→∞

(1+n)T+1 k̃T+1 +bT+1/RT
T−1
∏

s=0
Rs

= 0,

which can be written,

c̃−σt =
β

1+n
c̃−σt+1Rt ,

Rt = (1− τ t+1)A+1−δ ,

and growth can be written,

1+ γ t =
(
βRt

1+n

)1/σ
.

As we already know, the stock of capital and output will also grow at the same
constant rate than consumption, provided the tax rate is kept constant over time.
As we can see, the growth rate depends on policy decisions through the income
tax rate, reflecting again the endogenous growth nature of the model. We have also
characterized above the equilibrium real rate of return on bonds as a function of
structural and policy parameters.

The government commits itself to providing for a sequence {gt}∞t=0 of transfers
to consumers. The government constraint is

τ tAk̃t +(1+n)bt+1/Rt ≥ g̃t +bt , (6.25)

with the terminal condition,17

lim
T→∞

(1+n)T+1 bT+1/RT
T−1
∏

s=0
Rs

≤ 0. (6.26)

We consider the following tax experiment: the economy starts from a unit stock
of physical capital: k0 = 1, and is subject to a constant income tax rate up to a given

16 The presence of the product of real interest rates in the denominator of this fraction is due to
solving backwards for the Lagrange multiplier that usually appears in the transversality condition.
17 To eliminate the possibility of non-zero Ponzi games.
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time: τ t = τ0,∀t. For simplicity, we will also assume that, initially, there is zero debt
outstanding, and that debt is never issued: bt = 0,∀t. These assumptions imply

1+ γ 0 =

(

β
(
1− τ0

)
A+1−δ

1+n

)1/σ

,

k̃0
t =

(
1+ γ 0)t

, (6.27)

so that the balanced growth path for government transfers is

g̃t = τ0Ak̃t = τ0A
(
1+ γ 0)t

. (6.28)

The question is whether the government could use a lower constant tax rate,
τ1 < τ0 and still finance the same path for government expenditures {g̃t}∞t=0 char-
acterized by (6.28). The change in taxes takes place at some point in time that we
can consider, without loss of generality, to be t = 0. As described by Ireland [43]
the reduction in the marginal tax rate from τ0 to τ1 has three effects on the gov-
ernment’s budget constraint: (a) a direct effect decreasing total tax revenues, (b) the
lower tax rate increases the rate of capital accumulation as can be seen by compar-
ing (6.27) with (6.29). This effect increases the tax base and hence, total revenues,
(c) the lower tax rate increases the real rate of interest (6.30), thereby decreasing the
present value of the government futures receipts and expenditures.

The same argument we made above shows that, under the alternative tax rate we
would have trajectories for capital and interest rates

1+ γ1 =

(

β
(
1− τ1

)
A+1−δ

1+n

)1/σ

,

k̃1
t =

(
1+ γ1)t

, (6.29)

R1
t = R1 =

(
1− τ1)A+1−δ . (6.30)

The terminal condition on government debt will be satisfied only if

∞
∑

t=0
(1+n)t 1

t−1
∏

s=0
R1

s

(
τ1Ak̃1

t − g̃t
)
≥ 0, (6.31)

which defines the set of feasible fiscal policies, i.e., the set of combinations of tax
rates and government expenditures that would allow for eventually retiring any debt
outstanding as of the time of the change in the tax rate. It is a single intertempo-
ral budget constraint, that we have obtained by integrating the sequence of single-
period constraints (6.25) under the terminal condition (6.26). The condition just
states that for a fiscal policy to be feasible all we need is that the present value, as
of the time of the tax change, of the sequence of tax revenues should be greater than
that of the sequence of government expenditures. The condition adopts a simpler
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form because of our assumption of zero initial debt. Otherwise, the condition would
state that the present value of current and future government surplus should be at
least equal to the initial stock of debt, b0.

Using the levels for k1
t and R1

t given by (6.29), (6.30), as well as the pre-specified
{g̃t}∞t=0 path, it is easy to see that the intertemporal government budget constraint
will hold under the alternative income tax rate τ1 if and only if

∞

∑
t=0

τ1A
(
1+ γ1

)t − τ0A
(
1+ γ 0

)t

(R1)t (1+n)−t ≥ 0. (6.32)

Since along the balanced growth path: 1 + γ1 < R1/(1+n),18 we have:

∑∞t=0
τ1A(1+γ1)t

(R1)t (1+n)−t = τ1A∑∞t=0

(
1+γ1

R1/(1+n)

)t
= τ1AR1

R1−(1+n)(1+γ1) and since 1 + γ 0 <

1 + γ1 < R1/(1+n) , ∑∞t=0
τ0A(1+γ 0)t

(R1/(1+n))t = τ0A∑∞t=0

(
1+γ 0

R1/(1+n)

)t
= τ0AR1

R1−(1+n)(1+γ 0) .

Hence, condition (6.32) holds if and only if

τ1AR1

R1 − (1+n)(1+ γ1)
− τ0AR1

R1 − (1+n)(1+ γ 0)
≥ 0. (6.33)

The answer to the question we raised on the possibility of a tax rate cut can
be obtained from (6.33). Any value of τ1 satisfying that inequality will be a feasible
alternative income tax rate, below the initial τ0, while being consistent with the
intertemporal government budget constraint.

6.5.1 Numerical Exercise on Dynamic Laffer Curves

The DynamicLaffer.xls file contains the results of a fiscal policy experiment along
the lines of the previous section. Parameter values are: A = 0.165, β = 0.988, δ =
0.10, σ = 1.0001, n = 0. The initial income tax rate of τ = 20.0% is consistent with
annual growth of 2.0%, and a real interest rate of 3.2%. The first column considers
possible permanent tax cuts of different size. The first entry corresponds to totally
eliminating the income tax, so it is the largest cut. The last entry corresponds to the
no-change case. The next two columns display the final real interest rate and rate of
growth. The sum1,sum2 columns contain the numerical values of the two terms in
(6.33).

18 Indeed, from the transversality condition, we have

lim
t→∞

β t λ t k̃t+1 = 0 ⇔ lim
t→∞

β t c̃−σt k̃t+1 = 0 ⇔ lim
t→∞

(
β
(
1+ γ1)1−σ)t

= 0

⇔ β
(
1+ γ1)1−σ

< 1 ⇔ 1+ γ1 < R/(1+n),

since 1+ γ1 =
(
βR1

1+n

)1/σ
.
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The effect on the budget, L, is obtained as the difference between these two terms.
Positive values correspond to feasible tax cuts. These are tax cuts that stimulate
growth by enough so that the increased future tax revenues allow for retiring the
debt which is initially issued to cover the budget deficits that arise for a number of
periods after the tax cut. Obviously, small tax cuts appear as having a lesser effect
on the present value budget constraint, and lead to negative budget effects. So, those
tax cuts are not feasible. As shown in the graph, with the chosen parameterization,
the income tax rate can be cut down all the way to 7.6%, but it could not be brought
below that level without violating the present value government budget constraint.

The effects on steady-state growth are shown in the next column, relative to initial
annual growth. These are increasing in the size of the tax cut. A tax cut to 13.8%
increases annual growth by 1.0%, while the largest feasible tax cut increases growth
by 2.0%. Effects on growth and on the present value government budget deficit of a
variety of tax cuts are illustrated in the Budget and growth graph, where we can see
how tax rates below 7.6% would have a negative effect on the present value budget,
thereby not being feasible. On the other hand, the growth effect would be largest
for the total elimination of the income tax, decreasing almost linearly for smaller
tax cuts.

After this initial steady-state analysis that characterizes the feasible range for in-
come tax cuts, we present below the transitional dynamics analysis for a permanent
tax cut from 20.0% to 17.0%. The first panel (left, Before reform) contains time
series for the stock of physical capital and for the size of the lump-sum transfers
under the initial parameter values, with no change in taxes. The second panel (right,
After reform) presents time series after the tax change, that is assumed to take place
at t = 0. As explained in the previous section, the size of the lump-sum transfer is
maintained the same as without the tax change, since the point of the exercise is pre-
cisely the possibility of financing the same expenditures with lower taxes. Output is
obtained from the stock of capital, using the AK-technology, while consumption is
calculated using the stability condition.

Tax revenues are obtained from income data, and the deficit is the difference
between government expenditures (the lump-sum transfer to consumers) and tax
revenues. Budget deficits are largest immediately after the tax cut, decreasing there-
after. After a number of periods, 34 in this exercise, the government obtains a budget
surplus, as a consequence of the more rapid growth in the tax base. Debt will ac-
cumulate, starting from the initial zero stock, for two reasons: to cover the current
period deficit, and to pay interest on outstanding debt. Per capita debt is calculated
dividing by the population rate of growth. The spreadsheet then shows deficit and
debt as a proportion of output. Debt increases up to almost 72% of output, 45 pe-
riods after the tax cut, decreasing thereafter. In fact, 84 periods after the tax cut,
the government could give resources away to the private sector. The final columns
provide information on single period utility as well as on time aggregate, discounted
utility.
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The Deficit and debt graph displays the time evolution of deficit and debt, both
as a percentage of output, following the tax cut. The change in sign in both variables
after the number of periods mentioned in the previous paragraph is apparent.

The reader is encouraged to consider the feasibility of tax cuts for different para-
meterizations, which can be easily analyzed using this same Excel file.

6.6 Solving the Stochastic, Discrete Time Version
of the AK Model

We now consider the discrete time version of the AK model under stochastic
productivity,

ỹt = θ tAk̃t ,

with a law of motion for the productivity shock,

lnθ t = ρ lnθ t−1 + ε t , (6.34)

with ε t ∼
iid

N
(
0,σ2

ε
)
, as we assumed in the stochastic version of the Cass–Koopmans

economy. Each possible random realization of the productivity shock will lead to
a realization of the vector stochastic process of the main variables in the economy.
As with previous models, the model translates the probability distribution for the
productivity shock into a probability distribution for this vector stochastic process.
However, we must bear in mind that the dimension of implied randomness cannot
be larger than the number of stochastic shocks in the economy, which is just one in
this case.

Maintaining the assumption of constant relative risk aversion preferences for the
representative consumer, the use of random Lagrange multipliers as we did in pre-
vious chapters allow us to obtain optimality conditions given the starting level of
physical capital,19

c̃−σt =
β

1+n
Et

[
c̃−σt+1 (Aθ t+1 +1−δ )

]
, (6.35)

together with the global constraint of resources,

c̃t +(1+n) k̃t+1 − (1−δ ) k̃t = Aθ t k̃t , (6.36)

and the transversality condition,

lim
t→∞

(1+n)β t c̃−σt k̃t+1 = 0.

19 As explained in Chap. 5, random Lagrange multipliers lead to a formulation of first order con-
ditions involving conditional expectations.
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To obtain a numerical solution to the model, i.e., a set of time series realiza-
tions for the main variables in this economy over a period of time, we start from a
choice of values for the structural parameters, {n, ρ, σ2

ε , σ , δ , A, β}, as well as for
the initial stock of capital. A time series of the chosen length can be obtained for the
productivity shock from (6.34) before we generate data for any other variable, re-
flecting the fact that the productivity shock is exogenous. When choosing structural
parameter values, it is important to remember the conditions we impose on the level
of productivity in order to have a bounded level of welfare and the transversality
condition to hold.

We have already seen that in the steady state of the deterministic AK model econ-
omy, per capita variables grow at a constant rate. Furthermore, since growth rates are
the same for all variables, the ratios of any two variables will stay constant in steady
state. In the stochastic version of the economy, such ratios will experience fluctu-
ations around the constant values that characterize the deterministic steady-state.
Most endogenous growth models can be written in ratios of the relevant variables in
such a way that a standard steady-state, characterized by constant levels of the main
per capita variables, can be defined for the transformed economy.

In particular, in the AK economy, we define auxiliary variables,

1+ γ t+1 =
k̃t+1

k̃t
, xt =

c̃t

k̃t
,

which help transforming (6.35) into

1
β

= Et

[(
k̃t+1

k̃t+1

k̃t

k̃t

c̃t+1

c̃t

)−σ
1

1+n
(Aθ t+1 +1−δ )

]

= Et

[(
xt+1

xt
(1+ γ t+1)

)−σ 1
1+n

(Aθ t+1 +1−δ )

]

. (6.37)

On the other hand, from the global constraint of resources we have an expression
for the rate of growth

1+ γ t+1 =
k̃t+1

k̃t
=

1
1+n

(
Aθ t −

c̃t

k̃t
+1−δ

)
(6.38)

=
1

1+n
(Aθ t − xt +1−δ ) ,

where we have used in (6.37) the fact that, being known at time t, c̃t can be taken in
and out of the time-t conditional expectation operator.

In the case of no uncertainty, θ t = 1 for all t, and we could ignore the conditional
expectations operator Et . In steady-state, with γ t+1 = γ t = γ, xt+1 = xt = xss, we
would have, from these two equations
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1+ γ =
(
β

A+1−δ
1+n

)1/σ
,

xss = A+1−δ − (1+n)(1+ γ),

which are, of course, the same as in the deterministic version of the model. In the
stochastic economy, the ratio of consumption to capital will in fact experience fluc-
tuations induced by the time variation in the technology shock, and the actual growth
rate of per capita variables will also fluctuate over time. The next section explains
how to obtain a numerical solution to this model through a linear approximation to
the set of first order conditions.

6.6.1 A Linear Approximation to the Stochastic AK Model

We provide in this section the analytical details of solving the stochastic, discrete-
time version of the AK economy using the eigenvalue-eigenvector decomposition
on a linear approximation to the model. However, any of the methods discussed
in the chapter on numerical solution methods could be used as an alternative either
on this linear approximation, or on a log-linear approximation to the set of first order
conditions. This is proposed as an exercise at the end of the chapter.

Given a time series realization for lnθ t , (6.37) and (6.38) form a system of two
difference equations in γ t+1, xt , which could conceivably be used to obtain time
series for these two variables. However, since these two equations are nonlinear, we
need to obtain first a linear approximation. First, we rewrite (6.37) as

1
β

=
(

xt+1

xt

Aθ t − xt +1−δ
1+n

)−σ 1
1+n

(Aθ t+1 +1−δ )− vt+1, (6.39)

where vt+1 denotes the expectations error, defined by:

vt+1 =
(

xt+1

xt
(1+ γ t+1)

)−σ 1
1+n

(Aθ t+1 +1−δ )

−Et

[(
xt+1

xt
(1+ γ t+1)

)−σ 1
1+n

(Aθ t+1 +1−δ )

]

.

To construct the linear approximation to this equation we define an auxiliary
function:

F =
(

1
1+n

xt+1

xt
(Aθ t − xt +1−δ )

)−σ 1
1+n

(Aθ t+1 +1−δ ) ,
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to have20

∂F
∂xt+1

= −σ 1
xt

Aθ t − xt +1−δ
1+n

(
xt+1

xt

Aθ t − xt +1−δ
1+n

)−σ−1

× 1
1+n

(Aθ t+1 +1−δ ) ,

∂F
∂xt

= σ
1

1+n
xt+1

xt

[
1+

Aθ t − xt +1−δ
xt

]

× 1
1+n

(
xt+1

xt

Aθ t − xt +1−δ
1+n

)−σ−1

(Aθ t+1 +1−δ ) ,

∂F
∂ lnθ t+1

=
(

xt+1

xt

Aθ t − xt +1−δ
1+n

)−σ 1
1+n

Aθ t+1,

∂F
∂ lnθ t

= −σ
(

1
1+n

)2 xt+1

xt
Aθ t

×
(

xt+1

xt

Aθ t − xt +1−δ
1+n

)−σ−1

(Aθ t+1 +1−δ ) ,

and using the steady-state relationships

Fss =
1
β

,
Aθ ss − xss +1−δ

1+n
= 1+ γ,

Aθ ss +1−δ
1+n

=
1
β

(1+ γ)σ ,

we can rewrite (6.39) as

1
β

� 1
β
− σ
βxss

(xt+1 − xss)+
σ

β (1+ γ)

(
1

1+n
+

1+ γ
xss

)
(xt − xss)

+
A

1+n
(1+ γ)−σ lnθ t+1 −

A
1+n

σ
β (1+ γ)

lnθ t − vt+1 , (6.40)

so that from (6.40) and (6.34), we get the matrix system
( σ

βxss
− A

1+n (1+ γ)−σ

0 1

)(
xt+1 − xss
lnθ t+1

)

=

(
σ

β (1+γ)

(
1

1+n + 1+γ
xss

)
− A

1+n
σ

β (1+γ)
0 ρ

)(
xt − xss
lnθ t

)
+

(
−vt+1
ε t+1

)
,

which is of the form

Γ0zt+1 = Γ1zt +ξ t+1 ⇒ zt+1 =
(
Γ−1

0 Γ1
)

zt +Γ−1
0 ξ t+1, (6.41)

20 Taking again into account the fact that ∂F
∂ lnθ t+1

= ∂F
∂θ t+1

θ t+1. Additionally, θ ss = 1, so that
lnθ ss = 0.
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where zt is the vector of variables zt = (xt − xss, lnθ t)
′ , and the elements of the

Γ0,Γ1 matrices are just functions of the values of the structural parameters. As usual,
we will define stability conditions using the rows in the inverse of the matrix of
eigenvectors for Γ−1

0 Γ1 to impose the orthogonality conditions between eigenvectors
associated to unstable eigenvalues21 of Γ−1

0 Γ1 and the vector of variables zt . In this
case, with xt a ‘decision’ variable and θ t a state variable, we should expect to have
a single unstable eigenvalue, i.e., a single stability condition, of the form22:

m1 (xt − xss)+m2 lnθ t = m1

(
c̃t

k̃t
− xss

)
+m2 lnθ t = 0, ∀t.

To that extent, we will use the rows corresponding to the eigenvectors associated
to unstable eigenvalues.

But the system has a simple enough structure so that the single stability condi-
tion can be characterized analytically. The structure of the matrices for the linear
approximation to the AK economy (6.41) is

Γ0 =
(

a b
0 1

)
, Γ1 =

(
m n
0 ρ

)
,

so that, the eigenvalues of
(
Γ−1

0 Γ1
)′

are obtained solving the characteristic equation

∣
∣
∣
∣

m
a −λ n−ρb

a
0 ρ−λ

∣
∣
∣
∣ = 0,

which has a root λ 1 = ρ , positive and less than 1. The economy will have a saddle
point structure if the other root of the characteristic equation is above one in absolute
value. That root is

λ 2 =
m
a

=
xss

1+ γ

(
1

1+n
+

1+ γ
xss

)
=

1
1+n

xss

1+ γ
+1,

which is, indeed, greater than 1. Hence, the system in normalized variables has a
saddle-point structure, with a single trajectory leading to a unique steady-state of
the system. If we normalize eigenvectors to have a first component equal to one, the
matrix of associated eigenvectors is

Φ=
(

1 1
0 −m−ρa

n−ρb

)
⇒Φ−1 =

(
1 n−ρb

m−ρa

0 − n−ρb
m−ρa

)

,

so that the stability condition can be added to the model by imposing

21 Those with absolute size above 1√
β

.

22 Note that the ratio ct
kt

can be written with the growth trend or without it c̃t
k̃t

since the growth rates
of both variables are the same.
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(

c̃t

k̃t
− xss

)
+

n−ρb
m−ρa

lnθ t = 0, ∀t ⇔
(

c̃t

k̃t
− xss

)
+

n−ρb
m−ρa

lnθ t = 0,

where c̃t = (1 + γ)t ct , and k̃t = (1 + γ)t kt , which can be used together with (6.36),
to solve the model.

Given a time series for lnθ t , and an initial condition for k0, we can use the
stability condition above to obtain c0, and obtain k1 from the global constraint of
resources, k1 = 1

(1+n)(1+γ) [Aθ 0k0 +(1−δ )k0 − c0] , and the process is repeated for

every time period.23 The expectations error υ t+1 can be computed from (6.39), once
time series for all variables have already been obtained. The time series obtained by
this procedure should satisfy the statistical properties of a rational expectations er-
ror: zero mean, lack of autocorrelation, and zero correlation with variables in the
information set at the time the conditional expectation was made. All of them can
be tested for as suggested by den Haan and Marcet [28].

The original level variables would be obtained by applying the steady state
growth rate to the no growth variables we have just obtained, i.e.,

q̃t = (1+ γ)tqt ,

where qt = ct ,kt ,yt . However, they clearly experience exponential growth, so its
time evolution over long periods of time is not very interesting.

6.6.2 Numerical Exercise: Solving the Stochastic AK Model

The solution approach we have just described is implemented in the AKModel.xls
Excel file. A single realization of the main detrended variables is obtained, i.e., after
extracting the constant rate of endogenous growth. The consumption to capital ra-
tio, or the period-to-period rates of growth of each of these variables, remain quite
stable over time. On the other hand, even after extracting the rate of endogenous
growth, per capita variables follow unit root processes, as explained in previous
sections, which is quite apparent in the graph representations for the per capita vari-
ables consumption, capital and output. The same variables are also shown including
the endogenous growth, but the implied time series are not very interesting, being
dominated by what appears as an exponential growth.

On the right panel, we solve the model as a special case of a more complex
model as it is explained in sections below. This approach uses a log-linear approx-
imation to the model, producing very similar numerical results. The MATLAB file

23 Again, either the version with growth or the one without growth of the global constraint of
resources, could be used to obtain the stock of capital. Alternatively, that constraint could be used
to obtain time series for the rate of growth of capital,

1+ γkt
=

1
(1+n)(1+ γss)

[
Aθ t +(1−δ )kt −

ct

kt

]
,

to obtain the time series for capital itself, afterwards: kt+1 =
1+γkt
1+γ kt .
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AKStochastic.m, also computes a single realization of the AK economy with sto-
chastic productivity using the linear approximation of the previous paragraph. The
number of observations can be chosen at the beginning of the file. The program
produces graphs for the realizations of the main variables in the economy, after dis-
counting their deterministic endogenous growth component. The mAKStochastic.m
file computes a number of sample realizations chosen by the user at the beginning of
the program and displays a summary of the sample distributions for some interesting
statistics, like volatilities and correlations between variables.

6.7 An Endogenous Growth Model with Productive Public
Expenditures: Barro’s Model

Barro [4] introduced a version of the AK model including the services provided by
public expenditures g̃t as an additional productive input

ỹt = Ak̃αt g̃1−α
t , 0 < α < 1.

The presence of the services provided by public expenditures can be rationalized
under full depreciation of public capital. Then, public expenditures becomes equal
to public investment, which would substitute for public capital as a second input in
the aggregate technology. We would then have a technology with decreasing returns
to scale in each of the two inputs, private and public capital, but constant returns to
scale in the aggregate.

The government follows a balanced-budget policy every period and raises
proportional income taxes at a rate τ, which determines the level of public
expenditures,24

g̃t = τ ỹt = τAk̃αt g̃1−α
t ⇒ g̃t = (τA)1/α k̃t . (6.42)

Public expenditures accumulate over time because they are proportional to pri-
vate capital, which is a cumulative input.

From (6.42) the production function can be written as a version of the standard
AK model

ỹt = Ak̃αt (τA)
1−α
α k̃1−α

t =
(
τ1−αA

) 1
α k̃t ,

and consequently, as we show below, this model also lacks transitional dynamics.
Maintaining the assumption of a CRRA utility function, the Lagrangian for the

representative agent problem is

L =
∞

∑
t=0

β t
{

c̃1−σ
t −1
1−σ

−λ t
[
(1+n) k̃t+1

− (1− τ)Ak̃αt g̃1−α
t + c̃t − (1−δ )k̃t

]
}

,

24 Again, government expenditures become endogenous because of the structure of the financing
policy.



6.7 An Endogenous Growth Model with Productive Public Expenditures: Barro’s Model 287

with optimality conditions

c̃−σt = λ t ,

(1+n)λ t = βλ t+1
[
(1− τ)Aα k̃α−1

t+1 g̃1−α
t+1 − (1−δ )

]
,

that, using (6.42) lead to the Euler equation

1+ γ c̃t+1
≡ c̃t+1

c̃t
=

(

β
(1− τ)αA

1
α τ

1−α
α +(1−δ )

1+n

) 1
σ

.

We will use this condition together with the global constraint of resources

(1+n) k̃t+1 = (1− τ)Ak̃αt g̃1−α
t − c̃t +(1−δ ) k̃t , (6.43)

and the transversality condition limt→∞(1 + n)β tλ t k̃t+1 = 0, where λ t is the La-
grange multiplier associated to the global constraint of resources.

The Euler condition shows that the rate of growth of consumption c̃t is constant
over time. Since public expenditures are proportional to private capital every period,
both inputs share the same growth rate at all points in time. Besides, from (6.43),
we have

c̃t

k̃t
= (1− τ)A

(
k̃t

g̃t

)α−1

+(1−δ )− (1+n)(1+ γkt+1
).

Since k̃t
g̃t

= 1

(τA)
1
α

is constant, there is a balanced growth path equilibrium with

consumption and physical capital growing at the same rate, which makes the ratio c̃t
k̃t

to be constant. So, we have, γc = γk = γg = γ and the steady state is of the balanced
growth path class, with all per capita variables growing at the same constant rate in
all time periods.

In terms of detrended, no-growth variables, ct , kt , defined by c̃t = (1 + γ)t ct ,

k̃t = (1+ γ)t kt , we have: ct+1 = ct , and the system above can be written

(
ct+1
kt+1

)
=

(
1 0

− 1
(1+n)(1+γ)

(1−τ)A 1
α τ

1−α
α +(1−δ )

(1+n)(1+γ)

)(
ct
kt

)
= B

(
ct
kt

)
,

the transition matrix B having eigenvalues 1 and η = (1−τ)A 1
α τ

1−α
α +(1−δ )

(1+n)(1+γ) , the latter
being greater than one. To show this, we consider the transversality condition

lim
t→∞

(1+n)β t λ̃ t k̃t+1 = lim
t→∞

(1+n)β t c̃−σt k̃t+1

= lim
t→∞

(1+n)β t(1+ γ)−σt c̃−σ0 (1+ γ)t(1+ γ)k̃0

= (1+n)(1+ γ)c̃−σ0 k̃0 lim
t→∞

[
β (1+ γ)1−σ ]t

= 0,
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which will hold only if β (1+ γ)1−σ < 1, which amounts to

1+ γ <
(1+ γ)σ

β
=

(1− τ)αA
1
α τ

1−α
α +(1−δ )

1+n
< η ,

showing that the second eigenvalue of the transition matrix above is, indeed, greater
than one, since γ > 0.

Following the same argument as in Sect. 6.2.2, the solution to the dynamic
system is

kt =
[

1
(1+n)(1+ γ)(η−1)

]
c0 +

(
k0 −

1
(1+n)(1+ γ)(η−1)

c0

)
η t .

Since η > 1, the solution for kt will be explosive unless c0 = (1 + n)(1 + γ)
(η−1)k0, a condition which eliminates the unstable path. Along the implied
solution, the no-growth versions of consumption and private capital will remain
constant at their initial values, for all t. The same happens with public expenditures,
which are proportional to private capital, so this economy also lacks any transitional
dynamics.

As we can see, once we eliminate the trend produced by the constant rate of
growth, models that generate endogenous growth usually have an eigenvalue equal
to one and as many eigenvalues greater than one in absolute value as control vari-
ables, in order to have a saddle point structure.25 In the particular case of an en-
dogenous growth model with a single state and a single control variable like the one
discussed so far, the unstable eigenvalue allows for determination of equilibrium,
while the unit eigenvalue produces lack of transitional dynamics.

6.8 Transitional Dynamics in Endogenous Growth:
The Jones and Manuelli Model

The models presented in the previous sections lack transitional dynamics with con-
stant growth rates over time. Jones and Manuelli [47] present an economy that ex-
periences transitional dynamics with endogenous growth. These authors consider a
technology that combines a standard constant returns to scale technology with labor
and capital inputs, with an AK technology,

Ỹt = AK̃t +G
(

K̃t , Ñt

)
= AK̃t +BK̃α

t Ñ1−α
t .

Alternatively, G
(

K̃t , Ñt

)
could be any technology satisfying the properties of the

standard neoclassical production function (decreasing marginal productivity in each

25 The remaining eigenvalues, if any will be smaller than one in absolute value. In the two models
considered, there is a control variable and a single state variable, so an eigenvalue is equal to one
and the other one is greater than one in absolute value.
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input, constant returns to scale on the aggregate, and the Inada conditions). How-
ever, the previous production function violates one of the Inada conditions, since the
marginal product of capital converges to a non-zero, positive constant A when the
stock of physical capital increases without bound. The AK-component of the pro-
duction function will produce endogenous growth, while the other component will
generate richer dynamics than the models analyzed in previous sections.

The planner solves the time aggregate utility maximization problem, facing a
global constraint of resources in per capita terms,

(1+n) k̃t+1 = Ak̃t +Bk̃αt − c̃t +(1−δ ) k̃t . (6.44)

Assuming a constant relative risk aversion utility function, first order conditions
for the maximization of the Lagrangian are

c̃−σt = λ t ,

(1+n)λ t = β
(

A+Bα k̃α−1
t+1 +(1−δ )

)
λ t+1.

From these, we get the Euler equation

1+ γct+1
≡ c̃t+1

c̃t
=

(

β
A+αBk̃α−1

t+1 +(1−δ )
1+n

) 1
σ

, (6.45)

that shows a time varying rate of growth of per capita consumption that depends on
the stock of capital.

Given k̃0, optimality conditions are summarized by (6.44), (6.45) and the
transversality condition

lim
t→∞

(1+n)β t c̃−σt k̃t+1 = 0.

To analyze the dynamics of the model, we define auxiliary variables, zt =
ỹt/k̃t , xt = c̃t/k̃t , which should display zero growth along a balanced growth steady-
state. In terms of the auxiliary variables we have

zt = A+Bk̃α−1
t ⇒ Bk̃α−1

t = zt −A, (6.46)

while the rate of growth of per capita physical capital can be obtained dividing
through the global constraint of resources by k̃t ,

(1+n)(1+ γkt+1
) = A+Bk̃α−1

t − xt +(1−δ ) (6.47)

⇒ 1+ γkt+1
=

zt − xt +(1−δ )
1+n

.

We can now write a system summarizing the dynamics of this economy in vari-
ables displaying zero growth in steady-state. First, we use (6.46) in the identity
k̃α−1

t+1 = k̃α−1
t (1+ γkt+1

)α−1 to obtain
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zt+1 = A+(zt −A)
(

1+n
zt − xt +(1−δ )

)1−α
, (6.48)

where we have used expression (6.47) for the rate of growth of capital. Secondly,
dividing through (6.45) by k̃t+1 and using the fact that c̃t

k̃t+1
= c̃t

k̃t

k̃t
k̃t+1

= c̃t
k̃t

1
1+γkt+1

together with (6.46) and (6.47), we get

xt+1 = xt
1+n

zt − xt +(1−δ )

(
β

A+α (zt+1 −A)+1−δ
1+n

)1/σ
. (6.49)

Numerical solutions to this model economy will be obtained below from the
system made up by (6.48) and (6.49).

6.8.1 Steady-State

The steady-state equilibrium will be reached when c̃t , as well as k̃t , grow at a con-
stant rate. But, as in previous sections, the global constraint of resources implies that
consumption and capital must grow at the same rate in steady state. Besides, from
expression (6.45) for 1+γct

we see that such a limit growth rate must be

1+ γ =
(
β

A+(1−δ )
1+n

) 1
σ

, (6.50)

since, with positive growth, k̃α−1
t+1 → 0 when t →∞. Steady-state growth will actually

be positive for sufficiently high levels of productivity: A +(1−δ ) > 1+n
β . We first

evaluate (6.48) and (6.49) at steady-state to obtain steady-state values of zt ,xt :

zss = A,

xss = xss
1+n

zss − xss +(1−δ )

(
β

A+α (zss −A)+1−δ
1+n

)1/σ
,

so that,

A− xss +(1−δ ) = (1+n)
(
β

A+1−δ
1+n

)1/σ

⇒ A− xss +(1−δ ) = (1+n)(1+ γ)
⇒ xss = A+(1−δ )− (1+n)(1+ γ) .

Plugging now the steady-state values xss, zss in (6.47) we get the same steady-
state rate of growth as in (6.50).
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Furthermore, to guarantee that growth is actually positive, the transversality con-
dition implies that the parameters must satisfy the condition,

lim
t→∞

(1+n)β t λ̃ t k̃t+1 = 0 ⇒ (in steady state) β (1+ γ)1−σ < 1.

6.8.2 Solving the Deterministic Version of Jones and Manuelli’s
Model Through a Linear Approximation

To produce a numerical solution, we linearize (6.48), (6.49) around steady state. To
do so, let us denote

f (zt+1,xt+1,zt ,xt) = (zt+1 −A)− (zt −A)
(

1+n
zt − xt +(1−δ )

)1−α
,

g(zt+1,xt+1,zt ,xt) = xt+1 − xt
1+n

zt − xt +(1−δ )

×
(
β

A+α (zt+1 −A)+1−δ
1+n

)1/σ
,

so that

∂ f
∂ zt+1

= 1

∂ f
∂ zt

= −
(

1+n
zt − xt +(1−δ )

)1−α
− (zt −A)(1−α)

× 1+n

[zt − xt +(1−δ )]2

(
1+n

zt − xt +(1−δ )

)−α
;

∂ f
∂xt+1

= 0

∂ f
∂xt

= −(zt −A)(1−α)
(

1+n
zt − xt +(1−δ )

)−α

× 1+n

[zt − xt +(1−δ )]2
;

∂g
∂ zt+1

= −xt
1+n

zt − xt +(1−δ )
1
σ

βα
1+n

×
(
β

A+α (zt+1 −A)+1−δ
1+n

) 1
σ −1

;

∂g
∂ zt

= −xt
1+n

[zt − xt +(1−δ )]2

(
β

A+α (zt+1 −A)+1−δ
1+n

)1/σ
;
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∂g
∂xt+1

= 1;

∂g
∂xt

= −
(

1+n
zt − xt +(1−δ )

+ xt
1+n

[zt − xt +(1−δ )]2

)

×
(
β

A+α (zt+1 −A)+1−δ
1+n

)1/σ
;

but in steady-state: zss = A, 1+n
zt−xt+(1−δ ) = 1

1+γ , so that the partial derivatives become

∂ f
∂ zt+1

∣
∣
∣
∣
ss

= 1;
∂ f
∂ zt

∣
∣
∣
∣
ss

= − 1

(1+ γ)1−α ;

∂ f
∂xt+1

∣
∣
∣
∣
ss

= 0;
∂ f
∂xt

∣
∣
∣
∣
ss

= 0;

∂g
∂ zt+1

∣
∣
∣
∣
ss

= − xss

1+ γ
(1+ γ)

1+n
A+(1−δ )

1
βσ

βα
1+n

= − [A+(1−δ )− (1+n)(1+ γ)]
1

A+(1−δ )
α
σ

= −α
σ

(
1− (1+n)(1+ γ)

A+(1−δ )

)
;

∂g
∂ zt

∣
∣
∣
∣
ss

= − xss

(1+n)(1+ γ)
= − A+(1−δ )

(1+n)(1+ γ)
+1;

∂g
∂xt+1

∣
∣
∣
∣
ss

= 1;

∂g
∂xt

= − 1
1+ γ

(
1+

xss

(1+n)(1+ γ)

)
(1+ γ)

= − A+(1−δ )
(1+n)(1+ γ)

;

and we have the linearized system:

(
1 0
κ1 1

)(
ẑt+1
x̂t+1

)
=

( 1
(1+γ)1−α 0

xss
(1+n)(1+γ)

A+(1−δ )
(1+n)(1+γ)

)(
ẑt
x̂t

)
,

or, equivalently,

(
ẑt+1
x̂t+1

)
=

(
1

(1+γ)1−α 0

κ2 1+ xss
(1+n)(1+γ)

)(
ẑt
x̂t

)
,

where ẑt = zt − A, x̂t = xt − xss, xss = (A + 1 − δ ) − (1 + n)(1+ γ) , κ1 =
α
σ

(
1− (1+n)(1+γ)

A+(1−δ )

)
, and κ2 = α

σ

(
xss

A+1−δ

)
1

(1+γ)1−α + xss
(1+n)(1+γ) .
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Eigenvalues of the previous system are 1
(1+γ)1−σ and 1 + xss

(1+n)(1+γ) . The first
eigenvalue will be less than one whenever steady-state growth is positive, i.e., A +
(1− δ ) > 1+n

β . On the other hand, it is not hard to see that the second eigenvalue
is above 1. The transformed model does not display endogenous growth, since we
do not have an eigenvalue equal to one. On the contrary, it has the saddle point
structure we need to solve, since z0 is an exogenous state variable26 while xt is a
control variable whose initial value x0 needs to be chosen optimally.

The solution to the system is

zt −A =
[
(1+ γ)α−1

]t
(z0 −A) , (6.51)

xt+1 − xss = κ2

[
(1+ γ)α−1

]t
(z0 −A)+Ω (xt − xss), (6.52)

where

Ω = 1+
xss

(1+n)(1+ γ)
.

The solution for the dynamic equation (6.52) is given by

xt − xss =
κ2 (z0 −A)

(1+ γ)α−1 −Ω

[
(1+ γ)α−1

]t

+Ωt

[

(x0 − xss)−
κ2 (z0 −A)

(1+ γ)α−1 −Ω

]

.

Since Ω> 1, to guarantee stability we must impose the condition

x0 = xss +
κ2

(1+ γ)α−1 −Ω
(z0 −A) .

Thus, given k0, we can compute the value for z0. The system will evolve over
time on its stable trajectory if and only if the initial condition for the control variable
xt fulfills the previous condition, starting from its steady-state value, corrected by

κ2
(1+γ)α−1−Ω (z0 −A) . For any initial k0, the value for z0 will always be different from

its steady-state level of A, since z0 = A+Bk1−α
0 , eventually converging to it so long

as the economy follows its stable trajectory.

26 As a consequence of the fact that k0 is given and so is y0 which is a function of just k0.
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6.9 The Stochastic Version of Jones and Manuelli Model

To have a stochastic version of the Jones–Manuelli growth model, we consider the
production technology:

Ỹt = θ t
(
AK̃t +BK̃α

t Ñ1−α
t

)
,

or, in per capita terms:
ỹt = θ t

(
Ak̃t +Bk̃αt

)
,

where θ t is a productivity shock, that obeys the stochastic process:

lnθ t = ρ lnθ t−1 + ε t , |ρ| < 1, ε t ∼
iid

N(0,σ2
ε).

The problem for the representative agent is

max
{c̃t ,k̃t+1}

E0

∞

∑
t=0
β t c̃1−σ

t −1
1−σ

subject to

(1+n)k̃t+1 − (1−δ )k̃t +(1+ τc)c̃t = (1− τy)θ t
(
Ak̃t +Bk̃αt

)
+ g̃t , (6.53)

and given k̃0. Relative to the previous section, we have introduced proportional con-
sumption and income taxes in addition the productivity shock. As in previous sec-
tions, the government is supposed to use tax revenues to finance lump-sum transfers
to consumers (g̃t ).

The Lagrangian for this problem is

L = E0

∞

∑
t=0
β t c̃1−σ

t −1
1−σ

+β tλ t
[
(1− τy)θ t

(
Ak̃t +Bk̃αt

)
+ g̃t

− (1+n)k̃t+1 +(1−δ )k̃t − (1+ τc)c̃t
]
.

with first order conditions:
c̃−σt = λ t(1+ τc), (6.54)

(1+n)λ t = βEt
[
λ t+1

(
(1− τy)θ t+1

(
A+αBk̃α−1

t+1
)
+1−δ

)]
, (6.55)

together with the transversality condition lim
T→∞

(1+n)βT+tEt c̃−σt+T k̃t+T+1 = 0.

From conditions (6.54) and (6.55) we obtain the stochastic Euler or Keynes–
Ramsey condition:

(1+n)c̃−σt = βEt
[
c̃−σt+1

(
(1− τy)θ t+1

(
A+αBk̃α−1

t+1
)
+1−δ

)]
. (6.56)
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6.9.1 Deterministic Balanced Growth Path

Along the deterministic Balanced Growth Path (BGP in what follows) we have θ t =
θ ss = 1, ∀t, c̃t+1/c̃t = 1 + γc, k̃t+1/k̃t = 1 + γk, ỹt+1/ỹt = 1 + γy, where γc, γk, γy
are constants. From (6.53) we also have, along the BGP

(
c̃t

k̃t

)
= −

[
(1+ γk)(1+n)− (1−δ )− (1− τy)

(
A+Bk̃α−1

t
)]

(1+ τc)
. (6.57)

Taking into account that the capital stock will grow along the BGP at a constant,
positive rate, we have lim

t→∞
k̃α−1

t = 0, and (6.57) implies that the ratio c̃t
k̃t

eventually
becomes constant, since the left-hand side at (6.57) is constant. That, in turn, means
that the long-run growth rates of consumption and physical capital are the same.
Therefore,

(
c̃t

k̃t

)

ss
=

1
1+ τc [(1− τy)A+(1−δ )− (1+ γk)(1+n)] , (6.58)

while the linear technology implies that
(

ỹt
k̃t

)

ss
= A, so that in the long-run, output

and capital will also grow at the same rate.
From (6.56) we have

1+ γ =
[

β
1+n

((1− τy)A+1−δ )
]1/σ

, (6.59)

an extension of the condition in Sect. 6.8, to an economy with taxes.

6.9.2 Transforming the Model in Stationary Ratios

Consider the transformation:

zt =
ỹt

k̃t
= θ t

(
A+Bk̃α−1

t
)
, (6.60)

xt =
c̃t

k̃t
, (6.61)

so that, as we saw in the deterministic case: zss = A, and xss = 1
1+τc [(1− τy)A +

(1−δ ) − (1+ γ)(1+n)].

From the definition (6.60), we have that k̃t =
(

zt/θ t−A
B

)1/(α−1)
. Hence,

k̃t+1

k̃t
=

( zt
θ t
−A

zt+1
θ t+1

−A

)1/(1−α)

. (6.62)
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Using the budget constraint for the representative agent, together with (6.60),
(6.61) and (6.62), we have

(1+n)

( zt
θ t
−A

zt+1
θ t+1

−A

)1/(1−α)

= (1− τy)zt +(1−δ )− xt(1+ τc), (6.63)

or,

zt+1 = θ t+1

{

A+
(

zt

θ t
−A

)
(6.64)

×
[

1+n
(1− τy)zt +(1−δ )− xt(1+ τc)

](1−α)
}

.

Using Keynes–Ramsey condition, together with (6.60), (6.61) and (6.62), we
have

x−σt =
β

1+n
Et

[(
zt/θ t −A

zt+1/θ t+1 −A

)−σ/(1−α)

x−σt+1

× [(1− τy)((1−α)Aθ t+1 +αzt+1)+1−δ ]

]

,

and finally, using (6.63)
(

xt(1+n)
(1− τy)zt +(1−δ )− xt(1+ τc)

)−σ

=
β

1+n
Et

[
x−σt+1 ((1− τy)((1−α)Aθ t+1 +αzt+1)+1−δ )

]
(6.65)

Expressions (6.64) and (6.65) completely characterize the dynamics of this
model. Notice that in a typical AK economy, B = 0, and we would have: zt = θ tA in
the stochastic version of the economy, or just zt = A in the deterministic version, ∀t,
and (6.65) would define by itself the dynamics of the consumption to capital ratio.

6.9.3 The Phase Diagram of the Deterministic Version
of the Jones–Manuelli Model: Transitional Dynamics

We can write expression (6.64) in its deterministic version, more conveniently:

zt+1 − zt = (zt −A) (6.66)

×
{[

1+n
(1− τy)zt +(1−δ )− xt(1+ τc)

](1−α)

−1

}

.
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From here, we can obtain pairs of values for z and x for which the z variable
remains unchanged, zt+1 = zt . That will be the case whenever

zt = A (6.67)

or whenever
[

1+n
(1−τy)zt+(1−δ )−xt (1+τc)

](1−α)
= 1, i.e., when

xt =
1

1+ τc [(1− τy)zt −n−δ ] . (6.68)

We can write the deterministic version of (6.65) more conveniently:
(

xt+1

xt

)σ
=

(
1+n

(1− τy)zt +(1−δ )− xt(1+ τc)

)σ
(6.69)

× β
1+n

[(1− τy)(A+α(zt+1 −A))+1−δ ] .

From this expression, we can obtain pairs of values for z and x for which the x
variable remains unchanged, xt+1 = xt . That will be the case whenever:

1 =
(

1+n
(1− τy)zt +(1−δ )− xt(1+ τc)

)σ β
1+n

(6.70)

×
[

(1− τy)
(

A+α(zt −A)

×
(

1+n
(1− τy)zt +(1−δ )− xt(1+ τc)

)(1−α)
)

+1−δ

]

.

The steady-state will be characterized by the intersection of either one of the two
curves (6.67), (6.68) with curve (6.70). The Matlab program dfase.m computes the
representation for the three curves in a (z, x)-plane. It can be noticed that (6.68)
and (6.70) intersect for a negative, not feasible value of zt , while the intersection of
(6.67) with (6.70) provides us with a well defined steady-state.

The graph also displays the transitional dynamics for z and x for a given parame-
terization and an initial value of the state variable z, once an approximate solution
has been obtained following the steps described in the next paragraph. Such rep-
resentation is captured in the Fig. 6.1, where the arrows indicate the directions of
movements in z and x when they are outside steady-state. If the economy is on the
(6.68)-line, a marginal increase in x keeping constant z, will lead to an increase in z
as time advances, since the right-hand side of (6.66) takes a higher value. The oppo-
site would happen for a marginal decrease in x. Therefore, above the (6.68)-line, z
increases over time and, above that line, z decreases over time. If the economy is on
the (6.70)-line, a marginal increase in z keeping x constant, will lead to a decrease
in x as time advances, since the right-hand side at (6.69) takes a lower value. The



298 6 Endogenous Growth Models

The phase diagram for Jones&Manuelli model
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Fig. 6.1 Phase diagram for Jones and Manuelli model

opposite would happen for a marginal decrease in z. Hence, above the (6.70)-line, x
increases over time while below that line, x decreases over time. Notice that z can
never be below its steady-state level.

6.9.4 Computing the Dynamics: Log-Linear Approximation

Let us define the ratios ẑt = ln(zt/A), x̂t = ln(xt/xss). We write (6.64) in a more
convenient fashion:

0 = −elnzt+1 + elnθ t+1

{

A+
(

elnzt−lnθ t −A
)

(6.71)

×
[

1+n
(1− τy)elnzt +(1−δ )− elnxt (1+ τc)

]1/(1−α)
}

.

from which we get the log-linear approximation:

ẑt+1 = (1+ γ)α−1ẑt + θ̂ t+1, (6.72)

where θ̂ t+1 = lnθ t+1, indicating that in such approximation, ẑt follows an autore-
gressive process, which will be of order 1 if θ t is a white noise, or of order 2 if θ t
follows a first order autoregressive process.
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We can now write (6.65)

0 = Et

{

−
(

elnxt (1+n)
(1− τy)elnzt +(1−δ )− elnxt (1+ τc)

)−σ
(6.73)

+
β

1+n
e−σ lnxt+1

[

(1− τy)((1−α)Aelnθ t+1 +αelnzt+1)+1−δ

]}

,

from which we obtain its log-linear approximation:

0 = Et

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ
(

xss(1+n)
(1−τy)A+(1−δ )−xss(1+τc)

)−σ−1

×
(

xss(1+n)((1−τy)A+(1−δ )−xss(1+τc))+xss(1+n)xss(1+τc)
((1−τy)A+(1−δ )−xss(1+τc))2

)
x̂t

−σ
(

xss(1+n)
(1−τy)A+(1−δ )−xss(1+τc)

)−σ−1

×
(

xss(1+n)(1−τy)A
((1−τy)A+(1−δ )−xss(1+τc))2

)
ẑt

−σ β
1+n x−σss ((1− τy)A+1−δ ) x̂t+1

+ β
1+n x−σss (1− τy)A(1−α)θ̂ t+1

+ β
1+n x−σss (1− τy)Aα ẑt+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Taking into account steady-state expressions, this latter expression can be written

0 =
σ
β

(1+ γ)2σ−1x̂t −
(
σ(1+ γ)σ−1 −βα(1+ γ)α−1)

× (1− τy)A
1+n

ẑt +β
(1− τy)A

1+n
ρθ̂ t −σ(1+ γ)σEt x̂t+1,

and if we solve for x̂t :

x̂t = β (1+ γ)1−σEt x̂t+1

+
(
σ(1+ γ)σ−1 −βα(1+ γ)α−1)

× (1− τy)A
(1+n)σ

β (1+ γ)1−2σ ẑt (6.74)

−β 2 (1− τy)A
(1+n)σ

(1+ γ)1−2σρθ̂ t .

Leu us now define:

ϕ1 = β (1+ γ)1−σ ,

ϕ2 =
(
σ(1+ γ)σ−1 −βα(1+ γ)α−1) (1− τy)A

(1+n)σ
β (1+ γ)1−2σ ,

ϕ3 = −β (1− τy)A
(1+n)σ

β (1+ γ)1−2σρ.
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Notice that if σ > 1, then ϕ1 ∈ (0,1) and hence, we can solve forwards the
dynamic equation that incorporates conditional expectations (6.74). Besides, this
condition for ϕ1 must hold to guarantee that the utility function is bounded, as it
can be seen by applying the transversality condition in steady-state.

Under the definitions above, (6.74) can be written more compactly

x̂t = ϕ1Et x̂t+1 +ϕ2ẑt +ϕ3θ̂ t . (6.75)

so that, applying the law of iterated expectations and solving (6.74) forwards, we get

x̂t = ϕ2

∞
∑
j=0
ϕ j

1Et ẑt+ j +
ϕ3

1−ϕ1ρ
θ̂ t . (6.76)

We now proceed to compute ∑∞j=0ϕ
j
1Et ẑt+ j given (6.72):

Step 1: we compute Et ẑt+ j:

j = 0 : Et ẑt = ẑt ;
j = 1 : Et ẑt+1 = Et

[
(1+ γ)α−1ẑt + θ̂ t+1

]
= (1+ γ)α−1ẑt +ρθ̂ t ;

j = 2 : Et ẑt+2 = Et
[
(1+ γ)α−1ẑt+1 + θ̂ t+2

]
⇒

Et ẑt+2 =
[
(1+ γ)α−1]2

ẑt +ρθ̂ t
[
(1+ γ)α−1 +ρ

]

j = 3 : Et ẑt+3 = Et
[
(1+ γ)α−1ẑt+2 + θ̂ t+3

]
⇒

Et ẑt+3 =
[
(1+γ)α−1]3

ẑt+ρθ̂ t

[(
(1+γ)α−1)2

+(1+γ)α−1ρ+ρ2
]

so that, for a generic j we have

Et ẑt+ j = Et
[
(1+ γ)α−1ẑt+ j−1 + θ̂ t+ j

]

=
[
(1+ γ)α−1] j

ẑt +ρθ̂ t

[(
(1+ γ)α−1) j−1

+
(
(1+ γ)α−1) j−2ρ+ · · ·+

(
(1+ γ)α−1)ρ j−2 +ρ j−1

]

=
[
(1+ γ)α−1] j

ẑt +
1

(1+ γ)α−1 −ρ

×
((

(1+ γ)α−1) j −ρ j
)
θ̂ t .

Step 2: compute ∑∞j=0ϕ
j
1Et ẑt+ j:

∞
∑
j=0

ϕ j
1Et ẑt+ j =

∞
∑
j=0

ϕ j
1

{
[
(1+ γ)α−1] j

ẑt +
1

(1+ γ)α−1 −ρ

×
((

(1+ γ)α−1) j −ρ j
)
θ̂ t

}
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= ẑt

{
∞
∑
j=0

[
ϕ1(1+ γ)α−1] j

}

+ θ̂ t
1

(1+ γ)α−1 −ρ

×
{

∞
∑
j=0

[
ϕ1(1+ γ)α−1] j −

∞
∑
j=0

[ϕ1ρ] j

}

=
ẑt

1−ϕ1(1+ γ)α−1 +
θ̂ t

(1+ γ)α−1 −ρ

×
[

1
1−ϕ1(1+ γ)α−1 − 1

1−ϕ1ρ

]
.

so that the consumption to physical capital ratio is

x̂t =
ϕ2ẑt

1−ϕ1(1+ γ)α−1 + θ̂ t

[
ϕ2

(1+ γ)α−1 −ρ
(6.77)

×
(

1
1−ϕ1(1+ γ)α−1 − 1

1−ϕ1ρ

)
ϕ3

1−ϕ1ρ

]
,

and (6.72), (6.77) fully characterize the dynamic evolution of this economy.

6.9.5 Numerical Exercise: Solving the Jones and Manuelli Model

A single realization for the stochastic Jones and Manuelli economy can be obtained
using AK JMs.m, and the time series for the main variables in the economy are
displayed. Program mAK JMs.m can be used to produce an arbitrary number of
realizations from the solution to this economy. Average statistics for the main vari-
ables across the set of realizations are then reported in a table. Single or multiple
realizations for the AK model can be obtained from these two programs by setting
B = 0.

6.9.6 The Stochastic AK Model as a Special Case

If B = 0, then zt = θ tA, ẑt = θ̂ t , so we just need to characterize the time evolution of
x̂t to solve the stochastic version of the AK model with taxes. Then, (6.65) becomes

(
xt(1+n)

(1− τy)Aθ t +(1−δ )− xt(1+ τc)

)−σ

=
β

1+n
Et

[
x−σt+1 ((1− τy)Aθ t+1 +1−δ )

]
,
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with a log-linear approximation:

0 = Et

[
σ(1+ γ)2σ−1 1

β
x̂t −σ(1+ γ)σ−1 (1− τy)A

1+n
θ̂ t

− σ(1+ γ)σ x̂t+1 +
β

1+n
(1− τy)Aθ̂ t+1

]
,

and if we solve for x̂t :

x̂t = β (1+ γ)1−σEt x̂t+1 +
(
σ(1+ γ)σ−1 −βρ

)

× (1− τy)A
(1+n)σ

β (1+ γ)1−2σ θ̂ t .

If we solve this equation forwards, by applying the law of iterated expectations,
we obtain the time evolution of the consumption to capital ratio:

x̂t =
ϕ ′

2
1−ϕ1ρ

θ̂ t , (6.78)

where ϕ ′
2 =

(
σ(1+ γ)σ−1 −βρ

) (1−τy)A
(1+n)σ β (1 + γ)1−2σ , since ϕ1 = β (1 + γ)1−σ ∈

(0,1).
Once we have time paths for ẑt and x̂t , we can compute those for zt and xt :

zt = Aeẑt ,

xt = xssex̂t .

The time path for k̃t can then be obtained recursively from the budget constraint

k̃t+1 =
(1− τy)zt +(1−δ )− xt(1+ τc)

1+n
k̃t , with k̃0 given.

The time path for the no-growth stock of capital kt can be obtained

kt = (1+ γ)−t k̃t ,

while the time paths for c̃t and ct can be obtained

c̃t = xt k̃t ,

ct = xtkt .

6.10 Exercises

Exercise 1. In the discrete-time version of the AK economy, where consumers face
income taxes, show that all per capita variables grow at the same constant rate in
steady-state, and also that there is no transitional dynamics.
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Represent the effects of income taxes on the steady-state values of consumption
and capital through a phase diagram. What would be the difference in that diagram
if the government would finance expenditures through consumption taxes?

Show that a permanent policy intervention in the Cass–Koopmans economy will
have permanent effects, since it will generally have an effect on the steady-state.

Show that any numerical solution with parameter values violating the bounded-
ness condition (6.12) would produce explosive trajectories.

Once we have computed a time series realization for all relevant variables, an
interesting exercise consists on computing responses of the main variables to an
impulse in the technology innovation. That is computed by giving a unit value to
ε0, followed by ε t = 0, ∀t ≥ 1. Check how these responses will clearly show that a
transitory shock has permanent effects.

Exercise 2. Describe the analytical details of solving the stochastic, discrete-time
version of the AK model by using a log-linear approximation and: (a) Uhlig’s un-
determined coefficients method, (b) parameterized expectations, (c) the eigenvalue-
eigenvector decomposition.



Chapter 7
Additional Endogenous Growth Models

7.1 Introduction

In this chapter we review some additional mechanisms by which endogenous growth
arises. We start with an economy without capital accumulation in which technolog-
ical progress shows up in the form of the number of varieties of producer products,
possibly differing in quality [31, 33, 76, 78, 89].1 Technological innovation in these
models may lead to either an increase in their number, or in their quality, so the in-
novation process is key in this economy. These models can be seen to be equivalent
to the AK model for an appropriate parameter choice. In particular, except in spe-
cific versions of these models there is no transition, per capita variables growing at
a constant rate at all points in time after any structural shock or policy intervention.
After that, we present a model of technological diffusion between two countries,
one being a leader in innovation, as in the model with varieties of producer prod-
ucts, the second one being a follower, that adopts the innovations developed in the
leading country. The economy of the follower country displays a non-trivial transi-
tion to steady-state. We then present a model economy with creative destruction à la
Schumpeter [82] in which growth is driven endogenously by attempts to improve the
quality of existing goods through innovation. This model incorporates accumulation
of physical capital and displays a nontrivial transition to steady-state. We close with
an important model, that of a two-sector economy in which human and physical cap-
ital accumulate over time, and where time devoted to education plays an important
role, so that the split of time among that devoted to producing the final good, to ed-
ucation (i.e., to human capital accumulation) and leisure is a crucial decision. This
model again exhibits a nontrivial transition, and it is an appropriate framework to ad-
dress interesting questions regarding fiscal policy. Furthermore, this model can also
give raise of indeterminacy of equilibrium, which we discuss in a separate section.

1 Other models consider endogenous growth in economies with a variety of consumer products.
Since the treatment is relatively similar to that of models with a variety of products, we do not
include those models here.
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7.2 A Variety of Producer Products

7.2.1 The Economy

7.2.1.1 The Final Good Sector

At a difference of the economies considered in previous chapters, we now follow
Romer [77, 78]2 to consider a set of different firms, each specialized in the produc-
tion of an intermediate good, and a single firm producing the single final good in
the economy.3 The latter behaves competitively in the markets for inputs and out-
put. New intermediate goods are discovered through research, which is undergone
at a fixed cost in terms of unit of the final good. When a firm decides to engage
at a point in time into research activities, it will be able to develop a new interme-
diate good, which will then be allowed to produce as a single monopolist forever.
Monopoly rents are the incentive firms need to spend in research and development.
This process is not subject to any uncertainty. At a difference from other models
considered in this book, there is not accumulation of physical capital in this model.
Intermediate goods are discovered at a cost in terms of units of the final good, and
the final good is produced from labour and from the intermediate goods. The only
state variable in this model is the number of intermediate goods available at each
point in time.

The final good is produced according to the production function:

Ỹt = AL1−α
t

∫ Ñt

0
xαjtd j,

where 0 <α < 1, Ỹt denotes the output of the final good at time t, while Lt and x jt de-
note the labor input and the amount used of the j-th intermediate good, j ∈ (0, Ñt).4

The production output Ỹt can be used either for consumption, for the production of
intermediate goods or for the research and development needed for the invention of
further intermediate goods. From now on, we assume for simplicity a constant labor
supply, Lt = L,∀t.

Additive separability makes the marginal product for each of the Ñt intermediate
goods to be independent of the quantities employed of the others. Then, a new type

2 Previous studies by Spence [89], Dixit and Stiglitz [31] and Ethier [33] all consider the benefits of
a variety of products. Spence [89] and Dixit and Stiglitz [31] considered a utility function defined
on the set of consumption commodities as arguments, while Ethier [33] used a setup similar to that
in Romer [77,78]. The latter included a variety of productive inputs in the context of technological
change and economic growth.
3 This is a simplifying assumption, equivalent to having a set of identical firms producing the final
good.
4 The number of varieties will grow at a rate γNt

from its initial value N0. This means that we have
to consider Nt to be a continuous variable taking values on the positive real line. As an exception,
we will use the N-notation for the number of intermediate goods in an economy with constant
population L.
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of product is neither a direct substitute for nor a direct complement with products
that already exist. Since marginal products become infinite at x jt = 0, the firm has
an incentive to use all of them in production. We interpret x jt as being purchases
of nondurable goods and services, so that the only state variable is the number of
product varieties at each point in time, Ñt .

5

The profit maximizing problem for the producer of the final good is

max
x jt

Ỹt −wtL−
∫ Ñt

0
Pjtx jtd j,

where wt is the wage rate and Pjt the price of the j-th intermediate good. We assume
that the producer of the final good behaves competitively, taking factor prices as
given, which leads to profit maximizing conditions

x jt = L
(

Aα
Pjt

) 1
1−α

, j ∈ [0, Ñt ], t = 0,1,2, . . . (7.1)

w̃t = (1−α)
Ỹt

L
, t = 0,1,2, . . . (7.2)

that determine demand schedules for the quantity of each intermediate good, as well
as for labour.

7.2.1.2 The Sectors for the Intermediate Goods

We assume that the inventor of good j, which is also its producer, retains perpetual
monopoly rights over the production and sale of that good.6 Each intermediate good
costs one unit of the final good to produce, so that the present value of the returns
from discovering the j-th intermediate good is

Vt =
∞

∑
s=t

1
s−t

∏
l=0

(1+ rt+l)
[Pjs(x js)−1]x js,

where x jt is the quantity produced at time t and we have made explicit the depen-
dence of the monopoly price from the quantity produced. The fixed cost of discov-
ering a new good can then be recovered only if the sales price is greater than the
marginal cost of production, which we have assumed to be equal to one, over some
period of time.

5 Alternatively, x jt could be considered as the flow of services provided by a vector of durable
intermediate goods subject to some depreciation. But we would then have to keep track of the
quantities of each of intermediate good available at the firm each time period, which complicates
the analysis significantly.
6 See Chap. 6 in Barro and Sala-i-Martin [6] for a model with random duration of monopoly rights.
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Because of the nondurable nature of the intermediate goods, there is no possible
accumulation of stocks. Furthermore, the demand function for intermediate goods
lacks any intertemporal features, so profit maximization for the monopolist produc-
ing each intermediate good becomes a sequence of static problems, each maximiz-
ing profit at a single point in time, taking the aggregate demand for the intermediate
good as given,

max
Pjt

(Pjt −1)x jt ,

where x jt is the demand of the j-th intermediate good by the firm producing the final
good.

So the j-th monopolist solves

max
Pjt

(Pjt −1)L
(

Aα
Pjt

) 1
1−α

,

which has as solution
Pjt = P =

1
α

> 1.

Monopoly prices impose a mark-up of 1−α
α > 0 over the cost of production,

which we have assumed to be equal to 1. Monopoly prices for intermediate goods
are all the same because we have assumed that they enter symmetrically into the
production function of the final consumption commodity, and they are also constant
over time.

Monopoly profits are

π t = Lα
2

1−α
1−α
α

A
1

1−α ,

constant over time.
Taking factor prices to the profit maximizing condition for the producer of the

final good, we obtain the quantity demands of each intermediate good on the part of
the final producer:

x jt = L
(

Aα
1/α

) 1
1−α

= LA
1

1−α α
2

1−α = x, j ∈
(
0, Ñt

)
, t = 0,1,2, . . . , (7.3)

which is the same for all intermediate goods, and constant over time, because of the
assumption of a constant labour supply. This is also the quantity produced of the
j-th intermediate good at time t.

Output for the firm producing the final good is then given by

Ỹt = AL1−α
∫ Ñt

0
xαjtd j = AL1−α Ñtxα = A

1
1−α α

2α
1−α LÑt =

1
α2 Ñtx, (7.4)

which has a similar structure to the technology of the AK model, with the number of
varieties of intermediate goods here playing the role of the stock of physical capital.
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This expression shows that for fixed L, output grows at the same rate than Ñt .
Therefore, endogenous growth will arise in output because of the expansion in the
number of product varieties, Ñt . The idea is that the diminishing returns in individual
intermediate goods can be avoided by spreading resources among a larger variety
of producer products, rather than increasing the production of existing intermediate
goods. In other words, because of the diminishing returns, new resources should be
better devoted to increase the number of varieties, Ñt , than to increase the quantity
produced of each one of them, x jt .

7.2.1.3 Interest Rate Determination

Taking now monopoly prices and the quantities of each intermediate good to the
expression for present value of returns, we get

Vt = LA
1

1−α α
2

1−α
1−α
α

∞

∑
s=t

1
s−t

∏
l=0

(1+ rt+l)
,

which is going to help us to determine equilibrium rates.
We assume that the fixed cost to create a new intermediate good is constant, at η

units of the final product. If the existing commodities would make easier to come up
with new developments, we could have a cost to develop new products decreasing
with the number of commodity types, Ñt . On the other hand, if new ideas are hard
to produce once a number of commodities have already been developed, the cost
should be increasing with Ñt . The assumption of a fixed cost independent of the
value of Ñt seems then acceptable on average. It is also consistent with a constant
rate of growth of output, as we see next.

To rationalize the incentives needed for expenditures in research and develop-
ment (R&D), we additionally assume that there are no barriers to entry into the
invention business. That means that anybody can pay the cost η of research and
development to obtain Vt . Then, an equilibrium exists7 only if Vt = η , so that

η = LA
1

1−α α
2

1−α
1−α
α

∞

∑
s=t

1
s−t

∏
l=0

(1+ rt+l)

and the equilibrium present value of returns to invention then happens to be constant
over time, Vt = Vt+1 = η .

The relationship between the present value of returns at two different points in
time, t +1 and t can be written

7 If Vt < η , then no resources would be devoted to further invention, and the number of goods
would remain constant over time. On the other hand, if Vt > η , then investing in R&D provides
positive profits, so an infinite amount of resources would be devoted to that activity, and we could
not possibly have an equilibrium.
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Vt+1 =
(

Vt −LA
1

1−α α
2

1−α
1−α
α

1
1+ rt

)
(1+ rt) ,

which using η = Vt = Vt+1, leads to

η = η (1+ rt)−LA
1

1−α α
2

1−α
1−α
α

,

and, finally,

rt =
1
η

LA
1

1−α α
2

1−α
1−α
α

=
1−α
α

1
η

x = r, (7.5)

which is constant over time under the assumption of a constant labour supply.

7.2.1.4 The Problem of the Representative Household

We assume that there is a constant number L of households, endowed with a unit
of time, which will be supplied inelastically to firms, because leisure does not enter
into the utility function. This is consistent with the assumption above on a constant
labor input of L in the production of the final good. The representative household
maximizes time aggregate discounted utility over an infinite horizon

max
{c̃t ,ãt+1}

U0 =
∞

∑
t=0

β t c̃1−σ
t −1
1−σ

,

having the opportunity to save each period at a constant return of r, and being sup-
plied with 1 unit of labor each period. For simplicity, we assume zero population
growth, n = 0. The single period budget constraint is

c̃t + ãt+1 = w̃t +(1+ r)ãt .

