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Preface

The sub-prime crisis of 2008 demonstrated that widely adopted risk management
instruments, such as CDS, CDO, and CDO2, can be amplifiers instead of mitigators
of risk. Headlines such as “Did a mathematical formula really blow up Wall Street?”
and “Living on the edge” became the norm. What really happened in 2008? The
answer and verdict are yet to be found.

The deadly combination of bad prices, overconfidence in mathematical mod-
els, and non-transparency of market makers, reinforced by an overlay of scien-
tific respectability for questionable models, ultimately resulted in a global financial
tsunami. Does this mark the death of the “quants?” Not yet. Financial crises come
and go. Some carry on over the short term, others (such as that of 2008) over the long
term. These crises have not stopped financial institutions from creating and trading
new derivative products, in the same way that sicknesses have not stopped medical
developments. Modern financial markets would be too simple without derivatives;
after all, derivative products are useful devices for reducing and hedging risks. More-
over, strong competition among financial institutions requires derivatives to offer
extra profits. Against such a background, how market practitioners evaluate deriva-
tive products in an effective and transparent manner is a key issue. The market clearly
requires quantitative skills, meaning, quants are here to stay.

Contrary to the opinion that demand for quantitative skills in the pro-crisis era
would decrease due to the collapse of large-scale investment banks, demand in the
commercial banking and risk management sectors has actually increased. In the past,
major investment banks (i-banks) have been market makers of over-the-counter (OTC)
derivative products. The creation, valuation, and risk management of OTC derivatives
are collectively offered by a handful of i-banks, which usually employ quantitative
professionals to perform such tasks. These highly educated talents are usually known

xi
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as “quants” in the financial industry. Before the crisis, regional banks had no particular
interest in hiring quants because they did not have large-risk exposure in the OTC
market. They engaged in the OTC derivatives market mainly through “back-to-back”
deals in which regional banks purchased OTC product portfolios for their clients upon
request. These portfolios were packaged by i-banks, and contracts were established
between the i-banks and the clients. The regional banks acted as intermediary agents
and earned commissions from such deals. Neither the clients nor the regional banks
anticipated the bankruptcy of i-banks. When Lehman went down in 2008, followed
by a number of other institutions, both the regional banks and their clients were
suddenly exposed to an unprecedented scale of loss they had never anticipated.
To make matters worse, some regional banks faced litigation due to the unclear
or non-transparent explanations of the risks embedded in many of the derivative
products. Many of these banks had to settle lawsuits out of court and pay off huge
losses. As a result, the share prices of these banks dipped more than 50%, and many
have not yet recovered. The post-crisis regulations have since required financial
institutions to report their investment risks when embracing back-to-back deals. This
partly explains the surge in demand for quantitative risk managers in the regional
banking industry.

Like other major financial markets, Hong Kong also witnessed the rapid growth
of this demand based on the number of student applications made to quantitative-
oriented financial programs. Students were eager to acquire practical quantitative
risk management skills for their daily work. Although there are excellent textbooks
on modern financial theory and mathematical finance, many of these books are
either too elementary or too abstract and cannot bridge the gap between theory
and application. When we were invited to contribute a volume to this handbook
series back in 2008, we planned to write a book that offered practical computational
examples using real datasets. If anything is to be learned from the 2008 calamity,
it is that it offered a tremendous amount of information and data to illustrate many
of the computational issues encountered in modern finance, albeit in a very painful
and costly manner. In light of the gain-maximization rationale on Wall Street that
drives financial practitioners ever closer to their ethical boundaries, the market needs
practitioners to be scientifically critical, socially honest, and adherent to the highest
ethical standards to resist temptation. With this in mind, the worked examples in this
book comprise real financial products in the OTC market. Using data taken from the
sub-prime credit crisis period, the pros and cons of different models are demonstrated.
Case studies are provided to illustrate the discrepancies arising from different models
for the same product. Many examples take the form of questions raised by students
and practitioners alike when faced with a particular scenario while pricing certain
financial instruments.

What follows is a brief synopsis of each chapter of this book. Modern financial
products can hardly be modeled by pencil and paper alone, as they require large-scale
computations. Although there is a multitude of possible software choices, we use
Excel VBA in this book due to its wide applicability. Readers are not assumed to
have a strong background in VBA, but some exposure to computer programming
would be helpful. An introduction to VBA is given in Chapter 1.
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Although this book consists of many worked numerical examples, readers have
to incorporate theoretical notions, such as martingale theory, change of measure, and
stochastic differential equations (SDE), with practical implementations to remain
scientifically critical. To this end, a brief introduction to some basic theoretical con-
structs is given in Chapter 2. Although this chapter is technical in nature, it is not
intended to provide a comprehensive theoretical background. For example, the tech-
nical conditions for the existence of a strong, unique SDE solution are not given in
this chapter. Many excellent texts have been written on the subject, and readers are
encouraged to consult them for more detailed information. The main purpose of this
chapter is to offer a concise and useful introduction to some of the most important the-
oretical issues in modern finance. After making their way through Chapter 2, readers
will garner an appreciation for the celebrated Ito’s formula and the change of measure
techniques, both of which are useful devices in designing simulation strategies.

Chapter 3 demonstrates the simulation of structured products using the Black–
Scholes model and reviews their pricing and decomposition. Examples, including an
FX accumulator (which caused CITIC Pacific to suffer a huge loss during the 2008
crisis), are used throughout the book.

Practitioners are well aware of the inadequacy of the Black–Scholes model. For
example, it fails to capture the “implied volatility smiles” observed in the market.
There are several alternative models to capture implied volatility smiles. Chapter 4
collectively refers to these models as volatility modeling. As no (simple) framework
exists to unify these models, they are presented one by one to illustrate their similari-
ties and discrepancies. Different models serve different purposes. For financial prod-
ucts contingent on an index, practitioners prefer a model that replicates the observed
market option prices. In turn, the replication relies on the calibration of model param-
eters by minimizing the difference between model and market prices. Popular models
of this kind include the local and stochastic volatility models. For financial products
contingent on individual stocks that have limited or no traded options, the selected
model can only be fitted using the historical prices of the underlying stock. In such
cases, we have to estimate the underlying parameters statistically. One popular model
in this approach is the GARCH option-pricing model. The jump-diffusion model is
also useful, but its estimation requires the use of Bayesian methods. We examine the
pricing of an accumulator using these models in Chapter 4.

Interest rate instruments are perhaps more important than equity derivatives in
today’s market. Chapters 5 and 6 detail the interest rate models and their implemen-
tations. Chapter 5 deals with the short-rate model, which is useful for fixed-income
derivatives on a single interest rate, such as the 3-month rate. In practice, many
regional banks lack the in-house software required to build yield curves and instead
rely on the yield curves provided by data vendors. However, when the regional bank
acquires a proprietary dataset of fixed-income prices, it may not be able to purchase
the yield curve from external vendors, and yield curve building poses a hurdle for
further analysis. With this in mind, Chapter 5 introduces several yield curve building
models, and computer codes are also provided. Implementation of the Hull–White
short-rate model that incorporates the super-calibration into the yield curve informa-
tion is also discussed in this chapter.
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Complicated interest rate derivatives involve several interest rates in their pay-off
functions. Typical examples are options related to swap rate, which is a combination
of interest rates with different tenors. The market usually uses the LIBOR market
model in this situation. Chapter 6 demonstrates the LIBOR application with worked
examples. In addition to fitting the yield curve, the LIBOR market model views the
prices of caps, floors, and swaptions in the OTC market as the data input to calibrate
its parameters. The prices and risks of complicated interest rate products are then
evaluated using the simulation technique. Such a simulation requires the change of
measure technique, which is introduced in Chapter 2.

Credit risk and credit derivatives are discussed in Chapter 7. One of the most
intriguing concepts in finance is how to use a copula to value multi-asset credit
derivatives such as CDOs. A numerical demonstration of the copula approach is given
in this chapter to illustrate the pros and cons of modeling credit correlation risk. Post-
crisis regulations require banks to report the counter-party risks of OTC products
by adjusting the market values to reflect the credit risk. Such an adjustment can be
used to determine the amount required in the margin account to guarantee smooth
transactions. The difference between the adjusted and non-adjusted prices of the
market value is known as the credit value adjustment (CVA). For regulatory purposes,
risk managers are obviously interested in the CVA. Computational examples of and
codes for computing CVA are offered in Chapter 7.

After the prices are computed, the next step is to report the risk through a single
quantity, such as the value at risk (VaR), on a daily basis. Although VaR is not
a completely satisfactory risk measure, it has long been a standard benchmark for
summarizing risk in the industry. Chapter 8 provides some worked examples for
computing the VaR of derivative positions.

When computing VaR, one faces the challenge of unstable Greek estimations.
Because Greeks are partial derivatives of the value of a portfolio with respect to
risk factors, they have to be calculated via simulation. Chapter 9 examines this
issue by introducing several improved simulation strategies for Greeks in a high-
dimensional setting. Computer codes can be downloaded from the following website.
http://www.sta.cuhk.edu.hk/Book/HBS/.

This book would not have been possible without the help from students and
research assistants alike. In particular, we would like to thank the generations
of students who have taken courses on risk management with derivatives con-
cepts (RMSC4007) and risk measures (RMSC5003) for their stimulating discus-
sions, project presentations, penetrating questions, sharing of computer codes, and
suggestions on model implementation. We are also grateful to our research assis-
tants/associates for their data collection, programming, and refinement. They include
Sau Lung Chan, Kelvin Hui, Brian Ling, Hon Yip Ng, Tsz Him Soo, Tsz Ki Tang, Tsz
Wang Tang, Siu Fung Wong, Ben Yiu, and Rong Zhou. We would also like to thank
Mr. Steve Quigley, Ms. Sari Friedman, and Ms. Jacqueline Palmieri, all of Wiley, for
their professional editorial assistance. Of course, without the invitation and encour-
agement from Professor Ruey Tsay of the University of Chicago, this volume would
not have been written. We gratefully acknowledge the financial support received from
the General Research Fund of the Research Grant Council of Hong Kong during the
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preparation of this volume. Last, but not least, we would like to thank our families
for their understanding and encouragement while writing this book. In particular, we
would like to thank our wives, Pat Chao and Mei Choi Chiu, whose contributions to
this book went far beyond the capacity of meticulous proofreaders. Any remaining
errors are our sole responsibility.

N.H. CHAN

H.Y. WONG

Shatin, Hong Kong
January 2013



1
An Introduction to

Excel VBA

Excel VBA is probably the most commonly used computational tool in financial
institutions, particularly when a new model is tested at a preliminary stage within a
division. Many traders use Excel VBA to compute their trading strategies. Some data
providers allow users to update information in real time using the Excel format. Excel
VBA thus allows traders and risk managers to implement their solutions conveniently
in real time.

1.1 HOW TO START EXCEL VBA

1.1.1 Introduction

VBA stands for Visual Basic for Application. It is a programming language that
enhances the applicability of MS Excel by enabling the users to instruct Excel to
perform tasks automatically. As most of the programs in this book are written in
VBA, a brief introduction to VBA is provided in this opening chapter. Although
we do not assume that readers have prior programming knowledge, programming
experience in other languages would be helpful. For readers already familiar with
VBA, this chapter serves as a refresher and quick reference. A list of the functions
defined throughout the book can be found at the end of the chapter. These functions
not only improve readability and traceability but also simplify the programs. For
a more thorough understanding of Excel VBA, readers are referred to other books

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Figure 1.1 Set security level.

specializing in the matter. We believe, however, that this chapter is sufficient to allow
a beginner to learn and execute the codes within the book.
MS Excel 2003 is used for illustration in this book. If readers are using another

version of Excel, then they may find some minor differences. Nevertheless, if this
is the first time for a reader to use Excel VBA, then set the macro security level to
Medium or Low and restart Excel to enable the macros:

Click [Tools]→ [Macro]→ [Security]→ [Medium] or [Low] (Fig. 1.1).

MS Excel 2007 users should click the Options button to enable the macros.

1.1.2 Visual Basic Editor

VBE, which stands for Visual Basics Editor, is the environment in which macros are
created, modified and managed. Macros (VBA procedures) are the code components
that automate repetitive Excel tasks. A macro consists of codes that start with the
keyword Sub or Function and end with the keywords End Sub or End Function. These
codes are known as Sub and Function procedures. A module contains one or more
macros, and a project contains one or more modules. A macro developed in VBE
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Figure 1.2 Open VBE.

becomes part of a workbook and is saved at the same time that the workbook is saved.
To open and edit macros in VBE, follow the procedure below.

1. Open VBE: Click [Tools] → [Macro]→ [Visual Basic Editor] or press Alt +
F11 (Fig. 1.2).

2. Insert module: In the project window on the left of the VBE, right-click one of
the worksheets→ [Insert]→ [Module] (Fig. 1.3).

3. Edit in VBE: Type the codes in the code window.

4. Execute the program: In VBE, click [Run]→ [Run Sub] and choose the macro
to be compiled. Equivalently, in Excel, click [Tools] → [Macro] → [Macro]
and choose the macro to be compiled.

1.1.3 The Macro Recorder

Excel offers a macro recorder that records the actions of the mouse and/or keyboard
and translates them into VBA codes, thus allowing the designated actions to be
repeated by running the macro again. Although the macro recorder is sometimes
useful, it is unable to generate codes that perform looping, assign variables, or
execute conditional statements, which are fundamental components in simulation. In
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Figure 1.3 Insert modules.

addition, the codes that are generated depend on certain specific settings. To record
a macro, follow the procedure below.

1. Open the macro recorder: Click [Tools]→ [Macro]→ [Record New Macro].

2. Type the macro name and click OK. Note that the name should begin with a
letter and contain no spaces or special characters (Fig. 1.4).

3. Perform all of the actions to be recorded. Here, type “Hello” in cell A1.

4. Stop the macro recorder: Click [Stop recording macro] button.

Note that when amacro is recorded,MSExcel automatically inserts aVBAmodule
to keep the recorded codes. To execute the recorded macros or other macros, click
[Tools] → [Macro] → [Macros] or Alt + F8 in Excel. Then, select the designated
macro to implement and click [Run] (Fig. 1.5). To view the codes in the recorded
macro, open VBE and double-click the newly added module (Fig. 1.6).
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Figure 1.4 Name a macro.

Figure 1.6 shows that the recorded macro is a complete Sub procedure. The lines
beginning with the symbol ′ are not executed as they are program comments. A
comment can be added to the code by preceding it with the symbol ′ or by using the
keyword Rem at the beginning of a line.

1.1.4 Insert a Command Button

Instead of having to remember a shortcut key or choosing a macro from a list, it
is more convenient to add a command button to the worksheet to invoke the macro
directly. To insert a command button, follow the following procedure.

1. Click [View]→ [Toolbars]→ [Visual Basic] (Fig. 1.7).

2. Click Control Toolbox.

3. Click Command Button and put it in the Excel worksheet (Fig. 1.8).

4. Edit the macro: Double-click the command button.

To use a Sub in the module, type call [name of the Sub] inside the macro of the
command button. The common button can also be edited by clicking Design Mode
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Figure 1.5 Run a macro.

Figure 1.6 View the codes.
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Figure 1.7 Insert command button 1.
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Figure 1.8 Insert command button 2.

in the Visual Basic Control Toolbox, which also contains other useful buttons, such
as those for recording a macro and opening VBE.

1.2 VBA PROGRAMMING FUNDAMENTALS

1.2.1 Declaration of Variables

In programming, a variable is the name for a place in computer memory in which
values or objects are stored. To declare a variable inVBA, use the following statement.

Dim varname [As vartype],

where varname is the variable name and vartype is the variable type. A variable
name must begin with a letter and contain only numeric and letter characters and
underscores. Moreover, the variable name should not be a VBA reserved word, such
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as Sub, Function, End, For, Optional, New, Next, Nothing, Integer, or String. It is
also important to note that VBA does not distinguish between cases.
Different from other programming languages, specifying the variable type [As

vartype] is optional. Other languages require the programmer to define explicitly the
data type of each variable used. Although optional in VBA, if the data type is not
explicitly specified, then execution is slower and memory is used less efficiently.

1.2.2 Types of Variables

Every variable has a type specifying the type of values it stores. Variables can be
classified into four basic types: string data type, date data type, numeric data type,
and variant data type. The string data type is used to store a sequence of characters,
and the date data type can store dates and times separately or simultaneously. The
types that are used most frequently in this book are the numeric and variant data
types.
There are several numeric data types in VBA, the details of which are listed in

Table 1.1. In general, a user should choose the data type that employs the smallest
number of bytes to enhance program efficiency. Doing so may make a big difference
in the computational time needed for simulation.
The variant data type is the most flexible data type in VBA. It stores both numeric

and non-numeric values. VBA will try to convert a variant variable to the data type,
which is able to store the input data. As noted, [As vartype] is optional, and the default
variable type will be Variant.
In addition to normal data, a variant type variable can also store three special types

of values: error code, Empty (which indicates that the variable is empty, and is not
equal to 0, False, an empty string, or another value), and Null (which means that the
variable has not been assigned memory, and is not equal to 0, False, an empty string,
Empty, or another value).

TABLE 1.1 Numeric Data Type

Type Shorthand Range Description

Byte 0 to 255 Unsigned, integer number
Boolean True(−1) or False(0) Truth value
Integer % −32,768 to 32,767 Signed integer number
Long & −2,147,483,648 to Signed integer number

2,147,483,647
Single ! ± 3.402823E38 to Signed single-precision

± 1.401298E-45 floating-point number
Double # ± 1.79769313486231E308 to Signed double-precision

±4.94065645841247E-324 floating-point number
Decimal ±7.922819251426433759E28 Cannot be directly declared

with no decimal point and in VBA; requires the use of
±7.922816251426433759354 a variant data type
with 28 digits behind the

decimal point
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Here are some examples of variable declaration statements:

Dim a As integer

Dim b 'the type will be variant

Dim c As string

c = "It is a string"

Dim Today As Date

Today = #4/7/2011# 'defined using month/day/year format

Dim Noon As Date

Noon = #12:00:00#

1.2.3 Multivariable Declaration

To declare several variables, use the following statement.

Dim a As Integer, b As Integer, c As Integer

Different from other programming languages, attention must be paid to the following
case.

Dim a, b, c As Integer

If the Dim statement is declared as above, then a and b will be declared as variant
types. In this case, the following shorthand can be employed to ensure the cleanliness
and readability of the program.

Dim a#, b#, c As Double

1.2.4 Declaration of Constants

Constants can be declared using a Const statement, of which the following are
examples.

Const interest_rate as Integer = 0.05

Const dividend_yield = 0.03 'without declaring the constant

type

Const option_type as String = "Call"

VBA also defines many intrinsic constants that are used in Sub and Function
procedures.
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TABLE 1.2 VBA Logical Operators

Operator What it does

Not Performs a logical negation on an expression
And Performs a logical conjunction on two expressions
Or Performs a logical disjunction on two expressions
Xor Performs a logical exclusion on two expressions
Eqv Performs a logical equivalence on two expressions
Imp Performs a logical implication on two expressions

1.2.5 Operators

This subsection introduces assignment operators, mathematical operators, compara-
tive operators, and logical operators.
The equal sign (=) is an assignment operator and is usually used to assign the

value of an expression to a variable or a constant. An expression is a combination of
keywords, operators, variables, and constants that yields a string, number, or object.
For example,

x = 4 * 3

x = x * 5

The result of x is 60.
Familiar mathematical operators include addition(+), multiplication(∗),

division(/), subtraction(−), and exponentiation(∧).
VBA also supports the comparative operators used in Excel formulas: equal to

(=), greater than (>), less than (<), greater than or equal to (>=), less than or
equal to (<=), and not equal to (<>).
Table 1.2 presents the logical operators and their uses in VBA.

1.2.6 User-Defined Data Types

Users may sometimes wish to employ a more complex data type to store data. VBA
provides the Type statement, which allows the creation of a custom data type or a
user-defined data type (UDT). The syntax for creating a UDT is

[Private|Public] Type typename

[elementname As vartype]

[elementname As vartype]

...

End Type

[Private | Public]: (Optional) It is public by default, and indicates whether this
UDT can be declared in all modules. If it is declared to be private, then the
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UDT can be declared only in the same module as that in which the UDT is
defined.

typename: (Required) This is the name of the UDT and follows standard variable
naming conventions.

elementname: (Required) This is the name of the elements within a UDT and also
follows standard variable naming conventions.

vartype: (Required) Unlike the declaration of ordinary variables, the elements
within aUDTmust be given a data type, which can be any of the aforementioned
variable types (including Variant) or a UDT.

Declaring a UDT is the same as declaring another built-in variable type. To
reference the sub-elements of the UDT, use the period (.) operator. Finally, the UDT
should be defined at the top of the module before any procedures, as illustrated in the
following example.

Example 1.1 The following code defines a nested UDT which stores the name and
coordinates of a point.

Type Coordinate

x As Double

y As Double

End Type

Type Point

name As String

c As Coordinate

End Type

Sub UDTEx1()

'Declare p1 as UDT Point

Dim p1 as Point

'Assigning the values

p1.name = "A"

p1.c.x = 2.5

p1.c.y = 3

'Print out the values to spreadsheet

Cells(1, 1) = p1.name

Cells(2, 1) = p1.c.x

Cells(3, 1) = p1.c.y

End Sub
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1.2.7 Arrays and Matrices

An array is a collection of variables of the same type that have a common name. An
array allows access to the variables through the index number, thereby providing a
way to loop through and process a collection of variables of the same type easily.
The following statement declares a one-dimensional (1D) array.

Dim varname(LowerIndex to UpperIndex) As vartype

In this way, a user can access variables with varname(LowerIndex), var-
name(LowerIndex +1), . . . , varname(UpperIndex). If he or she specifies only the
upper index, that is,

Dim varname(UpperIndex) As vartype,

then VBA will assume that 0 is the lower index.
The following statement declares a multidimensional array.

Dim varname(LowerIndex1 to UpperIndex1, LowerIndex2 to _

UpperIndex2,...,LowerIndexN to UpperIndexN) As vartype

For example, to create an array to store the scores of 20 students on three tests,
declare:

Dim Score(1 to 20, 1 to 3) As Double

Here, Score(10, 2) stores the mark of the tenth student on the second test.
Note that both the lower and upper indices must be a constant or a number. If the

user wants to employ a variable in the index, then he or she should use a dynamic
array which has no preset number of elements. The following statement declares a
dynamic array.

Dim varname() As vartype

Before a dynamic array is used, the ReDim statement should be employed to specify
the number of elements in the array. For example,

ReDim varname(LowerIndex to UpperIndex)

In this case, the LowerIndex and UpperIndex can be a variable or a constant. In
VBA, a matrix is essentially a two-dimensional (2D) array, and a column or row
vector is a 1D array. A matrix is an important tool in risk management and finance,
as it deals with high dimensional problems. For example, it can be used in multiple
linear regression. To declare a matrix of size m × n containing real numbers, use the
following statement.

Dim matrixmn() As Double

ReDim matrixmn(1 To m, 1 To n)

In the next subsection, we discuss functions related to matrix manipulation.
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1.2.8 Data Input and Output

One advantage of Excel VBA is that it allows the VBE and the worksheet to be linked
together, affording the user the ability to read and print out the data in the worksheet
and execute programs written in VBE. The following statements are usually used for
input and output, respectively.

'Read in data

Var = Cells(i, j)

'Print out data

Cells(i, j) = Var,

where i and j denote the row and column number of a cell, respectively. For example,
to print out the score of the sixth student on the last test in cell A2 on the worksheet,
write:

Cells(1, 2) = Score(6, 3)

1.2.9 Conditional Statements

When the program needs to follow different instructions in different cases, we use
conditional statements. The twomain conditional statements in VBA are If-Then-Else
statements and Select-Case statements.

If-Then-Else Statements

There are two forms of If-then-else statements: single-lined and multi-lined. Only
one statement can be inserted in the single-lined form whereas several can be inserted
in the multi-lined form. With the use of Else statement, the extraneous conditions are
not evaluated when an Else statement is used, which improves efficiency. The syntax
of the two forms is as follows.

'the Else clause is optional

If [condition] Then [statement] (Else [elseStatement])

'... represents other more statements can be included

'these Else clauses are also optional

If [condition] Then

[statement]

...

ElseIf [elseif condition1] Then

[Statement]

...

ElseIf [elseif condition2] Then

[Statement]

...

Else

[Statement]

...

End If
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In the conditional part of the statement, the users need to specify an expression that
can be evaluated as True or False. Use the comparative operators and logical operators
discussed in Section 1.2.5.

Select-Case Statements

Select-Case statements are useful for choosing among three or more options and
are good alternative to If-Then-Else statements. The syntax for Select-Case is as
follows.

Select Case [testexpression]

Case expressionlist-n

[instructions-n]

...

Case expressionlist-n

[instructions-n]

...

Case Else

[default_instructions]

...

End Select

The most common expressionlist-n is one of the following.

0 to 20
1, 7
Is >= 10

Example 1.2 Suppose that the scores of 20 students on three tests have already been
stored in the array Score(1 to 20, 1 to 3). Write a Sub ensuring that once the student
ID and test number are entered into cells B1 and B2, respectively, the program will
determine whether the student has passed the test (i.e., achieved a score equal to or
higher than 60) and output the result to cell B3.

The corresponding codes for the If-Then-Else statement are:

StudentID = Cells(1, 2)

TestNo = Cells(2, 2)

If Score(StudentID, TestNo) >= 60 Then

Cells(3, 2) = "Pass"

Else

Cells(3, 2) = "Fail"

End If
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The corresponding codes for the Select-Case statement are:

StudentID = Cells(1, 2)

TestNo = Cells(2, 2)

Select Case Score(StudentID, TestNo)

Case Is >= 60

Cells(3, 2) = "Pass"

Case Else

Cells(3, 2) = "Fail"

End Select

1.2.10 Loops

The main purpose of using loops is to allow VBA to perform certain tasks several
times. For-Next loops and Do loops are widely used in VBA programming, with the
former, in particular, frequently used in simulations. The syntax for aFor-Next loop is:

For counter = startValue To endValue [Step nStep]

[statements]

[Exit For]

[statements]

Next counter

If the Step nStep part is omitted, then the counter will increase by 1 each time. We
can set nStep to be n and the counter will then increase by n each time.

Example 1.3 Suppose that the scores of 20 students on three tests have already
been displayed in the Range of A1:C20 in the worksheet. To store the scores into the
array Score(1 to 20, 1 to 3), we use the following For-Next statement.

Sub LoopEx1()

Dim Score(1 To 3, 1 To 20) As Double

For i = 1 To 20

For j = 1 To 3

Score(i, j) = Cells(i, j)

Next j

Next i

End Sub

For a Do loop, the syntax is

Do [do_condition]

[statements]

[Exit Do]

[statements]

Loop [loop_condition]
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Although both do condition and loop condition are optional, only one of them can
be used for a Do loop. If both are omitted, then the user must specify a condition
and call Exit Do to end the loop. Otherwise, the program will not terminate. The
syntax is the same for do condition and loop condition.

While|Until condition

ForWhile, the loop continues as long as condition is True. For Until, the loop breaks
once condition becomes True. If While is used, then the loop is also called the Do
While loop; if Until is used, then it is called the Do Until loop. The use of While or
Until depends solely on the programmer’s preference, as the same task can always
be performed either way. However, putting the condition after Do or Loop depends
on the situation, because if it is put after Loop, then the loop is repeated at least once.
The following example prints 1 to 10 in cells A1 to A10 using different methods.

Example 1.4 Use five different methods to print 1 to 10 in cells A1 to A10.

'For Loop

For i = 1 to 10

Cells(i, 1) = i

Next i

'Do Loop Method 1

i = 1

Do while i <= 10

Cells(i, 1) = i

i = i + 1

Loop

'Do Loop Method 2

i = 1

Do Until i > 10

Cells(i, 1) = i

i = i + 1

Loop

'Do Loop Method 3

i = 1

Do

Cells(i , 1) = i

i = i + 1

Loop while i <= 10

'Do Loop Method 4

i = 1
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Do

Cells(i, 1) = i

i = i + 1

Loop until i > 10

1.3 LINKING VBA TO C++

Even though C++ was developed back in the 1970s, many programmers still use it
today because it is a high-level general-purpose programming language. As many
procedures, functions, and algorithms are still developed in the C++ platform, it is
important to link VBA to C++. In this section, we link VBA to C++ through .dll
(dynamic-link library) by using Visual Studio and calling the functions from VBA.
For further details, please refer to Ch1.3_simplemath.xls. To build .dll via Visual
Studio:

1. Open Visual Studio and select [New Project].

2. Choose [Win32 Project] and enter a name for the project (for example,
SimpleMath).

3. In Application Setting, choose [DLL] and select [Empty project]. Click
[Finish].

4. Choose [AddNew Item] to add new .cpp file. Enter a name (for example, main).

5. Add another item with .def suffix (for example, export.def).

6. In main.cpp, enter the corresponding C++ code for a user-defined function. For
example,

double minus(double x, double y){
return x - y;}

7. In export.def, enter the following code.

LIBRARY SimpleMath

EXPORTS

minus

8. Right-click the project file [SimpleMath] in Solution Explorer and choose
[Properties].

9. Click [Configuration Properties]→ [C/C++]→ [Advanced].

10. Choose [__ stdcall(/Gz)] in [Calling Convention].

11. Click [Configuration Properties]→ [Linker]→ [Input].

12. Choose [.\export.def] in [Calling Convention]. Click [OK].
13. Build the project OR Click [F7].

14. A .dll file (e.g., SimpleMath.dll) is created in the project directory.
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To establish linking with VBA:

1. Place the .dll file and .xls file in the same directory.

2. Open VBA editor, and enter the following code in the module.

PrivateDeclareFunctionSetCurrentDirectoryALib"kernel32"_

(ByVal lpPathName As String) As Long

Private Declare Function minus Lib "simplemath.dll" _

(ByVal a As Double, ByVal b As Double) As Double

Function test(a As Double, b As Double) As Double

SetCurrentDirectoryA Application.ActiveWorkbook.Path

test = minus(a, b)

End Function

3. The function "test" can be called up in Excel Worksheet and VBA.

1.4 SUB PROCEDURES AND FUNCTION PROCEDURES

Writing a program in a systematic manner may necessitate the separation of a large
program into smaller pieces that can be reused and managed easily. In VBA, a
procedure is basically a unit of computer code that performs certain tasks. There are
two types of procedures: a Sub procedure and a Function procedure. A Sub procedure
performs tasks but does not return values, whereas a Function procedure does return
a value.
The syntax that defines a Sub procedure is

[Private|Public] [Static] Sub name ([arglist])

[statements]

End Sub

Private|Public: (Optional) The Sub is Public by default if public or private is
omitted. Public indicates that the Sub is accessible by other Subs or Functions
in all modules, whereas Private indicates that the Sub is accessible only to the
Subs and Functions in the same modules.

Static: (Optional) Static indicates that all local variables of the Sub are preserved
at the end of the Sub. If Static is omitted, then the values of the local variables
will be reset each time the Sub ends. See Example 1.5 for an illustration.

name: (Required) This is the identifier of the Sub and follows standard variable
naming conventions. The name must be unique; it cannot be the same as the
identifier of other Subs, Functions, classes, etc.

arglist: (Optional) This is a list of variables representing parameters that are passed
to the Sub when it is called. Multiple variables are separated by commas. If the
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procedure uses no arguments, then a set of empty parentheses is required. See
Examples 1.6 and 1.7 for an illustration.

statements: (Optional) This refers to any group of statements to be executed within
the Sub.

Example 1.5 The following Sub SubEx1 adds one to the variable x each time it is
called and writes the value of x into cell A1.

Static Sub SubEx1()

Dim x as integer

x = x + 1

Cells(1, 1) = x

End Sub

As the previous value of x is preserved each time Sub SubEx1 is called, cell A1 adds
one instead of always printing 1, as in the case of Static being omitted. The same
effect can be accomplished with the following code.

Sub SubEx1()

Static x as integer

x = x + 1

Cells(1, 1) = x

End Sub

Example 1.6 The following procedure for SubEx2 calculates var1+ var2 and
outputs the result in cell A1.

Sub SubEx2(var1, var2)

Cells(1, 1) = var1 + var2

End Sub

To call the Sub, use one of the two following statements, in which x, y can also be
replaced with other constants or variables.

Call SubEx2(x, y)

SubEx2 x, y

Instead of simply specifying the name of the parameters, each parameter in arglist
can be specified by the following syntax.

[Optional] [ByRef|ByVal] varname [As vartype] [= defaultvalue]

Optional: (Optional) This indicates that the parameter is optional and will take
defaultvalue as its value if it is omitted when the Sub is called.

By Ref | By Val: (Optional) The parameter is passed to ByRef by default. ByRef and
ByVal indicate whether the parameter is passed by address or by value. When
calling with ByRef, the parameter’s memory address is passed to the procedure,
and any changes of the parameter value in the procedure cause changes to the
original parameter. For ByVal, in contrast, a copy of the value of the parameter



SUB PROCEDURES AND FUNCTION PROCEDURES 21

is passed and so the original parameter is not affected. See Example 1.7 for an
illustration.

varname: (Required) This is the identifier of the parameters.

vartype: (Optional) The variable type is Variant by default. It is the variable type
of the parameter that has been passed, and can be any of the variable types or
a UDT. If the variable passed when calling the Sub does not match, then the
error message “ByRef/ByVal argument type mismatch” is shown.

defaultvalue: (Optional) This is the value that the parameter takes when the param-
eter is not specified and the Sub is called.

Example 1.7 The following codes demonstrate the difference between ByRef and
ByVal.

Sub SubEx3_Run()

Dim x as integer, y as integer

x = 1

y = 1

Call SubEx3(x, y)

Cells(1, 1) = x

Cells(2, 1) = y

End Sub

Sub SubEx3(ByRef var1 as integer, ByVal var2 as integer)

var1 = var1 + 1

var2 = var2 + 1

End Sub

The foregoing codes can be copied to a module with SubEx3 Run, then run. Cell A1
shows 2, as the change in the value of var1 in SubEx3 actually changes the value of
x . Cell A2 shows 1, as the change in the value of var2 in SubEx3 does not affect the
value of y.
VBA also allows the user to create a Sub to take an arbitrary number of parameters

using ParamArray. When using ParamArray, the parameters can be passed only by
reference and declared as the Variant type. They will be stored in an array with the
parameter’s name. To declare such a Sub, use

Sub SubEx4(ParamArray var())

[statements]

End Sub

Although a Function returns a value, whereas a Sub does not, a Function can also
be used in formulas in the Excel spreadsheet as a user-defined function. The syntax
that defines a Function is

[Private|Public] [Static] Function name ([arglist, ...])

[as vartype] [statements]

End Sub
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For Private|Public, Static, name, and arglist a Function is identical to Sub. The
only difference between the declaration of a Function and a Sub is that the user may
want to define the return type vartype of the Function. The return type is Variant by
default if it is omitted. To return a value for a Function, the user needs to store that
value in a variable with a name identical to the given function name. See Example
1.8 for an illustration. To call a Function, use one of the following statements.

Call FuncName(x, y)

FuncName x, y

z = FuncName(x, y)

Note that the first two are identical because Sub is used. For the third, the return value
will be stored in z.
As Sub cannot return a value, we may need to use global variables or pass the

variables by reference to accomplish certain tasks. Example 1.8 calculates var1+
var2 and outputs the result into cell A1, which is analogous to Example 1.6 using
Function.

Example 1.8 The following code is to calculate 2+ 3 by calling Function FuncEx4
and output result 5 into cell A1.

Sub SubEx4()

Cells(1, 1) = FuncEx4(2, 3)

End Sub

Function FuncEx4(var1 as integer, var2 as integer) as integer

FuncEx4 = var1 + var2

End Function

1.4.1 VBA Built-In Functions

VBA has a variety of built-in functions that can simplify calculations and operations.
For a complete list of VBA functions, please refer to the VBA Help system. In
VBE, one can type VBA to display a list of VBA functions. Table 1.3 presents
some commonly used VBA built-in mathematical functions and their return values
in descriptive and mathematical forms.

Example 1.9 The following code calculates sin(e2) and outputs the result into
cell A1.

Sub expsquare()

cells(1, 1) = sin(exp(2))

End Sub
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TABLE 1.3 Common Built-In Mathematical Functions in VBA

Function Return value Math expression

Abs(x) Absolute value of the x |x |
Atn(x) Arc-tangent of x in radians tan−1 x
Cos(x) Cosine of x cos x
Exp(x) Exponential of x ex

Int(x) The integral part of x [x]
Log(x) Natural logarithm of x ln x
Round(x[, dp]) x rounded to dp decimal place

dp is 0 by default if omitted
Sgn(x) Number indicates the sign of x |x |/x

−1 for x < 0, 0 for x = 0, 1 for x > 0
Sin(x) Sine of x sin x
Sqr(x) Square root of x

√
x

Tan(x) Tangent of x tan x

Remarks If the number is negative, then the function Int returns the first negative
integer that is less than or equal to the number. For example, I nt(−8.3) will return
−9. If a user wishes to return the first negative integer that is greater than or equal to
the number, then he or she should use Fix(−8.3), which will return −8.
Excel VBA also allows users to employ the worksheet functions of Excel, for

example, Average and Stdev. To call the worksheet functions, use one of the following
commands.

Application.FunctionName([arglist])

WorksheetFunction.FunctionName([arglist])

Application.WorksheetFunction.FunctionName([arglist])

For example, to calculate sin−1(0.5), which is not provided in VBA’s built-in function
library but is included in Excel, we can use

x = Application.Asin(0.5),

which will return the value 0.5236 (≈ π/6) and be stored in x . Note that not all of
Excel’s worksheet functions can be used in VBA. For example, worksheet functions
that have an equivalent VBA function, for example, sqrt and sin cannot be used. For
a complete list of Excel’s worksheet functions, please refer to Excel Help.

1.4.2 Multiple Linear Regression

A useful function for finding the ordinary least squares (OLS) estimate after defining
a function in VBA and using the worksheet functions in Excel is given here. Recall
that the general form of a multiple linear regression is given by

E[Y|X] = β0 + β1x1 + · · · + βpx p,

Var(Y|X) = σ 2In.
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In matrix notation, it is written as

Y = Xβ + e,

where

Y =

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ , X =

⎛
⎜⎝
1 x11 . . . x1p
...

...
...

...
1 xn1 . . . xnp

⎞
⎟⎠ , e =

⎛
⎜⎝

e1
...

en

⎞
⎟⎠ ,β =

⎛
⎜⎜⎜⎝

β0
...

βp

⎞
⎟⎟⎟⎠ .

Also,

E[e] = 0 and Var(e) = σ 2In.

The OLS estimate is given by

β̂ = (XT X)−1XT Y.

Example 1.10 Write a function with matrices X, Y as the parameters which returns
an array containing the OLS estimate with array(i) = βi for i = 0, . . . , p.

'Ordinary Least Squares

Public Function OLS(x As Variant, y As Variant) As Variant

Dim Beta As Variant

Dim i As Integer

With Application

Beta = .MMult(.MInverse(.MMult(.Transpose(x), x)),

.MMult(.Transpose(x), y))

End With

ReDim res(0 To UBound(Beta) - 1) As Double

For i = 0 To UBound(res)

res(i) = Beta(i + 1, 1)

Next i

OLS = res

End Function

Specifically, Table 1.4 provides a list of worksheet functions and VBA built-in func-
tions used in the OLS function.
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TABLE 1.4 Functions Used in the OLS Function

Function Nature Return value

MMult (x, y) Worksheet function Returns the product of x and y
MInverse (x) Worksheet function Returns the inverse of x
Transpose (x) Worksheet function Returns the transpose of x
UBound (x) VBA built-in function Returns the largest subscript for an array x

1.5 RANDOM NUMBER GENERATION

Monte Carlo simulation requires the use of random numbers. VBA provides a built-in
function, rnd(), that generates a sequence of pseudo-random numbers. Although they
are pseudo-random by nature, they are sufficiently random for general applications
in the sense that they satisfy certain characteristics.
The built-in function rnd() returns a uniform random number between 0 and 1,

and the syntax is:

Randomize

x = Rnd()

See Table 1.5 for a complete description of Randomize and Rnd.
Simulation always involves the generation of random variables. In this section,

the two main approaches to generating random variables are introduced: inverse
transform and the acceptance–rejection method.

1.5.1 Inverse Transform

The inverse transform method makes use of the cumulative density function F(x)
of a random variable X . It is simple and easily implemented, but is limited to those
random variables that have an analytic form for its cumulative density function.

TABLE 1.5 Description for the Random Number Generator

Procedure/Function Description

Randomize([x]) The randomize statement is used to initialize the random number
generator with an optional argument x as the seed. The
system time is used as the seed if x is omitted.

If randomize is not used, then the Rnd function (with no
arguments) uses the same number as a seed the first time
it is called, and thereafter uses the last generated
number as a seed value

Rnd([x]) Return the next random number in the sequence if x
is omitted. If x is not omitted, then Rnd([x]) returns
the same number using x as the seed if x < 0; returns
the most recent generated number if x = 0; and returns
the next random number if x > 0
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TABLE 1.6 Examples of Random Variable Generation Using Inverse Transform

Type Description

Exponential with mean λ X = −λ log(Rnd())
Normal X = Application.NormSI nv(Rnd())

The algorithm of inverse transform is as follows.

1. Generate a standard uniform random variable Y = U(0, 1).

2. The required random variable is given by X = F−1(Y ).

Table 1.6 presents examples of random variable generation using inverse
transform.

1.5.2 Acceptance–Rejection Method

The acceptance–rejection method was proposed to address some of the limitations
of inverse transform. In this method, suppose that Y with density function g can be
simulated easily. Use Y as a basis to simulate X ∼ F by first generating Y from g
and then accepting the value with probability f (Y )/(cg(Y )). More specifically, let c
be such that

f (y)

g(y)
≤ c for all y.

Note that g should have tails heavier than those of the target distribution. The algo-
rithm of the acceptance–rejection method is as follows.

1. Generate Y from density g.

2. Generate U ∼ U(0, 1).

3. If U ≤ f (Y )/(cg(Y )), then set X = Y .

4. Otherwise, return to step 1.

Example 1.11 Student-t distribution is similar to normal distribution except that
it has heavier tails. This feature is very useful in calculating Value at Risk. However,
inverse transform is not possible for t distribution, and so the acceptance–rejection
method is used. Simulation of a t distribution with two degrees of freedom is illustrated
here. A double exponential with mean 1 is used as the proposed distribution.

First find the maximum value of f (y)/g(y) via differentiation, and c is found to be
equal to 1.046267 (the maximum occurs at y = 1). The corresponding code for the
acceptance–rejection method is:

Sub tdist()

Dim c As Double, p As Double

Dim Y As Double, X As Double, U1 As Double, U2 As Double
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c = 2 * Exp(1) / ((2 + 1 ∧ 2) ∧ (3 / 2))

Do

'Generate exp(1)

Y = -Log(Rnd())

'Test if Y is accepted or rejected

U1 = Rnd()

p = 2 * Exp(Y) / (c * ((2 + Y ∧ 2) ∧ (3 / 2)))

Loop Until (U1 < p)

X = Y

'Generate the negative part of the distribution

U2 = Rnd()

If U2 < 0.5 Then

X = −X
End If

End Sub

Generating normal random variables in an efficient way is very important in
the simulation of asset prices. Inverse transform in Excel is not efficient as it is
computationally intensive. A more efficient method of generating normal random
variables is the Box–Muller transform, which states that ifU1 andU2 are independent
random variables that are uniformly distributed in the interval (0, 1], then

Z0 =
√

−2 logU1 cos(2πU2)

Z1 =
√

−2 logU1 sin(2πU2)

are independent standard normal random variables. The Box–Muller transform is
coded in the following function rGauss.

Public Function rGauss() As Double

Static store As Boolean, z As Double

If store = True Then

store = False

rGauss = z

Else

z = Sqr(−2 * Log(1 - Rnd())) * Cos(Pi2 * Rnd())

rGauss = z * Tan(Pi2 * Rnd(0))

store = True

End If

End Function
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1.6 LIST OF FUNCTIONS DEFINED IN THE BOOK

To simplify the codes in the application programs, we have defined a number of
constants, UDTs, and functions. This section briefly explains each of the constants,
UDTs, and functions used in this book. For details of the code, please refer to the
Excel files.

1.6.1 Constants

The following are the constants defined in the book.
xCall = 1
xPut = 2
xStraddle = 3

1.6.2 Types

Type BS_PathType
Type Garch_PathType
Type JD_PathType
Type Heston_PathType

1.6.3 General Functions

rGauss()
Parameters: none
Result: Returns a N (0, 1) random variable

rCGauss(LArray as Variant)
Parameters: LArray is the lower triangular matrix of the variance–covariance matrix
of a vector of multivariate normal random variables
Result: Returns an array of normal random variables with LArray as the lower
triangular matrix of the variance–covariance matrix

rGamma(alpha as Long, beta as Double)
Parameters: alpha is the shape parameter and beta is the scale parameter (where
mean = alpha ∗ beta)
Result: Returns a Gamma(alpha, beta) random variable

rInvGamma(alpha as Long, beta as Double)
Parameters: alpha is the shape parameter and beta is the scale parameter
Result: Returns an InverseGamma(alpha, beta) random variable

rBeta(alpha as Long, beta as Long)
Parameters: alpha is the shape parameter and beta is the scale parameter
Result: Returns an Beta(alpha, beta) random variable
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BS(S0 as Double, K as Double, rf as Double, q as Double, sigma as Double, T as
Double, optionType as Integer)
Parameters: S0 is the initial stock price, K is the strike price, rf is the constant
risk-free interest rate, q is the dividend yield, sigma is the volatility, T is the time to
maturity in year, and optionType can be xCall, xPut, or xStraddle
Result: Returns the close-form solution of the option price for Black–Scholes formula

Max(Val1 as Double, Val2 as Double, optional Val3)
Parameters: Val1 is the first number, Val2 is the second number, and Val3 is optional
Result: Returns the maximum of the two (three) numbers

Min(Val1 as Double, Val2 as Double, optional Val3)
Parameters: Val1 is the first number, Val2 is the second number, and Val3 is optional
Result: Returns the minimum of the two (three) numbers

OLS(X as Variant, Y as Variant)
Parameters: X is the predictor matrix and Y is the response matrix
Result: Returns an array (base 0) of the least squares estimate for predictor X and
response Y

Sort(sortArray as Variant, Optional lIndex as Long = −1, Optional rIndex as
Long = −1)
Parameters: sortArray is the array you would like to sort
Result: The array inputted is sorted by the Quicksort algorithm
Remarks: This is in fact a Sub procedure, not a Function procedure

CDecom(VCMatrix as Variant)
Parameters: VCMatrix is a symmetric matrix
Result: Returns the lower triangular matrix of a symmetric matrix VCMatrix after
Cholesky decomposition

Percentile(valArray as Variant, quantile as Double)
Parameters: valArray is the array for which you would like to find out a certain
percentile
Result: Returns the percentile of valArray
Remarks: valArray need not be sorted before using this function

Average(valArray as Variant)
Parameters: valArray is the array for which you want to find the average of its
elements
Result: Returns the average of valArray’s elements

netDays(bDay as Date, eDay as Date)
Parameters: bDay is the beginning date and eDay is the ending date
Result: Returns the number of business days between bDay and eDay (measuring
from the end of bDay to the end of eDay)
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ND(z as Double)
Parameters: z
Result: Returns the density function of N(0, 1) at z

NCD(z as Double)
Parameters: z
Result: Returns the cumulative distribution function (CDF) of N(0, 1) at z

BS_Vega(ByVal S0 as Double, ByVal K as Double, ByVal rf as Double, ByVal q as
Double, ByVal sigma as Double, ByVal T as Double)
Parameters: S0 is the initial stock price, K is the strike price, rf is the constant risk-
free interest rate, q is the dividend yield, sigma is the volatility, and T is the time to
maturity in years
Result: Returns the vega of the option under the Black-Scholes model

ImpVol(ByVal Price as Double, ByVal S0 as Double, ByVal K as Double, ByVal
rf as Double, ByVal q as Double, ByVal T as Double, ByVal optionType as
Integer)
Parameters: Price is the current market price, S0 is the initial stock price, K is the
strike price, rf is the constant risk-free interest rate, q is the dividend yield, T is the
time to maturity in years, and optionType can be xCall, xPut, or xStraddle
Result: Returns the implied volatility of the option under the Black-Scholes
model

1.6.4 Asset Path Simulation Functions

BS_Path(A as BS_PathType)
Parameters: A is a user-defined data type (UDT) variable. Hence, the user has to
specify parameters of the Black-Scholes model. An example can be found on page
74–75
Result: Returns a 2D array of asset path S(0 to m, 1 to n)

BS_CPath(A() as BS_PathType, VCMatrix as Variant)
Parameters: A is the UDT and VCMatrix is the variance-covariance matrix of the
multi-asset Black-Scholes model. Chapter 3.7 presents an example
Result: Returns a 3D array of asset path S(0 to m, 1 to n, 1 to nAsset) according to
the variance-covariance matrix VCMatrix. rf, m, n, dt, T will be read in A(1) only,
and so other A(i) can be left empty with these parameters

Garch_Path(A as Garch_PathType)
Parameters: A is the UDT for the GARCH model. An illustrative example is given
in Chapter 4.4 and Ch4.4_HSBC_RAN_GARCH(1,1).xls.
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under GARCH
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JD_Path(A as JD_PathType, Optional CalculateDrift as Boolean = True)
Parameters: A is an UDT. If Calculate Drift is set as False, then the drift specified in
A will be used; otherwise, the risk-neutral drift will be used. An example using this
function is given in Chapter 4.5
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under the Jump–diffusion
model with method 1.

JDExp_Path(A as JD_PathType, Optional CalculateDrift as Boolean = True)
Parameters: A is an UDT. If Calculate Drift is set as False, then the drift specified in
A will be used; otherwise, the risk-neutral drift will be used. An example using this
function is given in Chapter 4.5
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under the Jump–diffusion
model with method 2; if CalculateDrift is set as False, then the drift specified in A
will be used; otherwise, the risk-neutral drift will be used

HestonVol_Path(A as Heston_PathType)
Parameters: A is an UDT for the Heston model. An example using this function is
given in Chapter 4.3
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under Heston, with moment
matching

HestonVolQE_Path(A as Heston_PathType)
Parameters: A is an UDT for the Heston model. An example using this function is
given in Chapter 4.3
Result: Returns a 2D array of asset path S(0 to m, 1 to n) under Heston, with the QE
scheme

EO_Payoff(S as variant, K as double, optionType as Integer, optional m as
long = −1)
Parameters: S is the stock price, K is the strike price, optionType is the type of options
of either xCall, xPut, or xStraddle. Please refer to Example 3.1 on page 78
Result: Returns an array of the terminal payoff of the vanilla European option expiring
at step m given the price path S

AO_Payoff( S as Variant, rf as Double, dt as Double, K as Double, optionType as
Integer, optional m as long = −1)
Parameters: S is the stock price; rf is the interest rate; dt is the time step size; K is
the strike price, optionType can be xCall, xPut, or xStraddle. Please refer to Example
3.2 on page 85
Result: Returns an array of the terminal payoff of a vanilla American option expiring
at step m

EMartingale(S as Variant, rf as Double, q as Double, dt as Double)
Parameters: S is the original asset price path, rf is the risk-free rate, q is the dividend
yield, and dt is the interval of each step
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Result: Returns a 2D array of the asset price path after empirical martingale
correction

1.6.5 Other Functions

ShowStatus(nStep as Long, tStep as Long, sStep as Integer)
Result: Show nStep/tStep in the status bar for each sStep; it can be disabled by setting
HideStatus = True

ResetStatus
Parameters: None
Result: Reset the status bar

1.6.6 Remarks

Option Explicit

To force the declaration of all variables used, include the following as the first
instruction in the VBA module.

Option Explicit

This statement causes the program to stop whenever VBA encounters a vari-
able name that has not been declared. The variable must then be declared before
proceeding.



2
Background

This chapter sets out the background for readers in three parts. The first part reviews
the concept of stochastic calculus for derivatives pricing theory. We start with Black
and Scholes’ (1973) argument for formulating a risk-free portfolio for an option and
its underlying asset through hedging. The consequences of hedging bring us to risk-
neutral valuation, which asserts that a derivative price can be obtained by computing
an expectation under a martingale (risk-neutral) probability measure rather than a
data-generating (physical) probability measure. Hence, we need to introduce the
martingale notion in advance. Risk-neutral valuation essentially requires a “revision”
of the stochastic process of the underlying asset price for the purposes of derivative
pricing. It turns out that two practical approaches are possible for identifying this
“revised” process. They are as follows.

1. Estimate themodel parameters from the historical prices of the underlying asset
and then transform the model to the risk-neutral process by utilizing certain
martingale properties.

2. Bypass the estimation from historical data, but directly calibrate the model
parameters to fit current market prices or observations.

The first approach is useful for an underlying asset with very thin derivatives
transactions. The market prices of the associated options are not reliable or may not
even be available. The stochastic model can only fit the historical data. For instance,
if a bank wants to issue a new option on a stock for which there is no option market,
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then it has to resort to estimating a presumed stochastic model. A typical approach is
to fit the historical time series of the stock returns with a GARCHmodel originated by
Engle (1982). To value options, this model should be adjusted by certain martingale
conditions prior to option valuation. Valuation involves simulation of the asset price
paths using the adjusted process.
The second approach is more common and is closely related to the notion of

mark-to-market practice. Essentially, it is relative pricing. When a bank issues a new
structured product (a tailor-made derivative for a bank client), its price is revised to
be consistent with the price of similar derivatives in the market. Therefore, the bank
calibrates the presumed stochastic model to the option prices on the asset underlying
the new structured product and then simulates the asset price paths according to this
calibrated model. In this way the structured product is inferred by the prices of other
similar derivative securities.
Hence, the second part of this chapter introduces the notions of mark-to-market

and calibration. The typical practice is to mark against market option prices, which,
however, are quoted by their implied volatility. To better understand the prevailing
market practice, it is indispensable that we define different types of volatilities and
spell out the differences among them.
The final part of the chapter reviews a number of variance reduction techniques.

Once a model has been either estimated or calibrated, valuation usually relies on sim-
ulation, which is the main focus of this book. However, the computational efficiency
of simulation can be improved in a number of ways. The classical means is through
variance reduction techniques.

2.1 A BRIEF REVIEW OF MARTINGALES AND ITÔ’S CALCULUS

The concepts of martingales and Itô’s calculus are fundamental to the development of
derivatives pricing theory and Monte Carlo simulation in financial risk management.
The theoretical details are omitted here because they can be found in many standard
references, for example, Bjork (2009), Mikosch (1998), Karataz and Shreve (1991),
Shreve (2004), and Chan and Wong (2006). We present only the most important
results, and readers who are familiar with these concepts may wish to browse this
subsection quickly.

2.1.1 Martingales

A stochastic process X � {Xt : t ∈ T } is a collection of real-valued random variables
indexed by t ; that is, for any t ∈ T , Xt is a random variable that follows a certain
distribution. The index t is usually regarded as the time at which the stochastic process
is observed. If t takes a countable number of values, for example, T = {1, 2, 3, . . .},
then X is called a discrete-time stochastic process. If t takes a continuum of values, for
example, T = [0, T ] for some T > 0, then X is called a continuous-time stochastic
process.



A BRIEF REVIEW OF MARTINGALES AND ITÔ’S CALCULUS 35

Definition 2.1 A stochastic process X = {X (n) : n = 1, 2, . . .} is called a discrete
martingale if it satisfies, for any n = 1, 2, . . . ,

E[|X (n)|] < ∞,

E[X (n)|X (i), i = 1, . . . , n − 1] = X (n − 1).

Similarly, a stochastic process X = {X (t) : t ∈ [0, T ]}, where T ≥ 0, is called a
continuous martingale if it satisfies, for any t ∈ [0, T ],

E[|X (t)|] < ∞,

E[X (t)|X (u), 0 ≤ u ≤ s] = X (s), fors ≤ t.

In Definition 2.1, it is sometimes inconvenient to write down the conditional sets
{X (i), i = 1, . . . , n − 1} repeatedly in discrete time or {X (u), 0 ≤ u ≤ s} in continu-
ous time to represent the information on process X accumulated up to time s (or n − 1
in the case of discrete time). For convenience, we thus employ the standard notation:
F X

s = {X (u), 0 ≤ u ≤ s}. Also, the equality about conditional expectation is sup-
posed to hold almost surely. In this way, the martingale property can be written as

E[|X (t)|] < ∞,E[X (t)|F X
s ] = X (s), fors ≤ t.

The notion of martingales, which is related to the concept of arbitrage opportunity,
plays an important role in themodern theory of contingent claim pricing. An arbitrage
opportunity is any trading strategy that starts with zero cost and has a positive
probability of returning a profit in the future. It is usually assumed that an asset price
model should not admit an arbitrage strategy; otherwise, it would be possible to make
unlimited profits with zero initial wealth, which is unreasonable and unrealistic. The
first fundamental theorem of asset pricing states that an asset pricing model admits no
arbitrage opportunities if and only if there exists a risk-neutral probability measure
(equivalent to the physical probability measure) under which the discounted asset
price is a martingale, thus contributing to the notion of risk-neutral pricing. In simple
terms, the price of a contingent claim can be obtained by first changing the return
of the underlying asset to the risk-free interest rate and then taking the conditional
expectation on the terminal value of the claim.

2.1.2 Brownian Motion

The application of simulation techniques to asset pricing and risk management is
crucially reliant on the assumption of the evolution of the asset pricing process.
Throughout the history of quantitative finance, Brownian motion has constituted a
fundamental building block and is the most popular model of asset pricing process.
Therefore, the basic properties of Brownian motion are briefly noted here.
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Definition 2.2 (Brownian motion) A standard Brownian motion W (t) is a
continuous-time stochastic process that satisfies the following properties.

1. W (0) = 0 with probability one.

2. For s, t ≥ 0, W (s + t)− W (s) is a normally distributed random variable with
mean 0 and variance t; that is, W (s + t)− W (s) ∼ N (0, t).

3. For all 0 = t0 < t1 < . . . < tm, the increments W (t1)− W (t0), W (t2)− W (t1),
. . ., W (tm)− W (tm−1) are independent.

The last two properties can be summarized as the Brownian motion having station-
ary independent increments. These properties lead to certain other properties which
include but are not restricted to the following examples.

Example 2.1 (The martingale property of Brownian motion) A Brownian motion
W (t) is a martingale.

Let 0 ≤ s ≤ t be given. Then,

E[W (t)|W (s)]
= E[W (t)− W (s)+ W (s)|W (s)]
= E[W (t)− W (s)|W (s)]+ E[W (s)|W (s)]
= E[W (t)− W (s)]+ W (s)(asW (t)− W (s) is independent of W (s))

= W (s)(as W (t)− W (s) has mean 0).

Example 2.2 (The Markov property of a Brownian motion) It follows from the
independent increment property that a Brownian motion is always a Markov process.

Example 2.3 (Exponential martingale) The process exp
(
− 1
2σ

2t + σ W (t)
)

,

where t ≥ 0, is a martingale.
Let 0 ≤ s ≤ t be given. Then,

E
[
exp

(
−1
2
σ 2t + σ W (t)

)
|W (s)

]
= exp

(
−1
2
σ 2t + σ W (s)

)
E
[
exp

(
σ (W (t)− W (s))

)∣∣∣W (s)]
= exp

(
−1
2
σ 2t + σ W (s)

)
E
[
exp

(
σ
√

t − s X
)]

,

where X is a standard normal random variable

= exp
(
−1
2
σ 2t + σ W (s)

)
exp

(1
2
σ 2(t − s)

)
= exp

(
−1
2
σ 2s + σ W (s)

)
.

We very often encounter expressions such as dW (t) dW (t) = dt , dW (t) dt = 0,
and dt dt = 0, which can be derived from the concept of quadratic variation. The
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quadratic variation of a function f (t) on [0, T ] is defined as

[ f, f ](T ) � lim
‖�‖→0

n−1∑
j=0
[ f (t j+1)− f (t j )]

2,

where � = {t0, t1, . . . , tn} and 0 = t0 < t1 < . . . < tn = T , and ‖�‖ =
max

j=0,1,...,n−1 (t j+1 − t j ). For Brownian motion, [W, W ](T ) = T with prob-

ability one. Let QV = ∑n−1
j=0(W (t j+1)− W (t j ))2 and consider the mean and

variance of the random variable QV . Then

E[QV ] =
n−1∑
j=0
E
[(

W (t j+1)− W (t j )
)2]

=
n−1∑
j=0
Var(W (t j+1)− W (t j ))

=
n−1∑
j=0
(t j+1 − t j )

= T,

and

Var(QV )

=
n−1∑
j=0
Var

(
(W (t j+1)− W (t j ))

2
)

=
n−1∑
j=0
E
[(
(W (t j+1)− W (t j ))

2 − (t j+1 − t j )
)2]

=
n−1∑
j=0
E
[(

W (t j+1)− W (t j )
)4

− 2(t j+1 − t j )
(

W (t j+1)− W (t j )
)2

+ (t j+1 − t j )
2
]

=
n−1∑
j=0

[
3(t j+1 − t j )

2 − 2(t j+1 − t j )
2 + (t j+1 − t j )

2
]

= 2
n−1∑
j=0
(t j+1 − t j )

2

≤ 2
n−1∑
j=0

‖�‖(t j+1 − t j )

= 2‖�‖T .
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Therefore, lim‖�‖ → 0 Var(QV ) = 0. In conclusion, lim‖�‖ → 0 QV = T .

To show that dW (t) dt = 0, compute the cross-variation of W (t) with t :

lim
‖�‖→0

n−1∑
j=0

(
W (t j+1)− W (t j )

)
(t j+1 − t j )

≤ lim
‖�‖→0

max
k=0,...,n−1

(
W (t j+1)− W (t j )

) n−1∑
j=0
(t j+1 − t j )

= T lim ‖�‖→0
max

k=0,...,n−1

(
W (t j+1)− W (t j )

)
= 0 (as W is continuous, lim

‖�‖→0

max
k=0,...,n−1

(W (t j+1)− W (t j ))) = 0.

Finally, to show that dt dt = 0, compute the quadratic variation of t :

lim
‖�‖→0

n−1∑
j=0
(t j+1 − t j )

2

≤ lim
‖�‖→0

max
k=0,...,n−1

(t j+1 − t j )
n−1∑
j=0
(t j+1 − t j )

= T lim
‖�‖→0

‖�‖

= 0.

Because some contingent claims may involve more than one asset, one Brownian
motion is needed for each asset. The definition of one-dimensional (1D) Brownian
motion can easily be extended to multidimensional Brownian motion.

Definition 2.3 (Multidimensional Brownian motion) A d-dimensional Brownian
motion W(t) is a continuous-time stochastic process

W(t) = (W1(t), . . . , Wd (t))

that satisfies the following properties.

1. For i = 1, . . . , d, Wi is a scalar Brownian motion.

2. For i 
= j , Wi (t) and W j (t) are independent, that is, E[Wi (t)W j (t)] = 0.

Correlations between Brownian motions can be introduced by a suitable linear trans-
formation of the multidimensional Brownian motion. The details are discussed in the
next chapter.
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2.1.3 Itô’s Process and Itô’s Lemma

The idea of Brownian motion can be generalized as follows. Consider a process X
that satisfies the following stochastic differential equation (SDE).

d X (t) = μ dt + σ dW (t), (2.1)

where μ and σ are constants, andW (t) is the Brownian motion. Indeed, Equation 2.1
is the short hand version of

X (t) = μ t + σ W (t). (2.2)

Equation 2.1 gives some basic idea of simulation. A natural extension of this SDE
(Eq. 2.1; or, equivalently, Eq. 2.2) is to allow parameters μ and σ to depend on time
t , which leads to the following definition.

Definition 2.4 An Itô process is a stochastic process that is the solution to the
following SDE.

d X (t) = μ(t, X (t)) dt + σ (t, X (t)) dW (t), (2.3)

or, equivalently,

X (t) =
∫ t

0
μ(s, X (s)) ds +

∫ t

0
σ (s, X (s)) dW (s). (2.4)

In this equation, μ(t, x) is known as the drift function and σ (t, x) as the volatility
function. Restrictions must be imposed on these two functions to guarantee the
existence of the solution to the SDE (Eq. 2.4). Assume drift and volatility to be
“nice” functions to ensure that the existence of the solution is guaranteed. Obviously,
the foregoing definition is not restricted to the 1D case, as it can be easily generalized
to the multidimensional case. Several important properties concerning the Itô process
are given as follows. The integral (Eq. 2.4) satisfies

E
[

X2(t)
]

= E
[∫ t

0
σ 2(s, X (s)) ds

]
,

and

[X, X ](t) =
∫ t

0
σ 2(s, X (s)) ds, or dX (t) dX (t) = σ 2(t, X (t)) dt.

Although similar, the former property renders computation of the expectation con-
venient, whereas the latter results in the second-order term involving “dt” in Itô’s
calculus, which is different from ordinary differential calculus. Finally, the integral
(Eq. 2.4) with μ(t, x) ≡ 0 is a martingale.
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Given some function f (t, x) and an Itô process X (t), f (t, X (t)) is another stochas-
tic process. A question concerning f (t, X (t)) is what is its dynamics? Itô’s lemma
shows that f (t, X (t)) is also an Itô process.

Theorem 2.1 (Itô’s lemma) Let X (t) be an Itô process satisfying (Eq. 2.3), and
let f (t, x) be a function for which the partial derivatives ∂

∂t f (t, x), ∂
∂x f (t, x), and

∂2

∂x2 f (t, x) are continuous. Then, for any t ≥ 0,

d f (t, X (t))

=
( ∂

∂t
f (t, X (t))+ μ(t, X (t))

∂

∂x
f (t, X (t))+ 1

2
σ 2(t, X (t))

∂2

∂x2
f (t, X (t))

)
dt

+σ (t, X (t))
∂

∂x
f (t, X (t)) dW (t), (2.5)

or, equivalently,

f (t, X (t))− f (0, X (0))

=
∫ t

0

( ∂

∂s
f (s, X (s))+ μ(s, X (s))

∂

∂x
f (s, X (s))+ 1

2
σ 2(s, X (s))

∂2

∂x2
f (s, X (s))

)
ds

+
∫ t

0
σ (s, X (s))

∂

∂x
f (s, X (s)) dW (s). (2.6)

An equivalent but simple-to-remember version of Itô’s lemma is the following.

d f (t, X (t))= ∂

∂t
f (t, X (t)) dt+ ∂

∂x
f (t, X (t)) d X (t)+ 1

2

∂2

∂x2
f (t, X (t))d X (t) d X (t).

(2.7)

Consider the following examples which are related to our applications.

Example 2.4 Suppose that X (t) satisfies the geometric Brownian motion (GBM)
equation

d X (t) = μX (t) dt + σ X (t) dW (t).

Compute the dynamics of log X (t). First, consider the function f (t, x) = log x and
let μ(t, x) = μx and σ (t, x) = σ x. Then, ∂ f

∂t = 0, ∂ f
∂x = 1

x , and ∂2 f
∂x2 = − 1

x2 . By Itô’s
lemma (Eq. 2.5),

d log X (t) =
(

μ − σ 2

2

)
dt + σ dW (t);
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that is,

X (t) = X (0) exp
((

μ − σ 2

2

)
t + σ W (t)

)
,

which is the basis for simulating the asset pricing process in the Black–Scholes (BS)
model.

Example 2.5 Find the solution to the SDE

d X (t) = μX (t) dt + σ dW (t).

Consider the function f (t, x) = e−μt x and let μ(t, x) = μx and σ (t, x) = σ . Then,
∂ f
∂t = −μe−μt x , ∂ f

∂x = e−μt and ∂2 f
∂x2 = 0. By Itô’s lemma (Eq. 2.5),

d(e−μt X (t)) = (−μe−μt X (t)+ μX (t)e−μt ) dt + σe−μt dW (t)

= σe−μt dW (t);

that is,

X (t) = e−μt X (0)+ σ

∫ t

0
eμ(t−s) dW (s).

Example 2.6 Suppose that X (t) satisfies the SDE

dX (t) = μX (t) dt + σ dW (t).

Compute the dynamics of X2(t). First, consider the function f (t, x) = x2 and let
μ(t, x) = μx, and σ (t, x) = σ . Then, ∂ f

∂t = 0, ∂ f
∂x = 2x, and ∂2 f

∂x2 = 2. By Itô’s lemma
(Eq. 2.5),

d X2(t) = (2μX2(t)+ σ 2) dt + 2σ X (t) dW (t).

For suitable parameter values, X (t) ≥ 0 for any t. Set Y (t) = X2(t) and then

dY (t) = (σ 2 + 2μY (t)) dt + 2σ
√

Y (t) dW (t),

which is known as a square-root process or a CIR process. This process is frequently
used to model the stochastic variance of an asset price.

2.1.4 Discretization Methods

In the BS model, once the closed-form solution of the underlying asset price has

been obtained, that is, S(t) = S(0) exp
((

μ − σ 2

2

)
t + σ W (t)

)
, the asset price paths

can be simulated directly by simulating the standard normal random variables. In
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other words, the SDE d S(t) = μS(t) dt + σ S(t) dW (t) plays no role in simulation,
but represents the solution to the asset price. In more complicated models, such
as local volatility and stochastic volatility models, the asset price paths cannot be
obtained simply by simulating the standard normal random variables; otherwise,
the simulated paths may deviate considerably from the true distribution. Instead,
the asset price paths must be simulated on the basis of discrete approximations of the
continuous solution to the system of the model’s SDEs. To this end, the Euler scheme
andMilstein scheme are introduced. The former is a direct discretization of the SDE
and the latter leads to a higher order of accuracy.
Given an Itô process X on [0, T ] that satisfies the SDE,

dX (t) = a(X (t)) dt + b(X (t)) dW (t),

with deterministic initial value X (0), where a(x) and b(x) are deterministic functions,
and W (t) is a Brownian motion. Now, let X̂ (t) be an approximation to X (t) at time t .
The Euler scheme of approximation on a time grid 0 = t0 < t1 < . . . < tn is defined
by X̂ (t0) = X (0), and, for i = 0, 1, . . . , m − 1,

X̂ (ti+1) = X̂ (ti )+ a(X̂ (ti ))(ti+1 − ti )+ b(X̂ (ti ))
√

ti+1 − ti Zi+1,

where Z1, Z2, . . . , Zm are independent standard normal random variables. Once
the functions a(x) and b(x) are known, implementation is achieved by generating
independent standard normal random variables.
From this expression, the Euler discretization scheme expands the drift term up to

O(ti+1 − ti ) but the diffusion term up to O(
√

ti+1 − ti ) (recall that dW (t) dW (t) = dt
with probability one). To improve discretization accuracy, theMilstein schememakes
use of Itô’s lemma to improve the accuracy of the approximation by adding the
second-order term. Recall that the foregoing SDE is equivalent to

X (t + h) = X (t)+
∫ t+h

t
a(X (s)) ds +

∫ t+h

t
b(X (s)) dW (s).

The drift term is approximated as in the Euler scheme

∫ t+h

t
a(X (s)) ds ≈ a(X (t))h.

For better approximation of the diffusion term, use Itô’s lemma to expand b(X (t))

db(X (t)) = μb(X (t)) dt + σb(X (t)) dW (t),

where μb(x) = a(x) ∂b(x)
∂x + 1

2b2(x) ∂
2b(x)
∂x2 and σb(x) = b(x) ∂b(x)

∂x . Applying the Euler
scheme to approximate b(X (t)) and discarding the higher order terms, for t ≤ s ≤
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t + h, we have

b(X (s)) ≈ b(X (t))+ σb(X (t))(W (s)− W (t)).

Then, ∫ t+h

t
b(X (s)) dW (s)

≈
∫ t+h

t
(b(X (t))+ σb(X (t))(W (s)− W (t))) dW (s)

= b(X (t))(W (t + h)− W (t))+ σb(X (t))
∫ t+h

t
(W (s)− W (t)) dW (s)

= b(X (t))(W (t + h)− W (t))+ 1

2
σb(X (t))((W (t + h)− W (t))2 − h).

Finally, the Euler scheme is refined as

X (t + h) ≈ X (t)+ a(X (t))h + b(X (t))(W (t + h)− W (t))

+1
2
σb(X (t))((W (t + h)− W (t))2 − h).

The simulation algorithm is written as

X̂ (ti+1) = X̂ (ti )+ a(X̂ (ti ))(ti+1 − ti )

+b(X̂ (ti ))Zi+1 + 1

2
σb(X̂ (ti ))(ti+1 − ti )((Zi+1)2 − 1).

Further information about the Euler andMilstein schemes can be found in Kloeden
and Platen (2010), Milstein (1995), and the seminal treatise of Jacod and Protter
(2011).

2.1.5 The Black–Scholes Equation and Risk-Neutral Valuation

The application of Itô’s calculus in finance can be effectively illustrated in the deriva-
tion of the celebrated BS equation. Suppose that in a frictionless market, an option
writer sells a call option and simultaneously holds a portfolio to perfectly hedge the
payoff of the call option, that is, the payoff of the call option is financed completely
by the proceeds of portfolio liquidation. Now, at any time t < T , the portfolio value
is V (t) with �(t) shares of the underlying stock, S(t), whose price process follows
the GBM:

d S(t) = μS(t) dt + σ S(t) dW (t). (2.8)
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This stochastic process for the underlying asset is defined under the physical prob-
ability measure, P, because parameters μ and σ are estimated with the historical
prices of S(t). Therefore, the standard Brownian motion W (t) satisfies the condi-
tions in Definition 2.2 under probability measure P. More specifically, we need to
understand that EP[W (s + t)− W (s)] = 0 and EP[(W (s + t)− W (s))2] = t , where
the expectation is defined through historical data fitting.
The remainder of the portfolio, V (t)− �(t)S(t), is invested in a risk-free money

market account with constant interest rate r . In the next instant dt , the change in
portfolio value comprises the change in the value of the stock position,�(t) d S(t), and
the change in the value of the money market account position, r (V (t)− �(t)S(t)) dt .
Therefore, the value of the portfolio evolves as

dV (t) = �(t) d S(t)+ r (V (t)− �(t)S(t)) dt

= �(t)(μS(t) dt + σ S(t) dW (t))+ r (V (t)− �(t)S(t)) dt

= r V (t) dt + �(t)(μ − r )S(t) dt + �(t)σ S(t) dW (t). (2.9)

Consider a European call option that pays (S(T )− K )+ at time T . Suppose that
the value of this call option at time t is c(t, S(t)). By Itô’s lemma (Eq. 2.5),

dc(t, S(t)) =
( ∂

∂t
c(t, S(t))+ μS(t)

∂

∂S
c(t, S(t))+ 1

2
σ 2S2(t)

∂2

∂S2
c(t, S(t))

)
dt

+σ S(t)
∂

∂S
c(t, S(t)) dW (t). (2.10)

Now, to hedge the payoff of the call option at time T , the hedging portfolio
starts with initial capital V (0) and invests in the underlying stock and the money
market account dynamically such that for each time t ∈ [0, T ], V (t) = c(t, S(t)).
This process is called replication, and V is known as a replicating portfolio. It occurs
if for all t ∈ [0, T ),

dV (t) = dc(t, S(t)),

and

V (T ) = c(T, S) = (S − K )+.

Matching the coefficients of dt and dW (t) in Equations 2.9 and 2.10, we have

�(t) = ∂

∂S
c(t, S),

and

∂

∂t
c(t, S)+ μS

∂

∂S
c(t, S)+ 1

2
σ 2S2

∂2

∂S2
c(t, S) = r V (t)+ �(t)(μ − r )S,
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which, after putting V (t) = c(t, S), substituting �(t) = ∂
∂S c(t, S), and canceling the

terms involving μ, is equivalent to

∂

∂t
c(t, S)+ r S

∂

∂S
c(t, S)+ 1

2
σ 2S2

∂2

∂S2
c(t, S) = rc(t, S), c(T, S) = max(S − K , 0),

which is the BS equation.
The BS equation generates two important insights. The first is the concept of risk-

neutral pricing. As the BS equation does not involve the drift, μ, of the underlying
asset price, the option pricing formula should be independent of the drift. Therefore,
individual preferences regarding the performance or trend of a particular asset price
do not affect the current price of the option on that asset. The second insight is that
we are able to derive a price representation of a European option with any payoff
function from the equation; that is, the price of a contingent claim with maturity can
be obtained by first changing the drift rate of the asset to the risk-free interest rate
and then taking the conditional expectation on the terminal value (which is a random
variable) of the claim. Mathematically, consider a stochastic process X that satisfies

d X (t) = r X (t) dt + σ X (t) dW ∗(t), X (0) = S(0), (2.11)

where W ∗ is the standard Brownian motion under a certain sense of the probability
measure. Let us call it probabilitymeasureQ for themoment. Then, c(0, S) = c(0, X ).
Consider the process c(t, X (t)) derived from X (t). By Itô’s lemma (Eq. 2.5),

dc(t, X (t)) =
( ∂

∂t
c(t, X (t))+ r X (t)

∂

∂ X
c(t, X (t))+ 1

2
σ 2X2(t)

∂2

∂ X2
c(t, X (t))

)
dt

+σ X (t)
∂

∂ X
c(t, X (t)) dW ∗(t).