The Lagrangian is

L(c̃t , ãt+1,λ t) =
∞

∑
t=0

β t
(

c̃1−σ
t −1
1−σ

−λ t [c̃t + ãt+1 − w̃t − (1+ r)ãt ]
)

,

with utility maximizing conditions

∂L
∂ c̃t

= 0 ⇒ c̃−σt = λ t , t = 0,1,2, . . . ,

∂L
∂ k̃t+1

= 0 ⇒−β tλ t +β t+1(1+ r)λ t+1 = 0, t = 0,1,2, . . . ,

Transversality Condition : lim
t→∞

β t c̃−σt ãt+1 = 0,
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leading to
c̃t+1 = [β (1+ r)]1/σ c̃t , t = 0,1,2, . . .

with the implication that, under the equilibrium mechanism, utility-maximizing per-
capita consumption c̃t grows at a constant rate at all time periods

1+ γ c̃ = (β (1+ r))1/σ = β 1/σ
(

1+
1
η

LA
1

1−α α
2

1−α
1−α
α

)1/σ
, (7.6)

which is actually positive if 1+ r > 1
β , being negative otherwise.

7.2.1.5 The Aggregate Constraint of Resources

Aggregate consumption must satisfy the economy-wide global constraint of re-
sources

C̃t = Ỹt −η
(
Ñt+1 − Ñt

)
− Ñtx. (7.7)

Since η is the unit cost of increasing the number of intermediate goods, the term
η
(
Ñt+1 − Ñt

)
= ηγ Ñt

Ñt above is the cost of innovation at time t. Resources devoted
to R&D allow for increasing the number of product varieties to be used in produc-
tion next period. The Ñtx term captures the resources spent on the production of
intermediate goods at time t.

From the profit maximization conditions: (1−α)Ỹt = Lwt , and using equation
(7.4), Ỹt = 1

α2 Ñtx, we have

C̃t +ηÑt+1 = (1−α)Ỹt +αỸt +ηÑt − Ñtx = Lw̃t +
1
α

Ñtx+ηÑt − Ñtx,

so that
c̃t +

η
L

Ñt+1 = w̃t +
η
L

Ñt +
1−α
α

1
L

Ñtx,

and using (7.5) , we have

c̃t +
η
L

Ñt+1 = w̃t +
η
L

(1+ r)Ñt .

Comparing with the individual household budget constraint, we see that, in equi-
librium, period t savings are

ãt+1 =
η
L

Ñt+1.

7.2.1.6 The Balanced Growth Path

The transitional dynamics of the model can be analyzed by an argument very similar
to the one used in the AK model. From (7.7) and (7.4)
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C̃t =
1
α2 Ñtx−ηÑt+1 +ηÑt − Ñtx =

1−α2

α2 xÑt −ηÑt+1 +ηÑt ,

so that the number of intermediate goods satisfies the difference equation

Ñt+1 =
(

1+
1−α2

α2
x
η

)
Ñt −

(1+ γ c̃)
t

η
c̃0, (7.8)

which has a particular solution of the form: Ñt = B(1+ γ c̃)
t , while the homo-

geneous equation has a solution of the form: Ñt = D
(

1+ 1−α2

α2
x
η

)t
, for specific

constants B,D. To find B, we substitute the proposed solution in the difference
equation, to have: B(1+ γ c̃)

t+1 =
(

1+ 1−α2

α2
x
η

)
B(1+ γ c̃)

t − (1+γ c̃)
t

η c̃0, so that:

B = c0
η

1(
1+ 1−α2

α2
x
η

)
−(1+γ c̃)

. Hence, the general solution to (7.8) will have the form

Ñt = D
(

1+
1−α2

α2
x
η

)t

+
c0

η
1

(
1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

(1+ γ c̃)
t . (7.9)

At t = 0, we have: Ñ0 = D + c0
η

1(
1+ 1−α2

α2
x
η

)
−(1+γ c̃)

, from which we get the value

of the constant D : D = Ñ0 − c0
η

1(
1+ 1−α2

α2
x
η

)
−(1+γ c̃)

. Hence, the behavior of Ñt gets

characterized by

Ñt =

⎛

⎝Ñ0 −
c0

η
1

(
1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

⎞

⎠
(

1+
1−α2

α2
x
η

)t

+
c0

η
1

(
1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

(1+ γ c̃)
t .

The transversality condition requires: lim
t→∞

β t c̃−σt ãt+1 = 0. For this condition to
hold, we need

lim
t→∞

β t (1+ γ c̃)
−tσ c̃−σ0

η
L

⎛

⎝Ñ0 −
c0

η
1

(
1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

⎞

⎠

×
(

1+
1−α2

α2
x
η

)t+1

+ lim
t→∞

β t (1+ γ c̃)
−tσ c̃−σ0

η
L

(1+ γ c̃)
t+1

η
c̃0 = 0. (7.10)

Using the expressions for the rate of growth (7.6) and research effort (7.3) , it is
straightforward to see that β (1+ γ c̃)

−σ
(

1+ 1−α2

α2
x
η

)
> 1, so that for the transver-

sality condition to hold we will need
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lim
t→∞

⎛

⎝Ñ0 −
c0/η(

1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

⎞

⎠

⎡

⎣
β
(

1+ 1−α2

α2
x
η

)

(1+ γ c̃)
σ

⎤

⎦

t

= 0,

lim
t→∞

[
β (1+ γ c̃)

1−σ
]t

= 0,

each condition guaranteeing that one of the two limits at (7.10) is equal to zero.
The second condition holds if

(
1+

1
η

LA
1

1−α α
2

1−α
1−α
α

)1−σ
<

1
β

,

a restriction among the values of structural parameters that also guarantees bounded
welfare, as it can be shown following an argument similar to the one we used for the
AK model. The first condition requires

c0 = η
[(

1+
1−α2

α2
x
η

)
− (1+ γ c̃)

]
Ñ0,

and tells us how to choose initial consumption as a function of the state variable, the
initial number of intermediate goods, so that the implied solution is stable, in the
sense of satisfying the transversality condition. It is, therefore, a stability condition,
that once again, relates a control to a state variable.

This condition implies a time behavior for Ñt :

Ñt =
1

(
1+ 1−α2

α2
x
η

)
− (1+ γ c̃)

(1+ γ c̃)
t c0

η
= (1+ γ c̃)

t Ñ0,

so that the number of intermediate goods grows at the same rate than consumption
and, from (7.4) , the same will be true for output: γỸ = γ Ñ = γ c̃.8 But, from (7.6) ,
consumption grows at rate γ c̃ at all time periods, so that the main variables in the
economy either stay constant, as in the case of xt or rt , or grow at a constant rate
at all time periods. Hence, the economy displays no transition, jumping to the new
steady-state immediately after any perturbation or policy intervention.

On the other hand, we have just shown that the rate of growth happens to be the
same for all positive growth variables, so that the steady state takes the form of a
balanced growth trajectory characterized by

1+ γỸt
= 1+ γ Ñ = 1+ γ c̃ = β 1/σ

(
1+

1
η

LA
1

1−α α
2

1−α
1−α
α

)1/σ
,

8 The constant labour supply of L, together with the assumption of a unit endowment of labour for
each consumer which is supplied inelastically, imply that we are dealing with a constant population.
Per-capita and aggregate consumption then grow at the same rate, since C̃t = Lc̃t , and the same is
true for per-capita and aggregate output, since Ỹt = Lỹt .
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x = LA
1

1−α α
2

1−α ,

r =
1
η

LA
1

1−α α
2

1−α
1−α
α

,

Ñt =

[

β 1/σ
(

1+
1
η

LA
1

1−α α
2

1−α
1−α
α

)1/σ
]t

Ñ0,

C̃t = Ñt

{

LA
1

1−α α
2α

1−α
(
1−α2)

− η
[
β
(

1+
1
η

LA
1

1−α α
2

1−α
1−α
α

)]1/σ
+η

}

,

Ỹt =
1
α2 xÑt .

As shown above, the rate of growth depends on the two preference parameters:
the intertemporal elasticity of substitution of consumption, and the rate of time dis-
count. A greater willingness to save, in the form of either a lower σ or a higher
discount rate β , will increase growth. The same is the case for a higher level of
aggregate technology, as reflected in the value of the constant A. By raising the rate
of return r, a decrease in the cost of innovation, η , will also lead to faster growth.
Since there is no limitation to the use of a new product by all firms in the economy,
beyond the one that came up with the innovation, the larger the economy, the lower
the economy-wide unit cost of innovation, η/L. That is reflected in the presence of
L in the expression for the growth rate, γ .

7.2.2 The Inefficiency of the Equilibrium Allocation

A benevolent social planner in this economy would maximize the level of welfare
of the representative household, subject to the global constraint of resources (7.7).

The Lagrangian for this problem would be

max
c̃t ,xt ,Ñt+1

∞

∑
t=0

β t

⎧
⎨

⎩

c̃1−σ
t −1
1−σ

+λ t

[
Ñt+1 − 1

η
(
AL1−α Ñtxαt −Lc̃t +ηÑt − Ñtxt

)]

⎫
⎬

⎭
,

with first order conditions

c̃−σt =
1
η
λ tL,

αAL1−α Ñtxα−1
t = Ñt ,

β tλ t = β t+1λ t+1

(
1
η

AL1−αxαt+1 +1− 1
η

xt+1

)
,
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which imply that the optimal production of each of the intermediate goods is the
same across goods and constant over time,9

x∗ = LA
1

1−α α
1

1−α ,

and it is larger than the equilibrium production of intermediate goods, since α < 1.
The optimum level of output is

Ỹ ∗
t = AL1−α Ñ∗

t (x∗)α = LA
1

1−α α
α

1−α Ñ∗
t , (7.11)

which increases with the number of product varieties.
The optimal rate of growth is

1+ γ∗c̃ =
c̃∗t+1

c̃∗t
= β 1/σ

(
1
η

AL1−α (x∗t )
α +1− 1

η
x∗t

)1/σ

= β 1/σ
(

1+
1
η

LA
1

1−α α
α

1−α (1−α)
)1/σ

,

which is easy to show that it is higher than the one implied in equilibrium.
An argument similar to the one we made in the previous section, together with

(7.11) implies that aggregate consumption and output grow at the same rate than the
number of intermediate goods, so that: 1+ γ∗c̃ = 1+ γ∗Ỹ = 1+ γ∗Ñ . So, starting from
a same initial condition Ñ0, the Pareto-efficient number of varieties of intermediate
goods is always above the one obtained in equilibrium, and the same happens with
the levels of consumption and output.

Therefore, the decentralized competitive equilibrium mechanism devotes less re-
sources to the production of intermediate goods than the solution to the social plan-
ner and hence, obtains a lower level of output each time period. Furthermore, the
rate of growth along the equilibrium solution is also lower than that obtained from
the social planner solution. The reason is that the social rate of return,

r∗ =
1
η

LA
1

1−α α
α

1−α (1−α),

is higher than the private rate of return on R&D.
In this economy, the inefficiency comes about because of the monopoly rights,

which introduce a gap between the private and the social rates of return, because the
price of the monopoly goods is above their marginal cost of production. Efficiency
could be achieved through a tax-subsidy policy leading to marginal cost pricing
without eliminating the incentives to innovate. These could take the form of either a
subsidy to the purchase of all intermediate goods, or a subsidy to the final product.
If the government subsidizes a proportion 1−α of the purchase of all intermediate
goods the equilibrium quantity of intermediate goods becomes optimal, in spite of
monopoly pricing. This comes about because the price of x, net of public subsidies,

9 We denote by asterisks the solution to the benevolent planner’s problem.
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is equal to 1. An alternative would be to subsidize production of the final good by
1−α
α , so that producers then receive 1/α units of revenue for each unit of goods

produced.
On the other hand, Barro and Sala-i-Martin [6] show that efficiency cannot be

achieved by a subsidy to R&D expenditures. Such policy can lead to a rate of return
and a rate of growth equal to those of the social planner, but the number of product
varieties would still be short of optimal due to monopoly pricing.

7.2.3 A Stochastic Version of the Economy with a Variety
of Intermediate Goods

7.2.3.1 The Producer of the Final Good

Maintaining the same structure described for the economy in previous sections, we
now assume that the level of technology At = θ tA is random. We assume that lnθ t
evolves according to an autoregressive process with random innovation, ε t :

lnθ t = φ lnθ t−1 + ε t , ε t ∼
iid

N(0,σ2
ε).

The technology available to the single producer of the final good is

Ỹt = θ tAL1−α
∫ Ñt

0
xαjtd j, 0 < α < 1,

with the same interpretation as in the deterministic case. We maintain the assump-
tion of a constant labor supply, Lt = L,∀t.

The profit maximization problem of the firm

max
{L, x jt}

E
[
Ỹt −wtL−

∫ Ñt

0
Pjtx jtd j

]
,

where wt is the wage rate and Pjt the price of the j-th intermediate good. Competitive
behavior on the part of the producer of the final good leads to profit maximizing
conditions

x jt = L
(
θ tAα

Pjt

) 1
1−α

, j ∈ [0, Ñt ], t = 0,1,2, . . . ,

wt = (1−α)
Ỹt

L
, t = 0,1,2, . . . .

Again, the nondurable nature of the intermediate goods, and the absence of any
intertemporal features in the demand for intermediate goods, leads to the monopolist



7.2 A Variety of Producer Products 317

producing each intermediate good to maximize profit at a single point in time, taking
the aggregate demand for the intermediate good as given

max
Pjt

(Pjt (x jt)−1)x jt ,

where x jt is the demand of the j-th intermediate good by the firm producing the final
good, leading to the same mark-up as in the deterministic case

Pjt = P =
1
α

> 1.

Symmetry again implies that monopoly prices for all intermediate goods are the
same, and constant over time. With these monopoly prices, the demand for each
intermediate goods is

x jt = xt = L
(
θ tAα2) 1

1−α , j ∈ [0, Ñt ], t = 0,1,2, . . .

so that the output of the final good becomes

Ỹt = θ tAL1−α
∫ Ñt

0

(
Lθ

1
1−α
t A

1
1−α α

2
1−α

)α
dj

= θ tAL1−α ÑtLαθ
α

1−α
t A

α
1−α α

2α
1−α

= LÑtθ
1

1−α
t A

1
1−α α

2α
1−α =

1
α2 Ñtxt

so that for fixed L, output grows at the same rate than Ñt .

7.2.3.2 Producers of Intermediate Goods

Under the maintained assumptions of perpetual monopoly rights over the production
and sale of the intermediate good, and a unit cost of production, the present value of
the returns from discovering the j-th intermediate good is

Vt =
∞

∑
s=t

1
s−t

∏
l=0

(1+ rt+l)
(Pjs −1)x js ,

where x jt is the quantity produced at time t.
Solving the model now would require making explicit considerations regarding

the attitude of private agents towards risk, and analytical considerations quickly
become unfeasible. Following Barro and Sala-i-Martin [6], we make the assumption
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that, at each point in time, potential innovators just care about their conditional
expectations of the present value of future returns,10

EtVt = Lα
2

1−α
1−α
α

A
1

1−α Et

⎛

⎜
⎜
⎜
⎝

∞

∑
s=t

θ
1

1−α
s

s−t

∏
l=0

(1+ rt+l)

⎞

⎟
⎟
⎟
⎠

.

The fixed cost of discovering a new good can then be recovered only if the sales
price is greater than the unit marginal cost of production. Together with the assump-
tion we have just made on the treatment of risk, the same considerations as in the
deterministic model lead to: EtVt = η .

Writing this conditional expectation at time taking conditional expectations at
time t + 1 and taking conditional expectations as of time t, as of time t, we have:
Et(Et+1Vt+1) = Etη , which implies: EtVt+1 = η , so we have

Lα
2

1−α
1−α
α

A
1

1−α Et

⎛

⎜
⎜
⎜
⎝

∞

∑
s=0

θ
1

1−α
t+1+s

s

∏
j=0

(
1+ rt+1+ j

)

⎞

⎟
⎟
⎟
⎠

= η ,

and we have the relationship

EtVt+1 =

⎡

⎣EtVt −Lα
2

1−α
1−α
α

A
1

1−α Et

⎛

⎝ θ
1

1−α
t

1+ rt

⎞

⎠

⎤

⎦(1+ rt)

and, using again: EtVt = EtVt+1 = η , we finally get

rt =
1
η

Lα
2

1−α
1−α
α

A
1

1−α θ
1

1−α
t =

π t

η
=

1−α
α

xt

η
,

where π t denotes the static monopolistic profit. Interest rates are now time varying
together with θ t in a random fashion.

7.2.3.3 Household Decisions

We maintain the assumptions on consumers we made in the deterministic version
of the model. The representative household maximizes the expected value of dis-
counted, time aggregate utility over an infinite horizon,

10 This is clearly a restrictive assumption, which neglects any consideration regarding the appro-
priate treatment of uncertainty under risk aversion.
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max
{c̃t ,ãt+1}

E0

∞

∑
t=0

β t c̃1−σ
t −1
1−σ

,

who save at time t an amount ãt+1 of resources at a time varying rate of return rt ,
and it is supplied with 1 unit of labor each period. For simplicity, we assume zero
population growth, n = 0. The single period budget constraint is

c̃t + ãt+1 = wt +(1+ rt)ãt ,

given ã0.
The Lagrangian is

L(c̃t , ãt+1,λ t) =
∞

∑
t=0

β t
(

c̃1−σ
t −1
1−σ

−λ t [c̃t + ãt+1 −wt − (1+ rt)ãt ]
)

,

with utility maximizing conditions

∂L
∂ c̃t

= 0 ⇒ c̃−σt = λ t , t = 0,1,2, . . . ,

∂L
∂ k̃t+1

= 0 ⇒−β tλ t +β t+1Et [(1+ rt+1)λ t+1] = 0, t = 0,1,2, . . . ,

Transversality Condition: lim
T→∞

β t+T Et c̃−σt+T ãt+T+1 = 0,

leading to
c̃−σt = βEt

[
(1+ rt+1)c̃−σt+1

]

= βEt

[(
1+

1
η

Lα
2

1−α
1−α
α

A
1

1−α θ
1

1−α
t+1

)
c̃−σt+1

]
, t = 0,1,2, . . . .

In equilibrium, total savings must be equal to the resources needed to put in place
the varieties of intermediate goods

ãt+1 = η
Ñt+1

L
.

Introducing this condition into the consumer budget constraint, and taking into
account the identity Lc̃t = C̃t and the demand for labor equation, we can write the
global constraint of resources in per-capita terms

c̃t +
η
L

(
Ñt+1 − Ñt

)
= ỹt − Ñt

xt

Lt

= θ
1

1−α
t A

1
1−α α

2α
1−α Ñt −θ

1
1−α
t A

1
1−α α

2
1−α Ñt

= θ
1

1−α
t A

1
1−α α

2α
1−α

(
1−α2) Ñt .
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7.2.3.4 Analogy with the AK Model

The AK model with n = 0, δ = 0, τc = τy = 0 and a production technology: Ỹt =
A∗K̃t , has a global constraint of resources:

k̃t+1 = (1+θ tA∗)k̃t − c̃t ,

and an Euler equation:

c̃−σt = βEt
[
(1+θ t+1A∗)c̃−σt+1

]
,

and leads to an interest rate:
rt = θ tA∗.

On the other hand, introducing the change of variables: µ t ≡ θ
1

1−α
t , A′ ≡

A
1

1−α α
α

1−α (1−α)
η/L , q̃t ≡ η

L Ñt , in the planner solution to the model with varieties of
intermediate goods, the global constraint of resources, the Euler condition and the
rate of return can be written

q̃t+1 =
[
1+µ tA

′(1+α)α
α

1−α
]

q̃t − c̃t ,

c̃−σt = βEt
[
(1+µ t+1A′)c̃−σt+1

]
,

r∗t = µ tA
′,

a system with strong similarity with the one obtained for the AK economy.
On the other hand, the equilibrium solution in the model with varieties of inter-

mediate goods is characterized by the system

q̃t+1 =
[
1+µ tA

′(1+α)α
α

1−α
]

q̃t − c̃t ,

c̃−σt = βEt

[
(1+µ t+1A′α

1
1−α )c̃−σt+1

]
,

rt = µ tA
′α

1
1−α .

The Euler equation for the equilibrium solution differs from the Euler equation
for the planner solution in the presence of the α

1
1−α term. Without that term the

two Euler equations would be identical, leading to the same allocation of resources.
So the α

1
1−α term can be seen as the degree of inefficiency of the equilibrium solu-

tion to the model with varieties of intermediate goods. In any case, the equilibrium
solution still has some similarity with the system characterizing the solution to the
AK economy, which can be exploited when designing the algorithm to produce a
numerical solution to the model in the next section.
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7.2.3.5 Numerical Characterization of the Equilibrium Solution

To generate a sample realization for the numerical solution to this model, we define
the auxiliary variable zt = c̃t/q̃t .11 The global constraint of resources can be written

q̃t+1

q̃t
= 1+µ tA

′(1+α)α
α

1−α − zt , (7.12)

while from the Euler condition we get

(
c̃t

q̃t

)−σ
q̃−σt = βEt

[(
c̃t+1

q̃t+1

)−σ
q̃−σt+1

(
1+µ t+1A′α

1
1−α

)
]

, (7.13)

Ñt+1 is the period-t decision on the number of varieties available for production
next period, which implies the expectations condition: Et q̃t+1 = q̃t+1. Taking this to
(7.13) we finally get

[
1+µ tA

′(1+α)α
α

1−α − zt

]σ
= βEt

[
z−σt+1

z−σt

(
1+µ t+1A′α

1
1−α

)
]

. (7.14)

Steady-State

Steady-state is characterized by: µ t = 1,∀t, and constant growth rates for per-capita
variables and for Ñt , so that from (7.12)

1+ γq ≡
q̃t+1

q̃t
= 1+A′(1+α)α

α
1−α − zt , (7.15)

which implies that zt must be constant in steady-state, i.e., that c̃t and q̃t grow at the
same rate. Since q̃t = η

L Ñt , that means that the number of varieties of intermediate
goods also grows at the same rate than these two variables: γ Ñ = γ c̃ = γ q̃ = γ .

Then, from the Euler condition, with zt = c̃t/q̃t constant and µ t = 1,∀t, so that
the rate of growth is

(1+ γ)σ = β
(

1+A′α
1

1−α
)
⇒ 1+ γ =

[
β
(

1+A′α
1

1−α
)] 1

σ
,

and the steady-state value of zt is readily obtained from (7.15)

z = A′(1+α)α
α

1−α − γ.

In what follows, we will consider values for structural parameters such that:
γ > 0, z > 0. We will see in a numerical exercise below that such a region of the
parameter space is non-empty.

11 A similar ratio was used as auxiliary variable when solving the discrete-time AK model.
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Log-Linear Approximation

The obtain the log-linear approximation to the model, we start by writing the Euler
equation (7.14) as

0 = −e−σ lnzt
(

elnµt A′(1+α)α
α

1−α +1− elnzt
)σ

+βEt

[
e−σ lnzt+1

(
elnµt+1A′α

1
1−α +1

)]
,

and introducing variables in logged differences with respect to steady-state: ẑt =
ln(zt/z), µ̂ t = ln(µ t), we have the approximation:

0 � σz−σ (1+ γ)σ ẑt −σz−σ (1+ γ)σ−1 A′(1+α)α
α

1−α µ̂ t

+σz−σ (1+ γ)σ−1 zẑt

+βEt

[
−σz−σ

(
1+A′α

1
1−α

)
ẑt+1 + z−σA′α

1
1−α µ̂ t+1

]
.

Notice that lnµ t = 1
1−α lnθ t ⇒ Et µ̂ t+1 = 1

1−α Et (lnθ t+1) = 1
1−α φ lnθ t = φ µ̂ t .

Hence, the approximation above can be written

0 � σz−σ
(1+ γ)σ

β

(
1+

z
1+ γ

)
ẑt −·· ·

−
[

σz−σ
(1+ γ)σ−1

β
A′(1+α)α

α
1−α

−z−σA′α
α

1−α φ

]

µ̂ t −σz−σ
(1+ γ)σ

β
Et ẑt+1,

and solving for ẑt
12:

ẑt = ϕ1Et ẑt+1 +ϕ2µ̂ t ,

with: ϕ1 = 1+γ

1+A′(1+α)α
α

1−α
, ϕ2 = A′α

α
1−α σ(1+γ)σ−1(1+α)−β

σ(1+γ)σ
1
ϕ1

, where it is important

to notice that the equality 1 + γ = A′(1 +α)α
α

1−α + 1− zss implies: 0 < ϕ1 < 1.
Therefore, we can solve this autoregression forwards, applying the law of iterated
expectations as we have done in previous occasions, to obtain

ẑt =
ϕ2

1−ϕ1φ
µ̂ t .

We can now proceed as follows:

1. Given a sample realization for {ε t}T
t=0 , where ε t ∼

iid
Ñ(0,σ2

ε), we can obtain a

sample realization for {θ t}T
t=0 and then for {µ t}T

t=0 : µ t = lnµ t = 1
1−α lnθ t .

12 Using the equality: 1+ zss
1+γss

= 1+γss
1+A′ .
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2. Given {µ t}T
t=0 , we compute {zt}T

t=0 : zt = z ezt , with ẑt = ϕ2
1−ϕ1φ

µ̂ t .
3. The initial value of q̃t , q̃0 is known through the initial condition on the number

of varieties, Ñ0 by q̃0 = η
L Ñ0. Then, given {µ t ,zt}T

t=0 , we compute {qt}T
t=0 , and

{q̃t}T
t=0 by iterating on q̃t+1 =

(
1+µ tA

′(1+α)α
α

1−α − zt

)
q̃t and using: qt =

q̃t (1+ γ)−t .
4. We compute {ct}T

t=0 , and {c̃t}T
t=0 using the identities: ct = ztqt , c̃t = zt q̃t .

5. The number of varieties Ñt is obtained from Ñt = L
η q̃t .

6. Interest rates {rt}T
t=0 are obtained from rt = µ tA

′α
α

1−α .

7. Per-capita output {ỹt}T
t=0 is obtained from ỹt = θ

1
1−α
t A

1
1−α α

2α
2−α Ñt , while aggre-

gate output is Ỹt = Lỹt .
8. Real wages {w̃t}T

t=0 are obtained from w̃t = (1−α)ỹt .

7.3 Technological Diffusion and Growth

The model of technological diffusion by Barro and Sala-i-Martin [5] considers two
countries. The leading country, which we will label as country 1, is an economy
with a variety of intermediate goods, like the one analyzed in the previous sections.
So, for the leading country, we have a number of varieties, a level of output and a
real interest rate given by

x1, j,t = L1α
2

1−α A
1

1−α
1 θ

1
1−α
1,t = x1,t , ∀ j ∈

[
0, Ñ1,t

]
,

Ỹ1,t = L1α
2α

1−α A
1

1−α
1 θ

1
1−α
1,t Ñ1,t =

1
α2 Ñ1,t x1,t ,

r1,t =
1
η1

1−α
α

L1α
2

1−α A
1

1−α
1 θ

1
1−α
1,t ,

γ c̃,1 = γ ỹ,1 = γ Ñ,1 =
[
β
(

A′
1α

α
1−α +1

)]1/σ
−1.

The follower country, or country 2, can either innovate and develop its own
intermediate goods, or copy those that have already been invented in country 1.
Copying or adapting an intermediate good from the leading country to be used in
country 2, has a fixed cost υ2,t . Imitation differs from innovation in that the number
of commodities that can be copied at any point in time is limited by the number of
commodities already discovered in country 1 at that point, Ñ1,t that have not been
copied yet by country 2. The cost of imitation υ2,t increases with the proportion
of country 1 commodities that have been copied by country 2

υ2,t = υ2
(
Ñ2,t−1/Ñ1,t−1

)
, υ ′

2 > 0.

Specifically, we take as specification for the imitation cost

υ2,t =η2

(
Ñ2,t−1

Ñ1,t−1

)b

, Ñ2,t ≤ Ñ1,t , b > 0, (7.16)

where η2 being the cost of innovation,
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which implies that whenever Ñ2,t−1 < Ñ1,t−1, the cost of imitation will be lower
than the cost of innovation: υ2,t < η2.13

It makes sense to assume that the follower country starts with a number of in-
termediate goods well below that in the leading country: Ñ2,0 < Ñ1,0. That implies
that the cost of copying intermediate goods is initially lower than that of innovating:
υ2,0 < η2, so country 2 will take the former option.

7.3.1 The Problem of the Follower Country

An agent in country 2 pays υ2,t to imitate the j-th variety of the intermediate good
from country 1. We assume that such agent would then obtain a perpetual monopoly
on the use of that intermediate good for production in country 2, which leads to a
monopoly price: Pj,2 = P2 = 1

α , as in country 1. Expressions for the quantity pro-
duced of the intermediate good x2, j,t and of total output Ỹ2,t , as well as that for the
flow of monopoly profits are similar to those in country 1

x2, j,t = x2,t = L2A
1

1−α
2 α

2
1−α θ

1
1−α
2,t , j ∈

[
0, Ñ2,t

]
,

Ỹ2,t = L2A
1

1−α
2 α

2α
1−α θ

1
1−α
2,t Ñ2,t = Ñ2,t

x2,t

α2 ,

π2,t =
1−α
α

L2A
1

1−α
2 α

2
1−α θ

1
1−α
2,t ,

so that the ratio of output per capita in both countries is

Ỹ2,t/L2

Ỹ1,t/L1
=

ỹ2,t

ỹ1,t
=

(
A2

A1

) 1
1−α

(
θ 2,t

θ 1,t

) 1
1−α Ñ2,t

Ñ1,t
.

7.3.1.1 Producers of Intermediate Goods

The present value from imitating the j-th intermediate good in country 2 is14

EtV2,t = L2α
2

1−α
1−α
α

A
1

1−α Et

⎛

⎜
⎜
⎜
⎝

∞

∑
s=t

θ
1

1−α
2,s

s−t

∏
l=0

(
1+ r2,t+l

)

⎞

⎟
⎟
⎟
⎠

.

13 The cost of innovation, υ2,t , could be allowed to exceed from η2 even when N2,t−1 < N1,t−1
to capture a situation in which the yet uncopied goods from country 1 are hard to adapt for use in
country 2. The proposed function does not allow for that possibility.
14 Interest rates may be different in both countries due to the fact that we do not consider interna-
tional borrowing and lending.
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If there is free entry in the imitation business in country 2, firms will open to the
point where EtV2,t = υ2,t . That implies: Et+1V2,t+1 = υ2,t+1, and taking conditional
expectations as of time t : EtV2,t+1 = Et (Et+1V2,t+1) = Etυ2,t+1 = υ2,t+1, where the
last equality is obtained form the fact that both, Ñ2,t+1 and Ñ1,t+1 are decisions made
at time t.

Therefore
EtV2,t −EtV2,t+1 = υ2,t −υ2,t+1.

Since EtV2,t+1 can be written

EtV2,t+1 = Et (Et+1V2,t+1)

= L2α
2

1−α
1−α
α

A
1

1−α Et

⎛

⎜
⎜
⎜
⎝

∞

∑
s=t+1

θ
1

1−α
2,s

s−t−1

∏
l=0

(
1+ r2,t+l+1

)

⎞

⎟
⎟
⎟
⎠

,

we have: EtV2,t+1 = (1+ r2,t)EtV2,t −θ
1

1−α
2,t L2α

2
1−α 1−α

α A
1

1−α . So, we get, after sim-
ple manipulation

r2,t = L2α
2

1−α
1−α
α

A
1

1−α
θ

1
1−α
2,t

υ2,t
+
υ2,t+1 −υ2,t

υ2,t
(7.17)

=
1−α
α

x2,t

υ2,t
+
υ2,t+1 −υ2,t

υ2,t
.

7.3.1.2 Households

By the same argument made for country 1, the problem of the representative con-
sumer in country 2 solves the optimization problem

max
{c̃2,t ,ã2,t+1}

E0

∞

∑
t=0

β t c̃1−σ
2,t −1

1−σ
,

subject to the sequence of single period budget constraints

c̃2,t + ã2,t+1 = w̃2,t +(1+ r2,t)ã2,t ,

given ã2,0, with optimality conditions

c̃−σ2,t = βEt

[
(1+ r2,t+1)c̃−σ2,t+1

]
, t = 0,1,2, . . .

lim
T→∞

β t+T Et c̃−σ2,t+T ã2,t+T+1 = 0.
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In equilibrium, total savings must be equal to the resources needed to put in place
the varieties of intermediate goods, all of them copied from country 1

ã2,t = υ2,t
Ñ2,t

L2
,

and the global constraint of resources can be written

c̃2,t +υ2,t+1
Ñ2,t+1

L2
= w̃2,t +(1+ r2,t)υ2,t

Ñ2,t

L2

= (1−α)ỹt

+
(

1+
1−α
α

x2,t

υ2,t
+
υ2,t+1 −υ2,t

υ2,t

)
υ2,t

Ñ2,t

L2

= (1−α)ỹt +
1−α
α

x2,t
Ñ2,t

L2
+υ2,t+1

Ñ2,t

L2

=
(
(
1−α2)θ

1
1−α
2,t A

1
1−α
2 α

2α
1−α +

υ2,t+1

L2

)
Ñ2,t ,

and the Euler condition

c̃−σ2,t = βEt

[
(1+ r2,t+1)c̃−σ2,t+1

]

= βEt

⎡

⎣c̃−σ2,t+1

⎛

⎝1+L2α
2

1−α
1−α
α

A
1

1−α
θ

1
1−α
2,t+1

υ2,t+1

+
υ2,t+2 −υ2,t+1

υ2,t+1

⎞

⎠

⎤

⎦ .

The presence of time-varying terms in the real rate of return (7.17) implies that
the rate of growth of per-capita consumption will also change over time, displaying
a nontrivial transition to steady-state. This runs contrary to the characteristics of the
leader country, that lacks transitional dynamics, as shown in the previous section.

7.3.2 Deterministic Steady-State

In the deterministic steady-state, θ 1,t = θ 2,t = 1,∀t, and the cost of imitation must
be constant: υ2,t = υ2,ss. We already know that the leader country has a balanced
growth path type of steady-state, without any transitional dynamics. So, per-capita
variables in country 1 grow at the same rate γ1 in all time periods. But the cost of
imitation can remain constant in steady-state only if Ñ1,t and Ñ2,t grow at the same

rate, so that: 1+ γ Ñ2
= 1+ γ1 =

[
β
(
1+A′

1
α

1+α
)]1/σ , with A′

1 =
A

1
1−α
1 α

2α
1−α (1−α2)
η1/L1

.
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Since υ2,t and the rates of growth of the number of intermediate goods in both
countries are constant in steady-state we get, from the global constraint of resources

c̃2,t

Ñ2,t
=

[
(
1−α2)A

1
1−α
2 α

2α
1−α +

υ2

L2

]
− υ2

L2
(1+ γ2) , (7.18)

which implies that c̃2,t
Ñ2,t

must also be constant in steady-state. This implies: 1+γ2,c̃ =
1+ γ2,Ñ2

= 1+ γ1. Finally, since

ỹ2,t

ỹ1,t
=

Ỹ2t/L2

Ỹ1t/L1
=

Ñ2,t

Ñ1,t

(
A2

A1

) 1
1−α

,

we have that the common growth rate of the number of intermediate commodities in
both countries implies that, in steady-state, the relative levels of per-capita income
will remain constant. In other words, income per capita will also grow at the same
rate in both countries. However, which country achieves the highest income per
capita in steady-state will depend on the relative values of the number of intermedi-
ate goods, and the levels of productivity. To discuss this important issue, we advance
that the transitional dynamics analysis of the model in the next section shows that if
equilibrium is well-determined, the problem will have a saddle path structure, with
a single stable eigenvalue. That means that all variables will experience monotone
convergence to their steady state levels. Hence, if the number of intermediate com-
modities in country 2 is initially below that in country 1, Ñ2,0 < Ñ1,0, their ratio
Ñ2,t/Ñ1,t will start from below 1 at t = 0, converging monotonically to its steady-
state level.

Let us assume that the steady-state ratio is also below one: Ñ2/Ñ1. From the
specification for the imitation cost function, we see that this would be the case of a
country for which the cost of adapting commodities from country 1 remains, from
the initial time, always below the cost of innovation, so the latter option is never
exercised. If this country is relatively highly productive, i.e., if the A2/A1 ratio
is sufficiently above 1, then it could be the case that the imitating country would
end up above country 1 in terms of income per-capita, a phenomenon known as
leapfrogging. It could be the case of countries which have been closed to techno-
logical developments for a number of years and at some point get admitted to an
existing economic union of countries which enjoy a wide variety of commodities. If
the first country has been very careful in maintaining a high level of human capital,
it might have higher productivity than countries in the union, and experience a fast
progress in terms of income per-capita, as goods form the union are adapted for use
in the initially underdeveloped country. On the other hand, high productivity should
be expected to create incentives for innovation, making unlikely that such a coun-
try would not develop its own goods, unless restricted in such process by political
reasons.

Since utility maximization leads to 1 + γ i,c̃ = [β (1+ ri)]
1/σ , i = 1,2, in both

countries, then the fact that the steady-state rate of growth of consumption per capita
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in both countries is the same implies that steady-state interest rates are also the same
in both countries: r1 = r2

r1 = r2 ⇒ L2α
2

1−α
1−α
α

A
1

1−α
2

1
υ2

= L1α
2

1−α
1−α
α

A
1

1−α
1

1
η1

,

an equality that help us to determine the equilibrium cost of imitation

υ2 =
(

A2

A1

) 1
1−α L2

L1
η1. (7.19)

Finally, the steady-state ratio
(

c̃2,t
Ñ2,t

)

ss
can be obtained by taking (7.19) to (7.18) .

7.3.3 Computing the Numerical Solution by Log-Linear
Approximations and Numerical Derivatives

We start by characterizing the transitional dynamics of the economy. For that we in-
troduce auxiliary variables: q̃2,t = υ2,t+1Ñ2,t

L2
, z2,t = c̃2,t

q̃2,t
, while maintaining those

already defined for country 1: q̃1,t = η1Ñ1,t
L1

, z1,t = c̃1,t
q̃1,t

, which allow us to write the
global constraint of resources

z2,t +
υ2,t+1

υ2,t+2

q̃2,t+1

q̃2,t
=

[
(
1−α2)θ

1
1−α
2,t A

1
1−α
2 α

2α
1−α

L2

υ2,t+1
+1

]
,

and with the change of variables: A′
2 =

(
1−α2

)
A

1
1−α
2 α

2α
1−α L2, µ2,t = θ

1
1−α
2,t ,

becomes

z2,t +
υ2,t+1

υ2,t+2

q̃2,t+1

q̃2,t
=

(
A′

2µ2,t
1

υ2,t+1
+1

)
,

while from the Euler condition, we get

z−σ2,t

[(
A′

2µ2,t
1

υ2,t+1
+1− z2,t

)
υ2,t+2

υ2,t+1

]

= βEt

[
z−σ2,t+1

(
1+

α
1+α

A′
2µ2,t+1

υ2,t+2
+
υ2,t+2 −υ2,t+1

υ2,t+1

)]
. (7.20)

The function describing the cost of imitation (7.16) can be written in terms of
these new variables:

υ2,t+1 = η2

(
Ñ2,t

Ñ1,t

)b

⇒ υ2,t+1 = η2

(
Ñ2,tυ2,t+1/L2

Ñ1,tη1/L1

)b (η1L2

L1

)b

υ−b
2,t+1
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⇒ υ1+b
2,t+1 = η2

(
η1L2

L1

)b ( q̃2,t

q̃1,t

)b

⇒ q̃2,t

q̃1,t
=

υ(1+b)/b
2,t+1

η1/b
2 η1L2/L1

.

This expression can be used to write the global constraint of resources as

z2,t +
υ2,t+1

υ2,t+2

q̃2,t+1/q̃1,t+1

q̃2,t/q̃1,t

q̃1,t+1

q̃1,t
=

(
A′

2µ2,t
1

υ2,t+1
+1

)
.

But in the leader country: q̃1,t+1
q̃t

= µ1,tA
′
1(1 +α)α

α
1−α + 1− z1,t , so that we fi-

nally get
(
υ2,t+2

υ2,t+1

)1/b

=
A′

2µ2,t
1

υ2,t+1
+1− z2,t

µ1,tA
′
1(1+α)α

α
1−α +1− z1,t

. (7.21)

We have a system of two dynamic equations (7.20), (7.21) in a control variable,
z2, and a state variable, υ2, so that to have a determinate equilibrium we should
find one stable and one unstable eigenvalue in the log-linear approximation to the
system. It is important to notice that

{
µ1,t

}
and {z1,t} are obtained in the leader

country, but they affect the follower country, as it is clear in (7.21). Hence, shocks
in the leading country influence the follower country, while shocks in the follower
country do not affect the leading country.

Once we get time series for {υ2,t+2}T
t=0 and {z2,t}T

t=0 , we can use the {q̃1,t}T
t=0

sequence obtained in the leading country to obtain the time series for {q̃2,t}T
t=0.

Given {q̃2,t}T
t=0 and {z2,t}T

t=0 , we can compute {c̃2,t}T
t=0. Given {q̃2,t}T

t=0 and
{υ2,t}T

t=0, we can compute
{

Ñ2,t
}T

t=0 . Finally, given
{

Ñ2,t
}T

t=0, we can compute
{

Ỹ2,t
}T

t=0 .

7.3.3.1 The Log-Linear Approximation and Numerical Derivatives

We now depart from the analysis we have made in previous models. Once we obtain
the log-linear approximation to the model, we will use numerical derivatives rather
than analytical derivatives, to compute the Jacobian to the system. Using analytical
derivatives to compute the solution, as in previous models, is proposed as an exercise
at the end of the chapter. On the other hand, the numerical approach we use here does
not require partial derivatives and it can be adapted to all other models we have
discussed throughout the book.

The system made up by (7.20), (7.21) can be written

Et
[
F1

(
z2,t+1,z2,t ,υ2,t+2,υ2,t+1; µ2,t+1,µ2,t ; z1,t ,µ1,t

)]
= 0, (7.22)

Et
[
F2

(
z2,t+1,z2,t ,υ2,t+2,υ2,t+1; µ2,t+1,µ2,t ; z1,t ,µ1,t

)]
= 0. (7.23)
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Using the notation ξ̂ t = ln(ξ t/ξ ss), ξ t = z2,t ,υ2,t+1,µ2,t ,z1,t ,µ1,t , and denoting

the partial derivatives of these two functions by: Ji,k = ∂Fi
∂ ξ̂ k

, i = 1,2; k = 1,2, . . . ,8,

where: ξ̂ 1 = ẑ2,t+1, ξ̂ 2 = ẑ2,t , ξ̂ 3 = υ̂2,t+2, ξ̂ 4 = υ̂2,t+1, ξ̂ 5 = µ̂2,t+1, ξ̂ 6 = µ̂2,t ,

ξ̂ 7 = ẑ1,t , ξ̂ 8 = µ̂1,t , the log-linear approximation to (7.22) ,(7.23) can be written

Γ0

(
Et ẑ2,t+1
υ̂2,t+2

)
+Γ1

(
ẑ2,t
υ̂2,t+1

)
+Γ2

⎛

⎝
µ̂2,t
ẑ1,t
µ̂1,t

⎞

⎠ =
(

0
0

)
,

where

Γ0 =
(

J1,1 J1,3
0 J2,3

)
, Γ1 =

(
J1,2 J1,4
J2,2 J2,4

)
,

Γ2 =
(

J1,5φ 1 + J1,6 0 0
J2,6 J2,7 J2,8

)
,

where φ 1 is the autoregressive parameter of stochastic process for θ 1, t , which
leads to

(
Et ẑ2,t+1
υ̂2,t+2

)
= Γ3

(
ẑ2,t
υ̂2,t+1

)
+Γ4

⎛

⎝
µ̂2,t
ẑ1,t
µ̂1,t

⎞

⎠ , (7.24)

where Γ3 = −Γ−1
0 Γ1, Γ4 = −Γ−1

0 Γ2 .
As mentioned above, a well-determined equilibrium arises when Γ3 has one sta-

ble and one unstable eigenvalues, which we will assume to be the case. The problem
would then have the familiar saddle-path structure we have seen in other models
throughout the book. The unstable direction will be eliminated by setting to zero
each period the product of the eigenvector associated to the unstable eigenvalue by
the vector made up by the control and state variables. That condition in turn, will
give us the way to choose the control variable each period, as a function of the
state variable, to have a stable solution. Without loss of generality, let us assume:
|λ 1| < 1, |λ 2| > 1. We would then have the spectral decomposition:

Γ3 = MΛM−1, Λ=
(
λ 1 0
0 λ 2

)
, M−1 =

(
m11 m12
m21 m22

)
.

Premultiplying (7.24) by M−1 and denoting by Q the product: Q = M−1Γ4 =(
Q11 Q12 Q13
Q21 Q22 Q23

)
, we have

m11Et ẑ2,t+1 +m12υ̂2,t+2 = λ 1 (m11ẑ2,t +m12υ̂2,t+1)
+Q11µ̂2,t +Q12ẑ1,t +Q13µ̂1,t ,

m21Et ẑ2,t+1 +m22υ̂2,t+2 = λ 2 (m21ẑ2,t +m22υ̂2,t+1)
+Q21µ̂2,t +Q22ẑ1,t +Q23µ̂1,t ,
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which, using the results obtained from the leading country

ẑ1,t =
ϕ2

1−ϕ1φ 1
µ̂ t ,

can be written

m11Et ẑ2,t+1 +m12υ̂2,t+2 = λ 1 (m11ẑ2,t +m12υ̂2,t+1)+Q11µ̂2,t

+
(

Q13 +Q12
ϕ2

1−ϕ1φ 1

)
µ̂1,t , (7.25)

m21Et ẑ2,t+1 +m22υ̂2,t+2 = λ 2 (m21ẑ2,t +m22υ̂2,t+1)+Q21µ̂2,t

+
(

Q23 +Q22
ϕ2

1−ϕ1φ 1

)
µ̂1,t . (7.26)

Defining now auxiliary variables: f 0
2,t = m21ẑ2,t +m22υ̂2,t+1, we have Et f 0

2,t+1 =
m21Et ẑ2,t+1 +m22υ̂2,t+2, and the second equation becomes a first order autoregres-
sion with an unstable coefficient, which can be solved forwards, to obtain

f 0
2,t =

Q23 +Q22
ϕ2

1−ϕ1φ1

φ 1 −λ 2
µ̂1,t +

Q21

φ 2 −λ 2
µ̂2,t ,

where φ 2 is the autoregressive parameter of stochastic process for θ 2,t , and finally

ẑ2,t =
1

m21

(
Q23 +Q22

ϕ2
1−ϕ1φ1

φ 1 −λ 2
µ̂1,t +

Q21

φ 2 −λ 2
µ̂2,t −m22υ̂2,t+1

)

, (7.27)

which is the stability or control equation.
Substituting (7.27) into (7.25) we get

Et

[
m11

m21

(
Q23 +Q22

ϕ2
1−ϕ1φ1

φ 1 −λ 2
µ̂1,t+1 +

Q21µ̂2,t+1

φ 2 −λ 2
−m22υ̂2,t+2

)]

+m12υ̂2,t+2

= λ 1
m11

m21

(
Q23 +Q22

ϕ2
1−ϕ1φ1

φ 1 −λ 2
µ̂1,t +

Q21

φ 2 −λ 2
µ̂2,t −m22υ̂2,t+1

)

+λ 1m12υ̂2,t+1 +
(

Q13 +Q12
ϕ2

1−ϕ1φ 1

)
µ̂1,t +Q11µ̂2,t ,

which can be written
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(

m12 −
m11

m21
m22

)
υ̂2,t+2 = λ 1

(
m12 −

m11

m21
m22

)
υ̂2,t+1

+

[(
Q13 +Q12

ϕ2
1−ϕ1φ 1

)
+(λ 1 −φ1)

× m11

m21

Q23 +Q22
ϕ2

1−ϕ1φ1

φ 1 −λ 2

]

µ̂1,t

+
[

Q11 +(λ 1 −φ 2)
m11

m21

Q21

φ 2 −λ 2

]
µ̂2,t ,

and finally

υ̂2,t+2 = λ 1υ̂2,t+1 +
1

m12 − m11
m21

m22

(
S1µ̂1,t +S2µ̂2,t

)
,

where S1 =
(

Q13 +Q12
ϕ2

1−ϕ1φ1

)
+ (λ 1 − φ 1)

m11
m21

Q23+Q22
ϕ2

1−ϕ1φ1
φ1−λ 2

, S2 = Q11 +

(λ 1 −φ 2)
m11
m21

Q21
φ2−λ 2

, which is the state equation.
We are now ready to compute the numerical solution to the model:

1. Given initial values
{

Ñ2,0, Ñ1,0
}

we compute υ̂2,1, and given sample realizations
for

{
µ̂1,t

}T
t=0 and

{
µ̂2,t

}T
t=0 , we obtain {υ̂2,t+1}T

t=1 from the state equation.

2. Given sample realizations for
{
µ̂1,t

}T
t=0 ,

{
µ̂2,t

}T
t=0 and {υ̂2,t+1}T

t=1 , we obtain
{ẑ2,t}T

t=0 from the control equation.

7.3.4 Numerical Exercise: Solving the Model with Varieties
of Intermediate Goods, and the Diffusion Growth Model

The simul diffus.m Matlab file computes a sample realization from the technological
diffusion model. Sample realizations are obtained for all variables in the leader and
the follower countries. The set of time series obtained for the leader country can be
taken as a realization from the solution to the model with varieties of intermediate
goods, discussed in the previous section. The model could easily be extended to
compute an arbitrary number of sample realizations for the solution, the same way
it is done when solving Growth models in other chapters.

The same program can also be used to compute impulse responses in both coun-
tries to a productivity shock in the leader country. In that case, rather than starting
from sample realizations for the stochastic productivity shocks in both countries,
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a time series for the productivity shock in the leader country is chosen with a sin-
gle non-zero value at a pre-specified point in time, as indicated in the comments
in the program. The size of the shock can be changed as desired. The time se-
ries for the productivity shock in the follower country is set to zero at all points
in time.15 The program then computes a graph with the impulse responses in the
leader country.

It is interesting to see that all detrended variables experience permanent effects
from the purely transitory, single-period shock in productivity. This is a conse-
quence of these variables having a unit root, even after discounting their determin-
istic growth component. Consumption and output increase, and so do the number
of intermediate goods and the real wage. The first three variables show the fastest
adjustment to their new steady-state levels, while the number of varieties, a cumula-
tive state variable, increases more gradually. Real interest rates experience a sudden
increase with the productivity shock, gradually returning to their level before the
shock, a reflection of the fact that this variable does not contain a unit root. The rel-
ative persistence in the real rate of return is a mere consequence of the autoregres-
sive structure of the productivity shock. Detrended variables in the follower country
experience even more gradual adjustments to their new, higher steady-state levels,
reflecting the nontrivial transition to the new-steady-state in this country. That is, in
turn, a consequence of the fact that the number of intermediate commodities in this
country adjust gradually to the increase in the number of intermediate commodi-
ties in the leader country. It is interesting to see the sharp decrease in real interest
rates in the follower country, adjusting to their level prior to the shock with some
overshooting. A second graph shows rates of growth in some key, detrended vari-
ables, showing those in the follower country to be more persistent. A last graph
overlays graphs for both countries. It also shows the time evolution of the cost of
imitation, that experiences an initial decrease as the number of intermediate vari-
eties in the leader country increases faster than the one in the follower country, to
gradually return to its level, prior to the productivity shock.

7.4 Schumpeterian Growth

We present in this section a stylized discrete time model under uncertainty where
endogenous growth is driven by attempts to increase the quality of goods by inno-
vation, in order to obtain a flow of monopoly profits (see [2,37,83] or [6, Chap. 7]).
In this model, innovation creates a new intermediate commodity, which is more
productive than the previously available, making them obsolete.16

15 It is also straightforward to adapt the program to compute impulse responses to a shock in the
follower country. The reader will see that the leader country does not react to such a shock, and
that responses in the follower country are as expected.
16 Our presentation follows Howitt and Aghion [42], in discrete time and in a stochastic setup.
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7.4.1 The Economy

7.4.1.1 The Final Good Sector

The consumption commodity is produced in a competitive market. Work is repre-
sented by a continuous mass of L workers, who offer their labor supply inelastically.
The intermediate commodities are produced by M industries, xi,t being the supply
of the i-ith intermediate commodity at time t. The production for the final good is

Ỹt = θ tL1−α
M

∑
i=1

Ãi,t xαi,t , (7.28)

where θ t denotes a productivity shock following a stochastic process

lnθ t = φ lnθ t−1 + ε t , ε t ∼
iid

N(0,σ2
ε),

and Ãi,t , i = 1, . . . ,M is the productivity coefficient for each industry.
Each firm maximizes profits period by period taking wages wt and prices of each

intermediate good, Pi,t as given

max{
L,{xi,t}M

i=1

}θ tL1−α
M

∑
i=1

Ãi,t xαi,t −wtL−
M

∑
i=1

Pi,t xi,t ,

with optimality conditions

Pi,t = αθ tL1−α Ãi,t xα−1
i,t , i = 1,2, . . . ,M, (7.29)

wt = (1−α)θ tL−α
M

∑
i=1

Ãi,t xαi,t . (7.30)

7.4.1.2 Sector of Intermediate Goods

Private agents in the economy have an incentive to innovate with the hope of obtain-
ing monopoly profits from producing on of the intermediate goods with a technology
which is 1 + γ times (γ > 0) as productive as the previous one. For simplicity, we
assume that the researcher who is successful in innovating in the sector of the i-th in-
termediate good at time t, will enjoy monopoly rights on the production of that good
just over that period. No other producers can produce, at time t the i-th intermediate
good with the improved technology, either because it can be kept secret, or because
of the existence of a patent. After that, any agent will have access to the improved
technology under a competitive market structure, until another researcher may be
successful in obtaining a further technological improvement. When that happens,
this new researcher will be able to enjoy monopoly profits for the period in which
the new technology has been found.
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In this section we compute the equilibrium profit of a successful innovator who
becomes a monopolist in the i-th intermediate sector for one period. The innova-
tor’s monopoly profit π is determined as follows: The only input in the production
of each intermediate good is physical capital, at the rate of Ãi,t units of physical
capital for each unit of the i-th intermediate good at time t. The evolution of the
productivity coefficient, Ãi,t , is determined in the research sector. Capital is rented
in a perfectly competitive market at a rate ζ t . Hence, the unit cost of producing the
ith intermediate good is ζ t Ãi,t , and the price of that good is given by (7.29).

The monopoly rent for ith intermediate good is therefore

π̃ i,t = max
{xi,t}M

i=1

[
Pi,t(xi,t)xi,t −ζ t Ãi,t xi,t

]
,

subject to (7.29) , where we have made explicit the dependence of the monopoly
price from the quantity being produced.

The optimality condition is

xi,t =
(
α2θ t

ζ t

) 1
1−α

L. (7.31)

Since the right-hand side of (7.31) does not depend on i, we have: xi,t = xt ,
∀i = 1,2, . . . ,M.

Substituting (7.31) into (7.29) we get

Pi,t =
1
α

Ãi,tζ t , (7.32)

so that the price of each intermediate good depends on the productivity on its
own sector, but it does not depend on the productivity shock on the final commodity
sector.

The monopolist profit is obtained by taking (7.32) and (7.31) to the profit func-
tion, to obtain

π̃ i,t = (1−α)αθ tL1−α Ãi,t xαi,t = (1−α)αθ tL1−α Ãi,t xαt . (7.33)

Aggregate demand for physical capital is

M

∑
i=1

Ãi,t xi,t = xt

M

∑
i=1

Ãi,t = xtMÃt ,

where Ãt = 1
M ∑M

i=1 Ãi,t is the average technology level among industries.
In equilibrium, we have equality between aggregate demand and supply of

capital:
xtMÃt = K̃t . (7.34)
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7.4.1.3 Research Sector

The innovation effort at time t in industry i may have as a result an improvement
in the corresponding intermediate good, whose productivity becomes, if research is
successful:

Ãi,t = (1+ γ)Ãi,t−1,

for some γ > 0, which we assume to be constant over time and across industries.
Otherwise, productivity remains invariant: Ãi,t = Ãi,t−1. When research is successful
in some t period, the innovator is able to become a monopolist in the production of
the i-th intermediate good for that t period.

We assume that the probability of time t research to be successful is given by

λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b

∈ (0,1), 0 < b < 1.

This probability depends positively on the investment effort, given by the number
of units invested in research, Ñi,t . It also depends inversely on the level of produc-
tivity: improving productivity is harder the higher the level of productivity, making
less likely that some research becomes successful. The b parameter indicates that an
increase in Ñi,t

(1+γ)Ãi,t−1
raises the probability of success in research less than propor-

tionally. Finally, λ is an indicator of productivity in the R&D sector that guarantees
the probability of success to be between 0 and 1.

Therefore, the level of productivity Ãi,t follows a Bernoulli distribution

Ãi,t = (1+ γ)Ãi,t−1, with probability pi,t|t−1 = λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b

= Ãi,t−1, with probability 1− pi,t|t−1 = 1−λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b

.

The intermediate producer chooses her R&D level of investment Ñi,t to maximize
the expected revenue from innovation minus the cost of R&D. The expected revenue

is the probability of an innovation λ
(

Ñi,t
(1+γ)Ãi,t−1

)b
times the profit π i,t , while the cost

is just Ñi,t . Therefore, the entrepreneur solves

max
Ñi,t

{

λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b

π i,t − Ñi,t

}

,

where π i,t is given by (7.33).
The first order condition for this maximization yields the research-arbitrage

equation
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Ñi,t

(1+ γ)Ãi,t−1
=

[
bλ (1−α)αθ tL1−αxαt

]1/(1−b)
, (7.35)

where xt is given by (7.31).
Since the right-hand side of (7.35) does not depend on i, we have: Ñi,t

(1+γ)Ãi,t−1
=

nt ,∀i = 1,2, . . . ,M, and we will refer to nt as the productivity-adjusted effort in
R&D.

We are now in condition to determine the behavior of average productivity across
the intermediate goods sectors. Assuming a large number of intermediate goods, we
can use the strong law of large numbers to approximately substitute the sample
average by the mathematical expectation

Ãt =
1
M

M

∑
i=1

Ãi,t �
strong law

of large numbers

1
M

M

∑
i=1

E(Ãi,t)

=
1
M

M

∑
i=1

{

λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b

(1+ γ)Ãi,t−1

+

[

1−λ
(

Ñi,t

(1+ γ)Ãi,t−1

)b
]

Ãi,t−1

}

=
1
M

M

∑
i=1

[
λnb

t (1+ γ) Ãi,t−1 +(1−λnb
t )Ãi,t−1

]

=
1
M

(
1+λγnb

t

) M

∑
i=1

Ãi,t−1 =
(

1+λγnb
t

)
Ãt−1

so that the rate of growth of aggregate productivity is

Ãt

Ãt−1
= 1+λγnb

t . (7.36)

Let us write xt in terms of capital per efficiency unit: if we denote kt the
K̃t/(MÃt−1) ratio17 then, using (7.36) in (7.34) we obtain

xt =
K̃t

MÃt
=

kt

1+λγnb
t
. (7.37)

We can now write monopolist profits in terms of capital per efficiency unit. From
(7.33) and (7.37), we have

π̃ i,t = (1−α)αθ tL1−α Ãi,t kαt
(

1+λγnb
t

)−α
.

Finally, from (7.29) and (7.32), together with (7.37) we obtain the equilibrium
cost of renting physical capital

ζ t = α2θ tL1−αkα−1
t

(
1+λγnb

t

)1−α
. (7.38)

17 Note that the natural definition involves the ratio of physical capital by the level of productivity,
both variables taken at the beginning of the period.
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7.4.1.4 Market for Physical Capital

The owner of capital obtains ζ t per unit. This amount must be enough to cover the
cost of capital, which includes the interest rate, rt , and the rate of depreciation, δ .
Therefore, the absence of arbitrage condition in this market is

rt +δ = α2θ tL1−αkα−1
t

(
1+λγnb

t

)1−α
. (7.39)

7.4.2 Computing Equilibrium Trajectories

The law of motion for aggregate capital is

K̃t+1 = Ỹt −C̃t − Ñt +(1−δ )K̃t , (7.40)

where Ñt = ∑M
i=1 Ñi,t . If we divide through (7.40) by MÃt−1, we get

K̃t+1

MÃt

MÃt

MÃt−1
=

Ỹt

MÃt−1
− C̃t

MÃt−1
− Ñt

MÃt−1
+(1−δ )

K̃t

MÃt−1
. (7.41)

Taking into account (7.36), (7.37) we have

Ỹt

MÃt−1
=
θ tL1−αxαt ÃtM

MÃt−1
= θ tL1−αkαt

(
1+λγnb

t

)1−α
,

Ñt

MÃt−1
=

∑M
i=1 Ñi,t

∑M
i=1 Ãi,t−1

=
∑M

i=1 nt(1+ γ)Ãi,t−1

∑M
i=1 Ãi,t−1

(7.42)

= (1+ γ)nt ,

that allow us to write (7.41) as

kt+1

(
1+λγnb

t

)
= θ tL1−αkαt

(
1+λγnb

t

)1−α
− ct − (1+ γ)nt +(1−δ )kt .

From the standard optimization problem for the typical consumer, under a CRRA
utility function with parameter σ , we get the familiar Euler condition

C̃−σ
t = βEt

[
C̃−σ

t+1(1+ rt+1)
]
. (7.43)

If we write (7.43) in efficiency units and use the equilibrium condition in the
market for physical capital (7.39) we get

c−σt

(
1+λγnb

t

)σ
= βEt

[
c−σt+1

(
α2θ t+1L1−αkα−1

t+1

(
1+λγnb

t+1

)1−α
+1−δ

)]
.

(7.44)
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Hence, we have the following dynamic, stochastic system summarizing the
model:

nt =
[

bλ (1−α)αθ tL1−α
(

kt

1+λγnb
t

)α]1/(1−b)

, (7.45)

kt+1

(
1+λγnb

t

)
= θ tL1−αkαt

(
1+λγnb

t

)1−α
− ct

−(1+ γ)nt +(1−δ )kt , (7.46)

c−σt

(
1+λγnb

t

)σ
= βEt

[
c−σt+1

(
α2θ t+1L1−αkα−1

t+1

×
(

1+λγnb
t+1

)1−α
+1−δ

)]
, (7.47)

together with
lnθ t = φ lnθ t−1 + ε t , (7.48)

given parameter values {α ,L,λ ,γ,δ ,σ ,b} , and initial conditions {θ 0, K̃0, Ã−1}.
Let us know see how can we solve this system following the Blanchard–Kahn

approach: First, steady state values k, c, n, can be obtained from evaluating (7.45)–
(7.47) at steady-state18

n =
[

bλ (1−α)αL1−α
(

k
1+λγnb

)α]1/(1−b)

,

k
(

1+λγnb
)

= L1−αkα
(

1+λγnb
)1−α

− c− (1+ γ)n+(1−δ )k,
(

1+λγnb
t

)σ
= β

(
α2L1−αkα−1

(
1+λγnb

)1−α
+1−δ

)
.

Let us now denote system (7.45)–(7.47) by

Et [Fi (zt+1)] = 0, i = 1,2,3,

where19 zt+1 = [lnkt+1, lnct+1, lnnt+1, lnθ t+1, lnkt , lnct , lnnt , lnθ t ]′ and

Et [F1 (zt+1)] = nt −
[

bλ (1−α)αθ tL1−α
(

kt

1+λγnb
t

)α]1/(1−b)

= 0,

Et [F2 (zt+1)] = θ tL1−αkαt
(

1+λγnb
t

)1−α
− ct − (1+ γ)nt

+(1−δ )kt − kt+1

(
1+λγnb

t

)
= 0,

18 Using the steady state version of (7.42) , we see that any value of λ such that: λ (Mn)b < 1 in
the definition of the probability of research success is admissible.
19 Remember that any variable x can be represented by elnx.
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Et [F2 (zt+1)] = βEt

[
c−σt+1

(
α2θ t+1L1−αkα−1

t+1

(
1+λγnb

t+1

)1−α
+1−δ

)]

−c−σt

(
1+λγnb

t

)σ
= 0.

Let Ji, j=
∂Fi
∂ z j

∣
∣
∣
z
, i = 1,2,3; j = 1,2, . . . ,8. Sea k̂t ≡ ln(kt/k), ĉt ≡ ln(ct/c), n̂t ≡

ln(nt/n), θ̂ t ≡ ln(θ t), where k,c,n denote steady-state values of kt ,ct ,nt .
The log-linear approximation to (7.45) will allow us to obtain the control variable

n̂t as a function of the states k̂t and θ̂ t

n̂t = −J1,5

J1,7
k̂t −

J1,8

J1,7
θ̂ t . (7.49)

From (7.49), we get

Et n̂t+1 = −J1,5

J1,7
k̂t+1 −

J1,8

J1,7
φθ̂ t . (7.50)

since k̂t+1 is determined at time t, so that Et k̂t+1 = k̂t+1.
Taking into account (7.49) and (7.50), the system that arises by log-linearizing

(7.46) and (7.47) is

Γ0

[
k̂t+1

Et ĉt+1

]
= Γ1

[
k̂t
ĉt

]
+Γ2θ̂ t , (7.51)

where

Γ0 =

[
J2,1 0

J3,1 + J3,3
J1.5
J1,7

J3,2

]

,

Γ1 = −
[

J2,5 + J2,7
J1.5
J1,7

J2,6

J3,7
J1.5
J1,7

J3,6

]

,

Γ2 = −
[

J2,8 + J2,7
J1,8
J1,7

J3,4φ +(J3,3φ + J3,7)
J1,8
J1,7

]

.

that leads to the system
[

k̂t+1
Et ĉt+1

]
= Γ3

[
k̂t
ĉt

]
+Γ4θ̂ t , (7.52)

with Γ3 = Γ−1
0 Γ1, Γ4 = Γ−1

0 Γ2.
We expect matrix Γ3 to have one stable and one unstable eigenvalue, so that a

well-determined equilibrium may exist.20 Without loss of generality, let us assume:
|λ 1| < 1, |λ 2| > 1. We would then have the spectral decomposition

20 When, as in this model, an analytical proof does not exist, this supposed eigenvalue structure
needs to be explored numerically, and may hold only in some region of the parameter space.
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Γ3 = ϒΛϒ−1, Λ=
(
λ 1 0
0 λ 2

)
, ϒ−1 =

(
ϒ̃11 ϒ̃12
ϒ̃21 ϒ̃22

)
.

Premultiplying (7.52) by ϒ−1 and denoting by Q the product: Q = ϒ−1Γ4 =(
Q1
Q2

)
, we have

ϒ̃11k̂t+1 + ϒ̃12Et ĉt+1 = λ 1
(
ϒ̃11k̂t + ϒ̃12ĉt

)
+Q1θ̂ t , (7.53)

ϒ̃21k̂t+1 + ϒ̃22Et ĉt+1 = λ 2
(
ϒ̃21k̂t + ϒ̃22ĉt

)
+Q2θ̂ t . (7.54)

Defining now auxiliary variables: f 0
2,t = ϒ̃21k̂t + ϒ̃22ĉt , we have Et f 0

2,t+1 =
ϒ̃21k̂t+1 + ϒ̃22Et ĉt+1, and the second equation becomes a first order autoregression
with an unstable coefficient: Et f 0

2,t+1 = λ 2 f 0
2,t + Q2θ̂ t , which can be solved for-

wards, to obtain

f 0
2,t =

Q2

φ −λ 2
θ̂ t ,

and finally

ĉt =
1
ϒ̃22

(
Q2

φ −λ 2
θ̂ t − ϒ̃21k̂t

)
, (7.55)

which is the stability or control equation.
Substituting (7.55) into (7.53) we get

k̂t+1 = λ 1k̂t +
1

ϒ̃11 − ϒ̃12ϒ̃21
ϒ̃22

[
Q1 +

Q2ϒ̃12/ϒ̃22

ρ−λ 2
(1−φ)

]
θ̂ t , (7.56)

which is the state equation.
Hence, given initial conditions

{
K̃0,θ 0, Ã−1

}
, we can compute k0 = K̃0/(MÃ−1)

and k̂0 = ln(k0/k). Given a time series realization for the structural innovation
{ε t}T

t=1, we use the law of motion for θ t to compute the {θ t}T
t=1 time series. We can

then compute the time series for
{

k̂t
}T

t=1 using the state equation (7.56). Given time

series
{

k̂t , θ̂ t
}T

t=0 , and using (7.49) and (7.55) we can compute {n̂t , ĉt}T
t=0 . Obtain-

ing now time series for {kt ,θ t ,nt ,ct}T
t=0 is straightforward. We can also compute

{yt}T
t=0 from yt = θ tL1−αkαt

(
1+λγnb

t
)1−α

.

Given {n̂t}T
t=0 and Ã−1, we can compute

{
Ãt
}T

t=0 from (7.36). Given
{

Ãt
}T

t=0 ,

we can compute
{

K̃t+1,C̃t , Ñt ,Ỹt
}T

t=0 from the {kt+1,ct ,nt ,yt}T
t=0 time series.

Programming this recursive solution either as a Matlab program or in an Excel
book is left as an exercise.

7.4.3 Deterministic Steady-State

In this section, we characterize the deterministic steady-state for this economy, and
show that it takes the form of a balanced growth path. The deterministic steady state
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is a trajectory along which: (1) θ t = 1, ∀t, (2) variables Ãt ,Ỹt ,C̃t , K̃t , Ñt grow at a
constant rate (γ Ã,γỸ , γC̃, γ K̃ , γ Ñ), and (3) xt = x remains constant ∀t.

If we substitute the equilibrium value of xi,t (xi,t = xt = K̃t/(MÃt)) in the aggre-
gate production function at steady-state, we get the usual specification with labour-
augmented technological growth already discussed in Chap. 3

Ỹt = M1−α (
ÃtL

)1−α K̃α
t .

From (7.43) we obtain in steady-state21

(1+ γC̃)σ = β (1+ rt+1),

showing that interest rate will also be constant in steady-state: rt = r, ∀t.
In steady-state, the rate of growth of productivity will be

γ Ã = λγnb
t .

Since γ Ã, λ and γ are constant in steady-state, then nt will also be constant: nt = n,
∀t, and Ñt must grow at the same rate than Ãt . Since the rate of interest, r, and the
research effort adjusted for the level of technology, n, are constant in steady-state,
we get from (7.39) that kt will also be constant in steady-state. This implies that the
stock of physical capital K̃t also grows at the same rate than productivity.

Since in steady-state: γ Ã = γ K̃ , from the production function, written in steady-
state, we get in steady-state

1+ γỸ = (1+ γ Ã)1−α(1+ γ K̃)α = 1+ γ Ã = 1+λγnb,

so that output of the final good also grows at the same rate than productivity. From
the global constraint of resources we get the same result for aggregate consumption.
Hence, the steady-state takes the form of a balanced growth path. The steady-state
level of the interest rate is

r =

(
1+λγnb

)σ

β
.

Outside steady-state, the different variables in the economy will grow at their
own rates, converging all of them to the same steady-state rate, that we have char-
acterized above.

7.5 Endogenous Growth with Accumulation of Human Capital

We now present a model economy with two sectors, for human capital and the con-
sumption commodity, that presents a nontrivial transition. It is a generalization of
Uzawa [95] and Lucas [60], including leisure as an argument in the utility function,

21 Since we assume a constant number of consumers, we can equivalently use per-capita or aggre-
gate consumption.
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and physical capital as an input in the production of new human capital. At a differ-
ence of Lucas [60], we do not consider aggregate human capital22 as a positive ex-
ternality in the production of the single final good in the economy. That would give
raise to a nontrivial discussion on optimality which does not apply to our model, in
which the competitive equilibrium allocation is Pareto optimum.

7.5.1 The Economy

7.5.1.1 The Final Good Sector

The first sector produces the final good, which is perishable and can either be con-
sumed, or accumulated in the form of physical capital. The second sector produces
human capital, for which we do not consider an explicit market. When we introduce
distortionary taxes in the model as we did in the Cass–Koopmans economy, we will
only tax the income obtained by private agents from devoting part of their time to
the production of the final consumption good as well as for renting some of the
physical capital they own in that same production sector. Since the human capital
market lacks an explicit market, income obtained from devoting time and physical
capital to the production of human capital will not be subject to taxes.

The economy is populated by a set of households who live for infinite periods.
The number of households in each generation is Ñt , growing at a rate n. Each house-
hold has a unit of time available. We denote by ut the fraction of time that is devoted
to the production of the final consumption good, while lt denotes the fraction de-
voted to leisure, the remaining time, 1−ut − lt , being devoted to education, i.e., to
human capital accumulation.

There is also a set of firms that behave competitively. The technology used in the
production of the single physical commodity in the economy, that we will denote by
Yt , is represented by a production function F(K̃1t , H̃1t), where K̃1t denotes the stock
of physical capital used in this sector, and H̃1t denotes the hours of qualified labor
used in production. We will assume that the production technology is of Cobb–
Douglas type:

Yt = F(K̃1t , H̃1t) = θ tA(vt K̃t)α1(utH̃t)α2 , (7.57)

where vt is the percentage of total physical capital, K̃t , devoted to the production of
the final good, ut is the fraction of time that the consumer/worker devotes to working
in this sector, H̃t is the aggregate stock of human capital, A is the level of technology,
and θ t is a random perturbation in technology that obeys the stochastic process:

lnθ t = φ 1 lnθ t−1 + ε1t , ε1t ∼
iid

N(0,σ2
1), |φ 1| < 1. (7.58)

22 That is, the socially available stock of human capital.
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7.5.1.2 The Educational Sector

The educational sector produces new human capital using a technology represented
by the production function23 G(k̃2t , h̃2t), where k̃2t is the stock of effective physi-
cal capital used in this sector, and h̃2t is effective labor used in this sector, all in
per capita terms. We will assume that the only way to obtain qualified labor is
through education.24 Furthermore, we assume that human capital depreciates at a
constant rate δ h ∈ (0,1). Hence, unless new human capital is produced, the level
of education deteriorates. The level of education each period is determined by the
accumulation law

h̃t+1 = G(k̃2t , h̃2t)+(1−δ h)h̃t = η tB
[
(1− vt)k̃t

]ς1 (7.59)

×
[
(1−ut − lt)h̃t

]ς2 +(1−δ h)h̃t

where B is the level of technology in this sector, h̃t is the stock of human capital
per worker, 1−vt is the fraction of physical capital used in the production of human
capital, 1− ut − lt is the fraction of time devoted to the educational sector. η t is a
random technology shock in this sector, that evolves over time according to

lnη t = φ 2 lnη t−1 + ε2t , ε2t ∼
iid

N(0,σ2
2), |φ 2| < 1. (7.60)

We denote economy-wide aggregates with upper case letters, while we denote
by lower case letters the same variables, divided by population. So, Xt = x̃tLt , X =
C̃, K̃, H̃,Ỹ . Besides, we maintain the convention from previous sections to denote
with tildes, c̃t , k̃t , h̃t , ỹt , per-capita variables that grow in steady-state while denoting
without tildes, ct , kt ,ht ,yt , the variables obtained after taking out from the former
their growth trends. We will not use this convention with Lagrange multipliers.

Notice that in this model we could also define output in a broad sense, denoted
by Q̃t , by adding to final output the production of new human capital, evaluated in
units of the final good:

Q̃t = Ỹt +(µ̃ t/λ̃ t)G
(
(1− vt)k̃t ,(1−ut − lt)h̃t

)
Lt ,

where µ̃ t/λ̃ t is the shadow price of human capital in terms of the final good. The size
of the public sector might then be defined more appropriately as the ratio between
government expenditures and this broader output concept.

We describe in the next section the more general version of this model economy,
that includes leisure in the utility function, physical capital in the educational sec-
tor, taxes on consumption as well as on labor and capital income, in a stochastic
setup, and we show the necessary conditions for endogenous growth to arise. Af-
ter that, we describe how to obtain a numerical solution to a simpler version of the
model, that excludes taxes, leisure and physical capital as an input in the production

23 Without loss of generality, we will assume a production function in per capita terms.
24 We do not consider the experience in the job position as a way to obtain qualified work.
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of new human capital. We leave as an exercise the computation of the numerical
solution in a more complex setup, which is a straightforward extension of the solu-
tion procedure we present. That way, the reader will be able to address fiscal policy
issues similar to those we examined in the chapter devoted to the Cass–Koopmans
economy.

7.5.1.3 The Household Problem

Each individual in this economy derives utility from consuming c̃t (≡ C̃t
Lt

) units of
the produced commodity, as well as from leisure lt . Total time available is nor-
malized to one unit. Consumer preferences are represented by a continuous utility
function U(c̃t , lt), with continuous partial derivatives. Interpreting both arguments
in the utility function as an homogeneous composite good, we assume a constant
intertemporal elasticity of substitution 1/σ

U(c̃t , lt) =

(
c̃p

t , l1−p
t

)1−σ
−1

1−σ
, σ > 0, p ∈ (0,1).

The representative consumer maximizes the discounted expected value of current
and future utility

max
{c̃t ,ı̃t ,ut ,vt ,lt ,k̃t+1,h̃t+1}

E0

∞

∑
t=0
β t

(
c̃p

t , l1−p
t

)1−σ
−1

1−σ
, (7.61)

subject to a sequence of budget constraints,25 together with the laws of motion of
physical and human capital:

(1+ τc)c̃t + ı̃t = (1− τr)rtvt k̃t + τrδ kvt k̃t +(1− τw)wtut h̃t , (7.62)
t = 0,1,2, . . . ,

(1+n)k̃t+1 = ı̃t +(1−δ k)k̃t , t = 0,1,2, . . . , (7.63)
h̃t+1 = G

(
(1− vt)k̃t ,(1−ut − lt)h̃t

)
+(1−δ h)h̃t , (7.64)

t = 0,1,2, . . . , k̃0, h̃0, given,
c̃t , k̃t+1, h̃t+1 ≥ 0, ut ,vt , lt ∈ (0,1), ut + lt ∈ (0,1),

together with (7.58) and (7.60)

where ı̃t denotes investment in physical capital,rt is the return obtained from lend-
ing part of the physical capital for the production of the consumption good, wt de-
notes the payment for working on that sector, τc,τr, and τw denote the tax rates on

25 We assume that the consumer pays taxes on capital and labour rents obtained from the sector
producing the final consumption good.
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consumption, capital income and labor income. The presence of the τrδ kvt k̃t term
in the budget constraint is due to depreciation allowances.

The Lagrangian for this optimization problem is

L (c̃t ,ut ,vt , lt , k̃t+1, h̃t+1,λ t ,µ t)

= E0

⎡

⎢
⎣

∞

∑
t=0
β t

(
c̃p

t , l1−p
t

)1−σ
−1

1−σ
+β tλ t

(
−(1+ τc)c̃t − (1+n)k̃t+1

+ (1−δ k)k̃t +(1− τr)rtvt k̃t + τrδ kvt k̃t +(1− τw)wtut h̃t
)

+ β tµ t
(
−h̃t+1 +G

(
(1− vt)k̃t ,(1−ut − lt)h̃t

)
+(1−δ h)h̃t

)

⎤

⎥
⎦ ,

with first order conditions

pc̃p(1−σ)−1
t l(1−p)(1−σ)

t = (1+ τc)λ t , (7.65)

(1− p)c̃p(1−σ)
t l(1−p)(1−σ)−1

t = µ tη tBς2
(
(1− vt)k̃t

)ς1 (7.66)

×(1−ut − lt)ς2−1h̃ς2
t ,

(1− τw)wtλ t = µ tη tBς2
(
(1− vt)k̃t

)ς1
(
(1−ut − lt)h̃t

)ς2−1
, (7.67)

[(1− τr)rt + τrδ k]λ t = µ tη tBς1
(
(1− vt)k̃t

)ς−1 (7.68)

×
(
(1−ut − lt)h̃t

)ς
,

λ t(1+n) = βEt

[
λ t+1 ((1− τr)rt+1vt+1 + τrδ kvt+1 +1−δ k) (7.69)

+µ t+1(1− vt+1)η t+1Bς1
(
(1− vt+1)k̃t+1

)ς1−1

×
(
(1−ut+1 − lt+1)h̃t+1

)ς2
]
,

µ t = βEt

{
λ t+1(1− τw)wt+1ut+1 +µ t+1

[
η t+1Bς2

(
(1− vt+1)k̃t+1

)ς1 (7.70)

×(1−ut+1 − lt+1)ς2−1h̃ς2
t+1 +1−δ h

]}
,

lim
j→∞

Et
(
β tλ t+ j k̃t+ j+1

)
= 0, (7.71)

lim
j→∞

Et

(
β tµ t+ jh̃t+ j+1

)
= 0. (7.72)
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7.5.1.4 The Firm’s Problem

The representative firm working in the production of the final good maximizes prof-
its each period

max
{K̃1t ,H̃1t}

F(K̃1t , H̃1t)−wtH̃1t − rt K̃1t

subject to
F(K̃1t , H̃1t) = θ tAK̃α1

1t H̃α2
1t ,

where K̃1t = vt K̃t , H̃1t = utH̃t . First order conditions are

wt = α2θ tA(vt K̃t)α1(utH̃t)α2−1, (7.73)
rt = α1θ tA(vt K̃t)α1−1(utH̃t)α2 . (7.74)

7.5.1.5 The Government’s Problem

The government raises taxes on consumption, capital rents and labor rents obtained
by households in the sector producing the final good, and uses the proceeds to fi-
nance an exogenously given process of government expenditures, Gt . These are
‘thrown to the sea’, i.e., they do not affect the level of utility or the technologies
producing either the final good or human capital. Tax rates are chosen so as to bal-
ance the budget every period

g̃t = τwwtut h̃t + τrrtvt k̃t − τrδ kvt k̃t + τcc̃t . (7.75)

We denote the ratio of government expenditures to output, an indicator of the
size of the public sector, as26

ξ t = g̃t/ỹt , ξ t ∈ (0,1). (7.76)

7.5.2 The Competitive Equilibrium

Given tax rates: {τc,τr,τw}, the competitive equilibrium is a vector sequence{
c̃t ,ut ,vt , lt , k̃t+1, h̃t+1,rt ,wt , g̃t

}∞
t=0 , satisfying the profit maximizing conditions

(7.74), (7.73), the optimization conditions for the consumer’s problem (7.65)–
(7.72), the household’s budget constraints (7.62)–(7.63), the law of accumulation
of human capital (7.64), the government budget constraint (7.75)–(7.76) and the
market clearing conditions

26 Alternatively, we could consider a random ratio of government expenditures to output ξ t = ξ +
ε3t , ε3t ∼ N(0,σ2

3), with σ2
3 small enough so that ξ t would fluctuate inside the (0,1) interval with

probability one. That would introduce an additional source of randomness that could be interpreted
as a possible error in controlling the level of government expenditures. We would then need at least
a time varying tax rate so that the government budget constraint balances every period.
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C̃t + K̃t+1 − (1−δ k)K̃t +Gt = θ tAK̃α1
1t H̃α2

1t (7.77)

that guarantees that the global constraint of resources in the economy also holds.
Thus, the conditions characterizing the competitive equilibrium can be summa-

rized as follows. We first eliminate prices (rt ,wt ,λ t ,µ t) from (7.67), (7.68), (7.74)
and (7.73) to obtain

(1− τw)α2θ tA
(
vt k̃t

)α1
(
ut h̃t

)α2−1 Lα1+α2−1
t

(1− τr)α1θ tA
(
vt k̃t

)α1−1 (ut h̃t
)α2 Lα1+α2−1

t + τrδ k

=
ς2
ς1

(1− vt)k̃t

(1−ut − lt)h̃t
, (7.78)

showing that the marginal rate of transformation between labor and capital in the
final good sector, net of taxes, must be equal in equilibrium, to that in the educational
sector.

From (7.65), (7.66) and (7.73) we get
(

p
1−p

)
lt

c̃t(1+ τc)
=

1

(1− τw)α2θ tA
(
vt k̃t

)α1
(
ut h̃t

)α2−1 h̃tL
α1+α2−1
t

, (7.79)

showing that the marginal rate of substitution between consumption and leisure must
be equal to the marginal product of labor, all net of taxes.

From (7.65), (7.69), (7.68) and (7.74), we get

c̃p(1−σ)−1
t l(1−p)(1−σ)

t = βEt

{
c̃p(1−σ)−1

t+1 l(1−p)(1−σ)
t+1 (7.80)

×
[
(1− τr)α1θ t+1A

(
vt+1k̃t+1

)α1−1

×
(
ut+1h̃t+1

)α2 Lα1+α2−1
t+1 +1− (1− τr)δ k

]}
,

showing that the marginal utility of giving up one unit of consumption today must
be equal to the expected marginal utility of future consumption multiplied by the
return obtained from investing that unit of commodity for one period which is, in
turn, equal to the marginal product of physical capital, net of depreciation and taxes.

From (7.65), (7.70), (7.67) and (7.73), we obtain

c̃p(1−σ)−1
t l(1−p)(1−σ)

t
θ t

(
vt k̃t

)α1
(
ut h̃t

)α2−1 Lα1+α2−1
t

η t
(
(1− vt)k̃t

)ς1 (1−ut − lt)ς2−1h̃ς2−1
t

= βEt

{
c̃p(1−σ)−1

t+1 l(1−p)(1−σ)
t+1

×
θ t+1

(
vt+1k̃t+1

)α1
(
ut+1h̃t+1

)α2−1 Lα1+α2−1
t+1

η t+1
(
(1− vt+1)k̃t+1

)ς1 (1−ut+1 − lt+1)ς2−1h̃ς2−1
t+1

×
[
Bυ2η t+1

(
(1− vt+1)k̃t+1

)ς1 (1−ut+1 − lt+1)ς2−1

× h̃ς2−1
t+1 (1− lt+1)+1−δ h

]}
, (7.81)
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which is an Euler condition similar to the previous one, but this time associated to
the educational sector.

From (7.77) and (7.76)

c̃t +(1+n)k̃t+1 − (1−δ k)k̃t = (1−ξ )Aθ t(vt k̃t)α1(ut h̃t)α2 Lα1+α2−1
t , (7.82)

which is the global constraint of resources in the economy.
Finally, from (7.64) we get

h̃t+1 = Bη t
(
(1− vt)k̃t

)ς1 (1−ut − lt)ς2−1h̃ς2−1
t +(1−δ h)h̃t , (7.83)

the law of accumulation for human capital.

7.5.3 Analyzing the Deterministic Steady-State

In consistency with previous models, we define a deterministic steady-state in this
economy as that situation in which the random shocks take their expected values at
all time periods: θ t = η t = 1,∀t, and variables ut , vt , lt remain constant at u, v, l,
while c̃t , k̃t , h̃t , ỹt , all grow at constant rates γ c̃, γ k̃, γ h̃, γy, respectively, and the ratio
Ỹt/K̃t stays constant,27 which implies that γ K̃ = γỸ .

Proposition 1. The following are necessary conditions for endogenous growth to
arise in the model economy:

ς1 ln(1+ γ k̃)+(ς2 −1) ln(1+ γ h̃) = 0, (7.84)

(α1 −1) ln(1+ γ k̃)+α2 ln(1+ γ h̃) = (1−α1 −α2) ln(1+n). (7.85)

Notice that if we solve this system for ln(1+ γ k̃) and ln(1+ γ h̃), we get

ln(1+ γ k̃) =
(1− ς2)(1−α1 −α2)
ς1α2 − (1−α1)(1− ς2)

ln(1+n),

ln(1+ γ h̃) =
ς1(1−α1 −α2)

ς1α2 − (1−α1)(1− ς2)
ln(1+n).

If n 	= 0, then the rates of growth for physical and human capital are positive
whenever (1−ς2)(1−α1−α2)

ς1α2−(1−α1)(1−ς2) > 0 and ς1(1−α1−α2)
ς1α2−(1−α1)(1−ς2) > 0, so that (1) if there are

increasing returns in the final good sector (1 < α1 +α2) then positive growth arises
if 1−α1

α2
>

ς1
1−ς2

; (2) if there are decreasing returns to scale in the final good sector

(1 > α1 +α2) then 1−α1
α2

<
ς1

1−ς2
is needed for positive growth, while (3) in the

presence of constant returns to scale (1 = α1 +α2), then there is positive growth

27 This latter condition is needed only when we do not assume constant returns to scale in either
sector. In fact, that is the only case we will consider when solving the model. Then, the condition
does not need to be imposed, since it will hold in equilibrium.
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in the cumulative inputs if 1−α1
α2

= ς1
1−ς2

, that is, if ς1 + ς2 = 1. If n = 0, then the
rates of growth of physical and human capital can be strictly positive only if ς1α2 >
(1−α1)(1− ς2).

We will consider the latter case, in which there are constant returns to scale in
both sectors, as a reference. Then the steady state will take the form of a balanced
growth path, with per capita variables growing at constant, non-zero rates, except
for hours worked, which will remain constant. Furthermore, it is easy to show that
c̃t , k̃t , h̃t , ỹt all grow at the same rate in steady-state.

Now, we will show that the conditions given in the previous proposition in fact
guarantee non-zero growth in steady-state. Evaluating (7.83) at steady-state, we
have

(1+ γ h̃)− (1−δ h)
B(1− v)ς1(1−u− l)ς2

= k̃ς1
t h̃ς2−1

t . (7.86)

Since the left-hand side in this expression is constant, then dividing by the same
expression lagged one period and taking logs, we get (7.84).

We now evaluate (7.82) at steady-state, obtaining

c̃t

k̃t
+(1+n)(1+ γ k̃)− (1−δ k) = (1−ξ )Avα1uα2 k̃α1−1

t h̃α2
t Lα1+α2−1

t , (7.87)

while from the global constraint of resources we get: C̃t/K̃t + K̃t+1/K̃t − (1−δ k) =
(1−ξ )Ỹt/K̃t , which can also be written as: c̃t

k̃t
=−(1+n)(1+ γ k̃)+(1−δ k)+(1−

ξ ) Ỹt
K̃t

. Since Ỹt/K̃t must remain constant in steady-state then, all terms on the right-

hand side are constant, and hence, c̃t
k̃t

must also be constant. But then, moving all
constant terms to the right-hand side, dividing by the same expression lagged one
period, and taking logs, we obtain (7.85).

We now show that if these two conditions hold, then the rest of the equations
characterizing the competitive equilibrium will also hold in steady-state. It is im-
portant to notice that if the two conditions in the proposition hold, then the products
k̃ς1

t h̃ς2−1
t and k̃α1−1

t h̃α2
t Lα1+α2−1

t remain constant in steady-state, i.e., along the bal-
anced growth path.

Evaluating (7.78) at steady-state, we get

(1− τw)α2Avα1uα2−1
[
k̃α1−1

t h̃α2
t Lα1+α2−1

t

]

(1− τr)α1Avα1−1uα2

[
k̃α1−1

t h̃α2
t Lα1+α2−1

t

]
+ τrδ k

=
ς2
ς1

(1− v)
(1−u− l)

.

Since the expression in square brackets are constant and the other terms are ei-
ther parameters or variables that remain constant in steady-state, this expression is
compatible with the existence of a balanced growth path.

Evaluating (7.79) at steady-state, we have

p
1− p

l
(c̃t/k̃t)(1+ τc)

=
1

(1− τw)α2Avα1 uα2−1
[
k̃α1−1

t h̃α2
t Lα1+α2−1

t

] .
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As before, the terms in brackets remain constant in steady-state, and the remain-
ing terms are either parameters or variables that remain constant in steady-state, so
this expression is consistent with the existence of a balanced growth path.

Evaluating (7.80) at steady-state, we have

(1+ γ c̃)
1−p(1−σ) = β

[
(1− τr)α1Avα1−1uα2

×
(

k̃α1−1
t h̃α2

t Lα1+α2−1
t

)
+1− (1− τr)δ k

]
,

where we can repeat the same analysis, the expression being then consistent with
the existence of a balanced growth path.

Finally, evaluating (7.81) at steady-state, we get

(1+ γ c̃)
1−p(1−σ)(1+ γ h̃)

ς2−α2(1+ γ k̃)
ς1−α1

= β
[
Bυ2(1− v)ς1(1−u− l)ς2−1(1− l)

(
k̃ς1

t h̃ς2−1
t

)
+1−δ h

]
,

where we can repeat the previous analysis. The proposition is thereby shown.
The steady-state of this economy can only be computed numerically. Let us as-

sume that we have constant returns to scale in both sectors, so that the two con-
ditions for existence of a balanced growth path in the previous proposition hold.
Hence, α1 = α , α2 = 1−α, ς1 = ς , ς2 = 1− ς . In this case, it is very simple to
show that c̃t , k̃t , h̃t , ỹt all grow at the same rate, that we will denote by γ . Let us now
define auxiliary variables:

zt =
k̃t

h̃t
; xt =

c̃t

k̃t
; 1+ γ h̃ =

h̃t+1

h̃t
,

which will remain constant in steady-state: zt = z; xt = x; γ h̃ = γ .
The equations characterizing steady-state come from (7.78)–(7.83), together with

(7.75), under the constant returns to scale assumption:

(1− τw)(1−α)Avαu−αzα

(1− τr)αAvα−1u1−αzα−1 + τrδ k
=

1− ς
ς

(1− v)z
1−u− l

,

p
1− p

l
x(1+ τc)

=
1

(1− τw)(1−α)Avαu−αzα−1 ,

(1+ γ)1−p(1−σ) = β
[
(1− τr)αAvα−1u1−αzα−1 +1− (1− τr)δ k

]
,

(1+ γ)1−p(1−σ) = β
[
B(1− ς)(1− v)ς (1−u− l)−ς (1− l)zς +1−δ h

]
,

[(1− τr)α+(1− τw)(1−α)]Avαu1−αzα−1 = (1+ τc)x+(1+n)(1+ γ)
−(1−δ k)− τrδ kv,

1+ γ = B(1− v)ς (1−u− l)1−ς zς +1−δ h.
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This system of equations can be solved for: z,c,u,v, l,γ . The time path of gov-
ernment expenditures along the steady-state is then obtained through the value of
the ξ -parameter:

ξ = [(1− τr)α+(1− τw)(1−α)]− τrδ kv
(

k̃t

ỹt

)

ss
+ τc

(
c̃t

ỹt

)

ss
,

where
(

k̃t
ỹt

)

ss
= 1

Avαu1−α zα−1 ,
(

c̃t
ỹt

)

ss
= x

Avαu1−α zα−1 .

7.5.4 Numerical Exercise: Steady-State Effects of Fiscal Policy

Matlab files lucas ss c.m, lucas ss r.m and lucas ss w.m compute the effects that
different tax rates have on the steady-state values of the growth rate, the size of
the public sector and the remaining variables in the economy. In all cases, parame-
ter values are: A = 1.0, B = 0.03942, β = 0.99, σ = 1.5, n = 0.0035, δ k = 0.025,
δ h = 0.008, α = 0.36, ς = 0.15, p = 1/3. These are standard in models calibrated in
the literature. The time unit is supposed to represent one quarter, so that the 0.99 dis-
count rate would be consistent with an approximate 4% real rate of interest. Annual
depreciation of physical capital would then be around 10%, while that of human
capital is lower, around 3.2%. Leisure receives a weight of 1/3 in the utility func-
tion, with consumption receiving a 2/3-weight. The elasticity of physical capital in
the production of the final good is as we have used in previous chapters, while it is
widely agreed that the role of physical capital in the accumulation of human capital
is lower. Finally, the degree of risk aversion is taken to be 1.5.

Graphs displayed by these programs seem to contain a rugged response of some
variables to tax changes. That is the case of effects of changes in consumption taxes
on steady state values for u,v, l, for instance. In fact, the vertical axis shows that such
effects are just a visual artifact, and what we see are just minor approximation errors
from solving the nonlinear system of equations that characterizes steady-state. The
right interpretation is that steady-state values of those variables are unaffected by
changes in tax rates.

It is important that the values of the structural parameters are chosen so that the
steady state rate of growth, as well as the values of variables u, l,v can fall inside the
(0,1) interval. Furthermore, transversality conditions must also hold in steady-state.
In particular

lim
t→∞

β tλ t k̃t+1 = 0

⇒ lim
t→∞

(
β (1+ γ)p(1−σ)

)t
c̃p(1−σ)−1

0 l(1−p)(1−σ)
0 (1+ γ)k̃0 = 0

⇒ β (1+ γ)p(1−σ) ∈ (0,1).

The β (1+γ)p(1−σ) ∈ (0,1) condition also implies that the discounted sum of cur-
rent and future utility remains bounded. In particular, execution of the lucas ss w.m



7.5 Endogenous Growth with Accumulation of Human Capital 353

program shows that the steady-state is not defined for tax rates on labor income
above 0.50, which does not leave aside any realistic situation, anyway.

An increase in consumption taxes does not affect the allocation of time among
the different activities or the allocation of physical capital between the two sectors,
while lowering the xt = c̃t

k̃t
ratio. There is no effect on the rate of growth. In spite of

the decrease in the tax base, tax revenues also increase, as a percentage of output.
An increase in labor income taxes leads to a substitution of leisure for hours

worked, as expected, while the fraction of physical capital devoted to the education
sector decreases, since there is less incentive to accumulate productive human cap-
ital. So, physical capital substitutes for labor in the production of the final good.
The k̃t

h̃t
ratio increases, while the c̃t

k̃t
decreases. The productivity of capital decreases,

in terms of the broader output concept, and the rate of growth of the economy de-
creases for higher labor taxes. Tax revenues increase for higher tax rates on labor
income.

An increase in capital income taxes produces an increase in hours worked, and
again a decrease in hours devoted to education. The reason for this is the desire to
increase income from working in the production of the final good, to compensate
for the higher taxes. The opportunity cost of accumulating physical capital is now
lower, and the c̃t

k̃t
ratio increases, while the k̃t

h̃t
decreases. A higher fraction of physical

capital is devoted to the educational sector as capital income taxes increase. So,
at a difference of the response to labor income taxes, when capital income taxes
increase, labor substitutes for physical capital in the production of the final good.
The economy grows more slowly as capital income taxes increase.

7.5.5 Computing Equilibrium Trajectories in a Stochastic Setup
Under the Assumption of Rational Expectations

We describe in this section how to produce numerical solutions out of the model with
human capital accumulation. We consider a simplified version of the model econ-
omy considered above, with no taxes and without externalities, with human capital
being produced without the use physical capital, and without leisure in the utility
function. In terms of the parameters in the previous sections: p = 1,ς = 0,τc =
τw = τr = 0. Extending the discussion to a more general model incorporating one
or more of these features is an interesting, recommended exercise that can be solved
following the lines outlined below. Unfortunately, as explained in the previous sec-
tion, the steady-state will have to be found numerically in most cases, as we did
above.

In the absence of externalities and distortionary taxation, the competitive equi-
librium allocation is Pareto optimum. Therefore, we can characterize it by solving
the social planner’s problem
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max
{c̃t ,ut ,k̃t+1,h̃t+1}

E0

∞

∑
t=0

β t c̃1−σ
t −1
1−σ

, (7.88)

subject to

(1+n)k̃t+1 = Ak̃αt
(
ut h̃t

)1−α θ t +(1−δ k) k̃t − c̃t , (7.89)

h̃t+1 = η tB(1−ut)h̃t +(1−δ h)h̃t , (7.90)
lnθ t = φ 1 lnθ t−1 + ε1t ,

lnη t = φ 2 lnη t−1 + ε2t ,

given h̃0, k̃0, where (7.89) is the global constraint of resources in the economy and
(7.90) is the law of accumulation of human capital, both in per capita terms.

The Lagrangian for this problem is

L = E0

{
∞

∑
t=0

β t c̃1−σ
t −1
1−σ

+β tλ t

[
Ak̃αt

(
ut h̃t

)1−α θ t

+(1−δ k) k̃t − c̃t − (1+n)k̃t+1

]

+β tµ t
[
η tB(1−ut)h̃t +(1−δ h)h̃t − h̃t+1

]
}

,

with first order conditions

c̃t : c̃−σt = λ t , (7.91)
ut : λ t(1−α)Ak̃αt h̃1−α

t u−αt θ t = µ tBh̃tη t , (7.92)

k̃t+1 : λ t(1+n) = βEt

[

λ t+1

(

Aα
(

k̃t+1

h̃t+1

)α−1

u1−α
t+1 θ t+1 +1−δ k

)]

,

(7.93)

h̃t+1 : µ t = βEt

{

µ t+1 [B(1−ut+1)η t+1 +1−δ h]

+ λ t+1(1−α)A
(

k̃t+1

h̃t+1

)α

u1−α
t+1 θ t+1

}

. (7.94)

But (7.92) can be written

µ t = λ t(1−α)
A
B
θ t

η t

(
k̃t

h̃t

)α

u−αt ,
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which taken to (7.94), allows us to write

λ t
θ t

η t

(
k̃t+1

h̃t+1

)α

u−αt+1 = βEt

[

λ t+1

(
k̃t+1

h̃t+1

)α

u−αt+1
θ t+1

η t+1
(Bη t+1 +1−δ h)

]

.

After eliminating the Lagrange multipliers, the optimality conditions become

c̃−σt (1+n) = βEt

[

c̃−σt+1

(

Aα
(

k̃t+1

h̃t+1

)α−1

u1−α
t+1 θ t+1 +1−δ k

)]

, (7.95)

c̃−σt
θ t

η t

(
k̃t+1

h̃t+1

)α

u−αt+1 = βEt

[

c̃−σt+1

(
k̃t+1

h̃t+1

)α

u−αt+1
θ t+1

η t+1
(7.96)

×(Bη t+1 +1−δ h)

]

,

(1+n)k̃t+1 = Ak̃αt
(
ut h̃t

)1−α θ t +(1−δ k) k̃t − c̃t , (7.97)

h̃t+1 = η tB(1−ut)h̃t +(1−δ h)h̃t , (7.98)

which is, each period, a system of four equations with four unknowns: {c̃t , ut , k̃t+1,
h̃t+1}∞t=0 , given initial values for state variables, k̃0, h̃0, and a realization for {θ t}∞t=0 ,
{η t}∞t=0 .

7.5.5.1 The Steady State as a Balanced Growth Path

We again define a deterministic steady-state in this economy as that situation in
which the random shocks take their expected values at all time periods: θ t = η t =
1,∀t, and variable ut , remain constant at u, while c̃t , k̃t , h̃t , ỹt , all grow at constant
rates γ c̃, γ k̃, γ h̃, γy, respectively, and the ratio Ỹt/K̃t stays constant.

Now we show that the rates of growth for c̃t , k̃t , h̃t , are the same. Since the ratio
ỹt/k̃t , as well as hours worked ut must remain constant in steady state then, from the

transformed production function: yt
k̃t

= A
(

k̃t
h̃t

)α−1
u1−α , we get that the ratio k̃t/h̃t

must also remain constant in steady state, which can only happen if both types of
capital, k̃t and h̃t , grow at the same rate: γ k̃ = γ h̃.

Dividing through in (7.98) by h̃t we obtain the steady-state rate of growth for
human capital:

1+ γ h̃ = B(1−ut)+(1−δ h), (7.99)

while dividing by c̃t in (7.96), we get the steady-state rate of growth of consumption:

(
c̃t+1

c̃t

)σ (
k̃t+1

k̃t

)−α (
h̃t+1

h̃t

)−α
= β (B+1−δ h) ,
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which implies
(1+ γ c̃)

σ = β (B+1−δ h) , (7.100)

and finally, from (7.97)

(1+n)
k̃t+1

k̃t
= A

(
k̃t

h̃t

)α−1

u1−α +(1−δ k)−
c̃t

k̃t
, (7.101)

which can hold only if the ratio c̃t
k̃t

remains constant, implying that γ c̃ = γ k̃. Hence,
consumption, physical capital and human capital all grow at the same rate along the
deterministic steady-state: γ c̃ = γ k̃ = γ h̃ = γ .

To characterize steady-state we can use (7.95) ,(7.99) ,(7.100) and (7.101) to
get the system

γ = [β (B+1−δ h)]
1/σ −1, (7.102)

u = 1− γ+δ h

B
, (7.103)

(
k̃t

h̃t

)

ss
=

⎡

⎣
(1+n)(1+γ)σ

β − (1−δ k)

Aαu1−α

⎤

⎦ , (7.104)

(
c̃t

k̃t

)

ss
= A

(
k̃t

h̃t

)α−1

ss
u1−α +

(
1−δ k̃

)
− (1+n)(1+ γ), (7.105)

which can be recursively solved for: γ,u,
(
k̃t/h̃t

)
ss ,

(
c̃t/k̃t

)
ss .

7.5.5.2 Log-Linear Approximation

To simulate the simplified model, we construct a log-linear approximation in((
k̃t/h̃t

)
ss ,

(
c̃t/k̃t

)
ss ,u

)
. We work with ratios because, as we have just seen,

they have a well defined steady state. Any transitory perturbation will take the((
k̃t/h̃t

)
ss ,

(
c̃t/k̃t

)
ss

)
ratios to the same steady-state, no matter what the sign and

the size of the perturbation might be. However, the steady-state is not determined
for variables ct ,kt ,ht , with ct = (1 + γ)−t c̃t , kt = (1 + γ)−t k̃t ,ht = (1 + γ)−t h̃t ,
obtained after eliminating from c̃t , k̃t , h̃t the deterministic long-run growth com-
ponents. That means that if the economy is initially on steady-state for initial
values c̃0, k̃0, h̃0, a purely transitory perturbation will take it to a new steady state
with lim

t→∞
wt 	= w0, w = c̃, k̃, h̃, although lim

t→∞
c̃t
k̃t

= c̃0
k̃0

, lim
t→∞

k̃t
h̃t

= k̃0
h̃0

, which means that

c̃t , k̃t , h̃t all have a unit root. Therefore, c̃t , k̃t , h̃t have a deterministic trend as well as
a stochastic trend. This is a characteristic of endogenous growth models, as opposed
to exogenous growth models, which can only posses deterministic trends.

Defining auxiliary variables, zt = k̃t
h̃t

,xt = c̃t
k̃t

, and using: h̃t+1
h̃t

= B(1−ut)η t +1−
δ h, we can write the optimality conditions in terms of ratios
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x−σt z−σt (1+n) [B(1−ut)+1−δ h]
σ = βEt

[
x−σt+1z−σt+1

×
(
Aαzα−1

t+1 u1−α
t+1 θ t+1 +1−δ k

)]
,

x−σt zα−σt
θ t

η t
u−αt [B(1−ut)+1−δ h]

σ = βEt

[
x−σt+1zα−σt+1

× u−αt+1
θ t+1

η t+1
(Bη t+1 +1−δ h)

]
,

(1+n)
zt+1

zt
[B(1−ut)+1−δ h] = Azα−1

t u1−α
t θ t +(1−δ k)− xt ,

which can be expressed, in terms of logged variables

0 = −e−σ lnxt e−σ lnzt (1+n)
[
B(1− elnut )elnηt +1−δ h

]σ

+βEt

[
e−σ lnxt+1e−σ lnzt+1

(
Aαe(α−1) lnzt+1e(1−α) lnut+1elnθ t+1 +1−δ k

)]
,

0 = −e−σ lnxt e(α−σ) lnzt elnθ t−lnηt e−α lnut ×
[
B(1− elnut )elnηt +1−δ h

]σ

+βEt

[
e−σ lnxt+1e(α−σ) lnzt+1elnθ t+1−lnηt+1e−α lnut+1

(
Belnηt+1 +1−δ h

)]
,

0 = −e− lnzt+1
[
B(1− elnut )elnηt +1−δ h

]

+Aeα lnzt e(1−α) lnut elnθ t +(1−δ k)elnzt − elnzt elnxt .

We now introduce logged deviations with respect to steady-state: ẑt = ln(zt/z),
x̂t = ln(xt/x), ût = ln(ut/u), θ̂ t = lnθ t , η̂ t = lnη t . Using the forecasting expres-
sions: Et θ̂ t+1 = φ 1θ̂ t , Et η̂ t+1 = φ 2η̂ t , we can approximate the previous system by

0 � σ(1+n)(1+ γ)σ

β
(x̂t + ẑt)+

σ(1+n)(1+ γ)σ−1

β
Buût

−σ(1+n)(1+ γ)σ−1

β
B(1−u)η̂ t −

σ(1+n)(1+ γ)σ

β
Et x̂t+1

+(1−α)
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
Et ût+1

−
[
(1−α+σ)

(1+n)(1+ γ)σ

β
− (1−α)(1−δ k)

]
ẑt+1

+
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
φ 1θ̂ t ,
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0 � σ(1+ γ)σ

β
x̂t − (α−σ)

(1+ γ)σ

β
ẑt

+
α(1+ γ)σ +σ(1+ γ)σ−1Bu

β
ût −

(1+ γ)σ

β
(1−φ1)θ̂ t

+
[
(1+ γ)σ

β
− σ(1+ γ)σ−1B(1−u)

β
− (1−δ h)φ 2

]
η̂ t

−σ(1+ γ)σ

β
Et x̂t+1 +(α−σ)

(1+ γ)σ

β
ẑt+1 −α

(1+ γ)σ

β
Et ût+1,

0 � −z(1+n)(1+ γ)ẑt+1 +
[
zBu(1+n)+A(1−α)zαu1−α] ût

−z(1+n)B(1−u)η̂ t +Azαu1−α θ̂ t

+
[
(1+n)(1+ γ)σ

β
− x

]
z ẑt − zx x̂t .

This system has a matrix representation

Γ0

⎛

⎝
ẑt+1

Et x̂t+1
Et ût+1

⎞

⎠ = Γ1

⎛

⎝
ẑt
x̂t
ût

⎞

⎠+Γ2

(
θ̂ t
η̂ t

)
,

with

Γ0(1,1) = (1−α+σ)
(1+n)(1+ γ)σ

β
− (1−α)(1−δ k),

Γ0(1,2) =
σ(1+n)(1+ γ)σ

β
,

Γ0(1,3) = −(1−α)
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
,

Γ0(2,1) = −(α−σ)
(1+ γ)σ

β
, Γ0(2,2) =

σ(1+ γ)σ

β
,

Γ0(2,3) = α
(1+ γ)σ

β
; Γ0(3,1) = z(1+n)(1+ γ),

Γ0(3,2) = Γ0(3,3) = 0,

Γ1(1,1) = Γ1(1,2) =
σ(1+n)(1+ γ)σ

β
,

Γ1(1,3) =
σ(1+n)(1+ γ)σ−1Bu

β
,

Γ1(2,1) = −(α−σ)
(1+ γ)σ

β
, Γ1(2,2) =

σ(1+ γ)σ

β
,
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Γ1(2,3) = α
(1+ γ)σ

β
+
σ(1+ γ)σ−1B(1−u)

β
,

Γ1(3,1) =
(

(1+n)(1+ γ)σ

β
− x

)
z, Γ1(3,2) = −zx,

Γ1(3,3) =
[
zBu(1+n)+A(1−α)zαu1−α]

Γ2(1,1) =
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
φ 1,

Γ2(1,2) = −σ(1+n)(1+ γ)σ−1

β
B(1−u),

Γ2(2,1) = − (1+ γ)σ

β
(1−φ1),

Γ2(2,2) =
(1+ γ)σ

β
− σ(1+ γ)σ−1B(1−u)

β
− (1−δ h)φ 2,

Γ2(3,1) = Azαu1−α , Γ2(3,2) = −z(1+n)B(1−u),

and we have ⎛

⎝
zt+1

Et x̂t+1
Et ût+1

⎞

⎠ = Γ3

⎛

⎝
zt
x̂t
ût

⎞

⎠+Γ4

(
θ̂ t
η̂ t

)
,

with
Γ3 = Γ−1

0 Γ1; Γ4 = Γ−1
0 Γ2.

The solution to this system will be determinate if two of the eigenvalues of matrix
Γ3 have modulus above 1, the third one being below 1. This is because we have two
control variables, consumption and hours worked, which must be determined each
period as a function of the state variables. The two unstable eigenvalues will give
raise to two unstable directions which need to be eliminated. As in other model
economies considered in previous chapters, that is achieved by setting to zero each
period the product of the eigenvectors associated to the unstable eigenvalues, times
the vector of variables in the autoregressive process, ẑt , x̂t , ût . That will give us two
equations to set the values of x̂t and ût as a function of the state, ẑt . Furthermore,
we will also be able to solve for the two conditional expectations, Et x̂t+1,Et ût+1.
Later on, we present a model economy with accumulation of human capital and an
externality in the production of the final good in which, for a region of the parameter
space, the solution is indeterminate, as reflected in two of the three eigenvalues of
the autoregressive matrix being below 1 in modulus.

Without loss of generality, let us denote by λ 1 the stable eigenvalue of Γ3, and
by λ 2,λ 3 the unstable eigenvalues. We have the decomposition of Γ3:

Γ3 = MΛM−1 with Λ=

⎛

⎝
λ 1 0 0
0 λ 2 0
0 0 λ 3

⎞

⎠ , M =

⎛

⎝
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠ .
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We denote the inverse of M by

M−1 =

⎛

⎝
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎞

⎠ ,

where M• j, j = 1,2,3 denote the right eigenvectors associated to λ j, j = 1,2,3,
while m j• are the left eigenvectors associated to λ j, j = 1,2,3.

With this decomposition, we have

M−1

⎛

⎝
ẑt+1

Et x̂t+1
Et ût+1

⎞

⎠ = ΛM−1

⎛

⎝
ẑt
x̂t
ût

⎞

⎠+ M−1Γ4︸ ︷︷ ︸
Q

(
θ̂ t
η̂ t

)
,

where Q = M−1Γ4 is a 3×2 matrix. This system can be written in more detail, as

m11ẑt+1 +m12Et x̂t+1 +m13Et ût+1 = λ 1 (m11ẑt +m12x̂t +m13ût)

+Q11θ̂ t +Q12η̂ t ,

m21ẑt+1 +m22Et x̂t+1 +m23Et ût+1 = λ 2 (m21ẑt +m22x̂t +m23ût)

+Q21θ̂ t +Q22η̂ t ,

m31ẑt+1 +m32Et x̂t+1 +m33Et ût+1 = λ 3 (m31ẑt +m32x̂t +m33ût)

+Q31θ̂ t +Q32η̂ t .

To simplify notation, we define vector f 0
t =

⎛

⎜
⎝

m11ẑt +m12x̂t +m13ût

m21ẑt +m22x̂t +m23ût

m31ẑt +m32x̂t +m33ût

⎞

⎟
⎠ which

allows us to write the system above as

Et f 0
1,t+1 = f 0

1,t +Q11θ̂ t +Q12η̂ t ,

Et f 0
2,t+1 = f 0

2,t +Q21θ̂ t +Q22η̂ t ,

Et f 0
3,t+1 = f 0

3,t +Q31θ̂ t +Q32η̂ t .

If we apply the law of iterated expectations to solve forwards the last two equa-
tions in this system, as we have done in previous chapters, we get

f 0
2,t =

Q21

φ 1 −λ 2
θ̂ t +

Q22

φ 2 −λ 2
η̂ t ,

f 0
3,t =

Q31

φ 1 −λ 3
θ̂ t +

Q32

φ 2 −λ 3
η̂ t ,
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which lead to
(

m21
m31

)

︸ ︷︷ ︸
S0

ẑt +
(

m22 m23
m32 m33

)

︸ ︷︷ ︸
S1

(
x̂t
ût

)
=

( Q21
φ1−λ 2

Q22
φ2−λ 2

Q31
φ1−λ 3

Q32
φ2−λ 3

)

︸ ︷︷ ︸
S2

(
θ̂ t
η̂ t

)
,

which leads to the system, of control equations or stability conditions:
(

x̂t
ût

)
= −S−1

1 S0ẑt +S−1
1 S2

(
θ̂ t
η̂ t

)
= S3ẑt +S4

(
θ̂ t
η̂ t

)
, (7.106)

with S3 =
(

S31
S32

)
,S4 =

(
S4,11 S4,12
S4,21 S4,22

)
.

From this system, we get

Et x̂t+1 = S31ẑt+1 +S4,11φ 1θ̂ t +S4,12φ 2η̂ t ,

Et ût+1 = S32ẑt+1 +S4,21φ 1θ̂ t +S4,22φ 2η̂ t ,

and we finally get the state equation

ẑt+1 = λ 1ẑt +
Q11 +(λ 1 −φ 1)(S4,11m12 +S4,21m13)

m11 +m12S31 +m13S32
θ̂ t

+
Q12 +(λ 1 −φ2)(S4,12m12 +S4,22m13)

m11 +m12S31 +m13S32
η̂ t . (7.107)

The model can be simulated following two different approaches. The first one is
easier, but it involves a larger approximation error.

First Simulation Approach

1. Given realizations for {ε1t ,ε2t}T
t=1 for two independent Normal distributions

with standard deviations σ1 and σ2, respectively. Given initial conditions(
θ̂ 0, η̂0

)
, we use the laws of motion lnθ t = φ 1 lnθ t−1 +ε1t , η t = φ 2 lnη t−1 +

ε2t to compute a time series realization
{
θ̂ t , η̂ t

}T
t=0 .

2. Given initial conditions k̃0, h̃0 we compute z0 and ẑ0 = ln(z0/z).
3. Given ẑ0 and

{
θ̂ t , η̂ t

}T
t=0, we use (7.107) to obtain a realization {ẑt}T

t=0 . We
also compute zt = zeẑt , t = 0,1,2, . . . ,T.

4. Given {zt}T
t=0 ,

{
θ̂ t , η̂ t

}T
t=0 , we use (7.106) to compute {x̂t , ût}T

t=0 , and xt =
xex̂t ,ut = ueût , t = 0,1,2, . . . ,T.

5. We compute γ h̃,t = B(1−ut)η t +(1−δ h)−1, t = 0,1,2, . . .T.
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6. From the definition h̃t+1
h̃t

= 1 + γ h̃,t , we get ht+1(1+γ)t+1

ht (1+γ)t = 1 + γ h̃,t , and a time

series realization for ht+1 from ht+1 =
1+γ h̃,t
1+γ ht . Hence, given h0 = h̃0, we can

obtain the time path for human capital, net of the deterministic trend, {ht+1}T
t=0 .

7. We compute the time series for physical capital {kt}T
t=0 using the fact that k̃t

h̃t
=

zt implies kt
ht

= zt , so that: kt = htzt .

8. We compute the time series for consumption {ct}T
t=0 from ct = xtht , t =

0,1,2, . . .

9. Given the time series {kt}T
t=0, {ht}T

t=0, {ct}T
t=0 , we can obtain

{
k̃t , h̃t , c̃t

}T
t=0

from k̃t = (1+ γ) t kt , h̃t = (1+ γ) tht , c̃t = (1+ γ) t ct .

10. Given time series for
{

k̃t , h̃t
}T

t=0 , we compute γ k̃,γ c̃ : 1 + γ k̃ = k̃t+1
k̃t

,1 + γ c̃ =
c̃t+1

c̃t
.

Second Simulation Approach

Steps 1 and 2 are the same as in the first simulation approach:

• Given
{

ẑ0,k0, θ̂ 0, η̂0
}

, we can use (7.106) to obtain {lnc0, û0}. Taking into ac-
count that x̂t = lnct − lnkt − lnx, we get

lnc0 = lnk0 + lnx+S31ẑ0 +S4,11θ̂ 0 +S4,12η̂0, (7.108)

û0 = S32ẑ0 +S4,21θ̂ 0 +S4,22η̂0, (7.109)

and we can finally compute c0 = elnc0 ,u0 = ueû0 .
• Given

{
k0,h0, θ̂ 0, η̂0,c0,u0

}
, we use the fact that ŵt = (1+γ)twt ,w = c,k,h, into

the global constraint of resources and the accumulation law for human capital to
obtain {k1,h1}

k1 =
1

(1+n)(1+ γ)
[
Akα0 (u0h0)1−αθ 0 +(1−δ k)k0 − c0

]

and
h1 =

1
1+ γ

[B(1−u0)η0h0 +(1−δ h)h0] .

• Given
{

k1,h1, θ̂ 1, η̂1
}

, we obtain z1 = k1
h1

and we can use (7.108), (7.109) to
compute {c1,u1} .

• Repeat the last two steps to produce time series of length T : {ct , ut , kt , ht}T
t=0.

Once we have these time series, we compute time series for {c̃t , k̃t , h̃t , γ c̃, γ k̃,
γ h̃}T

t=0.

What is interesting in this second algorithm is that we obtain the variables in
levels directly, using the restrictions without any approximation, so that the approx-
imation error is smaller than that made when following the first approach.
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7.5.6 Indeterminacy of Equilibria

We consider in this section the possibility that there might exist multiple trajectories
taking the economy into the balanced growth path, which we will refer to as inde-
terminacy of equilibria. One situation where indeterminacy of equilibria may arise
is in the endogenous growth model with human capital accumulation we have ana-
lyzed in previous sections, when we include a positive externality in the form of the
stock of human capital entering as an input in the production of the final good. This
is a very relevant situation that may arise in different growth models and strongly
conditions the procedure that can be followed to obtain a numerical solution to
the model.

We illustrate this using a discrete time, stochastic version of Lucas [60] model.
Benhabib and Perli [9] and Xie [98] characterize a range of parameter values for a
continuum of equilibria to exist in the continuous time, deterministic, endogenous
growth Lucas [60] economy, incorporating the mentioned externality. These authors
show that a high intertemporal elasticity of consumption together with a sufficiently
strong externality are necessary conditions for indeterminacy in that model.

Indeterminacy of equilibria in endogenous growth models has important
implications:

1. It may be consistent with optimality that two economies with identical initial
endowment of physical and human capital decide to consume, save and allocate
labor among sectors in different fashion. In the long-run, these economies will
converge in terms of rates of growth, but not in terms of the level of output,
physical and human capital.28

2. As a corollary, a country with lower endowments of physical and human capital
than other can surpass29 the latter in terms of the levels of output, physical and
human capital, by just initially allocating to education a higher fraction of time.

3. Initial sacrifices of income due to an initially higher dedication of time to educa-
tion lead to higher rates of growth during the transition, and higher future levels
of income, thereby contributing to increase welfare. The long-run effect may well
compensate for the initial loss of utility.

7.5.6.1 A Brief Introduction to the Local Indeterminacy of Equilibria

Global indeterminacy refers to the fact that a dynamic general equilibrium model
may present multiple steady-states or, more generally, that models implying steady-
state growth, might give raise to multiple balanced growth paths. In contrast, local
indeterminacy arises when given a steady-state or a balanced growth path, there
might exist a continuum of trajectories converging to it. We focus here on local
indeterminacy using Lucas [60] model as an illustration.

28 The ratios between growing variables will be the same in both economies, but not the levels of
those variables.
29 Which is known as leapfrogging.
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In deterministic setups, indeterminacy of equilibria implies the existence of mul-
tiple equilibrium trajectories that can be indexed by different initial conditions for
some control variables. As explained below, in an stochastic setup, indeterminacy
is handled by introducing exogenous processes for some expectations errors, whose
statistical characteristics are not restricted by the structure of the model.30 The sam-
ple realizations for these processes select one among the continuum of solutions, and
they gradually overcome the effect of the initial conditions that might be imposed
on some control variables in determining the time evolution of the main variables.

Local indeterminacy can be explained analytically as follows: Let us assume that
we have solved for the equilibrium of a dynamic growth model having in its de-
terministic version,31 a unique balanced growth path. The set of Euler equations,
budget constraints, laws of motion for structural shocks and market clearing condi-
tions, all can be jointly represented as

0 = Et [ f (ut ,ut+1,xt ,xt+1;θ t ,θ t+1)] , (7.110)
θ̂ t+1 = Ψθ̂ t + ε t+1, ε t+1 ∼

iid
N(0,Σ), (7.111)

where ut denotes the (m×1) vector of control or time t decision variables, xt is the
(n× 1) vector of state or predetermined variables, θ t is the (p× 1) vector of struc-
tural shocks and policy variables, whose logged deviations with respect to steady-
state follow a stable VAR process.32 Furthermore, we assume a complete system,
i.e., f : R

n+m → R
n+m. If there are further lags in the system, they are accommo-

dated by considering some of them as additional control variables, in a standard
strategy followed in representations of time series models. Eventually, any dynamic
model can be represented as a VAR(1) system, as above.

If we log-linearize system (7.110) and use the expectations condition Et θ̂ t+1 =
Ψθ̂ t , we get a new system in deviations of logged variables with respect to steady-
state

Γ0

[
x̂t+1

Et ût+1

]
+Γ1

[
x̂t
ût

]
+Γ2θ̂ t = 0,

where Γ0, Γ1 and Γ2 have the appropriate dimensions. Remember that, with our
usual convention on notation, time t +1 state variables, xt+1, are determined at time
t, so that Et x̂t+1 = x̂t+1.

Assuming that Γ0 is a full rank matrix, the previous system can be represented as
[

x̂t+1
Et ût+1

]
= Γ3

[
x̂t
ût

]
+Γ4θ̂ t , (7.112)

where Γ3 = −Γ−1
0 Γ1, Γ4 = −Γ−1

0 Γ2.

30 Beyond satisfying the restrictions imposed by rationality of expectations, if that is a maintained
assumption.
31 That is, the version of the model without any random shock.
32 That is, the roots of the characteristic equation of the transition matrix Ψ of the vector AR(1)
model in (7.111) are inside the unit circle.
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If matrix Γ3 has m unstable roots, then the rational expectations equilibrium is
uniquely defined. We can then represent the system in logged variables in state-
space form

[
x̂t+1

θ̂ t+1

]
=

[
Γ5 Γ6

0 Ψ

][
x̂t

θ̂ t

]
+

[
0

Ip

]
ε t+1, (7.113)

ût = Γ7

[
x̂t

θ̂ t

]
. (7.114)

where (7.113) is the state equation and (7.114) is the control equation, which is
obtained after eliminating the unstable trajectories associated to the unstable eigen-
values of Γ3.

Given initial conditions for state variables, together with a sample realization
for each of the exogenous shocks and the policy variables, we could use the repre-
sentation above to uniquely compute approximate equilibrium trajectories for state
variables x̂t+1, and control variables ût . So, when equilibrium is uniquely deter-
mined, we are able to solve for the m conditional expectations for each of the con-
trol variables33 by eliminating the unstable trajectories associated to the unstable
eigenvalues of Γ3. In addition to having the representation of control variables as
functions of state variables and exogenous shocks, in a determinate equilibrium we
can also write the errors associated to the control variables as linear combinations of
innovations to the stochastic processes for the exogenous shocks, i.e., as functions
of the model’s fundamentals.

To see this, we write (7.112) as
⎡

⎣
x̂t+1
ût+1

θ̂ t+1

⎤

⎦ =
[

Γ3 Γ4
0p×(n+m) Ψ

]⎡

⎣
x̂t
ût

θ̂ t

⎤

⎦

+
[

D(n+m)×m 0(n+m)×p
0p×m Ip×p

][
at+1
ε t+1

]
,

where D = [0n×m, Im×m], and at+1 = ût+1 −Et ût+1. Then, eliminating the unstable
trajectories can be seen in two alternative ways: (1) as setting up to zero the product
of premultiplying vector [x̂t , ût , θ̂ t ] by the matrix made up with the left eigenvec-
tors associated to the unstable eigenvalues of the autoregressive matrix above. That
allows us to write control variables as functions of state variables and exogenous
shocks. Alternatively, (2) as setting up to zero the product of that matrix of eigen-
vectors by matrix [

D(n+m)×m 0(n+m)×p
0p×m Ip×p

][
at+1
ε t+1

]
,

33 Notice that the conditional expectations of highly nonlinear functions that initially appear in the
optimality equations transform into conditional expectations of single variables when a linear or
log-linear approximation is performed.
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which allows us to write forecast errors at+1 as functions of innovations in exoge-
nous stochastic processes.

On the other hand, if Γ3 has m−q unstable roots (m > q), then we will be able to
represent only m−q control variables as a function of the other q control variables as
well as the state variables, the structural shocks and the policy variables. Eliminating
the unstable trajectories we will only be able to solve for the conditional expecta-
tions of only m− q control variables. We can only solve for the remaining q con-
ditional expectations by drawing exogenous sample realizations for the associated
expectations errors. These expectations are treated as exogenous, since the model
does not restrict them. That is, only m−q forecast errors in control variables can be
written as a function of the exogenous innovations. For each stochastic characteri-
zation chosen for the q expectations errors, we will obtain a different equilibrium.
Summarizing, whenever the number of unstable eigenvalues of the transition matrix
is smaller than the number of control variables, system (7.112) can be represented as

⎡

⎣
x̂t+1

û1,t+1

θ̂ t+1

⎤

⎦ =

⎡

⎣
Φ1 Φ2 Φ3
Φ6 Φ5 Φ4

0 0 Ψ

⎤

⎦

⎡

⎣
x̂t

û1,t

θ̂ t

⎤

⎦ (7.115)

+

⎡

⎣
0 Φ7
0 Φ8

Ip 0

⎤

⎦
[
ε t+1
at+1

]
,

û2,t = Φ0

⎡

⎣
x̂t

û1,t

θ̂ t

⎤

⎦ , (7.116)

where û1,t is the (q× 1) vector of control variables that we have to take initially as
given because of the indeterminacy of equilibria, û2,t is the ((m− q)× 1) vector of
control variables whose expectations were solved for by eliminating the unstable
trajectories associated to the unstable eigenvalues of Γ3. Finally, at+1 is the (q×1)
vector of forecast errors for the û1 variables: at+1 = û1,t+1−Et û1,t+1. Being rational
forecast errors, they must have a white noise structure, besides being conditionally
uncorrelated with variables in the information set available to agents at time t. If
we choose an (arbitrary) value for their variance-covariance matrix, and arbitrary
values for the correlations between these forecast errors and the innovations in the
exogenous structural processes, we will be able to obtain a realization of those er-
rors which, together with an initial condition for û1,0 will allow us to obtain one of
the multiple equilibrium trajectories, for given initial values for state variables (x̂0)
and for the exogenous random shocks (θ̂ 0), and given a sample realization for the
exogenous innovations.

Notice that, under indetermination of equilibria, at each point in time there is the
need to choose values for some control variables. The problem is that the choice
at time t does not condition the choice made at any other point in time, so that the
economy can be displaying significant jumps which can sometimes be interpreted
as cycles. In essence, the situation is as if each of this subset of control variables
is drawn each period from a given probability distribution. Indeterminacy can also
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give raise to self-fulfilling prophecies: as an example if, for some reason, consumers
believe that future tax rates will rise, they will attempt to reduce the tax base, which
may well lead the government to the need to effectively, increase tax rates so as to
maintain the same revenue. That would be a case in which one among the continuum
of possible equilibria is being chosen on the basis of a purely speculative behavior
on the part of consumers. This situation will not arise when the equilibrium is well
determined, since agents then use past information on expectation errors to update
their views on the future of the economy, leaving no role for any unjustified, sudden
change in expectations.34

7.5.6.2 Simulating the Model with Human Capital Accumulation
Under Indeterminacy of Equilibria

In the absence of distortionary taxation, we can solve for the competitive equilib-
rium of the two-sector endogenous growth model with human capital accumulation
when there is an externality in the form of the average stock of human capital h̃a,t ,
as a productive input for the final good.

The representative consumer solves the problem

max
{c̃t ,ut ,k̃t+1,h̃t+1}

E0

∞

∑
t=0

β t c̃1−σ
t −1
1−σ

, (7.117)

subject to

k̃t+1 =
1

1+n

[
Ak̃αt

(
ut h̃t

)1−α h̃ψa,tθ t +(1−δ k) k̃t − c̃t

]
, (7.118)

h̃t+1 = η tB(1−ut)h̃t +(1−δ h)h̃t , (7.119)
lnθ t = φ 1 lnθ t−1 + ε1t , |φ 1| < 1, ε1t ∼

iid
N(0,σ2

1), (7.120)

lnη t = φ 2 lnη t−1 + ε2t , |φ 2| < 1, ε2t ∼
iid

N(0,σ2
2), (7.121)

given h̃0, k̃0, where (7.118) is the global constraint of resources in the economy and
(7.119) is the law of accumulation of human capital, both in per capita terms.