The BS equation stipulates that the coefficient of dt is identical to rc(t, X (t)), thereby
resulting in

dc(t, X (t)) = rc(t, X (t)) dt + σ X (t)
∂

∂ X
c(t, X (t)) dW ∗(t).

Consider the discounted asset price e−r t c(t, X (t)). Then

d(e−r t c(t, X (t))) = σe−r t X (t)
∂

∂ X
c(t, X (t)) dW ∗(t),

or, equivalently,

e−rT c(T, X (T ))− c(0, X (0)) = σ

∫ T

0
e−r t X (t)

∂

∂ X
c(t, X (t)) dW ∗(t).
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Because the right-hand side is a martingale, the discounted asset price is now a
martingale. Taking the expectation conditional on F X

0 on both sides, we have

EQ[e−rT c(T, X (T ))|F X
0 ]− c(0, X (0)) = 0,

which implies that

c(0, S(0)) = EQ[e−rT c(T, X (T ))|F X
0 ], (2.12)

where the expectation is taken with respect to the random variable X (T ), which
is driven by the standard Brownian motion defined in the sense of Q. Probability
measure Q is then called the risk-neutral probability, the associated expectation the
risk-neutral expectation, and process X the risk-neutral asset dynamics. To avoid
confusion, the “risk-neutral dynamics of S” is generally used to represent X .

Remarks

1. Because of the independent increment property of the standard Brownian
motion,

c(0, S(0)) = EQ[e−rT c(T, X (T ))|F X
0 ] = EQ[e−rT c(T, X (T ))|X0 = S(0)].

2. The expectation representation of a European option price in Equation 2.12 is
called the risk-neutral valuation formula. In general, it asserts that

e−r t V (t, S(t)) = EQ[e−rT V (T, X (T ))|F X
0 ]

for any contingent claim (or European-style derivative securities), V (t, S(t)).
It is clear that the quantity e−r t V (t, S(t)) is a martingale in the sense of Q, and
hence is a Q-martingale.

3. As the discounted derivative price at time t > 0 is a martingale under Q,
probability measureQ is also known as a martingale measure that is equivalent
to P.

Comparing Equations 2.8 and 2.11, we observe that these two processes resemble
each other except for the drift term and their driving standard Brownian motions. In
fact, both processes describe the evolution of the stock price using a different sense
of Brownian motion. If we force them to be equal to each other, then it is easy to
deduce that

W ∗(t)+
(

μ − r

σ

)
t = W (t), or dW ∗(t)+

(
μ − r

σ

)
dt = dW (t). (2.13)
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In other words, we shift only the mean of the Brownian motion by a factor
(

μ−r
σ

)
t ,

where μ−r
σ
is known as the market price of risk in finance and reflects the trade-off

between excess return μ − r and risk σ .

2.1.6 Change of Measures

After establishing the connection between W (t) and W ∗(t) in Equation 2.13, here
we further clarify the relationship between P and Q. Suppose that we want to eval-
uate expectation EQ[h(W (T ))], where W is the P-standard Brownian motion. By
Equation 2.13, we have

EQ[h(W (T ))] = EQ

[
h

(
W ∗(T )+

(
μ − r

σ

)
T

)]
. (2.14)

As W ∗(T ) ∼ N (0, T ) under Q, we have

EQ

[
h

(
W ∗(T )+

(
μ − r

σ

)
T

)]
=

∫ ∞

−∞

h
(
x + (

μ−r
σ

)
T

)
√
2πT

exp

[
− x2

2T

]
dx . (2.15)

Taking the transformation of the variable y = x + (
μ−r
σ

)
T , we have

EQ

[
h

(
W ∗(T )+

(
μ − r

σ

)
T

)]
=

∫ ∞

−∞

h(y)√
2πT

exp

[
−

(
y − (

μ−r
σ

)
T

)2
2T

]
dy

=
∫ ∞

−∞
e−

1
2 (

μ−r
σ )

2
T +( μ−r

σ )y h(y)√
2πT

exp

[
− y2

2T

]
dy

= EP
[
e−

1
2 (

μ−r
σ )

2
T +( μ−r

σ )W (T )h (W (T ))
]
. (2.16)

The last equality of Equation 2.16 holds because x in Equation 2.15 plays the role of
W ∗(T ) and hence y plays the role of W (T ). In the second line of Equation 2.16, the
probability density function (PDF) of W (T ) is the standard normal density function
such that the calculation is transformed into an expectation problem using P. From
Equation 2.16, we learn that a Q-expectation can be converted into an equivalent
P-expectation by multiplying an exponential factor with the function h(·). This fac-
tor is a P-exponential martingale and constitutes the key change in the probability
measure.
More specifically, consider the cumulative distribution functions (CDFs) using the

two probability measures:P(W (T ) < y) andQ(W ∗(T ) < x). Using the distributional
properties of W (T ) and W ∗(T ) under their respective probability measures, we
calculate

dP(W (T ) < y) =
exp

[
− y2

2T

]
√
2πT

dy and dQ(W ∗(T ) < x) =
exp

[
− x2

2T

]
√
2πT

dx .
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Hence,

EQ[h(W (T ))] =
∫

h dQ =
∫

h
dQ

dP
dP = EP

[
dQ

dP
h(W (T ))

]
.

Comparing the foregoing to Equation 2.16, we deduce that

dQ

dP
= exp

[
−1
2

(
μ − r

σ

)2
T +

(
μ − r

σ

)
W (T )

]
.

The differentiation of measures on the left-hand side is known as Radon–Nikodym
derivatives. In the context of real analysis, see Chapter 7 of Rudin (1987); and in that
of probability theory, see Chapter 4 of Durrett (1996). The right-hand side gives an
explicit expression for our particular example.
In fact, there is a more general theorem for the change of measures:

Theorem 2.2 (Girsanov’s theorem) Let θ (t, W (t)) be a deterministic function of
t and W (t), where W is the standard Brownian motion under P such that

EP

[
exp

(
1

2

∫ T

0
|θ (t, W (t))|2 dt

)]
< ∞.

Then we have the following.

1. ηT = exp
[
− 1
2

∫ T
0 θ (t, W (t))2 dt + ∫ T

0 θ (t, W (t))dW (t)
]

is an exponential

martingale.

2. There is an equivalent probability measure Q such that

dQ

dP
= ηT and EQ[h(W (T ))] = EP[ηT h(W (T ))].

3. The standard Brownian motion W ∗ in Q can be defined through W such that

dW ∗(t) = dW (t)− θ (t, W (t)) dt.

As the proof of this theorem is rather technical, interested readers may refer to
Oksendal (2003). However, we demonstrate the theorem’s use in the BS formula for
European call options in the proof of the following theorem.

Theorem 2.3 (Black–Scholes [BS] formula) Consider a European call option
with terminal payoff max(ST − K , 0), where the underlying stock price follows the
BS model (Eq. 2.8). Suppose that the instantaneous interest rate is a constant r , and
the stock has constant volatility σ . Then the call option price is given by

c(t, S) = S	(d1)− K e−r (T −t)	(d2),
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where 	(x) is the CDF of a standard normal random variable and

d1 = d2 + σ
√

T − t, d2 = log S
K + (r − σ 2

2 )(T − t)

σ
√

T − t
.

Proof: By the risk-neutral valuation formula (Eq. 2.12),

cBS(t, S) = e−r (T −t)EQ [max(ST − K , 0)]

= e−r (T −t)
[
EQ

[
ST 1{ST >K }

] − KQ(ST > K )
]
.

UnderQ, the stock process is given by Equation 2.11. Solving Equation 2.11 by Itô’s
lemma yields

ST = Se(r− σ2

2 )(T −t)+σ (W ∗(T )−W ∗(t)),

by which the event {ST > K } is recognized as equivalent to {W ∗(T )− W ∗(t) >

−d2
√

T − t}. Therefore,

Q(ST > K ) = Q(W ∗(T )− W ∗(t) > −d2
√

T − t).

As zero mean normal distributions are symmetric at zero and W ∗(T )− W ∗(t) ∼
N (0, T − t) under Q, we have

Q(ST > K ) = 	(d2).

The challenge lies in the calculation of EQ
[
ST 1{ST >K }

]
. We employ the change of

measure technique to overcome the difficulty. By substituting the expression of ST

in the expectation, we have

EQ
[
ST 1{ST >K }

] = er (T −t)SEQ
[
e−

σ2

2 (T −t)+σ (W ∗(T )−W ∗(t))1{ST >K }
]

= er (T −t)SEQ
[
e−

1
2

∫ T
t σ 2 dτ+∫ T

t σ dW ∗(τ )1{ST >K }
]
. (2.17)

Girsanov’s theorem with θ (t, W ∗(t)) ≡ σ allows us to define a measure Q̂, such that

dQ̂

dQ
= exp

[
−1
2

∫ T

t
σ 2 dτ +

∫ T

t
σ dW ∗(τ )

]
,

EQ
[
ST 1{ST >K }

] = er (T −t)SQ̂(ST > K )

= er (T −t)SQ̂(W ∗(T )− W ∗(t) > −d2
√

T − t). (2.18)



50 BACKGROUND

In addition, the Q̂-standardBrownianmotion, Ŵ , can be defined through the following
shift.

Ŵ (T )− Ŵ (t) = (W ∗(T )− W ∗(t))− σ (T − t).

Hence,

Q̂(W ∗(T )− W ∗(t) > −d2
√

T − t) = Q̂(Ŵ (T )− Ŵ (t) > −d1
√

T − t),

and the result follows.

2.2 VOLATILITY

Risk-neutral valuation shows that European option prices are deterministic functions
of the observed underlying stock price S(t), observed interest rate r , and unobserved
volatility σ . The BS formula is a clear example of a European call option. Hence,
it is crucial for traders to estimate σ in order to value an option. In the BS model
(Eq. 2.8), volatility σ is a measure of the uncertainty of an asset’s return. It can be
defined as the standard deviation of the logarithmic return. To see this, apply Ito’s
lemma to log S(t) with respect to Equation. 2.8:

d log S(t) =
(

μ − σ 2

2

)
dt + σ dW (t) ⇒ log

S(t + �t)

S(t)

=
(

μ − σ 2

2

)
�t + σ (W (t + �t)− W (t)),

where�t is the sampling frequency. Hence, the difference in log prices (the logarith-
mic return) follows the normal distribution with variance σ 2�t . We do not mention
the mean because it will be replaced by r − σ 2/2 in the valuation process.
Volatility is measured on an annualized basis because interest rates and other

financial parameters are quoted on an annualized basis. Therefore, if the sampling
period�t of the logarithmic return is 1 year, then it refers to annualized volatility. In
general, for any sampling period of T years,

σT = σannualized
√

T .

For example, if there are 252 trading days in a year and volatility is primarily estimated
on a daily basis, then annualized volatility is projected from daily volatility using the
square-root rule in the market:

σannualized = σdaily√
1
252

= σdaily
√
252.
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The estimated volatility σannualized is plugged into the BS formula to compute the
call price if the trader believes in the BS model. However, there are alternatives to
understanding and estimating volatility in financial markets.

1. Historical volatility
Historical volatility is estimated on the basis of historical data. Given a sample
of n + 1 stock prices, it can be estimated by the sample standard deviation s:

s =
√√√√ 1

n − 1
n∑

i=1
(xi − x)2,

where xi = log Si
Si−1
is the logarithmic return. The estimate of annualized volatil-

ity σ̂ is

σ̂ = s√
T

,

where T is the length of each period. When daily stock prices are used, T is
set to the reciprocal of the trading days in a year such as 1/252. However, the
number of trading days varies across different asset classes. The assumption
of 252 trading days per year may be appropriate for the equity market, but not
for the foreign exchange (FX) and interest rate markets. The FX markets open
almost every day of the year, including holidays. The number of trading days
defined in a particular contract refers to the date count convention specified
in that contract. In this book, we use 252 trading days per year solely for
illustration.
Historical volatility has a number of limitations. For example, the analyst has

to select the historical data window for estimation purposes such as 1 month,
3 months, or 1 year. Different windows may lead to quite different estimates.
The analyst must also specify the sampling frequency: weekly, daily, or tick-
to-tick. High frequency data pose additional technical difficulties. Finally, as
there is plenty of empirical evidence against the use of the BS model for asset
price dynamics, the historical volatility may contain insufficient information to
describe the dispersion of asset returns.

2. Implied volatility
Although the BSmodel is known to be inadequate formodeling asset dynamics,
the BS formula is the benchmark by which option traders communicate with
one another. Traders like to summarize the information contained in an option
using the notion of implied volatility, which is the volatility implied by the
market price of options using the BS model. Let cM (K , T ) be the market price
of a call with strike K andmaturity T . Its implied volatility, σimp, is the solution
to the following equation.

cM (K , T ) = cBS(S, K , T |σ = σimp),
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where the BS formula is given in Theorem 18. As the BS formula is a strictly
increasing function of σ , the implied volatility is the unique solution to the
foregoing equation.
There is no analytical solution for implied volatility, but numerical root-

finding methods are required to solve the non linear equation. In practice,
traders quote the implied volatility rather than the option price itself. They
then substitute the implied volatility into the BS formula to produce the option
price. When a trader wants to issue a new call option, he or she may estimate
its implied volatility from the implied volatilities of similar contracts using
interpolation. The option price is then obtained by substituting the estimated
implied volatility into the BS formula.

3. Volatility smile and surface
The BSmodel assumes constant volatility. Although traders use the BS formula
in their daily work, they do not assume the volatility to be constant. A more
practical approach is to plot the implied volatilities against the strike prices for
options in the same underlying stock, revealing a convex shape. For a put option,
the implied volatility curve is usually downward sloping and skewed up on the
right-hand side, a pattern commonly known as the volatility smile. A related
concept is the term structure of volatility, which is a plot of implied volatility
against maturity. Combining the volatility smile and term structure of volatility,
a two-dimensional (2D) surface known as the volatility surface is obtained.
Sophisticated traders interpolate discrete samples of implied volatilities to
form a continuous implied volatility surface that infers option prices for all
strikes and maturities. Figure 2.1 depicts a typical volatility surface in an FX
option market.
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4. Volatility clustering
When there are limited option transactions, derivatives valuation is unable to
benchmark against the option market using implied volatilities. In such a sit-
uation, traders may resort to historical estimates of volatility. However, they
usually observe a volatility clustering effects, that is, large moves tend to be
followed by large moves and small moves by small moves. Consequently, the
constant volatility assumption in the BS model needs to be relaxed, which has
led to the use of the GARCH model in derivative pricing. Empirical analysis
shows that the GARCH(1,1) model can successfully model volatility cluster-
ing. Additional details of the GARCH option pricing model are provided in
Chapter 4.

5. Local volatility and stochastic volatility
There are models that employ local volatility and stochastic volatility instead
of assuming volatility to be constant. Local volatility views volatility as a
deterministic function of time and asset price. For instance, the local volatility
model uses an SDE of the form

dS(t) = μS(t) dt + σ (t, S(t))S(t) dW (t),

where σ (t, S(t)) is the local volatility function. Stochastic volatility sees volatil-
ity as driven by a stochastic process that differs from Brownian motion W .
Details of these models, including their estimation and simulation, are pro-
vided in Chapter 4.

2.3 MARK TO MARKET AND CALIBRATION

2.3.1 Marking to Market

Marking to market (MTM) usually refers to an accounting rule by which assets
are reported at their current market values, although the term has slightly different
meaning in security trading and risk management. When holding derivatives or
other securities, a trader is usually more interested in their market value than their
acquisition price. The daily revaluation of a security to reflect its current market
price is known as MTM. MTM can make us aware of the risk exposure of our
portfolio. Take a futures contract as an example. To reduce counterparty risks, MTM
is performed at the end of each trading day to determine whether the balance of the
investor’s margin account fulfills margin requirements. If the balance of the margin
account falls below the maintenance margin, then the investor will receive a margin
call to deposit funds to the initial margin level. Otherwise, the broker will close out
the position.
Banks perform MTM daily to monitor their market risk exposure and the credit

exposure between the bank and its clients. If the direct quoting of the market price
is not possible, then the MTM values of outstanding financial derivatives can be
calculated via portfolio replication and internal pricing models. On the one hand,
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these values can be used to measure treasury limit usage, report such risk measures
as the Value at Risk (VaR) of the portfolio and prepare profit–loss (P/L) statements.
On the other, they can be employed to measure the counterparty risk in a derivative
contract. One of the measures in credit exposure is the replacement cost, which can
be calculated using MTM values. It is the amount that the bank will have to pay to
replace the contract if the counterparty defaults. MTM values also allow the bank
to check the reasonableness of a counterparty’s credit support annex (CSA) report,
in the case that a margin call is required as a result of a large discrepancy in MTM
values between the two parties.

2.3.2 Calculation of MTM Values

In practice, market participants do not wish to perform tedious calculations to obtain
MTMvalues for their financial products. Portfolio replication is amore typicalmethod
of calculating these values. Ideally, a financial product can be decomposed into a port-
folio of liquidly traded products, whose market price can be observed directly. The
products corresponding to MTM values can then be obtained by summing each of
the individual MTM values. This method can potentially save considerable time.
For example, certain types of equity-linked notes (ELN) can be regarded as a com-
bination of the put option of the underlying asset and bonds. By calculating the
value of the put option and the bonds using current market data, the MTM value
of the ELN can be obtained. Details of portfolio replication and ELN are provided
in Chapter 3.
However, certain products or derivatives may lack a comparable market counter-

part or may be illiquid. In this case, the investor may rely on some of the proprietary
financial models offered by such financial service providers as Bloomberg, Reuters,
or FINCAD, or employ internal pricing models to calculate the MTM values. How-
ever, internal pricing models must be calibrated prior to use to minimize pricing error.
Investors can also make use of the implied volatility surface of liquidly traded options
to calculate the MTM values of options with different strike prices and maturities
that are not traded in the market. Take ELN as an example. The put option embedded
in an ELN may be untradable, meaning that the bank must interpolate the implied
volatility surface from the put option market to infer the implied volatility of the
embedded put as its MTM value.
The MTM procedures can be summarized as follows.

1. For generic products, such as vanilla options, swaps, and forward, the MTM
values are the market quotes from the respective trading parties.

2. For non-generic products, market quotes are usually unavailable. If portfolio
replication is possible, then these products can be decomposed into a portfolio
of generic components for which MTM values can easily be obtained (either
from market quotes or proprietary financial models). The MTM value of a
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non-generic product is simply the sum of the MTM values of its individual
generic components.

3. If the decomposition of a non-generic product is not possible, then an inter-
nal pricing model is needed for valuation. However, model calibration and
validation should be conducted before the pricing of any non-generic products.

2.3.3 Calibration

Model calibration is the process of obtaining implied model parameters from market
data. Numerous financial models for derivatives pricing have been developed in
academe over the past 30 years to capture and predict the movement of financial
market variables. Advances in technology and computational methods mean newly
developed models are increasingly sophisticated. These models are usually expressed
in terms of different parameters, which should be accurately determined before their
adoption in derivatives pricing. Note that a change in the value of a parameter can
greatly affect the price of a product. Accordingly, model calibration has become a
very important pricing component, and many feasible calibration methods have been
developed. In general, a practical model calibration method determines the optimal
values of input parameters to minimize the difference between the prices calculated
by the model and actual market prices. In other words, the aim is to minimize

N∑
i=1
(Vi − Mi )

2,

where the Vi ’s are the model-calculated values of the products and the Mi ’s are their
actual market prices.
Special attention should be paid to the differences between parameter estimation

and model calibration as the underlying concepts are completely different. Parame-
ter estimation involves such statistical estimates as maximum likelihood estimation
which requires knowledge of historical data. Although model calibration involves
parameter determination, it requires no statistical estimation. In addition, instead of
historical data, it makes use of the current market prices of many products. Model
calibration is performed extensively in later chapters.

2.4 VARIANCE REDUCTION TECHNIQUES

2.4.1 A Brief Review of Variance Reduction Techniques

Herewe provide a brief review of some of themost commonly used variance reduction
techniques, namely, antithetic variables, control variates, stratification, and impor-
tance sampling. These techniques are then illustrated via an option pricing example.
Further details can be found in Chan and Wong (2006) and the references therein.
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2.4.1.1 Antithetic Variables Antithetic variables can best be illustrated by con-
sidering a special example. Suppose that we want to estimate θ = E[X ] by generating
two outputs, X1 and X2, such that E[X1] = E[X2] = θ and Var(X1) = Var(X2) = σ 2.
Then

E
[1
2
(X1 + X2)

]
= θ,

and

Var
(1
2
(X1 + X2)

)
= 1

4

(
Var(X1)+ Var(X2)+ 2Cov(X1, X2)

)
= 1

2
σ 2 + 1

2
Cov(X1, X2)

≤ 1

2
σ 2, if Cov(X1, X2) ≤ 0.

Note that when X1 and X2 are independent, Var(
X1+X2
2 ) = σ 2

2 . Thus, the foregoing
inequality asserts that if X1 and X2 are negatively correlated then the variance of their
sample mean is less than if they were independent.
How are negatively correlated random numbers generated? Suppose that m

independent uniform random numbers, U1, . . . , Um , are generated. Then V1 =
1− U1, . . . , Vm = 1− Um are also n independent uniform random numbers, with
the property that (Ui , Vi ) are negatively correlated, for i = 1, . . . , m. If X1 =
h(U1, . . . , Um), then X2 = h(V1, . . . , Vm) must have the same distribution as X1.
It turns out that if h is a monotonically increasing or decreasing function in each of
its arguments, then X1 and X2 will be negatively correlated. Thus, after generating
U1, . . . , Um to compute X1, rather than generate another new independent set ofUi ’s
to compute X2, we compute X2 by X2 = h(V1, . . . , Vm). Accordingly,

X1+X2
2 should

have a smaller variance.
Generating antithetic variables for a normal distribution is straightforward. Sup-

pose that Xi ∼ N (μ, σ 2), then, Yi = 2μ − Xi also has the same distribution as Xi ,
and Xi and Yi are negatively correlated.
In general, we generate Xi = F−1(Ui ) using the inverse transform method, where

F is the CDF of the random variable X . Let Yi = F−1(Vi ). Because F is mono-
tonically increasing, so is F−1, and hence Xi and Yi are negatively correlated. Both
X1, . . . , Xn and Y1, . . . , Yn generated in this way are independent and identically dis-
tributed (i.i.d.) sequences with CDF F , but are negatively correlated. The sequence
Yi is called the sequence of antithetic variables.
More generally, if we want to compute E[H (X )] for some function H then stan-

dard Monte Carlo simulation suggests the use of 1n
∑n

i=1 H (Xi ). Then an antithetic
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estimator of E[H (X )] is given by

ĤAN = 1

2n

n∑
i=1
(H (Xi )+ H (Yi )),

where Yi is a sequence of antithetic variables. To see how variance reduc-
tion is achieved using this antithetic estimator, let Var(H (X )) = σ 2 and
Corr(H (X ), H (Y )) = ρ. Consider

Var(ĤAN) = 1

4n2

n∑
i=1

(
Var(H (Xi ))+ Var(H (Yi ))+ 2Cov(H (Xi ), H (Yi ))

)
= 1

4n2
(2nσ 2 + 2nρσ 2)

= σ 2

2n
(1+ ρ).

Note that when H (X ) and H (Y ) are uncorrelated (ρ = 0), the variance is reduced
by a factor of 2, which is equivalent to doubling the simulation size. If in contrast,
ρ = −1, then the variance is reduced to zero. As long as ρ is negative, a certain
degree of variance reduction can be achieved. An obvious question in view of this
observation is why not choose Y such that ρ = −1? Doing so may be difficult as
ρ represents the correlation between H (X ) and H (Y ). In the case of H (X ) = X ,
ĤAN is reduced to a constant, which is the perfect scenario. In view of these caveats,
antithetic variables Y are usually chosen such that ρ is negative, but not necessarily
equal to −1. When H is linear, as in the case of H (X ) = X , the antithetic variable
works best. In general, the more linear H is, the more effective the antithetic variable.

Example 2.7 To price a European call option on stock S with strike price K
and maturity K , whose risk-neutral dynamics are given by dS(t) = r S(t) dt +
σ S(t) dW (t), with S(0) = S0, where r is the risk-free rate, σ > 0, and W (t) is a
standard Brownian motion. In the previous subsection, the solution to the foregoing
SDE is given by

S(T ) = S0 exp
(
(r − σ 2

2
)T + σ W (T )

)
.

The payoff of the European option is max{S(T )− K , 0}, which is a monotonic func-
tion of S(T ). S(T ) is also a monotonic function of W (T ). We can therefore apply
the antithetic variable method to achieve variance reduction in estimating the option
price. Now, if Zi ∼ N (0, 1) for i = 1, . . . , n, which is a sequence of random num-
bers, then Yi = −Zi is a sequence of antithetic variables. The original stock price
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paths can be simulated by, for i = 1, . . . , n,

Si (T ) = S0 exp
(
(r − σ 2

2
)T + σ

√
T Zi

)
,

and the antithetic stock price paths are generated by, for i = 1, . . . , n,

SANi (T ) = S0 exp
(
(r − σ 2

2
)T − σ

√
T Zi

)
.

Therefore, the estimated price of the European call option is given by

e−rT 1

2n

n∑
i=1

(
max{Si (T )− K , 0} +max{SANi (T )− K , 0}

)
.

2.4.1.2 Control Variates The control variate concept is simple. Suppose that we
wish to estimate θ = E[X ] from simulated data. Also suppose that for some other
variable Y , the mean μY = E[Y ] is known. Then, for any given constant c, the
quantity

XCV = X + c(Y − μY )

is also an unbiased estimator of θ , as E[XCV] = θ . Presumably, if the constant c is
chosen wisely, then a certain degree of variance reduction can be achieved. How can
we achieve this reduction? In other words, what is a good choice for c? To answer
this question, first consider the variance in the new estimator XCV. Call it σ 2CV:

σ 2CV = Var (X + c(Y − μY )) = Var(X )+ c2Var(Y )+ 2cCov(X, Y ).

The objective is to find c such that σ 2CV is minimized. Differentiating the preceding
expression with respect to c and setting the resulting derivative to zero yields

2cVar(Y )+ 2Cov(X, Y ) = 0.

Solving for such a c, c∗ = −Cov(X, Y )/Var(Y ) is the value of c that minimizes σ 2CV.
For such a c∗,

σ 2c∗ = Var(X )− (Cov(X, Y ))2

Var(Y )
.

The variable Y used in this way is known as a control variate for simulation estimator
X . Recall that Corr(X, Y ) = Cov(X, Y )/

√
Var(X )Var(Y ). Therefore,

σ 2c∗ = Var(X )(1− Corr2(X, Y )).
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Hence, as long as Corr(X, Y ) 
= 0 some form of variance reduction is achieved.
In practice, such quantities as σ 2Y = Var(Y ) and Cov(X, Y ) are usually unavailable,
and must be estimated from simulations based on sample values. For example, let
X = ∑n

i=1 Xi/n and Y = ∑n
i=1 Yi/n. Then

Ĉov(X, Y ) = 1

n − 1
n∑

i=1
(Xi − X )(Yi − Y )

σ̂ 2Y = 1

n − 1
n∑

i=1
(Yi − Y )2

ĉ∗ = − Ĉov(X, Y )

σ̂ 2Y
.

Suppose that we employ X obtained from simulation to estimate θ . Then the control
variate is Y and the control variate estimator is

X + c(Y − μY ),

with variance

1

n

(
Var(X )− (Cov(X, Y ))2

Var(Y )

)
= σ 2X

n
(1− ρ2).

Equivalently, we can employ a simple linear regression equation,

X = a + bY + e,

to estimate c∗. In fact, it can easily be shown that the least squares estimate of b,
b̂ = −ĉ∗. In such a case, the control variate estimator is given by

X + c∗(Y − μY ) = X − b̂(Y − μY ) = â + b̂μY ,

where â = X − b̂Y is the least squares estimate of a. In other words, the control
variate estimate is equal to the estimated regression equation evaluated at point μY .
Note that there is a very simple geometric interpretation. First, observe that the

estimated regression line

X̂ = â + b̂Y

= X + b̂(Y − Y ).

Thus, this line passes through the point (Y , X ). Second, observe that

X̂CV = â + b̂μY = X − b̂(Y − μY ).
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Suppose that Y < μY , that is, the simulation run underestimates μY , and that X
and Y are positively correlated. It is likely in this case that X would underestimate
E[X ] = θ . Hence, we need to adjust the estimator upward, as indicated by the fact
that b̂ = −ĉ∗ > 0. The additional amount by which it needs to be adjusted upward is
equal to −b̂(Y − μY ), which is governed by the linear equation.
Finally, σ̂ 2, the regression estimate of σ 2, is the estimate of Var(X − b̂Y ) =

Var(X + ĉ∗Y ). To see this, recall that

σ̂ 2 = 1

n

n∑
i=1

ê2i

= 1

n

n∑
i=1
(Xi − â − b̂Yi )

2

= 1

n

n∑
i=1

(
Xi − (X − b̂Y )− b̂Yi

)2
= 1

n

n∑
i=1

(
(Xi − X )+ b̂(Yi − Y )

)2
= 1

n

n∑
i=1

(
(Xi − X )2 − b̂2(Yi − Y )2

)
= V̂ar(X )− b̂2V̂ar(Y )

= V̂ar(X − b̂Y ).

The last equality follows from the standard expansion of the variance estimate. It
follows that the estimated variance of the control variate estimator X + ĉ∗(Y − μY )
is σ̂ 2/n.
In general, if more than one control variate is desired, then the outputs of the

multiple linear regression model given by

X = a +
k∑

i=1
bi Yi + e

can be used. In this case, the least squares estimates of a and bi s, â and b̂i s, can easily
be shown to satisfy ĉ∗

i = −b̂i , for i = 1, . . . , k. Furthermore, the control variate
estimate is given by

X +
k∑

i=1
ci (Yi − μYi ) = â +

k∑
i=1

b̂iμYi ,

where E[Yi ] = μYi , for i = 1, . . . , k. In other words, the control variate estimate is
equal to the estimated multiple regression line evaluated at the point (μY1 , . . . , μYk ).
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By the same token, the variance in the control variate estimate is given by σ̂ 2/n,
where σ̂ 2 is the regression estimate of σ 2.

Example 2.8 Consider the pricing of the European call option in the previous
example using a control variate.

Use the terminal asset price S(T ) as the control variate. The control variate esti-
mator is given by

CCV = C + c∗(S(T )− E[S(T )]).

Recall that S(T ) = S0 exp
(
(r − 1

2σ
2)T + σ

√
T Z

)
. It can easily be deduced that

E[S(T )] = S0e
rT ,

Var(S(T )) = S20e2rT (eσ 2T − 1).

The algorithm is as follows.

1. Simulate N1 independent standard normal random variables Zi , where i =
1, . . . , N1.

2. Compute the terminal stock price by Si (T ) = S0 exp((r − 1
2σ

2)T + σ
√

T Zi )
and the option payoff by Ci = e−rT max{Si (T )− K , 0}, where i = 1, . . . , N1.

3. Compute E[S(T )] as S0erT or estimate it by
∑N1

i=1 Si (T )/N1.

4. Compute Var(S(T )) as S20e2rT (eσ 2T − 1) or estimate it by ∑N1
i=1(Si (T )−

S(T )
2
/(N1 − 1).

5. Estimate the covariance by Ĉov(S(T ), C) = 1
N1−1

∑N1
i=1(Si (T )− S(T ))(Ci −

C), where C = ∑N1
i=1 Ci/N1 and S(T ) = ∑N1

i=1 Si (T )/N1.

6. Repeat the simulations of S(T ) and C by means of the control variate.

7. Simulate other N2 independent standard normal random variables Zi , where
i = 1, . . . , N2 and compute the terminal stock price and option payoff as before.

8. Compute CCV
i = Ci + c∗(Si (T )− E[S(T )]) for i = 1, . . . , N2, where c∗ =

− Ĉov(S(T ),C)Var(S(T )) is computed from the preceding step.

9. Calculate the control variate estimator by ĈCV = 1
N2

∑N2
i=1 CCV

i .

10. Complete the simulation by evaluating the standard error of ĈCV.

2.4.1.3 Stratified Sampling The idea behind stratification lies in the observation
that a population may be heterogeneous but comprise a variety of homogeneous
subgroups (such as those made up of a particular gender, race, or socioeconomic
status). If we wish to learn about the entire population, then we could take a random
sample from that population. It would be more efficient, however, to take small
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samples from each subgroup and combine the estimates in each according to the
fraction of the population it represents. Because it is possible to learn the opinions of
a homogeneous subgroup using a relatively small sample size, the stratified sampling
procedure is more efficient.
In general, to estimate E[X ], where X depends on a random variable S that takes

one of the values in {1, . . . , k}with known probabilities, the stratification technique is
run with k groups, with the i th group having S = i . Let Xi be the average values of X
in those runs having S = i , and then estimate E[X ] = ∑k

i=1 E[X |S = i] Pr(S = i) by

k∑
i=1

Xi Pr(S = i).

This technique is known as stratified sampling.
To illustrate further, suppose that we want to estimate E[g(U )] = ∫ 1

0 g(x)dx .
Consider two estimators based on a sample of 2n runs. The first is the standard
method,

ĝ = 1

2n

2n∑
i=1

g(Ui ).

Note that E[̂g] = E[g(U )], and

Var(̂g) = 1

4n2

2n∑
i=1
Var(g(Ui )) = 1

2n

(∫ 1

0
g2(x) dx −

(∫ 1

0
g(x) dx

)2)
.

We can also write

E[g(U )] =
∫ 1

2

0
g(x) dx +

∫ 1

1
2

g(x) dx .

Instead of selecting the U ’s from [0, 1], select the first n U ’s from [0, 1/2] and the
remaining n U ’s from [1/2, 1] to construct a new estimator

ĝs = 1

2n

( n∑
i=1

g
(Ui

2

)
+

n∑
i=1

g
(Ui + 1

2

))
.

It can easily be seen that if U ∼ U(0, 1), then V = a + (b − a)U is distributed as
U(a, b). In addition, U/2 ∼ U(0, 1/2) and (U + 1)/2 ∼ U(1/2, 1). To compute the
variance in the new estimator, consider

Var(̂gs) = 1

4n2

[ n∑
i=1
Var

(
g
(Ui

2

))
+ Var

(
g
(Ui + 1

2

))]
.
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Direct computations show that if Ui ∼ U(0, 1), then

Var
(

g
(Ui

2

))
= 2

∫ 1
2

0
g2(x) dx − 4m2

1,

Var
(

g
(Ui + 1

2

))
= 2

∫ 1

1
2

g2(x) dx − 4m2
2,

where m1 = ∫ 1/2
0 g(x) dx and m2 = ∫ 1

1/2 g(x) dx . Now, we have

Var
(

g
(Ui

2

))
+ Var

(
g
(Ui + 1

2

))
= 2

∫ 1

0
g2(x)dx − 4(m2

1 + m2
2).

Consequently,

Var(̂gs) = 1

2n

(∫ 1

0
g2(x) dx − 2(m2

1 + m2
2)

)
.

Note that

(m1 + m2)
2 + (m1 − m2)

2 = 2(m2
1 + m2

2).

Therefore,

Var(̂gs) = 1

2n

(∫ 1

0
g2(x) dx − (m1 + m2)

2 − (m1 − m2)
2
)

= Var(̂g)− 1

2n
(m1 − m2)

2.

Because the second term above is always non-negative, stratification reduces the
variance by an amount equal to this term. The larger the difference in m1 and m2,
the greater the reduction in variance. In general, if more strata are introduced then
greater reduction will be achieved. This result can be generalized to the multi-strata
case, but we omit the mathematical details here.
Stratified sampling is also very useful for drawing randomsamples fromdesignated

ranges. For example, to sample Z1, . . . , Z100 from a standard normal distribution, the
standard technique is to partition the whole real line (−∞,∞) into a number of bins
and then sample Z ’s from these bins randomly. It is inevitable that some bins will
have more samples than others and those near the tails may have no samples at all.
A random sample drawn in this way thus under-represents the tails. Although this
may not be a serious issue in general, it may have a severe effect when the tail is the



64 BACKGROUND

quantity of interest, such as in the case of the simulation of VaR. To ensure that the
bins are regularly represented, we can generate the Z ’s as follows. Let

Vi = 1

100

(
Ui + (i − 1)

)
, for i = 1, . . . , 100,

whereUi ∼ U(0, 1). By the uniform distribution property, Vi ∼ U( i−1
100 ,

i
100 ). Now, let

Zi = 	−1(Vi ). Then, Zi falls between the (i − 1)th and i th percentiles of a standard
normal distribution. For example, if i = 1, then V = U/100 ∼ U(0, 1/100) such that
Z = 	−1(V ) falls between	−1(0) = −∞ and	−1(0.01), that is, the zeroth and first
percentiles of a standard normal distribution.
This method gives equal weight to each of the 100 equiprobable strata. Of course,

the number 100 can be replaced with any number that is desirable. The price paid
in stratification is the Z ’s loss of independence, which complicates the statistical
inference for simulation results.
The following examples illustrate the application of stratified sampling to the

pricing of a European option.

Example 2.9 Similar to the situation in the European call option pricing example,
here we simulate the terminal prices S1(T ), . . . , Sn(T ) and employ the standard
technique (instead of the antithetic variable method) to compute the estimate of the
price of a European call option as

e−rT 1

n

n∑
i=1
max{Si (T )− K , 0}.

In this standard simulation, the normal random variables are sampled arbitrarily
over the whole real line. We can improve the efficiency by introducing stratification:

1. Partition (−∞, ∞) into B strata or bins.

2. Set Vi = 1
B (Ui + (i − 1)), for i = 1, . . . , B, and generate the desired number

of random samples, say, NB, of the V ’s in the i th bin.

3. Apply 	−1(Vi ) to obtain the desired normal random numbers from each bin
and calculate Ci for each bin.

4. Average the Ci over the total number of bins to get an overall estimate, C.

5. Calculate the standard error.

Regular stratification places equal weight on each of the B bins. Such allocation
may not be ideal, as it may be preferable to have the sample sizes directly related to
the variability of the target function over the bin. To illustrate this point, consider the
payoff of a European call option again.

Example 2.10 Note that if S(T ) < K , then the payoff of the call option is zero.
Recall that

S(T ) = S0 exp
(
(r − σ 2

2
)T + σ

√
T Z

)
.
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Therefore, S(T ) < K if and only if S0 exp
(
(r − σ 2

2 )T + σ
√

T Z
)

< K , that is,

Z < L �
log(K/S0)− (r − 1

2σ
2)T

σ
√

T
.

Every simulated Z < L is wasted as it simply returns a value of 0. We need to
concentrate on the interval [L ,∞). The goal is achieved as follows.

1. Determine the CDF of a normal distribution Y restricted on [L ,∞). It can be
shown that Y has a CDF of

F(y) = 	(y)− 	(L)

1− 	(L)
.

2. Use the inverse transform method to generate Y . Consider the inverse trans-
formation of F, that is, solve for y such that y = F−1(x). Writing it out,
x = F(y) = 	(y)−	(L)

1−	(L) , such that

y = 	−1(x(1− 	(L))+ 	(L)).

Now, generate U ∼ U(0, 1) and evaluate

Y = 	−1(U (1− 	(L))+ 	(L)).

3. Plug the generated Y into the simulation step of the call option payoff and
complete the analysis. Note that when evaluating the new estimator for the
payoff, one needs to multiply the factor 1− 	(L), that is,

C∗ = (1− 	(L))C,

where C is the average of the simulated payoffs using the truncated normal
random variables.

The stratification technique is generally applied to bins in which the variability of
the integrand is greatest. Here, we focus the entire sample on the case of S(T ) > K .

2.4.1.4 Importance Sampling The idea underpinning importance sampling is
similar to that for the acceptance–rejection method discussed in the previous sub-
section. The main idea is to approximate in places in which the quantity of interest
carries the most information, hence “importance sampling.”
Suppose that we are interested in estimating

θ = E[h(X)] =
∫

h(x) f (x) dx,
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where X = (X1, . . . , Xn) denotes an n-dimensional random vector with a joint PDF,
f (x) = f (x1, . . . , xn). Suppose that direct simulation of the random vector is inef-
ficient such that computing h(X) is infeasible. This inefficiency may be due to dif-
ficulties encountered in simulating X, the variance in h(X) being too great, or a
combination of the two.
Suppose that there exists another density g(x), which is easy to simulate and

satisfies the condition that f (x) = 0whenever g(x) = 0. Then, θ can be estimated by

θ = E[h(X)]

=
∫

h(x) f (x)
g(x)

g(x) dx

= Eg

[h(X) f (X)
g(X)

]
,

where the notation Eg denotes the expectation of random vector X taken under
density g. It follows that θ can be estimated by generating X with density g and then
using it as the estimator of the average of the values of h(X) f (X)/g(X). In other
words, we construct a Monte Carlo estimator of θ = E[h(X)] by first computing the
i.i.d. random vectors Xi with PDF g(X) and then using the estimator

θ̂ = 1

n

n∑
i=1

h(Xi ) f (Xi )

g(Xi )
.

If the density g(x) can be chosen to ensure that the random variable h(X) f (X)
g(X) has

a small degree of variance, then this approach is known as the importance sampling
approach, and it can result in an efficient estimator of θ .
To see how it works, note that the ratio of f (X)/g(X) represents the likelihood

ratio of obtaining Xwith respective densities of f and g. If X is distributed according
to g, then f (X) is small relative to g(X). Therefore, when X is simulated according to
g, the likelihood ratio of f (X)/g(X) is usually small in comparison to 1. It can also
be seen that

Eg

[ f (X)
g(X)

]
=

∫
f (x)
g(x)

g(x) dx =
∫

f (x) dx = 1.

Thus, even though the likelihood ratio of f (X)/g(X) is smaller than 1, its mean is
equal to 1, which suggests that it occasionally takes large values and results in a large
degree of variance.
To render the variance of h(X) f (X)/g(X) small, we must arrange for the density g

such that the values of X for which f (X)/g(X) is large are precisely those for which
h(X) is small, thus ensuring that the ratio of h(X) f (X)/g(X) remains small. Because
importance sampling sometimes requires h to be small, it works best when estimating
a small probability.
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How is the function g generally chosen? It requires the notion of tilted density.
Let MX(t) = E[etX] represent the moment-generating function of a random variable
X with density f . Then density function

ft (x) � etx f (x)
MX(t)

is called the tilted density of a given f , where−∞ < t < ∞. Note from this definition
that a random variable with density ft tends to be larger than the one with density f
when t > 0 and smaller when t < 0.
In many instances, what is of interest is the sum of independent random variables.

In such cases, the joint density f (x) of x = (x1, . . . , xn) can be written as the product
of the marginals fi of xi such that

f (x) = f1(x1) · · · fn(xn).

In this situation, it is often useful to generate the Xi according to their tilted densities
with a common t .
Another application of importance sampling is the estimation of tail probabilities

(recall that importance sampling works best with a small probability). Suppose that
we are interested in estimating Pr(X > a), where X has PDF f and a is a given
constant. Let 1{X>a} = 1 if X > a, and 0 otherwise. Then

Pr(X > a) = E f [1{X>a}]

= Eg

[
1{X>a}

f (X )

g(X )

]
= Eg

[
1{X>a}

f (X )

g(X )

∣∣∣X > a
]
Pr(X > a)

+Eg

[
1{X>a}

f (X )

g(X )

∣∣∣X ≤ a
]
Pr(X ≤ a)

= Eg

[
1{X>a}

f (X )

g(X )

∣∣∣X > a
]
Pr(X > a).

Take g(x) = λe−λx , where x > 0, as an exponential density with parameter λ. Then
the foregoing derivation shows that

Pr(X > a) = Eg[e
λx f (X )|X > a]

e−λa

λ
.

Using the memoryless property, that is, Pr(X > s + t |X > s) = Pr(X > t), of the
exponential distribution, it can easily be seen that the conditional distribution of an
exponential distribution conditioned on {X > a} has the same distribution as a + X .
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Therefore,

Pr(X > a) = e−λa

λ
Eg[e

λ(X+a) f (X + a)]

= 1

λ
Eg[e

λX f (X + a)].

We can now estimate θ by generating X1, . . . , Xn according to an exponential distri-
bution with parameter λ using

θ̂ = 1

λ

1

n

n∑
i=1

eλXi f (Xi + a).

Example 2.11 Reconsider the simulation of a European call option price using the
importance sampling technique. Evaluate the value of a deep out-of-money (S0 � K )
European call option with a short maturity T .

Many sampling paths result in S(T ) ≤ K and give zero values. These samples are
wasted. A possible way of dealing with this problem is to increase the values of Zi by
sampling them from a distribution with a large mean and a large degree of variance.
Sample Z̃i from N ( m

σ
√

T
, s2) such that

σ
√

T Z̃i ∼ N (m, σ 2T s2).

Note that Z̃i can be written as

Z̃i = m

σ
√

T
+ s Zi ,whereZi ∼ N (0, 1).

The importance sampling estimator is then given by

C I = e−rT 1

N

N∑
i=1
max

{
S0 exp

(
(r − σ 2

2
)T + σ

√
T Z̃i

)
, 0

}
R(Z̃i ),

where

R(Z̃i ) =
1√
2π
exp

(
− 1
2 Z̃2i

)
1√
2πs
exp

(
− 1
2s2 (Z̃i − m

σ
√

T
)2

) .

2.4.2 Pricing a Call Option

The following example demonstrates the use of antithetic variables, control variates,
and stratified sampling by valuing a standard European call option under the BS
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TABLE 2.1 Simulation Results for a Call Option Using Variance Reduction Techniques

Method Average simulated price Standard deviation of simulated price

Normal simulation 4.932844845 0.362843551
Antithetic variables 4.977191984 0.149962208
Control variates 4.934841586 0.119927058
Stratified sampling (Bin = 5) 4.953226605 0.016694595
Closed-form solution 4.952225138 −

model, with S(0) = 50, K = 48, r = 3%, σ = 25%, and T = 0.5 year. For each
variance reduction technique, 10,000 sample paths are used. The average simulated
option price and standard deviation are computed by repeating the simulation 30
times. The results are presented in Table 2.1.
All of the variance reduction methods used here are able to achieve a certain

degree of variance reduction. With the antithetic method of drawing random num-
bers, the standard deviation decreases by 58.67%. Employing the terminal asset
value as a control variate for valuation, the standard deviation decreases by 66.9%.
We could add more correlated variables to achieve further variance reduction, but
choosing new correlated variables may be difficult, and the simulation time increases
considerably when the number of control variates increases. Stratified sampling
achieves the best variance reduction, as evidenced by the 95.3% decrease in the
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Figure 2.2 Standard deviation of estimate against bin numbers.
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Figure 2.3 Simulation time against bin numbers.

standard deviation. Special attention should be paid to the number of bins chosen.
Theoretically, increasing the number of bins can result in better variance reduc-
tion performance (see Fig. 2.2). However, the computation time increases linearly
when the number of bins increases (see Fig. 2.3). For further details, please refer to
Ch2.2_Stratified_Sampling_Graphs.xls.



3
Structured Products

A structured product is a prepackaged investment strategy that is based on derivatives.
The value of a structured product is contingent upon the movement of its underlying
stocks, indices, commodities, interest rates, credits, and/or other financial variables.
Hence, a structured product is itself a derivative security and simply an alternative
term for a nonstandard derivative.
When a bank issues a structured product, regulations require it to report the

product’s price and risk level on a daily basis. Its price should bemarked to themarket.
Simulation is not a must in such valuation, and a number of interpolation techniques
are often employed to do the job. However, simulation becomes indispensable in the
calculation of risk, which should take into account possible future scenarios.
We first employ equity-linked notes (ELN) as an example to show the circum-

stances underwhich simulation is unnecessary. Certain practicalmethods can produce
the price in seconds. We then discuss the limitation of these methods in reporting
risk and show how simulation comes into play. Throughout the process, we also
introduce practical simulation techniques for handling ELN with special additional
features, such as callability, early redemption, and accrual interest. These simulation
techniques are then applied to other types of structured products. Typical examples
include the FX accumulator, which almost ruined Citic Pacific LTD in 2008, partici-
pating policy contracts, which are popular in some European life insurance packages,
and multi-asset instruments, which are popular in Asian markets.

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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3.1 WHEN IS SIMULATION UNNECESSARY?

Valuation via simulation may be unnecessary if closed-form solutions are available
or if the structured product can be replicated. When another numerical method, such
as the finite difference method or tree approach, is applicable, simulation may also be
unnecessary either. However, for problems involving higher dimensions, simulation
is usually necessary and may be the only means of valuation possible. Without
simulation, the most popular valuation method is to replicate the product payoff
using available quotes.

3.1.1 Portfolio Replication Pricing

Pricing a structured product by means of portfolio replication involves formation
of a portfolio of products that has the same payoff as the structured product at all
times. Because these products have the same payoff at all times, they also have the
same value. The value of a structured product is simply the sum of the values of its
components.

3.1.2 Equity-Linked Notes

We illustrate the portfolio replication procedure with an example of a real ELN
that was traded in 2008. As its name implies, an ELN is a financial instrument that
has much in common with a deposit note. The main difference between an ELN
and a standard note is that the former’s return is determined by the value of the
underlying equity or equity index, such that it is “equity-linked.” An ELN can serve
as a yield-enhancement device or a hedging vehicle.
The term sheet of this particular ELN contract can be found in the appendix. For

purposes of illustration, we first assume trigger event provisions to be excluded and
that the contract will not be redeemed prematurely by the issuer. In other words,
we consider a European-style ELN in which all cash payments are settled on the
terminal date of the contract and there is no intermediate accrual interest (coupon).
Later in the chapter, we discuss these neglected issues. The underlying equity in this
example is HSBC Holdings Plc., and the coupon rate is fixed at 1.3333% for each
of the three periods. Note that in a more general case, the coupon rate may depend
on how many days (or weeks or some other period of time) the stock price is at or
above a prescribed barrier price. The barrier price is the stock price above which
interest is accrued. At maturity, if the price of HSBC stock is at or above the strike
price, then the issuer redeems the note by paying the denomination. Otherwise, there
is physical delivery of the equity with a number of shares equal to D/K , where D
denotes the denomination and K denotes the strike price. Hence, the payoff to the
holder at maturity is

�T =
{

C + D
K K , if ST ≥ K ,

C + D
K ST , otherwise,

= C + D

K
min{K , ST }.
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The payoff can also be written as

�T = (C + D)− D

K
max{K − ST , 0},

where C denotes the total number of coupons. Thus, the payoff function of the note
is a combination of a long position on bonds and short position on the put option
on the equity. The note holder is selling a put option. Therefore, this ELN can be
replicated by investing cash in bonds with a corresponding maturity and short-selling
D
K put options on an equity with a correspondingmaturity, strike price, and underlying
equity. In practice, we may be unable to find bonds and put options with the same
terms as those of the ELN, in which case proxies are used. For instance, the bond
price is estimated from an interpolation of the yield curve. The yield curve fitting
procedure is detailed in Chapter 5. The implied volatility of an embedded put option
can be interpolated from the implied volatility surface (see Chapter 4).
However, risk managers may be interested in the worst-case scenario associated

with such a product before setting the trading limit or determining the capital reserve
for riskmanagement purposes. Simulation is required to determine the possible losses
by calculating such risk measures as value-at-risk (VaR). In addition, when an ELN
involves barrier provisions and allows early redemption, as does the real product
shown in the appendix, portfolio replication is impossible. Simulation thus helps in
understanding the price of the product after calibrating the model to market prices.

3.2 SIMULATION OF BLACK–SCHOLES MODEL AND
EUROPEAN OPTIONS

Before discussing the simulation of more sophisticated models, we begin with
the Black–Scholes (BS) model and demonstrate simulation with European options,
including an ELNwith barrier provisions and early redemption. Under the BS model,
the asset price S(t) is assumed to follow a geometric Brownian motion (GBM) with
drift parameter μ and volatility parameter σ ; that is, the asset dynamics are given by

d S(t)

S(t)
= μ dt + σ dW (t),

where μ represents the annualized expected return on the asset, σ represents the
annualized volatility of the asset, and W is P-standard Brownian motion. Both μ

and σ are assumed to be constants. In the physical world, μ and σ can be estimated
from historical data. For the valuation of derivatives in the risk-neutral world, the
drift is the annualized rate of return of a risk-free asset, that is, risk-free rate r . If
the asset pays a continuous annualized dividend yield q, then the asset dynamics in
the risk-neutral world become

d S(t)

S(t)
= (r − q) dt + σ dW ∗(t),
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or

d S(t) = (r − q)S(t) dt + σ S(t) dW ∗(t), (3.1)

where W ∗ is Q-standard Brownian motion.
Equation 3.1 provides a way of simulating the asset price path from time 0 to

time T . Consider a partition of the interval [0, T ] with m subintervals of equal
length,�t = T/m. From Equation 3.1, an approximation from step j to j + 1 (write
Sj = S(t j ), t j = j T

m ) is given by

Sj+1 = Sj + (r − q)Sj�t + σ Sj

√
�t Z j , (3.2)

for j = 0, . . . , m − 1, where the Z j ’s are independent standard normal random vari-
ables. By setting S0 as the initial asset price and iterating the equation m times, the
terminal asset price Sm is obtained, and {S0, S1, . . . , Sm} is the asset path from time
0 to T . To generate n asset paths, we repeat this procedure n times (using different
random numbers).
In VBA, an asset following GBMwith n paths andm steps can be simulated easily.

The following is a sample VBA code for a user-defined function, BS D Path(A).

'Generating asset paths following GBM using discretization

'with an UDT BS_PathType as the parameter of the function

Public Function BS_DPath(A As BS_PathType) As Variant

Dim i As Long, j As Long

Dim dt As Double

ReDim S(0 To A.m, 1 To A.n) As Double

dt = A.T / A.m

'main part

For j = 1 To A.n

S(0, j) = A.S0

For i = 1 To A.m

S(i, j) = S(i - 1, j) + (A.rf - A.q)*S(i - 1, j)*dt _

+ A.sigma*S(i - 1, j)*Sqr(dt)*rGauss()

Next i

Next j

BS_DPath = S

End Function

In the foregoing, A is a user-defined data type (UDT) variable with the following
VBA code.

'An UDT that stores the details of an asset

'that is required in simulation
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'where the asset is assumed to follow the BS dynamics

Type BS_PathType

S0 As Double 'inital asset price

q As Double 'annualized dividend yield

sigma As Double 'annualized volatility

rf As Double 'risk-free rate

T As Double 'peroid length

dt As Double 'length of each subinterval/step

m As Long 'no of subintervals/steps in the period

n As Long 'no of paths

End Type

The use of a UDT variable can facilitate the parameter passing between a Function
and a Sub, thus rendering the program more user-friendly and structured. Also note
that the function rGauss is used to generate a standard normal variable.
Simulation using Equation 3.2 produces very nice results when�t is small (orm is

large). Different terminal asset prices are simulated using different numbers of steps
m, with S0 = 50, r = 10%, q = 2%, σ = 40%, T = 1, and n = 10, 000. Table 3.1
presents the simulation results and errors in comparison with closed-form solution
54.164 calculated by EQ[ST |S0] = S0e(r−q)T . The mean and standard deviation of the
estimate are computed using 1000 simulations, and the error is calculated using the
mean of the estimate and the closed-form value.
As shown in the Percentage error column of Table 3.1, increasing the number

of steps decreases the error because of the more accurate discrete approximation
of the stock price by Equation 3.2. The estimation is already very good when
�t = 1/100. Increasing the number of steps dose increase the computation time,
however. Decreasing the number of steps m (or increasing �t) actually underesti-
mates the terminal asset price. To see this, increase T while keepingm = 1, such that
�t = T . The results are presented in Table 3.2. The mean, standard derivation, and
error are calculated using 1000 simulations, as before.
In fact, discretization error can be avoided in this relatively simple stochastic

process. Itô’s lemma gives us

d log S(t) =
(

r − σ 2

2

)
dt + σ dW ∗(t),

S(t) = S(0) exp

[(
r − σ 2

2

)
t + σ

√
t Z

]
, (3.3)

TABLE 3.1 Simulation Results Using Equation 3.2 with Different m

m Mean Standard deviation Percentage error Computation time (s)

1 54.004 0.1995 0.295% 0.008
10 54.148 0.2260 0.030% 0.064
100 54.162 0.2086 0.006% 0.574
250 54.168 0.2190 0.009% 1.461
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TABLE 3.2 Simulation Results Using Equation 3.2 with Different T

T S0e(r−q)T Mean Standard deviation Error Percentage error

1 54.1644 53.993 0.1987 −0.171 −0.31%
2 58.6755 57.998 0.2778 −0.677 −1.15%
5 74.5912 70.011 0.4458 −4.581 −6.14%
10 111.277 89.970 0.6398 −21.307 −19.15%

where Z is a standard normal random variable. Equation 3.3 thus provides us with
a much faster method for the exact simulation of an asset price. The corresponding
VBA code for generating terminal asset prices becomes

S = S0 * Exp((rf - simga∧2/2) * T + sigma * Sqr(T) * rGauss())

For path-dependent-type options such as American and Asian options, we require
the entire asset path for valuation. Then the “exact” simulation can be used m times,
such that, from t j to t j+1,

Sj+1 = Sj exp

((
μ − σ 2

2

)
�t + σ

√
�t Z j

)
. (3.4)

To simulate Equation 3.4, replace Equation 3.2 with Equation 3.4 in the VBA code
in the function BS D Path. This method can avoid discretization error. The corre-
sponding VBA code is as follows.

Public Function BS_Path(A As BS_PathType) As Variant

Dim i As Long, j As Long

Dim dt As Double

ReDim S(0 To A.m, 1 To A.n) As Double

dt = A.t / A.m

For j = 1 To A.n

S(0, j) = A.S0

For i = 1 To A.m

S(i, j) = S(i-1, j)*Exp((A.rf - A.q - A.sigma∧2/2)*dt _

+ A.sigma * Sqr(dt) * rGauss())

Next i

Next j

BS_Path = S

End Function

Table 3.3 presents the simulation results under the same conditions as those in
Table 3.1. It can be seen that discretization error is barely observed for exact simula-
tion. Figure 3.1 illustrates several simulated asset price paths with different numbers
of subintervals m.
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TABLE 3.3 Simulation Results Using Equation 3.4 with Different m

m Mean Standard deviation Percentage error Computation time (s)

1 54.160 0.2222 0.009% 0.010
10 54.164 0.2280 0.001% 0.089
100 54.165 0.2104 0.002% 0.834
250 54.168 0.2136 0.007% 2.079

We can also employ Equation 3.3 to simulate the asset price using discretization.
The corresponding approximation from step j to step j + 1 is given by

log Sj+1 = log Sj +
(

r − σ 2

2

)
�t + σ

√
�t Z j .

The corresponding VBA code is:

Application.Ln(S(i, j)) = Application.Ln(S(i - 1, j)) + _

(rf + sigma ∧ 2 / 2) * dt + sigma * Sqr(dt) * rGauss()
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Figure 3.1 Sample asset price paths with different numbers of steps.
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Finally, the following example illustrates the pricing of a European option using
simulation.

Example 3.1 With S0 = 50, r = 10%, q = 2%, σ = 40%, T = 1, m = 1, n =
50, 000, and K = 50, calculate the price of the European call and put option using
simulation.

Now, suppose that having simulated the asset price path, the only task remaining is to
evaluate the payoff. For a European call option, the terminal payoff for the j th path
is max{Sm, j − K , 0}. The price of a European call option, c, is estimated as

c � 1

n

n∑
j=1
e−rT max{Sm, j − K , 0}.

Similarly, the price of the European put option, p, is estimated as

p � 1

n

n∑
j=1
e−rT max{K − Sm, j , 0}.

A function that calculates the payoff with an array of asset price paths can be written
in terms of the parameters, as follows.

Public Function EO_Payoff(S As Variant, ByVal K

As Double, ByVal optionType As Integer, _ Optional ByVal m

As Long = -1) As Variant

Dim j As Long

ReDim payoff(1 To UBound(S, 2)) As Double

If m = -1 Then m = UBound(S, 1)

Select Case optionType

Case xCall

For j = 1 To UBound(S, 2)

payoff(j) = Max(S(m, j) - K, 0)

Next

Case xPut

For j = 1 To UBound(S, 2)

payoff(j) = Max(K - S(m, j), 0)

Next

Case xStraddle

For j = 1 To UBound(S, 2)

payoff(j) = Max(S(m, j) - K, K - S(m, j))

Next

End Select

EO_Payoff = payoff

End Function
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This function will return an array of payoffs. The VBA code for calculating the price
using this function is:

'Simulate the path

S = BS_Path(A)

'Calculate the terminal payoff

Payoff = EO_Payoff(S, K, optionType)

Cells(2, 5) = Exp(-A.rf * A.t) * Average(Payoff)

For further details, please refer to Ch3.2_European_Option_with_EMS.xls.

Remark This code can easily be modified to cope with other types of options such
as a European ELN and straddle. A long position in a straddle means a combination
of long positions in a call option and put option on the same underlying asset, strike
price, and time-to-maturity. By modifying the payoff function EO_Payoff in the
program, other types of options can be calculated easily. For path-dependent options,
such as the barrier provision in a realistic ELN, we can set m = 252 to handle the
case of daily monitoring.

The simulated prices of the European call and put options are 9.508 and 5.723,
respectively, whereas those calculated by the BS formulas are 9.501 and 5.733,
respectively. The BS formulas with current stock price S, strike price K , time t ,
risk-free rate r , dividend yield q , volatility σ , and maturity T are

c(S, K , t, r, q, σ, T ) = Se−q(T −t)�(d1)− K e−r (T −t)�(d2),

p(S, K , t, r, q, σ, T ) = K e−r (T −t)�(−d2)− Se−q(T −t)�(−d1),

where � is the cumulative distribution function (CDF) of a standard normal random
variable, and

d1 =
log S

K +
(

r − q + σ 2

2

)
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t .

We can see that in both cases, the simulated prices are very close to the theoretical
prices. Therefore, simulation does a good job of estimating the price of the European
option in our example.

3.3 AMERICAN OPTIONS

Another feature found in a realistic ELN is early redemption, that is, the holder’s
right to terminate the contract prematurely. In finance, the early redemption feature
refers to an American-style contracts. American options give holders the right of
early exercise, a very common feature in financial markets. Although simulation can
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be employed to generate stock price paths, we need some way to determine whether
it is optimal to exercise the option at each time step, a task that renders the valuation
of an American option highly challenging.
In this section, we introduce the use of the backward stochastic dynamic program-

ming approach together with the least squares approach introduced by Longstaff and
Schwartz (2001). With these two approaches, the computation time needed to value
an American option can be greatly reduced. Moreno and Navas (2003) and Stentoft
(2004) reported the numerical performance of this approach.
As anELN is embeddedwith a put option,we consider a fictitious in-the-money put

option that gives the holder the right of immediate exercise at t = 0 or, alternatively,
the right of exercise at maturity at t = T . At t = 0, the holder must decide whether to
exercise the option immediately or continue. In deciding, he or she needs to compare
the immediate exercise payoff with the expected discounted payoff of continuation,
given the asset price at t = 0. Therefore, the value of this option at t = 0, V (0), is the
maximum between the immediate payoff and expected discounted payoff at t = T ,
V (T ), that is,

V (0) = max{K − S(0),E[e−rT V (T )|S(0)]},

where V (T ) = max{K − S(T ), 0} and the expectation is taken under Q. To simplify
the notation, we suppress the superscript Q.
Now, extend this idea to anAmerican option that can be exercised at each time point

t1, . . . , tm and matures at t = tm , where �t = ti − ti−1, which is an approximation
of an American option with a continuous exercise right. Denote the value of this
American option at time ti by V (ti ) for i = 0, . . . , m and t0 = 0. Then, from the
foregoing argument, we have

V (tm) = max{K − S(tm), 0},
V (tm−1) = max{K − S(tm−1),E[e−r�t V (tm)|S(tm−1)]}.

...

In general,

V (ti−1) = max{K − S(ti−1),E[e−r�t V (ti )|S(ti−1)]}fori = 2, . . . , m,

with the terminal condition

V (tm) = max{K − S(tm), 0}.

This recurrence relation allows the value of an American option V (0) to be computed.
It would be very time-consuming to compute E[e−r�t V (ti )|S(ti−1)] by simulation

again. Here, we employ the least squares approach, which uses a least squares regres-
sion to estimate the value of E[e−r�t V (ti )|S(ti−1)]. One of the choices is the quadratic
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conditional function

E[e−r�t V (ti )|S(ti−1)] = a + bS(ti−1)+ cS(ti−1)2. (3.5)

In this approach, n asset price paths, each of them with m subintervals, are
generated. We then work backward from t = tm . At each ti , for i = 2, . . . , m, we
regress e−r�t Vj (ti ) on Sj (ti−1) with a quadratic polynomial using every in-the-money
path Sj (ti−1) to obtain estimate Ê[e−r�t V (ti )|S(ti−1)]. Then, we compare estimate
Ê[e−r�t V (ti )|S(ti−1)] with the immediate exercise payoff, K − S(ti−1). Therefore,
the decision rule becomes

V (ti−1) =
{

K − S(ti−1) if max{K − S(ti−1), 0} ≥ fi−1(S(ti−1)),

e−r�t V (ti ) otherwise,

where fi−1(S(ti−1)) = Ê[e−r�t V (ti )|S(ti−1)].
By repeating this procedure from i = m to i = 2 and for j = 1, . . . , n, we obtain

Vj (t1) for every asset price path j = 1, . . . , n. Then, Vj (t0) is equal to the discounted
value of Vj (t1), and the estimated price of an American option is the average of
Vj (t0):

V (t0) � 1

n

n∑
i=1
e−r�t Vj (t0).

Remark In Equation 3.5, only in-the-money paths are used in least squares esti-
mation, as they are sensitive to immediate exercise.

To familiarize readers with the least squares approach, we illustrate the calculation
using the following numerical example.

Example 3.2 Let S0 = 50, r = 4%, and σ = 40%. Compute the value of an Amer-
ican put option with strike price K = 52 and maturity T = 1. For simplicity, assume
that the option can be exercised only at t = 1/3, 2/3, and 1.

Use the formula S(t + �t) = S(t) exp((r − σ 2/2)�t + σ� W ∗(t)) to generate asset
prices at exercise time points t = 1/3, 2/3, 1. We include only 10 sample paths for
illustration purposes. In practice, many more sample paths should be used. Table 3.4
gives the 10 sample paths. The terminal payoffs corresponding to each path, V (1),
are presented in the last column of Table 3.4.
In Table 3.5, only in-the-money paths 2, 7, 8, 9, and 10 are used for regression.

The quadratic conditional function

E[e−r�t V (1)|S(2/3)] = a + bS(2/3)+ cS(2/3)2
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TABLE 3.4 Sample Paths and Payoffs at Maturity

Path S(0) S(1/3) S(2/3) S(1) V (1) = max{K − S(1), 0}
1 50 63.785 57.794 60.727 0
2 50 36.627 51.035 46.085 5.915
3 50 62.100 69.384 52.948 0
4 50 60.628 66.708 61.437 0
5 50 44.679 53.568 40.742 11.258
6 50 67.858 81.914 65.260 0
7 50 55.199 42.031 74.688 0
8 50 33.900 30.104 27.914 24.086
9 50 36.216 30.358 29.878 22.122
10 50 68.742 44.205 44.247 7.753

gives us

f2(S(2/3)) = Ê[e−r�t V (1)|S(2/3)] = 185.441− 8.115S(2/3)+ 0.090S(2/3)2.

We then calculate the estimated continuation value based on f2(S(2/3)), which
determines the exercise policy at t = 2/3; see Table 3.6. The option is exercised
only if the immediate exercise value is greater than the estimated continuation value.
V (2/3) is determined by

V (2/3) =
{

K − S(2/3), if max{K − S(2/3), 0} ≥ f2(S(2/3)),
e−�t V (1), otherwise.

At t = 1/3, paths 2, 5, 8, and 9 in Table 3.7 are in-the-money and are used for the
following regression.

E[e−r�t V (2/3)|S(1/3)] = a + bS(1/3)+ cS(1/3)2.

TABLE 3.5 Exercise Values and Estimated Continuation Values at t = 2/3

Estimated
Continuation value Exercise value continuation value

Path S(2/3) e−r�t V (1) max{K − S(2/3), 0} Ê[e−r�t V (1)|S(2/3)]
1 57.794 0 0 −
2 51.035 5.837 0.965 6.564
3 69.384 0 0 −
4 66.708 0 0 −
5 53.568 11.109 0 −
6 81.914 0 0 −
7 42.031 0 9.969 3.939
8 30.104 23.767 21.896 23.012
9 30.358 21.829 21.642 22.338
10 44.205 7.651 7.795 3.231
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TABLE 3.6 Optimal Exercise Policy at t = 2/3

Continuation Estimated
value Exercise value continuation value

Path e−r�t V (1) max{K − S(2/3), 0} f2(S(2/3)) Exercise V (2/3)

1 0 0 − No 0
2 5.837 0.965 6.564 No 5.837
3 0 0 − No 0
4 0 0 − No 0
5 11.109 0 − No 11.109
6 0 0 − No 0
7 0 9.969 3.939 Yes 9.969
8 23.767 21.896 23.012 No 23.767
9 21.829 21.642 22.338 No 21.829
10 7.651 7.795 3.231 Yes 7.795

This time,

f1(S(1/3)) = 244.130− 12.721S(1/3)+ 0.166S(1/3)2,

which determines the exercise policy at t = 1/3 (see Table 3.8). Once again, V (1/3)
is determined by

V (1/3) =
{

K − S(1/3), if max{K − S(1/3), 0} ≥ f1(S(1/3)),
e−�t V (2/3), otherwise.

Finally, we discount Vj (1/3) by e−r�t to obtain Vj (0), and compute the average of
Vj (0) to get the estimated American put option price. In this example, the estimated
American price is 8.200, as shown in Table 3.9, which is higher than the European
option price of 8.11.

TABLE 3.7 Exercise Values and Estimated Continuation Values at t = 1/3

Estimated
Continuation value Exercise value continuation value

Path S(1/3) e−r�t V (2/3) max{K − S(1/3), 0} Ê[e−r�t V (2/3)|S(1/3)]
1 63.785 0 0 −
2 36.627 5.760 15.373 12.533
3 62.100 0 0 −
4 60.628 0 0 −
5 44.679 10.961 7.321 10.878
6 67.858 0 0 −
7 55.199 9.837 0 −
8 33.900 23.452 18.100 24.351
9 36.216 21.540 15.784 13.951
10 68.742 7.692 0 −
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TABLE 3.8 Optimal Exercise Policy at t = 1/3

Continuation Estimated
value Exercise value continuation value

Path e−r�t V (2/3) max{K − S(1/3), 0} f1(S(1/3)) Exercise V (1/3)

1 0 0 − No 0
2 5.760 15.373 12.533 Yes 15.373
3 0 0 − No 0
4 0 0 − No 0
5 10.961 7.321 10.878 No 8.307
6 0 0 − No 0
7 9.837 0 − No 9.837
8 23.452 18.100 24.351 No 23.452
9 21.540 15.784 13.951 Yes 15.784
10 7.692 0 − No 7.692

To summarize, the steps in valuing an American option are as follows.

1. Generate n stock price paths, each of which has m subintervals.

2. Calculate the terminal payoff Vj (tm) of each stock price path.

3. Regress e−r�t V (ti ) on S(ti−1) using a quadratic conditional function.
4. If max{K − S(ti−1), 0} ≥ Ê[e−r�t V (ti )|S(ti−1)], then set Vj (ti−1) = K −

S(ti−1). Otherwise, set Vj (ti−1) = e−r�t V (ti ).

5. Repeat Steps 3 and 4 from i = m to i = 2.

6. Discount Vj (t1) at the risk-free rate to obtain Vj (0), and average Vj (0) to obtain
V (0).

The VBA code for computing an American option price is as follows.

'Simulate the path

S = BS_Path(A)

TABLE 3.9 Estimated American Put Price

Path V (1/3) V (0) = e−r�t V (1/3)

1 0 0
2 15.373 15.169
3 0 0
4 0 0
5 8.307 10.816
6 0 0
7 9.837 9.707
8 23.452 23.141
9 15.784 15.575
10 7.692 7.590

Average = 8.200
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'Calculate the terminal payoff

Payoff = AO_Payoff(S, A.rf, A.dt, K, optionType)

Price = Exp(-A.rf * A.t) * Average(Payoff)

For further details, please refer to Ch3.3_American_Option_with_EMS.xls. Note that
AO_Payoff is a user-defined function for calculating the “payoff at maturity.” When it
is used to calculate the price of a vanilla American option, the average of the payoff
calculated from AO_Payoff must be discounted using the risk-free rate.

Public Function AO_Payoff(S As Variant, ByVal rf As

Double, ByVal dt As Double, _ ByVal K As Double, ByVal

optionType As Integer, Optional ByVal m As Long = -1)

Dim i As Long, j As Long

Dim n As Long

Dim cntITM As Long

Dim x As Variant 'predictor

Dim y As Variant 'response

Dim Beta As Variant

Dim exeValue As Double

If m = -1 Then m = UBound(S, 1)

n = UBound(S, 2)

ReDim optionVal(0 To m, 1 To n) As Double

ReDim Payoff(1 To n)

'Calculate the value of the option at maturity

For j = 1 To n

Select Case optionType

Case xCall

optionVal(m, j) = Max(S(m, j) - K, 0)

Case xPut

optionVal(m, j) = Max(K - S(m, j), 0)

Case xStraddle

optionVal(m, j) = Max(S(m, j) - K, K - S(m, j))

End Select

Next

For i = m - 1 To 1 Step -1

'Counting in the money path

cntITM = 0

For j = 1 To n

Select Case optionType

Case xCall

optionVal(i, j) = Max(S(i, j) - K, 0)
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Case xPut

optionVal(i, j) = Max(K - S(i, j), 0)

Case xStraddle

optionVal(i,j = Max(S(i,j) - K,K-S(i,j))

End Select

If optionVal(i, j) > 0 Then cntITM = cntITM + 1

Next

If cntITM > 2 Then

'create matrix for regression

ReDim x(1 To cntITM, 1 To 3)

ReDim y(1 To cntITM, 1 To 1)

cntITM = 0

For j = 1 To n

If optionVal(i, j) > 0 Then

cntITM = cntITM + 1

y(cntITM, 1) = Exp(-rf * dt)

* optionVal(i + 1, j)

x(cntITM, 1) = 1

x(cntITM, 2) = S(i, j)

x(cntITM, 3) = S(i, j) ˆ 2

End If

Next

Beta = OLS(x, y)

End If

'determine if early exercise is preferred

For j = 1 To n

If optionVal(i, j) <= 0 Or optionVal(i, j) <=
Beta(0) + Beta(1) * _ S(i, j) + Beta(2)

* S(i, j) ˆ 2 Then

optionVal(i,j)=Exp(-rf*dt)*optionVal(i+1,j)

End If

Next

Next

For j = 1 To n

optionVal(0, j) = Exp(-rf * dt) * optionVal(1, j)

Payoff(j) = Exp(rf * dt * m) * optionVal(0, j)

Next

AO_Payoff = Payoff

End Function
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3.3.1 Empirical Martingale Correction

To improve simulation quality, we can employ a simple correction method called
empiricalmartingale simulation (EMS), whichwas introduced byDuan and Simonato
(1998). The risk-neutral valuation formula gives us the martingale property for any
stochastic models:

EQ
[
e−r t S(t)

∣∣ S0
] = S0.

Unfortunately, this martingale property fails to hold exactly in simulation due to
discretization and sampling errors. Duan and Simonato (1998) showed that EMS can
be used to achieve a certain level of variance reduction. This method is particularly
useful in the valuation of path-dependent derivatives, although it can also be used
with the other variance reduction techniques described in Chapter 2. For our original
n stock price paths with m subintervals Sj (ti ) each, empirical martingale correction
goes as follows. First, set

S∗
j (t0) = Sj (t0) = S0.

At each time point t1, . . . , tm , calculate

Z j (ti ) = S∗
j (ti−1)

Sj (ti )

Sj (ti−1)
, for j = 1, . . . , n,

Z0(ti ) = 1

n
e−r ti

n∑
j=1

Z j (ti ).

Then, the corrected j th stock price at time ti is given by

S∗
j (ti ) = S0

Z j (ti )

Z0(ti )
.

It can be shown that after correction, the new stock price paths S∗
j (ti ) at each time ti

satisfy

EQ[e−r ti S∗
j (ti )|S0] = S0.

The following is the corresponding VBA code for a function that employs EMS
(this function can be found in the function library).

Function EMartingale(S, rf as double, q as double,

dt as double)

Dim i As Long, j As Long, An As Long, Am As Integer

Dim Z0 As Double
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An = UBound(S, 2)

Am = UBound(S, 1)

ReDim zS(1 To An) As Double

ReDim eS(0 To Am, 1 To An) As Double

For j = 1 To An

eS(0, j) = S(0, j)

Next j

For i = 1 To Am

'Calculate the discounted sample average

For j = 1 To An

zS(j) = eS(i - 1, j) * S(i, j) / S(i - 1, j)

Next j

Z0 = Exp(-(rf - q) * dt * i) * Average(zS)

'Correct the sample path at time i

For j = 1 To An

eS(i, j) = eS(0, j) * zS(j) / Z0

Next j

Next i

EMartingale = eS

End Function

Incorporating EMS in the valuation of an American option price requires the
addition of just one step using the foregoing function E Martingale.

1. Generate n stock price paths with m subintervals each.

2. Employ empirical martingale correction with S to S∗.
3. Continue the original Steps 2 to 6 with S∗.

The corresponding VBA code is as follows.

'Simulate the path

S = BS_Path(A)

eS = EMartingale(S, A.rf, A.q, A.dt)

'Calculate the terminate payoff

Payoff = AO_Payoff(eS, A.rf, A.dt, K, optionType)

Price = Exp(-A.rf * A.t) * Average(Payoff)

For further details, please refer to Ch3.3_American_Option_with_EMS.xls.
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3.4 RANGE ACCRUAL NOTES

3.4.1 Possible Design and Sample Term Sheet

A range accrual note (RAN) pays a fixed rate each day if a chosen reference variable
falls within a predefined corridor at a specified time; otherwise, no interest rate is
paid on that day. The reference variable could be a stock price, index value, FX rate,
bond yield, or reference portfolio value. Different types of RANs are liquidly traded
in the over-the-counter (OTC) market.
The ELN discussed in Section 1 pays a constant coupon C , which is independent

of the performance of the underlying stock. In certain circumstances, the ELN is
embedded with a RAN such that the coupon payment is contingent upon a reference
rate. Consider a situation in which the coupon rate accumulates each day that the
closing price of HSBC is greater than or equal to the barrier price B. If the barrier
price is not zero, then each day there is a binary option expiring with a strike price
equal to B. Note that the term sheet of the ELN presented in the appendix does not
involve barrier price B.

3.4.2 Closed-Form Solution for European RAN Under Black–Scholes Model

To simplify our discussion, assume that trigger events (say, a callable feature) and
early redemption do not occur. As noted in Section 3.1, this ELN can be interpreted
as a combination of zero-coupon bonds (CBs) and a put option on the stock HSBC
Holdings Plc. Recall that the holder’s payoff function at maturity is

E L N (T ) = (C + D)− D

K
max{K − S(T ), 0},

where D stands for the note denomination and C for the total fixed coupon payment.
However, we consider that the total coupon payment, C , is no longer a constant,
but rather a variable coupon depending on the performance of the underlying stock,
such that the coupon paid in each year is proportional to the number of days that the
underlying stock price remains above B. In such a situation, the present value of the
coupon is given by

CDiscounted =
3∑

i=1
Cie

−r tNi , (3.6)

Ci = C

Ni − Ni−1

Ni∑
j=Ni−1

1{S(t j )≥B}, (3.7)

where C is the maximum coupon rate, Ci is the realized coupon rate at tNi , Ni is the
total number of trading days in i years, and N0 = 0. Therefore, such an ELN can be
decomposed into the sum of a RAN, a CB zero-coupon bond and a short position in
a put. The present value of this ELN is given by

E L N = C
3∑

i=1

e−r tNi

Ni − Ni−1

Ni∑
j=Ni−1

Q(S(t j ) ≥ B)+ De−rT − D

K
p(S, K , r, q, σ, T ).

(3.8)
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Under the BS model,

S(t j ) ≥ B iff W ∗(t j ) ≥
log B

S −
(

r − q − σ 2

2

)
t j

σ
.

Hence,

Q(S(t j ) ≥ B) = �

⎛⎝ log S
B +

(
r − q − σ 2

2

)
t j

σ
√

t j

⎞⎠ .

Substituting this into Equation 3.8, we obtain the following closed-form solution.

E L N = C
3∑

i=1

e−r tNi

Ni − Ni−1

Ni∑
j=Ni−1

�(d B
j )

+ De−rT − D

K
K e−r (T −t)�(−d2)− Se−q(T −t)�(−d1), (3.9)

where

d1 = log S
K + (r − q + σ 2

2 )T

σ
√

T
, d2 = d1 − σ

√
T ,

d B
j = log S

B + (r − q − σ 2

2 )t j

σ
√

t j
.

In practice, a trader may infer the price of an embedded RAN by interpolating the
RANs on the same underlying stock in the OTC market. In doing so, he or she needs
three separate interpolations in the yield curve, implied volatility surface, and OTC
RAN prices.
With the closed-form solution, the analytical price of the note on September

25, 2008 (the issue date), is calculated as 93,502.77, with S0 = 123.8, r = 3.40%,
q = 3.00%, σ = 46.74%, T = 0.4762, and K = 112.4535.
In Section 4, we showed how to simulate the price of standard options when

the dynamics of the stock price follow the BS model. VBA functions BS_Path and
EO_Payoff can be used to simulate the price of this note, with only statement-length
modification.

Dim S As Variant 'paths of stock price

Dim payoff As Variant 'payoff of each sample path

Dim price As Double 'price of the note
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S = BS_Path(A)

payoff = EO_Payoff(S, K, xPut)

price = (D - D / K * Average(payoff))

* Exp(-A.rf * A.t) + sumcoupon

'sumcoupond is the total discounted coupon value

For further details, refer to Ch3.4_Range_Accrual_Notes_(Plain).xls.
This example demonstrates that a structured product can be priced once it is

decomposed into simpler products. Even when such decomposition is not possible,
simulation can still help. In this case, the payoffs at maturity are to be simulated,
discounted at the risk-free rate, and then added back to the discounted coupons. The
procedure is as follows.

1. Simulate n stock price paths.

2. Calculate Payoff(i) = D
K min{ST , K }.

3. Calculate CDiscounted by Equation 3.6.

4. Price = CDiscounted + e−r (T −t)

n

∑n
i=1 Payoff

(i).

The corresponding VBA codes are as follows.

'Step1: Generate n stock price paths

S = BS_Path(A)

'Step2: calculate the payoffs

For j = 1 To A.n

payoff(j) = D / K * Min(S(A.m, j), K)

Next j

'Step4: calculate the price

Price = Average(payoff) * Exp(-A.rf * A.t) + sumcoupon

'sumcoupond is the total discounted coupon value

For further details, refer to Ch3.4_Range_Accrual_Notes_(Plain).xls.
For n = 50,000, the simulated price is 93,495.68, which deviates little from the

closed-form price. As the RAN requires that principal of HK$100,000 be put into the
account when the contract is entered into, an expected payoff of 93,584.4364 shows
that this contract may not be a good choice for investors.

3.4.3 Callable and American Features

ELN and RAN become complicated instruments when they include callable features
and/or early redemption rights.
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3.4.3.1 Callable ELN Acallable feature refers to the issuer’s right to call back and
terminate the product in face of a particular trigger event. A call provision is usually
specified in the contract. A closed-form solution can no longer be derived when
there is a callable feature because the ELN has become a path-dependent structured
product. However, the simulation approach is still applicable.When the call provision
is a barrier provision, it is known as an auto-call feature, and the valuation is less
complicated.
According to the term sheet of the ELN in the appendix, there are three prices

that can affect the payoff of the note. Barrier price B is used to decide whether or
not the coupon rate should accumulate. As B happens to be zero in this note, the
coupon rate is fixed at 1.3333% for each period. The trigger price T G checks whether
the condition of the trigger event is satisfied on period end dates other than the final
valuation date. Once the stock price at closing time on these specific dates exceeds the
trigger price, the trigger event is deemed to have occurred, and the contract terminates
immediately. The issuer then redeems the note by paying the denomination and the
relevant coupon amount. This feature is known as auto-call. Strike price K is used
to calculate the payoff when the note reaches maturity. For simplicity, assume that
payments of all kinds are settled immediately. The payoff for each sample path is
calculated as follows.

1. On the last trading day of period 1, compute the fixed coupon for period 1,
where Coupon = D ∗ cr with cr = 1.3333%.

2. On the same day, check whether the closing price has exceeded the trigger
price T G. If yes, then compute the payoff of the trigger event as Payoff =
D + Total coupon, which concludes one sample path. Otherwise, continue.

3. Repeat Steps 1 and 2 for period 2.

4. Repeat Step 1 for period 3.

5. At maturity, compute the payoff as Payoff = D
K min{S(T ), K } + Total coupon.

Note that both coupons and payoffs should be discounted to their present value
(this procedure is omitted in the foregoing algorithm). The price can be obtained by
averaging the discounted total coupons and payoff.
To improve the flexibility and accuracy of the simulation program, an array

td(0 T o Application.Count(Range “H : H ′′))

is declared to record the cumulative trading days by the end of each observa-
tion period. The payment schedule, which lists the trading days of each period,
is typed into an Excel spreadsheet before the simulation is performed to allow td to
read in the data from the spreadsheet. Number of steps in the spreadsheet must
be changed to total cumulative days. If any modification is made to the pay-
ment schedule, then only the spreadsheet needs to be adjusted; the program is kept
unchanged.
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Based on this algorithm, part of the corresponding VBA code is as follows.

Public Function RAN_Price(S As Variant, rf As Double,

dt As Double, D As Double, _ CR As Double, K As Double,

B As Double, TG As Double, td As Variant) As Variant

For j = 1 To n

curPeriod = 1

coupon = 0

nBarrier = 0

For i = 0 To m

If S(i, j) > B Then nBarrier = nBarrier + 1

If i = td(curPeriod) Then

If curPeriod = 1 Then nBarrier = td(1)

coupon = coupon + Exp(-rf * i * dt) * D * CR *

nBarrier / _ (td(curPeriod) - td(curPeriod - 1))

If i = m Then Exit For

If S(i, j) >= TG Then

Price(j) = D * Exp(-rf * i * dt)

GoTo ContractEnd

End If

curPeriod = curPeriod + 1

nBarrier = 0

End If

Next i

Price(j) = Exp(-rf * m * dt) * D / K * Min(S(m, j), K)

ContractEnd:

Price(j) = Price(j) + coupon

Next j

The corresponding Sub procedure is

S = BS_Path(A)

S = EMartingale(S, A.rf, A.q, A.dt)

Price = RAN_Price(S, A.rf, A.dt, D, CR, K, B, TG, td)

Cells(18, 2) = Average(Price)

For further details, please refer to Ch3.4_Range_Accrual_Notes_(Callable).xls.

Remark This function is more general as it allows B to be non-zero.

If the process is repeated 50,000 times, then the price of the callable note with
B = 0 is simulated to be 94,768.45, which is a little higher than the previous price
without a trigger event. The reason for this discrepancy is that rather than selling
a standard put option to the issuer, the holder of a callable-RAN is short-selling
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an up-and-out put option with a knock-out price equal to the trigger price. As an
option with a knock-out feature is cheaper than a standard option, the value of a RAN
with a callable feature should be higher. With a lower trigger price, the value of a
callable RAN is even higher because it is easier for it to be knocked out with a lower
trigger price.

3.4.3.2 American ELN In an American ELN, upon occurrence of an issuer tax
event and/or change in law and/or hedging disruption and/or increased cost of hedg-
ing, the issuer may redeem the entire note. In other words, the issuer has an early
redemption right, or surrender right from the holder’s perspective. To make a prod-
uct more attractive, an early redemption right is sometimes given to the holder
rather than the issuer. The holder can then exercise the note at any time he or she
wishes by paying a premium when it is issued. In this case, we can treat the con-
tract as an American-style ELN and employ the least squares approach to calculate
the premium.
In this example, assume that the redemption right is given to the holder and

use the same term sheet as that without a trigger event. Also assume the early
redemption amount to be the full denomination. Based on the existing function
AO_Payoff, which is used to price an American option, we make the following
modifications.

1. The terminal payoff of each stock price path should agree with the term sheet,
which is calculated as

payof fT = coupon + D

K
min{K , ST } − Der (T −t).

2. The coupon should be adjusted for different periodswhen calculating the option
value because if the note is exercised before maturity, then subsequent coupons
are lost.

3. All of the stock price paths should be used in the least squares regression.

With the same parameters as those in the European ELN example, the price of
the American ELN is 102,337. The difference between the two (by simulation) is
8777, which is exactly the premium that the holder needs to pay in advance. The
VBA codes are omitted here. For details, please refer to Ch3.4_Range_Accrual_
Notes_(Callable).xls.

3.4.3.3 Early Redemption Request: Calculation of the Early Redemption Fee It
is also possible that the client may wish to redeem the note before maturity even
though the contract is not initially an American-style option. In this case, the issuer
can still allow the client to exercise the contract early based on comparison between
the client’s account value and the remaining value of the note. The account value can
be directly calculated as the sum of the denominations and total coupons received
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in the previous period, whereas the remaining value of the RAN can be obtained
through simulation. There are two possible situations:

1. RAN value > Account value
In this situation, the holder expects to receive more from the note than he or
she would gain from exercising it now. From the issuer’s point of view, he or
she is willing to let the client redeem the contract upon request. The client’s
payoff will be the exact account value.

2. RAN value < Account value
The issuer can still allow the client to terminate the contract by charging an
early redemption premium, such that the client’s payoff becomes

Payoff = Account value+ Premium
= Account value+ (ELN− Account value)
= ELN.

3.5 FX ACCUMULATOR: THE CASE OF CITIC PACIFIC LTD

Accumulators are popular derivatives in Asia, particularly in Hong Kong, although
people in Hong Kong became more nervous about accumulators after their severe
impact on CITIC Pacific LTD during the subprimemortgage crisis.When pronounced
with a strong Hong Kong accent, the name “accumulator” in English sounds like “I
will kill you later,” an interesting nickname for a product whose risk is realized only
after it is held for a long time.HongKong’s painful experiencewith such derivatives as
accumulators and Lehman Brother’s mini-bonds (a subprime credit-linked bond) has
reshaped its retail banking industry, which is now more aware of the risks contained
within derivative products. In the following, we employ the BS model to illustrate
the valuation and risk of an FX accumulator. Later chapters reinvestigate this product
using more sophisticated models.

3.5.1 Event Playback

On October 20, 2008, CITIC Pacific LTD, a Hong Kong-listed company, issued a
profit warning to its shareholders announcing that it had realized an aggregate loss of
HK$807.7million on a series of leveraged foreign exchange forward contracts.More-
over, the mark-to-market (MTM) loss on these outstanding contracts was deemed to
be HK$14.7 billion, according to the valuation of relevant banks. CITIC Pacific’s
stock price plunged by 55% to HK$6.52 following the announcement.
Given the increased demand for iron and steel in mainland China, CITIC Pacific

began to invest in an iron ore mine located in Western Australia in 2006. In the next
2 years, the AUD–USD exchange rate soared from about 0.75 to 0.9 (see Fig. 3.2), as
Australia’s central bank kept raising the interest rate to curtail inflation. CITIC Pacific
was very likely to suffer a loss because of the appreciation of the AUD against the
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Figure 3.2 Historical AUD–USD exchange rate.

USD. To minimize the currency exposure of its Australian iron ore mining project,
in July 2005, when the exchange rate was around 0.95, the company entered into
several leveraged foreign exchange contracts to hedge against the exchange rate risk.
According to these contracts, the company had to purchase Australian dollars (AUD)
at a predetermined exchange rate on a series of settlement dates.
However, the AUD–USD exchange rate did not continue to rise as predicted.

Following the financial crisis of 2008, the commodity market collapsed, and the price
of iron fell rapidly. The AUD–USD exchange rate fell to 0.6345 on October 10,
2008. To fulfil the obligations of its leveraged foreign exchange contracts, CITIC
Pacific had to buy AUD at a predetermined price that was much higher than the
market price. The next section provides a brief introduction to the structure of one
of these leveraged foreign exchange contracts, the AUD target redemption forward
contract, followed by analysis of this product to see how it caused the firm to suffer
a catastrophic loss.

Remark In an FX quotation, FOR-DOM represents the number of units of a
domestic currency needed to buy one unit of a foreign currency. For FX quotations
in the United States, the U.S. dollar is normally quoted as the foreign currency (or
base currency) except for the Euro, AUD, British pound, and New Zealand dollar.
For example, we would write AUD–USD.
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3.5.2 Structure of an Accumulator

In the aforementioned announcement, CITIC Pacific disclosed that it had entered into
four types of foreign exchange derivatives: an AUD target redemption forward con-
tract, AUD daily accrual contract, dual-currency (AUD and EUR) target redemption
forward contract, and an RMB target redemption forward contract. Of these contracts,
the AUD target redemption forward contract accounted for the largest proportion in
terms of both quantity and value. A target redemption forward contract is also known
as a Knock-Out Discounted Accumulator, which was very popular with private banks
in 2007.
A typical Knock-Out Discounted Accumulator requires the investor to purchase

certain amounts of an underlying asset from the issuer at a predetermined strike
price on a series of settlement dates. Obviously, the investor will make a profit from
the contract when the market price is higher than the strike price and suffer a loss
otherwise, as in a forward contract. However, the maximum profit usually has an
upper limit due to the existence of a target profit or barrier price. A target profit is
set to ensure that when the cumulative profit exceeds a predetermined target profit,
the settlement amounts are paid by the issuer and the remaining transactions are
terminated. The barrier price works in the same way except that the knock-out event
is deemed to occur when the underlying asset price hits the barrier price on any date
during the knock-out-event observation period. It is obvious that setting a target profit
or barrier price is to the issuer’s advantage. The underlying asset can be any financial
product, most commonly a stock. In this case, the underlying asset is the exchange
rate.
In effect, the holder of a target redemption forward contract has bought a series

of up-and-out call options and sold a series of up-and-out put options to the issuer,
with the maximum profit capped by the target. To make the contract appear more
profitable to the holder, an accumulator is usually structured in such a way that the
current market price is higher than the strike price.

3.5.3 Accumulator Valuation

For illustration purposes, we choose one of the 16 AUD target redemption forward
contracts that CITIC Pacific entered into. According to published information, the
company agreed to purchase AUD against delivery of USD at a strike rate of 0.7975.
The purchase amount was AUD 8 million when the exchange rate on the settlement
date was higher than the strike rate and AUD 20 million when it was lower. The
target profit was set at AUD 1.5 million. (The barrier rate was 1.0, and the contract
would end if the exchange rate on any day during the contract hit the barrier rate.)
We assume that the contract took effect on July 15, 2008 (the contract starting date),
and matured on September 30, 2010, for a total of 24 settlement dates. The periodic
settlement dates are set as the last trading day of each month for simplicity.
Based on this information, we employ Monte Carlo simulation to determine the

fair price of this accumulator. As the underlying asset is the FX rate and a foreign
currency is analogous to a stock paying a known dividend yield, we adopt the the
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following BS model to simulate the path of foreign exchange rate F(t).

d F(t) = (rd − r f )F(t) dt + σ F(t) dW ∗(t), (3.10)

where rd is the risk-free rate in the domestic country, r f is the risk-free rate in the
foreign country, and σ is the volatility of the exchange rate. The exchange rate path
following the foregoing stochastic model can easily be generated from the existing
function BS_Path by setting the risk-free rate at rd and the dividend yield at r f .
To better explicate the FX dynamics in Equation 3.10 and the associated FX-

related derivatives, we develop a no-arbitrage condition for FX-related derivatives. It
is easy to confuse the two interest rates involved in FX derivatives, namely, domestic
rate rd and foreign rate r f in which case one might wonder which should be used for
risk-neutral pricing. In fact, there are two risk-neutral probability measures, Qd and
Q f , corresponding to rd and r f , respectively.
Let F(t) be the foreign-over-domestic FX rate quoted in the domestic currency and

S(t) be the price of a foreign asset quoted in the foreign currency. Therefore, 1/F(t)
is traded in the foreign currency. Consider a foreign derivative with payoff function
�(1/F(T ), S(T )) = V (F(T ), S(T )). Using this foreign derivative, a domestic agent
can issue a domestic derivative with terminal payoff F(T )V (F(T ), S(T )). Then, the
following result holds.

Theorem 3.1 If there is no arbitrage opportunity, then

e−rd (T −t)EQd
[F(T )V (F(T ), S(T ))] = F(t)e−r f (T −t)EQ f

[V (F(T ), S(T ))] .

Proof: By risk-neutral valuation, the present foreign value of the foreign derivative
is given by

e−r f (T −t)EQ f
[V (F(T ), S(T ))] ,

whereas the present domestic value of the domestic derivative is given by

e−rd (T −t)EQd
[F(T )V (F(T ), S(T ))] .

A domestic investor interested in a foreign derivative has two investment opportuni-
ties. He or she can either purchase the foreign derivative right away with domestic
value

F(t)e−r f (T −t)EQ f
[V (F(T ), S(T ))]

or do so through a domestic agent by engaging in a domestic derivative contract.
As the two opportunities share the same domestic payoff, F(T )V (F(T ), S(T )), their
present domestic value should be the same. Otherwise, the investor can buy low and
sell high. The difference is the arbitrage profit.
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Using Theorem 3.1, we can deduce Equation 3.10 if the FX rate follows the BS
model underP. Consider V (F(T ), S(T )) = 1. In other words, the foreign derivative is
simply the foreign CB zero-coupon bond. Then Theorem 3.1 implies the well-known
interest rate parity for the FX rate, which states that

EQd
[F(T )|F(t)] = F(t)e(rd−r f )(T −t), for t ≤ T .

This sets up a martingale condition for the Qd process of F .
Under P, the FX rate is assumed to be

d F(t) = μF(t) dt + σ F(t) dW (t).

By Itô’s lemma,

F(T ) = F(t) exp

[(
μ − σ 2

2

)
(T − t)+ σ (W (T )− W (t))

]
.

It is easy to calculate

EP[F(T )|F(t)] = F(t)eμ(T −t), fort ≤ T .

To match the martingale condition, we require the drift of F under Qd to be rd − r f ,
which implies that

W ∗(t) = W (t)−
(

μ − rd + r f

σ

)
t.

The Girsanov theorem can help us to characterize the change of measure.
By replacing μ with rd − r f , we obtain the domestic risk-neutral dynamics for F ,

as in Equation 3.10. We then base our simulation on Equation 3.10 to compute the
FX accumulator in the domestic currency or in U.S. dollars. Note that the Hong Kong
dollar is pegged to the U.S. dollar, and thus the HKD–USD FX rate is (almost) fixed.
Accordingly, many derivatives in Hong Kong are quoted in U.S. dollars. For such
products, including the FX accumulator under study, we use the U.S. risk-neutral
measure.

3.5.3.1 Without a Knock-Out Feature Without a knock-out feature (i.e., no target
redemption or barrier price), the FX accumulator is a portfolio that longs a series
of in-the-money call options and shorts a series of out-of-the-money put options,
with the ratio of call options to put options being 8 : 20. Therefore, using portfolio
replication, the price of an accumulator can easily be calculated by calculating the
corresponding calls and puts. The result for October 16, 2008, is US$76.62 million.
However, on the date on which CITIC Pacific entered into this contract, the price of
the accumulator was US$5.23 million, which means that the MTM loss was already
US$5.23 million when the company signed the the contract.
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3.5.3.2 With Target Redemption The price of an accumulator with target redemp-
tion has no closed-form solution, although simulation can easily determine its fair
price. The procedure is as follows.

1. Generate n exchange rate paths with m subintervals each, where m is the total
number of trading days.

2. For each period’s ending date, if exchange rate F(Ti ) ≥ strike rate K , then
the discounted payoff for that period is 8e−rTi �t (FTi − K ). Otherwise, the
discounted payoff is 20e−rTi �t (FT i − K ), where Ti denotes the cumulative
trading days from “today” to the period i ending date and �t denotes the
reciprocal of the number of trading days in a year.

3. For each period’s ending date, if the total payoff (non-discounted) > target
profit, then the path is finished.

4. Repeat Steps 2 and 3 for all periods, and sum the discounted and non-discounted
payoffs.

5. Repeat Steps 2 and 4 n times to obtain n discounted payoffs.

6. The price of the accumulator is the average of the discounted payoffs.

Remark In Step 1, if there are y periods, thenwe can simply generate y subintervals.
However, for simplicity, we employ the previously developed function, which will
generate more subintervals. However, for the knock-out event when the exchange
rate hits the barrier rate, we are required to generate the exchange rate each day.
Part of the corresponding VBA code for the valuation is as follows.

'simulate the paths of exchange rate

FX = BS_Path(F)

'Employ the empirical martingale correction

FX = EMartingale(FX, F.rf, F.q, F.dt)

'the following calculate the DISCOUNTED payoff of the

Accumulator

For i = 1 To F.n 'the i path

sum = 0 'to store the total discounted payoff

nsum = 0 'to store the total payoff

For j = 1 To UBound(td) 'the array td stores the cumulative

trading days

If FX(td(j), i) >= K Then

'need to buy AUD 8 million

sum = sum + (FX(td(j), i) - K) * 8 *

Exp(-F.rf * td(j) * F.dt)

nsum = nsum + (FX(td(j), i) - K) * 8

Else

'need to buy AUD 20 million

sum = sum + (FX(td(j), i) - K) * 20 *

Exp(-F.rf * td(j) * F.dt)
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nsum = nsum + (FX(td(j), i) - K) * 20

End If

'STEP 3 'Knock-out event occurs when the target

profit is met

If nsum > TG Then

GoTo ContractEnd

End If

Next j

ContractEnd:

payoff(i) = sum

Next i

Price = Average(payoff) 'price without barrier

3.5.3.3 With Target Redemption and Barrier Rate In the case that the knock-out
event is deemed to have occurred when the exchange rate hit the barrier rate, a small
modification is needed for valuation. We need to check whether the exchange rate
on each day exceeds the barrier rate. If it does, then the contract is terminated. The
accumulator is then similar to a portfolio of up-and-out European options with target
redemption. The corresponding VBA code for calculating the discounted payoff is as
follows.

'simulate the paths of exchange rate

FX = BS_Path(F)

'Employ the empirical martingale correction

FX = EMartingale(FX, F.rf, F.q, F.dt)

For i = 1 To F.n

sum = 0 'to store the total discounted payoff

nsum = 0 'to store the total payoff

count = 1

For j = 1 To td(UBound(td))

If FX(j, i) > B Then

GoTo ContractEnd

ElseIf j = td(count) Then

If FX(j, i) >= K Then

'need to buy AUD 8 million

sum = sum + (FX(j, i) - K) * 8 *

Exp(-F.rf * j * F.dt)

nsum = nsum + (FX(j, i) - K) * 8

Else

'need to buy AUD 20 million

sum = sum + (FX(j, i) - K) * 20 *

Exp(-F.rf * j * F.dt)

nsum = nsum + (FX(j, i) - K) * 20
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End If

'STEP 3 'Knock-out event occurs when the target

profit is met

If nsum > TG Then

GoTo ContractEnd

End If

count = count + 1

End If

Next j

ContractEnd:

payoff(i) = sum

Next i

Price = Average(payoff)

Suppose that today is October 16, 2008, and the spot FX rate is 0.6929. Using 30-day
historical volatility σ = 49.89%, rd = 0.0469, r f = 0.0637, and dt = 1/252, the
simulated price of the accumulator with target redemption alone is US$83.099 mil-
lion, and that with both target redemption and barrier rate is US$82.431 million.
However, 30-day historical volatility is not the only choice for σ , and some prefer
to use the average implied volatility of at-the-money (ATM) options. If we substi-
tute ATM volatility σ = 61.85% into the program, then we obtain a simulated price
US$88.629 million. In this case, the ATM volatility is greater than its historical coun-
terpart and leads to a more severe MTM loss. Later in this chapter, we demonstrate
that volatility and the simulated price are negatively correlated.
Historical volatility is calculated from recent historical exchange rates, whereas

implied volatility is obtained from the option price rather than the exchange rate,
and therefore reflects the market view of future volatility. It is difficult to tell which
is correct or which should be used in valuation simulation, as both make sense. In
Chapter 4, we revisit this example with more complicated volatility models, in which
volatility is no longer treated as a constant.
Another issue that deserves attention is the choice of time increment dt . Similar to

the day count convention in the bondmarket, people have different ideas of howmany
days there are in a year when performing derivative valuation. We usually assume
252 trading days and 360 calendar days in a year. If we use dt = 1/360 instead of
1/252, then the simulated price changes to US$82.933 million. As we can see from
the dynamics,

d F(t) = (rd − r f )F(t) dt + σ F(t) dW (t),

the diffusion term of F(t), σ F(t)dW (t), grows smaller when dt changes from 1/252
to 1/360 and all else remains the same, which is consistent with the fact that volatility
is usually much greater when the market is open. When dt changes from 1/252 to
1/360, volatility is diluted, and the expected price will be higher according to the
negative relationship between volatility and price.
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TABLE 3.10 Effect of Risk-Free Rates on Valuation

rd r f Simulated price

0.03 0.02 −80.102
0.02 0.02 −82.338
0.02 0.03 −83.475

In addition to volatility and the time increment, the risk-free rates are other param-
eters that are difficult to select. Risk-free rates can be spotted from the zero-coupon
yield curves or calculated from the price of the forward contracts available in the
market. However, yield curves vary among banks due to different construction meth-
ods, and the risk-free rates implied by various forward or future contracts are not
always the same. If we refer to financial data servers, then we may be confused about
which to use. Relative to volatility and the time increment, however, the risk-free rate
selection has few significant effects on the simulation results. To see this clearly, we
select a number of possible combinations of (rd , r f ) and obtain the results presented
in Table 3.10. The dynamics, d F(t) = (rd − r f )F(t) dt + σ F(t) dW (t), also show
that volatility plays a more important role than the drift term. Instead of spending time
improving the accuracy of estimated risk-free rate attainment, it is better to perform
simulation based on a more reliable range of risk-free rates.

3.5.4 Sensitivity Analysis

After simulating the price of the accumulator, we modify our program to examine
the sensitivity of that price to a small change in the underlying parameters such as
volatility and the initial exchange rate. Sensitivity analysis helps us measure the risks
and potential rewards of derivatives.
Figure 3.3 shows that the price goes in the opposite direction to volatility. As

previously noted, this accumulator is equivalent to holding a series of up-and-out call
options and selling up-and-out put options to the issuer withmaturities the same as the
settlement dates. When volatility increases, the value of long position in call options
increases but the short position in put options decreases. The exchange rate by that
time was 0.6929, which was far below the strike rate. Consequently, the benefits that
result from deep out-of-the-money call options cannot compensate the losses accrued
from in-the-money put options, because the ratio of call options to put options was
8 : 20 at that time. Therefore, an accumulator may not be a good choice for investors
who expect market volatility to increase.
Figure 3.4 illustrates the relationship between price and the initial FX rate. With

a higher initial exchange rate, the future exchange rate is likely to remain at a higher
level, thereby generating more profit for the holder and resulting in a higher price
for the accumulator. Figures 3.3 and 3.4 together show that no matter how small the
volatility or howhigh the initial exchange rate, the price of the accumulator rarely rises
above zero. Accordingly, although the exchange rate on July 16, 2008, was 0.9693,
which seemed to offer a good deal to investors, the contract that CITIC Pacific entered
into was not favorable for the firm just 3 months later. Our simulation results show
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Figure 3.3 Simulated price against volatility.
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Figure 3.4 Simulated price against initial exchange rate on October 16, 2008.
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the aptness of the product’s nickname “I will kill you later.” In fact, the simulated fair
price on July 16, 2008, was US$11.107 million (calculated using the same parameters
as before except for the initial exchange rate which was set to 0.9693).
As noted, CITIC Pacific’s original objective in purchasing foreign exchange

derivatives was to hedge against its exposure to the AUD. Our analysis suggests
that accumulators are not good instruments for hedging as their structure is far from
fair. The issuer would have to pay CITIC Pacific US$11.107million for the accumula-
tor in question to be fair to both parties. However, in reality, it entered into the contract
without paying anything to CITIC. Also, the accumulator is somewhat equivalent to
long calls and short puts. If CITIC Pacific had wanted to limit its losses as due to
the rise of the AUD, then it should have held some call options. However, buying an
accumulator shorts puts. Although these puts can help reduce the cost of longing calls,
it also increases the company’s exposure to downside risks. To make matters worse,
the upside gain from the accumulator was limited by both the profit target and the bar-
rier rate. Options, forwards, or swaps would have been better instruments for CITIC
Pacific. CITIC Pacific was overhedged in any case, as the maximum deliverable
amount under the AUD accumulator was AUD9.05 billion, whereas the actual AUD
requirement for operational expenditureswas onlyAUD1.6 billion. For further details,
please refer to the spreadsheets Ch3.5_Citic_FX_Accumulator_with_Barrier.xls and
Ch3.5_Citic_FX_Accumulator_without_Barrier.xls that are downloadable through
the web: “http://www.sta.cuhk.edu.hk/hywong”.

3.6 LIFE INSURANCE CONTRACTS

3.6.1 Introduction

Participating life policies are investment contracts that are associated with life insur-
ance benefits that specify a benchmark return, a guaranteed annual minimum rate of
return, and the distribution of the surplus annual return in excess of that guaranteed
return between the insurer and the policy holder. In recently years, these contracts
constitute the majority of the life insurance policies traded in the United States,
Canada, Japan, and EU member states. Regulatory authorities have increased their
monitoring of insurance companies’ exposure to the market, credit, and persistence
risks induced by participating contracts. For instance, in the United Kingdom, insur-
ers are required to establish realistic balance sheets designed to capture the cost of
guarantees and smoothing on amarket-consistent basis, to ensure that their provisions
are more responsive to changes in the market value of the backing assets of with-
profit funds. Hence, implementation of adequate, consistent, and objective models of
backing asset behavior and calculation of realistic liabilities have become necessary.

3.6.2 Typical Contract Structures

At the beginning of the contract, the insured party pays a single-sum premium, P0, to
purchase from the insurer a participating policy that expires in T years. The insurance
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company then invests the funds received in the financial market and acquires portfolio
A. The policy’s reserve, P(t), where t < T , receives interest, which is specified by the
guaranteed benefit plus the reversionary bonus according to a smoothing mechanism
that depends on each year’s market return until contract expiration.
Consider a smoothingmechanism in which the level of its smoothed policy reserve

at time t is determined by a linear combination of the unsmoothed value of the reserve
at time t and its smoothed value at time (t − 1) (see Needleman and Roff, 1995). Note
that the linear smoothing scheme is not unique, and other schemes such as arithmetic
averaging can also be used. Thus, the policy reserve is defined as

P(t) = αP ′(t)+ (1− α)P(t − 1), α ∈ (0, 1), (3.11)

P(0) = P0,

where P ′(t) is the unsmoothed asset value such that

P ′(0) = P0,

P ′(t) = P ′(t − 1)(1+ rp(t)),

rp(t) = max{rG, βrA}.

Here, rG and β ∈ (0, 1) are the guaranteed rate and the participation rate, respectively,
and rA is the backing asset’s annual rate of return, which can be written as

rA = A(t)− A(t − 1)
A(t − 1) .

If death occurs at time t , where t < T , then the company returns the remaining
policy reserve to the insured, that is,

C(t) = P(t − 1).

Otherwise, at the contract termination date, a bonus payment, γ R(T ), is given to
the insured in addition to the guaranteed amount, which is defined as the extra
surplus, R(T ) = max{A(T )− P(T ), 0}, earned by the backing asset. Here γ is the
bonus participation rate in the company’s surplus declared near contract maturity. To
summarize, the insured’s payoff at maturity if no death occurs is given by

C(T ) =
{

A(T ), ifA(T ) < R(T ),
P(T )+ γ R(T ), otherwise.

(3.12)

From the terminal payoff and definition of P(t), it is not difficult to see that the
value of this type of contract is highly path-dependent. Although the asset process is
a GBM, obtaining a closed-form pricing formula is impossible. Thus, simulation is
the only solution to the valuation of this contract.
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3.6.3 Simulation Algorithms

Because participating contracts are life insurance contracts, mortality risk needs to
be included in the valuation process. Let x be the age of the insured, and T (x) be his
or her remaining life span at age x . Suppose that the mortality table for a given year
can be obtained. From the last column of this table, we obtain the expected future life
span, e(x), of an individual of a given sex at age x . For simplicity, we can assume that
T (x) follows a certain distribution. Consider a T (x) that is exponentially distributed
with mean θ ; the cumulative distribution of T (x) ∼ Exp(θ ) is

FT (x)(t) = 1− e− t
θ .

By inverse transform, the remaining future life span t of a given individual of age x
can be generated when parameter θx is specified such that

t = −θx log(1− U ),whereU ∼ U(0, 1).

For illustration purposes,we assume that T (x) ∼ exp(θx ) and parameter θx is specified
by the expected future life span of an individual of age x and a given sex, e(x), obtained
from the aforementioned mortality table.
Suppose that the asset price process follows GBM under the risk-neutral measure,

that is,

d A(t)

A(t)
= r dt + σ dWA(t), (3.13)

where r is the risk-free rate and σ is the volatility of the asset. The value of the
contract can be computed as follows.

1. Specify θx from the mortality table, using the client’s age and sex.

2. For each path j , generate t = T (x) ∼ exp(θx ), which is the stopping time (in
years) of the contract. Round t to the next integer.

3. For each step i (year), simulate a new asset value according to Equation 3.13.

4. If step i = t , then the payoff of path j isC( j) = P( j − 1) discounted by factor
e−ri ; otherwise, compute P( j) according to Equation 3.11.

5. If step i = T , then the payoff of path j is given by Equation 3.12, discounted
by e−rT .

6. Repeat Steps 2 to 5 j times.

7. The value of the contract is given by 1
j

∑ j
l=1 C(l).

Example 3.3 Suppose that we need to price a participating life contract of the
simplest structure using the foregoing algorithm. Tables 3.11 and 3.12 list the param-
eter inputs. A total of 500,000 sample paths are generated, and empirical martingale
correction is applied. The simulation is repeated 30 times, and the average price and
standard deviation are shown in Table 3.13.
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TABLE 3.11 Information of the Participating Policy Client

Age 30
Sex Male
Retirement age 65

TABLE 3.12 Participating Policy Parameters and
Underlying Asset Price Process

P0 100
A0 100
r 0.05
q 0
σ 0.2
α 0.5
β 0.7
γ 0.01
rG 0.025

3.7 MULTI-ASSET INSTRUMENTS

There are numerous financial products whose payoffs depend on more than one
underlying asset. Basket options, exchange options, and quanto options (options
that involve a foreign asset and the FX rate) are typical examples of such multi-asset
options. In addition, structured products may also have several underlying assets. The
main difficulty in dealing with these multi-asset instruments lies in the generation of
their stock price paths.
Consider the case of two assets, S1 and S2. Suppose that their risk-neutral dynamics

follow multidimensional GBM, that is,

d Si (t) = r Si (t) dt + σi Si (t) dW ∗
i (t), for i = 1, 2,

where

EQ[dW ∗
1 (t) dW ∗

2 (t)] = ρ dt.

By Itô’s lemma and the normality of Brownian motion,

Si (T ) = Si (0) exp
(
(r − σ 2i

2
)T + σi

√
T Xi

)
, for i = 1, 2,

TABLE 3.13 Simulation Results

Average price 71.516
Standard deviation 0.0337
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where X1 and X2 are standard normal random variables with correlation coefficient
ρ. Therefore, the problem becomes one of generating a pair of X1 and X2:

X =
(

X1
X2

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

To generate this pair of correlated normal random variables X1 and X2, we first
decompose X1 and X2 into two uncorrelated random normal variables, Z1 and Z2,
through the linear transformation:

Z1 = X1,

Z2 = X2 − ρX1√
1− ρ2

.

Thus, X1 and X2 can be generated using two independent normal random variables,
Z1 and Z2, through the following formula.

X1 = Z1,

X2 = ρZ1 +
√
1− ρ2Z2.

We can check that X1 ∼ N (0, 1), X2 ∼ N (0, 1), and Cov(X1, X2) =
Corr(X1, X2) = ρ. If n assets are involved, then a multivariate normal random vector
has to be generated. In general, if X = (X1, . . . , Xn)T follows a multivariate normal
distribution, then

X ∼ N (μ, �),

where μ = E[X] = (μ1, . . . , μn)T is the mean vector and � = Var(X) =[
Cov(Xi , X j )

]
i, j=1,...,n

is the variance–covariance matrix. Similar to the bivariate

normal case, we first decompose the Xi ’s into n uncorrelated normal random vari-
ables and use independent normal random variables to generate Xi ’s. To do so, we
employ Cholesky decomposition for �. Because � is a positive semi-definite matrix
(i.e., vT �v ≥ 0 for all real vectors v), there exists a lower triangularmatrix L such that
� = L LT . Cholesky decomposition is an algorithm that obtains this lower triangular
matrix L .
Given the matrix L, a random vector X ∼ N (μ, �) can be generated by

X = μ + LZ,where Z ∼ N (0, I),

where I is the identity matrix of suitable dimensions.
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For n × nmatrices� = [ai j ] andL = [li j ], theCholesky decomposition algorithm
works as follows.

1. Set l11 = √
a11.

2. For j = 2, . . . , n, set l j1 = a j1/ l11.

3. For i = 2, . . . , n − 1, perform Steps 4 and 5.
4. Set lii =

[
aii − ∑i−1

k=1 l2ik

]1/2
.

5. For j = i + 1, . . . , n, set l ji = 1
lii

[
a ji − ∑i−1

k=1 l jklik

]
.

6. Set lnn =
[
ann − ∑n−1

k=1 l2nk

]1/2
.

The followingCDecom function returns the lower triangular matrix of a symmetric
matrix VCMatrix following Cholesky decomposition. The algorithm is implemented
with the following VBA codes.

Public Function CDecom(VCMatrix As Variant) As Variant

ReDim LArray(1 To UBound(VCMatrix), 1 To UBound(VCMatrix))

As Double

Dim i As Integer, j As Integer, l As Integer, n As Integer

n = UBound(VCMatrix)

LArray(1, 1) = Sqr(VCMatrix(1, 1))

For j = 2 To n

LArray(j, 1) = VCMatrix(j, 1) / LArray(1, 1)

Next j

For i = 2 To n - 1

For l = 1 To i - 1

LArray(i, i) = LArray(i, i) - LArray(i, l) ∧ 2

Next l

LArray(i, i) = Sqr(VCMatrix(i, i) + LArray(i, i))

For j = i + 1 To n

For l = 1 To i - 1

LArray(j, i) = LArray(j, i) - LArray(j, l)

* LArray(i, l)

Next l

LArray(j, i) = (VCMatrix(j, i) + LArray(j, i)) /

LArray(i, i)

Next j

Next i

For l = 1 To n - 1

LArray(n, n) = LArray(n, n) - LArray(n, l) ∧ 2

Next l

LArray(n, n) = Sqr(VCMatrix(n, n) + LArray(n, n))

CDecom = LArray

End Function
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Function rCGauss is used to generateXmore conveniently. The corresponding VBA
code is as follows.

Public Function rCGauss(LArray As Variant) As Variant

Dim nRV As Integer

nRV = UBound(LArray)

Dim i As Integer, j As Integer

ReDim rNV(1 To nRV) As Double

ReDim tmpRV(1 To nRV)

For i = 1 To nRV

tmpRV(i) = rGauss()

For j = 1 To i

rNV(i) = rNV(i) + LArray(i, j) * tmpRV(j)

Next j

Next i

rCGauss = rNV

End Function

This function returns an array ofN (0, LLT ) random variables, where L Array is the
lower triangular matrix L of the variance–covariance matrix.
Consider the following risk-neutral asset dynamics for n assets with correlated

Brownian motions.

d Si (t) = r Si (t) dt + σi Si (t) dW ∗
i (t), for i = 1, . . . , n,

where

EQ[dW ∗
i (t) dW ∗

j (t)] = ρi j dt,

or, equivalently,

Si (T ) = Si (0) exp

((
r − σ 2i

2

)
T + σi

√
T Xi

)
, for i = 1, . . . , n,

where X ∼ N (0, �) and 0 = (0 · 0)T , and � is the same as the correlation matrix
because Var(Xi ) = 1. The n assets’ paths can be generated by the following function.

Public Function BS_CPath(A() As BS_PathType, CorrMatrix As

Variant) As Variant

Dim i As Long, j As Long

Dim nAsset As Integer, l As Integer

Dim LArray As Variant

Dim cRV As Variant

nAsset=UBound(CorrMatrix)'VCMatrix(1 to nAsset, 1 to nAsset)
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LArray = CDecom(CorrMatrix)

ReDim S(0 To A(1).m, 1 To A(1).n, 1 To nAsset) As Double

For j = 1 To A(1).n

For l = 1 To nAsset

S(0, j, l) = A(l).S0

Next

Next

For i = 1 To A(1).m

For j = 1 To A(1).n

cRV = rCGauss(LArray)

For l = 1 To nAsset

S(i, j, l) = S(i - 1, j, l) * Exp((A(1).rf -

A(l).q - A(l).sigma _ ˆ2 / 2) * A(1).dt +

Sqr(A(1).dt) * A(l).sigma * cRV(l))

Next

Next

ShowStatus i, A(1).m, 1

Next

ResetStatus

BS_CPath = S

End Function

We should input � as the Corr Matri x . This function returns a three-dimensional
array of asset paths S(0 tom, 1 to n, 1 to n Asset) according to the correlation matrix,
which can be used to price path-dependent multi-asset products. Here m represents
the number of steps and n the number of paths.

3.7.1 Multi-Asset Range Accrual Equity-Linked Notes

In this section, we demonstrate the pricing of an existing multi-asset structured
product using the aforementioned methods. The product inquisition is a 2-Year
HKD 34.00% (annualized basis) Periodic Daily Knock-Out Variable Maturity Range
Accrual-Equity-Linked Note. Details of the terms and structure of this RAN can be
found in the term sheet in the appendix. To streamline our presentation, we summarize
the structure and payoff here.
This RAN is linked to the stock prices of China Communications Construction

Company Limited (01800.HK) andDatang International Power Generation Company
(00991.HK). Its structure is described in its term sheet as follows.

2-Year HKD 34.0% (annualized basis) Periodic Daily Knock-Out Variable Matu-
rity Range Accrual–Equity–Linked Note with 5.67% Fixed Coupon after the
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First 2 Months and Variable Coupon Payable 2 Months Thereafter, Subject to
Mandatory Early Redemption Provision.

We define the following before proceeding.

S j
i : Stock price of the j th asset at step (day) i ; and S j

0 refers to the initial share
price of the j th asset for j = 1, 2.

D: Denomination of the note. For this note, D = 50, 000.

F : Accrual factor, which is used to determine the coupon amount. For this note,
F = 34.0%

6 = 5.6667%.

K : Conversion price factor and lower range band factor. The conversion price is
used to determine the redemption amount at maturity, and the lower range band
is used to determine the coupon amount. The conversion price and lower range
band for the j th asset is K S j

0 , where, for this note, K = 80%.

C : Callable price factor. The callable price is used to determine whether a manda-
tory early redemption event has occurred. The callable price for the j th asset
is C S j

0 , where, for this note, C = 92%.

B1: The starting date of the periodic fixed coupon period.

E1: The termination date of the periodic fixed coupon period.

Bx : The starting date of the x th periodic variable coupon period. It is equivalent
to S dtx in the term sheet. For this note, there are 11 variable coupon periods,
and hence x = 2, . . . , 12.

Ex : The termination date of the x th periodic variable coupon period. It is equivalent
to E dtx in the term sheet, and hence x = 2, . . . , 12.

nx : The number of business days in the x th periodic variable coupon period (from
Bx to the earlier of Ex and M , if any) on which the closing prices of both
shares are greater than or equal to their respective lower range bands, that is,
S1i ≥ K S10 and S2i ≥ K S20 , i > E1 and x = 2, . . . , 12.

Nx : The number of business days in the x th periodic variable coupon period;
x = 2, . . . , 12.

S∗
i = min{ S1i

S10
,

S2i
S20

}.
M : Mandatory early redemption date, which is the date on which the note is called
back. This date is triggered when S∗

i ≥ C for E1 ≤ i < E12 or, equivalently,
when both share prices are equal to or greater than their respective callable
prices on or after E1 and before E12, that is, S1i ≥ C S10 and S2i ≥ C S20 for
E1 ≤ i < E12.

Bx and Ex are expressed as the number of trading days from B1 = 1, and �t
represents the length of a trading day in a given year. In this contract, all payments
are made five business days after each payment determination date. For simplicity,
assume that payments are made immediately after each payment determination date.
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The payment determination dates are essentially the end dates Ex . With the forgoing
notations, the structure of this note is as follows.

1. Receive coupon payment D × F on date E1 (x = 1).

2. If S1E1 ≥ C S10 and S2E1 ≥ C S20 , then receive denomination D, and the contract
ends.

3. Go to the next period (x = x + 1).
4. If S1i ≥ C S10 and S2i ≥ C S20 for Bx ≤ i ≤ Ex if x = 2, . . . , 11, or if S1i ≥ C S10
and S2i ≥ C S20 for B12 ≤ i < E12, then mandatory early redemption occurs.
Receive coupon payment D × nx

Nx
× F plus denomination D, and the contract

ends. Otherwise, the contract continues; go to Step 5.

5. Receive coupon payment D × nx
Nx

× F on date Ex . If x < 12, then go back to
Step 3. Otherwise, go to the next step to calculate the payoff at maturity.

6. At maturity, if the share prices of both assets are equal to or greater than their
conversion prices, that is, S1i ≥ K S10 and S2i ≥ K S20 , then receive denomination
D. Otherwise, receive min{ D

K S10
S1E12 ,

D
K S20

S2E12}.

Using S∗
i , the note’s structure can be restated as follows.

1. Receive coupon payment D × F on date E1 (x = 1).

2. If S∗
E1

≥ C , then receive denomination D, and the contract ends.

3. Go to the next period (x = x + 1).
4. If S∗

i ≥ C for Bx ≤ i ≤ Ex if x = 2, . . . , 11 or if S∗
i ≥ C for B12 ≤ i <

E12, then mandatory early redemption occurs. Receive coupon payment D ×
nx
Nx

× F plus denomination D, and the contract ends. Otherwise, the contract
continues; go to Step 5.

5. Receive coupon payment D × nx
Nx

× F on date Ex . If x < 12, then go back to
Step 3. Otherwise, go to the next step to calculate the payoff at maturity.

6. At maturity, receive Dmin{ S∗
E12
K , 1}.

The price of this note can be calculated using the following steps.

1. Set Coupon = e−r E1�t DF .

2. Set S∗
E1

= min{ S1E1
S10

,
S2E1
S20

}.
3. If S∗

E1
≥ C , then set P = e−r E1�t D, and go to Step 13. Otherwise, continue.

4. Set i = E1 + 1, x = 2.

5. Set S∗
i = min{ S1i

S10
,

S2i
S20

}.
6. If S∗

i ≥ K , then set nx = nx + 1.
7. If S∗

i ≥ C , then set Coupon = Coupon+ e−ri�t nx
Ex −Ex−1

DF and P = e−ri�t D,
and go to Step 13. Otherwise, continue.
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8. If i = Ex , then set Coupon = Coupon+ e−r Ex �t nx
Ex −Ex−1

DF , x := x + 1.
9. Set i = i + 1 and repeat Steps 5 to 8 until i = E12 (i.e., do not repeat the steps
when i = E12).

10. Set S∗
E12

= min

{
S1E12
S10

,
S2E12
S20

}
.

11. If S∗
E12

≥ K , then set n12 = n12 + 1.
12. Set Coupon = Coupon+ e−r E12�t n12

E12−E11
DF .

13. Set P = e−r E12�t Dmin
{

S∗
E12
K , 1

}
.

14. Price = P + Coupon (in terms of the present value at t0).

With the payoff function at the ready, we can begin to estimate the parame-
ters needed to generate the asset paths using the historical share prices of China
Communications Construction (Asset 1, denoted by subscript 1) and Datang Inter-
national Power Generation (Asset 2, denoted by subscript 2) from December 15,
2006, to September 20, 2007. With S10 = 18.4, S20 = 7.8, r = 4.6%, q1 = 0.05%,
q2 = 2.32%, σ1 = 44.33%, σ2 = 60.43%, ρ = 0.3907, and n = 30, 000, the simu-
lated price of this structured note on September 20, 2007, is 47,593.75.
The corresponding VBA code is as follows.

For j = 1 To n

'step 1

coupon = Exp(-rf * td(1) * dt) * D * F

'step 2

Snl = Min(S(td(1), j, 1) / S(0, j, 1), S(td(1), j, 2) /

S(0, j, 2))

'step 3

If Snl >= C Then

price(j) = Exp(-rf * td(1) * dt) * D

GoTo ContractEnd

End If

'step 4

cP = 2

For i = td(1) + 1 To m - 1

'step 5

Snl = Min(S(i, j, 1) / S(0, j, 1), S(i, j, 2) / S(0, j, 2))

'step 6

If Snl >= K Then nBarrier = nBarrier + 1

'step 7

If Snl >= C And i < m Then

coupon = coupon + Exp(-rf * i * dt) * D * F *

nBarrier / (td(cP) - td(cP - 1))

price(j) = Exp(-rf * i * dt) * D
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GoTo ContractEnd

End If

'step 8

If i = td(cP) Then

coupon = coupon + Exp(-rf * i * dt) * D * F *

nBarrier / (td(cP) - td(cP - 1))

nBarrier = 0

cP = cP + 1

End If

Next i

'step 10

Snl = Min(S(m, j, 1) / S(0, j, 1), S(m, j, 2) / S(0, j, 2))

'step 11

If Snl >= K Then nBarrier = nBarrier + 1

'step 12

cP = 12

coupon = coupon + Exp(-rf * i * dt) * D * F *

nBarrier / (td(cP) - td(cP - 1))

'step 13

price(j) = Exp(-rf * m * dt) * D * Min(Snl / K, 1)

ContractEnd:

price(j) = price(j) + coupon

Next j

For further details, please refer to Ch3.7_Multi_Assets_RAN.xls.

3.7.2 Currency-Translated Products

Currency-translated (or quanto) structured products are contingent claims whose
payoff is determined by a financial price or index in a foreign currency, but whose
actual payout is made in the domestic currency. Confusion arises in the pricing
of quanto products because an appropriate risk-neutral measure must be selected.
Should it be the domestic or foreign risk-neural measure? More precisely, what
domestic and foreign interest rates should be placed in the asset dynamics? The
answer is very simple. The risk-neutral measure should be that corresponding to
the contract’s settlement currency, in other words, the domestic risk-neutral mea-
sure. However, Theorem 25 links the domestic and foreign risk-neutral valuations,
and thus one can always transform the valuation from one risk-neutral measure to
the other.
We consider a vanilla RAN contingent upon a foreign index as our example. Let

the foreign index value be S(t) at time t . If the index falls between L and H on a
particular date, where L < H , then the RAN holder receives accrual interest in the
domestic currency on that date. Further suppose that this RAN has a maturity of 1
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year and that all cash transactions will be settled on the maturity date in the domestic
currency. Then, for a $100 initial deposit, the RAN has a payoff of

RAN (T = 1) = 100×
⎛⎝1+ c

252

252∑
j=1
1{L≤S(t j )≤H}

⎞⎠ ,

where c is the maximum accrual interest received by the RAN holder and 252 is
the number of trading days in the year. Hence, by risk-neutral valuation, the present
value of this RAN reads

RAN (0) = 100e−rd

⎡⎣1+ c

252

252∑
j=1

Qd (L ≤ S(t j ) ≤ H )

⎤⎦ ,

where rd is the domestic instantaneous interest rate andQd is the domestic risk-neutral
measure.
This RAN appears to be a single-asset structured product, but its valuation incurs

multi-asset pricing analysis because the contribution of the FX rate must be taken
into account. As a foreign financial variable, the foreign risk-neutral dynamic for S(t)
is clear. If we assume that S(t) follows the BS model, then its foreign risk-neutral
dynamic is

d S(t) = r f S(t) dt + σ S(t) dŴS(t),which impliesS(T )

= S(t)e

(
r f − σ2S

2

)
(T −t)+σ (ŴS (T )−ŴS (t))

, (3.14)

where r f is the foreign instantaneous interest rate, ŴS(t) is theQ f -standard Brownian
motion driving index S(t), and Q f is the foreign risk-neutral measure. However,
domestic risk-neutral valuation requires that we compute the expectation using the
Qd dynamics of S(t).
Under Qd , in Section 3.5, we derived the risk-neutral dynamics of the FX rate as

d F(t) = (
rd − r f

)
F(t) dt + σF F(t) dW ∗(t).

To derive the Qd dynamics for S(t), we first substitute V (F(T ), S(T )) = 1/F(T )
into Theorem 3.1. By this theorem, we have

1

F(t)
e−(r f −rd )(T −t) = EQ f

[
1

F(T )

]
.

In other words, the DOM-FOR FX rate 1/F(t) has Q f dynamics

d

(
1

F(t)

)
= (

r f − rd
) (

1

F(t)

)
dt + σF

(
1

F(t)

)
dŴ (t).
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Hence,

1

F(T )
= 1

F(t)
e
(

r f −rd− σ2

2

)
(T −t)+σF (Ŵ (T )−Ŵ (t))

. (3.15)

Assume that the correlation coefficient between the returns of F(t) and S(t) is ρ.
Then, that between the returns of 1/F(t) and S(t) should be −ρ because F(t) and
1/F(t) must go in opposite directions. Hence, we have EQ f

[dŴS(t)dŴ (t)] = −ρ dt .
Next, substitute V (F(T ), S(T )) = S(T )/F(T ) into Theorem 3.1. By this theorem,

we have

EQd
[S(T )] = F(t)e−(r f −rd )(T −t)EQ f

[
1

F(T )
× S(T )

]
.

Substituting Equations 3.14 and 3.15 into the right-hand side yields

EQd
[S(T )] = S(t)er f (T −t)e−

1
2 (σ

2
F +σ 2)(T −t)EQ f[

exp
(
σ (ŴS(T )− ŴS(t))+ σF (Ŵ (T )− Ŵ (t))

)]
.

The sum of the two normal random variables is also a normal random variable, and

1. EQ f [
σ (ŴS(T )− ŴS(t))+ σF (Ŵ (T )− Ŵ (t))

] = 0;

2. EQ f
[(

σ (ŴS(T )− ŴS(t))+ σF (Ŵ (T )− Ŵ (t))
)2]

= (
σ 2 − 2ρσσF + σ 2F

)
(T − t).

Using the moment-generating function of a normal random variable, it is clear
that

EQd
[S(T )] = S(t)e(r f −ρσσF )(T −t).

Hence, the Qd dynamics of S(t) are deduced as

d S(t)

S(t)
= (r f − ρσσF ) dt + σ dW ∗

S (t) or d log S(t)

= (r f − ρσσF − σ 2/2) dt + σ dW ∗
S (t). (3.16)

Simulation can be constructed on the basis of Equation 3.16.
For this foreign-index-linked vanilla RAN, a closed-form solution can also be

derived using Equation 3.16. Probability

Qd (L ≤ S(t j ) ≤ H ) = Qd (S(t j ) ≤ H )− Qd (S(t j ) < L)
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can be expressed in terms of standard normal CDF �. More specifically, event
{S(t j ) ≤ H} is equivalent to {W ∗

S (t j ) ≤ −d∗
j (H )

√
t j }, where

d∗
j (H ) = log S

H + (r f − ρσσF − σ 2/2)t j

σ
√

t j
.

Hence, the present value of the RAN is given by

RAN (0) = 100e−rd

⎡⎣1+ c

252

252∑
j=1

(
�(d∗

j (H ))− �(d∗
j (L))

)⎤⎦ .

We recognize that this RAN is affected by the FX rate through its volatility, σF , and
the correlation between the FX and the index returns, ρ, in addition to the dynamics
of the foreign index.
In general, for a quanto-type structured product, simulation can be constructed

using the joint dynamics of the FX rate and the foreign assets under the domestic
risk-neutral measure. Simulation involving one foreign asset and the FX rate uses the
stochastic differential equation (SDE):

d log F(t) = (rd − r f − σ 2F

2
) dt + σF dW ∗(t),

d log S(t) = (r f − ρσσF − σ 2

2
) dt + σ dW ∗

S (t),

EQd
[dW ∗(t)dW ∗

S (t)] = ρ dt.



4
Volatility Modeling

The Black–Scholes (BS) model assumes constant volatility. However, most empirical
studies strongly reject both this assumption and the normality assumption made by
the BS model. To enhance the flexibility of the underlying asset dynamics to better fit
market data, the constant volatility assumption must be relaxed and volatility is mod-
eled as a deterministic function or even stochastic process. This chapter demonstrates
applications of these more appropriate models.
We begin with a local volatility model that simply modifies the BS model by

replacing constant volatility with a deterministic function of time and the underlying
asset price. The function is then calibrated to the observed option data. Theoretic
grounds for such calibration include the ability of the observed call and put option
prices to deduce the risk-neutral distribution of the underlying asset price if the
risk-neutral valuation is correct.

Theorem 4.1 Assume that the risk-neutral valuation is correct. Suppose that we
observe a spectrum of call option prices against strike prices (c(S, K , T ), K ) with
the same maturity date T . Then, the risk-neutral survival function of the underlying
asset price at T is given by

Q(ST > K ) = −erT ∂c

∂K
.

If we further assume that the risk-neutral probability density function, ϕ(ST , T ),
exists, then

ϕ(ST , T ) = erT ∂2c

∂K 2
.
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Proof: By the foregoing risk-neutral valuation,

c(S, K , T ) = e−rTEQ[max(ST − K , 0)] = e−rT
∫ ∞

K
(ST − K ) dQ.

Aswe observemany call prices with a different K , we can draw a curve that represents
the call option price as a function of K . In practice, this is done using interpolation
methods. Differentiating a call with respect to K yields

∂c

∂K
= −e−rT

∫ ∞

K
dQ.

If the probability density function exists, then differentiating the foregoing call gives
the result for ϕ(ST , T ).

In other words, if we observe numerous call and put option prices, then these
prices are sufficient to allow us to estimate or imply the risk-neutral distribution of the
underlying asset price without considering its history. However, the entire stochastic
evolution of the underlying asset price remains unknown, and the valuation of path-
dependent options and contracts is infeasible. Thus, practitioners modify this process
to fit option prices to a local volatility model to allow them to simulate the paths of
the underlying asset under Q.
This local volatilitymodel has several limitations. For example, it presumes volatil-

ity to be deterministic, a presumption that has also been rejected by empirical studies,
as risk (volatility) can change randomly over time. From the practical perspective,
traders have discovered that when a local volatility model is fit to an option price,
it still exhibits a large degree of error in capturing the implied volatilities that are
market quotes.
A local volatility model extension is to allow volatility to be driven by another

stochastic variable. One difficulty with such stochastic volatility models, however, is
that they increase the number of random variables and render simulation less efficient,
although this is a minor issue given modern computing power.

4.1 LOCAL VOLATILITY MODELS: SIMULATION AND
BINOMIAL TREE

As noted, in the BS world, volatility is assumed to be constant, and the stock price is
assumed to evolve continuously. In practice, it is widely known that volatility is not
in fact a constant, as reflected in the volatility smile and jumps in stock prices. In this
section, we introduce the local volatility models that extend the BS model.
In a local volatility model, volatility σ (S(t), t) is a deterministic function of stock

price S(t) and time t . The dynamics of a stock price in the physical world are given
by

dS(t) = μS(t) dt + σ (S(t), t)S(t) dW(t). (4.1)
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The discrete approximation is

Si = Si−1 + μSi−1�t + σ (Si−1, ti )Si−1
√

�t Zi , (4.2)

where Zi is a standard normal random variable. If the exact form of the local volatility
function σ (S(t), t) is known, then only slight modification is needed when the simu-
lation is changed from the BS model to a local volatility model. We simply need to
replace constant volatility σ in the BS simulation algorithm with function σ (Si−1, ti ),
which represents the volatility of stock price Si−1 at time ti . The corresponding VBA
code is

S(i, j) = S(i - 1, j) + (A.rf - A.q) * S(i - 1, j) * dt _

+ LocalVol(S(i-1, j), i*dt) * S(i-1, j) * Sqr(dt) * rGauss()

A key advantage of local volatility models is that they preserve the BS hedging
argument and the risk-neutral valuation. As the physical dynamic of S(t) in Equa-
tion 4.1 contains only one stochastic factor, W (t), the BS hedging procedure can be
retained to produce an extended BS equation.

∂

∂t
c(t, S)+ rS

∂

∂S
c(t, S)+ 1

2
σ (t, S)2S2

∂2

∂S2
c(t, S) = rc(t, S),

c(T, S) = max(S − K , 0).

We can replace constant volatility in this BS equation directly with the local volatility
function. Moreover, we can retain the risk-neutral valuation (Eq. 2.12), although the
risk-neutral dynamics of S are revised to

dS(t) = r S(t) dt + σ (S(t), t)S(t) dW∗(t). (4.3)

4.1.1 Calibration of Local Volatility Function and Dupire Equation

Calibration of the local volatility function can be formulated using the Dupire (1994)
equation. Suppose that we observe call option prices with different strikes maturities,
that is, we have a sample of (K , T, c(K , T )), at the present time t = 0. We can
interpolate and extrapolate the observed call prices to form a surface, andwe therefore
theoretically assume the function c(K , T ) to be known. Our goal is to extract the local
volatility function, σ (t, S(t)), from function c(K , T ).
We are able to (numerically) obtain the differentials ∂c

∂K ,
∂2c
∂K 2 , and

∂c
∂T from function

c(K , T ). The expressions for the first two differentials are presented in Theorem 4.1,
and for the third differential, we have

∂c

∂T
= ∂

∂T

[
e−rT

∫ ∞

K
(ST − K )ϕ(ST , T ) dST

]

= −rc + e−rT
∫ ∞

K
(ST − K )

∂ϕ(ST , T )

∂T
dST .
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The risk-neutral process (Eq. 4.3) confirms that this is a Markov process, and hence
ϕ(ST , T ) is the transition density function that satisfies the forward Kolmogorov
equation (or Fokker–Plank equation):

∂ϕ(S, T )

∂T
= − ∂

∂S
[rSϕ(S, T )]+ 1

2

∂2

∂S2
[σ (t, S)2S2ϕ(S, T )].

Thus,

∂c

∂T
+ rc = e−rT

∫ ∞

K
(S − K )

[
− ∂

∂S
[rSϕ(S, T )]+ 1

2

∂2

∂S2
[σ (t, S)2S2ϕ(S, T )]

]
dS.

Integration by parts yields the Dupire equation:

∂c

∂T
= −r K

∂c

∂K
+ 1

2
K 2σ (T, K )2

∂2c

∂K 2
,

or

σ (K , T ) =
√√√√2 ∂c

∂T + r K ∂c
∂K

K 2 ∂2c
∂K 2

.

In practice, the local volatility is unknown and must be calibrated to the market
prices of the option data. To demonstrate such calibration, we first employ a fictitious
local volatility function

σ (S, t) = 0.1+
( S − 90
100

)2
t0.1. (4.4)

Note that this function captures two characteristics of the local volatility: that it is a
decreasing function of the stock price and an increasing function of time. The shape
of Equation 4.4 is illustrated in Figure 4.1.
The corresponding VBA code for the function LocalVol used in the simulation is

as follows.

Public Function LocalVol (S As Double, t As Double)

LocalVol = 0.1 + ((S - 90) / 100) ˆ 2 * (t ˆ 0.1)

End Function

With S0 = 50, r = 5%, q = 0%, n = 200,000, and dt = 1/360, we can generate
a call price surface using the stock price paths from Equation 4.2. The call prices
and their corresponding true local volatilities are presented in Tables 4.1 and 4.2,
respectively.
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Figure 4.1 Local volatility surface using Equation 4.4.

TABLE 4.1 Generated Call Prices

Strike\Maturity 0.25 0.5 1 1.5 2

20 30.24844 30.49401 30.99557 31.54363 32.12791
30 20.37296 20.76163 21.68060 22.68283 23.68910
40 10.57732 11.38030 13.04635 14.56893 15.96776
50 2.57212 3.93215 6.07283 7.84000 9.39895
60 0.09283 0.54232 1.82616 3.16497 4.48168
70 0.00013 0.01510 0.26502 0.80525 1.53652
80 0.00000 0.00005 0.01248 0.10239 0.32781

TABLE 4.2 True Local Volatility

Strike\Maturity 0.25 0.5 1 1.5 2

20 0.52657 0.55719 0.59000 0.61028 0.62517
30 0.41340 0.43589 0.46000 0.47490 0.48584
40 0.31764 0.33326 0.35000 0.36034 0.36794
50 0.23929 0.24929 0.26000 0.26662 0.27148
60 0.17835 0.18397 0.19000 0.19372 0.19646
70 0.13482 0.13732 0.14000 0.14166 0.14287
80 0.10871 0.10933 0.11000 0.11041 0.11072
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We employ two methods to calibrate the local volatility and compare the results
with known values. The first method uses the Dupire (1994) equation,

σ (K , T ) =
√√√√2 ∂c

∂T + r K ∂c
∂K

K 2 ∂2c
∂K 2

, (4.5)

where c(K , t) is the price of a call with strike K and time-to-maturity T .
The secondmethod is that proposed byDerman andKani (1994), who approximate

the implied volatility �(K , t) as the average of local volatility σ (K , t) and state the
following relation.

�(K , T ) ≈ 1

K − S(0)

∫ K

S(0)
σ (S, T ) dS.

If the local volatility is restricted to being independent of t and to vary linearly with
the price, that is,

σ (K , T ) = σ0 + βK , (4.6)

then

�(K , T ) ≈ σ0 + β

2
(S(0)+ K ). (4.7)

Substituting Equation 4.6 into Equation 4.7, after simplification, local volatility
σ (S, t) is approximated by

σ (K , T ) ≈ �(S(0), T )+ 2(�(K , T )− �(S(0), T )). (4.8)

We first test the second method with the call surface generated to check whether it
is able to recover the local volatility surface. We convert the generated market option
prices to the implied volatility surface. The converted values of the implied volatilities
are listed in Table 4.3, in which the bicubic spline is used to smooth the surface and
interpolate the implied local volatilities at different strikes and times-to-maturity. The

TABLE 4.3 Implied Volatility of the Generated Call Prices

Strike\Maturity 0.25 0.5 1 1.5 2

20 0.32507 0.36015 0.37983 0.39002 0.39593
30 0.29650 0.31198 0.32757 0.33427 0.33915
40 0.26039 0.27183 0.28336 0.28863 0.29262
50 0.22692 0.23559 0.24497 0.24982 0.25297
60 0.19719 0.20374 0.21174 0.21555 0.21851
70 0.17523 0.17692 0.18295 0.18593 0.18860
80 0.12918 0.15708 0.15893 0.16142 0.16416
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TABLE 4.4 Local Volatilities Estimated with Method 2

Strike\Maturity 0.25 0.5 1 1.5 2

20 0.42321 0.48471 0.51469 0.53022 0.53889
30 0.36608 0.38837 0.41016 0.41871 0.42533
40 0.29386 0.30806 0.32176 0.32743 0.33227
50 0.22692 0.23559 0.24497 0.24982 0.25297
60 0.16746 0.17189 0.17851 0.18128 0.18404
70 0.12354 0.11825 0.12094 0.12203 0.12423
80 0.03143 0.07856 0.07289 0.07301 0.07535

calibrated local volatilities and their percentage errors at these nodes are presented
in Tables 4.4 and 4.5. Figure 4.2 shows the percentage error of the calibrated local
volatility surface from time 0 to time 2.25, and strike 5 to strike 95. For further details,
please refer to

Ch4.2 Local Volatility Method 2.xls.

It can be seen from Figure 4.2 that Method 2 consistently underestimates the
local volatility because the approximation assumes the linear relationship between
local volatility and the stock price to be independent of time. If we instead employ a
quadratic relationship between the two, then calibration of the local volatility remains
quite good in the central region covered by the call option. We discuss the effect of
underestimation later in the chapter. When the stock price is in the range of 30 to
70, the average error is about 10%. When it is below 20 or above 70, the quality of
the estimate worsens, and when it is beyond call option coverage (below 20 or above
80), this method can even produce negative local volatility. However, the error varies
very little over time.
We next employ Equation 4.5 to calibrate local volatility, for which we require

differentials ∂c
∂T ,

∂c
∂K , and

∂2c
∂K 2 . An intuitive way of proceeding is to use a bicubic

spline to fit the call surface and then calculate these partial derivatives from the fitting
result. Although a call price estimated via direct fitting is close to the simulated price,
partial derivatives calculated in this way are numerically unstable. They render the
estimation highly inaccurate and are unable to produce an estimate, as the products
inside the square root are very often negative. Accordingly, rather than use the call
price for the bicubic spline, we fit the implied volatility calculated from the call option

TABLE 4.5 Percentage Error in Local Volatility Estimation with Method 2

Strike\Maturity 0.25 0.5 1 1.5 2

20 −19.63% −13.01% −12.76% −13.12% −13.80%
30 −11.45% −10.90% −10.83% −11.83% −12.45%
40 −7.49% −7.56% −8.07% −9.13% −9.70%
50 −5.17% −5.49% −5.78% −6.30% −6.82%
60 −6.10% −6.57% −6.05% −6.42% −6.32%
70 −8.37% −13.89% −13.61% −13.85% −13.05%
80 −71.08% −28.14% −33.74% −33.88% −31.94%
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Figure 4.2 Percentage error in local volatility estimation with Method 2.

price and create an implied volatility surface. As there are no closed-form formulas
for the partial derivatives in a local volatility model, we have to employ the finite
difference method to approximate them, as follows.

∂C

∂T
≈ C(K , T + h)− C(K , T − h)

2h
,

∂C

∂K
≈ C(K + h, T )− C(K + h, T )

2h
,

∂2C

∂K 2
≈ C(K + h, T )− 2C(K , T )+ C(K − h, T )

h2
.

We use the implied volatility surface to calculate the call option prices in the BS
formula to estimate the partial derivatives at the desired K and T . Tables 4.6 and 4.7

TABLE 4.6 Estimated Local Volatilities with Method 1

Strike\Maturity 0.25 0.5 1 1.5 2

20 0.42737 0.56095 0.55818 0.62484 0.64256
30 0.38206 0.43451 0.45678 0.47063 0.48749
40 0.31120 0.33655 0.34901 0.35763 0.37259
50 0.23766 0.25111 0.25876 0.26620 0.26913
60 0.17888 0.18558 0.19152 0.19288 0.19876
70 0.12592 0.13720 0.14204 0.13972 0.14369
80 0.06176 0.13240 0.09047 0.11324 0.10801
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TABLE 4.7 Percentage Error in Estimated Local Volatilities with Method 1

Strike\Maturity 0.25 0.5 1 1.5 2

20 −18.84% 0.68% −5.39% 2.39% 2.78%
30 −7.58% −0.32% −0.70% −0.90% 0.34%
40 −2.03% 0.99% −0.28% −0.75% 1.26%
50 −0.68% 0.73% −0.48% −0.16% −0.87%
60 0.29% 0.87% 0.80% −0.43% 1.17%
70 −6.61% −0.09% 1.46% −1.36% 0.57%
80 −43.18% 21.10% −17.75% 2.56% −2.44%

list the estimated local volatilities and their percentage errors, and Figure 4.3 illus-
trates the percentage error of the estimated local volatility surface for time from 0 to
2.25 and the strike prices from 5 to 95. At K = 20 and T = 0.5, this method fails to
produce an estimate.
Unlike Method 2, Equation 4.5 does not consistently underestimate local volatil-

ity, and it produces very nice estimates in the central region. It can be observed
that when the price is between 20 and 80, the estimation is within a 5% error
rate. In the central region, this method’s performance is excellent, with error of
only about 1%. Again, when the price is lower than 20 or higher than 80, esti-
mate quality worsens, and the method sometimes fails to produce a real number
as the value of the square root becomes negative. For more details, please refer to
Ch4.2_Local_Volatility_Method_1.xls.
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Figure 4.3 Percentage error in local volatilities estimation with Method 1.
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For simulation, we need to handle the region in which calibration is imprecise. We
employ the minimum (or maximum) value of the strike price from the option data
when that price falls below (or above, respectively) the average strike price, which
means that when the stock price falls below 20, we approximate its local volatility
using the stock price 20. When the stock price rises above 80, we approximate its
local volatility using a stock price of 80. If the equation fails to provide an estimate,
then we assign a default value (20%) for simplicity.
For S0 = 50, r = 5%, q = 0, K = 55, T = 1.75, dt = 1/360, and n = 20,000,

the simulated price of a call option using the local volatility estimated from Dupire’s
(1994) Equation is 5.92, which is close to the price (5.81) that is simulated under the
actual local volatility function in Equation 4.4. In simulation, the stock price falls
below 20 or rises above 80 about 230,000 times, accounting for around 1.8% of the
total local volatilities estimated. Of the 10,000× 270 = 2,700,000 estimation times,
only about 0.5% fail to produce an estimate.
Recall that in Method 2, the simulated price was 5.63, which is lower than the

simulated price using actual local volatility and Method 1. The degree of underes-
timation does not improve even when the number of paths is increased. Method 2
produces an estimation percentage error of about 3.1%, whereas Method 1’s error
rate is 1.9%. For more details, please refer to

Ch4.2 Local Volatility Simulation European Option.xls.