In equilibrium, we must have: h̃a,t = h̃t . Since all private agents are identical
to each other, this condition just states that the average stock and the individual
stock of human capital are equal. Once we eliminate the Lagrange multipliers and
impose this equilibrium condition, optimality conditions for this problem can be
summarized

c̃−σt (1+n) = βEt

[
c̃−σt+1

(
Aα k̃α−1

t+1 h̃1−α+ψ
t+1 u1−α

t+1 θ t+1 +1−δ k

)]
, (7.122)

34 This is because under determinacy of equilibria, there is a one-to-one mapping between expecta-
tions errors and structural innovations to the model, while under indeterminacy, some expectations
errors are left free.
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c̃−σt
θ t

η t

(
k̃αt+1

h̃α−ψt+1

)

u−αt+1 = βEt

[

c̃−σt+1

(
k̃αt+1

h̃α−ψt+1

)

u−αt+1 (7.123)

× θ t+1

η t+1
(Bη t+1 +1−δ h)

]

,

(1+n)k̃t+1 = Ak̃αt h̃1−α+ψ
t u1−α

t θ t +(1−δ k) k̃t − c̃t , (7.124)
h̃t+1 = η tB(1−ut)h̃t +(1−δ h)h̃t , (7.125)

together with transversality conditions

lim
j→∞

Etβ t+ jλ̃ t+ j k̃t+ j+1 = 0,

lim
j→∞

Etβ t+ j µ̃ t+ jh̃t+ j+1 = 0.

Deterministic Steady-State

In the deterministic steady-state, exogenous shocks take a value equal to their math-
ematical expectations at all time periods, θ t = 1,η t = 1,∀t, per capita variables
c̃t , k̃t , h̃t , grow at constant rates, γc,γk,γh, which is zero in the case of ut : ut = u,∀t.

Then evaluating (7.122) at steady-state, we get

k̃α−1
t+1 h̃1−α+ψ

t+1 =
(1+n)(1+γc)

σ

β − (1−δ k)

Aαu1−α , (7.126)

which implies that k̃α−1
t+1 h̃1−α+ψ

t+1 is constant in steady-state which, in turn, implies

1 + γk = (1+ γh)
1−α+ψ

1−α . Notice that in this model with externalities, the long-term
growth rates of the stocks of physical and human capital are different.

Since k̃α−1
t+1 h̃1−α+ψ

t+1 is constant in steady-state, then ỹt/k̃t must be constant in
steady-state, since ỹt/k̃t = Ak̃α−1

t h̃1−α+ψ
t u1−α . Therefore, 1+ γk = 1+ γy.

Evaluating (7.124) at steady-state, we get

c̃t

k̃t
= ỹt/k̃t +(1−δ k)− (1+n)(1+ γk) . (7.127)

Therefore, since the right-hand side at (7.127) is constant, the c̃t
k̃t

ratio will also
be constant in steady-state, i.e., 1+ γc = 1+ γk = 1+ γy = 1+ γ .

Evaluating (7.123) at steady-state, we have

(1+ γc)
σ (1+ γk)

−α (1+ γh)
α−ψ = β (B+1−δ h). (7.128)
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Using (7.128) together with the relationships 1+ γk = (1+ γh)
1−α+ψ

1−α and 1 + γc
= 1+ γk = 1+ γ, we can obtain the steady-state rate of economic growth

1+ γ = [β (B+1−δ h)]
1−α+ψ

σ(1−α+ψ)−ψ . (7.129)

Evaluating (7.125) in steady-state, we can obtain u:

u = 1− γh −δ h

B
, (7.130)

where γh = (1+ γ)
1−α

1−α+ψ −1, and 1+ γ is given by (7.129).

Let us now denote: z =
(

k̃t+1/h̃
1−α+ψ

1−α
t+1

)

ss
, and x =

(
c̃t
k̃t

)

ss
. From (7.126) and

(7.127), we get steady state values for z and x:

z =

⎡

⎣ Aαu1−α

(1+n)(1+γ)σ
β − (1−δ k)

⎤

⎦

1
1−α

, (7.131)

x = Azα−1u1−α +(1−δ k)− (1+n)(1+ γ) . (7.132)

Simulation

We first write optimality conditions as functions of z,x and u, where zt =

k̃t+1/h̃
1−α+ψ

1−α
t+1 , and xt = c̃t

k̃t
. Using (7.122)–(7.125) we have

x−σt z−σt (1+n) [B(1−ut)η t +1−δ h]
σ(1−α+ψ)

1−α

= βEt
[
x−σt+1z−σt+1

(
Aαzα−1

t+1 u1−α
t+1 θ t+1 +1−δ k

)]
, (7.133)

x−σt zα−σt
θ t

η t
u−αt [B(1−ut)η t +1−δ h]

σ(1−α+ψ)−ψ
1−α

= βEt

[
x−σt+1zα−σt+1 u−αt+1

θ t+1

η t+1
(Bη t+1 +1−δ h)

]
, (7.134)

(1+n)
zt+1

zt
[B(1−ut)η t +1−δ h]

(1−α+ψ)
1−α

= Azα−1
t u1−α

t θ t +(1−δ k)− xt . (7.135)

Log-linearizing around the uniquely defined steady-state of this system, we get

Γ0

⎛

⎝
ẑt+1

Et x̂t+1
Et ût+1

⎞

⎠ = Γ1

⎛

⎝
ẑt
x̂t
ût

⎞

⎠+Γ2

(
θ̂ t
η̂ t

)
,



370 7 Additional Endogenous Growth Models

with

Γ0(1,1) = (1−α+σ)
(1+n)(1+ γ)σ

β
− (1−α)(1−δ k),

Γ0(1,2) =
σ(1+n)(1+ γ)σ

β
,

Γ0(1,3) = −(1−α)
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
,

Γ0(2,1) = −(α−σ)
(1+ γ)σ

β (1+ γh)
ψ

1−α
,

Γ0(2,2) =
σ(1+ γ)σ

β (1+ γh)
ψ

1−α
, Γ0(2,3) = α

(1+ γ)σ

β (1+ γh)
ψ

1−α
,

Γ0(3,1) = z(1+n)(1+ γ), Γ0(3,2) = Γ0(3,3) = 0,

Γ1(1,1) = Γ1(1,2) =
σ(1+n)(1+ γ)σ

β
,

Γ1(1,3) =
σ̃(1+n)(1+ γ)σBu

β (1+ γh)
,

Γ1(2,1) = −(α−σ)
(1+ γ)σ

β (1+ γh)
ψ

1−α
, Γ1(2,2) =

σ(1+ γ)σ

β (1+ γh)
ψ

1−α
,

Γ1(2,3) = α
(1+ γ)σ

β (1+ γh)
ψ

1−α
+(σ̃ − ψ

1−α
)
(1+ γ)σ−1Bu

β
,

Γ1(3,1) =
(

(1+n)(1+ γ)σ

β
− x

)
z, Γ1(3,2) = −zx,

Γ1(3,3) = zBu(1+n)
1+ γ
1+ γh

1−α+ψ
1−α

+A(1−α)zαu1−α ,

Γ2(1,1) =
[
(1+n)(1+ γ)σ

β
− (1−δ k)

]
φ 1,

Γ2(1,2) = − σ̃(1+n)(1+ γ)σ

β (1+ γh)
B(1−u),

Γ2(2,1) = − (1+ γ)σ

β (1+ γh)
ψ

1−α
(1−φ1),

Γ2(2,2) =
(1+ γ)σ

β (1+ γh)
ψ

1−α
− (σ̃ − ψ

1−α
)
(1+ γ)σ−1B(1−u)

β
− (1−δ h)φ 2,

Γ2(3,1) = Azαu1−α ,

Γ2(3,2) = −z(1+n)B(1−u)
1+ γ
1+ γh

1−α+ψ
1−α

,

where σ̃ ≡ σ(1−α+ψ)
1−α , χ̂ t = ln(χ t/χ), χ = x,z,u.
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Notice that if ψ = 0, i.e., in the absence of the externality, the previous system
collapses to the one we had in previous sections. This system can be written

⎛

⎝
ẑt+1

Et x̂t+1
Et ût+1

⎞

⎠ = Γ3

⎛

⎝
ẑt
x̂t
ût

⎞

⎠+Γ4

(
θ̂ t
η̂ t

)

with
Γ3 = Γ−1

0 Γ1, Γ4 = Γ−1
0 Γ2.

Benhabib and Perli [9] and Xie [98] show that indeterminacy of equilibria arises
in this economy for high values of ψ and low values of σ . Matrix Γ3 then has two
stable and one unstable eigenvalue. Without loss of generality, let us assume that
|λ 1| , |λ 2| < 1 and |λ 3| > 1, and we have the decomposition of Γ3:

Γ3 = MΛM−1 with Λ=

⎛

⎝
λ 1 0 0
0 λ 2 0
0 0 λ 3

⎞

⎠ , M =

⎛

⎝
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠ .

We denote the inverse of M by

M−1 =

⎛

⎝
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎞

⎠ ,

where M• j, j = 1,2,3 denote the right eigenvectors associated to λ j, j = 1,2,3,
while m j• are the left eigenvectors associated to λ j, j = 1,2,3.

With this decomposition, we have

M−1

⎛

⎝
ẑt+1

Et x̂t+1
Et ût+1

⎞

⎠ = ΛM−1

⎛

⎝
ẑt
x̂t
ût

⎞

⎠+M−1Γ4︸ ︷︷ ︸
Q

(
θ̂ t
η̂ t

)
,

where Q = M−1Γ4 is a 3×2 block matrix. This system can be written in more detail,
as

m11ẑt+1 +m12Et x̂t+1 +m13Et ût+1

= λ 1 (m11ẑt +m12x̂t +m13ût)+Q11θ̂ t +Q12η̂ t , (7.136)

m21ẑt+1 +m22Et x̂t+1 +m23Et ût+1

= λ 2 (m21ẑt +m22x̂t +m23ût)+Q21θ̂ t +Q22η̂ t , (7.137)

m31ẑt+1 +m32Et x̂t+1 +m33Et ût+1

= λ 3 (m31ẑt +m32x̂t +m33ût)+Q31θ̂ t +Q32η̂ t . (7.138)
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To simplify notation, we define vector f 0
t =

⎛

⎜
⎜
⎝

m11ẑt +m12x̂t +m13ût

m21ẑt +m22x̂t +m23ût

m31ẑt +m32x̂t +m33ût

⎞

⎟
⎟
⎠ which

allows us to write the system above as

Et f 0
1,t+1 = λ 1 f 0

1,t +Q11θ̂ t +Q12η̂ t ,

Et f 0
2,t+1 = λ 2 f 0

2,t +Q21θ̂ t +Q22η̂ t ,

Et f 0
3,t+1 = λ 3 f 0

3,t +Q31θ̂ t +Q32η̂ t .

If we apply the law of iterated expectations to solve forwards the last equation in
this system, as we have done in previous chapters, we get

f 0
3,t =

Q31

φ 1 −λ 3
θ̂ t +

Q32

φ 2 −λ 3
η̂ t ,

which leads to

x̂t =
1

m32

[
Q31

φ 1 −λ 3
θ̂ t +

Q32

φ 2 −λ 3
η̂ t −m31ẑt −m33ût

]
, (7.139)

providing us with the control equations or stability conditions.
If we plug (7.139) into (7.136)–(7.137) and use the result: Et ût+1 = ût+1 −at+1

we have
[

ẑt+1
ût+1

]
= S−1

1 Λ(1)S1

[
ẑt
ût

]
+S−1

1 S2

⎡

⎣
θ̂ t
η̂ t

at+1

⎤

⎦ , (7.140)

where

S1 =

[
m11 − m12m31

m32
m13 − m12m33

m32
m21 − m22m31

m32
m23 − m22m33

m32

]

,

Λ(1) =
[
λ 1 0

0 λ 2

]
,

S2(1,1) = Q11 +(λ 1 −φ1)
m12

m32

Q31

φ 1 −λ 3
,

S2(1,2) = Q12 +(λ 1 −φ2)
m12

m32

Q32

φ 2 −λ 3
,

S2(1,3) = m13 −
m12m33

m32
,

S2(2,1) = Q21 +(λ 2 −φ1)
m22

m32

Q31

φ 1 −λ 3
,
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S2(2,2) = Q22 +(λ 2 −φ 2)
m22

m32

Q32

φ 2 −λ 3
,

S2(2,3) = m23 −
m22m33

m32
.

Computing the Numerical Solution

1. Draw sample realizations for the {ε1t ,ε2t}T
t=1 innovations from two indepen-

dent Normal distributions with standard deviations σ1 and σ2, respectively. Use
initial conditions

(
θ̂ 0, η̂0

)
in the laws of motion lnθ t = φ 1 lnθ t−1 + ε1t , η t =

φ 2 lnη t−1 + ε2t to compute a time series realization
{
θ̂ t , η̂ t

}T
t=0.

2. Given initial conditions k̃0, h̃0,u0 we compute z0 = k̃0/h̃
1−α+ψ

1−α
0 , ẑ0 = ln(z0/z)

and û0 = ln(u0/u).
3. Draw a sample realization for {at+1}T

t=0 from a Normal distribution with stan-
dard deviation σa, and chosen correlations35 ρa,ε1

= corr(at ,ε1t), ρa,ε2
=

corr(at ,ε2t).
4. Given ẑ0, û0 and

{
θ̂ t , η̂ t ,at+1

}T
t=0, we use (7.140) to obtain a realization

{ẑt , ût}T
t=0 . We also compute zt = zeẑt , ut = ueût , t = 0,1,2, . . . ,T .

5. Given {ẑt , ût}T
t=0 ,

{
θ̂ t , η̂ t

}T
t=0 , we use (7.139) to compute {x̂t}T

t=0 , and xt =
xex̂t , t = 0,1,2, . . . ,T .

6. We compute γ h̃,t = B(1−ut)η t +(1−δ h), t = 0,1,2, . . . ,T .

7. The definition of growth rate h̃t+1
h̃t

= 1 + γ h̃,t implies ht+1(1+γh)t+1

ht (1+γh)t = 1 + γh,t ,

which can be used to obtain a time series realization for ht+1 from ht+1 =
1+γ h̃,t
1+γh

ht . Hence, given h0 = h̃0, we can obtain the time path for human capi-

tal net of the deterministic trend, {ht+1}T
t=0.

8. We compute the time series for physical capital {kt}T
t=0 using the fact that k̃t

h̃t
=

zt implies kt
ht

= zt , so that: kt = htzt .
9. We compute the time series for consumption {ct}T

t=0 from ct = xtkt , t =
0,1,2, . . ..

10. Given the time series {kt}T
t=0, {ht}T

t=0, {ct}T
t=0, we can obtain {k̃t , h̃t , c̃t}T

t=0
from k̃t = γ t kt , h̃t = γ t

hht , c̃t = γ t ct .

11. Given time series for
{

k̃t , c̃t
}T

t=0 , we compute γ k̃,t , γ c̃,t : 1 + γ k̃,t = k̃t+1
k̃t

, 1 +

γ c̃,t = c̃t+1
c̃t

.
The reader should be able to adapt to this model the second algorithm we spec-
ified in the solution of the model without externalities.

35 Specify a process, at = α1ε1t +α2ε2t +ξ t , with ξ ∼ N(0,σ2
ξ ), Cov(ξ t ,ε1t) =Cov(ξ t ,ε1t) = 0.

From Cov(at ,ε1t) = α1σ2
ε1, Cov(at ,ε1t) = α1σ2

ε1, Var(at) = α2
1σ2

ε1 +α2
2σ2

ε2 +σ2
ξ , we can use

given values for ρa,ε1
, ρa,ε2, Var(at) to choose the values of α1, α2, σ2

ξ .
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7.5.7 Numerical Exercise: The Correlation Between Productivity
and Hours Worked in the Human Capital Accumulation
Model

As an application of the solution methods described above, we use the endogenous
growth model with capital accumulation to analyze its implications regarding the
linear correlation coefficient between productivity and hours worked, a relevant sta-
tistic in labor market analysis whose value in actual data cannot be easily replicated
by exogenous growth models. Exogenous growth models display implausibly high
correlations, because a productivity shock produces changes in the demand for labor
with no change in the supply of labor. Hence, incorporating shocks on labor supply
is a way to reduce the productivity-hours worked correlation. In two sector models
of human capital accumulation, a productivity shock in the sector producing new
human capital creates incentives to substitute human capital for output in order to
make the productivity in both sectors equal to each other. The substitution of study
hours for working hours produces changes in labor supply, and the relationship be-
tween productivity and hours worked gets lower.

The Matlab program lucas sim1.m simulates the human capital accumulation
model using the first approach described above, while lucas sim2.m uses the sec-
ond approach. Both programs compute a single realization of the solution to the
simplified version of the model economy considered in Sect. 7.5.5, with no taxes
and without externalities, with human capital being produced without the use phys-
ical capital, and without leisure in the utility function. In terms of the parameters in
the previous sections: p = 1,υ = 0,τc = τw = τr = 0. Extending the programs to
more general setups is left out as an exercise.

The lucas sim1.m program solves an economy with an externality in the produc-
tion of the final good through the presence of the average stock of human capital
as an input in that technology, using the first approach discussed in the previous
section. Any positive value of the ψ-parameter corresponds to the presence of that
externality, while using a value of ψ = 0 in the program eliminates that external-
ity. This program can also be used to generate a numerical solution to this type
of economy in cases when there is indeterminacy of equilibria, as discussed in the
next section. An alternative benchmark parameterization is provided in the program
for that case. This program contains an additional block of instructions that com-
putes the matrices for the log-linear approximation numerically, as it is done in the
simul diffus.m program described in Sect. 7.3.4. In the program, the reader is asked
to check that the matrices obtained from this method and from the analytical deriv-
atives which are also included, are exactly the same.

The Human capital.xls Excel spreadsheet performs the same exercise as the lu-
cas sim1.m program file but without the externality produced by the possible pres-
ence of the average stock of human capital in the production of the final good.

The lucas sim2.m program computes a single realization of the numerical solu-
tion to the economy without externalities in the production of the final good, using
the second approach discussed in the previous section. The trajectories followed by
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per-capita, detrended physical and human capital, as well as for consumption and
output exhibit strong persistency, as a consequence of the presence of a unit root in
them, as we explained when describing the structure of the AK model.

Both programs can also be used to compute impulse responses to a productivity
shock in either sector by following the instructions laid out in the programs. Fol-
lowing a productivity shock in the final good sector, we see a decrease in detrended
human capital, together with an increase in physical capital. The time devoted to
production of the final good goes up, while decreasing the time devoted to educa-
tion. Detrended output and consumption go up for a number of periods, gradually re-
verting to their initial levels. Detrended human capital ends up above its level before
the shock. This is the normal case, in the terminology of Caballe and Santos [13].

After a productivity shock in the educational sector, the detrended stock of human
capital goes up, while physical capital comes down initially. However, the detrended
stock of physical capital eventually ends up above its level prior to the productiv-
ity shock. Time devoted to the production of the final good decreases, while that
devoted to education increases. Both revert relatively quickly to their initial levels.
Detrended output and consumption decrease, but they gradually recover the levels
they had before the shock.

The Mlucas sim.m program computes multiple realizations of the endogenous
growth model with human capital accumulation. We again use the simplified ver-
sion of the model described in Sect. 7.5.5. As explained in the program, a corr12
parameter allows for introducing some correlation between the innovations in the
productivity processes in the two sectors. The default value is zero. The user may
include or not externalities in the production of the final good, which can be chosen
by setting in the program the value ψ = 0 when the externality is undesired. The
program can also be used for the case of indeterminacy of equilibria, and two alter-
native benchmark parameterizations leading to either situation are again provided.
The multiple realizations are used to present average values of a wide variety of
statistics, together with their standard deviations across the set of simulations.

As explained in previous sections, the model is solved in logs of ct ,kt ,ht ,yt and
gross output qt , but the detrended series in levels are obtained afterwards. As dis-
cussed above, detrended per-capita variables still contain a unit root so that, at a
difference of the programs computing a single realization, we have applied the
Hoddrick–Prescott filter to the series. After that, the program first computes the
mean and standard deviation for each realization for these variables, as well as for
ut and for the growth rates. But, as usual in these simulation exercises, we have as
many observations for each of these statistics as realizations we have obtained for
the numerical solution, which could be used to approximate their probability distrib-
ution. As an approximation, the Matlab program computes the average and standard
deviation of each statistic across the set of simulations. The first panel refers to the
mean of the main per-capita variables, which should be very close to their steady-
state levels. The second panel refers to their volatility, and the third panel shows their
coefficient of variation, again in the form of average values and standard deviations
across the set of simulations.
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The final panel displays the linear correlation coefficients between pairs of vari-
ables. In the case of unit root variables, we use the filtered variables obtained by
application of the Hoddrick–Prescott filter, when computing these correlation co-
efficients. As mentioned above, it is particularly interesting to pay attention to the
low level of the linear correlation between productivity and hours worked. Finally,
a graph presents some of the time series obtained in the last realization computed
by the program.

7.6 Exercises

Exercise 1. Compute the analytical derivatives in the log-linear approximation to
the technological diffusion model and describe how to use them to compute the
numerical solution to the model as it is done in other models.

Exercise 2. Program the algorithm for the solution of the Schumpeterian growth
model in an Excel spreadsheet as well as in a Matlab program.

Exercise 3. Compute the log-linear approximation to the equilibrium conditions for
the Schumpeterian growth model. Describe the implementation of Blanchard–Kahn
approach to solve this model using the approximation, and program the algorithm
in Matlab and Excel.

Exercise 4. Program in an Excel file the computation of a single realization of the
solution to the endogenous growth model with human capital accumulation, using
the Second simulation approach described in Sect. 7.5.5.

Exercise 5. Write a Matlab program to compute a single realization to the to the
endogenous growth model with human capital accumulation in the case when phys-
ical capital is used in the production of human capital, using the First simulation
approach described in Sect. 7.5.5.

Exercise 6. Repeat Exercise 5 using the Second simulation approach of Sect. 7.5.5.

Exercise 7. Repeat Exercise 5 additionally including leisure in the utility function.
Repeat the exercise using the Second simulation approach and compare the statisti-
cal properties of the main time series.



Chapter 8
Growth in Monetary Economies:
Steady-State Analysis of Monetary Policy

8.1 Introduction

In spite of the importance of money in actual economies, explaining why consumers
have a demand for an asset which is dominated in return by other assets in the
economy has been a traditional challenge for economic theory. Among many other
monetary theorists, Keynes [49] proposed a detailed list of reasons why a typical
consumer might demand money, including a precautionary reason or its role as fa-
cilitating transactions, which capture the role of money as a store of value and as a
medium of exchange, respectively.

To explain the role of money as a medium of exchange when it is a dominated
asset requires some specific aspects to be incorporated into the model. Specifically,
some structure is needed that may force money to be used in transactions. One way
of doing that was proposed by Clower [20] through a cash-in-advance constraint for
at least a necessary commodity.1 In this latter framework, it is necessary to spec-
ify the order in which the different markets open and close, since for the cash-in-
advance constraint to lead to a non-trivial demand for money function, the markets
for money and for commodities cannot be open simultaneously. That way, the agent
that needs money to purchase a given commodity will have to get it in the money
market in the session that closed previously to the opening of the commodity mar-
ket. Another possibility is to consider heterogeneous agents who do not coincide
with each other in the same market, as in an overlapping generations economy.2

There, money is held between periods just because each consumer knows that some
other agent will need next period the money he/she now holds.

A different alternative is that of Sidrauski [84], who introduced real balances
as an argument in the utility function of the representative consumer. In the ab-
sence of monetary illusion, it must be real balances, rather than nominal balances,

1 A commodity whose marginal utility at the level of zero consumption is equal to infinity must be
purchased with money.
2 This type of economies is not studied in this textbook. A good textbook for overlapping genera-
tions models is: Champ and Freeman [25].
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the variable entering as an argument in the utility function. Without money, the con-
sumer would have to search for some other agent who might be willing to exchange
physical commodities with her, which could take significant time and effort. Money
saves purchasing time that the consumer can enjoy as leisure, which explains its
appearance as an argument in the utility function. Money is then a medium of ex-
change, but the markets for commodities and for money can be opened at the same
time, since it is not necessary to impose any constraint on the transactions that are
being made.

This chapter starts with a theoretical discussion about a version of Sidrauski [84]
model, to characterize optimal growth in a monetary economy.3 After describing the
economy, the representative agent’s problem is solved, and the implied steady-state
optimality conditions are used to analyze alternative designs for monetary policy.
We introduce the concept of optimal steady-state rate of inflation, and characterize
conditions under which Friedman’s prescription for a zero nominal interest rate can
be optimal. The welfare cost of inflation is analyzed, and a numerical exercise is
presented to evaluate the welfare implications of alternative monetary policies. Two
sections are devoted to modelling: the first one compares the treatment of nominal
and real bonds in the economy, while the second one compares the results obtained
when real balances either at the beginning of the period or at the end of the period,
are entered as an argument in the utility function of the representative consumer.
After that, we start considering the interaction between monetary and fiscal policies
by examining monetary policy in an economy subject to income and consumption
taxes. We use again steady-state optimality conditions to characterize the feasible
combinations of monetary and fiscal policies. In a numerical exercise the reader
will see the existence of a Laffer curve in this economy. The previous models have
considered an inelastic labor supply, so the following section discusses the neutral-
ity of monetary policy in an economy with an endogenous labor supply. Up to this
point we have made a steady-state analysis, which was the standard way to proceed
before the use of numerical solution methods became widespread. In the last section
of this chapter we characterize optimal monetary policy solving what is known as
a dynamic Ramsey model, which takes into consideration the short- as well as the
long-run effects of a policy intervention. Nevertheless, the implementability con-
straint that we introduce in that section allows us to perform this analysis without
need of characterizing the transitional dynamics of the economy, a question which
is discussed in detail in Chap. 9.

8.2 Optimal Growth in a Monetary Economy:
The Sidrauski Model

We start our theoretical presentation with Sidrauski [84] model, which can be seen
as a monetary version of the Cass–Koopmans economy we studied in Chaps. 3
and 4. We only consider the discrete-time version of the model, that could also

3 A discussion on alternative ways to generate a demand for money in growth models can be seen
in Walsh [96].
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be formulated in continuous time. We suppose the economy is made up of Nt iden-
tical individuals, all with the same preferences, and all having access to the same
production technology. Population grows at a rate n, Nt = (1+n)t N0, N0 being the
initial number of individuals in the economy. There is a single good in the economy,
which can either be consumed or saved in the form of productive capital. Investment
at time t becomes productive at time t +1. As an alternative to investing in physical
capital, the consumer can also hold money, or purchase government bonds. There
is no uncertainty in the economy: the level of utility that can be achieved through
consumption or holding real balances is known with certainty, as it is the level of
output that can be produced with a given amount of physical capital and labor. The
rate of return on bonds is also known in advance with certainty.

The government does not engage into any production activity, and it does not
make any expenditure that could affect the utility of the representative consumer or
influence factor productivity. It just takes care of its finances, by printing money,
M∗

t+1 −M∗
t , giving transfers Tt away to the private sector, and issuing real bonds,

Bt+1, which are purchased with one unit of commodity, and entitle their owner to
1 + rt units of commodity at time t + 1, with rt+1 being known to agents when
bonds were issued at time t. Transfers to the private sector could be negative, which
could then be interpreted as lump-sum taxes. The government budget balances every
period, with a budget constraint

M∗
t+1 −M∗

t

Pt
+Bt+1 = (1+ rt)Bt +Tt , ∀t, (8.1)

which in per capita terms becomes

(1+n)Mt+1 −Mt

Pt
+(1+n)bt+1 = (1+ rt)bt +ζ t , ∀t,

where per capita variables are denoted by bt = Bt/Nt, ζ t = Tt/Nt and Mt = M∗
t /Nt .4

If we denote mt = Mt
Pt

and 1+πt+1 = Pt+1
Pt

, then

(1+n)Mt+1 −Mt

Pt
=

(1+n)Mt+1

Pt+1

Pt+1

Pt
− Mt

Pt
= (1+n)mt+1 (1+π t+1)−mt ,

so that the government budget constraint can be written in per capita terms

(1+n)mt+1 (1+π t+1)−mt +(1+n)bt+1 − (1+ rt)bt = ζ t .

4 This choice of notation is not arbitrary. Associating a lower case letter to Tt would produce an
awkward notation, while the proposed use of Mt is needed, because we have another money ratio,
Mt/Pt , for which we reserve the mt -notation.
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The aggregate budget constraint of the private sector is5

Ct +Kt+1 +
M∗

t+1 −M∗
t

Pt
+Bt+1 ≤ F (Kt ,Nt)+(1−δ )Kt +(1+ rt)Bt +Tt , (8.2)

where, as in previous chapters, the stock of capital accumulated at the end of period t
takes the time index t + 1, corresponding to the time period when it will become
productive.6 Analogously, money balances and bonds accumulated at the end of
period t also take the t +1 time index. All variables in (8.2) are aggregate variables.

Dividing through (8.2) by Nt we get

ct +(1+n)kt+1 +
(1+n)Mt+1

Pt
+(1+n)bt+1

≤ f (kt)+(1−δ )kt +
Mt

Pt
+(1+ rt)bt +ζ t .

As in previous chapters, the f (kt) term can be explained by the assumption of a
constant returns to scale technology F (Kt ,Nt) which is scaled down by the Nt -factor

Yt = F (Kt ,Nt) = NtF (Kt/Nt ,1) = Nt f (kt) .

8.2.1 The Representative Agent’s Problem

We assume throughout the chapter zero population growth, n = 0. Extending the
arguments to an economy with population growth is a simple exercise which does
not alter any of the qualitative results we present. The representative agent in this
economy takes care of consumption, savings and production, choosing sequences
{ct , Mt+1, kt+1, bt+1}∞t=0 to solve the problem

max
{ct ,Mt+1,kt+1,bt+1}∞t=0

∞

∑
t=0

β tU
(

ct ,
Mt

Pt

)
,

5 The private sector in the economy is made up by households and firms. The budget constraint of
the private sector consolidates the exchanges between both types of agents. One part of households’
income comes form their financial investments, here represented by a portfolio of government
bonds. They also receive income from the firm as a return to physical capital, that they own, as
well as from their working time. Consolidating these income flows, we get (8.2). In Chap. 3 we
already discussed the concept of representative agent as a way of modelling jointly the whole
private sector of the economy, as well as the difference between this representative agent and a
benevolent planner.
6 For simplicity, we will assume along this chapter that there is not technological growth.
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for some time discount factor 0 < β < 1, subject to the sequence of budget con-
straints

ct + kt+1 +
Mt+1

Pt
+bt+1 ≤ f (kt)+(1−δ )kt +

Mt

Pt
+(1+ rt)bt +ζ t , ∀t,

and given k0,M0,b0.
We have assumed that the utility function of the agent depends on the real bal-

ances at the beginning of the period t, although we could alternatively have assumed
that it depends on the real balances at the end of the period. In Sect. 8.4.2 we develop
this alternative formulation of preferences.

We also assume that the utility function has positive marginal utilities, U1,U2 > 0,
where U1 = ∂U

∂c ,U2 = ∂U
∂ (M/P) , the Hessian of U being a negative definite, symmetric

matrix. Furthermore, U1
(
0, M

P

)
= U2(c,0) = ∞, U1

(
∞, M

P

)
= U2(c,∞) = 0.

The Lagrangian for this problem is

L =
∞

∑
t=0

β t
[
U

(
ct ,

Mt

Pt

)
−λ t

(
ct + kt+1 +

Mt+1

Pt
+bt+1

− f (kt)− (1−δ )kt −
Mt

Pt
− (1+ rt)bt −ζ t

)]
,

with optimality conditions7

∂L
∂ct

= U1(ct ,
Mt

Pt
)−λ t ≤ 0; and ct

[
U1

(
ct ,

Mt

Pt

)
−λ t

]
= 0, ∀t (8.3)

∂L
∂kt+1

= −λ t +βλ t+1
(

f ′(kt+1)+(1−δ )
)
≤ 0 and

kt+1
[
−λ t +βλ t+1

(
f ′(kt+1)+(1−δ )

)]
= 0, ∀t (8.4)

∂L
∂Mt+1

= βU2

(
ct+1,

Mt+1

Pt+1

)
1

Pt+1
−λ t

1
Pt

+λ t+1β
1

Pt+1
≤ 0; and

Mt+1

[
βU2

(
ct+1,

Mt+1

Pt+1

)
1

Pt+1
−λ t

1
Pt

+λ t+1β
1

Pt+1

]
= 0, ∀t (8.5)

∂L
∂λ t

= β t
[

ct + kt+1 +
Mt+1

Pt
+bt+1 − f (kt)

−(1−δ )kt −
Mt

Pt
− (1+ rt)bt −ζ t

]
= 0, ∀t (8.6)

7 We take into explicit account in this case the fact that we are dealing with nonegativity restrictions
in all choice variables, which leads to the type of optimality conditions below. That allows us to
discuss the possibility of zero demands for money or bonds, for instance. However, the reader must
be aware that the same type of discussion could have been made in all other optimization problems
in the book.
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∂L
∂bt+1

= −λ t +β (1+ rt+1)λ t+1 ≤ 0, and

bt+1 [β (1+ rt+1)λ t+1 −λ t ] = 0, ∀t (8.7)

and transversality conditions

lim
T→∞

βTλT
MT+1

PT
= 0, (8.8)

lim
T→∞

βTλT kT+1 = 0, (8.9)

lim
T→∞

βTλT bT+1 = 0, (8.10)

which are obtained as usual, taking derivatives in the finite horizon version of the
Lagrangian with respect to state variables, capital stock, bonds and real balances,
indexed by T + 1, the last period in the maximization problem with horizon T . In
these conditions, the powered discount factor tends to zero, while state variables
accumulate over time. If the marginal utility of consumption stays stable, transver-
sality conditions (8.8)–(8.10) imply that state variables accumulate at a rate lower
than β . They also imply that, along the optimal paths, consumption cannot go to
zero too quickly.

From (8.3), assuming an interior solution,8 i.e., ct > 0 ∀t, we get

λ t = U1

(
ct ,

Mt

Pt

)
,

so that, using (8.4) and (8.7),

bt+1 > 0 ⇒ λ t

βλ t+1
=

U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

) = 1+ rt+1,

kt+1 > 0 ⇒
U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

) = f ′(kt+1)+(1−δ ) ,

which have the standard interpretation. The first condition is the equality be-
tween the intertemporal marginal rate of substitution of consumption and the real
rate of interest. To interpret the second condition, notice that saving one addi-
tional unit of the consumption commodity at time t will produce a utility loss of
U1

(
ct ,

Mt
Pt

)
. Saving that unit in the form of physical capital, we would obtain at

time t + 1, f ′(kt+1)+ (1−δ ) additional units of the commodity, which, multiplied
by U1

(
ct+1,

Mt+1
Pt+1

)
approximates the utility gain at time t + 1, which we need to

multiply by β to compare it with time t utility. Along the optimum path, the repre-
sentative consumer must be indifferent with respect to this trade-off between current
and future utility.

8 There will always be an interior solution because of our assumption that the marginal utility of
consumption becomes infinite for zero consumption.
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From the previous conditions, we have the equality at each point in time between
the marginal rate of substitution of consumption over time, the rate of return on
physical capital, and the return on real financial assets, rt+1, which is known at
time t

MRSt, t+1 ≡
U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

) = f ′(kt+1)+(1−δ ) = 1+ rt+1, (8.11)

a standard equilibrium condition in non-monetary growth models as well, as we
have seen in previous chapters.

From (8.3) and (8.5), we get

Mt+1 > 0 ⇒ β
U2

(
ct+1,

Mt+1
Pt+1

)

Pt+1
=

U1

(
ct ,

Mt
Pt

)

Pt
−β

U1

(
ct+1,

Mt+1
Pt+1

)

Pt+1
, (8.12)

and dividing through by βU1

(
ct+1,

Mt+1
Pt+1

)
1

Pt+1
:

U2

(
ct+1,

Mt+1
Pt+1

)

U1

(
ct+1,

Mt+1
Pt+1

) =
U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

)
Pt+1

Pt
−1. (8.13)

Since we just consider the existence of real bonds in the economy, we must think
of the nominal interest rate, it+1, as being an artificial construct defined in gross
terms as the product of the real rate of interest and the rate of inflation: 1 + it+1 =
(1+ rt+1)(1+πt+1). Equation (8.13), using (8.11) leads to

U2

(
ct+1,

Mt+1
Pt+1

)

U1

(
ct+1,

Mt+1
Pt+1

) = (1+ rt+1)(1+πt+1)−1 = (1+ it+1)−1 = it+1. (8.14)

Along the optimal trajectory, the marginal rate of substitution between real bal-
ances and consumption must be equal to the nominal interest rate. We are more
used to think in terms of defining the (gross) real rate of interest from that expres-
sion. In any event, we show in Sect. 8.4.1 that whenever real and nominal bonds
exist together, we have the equality (1+ rt+1)

Pt+1
Pt

= 1 + it+1 every period as an
equilibrium condition.

Equation (8.14) can be safely interpreted as a demand function for money,
emerging from utility maximizing conditions, with no ad-hoc assumptions im-
posed. If we assume that the utility function is separable in its two arguments, as
in U

(
ct ,

Mt
Pt

)
= lnct+θ ln Mt

Pt
, θ > 0, (8.14) becomes

θct+1

Mt+1/Pt+1
= it+1 ⇔

Mt+1

Pt+1
=
θct+1

it+1
.
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So, an increase in nominal interest rates will tend to come together with a de-
crease in the demand for real balances at the beginning of period t. Similar effects
would be produced by an increase in either the real interest rate or the inflation rate.
An increase in consumption expenditures will also tend to come together with an in-
crease in the demand for real balances, capturing a transaction demand aspect of the
demand for real balances. Of course, this is easy to see just if these ceteris paribus-
type of exercises were justified, unlike what happens in a general equilibrium setup
like the one we are analyzing.

Condition (8.14) can also be interpreted in the usual fashion: If we decided to
hold one additional monetary unit at time t, we would have a utility gain at time
t + 1 of 1

Pt+1
U2

(
ct+1,

Mt+1
Pt+1

)
. In addition to the utility of just holding money, we

could use it to buy 1
Pt+1

of the consumption commodity at time t +1, with a utility of
1

Pt+1
U1

(
ct+1,

Mt+1
Pt+1

)
. To hold that additional unit of money at time t, we have to give

up on some of the government bonds we would have purchased at time t. The unit
of money invested in bonds would have allowed us to buy 1/Pt bonds, which would
have entitled us to (1+ rt+1)/Pt units of commodity at time t +1. Consumption of
those units would have produced a utility of (1+ rt+1) 1

Pt
U1

(
ct+1,

Mt+1
Pt+1

)
. The result

of these two alternative strategies must be the same in equilibrium, which is what
the previous condition is saying.

Note that the assumptions we have made on the utility function U(ct ,
Mt
Pt

) guar-
antee that ct ,

Mt
Pt

> 0 ∀t. Furthermore, the government and the representative agent
constraints, taken together as we have done in previous models, lead to a global
constraint of resources

ct + kt+1 = f (kt)+(1−δ )kt ,

every period.

8.2.2 Steady-State in the Monetary Growth Economy

Steady-state is a sustainable trajectory along which all per-capita variables in the
economy grow at a constant rate, which could be zero for some variables. The same
argument used in the chapter on the Solow–Swan model can now be used to show
that, in the economy we are considering, with decreasing returns for the cumulative
inputs, the production technology and the time evolution of the production factors
cannot sustain positive growth forever. Hence, the only possible steady state is one
in which per-capita variables stay constant.9

9 With population growth and the same production technology, economic growth for economy
wide aggregates at the same rate than population growth could be sustained, as it is the case in the
nonmonetary economies considered in previous chapters. Adding technical growth, which is not
done in this chapter, would lead to a growth rate equal to the growth rate of population plus the
rate of technical growth.
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So, it seems sensible to assume that the government follows fiscal and monetary
policies with an inflation target as well as a target for the level of lump-sum transfers
to consumers,

ζ t = ζ ss, ∀t

π t = πss, ∀t

and we look for steady-state values of per capita variables, css, kss, yss, rss, bss, all
of them as functions of ζ ss, πss and the set of structural parameters, satisfying all
optimality conditions and budget constraints. Structural parameters are β , δ , and
those entering the production and utility functions. We show below that, under this
policy design, real balances are constant in steady state, and we denote their steady-
state value by mss.

Taking these constant values to the system of conditions above, we get

f ′(kss)+(1−δ ) = 1/β ,

which provides us with the steady-state level of physical capital. To compute it, we
need to make some specific assumption on the functional form of the production
function. Redefining the discount factor10 as β = 1

1+ρ , we have

f ′(kss) = ρ+δ , (8.15)

an equality we already obtained in the Cass–Koopmans model,11 which provides a
uniquely defined value for kss. So, the presence of money and bonds in the economy
does not perturb the capital accumulation process in the long-run.

From the global constraint of resources in the economy, we get

css + kss = f (kss)+(1−δ )kss,

which gives us the steady-state level of consumption

css = f (kss)−δkss,

a function of structural parameters like the depreciation rate of capital and the output
elasticity of physical capital. Notice that under a quite general definition of prefer-
ences, steady-state consumption does not depend on preferences or on the presence
of money in the economy. However, as it is the case with the steady-state stock of
capital, it changes with the rate of time discount.

10 This is a pure change of notation, and both expressions are used in economic modelling. The
relationship can be approximated (through a Taylor series expansion) by: β = 1−ρ, so that, for
instance, β = 0.95 corresponds with ρ = 0.05.
11 With the only difference that in the Cass–Koopmans chapter, the discount factor was denoted
by θ , rather than ρ .
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From the production function we get the constant steady-state level of output

yss = f (kss).

From (8.11) we get, with constant consumption and real balances

1
β

= 1+ rss,

which gives us the steady-state real interest rate as a function of the discount rate, a
relationship that we already obtained in the non-monetary Cass–Koopmans model.

From (8.14) we get

U2 (css,mss)
U1 (css,mss)

= (1+ rss)(1+πss)−1 =
1+πss

β
−1, (8.16)

which, for a specific functional form for the utility function, would provide us with a
function mss = m(πss) for steady-state real balances since, as shown above, steady-
state consumption depends just on structural parameters. Hence, at least for this
type of monetary policy, real balances are constant in steady-state. Nominal money
balances will not be constant, however, growing at a rate πss, the rate of growth of
prices.

The steady-state nominal interest rate can be obtained from

iss = (1+ rss)(1+πss)−1 =
1+πss

β
−1, (8.17)

while the stock of bonds is obtained from the government budget constraint in
steady-state form12

[mss (1+πss)−mss]+ [bss − (1+ rss)bss] = ζ ss

⇒ bss =
πssmss −ζ ss

rss
=
πssm(πss)−ζ ss

rss
. (8.18)

The reader must be aware of the fact that although we can compute the steady
state level of government debt, this level could well be unreachable, since unless
some stability mechanism is incorporated into the design of fiscal policy, the stock
of debt outstanding will either explode or fall to zero.

The inflation tax is defined as the product of real balances by the inflation rate,
πssmss. It is the loss in the purchasing power of the stock of real balances maintained
by the representative agent due to inflation. The steady-state relationship: πssmss =
rssbss +ζ ss, reflects the fact that we must allow for a positive inflationary tax in order
to finance the transfers of commodity from the government to the private sector, as

12 In an economy where the government cannot use debt financing, we would have: mssπss = ζ ss,
and the size of the lump-sum transfer would no longer be an independent policy target, being
determined by the choice target for the rate of inflation.
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well as interest payments on outstanding debt. Transfers to the private sector could
be negative, then being interpreted as lump-sum taxes, which would alleviate or even
eliminate the need to raise an inflationary tax. In fact, we will later see in numerical
exercises that the transfer to the private sector will end up being negative, becoming
then a lump-sum tax, in those cases when a negative rate of inflation produces a
negative inflation tax.

The previous equations characterize the optimal steady-state, which under condi-
tions similar to those in Chaps. 2 and 3 will be unique. That steady state is, however,
conditional on the design of monetary and fiscal policy. It is therefore a second-best
optimum. The so-called Ramsey problem attempts to characterize the choice of pol-
icy that leads to the optimum allocation of resources among all the second-best solu-
tions. As an example, we could consider a Cobb–Douglas technology, y = Akα , with
preferences: U(c,M/P) = ln(c)+θ ln(M/P). We would then have: mss = βθcss

1+πss−β ,

with steady state expressions:

kss =

(
Aα

1
β −1+δ

)1−α

; css = Akαss −δkss; bss =
πss

βθcss
1+πss−β −ζ ss

1
β −1

,

with the last equation describing the choices available to the policy maker in terms
of choosing a possible mix of fiscal and monetary policies.

8.2.3 Golden Rule

As in previous chapters, we could again define the Golden Rule, as the particular
steady-state characterized by allowing for the maximum level of consumption. We
could collapse the budget constraints for the government and for private agents into
the same global constraint of resources as in a non-monetary economy, having in
steady-state

css + kss − f (kss)− (1−δ )kss = 0,

so that

∂css

∂kss
= −1+ f ′ (kss)+(1−δ ) = 0 ⇒ f ′ (kGR) = δ , (8.19)

∂ 2css

∂k2
ss

= f
′′
(kss) < 0, (8.20)

the same characterization we already obtained for a non-monetary economy under
zero population growth and absence of technical growth. Comparing the character-
ization of the optimal level of the stock of capital (8.15), with (8.19), we see that

kss < kGR,
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the Golden Rule implying too much capital accumulation, relative to the optimal
steady state. Excessive capital accumulation is achieved by too little consumption
earlier on, and it is due to giving too much weight to future utility (or to future
generations, depending on the interpretation we give to the growth model).

8.3 Steady-State Policy Analysis

In the previous section, we have characterized steady-state above under a policy
design that sets targets for the rate of inflation and the level of lump-sum transfers
to consumers. It should be noticed that there could be feasible steady-state trajec-
tories with π t and ζ t not being constant. In that case, real balances would not be
necessarily constant in steady state, since they would to satisfy

U2 (css,mt)
U1 (css,mt)

=
1+π t

β
−1,

while π t and ζ t would have to be linked every period by

π tm(π t)−ζ t = bssrss.

The analysis in the previous section also suggests three relevant characteristics
of this monetary economy:

1. Under zero population growth, real balances are constant in steady-state, the rate
of inflation is equal to the rate of growth of money balances, xss, so we have the
result that the rate of growth of money does not have any real effect, showing
the long-run superneutrality of money. When the analysis of monetary policy is
restricted to the steady-state, as it is the case in this chapter, changes in money
growth have the same effects than changes in the inflation rate target. So, from
the point of view of policy design, choosing a target for the rate of inflation, πss,
amounts to choosing the rate of growth of money, xss. With positive population
growth n, we would have

1+πss =
1+ xss

1+n
.

The rate of inflation would then not be equal to the rate of money growth, but we
would still have the one-to-one correspondence between both variables, used as
policy targets.

2. Furthermore, the qualitative effects of a change in the nominal interest rate are
also the same as those of a change in the inflation target. The reason is that

1+ iss =
1+πss

β
.

In actual economies, monetary authorities control the time evolution of either
a monetary aggregate or a short-term nominal rate of interest. In the general
equilibrium monetary economy described in this chapter, we just consider a
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single interest rate, although a simultaneous consideration of a long- and a short-
rate would allow us to discuss the roles of the slope of the term structure of
interest rates in the transmission of monetary policy effects.

3. Monetary policy is neutral in this economy in the long-run, since css,kss,yss are
determined with independence of the value of πss or mss.

Additional remarks on alternative policy choices are:

• Let us assume that the monetary authority can control the size of the steady-state
stock of real balances, mss. The steady-state rate of inflation and the stock of
government bonds would be obtained from

πss = β
(

1+
U2 (css,mss)
U1 (css,mss)

)
−1 = π (mss) ,

bss =
π (mss)mss −ζ ss

rss
,

steady-state values for all other variables being obtained as under the policy rule
we examined above, when the government was choosing πss.

• As reflected in these exercises on alternative policy designs, the government can-
not decide on monetary and fiscal policy targets, mss, πss, bss, ζ ss independently,
since (8.18) imposes a constraint among their values, showing the interrelation-
ship between fiscal and monetary policy.

• The previous discussion shows that the government needs to design policy by
deciding on a value of either πss or mss and additionally, a value of either bss
or ζ ss. Otherwise, the long-run trajectory of the economy would remain inde-
terminate. For instance, the government cannot simultaneously choose πss and
mss, unless the chosen targets are constrained by (8.16). But even then, we would
have a single equation to solve for bss and ζ ss, which would render the equilib-
rium indeterminate.

• Still an alternative policy would consist of choosing πss and bss, leaving mss and
ζ ss free. We would then have

ζ ss = πssm(πss)− rssbss,

all other variables being obtained as above.
• The policies defined by a choice of either mss and bss, mss and ζ ss, or πss and ζ ss,

could be analyzed similarly to those above.

8.3.1 Optimal Steady-State Rate of Inflation

When the monetary aggregate considered is the monetary base, nominal return on
money is zero, while real return is negative, because of inflation. Against that,
nominal return and, often, real return on assets other than money, is positive. There-
fore, money is an asset which is dominated in return.



390 8 Growth in Monetary Economies: Steady-State Analysis of Monetary Policy

We know as Friedman’s rule the policy prescription: ‘Optimal monetary policy
is defined as making of money an asset which is not dominated in return’.13 The
nominal return of assets other than money can be seen as the opportunity cost of
holding money. The social marginal cost of producing money is negligible. There
is therefore an inefficiency produced by the gap between the social and the private
marginal costs of money, and the inefficiency goes away only when the opportunity
cost of holding money is zero, i.e., when the nominal return on any other assets like
government and private bonds is equal to zero, iss = 0. This is why Friedman’s rule
is usually linked to a zero nominal rate of interest.

We now analyze whether Friedman’s rule holds in the general equilibrium mon-
etary economy we have introduced, under two different monetary policy designs,
depending on whether it is the rate of inflation or the size of real balances that are
used as a control variable.

The general approach to characterizing optimal monetary policy in a general
equilibrium model consists on solving a Ramsey’s problem, a leader-follower game
between the government and the representative agent. The government is the leader,
choosing the monetary policy design it prefers, and the representative agent makes
his decisions knowing the design chosen for monetary policy implementation. The
equations characterizing the solution to the problem of the representative agent
are the reaction functions of the ‘follower’ to change in the leader’s decisions.
When the government makes the choice of a monetary policy, it knows the reaction
functions of the representative agent. In steady-state, such functions are the steady-
state expressions for consumption, real balances, output, and so on. It is usually as-
sumed that the government’s objective when makes a policy choice is to maximize
the welfare of private agents, which seems consistent with a government searching
to be reelected.

Therefore, in steady-state, the government chooses the monetary policy design
that maximizes the steady-state level of utility of the representative agent subject to
its budget constraint. That is, the chosen policy needs to be feasible from the point
of view of the government. On the other hand, it is not necessary to take explicitly
into account the steady-state version of the government’s budget constraint provided
there is a non-distortionary policy instrument to make it to hold, as it will usually be
the case.

First, we consider the rate of inflation as the control variable for monetary policy,
while fiscal policy may have either a target for the real value of the stock of public
debt or the size of lump-sum transfers, as described in previous sections, and define
the optimal rate of inflation as the one maximizing steady-state utility

πopt = argmax{W (π)} = argmax{U(css(π),mss(π))}.

The optimal inflation rate will have to satisfy

∂W (π)
∂π

= U1(css,mss)
∂css

∂π
+U2(css,mss)

∂mss

∂π
= 0. (8.21)

13 This policy prescription was first issued in Friedman [34].
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But we have just seen how the steady-state level of consumption does not depend
on the inflation rate, so that: ∂css

∂π = 0. On the contrary, real balances depend on

inflation
(
∂mss
∂π 	= 0

)
, so that (8.21) implies that the optimal rate of inflation would

be the one satisfying: U2(css,mss) = ∂U(css,mss(π))
∂m = 0. Hence, real balances under

the optimal monetary policy will only be finite if preferences have a satiation point
in the level of real balances.14

Since (8.16) is a condition characterizing steady-state, we must have

U2(css,mss(π))
U1(css,mss(π))

= iss =
1+π
β

−1,

and, since U2(css,mss) = 0 under the optimal inflation rate, the optimal steady-state
rate of inflation is negative and equal to: πopt = β − 1, implying a zero nominal
interest rate iss = 0. So, being negative, the optimal rate of inflation produces a
positive real return on money, with a zero nominal return rate (imoney = 0): rmoney

ss =
1+imoney

1+πopt −1 = 1
1+β−1 −1 = 1

β −1 > 0. Under the optimal rate of inflation, the steady-
state real return on money is the same as the real return on any other asset alternative
to money. Since real returns on all assets15 are the same under the optimal rate of
inflation, they also offer the same nominal return, and Friedman’s rule is valid.

Second, let us assume now that, instead of the rate of inflation as a control vari-
able, the government chooses exogenously mss and ζ ss.

16 Similarly, we can then
define Optimal monetary policy as the level of real balances for which

mopt = argmax{W (m)} = argmax{U(css(m),m)}.

In this case, the optimality condition is

∂W (m)
∂m

= U1(css,m)
∂css

∂m
+U2(css,m) = 0,

which is satisfied only if U2(css,m) = 0, implying again iss = 0. The reader can
easily check that this solution satisfies the second order condition for a maximum.

This approach to characterizing optimal monetary policy is open to two criti-
cisms:

• It is just a steady-state analysis, while it would be important to characterize opti-
mal monetary policy taking into account the dynamics of the economy.

• The result has been obtained under the assumption that the government has
available lump-sum taxes, public debt issuance and seigniorage revenues to ac-
commodate any exogenous shock. If, following a change in monetary policy, the

14 Condition (8.21) characterizes a maximum since, under the optimal policy, ∂ 2W (π)
∂π2 =

U22(css,mss)
(
∂mss
∂π

)2
< 0.

15 Like physical capital, for instance.
16 Results would be similar if the government would choose the target level for public debt as well
as for real balances, with the level of the lump-sum transfer then being endogenously determined.
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government could only modify distortionary taxes like an income tax, then a pos-
itive rate of inflation might be optimal. In that situation, the utility of the private
agent depends negatively on the inflation rate and on the level of the tax rate. It
would be preferable to use actively the instrument producing lower distortions
on the economy while allowing for financing a given government expenditures,
which may lead to the optimality of a positive inflation tax.

In Sect. 8.7 we characterize optimal monetary policy under distortionary taxes
while taking into account the dynamics of the economy outside steady-state.

8.3.2 The Welfare Cost of Inflation

In the Sidrauski model analyzed above, inflation produces a welfare loss because
the level of utility depends positively on the level of real balances, which decreases
when inflation raises. Hence, the model should allow us to quantify the welfare cost
of inflation. Traditionally, the cost of inflation has been measured as the area below
the demand curve for money (Bailey [7]). To quantify the size of the distortion
introduced by any instrument of economic policy in general equilibrium models,
it is standard to compute the percent change in steady-state consumption needed
as a compensation for the consumer to be indifferent between a given policy and
the optimal policy. Therefore, the welfare cost of inflation would be the percent
change in steady-state consumption needed as a compensation for the consumer to
be indifferent between a given rate of inflation and optimal inflation. Let us denote
by ν the percent increase in steady-state consumption, css the level of steady-state
consumption under any inflation rate,17 and mss(π) the steady-state level of real
balances as a function of the rate of inflation (so that mss(opt) is the level of real
balances when π = πopt). We must have

U((1+ν)css,mss(π)) = U(css,mss(opt)).

For instance, if the utility function is (Lucas [61])

U(ct ,mt) =
1

1−σ

{[
ctϕ

(
mt

ct

)]1−σ
−1

}

, where

ϕ
(

mt

ct

)
=

1

1+ϖ
(

mt
ct

)−1 , with ϖ > 0.

The reader can easily check that the partial equilibrium demand for money men-
tioned in Sect. 8.2.1 is, in this case, mt = ϖ1/2ct (it)

−1/2 . Besides, using the ap-
proach described in the previous section, we have that the optimal rate of inflation

17 Since we have already seen that, in our model, inflation does not have any effect on consumption.
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is πopt = β −1 and, under that optimal inflation rate, real balances become infinite
in steady-state. The steady-state level of utility under the optimal rate of inflation is:
U(css,∞) = 1

1−σ
(
c1−σ

ss −1
)
.

The cost of inflation, measured in terms of the welfare lost, is

1
1−σ

⎡

⎢
⎣

⎛

⎜
⎝

(1+ν)css

1+ϖ
(

mss(π)
(1+ν)css

)−1

⎞

⎟
⎠

1−σ

−1

⎤

⎥
⎦ =

1
1−σ

(
c1−σ

ss −1
)
,

from where we have

ν =
ϖcss/mss(π)

1−ϖcss/mss(π)
=

√
ϖ iss

1−
√
ϖ iss

.

Let us consider the utility function: U(ct ,mt) = lnct + θ lnmt , θ > 0. This is a
standard assumption on preferences for which the optimal rate of inflation is again
πopt = β − 1 and, under such optimal inflation rate, real balances are infinite in
steady-state. Nevertheless, at a difference from the previous case, under the optimal
rate of inflation, the level of utility is now unbounded, and the proposed approach to
measuring the cost of inflation is not appropriate, since that cost becomes infinite. In
such situations, it is standard to use a zero rate of inflation as a reference with respect
to which to compute the welfare cost of positive rates of inflation (Guillman [39]).
The numerical cost of inflation thereby obtained will clearly be an undervaluation
of the true cost of inflation. To illustrate this fact, if we compute the cost of inflation
for negative inflation rates, but greater than β −1, we would obtain negative values,
reflecting the fact that a zero rate of inflation distorts agents’ decisions relative to
negative rates of inflation, reducing their level of welfare.

Under the utility function we just mentioned, if we denote by mss(0) the steady-
state level of real balances when the rate of inflation is zero, we have: ν =(

mss(0)
mss(π)

)θ
− 1 =

(
1−β+π

1−β

)θ
− 1. The welfare cost of inflation, as a percentage of

output is

νcss

yss
=

[(
1−β +π

1−β

)θ
−1

](
1−δ

kss

f (kss)

)
,

where kss denotes the steady-state stock of capital which, as we have shown in the
previous section, is independent of the rate of inflation.

In Sect. 8.6.1 we show that when the assumption of an inelastic labor supply is
dropped and leisure, private consumption and real balances enter as nonseparable
arguments in the utility function, the rate of inflation is not neutral. In that case,
characterizing the cost of inflation analytically is somewhat more complex, but still
feasible.

For a specific utility function, the numerical values obtained for the cost of infla-
tion, for each possible rate of inflation, will depend on the numerical values assumed
for the structural parameters. It is therefore convenient to choose such values so that
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the model is able to explain a number of empirical observations. This is known as
calibration of the model. For instance, it is standard to assume a production function
displaying constant returns to scale which, in per capita terms, would be: f (kt) = kαt ,

which satisfies: f ′(kt )kt
f (kt )

= α . We already known from Chap. 3 that, in equilibrium,
f ′(kt) is the real return on capital before depreciation. Therefore, α is the share of
capital rents in production, while its complement, 1-α , is the share of labour rents
in total income. Averaging over a wide set of actual economies, it can be thought
that the labor rents share is of the order of 0.65 or 0.70. So, α ∈ [0.30;0.35].

Another empirical regularity of actual economies is the fact that the annual real
rate of interest oscillates around 2%. This is the level achieved in our model when
the discount parameter is approximately equal to 0.98. On the other hand, the de-
preciation rate of physical capital is hard to estimate, since we would need of time
series for the stock of capital, which do not exist except in a few countries. There
is, however, a broad agreement in assuming an annual depreciation rate for capital
around 10%.

A particularly important parameter in the computation of the welfare cost of in-
flation is θ , which determines the relative preference for consumption versus hold-
ing real balances. The value of this parameter is chosen so that the model can explain
the velocity of circulation of money in the actual economy to which the theoretical
results are to be applied. The expression for the velocity of money in steady-state is

Velocity =
yss

mss
=

(1+π−β )kαss

βθcss
.

This is of course a general consideration that has already been taken into account
when choosing parameter values for the simulation exercises in previous chapters.
What we want to emphasize now is the fact that the numerical implication from the
model relative to a given question will be a function of the parameterization chosen,
so that this must sound convincing to the reader.

A numerical exercise on evaluating the welfare cost of inflation for different util-
ity functions is performed in the next section.

8.4 Two Modelling Issues: Nominal Bonds and the Timing
of Real Balances

We devote this section to discussing two topics on modelling. The first one compares
optimality conditions emerging from economies with nominal or with real debt. We
obtain the well known relationship between the nominal return on bonds, the rate of
return on real bonds and the rate of inflation as an equilibrium condition. The second
analysis deals with the comparison between including the real value of nominal
balances at the beginning or at the end of the period, alternatively, as an argument
in the utility function.
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8.4.1 Nominal Bonds: The Relationship Between Real
and Nominal Interest Rates

As in previous sections, the government gives consumers a lump-sum transfer of
Tt units of the consumption commodity, which is financed by liquidity injections,
M∗

t+1 −M∗
t , as well as by issuing some public debt. In particular, we assume in this

section that the government issues nominal bonds V ∗
t . The consumer will receive

from the government 1 + it money units at time t + 1 for each money unit invested
in government bonds at time t. The government budget constraint becomes18

M∗
t+1 −M∗

t

Pt
+

V ∗
t+1 − (1+ it)V ∗

t

Pt
= Tt ,

which, in terms of per capita money, nominal bonds and transfers are: Mt = M∗
t

Nt
,

Vt = V ∗
t

Nt
, and ζ t = Tt

Nt
can be written

(1+n)Mt+1 −Mt

Pt
+

(1+n)Vt+1 − (1+ it)Vt

Pt
= ζ t ,

or
(1+n)Mt+1 −Mt

Pt
+(1+n)b̄t+1 −

1+ it
1+πt

b̄t = ζ t , (8.22)

where b̄t+1 = Vt+1
Pt

now denotes the value of the stock of nominal bonds per capita
at the end of period t in units of the consumption commodity.19

We started the chapter by considering real bonds, which are purchased with one
unit of the consumption commodity, and entitle their owner to 1+rt units of the con-
sumption commodity at time t +1. These financing instruments led to a government
budget constraint, in per capita terms

(1+n)Mt+1 −Mt

Pt
+(1+n)bt+1 − (1+ rt)bt = ζ t ,

which, by comparison with the government budget constraint for the case of real
debt (8.22) illustrates the relationship between nominal and real interest rates:
1+it
1+πt

= 1+ rt .

18 We leave to the reader to show that the relationship between nominal and real interest rates that
is obtained in this section still holds if, in addition to transfers to consumers, the government needs
to finance the purchase of the single good in the economy, whatever its use may happen to be.
19 Notice that

(1+n)Vt+1 − (1+ it)Vt

Pt
= (1+n)

Vt+1

Pt
− (1+ it)

Vt

Pt−1

Pt−1

Pt
= b̄t+1 −

1+ it
1+π t

b̄t .
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This relationship can also be seen in the representative agent budget constraint,
which takes the form

ct +(1+n)kt+1 − (1−δ )kt +
(1+n)Mt+1 −Mt

Pt
+(1+n)bt+1 − (1+ rt)bt

≤ f (kt)+ζ t ,

when we exchange consumption for capital at the rate of one-to-one, as it is the case
with the trade-off between consumption and real bonds, and it becomes

ct +(1+n)kt+1 − (1−δ )kt +
(1+n)Mt+1 −Mt

Pt
+(1+n)b̄t+1 −

1+ it
1+π t

b̄t

≤ f (kt)+ζ t , (8.23)

for the case of nominal bonds. It is clear that both constraints coincide if

(1+n)bt+1 − (1+ rt)bt = (1+n)b̄t+1 −
1+ it
1+π t

b̄t ,

which would also make both representations of the government budget constraint
coincide.

But these comparisons only show that the same resource allocation set can be
attained under real debt than under nominal debt if and only if the relationship be-
tween nominal and real interest rates is as shown above. Let us now look at optimal-
ity conditions when both types of debt are present in the economy.

The optimality condition corresponding to a positive demand for nominal bonds
would be

(1+n)
λ t

Pt
= β (1+ it+1)

λ t+1

Pt+1
,

leading to

1+n
β

U1

(
ct ,

Mt
Pt

)

U1

(
ct+1,

Mt+1
Pt+1

) = (1+ it+1)
Pt

Pt+1
=

1+ it+1

1+πt+1
,

while the optimality condition for a positive demand of real debt is (8.11), allowing
for population growth:

1+n
β

U1

(
ct ,

Mt
Pt

)

U1

(
ct+1,

Mt+1
Pt+1

) = 1+ rt+1.

So, if both types of debt exist in the economy, they will both be in positive de-
mand if and only if they offer the same return, that is, if

1+ rt+1 =
1+ it+1

1+πt+1
,

an equilibrium condition relating nominal to real interest rates.
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8.4.2 Real Balances in the Utility Function: At the Beginning
or at the End of the Period?

In the models analyzed in previous sections, the representative agent demands some
money in spite of the fact that money is an asset which is dominated in return by
productive capital and bonds. It does so because real balances enter as an argument
in his utility function, together with consumption.20 In particular, money balances
increase utility by facilitating transactions, then the presence of real balances in the
utility function is quite clear. There are, however, different possibilities depending
on the opening and closing schedules for the real and financial markets.

Variables in this section are all in per capita terms, and we assume zero popu-
lation growth. If liquidity injections take place while commodity markets are still
opened, then the relevant variable is the real value Mt+1

Pt
of balances at the end of

period t, Mt+1 = Mt +∆Mt . If, on the other hand, commodity markets close be-
fore financial markets open and liquidity injections take place, then it is real bal-
ances available at the beginning of period t, Mt

Pt
that are relevant. We assume that

the government makes a monetary transfer ζ t to each consumer at the beginning
of each period.21 If commodity markets open only after financial markets have al-
ready closed and transfers have been made, then public debt Vt+1 will be bought
with money, and interest on bonds will also paid with cash (1 + it)Vt , and the ar-
gument in the utility function should be: Mt+ζ t−Vt+1+(1+it )Vt

Pt
, since that is the pur-

chasing ability of the nominal balances available to consumers when commodity
markets open.