We also test the two methods for a call option with knock-out features. In this
case, S0 = 50, r = 5%, q = 0, K = 45, T = 1, dt = 1/360, knock-out price = 65,
and n = 200,00. The simulated price under actual local volatility is 4.08, and that
using Method 1 is 4.02, which is about a 1.4% percentage error. Method 2 produces
a simulated price of 4.40, which constitutes a nearly 7.8% percentage error. The
simulated price is overestimated because the underestimation of local volatilitymeans
that the call option is knocked out less often. To correct the local volatility surface
in Method 2, we first generate another call surface with local volatility estimated by
Method 2 as shown in Figure 4.4. We then compare the local volatility estimated by
the new call surface σ̂2(S, T ) with the original estimation σ̂1(S, T ) and set

α(S, T ) = σ̂1(S, T )

σ̂2(S, T )
,

σ̂ (S, T ) = α(S, T )̂σ1(S, T ),

where σ̂ (S, T ) is our corrected local volatility. Tables 4.8 and 4.9 list the corrected
local volatilities and their percentage errors. We can see that the underestimation is
somewhat rectified. The simulated price of this call option with knock-out features
and corrected local volatility is 4.1, which is close to 4.08.

4.1.2 Implied Binomial Tree

Anothermethod for capturing local volatility is the implied tree. Here,we demonstrate
how to build an implied binomial tree with uniformly spaced levels that are�t apart.
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TABLE 4.8 Estimated Local Volatilities with Method 2 After Correction

Strike\Maturity 0.25 0.5 1 1.5 2

20 0.42119 0.55941 0.54732 0.58024 0.60149
30 0.48393 0.41423 0.43918 0.45299 0.46732
40 0.30207 0.32082 0.33987 0.34992 0.36102
50 0.22895 0.24450 0.25808 0.26470 0.27080
60 0.17602 0.18234 0.18976 0.19318 0.19710
70 0.11615 0.13415 0.13898 0.13836 0.14052
80 0.04847 0.20028 0.09996 0.11113 0.10863

TABLE 4.9 Percentage Errors in Estimated Local Volatilities with Method 2 After Correction

Strike\Maturity 0.25 0.5 1 1.5 2

20 −20.01% 0.40% −7.23% −4.92% −3.79%
30 17.06% −4.97% −4.53% −4.61% −3.81%
40 −4.90% −3.73% −2.89% −2.89% −1.88%
50 −4.32% −1.92% −0.74% −0.72% −0.25%
60 −1.31% −0.89% −0.13% −0.28% 0.33%
70 −13.85% −2.31% −0.73% −2.33% −1.65%
80 −55.41% 83.19% −9.13% 0.65% −1.88%
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Figure 4.4 Percentage error in local volatility estimation with Method 2 after correction.
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Figure 4.5 Construction of the (n + 1)th level in the implied tree.

In the following, r denotes the continuous risk-free rate, Sn,i denotes the i th node of
the stock price at level n, pn,i denotes the probability of going up from node Sn,i to
node Sn+1,i+1, Fn,i denotes the one-period forward price corresponding to price Sn,i ,
and λn,i denotes the probability of reaching node Sn,i discounted by the risk-free rate.
λn,i is also called the Arrow–Debreu price. All λn,i and Fn,i at level n are known and
can be calculated through the following relationship.

λn,i = e−r�t
(

pn−1,i−1λn−1,i−1 + (1− pn−1,i )λn−1,i
)
,

Fn, j = er�t Sn,i .

At the nth step, all n nodes at the nth level are calculated, and the n + 1 nodes at
the (n + 1)th level are implied by the nodes at the nth level. Figure 4.5 depicts the
relationship between the notations at the nth step, where we begin to construct the
(n + 1)th level of the implied binomial tree.
Denote today’s market call price for a call struck at K and expiring at t byC(K , t).

Estimate the values of calls with a different K and t by interpolating the market data.
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As before, we estimate the call price by fitting the implied volatility surface. The
theoretical binomial value of a call struck at K and expiring at tn+1 is given by the
sum of the discounted probability of reaching node (n + 1, j) multiplied by the call
payoff over all nodes (n + 1, j) at the (n + 1)th level, which relates the market value
of a call struck at Sn,i and expiring at tn+1 via

c(Sn,i , tn+1) =
n∑

j=1
λn+1, j+1 max{Sn+1, j+1 − Sn,i , 0}, (4.9)

where

λn+1, j+1 = e−r�t
(

pn, jλn, j + (1− pn, j+1)λn, j+1
)
.

Note that node Sn,i splits up and down nodes Sn+1,i+1 and Sn,i at the next level, which
ensures that only nodes above Sn,i contribute to a call struck at Sn,i . Equation 4.9
becomes

c(Sn,i , tn+1) =
n∑

j=i

λn+1, j+1 max{Sn+1, j+1 − Sn,i , 0}. (4.10)

As the implied tree is risk-neutral, the forward price Fn,i of stock price Sn,i at node
(n, i) is its expected value one period later, which leads to the following equation.

Fn,i = pn,i Sn+1,i+1 + (1− pn,i )Sn+1,i . (4.11)

Using Equation 4.11, Equation 4.10 can be simplified as

er�t c(Sn,i , tn+1) = λn,i pn,i (Sn+1,i+1 − Sn,i )+ �, (4.12)

where

� =
n∑

j=i+1
λn, j (Fn, j − Sn, j ). (4.13)

Solving Equations 4.11 and 4.12 simultaneously for Sn+1,i+1 and pn,i gives us

Sn+1,i+1 =
Sn+1,i

(
er�t c(Sn,i , tn+1)− �

)
− λn,i Sn,i (Fn,i − Sn+1,i )(

er�t c(Sn,i , tn+1)− �
)

− λn,i (Fn,i − Sn+1,i )
, (4.14)

and

pn,i = Fn,i − Sn+1,i
Sn+1,i+1 − Sn+1,i

, (4.15)

where � denotes the terms in Equation 4.13.
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Using Equations 4.14 and 4.15, we find Sn+1,i+1 and pn,i iteratively for all nodes
above central node Sn+1,ctr . Suppose that we are at step n, and there are n + 1 nodes
to fix at the (n + 1)th level.
If n is even, then we choose ctr = (n/2+ 1) and set Sn+1,ctr = S0, where S0 is

today’s spot price. Using Equation 4.14, we imply all nodes in the upper half of the
tree at the (n + 1)th level starting from node Sn+1,ctr+1 and proceeding one by one.
If n is odd, then we choose ctr = (n + 1)/2 such that Sn+1,ctr denotes the lower

central node and Sn+1,ctr+1 denotes the upper central node at the (n + 1)th level. In
this case, we set Sn+1,ctr = S20/Sn+1,ctr+1, such that the logarithmic spacing between
the two central nodes and today’s spot price S0 are equal. Substituting this relation
into Equation 4.14 gives us

Sn+1,ctr+1 =
S0
(

er�t c(S0, tn+1)+ λn,ctr S0 − �
)

λn,ctr Fn,ctr − er�t c(S0, tn+1)+ �
,

Sn+1,ctr = S20
Sn+1,ctr+1

.

When the central nodes are fixed, we continue to fix the higher nodes, as before. This
time, we imply the upper half of the tree starting from node Sn+1,ctr+2 until we reach
the highest node at that level.
We can fix the nodes below the central node in a similar way using put prices. In

the following, P(K , t) denotes the put option price struck at K and expiring at t . The
put price can be obtained from the estimated call option through put-call parity. The
analogous formula that determines a lower nodes’s price from that of an upper node
is

Sn+1,i = Sn+1,i+1(er�t P(Sn,i , tn+1)− �)+ λn,i Sn,i (Fn,i − Sn+1,i+1)
er�t P(Sn,i , tn+1)− � + λn,i (Fn,i − Sn+1,i+1)

,

where

� =
i−1∑
j=1

λn, j (Sn,i − Fn, j ).

Repeating this process from node Sn+1,ctr−1, we imply every node in the lower half
of the tree.
In Derman and Kani (1994), the problem of producing a transition probability

greater than 1 or lower than 0 is resolved by replacing the stock price with the
price that keeps the logarithmic spacing between the corresponding node at and its
adjacent nodes the same level as before. However, their solution may still violate
the inequality Fn,i ≤ Sn+1,i+1 ≤ Fn,i+1 and indicate an arbitrage opportunity. To
resolve this problem, we take the geometric average of the forwards by setting
Sn+1,i+1 = er�t

√
Sn,i Sn,i+1 when the inequality is violated.
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For the highest node, we check whether Fn,n ≤ Sn+1,n+1. If this inequality is
violated, thenwe replace price Sn+1,n+1 with Sn+1,n

Sn,n

Sn,n−1
, which keeps the logarithmic

spacing between Sn+1,n+1 and Fn,n at the same level as that between Sn+1,n and Fn,n−1.
For the lowest node, we check whether Sn+1,1 ≤ Fn,1 and Sn+1,1 ≥ 0 because

the stock price produced can be negative in some cases. If one of these two condi-
tions is violated, then we set Sn+1,1 = Sn+1,2

Sn,1

Sn,2
. For more details, please refer to

Ch4.2_Implied_Binomial_Tree.xls.

4.2 THE HESTON STOCHASTIC VOLATILITY MODEL

As all market practitioners are aware, the BS model is seriously flawed. The model’s
implied volatilities for different strikes and times-to-maturity are not constant and
therefore cannot capture the volatility smile observed in the market. An alternative to
the local volatility models introduced in Section 4.1 is stochastic volatility models.
Under the physical probability measure P, a general stochastic volatility model

can be represented in a pair of stochastic differential equation (SDEs),

dS(t)

S(t)
= μ(t, S(t), V (t)) dt +

√
V (t) dW S(t),

dV (t) = μV (t, V (t)) dt + σV (t, V (t)) dWV (t), (4.16)

EP[dW S(t) dWV (t)] = ρ dt,

where σV (t, V (t)) is a positive function and V (t) is the non-negative variance process
of the underlying asset for an appropriately chosen μV and σV . Typical parameteriza-
tion assumes thatμ(t, S(t), V (t)) = r + λ(t)

√
V (t) to ensure that the excess return of

holding the asset is proportional to the asset’s volatility. Parameter λ(t) is essentially
the market price of risk.
To identify a risk-neutral process corresponding to Equation 4.17, a Q-standard

Brownian motion driving the asset price is defined as

dW∗
S(t) = dW S(t)+ λ(t) dt.

As EP[dW S(t) dWV (t)] = ρ dt, we employ the Cholesky decomposition to obtain

dWV (t) = ρ dW S(t)+
√
1− ρ2 dW⊥(t)

= ρ (dW∗
S(t)− λ(t) dt)+

√
1− ρ2 dW⊥(t)

= ρ dW∗
S(t)+

√
1− ρ2 dW⊥(t)− ρλ(t) dt

= dW∗
V (t)− ρλ(t) dt,

whereW ⊥(t) is a standard Brownian motion that is independent ofWS(t), andW ∗
V (t)

is a Q-standard Brownian motion. Putting these together forms a pair of SDEs for
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the Q-dynamics of the asset:

dS(t)

S(t)
= r dt +

√
V (t) dW∗

S(t),

dV (t) = [μV (t, V (t))− ρλ(t)σV (t, V (t))] dt + σV (t, V (t)) dW∗
V (t),

EQ[dW∗
S(t) dW∗

V (t)] = ρ dt.

Often, the market price of risk is positive, and correlation coefficient ρ is negative.
In such a situation, the risk-neutral volatility is higher than the physical volatility.
The consequence is that the implied volatility is higher than the historical volatility
for nearly at-the-money (ATM) options. When such a situation occurs, the difference
between the implied volatility and the historical volatility refers to the volatility
premium because call and put options are quoted at higher prices than their BS prices
using historical volatility.

4.2.1 The Heston Model and Option Pricing

The Heston model (Heston, 1993) stands out in the class of stochastic volatility
models for two simple reasons. First, its volatility process is non-negative and has
a mean-reverting feature that can be observed in market data. Second, the Heston
model features a closed-form solution for vanilla options that explains the volatility
smile, allows market implementation, and provides a consistent framework for the
valuation of exotic products. In terms of calibration, the Heston stochastic volatility
model has the following two-dimensional SDE under Q.

dS(t)

S(t)
= r dt +

√
V (t) dW S(t),

dV (t) = κ(θ − V (t)) dt + ε
√

V (t) dWV (t), (4.17)

E[dW S(t) dWV (t)] = ρ dt,

where κ is the mean-reverting rate of variance, θ is long-run average variance, ε is
the volatility of the variance process, and ρ ∈ [−1, 1] is the correlation between the
stock price and variance processes.
Inspired by Theorem 4.1, the call option prices are closely related to the Q-

distribution of the underlying asset price. From standard probability theory, we also
know that this distribution can be fully characterized by the characteristic function.
Let XT = log ST . TheQ-characteristic function for the log-asset value is defined as

�(x, v, 0;φ) = EQ
[

eiφXT
∣∣ X0 = x, V0 = v

]
, (4.18)

where i = √−1 is a complex number.
Theorem 4.2 (Carr and Madan, 1999) If the Q-characteristic function of the log-
asset value is known to be �(φ), then the dampened Fourier transform of the call
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option with respect to the log-strike is given by

∫ ∞

−∞
eiξkeαkc(ek, T ) dk = e−rT �(x, v, t ;φ = ξ − (α + 1)i)

α2 + α − ξ 2 + i(2α + 1)ξ ,

where α > 0 is a dampened parameter chosen to stabilize the Fourier inversion
numerically and k = log K . In other words, the call option price can be calculated
through an inverse Fourier transform:

c(K , T ) = e−rT e−αkF−1
ξ,k

{
�(x, v, 0;φ = ξ − (α + 1)i)
α2 + α − ξ 2 + i(2α + 1)ξ

}
,

where F−1
ξ,k {·} denotes the Fourier inversion operator.

Proof: By risk-neutral valuation, the call option price is given by

c(K , T ) =
∫ ∞

k
(ex − ek)ϕ(x, T ) dx,

where ϕ(x, T ) is the risk-neutral density function for the log-asset value, x = log ST

and k = log K . Apply the Fourier transform with dampened parameter α > 0 to the
integral representation with respect to k. Then,

∫ ∞

−∞
eiξkeαkc(ek, T ) dk =

∫ ∞

−∞
eiξke−αk

∫ ∞

k
(ex − ek)ϕ(x, T ) dx dk,

=
∫ ∞

−∞

∫ x

−∞
eiξkeαk(ex − ek)ϕ(x, T ) dk dx,

=
∫ ∞

−∞
ϕ(x, T )

∫ x

−∞
eiξkeαk(ex − ek) dk dx .

After integrating out the internal integration, the result follows by recognizing the
definition of the characteristic function.

A clear advantage of the Heston model is that the characteristic function can be
derived in a closed-form solution. It also enables the call option price to be computed
very efficiently using Fast Fourier Transform (FFT) techniques. The characteristic
function defined in Equation 4.18 resembles the valuation of a derivative whose
payoff is eiφXT and has no discounting factor e−rT . By the BS equation on the
aforementioned pair of SDE (Eq. 4.18), we obtain the partial differential equation
(PDE) for the characteristic function as

∂�

∂t
+
(

r − v

2

) ∂�

∂x
+ κ(θ − v)

∂�

∂v
+ 1

2
v2

∂2�

∂x2
+ ρεv

∂2�

∂xv
+ 1

2
vε2

∂2�

∂v2
= 0,

�(x, v, T ) = eiφx .
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Heston (1993) discovered that the characteristic function should take an exponential
affine form:

�H (x, v, t) = exp [iφx + A(t, T )v + B(t, T )] . (4.19)

Substituting it into the PDE deduces that

Ȧ + (−κθ + iφερ)A + ε2

2
A2 − 1

2
(iφ + φ2) = 0, A(T, T ) = 0,

Ḃ + irφ + κθ A = 0, B(T, T ) = 0,

where Ȧ and Ḃ are the differentials of A and B with respect to t . The ordinary
differential equations (ODEs) for A and B have well-known solutions:

A(t, T ) = irφ(T − t)+ κθ

ε2

[
(κ − iφρε + d)(T − t)− 2 log

(
1− ged(T −t

1− g

)]
,

B(t, T ) =
(

κ − iφρε + d

ε2

)(
1− ed(T −t)

1− geT −t

)
, (4.20)

g = κ − iφρε + d

κ − iφρε − d
,

d =
√
(iρεφ − κ)2 + ε2(iφ − φ2).

Hence, the Heston call pricing formula reads as follows.

cH (S, V, t) = e−rT e−αkF−1
ξ,k

{
�H (log S, V, t ;φ = ξ − (α + 1)i)

α2 + α − ξ 2 + i(2α + 1)ξ
}

,

where �H is obtained through Equations 4.19 and 4.21.

4.2.2 Model Calibration and Implementation

The efficient computational method using FFT proposed by Carr and Madan (1999)
allows vanilla option prices to be efficiently computed under the Hestonmodel, which
renders parameter calibration easy and implementable. When the Heston model
is used as an internal pricing model for mark-to-market (MTM) procedures, the
model parameters must be updated daily on the basis of the market situation through
calibration. Therefore, an efficient and effective calibrationmethodmust be employed
to obtain accurate parameters that fully reflectmarket conditions. Incorrect calibration
can lead tomiscalculation of the bank’sMTMposition in turn possibly incurring huge
losses and increase operational risk. In addition to accuracy, it is also important that
the calibration method not be overly time-consuming, at it is the first procedure in
daily MTM. If the process takes too long, then it will affect the bank’s efficiency in
daily valuation and risk-reporting.
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The main objective of calibration is to obtain a set of model parameters that min-
imizes the sum of the squared difference between the market-observed option prices
and the model option prices. Thus, a good calibration method must ensure that the
calibrated parameters are located at the global minimum of the problem. Such opti-
mization methods as the Levenberg–Marquardt and Downhill Simplex approaches
could be used to calibrate the Heston model, although both algorithms tend to get
stuck in local minima rather than the global minimum. Adaptive Simulated Anneal-
ing is another possibility, but it is very time-consuming. In this section, we introduce
an efficient stochastic optimization method called differential evolution (DE) for
calibrating the Heston model.

4.2.3 Calibration to European Options: Differential Evolution

DE is an evolutionary algorithm that finds theminimum of a cost function by evolving
a family of solutions in parallel instead of using a single point in the parameter space.
The probability of getting stuck in a local minimum is thus greatly reduced. The DE
algorithm comprises four stages: selection of the population, mutation, crossover,
and selection. (Note: The following notations are similar to those used in Vollrath
and Wendland (2009).)

1. Selection of the population
A family of parameter sets is generated randomly according to the parameter
bounds. The size of this family (number of random parameter sets), denoted by
NP, must be at least four to permit the independent selection of family vectors
in the mutation process. Define a member of the population as

Pi = (α1, α2, . . . , αM ),

where i = 1, . . . , NP and M is the dimension of the problem.

2. Mutation
This key step of theDEalgorithmaims tomutate an individual of the population.
A single individual, Pa , is chosen at random, and added to the difference
between two other mutually independent individuals, Pb and Pc, selected at
random and multiplied by scale factor F . That is,

P ′
i = Pa + F · (Pb + Pc),

P ′
i = (α′

1, α
′
2, . . . , α

′
M ),

where i = 1, . . . , NP.
The foregoing process is repeated NP times and a new set of mutated

population with size NP is generated. After mutation, it is common to find
that the boundary conditions of some parameters are violated, in which case
adjustments are necessary. A common practice is to set the parameter value
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as the midpoint of the original population parameter value and the violated
boundary. Other adjustment methods can also be used.

3. Crossover of mutated parameters into an individual
At this point, we have a new population of mutated individuals with size NP,
each containing mutated parameters. The crossover step now determines which
mutated parameters will be accepted into the original population:

P ′′
i = (α′′

1 , α
′′
2 , . . . , α

′′
M ).

P ′′
i is a new individual containing amixture of mutated and original parameters,
and α′′

j , for j = 1, . . . , M , is given by

α′′
j =

{
α′

j , if U(0, 1) ≤ CR or j = r,
α j , if U(0, 1) > CR or j �= r,

where α′
j is mutated from α j , CR ∈ [0, 1] is the crossover ratio, and r is a

randomly selected index from 1, 2, . . . , M . The use of index r is to ensure that
at least one mutated parameter will be accepted into the original population.
This crossover process is repeated NP times, and a new population set is
generated.

4. Selection of individuals into the population for the next generation
The final step of the algorithm computes the cost function of each individual
in population P ′′

i . If the value computed is less than the original Pi cost value,
then we retain P ′′

i as the population for the next generation; otherwise, we
discard it. The process is repeated NP times, which completes one generation
of the algorithm. Steps 2 to 4 are repeated according to the maximum number
of generations N or until the algorithm converges. The final solution is the
parameter set with the lowest cost function value.

With the foregoing DE algorithm, we have now demonstrated the calibration
of the Heston model. The volatility surface of the observed market option data is
collected via Bloomberg application programming interface (API) and imported into
Excel. The C++ platform is used for calibration to increase the computational speed.
For further improvement, we simplify a method based on the Fourier-cosine series
expansions in Fang and Oosterlee (2008), COS, to increase the computational speed
for calculating the Heston option prices. The main objective here is to minimize the
sum of the squared difference between the market and model prices. Each option
datum is assigned a suitable weight via a weighting scheme based on its time-to-
maturity. Mathematically, we have to find a set of parameters, denoted as �, such
that

min
�

N∑
i=1

(
wi (c

i
mkt − ci

H )
2 + Penaltyi

)
,



THE HESTON STOCHASTIC VOLATILITY MODEL 141

TABLE 4.10 Parameter Bounds for the Heston Model

Parameter Lower bound Upper bound

κ 0 20
θ 0 1
V0 0 1
ε 0 1
ρ −1 1

where wi is the assigned weight for option i , ci
mkt is the market mid bid-ask price of

option i , ci
H is the Heston call price computed by FFT, and Penalty

i is the penalty
function assigned to option i . Our implementation of the DE calibration applies the
following two practical settings.

1. Parameter bounds and model parameter constraint
In the Heston model, there are five parameters that require calibration: mean-
reverting speed κ , long-term average variance θ , initial variance V (0), the
volatility of variance ε, and the correlation between the stock and variance ρ.
Each parameter is randomly generated in the initial selection of the popula-
tion according to its bounds. The bounds for each parameter are presented in
Table 4.10.
It is rather common in themutation stage for some of themutated parameters

to violate their own bounds. One remedy is to set the mutated parameter at the
midpoint of the original population parameter value and the violated bound,
which is the strategy employed here.
In addition, to reduce the possibility of generating negative variances in

direct simulation, the constraint 2κθ > ε2 has to be satisfied at the expense of
a poorer fit. Relaxing this constraint would require a better simulation method.
To add this constraint to the calibration, it is suggested that a penalty function be
added to the cost function. The simplest approach is as follows. If the parameter
vectors after mutation and crossover do not meet the condition 2κθ > ε2, then
a large penalty is assigned to this vector such that it will not be accepted into the
new population for the next generation. This approach ensures that the ultimate
parameter output is reasonable and can be used for further calculations and
simulations.

2. Strategy
The efficiency of the DE algorithm is largely dependent on the DE parameters
that are input. Vollrath and Wendland (2009) suggest that the strategy with
NP = 15D, where D is the dimensionality of the model parameter vector,
CR = 0.5 and F = 0.8 works best for most minimization problems, including
Heston model calibration. In addition, 400 generations are sufficient to allow
the solution to converge in the Heston calibration problem. Calibration is
complete in 5 min, which is not very efficient time-wise. In practice, some of
the parameters are fixed in advance using values calibrated earlier, with only
the remaining parameters re-calibrated in real time.
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Figure 4.6 Volatility smiles before and after calibration.

For an illustration, see Figures 4.6, 4.7, and 4.8, which show the volatility smile
and surface fitted by the DE algorithm with the model constraint added. It can
be concluded that the DE algorithm consistently finds the global minimum of the
problem. For further details, please refer to the Ch4.5 Calibration Interface folder.
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4.3 SIMULATION OF EXOTIC OPTION PRICES UNDER
HESTON MODEL

4.3.1 Heston Stochastic Volatility Model Simulation Methods:
Quadratic–Exponential Discretization Scheme

Recall that, under the risk-neutral measure, the Heston stochastic volatility model is
characterized by the following two-dimensional SDE.

dS(t)

S(t)
= r dt +

√
V (t) dW S(t),

dV (t) = κ(θ − V (t)) dt + ε
√

V (t) dWV (t),

E[dW S(t) dWV (t)] = ρ dt.

If 2κθ > ε2 and V (0) > 0, then the variance process V (t) is always positive and well-
defined. Denote the discrete-time approximation of S and V by Ŝ and V̂ . After the
log transform of S(t), and using Itô’s lemma, a Euler scheme for the path simulations
is given by

log Ŝ(t + �) = log Ŝ(t)+
(

r − V̂ (t)

2

)
� +

√
V̂ (t)ZS

√
�,

V̂ (t + �) = V̂ (t)+ κ(θ − V̂ (t))� + ε

√
V̂ (t)ZV

√
�,

0.
14

0
0.

16
0

F
itt

ed
 v

ol
at

ili
ty

0.
18

0

1.050
1.200
Strike 1.350

1.500
0.400

0.800 1.200
1.600 2.000

Time to maturity

Figure 4.8 EURUSD fitted option volatilty surface.



144 VOLATILITY MODELING

where ZS and ZV are standard normal random variables with correlation ρ. By
Cholesky decomposition, ZS and ZV are generated by

ZS = �−1(U1),

ZV = ρZ X +
√
1− ρ2�−1(U2).

This Euler scheme suffers from the problem that negative variance can be generated
with non-zero probability, even though the model constraint is satisfied. The problem
usually occurs when V̂ (t) approaches zero and a large negative value of ZV is
drawn. As a result, the calculation of

√
V̂ (t) becomes impossible and the simulation

process breaks down. Unconstrained calibration of the model often produces extreme
parameters, which quickly halts the simulation. Even though the model constraint
has been added into the calibration process, the calibrated parameters are usually
quite extreme, 2κθ − ε2 ≈ 0 or ε > 0.75, depending on the market situation, which
increases the likelihood of negative variances in the simulation. Several remedies for
resolving the problem have been proposed in the literature. See Lord, Koekkoek, and
van Dijk (2008) for a comparison of the bias in different schemes. According to these
authors, the scheme that produces the smallest degree of bias is the full truncation
scheme that sets V̂ (t) := max{V̂ (t), 0}.
Unfortunately, these remedies fail to reflect the true distribution of V (t) when

it approaches zero, and the bias increases when the number of time steps is large.
Andersen (2008) proposes a quadratic-exponential (QE) discretization scheme that is
shown to price out-of-money options accurately in comparison with the closed-form
solution with extrememodel parameters. The schemeworks in the following way. For
sufficiently large values of V̂ (t), it is known that V̂ (t + �) is proportional to a non-
central chi-square random variable with non-centrality parameter V̂ (t) · n(t, t + �),
where n is independent of V̂ (t), and the distribution will converge to a normal
distribution as the non-centrality parameter approaches infinity. Therefore, V̂ (t + �)
can be approximated by a normal variable using the quadratic sampling scheme

V̂ (t + �) = a(b + ZV )
2,

where ZV is a standard normal random variable, and a and b are constants determined
by moment-matching at each time step. This moment-matching method fails when
V̂ (t) approaches zero because V̂ (t + �) can no longer be approximated by a standard
normal random variable. For a small V̂ (t), the distribution of V̂ (t + �) becomes
proportional to an ordinary central chi-square distribution with 4κθ/ε2 degrees of
freedom. Thus, Andersen (2008) takes inspiration from this asymptotic density and
models the density of V̂ (t + �) according to the following exponential scheme.

Pr(V̂ (t + �) ∈ [x, x + dx]) ≈
(

pδ(0)+ β(1− p)e−βx
)

dx, x ≥ 0,

where δ is the Dirac delta-function, and p and β are non-negative constants to be
determined. The cumulative distribution function (CDF) can be determined easily,
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and inverse transform can be employed in the simulation if V̂ (t) approaches zero:

�(x) = Pr(V̂ (t + �) ≤ x) = p + (1− p)(1− e−βx ), x ≥ 0,
V̂ (t + �) = �−1(UV ; p, β),

where UV is a uniform random variable.
Note that the quadratic scheme can be moment-matched only for ψ ≤ 2, whereas

the exponential scheme can be moment-matched only for ψ ≥ 1. As can be seen
here, these domains of applicability overlap. Thus, a natural procedure is to introduce
a critical level ψc ∈ [1, 2] and use the quadratic scheme if ψ ≤ ψc, and the exponen-
tial scheme otherwise. For practical use, Andersen (2008) suggests that ψ = 1.5 is
sufficient for simulation accuracy.

4.3.2 QE Discretization Scheme for V̂ (t)

The following variables are computed at every time step under the QE scheme.

m = θ + (V̂ (t)− θ )e−κ�,

s2 = V̂ (t)ε2e−κ�

κ
(1− e−κ�)+ θε2

2κ
(1− e−κ�)2,

ψ = s2

m2
,

b = 2ψ−1 − 1+
√
2ψ−1

√
2ψ−1 − 1 ≥ 0,

a = m

1+ b2
,

p = ψ − 1
ψ + 1 ,

β = 1− p

m
= 2

m(ψ + 1) > 0,

�−1(u; p, β) =
{
0, 0 ≤ u ≤ p,

β−1 log 1−p
1−u , p < u ≤ 1.

Definitions and proofs can be found in Andersen (2008). Using the foregoing formu-
las, the following algorithm shows how to compute V̂ (t + �) under the QE scheme.

1. Given V̂ (t), compute m, s2 and ψ .

2. Generate UV ∼ U(0, 1), and set ψC ∈ [1, 2].
3. If ψ ≤ ψc, then compute a and b, and set V̂ (t + �) = a(b + ZV )2, where

ZV = �−1(UV ). Otherwise, compute β and p, and then set V̂ (t + �) =
�−1(UV ; p;β).
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4.3.3 QE Discretization Scheme for Ŝ(t)

To obtain a bias-free scheme for the asset price process, we need to obtain the explicit
form of log Ŝ(t). Integrate the SDE of V (t) to obtain

V (t + �) = V (t)+
∫ t+�

t
κ(θ − V (u)) du + ε

∫ t+�

t

√
V (u) dWV (u),

where
∫ t+�

t

√
V (u) dWV (u) = ε−1

(
V (t + �)− V (t)− κθ� + κ

∫ t+�

t V (u) du
)
.

Cholesky decomposition of S(t) shows that

d log S(t) =
(

r − V (t)

2

)
dt + ρ

√
V (t)dWV (t)+

√
1− ρ2

√
V (t) dW(t),

where W is a standard Brownian motion independent of WV . Integrating both sides
yields

log S(t + �) = log S(t)+ r� + ρ

ε
(V (t + �)− V (t)− κθ�)

+
(

κρ

ε
− 1

2

)∫ t+�

t
V (u) du +

√
1− ρ2

∫ t+�

t

√
V (u) dWV (u).

To discretize S(t), we need to handle the integrals of V (t). The first integral,∫ t+�

t V (u) du, can be approximated as∫ t+�

t
V (u) du ≈ (γ1V (t)+ γ2V (t + �))�,

for some constants γ1 and γ2. The simplest setting is the Euler scheme, where γ1 = 1
and γ2 = 0. Central discretization can also be used, where γ1 = γ2 = 1

2 .

Because W is independent of V , and conditional on V (t) and
∫ t+�

t V (u) du, the
second integral, ∫ t+�

t

√
V (u) dWV (u),

is a standard normal random variable with mean zero and variance
∫ t+�

t V (u) du.
Therefore, with the foregoing approximation, the discretization scheme for log S(t) is

log Ŝ(t + �)

= log Ŝ + r� + ρ

ε
(V̂ (t + �)− V̂ (t)− κθ�)+ �

(
κρ

ε
− 1

2

)
(γ1V̂ (t)+ γ2V̂ (t + �))

+
√

�
√
1− ρ2

√
γ1V̂ (t)+ γ2V̂ (t + �) · Z

= log Ŝ(t)+ r� + K0 + K1V̂ (t)+ K2V̂ (t + �)+
√

K3V̂ (t)+ K4V̂ (t + �) · Z ,
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where Z is a standard normal random variable that is independent of V̂ , and
K0, . . . , K4 are given by

K0 = −ρκθ

ε
�,

K1 = γ1�

(
κρ

ε
− 1

2

)
− ρ

ε
,

K2 = γ1�

(
κρ

ε
− 1

2

)
+ ρ

ε
,

K3 = γ1�(1− ρ2),

K4 = γ2�(1− ρ2),

γ1 and γ2 are predetermined constants, and Ki , i = 0, . . . , 4 depend on different time
steps in the simulation.
With the discretization schemes for V̂ (t) and Ŝ(t), the algorithm for simulating

stock prices under the Heston model using the QE scheme is as follows.

1. Choose γ1 and γ2 according to the user’s preference.

2. Given V̂ (t), generate V̂ (t + �) according to the discretization scheme of
V̂ (t + �).

3. Generate U ∼ U(0, 1), independent of all random numbers used in V̂ (t + �).

4. Set Z = �−1(U ).
5. Given log Ŝ(t), V̂ (t), and V̂ (t + �) computed from Step 2, calculate
log Ŝ(t + �).

The QE method can be implemented in VBA with the following code.

Public Function HestonQE_Path(a As Heston_PathType) As Variant

Dim i As Long, j As Long

Dim Phi_C As Double, P As Double, Beta As Double, a_2 As

Double, b As Double

Dim Phi As Double, v As Double, V_Delta As Double

Dim m As Double, s_square As Double

Dim K0 As Double, K1 As Double, K2 As Double, K3 As Double,

K4 As Double

Dim C1 As Double, C2 As Double

Dim ZV As Double, U As Double

ReDim S(0 To a.m, 1 To a.n) As Double

C1 = 0.5

C2 = 0.5
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Phi_C = 1.5

For j = 1 To a.n

S(0, j) = a.S0

v = a.v0

For i = 1 To a.m

m = a.theta + (v - a.theta) * Exp(-a.kappa * a.dt)

s_square = v * a.epsilon ˆ 2 * Exp(-a.kappa * a.dt) *

(1 - Exp(-a.kappa * a.dt)) _ / a.kappa + a.theta *

a.epsilon ˆ 2 * (1 - Exp(-a.kappa * a.dt)) ˆ 2 / 2 / a.kappa

Phi = s_square / m ˆ 2

ZV = rGauss

U = Rnd()

If Phi <= Phi_C Then

b = Sqr(2 / Phi - 1 + Sqr(2 / Phi) * Sqr(2 / Phi - 1))

a_2 = m / (1 + b ˆ 2)

V_Delta = a_2 * (b + ZV) ˆ 2

Else

P = (Phi - 1) / (Phi + 1)

Beta = 2 / (m * (Phi + 1))

If U <= P Then

V_Delta = 0

Else

V_Delta = Log((1 - P) / (1 - U)) / Beta

End If

End If

K0 = -a.rho * a.kappa * a.theta * a.dt / a.epsilon

K1 = C1 * a.dt * (a.kappa * a.rho / a.epsilon - 0.5) -

a.rho / a.epsilon

K2 = C2 * a.dt * (a.kappa * a.rho / a.epsilon - 0.5) +

a.rho / a.epsilon

K3 = C1 * a.dt * (1 - a.rho ˆ 2)

K4 = C2 * a.dt * (1 - a.rho ˆ 2)

S(i, j) = S(i - 1, j) * Exp((a.rf - a.q) * a.dt + K0 + K1 *

v + K2 * V_Delta + Sqr(K3 * v + K4 * V_Delta) * rGauss)

v = V_Delta

Next i

Next j

HestonQE_Path = S

End Function

4.3.4 Performance Analysis of the QE Scheme

We investigate the pricing accuracy and performance of the simulation scheme defined
under the QE approach by comparing it with the closed-form solution and truncated
normal simulation scheme. In this performance analysis, standard European call
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TABLE 4.11 Parameters for Different Simulation Cases

Case 1 Case 2 Case 3 Case 4

κ 12 8 6 0.3
θ 0.04 0.04 0.04 0.04
V0 0.025 0.025 0.025 0.025
ε 0.5 0.75 0.75 0.95
ρ −0.97 −0.97 −0.97 −0.97
2κθ − ε2 0.71 0.0775 −0.0825 −0.8785

TABLE 4.12 Simulation Results for Case 1

Strike Normal SD(Normal) QE SD(QE) Analytic

0.35 0.39847 0.00025 0.39856 0.00026 0.39848
0.45 0.32809 0.00033 0.32821 0.00033 0.32812
0.55 0.26506 0.00055 0.26553 0.00049 0.26518
0.65 0.21052 0.00067 0.21113 0.00078 0.21091
0.75 0.16519 0.00129 0.16620 0.00082 0.16550
0.85 0.12842 0.00121 0.12850 0.00033 0.12844

options are priced across different strikes, including in-the-money and out-of-the-
money options, with the QE and truncated normal schemes. Benchmark closed-
form solutions are also calculated to access the accuracy. The initial parameters
are S0 = 0.67, r = 0.04, q = 0, T = 6, dt = 1/252, and n = 10,000. The Heston
parameters for the different cases are listed in Table 4.11. Empirical martingale
correction and antithetic variables are used in both schemes for variance reduction.
The simulation results are presented in Tables 4.12, 4.13, 4.14, and 4.15.
Note that the QE scheme outperforms the normal truncation scheme in all cases.

It is also worth noting that the QE scheme maintains pricing accuracy even when the
parameters are extreme (Case 4). In this circumstance, the normal truncation scheme
fails completely, especially for out-of-the-money options. Therefore, it is strongly
recommended that the QE scheme be used in the Monte Carlo valuation of exotic
derivatives.

TABLE 4.13 Simulation Results for Case 2

Strike Normal SD(Normal) QE SD(QE) Analytic

0.35 0.39995 0.00017 0.39970 0.00025 0.39968
0.45 0.33043 0.00041 0.32991 0.00038 0.32980
0.55 0.26797 0.00025 0.26702 0.00061 0.26670
0.65 0.21362 0.00045 0.21190 0.00090 0.21153
0.75 0.16662 0.00059 0.16496 0.00083 0.16471
0.85 0.12948 0.00071 0.12613 0.00086 0.12602
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TABLE 4.14 Simulation Results for Case 3

Strike Normal SD(Normal) QE SD(QE) Analytic

0.35 0.40052 0.00035 0.40037 0.00034 0.40032
0.45 0.33202 0.00027 0.33096 0.00021 0.33062
0.55 0.26871 0.00077 0.26715 0.00084 0.26734
0.65 0.21363 0.00101 0.21164 0.00072 0.21162
0.75 0.16803 0.00071 0.16389 0.00111 0.16396
0.85 0.12841 0.00144 0.12427 0.00092 0.12434

4.3.5 CITIC Case Study Revisited

Consider the CITIC case studied in Chapter 2. We investigated different payoff
scenarios under the celebrated BS model. What if the Heston model were used
instead?Would the loss incurred be larger than expected? In this section, we compare
the results obtained with the Heston model with those produced by the BS model,
and explain why the stochastic volatility model works better when dealing with the
pricing and hedging of exotic derivatives.

4.3.5.1 Basic FX Market Quotes In the FX market, exchange rates F(t) are
usually quoted as (Foreign–Domestic). Here, let USD–HKD be the exchange rate
F(t), with USD the foreign currency and HKD the domestic. If the USD–HKD
rate = 7.75, then HK$7.75 can be exchanged for US$1. Note that “Domestic” does
not refer to the location, but to the numeraire.
Under the risk-neutral measure, the foreign exchange rate F(t) is assumed to

follow the Heston model.

d F(t)

F(t)
= (rd − r f ) dt +

√
V (t) dW F (t),

dV (t) = κ(θ − V (t)) dt + ε
√

V (t) dWV (t),

EQ[dW F (t) dWV (t)] = ρ dt,

TABLE 4.15 Simulation Results for Case 4

Strike Normal SD(Normal) QE SD(QE) Analytic

0.35 0.41578 0.00070 0.40219 0.00034 0.40187
0.45 0.34890 0.00098 0.32720 0.00047 0.32717
0.55 0.28442 0.00066 0.25434 0.00037 0.25361
0.65 0.22399 0.00128 0.18167 0.00073 0.18168
0.75 0.16679 0.00096 0.11275 0.00050 0.11201
0.85 0.11471 0.00105 0.04698 0.00069 0.04686
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where rd is the domestic risk-free rate, r f is the foreign risk-free rate, κ is the mean-
reverting rate of the variance, θ is the long-run average variance, ε is the volatility
of the variance process, and ρ ∈ [−1, 1] is the correlation between the exchange rate
and variance processes.
Let F̂(t, T ) = F(t)e(rd−r f )(T −t) be the forward price at time t with maturity T .

Applying Itô’s lemma on F̂(t, T ), we obtain the dynamics of F̂(t, T ) under the
risk-neutral measure as follows.

d F̂(t, T )

F̂(t, T )
=
√

V (t) dW F̂ (t),

dV (t) = κ(θ − V (t)) dt + ε
√

V (t) dWV (t),

EQ[dW F̂ (t) dWV (t)] = ρ dt.

To avoid confusion and for ease of reporting, we set r f as the USD interest rate in our
computation of option prices. From Table 4.16, we can see that the use of different
interest rates has little effect on the calibration results because option prices are not
sensitive to interest rates. As the forward price of different maturities can be obtained
from Bloomberg, we compute the option prices by replacing F(t, T ) with F̂(t, T )
and setting rd = r f = 0 in the closed-form solution under the Heston model, and
then discounting the result by e−rd (T −t).

c(t, T, F(t), rd , r f , K ,�) = e−rd (T −t)EQ[max{F(T )− K , 0}]
= e−rd (T −t)EQ[max{F̂(t, T )− K , 0}]
= e−rd (T −t)c(t, T, F̂(t, T ), rd = 0, r f = 0, K ,�),

and

F̂(T, T ) = F(T ),

� = {κ, θ, V0, ε, ρ}.

TABLE 4.16 Calibration Results for AUD–USD Option on July 5,
2010, with Different Interest Rates

Parameter 6M USD deposit USD yield rate

κ 1.36398 1.32475
θ 0.03855 0.03788
V0 0.03284 0.03434
ε 0.32430 0.31679
ρ −0.69729 −0.72704
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4.3.5.2 Obtaining the Volatility Surface In the FX market, options are quoted
by deltas. The delta, �, of a standard European call with strike K , maturity T , and
volatility σ can be given by

� = e−r f T �(d1),

d1 = log F̂(t,T )
K + 1

2σ
2T

σ
√

T
.

The FX option market is characterized by three volatility quotes up to rela-
tively long maturities: ATM straddle, risk reversal (RR), and Vega-weighted butterfly
(VWB). RR and VWB are quoted across different deltas, from 35� to 5�. With these
quotes, we can construct the entire volatility surface.
The ATM straddle has 0�, where, for a given maturity, the strike price is chosen

such that the call and put options have the same � but with different signs. Denote
the ATM volatility for the expiry T by σATM(T ). The following ATM strike KATM(T )
can be derived.

KATM(T ) = F(0, T )e
1
2 σATM(T )

2T . (4.21)

RR is a structure in which the buyer buys a call and sells a put with symmetric
deltas. RR is quoted as the difference between the two implied volatilities, σc and
σp, plugging into the BS formula for the call option and put option, respectively. Let
σRR(T ) be the implied volatility of the RR with time-to-maturity T . Then,

σRR(T ) = σc(T )− σp(T ). (4.22)

The VWB is built by selling and buying a quantity of ATM straddles such that
the resulting structure has a zero Vega. Let σVWB(T ) be the implied volatility of the
VWB with time to maturity T . Then

σVWB(T ) = σc(T )+ σp(T )

2
− σATM(T ). (4.23)

For a given expiry T , the two implied volatilities across different deltas can be
immediately identified by solving the linear system from Equations 4.21, 4.22, and
4.23.

σ35�c(T ) = σATM(T )+ σ35�VWB(T )+ 0.5σ35�RR(T ),
σ35�p(T ) = σATM(T )+ σ35�VWB(T )− 0.5σ35�RR(T ).

The implied volatilities of 25� and 10� can be calculated similarly.
Once the implied volatilities are computed, their corresponding strikes can easily

be calculated by

K35�p(T ) = F̂(0, T )e−α35σ35�p(T )
√

T + 0.5σ35�p(T )
2T,

K35�c(T ) = F̂(0, T )eα35σ35�c(T )
√

T + 0.5σ35�c(T )
2T,
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Figure 4.9 AUD–USD option volatility surface on October 16, 2008.

where α35 = −�−1(0.35er f T ). Similarly, the strike prices for 25� and 10� can
be computed using α25 = −�−1(0.25er f T ) and α10 = −�−1(0.1er f T ). For typical
market parameters, α j > 0 and K35�p < KATM < K35�c, we can construct the entire
implied volatility smile for all times-to-maturity T .

4.3.5.3 Case Study Revisited: MTM under Heston Model As previously dis-
cussed, to price derivatives under the Heston model, it is necessary to infer the
model parameters from the market-implied volatility surface. Suppose that we would
like to price the CITIC AUD–USD FX accumulator for October 16, 2008, using
the Heston model. The market-implied volatility surface data for that date is col-
lected for calibration using DE. Figure 4.9 depicts the market volatility surface and
Figure 4.10 the fitted volatility surface. Model constraint 2κθ > ε2 can be added.
Table 4.17 presents the calibration results with and without this model constraint, and
it can be seen that they are quite similar; although in the absence of the constraint, the
model’s fit to market data is better, as shown by the lower value of the cost function.
Note that without the model constraint, negative variance may easily be generated
in Monte Carlo simulation if the standard Euler scheme is employed. It is advisable
to use the QE method instead. For more details, please refer to the folder entitled
Ch4.6_MTM_HestonQE.
Next, we conduct MTM evaluation of the FX accumulator for CITIC Pacific to

determine the expected payoffs during the period from October 16 to 29, 2008. The
implied volatility surface in Figure 4.9 is an inverted smile, which is not particularly
abnormal in the FX option market. For a BS model in which few parameters are
employed, only the interest rates and constant volatility are updated daily. For the
local volatility and Heston models, however, calibration is required to obtain more
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Figure 4.10 Calibrated AUD–USD option volatility surface on October 16, 2008.

accurate parameters. Repeating the simulation process for each trading day during
the observation period, we obtain the following results.
It can be seen from Table 4.17 that the calibrated correlation coefficient is consis-

tently equal to −1, which suggests a strong negative correlation between the asset’s
return and its volatility. This result also implies that the Heston stochastic volatility
model behaves very similarly to a local volatility model. When the correlation coef-
ficient is 1 or −1, the two Brownian motions in the Heston model are essentially the
same. Thus, the volatility is a deterministic function of the asset value, and the model
is reduced to a local volatility model. We can see that the Heston model is sufficiently
general to embrace some of the local volatility models.
Table 4.18 presents the option prices generated by the different models.We can see

that the BS model seems to overstate the losses from the accumulator, and the Heston
and local volatility models produce a similar option price. Therefore, CITIC Pacific

TABLE 4.17 Results of Heston Model Calibration to AUD–USD Options
on October 16, 2008, with and Without the Model Constraint

Parameter\Constraint Yes No

κ 12.68644716 11.37941545
θ 0.037710057 0.037596388
V0 0.301166409 0.286968849
ε 0.978168333 1
ρ −1 −1
2κθ − ε2 0.00000000129 −0.14435016
Lowest cost 0.0074227197 0.0070266384
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TABLE 4.18 Simulated Payoffs of the Three Models After Marking-to-Market

Date Exchange rate BS model Heston model Local volatility model

10/16/2008 0.6749 −153.56 −120.41 −118.85
10/17/2008 0.6763 −151.88 −119.46 −118.54
10/20/2008 0.7003 −146.36 −108.69 −107.73
10/21/2008 0.6915 −150.71 −111.84 −112.33
10/22/2008 0.6688 −157.56 −126.73 −125.29
10/23/2008 0.6628 −159.74 −127.54 −127.68
10/24/2008 0.6178 −181.65 −152.32 −152.01
10/27/2008 0.6058 −184.16 −159.54 −158.75
10/28/2008 0.6187 −183.19 −153.53 −151.75
10/29/2008 0.6498 −170.87 −135.08 −133.44

LTD would most likely pay too much to settle the accumulator if the settlement fee
were calculated using the BS model.
As shown in Figure 4.11, the trends of the expected payoffswith time are almost the

same regardless of the model. However, the payoffs simulated by the local volatility
and Hestonmodels are always higher than that obtained from the BSmodel, primarily
because the volatility measure differs among the models. The BS model uses 30-day
historical volatility, whose horizon is much shorter than the maturity of the contract,
thereby underestimating the payoff of the FX accumulator. This constitutes one of
the disadvantages of the BS model. As the accumulator consists of a series of up-
and-out options with different maturities, a single constant volatility leads to a biased
simulation result. If we decompose the accumulator into several up-and-out options
and perform simulation on them separately, then the bias is reduced. It is interesting
that a single parameter can exert such a pronounced effect on the simulation results.

Figure 4.11 Simulated payoffs of the three models after marking to market.
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4.4 THE GARCH OPTION PRICING MODEL

The local volatility and stochastic volatility models constitute practical approaches to
financial engineering.However, both approaches require a large number of option data
to calibrate the model parameters. When a bank wants to issue a structured product
on an asset with no or very few options being traded in the market, calibration-based
volatility models are not useful. Although the bank could attempt to filter the local
volatility function or stochastic volatility model from the time series of asset returns,
the computation involved is rather sophisticated and insufficiently efficient to support
real-time trading.
The generalized autoregressive conditional heteroskedastic (GARCH) model is

probably themost suitable alternative for valuing options in such a situation because of
its tractability in allowing estimation using historical returns. In time-series analysis,
volatility itself plays a fundamental role, being a measure of the intensity of random
changes in an asset return; see Figure 4.12. Many derivatives are sensitive to volatility
and correlation changes, and volatility modeling for forecasting, pricing, and hedging
has become increasingly popular since 1990. For a discussion of the GARCHmodel,
see Chan (2010).
The GARCH model expresses variance as a function of past returns and historical

volatilities. The GARCH model was introduced by Engle (1982) and subsequently
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Figure 4.12 HSBC return time series.
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generalized by Bollerslev (1986). Suppose that variance follows the GARCH(p, q)
model:

Rt = μ + εt ,

σ 2t = α0 +
q∑

i=1
αiε

2
t−i +

p∑
i=1

βiσ
2
t−i ,

where Rt is the asset return at time t , μ is a constant, αi and β j are con-
stant for i = 1, . . . , q and j = 1, . . . , p. To ensure stationarity, it is required that∑q

i=1 αi +∑p
i=1 βi < 1. In this model, we have to estimate the p + q + 1 parame-

ters. The simplest GARCH class model is the GARCH(1,1) model, in which only
three parameters require estimation. In fact, empirical analysis indicates that the
GARCH(1,1) model can often be used to successfully model the volatility clustering
observed in the market. The GARCH(1,1) model can be formally expressed as

Rt = μ + εt ,

σ 2t = ω + αε2t−1 + βσ 2t−1,

where ω = γ VL , VL is the long-run average variance specifying the model’s mean
reversion level, γ = 1− α − β, and ε2t−1 is the squared return at t − 1. Note that,
conditionally, εt−1 ∼ N (0, σ 2t−1). The model must satisfy constraint α + β < 1 to
ensure stationarity. Once the parameters (ω, α, β) are estimated, the entire term
structure of volatility can be calculated. The model can be extended to combination
with the asset process to price derivatives under risk-neutral measure Q, which is
discussed later in this chapter.

4.4.1 Estimation of Model Parameters

One of the main innovations of the GARCH model is that its parameters can be both
estimated and checked using historical data. A set of parameters can be employed
to compute volatility everyday over the sample period. If the fitted volatility fails to
capture the observed volatility clusters, then new parameters are chosen. In the esti-
mation problem, the parameters (ω, α, β) have to be estimated with the constraint that
α + β + γ = 1 via maximum likelihood estimation (MLE). The likelihood function
of εt is

n∏
t=1

1√
2πσ 2t

exp
(−ε2t

2σ 2t

)
,

and the log-likelihood function of εt is

n

2
log 2π + 1

2

n∑
t=1

(
− log σ 2t − ε2t

σ 2t

)
.
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Figure 4.13 Autocorrelation function (ACF) plot of HSBC squared returns.
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TABLE 4.19 Results of GARCH(1,1) Model-Fitting for HSBC
Return Series

ω 0.000015699
α 0.232639483
β 0.75159
σ 20 0.000876

Therefore, we have to choose the parameters such that the function

l(ω, α, β) =
n∑

t=1

(
− log σ 2t − ε2t

σ 2t

)

is maximized. It is easy to see that the objective function is not quadratic, and
thus iterative algorithms are required for maximization. In Excel, the built-in solver
employs the gradient approach for optimization, and it can be applied to this MLE
estimation problem. Other statistical packages, such as R and S-PLUS, would also
be appropriate.

Example 4.1 Suppose that we would like to fit a GARCH(1,1) model to HSBC’s
return series. Daily stock prices (adjusted close) from the 09/25/2007 to 09/25/2008
period are collected from Bloomberg. Percentage returns are computed as Rt =
(St − St−1)/St−1. The daily return series is fitted to the GARCH model using the
Excel solver, and the output is presented in Table 4.19. Note that the parameters are
estimated from daily data.

Figures 4.13 and 4.14 are the autocorrelation plot and the partial autocorrela-
tion plot of the HSBC squared return series, respectively. These graphs show that
GARCH(1,1) seems reasonable to model the HSBC return series. The estimation
procedure is sometimes highly unstable and sensitive to the initial values of ω, α, and
β. Variance targeting can be applied so that only α and β have to be estimated. VL

can then be estimated by the sample variance of εt , and hence ω = VL (1− α − β).
To check the adequacy of the model, it is often useful to check the standardized

residuals. As εt ∼ N (0, σ 2t ), if GARCH(1,1) is correct, then the residual is εt/σt ∼
N (0, 1). A QQ-plot can be created to observe whether the standardized residuals
are approximately normal. Furthermore, an important diagnostic test is to determine
whether the standardized residuals are now free of volatility clusters. These pre-
and post-tests show whether the model captures the observed historical patterns of
volatility. The Ljung–Box test can also be employed to detect volatility clusters. Let
γn be the nth autocorrelation of the T -squared returns. This test reveals whether the
size of today’s movement has any predictability for the size of the movement K days
in the future. We define the Ljung–Box test statistics as

LB = T (T + 2)
K∑

n=1

γ 2n

T − n
.
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TABLE 4.20 Ljung–Box Test for the Squared Residuals of the
GARCH(1,1) Model Fitted to HSBC Returns

ε2t ε2t /σ 2t

LB test statistics 45.87965164 7.428528528
P-value 0.0000555641 0.944650091

The statistics are chi-square distributed with K degrees of freedom. At significance
level α, the critical region for rejection of the null hypothesis that there is no auto-
correlation (H0 : γK = 0) is given by

LB > χ21−α,K ,

where χ21−α,K is the 100αth percentile of the chi-square distribution with K degrees
of freedom.

Example 4.2 Consider the parameter estimation of the GARCH(1,1) model with
respect to HSBC’s return series, and examine the model performance. Let K = 15,
Table 4.20 presents the result of the Ljung–Box test, and Figure 4.15 is a QQ-plot of the
standardized residuals. The p-value of ε2t is small, which shows that autocorrelations
exist in ε2t . The p-value of ε2t /σ

2
t however is large, which indicates that there is no

autocorrelation in ε2t /σ
2
t . In conclusion, the autocorrelation of ε2t is removed by the

GARCH(1,1) model. Therefore, σ 2t is a good estimate of the variance rate. For further
details, please refer to Ch4.4_GARCH(1,1)_HSBC_Example.xls.
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Figure 4.15 QQ-plot of standardized residuals of GARCH(1,1) model fitted to HSBC returns.



THE GARCH OPTION PRICING MODEL 161

4.4.2 Identification of the Risk-Neutral Process

As noted, the GARCH model proposed by Bollerslev (1986) and its extensions have
become popular tools for modeling financial time series in recent years. Duan (1995)
utilizes the locally risk-neutral valuation relationship (LRNVR) to develop a GARCH
option pricingmodel for derivatives,which he claims to have three distinctive features.
First, the GARCH option price is a function of the risk premium embedded in the
underlying asset, which agrees with the standard preference-free option pricing result.
Second, the model is non-Markovian. Last but not least, the model can potentially
explain some of the systematic biases associated with the BS model, such as the
underpricing of out-of-the-money options, the options on low volatility securities,
and short-maturity options and the smile-shaped implied volatility curve observed in
a typical market.
Suppose that the log-stock prices follow the following GARCH(1,1) process under

physical measure P.

log
St+1
St

= r + λσt+1 − 1

2
σ 2t+1 + σt+1εt+1,

σ 2t+1 = ω + αε2t + βσ 2t ,

where εt , conditional on the information up to time t (F t ), is a standard normal
random variable, r is the constant continuously compounded one-period risk-free
rate of return, and λ is the stock’s constant unit risk premium. The estimation of this
GARCH(1,1) model can employ MLE, and the likelihood function is given by

n∏
t=1

1√
2πσ 2t

exp

⎡
⎢⎣−

(
log St

St−1
− r + λσt − 1

2σ
2
t

)2
2σ 2t

⎤
⎥⎦ .

The parameters (λ, ω, α, β, σ0) are estimated by maximizing the likelihood function.
To price derivatives under the risk-neutral measure, the conventional risk-neutral

valuation relationship has to be generalized to accommodate the heteroskedasticity
of the asset return process. A pricing measure Q is said to satisfy the LRNVR if
it is mutually absolutely continuous with respect to physical measure P. St+1

St
|F t is

log-normally distributed under Q:

EQ
[ St+1

St

∣∣∣F t

]
= er ,

and

VarQ
(
log

St+1
St

∣∣∣F t

)
= VarP

(
log

St+1
St

∣∣∣F t

)
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almost surely with respect to measure P. The LRNVR implies that under pricing
measure Q,

log
St+1
St

= r − σ 2t+1
2

+ σt+1ξt+1,

σ 2t+1 = ω + α(ξt − λσt )
2 + βσ 2t ,

where ξt+1 = εt+1 + λ, conditional on F t , is a standard normal random variable
under Q.
It should be noted that no analytical solution is available for this problem, and

the pricing of derivatives thus relies heavily on Monte Carlo simulation. Variance
reduction techniques, such as empirical martingale simulation (EMS), should be used
to ensure accuracy. To reduce the variance of the simulation, the same set of normal
random variables should be used for each simulation. This method is called bumping,
and the relevant VBA code is as follows.

Public Function bGauss(Optional Step As Integer = 1) As Double

Static SGauss

Static nStep As Long

Dim i As Long

If Step > 0 Then

nStep = nStep + Step

If nStep > UBound(SGauss) Then

ReDim Preserve SGauss(1 To UBound(SGauss) + bufNumber)

For i = UBound(SGauss) - bufNumber + 1 To UBound(SGauss)

SGauss(i) = rGauss()

Next i

End If

bGauss = SGauss(nStep)

Exit Function

ElseIf Step = 0 Then

nStep = 0

Else

ReDim SGauss(1 To bufNumber) As Double

Randomize

For i = 1 To bufNumber

SGauss(i) = rGauss()

Next i

nStep = 0

End If

bGauss = 1

End Function
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For further variance reduction, the inclusion of other variance reduction tech-
niques, such as empirical martingale correction or antithetic variables, is encouraged.
In addition, a large number of paths should be used, and more subintervals should be
included for accuracy.
Although the price of risk λ can be estimated from historical returns, some practi-

tioners prefer to calibrate it to option prices, if there are any, even for a limited number
of options in themarket. Other parameters are estimatedwith theGARCH(1,1)model.
Such ad hoc GARCH model practice combines calibration and estimation.

4.4.3 Pricing Exotics

After parameter estimation, we are ready to price exotic derivatives using the
GARCH(1,1) model. Consider the callable ELN term sheet discussed in Chap-
ter 3. Suppose that we would like to price this product using the GARCH(1,1) model.
The HSBC historical return series from September 25, 2007, to September 25, 2008,
is obtained from Bloomberg. This series is then used to infer the parameters (ω, α, β)
using MLE. To find λ, we have to infer it from traded options. Thus, the traded option
data for September 25, 2008, is collected for calibration. The choice of options to be
fitted is not unique, and we opt to fit short-maturity ATM and near-ATM options. The
parameters are listed in Table 4.21.
Using the parameters shown in Table 4.21, we simulate the price of the range

accrual note (RAN) in Chapter 3 using the GARCH(1,1) model. Using the function
CRAN Payoff and repeating the simulation process 50,000 times, we obtain a simu-
lated price of 94,826.4892. Compared to the BS price of 94,846.9387, the percentage
difference is only 0.02%. By means of the formula

VL = ω

1− α − β
,

we obtain the long-term average variance in GARCH(1,1) on annual basis VL , which
is 50.09%, and thus close to the constant volatility (46.74%) used in the BS model.
The prices obtained from the two models exhibit little difference. For more details,
please refer to Ch4.4_HSBC_RAN_GARCH(1,1).xls.

TABLE 4.21 Parameters of the GARCH(1,1) Model Fitted to the
Options Traded on September 25, 2008

ω 0.000015699
α 0.232639483
β 0.75159
σ 20 0.000876
λ 0.2187
S0 122.5
r 0.034
q 0
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4.5 JUMP-DIFFUSION MODEL

Both local and stochastic volatility models assume continuous sample paths for the
underlying asset, thereby ignoring the possibility that the asset price could change
abruptly in a very short period of time. Jump-diffusion models compensate for the
weakness of volatility models.
Jump-diffusion models deserve a separate chapter, although some of the volatility

model results are applicable to jump-diffusion models. Adding jumps to a diffusion
model essentially affects the estimated volatility and is aimed at fitting the implied
volatility smile. Thus, we decided to include these models in this chapter.
Under P, a jump-diffusion model postulates that the asset price dynamics follow

d X (t) = μ dt + σ dW(t)+ Y d N (t), (4.24)

where X (t) = log S(t) is the logarithmic stock price, W (t) is standard Brownian
motion, N (t) is a Poisson process with constant intensity λ, and Y is the random
jump size with a moment-generating function. Processes W (t) and N (t) and the
random jump size are independent for all t . The distribution of the jump size can be
chosen to fit the empirical data.
For the purpose of derivative valuation, we have to find the risk-neutral jump-

diffusion model corresponding to Equation 4.24, which can be expressed as

S(t) = S(0) exp

⎛
⎝μt + σ W (t)+

N (t)∑
j=1

Y j

⎞
⎠ .

Under Q, the process of S(t) should agree with the martingale condition:

EQ[S(t)|F0] = S(0)ert .

As there are two stochastic processes driving S(t), the risk-neutral probability is not
unique. However, if the Q process for S(t) is confined to a form similar to Equaton
4.24, then one way to specify Q is to shift only the Brownian motion. Hence, we
assume the Q-process for S(t) to be

S(t) = S(0) exp

⎛
⎝μ∗t + σ W ∗(t)+

N (t)∑
j=1

Y j

⎞
⎠ .

Taking the Q-expectation on both sides, we have

EQ[S(t)] = S(0)EQ
[
exp
(
μ∗t + σ W ∗(t)

)]
EQ

⎡
⎣exp

⎛
⎝N (t)∑

j=1
Y j

⎞
⎠
⎤
⎦ . (4.25)
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The first part of Equation 4.25 is simply the moment-generating function of a normal
random variable:

EQ
[
exp
(
μ∗t + σ W ∗(t)

)] = exp
(
μ∗t + 1

2
σ 2t
)
.

The second part is evaluated using the conditional expectation:

EQ

⎡
⎣exp

⎛
⎝N (t)∑

j=1
Y j

⎞
⎠
⎤
⎦ = EQ

⎡
⎣EQ

⎡
⎣exp

⎛
⎝ n∑

j=1
Y j

⎞
⎠
∣∣∣∣∣∣ N (t) = n

⎤
⎦
⎤
⎦

= EQ

⎡
⎣EQ

⎡
⎣ n∏

j=1
EQ[eY j ]

∣∣∣∣∣∣ N (t) = n

⎤
⎦
⎤
⎦

= EQ
[
exp
(

m N (t)
)]

= exp
(
λt(em − 1)) ,

where m = log EQ[eY ], and the last line applies the moment-generating function of
the Poisson distribution. The risk-neutral expected asset price becomes

EQ[S(t)] = S(0) exp

(
μ∗t + σ 2

2
t

)
exp
(
λt(EQ[eY ]− 1)) .

By the martingale condition, EQ[S(t)] = S(0)ert , we deduce that

μ∗ = r − 1

2
σ 2 − λ

(
E[eY ]− 1) , (4.26)

where the jump distribution is the same under both P and Q.
Let �J (φ) be the Q-characteristic function of X (t) such that

�J (x, 0;φ) = EQ
[

eiφX (t)
∣∣ X (0) = x

]
.

Then,

�J (x, 0;φ) = exp

(
iφx + iφμ∗t − σ 2

2
φt + λt(EQ[eiφY ]− 1)

)
. (4.27)

Once the characteristic function of Y is specified, the Q-characteristic function for
the log-asset value is known.
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This characteristic function can then be used to obtain the option price using the
Carr and Madan formula in Theorem 4.2 as

cJ (K , T ) = e−rT e−αkF−1
ξ,k

{
�J (x, 0;φ = ξ − (α + 1)i)
α2 + α − ξ 2 + i(2α + 1)ξ

}
.

Observing the market call and put prices, we can calibrate the risk-neutral parameters
by minimizing the difference between the market prices and the model prices:

min
�

∑
i, j

|cmarket (Ki , Tj )− cJ (Ki , Tj )|p,

for some pre selected p norm.Minimization can be carried out using theDEprocedure
presented in Section 4.2.3.
If the jump size, Y , is normally distributed, then the call pricing formula can

be further simplified to avoid inverse Fourier transform. Such a jump-diffusion was
proposed by Merton (1976), and was the first to appear in the finance literature. More
specifically, assume Y ∼ N (μY , s2).

Theorem 4.3 Under Merton (1976) jump-diffusion model, the call option price is
given by

cJ (K , T ) = e−rT
∞∑

n=0

e−λT (λT )−n

n!

[
Seμn T �(dn

1 )− K�(dn
2 )
]
,

where

μn = r − 1

2
σ 2 − λ

(
eμY +s2/2 − 1

)
+ n

μY

T
,

dn
1 = log S

K + μnT√
σ 2T + ns2

, dn
2 = dn

1 −
√

σ 2T + ns2.

Proof:

cJ (K , T ) = e−rTEQ
[
max

(
Seμ∗T +σ WT +∑N (T )

j=1 Y j − K , 0
)]

= e−rTEQ
[
EQ
[
max

(
Seμ∗T +σ WT +∑N (T )

j=1 Y j − K , 0
)∣∣∣ N (T ) = n

]]
= e−rTEQ

[
EQ
[
max

(
SeX̃n − K , 0

)∣∣∣ N (T ) = n
]]

,

where

X̃n ∼ N (μnT, σ 2T + ns2).
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The internal expectation can be evaluated via the BS formula. Then the outer expec-
tation can be expressed using the probability mass function of Poisson distribution.
The result follows.

From Merton jump-diffusion model, we observe that the volatility,
√

σ 2T + ns2,
depends on the number of jumps occurring prior to maturity. Hence, a jump-diffusion
model randomizes volatility with Poisson shocks and is able to generate an implied
volatility smile.

4.5.1 Simulation of Asset Price Paths and Product Valuation

To simulate asset price paths, recall Equation 4.24:

d log S(t) = μ dt + σ dW(t)+ Y d N (t). (4.28)

With a fixed�t , let Sj = S( j�t) for some positive integer j . Discrete approximation
to these dynamics (Eq. 4.28) is given by

log Sj = log Sj−1 + μ�t + σ Z j

√
�t + Y j �N j , (4.29)

where the Z j ’s are independent standard normal random variables. When �t is
sufficiently small,�N j is either 1with probability λ�t or 0with probability 1− λ�t ,
which enables us to simulate the asset price paths of the jump-diffusion model as
follows.

1. Partition [0, T ] into m equal subintervals, where �t = T/m.

2. Set j = 1.

3. Generate U j ∼ U(0, 1).

4. Set log Sj =
{
log Sj−1 + μ�t + σ Z j

√
�t, if U j > λ�t,

log Sj−1 + (μ + k)�t + Z j

√
σ�t + s2, otherwise.

5. Set j = j + 1.
6. Repeat Steps 3 to 5 until j > m.

To simulate n paths, repeat the foregoing procedure n times. The corresponding
VBA code is as follows.

Type JD_PathType

S0 As Double

mu As Double

sigma As Double

t As Double

dt As Double

m As Long

n As Long
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lambda As Double

j_mu As Double

j_sigma As Double

End Type

Public Function JD_Path(A As JD_PathType) As Variant

Dim i As Long, j As Long

Dim mu As Double

ReDim S(0 To A.m, 1 To A.n) As Double

For j = 1 To A.n

S(0, j) = Log(A.S0)

For i = 1 To A.m

If Rnd() > A.lambda * A.dt Then

S(i, j) = S(i - 1, j) + A.mu * A.dt + A.sigma

* Sqr(A.dt) * rGauss()

Else

S(i, j) = S(i - 1, j) + A.mu * A.dt + A.j_mu + _

Sqr(A.dt * A.sigma ˆ 2 + A.j_sigma ˆ 2)

* rGauss()

End If

Next i

Next j

For j = 1 To A.n

For i = 0 To A.m

S(i, j) = Exp(S(i, j))

Next i

Next j

JD_Path = S

End Function

Instead of generating a uniform random variable to determine whether there is a
jump at each step, we can also generate an exponential random variable to determine
when there is a jump and simulate the jump at that step. As the sojourn time for
the Poisson process follows an exponential distribution with mean λ, we simulate
W ∼ Exp(λ) at the beginning of the simulation and calculate the step number of that
jump. Then we simulate the jump amplitude at that step, after which we simulate
the sojourn time of the next jump and the next jump amplitude. By the memoryless
property of the exponential distribution, W ∼ Exp(λ). We repeat this process until
the final step is reached. The simulation procedure proceeds as follows.

1. Partition [0, T ] into m equal subintervals, where �t = T/m.

2. Set j = 1, r = 1.
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3. Generate Wr ∼ Exp(λ) by Wr = − log(Ur )/λ, where Ur ∼ U(0, 1).

4. Set nextJumpStep = Round-Up((W1 + . . . + Wr )/�t).

5. If j = nextJumpStep, then set log Sj = log Sj−1 + k + s Z j , r = r + 1, and go
back to Step 3.

6. Set log Sj = log Sj−1 + μ�t + σ
√

�t Z j .

7. Set j = j + 1.
8. Repeat Steps 5 to 7 until j > m.

The corresponding VBA code is as follows.

Public Function JDExp_Path(A As JD_PathType) As Variant

Dim i As Long, j As Long

Dim expValue As Double, mu As Double

Dim nextJumpTime As Double, nextJumpStep As Long

ReDim S(0 To A.m, 1 To A.n) As Double

For j = 1 To A.n

S(0, j) = A.S0

nextJumpTime = -(Log(1 - Rnd())) / A.lambda

nextJumpStep = Round(nextJumpTime / A.dt + 0.5) 'To round up

For i = 1 To A.m

expValue = A.mu * A.dt + A.sigma * Sqr(A.dt) * rGauss()

CheckJump:

If i = nextJumpStep Then

expValue = expValue + (A.j_mu + A.j_sigma * rGauss())

nextJumpTime = nextJumpTime - (Log(1 - Rnd())) / A.lambda

nextJumpStep= Round(nextJumpTime / A.dt + 0.5) 'To round up

GoTo CheckJump

End If

S(i, j) = S(i - 1, j) * Exp(expValue)

Next i

Next j

JDExp_Path = S

End Function

We propose two methods. The first generates a single jump at a single step,
whereas the second allows multiple jumps at a single step. When�t is small, there is
no difference between the two methods. However, when�t is large, the first method
always results in a large discretization error, whereas the second results in no such
error. In addition, the latter method offers us a way to perform an exact simulation.
As a simple illustration, we simulate the price of a European call option and

compare it with the value from the BS formula.
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Example 4.3 With S0 = 50, r = 8%, σ = 20%, λ = 5, k = 0, s = 5%, T = 0.5,
dt = 1/250, n = 50,000, and K = 50, simulate the call price with the two aforemen-
tioned methods using the following VBA code.

Dim A As JD_PathType

Dim S As Variant, Payoff As Variant

Dim Price1 As Double, Price2 as Double

rf = 0.08

A.S0 = 50

A.sigma = 0.2

A.lambda = 5

A.j_mu = 0

A.j_sigma = 0.05

A.t = 1

A.dt = 1 / 250

A.m = A.t / A.dt

A.n = 50000

A.mu = rf - 1 / 2 * A.sigma ˆ 2 - A.lambda * _

(Exp(A.j_mu + 1 / 2 * A.j_sigma ˆ 2) - 1)

K = 50

'First Method

S = JD_Path(A)

Payoff = EO_Payoff(S, K, xCall)

Price1 = Exp(-rf * A.t) * Average(payoff)

'Second Method

S = JDExp_Path(A)

Payoff = EO_Payoff(S, K, xCall)

Price2 = Exp(-rf * A.t) * Average(payoff)

The BS price is 3.853. The simulated prices using the first and second methods are
4.234 and 4.237, respectively, thereby suggesting that the two methods agree. Now,
change dt = 0.5 so that exact simulation is used to simulate the price again. The
simulated prices using the first and second methods are now 4.011 and 4.234, respec-
tively. In the first method, when �t is large, the condition that �N j is either 1 with
probability λ�t or 0 with probability 1− λ�t no longer holds, which underestimates
the number of jumps and thus the call price. In contrast, the second method allows
for multiple jumps, and thus this issue does not affect the simulated price. For further
details, please refer to Ch4.3_Jump_Diffusion_Simulation_Example.xls
Now, price the callable ELN in Section 2.3 using a jump-diffusion model. With

S0 = 122.5, r = 3.40%, q = 3.00%, σ = 44.03%, λ = 20.86, k = −0.28%, s =
11.40%, dt = 1/252, and n = 50,000, the simulated price is 90,198.5. For more
details, please refer to Ch4.3_Jump_Diffusion_RAN.xls. The parameters used in this
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numerical example are estimated in the next section using historical prices developed
by HSBC. The physical process is transformed to a risk-neutral process by shifting
the Brownian motion.

4.5.2 Estimation of Jump-Diffusion

Instead of calibrating the risk-neutral jump-diffusion model to option prices, we can
also estimate a physical jump-diffusionmodel and then adjust the Brownianmotion to
produce risk-neutral asset dynamics. The latter approach is suitable for an underlying
asset that has no (illiquid) option market. However, the MLE may not be possible for
this jump-diffusion model due to subtle degeneracy in the likelihood function.
We therefore adopt aBayesian framework for estimation. There are five parameters

in the Merton jump-diffusion model, and their corresponding conditional conjugate
priors are as follows.
In the physical jump-diffusion model (Eq. 4.24), we assume that the prior distri-

bution of μ is a normal distribution, μ ∼ N (θ, τ 2), and the posterior can be derived
as

μi+1 ∼ N (θi+1, τ 2i+1), (4.30)

θi+1 = τ 2
∑n

j=1(x j − Y j�N j )+ θσ 2i

nτ 2 + σ 2i
,

τ 2i+1 = τ 2σ 2i

nτ 2 + σ 2i
.

For σ 2, assume that σ 2 ∼ IG(α, β), which is the inverse Gaussian distribution,
and the posterior is given by

σ 2i+1 ∼ IG(αi+1, βi+1), (4.31)

αi+1 = α + n/2,

βi+1 = β +
∑n

j=1(x j − μi − Y j�N j )2

2
.

In a short time period or sampling frequency, �N ∼ Bin(n, λ�t). Hence, we
select λ ∼ Beta(a, b) such that the posterior is given by

λi+1�t ∼ Bin(ai+1, bi+1), (4.32)

ai+1 = a + Ni ,

bi+1 = b + n − Ni .
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For k, assume that k ∼ N (m, v2), and the posterior is given by

ki+1 ∼ N (mi+1, v2i+1),

mi+1 = v2
∑N

j=1 Y j + mi s2i
Niv2 + s2i

, (4.33)

v2i+1 = v2s2i
Niv2 + s2i

.

For s2, assume that s2 ∼ IG(p, q), and the posterior is given by

s2i+1 ∼ IG(pi+1, qi+1),

pi+1 = p + Ni/2, (4.34)

qi+1 = q +
∑Ni

j=1(Y j − ki )2

2
.

The posteriors are conditional distributions, given Y j and �Ni , which are not
observable. Therefore, at each time point, they should be simulated. Consider the two
following conditional distributions.

X j |�N j = 0 ∼ N (μ, σ 2),

X j |�N j = 1 ∼ N (μ + k, σ 2 + s2).

By Bayes’ Theorem,

Pr(�N j = 1|x j ) = Pr(x j |�N j = 1)λ�t

Pr(x j |�N j = 1)λ�t + Pr(x j |�N j = 0)(1− λ�t)
,

Pr(�N j = 0|x j ) = 1− Pr(�N j = 1|x j ).

The foregoing equations can be simplified to

Pr(�N j = 1|x j ) = C1

C1 + 1√
C2
exp
(
− C3
2σ 2

) ,

C1 = λ�t

1− λ�t
, (4.35)

C2 = σ 2

σ 2 + s2
,

C3 = (x j − μ)2 − (x j − μ − k)2C2.
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After�N j is simulated, jump size Y j is simulated when�N j = 1. In such a case,

Y j |x j ∼ N (my|x , s2y|x ),

my|x = (x j − μ)s2 + kσ 2

s2 + σ 2
, (4.36)

s2y|x = s2σ 2

s2 + σ 2
.

With these equations, the Gibbs sampling procedure is as follows. For further
details, please refer to Ch4.3_Gibbs_Sampling.xls.

1. Choose initial values of μ0, σ 20 , k0, λ0, and s20 , and set i = 1.

2. Sample Y j,0 and �N j,0 using Equations 4.35 and 4.36 with the initial parame-
ters.

3. Sample μ j ∼ p(μ j |σ 2j−1, λ j−1, k j−1, s2j−1), as given in Equation 4.30.

4. Sample σ 2j ∼ p(σ 2j |μ j , λ j−1, k j−1, s2j−1), as given in Equation 4.31.

5. Sample λ j ∼ p(λ j |μ j , σ
2
j , k j−1, s2j−1), as given in Equation 4.32.

6. Sample k j ∼ p(k j |μ j , σ
2
j , λ j , s2j−1), as given in Equation 4.33.

7. Sample s2j ∼ p(s2j |μ j , σ
2
j , λ j , k j ), as given in Equation 4.34.

8. Sample �N j,i ∼ p(�N j,i |μ j , σ
2
j , λ j , k j , s2j ), as given in Equation 4.35, for

j = 1, . . . , n.

9. Sample Y j,i ∼ p(Y j,i |μ j , σ
2
j , λ j , k j , s2j ), as given in Equation 4.36, for

�N j,i = 1.

10. Set i = i + 1, and repeat Steps 3 to 9 until i = M + M ′.
11. Average the last M ′ sets of parameters to obtain the estimate.

To test the algorithm, we first simulate the sample path under dynamics (Eq. 4.24)
and then examine the convergence of the algorithm with an increasing burnt-in time.
The simulation method is discussed in the next subsection. With S(0) = 50,μ = 8%,
σ = 20%, λ = 15, k = 0%, s = 10%, T = 1, dt = 1/250, and M ′ = 50,000, the
simulated path represents the daily log-returns of a stock over a 1-year horizon. The
Gibbs sampling results are presented in Table 4.22.

TABLE 4.22 Estimates Using Gibbs Sampling with an Increasing Burn-In Time

M μ σ λ k s

50,000 7.99% 20.78% 11.40 0.85% 13.60%
100,000 8.04% 20.78% 11.42 0.84% 13.60%
200,000 8.06% 20.77% 11.43 0.84% 13.59%
500,000 8.08% 20.77% 11.44 0.84% 13.58%
1,000,000 8.10% 20.77% 11.45 0.83% 13.58%
2,000,000 8.10% 20.77% 11.45 0.83% 13.58%
3,000,000 8.10% 20.77% 11.45 0.83% 13.58%
4,000,000 8.10% 20.77% 11.45 0.83% 13.58%
5,000,000 8.09% 20.77% 11.45 0.83% 13.58%
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TABLE 4.23 Performance of Gibbs Sampling

Trial μ σ λ k s

1 15.84% 19.72% 21.55 2.46% 9.19%
2 21.60% 20.67% 15.03 −0.26% 10.68%
3 −6.84% 20.82% 15.87 0.87% 9.79%
4 47.95% 19.19% 13.41 0.41% 12.49%
5 −0.77% 21.50% 12.34 −2.46% 9.99%
6 16.03% 20.81% 16.53 −1.68% 10.36%
7 −2.42% 19.90% 19.88 1.76% 10.25%
8 17.14% 20.30% 14.31 0.87% 9.12%
9 −0.81% 20.12% 15.23 2.66% 7.23%
10 −13.31% 20.05% 14.45 0.66% 9.21%

True value 6.00% 20.00% 15.00 0.00% 10.00%
Mean 6.07% 20.01% 14.74 −0.04% 9.96%
Standard deviation 15.51% 0.74% 3.25 2.07% 1.44%

From Table 4.22, it can be seen that the estimates converge when M = 1,000,000.
When M = 2,000,000, the estimates are already very close to the converged val-
ues. With the same setting, we simulate 250 sample paths, with each sample path
replicating the daily log-returns of a stock over a 1-year horizon. Based on these
250 paths, we employ Gibbs sampling to estimateμ, σ , λ, k, and s, and then compare
the results with the true values. In the Gibbs sampling, we choose M = 200,000 and
M ′ = 50,000. As with M = 200,000, this sampling performs reasonably well. This
result and the estimates of the first 10 sample paths are presented in Table 4.23, from
which it can be seen that Gibbs sampling’s performance is very good, as the estimates
are very close to the true values.
After testing the algorithm with simulated data, we examine the jump-diffusion

model empirically. In the previous section, we already used this model to price the
callable ELN linked to the price of HSBC shares, as in Section 3.4. The parameters
that we use are based on the Gibbs sampling of HSBC stock prices between 2003
and 2009.
Again, we first perform Gibbs sampling to get some idea of the estimates’ con-

vergence with an increasing burnt-in time. Table 4.24 presents the results with M

TABLE 4.24 Estimates for HSBC Using Gibbs Sampling with Increasing Burn-In Time

M μ σ λ k s

50,000 −23.75% 44.25% 19.95 −0.35% 11.61%
100,000 −24.01% 44.21% 20.10 −0.33% 11.58%
200,000 −24.22% 44.17% 20.25 −0.32% 11.54%
500,000 −24.40% 44.13% 20.44 −0.31% 11.50%
1,000,000 −24.50% 44.10% 20.56 −0.30% 11.47%
2,000,000 −24.61% 44.07% 20.67 −0.29% 11.44%
3,000,000 −24.65% 44.06% 20.73 −0.29% 11.43%
4,000,000 −24.70% 44.05% 20.76 −0.29% 11.42%
5,000,000 −24.71% 44.04% 20.79 −0.29% 11.41%
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TABLE 4.25 Estimation of Jump-Diffusion Model for HSBC

Year μ σ λ k s

2003 35.48% 13.62% 6.54 0.01% 2.14%
2004 4.05% 12.84% 1.75 2.29% 0.71%
2005 5.97% 7.75% 7.91 −1.40% 0.43%
2006 15.15% 8.62% 25.53 −0.05% 1.56%
2007 2.99% 14.05% 9.99 −0.99% 1.72%
2008 −47.17% 29.15% 27.18 −0.37% 7.13%
2009 18.77% 37.50% 17.10 −0.19% 10.75%

Mean 5.03% 17.65% 13.71 −0.10% 3.49%
Standard deviation 25.65% 11.24% 9.78 1.18% 3.91%

ranging from 50,000 to 5,000,000 using HSBC stock prices from September 25,
2007, to September 24, 2008.
This table shows that M = 200,000 may not be sufficient for the estimates to con-

verge, and sowe chooseM = 2,000,000 and estimate the parameters for HSBC stock
prices between January 1, 2003, and December 31, 2009. The results are presented
in Table 4.25. For further details, please refer to Ch4.3_HSBC_Gibbs_Sampling.xls.



5
Fixed-Income Derivatives

I: Short-Rate Models

Fixed-income derivatives are derivative securities based on interest rates. In previous
chapters, we assumed a constant interest rate because interest rate volatility is much
smaller than the volatility of either stocks or the FX rate. Hence, ignoring the interest
rate risk in equity derivatives would not cause a serious problem. However, interest
rates must be considered as stochastic for fixed-income products.
Interest rate models are more complicated (or tedious) than equity models. In the

latter, the stock price can be observed directly in the market, but interest rates are not
really directly observable, they are extracted from the yield curve that is fit to liquidly
traded fixed-income securities. In this sense, the interest rate is a concept rather than
a tradable asset. Interest rate models should consider the entire yield curve rather
than focus on the movement of a specific interest rate. For instance, the present value
of a fixed-income derivative with 1-year maturity and based on the 3-month interest
rate depends at the least on the current 3-month, 6-month, 9-month, and 1-year rates
because the 6-month rate is related to the 3-month rate observed 3 months from
today, the 9-month rate is related to the 3-month rate observed 6 months from today,
and so on. More precisely, interest rate models should take the current term structure
of the interest rate into account.
To illustrate the complications in the interest rate market, we start with an elemen-

tary example: coupon bonds (CBs). In a constant interest rate economy, a CB with a

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
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face value of $100 and annual coupon rate C has a present value of

CB(0) = 100

⎡⎣ 2n∑
j=1

C

2
e−rTj + e−rT2n

⎤⎦ , (5.1)

where the CB matures in n years, the coupon is paid semi-annually, Tj = j/2, and
r is the constant instantaneous interest rate. In practice, interest rates should vary
across different times Tj . Therefore, the correct present value of the CB should be

CB(0) = 100

⎡⎣ 2n∑
j=1

C

2
e−R(0,Tj )Tj + e−R(0,T2n )T2n

⎤⎦ . (5.2)

The curve (t, R(0, t)) is called the zero-coupon yield curve because the quantity
e−R(0,Tj )Tj represents a CB paying $1 at Tj . In an elementary finance course, we
would solve the constant interest rate from Equation 5.1. Such a pseudo-interest rate
is called the yield-to-maturity.
How is the zero-coupon yield curve obtained in the market? In practice, it is

calibrated using Equation 5.2 in a reverse-engineering manner. Take the U.S. treasury
bondmarket as an example. There aremanyU.S. treasury bonds trading in themarket,
and their prices are accessible. In other words, CB prices are input in a calibration
system that optimally fits the yield curve to observed data. The yield curve is the
output of the calibration system.
The calibrated yield curve is the fundamental input for interest rate product pricing

and interest rate risk management. In interest rate derivative pricing, the full yield
curve at time t plays the same role as that of the observed single stock price at time t
in equity option pricing. Therefore, the preprocess for such pricing involves building
the yield curve to fit market bond prices. The general procedure for interest rate
derivative pricing is depicted in Figure 5.1.
The idea behind this procedure is that because such structured products as interest

rate range accrual notes (RAN) and target redemption notes (TRN) are not liq-
uidly traded in the market, they should be priced using interest rate models whose

Figure 5.1 Interest rate product pricing procdure.
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parameters are calibrated to market-traded instruments, such as bonds, forward rate
agreements, swaps, and even such options as caps and swaptions, to reflect current
market conditions. These calibrated models are then used to price, via closed-form
solution, tree, or Monte Carlo simulation, structured products in a consistent manner.
In the flow chart in Figure 5.1, the market data step refers to the zero rates

and forward rates extracted from the prices of treasury bonds (zero CBs and coupon-
bearing bonds), which are usually regarded as risk-free bonds. Therefore, this chapter
first introduces techniques for building continuous yield curves and forward rate
curves from discrete rates, namely, the cubic spline interpolation of yield curves, the
Nelson–Siegel model, and the cubic spline interpolation of the discount curve.
In the next step, given the zero rates and forward rates so constructed, we then

calibrate the term structure models to interest rate derivatives to capture the interest
rate volatilities. More specifically in this chapter, we calibrate the Hull–White short-
rate model to the Black cap market volatilities using the closed-form formula for cap
prices.
In the final step, the valuation of interest rate products is accomplished. Based on

the calibrated Hull–White short-rate model, this chapter implements the trinomial
tree and Monte Carlo simulation to price interest rate RAN and TRN.

5.1 YIELD CURVE BUILDING

In this section, three approaches to yield curve construction are introduced. A yield
curve is the relation between the zero rate and time-to-maturity. The zero rate of a
particular time to maturity is obtained from the price of a CB with the same time-to-
maturity. More specifically, with the assumption of continuous compounding, zero
rate R(t, t j ) with maturity t j is related to the price P(t, t j ) of a CB (or discount bond)
of the same maturity via the following equation.

P(t, t j ) = exp
(−R(t, t j )(t j − t)

)
.

For simple compounding, the relationship is given by

P(t, t j ) = 1

1+ R(t, t j )(t j − t)
.

To simplify matters, we stick with the notion of a continuously compounding interest
rate and consider the discount bond to follow an exponential function.

5.1.0.1 Cubic Spline Interpolation To begin, we assume an ideal situation in
which some of the zero rates are observable and demonstrate the smoothing technique
with cubic spline interpolation. Given n zero rates of n distinct maturities, we use
the cubic spline to interpolate these rates to produce a continuous and smooth yield
curve. Denote the j th maturity and zero rate pair by (t j , R j ), where j = 1, . . . , n.
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Then n − 1 cubic polynomials are used to produce a cubic spline, as follows.

R(0, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1,0 + β1,1t + β1,2t2 + β1,3t3, t ∈ [t1, t2],
β2,0 + β2,1t + β2,2t2 + β2,3t3, t ∈ [t2, t3],
...

...
βi,0 + βi,1t + βi,2t2 + βi,3t3, t ∈ [ti , ti+1],
...

...
βn−2,0 + βn−2,1t + βn−2,2t2 + βn−2,3t3, t ∈ [tn−2, tn−1],
βn−1,0 + βn−1,1t + βn−1,2t2 + βn−1,3t3, t ∈ [tn−1, tn].

By restricting R(0, t), such that it is continuous and twice-differentiable in t , these
n − 1 equations can be simplified as

R(0, t) = a + b(t − t1)+ c(t − t1)
2 +

n−1∑
k=1

dk(t − tk)
3
+,

where a, b, c, d1, . . . , dn−1 are n + 2 unknowns, and (t − tk)+ = max{t − tk, 0}.
Because there are only n discrete zero rates, two additional conditions are needed to
solve this set of equations. If we choose limt↓t1 R′(0, t) = c1 and limt↑tn R′(0, t) = c2
for given values c1 and c2, then it is called a clamped cubic spline. However, these two
values are usually unknown, and thus we can use a natural cubic spline in which the
remaining two conditions are given by limt↓t1 R′′(0, t) = limt↑tn and R′′(0, t) = 0.
Now, there are n + 2 linear equations with n + 2 unknowns. Mathematically, the
cubic spline equations can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎝

R1
R2
...

Rn

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 t1 − t1 (t1 − t1)2 (t1 − t1)3+ (t1 − t2)3+ · · · (t1 − tn)3+
1 t2 − t1 (t2 − t1)2 (t2 − t1)3+ (t2 − t2)3+ · · · (t2 − tn)3+
...

...
...

...
...

...
1 tn − t1 (tn − t1)2 (tn − t1)3+ (tn − t2)3+ · · · (tn − tn)3+
0 0 2 0 0 · · · 0
0 0 2 6(tn − t1) 6(tn − t2) · · · 6(tn − tn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d1
...

dn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which can be solved using the built-inMInverse function in Excel. The corresponding
VBA code is as follows.

Public Function NSpline(xi As Variant, yi As Variant)

As Variant

Dim nPoints As Long

Dim Output, X, Y, tOutput

nPoints = UBound(xi)

ReDim Output(1 To nPoints + 2, 1 To 2) As Double

ReDim X(1 To nPoints + 2, 1 To nPoints + 2) As Double

ReDim Y(1 To nPoints + 2, 1 To 1) As Double
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Dim i As Long, j As Long

For i = 1 To nPoints

X(i, 1) = 1

X(i, 2) = xi(i) - xi(1)

X(i, 3) = (xi(i) - xi(1)) ˆ 2

For j = 1 To i - 1

X(i, 3 + j) = (xi(i) - xi(j)) ˆ 3

Next j

Y(i, 1) = yi(i)

Next i

'Leftmost

Y(nPoints + 1, 1) = 0

X(nPoints + 1, 3) = 2

'Rightmost

Y(nPoints + 2, 1) = 0

X(nPoints + 2, 3) = 2

For j = 1 To nPoints - 1

X(nPoints + 2, 3 + j) = 6 * (xi(nPoints) - xi(j))

Next j

With Application

tOutput = .MMult(.MInverse(X), Y)

End With

For i = 1 To UBound(Output)

Output(i, 1) = xi(Max(1, i - 3))

Output(i, 2) = Round(tOutput(i, 1), 10)

Next i

Output(1, 1) = 0

NSpline = Output

End Function

Table 5.1 lists the continuously compounding treasury yield rates on August 24,
2010, from the U.S. Department of the Treasury. These data can be used to build
the yield curve using the cubic spline, as discussed. The resulting yield curve and
corresponding discount factor are shown in Figure 5.2. For more details, please refer
to Ch5.2_Natural_Spline_Interpolation.xls.

5.1.0.2 Building with functional form of the yield curve Although cubic spline
interpolation is simple and straightforward, zero rates are not usually directly observ-
able because zero-CBs may not be available for all maturities. However, coupon-
bearing bonds may be available. In the following, we show how to build a yield curve
from coupon-bearing bonds using a functional form of the yield curve. Of the many
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TABLE 5.1 Treasury Yield Rates on August 24, 2010

Time to maturity Yield rate (continuously compounding)

3 mos 0.14%
6 mos 0.19%
1 yr 0.25%
2 yrs 0.51%
3 yrs 0.75%
5 yrs 1.41%
7 yrs 2.02%
10 yrs 2.57%
30 yrs 3.63%

functional forms available, we use the Nelson–Siegel model as our example because
the European Central Bank reports the Euro yield curve by offering Nelson–Siegel
parameters. This model assumes that

R(0, t) = β0 + β1

(
1− e−t/τ1

t/τ1

)
+ β2

(
1− e−t/τ1

t/τ1
− e−t/τ1

)
. (5.3)

Note that β0 is the limit of R(0, t) for t → ∞, and thus it is the long-term interest
rate, and β0 + β1 is the limit of R(0, t) for t → 0, and thus it is the spot interest
rate. Therefore, a natural constraint for the parameters is β0 ≥ 0 and β0 + β1 ≥ 0.
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Figure 5.2 Fitted yield curve and discount factor using cubic spline interpolation on zero rates.
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Suppose that there are N CBs. For i = 1, . . . , N , the i th bond has the following
specification.

Bi : The dirty price of the bond.

mi : The remaining number of coupon payments.

t j
i : Coupon payment date, for j = 1, . . . , mi . t1i is the date of the next coupon
payment, and tmi

i is both the maturity date and the date of the last coupon
payment.

δi : Time between each periodic coupon payment, δi = t j+1
i − t j

i . For a bond that
pays coupons semiannually, δi = 0.5.

Pi : The bond principal, which is assumed to be $100 for all bonds.

Ci : The amount of each coupon, which is equal to δi Pi × Coupon Rate.

Because the market usually reports the clean price, we have to recover the dirty price
of a bond by adding the accrued interest to its clean price, that is,

Bi = Market-Quoted Clean Price+ Ci
δi − t1i

δi
.

Hereafter, unless otherwise specified, when we refer to a bond price, we are referring
to its dirty price. With this specification, the theoretical price for the i th bond is

B̂i (0) =
mi∑
j=1

e−R(0,t j
i )t

j
i Ci + e−R(0,t

mi
i )t

mi
i Pi .

The remaining task is to find the parameters β0, β1, β2, τ1 that minimize∑N
i=1 wi (B̂i − Bi )2 and satisfy the constraints β0 ≥ 0 and β0 + β1 ≥ 0, where wi

is the weight assigned to the i th bond. Possible choices of wi include wi = 1/tmi
i

(maturity of the i th bond) and wi = − 1
Bi

∂ Bi

∂YTM (duration of the i th bond), where
YTM is the yield-to-maturity of the bond. The YTM is the constant r in Equation
5.1 obtained from a rooting-finding technique. For the two constraints, we assign a
very large penalty to the cost function when they are violated. Then we employ the
DE algorithm with parameters identical to those in Section 4.2.3, that is, N P = 15,
D = 60, C R = 0.5, and F = 0.8. The bounds of the parameters are specified in
Table 5.2.

TABLE 5.2 Parameter Bounds

Parameter Lower bound Upper bound

β0 0 0.5
β1 −0.5 0.5
β2 −0.5 0.5
τ1 0.1 5
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TABLE 5.3 The Original and Fitted Prices of U.S. Treasury CBs

Time to Payment Time to Coupon Clean Dirty Fitted Percentage
next payment frequency maturity rate price price price error

0.4356 2 0.4356 0.875% 100.30 100.35 100.3 0.06%
0.2644 2 0.7644 0.875% 100.48 100.69 100.66 0.03%
0.2658 2 1.2658 0.750% 100.50 100.68 100.75 0.07%
0.4342 2 1.9342 0.625% 100.31 100.35 100.46 0.10%
0.0192 2 2.0192 0.375% 99.78 99.96 100.07 0.11%
0.4753 2 2.9753 0.750% 100.16 100.17 100.16 0.01%
0.3534 2 3.3534 1.500% 102.34 102.56 102.46 0.10%
0.1000 2 3.6000 1.750% 103.08 103.78 103.7 0.07%
0.2685 2 4.2685 2.125% 104.19 104.68 104.67 0.01%
0.4342 2 4.9342 1.750% 102.06 102.18 102.07 0.10%
0.2274 2 5.2274 4.500% 115.91 117.13 116.82 0.26%
0.1027 2 5.6027 2.375% 104.36 105.30 105.44 0.13%
0.2712 2 6.2712 2.750% 105.86 106.49 106.74 0.23%
0.4370 2 6.9370 2.375% 102.97 103.12 103.22 0.10%
0.4822 2 7.4822 3.500% 110.53 110.59 110.4 0.18%
0.2260 2 7.7260 3.875% 113.09 114.16 114.03 0.11%
0.4822 2 8.4822 2.750% 103.98 104.03 103.98 0.05%
0.2260 2 8.7260 3.125% 106.50 107.36 107.55 0.18%
0.2301 2 9.2301 3.375% 108.00 108.91 109.28 0.34%
0.4808 2 9.9808 2.625% 101.19 101.24 101.06 0.18%
0.4932 2 25.4932 4.500% 117.58 117.61 117.64 0.02%
0.4959 2 26.4959 4.750% 122.28 122.30 122.09 0.18%
0.2397 2 26.7397 5.000% 126.97 128.27 127.9 0.29%
0.4959 2 27.4959 4.375% 115.19 115.21 115.26 0.05%
0.2397 2 27.7397 4.500% 117.47 118.64 118.7 0.05%
0.4959 2 28.4959 3.500% 98.98 99.00 98.83 0.17%
0.2397 2 28.7397 4.250% 112.44 113.54 113.91 0.32%
0.2438 2 29.2438 4.375% 114.67 115.79 116.23 0.38%
0.4945 2 29.9945 3.875% 105.75 105.77 105.5 0.26%

We collect the prices of 29 U.S. treasury CBs on August 24, 2010. Using the
functional form Equation 5.3 and durations as weights, the estimated parameters
are β0 = 0.0455, β1 = −0.0410, β2 = −0.0577, and τ1 = 2.0253. The original and
fitted prices of the treasury bonds are listed in Table 5.3. The average pricing error
is 0.14%, and the maximum pricing error is 0.38%. The estimated yield curve and
corresponding discount factor are shown in Figure 5.3. For further details, please
refer to Ch5.2_Nelson-Siegel_Model.xls.

5.1.0.3 Cubic Spline Discount Function Rather than assume the yield curve
follows a specific functional form, a standard approach is to regress to the discount
function on a spline and then convert the discount function into a yield curve. This
approach could be interpreted as a combination of two preceding methods. With the
N bonds specified as before, we use n piecewise polynomials to approximate the



YIELD CURVE BUILDING 185

50 10 15 20 25

Time

0.0%

1.0%

2.0%

3.0%

4.0%

In
te

re
st

 r
at

e

0.50

0.60

0.70

0.80

0.90

1.00

D
is

co
un

t f
ac

to
rInterest rate

Discount factor

Figure 5.3 The fitted yield curve and discount factor using the Nelson–Siegel model.

discount function P(0, t).

P(0, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1,0 + β1,1t + β1,2t2 + β1,3t3, t ∈ [t1, t2],
β2,0 + β2,1t + β2,2t2 + β2,3t3, t ∈ [t2, t3],
...

...
βi,0 + βi,1t + βi,2t2 + βi,3t3, t ∈ [ti , ti+1],
...

...
βn−1,0 + βn−1,1t + βn−1,2t2 + βn−1,3t3, t ∈ [tn−2, tn−1],
βn,0 + βn,1t + βn,2t2 + βn,3t3, t ∈ [tn−1, tn].

As before, these n equations are reduced to

P(0, t) = a + bt + ct2 +
n∑

k=1
dk(t − tk)

3
+, (5.4)

where a, b, c, d1, . . . , dn are n + 3 unknowns. The t j ’s are called knots with t1 = 0.
Because D(0) = 1 and a = 1, Equation 5.4 becomes

P(0, t) = 1+ bt + ct2 +
n∑

k=1
dk(t − tk)

3
+. (5.5)
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Recall that the theoretical price of the i th bond is

Bi (0) =
mi∑
j=1

P(0, t j
i )Ci + P(0, tmi

i )Pi . (5.6)

Substitute Equation 5.5 into Equation 5.6, and we have

Bi (0) = Ci

mi∑
j=1

(
1+ bt j

i + c(t j
i )
2 +

n∑
k=1

dk(t
j

i − tk)
3
+

)

+
(
1+ btm

i + c(tm
i )
2 +

n∑
k=1

dk(t
m
i − tk)

3
+

)
Pi

= (Ci mi + Pi )+ b

⎛⎝Ci

mi∑
j=1

t j
i + Pi t

mi
i

⎞⎠ + c

⎛⎝Ci

mi∑
j=1
(t j

i )
2 + Pi (t

mi
i )

2

⎞⎠
+

n∑
k=1

⎡⎣dk

⎛⎝Ci

mi∑
j=1
(t j

i − tk)
3
+ + Pi (t

mi
i − tk)

3
+

⎞⎠⎤⎦ . (5.7)

Define

yi � Bi − Ci mi − Pi ,

xi,1 � Ci

mi∑
j=1

t j
i + Pi t

mi
i ,

xi,2 � Ci

mi∑
j=1
(t j

i )
2 + Pi (t

mi
i )

2,

xi,k+2 � Ci

mi∑
j=1
(t j

i − tk)
3
+ + Pi (t

mi
i − tk)

3
+, for k = 1, . . . , n.

For the i th bond, Equation 5.7 is expressed as

yi = bxi,1 + cxi,2 + d1xi,3 + · · · + dn xi,n+2.

Denote the matrix (xi j )i=1,...,N , j=1,...,n+2 by X and the vector (y1y2 · · · yN )T by Y .
The least squares estimate β∗ = (b c d1 · · · dn)T is given by

β∗ = (XT X)−1XT Y .
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As in the previous method, we assign a weight wi to the i th bond. Denote the matrix
{ωi j } by �. Then,

ωi j =
{

w2
i , if i = j,
0, otherwise.

(5.8)

Forw2
i , Vasicek and Fong (1982) suggest using the duration of the i th bond, although

some practitioners prefer wi = tmi
i (the maturity of the i th bond). For this weighted

least squares problem, β∗ is now given by

β∗ = (XT �−1X)−1XT �−1Y .

The inverse of �−1 = {ω′
i j } is given by

ω
′
i j =

{
1/w2

i , if i = j.
0, otherwise.

(5.9)

It is advisable to compute�−1 using Equation 5.9, which is much more efficient than
using Equation 5.8. The corresponding VBA code for this method is as follows.

Public Function RSpline(nxPmt, fqPmt, rmPmt, bYield, bPrice, _

Knots, wType As Integer)

Dim nKnots As Long, nBonds As Long

Dim X, Y, Omega_inv

Dim Ci As Double

Dim tj As Double, tk As Double, tm As Double

Dim i As Long, j As Long, ib As Long, kk As Long

nBonds = UBound(nxPmt)

nKnots = UBound(Knots)

ReDim X(1 To nBonds, 1 To nKnots + 2) As Double

ReDim Y(1 To nBonds, 1 To 1) As Double

ReDim Omega_inv(1 To nBonds, 1 To nBonds) As Double

For ib = 1 To nBonds

Ci = bPrincipal * bYield(ib) * fqPmt(ib)

Y(ib, 1) = bPrice(ib) - Ci * rmPmt(ib) - bPrincipal

'Multply Ci later

For j = 1 To rmPmt(ib)

tj = nxPmt(ib) + fqPmt(ib) * (j - 1)

X(ib, 1) = X(ib, 1) + tj

X(ib, 2) = X(ib, 2) + tj ˆ 2

For kk = 1 To nKnots

tk = Knots(kk)

If tj < tk Then Exit For
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X(ib, kk + 2) = X(ib, kk + 2) + (tj - tk) ˆ 3

Next kk

Next j

'Ci and Pi*tm

tm = nxPmt(ib) + fqPmt(ib) * (rmPmt(ib) - 1)

X(ib, 1) = Ci * X(ib, 1) + bPrincipal * tm

X(ib, 2) = Ci * X(ib, 2) + bPrincipal * tm ˆ 2

'x_i,k+2

For kk = 1 To nKnots

tk = Knots(kk)

X(ib, kk + 2) = Ci * X(ib, kk + 2)

If tm > tk Then

X(ib, kk + 2) = X(ib, kk + 2) + bPrincipal

* (tm - tk) ˆ 3

End If

Next kk

Next ib

'For weights

If wType = 1 Then 'Equal Weight

For ib = 1 To nBonds

Omega_inv(ib, ib) = 1

Next ib

ElseIf wType = 2 Then '1/Maturityˆ2

For ib = 1 To nBonds

Omega_inv(ib, ib) = 1 / (nxPmt(ib) _

+ fqPmt(ib) * (rmPmt(ib) - 1)) ˆ 2

Next ib

Else

For ib = 1 To nBonds

Omega_inv(ib, ib) = 1 / Bond_dPdr(nxPmt(ib),

fqPmt(ib), rmPmt(ib), bYield(ib), bPrice(ib), 0.05,

0.00000001, 500) ˆ 2

Next ib

End If

'Weighted least squares

Dim XtOi, XtOiX_inv, beta

With Application

XtOi = .MMult(Transpose(X), Omega_inv)

XtOiX_inv = .MInverse(.MMult(XtOi, X))

beta = .MMult(.MMult(XtOiX_inv, XtOi), Y)

End With

'Output the result
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Dim Output

ReDim Output(1 To nKnots + 3, 1 To 2) As Double

For i = 1 To UBound(beta, 1)

Output(i + 1, 2) = beta(i, 1)

Next i

For i = 1 To nKnots

Output(i + 3, 1) = Knots(i)

Next i

Output(1, 2) = 1

RSpline = Output

End Function

'Calculate dPdr using Netwon's method for estimating r

Public Function Bond_dPdr(ByVal nxPmt0 As Double,

ByVal fqPmt0 As Double, _ ByVal rmPmt0 As Double,

ByVal bYield0 As Double, ByVal bPrice0 As Double,

Optional initGuess As Double = 0.05, _

Optional tolerance As Double = 0.00001,

Optional maxItr As Long = 100)

Dim rf As Double

Dim bPrice1 As Double, dPdr As Double

Dim exp_rtj As Double, Cj As Double, tj As Double

Dim i As Long, j As Long

rf = initGuess

Cj = bPrincipal * bYield0 * fqPmt0

For i = 1 To maxItr

bPrice1 = 0

dPdr = 0

For j = 1 To rmPmt0

tj = nxPmt0 + fqPmt0 * (j - 1)

exp_rtj = Exp(-rf * tj)

bPrice1 = bPrice1 + Cj * exp_rtj

dPdr = dPdr + tj * Cj * exp_rtj

Next j

bPrice1 = bPrice1 + bPrincipal * exp_rtj

dPdr = dPdr + tj * bPrincipal * exp_rtj

rf = rf - (bPrice0 - bPrice1) / dPdr

If Abs(bPrice0 - bPrice1) < tolerance Then Exit For

Next i

Bond_dPdr = -dPdr

End Function

For more details, please refer to Ch5.2_Regression_Spline_Discount_Function.xls.
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TABLE 5.4 Original and Fitted Prices of Treasury CBs

Time to Payment Time to Coupon Clean Dirty Fitted Percentage
next payment frequency maturity rate price price price error

0.4356 2 0.4356 0.875% 100.30 100.35 100.34 0.01%
0.2644 2 0.7644 0.875% 100.48 100.69 100.69 0.00%
0.2658 2 1.2658 0.750% 100.50 100.68 100.75 0.07%
0.4342 2 1.9342 0.625% 100.31 100.35 100.42 0.07%
0.0192 2 2.0192 0.375% 99.78 99.96 100.03 0.07%
0.4753 2 2.9753 0.750% 100.16 100.17 100.09 0.08%
0.3534 2 3.3534 1.500% 102.34 102.56 102.39 0.17%
0.1000 2 3.6000 1.750% 103.08 103.78 103.64 0.13%
0.2685 2 4.2685 2.125% 104.19 104.68 104.65 0.03%
0.4342 2 4.9342 1.750% 102.06 102.18 102.1 0.08%
0.2274 2 5.2274 4.500% 115.91 117.13 116.87 0.23%
0.1027 2 5.6027 2.375% 104.36 105.30 105.51 0.19%
0.2712 2 6.2712 2.750% 105.86 106.49 106.83 0.32%
0.4370 2 6.9370 2.375% 102.97 103.12 103.32 0.19%
0.4822 2 7.4822 3.500% 110.53 110.59 110.47 0.11%
0.2260 2 7.7260 3.875% 113.09 114.16 114.09 0.06%
0.4822 2 8.4822 2.750% 103.98 104.03 103.97 0.06%
0.2260 2 8.7260 3.125% 106.50 107.36 107.5 0.14%
0.2301 2 9.2301 3.375% 108.00 108.91 109.18 0.25%
0.4808 2 9.9808 2.625% 101.19 101.24 100.88 0.35%
0.4932 2 25.4932 4.500% 117.58 117.61 117.84 0.19%
0.4959 2 26.4959 4.750% 122.28 122.30 122.17 0.11%
0.2397 2 26.7397 5.000% 126.97 128.27 127.96 0.24%
0.4959 2 27.4959 4.375% 115.19 115.21 115.23 0.02%
0.2397 2 27.7397 4.500% 117.47 118.64 118.65 0.01%
0.4959 2 28.4959 3.500% 98.98 99.00 98.74 0.26%
0.2397 2 28.7397 4.250% 112.44 113.54 113.83 0.25%
0.2438 2 29.2438 4.375% 114.67 115.79 116.18 0.34%
0.4945 2 29.9945 3.875% 105.75 105.77 105.55 0.21%

Finally, as P(0, t) is the discount function, we convert it to the yield R(0, t).
For continuously compounding rates, the relationship between R(0, t) and P(0, t) is
given by

R(0, t) = −1
t
log P(0, t).

We build the yield curve using the same set of data as in the previous method.
The knots are set at t = 0, 2, 10, 25, and the weights are given by the durations
of the bonds. The original and fitted prices of the Treasury bonds are presented in
Table 5.4. The average pricing error is 0.15%, and the maximum pricing error is
0.35%. The estimated yield curve and corresponding discount factor are shown in
Figure 5.4.
The yield curves with the three weighting schemes are depicted in Figure 5.5,

although the human eye cannot distinguish among them. Figure 5.6 compares the
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Figure 5.4 Fitted yield curve and discount factor using cubic spline interpolation on the discount factor.

50 10 15 20 25

Time

0.0%

1.0%

2.0%

3.0%

4.0%
Equal weight
Weighted with maturity
Weighted with duration

Figure 5.5 Yield curve built with different weights applied to bond prices.



192 FIXED-INCOME DERIVATIVES I: SHORT-RATE MODELS

50 10 15 20 25

Time

0.0%

1.0%

2.0%

3.0%

4.0% Natural spline
NS model
Regression spline

Figure 5.6 Yield curves built with different methods.

yield curves obtained from the cubic spline on rates, Nelson–Siegel model, and
regression spline on prices. The three curves behave quite differently for short-term
rates but are in general agreement for mediumterm rates. The Nelson–Siegel model
and regression spline match each other except for extremely short-term rates. The
natural spline on rates produces lower long-term rates.

5.1.1 Building the Forward Rate Curve

In contrast to the spot rate, the forward rate is a prediction of the future rate to
borrow and lend. It can be calculated from the yield curve or the discount curve. For
example, the rate to borrow money in 6 months’ time with payment in 9 months’
time is the 3-month forward rate for the 6th month, and the 3-month period is called
the tenor of the forward rate. Denote the forward rate at time t for time ti with
tenor τi = ti+1 − ti by f (t, ti , ti+1). When there is no chance of misunderstanding,
the notation fi (t) = f (t, ti , ti+1) is used. To extract the forward rate fi (t) from the
discount function, we have

fi (t) = 1

τi

(
P(t, ti )

P(t, ti+1)
− 1

)
, (5.10)

where P(t, ti ) is the discount function (or the price of a CB with maturity ti ) for time
ti at time t . Suppose that the annually compounding yield curve r (t, ti ) is given, and
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we wish to calculate the forward rate fi (t). Then,

P(t, ti ) = 1

1+ R(t, ti )(ti − t)
.

Therefore,

fi (t) = 1

τi

(
1+ R(t, ti+1)(ti+1 − t)

1+ R(t, ti )(ti − t)
− 1

)
,

where R(t, ti ) is the annually compounding spot interest rate for time ti at time t .
Similarly, if R(t, ti ) are continuously compounding spot interest rates, then

P(t, ti ) = e−R(t,ti )(ti −t),

fi (t) = 1

τi

(
eR(t,ti+1)(ti+1−t)−R(t,ti )(ti −t) − 1) .

Instead of calculating the discrete forward rate f (t, ti , ti+1), we obtain the instan-
taneous forward rate F(t, ti ) for time ti at time t by taking the limit ti+1 → ti (or,
equivalently, τi → 0) in Equation 5.10, that is,

F(t, ti ) = lim
τi →0

P(t, ti )− P(t, ti+1)
τi P(t, ti+1)

= − 1

P(t, ti )

∂ P(t, ti )

∂ti
.

If R(t, ti ) is the continuously compounding spot interest rate, then

P(t, ti ) = e−R(t,ti )(ti −t),

∂ P(t, ti )

∂ti
= −e−R(t,ti )(ti −t)

(
R(t, ti )+ ∂ R(t, ti )

∂ti
(ti − t)

)
,

F(t, ti ) = R(t, ti )+ ∂ R(t, ti )

∂ti
(ti − t).

The VBA code for extracting the forward rates (both discrete and instantaneous) with
a yield curve constructed with regression splines is as follows.

'Forward Rate

Dim tau As Double

Dim t1 As Double, t2 As Double

Dim rt1 As Double, rt2 As Double

tau = Cells(4, 12) - Cells(3, 12)

nPoints = Application.Count(Range("L:L"))

Cells(3, 13).Resize(1000, 2).Clear
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For i = 3 To nPoints + 2

'Discrete

t1 = Cells(i, 12)

t2 = t1 + tau

rt1 = Eval_Spline(t1)

rt2 = Eval_Spline(t2)

Cells(i, 13) = (Exp(rt2 * t2 - rt1 * t1) - 1) / tau

Cells(i, 13).NumberFormatLocal = "0.00%"

'Instantaneous

Cells(i, 14) = rt1 + Eval_DSpline(t1) * t1

Cells(i, 14).NumberFormatLocal = "0.00%"

Next i

The forward rate curves extracted from the yield curves used in the previous section
with a tenor equal to 1 year are depicted in Figure 5.7, where tenor means t j+1 − t j are
usually assumed to be constant. For further details, please refer to the three previously
mentioned Excel files.

5.2 THE HULL–WHITE MODEL

To value interest rate derivatives, we begin with short-rate models and use the Hull–
White approach in our implementation. The Hull–White model essentially combines
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Figure 5.7 Forward-rate curves built with different methods.
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the advantages of the Ho–Lee model (1986) and the Vasicek (1977) model. We
demonstrate the use of the direct simulation approach and trinomial tree approach in
pricing interest rate products.
The short rate at time t , denoted by r (t), is the instantaneous risk-free interest rate

at time t . Although it would be theoretically sound to model the short rate dynamics
as the starting point, the short rate is not observed in the market. Theoretically,
R(0, t) tends to r (t) when t goes to zero. Figure 5.6 shows that extremely short-term
rates may be calibrated in an unstable manner, partly because of the trading noise
or market microstructure noise associated with short-term bonds. Therefore, short
rates are usually approximated as a short-term, but not very short-term rate, such as
the 3-month rate. The proxy for a short rate sometimes depends on the product of
concern. In this sense, the short rate is a concept rather than a market-observable
element.
Theoretically, the price at time t of a default-free CB paying $1 at T has a present

value of

P(t, T ) = EQ

[
exp

(
−

∫ T

t
r (s)ds

) ∣∣∣∣F t

]
, (5.11)

where the short rate r (t) changes randomly over time. If the dynamics of r (t) are
given, then the bond price can be computed using Monte Carlo simulation or other
appropriate means. In some cases, a closed-form formula for the CB price can be
derived.
Let us focus on a particular one-factor, short-rate model proposed by Hull and

White (1990, 1994a, b). In general, a one-factor, short-rate model assumes that the
yield curve is driven by a single Brownian motion. The classical one-factor short-rate
model follows Itô’s process:

dr (t) = μ(t, r (t)) dt + σ (t, r (t)) dW ∗(t),

where μ(t, r ) and σ (t, r ) are deterministic functions, andW ∗(t) isQ-standard Brow-
nian motion. In practice, the valuation of non-standard fixed-income products, such
as interest rate RAN and convertibles, requires a short rate model to fit such market
variables as bond prices and to produce a price that is consistent with the current
market price; a sort of MTM concept.
The Hull–White model, or extended Vasicek model, assumes that

dr (t) = (θ (t)− ar (t)) dt + σ (t) dW ∗(t), (5.12)

where a is a positive constant known as the mean-reverting speed, θ (t) is a deter-
ministic function of time capturing the yield curve information, and σ (t) is a positive
deterministic function of time, otherwise known as the volatility of the interest rate.
Usually, θ (t) is determined by fitting the initial yield curve, and σ (t) by fitting the
implied volatility of caps, swaptions, or both, depending on the situation.
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If we do not want to calibrate the volatility to the implied volatility of caps, then
there is a way to estimate it using historical data. Suppose that we use the 3-month
rate as a proxy for the short rate. Collect historical data on 3-month rates {r0, . . . , rn},
where r j = r ( j
t) and rn is the most recent interest rate. We assume an order 1
autoregressive model (AR(1)) for the interest rate:

r j = α + βr j−1 + ε j ,

where ε j ∼ N (0, s2) independently. Using ordinary least squares estimates for α

and β, the variance s2 can be estimated as the sample variance of prediction errors:
{̂ε j : ε̂ j = r j − α̂ − β̂r j−1, j = 1, . . . , n}. Hence, we have the following estimated
AR(1) model.

r j − r j−1 = α̂ + (
β̂ − 1) r j−1 + ε j ,

which forms a stationary series if |β̂| < 1. Taking 
t → 0, we have the following
diffusion limit.

dr (t) = (μ − ar (t)) dt + σ dW (t), (5.13)

where μ
t = α̂, a
t = 1− β̂, σ 2
t = ŝ2, and W (t) is a P-standard Brownian
motion.
The Q-process of r (t) should satisfy Equation 5.11 for all T > t . We postulate

that there exists a continuous function θ (t) such that

dW ∗(t) = dW (t)+
(

μ − θ (t)

σ

)
dt,

where W ∗(t) is a Q-standard Brownian motion, and this θ (t) ensures that Equation
5.11 is satisfied. Substituting dW ∗(t) into Equation 5.13 produces Equation 5.12.
More specifically, Hull and White (1994a) show that

θ (t) = ∂

∂t
F M (0, t)+ aF M (0, t)+ σ 2

2a
(1− e−2at ), (5.14)

where F M (0, t) is the instantaneous market forward rate that satisfies

F M (0, T ) = − ∂

∂T
log P M (0, T ) = − 1

P M (0, T )

∂

∂T
P M (0, T ),

where P M (t, T ) is the price of the zero-CB at time t with maturity T . Because

∂

∂T
F M (0, T ) = 1

P M (0, T )2

(
∂

∂T
P M (0, T )

)2
− 1

P M (0, T )

∂2

∂T 2
P M (0, T ),

(5.15)
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the discounted bond price function P M (0, T ) is assumed to be twice-differentiable
in T .
Recall that we introduced amethod of building the yield curve via spline regression

and chose the form of the cubic polynomial to ensure that the discounted bond price
curve was twice-differentiable, that is,

P M (0, t) = 1+ bt + ct2 +
n∑

k=1
dk(t − tk)

3
+, (5.16)

where b, c, d1, . . . , dk are the regression parameters and the tk’s are the knot points.
The VBA code for calculating the second-order derivatives of the forward rate curve
is as follows.

Public Function Eval_DDSpline(x_val As Double,

Optional Coef As Variant) As Double

Dim i As Long

'For Worksheet use

If IsMissing(Coef) Then Coef = SplineCoef

Eval_DDSpline = 2 * Coef(3, 2)

For i = 4 To UBound(Coef, 1)

If Coef(i, 1) > x_val Then Exit For

Eval_DDSpline = Eval_DDSpline + 6 * Coef(i, 2)

* (x_val - Coef(i, 1))

Next i

End Function

The finite difference method can also be used to calculate the partial derivatives.
Because the numerical differentiation has to be performed twice, however, it is
inevitable that more errors will be present in the calculation.
Simulation of the interest rate r (t) can be based on Equation 5.12 and 5.14, such

that

r j+1 = r j + [θ (t j )− ar j ]
t + σ Z ,

where Z ∼ N (0, 1) and θ (t j ) takes values according to the market forward rate curve,
as shown in Equation 5.14. This simulation is considered in greater depth later in the
chapter.

5.2.1 Calibration of the Hull–White Model

Instead of using time series estimates of a and σ in the Hull–White model, market
practitioners often calibrate them from interest rate options such as the cap and floor.
Our goal is to search for the set of parameters a and σ that minimizes the differences
between the model and market prices of options.
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Calibration of the Hull–White model can be carried out conveniently when the
closed-form formula of caplet prices is derived. There are two ways to compute the
bond price: (1) derive the PDE for P(t, T ) by applying the Feynman–Kac formula
to Equation 5.11 and 5.12, and then solve the PDE analytically and (2) calculate the
expectation directly.
In Method 1, by the Feynman–Kac formula, the PDE for P(t, T ) satisfies

∂ P

∂t
+ σ 2(t)

2

∂2P

∂r2
+ (θ (t)− ar )

∂ P

∂r
− r P = 0,

P(T, T ) = 1. (5.17)

Following Vasicek (1977), an initial guess is

P(t, T ) = A(t, T ) exp(−r (t)B(t, T )),

where t is the time variable and T is considered to be a fixed parameter. To satisfy the
condition that P(T, T ) = 1, the terminal conditions A(T, T ) = 1 and B(T, T ) = 0
are imposed. Also, the partial derivatives (whose arguments are omitted for clarity)
are

∂ P

∂r
= −B P,

∂2P

∂r2
= B2P,

∂ P

∂t
= ∂ A

∂t

P

A
− r

∂ B

∂t
P.

Substituting the partial derivatives into Equation 5.17 and rearranging the terms, we
have (

Ȧ

A
+ σ 2(t)

2
B2 − θ (t)B

)
+ r (−Ḃ + aB − 1) = 0.

For the foregoing equation to hold for all r , we must have

−Ḃ + aB − 1 = 0,with B(T, T ) = 0,

Ȧ

A
+ σ 2(t)

2
B2 − θ (t)B = 0,with A(T, T ) = 1.

Solving these two ordinary differential equations (ODEs), we obtain

A(t, T ) = P M (0, T )

P M (0, t)
exp

(
B(t, T )F M (0, t)− σ 2

4a
(1− e−2at )B(t, T )2

)
and

B(t, T ) = 1

a

(
1− e−a(T −t)

)
.
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Note that the function θ (t) is absorbed bymarket bond prices P M (0, t) and the market
instantaneous forward rates F M (0, t).
As P(t, T ) = A(t, T ) exp(−r (t)B(t, T )), Itô’s lemma shows that

d P(t, T ) =
(

∂ P

∂t
+ σ 2(t)

2

∂2P

∂r2
+ (θ (t)− ar (t))

∂ P

∂r

)
(t, T ) dt

+σ (t)
∂ P

∂r
(t, T ) dW (t) (5.18)

= r (t)P(t, T ) dt − σ (t)B(t, T )P(t, T ) dW (t)

= r (t)P(t, T ) dt + σ (t)B(t, T )P(t, T ) dŴ (t),

where Ŵ (t) � −W ∗(t).
Consider a European call option on a CB, where the option’s maturity is T and

that of the CB is S, with T ≤ S. Intuitively, as P(t, T ) evolves similarly to a GBM, as
in Equation 5.18, the pricing formula for the call option on the bond should resemble
the BS call option formula.

Theorem 5.1 The Hull–White call option price on a CB is given by

EQ
[
e− ∫ T

0 r (s)ds max{P(T, S)− K , 0}
]

= P(0, T )cBS

(
P(0, S)

P(0, T )
, K , 0, 0, 0, (T, S), T

)
,

where

(T, S)2 = 1

T

∫ T

0
σ (u)2(B(u, S)− B(u, T ))2du,

and cBS(S, K , t, r, q, v, T ) is the BS call option formula.

Proof: As P(T, T ) = 1, the expectation can be written as

EQ
[
e− ∫ T

0 r (s)ds max{P(T, S)− K , 0}
]

= EQ

[
e− ∫ T

0 r (s) ds P(T, T )max

(
P(T, S)

P(T, T )
− K , 0

)]
.
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From Equation 5.18, we have

P(T, S) = P(0, S) exp

[∫ T

0
r (t) dt − 1

2

∫ T

0
(σ (t)B(t, S))2 dt

+
∫ T

0
σ (t)B(t, S) dŴ (t)

]
for all S ≥ T . Substituting this into the expectation yields

P(0, T )EQ

[
e− 1

2

∫ T
0 (σ (t)B(t,T ))

2 dt+∫ T
0 σ (t)B(t,T ) dŴ (t) max

(
P(T, S)

P(T, T )
− K , 0

)]
.

By Girsanov’s Theorem, we define

dQT

dQ
= e− 1

2

∫ T
0 (σ (t)B(t,T ))

2 dt+∫ T
0 σ (t)B(t,T ) dŴ (t)

and QT -standard Brownian motion

dW̃ (t) = dŴ (t)− σ (t)B(t, T ) dt.

The call on the CB becomes

P(0, T )EQT[
max

(
P(0, S)

P(0, T )
e− 1

2

∫ T
0 σ (u)2(B(t,S)−B(t,T ))2 dt+∫ T

0 σ (t)(B(t,S)−B(t,T )) dW̃ (t) − K , 0

)]
,

where the expectation resembles that of the BS call option with a current stock price
of P(0,S)

P(0,T ) , zero interest rate, and volatility of (T, S). Hence, the result follows.
Although CB options are seldom traded in the market, related products such as

caps and caplets are liquidly traded. A caplet is a call option on a simple compounding
interest rate, typically traded in the London Interbank Offered Rate (LIBOR) market,
as LIBOR rates are quoted in a simple compounding manner. The CB is related to
the LIBOR rate, L(0, T ), by the following formula.

P(0, T ) = 1

1+ L(0, T )T
.

For a notional (or principal amount) N , a caplet holder has the right to exchange
the LIBOR rate for a constant rate K at a future point in time. Therefore, the payoff
is Nτi max{L(Ti−1, Ti )− K , 0}, where N is the caplet’s notional amount, and is
determined at time Ti−1 and made at time Ti , and τi = Ti − Ti−1. Thus, the price of
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a caplet is given by

Caplet(Ti , K , N ) = EQ
[
e− ∫ Ti

0 r (s) ds Nτi max{L(Ti−1, Ti )− K , 0}
]
.

Using the relation between the LIBOR rate and the bond, we have a caplet price of

EQ

[
e− ∫ Ti

0 r (s) ds Nτi max

{
1

τi

(
1

P(Ti−1, Ti )
− 1

)
− K , 0

}]

= NEQ

[
e− ∫ Ti

0 r (s) ds

P(Ti−1, Ti )
max{1− (1+ K τi )P(Ti−1, Ti ), 0}

]

= NEQ

[
e− ∫ Ti−1

0 r (s) ds

P(Ti−1, Ti )
EQ

[
e− ∫ Ti

Ti−1 r (s) ds
∣∣∣∣FTi−1

]
max{1− (1+ K τi )P(Ti−1, Ti ), 0}

]

= N (1+ K τi )E
Q

[
e− ∫ Ti−1

0 r (s) ds max

{
1

1+ K τi
− P(Ti−1, Ti ), 0

}]
= N ′ P(0, Ti−1)pBS

(
P(0, Ti )

P(0, Ti−1)
, K ′, 0, 0, 0, (T, S), Ti−1

)
,

where N ′ = N (1+ K τi ) and K ′ = 1
1+K τi

, and pBS(S, K , t, r, q, v, T ) is the BS put
option formula. Here, the price of a caplet is related to the price of the put option of
a CB. Therefore, a call on an interest rate is essentially equivalent to a put on a bond.
Remember that the market price of a caplet is usually quoted in terms of its Black

volatility, vi−1. More precisely, the LIBOR market usually prices a caplet as a call on
the LIBOR rate and regards the LIBOR rate as log-normally distributed. To reduce
confusion, the usual LIBOR market practice it to view the LIBOR rate as if it were
an equity with a zero interest rate. Therefore, the call option on the LIBOR rate obeys
the BS call option formula by inserting a zero interest rate therein. This BS formula
incorporating a zero interest rate is referred to as the Black formula. Therefore, the
quoted caplet price is

Capletmarket(Ti , K , N ) = N P(0, Ti )cBS( fi−1(0), K , 0, 0, vi−1, Ti−1),

where fi−1(0) is the current forward rate for L(ti−1, ti ), and vi−1 is the quoted Black
volatility. Practitioners recognize that the Black formula is not necessarily accurate,
but they use it simply for quotation purposes.
As noted, interest rate derivatives are structured in a relatively more complicated

way than equity products. The standard options in an interest rate product are caps
and floors. A cap is a portfolio of caplets with strike K . To price the caps in the
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Hull–White model, we write

Cap(Tn, K , N ) =
n∑

i=1
Caplet(Ti , K , N )

= N
n∑

i=1

(
P(t, Ti−1)�(−hi + σ i

p)− (1+ K τi )P(t, Ti )�(−hi )
)
,

(5.19)

where σ (t) is assumed to be constant, and�(·) is the cumulative distribution function
of a standard normal random variable, and

σ i
p = σ

√
1− e−2aTi−1

2a
B(Ti−1, Ti ),

hi = 1

σ i
p

log
P(t, Ti )(1+ K τi )

P(t, Ti )
+ σ i

p

2
.

A floor is a portfolio of floorlets, and a floorlet is a put option on the LIBOR. Hence,
the price of a floor can be obtained by the put-call parity relation, as follows.

Floor(Tn, N , K ) = N
n∑

i=1

(
(1+ K τi )P(t, Ti )�(hi )− P(t, Ti−1)�(hi − σ i

p)
)
.

In practice, we can collect market quotes for Black volatilities from caps and floors.
After substituting the quoted volatilities into the corresponding Black option formu-
las, we can then obtain the quoted prices of these options. Then the interest rate
volatility can be backed out from the bond option formula, similar to the way we
produced implied volatilities.
Returning to the problem of calibration, we illustrate only the results of the caplet

data given in Table 5.5. All of these caplets have a strike rate of 0.1%, a nominal
amount of $1, and are based on the LIBOR rate with maturity 0.25. We have to
minimize the objective function with respect to a and σ , that is,

min
a,σ

n∑
i=1

(
Capletmarket(Ti , K )− Capletmodel(Ti , K )

)2
. (5.20)

Select the ranges of a ∈ [0, 0.25] and σ ∈ [0, 0.05], and calibrate the model using
the built-in Excel Solver. The calibration procedure is as follows.

1. Set a pair of initial values for a and σ within the prescribed ranges.

2. Compute the market prices of the caplets using the Black volatilities and the
Black formula.
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TABLE 5.5 Caplet Data Used in Calibration of the
One-Factor Hull–White Model

Caplet expiry date Black caplet volatility

0.25 18.00%
0.50 18.25%
0.75 18.50%
1.00 18.75%
1.25 19.00%
1.50 19.25%
1.75 19.50%
2.00 19.75%
2.25 20.00%
2.50 20.25%
2.75 20.50%
3.00 20.75%

3. Compute the model prices of the caplets using parameters a and σ and the
Hull–White formula.

4. Compute the objective function in Equation 5.20.

5. Use the Excel Solver to find the best fits of a and σ within the prescribed
ranges.

In this example, the fitted values are a = 0.1828128 and σ = 0.0003568. The
fitted prices of the caplets under the Black and Hull–White models are shown
in Table 5.6. For more details, please refer to Ch5.3_Hull_White_Calibration,
in which details of the calibration of the Hull–White model using DE can also
be found.

TABLE 5.6 Caplet Prices Under the Black and Hull–White Models with Their
Squared Differences

Caplet expiry Black caplet Black caplet Hull–White Squared
date volatility price caplet price difference

0.25 18.00% 0.0311% 0.0335% 5.58E−10
0.50 18.25% 0.0369% 0.0425% 3.17E−09
0.75 18.50% 0.0492% 0.0581% 7.93E−09
1.00 18.75% 0.0679% 0.0801% 1.49E−08
1.25 19.00% 0.0932% 0.1087% 2.41E−08
1.50 19.25% 0.1249% 0.1438% 3.56E−08
1.75 19.50% 0.1631% 0.1854% 4.96E−08
2.00 19.75% 0.2078% 0.2321% 5.92E−08
2.25 20.00% 0.2548% 0.2785% 5.61E−08
2.50 20.25% 0.3000% 0.3230% 5.33E−08
2.75 20.50% 0.3433% 0.3658% 5.06E−08
3.00 20.75% 0.3848% 0.4068% 4.81E−08

Sum 4.03E−07
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5.3 PRICING INTEREST RATE PRODUCTS USING THE DIRECTION
SIMULATION APPROACH

With Equations 5.12, 5.13, 5.14, 5.15, and 5.16 in the previous section, and given a
yield curve, the short rate in the Hull–White model can be simulated directly by the
following algorithm.

1. Initialize r (0) as calculated from the yield curve.

2. Set i = 0.

3. Calculate θ (i) by Equation 5.14.

4. Calculate r (i + 1) = r (i)+ (θ (i)− ar (i))
t + σ (i)
√


t Zi , where Zi is a
standard normal random variable.

5. Set i = i + 1, and repeat Steps 2 to 4 M − 1 times.
6. Repeat Steps 1 to 5 N times to generate N short-rate paths.

Note that the Hull–White model may generate negative interest rates during sim-
ulation, particularly for small initial values. Ad hoc procedures can be used, for
example, taking the interest rate to be zero or its absolute value when it becomes
negative. The negative value may also be retained, so that it is consistent with the
bond price calculated from the discounted bond curve. The VBA code for simulation
of the Hull–White model is as follows.

Public Function HW_path(t As Variant, f As Variant,

Df As Variant, r0 As Double, _ a As Double, sigma As Double,

N As Long) As Variant

Dim M As Integer, i As Long, j As Long

Dim dt As Double

M = UBound(t)

dt = t(1) - t(0)

ReDim theta(0 To M) As Double

ReDim r(0 To M, 1 To N) As Double

For j = 1 To N

r(0, j) = r0

For i = 0 To M - 1

theta(i) = Df(i) + a * f(i) + _

sigma ˆ 2 / 2 / a * (1 - Exp(-2 * a * i * dt))

r(i + 1, j) = r(i, j) + (theta(i) - a * r(i, j))

* dt + sigma * Sqr(dt) * rGauss()

'Convention for r < 0, take r = 0

'If r(i + 1, j) < 0 Then r(i + 1, j) = 0

'Convention for r < 0, take r = 0

'If r(i + 1, j) < 0 Then r(i + 1, j) =
Abs(r(i + 1, j))

Next i
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Next j

HW_path = r

End Function

After the short-rate paths are generated from the Hull–White model, the values of
bonds, RAN, TRN, and other interest rate derivatives can be calculated.
For example, the CB price can be simulated using Equation 5.11. The algorithm

is as follows.

1. Simulate a sample path for r (t) under the risk-neutral measure using the afore-
mentioned simulation algorithm.

2. Perform numerical integration for the integral
∫ T

t r (s) ds, and evaluate

exp
(
− ∫ T

t r (s) ds
)
.

3. Repeat Steps 1 and 2 N times, and average the estimates.

The VBA code for computing the bond price via simulation is as follows.

Function intr(r As Variant, t0 As Double, t1 As Double,

dt As Double) As Variant

Dim i As Long, j As Long, N As Long

N = UBound(r, 2)

ReDim Sum(1 To N)

For j = 1 To N

Sum(j) = 0

For i = Int(t0 / dt) To Int(t1 / dt) - 1

Sum(j) = Sum(j) + r(i, j) * dt

Next i

Next j

intr = Sum

End Function

Function Bond(intr As Variant) As Variant

Dim N As Long, i As Long

N = UBound(intr)

ReDim Val(1 To N) As Double

For i = 1 To N

Val(i) = Exp(-intr(i))

Next i

Bond = Val

End Function

The price of a CBwith T = 10 calculated from the discounted bond curve is 0.76899.
For simulation of the Hull–White model, if a = 0.1, σ = 0.01, and N = 10,000,
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then the price is equal to 0.77013. If the convention that r := 0 for r < 0 is used,
then the price is equal to 0.73688; if the convention that r := −r for r < 0 is
used, then the price is 0.73263. Thus, allowing a negative interest rate leads to a
bond price that is consistent with the discounted bond curve. For further details,
please refer to Ch5.4_Hull_White_MC_Bond.

5.3.1 Target Redemption Notes

A TRN provides a guaranteed coupon sum with the possibility of early termination.
For interest-rate TRNs, if the reference interest rate satisfies certain conditions, then
a coupon rate will be paid. Once the accumulated coupon reaches a given target, the
note is terminated, and the principal and final coupon are paid to the holder. The risk
faced by TRN investors is that their cash can be kept by the issuer for a very long
time if the target is difficult to reach. In such a scenario, the holder loses the time
value of money and liquidity.
Consider an 8-year TRN with denomination D. The first-year coupon rate is fixed

at 4.0%. The coupon rates after the first year are calculated on the basis of the formula
max{3%− L , 0}, where L is the spot LIBOR on the coupon date. The note will be
terminated prematurely on the coupon date if the accumulated coupon rate reaches
the target cap rate of 20%.
Let P(t, T ) be the price at time t of a unit-par CB with maturity date T . The

relationship between the spot LIBOR L(t, T ) and price of CB P(t, T ) is given by

L(t, T ) = 1

T − t

(
1

P(t, T )
− 1

)
. (5.21)

The algorithm for computing the price of this TRN proceeds as follows.

1. Set Accumulated coupon = First-year coupon(4%).

2. Calculate Value = Discount function× D × τ × First-year coupon.
3. Set j = 2.

4. Calculate the LIBOR L at time jτ by Equation 5.21.

5. Calculate Coupon = max{3%− L , 0}.
6. Accumulated coupon = Accumulated coupon+ Coupon.
7. Value = Value+ Discount function× τ × Coupon.
8. If Accumulated coupon > Target coupon, then exit loop.

9. Repeat Steps 4 to 8 for the number of payment times.

10. Value = Value+ Discount function× D.

The corresponding VBA code is as follows.

Function HW_TRN(r As Variant, fcoupon As Double,

rcoupon As Double, TG As Double, _ term As Integer,
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tau As Double, D As Double, dt As Double) As Variant

Dim N As Long, i As Long, j As Long, v As Long

Dim yN As Double, tn As Double, tnp As Double,

accoupon As Double, coupon As Double

Dim TRNval() As Double

Dim L As Double, P As Double

N = UBound(r, 2)

ReDim TRNval(1 To N) As Double

For v = 1 To N

accoupon = fcoupon * tau

TRNval(v) = Eval_Spline(tau) * D * fcoupon * tau

For j = 2 To term / tau

tn = j * tau

tnp = (j + 1) * tau

P = Bond2(r, tn, tnp, dt, v)

L = (1 / P - 1) / tau

coupon = Max(rcoupon - L, 0)

accoupon = accoupon + coupon * tau

TRNval(v) = TRNval(v) + Eval_Spline(tn) * D

* coupon * tau

If accoupon >= TG Then Exit For

Next j

TRNval(v) = TRNval(v) + Eval_Spline(tn) * D

Next v

HW_TRN = TRNval

End Function

Taking a = 0.1, σ = 0.01, number of paths N = 10,000, and denomination D =
1000, the price of the TRN is equal to 931.07. For more details, please refer to

Ch5.4 Hull White MC Target Redemption Notes.

5.3.2 Interest Rate Range Accrual Notes

An interest rate RAN has a similar structure to the RAN of a stock. Consider the
following example. There are 10 half-year periods. The coupon rates and ranges of
the interest rate RAN are presented in Table 5.7. The coupon amount is calculated
by Coupon rate× n

N , where n is the number of days in an interest period that the
underlying rate is within the range, and N is the number of calendar days in the
interest period. The initial interest period is the period from the issue date ending
on the day preceding the first interest payment date. Subsequent interest periods are
the periods between two successive interest payment dates, starting on the interest
payment date and ending on the day before the next interest payment date.
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TABLE 5.7 Specification of the Coupon Rates and Ranges for the Interest Rate RAN

Coupon rate Range

Period 1 2.50% 0.00–0.25%
Period 2 3.00% 0.00–0.50%
Period 3 3.50% 0.00–0.75%
Period 4 4.00% 0.00–1.00%
Period 5 4.50% 0.00–1.25%
Period 6 5.00% 0.00–1.50%
Period 7 5.50% 0.00–1.75%
Period 8 6.00% 0.00–2.00%
Period 9 6.50% 0.00–2.25%
Period 10 7.00% 0.00–2.50%

The algorithm for computing the price of this interest rate RAN is as follows.

1. For j = 0, set Term/Period length− 1.
2. Initialize Daycount = 0.

3. For i = 1 to yN , where yN = 1/dt , and dt is the length of time step, set tn =
i × dt + j × Period length and tnp = i × dt + ( j + 1)× Period length.

4. Calculate LIBOR L by Equation 5.21.

5. If L is within the range, then Daycount = Daycount+ dt .

6. Calculate Value = Value+ Discount function× Coupon rate× D × Day-
count/Period length.

7. Loop Steps 1 to 8.

8. Calculate Value = Value+ Discount function× D.

The corresponding VBA code is as follows.

Function HW_IRRAN(r As Variant, crate As Variant,

Ranges As Variant, term As Integer, _ pLength As Variant,

D As Double, dt As Double) As Variant

Dim N As Long, i As Long, j As Long, v As Long

Dim yN As Integer

Dim daycount As Double, tn As Double, tnp As Double

Dim IRANval() As Double

Dim L As Double, P As Double, invpLen As Double

N = UBound(r, 2)

yN = pLength / dt

invpLen = 1 / pLength

ReDim IRANval(1 To N) As Double

For v = 1 To N

IRANval(v) = 0

For j = 0 To term / pLength - 1
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daycount = 0

For i = 1 To yN

tn = i * dt + j * pLength

tnp = i * dt + (j + 1) * pLength

P = Bond2(r, tn, tnp, dt, v)

L = (1 / P - 1) / pLength

If L >= Ranges(j \ invpLen, 1) And L <=
Ranges(j \ invpLen, 2) Then

daycount = daycount + dt

End If

Next i

IRANval(v) = IRANval(v) + Eval_Spline(tn) * D * _

crate(j / invpLen) * daycount / pLength

Next j

IRANval(v) = IRANval(v) + Eval_Spline(tn) * D

Next v

HW_IRRAN = IRANval

End Function

With parameters a = 0.1, σ = 0.01, number of paths N = 10,000 and denomination
D = 1000, the price of this interest rate RAN is 899.71. For further details, please
refer to

Ch5.4 Hull White MC Interest Rate RAN.

5.4 PRICING INTEREST RATE PRODUCTS USING THE TRINOMIAL
TREE APPROACH

Now that the direct simulation approach has been introduced, we discuss the trinomial
tree approach of the Hull–White model. A trinomial tree is a discrete-time approx-
imation of a model; its use involves similar methodology and derivative valuation
as those for the binomial tree. Hull and White (1994) proposed a robust two-stage
method for constructing a trinomial tree. Recall from Equation 5.12 that

dr (t) = (θ (t)− ar (t)) dt + σ dW (t),

and from Equation 5.14 that

θ (t) = ∂

∂t
F M (0, t)+ aF M (0, t)+ σ 2

2a
(1− e−2at ),

where F M (0, t) is the instantaneous market forward rate satisfying

F M (0, T ) = − ∂

∂T
log P M (0, T ).
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Integrating process eatr (t) yields

r (t) = e−a(t−s)r (s)+
∫ t

s
e−a(t−u)θ (u) du + σ

∫ t

s
e−a(t−u) dW (u)

= e−a(t−s)r (s)+ α(t)− e−a(t−s)α(s)+ σ

∫ t

s
e−a(t−u) dW (u), (5.22)

where

α(t) = F M (0, t)+ σ 2

2a2
(1− e−2at )2.

(5.23)

It follows that

EQ[r (t)|F s] = e−a(t−s)r (s)+ α(t)− e−a(t−s)α(s),

VarQ[r (t)|F s] = σ 2

2a

(
1− e−2a(t−s)

)
.

Define x(t) = r (t)− α(t). Then,

x(t) = e−a(t−s)x(s)+ σ

∫ t

s
e−a(t−u) dW (u),

or

dx(t) = −ax(t) dt + σ dW (u),where x(0) = 0. (5.24)

The trinomial tree on r (t) is first constructed by x(t) via Equation 5.24 and then by
displacing the result.
The first stage is the construction of the tree for process x(t). Let T be a fixed

time horizon such that 0 = t0 < t1 < · · · < tN = T . For each i = 0, 1, . . . , N − 1,
let
ti = ti+1 − ti . For the trinomial tree, index the tree nodes by (i, j), where index i
ranges from 0 to N and, at time ti , index j ranges from j

i
< 0 to j i > 0. For process

x(t), denote the value of process x on node (i, j) by xi, j . Then,

Mi, j � EQ[x(ti+1)|x(ti ) = xi, j ] = xi, j e
−a
ti

V 2
i � VarQ[x(ti+1)|x(ti ) = xi, j ] = σ 2

2a

(
1− e−2a
ti

)
.

Set

xi, j = j
xi ,where 
xi =
√
3Vi .

Assume that on node (i, j), the process can move to nodes (i + 1, k + 1), (i + 1, k),
or (i + 1, k − 1), where the value of k depends on the current value of j . In other
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Figure 5.8 Three different kinds of branching for different positions of the trinomial tree.

words, if j
i
< j < j i , then the branching on the left-hand side of Figure 5.8 applies;

if j = j
i
, then the branching in the middle of Figure 5.8 applies; and if j = j i ,

then the branching on the right-hand side of Figure 5.8 applies. Figure 5.9 shows
an example of a trinomial tree, where N = 5, the maximum value of j is 2, and the
minimum value of j is −2.
A trinomial tree has upward, middle, and downward probabilities in each step,

denoted as pu , pm , and pd in order. The following conditions determine the
probability.

pu xi+1,k+1 + pm xi+1,k + pd xi+1,k−1 = Mi,k, (the mean condition)

pu x2i+1,k+1 + pm x2i+1,k + pd x2i+1,k−1 = V 2
i + Mi,k, (the variance condition)

pu + pm + pd = 1. (the probability condition)

–

–

Figure 5.9 Example of a trinomial tree.
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Solving the set of equations yields

pu = 1

6
+ η2j,k

6V 2
i

+ η j,k

2
√
3Vi

,

pm = 2

3
− η2j,k

3V 2
i

,

pd = 1

6
+ η2j,k

6V 2
i

− η j,k

2
√
3Vi

,

where η j,k = Mi, j − xi+1,k (the dependence on i is omitted to lighten the notations)
and k = round (Mi, j/
xi+1).
The second stage is the displacement of the tree of x(t) to the tree of r (t). An

easy way to do so is by means of the explicit formula r (t) = x(t)+ α(t), where
α(t) is defined in Equation 5.23. However, combining this exact formula with the
approximate nature of the tree prevents us from retrieving the correct market discount
factor at time 0. For example, as α(0) = r (0), the zero-coupon bond with maturity t1
calculated in the tree would be e−r (0)t1 , which is different from P M (0, t1) = e−R(0,t1)t1 ,
where R(0, t1) is the continuously compounding rate at time 0 for maturity t1. Thus,
Hull andWhite (1994a) suggest displacing the tree by discrete values of α(t), denoted
by αi at time ti . The quantity αi is calculated as follows. Denote Qi, j as the present
value of an instrument paying $1 if node (i, j) is reached, and zero otherwise. Then
the values of αi and Qi, j are calculated recursively from α0, where

α0 = − 1
t1
log P M (0, t1).

As soon as αi is known, the values of Qi+1, j , where j = j
i+1, . . . , j i+1, can be

calculated by

Qi+1, j =
∑

h

Qi,hq(h, j) exp (−(αi + h
xi )
ti ) ,

where q(h, j) is the probability of moving from node (i, h) to (i + 1, j). The value
of αi is calculated by solving

P M (0, ti+1) =
j i∑

j= j
i

Qi, j exp (−(αi + j
xi )
ti ) ,

which leads to

αi = − 1


ti
log

∑ j i
j= j

i
Qi, j exp (− j
xi
ti )

P(0, ti+1)
.



PRICING INTEREST RATE PRODUCTS USING THE TRINOMIAL TREE APPROACH 213

To illustrate the foregoing algorithm, consider the first few steps of tree construc-
tion. It is known that Q0,0 = 1, which is the price of a sure payoff of $1 now, and that
α0 is computed from P M (0, t1). Q1,1, Q1,0 and Q1,−1 are computed by⎧⎨⎩

Q1,1 = Q0,0q(0, 1) exp(−α0
t0),
Q1,0 = Q0,0q(0, 0) exp(−α0
t0),
Q1,−1 = Q0,0q(0,−1) exp(−α0
t0).

Then, the value of α1 is determined by solving

P M (0, t2) = Q1,1 exp (−(α1 + 
x1)
t1)

+Q1,0 exp (−α1
t1)+ Q1,−1 exp (−(α1 − 
x1)
t1) .

Thus, the bond price P M (0, t2) is fitted. The next step is to determine the values of
Q2, j , where j = −2, . . . , 2. In particular, consider node (2, 1). Because (2, 1) can be
reached only from (1, 1) and (1, 0),

Q2,1 = Q1,1q(1, 1) exp (−(α1 + 
x1)
t1)+ Q1,0q(0, 1) exp (−α1
t1) .

The other Q2, j ’s are computed similarly. Then, the value of α2 is determined by
solving

P M (0, t3) =
2∑

j=−2
Q2, j exp (−(α2 + j
x1)
t1) .

Thus, the bond price P M (0, t3) is fitted. The procedure is carried out until i = N − 1.
In implementing the trinomial tree approach, it is assumed that the 
ti ’s are

the same. Thus, the rate in the trinomial tree is the 
t-period rate, denoted by
R, rather than the instantaneous rate r . However, it should be understood that R
also follows the dynamics of r . The unknown parameters a and σ are obtained
by calibrating the Hull–White model to interest rate derivatives, such as caps
and swaptions, as illustrated in Section 5.2. For more details, please refer to
Ch5.5_HW_Tree.

Remark The advantage of the trinomial tree approach over the direct simulation
approach is that the former provides an exact fit to the initial term structure by
choosing the values of αi for i = 0, . . . , N − 1 without requiring further numerical
procedures. In contrast, the direct simulation approach requires information on the
entire instantaneous forward rate curve F M (0, t) to be known, which is computed by
interpolating and then differentiating the yield curve or the zero-coupon curve. Such
numerical procedures introduce error into the model.
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5.4.1 Bond Price

With
t-period rate R, it can be shown that the price at time t of a zero-coupon bond
with maturity T satisfies

P(t, T ) = Â(t, T ) exp(−B̂(t, T )R(t)),

where

log Â(t, T ) = log
P(0, T )

P(0, t)
− B(t, T )

B(t, t + 
t)
log

P(0, t + 
t)

P(0, t)

−σ 2

4a
(1− e−2at )B(t, T )(B(t, T )− B(t, t + 
t)),

B̂(t, T ) = B(t, T )

B(t, t + 
t)

t,

B(t, T ) = 1− e−a(T −t)

a
.

5.4.2 Generalized Hull–White Model: The Tree Approach

TheHull–Whitemodel (Eq. 5.12) can be extended to the following generalized form.

d f (r ) = (θ (t)− a f (r )) dt + σ dW (t). (5.25)

If f (r ) = r , then we have the original Hull–White model. If f (r ) = log(r ), then it is
the Black–Karasinki model, which restricts the interest rate to a positive value. The
trinomial tree approach for the original Hull–White model can be applied to Equation
5.25. Assume that the 
t-period rate R follows the same process as that in Equation
5.25. The first stage is the construction of the tree for process x(t) in Equation 5.24.
The second stage is slightly different from the previous one. Define g as the inverse
function of f . For example, if f (r ) = log(r ), then g(r ) = exp(r ). The value of α0 is
given by

P M (0, t1) = exp (−g(α0)t1) ,

or

α0 = f

(
− 1

t1
log P M (0, t1)

)
.