In the case when monetary injections are received while commodity markets are
still open, the utility function is of the form: U

(
ct ,

Mt+1
Pt

)
, and the budget constraint

is (8.23). After eliminating Lagrange multipliers, optimality conditions, are

U1

(
ct ,

Mt+1

Pt

)
= βU1

(
ct+1,

Mt+2

Pt+1

)
(1+ it+1)/(1+πt+1), (8.24)

U1

(
ct ,

Mt+1

Pt

)
= βU1

(
ct+1,

Mt+2

Pt+1

)
(

f ′(kt+1)+1−δ
)
, (8.25)

[
U1

(
ct ,

Mt+1

Pt

)
−U2

(
ct ,

Mt+1

Pt

)]
1
Pt

= βU1

(
ct+1,

Mt+2

Pt+1

)
1

Pt+1
. (8.26)

20 Unless agents had money illusion, it is real, and not nominal money balances, which must appear
as an argument in preferences.
21 We comment below on the changes to be introduced when ζ t is a transfer of some units of the
consumption commodity.
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Dividing (8.26) by U1

(
ct ,

Mt+1
Pt

)
1
Pt

we get

U2(ct ,
Mt+1

Pt
)

U1

(
ct ,

Mt+1
Pt

) = 1−
βU1

(
ct+1,

Mt+2
Pt+1

)

U1

(
ct ,

Mt+1
Pt

)
Pt

Pt+1

=
it+1

1+ it+1
,

where we have used (8.24), the fact that π t+1 = Pt+1
Pt

−1.
Alternatively, if commodity markets open only after monetary transfers and fi-

nancial trades have already taken place, the utility function is of the form U
(

ct ,
Dt
Pt

)

with Dt = Mt +ζ t −Vt+1 +(1+ it)Vt , and the budget constraint for the representative
consumer is

ct +[kt+1 − (1−δ )kt ]+
Mt+1

Pt
≤ f (kt)+

Dt

Pt
,

with first order conditions22:
[
U1

(
ct ,

Dt

Pt

)
+U2

(
ct ,

Dt

Pt

)]

= β
[
U1

(
ct+1,

Dt+1

Pt+1

)
+U2

(
ct+1,

Dt+1

Pt+1

)]
1+ it+1

1+π t+1
, (8.27)

U1

(
ct ,

Dt

Pt

)
= βU1

(
ct+1,

Dt+1

Pt+1

)
[

f ′(kt+1)+1−δ
]
, (8.28)

U2

(
ct ,

Dt
Pt

)

U1

(
ct ,

Dt
Pt

) = it+1. (8.29)

In a more complex setup, Carlstrom and Fuerst [17] consider these two utility
function specifications in a model with no production, where the monetary authority
chooses the nominal rate of interest as a function of expected inflation, with the

22 Still an alternative formulation could consider ζ t as transfers of the consumption commodity.
Then Dt would be defined by Dt = Mt −Vt+1 +(1+ it)Vt , and the budget constraint for the repre-
sentative consumer would be

ct +[kt+1 − (1−δ )kt ]+
Mt+1

Pt
≤ f (kt)+

Dt

Pt
+ζ t ,

and optimality conditions can be obtained without any difficulty.
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implication that the specification chosen for the utility function is key to obtain
indeterminacy in real variables.23

Qualitative results associated to either of these formulations are the same when
the analysis is made in steady-state, although steady-state levels may differ. Further-
more, results may be different when analyzed along the transition between steady-
states. As an example, we leave as an exercise for the reader to show that, once we
introduce uncertainty into the economy,24 a transitory and unexpected increase in
the money supply lasting a single period, when the economy is outside steady-state,

does not have real effects under the utility function: U
(

ct ,
Mt+1

Pt

)
=

(
ct

(Mt+1
Pt

)θ)1−σ

1−σ

while under the utility function U
(

ct ,
Mt
Pt

)
=

(
ct

(
Mt
Pt

)θ)1−σ

1−σ , consumption and the
stock of capital change at the time of the monetary shock. The intuitive explana-
tion is that in the first case, the price level increases in the same proportion than
the money supply, so that the relevant measure of real balances, Mt+1

Pt
, remains unal-

tered. In the second case, the relevant real balances are Mt
Pt

, so that the increase in the
price level as a consequence of the monetary shock produces a fall in real balances,
increasing the marginal utility of consumption and affecting the accumulation of
physical capital. In the next section, we present a numerical exercise evaluating the
implications of some policy choices under alternative specifications of preferences,
depending on whether it is beginning or end of period real balances that enter as an
argument in the utility function.

The specification chosen for the arguments in the utility function may affect the
computation of steady-state, because the latter needs to be characterized in terms
of the variables that are really relevant for private agents. When the real value of
money balances at the end of the period enters as an argument in the utility function,
then the steady state value of m̄t+1 = Mt+1

Pt
, and not that of mt = Mt

Pt
is relevant for

consumer’s decisions. Both relate to each other by

m̄t+1 =
Mt+1

Pt
=

Mt+1

Mt

Mt

Pt
= (1+ xt+1)mt , (8.30)

where xt+1 denotes the rate of growth of money supply at time t.
To characterize steady-state in such an economy, the optimality condition (8.16),

characterizing the demand for money, needs to be replaced by

U2 (css, m̄ss)
U1 (css, m̄ss)

=
iss

1+ iss
=

1+πss −β
1+πss

,

and we can solve for steady-state levels along the lines followed in Sect. 8.2.2.
Steady-state values for real variables (consumption, physical capital, output, real

23 Remember from Chap. 3 that indeterminacy arises whenever the number of explosive eigenval-
ues of the transition matrix in the linear approximation to the equations describing the dynamics
of the model is less than the number of control (i.e., decision) variables.
24 Such analysis is undertaken in Chap. 9.
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interest rates) obey the same expressions as in Sect. 8.2.2, while real balances are
obtained from (8.30) , for given policy targets, πss,ζ ss. The steady-state level for
public debt can then be obtained form the government budget constraint, as usual.

8.4.3 Numerical Exercise: Optimal Rate of Inflation
Under Alternative Assumptions on Preferences

We compare in this section the steady-state welfare cost of inflation in two
economies, differing only in the specification of preferences. In the first case,
the consumer is supposed to get utility from real balances at the beginning of the
period, while in the second case, real balances at the end of the period enter as the
argument in the utility function. In both economies, the welfare cost of inflation is
increasing in the level of the inflation rate, so the lowest feasible inflation rate turns
out to be optimum. Steady-state expressions for the main variables from Sect. 8.2.2
can be used in the first case, while the reader must work out from the discussion in
the previous paragraph the analogous expressions for the second economy. These
expressions are displayed in the spreadsheet. The Timing real balances.xls file
presents steady-state computations for both economies for a wide range of values
of the inflation rate.25

Steady-state levels of real variables: capital stock, output and consumption are
unaffected by the rate of inflation, showing the neutrality of this policy target. The
inflation tax is negative for negative rates of inflation, so it acts as a transfer to con-
sumers, who benefit from a falling price level. Real balances then become large be-
cause of their increasing purchasing power. Associated to the negative inflation tax
we have a negative lump-sum transfer ζ to consumers, so that the negative inflation
tax is financed through a lump-sum tax. The opposite happens under positive infla-
tion rates, the more natural case. With positive inflation, we have an actual lump-
sum transfer to consumers, which is financed through the positive inflation tax. In
the absence of bonds, the lump-sum transfer to consumers is always endogenous.

Real balances are negatively related to the rate of inflation, so it is unclear how
the inflation tax will move with inflation. Numerical computations in the spread-
sheet show that, starting from the lowest feasible inflation rate of π = −5%,26 real
balances quickly fall as inflation increases, while the level of the inflation tax and
hence, the level of the lump-sum transfer, both increase. For plausible inflation rates,
the size of the lump-sum transfer reaches a level close to 0.30, which is about 20%

25 The comparison is not completely fair in the sense that the θ parameter should be adjusted so
that the velocity of money would remain the same in both cases, as a reflection of the fact that we
are trying to match relevant characteristics of actual economies. However, this adjustment, that the
reader can do as an exercise, is minor, and does not significantly change the results.
26 Rates of inflation below this are not compatible with existence of a competitive equilibrium,
since money would dominate physical capital and hence, the representative agent would not accu-
mulate any of the latter, eventually leading to zero production and consumption.
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of output. This ratio would stabilize for large inflation rates at about 40% of output.
Graphs displaying the time evolution of the main variables are presented to the right
of the time series data.

8.5 Monetary Policy Analysis Under Consumption
and Income Taxes

We now review the model incorporating the assumption that, in addition to print-
ing money, issuing real bonds and collecting lump-sum taxes (i.e., giving away a
negative transfer of ζ t units of the consumption commodity), the government also
levies a proportional tax on income, at a rate τy

t and a consumption tax, at a rate
τc

t . For simplicity, we will assume that the tax base of the income tax is produc-
tion income, with no depreciation allowances. Financial income is not being taxed.
Alternative tax possibilities could be analyzed similarly. For simplicity, we main-
tain the assumption of zero population growth. We assume a general utility function
having consumption and beginning of period real balances as arguments.

The representative agent budget constraint will now be27

(1+ τc
t )ct + kt+1 +

Mt+1

Pt
+bt+1 ≤

(
1− τy

t
)

f (kt)+(1−δ )kt +
Mt

Pt

+(1+ rt)bt +ζ t , ∀t

solving the maximization problem

max
{ct ,Mt+1,kt+1,bt+1}∞t=0

∞

∑
t=0

β tU
(

ct ,
Mt

Pt

)
,

subject to the above budget constraint, for given values of M0,b0,k0 as well as for a
given sequence of tax rates {τc

t ,τ
y
t }∞t=0. The Lagrangian for this problem is

L =
∞

∑
t=0

β t
[
U

(
ct ,

Mt

Pt

)
−λ t

(
(1+ τc

t )ct + kt+1 +
Mt+1

Pt
+bt+1

−
(
1− τy

t
)

f (kt)− (1−δ )kt −
Mt

Pt
− (1+ rt)bt −ζ t

)]
,

and if we assume non-zero demands for bonds, money and physical capital, and fol-
low an argument similar to the one used in the model without income and consump-
tion taxes to eliminate the Lagrange multiplier, we get the optimality conditions

27 With depreciation allowances, the tax term in the budget constraint would be,
(
1− τy

t
)
[ f (kt)−

δkt ].
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1+ τc
t+1

1+ τc
t

U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

) = 1+ rt+1, ∀t, (8.31)

1+ τc
t+1

1+ τc
t

U1

(
ct ,

Mt
Pt

)

βU1

(
ct+1,

Mt+1
Pt+1

) =
(
1− τy

t+1

)
f ′(kt+1)+(1−δ ) , ∀t, (8.32)

(
1+ τc

t+1
) U2

(
ct+1,

Mt+1
Pt+1

)

U1

(
ct+1,

Mt+1
Pt+1

) = (1+ rt+1)(1+π t+1)−1, ∀t. (8.33)

Equations (8.31) and (8.32) show how, along the optimal trajectory, the marginal
rate of substitution of consumption over time, net of consumption taxes, must be
equal to the real interest rate every period, and also equal to the marginal product
of capital, net of taxes and depreciation. Hence, the last two are also equal to each
other:

rt+1 =
(
1− τy

t+1

)
f ′(kt+1)−δ .

Equation (8.33) implies that the marginal rate of substitution between real bal-
ances and consumption must be equal every period to the nominal interest rate dis-
counted by the consumption tax rate, which is in turn, the relative price of money
and consumption at time t +1. It can be interpreted as a demand for money function,
as in the case without income and consumption taxes.

The representative agent budget constraint can be written in the form

(1+ τc
t )ct + kt+1 − (1−δ )kt +

Mt+1 −Mt

Pt
+bt+1 − (1+ rt)bt

≤
(
1− τy

t
)

f (kt)+ζ t ,

which shows that consumption expenditures, including consumption taxes, plus in-
vestment on physical capital, together with changes in the real value of the portfolio
made up by financial assets (money balances and bonds), must be equal to the net
aggregate of disposable income and government transfers.

The government budget constraint is

Mt+1 −Mt

Pt
+bt+1 − (1+ rt)bt + τy

t f (kt)+ τc
t ct = ζ t ,

showing that transfers to consumers are financed by printing money, issuing debt
and raising taxes.

The transversality conditions are the same as in the version without income
and consumption taxes. The three optimality conditions and the two budget con-
straints for the government and the representative agent make up a system of five
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equations,28 from which we should be able to get sequences
{

ct ,kt+1,rt ,bt+1,

Mt+1
Pt+1

}∞

t=0
, given paths for policy variables

{
τc

t , τ
y
t , ζ t , π t

}∞
t=0.

The government and the representative agent constraints, taken together, imply a
standard global constraint of resources

ct + kt+1 = f (kt)+(1−δ )kt .

8.5.1 Steady-State

To compute steady-state levels, we again use the optimality conditions, government
budget constraint and global resources constraint particularized to steady-state,29

1
β

= (1− τy
ss) f ′(kss)+(1−δ ) ,

1
β

= 1+ rss,

(1+ τc
ss)

U2 (css,mss)
U1 (css,mss)

= (1+ rss)(1+πss)−1 =
1+πss

β
−1, (8.34)

css = f (kss)−δkss,

πssmss (πss)− rssbss + τy
ss f (kss)+ τc

sscss = ζ ss. (8.35)

This a system of five equations in nine variables: css, kss, mss, bss, rss, πss, τy
ss,

τc
ss, ζ ss. To determine the steady-state equilibrium we will need to maintain four

of these variables constant, the resulting steady-state then being a function of the
chosen constant levels. The role of fiscal and monetary policy will be precisely to
keep those variables constant, if possible. However, not any four variables will solve
the system of steady-state equations.

One such possibility is that the government defines a combination of fiscal and
monetary policies to keep τy

t ,τc
t ,ζ t ,π t constant at levels τy

ss,τc
ss,ζ ss,πss. Decreasing

returns to capital imply that the only feasible steady-state is one at which per-capita
variables stay constant: ct = css,kt = kss, implying in turn that the rest of per-capita
variables will also be constant over time. This policy design allows for a single
solution to the system, providing us with a single steady-state equilibrium. The first
equation shows that the level of the tax rate negatively affects the steady-state level
of physical capital which, in turn, affects the levels of output, yss = f (kss), and

28 This a system of non-linear equations, whose solution may not exist, not be unique, or be un-
stable. In Chap. 9 we discuss numerical procedures for computing time series for the endogenous
variables in economies like the one in this section.
29 There is no need to impose the budget constraint for the representative agent since, as we already
know, it is always satisfied, being a combination of the global constraint of resources and the
government budget constraint.
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consumption. Hence, income tax rate is not neutral in this economy. On the other
hand, from (8.34) we would obtain mss as a function of πss,τc

ss and css which, in
turn, depends on the tax rate τy

ss through the value of kss. Hence, the steady-state
level of real balances is a function of both, fiscal and monetary parameters, showing
once again the interdependence of the two types of economic policy. Finally, (8.35)
will give us the level of bss as a function of τy

ss, τc
ss, ζ ss, πss. Notice that the level of

consumption does not depend on the tax rate on consumption.
Real interest rates are not affected by the income tax rate. With this policy choice,

we have mss
(
πss,τy

ss,τc
ss
)
, bss

(
πss,τy

ss,τc
ss,ζ ss

)
, so that, at a difference of what hap-

pened in the case without income and consumption taxes, now the real money supply
will depend not only on the chosen level of inflation, but on the choice of both tax
rates as well. In the economy without distortionary taxation we had the dependence:
mss (πss) , bss (πss,ζ ss) , so that the choice of targets for inflation and transfers would
give us the levels of real balances and bonds. We have one such situation for each
combination of tax rates, although some of them might lead to unfeasible solutions.

A similar analysis arises if the policy mix chooses target levels for τy
ss, τc

ss, bss,
πss. We again obtain a recursive system, which can be solved with no much prob-
lem. The income tax rate again affects the level of capital and hence, the levels of
consumption and output, with implications similar to those in the previous case.
Choosing a target for either bss or for ζ ss does not significantly change the problem.

If the government has policy targets on ζ ss, bss, τy
ss, πss, the system can again

be recursively solved as in the previous cases considered, with analogous results.
Monetary policy remains to be neutral.

On the other hand, if the government chooses targets for ζ ss, bss, τc
ss, πss, then

the system needs to be solved simultaneously for css, kss, mss, rss, τy
ss, since we

lose the recursiveness of the previous case. Not all target levels for ζ ss, bss, τc
ss, πss

will lead to feasible solutions. The simultaneity of the system implies that the real
variables in the economy: consumption, physical capital, output, will depend on the
chosen levels for ζ ss, bss, τc

ss, πss, showing that monetary policy is not neutral in this
economy under this policy design. If policy targets are chosen for ζ ss, bss, τy

ss, mss,
a similar conclusion is reached, confirming the non-neutrality of monetary policy.

Finally, at a difference of the case without income and consumption taxes, a mon-
etary policy that chooses steady-state levels for πss and mss can also be instrumented,
provided fiscal policy controls the level of either outstanding debt or transfers (but
not the tax rate). In this case, characterized by mixing an active monetary policy
and a passive fiscal policy (Leeper [55]), fiscal and monetary policy are both non-
neutral.

A rather different situation would be faced if we attempted to choose target levels
for πss, mss, τy

ss, τc
ss. The problem is then that given τy

ss, we can directly compute the
value of kss and css. The money demand equation is then a relationship without any
unknown, which may not hold. The model is overdetermined, and there is not a set
of values for the endogenous variables that satisfies all the equations in the model.
The model imposes too many restrictions, that turn out to be incompatible among
them. On the other hand, if the policy mix chooses less than three targets, we would
have an underidentified model, with a continuum of steady-state solutions.
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8.5.2 Numerical Exercise: Computation of Steady-State Levels
Under Alternative Policy Choices

The Steady state fiscal policy.xls file contains computations of steady-state levels
for the main variables in the economy under alternative policy choices that include
a proportional income tax. There are not consumption taxes. Preferences are repre-
sented by the utility function: U(ct ,mt) = lnct +θ lnmt , while the production func-
tion is, in per capita terms: yt = Akαt . Structural parameter values are quite standard:
the output elasticity of capital is α = 0.36, the discount rate is β = 0.95, the rate
of depreciation of physical capital is 10%, and the level of technology is A = 1.0.
Finally, the relative appreciation for real balances is set at θ = 0.50.

In the Case 1 spreadsheet, the government is supposed to choose the income tax
rate as well as the steady-state level of outstanding debt and the rate of inflation,
while the steady-state levels of real balances and lump-sum transfers to consumers
become endogenous, i.e., they are obtained as a function of the chosen policy targets.
In fact, the exercise is repeated for a grid of values of the inflation rate between the
lowest possible level of −5.0% and a high value of 100.0%. The income tax rate
is fixed at τy

ss =15.0%, while the stock of outstanding debt is supposed to be 5.0.
All variables are in per-capita terms. The level of seigniorage, i.e., the size of the
inflation tax is seen to be bounded from above, and the welfare cost of inflation is
increasing in the rate of inflation. Furthermore, πss =−5.0% turns out to be optimal
rate of inflation, leading to a nominal interest rate equal to zero. So, Friedman’s
rule is valid in this case. This is compensated by an equally large lump-sum tax,
i.e., a negative transfer to consumers. In the Case 2 spreadsheet the government
chooses an income tax rate τ = 15.0% and the steady-state size of the transfer,
ζ = 0.20, leaving the steady-state stock of bonds to be endogenously determined.
Again, the level of seigniorage is bounded and Friedman’s rule is valid, optimal
monetary policy leading to a nominal interest rate equal to zero.

In the Case 3 spreadsheet the government chooses a steady-state transfer of
ζ = 0.25 and a steady-state stock of per-capita debt equal to 5.0. For a grid of values
of the income tax rate, we endogenously compute the steady-state rate of inflation
as well as values for real variables. The stock of capital, output and consumption per
capita all decrease when the tax rate increases. Real balances first increase but start
decreasing for an income tax rate above τ = 52%. Income tax revenues also increase
initially as the income tax increases, but they decrease when the tax rate increases
from above τ = 64%. This is the so called Laffer curve, that captures the possibility
that tax revenues may decrease for a sufficiently high tax rate because of an implied
fall in the tax base. On the other hand, the inflation tax follows the opposite evolu-
tion, decreasing as the income tax rate increases towards τ = 64%, and increasing
afterwards. Total revenues, the sum of the income tax and the inflation tax remain
constant as the income tax changes, as it is easy to see from the government’s bud-
get constraint. In this case, the highest level of steady-state utility is achieved for an
income tax rate: τ = 36% and, consequently, a rate of inflation: π = 0.66%.
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Case 3 illustrates the fact that high rates of inflation may be associated with low
income tax rates, but also with high income tax rates. This is because income tax
revenues behave according to a Laffer curve, i.e., there exists a given tax rate above
which tax increases lead to lower revenues because of reductions in the tax base.
In that situation, the government must react to a tax raise by increasing inflation to
compensate the reduced tax revenues with a higher level of seigniorage, so that its
budget constraint can hold every period. These results also illustrate how the public
financing mechanism may affect economic activity. In particular, it can be seen that
along the increasing part of Laffer’s curve, where an increase in the tax rate leads
to an increase in revenues, an increase in inflation associated to a reduction in the
income tax rate produces an increase in output, the stock of capital and consumption.
With regards to the utility level, it is shown that there is a pair of values (πss > 0,
τss > 0) for which steady-state utility is maximized.

We leave to the reader to check that, maintaining our assumptions on lump-sum
transfers and public debt in Case 3, if the government chooses the rate of inflation
and, hence, the income tax rate is endogenously determined, then the combination
of tax rate and inflation maximizing the level of utility is the same as in the previous
case. If there is any discrepancy in the numerical results, the analysis should be re-
peated increasing the exogenous instrument by a smaller amount. Since the inflation
rate associated to the highest level of welfare is not the one that gives raise to a zero
nominal rate of interest, then Friedman’s rule does not hold. This analysis cannot
be done in a spreadsheet, since it is not possible to solve the system of equations
recursively, so a math computer package like Matlab will be needed.

8.6 Monetary Policy Under Endogenous Labor Supply

In previous sections we have considered an inelastic labor supply. Needless to say,
an endogenous supply of labor opens the door to analyzing a variety of interesting
issues. We start this section by discussing conditions characterizing the neutrality
of monetary policy under endogenous labor supply. We then perform some numer-
ical evaluation of steady-state policies, to end the section with a characterization of
optimal policy under distortionary taxation and endogenous labor supply.

8.6.1 The Neutrality of Monetary Policy Under Endogenous
Labor Supply

In the model economy considered in previous sections, with an exogenous labor
supply, we have shown that monetary policy is neutral in steady-state. When the
assumption of an inelastic labor supply is abandoned, monetary policy is no longer
necessarily neutral, and there are specifications for preferences for which mone-
tary policy has expansionary effects on production. There are also specifications
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of preferences for which monetary policy negatively affects output, and still others
under which the rate of inflation is neutral. The requirement that a utility function
must satisfy for monetary policy to be non-neutral in steady-state is that real bal-
ances enter as an argument in preferences in a non-separable way with one other
argument, either consumption or leisure. If the final objective of a given model is
to discuss the economic business cycle, allowing for an endogenous labor supply is
crucial, since the variability of employment along the business cycle is one its most
remarkable characteristics. For simplicity, we only consider lump sum transfers30

ζ t in this discussion.
The government budget constraint, in per capita terms, is

Mt+1 −Mt

Pt
+bt+1 = (1+ rt)bt +ζ t .

The representative agent in this economy solves the problem

max
{ct ,lt ,ht ,Mt+1,kt+1,bt+1}∞t=0

∞

∑
t=0

β tU
(

ct ,
Mt

Pt
,ht

)
,

subject to its budget constraint

ct + kt+1 +
Mt+1

Pt
+bt+1 ≤ f (kt , lt)+(1−δ )kt +

Mt

Pt
+(1+ rt)bt +ζ t ,

given k0,M0,b0. ht + lt = 1, ht being the proportion of hours enjoyed as leisure,
while lt denotes the proportion of hours devoted to production. We assume that the
utility function satisfies usual assumptions guaranteeing concavity. The aggregate
production function in this economy is Yt = F(Kt ,Lt lt) which, in per capita terms
can be written as f (kt , lt).31

The Lagrangian for this problem is

L =
∞

∑
t=0

β t
[
U

(
ct ,

Mt

Pt
,ht

)
−λ t

(
ct + kt+1 +

Mt+1

Pt
+bt+1

− f (kt , lt)− (1−δ )kt −
Mt

Pt
− (1+ rt)bt −ζ t

)]
,

with optimality conditions (allowing for corner solutions)

U1

(
ct ,

Mt

Pt
,ht

)
≤ λ t ; and ct

[
U1

(
ct ,

Mt

Pt ,ht

)
−λ t

]
= 0, ∀t (8.36)

kt+1 [−λ t +βλ t+1 ( fk(kt+1, lt+1)+(1−δ ))] = 0, ∀t (8.37)

Mt+1

[
βU2

(
ct+1,

Mt+1

Pt+1
,ht+1

)
1

Pt+1
−λ t

1
Pt

+λ t+1β
1

Pt+1

]
= 0, ∀t (8.38)

30 Or lump-sum taxes, if ζ t is negative.
31 As shown in Sect. 3.5.2 when analyzing the Cass–Koopmans economy.
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U3(Ct ,
Mt

Pt
,ht) ≤ λ t fl(kt , lt); and

lt

[
−U3

(
ct ,

Mt

Pt
,ht

)
+λ t fl(kt , lt)

]
= 0 (8.39)

ct + kt+1 +
Mt+1

Pt
+bt+1 − f (kt , lt)− (1−δ )kt −

Mt

Pt
− (1+ rt)bt −ζ t = 0, ∀t

(8.40)

λ t ≤ β (1+ rt+1)λ t+1, and bt+1 [β (1+ rt+1)λ t+1 −λ t ] = 0, ∀t (8.41)

and transversality conditions

lim
T→∞

βTλT
MT+1

PT
= 0,

lim
T→∞

βTλT kT+1 = 0,

lim
T→∞

βTλT bT+1 = 0.

where fk(kt , lt) and fl(kt , lt) denote the marginal productivities of physical capital
and labor, respectively.

All conditions except (8.39) are analogous to the optimality conditions obtained
when leisure was not an argument in the utility function. Therefore, when the
Lagrange multipliers are eliminated, we get relationships similar to those in pre-
vious sections

bt+1 > 0 ⇒
U1(ct ,

Mt
Pt

,ht)

βU1(ct+1,
Mt+1
Pt+1

,ht+1)
= 1+ rt+1,

kt+1 > 0 ⇒
U1(ct ,

Mt
Pt

,ht)

βU1(ct+1,
Mt+1
Pt+1

,ht+1)
= fk(kt+1, lt+1)+(1−δ ) ,

Mt+1 > 0 ⇒
U2

(
ct+1,

Mt+1
Pt+1

,ht+1

)

U1

(
ct+1,

Mt+1
Pt+1

,ht+1

) = (1+ rt+1)(1+πt+1)−1

= (1+ it+1)−1 = it+1.

Additionally, we have in this model, from (8.36) and (8.39)

U3

(
ct ,

Mt
Pt

,ht

)

U1

(
ct ,

Mt
Pt

,ht

) = fl(kt , lt),

which is the labor supply schedule. It shows that the representative agent is willing
to increase his/her supply of labor up to the point at which the marginal rate of
substitution between consumption and leisure is equal to the marginal product of
labor.
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The solution to the problem of the representative agent is a vector of prices and an
allocation of resources satisfying the optimality conditions above, the government
budget constraint and the global constraint of resources. Combining the budget con-
straints for the representative agent and for the government we obtain the global
constraint of resources. Therefore, one of the three equations cannot be used in the
characterization of equilibrium. We will not use the budget constraint for the private
agent, but the reader can easily check that the same solution is reached by dropping
any other equation.

Consequently, the equations characterizing steady-state when the government
chooses a stationary policy with constant lump-sum transfers and inflation

ζ t = ζ ss, ∀t

π t = πss, ∀t

are
1+ rss =

1
β

, (8.42)

1
β

= fk(kss, lss)+(1−δ ) , (8.43)

U2 (css,mss,hss)
U1 (css,mss,hss)

=
1+πss

β
, (8.44)

U3 (css,mss,hss)
U1 (css,mss,hss)

= fl(kss, lss), (8.45)

css +δkss = f (kss, lss), (8.46)

πssmss − rssbss = ζ ss, (8.47)

the last two relationships coming from the global resources constraint and the gov-
ernment budget constraint.

Let us now discuss the implications for the neutrality of the rate of inflation of
choosing a particular specification for the utility function:

1. If the utility function is separable in its three arguments: U(ct ,
Mt
Pt

,ht) = v(ct) ·
η
(

Mt
Pt

)
·H (ht) then, (8.45) is an equation in css,kss and lss since lss + hss = 1.

(8.45) together with (8.43) and (8.46) allows us to obtain css,kss and lss with
independence of the type of monetary and fiscal policies being implemented.
Then, mss is determined from (8.44) and bss comes from (8.47). Monetary and
fiscal policies are neutral. This neutrality result also holds for nonseparable albeit
homogeneous utility functions.

2. If the utility function is separable in leisure: U(ct ,
Mt
Pt

,ht) = v
(

ct ,
Mt
Pt

)
·H (ht) ,

with v(.) being a non-homogeneous function, then (8.45) is an equation in
css,kss,mss, and lss, using that lss +hss = 1. Then, these four variables are jointly
determined from the system made up by (8.43)–(8.46). As a consequence, real
variables will depend on the rate of inflation, although they will be independent
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from the size of the lump-sum transfer. Therefore, the neutrality of the rate of
inflation no longer holds. As in the previous case, bss is determined from (8.47).

3. If the utility function is non-homogeneous, and not separable in leisure and real
balances, but it is separable in consumption: U

(
ct ,

Mt
Pt

,ht

)
= v(ct) ·H

(
Mt
Pt

,ht

)

the situation is analogous to the previous case.
4. If the utility function is not separable in consumption and leisure, but it is separa-

ble in real balances: U
(

ct ,
Mt
Pt

,ht

)
= v(ct ,ht) ·η

(
Mt
Pt

)
the situation is analogous

to the one discussed in the first case, and we have again neutrality of monetary
and fiscal policy.

Therefore, the neutrality of the rate of inflation arises whenever the utility func-
tion is separable in real balances, with independence of the possible separability
between consumption and leisure. On the other hand, the rate of inflation affects
economic activity in steady-state whenever real balances and leisure enter nonsepa-
rably in the utility function, or when preferences are nonseparable in real balances
and consumption.

Let us now see two examples sharing the property that the rate of inflation is not
neutral, although economic effects produced in both models are of the opposite sign.
In both cases, the production function is: yt = f (kt , lt) = Akαt l1−α

t , α ∈ (0,1), and
inflation leads to a loss of utility. As usual, we denote real balances by: mt = Mt

Pt
.

Case 1: If the utility function is of the form U(ct ,mt ,ht) = ln(ct + mθ
t ) +

ϖ ln(ht) = ln(ct +mθ
t )+ϖ ln(1− lt) withϖ > 0,0 < θ < 1, that guarantee Uh > 0 as

well as the quasiconcavity of the utility function, we can obtain from (8.43), (8.44)
and (8.46)

(
k
l

)

ss
=

[
Aα

1/β − (1−δ )

] 1
1−α

,

(c
l

)

ss
= A

[(
k
l

)

ss

]α
−δ

(
k
l

)

ss
,

mss =
[

βθ
1+πss −β

] 1
1−θ

.

Using the identity css =
( c

l

)
ss lss in (8.45), we get

(c
l

)

ss
lss =

A(1−α)
ϖ

[(
k
l

)

ss

]α
− A(1−α)

ϖ

[(
k
l

)

ss

]α
lss − (mss)

θ ,

which implies

lss =
A(1−α)

ϖ
[( k

l

)
ss

]α − (mss)
θ

( c
l

)
ss + A(1−α)

ϖ
[( k

l

)
ss

]α .

In the previous expressions we see that the capital/employment ratio does not
depend on the rate of inflation. Furthermore, since θ < 1, increases in the inflation
rate lead to reductions in the level of real balances. This produces an increase in
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the marginal utility of consumption, creating an incentive to increase utility from
consumption, rather than leisure, which leads to an increase in employment, output,
consumption and the stock of capital.

Case 2: If the utility function is of the form: U(ct ,mt ,ht) = ln(ct) + θ ′ ln(ht +
mψ

t ) = ln(ct)+θ ′ ln(1− lt + mψ
t ) with θ ′ > 0,0 < ψ < 1, the value of

( k
l

)
ss is the

same as in the previous case. From (8.45), we have

css

1− lss +(mss)
ψ = A

1−α
θ ′

[(
k
l

)

ss

]α
, (8.48)

which together with

css

1− lss +(mss)
ψ =

1+πss −β
βθ ′ψ (mss)

ψ−1 ,

which is obtained from (8.44), lead to

mss =

[
βψA(1−α)

[( k
l

)
ss

]α

1+πss −β

] 1
1−ψ

.

The value of
( c

l

)
ss is the same as in the previous case. Furthermore, since (8.48)

is equivalent to ( c
l

)
ss

[1+(mss)ψ ]
lss

−1
= A

1−α
θ ′

[(
k
l

)

ss

]α
,

we obtain

lss =
1+(mss)

ψ

1+
θ ′( c

l )ss

A(1−α)[( k
l )ss]

α

.

In this case, an increase in the rate of inflation reduces the level of real balances.
This leads to an increase in the marginal utility of leisure, which gives raise to an
increase in the relative preference for leisure, relative to consumption. As a conse-
quence, employment, consumption, the stock of capital and output, all decrease.

8.6.2 Numerical Exercise: Evaluation of Steady-State Policies
with an Endogenous Labour Supply

Five different policy situations are considered in the SS inflation endogenous
leisure.xls file. In the Case 1 spreadsheet we have where the government realizes
a lump-sum transfer to consumers, which is fully financed by increasing the
money supply. Private agents have a unit of time as endowment every period.
Part of that unit is used to work (lt), while the rest is used up as leisure
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(1 − lt). The production function is: yt = Akαt l1−α
t , and the utility function:

U(ct ,mt ,1− lt) =η lnct +(1−η) ln(1− lt)+θ lnmt , η ∈ (0,1), θ > 0 and mt = Mt
Pt

.
The government has an inflation target. The steady-state of the model can be solved
for recursively. For parameter values α = 0.36, β = 0.95, A = 1, δ = 0.1, η = 0.35,
θ = 0.175, we compute the steady-state welfare cost associated to different values
of the rate of inflation. In this case, we see that changes in the rate of inflation do
not affect real variables like consumption, employment, capital and output. On the
contrary, real balances are affected, so that the level of utility also changes with
the inflation target. We see that the highest steady-state level of utility is achieved
for an inflation rate β − 1. When the welfare cost of inflation is computed relative
to the case of zero inflation, we see that the cost is increasing in the level of infla-
tion.32 Seigniorage revenues are increasing in the level of inflation, so maximizing
revenues goes in the opposite direction to maximizing steady-state utility. The last
column shows that the increase in welfare cost is not proportional to the increase
in inflation but rather, the welfare cost is higher for an increase from a low level of
inflation.

Maintaining the same structural environment, Case 2 considers the utility func-
tion: U(ct ,mt ,1− lt) = ln(ct +mθ

t )+ϖ ln(1− lt) , θ ∈ (0,1), ϖ > 0. Under the pa-
rameterization: α = 0.36, A = 1, β = 0.95, δ = 0.1, θ ′ = 0.005, ϖ = 0.5 inflation is
shown to be non-neutral. The lowest feasible rate of inflation is again the one maxi-
mizing steady-state welfare. In agreement with our previous discussion, an increase
in inflation leads to an increase in the level of consumption, but a fall in real balances
and leisure. So, there are conflicting effects on utility, but our numerical evaluation
shows that the aggregate effect of the higher rate of inflation is a loss in utility.

In the Case 3 spreadsheet we perform a similar exercise, this time for the utility
function: U(ct ,mt ,1−nt) = ln(ct)+θ ′ ln

(
1−nt +mψ

t
)
, ψ ∈ (0,1), θ ′ > 0. Using

the same parameter values as before, except for θ = 2 and ψ = 0.5, we find again
conflicting evidence regarding the welfare effects of a higher rate of inflation, but
of a different type. Now, leisure increases while the level of consumption falls,
following an increase in the rate of inflation. However, our numerical computations
illustrate how, in spite of the higher level of leisure, the fall in consumption and real
balances lead again in this case to a loss of steady-state utility.

In the Case 4 and Case 5 spreadsheets we consider economies where the gov-
ernment realizes a lump-sum transfer to consumers, which is financed by increasing
the money supply and by a tax on consumption. We maintain the same produc-
tion function as in previous cases, while the utility function is now as in Case 1:
U(ct ,

Mt
Pt

, lt) = η lnct +(1−η) ln(1− lt)+θ ln Mt
Pt

, with η ∈ (0,1), θ > 0. In Case 4
we show that if the government has an inflation target, the steady-state of the
economy can be solved for recursively under a constant tax rate on consumption. We
consider parameter values α = 0.36, A = 1, β = 0.95, δ = 0.1, η = 0.35, θ = 0.175
and a tax rate on consumption of 15%. The inflation target is shown to be neutral,
with the lowest feasible level of inflation being optimum. So Friedman’s rule is valid
in this economy.

32 We already mentioned that, with these preferences, it is not possible to compute the welfare cost
of inflation relative to the optimal rate of inflation.
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The analysis is performed again in the Case 5 spreadsheet, with the assump-
tion that the government has an inflation target and that it keeps constant the level
of lump-sum transfers. In this case, the steady-state cannot be solved recursively.
Under an exogenous rate of inflation and an endogenous consumption tax rate the
equation determining the later turns out to be nonlinear, and the system cannot eas-
ily be solved in a spreadsheet. However, if the tax rate is taken as exogenous and we
endogenously compute the rate of inflation, then solving the model in a spreadsheet
becomes very simple. This is the situation solved in the Case 5 spreadsheet. Such
calculations show, among other things, that inflation is not neutral. The nonneutral-
ity arises because the increase in inflation allows for a reduction in the consumption
tax. Consumption then becomes cheaper relative to leisure, which leads to an in-
crease in employment, capital and output.

8.7 Optimal Monetary Policy Under Distortionary Taxation
and Endogenous Labor

Optimal monetary policy has been approached from different perspectives. One of
them is what is known as the optimal inflation tax analysis. The rate of inflation is
then considered as a control variable of monetary policy, and the welfare maximiz-
ing level of inflation is calculated. The analysis is done under the assumption that the
government implements an exogenous level of expenditures, which can be financed
either through liquidity injections that produce inflation, or through some distor-
tionary tax on consumption or on labor income. This type of analysis was carried
out in Sect. 8.3.1 without distortionary taxes and just for the steady-state. Usually,
the loss in purchasing power of monetary balances due to inflation is known as the
inflation tax. The financing decision is seen as a choice among different distortions.
It will be optimal to use the inflation tax, leading to Friedman’s rule not being valid,
whenever the alternative tax produces bigger distortions on economic agents than
those produced by inflation, when both are taken to the level that allows for financ-
ing the same level of government expenditures.

The first papers on the optimal inflation tax were Phelps [70], Kimbrough [50],
and Lucas and Stokey [58]. Each one of them used a different structural approach to
generate a demand for money. Phelps [70] assumed that real money balances enter
as an argument in the utility function, Kimbrough [50] assumed that real balances re-
duce transaction costs, while Lucas and Stockey [58] introduced a cash-in-advance
constraint into the model. These analysis show that when the government cannot use
a lump-sum tax to finance expenditures, and it has only distortionary taxes available,
the way how consumers’ demand for cash is modelled may condition the character-
ization of optimal monetary policy. Later on, Guidotti and Végh [38] shown that the
nature of the tax which is considered as an alternative to the inflation tax can also
be an important factor conditioning the results.

Finally, Chari et al. [26] simultaneously considered the three different ways
we have mentioned in the previous paragraph to produce a demand for money, to
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characterize the properties of the utility and the transaction cost functions guaran-
teeing that Friedman’s rule holds. Utility functions and transaction cost functions
considered in the theoretical literature to address a variety of issues in monetary
economies usually fulfill such conditions. However, to the light of previous work, it
would seem reasonable to refer to numerical estimations for general specifications
of the mentioned functions to obtain a definite conclusion in favor or against the
inflation tax but, unfortunately, we lack enough empirical evidence regarding this
point.

To characterize the optimal inflation tax in this economy, we compute a Ramsey
equilibrium. This is a pair formed by an economic policy and a vector of prices and
quantities satisfying the property that the economic policy maximizes the discounted
aggregate value of current and future utility, subject to the sequence of government
budget constraints and the fact that the set of prices and quantities constitutes a com-
petitive equilibrium allocation. To solve Ramsey’s problem, we assume that there is
some sort of institutional commitment forcing the government to actually implement
in the future the policy that is chosen at time 0. Each period, the government applies
that policy, and consumers are assumed to choose quantities and prices through
the competitive equilibrium mechanism. Hence, when designing current and future
monetary policy in period 0, the government needs to take into account the relation-
ships between quantities and prices that arise from Euler equations, the optimizing
conditions characterizing a dynamic competitive general equilibrium.

8.7.1 The Model

8.7.1.1 The Private Sector

For simplicity, we characterize the optimal inflation tax in a model with no capital
accumulation, so that the only commodity in the economy is produced from labor.
We assume the aggregate constant returns to scale technology, in per capita terms

yt = lt ,

where, as in the previous section, lt denotes the proportion of hours devoted to work-
ing, with ht + lt = 1.

The amount of work chosen by the firm is determined by the equality between
the marginal product of labor and the real wage. Given the assumed production
function, that condition implies that the price of the consumption good is equal to
the nominal wage, so the real wage is equal to 1.

Furthermore, we assume that the private agent demands some money because
real balances at the end of the period enter as an argument in the utility function,
together with the levels of consumption and leisure

U
(

ct ,
Mt+1

Pt
,ht

)
= ν

(
ct ,

Mt+1

Pt

)
H(ht), (8.49)
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which is separable in leisure and where ν
(

ct ,
Mt+1

Pt

)
is homogeneous of degree ϕ .

Function U is assumed to be strictly concave and to satisfy Inada’s conditions. In
this economy, monetary policy turns out to be neutral because the utility function is
separable in leisure and homogeneous in the joint term involving consumption and
real balances (see Sect. 8.6.1 for a detailed discussion on this issue).

Each period, the consumer has two possibilities for saving: money and nominal
public debt. Salary income is taxed at a rate τy

t , so that his budget constraint is

Ptct +Mt+1 +Vt+1 = Mt +(1+ it)Vt +Pt(1− τy
t )lt , (8.50)

where we have already incorporated the profit maximizing condition: wt = Pt . As in
the rest of the chapter, Mt , Vt denote the per capita levels of money in circulation and
nominal public debt at the beginning of period t. We assume constant population.

We assume that the stock of public debt, in real terms, satisfies b̄t+1 = Vt+1
Pt

≤ b̆,

b̆ being an arbitrarily large constant and also that m̄t+1 = Mt+1
Pt

≤ m̆, where m̆ is a

satiation level of real balances (that is, ∂U
∂m |m̆ = 0). Notice that we reserve the “−”

notation for the real value of end-of-period variables like the money supply and the
stock of nominal bonds. Unless such a bliss point exists, real balances under the
optimal monetary policy become infinity and the Ramsey problem has no solution.
It is to avoid this problem that we impose the bound on real balances through the
satiation level m̆.

In real terms, the budget constraint of the private agent is

ct + m̄t+1 + b̄t+1 =
m̄t

1+πt
+

(1+ it) b̄t

1+πt
+(1− τy

t )lt , (8.51)

where 1+π t = Pt
Pt−1

.

The problem being solved by the representative agent is

max
{ct ,m̄t+1,lt ,b̄t+1}

∞

∑
t=0

β tU(ct , m̄t+1,1− lt)

subject to (8.51), and given M0, B0.
Conditions characterizing the competitive general equilibrium are, in addition to

the budget constraint (8.51):
Uc,t −λ t = 0, (8.52)

Mt+1 > 0 ⇔Um̄,t+1 +β
λ t+1

1+πt+1
−λ t = 0, (8.53)

b̄t+1 > 0 ⇔−λ t +β
λ t+1

1+πt+1
(1+ it+1) = 0, (8.54)

−U1−l,t +λ t(1− τy
t ) = 0, (8.55)

with λ t being the Lagrange multiplier associated to the budget constraint.
Uc,t ,Um,t+1,U1−l,t denote marginal utilities.



416 8 Growth in Monetary Economies: Steady-State Analysis of Monetary Policy

Transversality conditions are

lim
T→∞

λTβT m̄T+1 = 0,

lim
T→∞

λTβT b̄T+1 = 0.

Substituting (8.52) into (8.54) we obtain the equation determining the level of
interest rates

1+ it+1 =
Uc,t

βUc,t+1
(1+πt+1), (8.56)

which we already obtained in the models in previous sections.
Substituting (8.52) into (8.53) and using (8.56)

Um̄,t+1

Uc,t
= 1− 1

1+ it+1
. (8.57)

This condition determines the partial equilibrium demand for money, as already
mentioned in previous sections. The only difference is that rather than the nominal
rate of interest, the equation now includes a positive function of that nominal rate.

Under utility function (8.49) the previous condition becomes

∂ν/∂ m̄t+1

∂ν/∂ct
= 1− 1

1+ it+1
. (8.58)

Finally, substituting (8.52) into (8.55)

U1−l,t = Uc,t(1− τy
t ), (8.59)

which indicates that the marginal rate of substitution between consumption and
leisure is equal to the after-tax real wage.

8.7.1.2 The Government

The government purchases Gt = gtNt units of the consumption commodity which
are financed by liquidity injections, by issuing debt and by the proceeds of the in-
come tax

Ptgt = [Mt+1 −Mt ]+ [Vt+1 − (1+ it)Vt ]+ τy
t Pt lt . (8.60)

Analogously,

gt =
[

m̄t+1 −
m̄t

1+πt

]
+

[
b̄t+1 −

1+ it
1+πt

b̄t

]
+ τy

t lt . (8.61)
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8.7.1.3 The Representative Agent Solution

The representative agent solution, which coincides with the competitive equilib-
rium, as we already shown in Chap. 3, is a sequence of quantities and prices such
that: (1) the representative agent behaves competitively, (2) the market for the single
commodity in the economy clears and (3) the government budget constraint holds.
Therefore, the equilibrium allocation is characterized by: (8.51), (8.56)–(8.59) and
(8.61). These equations guarantee that the market for the consumption commodity
clears, production being split between private and public consumption33:

ct +gt = lt .

8.7.2 Implementability Condition

The implementability condition allows us to achieve important simplification by
consolidating for all t the Euler conditions (8.52)–(8.55), which form part of the
characterization of the dynamic general equilibrium. It is obtained in a sequence of
steps:

1. Multiply the period t budget constraint (8.51) by the discounted Lagrange multi-
plier β tλ t , and add over t:

∞

∑
t=0

β tλ t ct +
∞

∑
t=0

β tλ t m̄t+1 +
∞

∑
t=0

β tλ t b̄t+1

=
∞

∑
t=0

β tλ t
m̄t

1+πt
+

∞

∑
t=0

β tλ t
(1+ it)b̄t

1+πt
+

∞

∑
t=0

β tλ t(1− τy
t )lt .

2. ∑∞t=0β
tλ t ct = ∑∞t=0β

tUc,t ct from (8.52).

3. ∑∞t=0β
tλ t

(
m̄t+1 − m̄t

1+πt

)
= ∑∞t=0β

t(λ t − βλ t+1
1+πt+1

)m̄t+1 −λ 0
m̄0

1+π0

= ∑∞t=0β
tUm̄,t+1m̄t+1 −Uc,0

m̄0
1+π0

; where we have used (8.53).

4. ∑∞t=0β
tλ t b̄t+1−∑∞t=0β

tλ t
(1+it )b̄t

1+πt
=∑∞t=0β

t(λ t −βλ t+1
1+it+1
1+πt+1

)b̄t+1−λ 0
(1+i0)b̄0

1+π0

= −Uc,0
(1+i0)b̄0

1+π0
because of (8.54).

5. ∑∞t=0β
tλ t(1− τy

t )lt = ∑∞t=0β
tU1−l,t lt from (8.55).

6. Substituting the results from steps 2–5 in the expression obtained in step 1, we
get

∞

∑
t=0

β tUc,t ct +
∞

∑
t=0

β tUm̄,t+1m̄t+1 −
∞

∑
t=0

β tU1−l,t lt

= Uc,0

(
m̄0 +(1+ i0)b̄0

1+π0

)
, (8.62)

33 Remember that there is not capital accumulation in this model economy.
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which is the implementability condition. Let us denote a0 =(
m̄0+(1+i0)b̄0

1+π0

)
. To make the Ramsey problem interesting, it is usually assumed

that a0 = 0. If a0 > 0, then the initial stock of nominal assets in consumer’s
portfolio, M0 +(1+ i0)V0, is positive and it is optimal to increase the initial level
of prices to infinity. On the other hand, if a0 < 0, then the initial stock of nominal
assets is negative and it is optimal to reduce prices so that the government obtains
the resources it needs without using any distortionary instrument.

8.7.3 The Ramsey Problem

The Ramsey problem solved by the government consists on finding the combination
of nominal interest rate and tax rate on salary income, as well as the sequence of
prices and quantities that: (1) maximize the discounted flow of current and future
utility, (2) while being a competitive equilibrium. Therefore, the problem is

max
{ct ,m̄t+1,lt}

∞

∑
t=0

β tU(ct , m̄t+1,1− lt),

subject to34
∞

∑
t=0

β t [ctUc,t + m̄t+1Um̄,t+1 − ltU1−lt ] = 0,

ct +gt = lt . (8.63)

The solution to this problem characterizes the optimal allocation of resources.
Then, optimal policy instruments can be obtained by substituting the optimal allo-
cations into the conditions characterizing the competitive equilibrium.

It is convenient to introduce the function

Φ(ct , m̄t+1, lt ,µ) = U(ct , m̄t+1,1− lt)+µ (ctUc,t + m̄t+1Um̄,t+1 − ltU1−lt ) ,

where µ is the Lagrange multiplier associated to the implementability condition (a
single intertemporal condition). This allows us to rewrite the previous problem

max
{ct ,m̄t+1,lt}

∞

∑
t=0

β tΦ(ct , m̄t+1, lt ,µ),

subject to (8.63).

34 Notice that the two restrictions that follow characterize the competitive equilibrium. Indeed, we
have already shown that the implementability condition summarizes (8.52)–(8.55). Together with
the global constraint of resources (8.63), these conditions characterize the competitive equilibrium.
It is not hard to show that if all these equations hold, so does the government budget constraint.



8.8 Exercises 419

The Lagrangian is

LR (ct , m̄t+1, lt) =
∞

∑
t=0

β t [Φ(ct , m̄t+1, lt ,µ)−Ωt (ct +gt − lt)] .

First order conditions are

∂LR

∂ct
= 0 ⇔Φc,t −Ωt = 0, (8.64)

∂LR

∂ m̄t+1
= 0 ⇔Φm̄,t+1 = 0, (8.65)

∂LR

∂ lt
= 0 ⇔Φl,t +Ωt = 0, (8.66)

Since ν(ct , m̄t+1) is homogeneous of degree ϕ , ct
∂ν
∂ct

+ m̄t+1
∂ν

∂ m̄t+1
= ϕν , so that

function Φ(.) becomes

Φ(ct , m̄t+1, lt ,µ) = U(ct , m̄t+1,1− lt)+µ
(
ctUc,t + m̄t+1Um̄,t+1 − ltU1−l,t

)

= ν(.)H(.)+µ
(

ct
∂ν
∂ct

H(.)+ m̄t+1
∂ν

∂ m̄t+1
H(.)−ν(.)

∂H
∂ (1− lt)

lt

)

= ν(.)H(.)+µ
(
ϕν(.)H(.)−ν(.)

∂H
∂ (1− lt)

lt

)

= ν(.)
(

H(.)(1+µϕ)−µ
∂H

∂ (1− lt)
lt

)

= ν(ct , m̄t+1)Ψ(lt ,µ),

where Ψ(lt ,µ) =
(

H(.)(1+µϕ)−µ ∂H
∂ (1−lt )

lt
)

.

Therefore, under the utility function (8.49), condition (8.65) becomes

∂ν
∂ m̄t+1

= 0, (8.67)

and taking this condition to (8.58), we obtain it+1 = 0. This implies that, under the
optimal monetary policy, the nominal return on bonds and on money coincide, so
that Friedman’s rule is valid.

8.8 Exercises

Exercise 1. Let us suppose that the government finances its lump-sum transfers to
consumers just by printing money, issuing debt and raising proportional taxes on
consumption. Consider a production function yt = Akαt , and preferences represented
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by a utility function: U(ct , m̄t+1) = ln(ct)+θ ln(m̄t+1), where m̄t+1 = Mt+1
Pt

. Show
that if the government has an inflation steady-state target πss, the model can be
solved recursively to obtain the steady state values of transfers and real balances
which are compatible with the inflation target. Find the expressions determining
the steady state levels of all variables in the economy. Is the inflation target always
neutral or does neutrality depend on the assumptions on endogenous variables, i.e.,
on the policy targets established by the government?

Starting from values: α = 0.36, A = 1,θ = 0.5,β = 0.95,δ = 0.10.

(a) Choose any values you want for τc
ss and bss. Find numerical steady-state levels

css, kss, mss, yss, rss, ζ ss as functions of πss, bss and τc
ss for a range of values of

the latter. What is the welfare cost of inflation?
(b) Choose any values you want for τc

ss and ζ ss. Find numerical steady-state levels
css, kss, mss, yss, rss, bss as functions of πss, ζ ss and τc

ss for a range of values of
the latter. What is the welfare cost of inflation?

(c) Choose any values you want for ζ ss and bss. Find numerical steady-state levels
css, kss, mss, yss, rss, τc

ss as functions of πss, ζ ss and bss for a range of values of
the latter. What is the welfare cost of inflation?

Exercise 2. Let us suppose the government finances its lump-sum transfers to con-
sumers by printing money, issuing debt and raising proportional taxes on output
and consumption. Consider a production function yt = Akαt , and preferences repre-

sented by a utility function: U(ct , m̄t+1) =

(
ct

(Mt+1
Pt

)θ)1−σ

1−σ , θ > 0,σ > 0,σ 	= 1,
where m̄t+1 = Mt+1

Pt
.

(a) Assuming that the government maintains a constant tax rate on output τy
ss, a

constant tax rate on consumption τc
ss and a constant stock of bonds bss, and it has

a steady-state inflation target πss, show that the model can be solved recursively
to obtain the steady-state values of the variables in the economy, as well as the
steady-state levels of real balances and transfers which are compatible with the
inflation target. Find analytical expressions determining the steady-state values
of all variables in the economy. Is the inflation target neutral? Starting from
values: α = 0.36, A = 1, θ = 0.5, β = 0.95, δ = 0.10, find steady-state levels
css, kss, mss, yss, rss, ζ ss as functions of πss, for a range of values of the latter.
Choose any values you want for τy

ss,τc
ss and bss .

(b) Repeat the exercise under the assumption that the government maintains a con-
stant level of transfers ζ ss, a constant tax rate on consumption τc

ss, and a constant
stock of bonds bss and it has a steady-state inflation target πss. (Note: Now, the
model cannot be solved recursively. If we consider that the rate of inflation is
exogenous the equation determining the tax rate turns out to be nonlinear, com-
plicating the solution of the system in a spreadsheet. However, if the tax rate is
supposed to be exogenous and we endogenously compute the rate of inflation,
then solving the model in a spreadsheet becomes very simple. Such calculations
show, among other things, that inflation is not neutral.)
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(c) Repeat the exercise under the assumption that the government maintains a con-
stant level of transfers ζ ss, a constant tax rate on output τy

ss, and a constant stock
of bonds bss and it has a steady-state inflation target πss.

Exercise 3. Let us assume that the government realizes a lump-sum transfer to con-
sumers, which is financed by printing money, issuing debt and raising proportional
taxes on labour and capital income at the same rate and consumption. Assume now
that private agents have a unit of time as endowment every period. Part of that unit
is used to work (lt), while the rest is used up as leisure (1− lt). The production func-

tion is: yt = Akαt l1−α
t , and the utility function: U(ct , m̄t+1, lt) = (ct (1−lt )Ψm̄θ

t+1)
1−σ−1

1−σ ,

Ψ,θ > 0 and m̄t+1 = Mt+1
Pt

. The government has an inflation target.

(a) Write the optimization problems faced by the representative consumer and by
the firm. Derive and interpret the first order conditions for each of those opti-
mization problems. Which set of equations defines the competitive equilibrium?
Which variables are determined in competitive equilibrium?

(b) Show that the equilibrium levels of consumption, real balances, employment,
output and the stock of capital in the economy in the previous paragraph are the
same as those obtained if the consumer is assumed to face the budget constraint:

(1+ τc)ct+kt+1+
Mt+1

Pt
+bt+1≤(1− τy) f (kt , lt)+(1−δ )kt+

Mt

Pt
+ζ t+rtbt .

(c) Suppose that the government chooses the tax rates on consumption and income,
as well as the level of government debt and the rate of inflation. Show that
the steady-state of the model can be solved for recursively. Find analytical ex-
pressions to determine steady-state levels for all variables in the economy. Is
the inflation target neutral? Which is the inflation rate maximizing welfare in
steady-state? Is that the same as the rate of inflation maximizing seigniorage
revenues? Check that the answer to these two questions does not depend on the
value of σ .

(d) Assume α = 0.36, β = 0.95, A = 1, δ = 0.1, Ψ = 2, θ = 0.175, τc = 0.15,
τy = 0.2 and compute the welfare cost in steady-state for different values of the
rate of inflation. Is the increase in welfare cost proportional to the increase in
inflation? Check that these results do not depend on the value of σ .

(e) Change the tax rate on consumption and compute the welfare cost in steady-
state for different values of the rate of inflation. Is the increase in welfare cost
proportional to the increase in inflation? Check that these results do not depend
on the value of σ . Compare these results with those obtained in paragraph d)
Does the welfare cost of inflation depend on the value of the consumption tax
rate?

(f) Change the value of the income tax rate and compute the welfare cost in steady-
state for different values of the rate of inflation. Is the increase in welfare cost
proportional to the increase in inflation? Check that these results do not depend
on the value of σ . Compare these results with those obtained in paragraph (d).
Does the welfare cost of inflation depend on the value of the income tax rate?
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Exercise 4. Consider the economy described in Exercise 3. Consider the utility
function:

U(ct ,mt , lt) =

(
ctmθ

t
)1−σ

1−σ +Ψ ln(1− lt) with mt =
Mt

Pt
.

In particular, assume parameter values A = 1, α = 0.36, β = 0.95, δ = 0.10, θ =
0.005, Ψ = 1.7. Suppose that the government keeps constant the values of the tax
rates on consumption and income, as well as the level of public expenditures. Show
that, in this case, inflation is not neutral. What is the rate of inflation maximizing
welfare in steady-state? What is the rate of inflation that maximizes seigniorage
revenues? What is the welfare cost in steady state of a given increase in inflation?
Does the welfare cost increase proportionally to an increase in inflation? Does the
welfare cost of inflation depend on the values of the consumption and income tax
rates?

Exercise 5. Assume that the government purchases some units of the consumption
commodity, that are ‘thrown to the sea’. These are financed by increasing the money
supply and by a tax on consumption. The representative private agent has an en-
dowment of a unit of time every period. Part of it is devoted to working lt), the
rest being used as leisure (1-lt). The production function is: yt = kαt l1−α

t , while
the utility function is: U(ct ,

Mt+1
Pt

, lt) =Ψ lnct +(1−Ψ) ln(1− lt)+Φ ln Mt+1
Pt

, with
Ψ ∈ (0,1),Φ > 0. Show that if the government has an inflation target and keeps
constant the level of public expenditures, the steady-state of the economy can not be
solved for recursively since the government then does not keep constant the value
of the tax rate on consumption.

Assume parameter values α = 0.36, β = 0.95, δ = 0.1,Ψ= 0.35, θ = 0.175, and
also that public consumption represents 20% of production. Calculate numerically
the changes produced in the steady-state allocation of resources, as well as in the
level of welfare, as the inflation target changes. Is the inflation target neutral? What
is the rate of inflation maximizing the level of utility in steady-state?



Chapter 9
Transitional Dynamics in Monetary Economies:
Numerical Solutions

9.1 Introduction

In the previous chapter we have characterized dynamic optimality conditions for
monetary economies, but we have only evaluated the steady-state effects of mone-
tary policy. To complete the analysis, this chapter is devoted to characterizing the
transitional dynamics of a monetary economy, as it moves from the initial condi-
tion to the steady-state. In particular, we examine the evolution of a given economy
following a monetary policy intervention. We start by discussing the possible in-
stability of the stock of debt, an issue that conditions the set of feasible policies
which needs to be taken into consideration in the type of policy analysis which is
undertaken in this chapter. As an example, we saw in the previous chapter how a pol-
icy of choosing the rate of money growth and the lump-sum transfer to consumers
would lead to a well-defined steady-state, with stable inflation and a finite stock of
debt. That is a not trivial result, since interest payments on outstanding debt have
a feedback effect on the deficit and hence, on financing requirements, producing
a tendency for the stock of debt to increase over time. Hence, when the govern-
ment changes the inflation rate or the size of the lump-sum transfer, the service of
outstanding debt could take the stock of debt to diverge from its steady-state level
along an explosive path. This possibility can be avoided by linking the size of the
lump-sum transfer to the level of outstanding debt each period t. The implication is
then that the government can only freely choose monetary policy, fiscal policy being
constrained to satisfy the government budget constraint.

There is a debate on whether the monetary authority should control the interest
rate or the money supply. In this respect, our second theme for discussion shows that
the type of monetary policy being implemented may lead to nominal indeterminacy,
defined as the possibility that there might not be a unique equilibrium price level. To
proceed in an orderly fashion, we first consider a deterministic monetary economy
in which we successively discuss the cases when the monetary authority chooses the
rate of growth of money supply and leaves interest rates to be determined in the mar-
ket or, alternatively, when it uses nominal rates as the control variable. We show how
nominal indeterminacy arises when the monetary authority controls nominal rates.

A. Novales et al., Economic Growth: Theory and Numerical Solution Methods, 423
c© Springer-Verlag Berlin Heidelberg 2009
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After that, we devote a section to numerically characterizing the short-run effects of
a change in either type of policy, control of money growth or of nominal rates, as
the economy moves along the transition towards the new steady-state. We show that
even though monetary policy may be neutral in the long-run, it may be non-neutral
in the short-run. Furthermore, we show that monetary policy effects may be larger
if the government changes policy gradually, relative to the possibility of a drastic
policy change. We then move to the stochastic version of the monetary economy,
and consider again the same two types of monetary policy. When the nominal rate
of interest is the control variable, we will consider the monetary authority following
different versions of Taylor’s rule, alternatively including or excluding the rate of
inflation from the policy rule.

This chapter ends with neokeynesian monetary models. At a difference with the
rest of the chapter, these models incorporate some aspect of price rigidity, and we
emphasize the similarities and differences with neoclassical monetary models with
flexible prices. As in previous chapters, numerical solutions are implemented in
EXCEL spreadsheets and MATLAB programs which are provided along with the
book.

9.2 Stability of Public Debt

Let us consider an economy in which the government makes each period a lump-
sum transfer to the representative agent, which is financed through liquidity injec-
tions and real bond issuing. A real bond is bought with one unit of commodity and,
at maturity, it gives back to its owner that unit of commodity increased by the re-
turn. The government chooses exogenously an inflation target which, as shown in
Sect. 8.2.2, in the absence of population growth, it is equal in steady-state to the
rate of growth of money supply. As shown in that section, if the government also
chooses exogenously a target for the size of the lump-sum transfer, the steady-state
stock of public debt (bss) will be endogenously determined, jointly with the level of
consumption (css) , the stock of capital (kss), the real return on public debt, (rss), and
the level of real balances at the beginning of the period (mss).

In particular, the government budget constraint will be, in steady-state

πssmss = ζ ss + rssbss,

where ζ ss and πss denote the size of the lump-sum transfer and the rate of inflation,
both exogenous and constant.

We now show that if the initial stock of debt, b0, is above its steady-state level bss,
then the time path for debt may easily explode, never converging to its steady-state
level. To see that, let us assume that the government keeps constant the inflation rate
and the size of the lump-sum transfer at their target levels, πss, ζ ss. For simplicity, let
us also assume that the stock of capital is also at its steady-state level. Then, so will
be consumption, output, real balances and real interest rates, and the government
budget constraint will determine the time evolution of public debt as
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bt+1 = (1+ rss)bt +ζ ss −πssmss

= (1+ rss)t+1b0 − rssbss
(1+ rss)

t+1 −1
rss

= (1+ rss)t+1(b0 −bss)+bss.

Since 1 + rss = 1
β > 0, then, unless b0 	= bss, the time path for the stock of pub-

lic debt will generally be explosive at a rate that will violate the corresponding
transversality condition.1 Hence, it is necessary to include in our analysis some ad-
ditional condition excluding that possibility. A way out of this difficulty, proposed
by Sims [85] and Leeper [55], is to assume that, being aware of this difficulty, the
authority follows a policy of linking each period the amount of the lump-sum trans-
fer made to consumers to the stock of outstanding debt

ζ t = ζ −ηbt , (9.1)

so that the transfer is a decreasing function of the stock of public debt each period.
Under this assumption, the equilibrium level for public debt in period t is

bt+1 = (1+ rss −η)bt +ζ −πssmss, ∀t ,

which converges to its steady-state level bss

(
bss = ζ−πssmss

η−rss

)
for any initial level b0

so long as −1 < 1+ rss −η < 1,2 i.e., provided η ∈
(

1
β −1, 1

β +1
)

. This relation-
ship between the level of the transfer and the stock of debt will be extensively used
in the next sections.

Condition (9.1), that links the size of the lump-sum transfer to the private sector
to the stock of public debt each period, avoids the instability problems with the path
for the public debt variable not only when monetary policy is designed to control
the money supply, but also when the control variable is the nominal rate of interest.
As we will see below, the same link between both variables also guarantees the
stationarity of the path for public debt when the stock of capital is outside steady-
state, or when it experiences continuous deviations from its steady state level, as
it is the case in stochastic economies. For the argument above, it is also irrelevant
whether public debt is made up by real or by nominal bonds, or whether consumers
care about the real value of money held at the beginning or at the end of the period.3

1 From Chap. 8, the transversality condition becomes, under these assumptions:

lim
T→∞

1

(1+ rss)
T λ T bT = lim

T→∞

1

(1+ rss)
T λT

[
(1+ rss)T (b0 −bss)+bss

]

= lim
T→∞

λ T (b0 −bss)+ lim
T→∞

λ T bss

(1+ rss)T

which will not be zero, since from optimality conditions, the Lagrange multiplier is equal to the
marginal utility of consumption, which will generally be bounded away from zero in steady state.
2 Or rss < η < 2+ rss, an expression that we will use below.
3 Or whether we are in a monetary or in a non-monetary economy, for that matter.
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Summarizing, the backfeeding character of the stock of public debt implies that
when the government implements an active monetary policy like controlling the rate
of growth of money or the nominal rate of interest, it is forced to use a passive fiscal
policy regarding the time evolution of the stock of public debt and the amount of the
transfers to the private sector, with the only objective that the government budget
constraint holds each period.