As soon as αi is known, the values of Qi+1, j , where j = j
i+1, . . . , j i+1, can be

calculated by

Qi+1, j =
∑

h

Qi,hq(h, j) exp (−g(αi + h
xi )
ti ) ,



PRICING INTEREST RATE PRODUCTS USING THE TRINOMIAL TREE APPROACH 215

where q(h, j) is the probability of moving from node (i, h) to node (i + 1, j). The
value of αi is calculated by solving

P M (0, ti+1) =
j i∑

j= j
i

Qi, j exp (−g(αi + j
xi )
ti ) .

This equation can also be solved using a numerical procedure such as, for example,
the Newton–Raphson method. For further details, please refer to Ch5.5_HW_Tree.

5.4.3 Simulation Using the Trinomial Tree

Building a trinomial tree alone does not immediately provide the solution for the
valuation of some path-dependent derivatives or structured products, such as interest
rate TRN and RAN. To value such structured products, we can employ Monte Carlo
simulation together with the trinomial tree approach. The main idea is that a trinomial
tree can be considered as a set of short-rate sample paths, where each path consists of
the nodes of different time points. For example, in Figure 5.10, the paths represented
by dotted lines are the generated trinomial tree, and those represented by solid lines
are the three sample paths of the short rate. Each path is sampled using probabilities
pu , pm , and pd corresponding to each current node. For example, for the uppermost
path, it is generated by sampling nodes (1, 1), (2, 2), (3, 1), (4, 2), and (5, 2). Starting
from the initial node (0, 0), we generate a uniform random variable U ∼ U(0, 1).
If U < pu , then it moves to (1, 1); if U < pm , then it moves to (1, 0); otherwise it
moves to (1,−1). Continuing this sampling process offers a sample path. Other paths
are sampled using the same procedure.

Figure 5.10 Three sample paths simulated from the trinomial tree.



216 FIXED-INCOME DERIVATIVES I: SHORT-RATE MODELS

TABLE 5.8 Specification of Coupon Rates and Ranges for the Interest Rate RAN

Coupon rate Range

Period 1 2.50% 0.00–0.25%
Period 2 3.00% 0.00–0.50%
Period 3 3.50% 0.00–0.75%
Period 4 4.00% 0.00–1.00%
Period 5 4.50% 0.00–1.25%
Period 6 5.00% 0.00–1.50%
Period 7 5.50% 0.00–1.75%
Period 8 6.00% 0.00–2.00%
Period 9 6.50% 0.00–2.25%
Period 10 7.00% 0.00–2.50%

5.4.4 Pricing Target Redemption Notes

Consider the TRN in the previous section. With 
t = 1 and the same parameters
a and σ , the price of this TRN computed using the trinomial tree with simulation
is 929.90. The simulation procedure is similar to that presented in Section 8 except
that the sample paths are generated using the tree. For more details, please refer
to Ch5.5_Hull_White_MC+Tree_Target_Redemption_Notes. If a smaller 
t is pre-
ferred, then the program can be modified in a number of ways, including interpolation
of the bond prices and the basic tree.

5.4.5 Pricing Interest Rate Range Accrual Notes

Consider a 10-year non-callable interest rate RAN with semiannual payments, a
denomination of 1000 and the 6-month spot LIBOR as the reference rate. The coupon
rates and ranges of this interest rate RAN are listed in Table 5.8. With 
t = 0.5 and
the same parameters a and σ as those in the previous section, the price of this note
computed using the trinomial tree with simulation is 871.18. For further details,
please refer to Ch5.5_Hull_White_MC+Tree_Interest_Rate_RAN.



6
Fixed-Income Derivatives
II: LIBOR Market Models

Most fixed-income textbooks start with the concept of bonds and assume a liquid
bond market. Although this is the case for the U.S. Treasury bond market, many other
interest rate markets have a limited amount of default-free bond trading. The most
liquidly traded elementary fixed-income securities in these markets are interest rate
swaps (IRS) and forward rate agreements (FRA). A typical example is the London
interbank market. The London interbank offered rate (LIBOR) is the benchmark
interest rate for liquidly traded IRS and FRA on the offshore U.S. currency interest
rate worldwide. Although it would be reasonable to assume that the LIBOR is highly
correlated with U.S. Treasury yields, discrepancies between the tax systems, market
participants, and credit risk of swap issuers in the two markets make the interest rates
quite different from each other. Another pertinent example is the European interbank
market, which uses the Euribor as the reference rate for IRS and FRA on interest
rates in the eurozone.
As U.S. Treasury yields and the LIBOR are essentially different from each other,

the zero-coupon yield curve calibrated to U.S. Treasury bonds is not suitable for
the LIBOR market. Instead, we need to construct a yield curve that is based on the
market quotes of IRS and FRA. We can do so by transforming the swap rates into
synthetic coupon-bearing bonds and then applying the yield curve building procedure
discussed in Chapter 5.
As an FRA can be regarded as a particular type of swap contract, we concentrate on

IRS and discuss yield curve building on the basis of swap rates. An IRS is a contract
in which two parties agree to exchange interest rate cash flows, on the basis of a

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Figure 6.1 Cash flow diagram of an interest rate swap.

specified notional amount (principal) from a fixed rate to a floating rate or vice versa.
The party paying the fixed rate is called the payer (while receiving the floating rate),
and its counterpart receiving the fixed rate is called the receiver (while paying the
floating rate). The position of the payer (receiver) is the holding of a payer (receiver)
IRS. An FRA is an IRS with a single transaction time.
Consider a typical payer IRS in which the swap rate is K , with monitoring times

{tα, tα+1, . . . , tβ}. Figure 6.1 illustrates the cash flows in this IRS. At t = tα (the first
monitoring time specified in the contract), the LIBOR rate for the deposit between tα
and tα+1 is realized at tα and is denoted as L(tα, tα+1). For the notional amount of $1,
the first transaction takes place at tα+1 when the payer pays a fixed amount of $ τα K
to the receiver and receives a floating amount of $ τα L(tα, tα+1), which is realized
at tα but unknown at t0, where τα = tα+1 − tα . At tα+1, the realized LIBOR rate for
the deposit between tα+1 and tα+2 is L(tα+1, tα+2). The next transaction takes place
at tα+2 and so on until the last transaction time tβ . Adding $1 to the cash transactions
at tβ to both the upper and lower parts of the cash flow diagram in Figure 6.1 has no
effect on the cash flows, but better enables us to explain the pricing. If a principal of
$1 is added to the lower part, then the fixed cash outflows resemble a coupon bond
(CB) with coupon rate K . More specifically,

Net present value (NPV) of cash outflows =
β∑

j=α+1
τ j−1K P(t0, t j )+ P(t0, tβ)

= CB(t0), (6.1)

where P(t0, t j ) are the synthetic zero-coupon bond prices between t0 and t j , and CB
stands for a synthetic CB at t0 with coupon rate K . After adding $1 to the upper part
of the diagram, the upper cash flows form a floating-rate note. This is a scenario in
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which an investor deposits $1 at tα and rolls over the deposit at tα+ j , with the interest
rate received at tα+ j for all j until tβ . At tβ , the investor gets back the principal of
$1 and the final interest. This floating-rate note is certainly worth $1 at tα because it
simply replicates the roll-over strategy of a bank deposit. As the present value of $1
at tα is P(t0, tα),

NPV of cash inflows = P(t0, tα). (6.2)

The no-arbitrage condition suggests that the NPV of cash outflows = the NPV of
cash inflows, which deduces a no-arbitrage swap rate of

K = P(t0, tα)− P(t0, tβ )∑β

j=α+1 τ j−1P(t0, t j )
. (6.3)

An IRS is often structured in such a way that t0 = tα , in which case, the NPV of
cash inflows in Equation 6.2 is 1, and the CB in Equation 6.1 becomes a (synthetic)
par bond. Therefore, swap rate K is the par yield. In other words, a sample of
market swap rates is equivalent to a sample of par bonds. All of the par bonds have
a value of $1, but they pay different coupon rates that are equivalent to the swap
rates. Feeding these synthetic bonds into the regression spline model developed in
Chapter 5 generates the yield curve for the LIBOR market, allowing us to then apply
the Hull–White model to value interest rate derivatives.
One-factor short-rate models assume the yield curve to be driven by a single

Brownian motion, which implies the parallel movement of the entire yield curve over
time. This assumption is fine if the interest rate product depends only on a single
interest rate, such as the 3-month rate. For products involving the interactions of
multiple interest rates, such as the swap rate, however, the model needs to incorporate
many possible changes in this curve. In fact, the shape of this curve can change in
many different ways, such as taking on an increasing, decreasing or, hump shape.
To better capture possible yield curve movements, interest rate models should be
generalized to incorporate multiple factors (or Brownian motions). Heath, Jarrow,
and Morton (HJM, 1992) introduced a multivariate model for interest rates which,
however, is not analytically tractable in many practical situations. To supplement this,
LIBORmarket models have been developed with all of these practical issues in mind.

6.1 LIBOR MARKET MODELS

The elementary securities in the LIBOR market are FRA and IRS. As noted, an FRA
is an IRS with a single transaction time, whereas an IRS can be viewed as the sum
of many FRA. Therefore, there are two approaches to model development for the
LIBOR market. The first is to directly model the joint stochastic movements of the
forward rates. This approach is referred to as a LIBOR market model. The second
approach is to directly model the stochastic movements of the swap rates, and it is
called a swap market model (Jamshidian, 1997).
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The following notations are used throughout this chapter.

fi (t): the forward rate observed at time t for the period from ti to ti+1 with the
compounding period τi = ti+1 − ti .

τi : the compounding period for the i th forward rate, also called the tenor of the
i th forward rate.

Wk(t): the kth Q-standard Brownian motion at time t .

σik(t): the instantaneous volatility function at time t of the kth factor of the i th
forward rate.

μi (t): the drift term at time t of the i th forward rate.

Suppose that a (synthetic) zero-coupon bond follows the SDE:

dP(t, T )

P(t, T )
= rt dt +

m∑
k=1

σp,k(t, T ) dWk(t), (6.4)

where rt is the stochastic instantaneous interest rate, σp,k(t, T ) are adapted to FW
t ,

the information generated by m-dimensional Brownian motion W = (W1, . . . , Wm),
such that σp,k(T, T ) = 0, and m is the number of factors pre-selected in the model.
Note that the zero bond price in Equation 6.4 does not necessarily follow a log-normal
process because σp,k(t, T ) could be a function depending on the bond price itself for
each k, for it is adapted to FW

t .
Recall that the forward rate between ti and ti+1 quoted at t is given by

fi (t) = 1

τi

(
P(t, ti )

P(t, ti+1)
− 1
)

. (6.5)

Applying Itô’s lemma to fi (t) with respect to Equation 6.4, we have

df i (t)

fi (t)
=

m∑
k=1

σik(t)
[
dWk(t)− σp,k(t, ti+1) dt

]
, (6.6)

where i = 1, . . . , n are the number of forward rates in the market, {Wk(t) : k =
1, . . . , m} is a collection of m independent standard Brownian motions and

σik(t) = 1+ τi fi (t)

τi fi (t)

[
σpk(t, ti )− σpk(t, ti+1)

]
, for i = 1, 2, . . . , n. (6.7)

It can be seen from Equation 6.5 that the forward rate is calculated using P(t, ti+1)
as the reference (numeraire). If σp,k(t, Ti+1) satisfies the condition in the Girsanov
theorem for all i, k, then we are permitted to define a probability measure Qi+1 with
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respect to the numeraire P(t, ti+1), such that

dQi+1

dQ
= exp

[
−1
2

∫ t

0

m∑
k=1

σp,k(s, ti+1)2 ds +
∫ t

0

m∑
k=1

σp,k(s, ti+1) dWk(s)

]
,

(6.8)

and Qi+1-standard Brownian motions,

dW i
k (t) = dWk(t)− σp,k(t, ti+1) dt, for all k = 1, 2, . . . , m.

Then, fromEquation 6.6, the forward rate has zero driftwhenQi+1-standardBrownian
motions are used. Hence, fi (t) is a Qi+1-martingale.
The LIBORmarket model proposed by Brace, Gatarek, andMusiela (BGM, 1997)

is developed on the basis of Equation 6.6. In their model, the bond volatility functions,
σp,k(t, T ), k = 1, 2, . . . , m, are chosen in such a way that the forward rate volatility
functions in Equation 6.7 are deterministic functions of t , which forces the n forward
rates to be log-normal processes driven bym independent Brownian motions. For the
monitoring points, t0, t1, . . . , tn , where t0 is the current time. The forward LIBOR
rate for the period between ti and ti+1 follows the SDE Eq. 6.6 in which, as BGM
show, the Qi+1-standard Brownian motions are related to the Qi -standard Brownian
motions by the following formula.

dWi
k(t) = dWi−1

k (t)+ τi−1 fi−1(t)
1+ τi−1 fi−1(t)

σi−1,k(t) dt, for all k = 1, 2, . . . , m. (6.9)

Define

ρij(t) � Corr

(
m∑

k=1
σik(t) dWk(t),

m∑
k=1

σ jk(t) dWk(t)

)
,

σi (t) �

√√√√ m∑
k=1

σ 2ik(t).

Let

bik(t) = σik(t)

σi (t)
.

It can then be shown that
m∑

k=1
bik(t)

2 = 1,

ρij(t) =
m∑

k=1
bik(t)b jk(t),

ρ(t) = B(t)B(t)T ,
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where ρ(t) stands for the matrix [ρij(t)]i, j=1,...,n and B(t) stands for the matrix
[bik(t)]i=1,...,n,k=1,...,m . With the foregoing modifications, the LIBORmarket model in
Equation 6.6 can be written as

d fi (t)

fi (t)
= σi (t)

m∑
k=1

bik(t) dW i
k (t).

By Itô’s lemma,

d log fi (t) = −σi (t)2

2
dt + σi (t)

m∑
k=1

bik(t) dW i
k (t), (6.10)

or

fi (t) = fi (0) exp

(
−1
2

∫ t

0
σi (s)

2 ds +
∫ t

0
σi (s)

m∑
k=1

bik(s) dW i
k (s)

)
.

6.1.1 Pricing Formula for Caplets/Caps

A cap is a derivative on an IRS. Consider the cash flow diagram in Figure 6.1 and a
receiver IRS. If the floating LIBOR rate is greater than swap rate K at tα+ j , then the
cap holder will choose to exchange the rates at tα+ j+1; otherwise, the cap holder has
the right to cancel the transaction. A cap can be viewed as a sum of caplets:

cap(0, K ) =
β∑

i=α+1
caplet i (0, K ).

A caplet for periods ti and ti+1 with strike rate K is a call option on LIBOR rate
L(ti , ti+1), where the payoff,

τi max{L(ti , ti+1)− K , 0},

is determined at expiry date ti but paid to the caplet holder at payment date ti+1.
Similarly, a floor let for periods ti and ti+1 with strike rate K is a put option on
LIBOR rate L(ti , ti+1). However, the forward LIBOR rate for the period from ti to
ti+1 is equal to the LIBOR rate over the same period at ti , that is, fi (ti ) = L(ti , ti+1),
by the definitions in these two rates. Hence, the caplet payoff can be alternatively
written as

τi max{ fi (ti )− K , 0}.
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Theorem 6.1 In the BGM LIBOR market model, the present value of a caplet with
reset date ti , payment date ti+1 and strike price K is given by

Capleti (0, K ) = τi P(0, ti+1)( fi (0)�(d1)− K�(d2)),

d1 = log fi (0)
K + 1

2v
2
i ti

vi
√

ti
,

d2 = d1 − vi
√

ti ,

v2i = 1

ti

∫ ti

0
σi (t)

2dt,

where vi is the Black forward rate volatility for forward rate fi (t), and P(0, ti+1) is
the current price of a (synthetic) zero-coupon bond maturing at time ti+1.

Proof: As the payment is settled at ti+1, the caplet price is as follows.

Capleti (0, K ) = τiE
Q
{

e− ∫ ti+1
0 r (s) dsmax( fi (ti )− K , 0)

}
= τiE

Q
{
EQ
[

e− ∫ ti+1
0 r (s) dsmax( fi (ti )− K , 0)

∣∣∣Fti

]}
= τiE

Q
{

e− ∫ ti
0 r (s) dsEQ

[
e− ∫ ti+1

ti
r (s) ds

∣∣∣Fti

]
max( fi (ti )− K , 0)

}
= τiE

Q
{

e− ∫ ti
0 r (s) ds P(ti , ti+1)max( fi (ti )− K , 0)

}
= τiE

Q
{

P(0, ti+1)e− 1
2

∫ ti
0 |σp(s,ti+1)|2 ds+∫ ti

0 σp(s,ti+1) dW(s) ×

max( fi (ti )− K , 0)
}
.

By Girsanov’s theorem and Eq. 6.8, we have

Capleti (0, K ) = τi P(0, ti+1)EQi+1
[max( fi (ti )− K , 0)] .

By Equation 6.10, fi (t) is a log-normal process with zero drift underQi+1. Applying
the Black–Scholes (BS) formula with a zero interest rate to the lastQi+1-expectation,
the result follows.

In Theorem 6.1, the synthetic zero bond can be computed using forward rates as

P(0, ti+1) =
i∏

k=0

1

1+ τk fk(0)
.
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Similarly, the Black floorlet formula is given by

Floorlet = τi P(0, ti+1)
(

K�(−d2)− fi (0)�(−d1)
)
.

6.1.2 Swaption Formula

Consider an IRS for the tα to tβ period, where a floating rate is exchanged with fixed
rate K . At every time t j−1, where j = α + 1, . . . , β, the floating rate is reset at the
prevailing spot LIBOR, L(t j−1, t j ), and payment τ j−1L(t j−1, t j ) is made at time t j ,
when the fixed leg pays τ j−1K .
The cash flow diagram in Figure 6.1 depicts the cash flow to the holder of a

payer swaption. The horizontal line is the calendar time, and the arrows are the cash
flows to the holder. The arrows pointing downward are the cash flows paid by the
holder, whereas those pointing upward are the cash flows received by the holder. Note
that the downward-pointing arrows have the same length, representing the fixed leg
paying at rate K , whereas their upward-pointing counterparts have different lengths,
representing the floating leg paying at the spot LIBORs reset at different times.
The total value of the floating leg at time t < tα is

β∑
j=α+1

τ j−1L(t j−1, t j )× P(t, t j ) =
β∑

j=α+1

(
1

P(t j−1, t j )
− 1
)

P(t, t j )

=
β∑

j=α+1

(
P(t, t j )

P(t j−1, t j )
− P(t, t j )

)

=
β∑

j=α+1

(
P(t, t j−1)P(t j−1, t j )

P(t j−1, t j )
− P(t, t j )

)

=
β∑

j=α+1
(P(t, t j−1)− P(t, t j ))

= P(t, tα)− P(t, tβ).

Note that in the fourth line, the no-arbitrage relationship between zero-coupon bond
prices applies. The total value of the fixed leg at time t is simply

K Aα,β (t),

where

Aα,β (t) =
β∑

j=α+1
τ j−1P(t, t j ).
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Thus, the value of the swap at time t is the difference between the floating and fixed
legs, which is given by

P(t, tα)− P(t, tβ)− K Aα,β(t).

The forward swap rate for the aforementioned IRS at time t , denoted by Sα,β (t), is
the rate K on the fixed leg that renders a swap value equal to zero and is given by

Sα,β (t) = P(t, tα)− P(t, tβ)

Aα,β(t)

=
α−1∑
j=α

w j (t) f j (t),

where

w j (t) = τ j P(t, t j+1)
Aα,β (t)

.

The forward swap rate becomes the spot swap rate at time tα .
Now, a European payer swaption is an option to enter into an IRS, paying the fixed

leg at rate K and receiving the floating leg. Here, tα is the expiry date of the swaption
and tβ is the maturity date of the IRS. At expiry tα , the holder of the payer swaption
has the right (but no obligation) to decide whether he or she will enter into the IRS.
If the IRS has a positive value, then he or she will enter into it; otherwise, he or she
will let the swaption expire as worthless. Thus, the payer swaption has the payoff

max{P(tα, tα)− P(tα, tβ )− K Aα,β(tα), 0} = Aα,β (tα)max{Sα,β(tα)− K , 0}.

The price of a European payer swaption is given by

PS(tα, tβ, K ) = Aα,β (0)
(

Sα,β (0)�(d1)− K�(d2)
)
,

d1 = log Sα,β (0)
K + 1

2v
2
α,β tα

vα,β

√
tα

,

d2 = d1 − vα,β

√
tα,

where vα,β is the Black swap rate volatility for forward swap rate Sα,β (t). Similarly,
a European receiver swaption is an option to enter into an IRS, paying the floating
leg and receiving the fixed leg at rate K . At expiry tα, the receiver swaption has the
payoff

max{−P(tα, tα)+ P(tα, tβ)+ K Aα,β (tα), 0} = Aα,β(tα)max{K − Sα,β (tα), 0}.
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The price of a European receiver swaption is given by

RS(tα, tβ, K ) = Aα,β (0)
(

K�(−d2)− Sα,β (0)�(−d1)
)
.

The Black swap rate volatility can be approximated by either Rebonato’s or Hull
and White’s formula. In Rebonato’s formula , vα,β is approximated by

vα,β ≈ 1

Sα,β(0)
√

tα

√√√√ β−1∑
i, j=α

wi (0)w j (0) fi (0) f j (0)ρij(0)
∫ tα

0
σi (t)σ j (t) dt,

whereas in Hull and White’s , it is approximated by

vα,β ≈ 1

Sα,β(0)
√

tα

√√√√ β−1∑
i, j=α

ŵi (0)ŵ j (0) fi (0) f j (0)ρij(0)
∫ tα

0
σi (t)σ j (t) dt,

where

ŵi (t) = wi (t)+
β−1∑
j=α

f j (t)
∂w j

∂ fi
(t),

∂w j

∂ fi
(t) = τiw j (t)

1+ τi fi (t)

(
β−1∑
k=i

w j (t)− 1{i≤ j}

)
.

The two formulas produce similar prices if the fixed leg dates coincide with the
floating leg dates. However, in practice, the fixed period can be longer than the floating
period, in which case, Hull and White’s formula gives a better approximation. Using
the forward structure and parameters specified in Tables 6.1 and 6.2, Table 6.3 shows
the performance of the two formulas compared with the simulated prices of several
at-the-money (ATM) co-terminal swaptions in a three-factor model (the prices are

TABLE 6.1 Term Structure of the Forward Rate Used in the Test Case

Expiry (years) Notation Forward rate

0.00 f0(0) 4.0%
0.25 f1(0) 4.2%
0.50 f2(0) 4.4%
0.75 f3(0) 4.6%
1.00 f4(0) 4.8%
1.25 f5(0) 5.0%
1.50 f6(0) 5.2%
1.75 f7(0) 5.4%
2.00 f8(0) 5.6%
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TABLE 6.2 Parameters Used in the Test Case

Parameter Value

τ 0.25
a −0.05
b 0.5
c 1.5
d 0.15
hi 1
β1 0.1
β2 0.2

TABLE 6.3 Comparison Between the Performance of Rebonato’s and Hull and White’s Formulas

Expiry Maturity Floating Fixed Strike Rebonato’s Hull and White’s Simulated
(years) (years) period period (ATM) formula formula price

0.25 2.25 0.25 2.00 5.115% 39.58 41.30 41.44
0.50 2.25 0.25 1.75 5.191% 51.24 53.16 53.36
0.75 2.25 0.25 1.50 5.265% 55.73 57.50 57.62
1.00 2.25 0.25 1.25 5.337% 55.15 56.57 56.76
1.25 2.25 0.25 1.00 5.406% 50.28 51.27 51.33
1.50 2.25 0.25 0.75 5.473% 41.72 42.28 42.26
1.75 2.25 0.25 0.50 5.538% 30.06 30.27 30.27
2.00 2.25 0.25 0.25 5.600% 15.93 15.93 15.93

given in terms of basis point). Note that we use the volatility function Eq. 6.11 and
correlation function Eq. 6.12.
It is easy to see that as the fixed period increases, the pricing error of Rebonato’s

formula increases significantly, whereas Hull and White’s formula performs much
better. In fact, the pricing error in the former can be as large as 50% when the fixed
period is very long, say 10 years, and the floating period is as short as 3 months.
Although, in usual practice, where the fixed period is 6 months and the floating period
is 3 months, the two formulas differ very little. However, special care still needs to
be taken in calibration when the chosen floating period is much shorter than the fixed
period.

6.2 CALIBRATION TO CAPS AND SWAPTIONS

To calibrate the model to caps and swaptions, we must first specify the instantaneous
volatility function of the forward rates. Model σi (t) by

σi (t) = hi

(
(a + b(ti − t))e−c(ti −t) + d

)
, (6.11)
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where

a + d > 0,

d > 0,

c > 0,

a + d ≈ Short-maturity implied volatilities,

d ≈ Very long-maturity implied volatilities.

Note that if all hi ’s are equal to 1, then the volatility function is time-homogeneous.
When σi (t) takes the form in Equation 6.11, the integration needed to calculate the
Black volatilities of the caps and swaptions can be carried out easily. We can verify
that the indefinite integral,

∫
σi (t)σ j (t) dt , is given by

∫
σi (t)σ j (t) dt = 1

4c3

(
4ac2d

(
ec(t−ti ) + ec(t−t j )

)+ 4c3d2t

− 4bcdec(t−ti )[c(t − ti )− 1]− 4bcdec(t−t j )[c(t − t j )− 1]
+ ec(2t−ti −t j )

(
2a2c2 + 2abc[1− c(2t − ti − t j )]

+ b2
[
1+ 2c2(t − ti )(t − t j )− c(2t − ti − t j )

]))
+Constant terms.

Similar to the instantaneous volatility function, a parametric functional form can
be used for the market correlation matrix, such as,

ρmarketij = β1 + (1− β1)e
−β2|ti −t j |. (6.12)

If heavy correlation-dependent derivatives are required, then other parametric func-
tional forms can be considered. As an extreme, we could even assume ρmarketij to
be piecewise constant, which, however, would mean that the model would have to
be calibrated with n(n−1)

2 parameters, a possibly difficult task when the number of
forward rates n becomes large.
If the volatility function does not deviate significantly from time homogeneity,

then the calibration procedure proceeds as follows.

1. Calibrate parameters a, b, c, d, β1, and β2 to swaptions and caps by assuming
that all hi ’s are 1.

2. Decompose market correlation matrix ρmarketij into bik’s.

3. Compute the ρij’s by ρ = B BT .
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4. Re-calibrate parameters a, b, c, and d given ρij, to the swaptions and caps.

5. Calibrate the hi ’s to the caps and swaptions.

We now discuss the details of each calibration step for an m-factor LIBOR market
model with n forward rates.

6.2.0.1 Step 1 Suppose that the market data for NC caps and NS swaptions are
given. In the first step, find parameters a, b, c, d, β1, and β2, such that the model
Black volatilities are close to the market Black volatilities of the caps and swaptions.
Mathematically, this can be formulated as the following minimization problem.

min
a,b,c,d,β1,β2

(
NC∑
i=1

wC
i (C

market
i − Cmodel

i )2 +
NS∑

i=1
wS

i (S
market
i − Smodeli )2

)
,

where wC
i is the weight assigned to the i th cap, and Cmarket

i and Cmodel
i are the market

and model Black volatilities of the i th cap. Similarly,wS
i is the weight assigned to the

i th swaption, and Smarketi and Smodeli are its market and model Black volatilities. We
test this minimization problemwith the DE algorithm using settings identical to those
in the previous discussion and with the downhill simplex method (or Nelder–Mead
method), and present the results later. For details of the downhill simplex method,
see Press, Flannery, Teukolsky, and Vetterling (2007). Iteration stops if the change in
the value of the objective function is fractionally smaller than a given tolerance, that
is,

|g(xn)− g(x0)|
(|g(xn)| + |g(x0)|)/2 < Tolerance,

where g(xn) and g(x0) are the values of the objective function with highest and lowest
costs, respectively.

6.2.0.2 Step 2 After Step 1, we obtain the correlation structure specified by β1
and β2. We call that matrix given by Equation 6.12 the market correlation matrix
and that calculated by B BT the model correlation matrix because it is used in the
simulation of the m-factor model. For matrix B, recall that

m∑
k=1

b2ik = 1,

ρmodelij =
m∑

k=1
bikb jk,

ρmodel = B BT.
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Thus,we need to find bik, i = 1, . . . , n, k = 1, . . . , m, such that the objective function

n∑
i, j=1

(
ρmodelij − ρmarketij

)2
(6.13)

is minimized subject to the constraint

m∑
k=1

b2ik = 1. (6.14)

Instead of directly minimizing Equation 6.13 with the constraint, we transform the
problem into an unconstrained one. With the well-known trigonometric relationship

sin2 θ + cos2 θ = 1,

let

bi1 = sin θi1,

bi2 = sin θi2 cos θi1,

...

bik = sin θik cos θi(k−1) · · · cos θi1,

...

bim = sin θim cos θi(m−1) · · · cos θi1.

Now, the constraint Eq. 6.14 is satisfied for any choice of θik’s, such that the con-
strained minimization problem Eq. 6.13 becomes an unconstrained minimization
problem. For this unconstrained minimization, we use the limited memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS)multidimensional variable metric method. The
BFGSmethod is awell-knownnumericalmethod that approximatesNewton’smethod
which seeks a stationary point of a function. The BFGS has proven good performance
even for non-smooth optimizations compared with the classical Newton’s method
(Bonnans, Gilbert, Lemarechal, and Sagastizabal 2006). The L-BFGS, which is a
limited-memory version of BFGS that is particularly suited to problems with very
large numbers of variables. We choose to use L-BFGS because there are L-BFGS
libraries written in C and C#. An alternative implementation uses the DE introduced
in previous chapters.

6.2.0.3 Step 3 After calibrating bik, the model correlation matrix is obtained,
which is different from the market correlation matrix. Thus, for Step 3, parameters
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a, b, c, and d are recalibrated by the minimization problem

min
a,b,c,d

(
NC∑
i=1

wC
i (C

market
i − Cmodel

i )2 +
NS∑

i=1
wS

i (S
market
i − Smodeli )2

)
.

In this recalibration, we limit the range of a, b, c, and d to keep them close to the
original values (e.g., ±0.20). For example, if the calibrated value of a in Step 1 is
0.5, then we set the range of a at 0.3 to 0.7 and recalibrate the model. Recalibration
is performed with either the DE algorithm or downhill simplex method. Note that if
we have not specified an initial guess for the DE, then it may take much longer to
converge and may even end up with a higher value for the objective function if the
number of iterations is small. We take the calibrated values obtained in Step 1 to be
one member of the initial populations in the DE. The downhill simplex method has a
faster convergence rate, and it allows the previously obtained calibrated values to be
used as one of the starting vertexes.

6.2.0.4 Step 4 In the final step, we calibrate hi , for i = 1, . . . , n, to give a better
fit to the data. Similar to Steps 1 and 3, we find hi ’s, such that

min
h1,...,hn

(
NC∑
i=1

wC
i (C

market
i − Cmodel

i )2 +
NS∑

i=1
wS

i (S
market
i − Smodeli )2

)
.

To preserve the time homogeneity of the volatility function, the range of hi is usually
constrained close to 1. Typical constraints for hi range from around 0.85 to 1.15.
However, instead of setting the same lower and upper bounds for all h′

i s, we set
the range bound for a particular hi at [hi − δ1, hi + δ2], where hi is the initial value
before calibration. Doing so actually gives us greater flexibility in calibrating the hi ’s
when the volatility function is not time-homogeneous. When it is time-homogeneous,
we simply need to reset all hi ’s to 1. For this problem, we again use either the DE
algorithm or the downhill simplex method. However, it should be noted that if the
number of forward rates is large, for example, n = 40, then the number of populations
in the DE will be very large. In this case, minimization will be very time-consuming
and we may need to decide whether to wait, reduce the size of the population, use
parallel computing or employ another minimization algorithm. For this reason, we
limit the maximum DE population in the Excel files to 300, and include the downhill
simplex method. As before, we also set one of the initial populations in the DE to be
the hi ’s obtained before, that is, 1.
We now calibrate the model with U.S. swaption and cap quotes obtained from

Bloomberg on August 25, 2010. The term structure of the forward rate is shown in
Table 6.4, the parameter bounds in Table 6.5 and the swaption and cap quotes in
Tables 6.6 and 6.7, respectively. Note that all of the swaptions and the first four caps
are ATM, and the market prices are reported in terms of basis points.
Also note that the floating period for the swaptions is a quarter of a year, whereas

the fixed period is half of a year. We still use Rebonato’s formula to approximate the
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TABLE 6.4 Forward Rate Structure

Expiry (years) Maturity (years) Notation Forward rate

0.00 0.25 f0(0) 0.3059%
0.25 0.50 f1(0) 0.4035%
0.50 0.75 f2(0) 0.4660%
0.75 1.00 f3(0) 0.5486%
1.00 1.25 f4(0) 0.6478%
1.25 1.50 f5(0) 0.7858%
1.50 1.75 f6(0) 0.9462%
1.75 2.00 f7(0) 1.1109%
2.00 2.25 f8(0) 1.2700%
2.25 2.50 f9(0) 1.4348%
2.50 2.75 f10(0) 1.6091%
2.75 3.00 f11(0) 1.7932%
3.00 3.25 f12(0) 1.9590%
3.25 3.50 f13(0) 2.1104%
3.50 3.75 f14(0) 2.2628%
3.75 4.00 f15(0) 2.4170%

TABLE 6.5 Parameter Bounds

Parameter Lower bound Upper bound

a −2 2
b −2 2
c 0 2
d 0 2
β1 0 1
β2 0 1

TABLE 6.6 Swaption Quotes

Expiry (years) Tenor (years) Fixed payment frequency Strike Volatility Market price

0.25 1 2 0.5167% 86.45% 8.80
0.25 2 2 0.7718% 70.85% 21.51
0.25 3 2 1.0777% 64.08% 40.53
0.5 1 2 0.6123% 86.30% 14.59
0.5 2 2 0.9005% 70.90% 35.25
0.5 3 2 1.2194% 61.15% 61.47
0.75 1 2 0.7325% 81.63% 20.07
0.75 2 2 1.0433% 66.50% 46.63
0.75 3 2 1.3687% 55.38% 76.12
1 1 2 0.8732% 76.80% 25.84
1 2 2 1.1989% 62.13% 57.49
1 3 2 1.5241% 51.65% 90.78
2 1 2 1.5290% 54.93% 45.12
2 2 2 1.8573% 45.45% 90.51
3 1 2 2.1924% 40.68% 57.76
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TABLE 6.7 Cap Quotes

Term (years) Strike Black volatility Market price

1 0.4650% 88.01% 8.93
2 0.6912% 80.98% 42.61
3 0.9838% 67.46% 104.50
4 1.2853% 58.57% 193.73
1 1.0000% 85.60% 2.08
2 1.0000% 77.28% 28.94
3 1.0000% 67.25% 103.07
4 1.0000% 62.50% 233.99
1 1.5000% 83.35% 0.69
2 1.5000% 71.35% 15.81
3 1.5000% 61.38% 67.53
4 1.5000% 55.73% 167.27

swaption volatilities to speed up the calibration process. When the result is obtained
after calibration, we then use Hull and White’s formula. As a first step, we calibrate
the model to swaption data using the DE with only 1000 iterations and the downhill
simplex method with 10,000 iterations, with tolerance set at 1× 10−8. The results
are presented in Tables 6.8 and 6.9, respectively. As the calibrated parameters for the
two algorithms are similar, we show the calibrated prices for the DE algorithm alone.
If we focus on the calibrated prices, then we may not see any problems. However,

if we look at the calibrated β1, which is 1, then we realize that the correlation between
all forward rates is 1, and repeated calibrations give identical results. Increasing the
bounds for a, b, c, and d or assigning different weights to the swaptions fails to
resolve the problem. To see that the condition that β2 = 0 (which implies that ρij = 1
for all i, j) indeed gives the lowest cost, set β1 = 0 and compute the objective function
with different values of β2. The results are presented in Table 6.10.
To resolve this problem, we calibrate β1 and β2 using time series of historical

forward rates and then calibrate a, b, c, and d to the swaption data. We calibrate the
hi ’s simultaneously. Note that we cannot calibrate all of the hi ’s at once, as doing so
would give multiple identical minima. To see this, suppose that the set of parameters
{a∗, b∗, c∗, d∗, h∗

i , i = 1, . . . , n} gives a global minimum; then, for any constant

TABLE 6.8 Calibration Results (Parameters)

Parameter DE Downhill simplex

a 0.8702 0.8701
b −0.0001 0.0009
c 0.6076 0.6087
d 0.2434 0.2434
β1 1.0000 1.0000
β2 0.0655 0.3116

Stopped at iteration 1000 5157
Computation time (s) 95.1 9.7
Lowest cost 0.0722 0.0722
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TABLE 6.9 Calibration Results (Pricing Error)

Expiry (years) Tenor (years) Strike Volatility Fitted vol. Vol. error Error in basis pt.

0.25 1 0.5167% 86.45% 87.71% 1.26% 0.13
0.25 2 0.7718% 70.85% 68.48% 2.37% 0.71
0.25 3 1.0777% 64.08% 55.26% 8.82% 5.54
0.5 1 0.6123% 86.30% 83.20% 3.10% 0.51
0.5 2 0.9005% 70.90% 65.61% 5.29% 2.58
0.5 3 1.2194% 61.15% 53.59% 7.56% 7.51
0.75 1 0.7325% 81.63% 79.25% 2.38% 0.56
0.75 2 1.0433% 66.50% 63.19% 3.31% 2.26
0.75 3 1.3687% 55.38% 52.18% 3.20% 4.33
1 1 0.8732% 76.80% 75.84% 0.96% 0.31
1 2 1.1989% 62.13% 61.09% 1.04% 0.93
1 3 1.5241% 51.65% 50.95% 0.70% 1.20
2 1 1.5290% 54.93% 65.73% 10.80% 8.30
2 2 1.8573% 45.45% 54.65% 9.20% 17.49
3 1 2.1924% 40.68% 58.73% 18.05% 23.83

θ > 0, {θa∗, θb∗, c∗, d∗, h∗
i
θ
, i = 1, . . . , n} gives the same volatility functions so it is

also a global minimum. To resolve this problem, we set h1 = 1 and hi = hi−1 + γi

for i > 1. If all γi ’s equal to 0, then all hi ’s are equal to 1, which results in time
homogeneity. Step 1 now becomes

min
a,b,c,d,β1,β2,γ

′
i s

(
NC∑
i=1

wC
i (C

market
i − Cmodel

i )2 +
NS∑

i=1
wS

i (S
market
i − Smodeli )2

)
.

As the number of γi ’s depends on the number of forward rates, we need to increase the
DE population whenwe calibrate the hi ’s simultaneously, which renders the DE time-
consuming. Thus, we use the downhill simplex algorithm instead of simultaneous
calibration (readers may also try the DE algorithm, as it is included in the Excel
file). With this modification, we now calibrate the model to the swaptions again. The
parameter bounds are listed in Table 6.11, and the calibration results are presented in
Tables 6.12, 6.13 and 6.14.

TABLE 6.10 Lowest Cost with Different β2 Values

β2 Lowest cost

0 0.0722
0.1 0.0801
0.2 0.0880
0.4 0.1037
0.6 0.1189
0.8 0.1331
1 0.1464



CALIBRATION TO CAPS AND SWAPTIONS 235

TABLE 6.11 Parameter Bounds

Parameter Lower bound Upper bound

a −2 2
b −2 2
c 0 2
d 0 2
β1 0 1
β2 0 1
γi −0.25 0.25

From the calibration results for the hi ’s, we can clearly see that although the
time homogeneity of the volatility function is not violated very much in the first
15 months, it begins to break down after 18 months, which explains the failure
of the previous calibration. Note that we also include the calibrated volatility after
Steps 2 and 3 in Table 6.14 for the reader’s reference. For Step 3, we recalibrate
the hi ’s simultaneously, as in Step 1. Table 6.14 suggests that the best calibration
is obtained after recalibration at Step 3, which is almost a perfect recovery. In this
recalibration, it takes 33.6 s to complete 20,000 iterations to attain a cost function as
low as 1.49× 10−5.
Although the calibrated model now prices swaptions satisfactorily, we still do not

know whether it can price other products satisfactorily. We can see from the cap
pricing results in Table 6.15 that most of the cap prices are recovered at a satisfactory
level.
Before calibrating the model simultaneously to caps and swaptions, we perform

further calibration to swaptions with expiry dates up to 10 years (i.e., a total of 39
forward rates, with the last forward rate expiring after 10 years). Figure 6.2 shows how

TABLE 6.12 Calibration Results (γi and hi )

i Expiry (years) Maturity (years) γi hi

0 0.00 0.25 − −
1 0.25 0.50 − 1.0000
2 0.50 0.75 0.0164 1.0164
3 0.75 1.00 0.0481 1.0645
4 1.00 1.25 0.0108 1.0753
5 1.25 1.50 −0.0132 1.0620
6 1.50 1.75 −0.1386 0.9234
7 1.75 2.00 −0.0974 0.8260
8 2.00 2.25 −0.1181 0.7080
9 2.25 2.50 −0.0208 0.6872
10 2.50 2.75 −0.0425 0.6447
11 2.75 3.00 −0.0217 0.6230
12 3.00 3.25 0.0023 0.6253
13 3.25 3.50 −0.1107 0.5146
14 3.50 3.75 −0.1495 0.3651
15 3.75 4.00 −0.0429 0.3222
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TABLE 6.13 Calibration Results (Parameters)

Parameter Value

a −0.4751
b −0.8455
c 0.6595
d 1.4932
β1 0.2809
β2 0.3639

Stopped at iteration 50,000
Computation time (s) 95.1
Lowest cost 0.0011

TABLE 6.14 Calibration Results (Pricing Error)

Expiry Tenor Market Fitted vol. Fitted vol. Fitted vol. Error in basis pt.
(years) (years) Strike volatility Step 1 Step 2 Step 3 Step 3

0.25 1 0.5167% 86.45% 86.32% 89.17% 86.49% 0.00
0.25 2 0.7718% 70.85% 72.90% 74.60% 70.91% 0.02
0.25 3 1.0777% 64.08% 63.69% 64.91% 63.87% 0.13
0.5 1 0.6123% 86.30% 85.89% 88.14% 86.35% 0.01
0.5 2 0.9005% 70.90% 69.08% 70.69% 70.71% 0.09
0.5 3 1.2194% 61.15% 60.52% 61.63% 60.96% 0.19
0.75 1 0.7325% 81.63% 82.34% 83.95% 81.67% 0.01
0.75 2 1.0433% 66.50% 65.43% 67.12% 66.46% 0.03
0.75 3 1.3687% 55.38% 56.01% 57.06% 55.15% 0.31
1 1 0.8732% 76.80% 76.75% 78.22% 76.87% 0.02
1 2 1.1989% 62.13% 62.03% 63.75% 62.08% 0.05
1 3 1.5241% 51.65% 51.57% 52.59% 51.45% 0.35
2 1 1.5290% 54.93% 55.55% 56.89% 54.93% 0.00
2 2 1.8573% 45.45% 45.93% 47.09% 45.75% 0.58
3 1 2.1924% 40.68% 40.29% 41.62% 40.64% 0.05

TABLE 6.15 Cap Pricing Errors

Term (years) Strike Market vol. Fitted vol. Vol. error Error in basis pt.

1 0.47% 88.01% 89.89% 1.88% 0.17
2 0.69% 80.98% 83.23% 2.25% 0.88
3 0.98% 67.46% 67.25% 0.21% 0.21
4 1.29% 58.57% 55.16% 3.41% 6.96
1 1.00% 85.60% 89.10% 3.50% 0.24
2 1.00% 77.28% 81.82% 4.54% 1.97
3 1.00% 67.25% 67.12% 0.13% 0.13
4 1.00% 62.50% 57.95% 4.55% 7.80
1 1.50% 83.35% 89.16% 5.81% 0.23
2 1.50% 71.35% 80.32% 8.97% 3.73
3 1.50% 61.38% 64.20% 2.82% 3.34
4 1.50% 55.73% 53.53% 2.20% 4.88
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Figure 6.2 hi against time for 4- and 10-year calibration.

the calibrated hi ’s change with time for both the 4- and 10-year calibration. It can be
seen that the hi ’s obtained from the two calibrations are in agreement, and, although
the volatility declines sharply in the first 4 years, it begins to stabilize thereafter
and becomes roughly time-homogeneous. Table 6.16 presents the calibrated Black
volatility errors for swaptions with different expiry-tenor pairs. The results are again
highly satisfactory.
Now, consider the calibration of the model to both caps and swaptions. When we

calibrate model parameters a, b, c, d, β1, and β2 separately, the problem that ρij = 1
for all i, j persists, and so we enter the hi ’s together in calibration. The calibration

TABLE 6.16 Black Volatility Error in Calibrating Swaptions

Expiry (years)\Tenor (years) 1 2 3 4 5 6 7 8 9

1 0.82% 0.18% 1.34% 1.79% 2.28% 2.53% 2.59% 2.56% 3.13%
2 3.48% 0.13% 0.15% 0.52% 0.07% 0.48% 0.68% 1.14% −
3 2.13% 0.48% 0.78% 0.69% 0.40% 0.05% 0.25% − −
4 0.07% 1.25% 1.13% 0.93% 0.90% 0.52% − − −
5 1.47% 0.87% 0.74% 0.90% 0.85% − − − −
6 0.26% 0.02% 0.38% 0.48% − − − − −
7 0.29% 0.91% 0.89% − − − − − −
8 0.89% 1.26% − − − − − − −
9 0.16% − − − − − − − −
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TABLE 6.17 Results of Calibrating γi ’s and hi ’s to Caps and Swaptions Simultaneously

i Expiry (years) Maturity (years) γi hi

0 0.00 0.25 − −
1 0.25 0.50 − 1.0000
2 0.50 0.75 −0.0813 0.9187
3 0.75 1.00 −0.1032 0.8155
4 1.00 1.25 0.1168 0.9323
5 1.25 1.50 0.0000 0.9324
6 1.50 1.75 −0.1640 0.7684
7 1.75 2.00 −0.2171 0.5513
8 2.00 2.25 0.0245 0.5758
9 2.25 2.50 0.0701 0.6460
10 2.50 2.75 −0.0954 0.5506
11 2.75 3.00 −0.0431 0.5075
12 3.00 3.25 0.0895 0.5970
13 3.25 3.50 −0.1054 0.4916
14 3.50 3.75 −0.1642 0.3274
15 3.75 4.00 −0.0829 0.2445

results with parameter bounds the same as those in Table 6.11 are presented in
Tables 6.17, 6.18, 6.19, and 6.20. We can see that the Black volatility of the caps
and swaptions is recovered at a satisfactory level. For further details, please refer to
Ch6.4_LIBOR_Calibration(Full).xls.

6.2.0.5 More on the Model’s Calibration Previously, with n forward rates, we
calibrated n − 1 free parameters (hi ’s), which greatly increased the difficulty when
n is large (when, e.g., for a 10-year forward rate term structure, n = 40). Instead
of allowing each hi to vary freely, we may also use the functional form to model
the hi ’s. In the simple case, we can use a linear spline to model them. For example,
if we model the hi ’s with piecewise linear functions for each year in a 10-year
calibration with 40 forward rates, then the number of effective parameters is reduced
from 6+ 40− 1 = 45 to 6+ 10 = 16. Tables 6.21 and 6.22 list the volatility errors
of calibration using the same set of cap and swaption data and piecewise linear

TABLE 6.18 Results of Simultaneous Calibration to Caps and Swaptions

Parameter Value

a −0.1877
b −0.4020
c 1.1026
d 1.2029
β1 0.3204
β2 0.3932
Stopped at iteration 50,000
Computation time (s) 238.2
Lowest cost 0.0074
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TABLE 6.19 Swaption Pricing Errors in Simultaneous Cap and Swaption Calibration

Expiry (years) Tenor (years) Strike Market vol. Fitted vol. Vol. error Error in basis pt.

0.25 1 0.5167% 86.45% 86.73% 0.28% 0.03
0.25 2 0.7718% 70.85% 72.22% 1.37% 0.41
0.25 3 1.0777% 64.08% 63.52% 0.56% 0.35
0.5 1 0.6123% 86.30% 86.41% 0.11% 0.02
0.5 2 0.9005% 70.90% 69.25% 1.65% 0.81
0.5 3 1.2194% 61.15% 60.60% 0.55% 0.54
0.75 1 0.7325% 81.63% 82.60% 0.97% 0.23
0.75 2 1.0433% 66.50% 65.47% 1.03% 0.70
0.75 3 1.3687% 55.38% 56.09% 0.71% 0.95
1 1 0.8732% 76.80% 74.30% 2.50% 0.80
1 2 1.1989% 62.13% 62.01% 0.12% 0.11
1 3 1.5241% 51.65% 51.33% 0.32% 0.56
2 1 1.5290% 54.93% 57.00% 2.07% 1.61
2 2 1.8573% 45.45% 47.26% 1.81% 3.48
3 1 2.1924% 40.68% 42.02% 1.34% 1.82

TABLE 6.20 Cap Pricing Errors of Simultaneous Cap and Swaption Calibration

Term (years) Strike Market vol. Fitted vol. Vol. error Error in basis pt.

1 0.47% 88.01% 88.25% 0.24% 0.02
2 0.69% 80.98% 79.62% 1.36% 0.53
3 0.98% 67.46% 66.74% 0.72% 0.73
4 1.29% 58.57% 56.11% 2.46% 5.02
1 1.00% 85.60% 85.00% 0.60% 0.04
2 1.00% 77.28% 77.45% 0.17% 0.08
3 1.00% 67.25% 66.63% 0.62% 0.64
4 1.00% 62.50% 58.50% 4.00% 6.87
1 1.50% 83.35% 83.41% 0.06% 0.00
2 1.50% 71.35% 75.41% 4.06% 1.67
3 1.50% 61.38% 64.22% 2.84% 3.36
4 1.50% 55.73% 54.73% 1.00% 2.22

TABLE 6.21 Cap Volatility Errors Using Piecewise Linear Functions

Black volatility error

Term (years) Strike Original Linear Difference

1 0.47% 0.24% 1.63% 1.39%
2 0.69% 1.36% 2.93% 1.57%
3 0.98% 0.72% 0.83% 0.11%
4 1.29% 2.46% 2.55% 0.09%
1 1.00% 0.60% 0.76% 0.16%
2 1.00% 0.17% 0.48% 0.31%
3 1.00% 0.62% 0.72% 0.10%
4 1.00% 4.00% 4.58% 0.58%
1 1.50% 0.06% 2.94% 2.88%
2 1.50% 4.06% 4.14% 0.08%
3 1.50% 2.84% 3.02% 0.18%
4 1.50% 1.00% 0.80% −0.20%
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TABLE 6.22 Swaption Volatility Errors Using Piecewise Linear Functions

Black volatility error

Expiry (years) Tenor (years) Strike Original Linear Difference

0.25 1 0.5167% 0.28% 0.76% 0.48%
0.25 2 0.7718% 1.37% 4.34% 2.97%
0.25 3 1.0777% 0.56% 2.33% 1.77%
0.5 1 0.6123% 0.11% 2.14% 2.03%
0.5 2 0.9005% 1.65% 0.19% −1.46%
0.5 3 1.2194% 0.55% 2.94% 2.39%
0.75 1 0.7325% 0.97% 1.59% 0.62%
0.75 2 1.0433% 1.03% 0.42% −0.61%
0.75 3 1.3687% 0.71% 0.64% −0.07%
1 1 0.8732% 2.50% 1.57% −0.93%
1 2 1.1989% 0.12% 0.61% 0.49%
1 3 1.5241% 0.32% 0.31% −0.01%
2 1 1.5290% 2.07% 2.94% 0.87%
2 2 1.8573% 1.81% 2.35% 0.54%
3 1 2.1924% 1.34% 2.46% 1.12%

functions for the hi ’s. We also include the Black volatility errors from the previous
calibration for comparison. We can see that, although most of the swaptions have
larger calibration errors, these errors are still acceptable. Interestingly, there is some
improvement in the pricing error of the caps. Also, Figure 6.3 shows that the hi

pattern, which is much smoother than before, shows a clear decreasing trend. This
example demonstrates that using simple functional forms tomodel the hi ’s can greatly
reduce the number of effective parameters (from 6+ 14 = 20 to 6+ 4 = 10) while
recovering the volatilities at a satisfactory level.
Actually, the way in which we model the hi ’s depends on the data. If time homo-

geneity is not seriously violated, then calibrating a, b, c, d, β1, and β2 alone should
be sufficient. For more information, please refer to Jäckel and Rebonato (2003) and
Vollrath and Wendland (2009). In these papers, satisfactory calibration results are
obtained with the time-homogeneous instantaneous volatility function (i.e., all hi ’s
are equal to 1).
Finally, the reason that we use caps instead of caplets in the calibrations is that we

can obtain quotes for the former directly and easily. To calibrate the cap volatilities,
we must first sum up the model prices of the caplets and then compute the implied
cap volatility from the model cap price at each iteration, a very slow process when
the term length is long. For example, a 10-year cap comprises 39 individual caplets.
Newton’s method takes three to four iterations, on average, to calculate the model
implied cap volatility, and thus the total effort required to find such volatility is almost
the same as that required to calculate the prices of 39× 4× 2 = 312 caplets (×2
because we have to calculate both the prices and vegas of the caplets in Newton’s
method). This process is greatly different from using 39 caplet volatilities as direct
inputs, which requires us to compute 39 caplet volatilities alone. Using caplets instead
of caps as the input can speed up the calibration significantly.
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Figure 6.3 hi ’s against time over 4 years using piecewise linear functions.

6.3 SIMULATION ACROSS DIFFERENT FORWARD MEASURES

Recall Equation 6.10:

d log fi (t) =
(
μi (t)− 1

2
σi (t)

2
)

dt + σi (t)
m∑

k=1
bik(t) dWq

k (t),

where i = 1, . . . , n, and n is the number of forward rates, W q is the m-dimensional
standard Brownian motion underQq+1, and μi (t) is the drift used to rescale theQq+1

Brownian motion toQi+1. To identify μi for each forward rate fi under each forward
measureQq+1, we define forward measureQq+1, such that fq (t) is a martingale, and,
for every price process π (t), π (t)

P(t,tq+1)
is also a martingale. It can be shown that under

forward measure Qq+1,

μi (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i = q,

σi (t)
∑i

j=q+1
ρij(t)σ j (t) f j (t)τ j

1+ f j (t)τ j
, if i > q,

−σi (t)
∑q

j=i+1
ρij(t)σ j (t) f j (t)τ j

1+ f j (t)τ j
, if i < q,
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which provides a way of discretizing the dynamics (Eq. 6.6) for simulation. To
simulate the forward rate path from time tp to tp+1, use

fi (tp+1) = fi (tp) exp

((
μi (tp)− 1

2
σi (tp)

2

)
tp + σi (tp)

m∑
k=1

bik(tp)
√

tp Zk

)
,

(6.15)

where tp = tp+1 − tp and the Zk’s are independent standard normal random
variables.
Let

Cij(tp) = σi (tp)σ j (tp)ρijtp,

μ̂i (tp) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i = q,∑i

j=q+1
f j (tp)τ j

1+ f j (tp)τ j
Cij(tp), if i > q,

−∑q
j=i+1

f j (tp)τ j

1+ f j (tp)τ j
Cij(tp), if i < q.

Then, Equation 6.15 can be rewritten as

fi (tp+1) = fi (tp) exp

((
μ̂i (tp)− 1

2
Cii(tp)

)
+√Cii(tp)

m∑
k=1

bik Zk

)
. (6.16)

To improve the simulation of the foregoing discretization scheme, instead of freezing
the σ j (tp)’s at tp, set

Cij(tp) =
∫ tp+1

tp

σi (s)σ j (s)ρij ds.

This scheme can be shown to be sufficiently accurate in most practical cases.
However, if we are not satisfied with the approximation, then the simulation can be
further improved by employing the Predictor–Corrector (P–C) method introduced by
Hunter, Jäckel, and Joshi (2001). The P–C method is very easy to understand, and
proceeds as follows.

1. Evolve the forward rate fi (t) from fi (tp) to fi (tp+1) with Equation 6.16 and
compute the drift term μi with Equation 6.16.

2. Re-compute the drifts μ̂i with Equation 6.16, but replace the fi (tp)’s with the
values of the evolved forward rates fi (tp+1).

3. Re-evolve the forward rates fi (t) from fi (tp) to fi (tp+1) with Equation 6.16,
but this time compute the drift term by the average of μi and μ̂i .
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We have to decide which forward measure to use in the simulation, an important
decision because the choice of the forward measure will determine how we discount
the price processπ (t). Recall that the forwardmeasureQp+1 is defined such that f p(t)
is a martingale and, for every price process π (t), π (t)

P(t,tp+1)
should also be a martingale.

In simulation and pricing, we use the spot measure as our forward measure at each
step. In other words, at t = tq , we use Qq+1 as our forward measure and, for fi (t),
all drifts are calculated as in the case of i > q in Equation 6.16. Under this scheme,
it is easy to see that

π (t0) = P(t0, t1)E
Q1
[π (t1)|F t0 ],

π (t0) = P(t0, t1)E
Q1
[P(t1, t2)E

Q2
[π (t2)|F t1 ]|F t0 ].

...

Now, suppose that the payoff of π (t) at tN is denoted by π (tN ). Then,

π (t0) = P(t0, t1)E
Q1
[· · · P(tN−1, tN )E

QN
[π (tN )|F tN−1 ] . . . |F t0 ].

Note that under forward measure Qp+1, P(tp, tp+1) = 1
1+ f p(tp)τp

. Thus, we can com-
pute the value of the price process at t0 for a particular path by

π (t0) = π (tN )
N−1∏
p=0

1

1+ f p(tp)τp
.

The estimated price for N realizations is then given by

π MC (t0) = 1

N

N∑
k=1

π k(t0).

Now that we have presented the simulation concept, we provide its complete algo-
rithm. For simplicity, we assume that all forward rates have the same compounding
period τ . Denote the number of forward rates in the term structure by n and an
arbitrary time point specified by the user by s. To simulate the forward rates with an
m-factor LIBOR market model up to time ts , which is the time at which the sth for-
ward rate is fixed, and assuming we wish to continue the simulation until all forward
rates are fixed, we set s = n. The algorithm proceeds as follows.

1. Set p = 0 and q = 0.

2. Generate Zk ∼ N(0, 1), for k = 1, . . . , m.

3. Set i = q + 1.
4. Compute μi (p) =∑i

j=q+1
f j (p)τ

1+ f j (p)τ
Cij(p), where Cij(p) = ∫ tp+1

tp
σi (s)σ j (s)

ρij ds.
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5. Set fi (p + 1) = fi (p) exp
((

μi (p)− 1
2Cii(p)

)
+ √

Cii(p)
∑m

k=1 bik Zk

)
.

6. If i < nfwd, then set i = i + 1 and go to Step 4.
7. If p < s − 1, then set p = p + 1 , q = q + 1 and go to Step 2.

The following algorithm includes the P–C method in the simulation.

1. Set p = 0 and q = 0.

2. Generate Zk ∼ N (0, 1), for k = 1, . . . , m.

3. Set i = q + 1.
4. Compute μ1i (p) =∑i

j=q+1
f j (p)τ

1+ f j (p)τ
Cij(p), where Cij(p) = ∫ tp+1

tp
σi (s)σ j (s)

ρij ds.

5. Set fi (p + 1) = fi (p) exp
((

μ1i (p)− 1
2Cii(p)

)
+ √

Cii(p)
∑m

k=1 bik Zk

)
.

6. If i < nfwd, then set i = i + 1 and go to Step 4.
7. Set i = q + 1 (Re-evolve the forward rate in the P–C method).
8. Compute μ2i (p) =∑i

j=q+1
f j (p+1)τ

1+ f j (p+1)τ Cij(p).

9. Set μi (p) = μ1i (p)+μ2i (p)
2 .

10. Set fi (p + 1) = fi (p) exp
((

μi (p)− 1
2Cii(p)

)
+ √

Cii(p)
∑m

k=1 bik Zk

)
.

11. If i < nfwd, then set i = i + 1 and go to Step 8.
12. If p < s − 1, then set p = p + 1 , q = q + 1 and go to Step 2.
The VBA code for generating the forward rate paths is as follows.

Public Function Libor_Path(n As Long, Optional SimTP As Long

= -1, _Optional PC_Method As

Boolean = True)

As Variant

Dim i As Long, j As Long, l As Long

Dim jn As Long, tp As Long

Dim tMu() As Double, tMu2() As Double

Dim tmpExp() As Double, tf() As Double

Dim Zi(1 To 3) As Double

Dim tmpValue As Double

Dim f As Variant

Dim fm As Long

Call Li_Buffer

If SimTP = -1 Then SimTP = nFwd

ReDim f(0 To SimTP, 1 To n, 0 To nFwd) As Double

ReDim tf(1 To nFwd) As Double

ReDim tMu(1 To nFwd) As Double, tMu2(1 To nFwd) As Double

ReDim tmpExp(1 To nFwd) As Double
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For jn = 1 To n

'Setting the rate at t0

For i = 0 To nFwd

f(0, jn, i) = f0(i)

Next i

'Generating the path

fm = 0

For tp = 0 To SimTP - 1

Zi(1) = rGauss()

Zi(2) = rGauss()

Zi(3) = rGauss()

'Copy the forward rate if the rate is fixed

For i = 0 To fm

f(tp + 1, jn, i) = f(tp, jn, i)

Next i

For i = fm + 1 To nFwd

tMu(i) = 0

tmpExp(i) = 0

'the diffusion part

For l = 1 To 3

tmpExp(i) = tmpExp(i) + bik(i, l) * Zi(l)

Next l

tmpExp(i) = tmpExp(i) * Sqr(Cij(i, i, tp))

'the drift part

For j = fm + 1 To i

tmpValue = f(tp, jn, j) * tau

tMu(i) = tMu(i) + Cij(i, j, tp) * tmpValue /

(1 + tmpValue)

Next j

tmpExp(i) = -0.5 * Cij(i, i, tp) + tmpExp(i)

'copy to tf(i) for PC method

tf(i) = f(tp, jn, i) * exp(tMu(i) + tmpExp(i))

f(tp + 1, jn, i) = tf(i)

Next i

If PC_Method = False Then GoTo SkipPC

'Predictor-Corrector Method

For i = fm + 1 To nFwd

tMu2(i) = 0
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For j = fm + 1 To i

tmpValue = tf(j) * tau

tMu2(i) = tMu2(i) + Cij(i, j, tp) * tmpValue /

(1 + tmpValue)

Next j

f(tp + 1, jn, i) = f(tp, jn, i) * _

exp(0.5 * (tMu(i) + tMu2(i)) +

tmpExp(i))

Next i

SkipPC:

fm = fm + 1

Next tp

Next jn

Libor_Path = f

End Function

With this function, we generate N forward rate paths with n forward rates until
time ts , and the generated forward rates are then stored in a three-dimensional (3D)
array f (0 to s, 1 to N , 0 to n) for later use. After generating these paths, we move
on to the pricing of interest rate derivatives. In the following, we employ caplets and
swaptions as examples. Suppose that we want to price a caplet with strike price K ,
reset date tr and payment date tr+1 = tr + τ . The payoff of this caplet is determined
at tr , and its value at tr+1 is

π (tr+1) = τ max{ fr (tr )− K , 0}.

In accordance with the previous discussion, the value of this caplet at t0 is

π (t0) = π (tr+1)
r∏

p=0

1

1+ f p(tp)τ

= τ max{ fr (tr )− K , 0}
r∏

p=0

1

1+ f p(tp)τ
.

Its price is then estimated by

π MC (t0) = 1

N

N∑
k=1

π k(t0).
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The corresponding VBA code is as follows.

Public Function Caplet_Payoff(f As Variant, K As Double,

reset_time As Long)

Dim i As Long, j As Long, n As Long

Dim tmpPayoff As Double

Dim Payoff() As Double

n = UBound(f, 2)

ReDim Payoff(1 To n) As Double

For j = 1 To n

tmpPayoff = tau * Max(f(reset_time, j, reset_time)

- K, 0)

For i = 0 To reset_time

tmpPayoff = tmpPayoff / (1 + f(reset_time, j, i) * tau)

Next i

Payoff(j) = tmpPayoff

Next j

Caplet_Payoff = Payoff

End Function

The price of a European swaption can be obtained in a similar fashion, although
the procedure is much more tedious. Recall that the payoff at expiry of a European
payer swaption written on an IRS for period tα to tβ with strike price K is given by

π (tα) = Aα,β (tα)max{Sα,β(tα)− K , 0}, (6.17)

where

Aα,β (t) =
β∑

j=α+1
τ j−1P(t, t j ), (6.18)

Sα,β(t) = P(t, tα)− P(t, tβ)

Aα,β(t)
. (6.19)

To calculate the payoff, we need to compute the prices of the zero-coupon bonds at
the swaption expiry date, that is, P(tα, t j ), for j = α + 1, . . . , β, where

P(tα, t j ) =
j−1∏
p=α

1

1+ f p(tα)τ
.
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They can be computed recursively through

P(tα, tα) = 1,

P(tα, t j ) = P(tα, t j−1)
1+ f j−1(tα)τ

, for j = α + 1, . . . , β.

After computing the prices of the zero-coupon bonds, we can compute the payoff of
the swaption at expiry tα , π (tα), through Equations 6.17, 6.18, and 6.19. Then, we
discount the payoff by

π (t0) = π (tα)
α−1∏
p=0

1

1+ f p(tp)τ
.

The price of this swaption is again estimated by

π MC (t0) = 1

N

N∑
k=1

π k(t0).

As a remark, we should note that when calculating P(tα, t j ), for j = α + 1, . . . , β,
we are standing at tα , and so the zero-coupon bonds are discounted by the simulated
forward rates at tα , which is different from our discounting of the payoff of the
swaption, for which we employ the spot rate at every time point tp, that is, f p(tp).
The VBA code for calculating the payoff from the simulated paths is as follows.

Public Function Swaption_Payoff(f As Variant, K As Double,

_expTime As Long, matTime As Long, Optional tp_pmt

As Long = 1)

Dim i As Long, j As Long, ni As Long

Dim nt As Double, n As Long

Dim SwapVal As Double

Dim Payoff As Variant

n = UBound(f, 2)

ReDim Payoff(1 To n) As Double

Dim Zeros_Exp() As Double

ReDim Zeros_Exp(expTime To matTime) As Double

Dim fDelta As Double

fDelta = tau * tp_pmt 'delta(fixed period)

For ni = 1 To n

nt = 0

Zeros_Exp(expTime) = 1

For i = expTime + 1 To matTime
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Zeros_Exp(i) = Zeros_Exp(i - 1) / (1 + f(expTime, ni,

i - 1) * tau)

Next i

For j = expTime + tp_pmt To matTime Step tp_pmt

nt = nt + fDelta * Zeros_Exp(j)

Next j

SwapVal = 1 - Zeros_Exp(matTime)

Payoff(ni) = Max(SwapVal - K * nt, 0)

For i = 0 To expTime - 1

Payoff(ni) = Payoff(ni) / (1 + f(expTime, ni, i) * tau)

Next i

Next ni

Swaption_Payoff = Payoff

End Function

For further details, please refer to Ch6.4_LIBOR_Simulation.xls.

6.4 BERMUDAN SWAPTIONS IN A THREE-FACTOR MODEL

Wenow consider the pricing of Bermudan swaptions. ABermudan swaption is similar
to a European swaption, except that the owner is allowed to enter into the swap on
a range of dates between today’s date and the expiry date. Similar to European
swaptions, there are Bermudan payer swaptions and Bermudan receiver swaptions.
As the two are essentially identical in terms of pricing,we consider only theBermudan
payer swaption here. This swaption gives the owner the right to enter into a swap in
which they receive the fixed leg and pay the floating leg.
Suppose that today is time t0. A Bermudan swaption written on an IRS maturing

at tβ gives the owner the right to enter into a payer swap at any time in T ex =
{t0, . . . , tβ−1} (time tβ is excluded because a swap that starts and ends on the same
date has zero value). With the foregoing definition, at any time tα ∈ F ex, the holder
of the contract has the right to receive

Aα,β (tα)max{Sα,β (tα)− K , 0},

where

Aα,β (t) =
β∑

j=α+1
τ j−1P(t, t j ),

Sα,β (t) = P(t, tα)− P(t, tβ)

Aα,β (t)
.
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It is important to realize that the swap always matures at time tβ , which is actually
known as a co-terminal Bermudan swaption. There is another type of Bermudan
swaption, known as a fixed-maturity Bermudan swaption, in which the swap has a
constant length. As they are the same in terms of pricing and modeling, we consider
only the co-terminal Bermudan swaption here. Note that this Bermudan swaption
has a similar feature to an American option, that is, we need to determine whether to
exercise or to wait. Therefore, the pricing of a Bermudan swaption is similar to that
of an American option. In the following, we use the algorithm to price the Bermudan
swaption in our example. This algorithm is similar to that used in valuing American
options.
To value the Bermudan swaption, at each time point, we need to decide whether

to enter into the swap or continue to hold the swaption. Denote the vector of forward
rates at time t by f (t), the immediate payoff when entering the swap at tα ∈ T ex by
V (tα, f (tα)) and the expected payoff of holding the swaption, that is, the continuation
value, by C(tα, f (tα)). At each entry date tα , the value of the swaption is

π (tα) = max{V (tα, f (tα)), C(tα, f (tα))}.

As we do not know C(tα, f (tα)), we need to find some weights λl,a such that

C(t, f (t)) ≈ Ĉ(t, f (t)) =
L∑

l=1
λl,aφl(t, f (t)), (6.20)

for some pre-selected basis function φl (t, f (t)). For example, if we choose basis
functions of 1, Sα,β (t), Sα,β (t)2 and Sα,β (t)3, then Equation 6.20 becomes

Ĉ(t, f (t)) = λ1,a + λ2,a Sα,β (t)+ λ3,a Sα,β (t)
2 + λ4,a Sα,β (t)

3.

As the continuation value C(tα) should be the discounted expectation of the
swaption’s value at tα+1, it can be roughly written as

E[C(tαa )|F tα ] = P(tα, tα+1)E[π(tα+1)|F tα ],

which corresponds to the expectation under the risk-neutral measure, as in the previ-
ous case of pricing caplets and European swaptions.
We can then estimate the λl,a’s through least squares regression using all of the

in-the-money paths. The algorithm for pricing a Bermudan swaption is as follows.
Suppose that the simulated forward rates are stored in a 3D array

f (0 to s, 1 to nph, 0 to nfwd), where the i th forward rate at time tp of the kphth
path is stored in f (p, kph, i). First, calculate all of the swap rates, the payoffs of
entering the swap and the discount factors that will be used later for every tα ∈ T ex

for all nph paths. Doing so may not be very computationally efficient, but it can render
the programming easier and more readable.
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For simplicity, we denote the price at tq of the zero-coupon bond maturing at tp,
that is, P(tq , tp), as P(q, p). For the kphth path at time tα , we need to calculate the
prices of the zero-coupon bonds through

P(α, α) = 1,

P(α, p) = P(α, p − 1)
1+ f (α, kph, p − 1)τp−1

, for α < p ≤ β.

Note that because all of these P(α, p)’s are calculated in the kphth path, we drop kph

in the notation. For those values that will be stored and used later in least squares
regression and pricing, we explicitly include kph in the notation. Then, we calculate
Aα,β (tα) by

Aα,β (tα) =
β∑

j=α+1
τ j−1P(α, j),

and the swap rate used to calculate the payoff at time tα is given by

S(α, kph) = 1− P(α, β)

Aα,β (tα)
.

The corresponding payoff at time tαa for the kphth path is

V (α, kph) = Aα,β (tα)max{S(a, kph)− K , 0}.

The discount factor for discounting the value of the swaption at the next entry date,
tα+1, is

D(α, kph) = 1

1+ f (α, kph, α)τ
.

We then store D(α, kph), S(α, kph), and V (α, kph) for α = 0, . . . , β − 1, kph =
1, . . . , nph, so that we can price the Bermudan swaption. The algorithm is as
follows.

1. Set π (β − 1, kph) = V (β − 1, kph) for kph = 1, . . . , nph.

2. Set α = β − 2.
3. RegressC(S(α)) = D(α)π (α + 1) on S(α) using every in-the-money path, that
is, the kph corresponding to V (α, kph) > 0, by assuming a cubic conditional
function, that is, Ĉ(S) = λ1,a + λ2,a S + λ3,a S2 + λ4,a S3.

4. Set π (α, kph) = V (α, kph).

5. Set π (α, kph) = D(α, kph)π (α + 1, kph) if Ĉ(S(α, kph)) > V (α, kph).

6. If α > 0, then set α = α − 1 and go to Step 3.
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7. Set π0(kph) = π (0, kph)
∏α−1

p=0
1

1+ f (p,kph,p)τ .

8. The price of the Bermudan swaption is given by π0 = 1
nph

∑nph

kph=1 π0(kph).

For further details, please refer to Ch6.4_LIBOR_Bermudan_Swpation.xls.

6.5 EPILOGUE

This chapter contains a lot of information, ranging from the LIBOR market models
to different swap-related derivatives. Summarizing the key ideas here would help the
readers to grab the bigger picture of the whole framework.
Figure 6.4 is the flowchart of implementing the LIBORmarket model. It resembles

Figure 5.1. Specifically, there are three sets of observed data in the LIBOR market:
swap rates, caps/floors prices, and swaption prices. Based on these market prices,
our goal is to value a target interest rate derivative in a consistent manner. The target
derivative price is regarded as an unknown (or an output) while observed market
prices are inputs.
The left-hand column of Figure 6.4 shows that market swap rates are converted

into synthetic bond prices, which are fed into the yield curve building system detailed
in Chapter 5. Therefore, the forward rates, fi (t), i = 1, . . . , m, in the LIBOR market
model are calculated from the yield curve.

Swap Rates

Equation (6.1) Section 6.1.1

Section 6.1.1Section 5.1

Section 6.3

Section 6.1.2

Rebonato’s formula/
Hull–White’s formula

in Section 6.1.2

Synthetic Bond
Prices

Strip into
Caplets/floorlets

Market Data

Calibration

Valuation

Swaption Prices

Caps/floors
Implied Volatilities

Yield Curve Calibration
Producing LIBOR

Forward Rate

Valuation of other LIBOR Products
Example on Bermudian Swaption: Section 6.4

Calibration of Forward
Volatilities

Calibration to Correlations
among Forward Rates

Calibration Example:
Section 6.2

Swaptions
Implied Volatilities

Figure 6.4 Implementation flowchart of LIBOR market models.
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The LIBOR market model has coefficient functions, σ (t) and b(t), as shown in
Equation 6.10. The middle column of Figure 6.4 shows how σ (t) is calibrated to
market prices of caps and floors. Theorem 2 decomposes a cap (floor) into a sum of
caplets (floorlets). Stripped caplet prices are used to filter σ (t). A practical way is
to assume certain parametric form for σ (t) with constant parameters. These constant
parameters are calculated by minimizing the sum of differences between the model
price of Theorem 2 and the corresponding market cap prices. Figure 6.4 points the
readers to the examples in the corresponding sections.
The right-hand column of Figure 6.4 shows that swaption prices are used to

calibrate the matrix-valued function b(t). The swaption pricing formula and the
Rebonato formula jointly serve this purpose. Section 6.3 demonstrates the entire
calibration process.
Once the model is fixed, it can be applied to simulate prices of other interest rate

derivatives. Section 6.3 presents the general simulation algorithm and Section 6.4
demonstrates the usage of the simulations in pricing the Bermudian swaption.



7
Credit Derivatives and

Counterparty Credit Risk

Credit derivatives are over-txhe-counter (OTC) financial contracts that allow the
transfer of credit risk from one market participant to another. Commonly used credit
derivatives include credit default swaps (CDSs), credit linked notes, total return swaps
and credit spread options, among which CDS is the dominant one. In recent years,
the use of such “portfolio credit derivatives” as basket default swaps, collateral-
ized debt obligations (CDOs) and CDOs on CDOs (CDO2) has grown rapidly. The
U.S. subprime mortgage crisis stems in large part from the huge losses suffered by
mortgage-backed securities and CDOs backed by subprime mortgages.
It is therefore essential to understand the theory and valuation of credit deriva-

tives.Monte Carlo simulation is an important numerical tool. The valuation of a credit
derivative is critically dependent on the so-called default event of trading counterpar-
ties and/or reference entities.Adefault event is an event inwhich afirm (which can be a
trading counterparty or a reference entity) cannot honor its obligation on the payments.
The finance literature discusses two types of default models, namely, structural

models and reduced-form models. Structural models assume that the evolution of a
firm’s economic variables, such as total asset value, determines the time of default
and, thus, provides a link between credit quality and the economic and financial
conditions of the firm. Merton model (1974), the first default model and structural
model, assumes that a firm defaults at the debt repayment time if its asset value falls
below the notional amount of its debts. Thus, defaults are endogenously generated
by the firm value process. Reduced-form models, in contrast, model a default event
by the first jump time of an exogenously given jump process. Thus, defaults are
exogenously given.