9.3 Alternative Strategies for Monetary Policy:
Control of Nominal Rates vs. Money Growth Control

We consider again the problem solved by the representative agent in a monetary
economy described in Sect. 8.5. In addition to the tax revenues obtained from con-
sumption and income taxes, the government uses bond and money issuing to finance
its purchases of some units of the consumption commodity, which are returned to
consumers in the form of a lump-sum transfer. The consumer/worker household unit
takes as given income and consumption taxes τy

t ,τc
t as well as government transfers,

ζ t , and solves the optimization problem:

max
{ct , Mt+1, kt+1, bt+1}

∞

∑
t=0
β tU(ct , Mt/Pt)

subject to

(1+ τc
t )ct + kt+1 − (1−δ )kt +

Mt+1

Pt
+bt+1

= (1− τy
t )Atkαt +

Mt

Pt
+(1+ rt)bt +ζ t , t = 0,1,2, . . . , (9.2)

given k0, M0, b0,

where rt is the rate of return on real debt. We assume that the level of technology
follows an exogenous, first order autoregressive process

ln(At) = (1−ρA) ln(Ass)+ρA ln(At−1), |ρA| < 1. (9.3)

The government budget constraint is

τc
t ct +

Mt+1 −Mt

Pt
+(bt+1 − (1+ rt)bt)+ τy

t Atkαt = ζ t , t = 0,1,2, . . . (9.4)

Central governments use two types of strategies to try affect the time evolution of
the economy: either controlling the amount of money in circulation, or controlling
the nominal rate of interest. It is impossible to control both variable simultaneously.
The mechanism by which monetary policy gets transmitted to real activity is dif-
ferent, depending on which strategy is adopted for monetary policy. The analytical
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framework we have introduced is used in the next two sections to rigorously char-
acterize the differences between both transmission mechanisms.

Hence, we consider two alternative situations:

1. The government chooses the time path for nominal money {Mt}∞t=0 and for the
two tax rates:

{
τc

t ,τ
y
t
}∞

t=0 , while interest rates {it}∞t=0, the size of the lump-sum
transfer and the stock of public debt {ζ t ,bt}∞t=0 are endogenously determined.

2. The government chooses the time path for nominal interest rates, i.e., the nominal
return on bonds: {it}∞t=0 and for the two tax rates:

{
τc

t ,τ
y
t
}∞

t=0 , while the money
supply {Mt}∞t=0 and the size of the lump-sum transfer and the stock of public
debt {ζ t ,bt}∞t=0 are endogenously determined.

For simplicity, we will assume in both cases a constant choice of tax rates, τc
t =

τc,τy
t = τy,∀t.

9.4 Deterministic Monetary Model with the Monetary Authority
Choosing Money Growth

Let the time evolution of nominal money balances be: Mt+1 = (1+ xt+1)Mt from a
given M0, with a growth rate chosen according to

ln(1+ xt+1) = (1−ρx) ln(1+ xss)+ρx ln(1+ xt), |ρx| < 1. (9.5)

that converges to its long-run value xss, so long as |ρx| < 1. A value ρx = 0 would
allow us to analyze the constant-xt case. It is important to bear in mind that, in
spite of the time index, the value of xt+1 is known at time t. If the government also
chooses the time path for transfers {ζ t}

T
t=0 under a condition ζ t = ζ −ηbt , with

2+ rss > η > rss, the time path for bonds would remain stable, as discussed in 9.2.
From (9.4) and denoting mt = Mt

Pt
, the time path for government debt will obey the

difference equation4:

bt+1 = (1+ rt)bt +ζ −ηbt − τyAtkαt − xt+1mt − τcct

= (1+ rt −η)bt +ζ − τyAtkαt − xt+1mt − τcct . (9.6)

Following an argument similar to those used in the Chap. 8 we obtain the equa-
tions characterizing the solution to the representative agent’s model:

Uc(ct , mt) = β
[
Uc(ct+1, mt+1)

(
(1− τy)At+1αkα−1

t+1 +1−δ
)]

, (9.7)

rt+1 = (1− τy)At+1αkα−1
t+1 −δ , (9.8)

4 Notice that Mt+1−Mt
Pt

= Mt+1−Mt
Mt

Mt
Pt

= xt+1mt . In the steady-state analysis in the previous chapter
we made a different type of transformation, leaving segniorage revenues as a function of the rate
of inflation. We now prefer that the rate of money growth may explicitly appear, since we consider
an exogenous time path for it, while the rate of inflation is endogenously determined.
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it+1 = (1+ τc)
Um(ct+1, mt+1)
Uc(ct+1, mt+1)

, (9.9)

1+ it+1 = (1+ rt+1)(1+πt+1) , (9.10)

ct + kt+1 − (1−δ )kt = Atkαt , (9.11)

for all t, together with the government’s budget constraint (9.6). Equation (9.12) is
an identity that allows us to compute the rate of inflation:

1+πt+1 =
mt

mt+1
(1+ xt+1). (9.12)

Equation (9.7) is Euler’s condition for the stock of capital. Equation (9.8) points
out that the private agent will demand government bonds as well as physical capital,
provided the rate of return on bonds is equal to the return on capital, net of taxes and
depreciation. Equation (9.9) defines the demand for money. Equation (9.10) shows
the relationship between nominal and real rates of interest and the rate of inflation.
Equation (9.11) is the global constraint of resources in the economy.

Plugging (9.10), (9.12), (9.8) into (9.9), we get

[
(1− τy)At+1αkα−1

t+1 +1−δ
] mt(1+ xt+1)

mt+1
= 1+(1+τc)

Um(ct+1, mt+1)
Uc(ct+1, mt+1)

. (9.13)

The numerical solution can be obtained by computing {kt+1,mt ,ct}∞t=0 from
(9.7), (9.11) and (9.13) for specific processes and parameters: ({xt , At}∞t=0, k0 ,
τy, τc). Specific details are discussed in the next section. In doing so, we will pay
special attention to stability conditions. Then, {rt+1}∞t=0, {π t+1}∞t=0 , {it+1}∞t=0 are
obtained from (9.8), (9.12), (9.10), respectively. Given the value of m0 we just ob-
tained and the level of M0, we can compute P0, reflecting the fact that there is not
nominal indeterminacy. Therefore, we can compute the whole price sequence us-
ing the time path we have obtained for the inflation rate, and there is not nominal
indeterminacy. Finally, given (ζ ,η ,b0) , we can compute {bt+1,ζ t}

∞
t=0 from (9.6)

together with the imposed relationship between the size of the lump-sum transfer
and the stock of government bonds (9.1).

Let us assume a specific utility function: U(ct ,Mt/Pt) = [ct (Mt/Pt )θ ]
1−σ−1

1−σ , σ > 0,
θ > 0. Under this specification of preferences, the marginal utility of consumption
depends on real balances, at a difference of what happens with a logarithmic util-
ity function. It is precisely this dependence what leads monetary policy to be non-
neutral in the short run, even though the implied effects might be close to negligible
in some cases. The production function is the same we have often used along the
book, with productivity following an autoregressive process as specified in (9.3):
yt = f (kt) = Atkαt . Then, (9.7) and (9.13) become
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c−σt mθ(1−σ)
t = βc−σt+1mθ(1−σ)

t+1

[
α (1− τy)At+1kα−1

t+1 +1−δ
]
, ∀t (9.14)

[
(1− τy)At+1αkα−1

t+1 +1−δ
] mt

mt+1
(1+ xt+1) = 1+(1+ τc)

θct+1

mt+1
∀t (9.15)

9.4.1 Steady-State

Steady-state levels for the variables in the economy solving the system of equations
that are obtained as steady-state versions of (9.14), (9.15), (9.8), (9.10)–(9.12), (9.6)
and (9.1).

From (9.3) and (9.5): At = Ass, xt = xss.

kss =

[
(1− τy)Assα

1
β − (1−δ )

] 1
1−α

, (9.16)

css = Asskαss −δkss, (9.17)

mss = (1+ τc)θ
css

iss
, (9.18)

1+ rss =
1
β

, (9.19)

1+ iss =
1
β

(1+ xss), (9.20)

πss = xss, (9.21)

bss =
1

rss −η
[ζ − τyAsskαss − xssmss − τccss] , (9.22)

ζ ss = ζ −ηbss. (9.23)

The natural way to interpret this system of equations is under the assumption
that the monetary authority chooses the steady-state rate of growth, xss. Steady-state
inflation and nominal interest rates are then determined from (9.21) and (9.20). The
real rate of interest, determined by (9.19), is also unaffected by monetary policy,
even though the nominal rate of interest increases with the rate of growth of money
supply. The first two equations determine the stock of capital and consumption, and
steady-state output can be readily obtained. They are unaffected by the choice of
steady-state growth of money and, in this sense, monetary policy is neutral in the
long-run. The stock of physical capital and output can be seen to depend nega-
tively from the income tax rate, as it would be the case in a non-monetary economy.
Steady-state consumption will also be lower for a higher income tax. In this sense,
fiscal policy is not neutral. However, the consumption tax does not have any real
effect in the long-run. Steady-state real balances decrease for a higher rate of money
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growth, because the opportunity cost of holding real balances then increases. Real
balances increase with the consumption tax, for transaction reasons, while decreas-
ing with an increase in the income tax.

9.4.2 Solution Through a Log-Linear Approximation

In Sect. 9.4.1 we mentioned that {kt+1,mt ,ct}∞t=0 are obtained from the system of
equations (9.14), (9.15), (9.11), although we did not explain the specific details to
do that. The remaining variables can be recursively obtained afterwards. We now
explain how to obtain {kt+1,mt ,ct}∞t=0 .

To log-linearize this system, we rewrite (9.11) as

elnct + elnkt+1 − (1−δ )elnkt = elnAt eα(lnkt ), (9.24)

(9.14) as

e−σ(lnct )eθ(1−σ)(lnmt ) = β
[
e−σ(lnct+1)eθ(1−σ)(lnmt+1)

×
(
(1− τy)αelnAt+1 e(α−1)(lnkt+1) +1−δ

)]
, (9.25)

and (9.15) as
[
(1− τy)αelnAt+1 e(α−1)(lnkt+1) +1−δ

]
elnmt e− lnmt+1 eln(1+xt+1)

= 1+(1+ τc)θelnct+1e− lnmt+1 . (9.26)

Let us denote: ût = ln(ut/uss), u = c,m,k; x̂t = ln(1+ xt)− ln(1+ xss). We then
get, from (9.24)

0 = AsskαssÂt +[Assαkαss +(1−δ )kss] k̂t − cssĉt − kssk̂t+1. (9.27)

while from (9.25) we obtain

0 =
σ
β

ĉt −
θ(1−σ)

β
m̂t −

σ
β

ĉt+1 +
θ(1−σ)

β
m̂t+1 + · · ·

+(α−1)
(

1
β
− (1−δ )

)
k̂t+1 +

(
1
β
− (1−δ )

)
ρAÂt , (9.28)

where we have used (9.3), together with α (1− τy)Asskα−1
ss +1−δ = 1

β .
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From (9.26)

0 = (1+ xss)(1− τy)Assαkα−1
ss ρAÂt

+(1+ xss)(1− τy)Assα(α−1)kα−1
ss k̂t+1 +

1
β

(1+ xss)m̂t

− 1
β

(1+ xss)m̂t+1 +
1
β

(1+ xss)x̂t+1 −θ (1+ τc)
css

mss
ĉt+1

+θ (1+ τc)
css

mss
m̂t+1, (9.29)

where we have used (9.3), together with α (1− τy)Asskα−1
ss +1−δ = 1

β .
Equations (9.27)–(9.29) can be written in matrix form:

⎡

⎢
⎣

kss 0 0

(1−α)
(

1
β − (1−δ )

)
σ
β − θ(1−σ)

β
A3,1 θ (1+ τc) css

mss
1

⎤

⎥
⎦

︸ ︷︷ ︸
A

⎡

⎣
k̂t+1
ĉt+1
m̂t+1

⎤

⎦

︸ ︷︷ ︸
st+1

=

⎡

⎢
⎣

Assαkαss +(1−δ )kss −css 0
0 σ

β − θ(1−σ)
β

0 0 1
β (1+ xss)

⎤

⎥
⎦

︸ ︷︷ ︸
B

⎡

⎣
k̂t
ĉt
m̂t

⎤

⎦

︸ ︷︷ ︸
st

+

⎡

⎢
⎢
⎣

Asskαss 0

ρA

(
1
β − (1−δ )

)
0

(1+ xss)ρA

(
1
β − (1−δ )

)
(1+xss)

β

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
C

[
Ât

x̂t+1

]

︸ ︷︷ ︸
at

, (9.30)

where A3,1 = (1−α)
(

1
β − (1−δ )

)
(1+ xss), which can be written as

Ast+1 = Bst +Cat , (9.31)

with vectors and matrices as defined in (9.30).
Solving for st+1:

st+1 = A−1Bst +A−1Cat = Dst +Fat , (9.32)

where matrix D being 3×3, has three eigenvalues. Since there are two control vari-
ables in st+1, we would need two relationships between control and state variables to
be able to solve the model. These should come from stability conditions obtained in
the usual fashion, as explained in the chapter on solution methods. For that to be the
case, one of the eigenvalues of D must be stable, the other two being unstable. Then,
given k0, we would have two stability conditions that would allow us to determine
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the initial values of the two control variables: c0,m0, as functions of k0,A0,x1. This
would be a determinate equilibrium.

If the three eigenvalues were greater than one in absolute value or in modulus,
the system would generally not have a solution, since we would then have more
equations than variables to solve for. On the other hand, less than two unstable
eigenvalues would lead to indeterminacy of equilibria, as discussed in the chapter
on numerical solutions (Chap. 5), since at least one of the control variables could be
arbitrarily chosen and still have a stable solution path.

The two stability conditions can be obtained as follows: let D = MΛM−1 denote
the Jordan decomposition of matrix D. So, M is the matrix having as columns the
right eigenvectors of D, while Λ is a diagonal matrix having as elements the eigen-
values of D. Diagonal elements in Λ and columns of M are ordered accordingly.
Without loss of generality, let us assume that: |µ1| < 1, |µ2| > 1, |µ3| > 1. From
(9.32)

M−1st+1 = ΛM−1st +M−1F︸ ︷︷ ︸
Q

at ,

that is, if we denote by mi j the elements in M−1, we have

m11k̂t+1 +m12ĉt+1 +m13m̂t+1︸ ︷︷ ︸
s1
t+1

= µ1(m11k̂t +m12ĉt +m13m̂t)

+Q11Ât +Q12x̂t+1, (9.33)

m21k̂t+1 +m22ĉt+1 +m23m̂t+1︸ ︷︷ ︸
s2
t+1

= µ2(m21k̂t +m22ĉt +m23m̂t)

+Q21Ât +Q22x̂t+1, (9.34)

m31k̂t+1 +m32ĉt+1 +m33m̂t+1︸ ︷︷ ︸
s3
t+1

= µ3(m31k̂t +m32ĉt +m33m̂t)

+Q31Ât +Q32x̂t+1. (9.35)

Since µ2 and µ3 are unstable, we solve (9.34) and (9.35) forwards (see section
on Blanchard–Kahn’s solution method in the corresponding chapter)

s2
t =

Q21

ρA −µ2
Ât +

Q22

ρx −µ2
x̂t+1. (9.36)

s3
t =

Q31

ρA −µ3
Ât +

Q32

ρx −µ3
x̂t+1. (9.37)

which can be written in matrix form as
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[
m22 m23
m32 m33

]

︸ ︷︷ ︸
G

[
ĉt
m̂t

]
=

[
−m21

Q21
ρA−µ2

Q22
ρx−µ2

−m31
Q31

ρA−µ3

Q32
ρx−µ3

]

︸ ︷︷ ︸
H

⎡

⎣
k̂t
Ât

x̂t+1

⎤

⎦ .

If we solve for vector [ĉt , m̂t ]
′ , we obtain the two stability conditions

ĉt = J11k̂t + J12Ât + J13x̂t+1, (9.38)

m̂t = J21k̂t + J22Ât + J23x̂t+1, (9.39)

where J = G−1H.
Finally, plugging (9.38) and (9.39) into the equation for the stable eigenvalue,

(9.33), we get the stock of capital

k̂t+1 = µ1k̂t +
1

m11 +m12J11 +m13J21

×
[
(Q11 +(m12J12 +m13J22)(µ1 −ρA)) Ât

+ (Q12 +(m12J13 +m13J23)(µ1 −ρx)) x̂t+1] . (9.40)

Therefore, given sequences
{{

Ât
}T

t=0 ,{x̂t+1}T
t=0 ,k0

}
, we obtain the time path

for the stock of capital
{

k̂t+1
}T

t=0 from (9.40). From (9.38) and (9.39) we ob-
tain {ĉt , m̂t}T

t=0 . Given {Mt , m̂t}T
t=0 we compute {Pt}T

t=0 , and hence, {π t+1}T−1
t=0 .

Notice that there is no nominal indeterminacy, since we can compute the initial
price level P0. Using

{
Ât , k̂t

}T
t=0 and (9.8) we can compute {rt}T

t=0 . From (9.9)
we get {it+1}T

t=0 . Finally, we can compute the {bt+1}T
t=0-sequence from the bud-

get constraint (9.6), and we can obtain {ζ t}
T
t=0 imposing a relationship of the type

ζ t = ζ −ηbt , with η ∈ ( 1
β −1, 1

β +1) for the reasons mentioned above.

9.4.3 Complex Eigenvalues

All the above goes through whenever unstable eigenvalues are real. However, it is
frequent to find that the eigenvalues of the transition matrix in (9.32) turn out to
be complex numbers. How should we deal with that situation? We start by writing
(9.31) as

Ã

⎡

⎢
⎢
⎢
⎢
⎣

k̂t+1
ĉt+1
m̂t+1
Ât+1
x̂t+2

⎤

⎥
⎥
⎥
⎥
⎦

= B̃

⎡

⎢
⎢
⎢
⎢
⎣

k̂t
ĉt
m̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

, (9.41)
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with

Ã =
[

A 03×2
02×3 I2

]
, B̃ =

⎡

⎣
B C

02×3

(
ρA 0
0 ρx

)
⎤

⎦ ,

or ⎡

⎢
⎢
⎢
⎢
⎣

k̂t+1
ĉt+1
m̂t+1
Ât+1
x̂t+2

⎤

⎥
⎥
⎥
⎥
⎦

= D̃

⎡

⎢
⎢
⎢
⎢
⎣

k̂t
ĉt
m̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

, (9.42)

with D̃ = Ã−1B̃.
Let us assume, without loss of generality, that it is eigenvalues µ4 and µ5 of

matrix D̃ that are complex conjugate numbers with modulus above 1. To have a well
defined solution, matrix D̃ must have three stable and two unstable eigenvalues,
so that we can solve for the two control variables as functions of the three state
variables. Indeed, by construction, we have here two unstable eigenvalues, the same
complex conjugate numbers as in the 3×3 matrix in the previous paragraph.

As shown in the Mathematical Appendix, the solution to (9.42) is of the form
⎡

⎢
⎢
⎢
⎢
⎣

k̂t
ĉt
m̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
M11 . . . M14 M15
. . . . . . . . . . . .

M51 . . . M44 M55

⎤

⎦

︸ ︷︷ ︸
M

⎡

⎢
⎢
⎢
⎢
⎣

C1µ t
1

C2µ t
2

C3µ t
3

C4µ t
4

C5µ t
5

⎤

⎥
⎥
⎥
⎥
⎦

, (9.43)

where M is the matrix having as columns the right eigenvectors of D̃. The Ci values,
i = 1,2, . . . ,5 come from multiplying the left eigenvectors by the vector of initial
conditions for the state variables. We have ordered the columns of M so as to include
the real eigenvectors in the first three columns, while elements in columns 4 and 5,
M·4,M·5, are complex conjugate numbers:

M·4 =

⎡

⎢
⎢
⎢
⎢
⎣

d1 + i f1
d2 + i f2
d3 + i f3
d4 + i f4
d5 + i f5

⎤

⎥
⎥
⎥
⎥
⎦

, M·5 =

⎡

⎢
⎢
⎢
⎢
⎣

d1 − i f1
d2 − i f2
d3 − i f3
d4 − i f4
d5 − i f5

⎤

⎥
⎥
⎥
⎥
⎦

,

The solution (9.43) can also be written5

⎡

⎢
⎢
⎢
⎢
⎣

k̂t
ĉt
m̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

M̃1

. . .

M̃5

⎤

⎥
⎥
⎥
⎥
⎦

,

5 See Mathematical Appendix (Chap. 10).
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where

M̃j = Mj1C1µ t
1 +Mj2C2µ t

2 +Mj3C3µ t
3

+C4qt (d j cos(ϑ t)− f j sin(ϑ t))+C5qt (d j sin(ϑ t)+ f j cos(ϑ t)),

j = 1,2, . . . ,5, µ4 = γ̆+ iϖ , µ5 = γ̆− iϖ ,

ϑ = arctan(ϖ/γ̆), q =
(
γ̆2 +ϖ2

)1/2
.

For t = 0, the previous system determines the values of constants C1, . . . ,C5 from
initial conditions by

⎡

⎢
⎢
⎢
⎢
⎣

C1
C2
C3
C4
C5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
M11 M12 M13 d1 f1
. . . . . . . . . . . . . . .

M51 M52 M53 d5 f5

⎤

⎦

−1

︸ ︷︷ ︸
Mm

⎡

⎢
⎢
⎢
⎢
⎣

k̂0
ĉ0
m̂0
Â0
x̂1

⎤

⎥
⎥
⎥
⎥
⎦

.

Notice that we just know the initial values of state variables
{

k̂0, Â0, x̂1
}

, but
to solve the system we also need to know {m̂0, ĉ0}. For the solution (9.43) to be
stable, the coefficients C4 and C5 in the unstable eigenvalues must be equal to zero.
Therefore, from the system above, we have

[
0
0

]
=

[
m41 m42 m43 m44 m45
m51 m52 m53 m54 m55

]

⎡

⎢
⎢
⎢
⎢
⎣

k̂0
ĉ0
m̂0
Â0
x̂1

⎤

⎥
⎥
⎥
⎥
⎦

,

where the elements of matrix Mm are denoted by mi j. Hence, we can write the two
stability conditions as

[
ĉ0
m̂0

]
= −

[
m42 m43
m52 m53

]−1 [m41 m44 m45
m51 m54 m55

]

︸ ︷︷ ︸
Γ̃1

⎡

⎣
k̂0
Â0
x̂1

⎤

⎦ .

As shown in the Mathematical Appendix, these conditions apply for all t, pro-
viding us with the control equations:

[
ĉt
m̂t

]
= Γ̃1

⎡

⎣
k̂t
Ât

x̂t+1

⎤

⎦ . (9.44)
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Plugging the stability conditions in system (9.42), we get
⎡

⎣
k̂t+1
Ât+1
x̂t+2

⎤

⎦ =

⎡

⎣
D̃11 D̃14 D̃15
D̃41 D̃44 D̃45
D̃51 D̃54 D̃55

⎤

⎦

︸ ︷︷ ︸
J

⎡

⎣
k̂t
Ât

x̂t+1

⎤

⎦

+

⎡

⎣
D̃12 D̃13
D̃42 D̃43
D̃52 D̃53

⎤

⎦

︸ ︷︷ ︸
L

[
ĉt
m̂t

]

= (J +LΓ̃1)

⎡

⎣
k̂t
Ât

x̂t+1

⎤

⎦ , (9.45)

which is the set of state equations, from which we produce time series for the three
state variables.

Once we have the time path for the stock of capital, the level of productivity and
the rate of growth of the money supply, we can compute the remaining variables. In
particular, we compute control variables {ĉt , m̂t}T

t=0 using (9.44). Given {Mt , m̂t}T
t=0

we compute {Pt}T
t=0 , and hence, {π t+1}T−1

t=0 . Notice that there is no nominal inde-
terminacy, since we can compute the initial price level P0. Using

{
Ât , k̂t

}T
t=0 and

(9.8) we can compute {rt}T
t=0 . From (9.9) we get {it+1}T

t=0 . Finally, we can com-
pute the {bt+1}T

t=0-sequence from the budget constraint (9.6), and we can obtain
{ζ t}

T
t=0 imposing a relationship of the type ζ t = ζ −ηbt , with η ∈ ( 1

β −1, 1
β + 1)

for the reasons mentioned above.
Equation (9.45) shows that the stock of physical capital varies when there are

changes in the rate of money growth. Hence, private consumption, as well as pro-
duction will both be affected.

This policy analysis is implemented in MATLAB program money M d gradual.
m. Matrix names in the program are those used in the discussion above. Being a
deterministic model, the program computes a single realization starting from initial
conditions that deviate from steady-state levels for at least one state variable. These
are: the stock of bonds, the money supply, the rate of growth of money balances,
the stock of capital and the level of productivity, and the program computes the
reactions of endogenous variables from that deviation in a single exogenous vari-
able from steady state. The program can also be used to compute the reactions to a
simultaneous deviation from steady state in more than one exogenous variable, but
the obtained responses will not be so easy to interpret.6 MATLAB programs solving
models with complex eigenvalues, as the one above, have been written so that they
can also be used for parameterizations for which all eigenvalues are real.

6 In the MATLAB program it is explained how to choose the variables that deviate from their
steady-state levels.
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9.5 Deterministic Monetary Model with the Monetary Authority
Choosing Nominal Interest Rates

We consider in this section the case when the monetary authority chooses nominal
rates of interest each period according to

ln(1+ it) = (1−ρ i) ln(1+ iss)+ρ i ln(1+ it−1), |ρ i| < 1. (9.46)

and also that, as in the previous section, the level of technology follows an exoge-
nous, first order autoregressive process

ln(At) = (1−ρA) ln(Ass)+ρA ln(At−1), |ρA| < 1.

As in the previous section, the system of equations characterizing the solution to
the representative agent’s problem is (9.7)–(9.11), (9.6), (9.12) and (9.1). To com-
pute the time paths for the endogenous variables, we follow a similar approach to
that in the previous section. From (9.7), (9.9) and (9.11) we obtain the time paths
for the stock of capital, consumption and real balances. After that, we follow a re-
cursive procedure to compute the remaining variables. At the end of the section we
describe in detail this procedure.

We start computing time paths for {kt+1,mt ,ct}T
t=0 from (9.11), (9.7) and (9.9),

which can be particularized for the utility function U(ct ,mt) = (ct mθ
t )

1−σ−1
1−σ , θ > 0,

σ > 0, mt = Mt
Pt

, as
ct + kt+1 − (1−δ )kt = Atkαt , (9.47)

c−σt mθ(1−σ)
t = β

[
c−σt+1mθ(1−σ)

t+1

(
(1− τy)At+1αkα−1

t+1 +1−δ
)]

, (9.48)

it+1 = (1+ τc)θ
ct+1

mt+1
. (9.49)

Let us denote: ût = ln(ut/uss), u = c,m,k; x̂t = ln(1+xt)− ln(1+xss); ı̂t = ln(1+
it)− ln(1+ iss). We start by computing the log-linear approximation to this system:

0 = AsskαssÂt +(Assαkαss +(1−δ )kss) k̂t − cssĉt − kssk̂t+1, (9.50)

0 =
σ
β

ĉt −
θ(1−σ)

β
m̂t −

σ
β

ĉt+1 +
θ(1−σ)

β
m̂t+1 + · · · (9.51)

+(α−1)
(

1
β
− (1−δ )

)
k̂t+1 +

(
1
β
− (1−δ )

)
ρAÂt ,

m̂t+1 = ĉt+1 −
(1+ iss)

iss
ı̂t+1, (9.52)

where we have used (9.3).
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Furthermore, from (9.46) we get

ı̂t+1 = ρ iı̂t . (9.53)

in this case, at a difference of what happens when the government controls the rate
of growth of money supply, the equation defining the demand fore money is a re-
lationship between variables taken at the same point in time. By using (9.52) to
eliminate m̂t from the other equations, we get a system that determines the time
series for {ct ,kt , it} as functions of At :
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⎢
⎣
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Ât . (9.54)

that is
st+1 = D st +F Ât , (9.55)

where D = A−1B, F = A−1C.
We get three eigenvalues from matrix D. One of them will have a norm greater

than 1 while, for most parameterizations, the other two eigenvalues will have a norm
less than 1 (one of these eigenvalues is ρ i). Since we have a control variable and two
state variables (the stock of capital and the nominal rate of interest) in system (9.55),
we need one stability condition to determine the level of consumption as a function
of the stock of capital, the nominal rate of interest and the level of technology.
Therefore, the single unstable eigenvalue is appropriate.

Given the Jordan decomposition of matrix D = MΛM−1, we can write system
(9.55) as

M−1st+1 = ΛM−1st +M−1F︸ ︷︷ ︸
Q

Ât . (9.56)

Let M =

⎡

⎣
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤

⎦ , M−1 =

⎡

⎣
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎤

⎦ , and let us assume,

without loss of generality, that ‖µ1‖ ,‖µ2‖ < 1,‖µ3‖ > 1. System (9.56) can then
be written as we did in the previous section
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m11ĉt+1 +m12k̂t+1 +m13 ı̂t+1 = µ1
(
m11ĉt +m12k̂t +m13 ı̂t

)
+Q1Ât , (9.57)

m21ĉt+1 +m22k̂t+1 +m23 ı̂t+1 = µ2
(
m21ĉt +m22k̂t +m23 ı̂t

)
+Q2Ât , (9.58)

m31ĉt+1 +m32k̂t+1 +m33 ı̂t+1︸ ︷︷ ︸
zt+1

= µ3

(
m31ĉt +m32k̂t +m33 ı̂t︸ ︷︷ ︸

)

zt

+Q3Ât . (9.59)

Equation (9.59), which contains the unstable eigenvalue, can in turn be written

zt =
1
µ3

zt+1 −
Q3

µ3
Ât , (9.60)

which can be solved forwards

zt =
Q3

ρA −µ3
Ât . (9.61)

Taking into account the definition of zt , together with (9.61), we get the stability
condition that solves for ct as a function of the state variables

{
k̂t , Ât , ı̂t

}
and m̂t :

ĉt = −m32

m31
k̂t −

m33

m31
ı̂t +

Q3/m31

ρA −µ3
Ât , (9.62)

that is
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,
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ρA −µ3

]⎡

⎣
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ı̂t
Ât

⎤

⎦ , (9.63)

which is the control equation.
Using (9.57) and (9.62) we get
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(
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while using (9.58) and (9.62), we get
(
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(
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Equations (9.64) and (9.65) and equation Ât+1 = ρAÂt can be written in matrix
form as ⎡

⎣
k̂t+1
ı̂t+1
Ât+1

⎤

⎦ = Γ

⎡

⎣
k̂t
ı̂t
Ât

⎤

⎦ , (9.66)

which is analogous to system (9.45) for the case when money growth was the con-
trol variable. Equation (9.66) is the state equation.

In this system, Γ= Γ−1
1 Γ2, and
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⎢
⎣
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⎢
⎣
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⎥
⎦

,

where Γ2(1,3) = Q1 +(µ1 −ρA)m11
m31

Q3
ρA−µ3

, Γ2(2,3) = Q2 +(µ2 −ρA)m21
m31

Q3
ρA−µ3

.

Therefore, given initial conditions for the state variables {k0,A0, i0}:

• We obtain
{

k̂1, Â1, ı̂1
}

from (9.66). Repeating this procedure at each time period,

we obtain the set of time series
{

k̂t+1, Ât+1, ı̂t+1
}T

t=0.

• From time series
{

k̂t+1, Ât+1, ı̂t+1
}T

t=0, we obtain {ĉt}T
t=0 using (9.63).

• Using the fact that ẑt = ln(zt/zss), we obtain {kt+1,At+1, it+1,ct}T
t=0 from

{
k̂t+1, Ât+1, ı̂t+1, ĉt

}T
t=0.

• From time series {kt+1,At+1, it+1,ct}T
t=0 we can compute the real rate of in-

terest from the standard equality between after-tax real rates of return: rt =
(1− τy)Atαkα−1

t −δ .
• While the inflation rate {π t+1}T

t=0 is obtained from 1+ it = (1+ rt)(1+πt).
• From the first order condition: mt+1 = θct+1(1 + τc)/it+1, we obtain the time

path for real money balances: {mt+1}T
t=0 . Notice that we have not been able to

determine the initial level of real balances m0 , m0 = M0
P0

. Hence, given M0, any
change in the initial price level, P0, is compatible with the dynamic equilibrium
we have just described. Therefore, even though the inflation rate {π t+1}∞t=0 is
well defined in equilibrium, the path for prices {Pt}∞t=0 remains undetermined.
This is known as nominal indeterminacy of the price level.

• From mt
mt+1

(1 + xt+1) = (1 + πt+1) we obtain the time series for money growth

{xt+1}T
t=0 .
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The way the numerical solution is calculated illustrates the fact that deviations of
nominal interest rates from their steady-state level influence the time paths for real
variables, so these are not exogenous with respect to fluctuations in nominal rates.7

This policy analysis is implemented in MATLAB program money i d.m. Matrix
names in the program are the same used in the discussion above. Being a determinis-
tic model, the program computes a single realization starting from initial conditions
which deviate from steady-state levels for at least one state variable. These are: the
stock of bonds, the money supply, the stock of capital, the level of productivity,
and the nominal rate of interest. Graphs provided by the program can be interpreted
as the reaction of endogenous variables to a deviation in one or more exogenous
variables from their steady state levels.

9.6 Transitional Effects of Policy Interventions

The Short-run nonneutrality.xls file analyzes the effects of different monetary pol-
icy experiments. In all cases, the production function is yt = Akαt , and the govern-
ment issues public debt. Furthermore, to avoid an explosive stock of public debt, the
amount of the transfer to private agents is made to depend on the stock of public
debt each period as above

ζ t = ζ −ηbt . (9.67)

In the Change nominal rates spreadsheet it is assumed that a government finances
a transfer to consumers by printing money, issuing debt and raising a proportional
tax on income, while using nominal rates as a control variable for monetary pol-
icy. In the Once and-for-all money change and Gradual money change spreadsheets
the government makes a lump-sum transfer to the representative agent, which is fi-
nanced through seigniorage and bond issuing. In them, the government uses the rate
of growth of money supply as policy variable. In the Once and-for-all money change
spreadsheet the government increases money supply at a constant rate, and we con-
sider the effects of an experiment by which the growth rate experiences a drastic,
permanent increase. On the contrary, in the Gradual money change spreadsheet, we
consider a permanent but gradual change in money growth.

To simulate the different policy experiments in this spreadsheet, there are two
differences with respect to the solution method proposed in the previous section.
There, we used a log-linear approximation to obtain the stability conditions as well
as the state-space formulation of the model. That way, all endogenous variables are
obtained from the log-linear approximation, losing to a large extent the nonlinear
structure of the model. In the EXCEL file we use a linear approximation to the
model, as an alternative. That produces a larger approximation error, although with

7 Under this policy design, nominal interest rates are simultaneously determined with consumption
and capital, while being exogenous relative to inflation and real balances. However, this could be
consistent with real balances having significant explanatory power in regressions for consumption
and capital using simulated data if we do not consider the nominal rate of interest as explanatory
variable.
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a smaller chance of finding complex eigenvalues in the transition matrix than under
the log-linear approximation. Dealing with complex eigenvalues is not so much of a
problem when working with programs like MATLAB, but cannot be easily handled
with EXCEL.

Secondly, in the EXCEL file we use the original, nonlinear global constraint of
resources of the economy to compute the time paths of the endogenous variables,
rather than its log-linear approximation, which is used in the state space formula-
tion in the previous section. That way, we preserve more of the nonlinear structure
of the original model. Then, given values for state variables at any time period, sta-
bility conditions can be used to obtain the values for decision variables, while the
global constraint of resources, together with laws of motion for exogenous vari-
ables, allows us to compute next period values for state variables. Using the original
global constraint of resources we reduce the approximation error, relative to using a
full state-space formulation, although the stability conditions estimated on the log-
linear approximation should be more accurate. This dual approach to the solution of
the model should be useful to the reader as additional practice.

We first describe the details of obtaining the solution to the model under each
policy experiment through a linear approximation, to then discuss the qualitative
effects of each policy experiment in a numerical exercise section.

9.6.1 Solving the Model with Nominal Interest Rates as Control
Variable, Using a Linear Approximation

Preferences are represented by a utility function: U(ct ,mt) = ln(ct) + θ ln(mt),
where mt = Mt

Pt
. The system of equations analogous to (9.47)–(9.49), under the cur-

rent utility function, without a consumption tax and with a constant productivity
parameter, is8

ct + kt+1 − (1−δ )kt = Akαt , (9.68)

c−1
t = β

[
c−1

t+1
(
(1− τy)Aαkα−1

t+1 +1−δ
)]

, (9.69)

it+1 = θ
ct+1

mt+1
. (9.70)

Under exogenous nominal rates, the third equation can be used to solve for real
balances, once we have the level of consumption for a given time period. The linear
approximation around steady-state for the first two equations:

(ct − css)+(kt+1 − kss)−
1
β

(kt − kss) = 0, (9.71)

8 The same analysis could be conducted with the utility function in the previous section, a con-
sumption tax and an autoregressive structure for productivity. Real balances would then enter in
(9.69), which could be eliminated using (9.70). The nominal rate of interest would then appear in
the transformed (9.69), but this is an exogenous variable in this policy experiment.



9.6 Transitional Effects of Policy Interventions 443

−(ct − css) = −(ct+1 − css)+β (css)(1− τy)αA(α−1)(kss)
α−2 (kt+1 − kss) .

(9.72)

This system can be written in matrix form9

[
ρ̂ 1
1 0

][
(kt+1 − kss)
(ct+1 − css)

]
=

[
0 1
1
β −1

][
(kt − kss)
(ct − css)

]
,

where ρ̂ ≡−βcssα (α−1)A(1− τ)(kss)
α−2 , which is of the form

[
(kt+1 − kss)
(ct+1 − css)

]
=

[ 1
β −1
Ω 1−βΩ

][
(kt − kss)
(ct − css)

]
,

with Ω = cssα (α−1)A(1− τ)(kss)
α−2 . This is the same dynamic system charac-

terizing the equilibrium trajectories for the stock of capital and consumption in the
Cass–Koopmans model. Therefore, the condition guaranteeing stability is the same
we characterized in that chapter:

(c0 − css)+
(

1
β
−µ2

)
(k0 − kss) = 0, (9.73)

where µ2 is the stable eigenvalue of the transition matrix

µ2 =

(
1
β +1−βΩ

)
−

√(
1
β +1−βΩ

)2
−4 1

β

2
.

Hence, given k0, (9.73) places the economy on the trajectory converging to
steady-state, c0 being the level of consumption in the initial period. Then, given
k0 and c0, k1 is obtained from (9.68) and, given k1, the stability condition

(ct − css)+
(

1
β
−µ2

)
(kt − kss) = 0, (9.74)

is used to compute c1. This process is repeated recursively. Remember that the sta-
bility condition (9.74) rather than (9.69) must be used to determine ct since, as it
was the case in the Cass–Koopmans model, the resulting solution would not be sta-
ble. Once we have {ct ,kt+1}∞t=0, {mt+1, rt+1, ζ t , π t+1, xt+1}∞t=0 are obtained as
explained for the log-linear approximation in Sect. 9.5.

9 We could increase the dimension of the system by including the law of motion for the nominal
rate of interest, as we have done in some other previous analysis. The difference is that the stability
condition would then involve deviations of nominal rates around their steady state level. However,
if the central bank follows a policy of maintaining constant interest rates, then there is no difference
between both formulations.
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9.6.2 Numerical Exercise: Changes in Nominal Interest Rates

In the Change nominal rates spreadsheet it is assumed that a government finances a
transfer to consumers by printing money, issuing debt an raising proportional taxes
on output. Furthermore, the government uses nominal rates as a control variable for
monetary policy, while maintaining steady-state targets for lump-sum transfers to
consumers, ζ ss, and debt in real terms, bss. These two steady-state values are chosen
as in Case 3 in Steady-state fiscal policy.xls. In that spreadsheet we obtained com-
binations (i,τ) allowing for financing a given level of government transfers while
leading to the chosen steady state level of debt, bss. We guarantee that the stock of
public debt in fact converges to bss by choosing the stock of debt outstanding each
period from (9.67). For that, we first choose a value of η inside the range leading to
stability (see Sect. 9.2), and choose the value of ζ so that the policy target values
for ζ ss, bss, satisfy that condition.

In this environment, the government decides at a given point in time to change
the level of nominal rates from i = 12.7% to i = 13.4%. Given the time discount
factor β = 0.95, this implies a change in steady-state inflation from π0 = 7.06%
to π1 = 7.75%. From our steady-state analysis in Steady-state fiscal policy.xls we
already know that these changes need of a once and-for-all adjustment in the income
tax rate, from τ = 12.0% to τ = 11.0%:

(i,τ) = (i0,τ0), t < t̃

(i,τ) = (i1,τ1), i1 > i0, τ1 < τ0, t ≥ t̃

To compute the transition we need to use the right stability condition after the
policy intervention takes place at t̃ = 10. The vector autoregressive representation is
obtained under the old and the new policy parameters, and the stabilizing constant
(i.e., the stability condition) is updated after the policy intervention. We use that
stability condition to compute the time series for consumption once we have the
data for the stock of capital each period.

The calculations we present in this section show, among other things, that the
level of interest rates is not neutral in this economy. The spreadsheet displays the
transitional dynamics of consumption, the stock of capital, real balances, the level of
utility, the level of transfers, the stock of government debt, the level of seigniorage,
the level of income tax revenues, the rate of inflation, the real rate of interest, and
the rate of money growth.

The reduction in the income tax rate increases the after-tax return on capital,
which accumulates faster. Production does not react at the time of the policy in-
tervention, increasing afterwards because of the higher stock of physical capital.
Consumption falls at the time of the policy intervention, increasing afterwards to a
steady state level above the one before the intervention. The initial fall in consump-
tion is needed because of the higher investment, with output unaltered. In spite of the
increase in production, the tax cut leads to a decrease in tax revenues. The faster ac-
cumulation of productive capital leads to higher output each period. Whether or not
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the new steady state level of consumption is above the old one will generally depend
on the chosen parameterization. With the one used in the spreadsheet, consumption
increases in the long-run, relative to its level before the tax cut.

By permanently increasing the nominal rate of interest, the policy intervention
increases the opportunity cost of holding money, producing an instantaneous fall in
the demand for real balances and in the rate of growth of money supply, which lead
to a decrease in seigniorage revenues.10 The rate of inflation increases because of
the increased demand for the single commodity. This increase in inflation makes
the after-tax real rate of interest adjusts less than completely to the raise in the
nominal rate.

Because of the simultaneous, single-period fall in seigniorage and tax revenues,
the government is forced to sharply increase the stock of debt outstanding initially.
Through the stability condition for public debt, the size of the transfer to the private
sector falls after the policy intervention. The rate of growth of money supply recov-
ers immediately after the new rate of interest is in effect. This recovery dominates
the fall in real balances, and revenues from seigniorage increase. This increase in
revenues allows the government to retire some debt until it gradually returns to its
level before the policy change, and the same behavior is followed by the transfer to
consumers.

9.6.3 Solving the Model with Money Growth as Control Variable,
Using a Linear Approximation

We want to show that a monetary policy intervention can be nonneutral if it is im-
plemented gradually, while being neutral if the new policy target is achieved imme-
diately. In order to do that, we need to know how to solve a monetary economy in
which the government has a target on the rate of growth of the money supply, as we
did in Sect. 9.4. We maintain a setup similar to those in the previous section, but we
now assume that the government controls the rate of growth of the money supply at
each point in time according to11

xt = (1−ρx)xss +ρxxt−1, (9.75)

where xss is its target for the rate of growth of the money supply in the long run, and
ρx ∈ [0,1).

Relative to Sect. 9.4, the difference with the treatment in this section is that tax
rates on consumption and income are now zero and the productivity parameter is

10 Remember that seignoriage revenues SR can be written as the product of the rate of growth of
money supply by the level of real balances: SR = Mt+1−Mt

Pt
= Mt+1−Mt

Mt
Mt
Pt

= xt+1mt .
11 Since ln(1 + xt) � xt for small xt , it is just appropriate that we specify the money growth au-
toregression for ln(1 + xt) under the log-linear approximation and for xt itself under the linear
approximation.
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constant.12 System (9.14), (9.15), (9.11) that allows us to compute the time paths
for consumption, the stock of capital and real balances can be particularized, under
our assumptions on tax rates and productivity, into

c−σt mθ(1−σ)
t = βc−σt+1mθ(1−σ)

t+1

[
αAkα−1

t+1 +1−δ
]
, ∀t (9.76)

[
Aαkα−1

t+1 +1−δ
]

mt(1+ xt+1) = mt+1 +θct+1, ∀t (9.77)

ct + kt+1 − (1−δ )kt = Akαt . (9.78)

The linear approximation to this system, using the fact that [Aαkα−1
ss + 1−δ ] =

1
β is

−σc−σ−1
ss mθ(1−σ)

ss (ct+1 − css)+θ(1−σ)c−σss mθ(1−σ)−1
ss (mt+1 −mss)

= −σc−σ−1
ss mθ(1−σ)

ss (ct − css)+θ(1−σ)c−σss mθ(1−σ)−1
ss (mt −mss)

−βc−σss mθ(1−σ)
ss αAkα−2

ss (α−1)(kt+1 − kss) . (9.79)

(mt+1 −mss)+θ (ct+1 − css)
= αAkα−2

ss (α−1)mss(1+ xss)(kt+1 − kss)

+
1
β

(1+ xss)(mt −mss)+
1
β

mss (xt+1 − xss) (9.80)

(ct − css)+(kt+1 − kss)−
1
β

(kt − kss) = 0. (9.81)

Finally, from (9.75)
xt+2 − xss = ρx (xt+1 − xss) . (9.82)

The matrix representation for (9.79)–(9.82) is
⎡

⎢
⎢
⎣

a11 a12 a13 0
a21 −θ −1 0
1 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

k̃t+1
c̃t+1
m̃t+1
x̃t+2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 b12 b13 0
0 0 b23 b24

1/β −1 0 0
0 0 0 ρx

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

k̃t
c̃t
m̃t

x̃t+1

⎤

⎥
⎥
⎦ ,

where k̃t ≡ kt − kss, c̃t ≡ ct − css, m̃t ≡ mt −mss, x̃t+1 ≡ xt+1 − xss,

a11 = βc−σss mθ(1−σ)
ss αAkα−2

ss (α−1),

a12 = b12 = −σc−σ−1
ss mθ(1−σ)

ss ,

a13 = b13 = θ(1−σ)c−σss mθ(1−σ)−1
ss ,

a21 = αAkα−2
ss (α−1)mss(1+ xss),

b24 = − 1
β

mss; b23 = − 1
β

(1+ xss).

12 A more general discussion could be made with non-zero tax rates and a non-constant productiv-
ity parameter, with the same qualitative results.
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Hence, the system of equations can be written in matrix form:

Azt+1 = Bzt ,

with zt =
[

kt+1 − kss; ct+1 − css; mt+1 −mss; xt+2 − xss
]′ being the vector of vari-

ables.
Let µ1,µ2,µ3, µ4 be the four eigenvalues for the transition matrix of the autore-

gressive representation: zt+1 = Czt , C = A−1B. With two control variables in this
economy, for a determinate solution to exist we need two unstable eigenvalues in
the transition matrix. The inner product of the left eigenvectors

[
d11 d12 d13 d14

]
,[

d21 d22 d23 d24
]

associated to the unstable eigenvalues by vector zt , provide us
with the stability conditions we need to produce a numerical solution. Such prod-
ucts lead to expressions of the form:

d11(k0 − kss)+d12(c0 − css)+d13(m0 −mss)+d14(x1 − xss) = 0,

d21(k0 − kss)+d22(c0 − css)+d23(m0 −mss)+d24(x1 − xss) = 0,

which can be written in matrix form:
[

d12 d13
d22 d23

][
c0 − css

m0 −mss

]
= −

[
d11 d14
d21 d24

][
k0 − kss
x1 − xss

]
,

from which we get

[
c0 − css

m0 −mss

]
= −

[
d12 d13
d22 d23

]−1 [d11 d14
d21 d24

][
k0 − kss
x1 − xss

]

=
[

e11 (k0 − kss)+ e12 (x1 − xss)
e21 (k0 − kss)+ e22 (x1 − xss)

]
.

Hence, for each period t, the two stability conditions, valid at each point in
time, are

ct = css + e11 (kt − kss)+ e12 (xt+1 − xss) , t = 0,1,2, . . . , (9.83)
mt = mss + e21 (kt − kss)+ e22 (xt+1 − xss) , t = 0,1,2, . . . . (9.84)

Summarizing, the solution to the representative agent model can be found fol-
lowing the steps:

1) Characterize the two stability conditions for the model.13

2) Given k0, x1, use stability condition (9.83) to compute c0.
3) Once k0 and c0 are known, the global constraint of resources (9.78) allows us to

obtain the value of k1.
4) Given x1, the policy rule (9.75) allows us to compute x2.

13 The transitional dynamics can be solved in a spreadsheet and, in fact, that is done in Short-run
nonneutrality.xls. Eigenvalues are solved for by using Newton’s method for finding the roots of a
given equation.
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5) To obtain the time path for {kt+1,xt+2,ct}∞t=1 we repeat steps 2–4 at every time
period. From this description, it is clear that the time paths for the stock of capital
and consumption will depend on the realization for the money growth process.

6) To obtain the time path {mt}∞t=0, we use stability condition (9.84) and the trajec-
tories for {kt ,xt+1}∞t=0, which are already known. Notice that given M0, and once
{xt}∞t=1 is known, we can compute the {Mt}∞t=0-path. Since mt = Mt

Pt
, once we

know the trajectories for {Mt ,mt}∞t=0, we can compute the time path for prices
{Pt}∞t=0. Therefore, in this case there is not nominal indeterminacy.

The remaining variables are computed as described in Sect. 9.4.

9.6.4 Numerical Exercise: Gradual vs. Drastic Changes
in Money Growth

An once and-for-all change in the rate of growth of money supply is achieved by
setting ρx = 0 in (9.75) and introducing a change in the long-run target at some
time t̃:

xt = xss, for t < t̃,

xt = x̃ss, for t ≥ t̃.

This is the policy experiment considered in the Once and-for-all money change
spreadsheet. If the economy is in steady-state when the government changes policy,
then consumption, the stock of capital and output are unaffected, while real balances
adjust to their new steady-state level immediately. The size of the lump-sum transfer
to the private sector and the stock of bonds would take a number of periods to reach
their new steady-state levels. If, on the other hand, the economy is not at steady-
state at the time of the policy change, then there are effects on the transition paths
on all the variables in the economy. Therefore, monetary policy is non-neutral in the
short-run.

The spreadsheet assumes that the stock of capital is initially (at t = 0) 1% be-
low its steady-state level and we compute two sets of time series, the one to the
left is obtained under the initial policy parameters, with a rate of money growth of
3% each period, while the one to the right is obtained under a change at t = 10,
from a rate of money growth of 3% to a rate of growth of 4%. So, the left panel
just describes the transition path followed by the economy from its initial position,
outside steady state. The right panel, on the other hand, describes the trajectory fol-
lowed after a policy intervention that permanently increases the rate of growth of
money supply. The steady-state rate of inflation is equal to the rate of growth of the
money supply, so inflation will converge to 3% and 4%, respectively, in each pol-
icy experiment. The transfer to consumers can be seen to be negative in both cases,
acting therefore as a lump-sum tax. For this parameterization, interest payments
on outstanding debt are being financed by the combination of seigniorage revenues
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and a lump-sum tax, as can easily be seen from the steady-state formulation of
the government budget constraint. In fact, in steady state, seigniorage revenues are
πssmss = (0.03)(7.154) = 0.21, and the lump-sum tax is 1.27, which allow for fi-
nancing interest on debt: rssbss = (0.0526)(28.170) = 1.48.

The computations show that the policy intervention lacks any significant real
effect, the time series for consumption, the stock of capital and output being es-
sentially unaltered. There are in fact, some effects but they are small enough not
to show up in the graphs. The rate of inflation and the nominal interest rate, both
exhibit substantial peaks at the time of the policy intervention, falling back to their
new steady state levels after a single period. Real balances experience a permanent
fall, as it is the case with the stock of debt, while the size of the transfer to the private
sector experiences a permanent increase. The level of utility falls permanently, due
to the fall in real balances. The reader can also check that if initial capital is set at
their steady-state levels before the policy change, then the effect of the change in
the inflation target is zero.

Since the change in money growth does not affect the real return on capital, the
convergence path of the demand for productive capital does not change. Hence, the
time path for output is not affected either, and neither is the consumption time path,
from the market clearing condition for the single commodity. The increase in money
growth leads to higher inflation and hence, higher nominal interest rates. That, in
turn, increases the opportunity cost of holding money, leading to a sharp decrease
in the demand for real balances.

On the fiscal side, in steady-state the increase in inflation from the government
intervention compensates the fall in real balances and seigniorage revenues increase
πssmss = (0.04)(6.359) = 0.25, and the lump-sum tax can be reduced to 1.22, to
finance interest on debt, which is barely changed: rssbss = (0.0526)(28.056) = 1.47.

A gradual intervention would be of the form

xt = xss, for t < t̃,

xt = (1−ρx)x̃ss +ρx xt−1, for t ≥ t̃,

with xss 	= x̃ss. Then the levels of capital stock and consumption will not remain
constant even if the economy is in steady-state at the time of the policy change.
The qualitative effect will depend on whether σ ≶ 1. In the Gradual money change
spreadsheet we perform this experiment for an increase in single period money
growth (and steady-state inflation) from 3% to 4%. Contrary to the previous ex-
ercise, all variables are now supposed to be initially at their steady-state levels.
Consumption, the stock of capital and output start a transition trajectory which even-
tually converges back to the same steady-state as before the policy intervention.

It is important to remark that the numerical solution we compute in the spread-
sheet is obtained under the assumption that consumers know that the monetary
authority is implementing a gradual change in the rate of growth of money supply,
which will eventually end up at a constant level of x̃ss. This is reflected in the fact
that, in the first period when money growth starts to change, at t = 10, we impose a
stability condition calculated under a rate of money growth of x̃ss. The anticipation
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of a higher, permanent change in money growth makes the rate of inflation and the
nominal rate of interest both experience a drastic one period increase, higher than
should be expected on the basis of the first-period increase in money growth. Af-
ter the initial reaction, both variables start adjusting to their new steady-state level
which are above the ones before the policy intervention. The sharp increase in infla-
tion drastically reduces the demand for real balances initially. They experiment an
additional, smaller decrease afterwards and they stay permanently below their level
at the initial steady state. From the point of view of the consumer, the described
time path for real balances produces an initial increase in the marginal utility of
consumption followed by an even larger increase in future periods. Hence, the con-
sumer would like to increase consumption even more at later periods than at the
first periods after the government intervention. The change in the marginal rate of
substitution of consumption incentives faster capital accumulation early on, which
allows for higher future output and consumption. At some point, the increased con-
sumption leads to negative net investment, and the stock of capital gradually returns
to its level before the policy intervention.

On the financing side, the lower demand for real balances leads to an initial fall in
seigniorage revenues, requiring the government to initially increase the stock of debt
outstanding. Seigniorage revenues start increasing after the initial period because
the effect of higher growth dominates the lower real balances. One period after
the intervention, the (9.67)-rule leads to a higher lump-sum tax. If the increased
in aggregate revenues (seigniorage and lump-sum taxes) happens not to be enough
to cover interest payments, the government will have to increase the stock of debt
outstanding for a number of periods. The situation will reverse after a number of
periods, allowing the government to retire some debt since, as the reader may easily
check, the stability rule for debt implies that higher steady state seigniorage revenues
come together with a lower stock of debt.

The reader can use money M d.m MATLAB file to compute a single realization
(since the model is deterministic) that incorporates a purely transitory intervention,
where the rate of growth of money supply starts from outside steady-state. That
amounts to computing the responses of endogenous variables to a policy interven-
tion that deviates money growth from its steady state value for a single period. Pro-
gram money M d gradual.m computes the effects of a permanent, gradual change
in money growth. The effects of a drastic, permanent change in money growth can
be obtained by setting ρx = 0.

9.7 The Stochastic Version of the Monetary Model

We will now consider an economy where the time evolution of the general level of
productivity follows a given stochastic process. For convenience, we include the real
value of money balances at the end of the period, rather than at the beginning, as an
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argument in the utility function.14 The relevant variable for the private agent is then
Mt+1/Pt which, as we did in Sect. 8.7, we denote by m̄t+1. Consumers can purchase
discount government bonds offering a known nominal return. Bonds purchased at
time t are denoted by Vt+1. They offer a nominal return it .

The representative agent solves the problem

max
{ct ,Mt+1,kt+1,Vt+1}∞t=0

E0

∞

∑
t=0
β tU(ct ,Mt+1/Pt)

subject to

(1+τc)ct +kt+1−(1−δ )kt +
Mt+1

Pt
+
[

Vt+1

(1+ it)Pt

]
= (1−τy)Atkαt +

Mt

Pt
+

Vt

Pt
+ζ t ,

given k0,M0,V0. The productivity shock is assumed to obey the stochastic process

ln At = (1−ρA) ln Ass +ρAAt−1 + εA,t , |ρA| < 1, εA,t ∼
iid

N(0,σ2
A).

The government raises income and consumption taxes, prints money and issues
nominal bonds, which are bought at price 1/(1+ it). It also provides transfers ζ t to
the private sector. The government budget constraint is

τcct + τyAtkαt +
Mt+1 −Mt

Pt
+

[
Vt+1

(1+ it)Pt
− Vt

Pt

]
= ζ t .

The fiscal authority chooses sequences {τc,τy} and {ζ t}
∞
t=0. To guarantee sta-

bility of the public debt trajectory, we will assume that

ζ t = ζ −η
Vt

Pt
, (9.85)

which implies

b̄t+1 = (1+ it)
[
ζ − τcct − τyAtkαt − m̄t+1 +

m̄t

1+π t

]

+(1−η)
1+ it
1+πt

b̄t , (9.86)

where, as in previous chapter, b̄t+1 = Vt+1
Pt

, m̄t+1 = Mt+1
Pt

. Then, b̄t+1 will be stable
so long as 2+rss

1+rss
> η > rss

1+rss
, where: 1+ rss = (1+ iss)/(1+πss).

14 If we used Mt/Pt as an argument in the utility function, as in previous sections, the demand
for money equation would involve expectations of policy and control variables, and the analytical
treatment of the model becomes more tedious.
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9.7.1 The Monetary Authority Chooses Nominal Interest Rates

Additionally, we will assume that the monetary authority chooses the sequence of
nominal interest rates {it}∞t=0 according to a Taylor’s rule:

ı̂t = ρ iı̂t−1 +ρππ̂ t +ρyŷt + ε i,t , |ρ i| < 1, ε i,t ∼
iid

N(0,σ2
i ),

where ı̂t ≡ ln
(

1+it
1+iss

)
; π̂ t ≡ ln

(
1+πt
1+πss

)
; ŷt ≡ ln

(
yt
yss

)
=︸︷︷︸

yt=At kαt

Ât +α k̂t , Ât ≡ ln
(

At
Ass

)
,

k̂t ≡ ln
(

kt
kss

)
. A simple equation of this type can capture the central bank policy, as

initially suggested by Taylor [92] with equation it = 1.5π t +0.5yt . The central bank
has policy targets for inflation and output, and moves nominal rates as a function of
the deviations in inflation and output relative to their policy targets. This assumption
aims to gaining generality over the assumption of a first order autoregression for
nominal rates, which could be obtained as a special case of the rule above, setting
ρπ = ρy = 0.

9.7.1.1 Case 1: ρπ = 0

If ρπ = 0, the Taylor rule becomes

ı̂t = ρ iı̂t−1 +ρy
(
Ât +α k̂t

)
+ ε i,t , (9.87)

and there is nominal indeterminacy at two levels: first, since the initial price level,
P0, remains unknown, the price sequence is indeterminate. Second, we will show
that we can only compute the expectations of inflation, but not the realized inflation
rate. So, at a difference from previous indeterminacy situations, in which we could
have computed a continuum of price sequences, all consistent with the previously
obtained inflation trajectory, in this economy we are unable to compute any price
sequence, since the time series for inflation cannot be obtained.

The Lagrangian of the representative agent is

L = E0

{
∞

∑
t=0
β t

[
U(ct ,Mt+1/Pt)+λ t

(
(1− τy)Atkαt +

Mt

Pt
+

Vt

Pt
+ζ t

− (1+ τc)ct − kt+1 +(1−δ )kt −
Mt+1

Pt
− Vt

(1+ it)Pt

)]}

,

with first order conditions:
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Uc(ct , m̄t+1) = (1+ τc)λ t ,

λ t = βEt
[
λ t+1

(
(1− τy)αAt+1kα−1

t+1 +1−δ
)]

,

−Um(ct , m̄t+1)
1
Pt

+λ t
1
Pt

= βEt

(
λ t+1

1
Pt+1

)
,

λ t
1

Pt(1+ it)
= βEt

(
λ t+1

1
Pt+1

)
,

where m̄t+1 = Mt+1/Pt .
Plugging the first optimality condition into the other three conditions, we get

Uc(ct , m̄t+1) = βEt
[
Uc(ct+1, m̄t+2)

(
(1− τy)αAt+1kα−1

t+1 +1−δ
)]

. (9.88)

−Um(ct , m̄t+1)+
Uc(ct , m̄t+1)

(1+ τc)
= βEt

[
Uc(ct+1, m̄t+2)

(1+ τc)
1

1+πt+1

]
. (9.89)

Uc(ct , m̄t+1) = β (1+ it)Et

[
Uc(ct+1, m̄t+2)

1
1+πt+1

]
. (9.90)

From (9.89) and (9.90) we get

it
1+ it

= (1+ τc)
Um(ct , m̄t+1)
Uc(ct , m̄t+1)

. (9.91)

For the utility function U(ct ,Mt+1/Pt) = [ct (Mt+1/Pt )θ ]
1−σ−1

1−σ , σ > 0, (9.91) be-
comes

it
1+ it

= θ(1+ τc)
ct

m̄t+1
. (9.92)

From the budget constraints for the representative agent and the government, we
obtain the global constraint of resources in the economy:

ct + kt+1 − (1−δ )kt = Atkαt . (9.93)

Let us now recollect the set of optimality conditions that we are going to log-
linearize in order to solve the model under the assumed utility function. From (9.88),
(9.90), (9.92), (9.93), we get

c−σt m̄θ(1−σ)
t+1 = βEt

[
c−σt+1m̄θ(1−σ)

t+2

(
(1− τy)αAt+1kα−1

t+1 +1−δ
)]

, (9.94)

c−σt m̄θ(1−σ)
t+1 = β (1+ it)Et

[
c−σt+1m̄θ(1−σ)

t+2
1

1+π t+1

]
, (9.95)

θ(1+ τc)
ct

m̄t+1
+

1
1+ it

−1 = 0, (9.96)

ct + kt+1 − (1−δ )kt = Atkαt . (9.97)
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̂̄mt+1 = ĉt −
1
iss

ı̂t , (9.104)

AsskαssÂt +(Assαkαss +(1−δ )kss)k̂t − cssĉt − kssk̂t+1 = 0, (9.105)

where ̂̄mt+1 is known at time t.
Plugging (9.104) into (9.102) and (9.103), we get

0 =
σ −θ(1−σ)

β
ĉt +

θ(1−σ)
β iss

ı̂t −
σ −θ(1−σ)

β
Et ĉt+1

−θ(1−σ)
β iss

Et ı̂t+1 +
(

1
β
− (1−δ )

)
(
ρAÂt +(α−1)k̂t+1

)
, (9.106)

0 =
σ −θ(1−σ)

β
ĉt +

(
θ(1−σ)
β iss

+
1+ iss

1+πss

)
ı̂t

−σ −θ(1−σ)
β

Et ĉt+1 −
θ(1−σ)
β iss

Et ı̂t+1 −
1
β

Et π̂ t+1. (9.107)

We will now use the results, shown in Appendix 1, that in a log-linear approxi-
mation

Et π̂ t+1 = ı̂t − r̂t , (9.108)

and also that

r̂t =
1

1+ rss
(1− τy)αAsskα−1

ss
[
ρAÂt +(α−1)k̂t+1

]
. (9.109)

From (9.87)
Et ı̂t+1 = ρ iı̂t +ρy

(
ρAÂt +α k̂t+1

)
. (9.110)

Using (9.108)–(9.110), we get from (9.106)

0 =
σ −θ(1−σ)

β
ĉt +

θ(1−σ)
β iss

(1−ρ i)ı̂t −
σ −θ(1−σ)

β
Et ĉt+1

+
[(

1
β
− (1−δ )

)
− θ(1−σ)

β iss
ρy

]
ρAÂt

−
[
(1−α)

(
1
β
− (1−δ )

)
+
θ(1−σ)
β iss

αρy

]
k̂t+1, (9.111)

while from (9.107) we get

0 =
σ −θ(1−σ)

β
ĉt +

θ(1−σ)
β iss

(1−ρ i)ı̂t −
σ −θ(1−σ)

β
Et ĉt+1

+
[(

1
β
− (1−δ )

)
− θ(1−σ)

β iss
ρy

]
ρAÂt

−
[
(1−α)

(
1
β
− (1−δ )

)
+
θ(1−σ)
β iss

αρy

]
k̂t+1, (9.112)
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where we can see that (9.111) and (9.112) are the same equation. Hence, under
(9.108) and (9.109) the Euler conditions on physical capital and bonds become the
same. Equation (9.109) is a contemporaneous relationship that would allow us to
compute the time path for real interest rates, once we know the time path for the
stock of capital and for productivity.

Therefore, we can initially reduce the solution to the model to (9.105), (9.111)
and (9.87), whose matrix representation is

⎡

⎣
0 kss 0

σ−θ(1−σ)
β ρ̃ − θ(1−σ)

β iss
(1−ρ i)

0 0 1

⎤

⎦

︸ ︷︷ ︸
D

⎡

⎣
Et ĉt+1

k̂t+1
ı̂t

⎤

⎦

︸ ︷︷ ︸
Et vt+1

=

⎡

⎢
⎣

−css αAsskαss +(1−δ )kss 0
σ−θ(1−σ)

β 0 0
0 αρy ρ i

⎤

⎥
⎦

︸ ︷︷ ︸
G

⎡

⎣
ĉt

k̂t
ı̂t−1

⎤

⎦

︸ ︷︷ ︸
vt

+

⎡

⎢
⎣

Asskαss(
1
β − (1−δ )

)
− θ(1−σ)

β iss
ρy

ρy

⎤

⎥
⎦

︸ ︷︷ ︸
H

ρAÂt +

⎡

⎣
0
0
1

⎤

⎦

︸ ︷︷ ︸
J

ε i,t ,

where ρ̃ ≡
[
(1−α)

(
1
β − (1−δ )

)
+ θ(1−σ)

β iss
αρy

]
, that is,

DEtvt+1 = Gvt +HρAÂt + Jε i,t ,

or
Etvt+1 = Γ1vt +Γ2Ât +Γ3ε i,t , (9.113)

where Γ1 = D−1G, Γ2 = D−1HρA, Γ3 = D−1J. Matrix Γ1 is 3× 3, with two sta-
ble and one unstable eigenvalues, whose associated eigenvector allows us to com-
pute the value of the control variable (consumption) as a function of the two states({

k̂t , ı̂t−1
})

.
As in previous model economies, we now apply Blanchard and Kahn’s approach

to obtain the numerical solution: Let Γ1 = MΛM−1, where Λ and M are the matri-
ces of eigenvalues and eigenvectors, respectively. Without loss of generality, let us
assume that |µ1| , |µ2| < 1, |µ3| > 1. Then, expression (9.113) will be equivalent to
the system:

m11Et ĉt+1 +m12k̂t+1 +m13 ı̂t = µ1
(
m11ĉt +m12k̂t +m13 ı̂t−1

)

+L1Ât +Q1ε i,t , (9.114)
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or, in matrix form:
⎡

⎢
⎣

m12 − m11m32
m31

m13 − m11m33
m31

−κL1

m22 − m21m32
m31

m23 − m21m33
m31

−κL2

0 0 1

⎤

⎥
⎦

⎡

⎣
k̂t+1

ı̂t
Ât

⎤

⎦

=

⎡

⎢
⎢
⎢
⎣

µ1

(
m12 − m11m32

m31

)
µ1

(
m13 − m11m33

m31

)
0

µ2

(
m22 − m21m32

m31

)
µ2

(
m23 − m21m33

m31

)
0

0 0 ρA

⎤

⎥
⎥
⎥
⎦

⎡

⎣
k̂t

ı̂t−1
Ât−1

⎤

⎦

+

⎡

⎢
⎢
⎣

Q1 − Q3m11µ1
µ3m31

0

Q2 − Q3m21µ2
µ3m31

0
0 1

⎤

⎥
⎥
⎦

[
ε i,t
εA,t

]
, (9.120)

where κL1 ≡
(

L1 + L3m11/m31
ρA−µ3

(µ1 −ρA)
)

, κL2 ≡ (L2 + L3m21/m31
ρA−µ3

(µ2 −ρA)).
Expression (9.120) is the system of state equations, while (9.117) is the con-

trol equation. Given initial values for the states
{

k̂0, ı̂−1, Â−1
}

and realizations for
the innovations {ε i,t ,εA,t}∞t=0 we can obtain time series for

{
ĉt , k̂t+1, ı̂t , Ât

}∞
t=0 .

Once this set of time series has been obtained, we can obtain series in levels:
{ct ,kt+1, it ,At}∞t=0 . From (9.96) we obtain {m̄t+1}∞t=0 . From (9.109) we obtain
{r̂t}∞t=0 . From (9.108) we obtain {Et π̂ t+1}∞t=0 . However, we cannot compute the
levels of realized inflation and prices or the time series for nominal money balances.
Therefore, as we mentioned above we have indeterminacy at two levels: (1) we do
not know the initial price level, P0, (2) we cannot compute the realized time paths
for prices and inflation. The sequences for real or nominal government debt and
transfers cannot be obtained either, since they are obtained as functions of the time
paths for prices and inflation.

The numerical solution is implemented in the S i npi s.m MATLAB file, that
computes a single realization for the numerical solution.

9.7.1.2 Case 2: ρπ 	= 0

It can be shown that if ρπ > 1, we can determine the time path for the rate of
inflation, although we will still not be able to compute the initial price level,so that
nominal indeterminacy will still prevail. If ρπ > 1, we can use (9.108) and Taylor’s
rule to obtain

Et π̂ t+1 = ı̂t − r̂t = ρ iı̂t−1 +ρππ̂ t +ρyŷt + ε i,t − r̂t ,

that is,

π̂ t =
1
ρπ

Et π̂ t+1 −
1
ρπ

⎛

⎜
⎝ρ iı̂t−1 +ρyŷt + ε i,t − r̂t
︸ ︷︷ ︸

st

⎞

⎟
⎠ ,
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which has a single solution whenever ρπ > 1:15

π̂ t = − 1
ρπ

∞

∑
j=0

(
1
ρπ

) j

Etst+ j.

To compute the numerical solution, we use the representation of the model
(9.106), (9.107), (9.105) together with Taylor’s rule

ı̂t = ρ iı̂t−1 +ρππ̂ t +ρyŷt + ε i,t , (9.121)

written in state space form. Let vt =
(
ĉt , π̂ t , k̂t , ı̂t−1

)′
. Then (9.121) can be written

ı̂t = Bvt +ρy Ât + ε i,t , (9.122)

where B =
(

0,ρπ ,ρyα,ρ i

)
. Furthermore

Et ı̂t+1 = BEtvt+1 +ρyρAÂt , (9.123)

where Etvt+1 =
(
Et ĉt+1,Et π̂ t+1, k̂t+1, ı̂t

)′
.

Equations (9.106), (9.107), (9.105) can be written in terms of vt :

D Etvt+1 +F Et ı̂t+1 = Gvt +Hı̂t + JÂt , (9.124)

where

D =

⎡

⎢
⎢
⎢
⎢
⎣

σ−θ(1−σ)
β 0 (1−α)

(
1
β − (1−δ )

)
− θ(1−σ)

β iss
σ−θ(1−σ)

β
1
β 0 −

(
θ(1−σ)
β iss

+ 1+iss
1+πss

)

0 0 kss 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

;

F =

⎡

⎢
⎢
⎢
⎢
⎣

θ(1−σ)
β iss

θ(1−σ)
β iss

0
0

⎤

⎥
⎥
⎥
⎥
⎦

;

G =

⎡

⎢
⎢
⎢
⎢
⎣

σ−θ(1−σ)
β 0 0 0

σ−θ(1−σ)
β 0 0 0

−css 0 αAsskαss +(1−δ )kss 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

; H =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ ;

15 The solution is: π̂ t = lim
j→∞

(
1
ρπ

) j
Et π̂ t+ j.− 1

ρπ

∞
∑
j=0

(
1
ρπ

) j
Et st+ j, although, whenever ρπ > 1 the

limit in the first term will be zero.
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J =

⎡

⎢
⎢
⎢
⎣

(
1
β − (1−δ )

)
ρA

0
Asskαss

0

⎤

⎥
⎥
⎥
⎦

.

Notice that the solution strategy in this case is different from the one followed in
the section above or in the next one, in that now we have not only Et π̂ t+1, but also
π̂ t in the reduced system that characterizes equilibrium. An equilibrium condition
in most models in this chapter is Et π̂ t+1 = ı̂t − r̂t , so that when Et π̂ t+1, but not π̂ t
appear in the reduced system, we can use that condition to completely eliminate
inflation from the system. That is not possible in this model, and we are forced to
retain the Et π̂ t+1 = ı̂t − r̂t as part of the system, which has now dimension 4 rather
than 3.

Plugging (9.122) and (9.123) into (9.124):

(D+FB)
︸ ︷︷ ︸

L

Etvt+1 = (G+HB)
︸ ︷︷ ︸

N

vt +
(

J +HρA −FρAρy

)

︸ ︷︷ ︸
Q

Ât +Hε i,t , (9.125)

and, premultiplying this expression by L−1:

Etvt+1 = Γ1vt +Γ2Ât +Γ3ε i,t , (9.126)

where Γ1 = L−1N; Γ2 = L−1Q; Γ3 = L−1H.
Notice that matrix Γ1 has rank 3, since N has rank 3. Hence, one of its eigen-

values is equal to zero. Two of the other three eigenvalues will be above one, in
absolute value whenever ρπ > 1. The remaining eigenvalue will be below one in
absolute value. Therefore, as we show next, we get two stability conditions from the
two unstable eigenvalues, which will determine the two controls (ĉt , π̂ t ) as functions
of the states (k̂t , ı̂t−1) at each time period t. Without loss of generality, let us assume
that |µ1| = 0, |µ2| < 1, and |µ3| , |µ4| > 1. Jordan’s decomposition of matrix Γ1 is:
Γ1 = MΛM−1.

Let us denote

M =

⎡

⎢
⎢
⎢
⎣

M11 M12 . . . M14

M21 M22 . . . M24

. . . . . . . . . . . .

M41 M42 . . . M44

⎤

⎥
⎥
⎥
⎦

; M−1 =

⎡

⎢
⎢
⎢
⎣

m11 m12 . . . m14

m21 m22 . . . m24

. . . . . . . . . . . .

m41 m42 . . . m44

⎤

⎥
⎥
⎥
⎦

.

If we multiply to the left of (9.126) by M−1, we obtain

M−1Etvt+1 = Λvt +M−1Γ2︸ ︷︷ ︸
Φ

Ât +M−1Γ3︸ ︷︷ ︸
Ψ

ε i,t ,
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[

m11 m12
m21 m22

]

︸ ︷︷ ︸
B̃

Et ft+1 +
[

m13 m14
m23 m24

]

︸ ︷︷ ︸
D̃

st

=
[

0 0
µ2m21 µ2m22

]

︸ ︷︷ ︸
F̃

ft +
[

0 0
µ2m23 µ2m24

]

︸ ︷︷ ︸
G̃

st−1

+
[
Φ1
Φ2

]

︸ ︷︷ ︸
H̃

Ât +
[
Ψ1
Ψ2

]

︸ ︷︷ ︸
J̃

ε i,t .

Plugging the control equation in this equation, we get

st = L̃−1Q̃ st−1 + L̃−1ŨÂt + L̃−1Ṽε i,t , (9.132)

where L̃ = B̃Θ+ D̃; Q̃ = F̃Θ+ G̃; Ũ = H̃ +
(
F̃ − B̃ρA

)
Ξ; Ṽ = J̃ + F̃Ω.

Using (9.132) and the law of motion for the productivity shock, we obtain the
state equation:

[
st
Ât

]
=

[
L̃−1Q̃ ρAL̃−1Ũ
[0 0] ρA

][
st−1
Ât−1

]

+
[

L̃−1Ṽ L̃−1Ũ
0 1

][
ε i,t
εA,t

]
. (9.133)

Given realizations for the innovations {ε i,t ,εA,t}∞t=0 , together with initial values
for the state variables

{
k̂0, ı̂−1, Â−1

}
, we obtain the time paths for the state variables{

k̂t+1, ı̂t , Ât
}∞

t=0 . Given this set of time series, and using the control equation, we
can obtain the control variables {ĉt , π̂ t}∞t=0 . However, since we cannot compute the
initial price level, the nominal indeterminacy will prevail. On the other hand, the
rate of inflation can be solved for in this case. The time paths for nominal assets will
then be undetermined under this policy design. Real money balances

{
̂̄mt+1

}∞
t=0 can

be obtained from (9.96), while interest rates {r̂t}∞t=0 are obtained from (9.109). The
time path for real government debt can be obtained using the government budget
constraint, from an initial level of debt:

b̄t+1︸︷︷︸
Vt+1

Pt

= (1+ it)
[
ζ − τcct − τyAtkαt − m̄t+1 +

m̄t

1+π t

]
+(1−η)

1+ it
1+πt

b̄t .

The numerical solution is implemented in the S i pi s.m MATLAB file. Being a
stochastic economy, we can now compute as many realizations as desired, since they
will all be different from each other. This can be done with program mS i.m. These
realizations can be used to calculate the value of any statistic, whose probability
distribution can then be estimated over the set of simulations.
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9.7.2 The Monetary Authority Chooses Money Supply Growth

We consider in this section the case when the government chooses money growth
according to16

ln(1+ xt+1) = (1−ρx) ln(1+ xss)+ρx ln(1+ xt)+ εx,t ,

|ρx| < 1, εx,t ∼
iid

N(0,σ2
x), (9.134)

or, equivalently
x̂t+1 = ρxx̂t + εx,t , (9.135)

so that the money supply evolves by

Mt+1 = (1+ xt+1)Mt , given M0 . (9.136)

The monetary authority is now choosing money growth as a policy control vari-
able, in addition to the time path for the stock of bonds and the two tax rates, on
consumption and income. From the discussion above, we know that17

Et π̂ t+1 = ı̂t − r̂t , where r̂t = ı̂t −
δ + rss

1+ rss

(
ρAÂt +(α−1)k̂t+1

)
. (9.137)

From (9.136) we have18

π̂ t+1 = x̂t+2 + ̂̄mt+1 − ̂̄mt+2, (9.138)

so that
Et π̂ t+1 = Et x̂t+2 + ̂̄mt+1 −Et ̂̄mt+2, (9.139)

16 For consistency with other variables, we denote by xt+1 the rate of growth of money supply at
time t. So, the value of xt+1 is chosen at time t according to (9.134). Special cases include a deter-
ministic rate of money growth (when σ2

x = 0), or even constant money growth, (if σ2
x = ρx = 0).

17 In the Appendix to this chapter, we get

r̂t =
1

1+ rss
(1− τy)αAsskα−1

ss
[
ρAÂt +(α−1)k̂t+1

]
.

on the other hand, we have, in steady-state: (1− τy)αAsskα−1
ss = 1

β − (1−δ ), and 1+ rss = 1
β .

Plugging both equalities into the first equation, we get

r̂t = ı̂t −
δ + rss

1+ rss

(
ρAÂt +(α−1)k̂t+1

)
.

18 Notice that:
Mt+2 = (1+ xt+2)Mt+1,

which is analogous to

Pt+1

Pt

Mt+2

Pt+1
= (1+ xt+2)

Mt+1

Pt
⇔ (1+πt+1)m̆t+2 = (1+ xt+2)m̆t+1,

and from the log-linear approximation to this equation, we get (9.138).
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BEts0
t+1 = Ds0

t +Fat ,

or
Ets0

t+1 = Γ1s0
t +Γ2at , (9.144)

where Γ1 = B−1D, Γ2 = B−1F.
It is easy to see that matrix Γ1 has two unstable and one stable eigenvalues. The

two unstable eigenvalues will allow us to compute, through their associated eigen-
vectors, the two stability conditions determining the control variables

{
̂̄mt+1, ĉt

}
as

a function of the states
{

k̂t , Ât , x̂t+1
}

.
For the parameterization assumed in the accompanying MATLAB program, the

unstable eigenvalues are a pair of complex conjugate numbers, with norm above
1.Without loss of generality, we will assume that the eigenvalues of Γ1 are: |µ1|< 1,
µ2 = a + bi, µ3 = a− bi, such that (a2 + b2)1/2 > 1. Given k0, we will have two
stability conditions to determine {c0, m̄1}. We now show how to compute the two
stability conditions. To do so, it is convenient to write system (9.144) as

⎡

⎢
⎢
⎢
⎢
⎣

ĉt+1
̂̄mt+2

k̂t+1
Ât+1
x̂t+2

⎤

⎥
⎥
⎥
⎥
⎦

=
[
Γ1 Γ2

02×3 Ω

]

︸ ︷︷ ︸
Γ3

⎡

⎢
⎢
⎢
⎢
⎣

ĉt
̂̄mt+1

k̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Γ4

[
η̌1,t+1
η̌2,t+1

]
+

⎡

⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Γ5

[
εA,t+1
εx,t+1

]
, (9.145)

where we have added to system (9.144) the laws of motion for the technology
variable Ât+1 and that of the money growth process x̂t+2, and we have written
the expectations of consumption and real balances as being equal to their realized
values minus their respective prediction errors, Et ĉt+1 = ĉt+1 − η̌1,t+1, Et ̂̄mt+2 =
̂̄mt+2 − η̌2,t+1. Furthermore,

Ω=
[
ρA 0
0 ρx

]
.

Matrix Γ3 has now five eigenvalues, the three already mentioned for Γ1, together
with ρA and ρx. Let us assume that we set up the diagonalization of matrix Γ3 as

Γ1 = MΛM−1,

Λ =

⎡

⎢
⎢
⎢
⎢
⎣

µ1 0 0 0 0
0 ρA 0 0 0
0 0 ρx 0 0
0 0 0 a+bi 0
0 0 0 0 a−bi

⎤

⎥
⎥
⎥
⎥
⎦

;
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M =

⎡

⎢
⎢
⎢
⎢
⎣

M11 M12 M13 d1 + f1i d1 − f1i
M21 M22 M23 d2 + f2i d2 − f2i
M31 M32 M33 d3 + f3i d3 − f3i
M41 M42 M43 d4 + f4i d4 − f4i
M51 M52 M53 d5 + f5i d5 − f5i

⎤

⎥
⎥
⎥
⎥
⎦

.

As shown in the Mathematical Appendix devoted to the solution of determinis-
tic systems in finite order differences with complex eigenvalues, given a system of
dimension 2: [

x1t
x2t

]
=

[
A11 A12
A21 A22

][
x1t−1
x2t−1

]
,

if the eigenvalues associated to its transition matrix are complex conjugate numbers,
we have

[
A11 A12
A21 A22

]
=

[
g1 +h1i g1 −h1i
g2 +h2i g2 −h2i

]

︸ ︷︷ ︸
P

[
ϖ +νi 0

0 ϖ −νi

]

×
[

g1 +h1i g1 −h1i
g2 +h2i g2 −h2i

]−1

and the general solution to this deterministic first order difference system can be
written

[
x1t
x2t

]
=

[
stC1 [g1 cos(ωt)−h1 sin(ωt)]+ stC2 [g1 sin(ωt)+h1 cos(ωt)]
stC1 [g2 cos(ωt)−h2 sin(ωt)]+ stC2 [g2 sin(ωt)+h2 cos(ωt)]

]

=
[

g1 h1
g2 h2

]

︸ ︷︷ ︸
P̃

[
st [C1 cos(ωt)+C2 sin(ωt)]

st [−C1 sin(ωt)+C2 cos(ωt)]

]
,

where s = (ϖ2 +ν2)1/2 and ω = arctan(ν/ϖ), while C1 and C2 are two constants
to be determined. Notice that P̃ is a two-column matrix: the first one is the real
part of the right eigenvector of the transition matrix, while the second column is the
imaginary part of that eigenvector.

Taking this result into account, the solution to the homogeneous version of sys-
tem (9.145) is of the form:

⎡

⎢
⎢
⎢
⎢
⎣

ĉt
m̂t+1

k̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

= M̃

⎡

⎢
⎢
⎢
⎢
⎣

Ć1µ t
1

Ć2ρ t
A

Ć3ρ t
x[

Ć4 cos(θ t)+Ć5 sin(θ t)
]

qt
[
−Ć4 sin(θ t)+Ć5 cos(θ t)

]
qt

⎤

⎥
⎥
⎥
⎥
⎦

,
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with M̃ =

⎡

⎢
⎢
⎢
⎢
⎣

M11 M12 M13 d1 f1
M21 M22 M23 d2 f2
M31 M32 M33 d3 f3
M41 M42 M43 d4 f4
M51 M52 M53 d5 f5

⎤

⎥
⎥
⎥
⎥
⎦

,

where q = (a2 +b2)1/2 and θ = arctan(b/a). Since q > 1, this solution will be stable
if and only if Ć4 and Ć5 are both equal to zero, which is the condition to eliminate the
unstable trajectories. Besides setting the two constants to zero, we get the stability
conditions determining the control variables at each point in time as a function of
the states:

M̃−1

⎡

⎢
⎢
⎢
⎢
⎣

ĉt
m̂t+1

k̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

Ć1µ t
1

Ć2ρ t
A

Ć3ρ t
x

0
0

⎤

⎥
⎥
⎥
⎥
⎦
⇒

[
M̃−1

1:3,:
M̃−1

4:5,:

]

⎡

⎢
⎢
⎢
⎢
⎣

ĉt
m̂t+1

k̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

Ć1µ t
1

Ć2ρ t
A

Ć3ρ t
x

0
0

⎤

⎥
⎥
⎥
⎥
⎦

⇒ M̃−1
4:5,:

⎡

⎢
⎢
⎢
⎢
⎣

ĉt
m̂t+1

k̂t
Ât

x̂t+1

⎤

⎥
⎥
⎥
⎥
⎦

=
[

0
0

]
, (9.146)

where M̃−1
4:5,: denotes rows 4 and 5 in matrix M̃−1. These correspond to columns 4

and 5 in M̃, which act are right “pseudo-eigenvectors” for matrix Γ3.
From expression (9.146) we obtain the control equation:

[
ĉt

m̂t+1

]
= −[M̃−1

4:5,1:2]
−1M̃−1

4:5,3:5︸ ︷︷ ︸
Ψ1

⎡

⎣
k̂t
Ât

x̂t+1

⎤

⎦ , (9.147)

where M̃−1
4:5,1:2 denotes the submatrix of M̃−1 made up by rows 4 and 5 and columns

1 and 2, while M̃−1
4:5,3:5 denotes the submatrix of M̃−1 made up by rows 4 and 5, and

columns 3, 4 and 5.
If we multiply to the left through (9.145) by M̃−1, we get

M̃−1zt+1 = M̃−1Γ3zt + M̃−1Γ4η̌ t+1 + M̃−1Γ5ε t+1, (9.148)

where zt+1 =

⎡

⎢
⎢
⎢
⎢
⎣

ĉt+1
̂̄mt+2

k̂t+1
Ât+1
x̂t+2

⎤

⎥
⎥
⎥
⎥
⎦

, η̌ t+1 =
[
η̌1,t+1
η̌2,t+1

]
, ε t+1 =

[
εA,t+1
εx,t+1

]
.
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A single realization for the numerical solution for this model is implemented in
S M s.m MATLAB file. An arbitrary number of realizations can be obtained using
the mS M.m program. In this program we have labelled matrices Ψ1 as ‘MCONT1’,
Ψ2 as ‘MCONT2’, Φ1 as ‘MS1’, and Φ2 as ‘MS2’.

Given initial conditions k0, Â0, x̂1, we obtain
{

k̂t+1, Ât+1, x̂t+2
}T

t=0 from (9.152).

From (9.147) we compute the time paths
{

ĉt , ̂̄mt+1
}T

t=0 . Given
{

Mt , ̂̄mt+1
}T

t=0 we
compute {Pt}T

t=0 , and hence, {π t+1}T−1
t=0 . Notice that there is not nominal indeter-

minacy in the model, since we can compute P0 as well as the whole time path for
inflation and for inflation expectations without any problem

π̂ t+1 = x̂t+2 + ̂̄mt+1 −Et ̂̄mt+2,

Et π̂ t+1 = ρxx̂t+1 + ̂̄mt+1 −Et ̂̄mt+2,

where Et ̂̄mt+2 =Ψ1(2,1)k̂t+1 +Ψ1(2,2)ρAÂt +Ψ1(2,3)ρxx̂t+1.
From (9.137) and (9.140) we can obtain the time path for nominal and real inter-

est rates. From the government budget constraint

b̄t+1︸︷︷︸
Vt+1

Pt

= (1+ it)
[
ζ − τcct − τyAtkαt − m̄t+1 +

m̄t

1+π t

]
+(1−η)

1+ it
1+πt

b̄t .

we obtain
{

b̄t+1
}T

t=0 starting from and initial condition V0 and the initial price level
P0 (already determined) as a function of the time path for transfers {ζ t}

T
t=0, by

imposing a stability condition of the type ζ t = ζ −η b̄t . Since we know the time
paths for prices and real bonds, computing that for the stock of nominal bonds is
straightforward. Finally, time series for level variables can be readily obtained from
time series for variables in differences to steady-state values.

9.8 A New Keynesian Monetary Model

In this section we present and solve a dynamic, stochastic, general equilibrium
model with real balances in the utility function, à la Sidrauski, that incorporates
price rigidity. We assume the economy is made up by 4 agents: a representative
household, a representative firm that produces the final good, a continuum of in-
termediate goods-producing firms, and a monetary authority. Since intermediate
commodities are imperfect substitutes in the production of the final good, the rep-
resentative firm producing intermediate commodities sells its production under mo-
nopolistic competition, deciding on its output price as a function of the demand that
the final-good producing firm makes of each intermediate commodity. We assume
that the firm producing intermediate commodities faces quadratic costs for adjusting
nominal prices between periods, which are responsible for the price rigidity in this
model. In the absence of adjustment costs, the symmetric equilibrium of this model



470 9 Transitional Dynamics in Monetary Economies: Numerical Solutions

would converge to that of an economy with flexible prices. The price rigidity in the
model allows us to obtain, as one of the equilibrium conditions, a Phillips curve.

We are specially interested in presenting this monetary model with price rigid-
ity so that the reader could clearly see the similarities and differences between
price flexibility and price rigidity, as well as compare the structure of a neoclas-
sical monetary model with that of a neo-keynesian model. We start by presenting
a neo-keynesian monetary model that we can easily write in terms of standard IS,
LM and Phillips curves, which departs from previous models in that it has an elastic
labour supply function and the lack of capital accumulation. This latter assumption
allows us to obtain the IS and LM equations in a very natural manner. Once we
present this model, we will return to a specification where agents offer their units
of labour inelastically and we allow for physical capital accumulation. Under this
specification IS and LM curves are less evident, although we can solve the model
very similarly to how we have solved neoclassical monetary models above.

The specification of the IS-LM-Phillips curve model with micro foundations we
present next is taken from Ireland [45].

9.8.1 A Model Without Capital Accumulation: Ireland’s (2004)

The Representative Household

The household is endowed with ht units of labour which it dedicates to the different
intermediate commodity-producing firms. Since there is a continuum of such firms,
indexed by j ∈ [0,1], we have

ht =
∫ 1

0
ht( j)d j.

The household starts each period t with a stock of nominal government debt
Bt and a money stock Mt . At the beginning of the period, the household receives
a nominal lump-sum transfer Tt from the monetary authority. After receiving this
transfer, government bonds mature, providing the household with Bt additional units
of money. These monetary units are used in part to purchase new government bonds
Bt+1, at a nominal cost Bt+1

1+it
, where it denotes the nominal rate of interest. The re-

maining money is used to purchase the final good at a nominal price Pt . At the end
of the period, the household receives Dt money units in the form of dividend pay-
ments from the different intermediate commodities producing firms. Money Mt+1
and government bonds Bt+1 are carried over to period t + 1, subject to the budget
constraint:

ct +
Mt+1

Pt
+

Bt+1

Pt(1+ it)
≤ Mt

Pt
+

Bt

Pt
+

Tt

Pt
+wtht +

Dt

Pt
, (9.153)

where wt denotes the real wage.
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The representative household solves the problem

max
{ct ,Mt+1,Bt+1}

E0

∞

∑
t=0
β tat

[
U

(
ct ,

(
Mt+1

Pt

)
/et

)
−ψht

]

subject to (9.153) and given M0,B0, where at and et denote, respectively, a prefer-
ence shock, which will end up showing as a perturbation in the IS equation, and a
shock to money demand, following the stochastic processes:

lnat = ρa lnat−1 + εat , |ρa| < 1, εat ∼
iid

N(0,σ2
a), (9.154)

lnet = ρe lnet−1 + εet , |ρe| < 1, εet ∼
iid

N(0,σ2
e). (9.155)

First order conditions for this problem are

atU1(ct , m̄t+1/et) = λ t , (9.156)

ψat = λ twt, (9.157)

λ t = β (1+ it)Et [λ t+1/(1+πt+1)], (9.158)

(at/et)U2(ct , m̄t+1/et) = λ t −βEt [λ t+1/(1+πt+1)], (9.159)

together with (9.153) written as an equality, for t = 0,1,2, . . . , and the transversality
condition:

lim
T→∞

Et

[
β t+Tλ t+T

(
Mt+T+1

Pt+T
+

Bt+T+1

Pt+T (1+ it+T )

)]
= 0,

where m̄t+1 = Mt+1
Pt

, π t+1 = Pt+1
Pt

−1.

The Representative Finished Goods-Producing Firm

This firm produces yt units of the final good using as inputs yt( j) units of each
intermediate good, for j ∈ [0,1]. Each intermediate commodity is purchased at price
Pt( j). The technology used by this firm is

[∫ 1

0
yt( j)(ε−1)/εd j

]ε/(ε−1)

≥ yt , ε > 1. (9.160)
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and it solves the problem:

max
{yt ( j)}

Πt = Ptyt −
∫ 1

0
Pt( j)yt( j)d j,

subject to (9.160).
First order conditions are

yt( j) = [Pt( j)/Pt ]
−ε yt , ∀ j ∈ [0,1], (9.161)

where ε measures the constant price elasticity of demand for each intermediate
good.

Competition among firms in the market for the final good leads to zero profits. It
is easy to show that the zero profit condition implies19

Pt =
[∫ 1

0
Pt( j)1−εd j

] 1
1−ε

. (9.162)

The Representative Intermediate Goods-Producing Firm

Each period t the j-th firm producing intermediate goods hires ht( j) units of
labour at a real wage wt , to produce yt( j) units of the intermediate good using the
technology

ztht( j) ≥ yt( j), (9.163)

where zt is an aggregate technological shock, common to all firms, that obeys the
stochastic process

lnzt = ρz lnzt−1 + εzt ,
∣
∣ρz

∣
∣ < 1, εzt ∼

iid
N(0,σ2

z ). (9.164)

As mentioned above, intermediate goods substitute imperfectly to produce the
final commodity. Hence, the representative intermediate commodity producing firm
sells its production in a monopolistic competition market at a price that depends
on the demand by the firm producing the final good, and facing a quadratic cost of
changing nominal prices as specified in Rotemberg [79]:

φ
2

[
Pt( j)

(1+πss)Pt−1( j)
−1

]2

yt ,

where φ ≥ 0 and πss denotes the steady state rate of inflation.

19 To show that result:

Πt = 0 ⇒ Pt yt −
∫ 1

0
Pt( j)yt( j)d j = 0 ⇒

using (9.161)
Pt yt −Pεt yt

∫ 1

0
Pt( j)1−εd j = 0

⇒ P1−ε
t =

∫ 1

0
Pt( j)1−εd j ⇒ (9.162).
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This adjustment cost makes the market value maximization problem of the rep-
resentative j-th firm producing intermediate commodities to be dynamic:

max
{Pt ( j)}

E0

∞

∑
t=0
β tλ t

[
Dt( j)

Pt

]

subject to: (9.161) and (9.163), where

Dt( j)
Pt

=
Pt( j)

Pt
yt( j)−wtht( j)− φ

2

[
Pt( j)

(1+πss)Pt−1( j)
−1

]2

yt

=
using (9.161) and (9.163)

[
Pt( j)

Pt

]1−ε
yt −

[
Pt( j)

Pt

]−ε wtyt

zt

−φ
2

[
Pt( j)

(1+πss)Pt−1( j)
−1

]2

yt , (9.165)

∀t = 0,1,2, . . . , where β tλ t/Pt measures the value for the representative house-
hold of the marginal utility of an additional monetary unit received as dividends in
period t.

First order conditions are

0 = (1− ε)λ t

[
Pt( j)

Pt

]−ε yt

Pt
+ ελ t

[
Pt( j)

Pt

]−1−ε wtyt

ztPt

−φλ t

[
Pt( j)

(1+πss)Pt−1( j)
−1

][
yt

(1+πss)Pt−1( j)

]

+βφEt

{
λ t+1

[
Pt+1( j)

(1+πss)Pt( j)
−1

][
yt+1Pt+1( j)

(1+πss)Pt( j)2

]}
,

∀t = 0,1,2, . . . . (9.166)

The Monetary Authority

The monetary authority implements policy adjusting the nominal rate of interest, it ,
in response to deviations of the final output, yt , inflation, π t , and money growth, xt ,
with respect to their respective steady-state values: yss,πss, xss:

ln
(

1+ it
1+ iss

)
= ρ i ln

(
1+ it−1

1+ iss

)
+ρy ln(yt/yss)

+ρπ ln
(

1+π t

1+πss

)
+ρx ln

(
1+ xt

1+ xss

)
+ ε it , (9.167)

where
1+ xt = Mt/Mt−1, (9.168)

and ε it ∼
iid

N(0,σ2
i ).
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Equilibrium

We consider a symmetric equilibrium, in which all intermediate commodities pro-
ducing firms take the same decisions, so that: yt( j) = y(t), ht( j) = ht , Pt( j) = Pt and
dt( j) = Dt( j)/Pt = Dt/Pt = dt , ∀ j ∈ [0,1], and ∀t = 0,1,2, . . .. Furthermore, market
clearing conditions Mt+1 = Mt +Tt and Bt+1 = Bt = 0 hold for all t = 0,1,2, . . . .

With these conditions, equilibrium is summarized in the following system, whose
first equation is the global constraint of resources.

yt = ct +
φ
2

[
1+π t

(1+πss)
−1

]2

yt , (9.169)

lnat = ρa lnat−1 + εat , (9.170)

lnet = ρe lnet−1 + εet , (9.171)

atU1(ct , m̄t+1/et) = λ t , (9.172)

ψat = λ twt, (9.173)

λ t = β (1+ it)Et [λ t+1/(1+πt+1)], (9.174)

(at/et)U2(ct , m̄t+1/et) = λ t −βEt [λ t+1/(1+πt+1)], (9.175)

yt = ztht , (9.176)

lnzt = ρz lnzt−1 + εzt , (9.177)

dt = yt −
wtht

zt
− φ

2

[
1+π t

(1+πss)
−1

]2

yt , (9.178)

0 = (1− ε)λ t + ελ t
wt

zt
−φλ t

[
1+πt

1+πss
−1

][
1+πt

1+πss

]

+βφEt

{
λ t+1

[
1+π t

1+πss
−1

][
yt+1(1+πt+1)

yt(1+πss)

]}
, (9.179)

m̄t(1+ xt+1) = m̄t+1(1+πt), (9.180)
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ln
(

1+ it
1+ iss

)
= ρ i ln

(
1+ it−1

1+ iss

)
+ρy ln(yt/yss)

+ρπ ln
(

1+π t

1+πss

)
+ρx ln

(
1+ xt

1+ xss

)
+ ε it . (9.181)

This thirteen equations determine the equilibrium values for: yt , π t , m̄t , it , ct , ht ,
wt , dt , λ t , xt , at , et , zt .

We can simplify the system by eliminating ht , wt , dt , and λ t , using (9.172),
(9.173), (9.176) and (9.178):

yt = ct +
φ
2

[
1+π t

(1+πss)
−1

]2

yt , (9.182)

lnat = ρa lnat−1 + εat , (9.183)

lnet = ρe lnet−1 + εet , (9.184)

atU1(ct , m̄t+1/et) = β (1+ it)Et [at+1U1(ct+1, m̄t+2/et+1)/(1+πt+1)], (9.185)

U2(ct , m̄t+1/et) =
it

1+ it
etU1(ct , m̄t+1/et), (9.186)

0 = (1− ε)+ ε
ψ

ztU1

(
ct ,

m̄t+1
et

) −φ
[
π t −πss

1+πss

]
1+πt

1+πss

+βφEt

{
at+1U1(ct+1,

m̄t+2
et+1

)

atU1(ct ,
m̄t+1

et
)

[
π t −πss

1+πss

]
yt+1(1+πt+1)

yt(1+πss)

}

, (9.187)

m̄t(1+ xt+1) = m̄t+1(1+πt), (9.188)

lnzt = ρz lnzt−1 + εzt , (9.189)

ln
(

1+ it
1+ iss

)
= ρ i ln

(
1+ it−1

1+ iss

)
+ρy ln(yt/yss)

+ρπ ln
(

1+π t

1+πss

)
+ρx ln

(
1+ xt

1+ xss

)
+ ε it . (9.190)

These nine equations determine the equilibrium values for: yt , π t , m̄t+1, it ,
ct , xt+1, at , et , zt .
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Steady State

In the absence of shocks, the economy will converge to steady state, with yt = yss,
π t = πss, m̄t = m̄ss, it = iss, ct = css, xt = xss, at = 1, et = 1, and zt = 1. If the
monetary authority chooses a nominal interest rate iss, we have, from (9.185)

πss = β (1+ iss)−1,

while from (9.188), we get
xss = πss.

From (9.186) and (9.187) we obtain steady state values for css and m̄ss, solving
the system:

U2(css, m̄ss) =
iss

1+ iss
U1(css, m̄ss),

ε−1 =
εψ

U1(css, m̄ss)
.

Finally, from (9.182) we get
yss = css.

Log-linear approximation

We can now compute the log-linear approximation of system (9.182)–(9.190)
around the steady state we have just characterized. Using the notation: ŷt =
ln(yt/yss), π̂ t = ln[(1 +π t)/(1 +πss)], m̂t = ln(m̄t/m̄ss), ı̂t = ln[(1 + it)/(1 + iss)],
ĉt = ln(ct/css), x̂t = ln[(1 + xt)/(1 + xss)], ât = lnat , êt = lnet , ẑt = lnzt , system
(9.182)–(9.190) becomes

ŷt = ĉt , (9.191)

ât = ρaât−1 + εat , (9.192)

êt = ρeêt−1 + εet , (9.193)

ŷt = Et ŷt+1 −ϖ1(ı̂t −Et π̂ t+1)+ϖ2(̂̄mt+1 −Et ̂̄mt+2)

−ϖ2(êt −Et êt+1)+ϖ1(ât −Etât+1), (9.194)

̂̄mt+1 = ϖ3ŷt −ϖ4 ı̂t +ϖ5êt , (9.195)

π̂ t =
1+πss

1+ iss
Et π̂ t+1 +

ε−1
φ

[
1
ϖ1

ŷt −
ϖ2

ϖ1
̂̄mt+1 +

ϖ2

ϖ1
êt − ẑt

]
, (9.196)

̂̄mt + x̂t+1 = ̂̄mt+1 + π̂ t , (9.197)

ẑt = ρzẑt−1 + εzt , (9.198)

ı̂t = ρ iı̂t−1 +ρyŷt +ρππ̂ t +ρxx̂t + ε it , (9.199)
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where (9.191) has been used to obtain (9.194)–(9.196) and:

ϖ1 = − U1(yss, m̄ss)
yssU11(yss, m̄ss)

,

ϖ2 = − m̄ssU12(yss, m̄ss)
yssU11(yss, m̄ss)

,

ϖ3 =
(

yss(1+ iss)ϖ2

m̄ssϖ1
+

iss

ϖ1

)
ϖ4,

ϖ4 =
1+ iss

issm̄ss

[
U2(yss, m̄ss)

issU12(yss, m̄ss)− (1+ iss)U22(yss, m̄ss)

]
,

ϖ5 = 1− issϖ4.

We can interpret (9.194), (9.195) and (9.196) as the IS curve augmented with
real balances, the LM curve, and the Phillips curve augmented with real balances.
So, these three curves can be obtained as the output from a stochastic, dynamic
general equilibrium model with micro-foundations. The solution to this model, as
well as its maximum likelihood estimation, can be read in Peter N. Ireland Web
page: (http://www2.bc.edu/˜irelandp).

However, we proceed to introduce a more general version of the model, incorpo-
rating capital accumulation and an inelastic labour supply which is allocated among
the intermediate commodity producing firms. We will see that the solution to this
model is very similar to that of the Sidrauski model, in spite of having introduced
price rigidity in order to obtain the Phillips curve, which is also used to compute the
solution.

9.8.2 A New Keynesian Monetary Model with Capital
Accumulation

In this section, we formulate and solve a monetary growth model à la Sidrausky
under the assumption of price rigidity. This economy is a simplified version of
Ireland [44].

9.8.2.1 The Representative Household

The basic difference between the household problem in this economy and that in the
previous section is that the household allocates its expenditures between consump-
tion, ct , and investment, invt . The law of motion for physical capital is

kt+1 = (1−δ )kt + vt invt , (9.200)
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where vt is the shock to the marginal efficiency of investment, as specified in
Greenwood et al. [36] and follows the stochastic process:

lnvt = ρv lnvt−1 + εvt ,
∣
∣ρz

∣
∣ < 1, εvt ∼

iid
N(0,σ2

v). (9.201)

Furthermore, we assume that the household is endowed with a unit of labour that
is inelastically offered to the different firms producing intermediate commodities,
so that

1 =
∫ 1

0
ht( j)d j, j ∈ [0,1]. (9.202)

Hence, the household faces the problem:

max
{ct ,kt+1,Mt+1,Bt+1}

E0

∞

∑
t=0
β tatU

[
ct ,

(
Mt+1

Pt

)
/et

]

subject to

Mt

Pt
+

Bt

Pt
+ζ t +(1− τw)wt +(1− τq)qtkt +

Dt

Pt
(9.203)

≥ (1+ τc)ct +
1
vt

kt+1 − (1−δ )kt +
Mt+1

Pt
+

Bt+1

Pt(1+ it)
given k0,M0,B0,

where at and et are defined as in the previous model, qt is the renting price of capital,
and ζ t denotes the real transfers received from the government and where we have
included taxes on consumption and labor and capital income, as shown in the budget
constraint (9.203).

The utility function U(.) is similar to that in neoclassical monetary growth mod-
els analyzed in previous sections:

U
[

ct ,

(
Mt+1

Pt

)
/et

]
=

[
ct

(
Mt+1
Pt et

)θ]1−σ
−1

1−σ

leading to first order conditions:

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t = λ t(1+ τc), (9.204)

λ t
1
vt

= βEt

[
λ t+1

(
(1− τq)qt+1 +(1−δ )

1
vt+1

)]
, (9.205)

λ t = β (1+ it)Et [λ t+1/(1+πt+1)], (9.206)

(at/et)θc1−σ
t m̄θ(1−σ)−1

t+1 e1−θ(1−σ)
t = λ t −βEt [λ t+1/(1+πt+1)], (9.207)
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together with (9.203) written as an equality, for t = 0,1,2, . . . , together with the
transversality condition:

lim
T→∞

Et

[
β t+Tλ t+T

(
kt+1 +

Mt+T+1

Pt+T
+

Bt+T+1

Pt+T (1+ it+T )

)]
= 0.

If we eliminate λ t , optimality conditions (9.204)–(9.207) can be summarized in
the system:

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t
1
vt

= βEt

[
at+1c−σt+1m̄θ(1−σ)

t+2 e−θ(1−σ)
t+1 (9.208)

×
(

(1− τq)qt+1 +(1−δ )
1

vt+1

)]
,

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t = β (1+ it)Et

[
at+1c−σt+1m̄θ(1−σ)

t+2 e−θ(1−σ)
t+1

1+πt+1

]

, (9.209)

θ(1+ τc)ct = m̄t+1
it

1+ it
. (9.210)

9.8.2.2 The Representative Finished Goods-Producing Firm

The firm producing the final good solves the same problem as in the previous
section.

9.8.2.3 The Representative Intermediate Goods-Producing Firm

Each period t the j-th firm producing intermediate commodities hires ht( j) units of
labour from the representative household at a wage wt , and kt( j) units of capital at
a rental price qt , in order to produce yt( j) units of the intermediate commodity, with
technology:

Akt( j)α (ztht( j))1−α ≥ yt( j), (9.211)

where zt is an aggregate technology shock common to all firms that obeys the sto-
chastic process:

lnzt = ρz lnzt−1 + εzt ,
∣
∣ρz

∣
∣ < 1, εzt ∼

iid
N(0,σ2

z ), (9.212)

Intermediate commodities substitute imperfectly in the production of the final
good. Therefore, the firm producing intermediate commodities sells them in a mo-
nopolistic competition market, at a price that depends on the demand received from
the firm producing the final good, while facing a quadratic cost of changing the
nominal price between periods:



480 9 Transitional Dynamics in Monetary Economies: Numerical Solutions

φ
2

[
Pt( j)

(1+πss)Pt−1( j)
−1

]2

yt ,

where φ ≥ 0 and πss denotes the steady state rate of inflation.
Because of the presence of the adjustment cost function, the j-th firm producing

intermediate commodities solves the dynamics problem of maximizing its market
value:

max
{ht ( j),kt ( j),Pt ( j)}

E0

∞

∑
t=0
β tλ t

[
Dt( j)

Pt

]

subject to: (9.211), where

Dt( j)
Pt

=
Pt( j)

Pt
yt( j)−wtht( j)−qtkt( j)− φ

2

[
Pt( j)

(1+πss)Pt−1( j)
−1

]2

yt , (9.213)

for all t = 0,1,2, . . . , where β tλ t/Pt measures the value for the representative house-
hold of the marginal utility of an additional monetary unit received as dividends
during period t.

First order conditions are

wtht( j)λ t = ξ t(1−α)Akt( j)α (ztht( j))1−α (9.214)

qtkt( j)λ t = ξ tαAkt( j)α (ztht( j))1−α (9.215)

φλ t

[
Pt( j)

(1+πss)Pt−1( j)
−1

]
Pt

(1+πss)Pt−1( j)

= λ t(1− ε)
(

Pt( j)
Pt

)−ε
+ξ tε

(
Pt( j)

Pt

)−ε−1

+βφ

×Et

[
λ t+1

(
Pt+1( j)

(1+πss)Pt( j)
−1

)
yt+1

yt

Pt+1( j)Pt

(1+πss)Pt( j)2

]
, (9.216)

where ξ t is the Lagrange multiplier associated to the technological constraint in the
profit maximization problem of the intermediate good-producing firm.

9.8.2.4 The Monetary Authority

The monetary authority implements policy by choosing the level of the nominal
rate of interest, it , according to the same Taylor rule followed in the neoclassical
monetary models in previous sections:

ln
(

1+ it
1+ iss

)
= ρ i ln

(
1+ it−1

1+ iss

)
+ρy ln(yt/yss)+ρπ ln

(
1+πt

1+πss

)
+ ε it , (9.217)
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where ε it ∼
iid

N(0,σ2
i ). We leave as an exercise to the reader to specify and solve the

model when the monetary authority chooses the rate of money growth, rather than
nominal interest rates.

9.8.2.5 The Fiscal Authority

The fiscal authority raises taxes on labour and capital income, as well as on con-
sumption. It also issues debt to finance its deficit, and it gives lump-sum transfers
(taxes, if negative) to households according to the budget constraint:

τcct + τwwt + τqqtkt +
Mt+1 −Mt

Pt
+

(
Bt+1

Pt(1+ it)
− Bt

Pt

)
= ζ t . (9.218)

We assume that the government chooses transfers, ζ t , under the condition ζ t =
ζ −η Bt

Pt
, that implies

Bt+1

Pt
= (1+ it)

[
ζ − τcct − τwwt − τqqtkt −

Mt+1

Pt
+

Mt

Pt−1(1+πt)

]

+(1−η)
1+ it
1+πt

Bt

Pt−1
, (9.219)

where Bt+1
Pt

will be stable if 1 > η > rss
1+rss

, with 1+ rss = (1+ iss)/(1+πss).

9.8.2.6 Symmetric Equilibrium

We consider a symmetric equilibrium, where all intermediate good producing firms
make the same decisions: yt( j) = y(t), kt( j) = kt , ht( j) = 1, Pt( j) = Pt , dt( j) =
Dt( j)/Pt = Dt/Pt = dt , ∀ j ∈ [0,1], and ∀t = 0,1,2, . . .. If we apply the conditions
for a symmetric equilibrium, substitute the government budget constraint into that
of the household, and eliminate variables dt and ξ t , the equations characterizing the
solution to the model are

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t
1
vt

= βEt

[
at+1c−σt+1m̄θ(1−σ)

t+2 e−θ(1−σ)
t+1

×
(

(1− τq)qt+1 +(1−δ )
1

vt+1

)]
, (9.220)

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t = β (1+ it)Et

[
at+1c−σt+1m̄θ(1−σ)

t+2 e−θ(1−σ)
t+1

1+πt+1

]

, (9.221)
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θ(1+ τc)ct = m̄t+1
it

1+ it
. (9.222)

φ
[

1+π t

1+πss
−1

]
1+π t

1+πss
= (1− ε)+ ε

qtkt

αAkαt z1−α
t

+βφ

×Et

[
at+1c−σt+1m̄θ(1−σ)

t+2 e−θ(1−σ)
t+1

atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t

(
π t −πss

1+πss

)
1+πt+1

1+πss

Akαt+1z1−α
t+1

Akαt z1−α
t

]

, (9.223)

Akαt z1−α
t = ct +

1
vt

[kt+1 − (1−δ )kt ]+
φ
2

[
1+πt

1+πss
−1

]2

Akαt z1−α
t (9.224)

ln
(

1+ it
1+ iss

)
= ρ i ln

(
1+ it−1

1+ iss

)
+ρy ln(yt/yss) (9.225)

+ρπ ln
(

1+π t

1+πss

)
+ ε it ,

together with the laws of motion for the shocks (9.201), (9.154), (9.155) and (9.164).
This system of 10 equations can be solve for variables kt+1, π t , m̄t+1, it ,

ct , qt , vt , at , et , zt . Notice that we once the system has been solved, we can also
obtain the values of the following variables:

wt =
1−α
α

qtkt , (9.226)

λ t = atc−σt m̄θ(1−σ)
t+1 e−θ(1−σ)

t /(1+ τc), (9.227)

ξ t =
qtktλ t

αAkαt z1−α
t

, (9.228)

yt = Akαt z1−α
t , (9.229)

dt = yt −wt −qtkt −
φ
2

[
1+π t

1+πss
−1

]2

yt . (9.230)

9.8.2.7 Steady State

In the absence of random shocks, the economy will converge to steady state yt = yss,
π t = πss, m̄t = m̄ss, kt = kss, it = iss, ct = css, qt = qss, vt = 1, at = 1, et = 1, zt = 1.
Once the monetary authority chooses a level of the nominal rate of interest iss, we
get from (9.220)

qss =
[

1
β
− (1−δ )

]
1

1− τq ,
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while from (9.221), (9.223), (9.224) and (9.222) we get

πss = β (1+ iss)−1.

kss =
[

Aα
ε−1
ε

1
qss

]
.

css = Akαss −δkss.

m̄ss =
1+ iss

iss
(1+ τc)θ(Akαss −δkss).

and (9.226), (9.229) and (9.230) we get

wss =
1−α
α

qsskss,

yss = Akαss,

dss = Akαss −
1
α

[
1
β
− (1−δ )

]
1

1− τq kss.

9.8.2.8 Log-Linearization

Using the notation: k̂t = ln(kt/kss), π̂ t = ln[(1 + π t)/(1 + πss)], ̂̄mt = ln(m̄t/m̄ss),
ı̂t = ln[(1 + it)/(1 + iss)], ĉt = ln(ct/css), q̂t = ln(qt/qss), ât = lnat , v̂t = lnvt , êt =
lnet , ẑt = lnzt , (9.226)–(9.230), together with the stochastic processes for the
shocks, log-linearized around steady state, become

0 = − 1
β

(1−ρa)ât +
1
β

(1−ρv)v̂t +
θ(1−σ)

β
(1−ρe)êt +

σ
β

ĉt

−θ(1−σ)
β

̂̄mt+1 −
σ
β

Et ĉt+1 +
θ(1−σ)

β
Et ̂̄mt+2 +(1− τq)Et q̂t+1,

(9.231)

0 = − 1
β

(1−ρa)ât +
θ(1−σ)

β
(1−ρe)êt +

σ
β

ĉt −
θ(1−σ)

β
̂̄mt+1

+
1

1+πss
ı̂t −

σ
β

Et ĉt+1 +
θ(1−σ)

β
Et ̂̄mt+2 −

1
β

Et π̂ t+1, (9.232)

̂̄mt+1 = ĉt −
ı̂t
iss

, (9.233)

0 = −φπ̂ t +(ε−1)q̂t +(1−α)(ε−1)k̂t − (1−α)(ε−1)ẑt +βφEt π̂ t+1, (9.234)
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0 = −
[
αAkα−1

ss +(1−δ )
]

k̂t +
css

kss
ĉt + k̂t+1 − (1−α)Akα−1

ss ẑt −δ v̂t (9.235)

ı̂t = ρ iı̂t−1 +ρyα k̂t +ρy(1−α)ẑt +ρππ̂ t + ε it , (9.236)

ẑt = ρzẑt−1 + εzt , (9.237)

ât = ρaât−1 + εat , (9.238)

êt = ρeêt−1 + εet , (9.239)

v̂t = ρvv̂t−1 + εvt . (9.240)

We can somewhat simplify the system by eliminating ̂̄mt+1. So, if we substi-
tute (9.233) into (9.231) and (9.232), taking into account that, according to (9.233)
Et ̂̄mt+2 = Et ĉt+1 − Et ı̂t+1

iss
, while, according to (9.236) Et ı̂t+1 = ρ iı̂t + ρyα k̂t+1 +

ρyρz(1−α)ẑt +ρπEt π̂ t+1, we get

0 = − 1
β

(1−ρa)ât +
1
β

(1−ρv)v̂t +
θ(1−σ)

β
(1−ρe)êt

+
(
σ
β
− θ(1−σ)

β

)
(ĉt −Et ĉt+1)+

θ(1−σ)
β iss

(1−ρ i)ı̂t

+(1− τq)Et q̂t+1 −
θ(1−σ)
β iss

(
ρπEt π̂ t+1 +ρyα k̂t+1 +ρyρz(1−α)ẑt

)
,

(9.241)

0 = − 1
β

(1−ρa)ât +
θ(1−σ)

β
(1−ρe)êt +

(
σ
β
− θ(1−σ)

β

)
ĉt

+
[
θ(1−σ)
β iss

(1−ρ i)+
1

1+πss

]
ı̂t −

(
σ
β
− θ(1−σ)

β

)
Et ĉt+1

−
(

1
β

+
θ(1−σ)
β iss

ρπ

)
Et π̂ t+1 −

θ(1−σ)
β iss

(
ρyα k̂t+1 +ρyρz(1−α)ẑt

)
.

(9.242)

Therefore, we have a system of nine equations [(9.241), (9.242), (9.234)–
(9.240)], to solve for k̂t+1, π̂ t , ı̂t , ĉt , q̂t , ât , v̂t , êt , ẑt . This system can be written in
matrix form as

DEts0
t+1 = Gs0

t +HΨt + Jε it , (9.243)

where

s0
t =

[
ĉt , π̂ t , q̂t , k̂t , ı̂t−1

]′
,

Ψt = [ẑt , ât , êt , v̂t ]
′ ,
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ̃ θ(1−σ)
β iss

ρπ −(1− τq) θ(1−σ)
β iss

ρyα − θ(1−σ)
β iss

(1−ρ i)

σ̃ 1
β + θ(1−σ)

β iss
ρπ 0 θ(1−σ)

β iss
ρyα D2,5

0 βφ 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

G =

⎡

⎢
⎢
⎢
⎢
⎣

σ̃ 0 0 0 0
σ̃ 0 0 0 0
0 φ 1− ε (1−α)(1− ε) 0

− css
kss

0 0 αAkα−1
ss +(1−δ ) 0

0 ρπ 0 ρyα ρ i

⎤

⎥
⎥
⎥
⎥
⎦

,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− θ(1−σ)
β iss

ρyρz(1−α) − 1
β (1−ρa)

θ(1−σ)
β (1−ρe)

1
β (1−ρv)

− θ(1−σ)
β iss

ρyρz(1−α) − 1
β (1−ρa)

θ(1−σ)
β (1−ρe) 0

(1−α)(ε−1) 0 0 0
(1−α)Akα−1

ss 0 0 δ
ρy(1−α) 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

J = [0,0,0,0,1]′ ,

where σ̃ ≡ σ
β − θ(1−σ)

β , D2,5 ≡− θ(1−σ)
β iss

(1−ρ i)− 1
1+πss

.

Expression (9.243) can be written as

Ets0
t+1 = Γ1s0

t +Γ2Ψt +Γ3ε it , (9.244)

where Γ1 = D−1G, Γ2 = D−1H, Γ3 = D−1J.
To characterize the stability of (9.244) we need to analyze the eigenvalues of

Γ1. For our parameterization,20 which is the same for the parameters already ap-
pearing in the neoclassical monetary model, there is a pair of complex conju-
gate eigenvalues of Γ1, so that we will write system (9.244) in state-space form
following the steps already described for the neoclassical monetary model in the
case when the monetary authority chooses money growth, rather than the nominal
rate of interest. Without loss of generality, we will assume the eigenvalues of Γ1
have been ordered decreasingly by norm. For our parameterization, such eigenval-
ues are: λ 1 = 0, λ 2 < 1, λ 3 = a + bi, λ 4 = a− bi, λ 5 > 1, with (a2 + b2)1/2 > 1.
Therefore, we have three unstable eigenvalues that we will use to compute the

20 MATLAB program neokeyn.m computes a single realization that it presents in the form of
graphics. Program nkeyprg.m presents standard statistics after simulating the model an arbitrary
number of times, chosen by the user. This program calls function nkeyn.m, which it must either be
placed in the same directory as the programs above, or the directory be included in the MATLAB
path.
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values of the three control variables {ĉt , π̂ t , q̂t} as function of the state variables{
k̂t , ı̂t−1, ât , v̂t , êt , ẑt

}
, leading therefore to a well-determined solution.21

To compute the control equation or stability conditions, it is convenient to write
system (9.244) as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt+1
π̂ t+1
q̂t+1

k̂t+1
ı̂t

ẑt+1
ât+1
êt+1
v̂t+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
Γ1 Γ2

04×5 Ω

]

︸ ︷︷ ︸
Γ4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Γ5

⎡

⎣
ηc,t+1
ηπ,t+1
ηq,t+1

⎤

⎦

+
[

05×4 Γ3
I4×4 04×1

]

︸ ︷︷ ︸
Γ6

⎡

⎢
⎢
⎢
⎢
⎣

εz,t+1
εa,t+1
εe,t+1
εv,t+1
ε i,t+1

⎤

⎥
⎥
⎥
⎥
⎦

, (9.245)

where we have added to system (9.244) the laws of motion for {ẑt , ât , êt , v̂t ,} , and
we have written the expectations of consumption, inflation rental rate for capital as
being equal to their realized values minus their respective prediction errors, Et ĉt+1 =
ĉt+1 −ηc,t+1, Et π̂ t+1 = π̂ t+1 −ηπ,t+1, Et q̂t+1 = q̂t+1 −ηq,t+1. Furthermore,

Ω=

⎡

⎢
⎢
⎣

ρz 0 0 0
0 ρa 0 0
0 0 ρe 0
0 0 0 ρv

⎤

⎥
⎥
⎦ .

Matrix Γ4 has now 9 eigenvalues, the five already mentioned for Γ1, together
with ρz, ρa, ρe and ρv. Let us assume that we set up the diagonalization of matrix
Γ4 as

21 It is important to point out that the values of parameters ε and φ are crucial to determine whether
the solution is determinate or indetermined. Remember that ε is the price elasticity of demand for
intermediate goods on the part of the firm producing the final good, while φ measures the level of
the adjustment cost of prices. The lower ε and φ may be, the easier will be to obtain four stable
and one unstable eigenvalues, leading to an undetermined equilibrium, i.e., multiple equilibria
path, all converging to the same steady state. Our MATLAB programs have been written to capture
the case of determined equilibria, while in the second chapter on endogenous growth models we
discussed in detail the implications of equilibrium indeterminacy and how a numerical solution
can be obtained, if desired. Hence, the user must take into account the possibility that for different
values of ε and φ we can get indeterminacy, and the provided program will not compute the right
solution. The same approach used for endogenous growth models can be followed to write the
program that computes the numerical solution under indeterminacy in this model.
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Γ4 = MΛM−1,

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
0 λ 2 0 0 0 0 0 0 0
0 0 ρz 0 0 0 0 0 0
0 0 0 ρa 0 0 0 0 0
0 0 0 0 ρe 0 0 0 0
0 0 0 0 0 ρv 0 0 0
0 0 0 0 0 0 a+bi 0 0
0 0 0 0 0 0 0 a−bi 0
0 0 0 0 0 0 0 0 λ 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

M =

⎡

⎢
⎣

M11 · · · M16 d1 + f1i d1 − f1i M91
...

. . .
...

...
...

...
M91 · · · M96 d9 − f9i d9 − f9i M99

⎤

⎥
⎦ .

As shown in the section of the Mathematical Appendix devoted to the solution
of deterministic systems in finite order differences if the eigenvalues associated to
the transition matrix of the bivariate system:

[
x1t
x2t

]
=

[
A11 A12
A21 A22

][
x1t−1
x2t−1

]
,

are complex conjugate numbers, we have
[

A11 A12
A21 A22

]
=

[
g1 +h1i g1 −h1i
g2 +h2i g2 −h2i

]

︸ ︷︷ ︸
P

[
µ+νi 0

0 µ+νi

]

×
[

g1 +h1i g1 −h1i
g2 +h2i g2 −h2i

]−1

and the general solution to this deterministic first order difference system can be
written

[
x1t
x2t

]
=

[
stC1 [g1 cos(ωt)−h1 sin(ωt)]+ stC2 [g1 sin(ωt)+h1 cos(ωt)]
stC1 [g2 cos(ωt)−h2 sin(ωt)]+ stC2 [g2 sin(ωt)+h2 cos(ωt)]

]

=
[

g1 h1
g2 h2

]

︸ ︷︷ ︸
P̃

[
st [C1 cos(ωt)+C2 sin(ωt)]

st [−C1 sin(ωt)+C2 cos(ωt)]

]
,

where s = (µ2 + ν2)1/2 and ω = arctan(ν/µ), while C1 and C2 are two constants
to be determined. Notice that P̃ is a two-column matrix: the first one is the real
part of the right eigenvector of the transition matrix, while the second column is the
imaginary part of that eigenvector.

Taking this result into account, the solution to the homogeneous version of sys-
tem (9.245) is of the form:
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M̃

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1
C2λ t

1
C3ρ t

z
C4ρ t

a
C5ρ t

e
C6ρ t

v
[C7 cos(ςt)+C8 sin(ςt)] r̃t

[−C7 sin(ςt)+C8 cos(ςt)] r̃t

C9λ t
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with

M̃ =

⎡

⎢
⎣

M11 · · · M16 d1 f1 M91
...

. . .
...

...
...

...
M91 · · · M96 d9 f9 M99

⎤

⎥
⎦ ,

where r̃ = (a2 +b2)1/2 and ς = arctan(b/a). Since r̃ > 1, this solution will be stable
if and only if C7, C8 and C9 are equal to zero, which is the condition to eliminate the
unstable trajectories. Besides setting the three constants to zero, we get the stability
conditions determining the control variables at each point in time as a function of
the states:

M̃−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1
C2λ t

1
C3ρ t

z
C4ρ t

a
C5ρ t

e
C6ρ t

v
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒
[

M̃−1
1:6,:

M̃−1
7:9,:

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1
C2λ t

1
C3ρ t

z
C4ρ t

a
C5ρ t

e
C6ρ t

v
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ M̃−1
7:9,:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
0
0
0

⎤

⎦ , (9.246)

where M̃−1
7:9,: denotes rows 7 to 9 in matrix M̃−1 . These correspond to columns 7 to

9 in M̃, which act are right “pseudo-eigenvectors” for matrix Γ4.
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From expression (9.246) we obtain the control equation:

⎡

⎣
ĉt
π̂ t
q̂t

⎤

⎦ = −[M̃−1
7:9,1:3]

−1M̃−1
7:9,4:9︸ ︷︷ ︸

Ψ1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9.247)

where M̃−1
7:9,1:3 denotes the submatrix of M̃−1 made up by rows 7–9 and columns 1–3,

while M̃−1
7:9,4:9 denotes the submatrix of M̃−1 made up by rows 7–9, and columns 4–9.

If we multiply to the left through (9.245) by M̃−1, we get

M̃−1z̃t+1 = M̃−1Γ4z̃t + M̃−1Γ5η t+1 + M̃−1Γ6ε t+1, (9.248)

where z̃t+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉt
π̂ t
q̂t

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, η t+1 =

⎡

⎣
ηc,t+1
ηπ,t+1
ηq,t+1

⎤

⎦ , ε t+1 =

⎡

⎢
⎢
⎢
⎢
⎣

εz,t+1
εa,t+1
εe,t+1
εv,t+1
ε i,t+1

⎤

⎥
⎥
⎥
⎥
⎦

.

Expression (9.248) can be written

M̃−1z̃t+1 =
(
M̃−1Γ4M̃

)
M̃−1z̃t + M̃−1Γ5η t+1 + M̃−1Γ6ε t+1. (9.249)

Notice that the structure of matrix
(
M̃−1Γ3M̃

)
is as follows:

Λ̃ =
(
M̃−1Γ4M̃

)
=

[
Λ̃(1) Λ̃(2)
Λ̃(3) Λ̃(4)

]
,

where Λ̃(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 λ 2 0 0 0 0
0 0 ρz 0 0 0
0 0 0 ρa 0 0
0 0 0 0 ρe 0
0 0 0 0 0 ρv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Λ̃(2) = 06×3, Λ̃(3) = 03×6,

Λ̃(4) =

⎡

⎣
a −b 0
b a 0
0 0 λ 5

⎤

⎦ . (9.250)
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Hence, from system (9.249) we obtain

M̃−1
7:9,:zt+1

︸ ︷︷ ︸
=0 by (9.247)

= Λ̃(3)M̃
−1
1:6,:zt

︸ ︷︷ ︸
=0 by (9.250)

+ Λ̃(4)M̃
−1
7:9,:zt

︸ ︷︷ ︸
=0 by (9.247)

+ M̃−1
7:9,:Γ5η t+1 + M̃−1

7:9,:Γ6ε t+1,0

that is,
0 = M̃−1

7:9,:Γ5η t+1 + M̃−1
7:9,:Γ6ε t+1.

If we solve for the prediction errors we get their relationship with the innovations
to the stochastic processes in the model:

⎡

⎣
ηc,t+1
ηπ,t+1
ηq,t+1

⎤

⎦ = −[M̃−1
7:9,:Γ5]−1[M̃−1

7:9,:Γ6]
︸ ︷︷ ︸

Ψ2

⎡

⎢
⎢
⎢
⎢
⎣

εz,t+1
εa,t+1
εe,t+1
εv,t+1
ε i,t+1

⎤

⎥
⎥
⎥
⎥
⎦

. (9.251)

This is also a stability condition, since it has been obtained by imposing stabil-
ity in the deterministic version of system (9.245) (i.e., in the homogeneous part of
(9.245)).