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Although default models help us to understand the credit derivatives of a single
name reference entity, their extension to multi-name models or the valuation of such
portfolio credit derivatives as CDOs is much more challenging. The main problem
lies in these models’ ability to describe the dependent structures of the default times
of different reference entities. As defaults are rare events, the concept of copulas was
introduced to model default correlations. Well-known copula approaches include the
Gaussian copula and t-copula approaches. Li (2000) introduced the Gaussian copula
method to price CODs. Since then, the finance literature adopting the copula approach
to credit derivative pricing has grown considerably. However, the aforementioned
subprime mortgage crisis offers clear proof that the Gaussian copula is incapable
of correctly valuing CDOs. The usefulness of copulas remains rather controversial.
Embrechts (2009) offers the view that copulas can be useful in many applications
but should be handled with sufficient caution, particularly for high dimensional and
extreme value problems. He also suggests a number of important readings regarding
copulas. We do not take sides on the issue of whether copulas are really useful in
finance, but simply demonstrate the use ofMonte Carlo simulation if their application
is desired. The valuation of CDO using Gaussian and t-copulas serves as examples.
Prior to introducing the application of simulation to credit risk, we begin with

Merton model (1974), which models firm value and default at debt payment time.
This model is then extended to incorporate the widely used Vasicek single-factor
model (1987, 1991, 2002) to measure the risk of a credit portfolio and to price
CDOs. Afterward, we investigate the effect of a Gaussian copula and t-copula on tail
dependence, which is crucial to the modeling of default events, and then price an
nth-to-default basket default swap. We thus give readers a taste of several credit risk
models and their simulation.
An important application of credit risk models in the wake of the subprime mort-

gage crisis is in calculating the credit value adjustment (CVA) of counterparty risk in
the OTC market. The bankruptcy of Lehman Brothers demonstrates the strong like-
lihood of counterparty default risk on the part of OTC derivative issuers. Although
the underlying assets of a derivative may have no credit risk exposure, the issuer
can still default, which constitutes the counterparty default risk that OTC derivative
holders face. Regulations require institutional OTC investors to report the degree of
counterparty risk, and the value of their OTC positions should be adjusted to reflect
that risk. It is standard practice for derivative dealers to adjust the reported value of
their derivative transactions with a counterparty to reflect the degree of counterparty
credit risk. This adjustment is referred to as CVA.

7.1 STRUCTURAL MODELS OF CREDIT RISK

7.1.1 The Merton Model

As noted, Merton model (1974) is both the first default model and the first structural
model. Merton (1974) makes use of the Black–Scholes (BS, 1973) option pricing
model to value corporate liabilities.
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To begin, first suppose that there are N firms and that the asset value of firm i ,
denoted by Ai (t), for i = 1, . . . , N follows a geometric Brownian motion (GBM):

dAi (t) = μi Ai (t) dt + σi Ai (t) dWi (t),

where σi is asset value volatility and Wi (t) is a standard Brownian motion. Note that
because the equity of a firm is considered to be a derivative on its assets, it is assumed
that the firm asset value process is subject to the risk-neutral probability measure,
and so the expected return of this process is the risk-free interest rate r .
Assume that the capital structure of firm i comprises equity and a zero-coupon

bond with notional value Di and maturity T , such that the asset value of this firm is
simply the sum of equity and the debt value. At maturity T , if Ai (T ) < Di , then the
firm defaults, and shareholders receive nothing (and do not pay any liabilities because
of the limited liability assumption). If, in contrast, Ai (T ) ≥ Di , then the firm does
not default, and shareholders receive the residual amount Ai (T )− Di . Note that it is
implicitly assumed that the firm can default only at time T , not at any time prior to
T . The probability that firm i defaults at time T , denoted by pi,T , is given by

pi,T = P(Ai (T ) < Di |Ai (0)).

By Itô’s lemma, the asset value process of firm i can be written as

Ai (T ) = Ai (0) exp

((
μi − σ 2i

2

)
T + σi

√
T Xi,T

)
,

where

Xi,T = Wi (T )− Wi (0)√
T

is a standard normal random variable. Therefore,

pi,T = �(ki,T ),

where �(·) is the cumulative distribution function of a standard normal random
variable and

ki,T = −
log

Ai (0)

Di
+

(
μi − σ 2i

2

)
T

σi

√
T

.

This is the physical probability that firm i defaults at time T .
The Merton model also links the firm’s asset value to its market value of equity.

For the case of a single promised payment at time T , if the firm value is higher than
the face value of the debt on the maturity date, then equity holders receive the residual
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value of the firm after paying back the debt; otherwise, they receive nothing because
the firm declares bankruptcy and its ownership passes to the debt holders. Equity
holders’ payoff on the debt maturity date is then given by

max(A(T )− K , 0),

which is exactly the payoff function of a European call option. Assuming risk-neutral
valuation, the present value of equity is the BS formula on the firm’s asset value with
strike K .
The Merton model is useful for estimating the default probabilities of public firms

whose shares are traded on exchange. Let {S(t0), S(t1), . . . , S(tn)} be a time series of
the observed total market value of equity prices. Under the Merton model,

S(t j ) = cBS(A(t j ), K , r, σ ), (7.1)

where cBS is the BS call option pricing formula. Using this pricing formula, we can
carry out the following procedure to estimate μ, σ and {A(t0), A(t1), . . . , A(tn)}.
1. Set an initial value of σ = σ (0) and j = 0.

2. Solve A(ti ) from Equation 7.1 for i = 0, 1, . . . , n.

3. Set j = j + 1, and let μ( j) be the sample mean of asset returns and σ ( j) be the
sample volatility of asset returns.

4. Repeat Steps 2 and 3 until |σ ( j+1) − σ j | < ε for some small value ε.

Duan, Gauthier, Simonato, and Zaanoun (2004) report that the foregoing estimation
is a method of moments that has been implemented by Moody’s KMV. In addition,
the estimation result is also similar to the maximum likelihood estimation (MLE)
proposed by Duan (1994).

Remark

1. The estimation procedure can be applied to any structural credit models that
employ different functions to link up a firm’s asset value and its market value
of equities. We can simply replace Equation 7.1 with another pricing formula
associated with equity holders’ payoff.

2. Although Moody’s KMV employs the foregoing estimation procedure, the
firm makes a number of improvements to the Merton model. First, it uses the
VK model, which views equity as a perpetual barrier option. Second, after
estimation, the KMV approach further calibrates the asset value distribution to
the empirical default distribution from a proprietary default database. To obtain
these calibrated data, however, one must subscribe to the KMV system.

3. One advantage of Merton model is its simple implementation via BS option
pricing theory. However, it relies on the log-normal firm value process, and
other disadvantages include the restriction of the default time to debt maturity,
the assumption of a constant interest rate and the exclusion of coupon-paying
bonds.
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7.1.2 First Passage Time Model

The structural credit risk model was first put into commercial use by Moody’s KMV,
whose model is in the class of first passage time models. To improve the Merton
model by allowing firms to default at any time, Black and Cox (1976) incorporate a
barrier option approach. When firm value falls below a default barrier, bond holders
can force equity holders to declare bankruptcy. This indenture covenant for bond
holders avoids further deterioration of the firm’s asset value.
In the Black and Cox model, equity holders receive the residual value of the firm

if the terminal asset value is higher than the face value and the asset value never falls
below the barrier prior to maturity. Suppose that only one zero-coupon corporate
bond is issued by the underlying firm. The payoff for equity holders becomes

max(A(T )− K , 0)I{τH >T },

where IA is the indicator function for the event A and τH is the first passage time:

τH = inf{t : A(t) < H}.

This is exactly the payoff function of a down-and-out call (DOC) option. When the
risk-free interest rate is a constant, there is a closed-form solution to the DOC option:

S(t) = DOC(A(t), K , H, r, σ ) (7.2)

= A(t)� (b1)− Ke−r (T −t)�
(

b1 − σ
√

T − t
)

−A

(
H

A(t)

)2η
� (b2)+ Ke−r (T −t)

(
H

A(t)

)2η−2
�

(
b2 − σ

√
T − t

)
, (7.3)

where

b1 =
log

A(t)

K
+

(
r + σ 2

2

)
(T − t)

σ
√

T − t
,

b2 =
log

H 2

A(t)K
+

(
r + σ 2

2

)
(T − t)

σ
√

T − t
,

η = r

σ 2
+ 1

2
.

If the default barrier level H is specified in advance, then the other parameter values
can be estimated using the approach in Section 7.1.1. Moody’s KMV specifies the
default barrier as the default point, which is the sum of the short-term debts and half
of the long-term debts shown in a firm’s accounting book. Wong and Choi (2009)
discuss MLE incorporating the default barrier, and Forte and Lovreta (2012) propose
endogenizing the exogenous default barrier H using the firm’s historical equity data.
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In first passage time models, the default probability of the i th firm becomes

pi,T = P
(
τHi < T

)
, (7.4)

where Hi is the default barrier of the i th firm. If the firm’s asset value follows the
GBM, then that default probability has a closed-form solution.

pi,T = �

⎛
⎝ log H

A(t) −
(
μ − σ 2

2

)
(T − t)

σ
√

T − t

⎞
⎠

+
(

A(t)

H

) 2μ
σ2

−1
�

⎛
⎝ log A(t)

H −
(
μ − σ 2

2

)
(T − t)

σ
√

T − t

⎞
⎠ . (7.5)

Inspired by representation (Eq. 7.4) and risk theory in actuarial science, reduced-form
credit risk models directly model the default time τH using a survival function that is
calibrated to corporate bond yields. The reduced-form model is used with copulas in
Section 7.3.3.
There is controversy surrounding the practical use of structural credit risk models

in the literature. Eom, Helwege, and Huang (2004) find empirical evidence that all
available structural credit risk models seriously underestimate corporate bond yields
when the model parameters are estimated using a proxy approach. Ericsson and
Reneby (2005) show that incorrect implementation methods, such as the proxy type
of estimation, significantly distort the performance of structural credit risk models.
Li and Wong (2008) examine several structural models empirically using MLE, and
find that the models do not consistently underestimate corporate bond yields and that
their pricing errors are much fewer than those using the proxy estimation approach.
Jarrow (2010), the major inventor of the reduced-form model, develops a credit
market equilibrium theory to argue that structural models should not be used for
pricing, hedging, or risk management. Forte and Lovreta (2012) find that, by placing
the default barrier at a level that empirically optimizes equity holders’ benefit, a
structural model can price CDS very accurately, implying that some of these models
are useful for pricing and risk management.

7.2 THE VASICEK SINGLE-FACTOR MODEL

To demonstrate the use of simulation in calculating a portfolio of credit risks, we
employ the Merton model as an illustrative example. To combine marginal distri-
butions to form a multivariate model, a simple practice in the credit market is to
employ the Vasicek single-factor model (1987, 1991, 2002). Consider a portfolio of
credit instruments in which the portfolio loses its value if defaults occur and some
firms cannot fulfill their contractual obligations. We are interested in the portfolio
loss distribution. The techniques introduced in the previous section allow us only to
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compute the (risk-neutral) probability of the default of an individual firm. However,
the loss of a credit portfolio is generally related to the joint default distribution of
several firms whose defaults are not independent. The Vasicek model uses the notion
of default correlation between two firms.
Recall that the probability that firm i defaults at time T is given by pi,T for

i = 1, . . . , N . Practitioners generally prefer the risk-neutral probability of default,
which can be calibrated to the market prices of default-free bonds and defaultable
bonds. The calibration will be discussed in Section 7.3.3. For the time being, we
assume that the risk-neutral probabilities of default for all firms are known and are
the same, that is, p1,T = · · · = pN ,T = pT .
To simulate the portfolio loss distribution, it is not sufficient to know the individual

probabilities of default. We also need default correlation, which can be defined by
introducing a certain kind of correlation structure on the N asset value processes.
Assume that the correlation coefficient between each pair of random variables Xi,T

and X j,T is ρi, j,T . The Vasicek single-factor model specifies that the correlation
coefficient between any two firms is constant, denoted by ρT , i.e., ρi, j,T = ρT for all
i, j . It further assumes that there is a “single” risk factor that drives all of the asset
value processes. There are firm-specific risk factors that only affect individual firms.
Thus, the random variable Xi,T for i = 1, . . . , N is decomposed as follows.

Xi,T = √
ρT ZT +

√
1− ρT Zi,T ,

for i = 1, . . . , N , where ZT , Z1,T , . . . , Z N ,T are independent standard normal ran-
dom variables. Let w = √

ρT . Then,

Xi,T = wZT +
√
1− w2Zi,T ,

where w is the factor sensitivity. Note that we require that 0 ≤ ρT ≤ 1.
In otherwords, each randomvariable Xi,T determineswhether or not firm i defaults

at time T . It is expressed as the sum of a common risk factor ZT affecting all firm
values and a firm-specific risk factor Zi,T which is independent across firms.
As we are concerned with the probability of default over the same maturity period

for all firms, to simplify that notation, we suppress the subscript T in all of the
variables; that is, the probability of default for any firm is p, and

Xi = wZ +
√
1− w2Zi ,

for i = 1, . . . , N , where Z , Z1, . . . , Z N are independent standard normal random
variables.

7.2.1 Credit Portfolio Management

We implement the Vasicek single-factor model to simulate the portfolio loss distri-
bution of a credit portfolio.
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Consider again the portfolio of N loans that are credit-sensitive, where loan i is
for firm i for i = 1, . . . , N . For loan i , we know that the probability that any firm
i will default at time T is p, and the loss due to the default of firm i is the product
of the loss given default (LGDi ) and the exposure at default (EADi ). To determine
whether firm i has defaulted, we make use of the fact that the firm will default if the
log-firm value is lower than some threshold chosen to match p , that is,

Pr(wZ +
√
1− w2Zi < k) = p.

In other words,

wZ +
√
1− w2Zi ≤ k = �−1(p).

The quantity w incorporates the default correlation between two firms. Consider a
standard normal random variable Z . If the standard normal random variable Zi is
such that the foregoing inequality holds, then firm i defaults at maturity T and the
loss for loan i is given by LGDi × EADi ; otherwise, firm i does not default and
the loss for loan i is zero. This procedure is repeated for i = 1, . . . , N , and can be
summarized as follows.

1. Input number of simulations (M), number of loans (N ), probability of default
(p), loss given default (LGDi , for i = 1, . . . , N ), exposure at default (EADi ,
for i = 1, . . . , N ) and factor sensitivity (w).

2. Set Portfolio loss = 0 and Number of defaults = 0.

3. Generate a sequence of independent standard normal random variables
Z , Z1, . . . , Z N .

4. For i = 1, . . . , N , if wZ + √
1− w2Zi < �−1(p), then set Portfolio loss=

Portfolio loss+ LGDi × EADi , Number of defaults = Number of defaults +
1, and Default rate = 1

N × Number of defaults.
5. Repeat Steps 2 to 4 M times.

6. Compute the mean and standard deviation of the portfolio loss distribution and
the mean default rate.

Ch7.3_Simulate_Portfolio_Loss.xls illustrates the Vasicek one-factor model, that
is, Steps 2 to 4 of the foregoing algorithm, and Ch7.3_Simulate_Portfolio_Loss_
Distribution simulates the portfolio loss distribution using the following VBA code.

Sub Sim_Portfolio_Loss()

Dim M As Long

M = Range("A2")

Dim N As Long

N = Application.Count(Range("A21:A65536"))

Dim i As Long



THE VASICEK SINGLE-FACTOR MODEL 263

Dim j As Long

Dim Default_Threshold() As Double

Dim LGD() As Double

Dim EAD() As Double

Dim w() As Double

Dim Portfolio_Loss()

Dim Z As Double

Dim Sum_Loan_Loss As Double

Dim Number_of_Default As Double

Dim Default_Rate() As Double

Dim Percentage_Loss() As Double

ReDim Default_Threshold(1 To N)

ReDim LGD(1 To N)

ReDim EAD(1 To N)

ReDim w(1 To N)

ReDim Portfolio_Loss(1 To M)

ReDim Default_Rate(1 To M)

ReDim Percentage_Loss(1 To M)

For i = 1 To N

If Range("B" & 20 + i) > 0 Then

Default_Threshold(i) = Application.NormSInv(Range

("B" & i + 20))

ElseIf Range("B" & 20 + i) = 0 Then

Default_Threshold(i) = Application.NormSInv

(0.000000000000001)

ElseIf Range("B" & 20 + i) = 1 Then

Default_Threshold(i) = Application.NormSInv

(0.999999999999999)

End If

LGD(i) = Range("C" & 20 + i)

EAD(i) = Range("D" & 20 + i)

w(i) = Range("E" & 20 + i)

Next i

For j = 1 To M

Z = rGauss()

Sum_Loan_Loss = 0

Number_of_Default = 0

For i = 1 To N

If w(i) * Z + Sqr((1 - w(i) ˆ 2)) * rGauss() <

Default_Threshold(i) Then
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Sum_Loan_Loss = Sum_Loan_Loss + LGD(i) * EAD(i)

Number_of_Default = Number_of_Default + 1

End If

Next i

Portfolio_Loss(j) = Sum_Loan_Loss

Default_Rate(j) = Number_of_Default / N

Percentage_Loss(j) = Sum_Loan_Loss / Application.

WorksheetFunction.Sum(EAD)

Next j

For i = 9 To 13

Range("B" & i) = Application.WorksheetFunction.Percentile

(Portfolio_Loss, Range("A" & i))

Next i

Range("A5") = Application.WorksheetFunction.Average

(Portfolio_Loss)

Range("A7") = Application.WorksheetFunction.StDev

(Portfolio_Loss)

Range("A15") = Application.WorksheetFunction.Average

(Default_Rate)

Range("A17") = Application.WorksheetFunction.Average

(Percentage_Loss)

End Sub

To illustrate the use of the Vasicek single-factor model in credit portfolio man-
agement, we carry out M = 50,000 simulations using a hypothetical credit portfolio
comprising N = 100 loans with LGDi = 50% and EADi = 100. We then compute
the corresponding summary statistics for different values of default probability p and
factor sensitivity w. The results are displayed in Tables 7.1 and 7.2.
Tables 7.1 and 7.2 show the portfolio loss to be positive and the standard deviation

of that loss to bemuch greater than the expected portfolio loss. Therefore, the portfolio

TABLE 7.1 Summary Statistics of Portfolio Loss Distribution for Different Values of Probability
of Default p Given Factor Sensitivity w = 0.3

p = 0.01% p = 0.1% p = 1%

Mean portfolio loss 0.51 5.05 49.89
SD(Portfolio loss) 5.11 17.00 67.27
90.00th percentile 0.00 0.00 150.00
95.00th percentile 0.00 50.00 200.00
99.00th percentile 0.00 50.00 300.00
99.90th percentile 50.00 150.00 450.00
99.95th percentile 50.00 150.00 550.00

Mean default rate 0.010% 0.101% 0.998%
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TABLE 7.2 Summary Statistics of Portfolio Loss Distribution for Different Values of Factor
Sensitivity w Given Probability of Default p = 0.01%

w = 0.3 w = 0.6 w = 0.9

Mean portfolio loss 0.51 0.52 0.51
SD(Portfolio loss) 5.11 6.46 23.27
90.00th percentile 0.00 0.00 0.00
95.00th percentile 0.00 0.00 0.00
99.00th percentile 0.00 0.00 0.00
99.90th percentile 50.00 100.00 100.00
99.95th percentile 50.00 100.00 200.00

Mean default rate 0.010% 0.010% 0.010%

loss distribution has a very long right tail, such that there is positive probability for a
very large loss.
It can be seen from Table 7.1 that, other parameters being fixed, increasing the

probability of default p increases the mean and standard deviation of portfolio loss,
and the default rate because the portfolio loss is the sum of individual loan losses:

Portfolio loss =
N∑

i=1
LGDi × EADi × Yi ,

where Yi is the indicator function of the event that firm i defaults. The expected
portfolio loss is given by

E[Portfolio loss] = p
N∑

i=1
LGDi × EADi ,

and so increasing p increases the expected portfolio loss. The variance of portfolio
loss is given by

Var(Portfolio loss)

=
N∑

i=1
(LGDi × EADi )

2 × Var(Yi )+ 2
N∑

i=1

∑
j>i

(LGDi × EADi )

×(LGD j × EAD j )Cov(Yi , Y j )

=
N∑

i=1
(LGDi × EADi )

2 × (p − p2)

+ 2
N∑

i=1

∑
j>i

(LGDi × EADi )(LGD j × EAD j )
[
Q(Yi = 1, Y j = 1)− p2

]
.
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Because p � 1, the increase in p outweighs the increase in p2, thus causing the
increase in the variance of portfolio loss. Finally, the mean default rate of the portfolio
is given by

EQ[Default rate] = EQ

[
1

N

N∑
i=1

Yi

]

= p.

Therefore, an increase in p increases the mean default rate.
It can also be seen from Table 7.2 that, other parameters being fixed, increasing

factor sensitivity w increases only the standard deviation of the portfolio loss distri-
bution. The foregoing equations indicate that only the variance of portfolio loss is
affected by Q(Yi = 1, Y j = 1), which reflects the default correlation.

7.2.2 Pricing Collateralized Debt Obligations

A CDO consists of a portfolio of credit-sensitive instruments, typically loans and
bonds, whose credit risk is sold to investors who, in return for an agreed payment,
bear the portfolio loss resulting from the default of the instruments. The credit risk of
the portfolio underlying the CDO is sold in tranches. A tranche is defined by a lower
attachment point and an upper attachment point. The buyer of a tranche with lower
attachment point L and upper attachment pointU bears all portfolio loss in excess of
L percent and up to U percent of the initial portfolio value. To illustrate, Table 7.3
presents a hypothetical CDO tranche structure.
Suppose that the portfolio suffers a loss of 9% of its initial value. The holder of the

equity tranche bears the first 3% of the loss, the holder of the first mezzanine tranche
bears the next 4%, the holder of the second mezzanine tranche bears the remaining
2%, and the holders of the third mezzanine and senior tranches suffer no loss. CDO
tranches thus allow the holder of each tranche to limit their loss exposure to a fixed
percentage of the initial portfolio value.
Now, suppose that the CDO originated at time 0. Denote the time variable by

t , the CDO’s maturity by T , the initial portfolio value by V (0) and the cumulative
percentage loss in the initial portfolio value up to time t by X (t). Obviously, X (t) is a
random variable that is non-decreasing in t . At time t , the total loss of portfolio value
is X (t)V (0). The cumulative loss suffered by the holder of tranche j from time 0 up

TABLE 7.3 Hypothetical CDO Tranche Structure

Tranche number ( j) Tranche name L j (%) U j (%)

1 Equity 0 3
2 Mezzanine 1 3 7
3 Mezzanine 2 7 10
4 Mezzanine 3 10 15
5 Senior 15 30
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to time t is a percentage X j (t) of the initial portfolio value, which can be expressed
as

X j (t) = min{X (t), U j } −min{X (t), L j },

where L j and U j are the lower and upper attachment points of tranche j . Like
X (t), X j (t) is also a random variable that is non-decreasing in t . The losses are paid
by the tranche holders during the life of the CDO at fixed time points t1, . . . , tn ,
such that ti − ti−1 = δt for i = 1, . . . , n. At each payment date, the tranche holders
pay the loss on the portfolio realized since the previous payment date, that is, if ti is
the previous payment date, then the holder of tranche j has to pay at time ti+1 the
amount

(X j (ti+1)− X j (ti ))V (0),

which is the floating leg of the CDO and represents the cash flows paid by the tranche
holder.
At the same time, the tranche holders are compensated for bearing the risk of

portfolio loss. The holder of tranche j receives a periodic payment equal to a tranche
premium s j on the outstanding notional amount of tranche j . At time t , the outstanding
notional amount of tranche j is its notional amount minus any cumulative loss up to
time t , which can be expressed as

(U j − L j − X j (t))V (0).

Thus, at time ti+1, the periodic payment to the holder of tranche j is

s j (ti+1 − ti )(U j − L j − X j (ti ))V (0),

which is the fixed leg of the CDO and represents the cash flows received by the
tranche holder. The lower the seniority of the tranche, the greater the expected loss
suffered by its holder and, therefore, the higher the premium he or she receives. It
should be noted that when X (t) > U j , the loss suffered by the holder of tranche j is
U j − L j and the outstanding notional amount of tranche j is zero. In this case, all of
the payments from and the premium to the holder of tranche j become zero as well.
Pricing a CDO is equivalent to computing the appropriate premium s j for each

tranche j . The premium s j is fixed in such a way that the NPV of the cash flows
received and paid by the tranche’s holder is zero. With the assx1umption that the
market is arbitrage-free and the term structure of interest rates is deterministic, the
following relationship holds.

s j

n∑
i=1

P(t0, ti )(ti − ti−1)E[(U j − L j − X j (ti ))V (0)]

=
n∑

i=1
P(t0, ti )E[(X j (ti+1)− X j (ti ))V (0)],
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where P(t0, ti ) is the price at time t0 of a unit-par zero-coupon bond with maturity ti .
Thus, the premium s j for tranche j is given by

s j =
∑n

i=1 P(t0, ti )(E[X j (ti+1)]− E[X j (ti )])∑n
i=1 P(t0, ti )(ti − ti−1)(U j − L j − E[X j (ti )])

. (7.6)

The key to CDO pricing is the evaluation of expectation E[X j (ti )] for different
time points ti . Theoretically, the computation of this expectation requires knowledge
of the distribution of X (ti ) for all i = 1, . . . , n; however, the closed-form formula for
the distribution function of X (t) is, in general, extremely difficult to obtain. In many
cases, Monte Carlo simulation is the only solution.
To implement Monte Carlo simulation for CDOs, assume that the term structure

of interest rates is deterministic, the probability of default is the same for all horizons
(i.e., pt1 = · · · = ptn = p) and the default correlations are the same for all horizons
(i.e., ρt1 = · · · = ρtn = ρ). We can summarize the simulation procedure as follows.

1. Input the number of simulations (M), number of loans (N ), set of payment
dates ({t1, . . . , tn}), lower attachment points (L j , for i = 1, . . . , K ), upper
attachment points (U j , for i = 1, . . . , K ), zero rates ({r1, . . . , rn}), probability
of default (p), loss given exposure (LGDi , for i = 1, . . . , N ), exposure at
default (EADi , for i = 1, . . . , N ) and factor sensitivity (w).

2. Set Portfolio loss = 0.

3. At time tk , set P(t0, tk) = e−rk tk and generate a sequence of independent stan-
dard normal random variables Z , Z1, . . . , Z N .

4. For i = 1, . . . , N , if firm i does not default and wZ + √
1− w2Zi < �−1(p),

then set Portfolio loss = Portfolio loss+ LGDi × EADi and record that firm i
has defaulted.

5. X (tk) = Portfolio loss∑N
i=1 EADi

.

6. For j = 1, . . . , K , X j (tk) = min{X (tk), U j } −min{X (tk), L j }.
7. Repeat Steps 3 to 6 for k = 1, . . . , n.

8. Repeat Steps 2 to 7 M times to compute E[X j (tk)] for all j and k.

9. For j = 1, . . . , K , compute the premium s j for tranche j by Equation 7.6.

The Ch7.3_Simulate_CDO_Tranches.xls file covers CDO pricing via Monte Carlo
simulation using the following VBA code.

Sub Simulate_CDO_Tranches()

Dim M As Long

M = Range("A2")

Dim N As Long

N = Application.Count(Range("A6:A65536"))
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Dim P As Long

P = Application.Count(Range("G2:G65536"))

Dim K As Integer

K = Application.Count(Range("J3:J65536"))

Dim i As Long

Dim j As Long

Dim a As Integer

Dim t As Long

Dim Default_Threshold() As Double

Dim LGD() As Double

Dim EAD() As Double

Dim w() As Double

Dim Z As Double

Dim Portfolio_Loss As Double

Dim Cum_Percentage_Loss() As Double

Dim Sum_EAD As Double

Dim Payment_Date() As Double

Dim Zero_Rate() As Double

Dim Default_Indicator() As Integer

Dim Tranche_Cum_Percentage_Loss() As Double

Dim L() As Double

Dim U() As Double

Dim Premium() As Double

Dim X As Double

Dim Y As Double

ReDim Default_Threshold(1 To N)

ReDim LGD(1 To N)

ReDim EAD(1 To N)

ReDim w(1 To N)

ReDim Cum_Percentage_Loss(1 To M, 0 To P)

ReDim Payment_Date(0 To P)

ReDim Zero_Rate(1 To P)

ReDim Default_Indicator(1 To N)

ReDim Tranche_Cum_Percentage_Loss(1 To K, 0 To P)

ReDim L(1 To K)

ReDim U(1 To K)

ReDim Premium(1 To K)

For a = 1 To K

L(a) = Range("J" & 2 + a)

U(a) = Range("K" & 2 + a)

Next a
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' take Payment_Date(0) = 0

For t = 1 To P

Payment_Date(t) = Range("G" & 1 + t)

Zero_Rate(t) = Range("H" & 1 + t)

Next t

For i = 1 To N

If Range("B" & 5 + i) > 0 Then

Default_Threshold(i) = Application.NormSInv

(Range("B" & 5 + i))

ElseIf Range("B" & 5 + i) = 0 Then

Default_Threshold(i) = Application.NormSInv

(0.000000000000001)

ElseIf Range("B" & 5 + i) = 1 Then

Default_Threshold(i) = Application.NormSInv

(0.999999999999999)

End If

LGD(i) = Range("C" & 5 + i)

EAD(i) = Range("D" & 5 + i)

w(i) = Range("E" & 5 + i)

Next i

Sum_EAD = Application.Sum(EAD)

For j = 1 To M

Portfolio_Loss = 0

ReDim Default_Indicator(1 To N)

For t = 1 To P ' proceed in time

Z = rGauss()

For i = 1 To N

If Default_Indicator(i) < 0.5 Then

If w(i) * Z + Sqr(1 - w(i) ˆ 2) * rGauss()

< Default_Threshold(i) Then

Default_Indicator(i) = 1

Portfolio_Loss = Portfolio_Loss +

LGD(i) * EAD(i)

End If

End If

Next i
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Cum_Percentage_Loss(j, t) = Portfolio_Loss / Sum_EAD

For a = 1 To K

Tranche_Cum_Percentage_Loss(a, t) = Tranche_Cum_

Percentage_Loss(a, t) + 1 / M * (Application.

WorksheetFunction.Min(Cum_Percentage_

Loss(j, t), U(a)) - Application.

WorksheetFunction.Min(Cum_Percentage_Loss(j, t),

L(a)))

Next a

Next t

Next j

' display the payment times

For t = 0 To P

Cells(3, 15 + t) = Payment_Date(t)

Next t

' display the tranche number

For a = 1 To K

Cells(3 + a, 14) = a

Next a

For a = 1 To K

X = 0

Y = 0

For t = 1 To P

X = X + Exp(-Zero_Rate(t) * Payment_Date(t)) *

(Tranche_Cum_Percentage_Loss(a, t)- Tranche_Cum_

Percentage_Loss(a, t - 1))

Y = Y + Exp(-Zero_Rate(t) * Payment_Date(t)) *

(Payment_Date(t)- Payment_Date(t - 1)) * (U(a) -

L(a) - Tranche_Cum_Percentage_Loss(a, t))

Next t

Premium(a) = X / Y

' display the premium for each tranche

Range("L" & 2 + a) = Premium(a)

' display the cumulative percentage loss for each tranche
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TABLE 7.4 Premium for each Tranche for Different Values of Probability of Default p Given
Factor Sensitivity w = 0.3

Tranche number ( j) Tranche name L j (%) U j (%) p = 1% p = 2% p = 3%

1 Equity 0 3 23.8277% 58.8388% 102.0122%
2 Mezzanine 1 3 7 1.1693% 8.0234% 19.2232%
3 Mezzanine 2 7 10 0.0213% 0.7485% 3.7903%
4 Mezzanine 3 10 15 0.0009% 0.0469% 0.4826%
5 Senior 15 30 0.0000% 0.0001% 0.0054%

TABLE 7.5 Premium for each Tranche for Different Values of Factor Sensitivity w with
Probability of Default p = 1%

Tranche number ( j) Tranche name L j (%) U j (%) w = 0.3 w = 0.6 w = 0.9

1 Equity 0 3 23.8277% 16.2522% 5.7212%
2 Mezzanine 1 3 7 1.1693% 2.7895% 2.6397%
3 Mezzanine 2 7 10 0.0213% 0.8088% 1.7127%
4 Mezzanine 3 10 15 0.0009% 0.2638% 1.1879%
5 Senior 15 30 0.0000% 0.0273% 0.6100%

For t = 0 To P

Cells(3 + a, 15 + t) = Tranche_Cum_Percentage_Loss

(a, t)

Next t

Next a

End Sub

To demonstrate the simulation of CDO tranches, we use the hypothetical CDO in
Table 7.3withM = 50, 000. This CDO consists of N = 100 loanswith LGDi = 50%
and EADi = 100. Its payment dates are 1, 2, 3, and 4 years, and the initial term
structure is flat at 5%. We then compute the corresponding premium of each tranche
for different values of default probability p (the same applies to all loans) and factor
sensitivity w. The results are displayed in Tables 7.4 and 7.5.
It can be seen from Table 7.4 that the premium of each tranche is a positive

function of the probability of default p. The impact of default correlation on the
tranche premium is slightly more delicate. Table 7.5 shows that a higher default
correlation w decreases the premium of an equity tranche because it increases the
probability that no default will occur. However, the opposite is true for the second
and third mezzanine and senior tranches. The impact on the first mezzanine tranche
is not monotonic.

7.3 COPULA APPROACH TO CREDIT DERIVATIVE PRICING

This section begins by introducing the basic concepts of copulas. As previously
noted, two commonly used copulas are the Gaussian copula and the t-copula, and
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our simulation is thus based on these two copulas and shows their effects on the tail
dependence between random variables. To apply copula simulation to credit risk,
we deduce the valuation representation for an nth-to-default swap and describe the
corresponding Monte Carlo simulation, see Abid and Naifar (2007). The numerical
results are presented afterward.

7.3.1 Basic Concepts of Copulas

Every joint distribution function for a set of random variables implicitly contains
information on both the marginal behavior of individual random variables and their
dependence structure. The copula provides a way of isolating the latter information.

Definition 7.1 An n-dimensional copula, denoted as C(u1, . . . , un), is a distribution
function on [0, 1]n with standard uniform marginal distributions that exhibits the
following properties.

1. C(u1, . . . , un) is increasing in each component ui for i = 1, . . . , n.

2. C(1, . . . , 1, ui , 1, . . . , 1, ) = ui for i = 1, . . . , n and 0 ≤ ui ≤ 1.
3. For any (a1, . . . , an), (b1, . . . , bn) in [0, 1]n with ai ≤ bi ,

2∑
i1=1

· · ·
2∑

in=1
(−1)i1+···+in C(u1i1 , . . . , unin ) ≥ 0,

where ui1 = ai and ui2 = bi for i = 1, . . . , n.

We can also write

C(u1, . . . , un) = Pr(U1 ≤ u1, . . . , Un ≤ un),

where U1, . . . , Un are n uniform random variables.
The first property is clearly required for any multivariate distribution function. The

second is a restatement of the uniform marginal distribution functions, and the third
ensures that if U1, . . . , Un has a joint distribution function C , then Pr(a1 ≤ U1 ≤
b1, . . . , an ≤ Un ≤ bn) ≥ 0. For illustration, we present the third property for the
case that n = 2: for any a1, a2, b1, b2 in [0, 1] with a1 ≤ a2 and b1 ≤ b2, C(a2, b2)−
C(a2, b1)− C(a1, b2)+ C(a1, b1) ≥ 0.
The importance of copulas in the study of multivariate distribution functions is

illustrated by Sklar’s theorem, which states that all multivariate distribution functions
contain copulas and that copulas may be used in conjunction with univariate distri-
bution functions to construct multivariate distribution functions. Futher details about
copula are given in Joe (1997).

Theorem 7.1 Sklar’s Theorem Let F be a joint distribution function with marginal
distribution functions F1, . . . , Fn. Then, there exists a copula C : [0, 1]n → [0, 1]
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such that, for all x1, . . . , xn in [−∞, ∞],

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If the marginals are continuous, then C is unique; otherwise, C is uniquely determined
on RanF1 × · · · × RanFn, where RanFi denotes the range of Fi . Conversely, if C is a
copula and F1, . . . , Fn are univariate distribution functions, then function F defined
above is a joint distribution function with marginal distribution functions F1, . . . , Fn.

Sklar’s theorem asserts that a copula essentially combines marginal distributions
to form a joint distribution. For continuous distribution functions, the problem of
obtaining the joint distribution is reduced to selection of the appropriate copula.
Therefore, the critical question is “which copula should we use?” Although there is
no definite answer thus far, once the copula is given, simulation can be performed to
assist computation.
In the context of credit derivative pricing, copulas allow us to separate the depen-

dence structure between default times into two parts: the specification of the marginal
distribution functions of individual default times and the choice of an appropriate cop-
ula to describe the dependence structure between default times.

7.3.2 The Gaussian Copula and t-Copula

Although the Gaussian copula and t-copula are the most widely used copulas in the
literature, they are not always the most appropriate choices. Choice of the Gaussian
copula is substantiated if the individual marginal distribution functions are normal
distribution functions and the dependence structure can be fully described by the
covariance matrix. The simulation of the Gaussian copula is extremely easy. The
t-copula is also convenient to use because it requires the generation of only one
additional chi-square random variable (which is illustrated below), and it describes
tail dependence better than Gaussian copula.
Let us first consider the Gaussian copula. Let X1, . . . , Xn be n standard nor-

mal random variables with correlation matrix 	. Then, the distribution function
C	(u1, . . . , un) of the random variables Ui � �(Xi ) for i = 1, . . . , n, is a joint
cumulative distribution function of ui s, where � is the univariate standard normal
distribution function. The Gaussian copula is written as

CGaussian
	 (u1, . . . , un) = �	(�

−1(u1), . . . , �−1(un)),

where �−1 is the inverse of the univariate standard normal distribution function and
�	 is the joint normal distribution function with correlation matrix	. Its simulation
takes place as follows.

1. Compute the Cholesky decomposition L of 	, that is, 	 = LLT .

2. Simulate a standard normal random vector Z = (Z1, . . . , Zn)T , where the Zi ’s
are independent standard normal random variables.
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3. X = L Z (such that X ∼ N(0, 	)).

4. U = (�(X1), . . . , �(Xn)) is a random vector from the n-dimensional Gaussian
copula CGaussian

	 .

The VBA code for the Gaussian copula is as follows.

Public Function Gaussian_Copula(Correlation_Matrix As

Variant, N As Long) As Variant

' This function generates random numbers from Gaussian copula

' Input:

' Correlation_Matrix: the correlation matrix of the standard

normal random variables

' N: the number of Monte Carlo simulations

Dim M As Long ' the dimension of the multivariate normal

distribution

M = UBound(Correlation_Matrix, 1)

Dim X() As Double ' a vector storing the normal random

variables

ReDim X(1 To M) As Double

Dim Y() As Double ' a matrix storing the random numbers

generated from Gaussian

copula ReDim Y(1 To N, 1 To M) As Double

Dim L As Variant ' the Cholesky decomposition

L = CDecom(Correlation_Matrix)

Dim i As Long ' the running index for simulations

Dim j As Long ' the running index for the dimension of

the multivariate normal distribution

' Monte Carlo simulations

For i = 1 To N

X = rCGauss(L)

For j = 1 To M

Y(i, j) = Application.WorksheetFunction.NormSDist(X(j))

Next j

Next i

Gaussian_Copula = Y

End Function

------------------------------------------------------------
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Sub Simulate_Gaussian_Copula()

Dim Correlation_Matrix As Variant ' the correlation matrix

Correlation_Matrix = Range("A2:B3")

Dim M As Long ' the dimension of the multivariate normal

distribution

M = UBound(Correlation_Matrix, 1)

Dim N As Long ' the number of Monte Carlo simulations

N = Range("A6")

Dim Random_Numbers As Variant ' a matrix storing the

random numbers generated from Gaussian copula

Random_Numbers = Gaussian_Copula(Correlation_Matrix, N)

Dim i As Long ' the running index for simulations

Dim j As Long ' the running index for the dimension of the

multivariate normal distribution

For i = 1 To N

For j = 1 To M

Cells(8 + i, j) = Random_Numbers(i, j)

Next j

Next i

End Sub

The function rGauss can be found in Chapter 1, and CDecom and
rCGauss can be found in Chapter 3. For further details, please refer to
Ch7.4_Simulation_of_Gaussian_Copula.xls.
We now consider the t-copula. In financial modeling, the main reason for the use

of t-distribution is that it has fatter tails than the normal distribution and is thus better
able to model tail events. The t-copula with ν degrees of freedom and correlation
matrix 	 is written as

C t
ν,	(u1, . . . , un) = tν,	(t

−1
ν (u1), . . . , t−1

ν (un)),

where tν is the univariate standard t-distribution function with ν degrees of freedom,
and tν,	 is the joint t-distribution function with ν degrees of freedom and correlation
matrix 	. Its simulation proceeds as follows.

1. Compute the Cholesky decomposition L of 	, that is, 	 = LLT .

2. Simulate a standard normal random vector Z = (Z1, . . . , Zn)T , where the Zi ’s
are independent standard normal random variables.
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3. Simulate a random variable Y (independent of Z) from the chi-square distri-
bution with ν degrees of freedom.

4. X = L Z
√

ν
Y .

5. U = (tν(X1), . . . , tν(Xn)) is a random vector from the n-dimensional t-copula
C t

ν,	 .

The VBA code for the t-copula is as follows.

Public Function t_Copula(Correlation_Matrix As Variant,

DOF As Long, N As Long) As Variant

' This function generates random numbers from t-copula

' Input:

' Correlation_Matrix: the correlation matrix of the standard

normal random variables

' DOF: the degrees of freedom of the t-distribution

' N: the number of Monte Carlo simulations

Dim M As Long ' the dimension of the multivariate normal

distribution

M = UBound(Correlation_Matrix, 1)

Dim L As Variant ' the Cholesky decomposition

L = CDecom(Correlation_Matrix)

Dim X() As Double ' a vector storing the normal random

variables

ReDim X(1 To M) As Double

Dim Y As Double ' a Chi-squared random variable

Dim Z() As Double ' a matrix storing the random numbers

generated from t-copula

ReDim Z(1 To N, 1 To M) As Double

Dim i As Long ' the running index for simulations

Dim j As Long ' the running index for the dimension of the

multivariate normal distribution

' Monte Carlo simulations

For i = 1 To N

X = rCGauss(L)

Y = Application.WorksheetFunction.ChiInv(Rnd, DOF)

For j = 1 To M

Z(i, j) = Application.WorksheetFunction.T_Dist

(Sqr(DOF / Y) * X(j), DOF, True)
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Next j

Next i

t_Copula = Z

End Function

------------------------------------------------------------

Sub Simulate_t_Copula()

Dim Correlation_Matrix As Variant ' the correlation matrix

Correlation_Matrix = Range("A2:B3")

Dim M As Long ' the dimension of the multivariate normal

distribution

M = UBound(Correlation_Matrix, 1)

Dim DOF As Long ' the degrees of freedom of the t-distribution

DOF = Range("A6")

Dim N As Long ' the number of Monte Carlo simulations

N = Range("A9")

Dim Random_Numbers As Variant ' a matrix storing the random

numbers generated from ' t-copula

Random_Numbers = t_Copula(Correlation_Matrix, DOF, N)

Dim i As Long ' the running index for simulations

Dim j As Long ' the running index for the dimension of the

multivariate normal distribution

For i = 1 To N

For j = 1 To M

Cells(11 + i, j) = Random_Numbers(i, j)

Next j

Next i

End Sub

For further details, please refer to Ch7.4_Simulation_of_t_Copula.xls.

7.3.3 Modeling Joint Default Times with Copulas

The copula approach can be applied to reduced-form models of Jarrow and Turnbull
(1995) and detailed in Duffie (2001) that work directly with the calibrated default
time distribution. For each loan i , for i = 1, . . . , N , denote τi as the default time,
which is a non-negative random variable. Let Fi (t) be the cumulative distribution
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function of τi and fi (t) be the corresponding probability density function, that is,

Fi (t) = Q(τi ≤ t),

fi (t) = d

dt
Fi (t).

The first line is the probability of loan i defaulting before time t .
Define hi (t) as the hazard rate or intensity process of τi , such that it is the

probability that loan i will default at time t + �t given that it has survived up to time
t . Mathematically,

hi (t) = fi (t)

1− Fi (t)
= 1

1− Fi (t)

d

dt
F(t) = lim

�t→0

Q(t < τi ≤ t + �t |τi > t)

�t

or

Fi (t) = 1− exp
(
−

∫ t

0
hi (s) ds

)
.

The survival function, which is the probability that loan i will not default before time
t , is defined as

Si (t) = 1− Fi (t) = exp
(
−

∫ t

0
hi (s) ds

)
.

The default time τi is now defined as

τi � inf
{

t ≥ 0 :
∫ t

0
hi (s) ds ≥ θi

}
,

where θi is an exponential random variable with parameter 1.
In the context of pricing credit derivatives that are sensitive to default correlation

between loans, not only do we need to model the individual default time distributions,
Fi (t), but also consider the joint distribution of default times, τi :

F(t1, . . . , tN ) = Q(τ1 ≤ t1, . . . , τN ≤ tN ).

The joint survival time distribution is then given by

S(t1, . . . , tn) = Q(τ1 > t1, . . . , τN > tN ).

The choice of a dependence structure between default times drives the prices of
basket default swaps. Copula functions allow us to separate the problem of modeling
default times into two parts: specification of the marginal distribution functions and
the choice of a suitable copula to describe the dependence structure between default
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times. Then, the marginal distributions together with the choice of a suitable copula
are sufficient to specify the full joint distribution of default times.

7.3.4 Pricing Basket Default Swaps

The most common type of basket default swap is the first-to-default swap, in which
the seller compensates the buyer for any loss of principal and the accrued interest
on the first asset in the reference basket to default. In turn, the buyer pays a fixed
amount of money to the seller periodically. Similarly, an nth-to-default swap provides
protection against the nth default in the underlying pool of credits.
Suppose that the current time is denoted by t0. Consider an nth-to-default swap

that contains N underlying loans and pays a spread s(n) at dates t1, . . . , tM . The
buyer’s periodic payments to the seller until the nth default are denoted by P L (n), the
premium leg; the seller’s payment to the buyer in case of the default of the underlying
credit is denoted by DL (n), the default leg, including any accrued payment, denoted by
AP (n). Let� denote the year fraction representing the period between payments, for
example,� = 0.25 for quarterly payments and� = 1 for annual payments and so on.
P(t0, t j ) denotes the non-stochastic discount factor for maturity t j for j = 1, . . . , M .
Now, our problem is to determine the fair value of s(n), the fixed periodic payment
that the buyer has to pay.
For ease of modeling, we further assume that all loans share the same recovery

rate R, the risk-free interest rate r is the same for all maturities, such that P(t0, t j ) =
e−r t j (alternatively, we could interpolate the zero rates between payment dates, but
this would complicate the computation involved), and the correlation matrix for
generating the random normal vector is such that the diagonal elements are 1 and the
off-diagonal elements are ρ. Moreover, the marginal distributions of the loan default
times must be known and, for simplicity, are assumed to share the same constant
intensity, that is, hi (t) = h for i = 1, . . . , N .
Now, the pricing of the nth-to-default swap depends on the time that the nth default

occurs. The dependence structure of the default times of different loans is modeled
by either a Gaussian copula or t-copula.
The premium legs are paid by the protection buyer until n names have defaulted.

Define a counting process N (t) �
∑N

j=1 1{τ j <t}, which counts the number of defaults
in the basket before t . The present value of the premium leg of the nth-to-default
swap is given by

E[P L (n)] = s(n)�
M∑

i=1
P(t0, ti )E

[
1{N (ti )<n}

]
. (7.7)

In this expression, the expectation is difficult to compute analytically if the τ j ’s have
had some dependence structure imposed. Thus, it is better to compute the expectation
via simulation: for each simulation run, at each time point ti , if the number of default
times that are less than ti is less than n, then the indicator function should be increased
by a magnitude of 1; otherwise, nothing is done.
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The present value of any accrued paymentmade by the protection seller is given by

E[AP (n)] = s(n)�
M∑

i=1
E
[τn − ti−1

ti − ti−1
P(t0, τn)1{ti−1<τn≤ti }

]

= s(n)
M∑

i=1
E
[
(τn − ti−1)P(t0, τn)1{ti−1<τn≤ti }

]
. (7.8)

In this expression, we compute the expectation using simulation: for each simula-
tion run, if τn ∈ (ti−1, ti ], then the present value of the accrued payment should be
increased by (τn − ti−1)P(t0, τn); otherwise, nothing is done.
For the second part of the pricing procedure, if the nth default occurs before

maturity tM , then the protection seller must pay the difference between the par value
and the recovery rate of the loan in question. Thus, the present value of the default
leg is given by

E[DL (n)] = (1− R)E
[

P(t0, τn)1{τn≤tM }
]
. (7.9)

Again, in the foregoing expression, we compute the expectation using simulation: for
each simulation run, if τn ≤ tM , then the present value of the default premium should
be increased by the amount B(0, τn); otherwise, nothing is done.
Now, similar to an interest rate swap (IRS) contract, the fair spread s(n) for the

nth-to-default swap is computed by equating the present values of the protection
buyer’s payoff in Equations 7.7 and 7.8 and the protection seller’s payoff in Equation
7.9. As a result,

s(n) =
(1− R)E

[
P(t0, τn)1{τn≤tM }

]
�

∑M
i=1 P(t0, ti )E

[
1{N (ti )<n}

]
+ ∑M

i=1 E
[
(τn − ti−1)P(t0, τn)1{ti−1<τn≤ti }

] .

(7.10)

The algorithm for computing the fair spread s(n) for the nth-to-default swap can be
summarized as follows.

1. Simulate an N -dimensional vector of correlated uniform random variables
U = (U1, . . . , UN ) from a selected copula (CGaussian

	 or C t
ν,	).

2. Compute the default time of loan i by setting τi = − 1
h logUi for i = 1, . . . , N .

3. Sort the default times so computed and determine the nth default time, which
is also denoted by τn for convenience.

4. Based on the realization of τn , compute E[P L (n)] by Equation 7.7, E[AP (n)]
by Equation 7.8 and E[DL (n)] by Equation 7.9.

5. Repeat Steps 1 to 4 for the required number of simulations.

6. Compute s(n) by Equation 7.10.
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The VBA code for this algorithm is as follows.

Sub Basket_Default_Swaps_Spread()

Dim i As Long ' the running index for simulations
Dim j As Long ' the running index for loans
Dim k As Long ' the running index for payment periods
Dim m As Long ' the running index for the number to default

Dim Number_Of_Loans As Long ' the number of loans in the
basket default swap
Number_Of_Loans = Range("E1")

Dim Number_To_Default As Long ' the number to default
'(e.g. 1 for first-to-default swap)

Dim Maturity As Double ' the maturity of the swap
Maturity = Range("E2")

Dim Delta As Double ' payment period
Delta = Range("E3")

Dim Recovery_Rate As Double ' the recovery rate
Recovery_Rate = Range("E4")

Dim Risk_Free_Rate As Double ' the risk-free interest rate
Risk_Free_Rate = Range("E5")

Dim Default_Intensity As Double ' the default intensity
for all loans
Default_Intensity = Range("E6")

Dim rho As Double ' the correlation coefficient between loans
rho = Range("E7")

Dim DOF As Long ' the degrees of freedom of t-Student
distribution
DOF = Range("E8")

Dim Number_Of_MC As Long ' the number of Monte Carlo
simulations
Number_Of_MC = Range("E9")

Dim Number_Of_Payments As Long ' the number of premium
payments
Number_Of_Payments = Maturity / Delta

' construct the correlation matrix
Dim Correlation_Matrix() As Double ' the correlation matrix
for all loans
ReDim Correlation_Matrix(1 To Number_Of_Loans, 1 To Number_
Of_Loans) As Double
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For i = 1 To Number_Of_Loans
Correlation_Matrix(i, i) = 1
For j = 1 To (i - 1)

Correlation_Matrix(i, j) = rho
Correlation_Matrix(j, i) = rho

Next j
Next i

' simulate the default times using a specific copula
Dim Random_Numbers As Variant ' a matrix storing the random
numbers generated from copula
Random_Numbers = Gaussian_Copula(Correlation_Matrix,Number_
Of_MC)
'Random_Numbers = t_Student_Copula(Correlation_Matrix, DOF,
Number_Of_MC)

Dim Default_Time() As Double ' a matrix storing the simulated
default times
ReDim Default_Time(1 To Number_Of_MC, 1 To Number_Of_Loans)
As Double

For i = 1 To Number_Of_MC
For j = 1 To Number_Of_Loans

Default_Time(i, j) = -Application.WorksheetFunction.Log
(Random_Numbers(i, j), Exp(1))_

/ Default_Intensity
Next j

Next i

For m = 1 To Number_Of_Loans

Number_To_Default = m

' the value of premium leg
Dim Premium_Leg_Payment As Double ' the expected value of
premium leg payments
Premium_Leg_Payment = 0

Dim Indicator_1() As Integer, Indicator_2 As Long

For k = 1 To Number_Of_Payments

' reset the indicators for recursive computations
ReDim Indicator_1(1 To Number_Of_MC) As Integer

Indicator_2 = 0

For i = 1 To Number_Of_MC
For j = 1 To Number_Of_Loans

If Default_Time(i, j) < k * Delta Then
Indicator_1(i) = Indicator_1(i) + 1

End If
Next j

If Indicator_1(i) < Number_To_Default Then
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Indicator_2 = Indicator_2 + 1
End If

Next i

Premium_Leg_Payment = Premium_Leg_Payment + Delta_
* Exp(-Risk_Free_Rate * k * Delta) * Indicator_2 / Number_
Of_MC

Next k

' the value of default leg
Dim Default_Leg_Payment As Double ' the expected value
of default leg payment
Default_Leg_Payment = 0

Dim Sort_Default_Time() As Double ' a matrix storing the
sorted default times
ReDim Sort_Default_Time(1 To Number_Of_MC, 1 To Number_
Of_Loans) As Double

Dim X() As Double ' a vector storing the sorted default
times for each simulation
ReDim X(1 To Number_Of_Loans) As Double

For i = 1 To Number_Of_MC
For j = 1 To Number_Of_Loans

X(j) = Default_Time(i, j)
Next j

Call Sort(X)

For j = 1 To Number_Of_Loans
Sort_Default_Time(i, j) = X(j)

Next j

If Sort_Default_Time(i, Number_To_Default) < Maturity Then
Default_Leg_Payment = Default_Leg_Payment + (1 -
Recovery_Rate)_* Exp(-Risk_Free_Rate * Sort_Default_

Time(i, Number_To_Default))_/ Number_Of_MC
End If

Next i

' the value of accrued premium leg
Dim Accrued_Premium As Double ' the expected value of accrued
premium
Accrued_Premium = 0

For i = 1 To Number_Of_MC
For k = 1 To Number_Of_Payments

If Sort_Default_Time(i, Number_To_Default) > (k - 1)
* Delta Then

If Sort_Default_Time(i, Number_To_Default)
<= k * Delta Then

Accrued_Premium = Accrued_Premium +
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TABLE 7.6 Fair Spread (in Basis Points) for each n for Different Values of Correlation
Coefficient ρ Under the Gaussian Copula

n/ρ 0 0.30 0.60 0.90 0.99 0.9999 0.999999

1 350.8567 274.1034 186.9972 105.7419 64.9789 51.5093 49.4531
2 53.2560 84.3659 83.5521 71.7510 57.5465 51.0162 49.4437
3 5.6398 28.4413 44.0008 54.7973 52.4440 50.6213 49.4379
4 0.2757 9.3991 23.4578 43.4146 48.9299 50.2328 49.2981
5 0 3.1089 12.3381 34.1035 45.9969 49.9097 49.2931
6 0 1.1314 6.5860 25.0512 42.4798 49.6479 49.1527
7 0 0.3559 2.5424 16.0250 37.6418 48.8222 48.9423

(Sort_Default_Time(i, Number_To_Default)_
- (k - 1) * Delta) * Exp(-Risk_Free_Rate_
* Sort_Default_Time(i, Number_To_Default))_ /
Number_Of_MC

End If
End If

Next k
Next i

' the fair spread
Cells(11 + m, 1) = m
Cells(11 + m, 5) = 10000 * Default_Leg_Payment / (Premium_
Leg_Payment

+ Accrued_Premium)
Next m

End Sub

For further details, please refer to Ch7.4_Simulate_Basket_Default_Swaps.
We illustrate some of the properties of the fair spreads of nth-to-default swaps with

a numerical example. The base case is a 10-named (N = 10) basket default swap
with a maturity of 7 years (tM = 7), yearly payments (� = 1), common recovery
rate R = 0.50, risk-free rate r = 3%, common correlation coefficient ρ = 0, and
common default intensity h = 0.01. Using 10,000 simulations, we simulate the fair
spreads for different ρ and different h under the Gaussian copula in Tables 7.6 and
7.7 and under the t-copula with one degree of freedom in Tables 7.8 and 7.9.

TABLE 7.7 Fair Spread (in Basis Points) for each n for Different Values of Default Intensity h
with ρ = 0.3 Under the Gaussian Copula

n/h 0.01 0.02 0.03 0.04 0.05

1 350.8567 702.1314 1071.7572 1422.1331 1785.1786
2 53.2560 178.5964 333.3063 501.5467 678.5317
3 5.6398 35.6355 90.7334 170.6078 268.5898
4 0.2757 5.6109 17.6670 46.7268 82.1321
5 0 0.4746 2.1708 7.8541 17.1064
6 0 0.0665 0.3359 0.9438 2.1938
7 0 0 0 0 0.2094
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TABLE 7.8 Fair Spread (in Basis Points) for each n for Different Values of Correlation
Coefficient ρ Under the t-Copula with one Degree of Freedom

n/ρ 0 0.30 0.60 0.90 0.99 0.9999 0.999999

1 188.6003 151.0042 122.8948 80.4811 57.5275 53.2589 53.0871
2 107.9782 86.6332 80.1569 66.8475 53.0200 52.7921 53.0820
3 54.1441 48.7538 56.0535 57.0880 51.0691 52.6192 53.0784
4 21.6382 29.0083 39.2721 48.6607 49.2208 52.3853 53.0074
5 7.0076 16.3588 27.9897 42.5694 47.0928 52.2848 53.0044
6 1.1642 7.7185 17.0519 35.6854 44.2579 52.0407 53.0012
7 0.2139 1.9818 8.6611 27.1026 40.5154 51.6451 52.9283

TABLE 7.9 Fair Spread (in Basis Points) for each n for Different Values of Default Intensity h
Under the t-Copula with one Degree of Freedom

n/h 0.01 0.02 0.03 0.04 0.05

1 188.6003 405.7657 627.7755 894.8479 1167.3732
2 107.9782 216.9198 331.5728 482.4541 637.3077
3 54.1441 112.0211 165.7400 243.4331 322.9564
4 21.6382 50.6389 70.7762 101.9951 137.8195
5 7.0076 17.7783 23.3736 32.5411 45.3576
6 1.1642 2.9417 5.5829 7.0411 8.3710
7 0.2139 0.5858 0.6374 1.0236 1.5769

We can see from Tables 7.6 and 7.7 that (1) for each ρ, s(n) decreases with n;
(2) for n = 1, s(n) decreaseswithρ, for n = 2, 3, s(n) first increases and then decreases,
and for n ≥ 4, s(n) increases with ρ; and (3) as ρ → 1, s(n) → s for all n. The first
is obviously true. The second is more delicate. Because ρ represents the default
correlation, a higher ρ decreases s(1) because it increases the probability that no
default will occur. However, the opposite is true for s(4) to s(7). The impact is not
monotonic for s(2) and s(3). The third property is quite reasonable because the limit
ρ → 1 means that all of the loans default at the same time, and thus there is no
difference between a 1st-to-default swap and an N th-to-default swap.
Tables 7.8 and 7.9 show that s(n) is an increasing function of h for all n, which

is quite reasonable because the protection buyer should pay more to compensate the
protection seller for the strong likelihood of default.

7.4 COUNTERPARTY CREDIT RISK

Counterparty credit risk is the risk that the counterparty to a financial contract will
default prior to the expiration of the contract and fail to make all of the payments
required by the contract (Zhu and Pykhtin, 2007). Only contracts privately negotiated
between counterparties (i.e., OTC derivatives and security financing transactions)
are subject to such risk. Exchange-traded derivatives are not affected by such risk,
because the exchange guarantees the cash flows promised by the derivative to the
counterparties.
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It has been standard practice for derivative dealers to adjust the reported value
of their derivative transactions with a counterparty to reflect the counterparty credit
risk. This adjustment is referred to as CVA. The adjusted value of the derivative is
the no-default value (i.e., the theoretical price) less the CVA.
A derivatives dealer has one CVA for each counterparty. These CVAs are them-

selves derivatives and must be managed similarly to other derivatives. They are more
complex and more difficult to value than any of the derivative transactions between
the dealer and the counterparty because the CVA for the counterparty is contingent
upon the net value of the portfolio of derivatives outstanding with that counterparty.
Market variables that affect the no-default value of a dealer’s outstanding trans-

actions with a counterparty also affect the dealer’s CVA for that counterparty. In
addition, CVA is affected by the counterparty’s term structure of credit spreads. It
therefore gives rise to two types of exposures, namely, potential movements in the
underlying market variables and counterparty credit spread.
Transactions between a dealer and a counterparty are typically governed by an

International Swaps and Derivatives Association (ISDA) Master Agreement, which
specifies that all transactions between the two parties are to be netted and considered
as a single transaction in the event of early termination. The circumstances under
which one party can send an early termination notice to the other and the procedures
that are then used are specified in the ISDA Master Agreement.
Collateralization has become an important feature of the OTC derivative market.

An ISDAMaster Agreement typically has a credit support annex (CSA) that specifies
the rules governing the collateral that both parties must post. In particular, it specifies
a variety of items, including the threshold, independent amount, minimum transfer
amount (MTA), haircuts that will apply to assets that are posted as collateral, among
others. Suppose that the two parties are Party A and Party B, and Party B is required
to post collateral. The threshold is the unsecured credit exposure to Party B that Party
A is willing to bear. If the value of the derivative portfolio sold to Party A is less than
the threshold, then no collateral is required from Party B. If the value is greater than
the threshold, then the required collateral is equal to the difference between the value
and the threshold. The independent amount plays the same role as the initial margin
in a futures contract and can be regarded as a negative threshold. Failure to post the
required collateral by Party B is a default event that, unless corrected, leads to the
early termination of all outstanding transactions.
The use of CVA is emphasized by the new regulatory framework for banks known

as Basel III, which was published by the Basel Committee on Banking Supervision in
2010 and requires the dealer’s CVA risk arising from changes in counterparty credit
spreads to be identified and included in the calculation of capitalmarket risk.However,
the dealer’s CVA risk arising from changes in the underlying market variables are not
included in this calculation. Therefore, to manage both types of risk, it is necessary
to calculate CVA’s sensitivity to credit spreads and underlying market variables.

7.4.1 Exposure in Trading Derivatives with a Counterparty

7.4.1.1 Contract-Level Exposure If a counterparty in a derivative contract
defaults, then the dealer must close out his or her position with that counterparty. To
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determine the loss arising from a counterparty’s default, it is convenient to assume
that the dealer enters into a similar contract with another counterparty to maintain
the same market position. Because the dealer’s market position is unchanged after
replacing the contract, the loss is determined by the contract’s replacement cost at
the time of default.
If the contract value is negative for the dealer at the time of default, then the dealer

closes out the position by paying the defaulting counterparty the market value of the
contract and enters into a similar contract with another counterparty and receives the
market value of the contract. As a result, the dealer has a net loss of zero.
If the contract value is positive for the dealer at the time of default, then the dealer

closes out the position, but receives nothing from the defaulting counterparty and
enters into a similar contract with another counterparty and pays the market value
of the contract. As a result, the dealer has a net loss equal to the market value of the
contract.
Thus, the credit exposure of a dealer that has a single derivative contract with a

counterparty is the maximum of the market value of the contract and zero. Denote
the value of the derivative contract at time t by w(t). The contract-level exposure is
given by

E(t) = max{w(t), 0}. (7.11)

Because the contract value changes randomly over time as the market moves, only the
current (t = 0) exposure is knownwith certainty; future (t > 0) exposure is uncertain.
Moreover, as the derivative contract can be either an asset or a liability to the dealer,
counterparty risk is bilateral between the dealer and the counterparty.

7.4.2 Counterparty-Level Exposure

In general, if there is more than one trade with a defaulting counterparty and counter-
party risk is not mitigated in any way, then the maximum loss for the dealer is equal
to the sum of the contract-level credit exposure, that is,

E(t) =
∑

i

max{wi (t), 0}.

However, this exposure can be greatly reduced by means of netting agreements. A
netting agreement is a legally binding contract between two counterparties that, in
the event of default, allows the aggregation of transactions between the two, that is,
transactions with a negative value can be used to offset those with a positive value,
and the net positive value alone represents the credit exposure at the time of default.
Thus, the total credit exposure created by all transactions in a netting agreement is
reduced to the maximum of the net portfolio value and zero, that is,

E(t) = max
{∑

i

wi (t), 0
}
.
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7.4.3 Collateral Modeling for Margined Portfolios

Margin agreements are increasingly used by dealers to reduce counterparty credit
risk. A margin agreement is a legally binding contract that requires one or both
counterparties to post collateral when the non-collateralized exposure exceeds a
certain threshold and to post additional collateral if the excess grows larger. If the
excess declines, then part of the posted collateral (if there is any) is returned to bring
the difference back to the threshold. To reduce the frequency of collateral exchanges, a
MTA is specified, which ensures that no collateral transfer occurs unless the required
transfer amount exceeds the MTA.
The following time periods are essential for margin agreements.

1. Call period: the period that defines the frequency at which collateral is moni-
tored and called for (typically, 1 day).

2. Cure period: the time interval necessary to close out the counterparty and
re-hedge the resulting market risk.

3. Margin period of risk: the time interval from the last exchange of collateral
until the defaulting counterparty is closed out and the resulting market risk is
re-hedged. It is usually assumed to be the sum of the call and cure periods.

The default unwind date is the time at which the dealer is able to either (a)
replace the transactions it has with the counterparty or (b) unwind the hedges it has
for those transactions. In practice, the cure period is the time that elapses between
the counterparty ceasing to post collateral and the default unwind. It can be further
decomposed into two components. The first is the period of time that elapses between
the counterparty failing to post collateral (after a margin call) and the dealer declaring
an early termination. This is the time during which attempts are made to resolve
disputes between the dealer and the counterparty about the value of the portfolio,
whether the collateral demand is valid, and so on. The second is the time that elapses
between the dealer declaring an early termination and the default unwind date. It
depends on market conditions and the nature and size of the portfolio. A total cure
period of between 10 and 25 business days is commonly assumed.
Although margin agreements can reduce the counterparty exposure, they pose a

challenge in themodeling of collateralized exposure. Here, we outline a common pro-
cedure that is used by many dealers to model the effect of a margin call and collateral
requirements and show the calculation procedure for collateralized exposure.
As before, denote the value of the derivatives portfolio to the dealer at time t by

w(t). If no collateral is posted, then the non-collateralized exposure at time t , as given
by Equation 7.11, now denoted by ENC (t), is

ENC (t, w(t)) = max{w(t), 0}.

Next, suppose that the transactions are collateralized and the amount of collateral
that is required at time t isC(t). If early termination occurs as soon as the counterparty
fails to post the required collateral, then the collateralized exposure at time t , denoted
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by EC (t), is

EC (t, w(t)) = max{ENC (t)− C(t), 0}.

In the case of a zero threshold, C(t) = max{w(t), 0}. If threshold K is specified in
the margin agreement, then

C(t, w(t)) = max{w(t)− K , 0}. (7.12)

Further, suppose that the length of the cure period is denoted by c. If there is a
default unwind at time t , then the collateral available is C(t − c) in Equation 7.12,
and the net exposure is

EC (t, w(t)) = max{ENC (t, w(t))− C(t − c, w(t − c)), 0}. (7.13)

7.4.4 Credit Value Adjustment

By definition, CVA is the difference between the default-risk-free portfolio value and
the true portfolio value, which takes into account the possibility of a counterparty’s
default. In other words, CVA is the market value of counterparty credit risk.
Suppose that the current time is t = 0 and a dealer has a derivative contract with a

counterparty, in which the dealer’s collateralized exposure is given by Equation 7.13.
If the counterparty defaults at some future time t > 0, then the dealer will be able to
recover a constant fraction of exposure, which is denoted by R. Denote the default
time of the counterparty by τ . The discounted loss to the dealer can be written as

L∗ = 1{τ≤T }(1− R)D(τ )EC (τ,w(τ )),

where T is the maturity of the longest transaction in the portfolio, D(t) is the discount
factor from time t to time 0, and 1{·} is an indicator function that takes a value of one
if the argument is true (and zero otherwise).
CVA is the risk-neutral expectation of the discounted loss:

CVA = EQ[L∗]

= (1− R)EQ
[
1{τ≤T } D(τ )EC (τ,w(τ ))

]
, (7.14)

where the expectation corresponds to P D(t) � Q(0 ≤ τ ≤ t), the unconditional risk-
neutral probability of counterparty default between time 0 and time t . The risk-neutral
default probability can be obtained from the term structure of CDS data. For the
discount factor, it can be assumed that the risk-free interest rate is constant, that is,
D(t) = e−r t . Equation 7.14 is the foundational valuation formula for CVA.
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7.4.5 Independence of Probability of Default and Exposure

Assume that there is no dependence between the probability of default and the dealer’s

exposure. Denote V (t) = EQ
[

D(t)EC (t)
]
. Then,

CVA = (1− R)EQ
[
1{τ≤T }EQ

[
D(t)EC (t, w(t))

∣∣∣τ = t
]]

= (1− R)
∫ T

0
EQ

[
D(t)EC (t, w(t))

∣∣∣τ = t
]
dQ(t)

= (1− R)
∫ T

0
EQ

[
D(t)EC (t, w(t))

∣∣∣τ = t
]
dQ(t)

= (1− R)
∫ T

0
V (t, w(t))dQ(t). (7.15)

The variable w(t) in EC (t, w(t)) is the value of the derivative portfolio contract
at time t > 0 that the dealer has with a counterparty. It can be computed using the
closed-form formula in a simple model such as the BS model. V (t, w(t)) is the value
of a derivative that pays off EC (t, w(t)) at time t > 0. Therefore, CVA is a complex
derivative that is contingent upon the portfolio value. As noted earlier, it is much
more complex that any derivative traded between the dealer and the counterparty, and
thus is computed via Monte Carlo simulation.
To compute CVA using Monte Carlo simulation, partition the interval [0, T ] using

a set of times ti for i = 0, . . . , n, where 0 = t0 < t1 < · · · < tn = T . Then,

CVA = (1− R)
n∑

i=1
Vi (Qi − Qi−1), (7.16)

whereQi is the unconditional risk-neutral probability of no default occurring between
time 0 and time ti , and Vi = V (t∗

i ), where t∗
i = 1

2 (ti−1 + ti ). The Qi ’s are usually
calculated from the term structure credit spreads obtained from market data. If si is
the credit spread for maturity ti , then an estimate of the average risk-neutral hazard
rate between times 0 and ti is approximately

si
1−R . Then,

Qi = Q(τ ≤ ti )

= 1− Q(τ > ti )

= 1− exp
(
− si ti
1− R

)
.

It follows that the unconditional risk-neutral probability of default between times ti−1
and ti is

Q(ti−1 < τ ≤ ti ) = Q(τ ≤ ti )− Pr(τ ≤ ti−1)

= Qi − Qi−1

= max
{
exp

(
− si−1ti−1
1− R

)
− exp

(
− si ti
1− R

)
, 0

}
. (7.17)
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The maximum function is applied to ensure that the probability distribution function
is non-decreasing.
To calculate the Vi ’s, the market variables affecting the no-default value of a

dealer’s derivatives with a counterparty are simulated between times 0 and T in a
risk-neutral world. One approach is to arrange the simulation such that the value
of the dealer’s portfolio with the counterparty is calculated at times t∗

i − c and t∗
i

for i = 1, . . . , n, which means that on each simulation trial at each time t∗
i − c, the

collateral is determined by Equation 7.12. Then, at time t∗
i , the value of the dealer’s

portfolio with the counterparty is determined, and the dealer’s net exposure to that
counterparty is calculated using Equation 7.13. Vi is estimated as the present value
of the average of the calculated net exposures at time t∗

i for i = 1, . . . , n.
Moreover, CVA’s sensitivity to a small change, �s in all of the si ’s (a parallel

shift in the term structure of credit spreads) can be obtained through delta–gamma
approximation, and is given by

�(CVA) =
n∑

i=1

[
ti exp

(
− si ti
1− R

)
− ti−1 exp

(
− si−1ti−1
1− R

)]
Vi�s

+ 1

2(1− R)

n∑
i=1

[
t2i−1 exp

(
− si−1ti−1
1− R

)
− t2i exp

(
− si ti
1− R

)]
Vi (�s)2.

(7.18)

This equation enables CVA’s dependence on counterparty credit spreads to be
included in the bank’s model for calculating market risk capital. Equations 7.16,
7.17, and 7.18 correspond to the equations used in the Basel III advanced approach
to determining capital for CVA risk.
Calculation of CVA’s sensitivity to a small parallel shift in the counterparty’s term

structure of credit spreads is straightforward. However, calculation of the first and
second partial derivatives of CVA with respect to the underlying market variables
is generally more time-consuming. Consider a market variable w with initial value
w0. It is necessary to calculate the effect on the sampled paths of changing w0 to
w0 + ε and w0 − ε for a small ε when all random number streams are kept the same.
When the variable follows GBM, this is not too difficult because a small percentage
change at time zero leads to a same small percentage change at all future times on
all simulation trials. (This is true both when volatility is deterministic and when it is
stochastic.) For the other variables, such as those following mean reverting processes,
the impact of a change at time zero on the change at future times is liable to depend
on the path followed by the market variable.
Suppose that V +

i and V −
i are the values calculated for Vi when the initial value

of the underlying market variable is w0 + ε and w0 − ε, respectively. From Equation
7.16, it follows that

∂

∂u
CVA = 1− R

2ε

n∑
i

pi (V
+

i − V −
i ),

∂2

∂u2
CVA = 1− R

ε2

n∑
i

pi (V
+

i + V −
i − 2Vi ).
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TABLE 7.10 The Impact of Threshold K on a Long Forward Contract Given a Cure Period
c = 15 days

K = −20 K = −10 K = 0 K = 10 K = 20 K = 30

CVA 0.0152 0.0145 0.0121 0.0057 0.0020 0.0006
Delta w.r.t. credit spread 1.2023 1.1501 0.9623 0.4479 0.1552 0.0456
Gamma w.r.t. credit spread 0.7724 0.7454 0.6546 0.2455 0.0521 0.0083
Delta w.r.t. stock price 0.0179 0.0256 0.0558 0.0703 0.0285 0.0103

These equations enable the CVA risks relating to the underlying market variables to
be assessed and hedged. As already noted, under Basel III, CVA exposure arising
from the underlying market variables is not included in the calculation of market risk
capital.
Consider the following example.

Example 7.1 Suppose that the 0.25-year, 0.50-year, 0.75-year, and 1-year credit
spreads are 1.25%, that is, si = 1.25% for i = 1, 2, 3, 4. Compute the CVA for various
values of threshold K and cure period c of a long position in a forward contract on
a stock, where the initial stock price is 100, the strike price is 100, the maturity is 1
year, the risk-free rate is 5%, the volatility of the stock price is 0.15 and the recovery
rate is 0.4.

The results are presented in Tables 7.10 and 7.11. Note that the gammawith respect
to the stock price is not included because its convergence is not as good as that of the
other quantities (CVA, deltas, and gamma with respect to the credit spread).
The VBA code for simulating the CVA of a long forward contract is as follows.