Finally, substituting expressions (9.247) and (9.251) in system (9.245) we get the
state equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k̂t+1
ı̂t

ẑt+1
ât+1
êt+1
v̂t+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [Γ4(4:9,1:3)Ψ1 +Γ4(4:9,4:9) ]︸ ︷︷ ︸
Ψ3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k̂t
ı̂t−1
ẑt
ât
êt
v̂t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+Γ6(4:9,:)︸ ︷︷ ︸
Ψ4

⎡

⎢
⎢
⎢
⎢
⎣

εz,t+1
εa,t+1
εe,t+1
εv,t+1
ε i,t+1

⎤

⎥
⎥
⎥
⎥
⎦

. (9.252)

A single realization for the numerical solution for this model is implemented in
neokeyn.m MATLAB file. An arbitrary number of realizations can be obtained using
the nkeyprg.m program.

Given a realization for {εz,t+1,εa,t+1,εe,t+1,εv,t+1,ε i,t+1}T
t=0 , and initial con-

ditions for
{

k̂0, ı̂−1, ẑ0, â0, ê0, v̂0
}

, we get from (9.252) a realization for the state

vector
{

k̂t+1, ı̂t , ẑt+1, ât+1, êt+1, v̂t+1
}T

t=0 . Given the realization for the state vector,
we get from (9.247) the values of the control variables {ĉt , π̂ t , q̂t}T

t=0 . From (9.233)
we compute

{
̂̄mt+1

}T
t=0 . Notice that, as in the neoclassical monetary model, there is

nominal indeterminacy, since we cannot compute the price path unless we impose an
initial price P0. Once we have computed the values of kt , π t , m̄t , it , ct , qt , vt , at , et ,
zt , we can obtain the paths for the real wage, the marginal utility of consumption,
the co-state variable ξ t , output and dividends, using (9.226)–(9.230).

The reader will have noticed that there is a much larger variety of stochastic
shocks in this model than in monetary and non-monetary models analyzed above
and in previous chapters. Those models could also be extended to include some of
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the shocks that appear in this monetary model, an extension that could be used as
interesting practice to gain expertise in the numerical solution of growth models of
different kinds.

9.9 Appendix: In a Log-Linear Approximation, Et π̂t+1 = ı̂t − r̂t

Let us consider the problem of the representative agent when the government issues
real bonds:

max
{ct ,Mt+1,kt+1,bt+1}

E0

∞

∑
t=0
β tU(ct ,Mt+1/Pt)

subject to

(1+τc)ct +kt+1−(1−δ )kt +
Mt+1

Pt
+[bt+1/(1+ rt)] = (1−τy)Atkαt +

Mt

Pt
+bt +ζ t ,

for given values of k0,M0,b0.
First order conditions for this optimization problem are

Uc(ct , m̄t+1) = (1+ τc)µ t , (9.253)

µ t = βEt
[
µ t+1

(
(1− τy)αAt+1kα−1

t+1 +1−δ
)]

, (9.254)

−Um̄(ct , m̄t+1)
1
Pt

+µ t
1
Pt

= βEt

[
µ t+1

1
Pt+1

]
, (9.255)

µ t
1

(1+ rt)
= βEt

[
µ t+1

]
. (9.256)

Comparing this set of optimality conditions with that for the problem when the
government issues nominal bonds, we get

1) µ t = λ t .
2) From (9.90) and (9.256)

Et

[
λ t+1

(
1+ it

1+π t+1
− (1+ rt)

)]
= 0.

It is easy to show that the log-linear approximation for this equation is

Et π̂ t+1 = ı̂t − r̂t .

3) From (9.254) and (9.256)

Et
{

Uc(ct+1, m̄t+2)
[(

(1− τy)αAt+1kα−1
t+1 +1−δ

)
− (1+ rt)

]}
= 0,
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with a log-linear approximation:

r̂t =
1

1+ rss
(1− τy)αAsskα−1

ss
[
ρAÂt +(α−1)k̂t+1

]
.

4) At steady-state:

1+πss =
1+ iss

1+ rss
, 1+ rss =

1
β

, (1− τy)αAsskα−1
ss = rss +δ . (9.257)

9.10 Exercises

Exercise 1. Let us suppose the government finances its lump-sum transfers to con-
sumers by printing money, issuing debt and raising proportional taxes on output and
consumption. Consider a production function yt = Akαt , and preferences represented

by a utility function: U(ct ,mt+1) =

(
ct

(Mt+1
Pt

)θ)1−σ

1−σ , θ > 0,σ > 0,σ 	= 1., where
mt = Mt+1

Pt
.

(a) Assuming that the government maintains a constant tax rate on output τy
ss, a

constant level of transfers ζ ss, and a constant stock of bonds bss, and it has a
nominal interest rate iss as target. Starting from values: α = 0.36,A = 1,θ =
0.5,β = 0.95,δ = 0.10, find steady-state levels css,kss,mss,yss,rss,τc

ss as func-
tions of iss, for two values of the latter: i0, i1. Choose any values you want for
τy

ss, ζ ss and bss.
(b) Assume a specific rule for transfers, as a function of the stock of government

debt outstanding, to be compatible with the steady-state analysis in that para-
graph. Assume the government changes monetary and fiscal policy from the first
to the second of the pairs (i0,τc

0), (i1,τc
1) obtained in the previous paragraph:

(i,τc) = (i0,τc
0) t < tss.

(i,τc) = (i1,τc
1) t ≥ tss.

Exercise 2. Characterize the transitional dynamics of consumption, the stock of
capital, real balances, the level of utility, the level of transfers, the stock of gov-
ernment debt, the level of seigniorage, the level of income tax revenues, the rate of
inflation, the real rate of interest, and the rate of money growth. Use four different
approaches:

b1) under a log-linear approximation to the set of equations defining the model,
and a state-space representation for the model’s dynamics

b2) under a linear approximation to the set of equations defining the model, and a
state-space representation for the model’s dynamics
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b3) under a log-linear approximation to the set of equations defining the model,
computing the time path for physical capital from the global constraint of re-
sources, and consumption from the stability condition

b4) under a linear approximation to the set of equations defining the model, com-
puting the time path for physical capital from the global constraint of resources,
and consumption from the stability condition

Exercise 3. Assume that the government finances its lump-sum transfers to con-
sumers by issuing money and debt, as well as with the revenues from consump-
tion and income taxes. Consider a production function yt = Akαt l1−α

t , and a util-
ity function: U(ct , lt , m̄t+1) = ψ ln(ct) + (1−ψ) ln(1− l1−α

t ) + θ ln(m̄t+1), where
m̄t+1 = Mt+1

Pt
. Consider parameter values A = 1,β = 0.9,α = 0.33,δ = 0.07,θ =

0.50, ψ = 0.35, τc = 0.15, τy = 0.20, the autonomous component of transfers (ζ )
is equal to 0.15 and the sensitivity of transfers to government debt is 0.40. Assume
that the nominal rate of interest increases from 3% to 5%, while keeping constant
the tax rates on consumption and income.

(a) Characterize the initial steady-state.
(b) Characterize the final steady-state.
(c) Under the assumption that the change takes place at a single point in time:

it = 0.03 t < t0 , it = 0.05 t ≥ t0 , with t0 being the time of change, characterize
the transitional dynamics of the economy from the initial to the final steady-
state, using one of the solution approaches discussed in this chapter.

(d) Repeat the analysis in the previous paragraph under the assumption of a gradual
change in nominal rates: starting from time t0, it = (1−ρ i)iss +ρ iit−1. Make the
analysis for different values of ρ i ∈ (0,1).
What would happen in paragraphs c) and d) if the government maintains con-
stant nominal transfers in spite of the increase in the rate of inflation?

Exercise 4. Assume that the government finances transfers to consumers by issuing
money and debt. Consider a production function yt = Akαt , and a utility function:

U(ct ,mt+1) =

(
ct

(
Mt+1

Pt

)θ)1−σ

1−σ
, θ > 0,σ > 0,σ 	= 1.

Also, assume that the size of nominal transfers depends on the stock of debt
outstanding and consider parameter values: A = 1, β = 0.95, α = 0.35, δ = 0.1,
θ =0.5, σ =1.2, ζ = 10,η = 0.4.

(a) Assume that the capital stock is initially at 99% of its steady-state level, under a
money growth rate of 2%. The government modifies monetary policy so that the
money supply grows at 3% from period t = 10 on. What effects has this change
on the economy? Would the effects be different if σ = 0.95?

(b) Assume that the economy is initially at the steady-state associated to a money
growth rate of 2%. Characterize the effects on the economy if the government
changes its long-run money growth target to 3%, following the rule:
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xt = (1−ρ)xss+ρxt−1.

Exercise 5. Assume that the government finances its transfers to consumers by issu-
ing money and debt, as well as using revenues from consumption and income taxes.
Consider a production function yt = Atkαt l1−α

t ,

ln(At) = (1−ρA) ln(Ass)+ρA ln(At−1)+ εA,t , |ρA| < 1.

and a utility function: U(ct , lt , m̄t+1) = ψ ln(ct) + (1−ψ) ln(1− lt) + θ ln(m̄t+1),
where m̄t+1 = Mt+1

Pt
. Consider parameter values A = 1,β = 0.9,α = 0.33,δ =

0.07,θ = 0.50, ψ = 0.35, τc = 0.15, τy = 0.20, the autonomous component of
transfers (ζ ) is equal to 0.15 and the sensitivity of transfers to government debt
is 0.40. Suppose that the monetary authority chooses the nominal rate of interest
according to Taylor’s rule:

ı̂t = ρ iı̂t−1 +ρππ̂ t +ρyŷt + ε i,t , |ρ i| < 1, ε i,t ∼
iid

N(0,σ2
i ),

where ı̂t ≡ ln
(

1+it
1+iss

)
; π̂ t ≡ ln

(
1+πt
1+πss

)
; ŷt ≡ ln

(
yt
yss

)
=︸︷︷︸

yt=At kαt

Ât +α k̂t , Ât ≡ ln
(

At
Ass

)
,

k̂t ≡ ln
(

kt
kss

)
.

Choose values for the parameters in Taylor’s rule, as well as for ρA, σ2
ε,A, σ2

ε ,i.
Compute a sample realization for the model’s perturbations, for 200 observations.
Obtain 100 such realizations and compute sample distributions for the average and
the standard deviation for the main variables in the model. Do sample moments
depend on the values chosen for the parameters in Taylor’s rule?

Exercise 6. Consider the same economy described in Exercise 4. Suppose now that
the monetary authority controls the rate of money growth, according to the law of
motion:

ln(1+ xt) = (1−ρx) ln(1+ xss)+ρx ln(1+ xt−1)+ ε t−1,

Choose values for parameters ρA,ρx,σ2
ε,A,σ2

ε,x. Compute a sample realization
of size 200 for the perturbations in the model. Obtain 100 of such realizations, and
compute the sample distribution of the average and standard deviation for each of
the main variables in the model.



Chapter 10
Mathematical Appendix

10.1 The Deterministic Control Problem in Continuous Time

Let us consider the dynamic optimization problem,

Max
vt

∫ T

0
f (xt ,vt , t)dt

subject to the constraint,

ẋt = h(xt ,vt , t)
and given x0

where vt is known as the control variable, xt being the state variable. The constraint
is in the form of a differential equation describing the time evolution of the state
variable, as a function of the decision taken at each point in time, i.e., of the value of
the control variable. Control and state could be vector variables, in which case we
would have several restrictions like the one above, one for each state variable.

We write the Hamiltonian for this problem,

H(xt ,vt ,µ t , t) = f (xt ,vt , t)+µ th(xt ,vt , t),

where µ t are co-state variables, one for each restriction, having the interpretation of
shadow prices, or the marginal value of one additional unit of the associated co-state
variable at time t in units of utility at time 0.

Pontryagin’s principle indicates that maximization of the Hamiltonian by choice
of the vt sequence leads to optimality conditions:

1)
∂H
∂vt

= 0 ⇔ ∂ f
∂vt

+µ t
∂h
∂vt

= 0,
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which is the state equation (one for each control variable), also known as order
condition, and

2) µ̇ t = −∂H
∂xt

⇔ µ̇ t = − ∂ f
∂xt

−µ t
∂h
∂xt

,

known as the co-state equation (one for each state variable).
If the control variable vt is restricted in sign, vt ≥ 0, the state equation becomes,

∂H
∂vt

=
∂ f
∂vt

+µ t
∂h
∂vt

≤ 0 together with vt
∂H
∂vt

= 0,

Finally, we have the transversality condition.

10.1.1 Transversality Condition

Sometimes, the terminal value of the state variable, x(T ) = xT is restricted in sign.
This is usually the case in economic applications of the maximum principle, where
a typical state variable is the stock of productive capital in the economy. We have as
transversality condition,

xT ≥ 0, xTµT = 0,

which implies that either xT = 0, or else, µT = 0.
If, on the contrary, xT is not restricted in value or sign, then we must have as

transversality condition: µT = 0.
If the planning problem has an infinite horizon, the transversality condition be-

comes,
lim

T→∞
xT ≥ 0, lim

T→∞
xTµT = 0,

when xT is restricted in sign, and

lim
T→∞

µT = 0,

when xT is not restricted in sign or value.

10.1.2 The Discounted Problem

Let us now assume that, as it is the case in many economic applications and,
specifically, in growth problems, the global intertemporal objective is the result of
aggregating over time an instantaneous objective function, subject to some time dis-
count θ . That is, function f (xt ,vt , t) is of the form,

f (xt ,vt , t) = e−θ tg(xt ,vt , t),
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where the time discount makes the net contribution of a given level of the objective
function g(.) to be lower the farther it occurs into the future. If, for simplicity, we
assume that f (xt ,vt , t), g(xt ,vt , t), h(xt ,vt , t) do not change with time t, we will have
the control problem,

Max
vt

∫ T

0
e−θ tg(xt ,vt)dt ,

subject to the constraint,

ẋt = h(xt ,vt),
and given x0,

with Hamiltonian,

H(xt ,vt ,µ t) = e−θ tg(xt ,vt)+µ th(xt ,vt),

state equation or order condition,

∂H
∂vt

=
∂ f
∂vt

+µ t
∂h
∂vt

= e−θ t ∂g
∂vt

+µ t
∂h
∂vt

= 0,

co-state equation,

µ̇ t = −∂H
∂xt

⇔ µ̇ t = − ∂ f
∂xt

−µ t
∂h
∂xt

= −e−θ t ∂g
∂xt

−µ t
∂h
∂xt

, (10.1)

and the same transversality condition as before.
All variables are discounted as of time t = 0. In particular, the multiplier µ t

converts the contribution of the state variable xt to the Hamiltonian in units of the
initial period, providing us with the value of the state variable at time t, in units of
the initial period t = 0. However, it is more useful to write the problem in terms of
utility units at time t. Besides, unless we do so, differential equations like (10.1)
defining the optimality conditions would depend on time t, due to the presence of
the e−θ t -factor.

To work in current values, we rewrite the Hamiltonian,

H(xt ,vt ,µ t) = e−θ t
[
g(xt ,vt)+µ t e

θ th(xt ,vt)
]
,

and define the current-value multiplier,

λ t = µ t e
θ t , (10.2)

which provides us with the shadow price or marginal value of the state variable xt
at time t. We also define the current value Hamiltonian, H∗,

H∗ = eθ tH = g(xt ,vt)+µ t e
θ th(xt ,vt) = g(xt ,vt)+λ th(xt ,vt),
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where it is easy to see that the choice of vt maximizing the current value Hamiltonian
H∗ is the same as that maximizing the Hamiltonian H.

Furthermore, using (10.1) and (10.2), we get as optimality conditions for maxi-
mization of H,

1.
∂H
∂vt

=
∂
(
e−θ tH∗)

∂vt
= e−θ t ∂H∗

∂vt
,

from which we get,
∂H
∂vt

= 0 ⇔ ∂H∗

∂vt
= 0.

2.

λ̇ t = θλ t + eθ t µ̇ t = θλ t − eθ t ∂H
∂xt

= θλ t −
∂g
∂xt

− eθ tµ t
∂h
∂xt

= θλ t −
∂H∗

∂xt
.

So the state and co-state equations can also be written,

∂H∗

∂vt
=
∂g
∂vt

+λ t
∂h
∂vt

= 0,

λ̇ t = θλ t −
∂H∗

∂xt
= θλ t −

∂g
∂xt

−λ t
∂h
∂xt

.

We can perform a similar transformation in the transversality conditions, to have
for the infinite horizon case, in terms of the current-value multiplier,

lim
T→∞

xT ≥ 0, lim
T→∞

e−θ t xTλT = 0, (10.3)

when xT is restricted in sign, and

lim
T→∞

e−θTλT = 0, (10.4)

when xT is not restricted in sign or value.
Summarizing, when there is a discount factor in the objective function, the

Hamiltonian can be written in two alternative forms, depending on the way the mul-
tipliers are defined, and we need to be careful with using the appropriate expression
for the optimality conditions.

10.1.3 Calculus of Variations

Let us now devote a few comments to the Calculus of Variations problem. This
is a special case of the optimal control problem, when the control variables are,
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precisely, the changes to be introduced in the state variables. So, the laws of motion
of the system take a simple form,

ẋt = vt that is h(xt ,vt , t) = vt ,

where both variables are continuous at intervals, given an initial value x0 and possi-
bly, also a terminal value xT .

Since it is a special case of the optimal control problem, it can be solved by direct
application of Pontryagin’s principle. The Hamiltonian for this problem is,

H = f (xt ,vt , t)+µ t vt ,

so that the state equation is,

∂H
∂vt

=
∂ f
∂vt

+µ t = 0,

and the co-state equation,

µ̇ t = −∂H
∂xt

= − ∂ f
∂xt

−µ t
∂h
∂xt

= − ∂ f
∂xt

,

since, in the Calculus of Variations problem, the h-function does not depend on xt .
From the state equation, we get,

µ t = − ∂ f
∂vt

,

so that, taking derivatives,

µ̇ t =
d
dt

(
− ∂ f
∂xt

)
,

and the co-state equation can be written in this case,

d
dt

(
∂ f
∂xt

)
=
∂ f
∂xt

,

which is a differential equation of second order, known as Euler’s equation.

10.2 The Deterministic Control Problem in Discrete Time

Let us consider the dynamic optimization problem in discrete time, with continu-
ously differentiable functions:

Max
{vt}T

0

∞

∑
t=0

β t f (xt ,vt)
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subject to the constraints,

xt+1 = h(xt ,vt) ,

xt+1 � 0,

ν t � 0 ,

and given x0,

where vt is known as the control variable, xt being the state variable. The first con-
straint is in the form of a difference equation describing the time evolution of the
state variable, as a function of the decision taken at each point in time, i.e., of the
value of the control variable. The other two constraints indicate that the variables
cannot take negative values, a standard assumption in economic models.

We write the Lagrangian for this problem,

L(xt ,vt ,µ t) =
∞

∑
t=0

β t [ f (xt ,vt)−λ 1,t (xt+1 −h(xt ,vt))−λ 2,t xt+1 −λ 3ν t ] ,

where λ i,t i = 1,2,3 are the Kuhn–Tucker multipliers, having the interpretation of
shadow prices. Kuhn–Tucker multipliers in this type of problems are usually known
as Lagrange multipliers.

The Kuhn–Tucker conditions allow us to solve the nonlinear optimization prob-
lem above:

∂L
∂vt

= β t
(
∂ f
∂vt

+λ 1,t
∂h
∂vt

−λ 3,t

)
= 0, (10.5)

∂L
∂xt+1

= β t+1
(

∂ f
∂xt+1

+λ 1,t+1
∂h
∂xt+1

)
−β t (λ 1,t +λ 2,t) = 0, (10.6)

∂L
∂λ 1,t

= xt+1 −h(xt ,vt) = 0, (10.7)

∂L
∂λ 2,t

= −xt+1 � 0, and λ 2,t xt+1 = 0, (10.8)

∂L
∂λ 3,t

= −ν t � 0, and λ 3,tν t = 0. (10.9)

Additionally, the Lagrange multipliers cannot be positive, that is,

λ i,t � 0, i = 1,2,3. (10.10)

Conditions (10.5)–(10.7) are known as primal feasibility conditions, (10.8)–
(10.9) are the conditions for complementarity slackness and (10.10) are the dual
feasibility conditions.

Solving for λ 3,t and λ 2,t in (10.5) and (10.6), respectively:

λ 3,t =
∂ f
∂vt

+λ 1,t
∂h
∂vt

,
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λ 2,t = −λ 1,t +β
(

∂ f
∂xt+1

+λ 1,t+1
∂h
∂xt+1

)
,

and plugging these two expressions in (10.8)–(10.10), we obtain Kuhn–Tucker
conditions:

[
−λ 1,t +β

(
∂ f
∂xt+1

+λ 1,t+1
∂h
∂xt+1

)]
xt+1 = 0, (10.11)

(
∂ f
∂vt

+λ 1,t
∂h
∂vt

)
ν t = 0, (10.12)

−λ 1,t +β
(

∂ f
∂xt+1

+λ 1,t+1
∂h
∂xt+1

)
� 0, (10.13)

∂ f
∂vt

+λ 1,t
∂h
∂vt

� 0. (10.14)

equivalent to the ones initially described, which are the ones we use throughout the
book.

In Economics, the objective function and the set of restrictions usually satisfy
the conditions for an interior solution so that: xt+1 > 0, ν t > 0. Then, the previous
conditions reduce to:

−λ 1,t +β
(

∂ f
∂xt+1

+λ 1,t+1
∂h
∂xt+1

)
= 0,

∂ f
∂vt

+λ 1,t
∂h
∂vt

= 0.

These are the optimality conditions of the Lagrange theorem to solve dynamic,
discrete time optimization problems under equality constraints. Finally, we have the
transversality condition, which is analogous to the one for the continuous-time case.

The analysis we have described can be generalized to the case with multiple state
and control variables.

10.3 First Order Differential Equations

10.3.1 1. First Order Differential Equations with Constant
Coefficients

Case 1.1: Homogeneous, Lineal Equation, with Constant Coefficients: ẏt = ryt ,

with r being a known constant. The equation can be written,
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dyt

dt
= ryt ⇒ dyt

yt
= rdt ⇒ lnyt = rt +C ⇒

yt = ert+C = C′ert , (10.15)

where the constant C′ is determined from a boundary condition, like the value of yt
at time t = 0. If we particularize (10.15) at time 0, we get: y0 = C′, and we end up
with a solution,

yt = y0ert .

Case 1.2: Non-Homogeneous, Lineal Equation, with Constant Coefficient:
ẏt = ryt +gt ,

with r being a known constant.The general solution to this equation is constructed
as the sum of the solution to the homogeneous equation (i.e., ignoring the presence
of gt in the equation), plus a particular solution to the non-homogeneous equation.
The solution to the homogeneous equation is that found in Case 1, yt = y0ert . To find
a particular solution to the non-homogeneous equation, we substitute a function of
time, ut , for the constant in the equation, to have,

y1t = utert ⇒ ŷ1t = u̇tert +utrert ,

which taken to the initial equation, gives us,

ẏ1t = ry1t +gt ⇒ u̇tert +utrert = rutert +gt ,

leading to,
u̇t = e−rtgt ,

which can be integrated in two different ways:

• towards the past,

ut =
∫ t

0
e−rsgsds,

• or towards the future,
ut = −

∫ ∞

t
e−rsgsds

as can be checked by taking derivatives in each of them with respect to time t. To
obtain those derivatives we use Leibniz’s rule, which gives us the derivative with
respect to the parameter t of a parametric integral function,

I(t) =
∫ b(t)

a(t)
f (x, t)dx,

as,
dI(t)

dt
=

∫ b(t)

a(t)

∂ f (x, t)
∂ t

dx+ f (b(t), t)
db
dt

− f (a(t), t)
da
dt

.
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The integral towards the future has interest in economic applications, but it is
valid only if it converges, for which a necessary, although not necessarily sufficient,
condition is,

lim
s→∞

e−rsgs → 0.

If this condition holds, we will have the particular solution to the non-
homogeneous equation,

y1t = −ert
∫ ∞

t
e−rsgsds.

Notice that since we look just for a particular solution, we can ignore the additive
constants which are standard when solving differential equations.

Finally, the general solution to the non-homogeneous equation is obtained by
adding up to the solution of the homogeneous case, the particular solution, y1t .

yt = Cert − ert
∫ ∞

t
e−rsgsds,

If we know the sequence {gs}∞s=0 , and the value of the constant coefficient r, a
boundary condition will allow us to determine the numerical value of the constant C.

For instance, in the case of a constant sequence gs = g ∀s, then writing the general
solution at time t = 0,

y0 = C−
∫ ∞

0
e−rsgds = C− g

r
⇒ C = y0 +

g
r
,

and finally,

yt =
(

y0 +
g
r

)
ert − ert

∫ ∞

t
e−rsgds =

(
y0 +

g
r

)
ert − g

r
.

To gain some familiarity with differential equations, let us now follow an al-
ternative argument: The particular solution to the homogeneous equation is of type
(10.15): yt =Cert . To obtain a particular solution to the non-homogeneous equation,
we try,

yt = utert ,

and substituting in the differential equation, we get,

u̇tert +utrert = rutert +g ⇒ u̇t = ge−rt ,

which leads to,

ut = −1
r

ge−rt .

So, the general solution to the non-homogeneous, first-order differential equa-
tion is,

yt = Cert − g
r
.

At time 0 we would have,

y0 = C− g
r

⇒ C = y0 +
g
r
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and, finally, the solution,
yt =

(
y0 +

g
r

)
ert − g

r
.

10.3.2 2. First Order Differential Equations with Variable
Coefficients

Case 2.1: Homogeneous, Lineal Equation, with Variable Coefficients: ẏt = rtyt .

The equation can be written,

dyt

dt
= rtyt ⇒ dyt

yt
= rtdt ⇒ lnyt =

∫ t

0
rsds+C ⇒

yt = e
∫ t

0 rsds+C = C′e
∫ t

0 rsds, (10.16)

and, again, the constant C′ is determined from a boundary condition, like the value
of variable yt at time t = 0, which implies,

yt = y0e
∫ t

0 rsds.

Example: In the main text, we face the differential equation

q̇t/qt = n+θ − rt ,

which following the argument above, can be integrated to,

qt = q0e−
∫ t

0(rs−(n+θ))ds.

Case 2.2: Non-Homogeneous, Variable Coefficient, Lineal Equation: ẏt = rtyt +gt .

The general solution to this equation is made up by adding to the solution to the ho-
mogeneous equation (i.e., ignoring the presence of gt in the equation), a particular
solution to the non-homogeneous equation. The solution to the homogeneous equa-
tion is that found in Case 1. To find a particular solution to the non-homogeneous
equation, we substitute a function of time ut for the constant in the equation, to have,

y1t = ute
∫ t

0 rsds ⇒ ẏ1t = u̇te
∫ t

0 rsds +utrte
∫ t

0 rsds,

which taken to the initial equation, ẏ1t = rty1t +gt , gives us:

u̇te
∫ t

0 rsds +utrte
∫ t

0 rsds = rtute
∫ t

0 rsds +gt ,
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leading to,
u̇t = e−

∫ t
0 rsdsgt ,

and integrating towards the future, we obtain a particular solution to the non-
homogeneous differential equation,

ut = −
∫ ∞

t
e−

∫ z
0 rsdsgzdz,

as can be checked by taking derivatives with respect to time t.
Finally, the general solution to the non-homogeneous equation is,

yt = Ce
∫ t

0 rsds − e
∫ t

0 rsds
∫ ∞

t
e−

∫ z
0 rsdsgzdz,

as it can be seen by taking derivatives with respect to t.
But, since z > t, we can write,

−
∫ z

0
rsds = −

∫ t

0
rsds−

∫ z

t
rsds,

which allows us to decompose the integral at the far right in the solution to the
differential equation, to obtain,

yt = Ce
∫ t

0 rsds − e
∫ t

0 rsds
∫ ∞

t
e−

∫ t
0 rsdse−

∫ z
t rsdsgzdz,

where the first exponential factor, which does not depend on the integration variable,
can be taken out of the integral, simplifying with the factor outside the integral. We
finally have,

yt = Ce
∫ t

0 rsds −
∫ ∞

t
e−

∫ z
t rsdsgzdz,

as the solution to the non-homogeneous equation.
The constant can be found from a known initial condition, like the value of y0.

Making t = 0 in the previous equation,

t = 0 ⇒ y0 = Ce
∫ 0

0 rsds −
∫ ∞

0
e−

∫ z
0 rsdsgzdz ⇒C = y0 +

∫ ∞

0
e−

∫ z
0 rsdsgzdz,

so that,

yt =
[

y0 +
∫ ∞

0
e−

∫ z
0 rsdsgzdz

]
e
∫ t

0 rsds −
∫ ∞

t
e−

∫ z
t rsdsgzdz

= y0e
∫ t

0 rsds +
∫ ∞

0
e−

∫ z
t rsdsgzdz−

∫ ∞

t
e−

∫ z
t rsdsgzdz =

= y0e
∫ t

0 rsds +
∫ t

0
e
∫ t

z rsdsgzdz.
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Example: Let us consider the special case: gs = g,rs = r ∀s. Then,

yt = y0e
∫ t

0 rds +
∫ t

0
e
∫ t

z rdsgdz = y0ert +g
∫ t

0
er(t−z)dsdz

= y0ert − g
r
(1− ert) =

(
y0 +

g
r

)
ert − g

r

the same solution as we obtained above for first order, nonhomogeneous, constant
coefficient differential equations [Case 1.2].

Example: In the main text, we face the differential equation,

ȧt + ct + τ t = ω t +(rt −n)at ,

which, following the argument in this section, integrates to,

at = a0e
∫ t

0(rs−n)ds +
∫ t

0
e
∫ t

z (rs−n)ds (ωz − cz − τz)dz

=
[

a0 +
∫ t

0
e−

∫ z
0 (rs−n)ds (ωz − cz − τz)dz

]
e
∫ t

0(rs−n)ds.

10.4 Matrix Algebra

For a square matrix A, an eigenvalue is a (possibly complex) number µ for which
there is a vector x such that,

Ax = µx.

Vector x is then called the right eigenvector associated to the eigenvalue µ of A.
The left eigenvector associated to the eigenvalue µ is a vector x such that,

x′A = µx′.

To compute the eigenvalues of matrix A, we solve the determinant equation:
| A−µI |= 0, which is known as the characteristic equation of matrix A.

Let Λ be the diagonal matrix having as elements the eigenvalues of A. Then, if Γ
is the matrix having as columns the right–eigenvectors of A, we have, AΓ= ΓΛ. If Γ̃
is the matrix having as rows the left-eigenvectors of A, then Γ̃A = ΛΓ̃. The spectral
decomposition of a square matrix A is defined as the factor product A = ΓΛΓ−1,
where Λ is a diagonal matrix with elements equal to the eigenvalues of A, and Γ is
the matrix which has as columns the right eigenvectors of A.

Furthermore, the spectral decomposition of the exponential of a square matrix
A is defined as the factor product eA = ΓeΛΓ−1, where, again, Λ is a diagonal ma-
trix with elements equal to the eigenvalues of A, and Γ is the matrix which has as
columns the right eigenvectors of A.

Lemma 1. The left eigenvectors of a square matrix A are the right eigenvectors of
matrix A′. A matrix and its transpose have the same eigenvalues.
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Proof. Let Γ̃ be the matrix having as rows the left-eigenvectors of a square matrix A.
Then, Γ̃A =ΛΓ̃which implies A′Γ̃′ = Γ̃′Λ′ = Γ̃′Λ, since Λ is a diagonal matrix. This
equality shows that Γ̃′ has as columns the right eigenvectors of matrix A′, and also
that the eigenvalues of A and A′ are the same. But each column of Γ̃′ is clearly a row
of Γ̃, which shows the result. ��

When characterizing stability as part of the numerical solution of a model, we
will extensively use the following result:

Lemma 2. Let A be a square, invertible matrix.

(a) A and A−1 have the same right eigenvectors.
(b) If Γ is the matrix having as columns the right eigenvectors of A, then the rows

of Γ−1 are the left eigenvectors of A−1.
(c) A and A−1 have the same left eigenvectors

Proof.(a) From the spectral decomposition for A : A = ΓΛΓ−1, and inverting both
sides: A−1 = ΓΛ−1Γ−1, where Λ−1 is the diagonal matrix having along the diag-
onal the inverse of the eigenvalues of A. Hence, when A is invertible, the eigen-
values of A−1 are the inverse of the eigenvalues of A, and both matrices, A and
A−1, have the same right eigenvectors.

(b) According to the definition of Γ, AΓ = ΓΛ so that inverting at both sides:
Γ−1A−1 = Λ−1Γ−1. We again see that the eigenvalues of A−1 are the inverse
of the eigenvalues of A, and also that the rows of Γ−1 are the left eigenvectors
of A−1.

(c) Putting together both results, we get that both matrices also share the same left
eigenvectors. ��

To simplify notation, in what follows we will normalize eigenvectors to have a
first component equal to one.

We will sometimes face the spectral decomposition of the power t of a matrix, At .

Lemma 3. If matrix A admits the spectral decomposition: A = ΓΛΓ−1, then the
spectral decomposition of At is: At = ΓΛtΓ−1, where Λt is the diagonal matrix hav-
ing as elements the power t of the elements of Λ.

Proof. We proceed by induction. The result holds for t = 2 : A2 = AA =(
ΓΛΓ−1

)(
ΓΛΓ−1

)
= ΓΛΓ−1ΓΛΓ−1 = ΓΛ2Γ−1, and also for t = 3 : A3 = A2A =(

ΓΛ2Γ−1
)(
ΓΛΓ−1

)
= ΓΛ3Γ−1. Now, let us assume that the proposition holds for

t−1, i.e. : At−1 =ΓΛt−1Γ−1. Then, we have: At = At−1A =
(
ΓΛt−1Γ−1

)(
ΓΛΓ−1

)
=

ΓΛtΓ−1. This completes the proof. ��

Let us now consider the power function eA of an nxn−matrix A admitting a
spectral decomposition as above. Using the matrix version of McLaurin’s power
expansion:

eA = In +A+
1
2!

A2 +
1
3!

A3 + ... = In +ΓΛΓ−1 +
1
2!

(
ΓΛΓ−1)2
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+
1
3!

(
ΓΛΓ−1)3

+ ... = In +ΓΛΓ−1 +
1
2!
ΓΛ2Γ−1 +

1
3!
ΓΛ3Γ−1 + ...

= Γ
(

In +Λ+
1
2!
Λ2 +

1
3!
Λ3 + ...

)
Γ−1 =

= ΓeΛΓ−1.

10.4.1 The 2×2 Case

Let A denote the 2×2 matrix of coefficients in system żt = Azt , with zt = (z1t,z2t)
′

A =
(

a11 a12
a21 a22

)
,

whose characteristic equation is,

µ2 − (a11 +a22)µ+(a11a22 −a12a21) = 0,

with roots,

µ1 =
(a11 +a22)+

√
(a11 +a22)

2 −4(a11a22 −a12a21)

2
,

µ2 =
(a11 +a22)−

√
(a11 +a22)

2 −4(a11a22 −a12a21)

2
.

The right eigenvector corresponding to the µ1 eigenvalue is the vector x = (x1,x2)
satisfying, (

a11 a12
a21 a22

)(
x1
x2

)
= µ1

(
x1
x2

)
,

that is,

a11x1 +a12x2 = µ1x1,

a21x1 +a22x2 = µ1x2,

which lead to,

x2 =
µ1 −a11

a12
x1,

x2 =
a21

µ1 −a22
x1,

two equations that turn out to be the same, precisely because of µ being a root to
the characteristic equation.
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Normalizing x1 = 1, we get the eigenvector,

x =
(

x1
x2

)
=

(
1
µ1−a11

a12

)
.

In a similar fashion, we would get the eigenvector associated to the µ2 eigen-
value,

y =
(

y1
y2

)
=

(
1
µ2−a11

a12

)
,

with a factor product:

x′y = x1y1 + x2y2 = 1+
µ1 −a11

a12

µ2 −a11

a12

= 1+
µ1µ2 −a11 (µ1 +µ2)+a2

11

a2
12

= 1− a21

a12
.

If A is symmetric, then x and y are orthogonal to each other because its product
is zero.

Let us now compute the spectral decomposition of matrix A, A = ΓΛΓ−1,
where Λ is a diagonal matrix with elements given by the eigenvalues of A,

Λ =
(
µ1 0
0 µ2

)
, and the columns of Γ are the right–eigenvectors of A, so that,

Γ=
(

x1 y1
x2 y2

)
and its inverse matrix has the form:

(
u1 v1
u2 v2

)
= Γ−1 =

(
x1 y1
x2 y2

)−1

=
1

x1y2 − x2y1

(
y2 −y1
−x2 x1

)

=
a12

µ2 −µ1

( µ2−a11
a12

−1
− µ1−a11

a12
1

)

,

so that,

A =
a12

µ2 −µ1

(
1
µ1−a11

a12

1
µ2−a11

a12

)(
µ1 0
0 µ2

)( µ2−a11
a12

−1
− µ1−a11

a12
1

)

.

In some cases, we will be interested in imposing orthogonality between the left
eigenvector x associated to one of the eigenvalues, µ1, say, and the vector of vari-
ables zt . That would imply,

z1t +
µ1 −a11

a12
z2t = 0.
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But the two roots of the characteristic equation satisfy: µ1µ2 = a11a22 −
a12a21; µ1 + µ2 = a11 + a22, so that − a21

µ2−a11
= µ1−a11

a12
, and the previous con-

dition can also be written,

z1t −
a21

µ2 −a11
z2t = 0.

10.4.2 Systems with a Saddle Path Property

A 2×2 system with a characteristic equation of the form,

µ2 −
(

1+
1
β

+A
)
µ+

1
β

= 0,

has a saddle path structure, with an eigenvalue above 1/β , and the other below 1.
To show this property, notice that the two roots of the characteristic equation satisfy,

µ1 +µ2 = 1+
1
β

+A, µ1µ2 =
1
β

,

so that,

µ1 +
1

βµ1
= 1+

1
β

+A.

The function f (µ1) = µ1 + 1
βµ1

describing the sum of the two roots is continuous

on the positive real line. It takes the same value at µ1 = 1 and at: µ1 = 1
β : f (1) =

f ( 1
β ) = 1 + 1

β , and has a minimum at µ1 =
√

1/β , between the previous two

points. Since 1 + 1
β + A > 1 + 1

β , then the two possible values of µ1 satisfying the

equation f (µ1) = 1+ 1
β +A are one below µ1 = 1, and the other above µ1 = 1

β .

10.4.3 Imposing Stability Conditions Over Time

We show in this section that imposing stability conditions on a linear or loglinear
approximation to a dynamic system at time t = 0 amounts to imposing the conditions
at each point in time. Linear or log-linear approximations to nonlinear dynamic
systems of difference equations are often computed throughout the book, in order to
compute a numerical solution. That approximation can always be written as a first
order autoregressive process for an extended vector of variables that includes all
control and state variables in the system. If the model exhibits long dynamics, the
vector may include lags of state and control variables. That representation is known
as state-space representation.



10.4 Matrix Algebra 511

Proposition 2. In the state-space formulation of any dynamic economy, imposing
the stability condition at t = 0 amounts to imposing it ∀t.

Consider the dynamic system:
[

st+1
ct+1

]
=

[
Γ11 Γ12
Γ21 Γ22

]

︸ ︷︷ ︸
Γ

[
st
ct

]
, dado s0,

where st is a vector of state variables of order k × 1, and ct is a r × 1 vector of
control variables. So, Γ11 is a matrix of order k× k,Γ22 is a r× r matrix ,Γ12 is a
k× r matrix, while Γ21 is a r× k matrix.

Let us diagonalize Γ :
[

M11 M12
M21 M22

]

︸ ︷︷ ︸
M

[
Λ1 0k×r

0r×k Λ2

]

︸ ︷︷ ︸
Λ

[
m11 m12
m21 m22

]
=

︸ ︷︷ ︸
M−1

[
Γ11 Γ12
Γ21 Γ22

]
.

where we assume Λ1 to be the diagonal matrix made up by the stable eigenvalues
(those with norm below 1) while Λ2 is the diagonal matrix made up by the unstable
eigenvalues (eigenvalues with norm above 1). Therefore, the submatrix [M12 M22]
contains as columns the unstable right eigenvectors, while the [m21 m22] contains,
as rows, the unstable left eigenvectors. Notice that matrix Λ2 must be of order r× r
to guarantee that the solution is determinate.

If we eliminate the unstable paths, we will have that, given the initial conditions
for the state variables, the solution to the dynamic system will be stable, having
a saddle path solution. Eliminating the unstable directions implies obtaining initial
values for the control variables as functions of the initial values for the state variables
that eliminate the explosive trajectories:

m21s0 +m22c0 = 0 ⇒ c0 = −m−1
22 m21s0.

If we substitute this expression in the transition matrix for t = 1, we will have,
on the one hand:

s1 = Γ11s0 −Γ12m−1
22 m21s0

=
[
Γ11 −Γ12m−1

22 m21
]

s0,

that is,
s0 =

[
Γ11 −Γ12m−1

22 m21
]−1

s1, (10.17)

and, on the other,

c1 = Γ21s0 +Γ22c0

= Γ21s0 −Γ22m−1
22 m21s0

=
[
Γ21 −Γ22m−1

22 m21
]

s0, (10.18)
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where, plugging expressions (10.17) into (10.18), we have:

c1 =
[
Γ21 −Γ22m−1

22 m21
][
Γ11 −Γ12m−1

22 m21
]−1

s1. (10.19)

Therefore, all we need is to show that:
[
Γ21−Γ22m−1

22 m21
]
×
[
Γ11 −Γ12m−1

22 m21
]−1

= −m−1
22 m21. Once this has been shown, it is easy to conclude that the stability con-

dition is satisfied for all t , since the same argument used for t = 1 can be used for
all future t.

First, we know that:

[
Λ1 0k×r

0r×k Λ2

][
m11 m12
m21 m22

]
=

[
m11 m12
m21 m22

][
Γ11 Γ12
Γ21 Γ22

]

⇒
[
Λ1m11 Λ1m12
Λ2m21 Λ2m22

]
=

[
m11Γ11 +m12Γ21 m11Γ12 +m12Γ22
m21Γ11 +m22Γ21 m21Γ12 +m22Γ22

]

we have two alternative expressions for Λ2 :

Λ2 = m21Γ11m′
21(m21m′

21)
−1 +m22Γ21m′

21(m21m′
21)

−1

Λ2 = m21Γ12m−1
22 +m22Γ22m−1

22

. (10.20)

where we allow for m12 not being a square matrix.
Making these expressions equal to each other, and multiplying on the right by

m21m′
21 :

m21
[
Γ11m′

21(m21m′
21)

−1m21m′
21 −Γ12m−1

22 m21m′
21
]

= −m22
[
Γ21m′

21(m21m′
21)

−1m21m′
21 −Γ22m−1

22 m21m′
21
]

⇒ m21
[
Γ11m′

21 −Γ12m−1
22 m21m′

21
]

= −m22
[
Γ21m′

21 −Γ22m−1
22 m21m′

21
]

⇒ m21
[
Γ11 −Γ12m−1

22 m21
]

m′
21

= −m22
[
Γ21 −Γ22m−1

22 m21
]

m′
21

⇒ m21
[
Γ11 −Γ12m−1

22 m21
]

= −m22
[
Γ21 −Γ22m−1

22 m21
]

⇒−m−1
22 m12 =

[
Γ21 −Γ22m−1

22 m21
][
Γ11 −Γ12m−1

22 m21
]−1

.

��
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10.5 Some Notes on Complex Numbers

Let {µ1 = a+bi, µ2 = a−bi} two complex conjugate numbers. If we transform
these two numbers to polar coordinates we get: µ1 = qcos(θ) + i qsin(θ), µ2 =
qcos(θ)− iqsin(θ), where θ = arctan(b/a) and q = ‖µ1‖ = ‖µ2‖ = (a2 +b2)1/2.

Proposition 3. eiθ = cos(θ)+ i sin(θ).

Proof. Step 1: we describe the McLaurin’s series expansions of sin(θ), cosθ and ex :

sin(θ) = sin0+θ cos0− 1
2!
θ 2 sin0− 1

3!
θ 3 cos0+

1
4!
θ 4 sin0+ ...

= θ − θ 3

3!
+
θ 5

5!
− θ 7

7!
+
θ 9

9!
− ...

cos(θ) = cos0−θ sin0− 1
2!
θ 2 cos0+

1
3!
θ 3 sin0+

1
4!
θ 4 cos0− ...

= 1− θ 2

2!
+
θ 4

4!
− θ 6

6!
+
θ 8

8!
− ...

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ ...

If x = iθ , then:

eiθ = 1+ iθ − θ 2

2!
− i

θ 3

3!
+
θ 4

4!
+ i

θ 5

5!
− θ 6

6!
− i

θ 7

7!
+ ...

=

(

1− θ 2

2!
+
θ 4

4!
− θ 6

6!
+
θ 8

8!
− ...

)

+ i

(

θ − θ 3

3!
+
θ 5

5!
− θ 7

7!
+
θ 9

9!
− ...

)

= cos(θ)+ isin(θ).
��

Corollary 1. e−iθ = cos(θ)− isin(θ)

e−iθ = 1− iθ − θ 2

2!
+ i

θ 3

3!
+
θ 4

4!
− i

θ 5

5!
− θ 6

6!
+ i

θ 7

7!
+ ...

=

(

1− θ 2

2!
+
θ 4

4!
− θ 6

6!
+
θ 8

8!
− ...

)

− i

(

θ − θ 3

3!
+
θ 5

5!
− θ 7

7!
+
θ 9

9!
− ...

)

= cos(θ)− isin(θ).

Corollary 1. Given two complex conjugate numbers µ1 = a + ib = q[cos(θ) +
isin(θ)] = qeiθ ,µ2 = a − ib = q[cos(θ)− isin(θ)] = qe−iθ , where q and θ are
defined as above, we have:
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eiθ t = cos(θ t)+ isin(θ t)
µ t

1 = (a+ ib)t = qt [cos(θ t)+ isin(θ t)] = qteiθ t

µ t
2 = (a− ib)t = qt [cos(θ t)− isin(θ t)] = qte−iθ t

Proof. The reader may easily check these expressions by arguments similar to those
used for previous results. ��

10.6 Solving a Dynamic Two-Equation System
with Complex Roots

Let us consider the system:
[

x1t
x2t

]
=

[
a b
c d

]

︸ ︷︷ ︸
Γ

[
x1t−1
x2t−1

]
. (10.21)

The solution, provided the two roots of Γ are different, is:
[

x1t
x2t

]
=

[
A1µ t

1 +A2µ t
2

B1µ t
1 +B2µ t

2

]
, (10.22)

where A1,A2,B1,B2 are constants to be determined.
Let us assume that the transition matrix Γ in expression (10.21) has complex

roots. Then,

µ1 = α+β i,

µ2 = α−β i,

A1 = γ+δ i, A2 = γ−δ i,

B1 = ϖ +η i, B2 = ϖ −η i. (10.23)

We will first show that:
{

A1µ t
1 +A2µ t

2
B1µ t

1 +B2µ t
2

}
are real solutions if and only if A1,

A2 are, in fact, complex conjugate numbers and B1, B2 are also complex conjugate
numbers.

⇒): Let A1 = γ1 +δ 1i, A2 = γ2 +δ 2i. If A1µ t
1 +A2µ t

2 is a real number ∀t, then it
will also be real for t=0 ⇒ A1 +A2 must be real ⇒ γ1 +δ 1i+ γ2 +δ 2i must be real
⇒ δ 1 =−δ 2. Let us denote from now on: δ = δ 1. If A1µ t

1 +A2µ t
2 is real ∀t, then, at

time t=1 ⇒ A1µ1 +A2µ2 must be real ⇒ (γ1 +δ i)(α+β i)+(γ2 −δ i)(α−β i) =
(γ1α−2δβ + γ2α)+β i(γ1 − γ2) which will be real if γ1 = γ2. Let us denote from
now on, γ = γ1. Hence, A1 = γ+δ i, A2 = γ−δ i, are complex conjugate numbers.
The same proof can be used for B1 and B2.

⇒): If A1, A2 are complex conjugate numbers and B1, B2 are complex conjugate

numbers, then the solution
{

A1µ t
1 +A2µ t

2
B1µ t

1 +B2µ t
2

}
is real. We can write: A1 = γ+δ i = s
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eiω = s [cos(ω)+ isin(ω)] , A2 = γ − δ i = s e−iω = s [cos(ω)− isin(ω)] , where
s = (γ2 +δ 2)1/2,ω = arctan(δ/γ). Let µ1 =α+β i = q eiϑ = q [cos(ϑ)+ isin(ϑ)] ,
µ2 = α − β i = q e−iϑ = q [cos(ϑ)− isin(ϑ)] , where q = (α2 + β 2)1/2, ϑ =
arctan(β/α).

Therefore, A1µ t
1 + A2µ t

2 = s eiωqt eiϑ t + s e−iωqt e−iϑ t = sqt [ei(ω+ϑ t) +
e−i(ω+ϑ t)] = sqt [cos(ω+ϑ t)+ isin(ω+ϑ t)+ cos(ω+ϑ t)− isin(ω+ϑ t)] =
2sqt cos(ω + ϑ t) = 2sqt [cos(ω)cos(ϑ t) − sin(ω)sin(ϑ t)] =

2qt

⎡

⎢
⎣scos(ω)
︸ ︷︷ ︸

γ

cos(ϑ t) − ssin(ω)
︸ ︷︷ ︸

δ

sin(ϑ t)

⎤

⎥
⎦ = 2qt [γ cos(ϑ t)−δ sin(ϑ t)] , which

is real.1

Therefore, the solution to the system can also be written:
[

x1t
x2t

]
=

[
2qt [γ cos(ϑ t)−δ sin(ϑ t)]
2qt [ϖ cos(ϑ t)−η sin(ϑ t)]

]
, (10.24)

with γ,δ ,ϖ ,η being constants to be determined.
We show next that the solution can also be written:

[
x1t
x2t

]
=

[
qtc1[d1 cos(ϑ t)− f1 sin(ϑ t)]+qtc2[d1 sin(ϑ t)+ f1 cos(ϑ t)]
qtc1[d2 cos(ϑ t)− f2 sin(ϑ t)]+qtc2[d2 sin(ϑ t)+ f2 cos(ϑ t)]

]
, (10.25)

with only two constants, c1,c2 to be determined. d1,d2 come from the real part of the
eigenvector associated to µ1 or µ2, since they share the same real part, and f1, f2 are
real numbers from the imaginary part of the eigenvector associated to µ1. Therefore,
this presentation of the solution is more convenient since, given initial conditions
(x10,x20), we can only compute two constants. That means that when presenting the
solution in the form (10.21)–(10.24), A1,B1 must be proportional to each other, and
so must be the pairs (A2,B2), (γ,ϖ) and (δ ,η), with the proportionality constant
being a function of the components of the transition matrix Γ.

Let us now show that the solution can be written as in (10.25). To do so, notice
that we could solve the system of difference equations as:

[
x1t
x2t

]
=

[
a b
c d

]t [ x10
x20

]

=
[

M11 M12
M21 M22

]

︸ ︷︷ ︸
M

[
µ t

1 0
0 µ t

2

]

︸ ︷︷ ︸
Λt

[
m11 m12
m21 m22

]

︸ ︷︷ ︸
M−1

[
x10
x20

]

=
[

M11 M12
M21 M22

][
µ t

1C1
µ t

2C2

]
=

[
C1M11µ t

1 +C2M12µ t
2

C1M21µ t
1 +C2M22µ t

2

]
,

(10.26)

where C1 = m11x10 +m12x20, C2 = m21x10 +m22x20.

1 Where we have applied the property of the cosine of the sum: cos(a + b) = cos(a)cos(b)−
sin(a)sin(b).
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Let M, m be the matrices:

M =
[

d1 + i f1 d1 − i f1
d2 + i f2 d2 − i f2

]
; m =

[
g1 + ih1 g2 + ih2
g1 − ih1 g2 − ih2

]
.

Notice that matrix M has as columns the complex conjugate right eigenvectors,
while the rows in m are the complex conjugate left eigenvectors. Given matrices M
and m, it is easy to show that the constants C1 and C2 are also complex conjugate
numbers:

C1 = (g1x10 +g2x20)︸ ︷︷ ︸
Cr

+(h1x10 +h2x20)︸ ︷︷ ︸
Ci

i,

C2 = (g1x10 +g2x20)− (h1x10 +h2x20)i.

Comparing (10.26) and (10.22), we have:

{C1M11 = A1; C2M12 = A2; C1M21 = B1; C2M22 = B2}⇒

{(Cr + iCi)(d1 + i f1) = γ+ iδ ; (Cr + iCi)(d2 + i f2) = ϖ + iη}⇒

γ = (Crd1 −Ci f1); δ = (Cid1 +Cr f1);
ϖ = (Crd2 −Ci f2); η = (Cid2 +Cr f2). (10.27)

so that, using (10.27) in (10.24), we get:
[

x1t
x2t

]
=

[
2qt [(Crd1 −Ci f1)cos(ϑ t)− (Cid1 +Cr f1)sin(ϑ t)]
2qt [(Crd2 −Ci f2)cos(ϑ t)− (Cid2 +Cr f2)sin(ϑ t)]

]

=
[

2qt [Cr(d1 cos(ϑ t)− f1 sin(ϑ t))−Ci(d1 sin(ϑ t)+ f1 cos(ϑ t))]
2qt [Cr(d2 cos(ϑ t)− f2 sin(ϑ t))−Ci(d2 sin(ϑ t)+ f2 cos(ϑ t))]

]

=
[

qtc1 [d1 cos(ϑ t)− f1 sin(ϑ t)]+qtc2[d1 sin(ϑ t)+ f1 cos(ϑ t)]
qtc1 [d2 cos(ϑ t)− f2 sin(ϑ t)]+qtc2[d2 sin(ϑ t)+ f2 cos(ϑ t)]

]
,

where: c1 = 2Cr, c2 = −2Ci.
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30. Dı́az-Giménez, J. (1999), “Linear quadratic approximations”, in Ramon Marimon and Andrew
Scott (eds.), Computational Methods for the Study of Dynamic Economics, chap. 1, Oxford
University Press, New York, 13–29.

31. Dixit, A.K. and J. Stiglitz (1977), “Monopolistic competition and optimum product diversity”,
American Economic Review 67, 297–308.

32. Erceg, C.J., L. Guerrieri and C. Gust, (2005), “SIGMA: A New Open Economy Model for
Policy Analysis”, International Finance Discussion Papers No. 835, Board of Governors of the
Federal Reserve System, July.

33. Ethier, W.J. (1982), “National and international returns to scale in the modern theory of inter-
national trade”, American Economic Review 72, 389–405.

34. Friedman, M. (1969), “The Optimum Quantity of Money”, in The Optimum Quantity of Money
and other Essays, Aldine, Chicago.

35. Gali, J. and M. Gertler (1999), “Inflation dynamics: A structural econometric analysis”, Jour-
nal of Monetary Economics, 44(2), 195–222.

36. Greenwood, J., Z. Hercowitz, Z. and G.W. Huffman (1988), “Investment, capacity utilization,
and the real business cycle”, American Economic Review, 78, 402–417.

37. Grossman, G.M. and E. Helpman (1991), Innovation and Growth in the Global Economy,
MIT, Cambridge.

38. Guidotti, P.E. and C.A. Végh (1993), “The optimal inflation tax when money reduces transac-
tions costs. A reconsideration”, Journal of Monetary Economics, 31, 189–205.

39. Guillman, M. (1993), “The welfare cost of inflation in a cash-in-advance economy with costly
credit”, Journal of Monetary Economics, 31(1), 97–115.

40. Hansen, L.P. and T.J. Sargent (2005), Recursive Methods of Linear Dynamic Economies, man-
uscript, New York University.

41. Heer, B. and A. Maussner (2005), Dynamic General Equilibrium Modelling: Computational
Methods and Applications, Springer, Berlin.

42. Howitt, P. and P. Aghion (1998), “Capital accumulation and innovation as complementary
factors in long-run growth”, Journal of Economic Growth 3, 111–130.

43. Ireland, P.N. (1994), “Supply-side economics and endogenous growth”, Journal of Monetary
Economics, 33, 559–572.

44. Ireland, P.N. (2003), “Endogenous money or sticky prices?”, Journal of Monetary Economics,
50, 1623–1648.

45. Ireland, P.N. (2004), “Money’s role in the monetary business cycle”, Journal of Money, Credit,
and Banking, 36(6), 969–983.

46. Ireland, P.N. (2004), “A method for taking models to the data”, Journal of Economic Dynamics
and Control, 28(6), 1205–1226.



References 519

47. Jones, L.E. and R. Manuelli (1990), “A convex model of economic growth”, Journal of Polit-
ical Economy, 98(5), 1008–1038.

48. Judd, K.L. (1998), Numerical Methods in Economics, MIT, Cambridge.
49. Keynes, J.M. (1936), The General Theory of Employment, Interest and Money, Reprinted

Harbinger, Hardcourt Brace and World, 1964.
50. Kimbrough, K. (1986), “The optimum quantity of money rule in the theory of public finance”,

Journal of Monetary Economics, 18, 277–284.
51. King, R.G, C.I. Plosser, and S. Rebelo (1988), “Production, growth, and business cycles: II.

New directions”, Journal of Monetary Economics 21, 309–341.
52. Koopmans, T.C. (1965), “On the concept of optimal economic growth”, in The Economic

Approach to Development Planning, North-Holland, Amsterdam.
53. Kydland, F.E. and E.C. Prescott (1982), “Time to build and aggregate fluctuations”, Econo-

metrica, 50, 1345–1370.
54. Kydland, F.E. and E.C. Prescott (1996), “The computational experiment: An econometric

tool”, Journal of Economic Perspectives, 10(1), 69–85.
55. Leeper, E.M. (1991), “Equilibria under ‘active’ and ‘passive’ monetary and fiscal policies”,

Journal of Monetary Economics, 27, 129–147.
56. Ljunqvist, L. and T. Sargent (2004), Recursive Macroeconomic Theory, 2nd edition, MIT,

Cambridge.
57. Lucas, R.E. (1976), Econometric Policy Evaluation: A Critique, Carnegie-Rochester Confer-

ence Series on Public Policy.
58. Lucas, R.E. and N.L. Stokey (1983), “Optimal fiscal and monetary policy in an economy

without capital”, Journal of Monetary Economics, 12, 55–93.
59. Lucas, R.E. (1987), Models of Business Cycles, Blackwell, Oxford.
60. Lucas, R.E. (1988), “On the mechanism of economic development”, Journal of Monetary

Economics, 122, 3–42.
61. Lucas, R.E. (1994), The Welfare Cost of Inflation, CEPR Publication no. 394, Stanford

University, Stanford.
62. Marcet, A. and W.J. den Haan (1990), “Solving nonliear stochastic models by parameterizing

expectations”, Journal of Business and Economic Statistics, 8, 31–34.
63. Marcet, A. and G. Lorenzoni (1999), “Parameterized expectations approach: some practical

issues”, in R. Marimon and A. Scott (eds.), Computational Methods for the Study of Dynamic
Economics, Oxford University Press, Oxford, pp. 143–171.

64. Marimon, R. and A. Scott (eds.) (1999), Computational Methods for the Study of Dynamic
Economics, Oxford University Press, Oxford.

65. McCallum, B.T. (1989), “Real business cycle models”, in R.J. Barro (ed.), Modern Business
Cycle Theory, Harvard University Press, Cambridge.

66. McCandless, G. (2008), ABCs of RBCs: An Introduction to Dynamic Macroeconomic Models,
Harvard East Asian Monographs, Cambridge.

67. McGrattan, E.R. (1999), “Application of weighted residual methods to dynamic economic
models”, in R. Marimon and A. Scott (eds.), Computational Methods for the Study of Dynamic
Economies, Oxford University Press, Oxford.

68. Miranda, M.J. and P.L. Fackler (2002), Applied Computational Economics and Finance, MIT,
Cambridge.

69. Novales, A. and J. Ruiz (2002), “Dynamic Laffer effects”, Journal of Economic Dynamics
and Control, 27, 181–206.

70. Phelps, E.S. (1973), “Inflation in the theory of public finance”, Swedish Journal of Economics,
75, 67–82.

71. Poole, W. (1970), “Optimal choice of monetary policy instruments in a simple stochastic
macro model”, Quarterly Journal of Economics, 84(2), 197–216.

72. Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1986), Numerical Recipes:
The Art of Scientific Computing, Cambridge University Press, Cambridge.

73. Ramsey, F. (1928), “A mathematical theory of saving”, Economic Journal, 38, 543–559.
74. Rebelo, S. (1991), “Long-run policy analysis and long-run growth”, Journal of Political Econ-

omy, 99(3), 500–521.



520 References

75. Rios-Rull, J.V. (1996), “Life-cycle economies and aggregate fluctuations”, Review of Eco-
nomic Studies, 63, 465–490.

76. Romer, P.M. (1986), “Increasing returns and long-run growth”, Journal of Political Economy,
94(5), 1002–1037.

77. Romer, P.M. (1987), “Growth based on increasing returns due to specialization”, American
Economic Review, 77(2), 56–62.

78. Romer, P.M. (1990), “Endogenous technological change”, Journal of Political Economy,
98(5), part II, S71–S102.

79. Rotemberg, J.J. (1982), “Sticky prices in the United States”, Journal of Political Economy, 39,
173–196.

80. Sargent, T.J. (1979), Macroeconomic Theory, Academic, New York.
81. Sargent, T.J. (1987), Dynamic Macroeconomic Theory, Harvard University Press, Cambridge.
82. Schumpeter, J.A. (1934), The Theory of Economic Development, Harvard University Press,

Cambridge.
83. Segerstrom, P.S., T.C.A Anant, and E. Dinopoulos (1990), “A Schumpeterian model of the

product life cycle”, American Economic Review, 80, 1077–1091.
84. Sidrauski, M. (1967), “Rational choice and patterns of growth in a monetary economy”, Amer-

ican Economic Revenue, 57(2), 534–544.
85. Sims, C.A. (1994), “A simple model for study of the determination of the price level and the

interaction of monetary and fiscal policy”, Economic Theory, 4, 381–399.
86. Sims, C.A. (2001), “Solving linear rational expectations models”, Journal of Computational

Economics, 20, 1–20.
87. Smets, F. and R. Wouters (2003), “An estimated dynamic stochastic general equilibirum model

of the Euro area”, Journal of the european economic association, 1(5), 1123–1175.
88. Solow, R.M. (1956), “A contribution to the theory of economic growth”, Quarterly Journal of

Economics, 70(1), 65–94.
89. Spence, M. (1976), “Product selection, fixed costs, and monopolistic competition”, Review of

Economic Studies, 43(2), 217–235.
90. Stokey, N.L. and R.E. Lucas (1989), Recursive Methods in Dynamic Economies, Harvard

University Press, Cambridge.
91. Swan, T.W. (1956), “Economic growth and capital accumulation”, Economic Record, 32,

334–361.
92. Taylor, J.B. (1993), “Discretion versus policy rules in practice”, Carnegie–Rochester Confer-

ences Series on Public Policy, 39(December), 195–214.
93. Turnovsky, S. (2000), Methods of Macroeconomic Dynamics, MIT, Cambridge.
94. Uhlig, H. (1999), “A toolkit for analyzing nonlinear dynamic stochastic models easily”, in

R. Marimon and A. Scott (eds.), Computational Methods for the Study of Dynamic Economics,
Oxford University Press, Oxford, pp. 30–61.

95. Uzawa, H. (1964), “Optimal growth in a two sector model of capital accumulation”, Review
of Economic Studies, 31(1), 1–24.

96. Walsh, C.E. (1998), Monetary Theory and Policy, MIT, Cambridge.
97. Whiteman, C.H. (1983), Linear Rational Expectations Models: A User’s Guide, University of

Minnesota Press, Minneapolis.
98. Xie, D. (1994), “Divergence in economic performance: transitional dynamics with multiple

equilibria”, Journal of Economic Theory 63, 97–112.



Index

A
Absence of arbitrage condition, 338
Absolute convergence, 71–72
Absolute risk aversion, 106
Active monetary policy, 404, 426
Adaptive expectations, 33
Adda, J., 238
Adjustment costs, 17, 469
Aggregate production function, 14, 62, 86, 407
Aghion, P., 50
AK model, 49–50, 257, 259, 265, 267, 275,

280–282, 285–286, 301, 305, 308, 311,
313, 320, 375

Analytical solution, 2, 13, 32, 40, 45, 48–49,
76–78, 169, 195, 197–198, 202, 239,
245, 250

Anant, T.C.A., 333
Approximation errors, 90–91, 178, 204, 217,

352
Approximation methods, 49
Aproximate stability conditions, 43, 184
Autocorrelation function, 7, 26, 196, 223–224,

237
Autoregression, 4, 6–12, 24–26, 95, 125, 186,

202, 221, 254, 322, 331, 341, 452
Autoregression coefficient, 7, 10–12
Autoregressive process, 4–10, 198, 230, 246,

298, 316, 359, 426, 428, 437, 510
Autoregressive stochastic process, 228

B
Backward-looking expectation, 39
Bailey, M.J., 392
Balanced growth path, 43, 49–50, 259–260,

264, 267–268, 277–278, 287, 295,
311–314, 326, 341–342, 350–351, 355,
363–364

Barro, R.J., 50, 68, 286, 323, 316, 317
Basis functions, 241–251
Bayoumi, T., 40
Bellman’s equation, 238
Benevolent planner, 37, 48–49, 129–130, 138,

141, 155, 157, 196–197
Benhabib, J., 175, 363, 371
Blanchard, O., 49, 204, 212, 215, 217, 221,

225, 227, 228, 232, 241, 339, 432, 456
Blanchard-Khan solution method, 212–215
Brock, W.A., 203
Budget constraint, 29, 47, 49, 132–137,

139–142, 144–148, 151–152, 155,
159–163, 165–171, 175–178, 181,
186–192, 199, 209–210, 225–227, 236,
254, 271, 273, 275, 277–279, 296,
302, 310–311, 319, 325, 345–347,
364, 379–381, 385–387, 390, 395–398,
400–403, 405–407, 409, 414–415, 417,
421, 423–424, 426, 428, 433, 436, 449,
451, 453, 462, 469–470, 478, 481

Budget deficit, 189, 275, 279
Business cycle fluctuations, 201
Business cycles, 36–37, 47, 195, 229, 253, 407

C
Caballe, J., 375
Cagan, P., 43
Calculus of variations, 498–499
Calibration, 197, 394
Calvo, G., 38
Canova, F., 197, 238
Carlstrom, C.T., 398
Cash-in-advance constraint, 377, 413
Cass, D., 36, 101

521



522 Index

Cass-Koopmans model, 103, 149, 155,
167–184, 186, 241, 268, 270–271,
285–286, 443

Cass-Koopmans-Ramsey model, 378
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