Sub Sim_CVA_Long_Forward_Contract()

Dim i As Long ' a running index
Dim j As Long ' a running index
Dim Delta_t As Double ' a symbol for time

Dim Initial_Stock_Price As Double ' the initial stock price
Initial_Stock_Price = Range("E1")

Dim Maturity As Double ' the maturity of the forward contract
Maturity = Range("E2")

Dim Strike_Price As Double ' the strike price of the forward contract
Strike_Price = Range("E3")

TABLE 7.11 The Impact of Cure Period c given Threshold K = 10

c = 5 c = 10 c = 15 c = 20 c = 25 c = 30

CVA 0.0031 0.0045 0.0057 0.0069 0.0079 0.0086
Delta w.r.t. credit spread 0.2466 0.3593 0.4479 0.5464 0.6216 0.6832
Gamma w.r.t. credit spread 0.1407 0.2052 0.2455 0.3116 0.3541 0.3978
Delta w.r.t. stock price 0.0384 0.0558 0.0703 0.0882 0.1003 0.1125
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Dim Risk_Free_Rate As Double ' the risk-free interest rate
Risk_Free_Rate = Range("E4")

Dim Volatility As Double ' the volatility
Volatility = Range("E5")

Dim Recovery_Rate As Double ' the recovery rate
Recovery_Rate = Range("E6")

Dim Threshold As Double ' the threshold
Threshold = Range("E7")

Dim Cure_Period As Double ' the cure period
Cure_Period = Range("E8") / 360

Dim Number_Of_MC As Long ' the number of Monte Carlo
simulations
Number_Of_MC = Range("E9")

Dim Number_Of_Credit_Spread As Long ' the number of credit spreads
Number_Of_Credit_Spread = Application.Count(Range
("A12:A65536"))

Dim Maturity_Of_Credit_Spread() As Double ' the maturities
of credit spreads
ReDim Maturity_Of_Credit_Spread(0 To Number_Of_Credit_Spread)
For i = 1 To Number_Of_Credit_Spread

Maturity_Of_Credit_Spread(i) = Range("A" & 11 + i)
Next i

Dim Credit_Spread() As Double ' the values of credit spreads
ReDim Credit_Spread(0 To Number_Of_Credit_Spread)
For i = 1 To Number_Of_Credit_Spread

Credit_Spread(i) = Range("C" & 11 + i)
Next i

Dim Probability_Of_Default() As Double ' the unconditional
probability of default
ReDim Probability_Of_Default(0 To Number_Of_Credit_Spread)
For i = 1 To Number_Of_Credit_Spread

Probability_Of_Default(i) = (Exp(-Credit_Spread(i - 1)
* Maturity_Of_Credit_Spread(i - 1)_
/ (1 - Recovery_Rate)) - Exp(-Credit_Spread(i) * Maturity_
Of_Credit_Spread(i)_
/ (1 - Recovery_Rate)))
Next i

Dim Time() As Double ' a time variable of stock price paths,
including cure period,
' that is, t_0, t_1ˆ*-c, t_1ˆ*, t_2ˆ*-c,
t_2ˆ*, ... , t_nˆ*-c,
' t_nˆ*
' where t_iˆ* = 1/2*(t_i-1 + t_i)
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ReDim Time(0 To 2 * Number_Of_Credit_Spread)
For i = 1 To Number_Of_Credit_Spread

Time(2 * i - 1) = 1 / 2 * (Maturity_Of_Credit_Spread
(i - 1) + Maturity_Of_Credit_Spread(i))_ - Cure_Period
Time(2 * i) = 1 / 2 * (Maturity_Of_Credit_Spread(i - 1)

+ Maturity_Of_Credit_Spread(i))
Next i

Dim Stock_Price_Path() As Double ' the stock price paths
ReDim Stock_Price_Path(1 To Number_Of_MC, 0 To 2 * Number_
Of_Credit_Spread)
For i = 1 To Number_Of_MC

Stock_Price_Path(i, 0) = Initial_Stock_Price
Next i

Dim Value_Of_Derivative() As Double ' the value of derivative
for v(t)
ReDim Value_Of_Derivative(1 To Number_Of_MC, 0 To 2 * Number_
Of_Credit_Spread)

Dim Value_Of_Derivative_up() As Double ' the value of
derivative for vˆ+(t)
ReDim Value_Of_Derivative_up(1 To Number_Of_MC, 0 To 2 *
Number_Of_Credit_Spread)

Dim Value_Of_Derivative_down() As Double ' the value of
derivative for vˆ-(t)
ReDim Value_Of_Derivative_down(1 To Number_Of_MC, 0 To 2 *
Number_Of_Credit_Spread)

Dim Net_Exposure() As Double ' the net exposure for v(t)
ReDim Net_Exposure(1 To Number_Of_MC)

Dim Net_Exposure_up() As Double ' the net exposure for vˆ+(t)
ReDim Net_Exposure_up(1 To Number_Of_MC)

Dim Net_Exposure_down() As Double ' the net exposure for vˆ-(t)
ReDim Net_Exposure_down(1 To Number_Of_MC)

Dim v() As Double ' the value of v(t) for each time point
ReDim v(1 To Number_Of_Credit_Spread)

Dim v_up() As Double ' the value of vˆ+(t) for each time point
ReDim v_up(1 To Number_Of_Credit_Spread)

Dim v_down() As Double ' the value of vˆ-(t) for each time point
ReDim v_down(1 To Number_Of_Credit_Spread)

Dim epsilon As Double
epsilon = 0.0001

' simulate the stock price paths on t_0, t_1ˆ*-c, t_1ˆ*,
t_2ˆ*-c, t_2ˆ*, ... , ' t_nˆ*-c, t_nˆ*
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For i = 1 To Number_Of_MC
For j = 1 To 2 * Number_Of_Credit_Spread

Delta_t = Time(j) - Time(j - 1)
Stock_Price_Path(i, j) = Stock_Price_Path(i, j - 1)_

* Exp((Risk_Free_Rate - 1 / 2 * Volatility ˆ 2) * Delta_t_
+ Volatility * Sqr(Delta_t) * rGauss())

Value_Of_Derivative(i, j) = Stock_Price_Path(i, j) -
Strike_Price_

* Exp(-Risk_Free_Rate * (Maturity - Time(j)))
Value_Of_Derivative_up(i, j) = (1 + epsilon) * Stock_
Price_Path(i, j) - Strike_Price_

* Exp(-Risk_Free_Rate * (Maturity - Time(j)))
Value_Of_Derivative_down(i, j) = (1 - epsilon)
* Stock_Price_Path(i, j) - Strike_Price_

* Exp(-Risk_Free_Rate * (Maturity - Time(j)))
Next j

Next i

' compute the value of v(t), vˆ+(t) and vˆ-(t) at time t_jˆ*
For j = 1 To Number_Of_Credit_Spread

For i = 1 To Number_Of_MC
Net_Exposure(i) = Exp(-Risk_Free_Rate * Time(2 * j))_

* Max(Max(Value_Of_Derivative(i, 2 * j) - Threshold, 0)_
- Max(Value_Of_Derivative(i, 2 * j - 1) - Threshold, 0), 0)

Net_Exposure_up(i) = Exp(-Risk_Free_Rate * Time(2 * j))
* Max(_

Max(Value_Of_Derivative_up(i, 2 * j) - Threshold, 0)_
- Max(Value_Of_Derivative_up(i, 2 * j - 1) -
Threshold, 0), 0)

Net_Exposure_down(i) = Exp(-Risk_Free_Rate *
Time(2 * j)) * Max(_

Max(Value_Of_Derivative_down(i, 2 * j) - Threshold, 0)_
- Max(Value_Of_Derivative_down(i, 2 * j - 1) -
Threshold, 0), 0)

Next i

v(j) = Average(Net_Exposure)
v_up(j) = Average(Net_Exposure_up)
v_down(j) = Average(Net_Exposure_down)

Next j

Dim CVA As Double ' the CVA
Dim Delta_CVA_Spread As Double ' the delta of CVA with respect

to a parallel shift in
' the term structure of credit spreads

Dim Gamma_CVA_Spread As Double ' the gamma of CVA with respect
to a parallel shift in

' the term structure of credit spreads
Dim Delta_CVA_Price As Double ' the delta of CVA with respect

to a 0.01&VERBATIMpercent; change in
' stock price

Dim Gamma_CVA_Price As Double ' the gamma of CVA with respect
to a 0.01&VERBATIMpercent; change in

' stock price
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' compute the CVA and its delta and gamma with respect to
spread and stock price

For j = 1 To Number_Of_Credit_Spread
CVA = CVA + (1 - Recovery_Rate) * Probability_Of_
Default(j) * v(j)
Delta_CVA_Spread = Delta_CVA_Spread + (Maturity_Of_
Credit_Spread(j)_

* Exp(-Credit_Spread(j) * Maturity_Of_Credit_Spread(j) /
(1 - Recovery_Rate))_
- Maturity_Of_Credit_Spread(j - 1)_
* Exp(-Credit_Spread(j - 1) * Maturity_Of_Credit_Spread
(j - 1)
/ (1 - Recovery_Rate)))
* v(j)
Gamma_CVA_Spread = Delta_CVA_Spread + 1 / (2 * (1 -
Recovery_Rate))_

* (Maturity_Of_Credit_Spread(j - 1) ˆ 2_
* Exp(-Credit_Spread(j - 1) * Maturity_Of_Credit_Spread(j -
1) / (1 - Recovery_Rate))_
- Maturity_Of_Credit_Spread(j) ˆ 2_
* Exp(-Credit_Spread(j) * Maturity_Of_Credit_Spread(j) /
(1 - Recovery_Rate))) * v(j)

Delta_CVA_Price = Delta_CVA_Price + (1 - Recovery_Rate) /
(2 * epsilon)_
* Probability_Of_Default(j) * (v_up(j) - v_down(j))

Gamma_CVA_Price = Gamma_CVA_Price + (1 - Recovery_Rate) /
(epsilon ˆ 2)_
* Probability_Of_Default(j) * (v_up(j) + v_down(j) - 2 * v(j))

Next j

Range("F" & 12) = CVA
Range("F" & 15) = Delta_CVA_Spread
Range("F" & 18) = Gamma_CVA_Spread
Range("F" & 21) = Delta_CVA_Price
Range("F" & 24) = Gamma_CVA_Price
End Sub

For more details, please refer to Ch7.5_Simulate_CVA_Long_Forward_Contract.
Now, using the same set of parameters, we repeat the foregoing computation

for a short position in a forward contract on a stock. The results are presented
in Tables 7.12 and 7.13. For the VBA code and other details, please refer to
Ch7.5_Simulate_CVA_Short_Forward_Contract.

TABLE 7.12 The Impact of Threshold K on a Short Forward Contract Given a Cure Period
c = 15 days

K = −20 K = −10 K = 0 K = 10 K = 20 K = 30

CVA 0.0140 0.0115 0.0052 0.0011 0.0002 0.00001
Delta w.r.t. credit spread 1.1102 0.9088 0.4089 0.0899 0.0126 0.0009
Gamma w.r.t. credit spread 0.7517 0.6298 0.2361 0.0298 0.0007 −0.0004
Delta w.r.t. stock price −0.0035 −0.0346 −0.0582 −0.0156 −0.0031 −0.0003
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TABLE 7.13 The Impact of Cure Period c on a Short Forward Contract Given Threshold K = 10

c = 5 c = 10 c = 15 c = 20 c = 25 c = 30

CVA 0.0007 0.0009 0.0011 0.0014 0.0016 0.0017
Delta w.r.t. credit spread 0.0516 0.0721 0.0899 0.1091 0.1230 0.1351
Gamma w.r.t. credit spread 0.0163 0.0222 0.0298 0.0331 0.0417 0.0422
Delta w.r.t. stock price −0.0080 −0.0120 −0.0156 −0.0187 −0.0216 −0.0247

7.4.6 Modeling Right-Way and Wrong-Way Risks

It must be emphasized that the expectation of the net exposure at time t in Equation
7.14 is conditional on the counterparty defaulting at time t . Such conditionality is
material when there is significant dependence between the counterparty’s probability
of default and the dealer’s exposure to the counterparty. This dependence is known
as right-way risk or wrong-way risk.
The risk is described as wrong-way risk if the probability of default by the coun-

terparty tends to be high (low) and the dealer’s exposure to the counterparty is high
(low). An example is a dealer who enters into a swap with an oil producer in which
the former receives a fixed and pays a floating crude oil price, because a lower oil
price simultaneously increases the oil producer’s probability of default and increases
the value of the swap to the dealer. Another example is that of a dealer who buys
credit protection on an underlying reference entity whose credit quality is positively
correlated with that of the counterparty to the trade. As the credit quality of the
reference name worsens, so does that of the reference name, thereby increasing the
value of the credit protection purchased by the dealer.
In contrast, the risk is considered a right-way risk if the probability of default by

the counterparty tends to be high (low) and the dealer’s exposure to the counterparty
is low (high). One example is that of a dealer who enters into a swap with an oil
producer, in which the dealer pays a fixed and receives a floating crude oil price.
Another example is that of a dealer selling credit protection on a reference name
whose credit quality is positively correlated with that of the counterparty.
Hence, a subjective judgment on the degree of wrong- or right-way risk in trans-

actions with a counterparty requires good knowledge of the counterparty’s business,
particularly knowledge of the nature of the risks facing the business and of the
transactions the counterparty has entered into with other dealers.
To model right-way/wrong-way risk, a hazard rate function, h(t), which is a

function of the variable or variables that may affect the dealer’s exposure to the coun-
terparty, is introduced to parameterize the probability of default by the counterparty.
The hazard rate function is defined such that

Q(t < τ ≤ t + dt|τ > t) = h(t) dt.

It can be shown that

Q(τ > t) = exp
(
−

∫ t

0
h(s) ds

)
,
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which is the probability that there will be no default between time 0 and time t . If the
hazard rate function is constant, then it is simply exp(−ht). If it is determined by a
stochastic variable x(t), then it can be written as h(t, x(t)), and

Q(τ > t |{x(s) : 0 ≤ s ≤ t}) = exp
(
−

∫ t

0
h(s, x(s)) ds

)
.

The probability of no default between time 0 and time t is the default’s expected
value. Hence, if the hazard rate function depends in a certain sense on a stochastic
variable x that affects the dealer’s exposure, then the probability of default by the
counterparty can be related to x in such a way that right-way/wrong-way risk is
incorporated into the CVA calculation.
Hence, the next step is to assume a relationship between the hazard rate function

of the counterparty and the stochastic variable x that affects the dealer’s exposure to
that counterparty. A straightforward approach is to set x equal to w, the value of the
dealer’s exposure to the counterparty. If there is no relationship between the hazard
rate function and w, then there is no right-way/wrong-way risk, whereas a positive
relationship represents wrong-way risk and a negative relationship right-way risk.
More specifically, the following functional form of the hazard rate function is used.

h(t, w(t)) = exp (a(t)+ bw(t)) ,

where a(t) is a deterministic function of t , and b is a constant parameter. Equation
7.14 still applies with more technicality.
The problem of the intensity of the counterparty default time being correlated

with the underlying market variable can be resolved using techniques from credit
derivative pricing.
Under the risk-neutral measure, consider two filtrations, {Ft }T

t=0 and {Gt }T
t=0. Let

Ft = σ ({w(s) : 0 ≤ s ≤ t}) for any t ∈ [0, T ] be the σ -field generated by the path of
the underlyingmarket variablew up to time t in a default-freemarket. For example, the
underlying market variable can be the price of a stock by which the value of a forward
contract on the same stock is determined. It is assumed thatw undergoes GBM under
the risk-neutral measure. Let Gt = σ ({1{τ<s} : 0 ≤ s ≤ t}) for any t ∈ [0, T ] be the
σ -field generated by an event of counterparty default before time T , where τ is the
default time. Now, Ft contains information on the default-free market, whereas Gt

contains information on the default. A crucial assumption is that the intensity of τ is
correlated with w(t). DefineHt = Ft ∨ Gt for any t ∈ [0, T ] .
The following “filtration switching formula,” which can be found in of Brigo and

Mercurio (2007, p. 777), suffices for our purpose and is stated here without proof.
Under general measurability conditions for the payoff and, for t < T , we have

EQ
[
1{τ>T }Payoff

∣∣∣Ht

]
= 1{τ>t}

Q(τ > t |Ft )
EQ

[
1{τ>T }Payoff

∣∣∣Ft

]
.
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It must be emphasized that the intensity function of default time τ , h, need not
be independent of the underlying market variable w. Indeed, intensity function h
can be correlated with w. In our case, h(t, w(t)) = exp(a(t)+ bw(t)). Hence, the
conditional probability of counterparty default after time t is given by

Q(τ > t |F(t)) = exp
(
−

∫ t

0
h(u, w(u)) du

)
.

It also holds that

EQ
[
exp

(
−

∫ t

0
h(u, w(u)) du

)]
= exp

(
− s(t)t

1− R

)
, (7.19)

where s(t) is the credit spread with maturity t .
Consider the CVA value at time t :

CVA(t) = 1{τ>t}(1− R)EQ

[
1{τ≤T } D(t, τ )EC (τ, w(τ ))

∣∣∣∣Ht

]

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[
1{τ≤T } D(t, τ )EC (τ, w(τ ))

∣∣∣∣Ft

]

(using the filtration switching formula)

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[∫ ∞

t
1{s≤T } D(t, s)EC (s, w(s))1{τ∈(s,s+ds]}

∣∣∣∣Ft

]

= 1{τ>t}
Pr(τ > t |Ft )

(1− R)EQ

[∫ T

t
D(t, s)EC (s, w(s))1{τ∈(s,s+ds]}

∣∣∣∣Ft

]

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[
EQ

[∫ T

t
D(t, s)EC (s, w(s))1{τ∈(s,s+ds]}

∣∣∣∣FT

]∣∣∣∣Ft

]

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[∫ T

t
D(t, s)EC (s, w(s))E

Q

[
1{τ∈(s,s+ds]}

∣∣∣∣FT

]∣∣∣∣Ft

]

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[∫ T

t
D(t, s)EC (s, w(s))Q(τ ∈ (s, s + ds]|FT )

∣∣∣∣Ft

]

= 1{τ>t}
Q(τ > t |Ft )

(1− R)EQ

[∫ T

t
D(t, s)EC (s, w(s))

d

ds
Q(τ ≤ s|FT )

∣∣∣∣Ft

]

= 1{τ>t}

exp

(
− ∫ t

0 h(u, w(u))du

)

×(1− R)EQ

[∫ T

t
D(t, s)EC (s, w(s)) exp

(
−

∫ s

0
h(u, w(u))du

)
h(s, w(s)) ds

∣∣∣∣Ft

]

= 1{τ>t}(1− R)EQ

×
[∫ T

t
D(t, s)EC (s, w(s)) exp

(
−

∫ s

t
h(u, w(u))du

)
h(s, w(s)) ds

∣∣∣∣Ft

]
.
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Similar computations can be found in Brigo and Mercurio (2007, p. 791). Taking
t = 0 yields

CVA = (1− R)EQ

[∫ T

0
D(0, s)EC (s, w(s)) exp

(
−

∫ s

0
h(u, w(u))du

)
h(s, w(s)) ds

]
.

(7.20)

The discrete-time version of Equation 7.19 is

EQ

⎡
⎣exp

⎛
⎝−

k∑
j=1

h(t∗
j , w(t

∗
j ))�t j

⎞
⎠

⎤
⎦ = exp

(
− sktk
1− R

)
, (7.21)

where sk is the credit spread of maturity tk . For Equation 7.20, it is

CVA = (1− R)EQ

×
⎡
⎣ n∑

k=1
D(0, t∗

k )EC (t
∗
k , w(t∗

k )) exp

⎛
⎝−

k∑
j=1

h(t∗
j , w(t

∗
j ))�t j

⎞
⎠ h(t∗

k , w(t∗
k ))�tk

⎤
⎦ ,

(7.22)

where 0 = t0 < t1 < · · · < tn = T , t∗
k = 1

2 (tk−1 + tk) and �tk = t∗
k − t∗

k−1.
To perform Monte Carlo simulation, let wi,k , ECi,k , and hi,k be the simulated

values of w(t), EC (t, w(t)), and h(t, w(t)), respectively, in the i th simulation trial
at time t∗

k , and let ak be the value of a(t) at time t∗
k . Given the simulated paths

{wi,k, k = 0, . . . , n}i=1,...,m , Equation 7.21 is replaced by

1

m

m∑
i=1
exp

(
−

k∑
j=1
exp

(
a j + bwi, j

)
�t j

)
= exp

(
− sktk
1− R

)
,

for k = 1, . . . , n, and Equation 7.22 is replaced by

CVA = 1− R

m

n∑
k=1

D(0, t∗
k )

⎛
⎝ m∑

i=1
ECi,k exp

(
−

k∑
j=1

hi, j�t j

)
hi,k�tk

⎞
⎠ .



8
Value-at-Risk and Related

Risk Measures

In the financial markets, risk scenario analysis is usually conducted to measure
and test a particular risk measure. A widely adopted risk measure is the Value-at-
Risk (VaR) measure. In broad terms, VaR is the potential loss in monetary value
that could be suffered within a given time period with no more than a given
probability. For example, if the 1-month 95% VaR of a portfolio is $5 million,
then there is only a 0.05% probability that the loss within 1 month will exceed
$5 million.
VaR applies not only to equities and derivatives, but also to portfolios comprising

financial instruments. Regulators use VaR as a benchmark risk measure and require
financial institutions to maintain a certain amount of capital as a reserve against finan-
cial crisis. VaR applications can be classified into three types: information reporting
(passive), controlling risk (defensive), and managing risk (active).
This chapter first introduces VaR as a risk measure, and then discusses the

VaR calculation of a portfolio using parametric VaR, delta-normal approximation,
delta–gamma approximation, historical simulation, and Monte Carlo simulation. For
the Monte Carlo simulation, the use of Gibbs sampling to generate random vari-
ables is demonstrated. This chapter also introduces several VaR-related risk mea-
sures, namely, conditional VaR, marginal VaR, incremental VaR, and component
VaR. It concludes with a discussion of VaR backtesting and the credit conversion
factor.

Handbook of Financial Risk Management: Simulations and Case Studies, First Edition. N.H. Chan and H.Y. Wong.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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8.1 VALUE-AT-RISK

Definition 8.1 VaR summarizes the worst possible portfolio loss over a target
horizon under normal market conditions at a given level of confidence.

This definition defines VaR in terms of the absolute dollar loss (absolute VaR),
although it can also be defined in terms of the dollar loss relative to the mean (relative
VaR), as follows.

Absolute VaR = −Rev*,
Relative VaR = Absolute VaR+Mean Revenue,

where Rev* is the cut-off revenue conditioned on the confidence level and horizon
chosen. VaR can also be represented in terms of the rate of return (the return) on the
portfolio. The return can be regarded as the revenue divided by the initial value of
the portfolio. If we denote the cut-off return by R∗, the initial portfolio value by�0,
and the mean rate of return by μ, then

Absolute VaR = −R∗�0,

Absolute VaR in return = −R∗,

Relative VaR = −R∗�0 + μ�0,

Relative VaR in return = −R∗ + μ.

Because VaR measures the worst possible loss, it is usually reported as a positive
number. If a negative VaR is reported, for example,−$2 million, then this means that
the probability of earning more than $2 million is very high.

Definition 8.2 A risk measure constitutes mapping from a set of random variables
to the set of real numbers representing different risk levels.

According to this definition, the Greeks, standard deviation, and VaR are all risk
measures. However, VaR is a downside risk measure, whereas standard deviation
penalizes both positive and negative returns. Unlike the Greeks, VaR also provides a
way to measure the total risk of a portfolio.
VaR assumes that the portfolio constituents do not change over the horizon and

that the current portfolio is marked-to-market (MTM). Statistically speaking, VaR
describes the specified quantile or percentile of the projected distribution of profits
and losses over the target horizon. Denote Rt by the return of a portfolio for a horizon
t . Then the c% confidence VaR of the portfolio is measured through the expression

Pr(Rt < −VaR) = (1− c)% := α.
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Hence, VaR is the negative of the αth percentile of the probability distribution. The
larger the VaR, the higher the portfolio risk. An advantage of VaR is that it allows the
user to specify the confidence level so as to reflect his or her individual risk-aversion.
The more risk-averse the user is, the higher the confidence level that will be selected.
For further detail, please refer to Jorion (2007).
VaR is indispensable for market risk analysis because it produces a number that

splits possible future asset returns into two scenarios: risky and non-risky. Returns
that are less than the negative of VaR belong to the class of risky scenarios. Decision-
makers can test their policies by examining the associated consequences under the
risky scenario. For instance, a bank may check whether it retains enough money to
compensate for a risky or otherwise terrible situation.

8.2 PARAMETRIC VaR

Parametric VaR focuses on the random process that describes the behavior of the
asset (portfolio) return; that is, it allows us to make assumption about the probability
density function (pdf) of the return. A conventional way to measure VaR is to assume
that portfolio returns follow a normal distribution. VaR obtained in this way is called
normal VaR. A typical model is

Rt = μt + σt Z , Z ∼ N (0, 1).

In such a parametric model,

Absolute VaRα(t) = −zασt − μt , (8.1)

Relative VaRα(t) = −zασt , (8.2)

where zα is the α-quantile of the standard normal distribution, μt is the drift, and σt

is the standard deviation of return Rt over horizon t .
Although Equations 8.1 and 8.2 can be proved mathematically, we verify them

here via simulation. This simulation exercise not only demonstrates the idea of
model verification, but also shows how VaR is simulated in general. The algorithm
is as follows.

1. Generate independent standard normal random variables Z j ∼ N (0, 1) for
j = 1, 2, . . . , n.

2. Set R j = μ + σ Z j .

3. Rank {R1, R2, . . . , Rn} in ascending order as {R∗
1 , R∗

2 , . . . , R∗
n}.

4. Set Absolute VaR = −R∗
k , where k = int(α × n).

Example 8.1 Suppose that μ = 0.001, σ = 0.13, α = 5%, and n = 10, 000. Then
the 95% VaR corresponds to the 500th smallest return generated from the simulation.
The simulation results show that the absolute VaR = 0.2133, which is close to the
true value of 0.2128 obtained by Equation 8.1. The VBA code is as follows.
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Dim i&, mean#, sigma#, alpha#, n&

Dim rev() As Double

mean = Cells(1, 2)

sigma = Cells(2, 2)

alpha = 1 - Cells(3, 2)

n = Cells(4, 2)

ReDim rev(1 To n)

For i = 1 To n

rev(i) = mean + sigma * rGauss()

Next i

Cells(6, 2) = -(Percentile(rev, alpha))

Cells(8, 2) = Cells(6, 2) + mean

For further details, please refer to Ch8.3_Simulate_Return_VaR.xls.

Remark The user-defined function Percentile includes the user-defined function
Sort.

The foregoing model can be extended to the two following situations.

1. The portfolio contains two correlated assets.

2. Z follows a t-distribution or a heavy-tailed distribution, which may fit the data
better.

8.2.1 Two-Asset Case

The following example illustrates how to calculate the VaR of a two-asset portfolio
whose returns follow a bivariate normal distribution. Generalizing the idea to n assets
is straightforward.

Example 8.2 Consider two stocks, S1 and S2, whose returns, R1 and R2, have a
bivariate normal distribution with a correlation of ρ = 0.4. Assuming that μ1 = 0.06,
σ1 = 0.3, μ2 = 0.08, and σ2 = 0.4, the investment in S1 is $1 million and that in S2
is $2 million, calculate the 1-year 95% VaR.

Because R1 and R2 have a bivariate normal distribution, R1 + R2 is normally dis-
tributed. Portfolio return Rp is Rp = w1R1 + w2R2, which implies that

μp = w1μ1 + w2μ2,

σ 2p = w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρσ1σ2,

Rp ∼ N (μp, σ
2
p ),

where w1 and w2 are the weights of the stocks in the portfolio. Therefore, we can
calculate the required VaR using the same method by regarding the entire portfolio as
one stock. The calculation (see Ch8.3_Two_Assets_Case.xls) results are summarized
in Table 8.1.
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TABLE 8.1 Absolute and Relative VaRs (in Terms of Dollar and
Return) of a Two-Asset Portfolio with Correlated Normal Returns

95% VaR

Absolute VaR in dollar $1,359,402
Relative VaR in dollar $1,579,402
Absolute VaR in return 0.45313
Relative VaR in return 0.52647

Remark If the two stocks are perfectly correlated (ρ = 1), then the VaR of the
portfolio is equal to the sum of the individual VaRs of each stock. If they are not
perfectly correlated, then the portfolio VaR is smaller as the portfolio variance is
smaller, assuming that both w1 and w2 are positive, which shows the benefits of
diversification.

If the asset returns do not follow a multivariate normal distribution, then a con-
ventional way of simulating VaR is to use the copula approach, such as the Gaussian
copula or t-copula approach discussed in Chapter 7.3. The simulation algorithm is
similar to those in that chapter except that VaR requires us to record the quantile
of the distribution. In the following section, we consider a heavy-tailed distribu-
tion for a single asset. The multiple asset case requires specification of a copula
function.

8.2.2 Heavy-Tailed Distribution

In reality, the returns of market prices do not follow a normal distribution, but rather
a heavy-tailed distribution. Assume that

R = μ + σ Z ,where Z follows a heavy-tailed distribution, (8.3)

which means that the two tails of the empirical density decay less rapidly than the
normal density. As the closed-form solution for the VaR of a heavy-tailed distribution
is not readily available, a realistic method is to generate random variables according
to such a distribution.

8.2.2.1 Generalized Error Distribution A commonly used type of heavy-tailed
distribution is generalized error distribution (GED). The pdf of a GEDwith parameter
ξ is given by

f (z) = ξ exp
(− 1

2 |z/λ|ξ )
λ21+1/ξ�(1/ξ )

,

λ =
(
2−2/ξ�(1/ξ )

�(3/ξ )

)1/2
,
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Figure 8.1 The pdfs of GED (with ξ = 1.2, 1.6) and standard normal distribution.

where �(·) denotes the gamma function. Figure 8.1 plots the whole pdf of a GED
with different parameters ξ and Figure 8.2 zooms in on the left tail of the density
function. It can be seen that the smaller the ξ is, the heavier the left tail of the density
function. In fact, the GED becomes normal when ξ = 2, has heavier than normal tails
when ξ < 2, and has thinner than normal tails when ξ > 2.
The key to VaR simulation is to generate random variables for the desired dis-

tribution. Here, we apply the acceptance-rejection method using the exponential
distribution because it shares the same domain as the target distribution (we first
generate the positive GED) and its tail is heavier than that of the target distribution.
The algorithm goes as follows.

1. Generate Y ∼ Exp(1).

2. Generate U ∼ U(0, 1).

3. If U ≤ 2 f (Y )eY

a , then Z = Y ; otherwise, go to Step 1.

4. Generate V ∼ U(0, 1). If V < 1/2, then Z = −Y .

5. Repeat Steps 1 to 4 for n times to obtain {Z1, Z2, . . . , Zn}.
6. Set Ri = μ + σ Zi .

7. Sort the returns in ascending order as {R∗
1 , R∗

2 , . . . , R∗
n}.

8. Set VaR = −R∗
k , where k = int(α × n).
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Figure 8.2 The left tails of GED (with ξ = 1.2, 1.6) and standard normal distribution.

Remarks

1. In Step 3, a is a constant not less than maxy{2 f (y)ey}.
2. As the exponential distribution is defined with a domain of positive real
numbers, Steps 1 to 3 of the algorithm generate a positive GED. Then
Step 4 is required to convert this positive GED into a GED random
variable.

Example 8.3 Suppose that Z in Equation 8.3 follows a GED with ξ = 1.21.
Calculate the 95% and 99% VaRs using the foregoing algorithm with μ = 0.05,
σ = 0.3, and an initial portfolio value of $1 million.

To implement the acceptance-rejection method, we first identify the constant a that
bounds the function 2 f (y)ey for all y. As obtaining the constant a with differ-
entiation is cumbersome, we adopt a graphical approach, with result presented in
Figure 8.3.
From this graph, we can see that the function is bounded above by 1.2. Therefore,

we select 1.2 as a. For more details, please refer to Ch8.3_Simulate_GED_VaR.xls.
The results are summarized in Table 8.2.
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Figure 8.3 Graphic determination of the maximum of 2 f (y)ey .

The VBA code for simulating GED-VAR is as follows.

Dim Y#, U#

Dim mu#, sigma#, v#, a#, confidence1#, confidence2#

Dim i&, n&

Dim R() As Double, Z() As Double

v = Cells(3, 2)

a = Cells(4, 2)

n = Cells(5, 2)

mu = Cells(1, 2)

sigma = Cells(2, 2)

TABLE 8.2 Calculation of Absolute and Relative VaRs (in Dollar and Return Terms)
Using GED with ξ = 1.21

95% VaR 99% VaR

Absolute VaR in dollar $283,571 $506,374
Relative VaR in dollar $330,950 $553,752
Absolute VaR in return 0.28357 0.50637
Relative VaR in return 0.33095 0.55375
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confidence1 = Cells(6, 2)

confidence2 = Cells(7, 2)

ReDim R(1 To n)

ReDim Z(1 To n)

For i = 1 To n

Do

Y = -Application.Ln(Rnd())

U = Rnd()

If (U <= 2 * GEDpdf(v, Y) * Exp(Y) / a) Then

Z(i) = Y

End If

Loop Until (U <= 2 * GEDpdf(v, Y) * Exp(Y) / a)

U = Rnd()

If U < 0.5 Then

Z(i) = -Y

End If

R(i) = mu + sigma * Z(i)

Next i

Cells(11, 2) = -Percentile(R, 1 - confidence1)

Cells(11, 3) = -Percentile(R, 1 - confidence2)

Cells(12, 2) = Cells(11, 2) + Average(R)

Cells(12, 3) = Cells(11, 3) + Average(R)

Cells(15, 2) = Cells(11, 2) * Cells(8, 2)

Cells(15, 3) = Cells(11, 3) * Cells(8, 2)

Cells(16, 2) = Cells(12, 2) * Cells(8, 2)

Cells(16, 3) = Cells(12, 3) * Cells(8, 2)

8.2.2.2 t-Distribution Instead of GED, we can also employ a t-distribution to
model the return. A t-distribution with mean zero has the following pdf.

fν(x) = �((ν + 1)/2)√
νπ(ν/2)

(
1+ x2

ν

)−(ν+1)/2
,−∞ < x < ∞,

where �(·) denotes the gamma function and ν represents the degrees of freedom and
controls the heaviness of the tails. The smaller the ν, the heavier the tail will be.
When ν → ∞, fν becomes the density of the normal distribution. The multivariate
version of the t-distribution enables us to model the returns of a number of assets.
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8.2.3 Holding Period Adjustment

If we are given information on one particular holding period, but desire VaR infor-
mation on a different holding period, then we require a holding period adjustment.
Imagine that we are still dealing with normally distributed daily returns, but are inter-
ested in a longer horizon period, say 20 days (one business month). Assume that the
daily returns are uncorrelated and identically distributed. Then,

μmonthly = 20μdaily,

σ 2monthly = 20σ 2daily,

σmonthly =
√
20σdaily.

Further, the relative 1-month VaR is

Relative VaRmonthly = −zaσmonthly�0

= −za(σdaily
√
20)�0

=
√
20VaRdaily,

and the absolute 1-month VaR is

Absolute VaRmonthly = −zaσmonthlyW + μmonthly�0

= −za(σdaily
√
20)W + 20μdaily�0

≈
√
20VaRdaily(since μdaily is generally small).

In general, we assume that

N -day VaR = 1-day VaR×
√

N .

This formula is exact when the returns are independent normal random variables
with mean zero. For other cases, it is only an approximation. However, we can still
check via simulation whether the formula does indeed provide a good approximation.
For instance, we could use the GED to simulate the daily VaR and then project it
to a holding horizon of 10 days employing the square-root rule. The Basel Accords
require banks to report the 99% 10-day VaR.

8.2.4 Portfolio VaR

Consider a portfolio of n risky assets, whose returns jointly follow a multivariate nor-
mal distribution with mean vector μ and variance-covariate matrix �. The portfolio
value at time t is

�(t) =
n∑

j=1
α j S j (t),
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where Sj is the value of the j th asset in the portfolio. The portfolio is said to be
self-financing if there are no cash withdrawals from or injections to the portfolio. In
turn, the portfolio return is driven solely by the returns of its individual constituent
assets such that

d�

�
=

n∑
j=1

w j
d S j

S j
,

where

w j = α j
S j (t)

�(t)
and

n∑
j=1

w j = 1.

Let R j = d Sj/Sj be the return of the j th asset and R be the vector collecting the
returns of these n assets. Then we have R ∼ N (μ,�). Using matrix-vector notation,
let w′ = (w1, . . . , wn), the portfolio return, Rp, is

Rp = w′R.

The variance of this portfolio return can be derived as Var(Rp) = w′�w such that
its relative VaR is reduced to VaRp = −zα

√
w′�w

√
T , including the holding period

adjustment. The variance–covariance matrix can be decomposed into the product of
three matrices:

⎛⎜⎝σ1 · · · 0
... · · · ...
0 · · · σn

⎞⎟⎠
⎛⎜⎜⎜⎝
1 ρ12, · · · ρ1n

ρ21 · · · ρ2n
...

...
...

ρn1 · · · 1

⎞⎟⎟⎟⎠
⎛⎜⎝σ1 · · · 0
... · · · ...
0 · · · σn

⎞⎟⎠ ,

where the middle matrix is the correlation coefficient matrix denoted as C. Then the
formula of the portfolio relative VaR in revenue terms can be simplified as

VaRp =
√

VaR′ · C · VaR, (8.4)

whereVaR is the vector of the VaRs of individual assets. In many practical situations,
although the marginal distributions of individual asset returns do not follow a normal
distribution, Equation 8.4 can still be applied to the portfolio VaR of these assets as
short-hand calculation. In fact, the genuine joint distribution of risky assets is very
difficult to model and estimate. The short-hand portfolio VaR formula serves as a
proxy for daily reporting and signals the significant risks contained in the portfolio.
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8.3 DELTA-NORMAL APPROXIMATION

In delta-normal approximation, we assume that a change in portfolio value is approx-
imately linearly related to changes in the underlying risk factors. For a portfolio of
stocks and stock options, the risk factor is simply the underlying stocks; for a portfolio
of bonds, the risk factor is the yield. As indicated by its name, delta-normal approx-
imation makes use of the assumption that changes in the underlying risk factors are
multivariate normally distributed and uses the partial derivative (the Greek) � to
measure the sensitivity of portfolio value changes to these risk factors. It constitutes
local valuation because the portfolio is valued once at the initial position. It is also a
linear model and constitutes an analytical method because a closed-form solution is
available.

8.3.1 Option VaR

The delta of an option is the option’s partial derivative with respect to the underlying
asset value S. For a call option,

� = ∂c

∂S
= �(d1).

Consider the Taylor expansion on the call option pricing formula:

dc = ∂c

∂S
d S + 1

2

∂c

∂S
d S2 + . . . .

If we ignore all terms higher than the first order, then the approximation is

dc 
 � d S.

Delta-normal approximation assumes the � to remain unchanged during a short
period of time and the return of the underlying asset to follow a normal distribution,
that is, d S/S ∼ N (μ, σ 2). This assumption implies that

Var(dc) = �2Var(d S).

In addition, the variance of the underlying asset is further approximated as Var(d S) =
σ 2S2. Hence, the relative VaR for the option is given by

VaR = −|�|zασ S.

In practice, the relative VaR is usually employed to report the risk of a financial
institution. In such a situation, the delta-normal approximation of an option position
is given by

VaRoption = |�|VaRS, (8.5)
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where VaRS is the VaR for holding the underlying asset for the same horizon as the
option is held. In this formula, the term −zaσ S is essentially the relative VaR of
holding S if its return follows a normal distribution.
Althoughmarket practitioners admit that asset returns are not normally distributed,

Equation 8.5 still applies, and VaRS must be computed using a distribution fitted to
the empirical data. For example, the VaRS of the underlying asset is estimated using
a GARCH model and then substituted into Equation 8.5, where� is computed using
the Black–Scholes (BS) formula with market-implied volatility. This approach is
remarkably efficient in practice because BS� has a direct quote from the systems of
data providers.
The value of a general structured product can be a function of multiple assets. In

this case, consider the Taylor expansion in the multivariable calculus:

dc =
n∑

j=1

∂c

∂Sj
d S j + 1

2

∑
i, j

∂2c

∂Si∂Sj
d Si d S j + . . . .

Ignoring terms higher than the first order yields the approximation

dc 

n∑

j=1

∂c

∂Sj
d S j .

Therefore, delta-normal approximation views the option on multiple assets as a
portfolio of the underlying assets. Combining Equations 8.4 and 8.5 gives us the
following short-hand formula.

VaRoption =
√

VaR′ · D · C · D · VaR, (8.6)

where D is a diagonal matrix collecting the deltas with respect to individual assets:

D =

⎛⎜⎝
∂c
∂S1

0 · · · 0
...

...
...

0 · · · 0 ∂c
∂Sn

⎞⎟⎠ .

Delta-normal approximation of multi-asset options is also useful for single-asset
options when volatility is regarded as a risk factor. In such a situation, the first-order
Taylor expansion is

dc 
 ∂c

∂S
d S + ∂c

∂σ
dσ,

where the differential with respect to σ is known as the vega in the market, that is,

vega = ∂c

∂σ
.
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The variance of the change in option price has the following delta-normal approxi-
mation.

Var(dc) 

(

∂c

∂S

)2
VarS +

(
∂c

∂σ

)2
Varσ + 2ρ

(
∂c

∂S

)(
∂c

∂σ

) √
VarSVarσ ,

where VarS is the variance of the change in asset price and Varσ is the variance of
the change in volatility. Both the � and vega have market quotes for standard call
and put options. However, these sensitivity measures should be computed for other
types of derivatives and structured products. Further details about Greek simulation
are given in the next chapter.
A “hybrid” approach to option VaR captures the effect of the implied volatility

surface through delta-normal approximation. For instance, we can use the historical
volatility to estimate VarS and calibrate ρ and Varσ to market option prices using the
Heston model, which was introduced in Chapter 4. For a short holding period of δt ,
a possible approximation is

Varσ = ε2V (0) δt,

where V (0) is the calibrated instantaneous variance of the asset return. Note that
ρ and ε are obtained within the calibration. Please refer to Chapter 4.2 for further
details. The delta-normal approximation for the Heston option VaR is given by

VaRoption =
√

�2VaR2S + 2ρ�vegaVaRSVaRσ + vega2VaR2σ ,

where

VaRσ = −zαε
√

V (0)
√

δt .

8.3.2 Fixed-Income VaR

Analysis of a fixed-income portfolio is similar to options analysis. The results of
empirical studies using principal components analysis (PCA) on bond yields suggest
that the parallel movement component explains more than 60% of the variations in
the yield curve. The parallel movement of a yield curve is often employed as the
underlying stochastic variable for simplification. For example, we can use the one-
factor short-rate model introduced in Chapter 5 or directly measure the volatility of
the yield-to-maturity of the fixed-income security. Suppose that we adopt the latter
approach. The price-yield relationship is then given by

dV = (−D∗V ) dy,

where D∗ is the modified duration, dy is the daily MTM change in the yield, and
V is the value function of the fixed-income security. Here, we assume the change
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in yield to be normally distributed with variance σ 2. Therefore, the relative VaR is
approximated as

VaR = −|D∗V |zaσ.

Again, we can apply a short-hand formula for relative VaR:

VaRFP = |D∗V |VaRy, (8.7)

where VaRFP is the VaR of the fixed-income portfolio and VaRy is the VaR of the
yield.
In general situations, a fixed-income security is likely to be affected by themultiple

interest rate factor driving the yield curve movement. Therefore, it is practical to use
the LIBORmarket model presented in Chapter 6 to model the yield curve movement.
Then a short-hand VaR formula can be obtained by combining Equations 8.7 and 8.4
to produce a formula similar to Equation 8.6, where diagonal matrixD uses durations
rather than deltas.

Remark Delta-normal approximation is easy to implement and is computationally
fast. However, it is inadequate for nonlinear instruments, and its normality assumption
is questionable.

8.4 DELTA–GAMMA APPROXIMATION

When a portfolio contains options, using delta–gamma approximation to calculate
the VaR sometimes confers greater accuracy. Recall that the gamma (�) of a portfolio
is defined as the second partial derivative of the portfolio value with respect to the
asset price:

� = ∂2�

∂S2
.

Equivalently, it is the partial derivative of � with respect to the asset price:

� = ∂�

∂S
.

8.4.1 Option VaR

To obtain a more accurate result, we reconsider the Taylor expansion. This time,
however, we ignore terms higher than the second order. Then,

dC = � d S + 1

2
� (d S)2.
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Using the rate of return, R = d S
S , this becomes

dV = S� R + 1

2
S2� R2.

If R ∼ N (0, σ 2), then R2 is a chi-squared random variable. The delta–gamma
approximation ignores this fact, but regards R2 = R2 as another normal ran-
dom variable. It is clear that E[R2] = E[R2] = σ 2, cov(R, R2) = E[R3] = 0, and
Var(R2) = E[R4]− (σ 2)2 = 2σ 4. Assuming a portfolio of two uncorrelated assets,
R and R2, the portfolio variance is given by

S2�2σ 2 + 1

2
S4�2σ 4.

Hence, the delta–gamma approximation of the relative VaR of an option is given by

VaRoption = −zα

√
S2�2σ 2 + 1

2
S4�2σ 4 =

√
�2VaR2S − 1

2
�2VaR4S/zα. (8.8)

It is clear that delta–gamma approximation produces a higher VaR than delta-normal
approximation. Similar to previous cases, the VaR of the underlying asset can be
estimated with another distribution that is fit to the empirical data. The option VaR
can then be estimated by plugging the estimated VaRS into Equation 8.8. For standard
options, the� and� can be quoted directly from the data provider, and soEquation 8.8
offers a convenient way of calculating VaR on a daily basis.
For the case of n underlying assets, we have

dV =
n∑

i=1
�i d Si + 1

2

n∑
i=1

n∑
j=1

�i j d Si d S j , (8.9)

where �i j is the cross-gamma:

�i j = ∂2V

∂Si∂Sj
.

Further assumptions would need to be imposed on the cross-term d Si d S j for i �= j
to produce a short-hand user-friendly formula, but we are unaware of a standard way
of doing this.

8.4.2 Fixed-Income VaR

For a fixed-income portfolio, the price-yield relationship is

dV ≈ −(D∗V ) dy + 1

2
CV (dy)2,
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where C is the convexity. Using Equation 8.8, we have

VaRoption =
√
(D∗V )2VaR2y − 1

2
(CV )2VaR4y/zα.

However, computation involving multiple interest rate factors will most likely
encounter the problems associated with Equation 8.9. Thus, fixed-income risk man-
agers generally prefer to employ delta-normal approximation for complex fixed-
income derivatives.

Remark For complicated derivatives, valuation may rely on simulation, but the
corresponding Greeks, such as � and �, cannot be accurately estimated with simu-
lation, particularly in the case of multiple risk factors. To manage and report risks,
financial institutions are required to compute the Greeks in a very efficient manner.
The next chapter details several methods of Greek computation and readers who are
interested in the practical use of Greek-approximation approaches to VaR will find it
useful.

8.5 VaR SIMULATION METHODS

In parametric VaR, we first model the portfolio return and then calculate the VaR by
an analytic method or simulation. In this section, we focus the simulation methods
used to calculate the VaR of a portfolio. The twomost commonmethods are historical
simulation andMonte Carlo simulation, both of which are full-valuation methods that
measure risk by fully repricing the portfolio over a range of scenarios. Monte Carlo
simulation in this section specifies the stochastic process for the assets or risk factors
involved,which ismore general than specifying the distribution of the portfolio return.

8.5.1 Historical Simulation

Historical simulation is a non-parametric approach to VaR prediction based on his-
torical data. It does not assume any distribution for the asset return and, in practice,
is relatively easy to implement. It is sometime confused that the term “historical
simulation” used in the financial market does not involve simulation in the statistical
sense. It simply means to rank historical returns and then to read the empirical VaR
from the given data set. However, the way of determining VaR in historical simula-
tion helps better understanding the Monte Carlo simulation to VaR in the subsequent
subsection.
In the simplest case, historical simulation assumes that the asset returns are inde-

pendent and identically distributed (i.i.d.). Consider a portfolio of N assets, where the
market prices of each asset over a period of T + 1 days are given. Then we calculate
the daily change in asset prices by

�Si
t = Si

t − Si
t−1 for t = 1, . . . , T and i = 1, . . . , N .
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We have now created T scenarios:

{�S1t , . . . , �SN
t } for t = 1, . . . , T .

Denote the current portfolio value by

V0 = V (S1T , . . . , SN
T ).

Then we have T hypothetical portfolio values, V1, . . . , VT , where

Vk = V (S1T + �S1k , . . . , SN
T + �SN

k ) for k = 1, . . . , T .

The revenue and return for the kth scenario are calculated by

Revk = Vk − V0,

Rk = Vk − V0
V0

.

The VaR is then obtained from the hypothetical return distribution. The general
procedure is as follows.

1. Read the N asset prices.

2. Calculate the change in price of each asset �Si
t for t = 1, . . . , T and i =

1, . . . , N .

3. Calculate the hypothetical portfolio values Vk for k = 1, . . . , T .

4. Calculate the revenue of portfolios Revk for k = 1, . . . , T .

5. Rank {Rev1,Rev2, . . . ,RevT } in ascending order as {Rev∗
1,Rev

∗
2, . . . ,Rev

∗
T }.

6. Set Absolute VaR = −Rev∗
k , where k = int(α × T ).

Example 8.4 Calculate via historical simulation the 1-day 95% and 99% VaRs of
a portfolio containing four stocks, namely, HSBC HOLDINGS, CHEUNG KONG,
HANG SENG BANK, and BANK OF EAST ASIA, using data from the most recent
501 trading days if there are 10,000 stocks for each company in the portfolio.

In this example, today’s date is taken as July 8, 2011, and the data are collected from
July 6, 2009, to July 8, 2011. The calculation results are summarized in Table 8.3

TABLE 8.3 Calculation of Absolute and Relative VaRs (in Dollar and Return Terms)
Using Historical Simulation

95% VaR 99% VaR

Absolute VaR in dollar $59,400 $84,300
Relative VaR in dollar $61,075.2 $85,975.2
Absolute VaR in return 0.01692 0.02401
Relative VaR in return 0.01740 0.02449
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and the VBA code is as follows.

Dim i&, j&

Dim stock(1 To 4, 1 To 501) As Double

Dim change(1 To 4, 1 To 500) As Double

Dim Rev(1 To 500) As Double

Dim nostock(1 To 4) As Double

Dim confidence1#, confidence2#, V0#

For i = 1 To 4

nostock(i) = Cells(1 + i, 8)

Next i

confidence1 = Cells(6, 8)

confidence2 = Cells(6, 9)

For i = 1 To 4

For j = 1 To 501

stock(i, j) = Cells(j + 1, i + 1)

Next j

Next i

For i = 1 To 4

For j = 1 To 500

change(i, j) = stock(i, j) - stock(i, j + 1)

Next j

Next i

For j = 1 To 500

For i = 1 To 4

Rev(j) = Rev(j) + change(i, j) * nostock(i)

Next i

Next j

For i = 1 To 4

V0 = V0 + nostock(i) * stock(i, 1)

Next i

Cells(8, 8) = V0

Cells(11, 8) = -Percentile(Rev, 1 - confidence1)

Cells(12, 8) = Cells(11, 8) + Average(Rev)

Cells(13, 8) = Cells(11, 8) / Cells(8, 8)

Cells(14, 8) = Cells(12, 8) / Cells(8, 8)

Cells(11, 9) = -Percentile(Rev, 1 - confidence2)

Cells(12, 9) = Cells(11, 9) + Average(Rev)

Cells(13, 9) = Cells(11, 9) / Cells(8, 8)

Cells(14, 9) = Cells(12, 9) / Cells(8, 8)

For further details, please refer to Ch8.6_Historical_Simulation.xls.
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8.5.1.1 Bootstrapping An alternative way to perform historical simulation is to
regard the historical data as the realized values of an unknown distribution. We would
then sample a value from the distribution by randomly replacing a historical datum
with a replacement. This method assigns an equal probability to each realization.
After repeating the process, we obtain the VaR from the resulting portfolio revenue
distribution. This method is known as bootstrapping in statistics.

8.5.2 Advantages and Disadvantages

The advantages of the historical approach are as follows.

1. The method is relatively simple to implement if historical daily MTM data are
available. The same data can be stored to estimate VaR.

2. It deals directly with the choice of horizon for VaR measurement. For example,
to obtain a monthly VaR, we can reconstruct the historical monthly returns
over, say, 5 years.

3. It does not depend on the probability distribution, and also accounts for the fat
tails in the historical data.

4. It allows correlation between assets.

The disadvantages of historical approach are as follows.

1. The approach assumes the asset returns to be i.i.d., which is usually untrue.

2. It requires a sufficient history of price changes. For example, to obtain 1000
independent returns for a 10-day move, we need 4 years of continuous data. In
the case of monthly returns, 1000 independent monthly returns require more
than 80 years of data.

3. Only one sample path is used, which creates difficulties for scenario analysis.

4. The approach is very slow to incorporate structural breaks, which can be more
easily handled with an analytical method such as RiskMetrics.

5. It may be unsuitable for the analysis of derivative risk. Derivative products
have very short lives in the market, say 3 months. Therefore, we may wish
to make use of the underlying asset prices. However, incorporating the prices
of underlying assets can be tricky because the historical approach does not
incorporate a parametric model that relates these prices to derivative prices.

6. The method places the same weight on all observations, including old data
points.

7. It may produce a large error in estimating VaR. For example, a 99% daily
VaR estimated over 100 days produces only one observation in the tail, which
necessarily leads to an imprecise VaR measure. Thus, very long sample paths
are required to obtain meaningful results.

8. It becomes cumbersome for large portfolios with complicated structures,
although, in practice, users adopt such simplifications as interest rate
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payoff grouping into bands, which increase the speed of computation con-
siderably. However, if too many simplifications are imposed, then the benefit
of distribution-free valuation may be jeopardized.

8.5.3 Monte Carlo Simulation

Monte Carlo simulation was originally developed to value derivatives, although its
use can be extended to VaR calculation and confidence interval construction. It
constitutes a parametric method because it assumes certain stochastic processes
for the underlying assets. The parameters in stochastic processes can be estimated
from historical data or calibrated from current market data. Finally, asset paths are
simulated and used to generate a distribution of portfolio values.
The general procedure involved in calculating the VaR of a portfolio is as

follows.

1. Select appropriate stochastic processes for the assets and other market variables
in the portfolio.

2. Simulate T paths for the random variables involved, either by means of discrete
approximation or one-shoot simulation.

3. Calculate the portfolio value using a closed-from solution or simulation.

4. Calculate the portfolio revenue {Rev1,Rev2, . . . ,RevT }.
5. Rank {Rev1,Rev2, . . . ,RevT } in ascending order as {Rev∗

1,Rev
∗
2, . . . ,Rev

∗
T }.

6. Set Absolute VaR = −Rev∗
k , where k = int(α × T ).

For simplicity, we consider one stock first. Assume that the stock price follows the
dynamics

d S(t) = μS(t) dt + σ S(t) dW (t).

By Itô’s lemma,

S(T ) = S(0) exp

((
μ − 1

σ 2

)
T + σ

√
T Z

)
,

where Z is a standard normal random variable. By generating n standard normal
randomvariables, Z1, . . . , Zn , and estimating parametersμ and σ , we have n terminal
stock prices. After calculating the revenue and ranking the data in ascending order,
we select the revenue that corresponds to the required quantile as the VaR.

Example 8.5 Suppose that the stock price follows lognormal dynamics. Perform
simulation to calculate the 10- and 20-day 95% VaR, where μ = 0.08 and σ = 40%.
Assume that there are 252 trading days in the year.

The calculation results are summarized in Table 8.4.
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TABLE 8.4 Monte Carlo Simulation of Absolute and Relative VaRs (in Dollar and Return Terms)
of One Stock

20-Day 10-Day
10-Day 20-Day (Holding period adjustment) (Normal VaR)

Absolute VaR in dollar 12.331 16.880 17.439 12.789
Relative VaR in dollar 12.558 17.592 17.760 13.107
Absolute VaR in return 0.12331 0.16880 0.17439 0.12789
Relative VaR in return 0.12558 0.17592 0.17760 0.13107

The corresponding VBA code is as follows.

Dim A As BS_PathType

Dim S, i&, j&

Dim confidence#, target#

Dim ST() As Variant

Dim rev() As Variant

A.S0 = Cells(1, 2)

A.q = Cells(2, 2)

A.sigma = Cells(3, 2)

A.rf = Cells(4, 2)

A.t = Cells(5, 2)

A.m = Cells(7, 2)

A.n = Cells(8, 2)

A.dt = A.t / A.m

confidence = Cells(9, 2)

ReDim ST(1 To A.n)

ReDim rev(1 To A.n)

S = BS_Path(A)

For i = 1 To A.n

ST(i) = S(A.m, i)

rev(i) = ST(i) - A.S0

Next i

Cells(12, 2) = -Percentile(rev, 1 - confidence)

Cells(13, 2) = -Percentile(rev, 1 - confidence)

+ Average(rev)

Cells(14, 2) = Cells(12, 2) / A.S0

Cells(15, 2) = Cells(13, 2) / A.S0

A.t = Cells(5, 3)

S = BS_Path(A)
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TABLE 8.5 Monte Carlo Simulation of Absolute and Relative VaRs (in Dollar Terms) of the
Forward Contract

20-Day
10-Day 20-Day (Holding period adjustment)

Absolute VaR in dollar 12.411 17.235 17.551
Relative VaR in dollar 12.564 17.512 17.768

For i = 1 To A.n

ST(i) = S(A.m, i)

rev(i) = ST(i) - A.S0

Next i

Cells(12, 3) = -Percentile(rev, 1 - confidence)

Cells(13, 3) = -Percentile(rev, 1 - confidence)

+ Average(rev)

Cells(14, 3) = Cells(12, 3) / A.S0

Cells(15, 3) = Cells(13, 3) / A.S0

For more details, please refer to Ch8.6_MC_Simulation_Stock.xls.
The following example illustrates the use of Monte Carlo simulation to calculate

the VaR of a derivative.

Example 8.6 Suppose that we long a 6-month forward contract and that the under-
lying asset is the same stock as that considered in the previous example. Calculate
the 10- and 20-day 95% VaR.

Recall that the value at time t of a forward contract with maturity T in the long
position is

f (t, T ) = S(t)e−q(T −t) − K e−r (T −t),

where K is the delivery price, r is the risk-free rate, and q is the dividend yield.
At contract initiation, f (0, T ) = 0 and K = S(0)e(r−q)(T ), where T = 0.5. We now
employ simulation to find the distribution of the forward value by generating 50,000
stock prices after 10 days. The results are summarized in Table 8.5, which is followed
by the corresponding VBA code.

Dim a As BS_PathType

Dim r#

Dim S As Variant

Dim i&, j&, confidence#, target#

Dim T#, ttm#, K#, begintime#

Dim ST() As Double

Dim rev() As Double
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begintime = Cells(8, 2)

T = Cells(7, 2) 'time to maturity

r = Cells(2, 2)

a.S0 = Cells(1, 2)

a.q = Cells(3, 2)

a.sigma = Cells(4, 2)

a.rf = Cells(5, 2)

a.T = Cells(6, 2) 'target horizon

a.m = Cells(9, 2)

a.n = Cells(10, 2)

a.dt = a.T / a.m

confidence = Cells(11, 2)

K = a.S0 * Exp((r - a.q) * (T - begintime))

ReDim ST(1 To a.n)

ReDim rev(1 To a.n)

ttm = T - a.T

S = BS_Path(a)

For i = 1 To a.n

ST(i) = S(a.m, i)

rev(i) = fvalue(ST(i), K, a.q, r, ttm)

Next i

Cells(14, 2) = -Percentile(rev, 1 - confidence)

Cells(15, 2) = -Percentile(rev, 1 - confidence)

+ Average(rev)

a.T = Cells(6, 3)

ttm = T - a.T

S = BS_Path(a)

For i = 1 To a.n

ST(i) = S(a.m, i)

rev(i) = fvalue(ST(i), K, a.q, r, ttm)

Next i

Cells(14, 3) = -Percentile(rev, 1 - confidence)

Cells(15, 3) = -Percentile(rev, 1 - confidence)

+ Average(rev)

For further details, please refer to Ch8.6_MC_Simulation_Forward.xls.

Remark fvalue is a user-defined function employed to calculate the value of a
forward contract.
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Figure 8.4 Distribution of Absolute VaR.

Using Monte Carlo simulation, we can also generate a VaR distribution by repeat-
ing the simulation process. For the one-stock example, we need to repeat the calcu-
lation 1000 times. The results are shown in Figure 8.4.

8.5.4 Gibbs Sampling and Multivariate Normal Distribution

In this section, we demonstrate the use of simulation to calculate the VaR of a
portfolio comprising more than one asset. As described in Chapter 3, by using
Cholesky decomposition, we can create a vector of multivariate normal variables that
can be used to obtain the terminal asset prices. Here, we demonstrate the use of Gibbs
sampling to generate these variables.
Gibbs sampling is one of the most commonly used Markov Chain Monte Carlo

(MCMC) methods. It is simple, intuitive, easy to implement, and designed to handle
multidimensional problems. The basic limit theoremof theMarkov chain serves as the
theoretical building block by which it is guaranteed that draws from Gibbs sampling
agree with the posterior asymptotically.We first demonstrate the mechanism of Gibbs
sampling.
Gibbs sampling offers a way to reduce a multidimensional problem to an iter-

ation of low dimensional problems. More specifically, let x = (x1, . . . , xn) be the
data set, where each data item follows the same distribution and has r parameters,
θ = (θ1, θ2, . . . , θr ). For each i = 1, . . . , r , specify the one-dimensional conditional
conjugate prior p(θ j ) and construct the conditional posterior by means of Baye’s
theorem. Then iterate the Gibbs procedure as follows.
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Set an initial parameter vector (θ02 , . . . , θ
0
r ). Update the parameters using the

following procedure.

� Sample θ11 ∼ p(θ1|θ02 , . . . , θ0r , x).
� Sample θ12 ∼ p(θ2|θ11 , θ03 , . . . , θ0r , x).
...

� Sample θ1r ∼ p(θr |θ11 , θ12 , . . . , θ1r−1, x).

This completes one Gibbs iteration and the parameters are updated to (θ11 , . . . , θ
1
r ).

Using these new parameters as our starting values, we repeat the iteration and
obtain a new set of parameters (θ21 , . . . , θ

2
r ). Repeating the iteration M times gives

us a sequence of parameter vectors, θ (1), . . . , θ (M), where θ (i) = (θ i
1, . . . , θ

i
r ), for

i = 1, . . . , M . By the basic limit theorem of the Markov chain, see Asmussen and
Glynn (1987), the limiting distribution of Markov chain θ (M) converges to the joint
posterior p(θ1, θ1, . . . , θr |x) when M is sufficiently large. M refers to the burn-
in period. After simulating θ (M+1), θ (M+2), . . . , θ (M+n) from the Gibbs sampling,
Bayesian inference can be conducted easily. For example, to compute the posterior
mean, we evaluate

θ̃i = 1

n

n∑
i=1

θ
(M+i)
i .

To acquire a better understanding of Gibbs sampling, consider the following
example.

Example 8.7 Generate the following bivariate normal random variables through
Gibbs sampling.

X =
(

X1
X2

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

We first find the conditional density functions of X1|X2 and X2|X1, that is, f (x1|x2)
and f (x2|x1).

f (x1|x2) = f (x1, x2)

f (x2)

=
1

2π
√
1−ρ2

exp
(
− x21−2ρx1x2+x22

2(1−ρ2)

)
1√
2π
exp

(−x22
2

)
∝ exp

(
− x21 − 2ρx1x2 + x22

2(1− ρ2)

)
exp

(
x22
2

)
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∝ exp

(
− x21 − 2ρx1x2 + ρ2x22

2(1− ρ2)

)
∝ exp

(
− (x1 − ρx2)2

2(1− ρ2)

)
.

Observe that X1|x2 ∼ N (ρx2, 1− ρ2) and, similarly, X2|x1 ∼ N (ρx1, 1− ρ2).
Then, the Gibbs sampling proceeds as follows.

1. Initialize x02 and parameter ρ.

2. Set i = 1.

3. Generate xi
1 ∼ N (ρxi−1

2 , 1− ρ2).

4. Generate xi
2 ∼ N (ρxi

1, 1− ρ2).

5. Set i = i + 1 and repeat Steps 3 and 4 n times.

6. The sequence (x11 , x12 ), (x
2
1 , x22 ), . . . , (x

n
1 , xn

2 ) forms n pairs of bivariate normal
random variables.

The VBA code is as follows.

Dim x() As Double, y() As Double

Dim rho#, sigma As Double

N = 50000

rho = 0.5

sigma = 1 - rho ˆ 2

ReDim x(0 To N)

ReDim y(0 To N)

y(0) = 0

For i = 1 To N

x(i) = rho * y(i - 1) + Sqr(sigma) * rGauss()

y(i) = rho * x(i) + Sqr(sigma) * rGauss()

Next i

Example 8.8 Consider a portfolio comprising two stocks that satisfy

d Si (t) = μi Si (t) dt + σi Si (t) dWi (t), for i = 1, 2,

E[dW1(t) dW2(t)] = ρ dt,

where S1(0) = 50, S2(0) = 60, μ1 = 0.08, μ2 = 0.1, σ1 = 0.35, σ2 = 0.4, and
ρ = 0.3. Calculate the 10-day 95% VaR of a portfolio comprising 10,000 units
of stock 1 and 10,000 units of stock 2.
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TABLE 8.6 Monte Carlo Simulation of the Absolute and
Relative VaRs (in Dollar and Return Terms) of a
Two-Stock Portfolio Using Gibbs Sampling

10-Day VaR

Absolute VaR in dollar 103,340
Relative VaR in dollar 107,150
Absolute VaR in return 0.09395
Relative VaR in return 0.09741

By Itô’s lemma,

Si (T ) = Si (0) exp

((
μi − σ 2i

2

)
T + σi

√
T Xi

)
, for i = 1, 2,

where (
X1
X2

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

The results of Example 25 allow simulation of the bivariate normal random variables
(X1, X2) from which S1(T ) and S2(T ) are calculated accordingly. The results are
summarized in Table 8.6.
The VBA code is as follows.

Dim x(), y() As Double

Dim rho#, variance#

Dim i&, T#, n#, confidence#, P0#

Dim S01#, q1#, sigma1#, mean1#, no1#

Dim S02#, q2#, sigma2#, mean2#, no2#

Dim ST1() As Double

Dim ST2() As Double

Dim rev() As Double

no1 = Cells(2, 2)

no2 = Cells(2, 3)

S01 = Cells(3, 2)

S02 = Cells(3, 3)

q1 = Cells(4, 2)

q2 = Cells(4, 3)

sigma1 = Cells(5, 2)

sigma2 = Cells(5, 3)

mean1 = Cells(6, 2)

mean2 = Cells(6, 3)

T = Cells(7, 2)
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n = Cells(8, 2)

rho = Cells(9, 2)

confidence = Cells(10, 2)

variance = 1 - rho ˆ 2

ReDim x(0 To n)

ReDim y(0 To n)

ReDim ST1(1 To n)

ReDim ST2(1 To n)

ReDim rev(1 To n)

y(0) = 0

If rho <> 1 Then

For i = 1 To n

x(i) = rho * y(i - 1) + Sqr(variance) * rGauss()

y(i) = rho * x(i) + Sqr(variance) * rGauss()

Next i

Else

For i = 1 To n

x(i) = rGauss()

y(i) = x(i)

Next i

End If

P0 = no1 * S01 + no2 * S02

For i = 1 To n

ST1(i) = S01 * Exp((mean1 - sigma1 ˆ 2 / 2) * T + sigma1

* Sqr(T) * x(i))

ST2(i) = S02 * Exp((mean2 - sigma2 ˆ 2 / 2) * T + sigma2

* Sqr(T) * y(i))

rev(i) = no1 * ST1(i) + no2 * ST2(i) - P0

Next i

Cells(13, 2) = -Percentile(rev, 1 - confidence)

Cells(14, 2) = -Percentile(rev, 1 - confidence)

+ Average(rev)

Cells(15, 2) = Cells(13, 2) / P0

Cells(16, 2) = Cells(14, 2) / P0

8.5.5 Advantages and Disadvantages

The advantages of Monte Carlo simulation are as follows.

1. The method is by far the most powerful for computing VaR because of its
flexibility. It incorporates different volatility models, interest rate models, fat
tails, and extreme scenarios.
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2. It also incorporates the passage of time, which creates structural changes in
the portfolio, including the time decay of options, the daily settlement of fixed,
floating, or contractually specified cash flows, and the effect of prespecified
trading or hedging strategies. These features are particularly important when
the horizon lengthens, and are thus of particular importance in credit risk
management.

The disadvantages of Monte Carlo simulation include the following.

1. The computational time required to calculate VaR is lengthy, particularly when
the portfolio is large and contains exotic derivatives, whose valuation also
requires the use of simulation.

2. The method suffers from model risk, which means that if the stochastic pro-
cesses assumed for the assets are insufficiently realistic, then the VaR calcula-
tion may contain a large degree of uncertainties.

8.6 VaR-RELATED RISK MEASURES

Although VaR is a popular risk measure widely used by market practitioners, it has
a number of limitations, in light of which several alternative risk measures have
been proposed. The most popular of these is the coherent risk measure proposed by
Artzner, Delbaen, Eber, and Heath (1999). Weaknesses of VaR are also detailed in
McNeil, Frey, and Embrechts (2005).

Definition 8.3 A risk measure ρ is coherent if it satisfies the four following axioms.
(i) Monotonicity

If W1 ≤ W2, then ρ(W1) ≥ ρ(W2),

which means that if portfolio W2 has a higher return than portfolio W1 in all scenarios,
then the risk of W1 should be larger than that of W2.

(ii) Sub-additivity

ρ(W1 + W2) ≤ ρ(W1)+ ρ(W2),

which shows that merging portfolios together cannot have greater risk than adding
the partial risks separately. This is the idea behind portfolio diversification.

(iii) Positive homogeneity

ρ(αW ) = αρ(W ).

In other words, increasing the size of a portfolio should increase its risk by the same
factor.
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(iv) Translation invariance

ρ(W + a) = ρ(W )− a.

In other words, adding an amount of cash to the portfolio should reduce its risk by
the same amount, as it acts as insurance.

One of the aforementioned limitations of VaR is that it is not a coherent risk measure
because it fails to satisfy the sub-additivity property. Portfolio diversification is thus
discouraged when VaR is used. In this section, we introduce some of the coherent
risk measures that serve as alternatives to VaR.

8.6.1 Conditional Value-at-Risk

VaR has the advantage of simple implementation. For portfolios with a low proba-
bility of extremely large losses, VaR fails to represent the amount of risk suffered
beyond the VaR value. In addition, as just stated, VaR is not a coherent risk measure.
As an alternatives, a coherent risk measure, conditional Value-at-Risk (CVaR), is
introduced. CVaR is also called expected shortfall (ES) or expected tail loss (ETL)
and is defined as follows.

Definition 8.4 CVaR at the α% level is the expected loss of a portfolio with value
Xt at time t in the worst α% of cases.

For example, 10-day CVaR10% represents the average losses over a 10-day period
provided that the loss is in the 10% left tail. This quantity helps us summarize the
expected loss that might be suffered beyond a given confidence level.
Suppose that we have n sorted realizations, x1, . . . . . . , xn , of random variable X

and that α% of the case is equal to [nα], which is the maximum integer that is no
greater than nα. The simplest non-parametric estimate for CVaR is given by

CVaRα = − 1

[nα]

[nα]∑
i=1

xi . (8.10)

A more formal definition of CVaR can be stated as follows.

Definition 8.5 Suppose that X is the value of a portfolio with horizon T and
confidence level (1− α%). Then, CVaR is defined as

CVaRα = − 1
α

∫ α

0
VaRα(X ) dα

= − 1
α

(
E[X1{X≤xα}]− xα(Pr(X ≤ xα)− α)

)
,

where xα is the α% left tail of the distribution.



334 VALUE-AT-RISK AND RELATED RISK MEASURES

For a continuous distribution function of the portfolio, CVaR can be defined as
follows.

CVaRα = E[−Xt |Xt < −VaRα]

= VaRα + E[max{−VaRα − Xt , 0}|Xt < −VaRα].

The methods used to calculate CVaR are the same as those used for VaR. They
include the parametric, historical simulation andMonte Carlo simulation approaches.
We illustrate only the Monte Carlo simulation approach here.
With n simulated values xi

t , i = 1, . . . , n, CVaRα is estimated by

̂CVaRα = V̂aRα + 1

nα

n∑
i=1
max{−V̂aRα − xi

t , 0}. (8.11)

The procedure used to calculate CVaR is as follows.

1. Generate n final values of portfolio x1, . . . , xn .

2. Rank the xi ’s such that x1 is the smallest and xn is the largest.

3. Set VaRα = −xnα and CVaRα = − 1
[nα]

∑[nα]
i=1 xi or CVaRα = VaRα +

1
nα

∑n
i=1 max{−VaRα − xi , 0}.

Example 8.9 Find the CVaR5% for a stock return following a normal distribution
with μ = 0.01 and σ = 0.3 and assume that the initial portfolio value is $1 million.

After calculation, the absolute VaR is 476,983, and the CVaR generated by Equa-
tions 8.10 and 8.11 is the same, that is, 601,212. The corresponding VBA code is as
follows.

For i = 1 To n

valuef(i) = value0 * (mean + sigma * rGauss())

Next i

'Calculation of VaR

VaR = -Percentile(valuef, alpha)

'sort R()

Call Sort(valuef)

'CVaR under equation(1)

cutoff = n * alpha

es = 0

For i = 1 To cutoff

es = es + valuef(i)



VaR-RELATED RISK MEASURES 335

Next i

CVaR1 = -es / cutoff

'CVaR under equation(2)

tmp = 0

For i = 1 To n

tmp = tmp + Max(-Cells(8, 2) - valuef(i), 0)

Next i

CVaR2 = VaR + tmp / cutoff

8.6.2 CVaR Distribution

Similar to VaR, we can use the CVaR distribution as a risk measure.

Example 8.10 Find the distribution of CVaR5% for the stock return in Example 8.9.

The results are illustrated in Figure 8.5.

8.6.3 Marginal, Incremental, and Component VaRs

In the case of portfolio selection, marginal, incremental, and component VaRs are
used to measure the impact of changing positions on portfolio risk. Only a brief
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Figure 8.5 CVaR distribution.
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introduction to these VaR tools is given here. For more thorough coverage, please
refer to other books specializing in these topics, for example, Jorion (2007).

Definition 8.6 Marginal VaR is the change in portfolio VaR resulting from an
additional dollar of exposure to a given component i .

The expression for marginal VaR is

�VaRi = zα

Cov(Ri , Rp)

σp
= zαβiσp = VaRp

W
βi .

Marginal VaR is often used in portfolio management. For example, if an investor
wants to change his or her position to reduce the portfolio VaR, then he or she can
rank the marginal VaRs of all components and choose that with the largest �VaR to
achieve the greatest reduction in VaR.
Incremental VaR is a viable means of measuring the impact of changing positions

on portfolio risk.

Definition 8.7 Incremental VaR is the change in portfolio VaR owing to a new
position A.

Incremental VaR = VaRp+A − VaRp.

It is time-consuming to evaluate incremental VaR, particularly for large portfolios.
An approximation by Taylor series expansion of VaRp+A is thus proposed:

Incremental VaR ≈ �VaR× A.

This approximation requires only one valuation because �VaR can be obtained
through initial VaRp computation and is thus much faster. To investigate the contri-
bution of an individual component of the portfolio risk, we can employ component
VaR.

Definition 8.8 Component VaR is the decomposition of portfolio VaR to determine
how much it would change if a given component was deleted.

Component VaRi = �VaRiwi W = VaRpβiwi ,

Component VaRi + · · · + Component VaRN = VaRp.

Component VaR can also be expressed as individual VaRmultiplied by the correlation
coefficient between component i and the portfolio.
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8.6.4 VaR and CVaR in Local Volatility Models

We now demonstrate the estimation of the VaR and CVaR of shorting a plain vanilla
European call option using importance sampling under a local volatility model with
initial stock price S0, strike price K , risk-free rate r , time-to-maturity T , number of
stepsm, and number of paths n. Suppose that at each step i , for i = 1, . . . , m, instead
of generating a standard normal random variable Zi with density

f (z) = 1√
2π
exp

(
− z2

2

)
,

we generate a normal variable Yi with mean μ, variance 1, and density

g(y) = 1√
2π
exp

(
− (y − μ)2

2

)
.

Define

h(y) = f (y)

g(y)
= exp

(
μ2 − 2μy

2

)
,

L(y1, . . . , ym) =
m∏

i=1
h(yi ),

where L is the likelihood ratio function. Denote

Pj = max{S j
T − K , 0},

L j = L(y j
1 , . . . , y j

m).

Here, Pj is the payoff of a call option at maturity with respect to the j th simulated
path, and y j

i is the normal random variable used in simulating the i th step of the j th
path, which implies L j is the likelihood ratio for the j th simulated path. Then the
price P of the foregoing call option is estimated by

P = e−r t

n

n∑
j=1

Pj L j .

To calculate the α-VaR of shorting this call option, we denote the profit and loss of
the j th simulated path by

X j
T = P − Pj .
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Here, we find a value VaRα such that

α = 1

n

n∑
j=1
1{X j

T ≤−VaRα}L j . (8.12)

To estimate V̂aRα using Equation 8.12, we implement the following steps.

1. Sort the X j
T such that X (1)T is the smallest and X (n)T the largest.

2. Set k = 1, θ = 0.

3. Set θ = θ + L (k).

4. If θ ≥ nα, then set VaRα = −Xk
T ; otherwise, continue with Step 5.

5. Set k = k + 1 and return to Step 3.

For Step 4, instead of calculating V̂aRα with the payoff having a θ larger than nα,
we can also estimate VaRα by interpolating the two payoffs when θ is smaller and
larger than nα, although the difference between the estimates of these two methods
is minor. The revised steps are as follows.

1. Sort the X j
T such that X (1)T is the smallest and X (n)T the largest.

2. Set k = 1, θ = 0.

3. Set θ = θ + L (k).

4. If θ ≥ nα, then set VaRα = − aX (k−1)
T +bX (k)T

a+b , where a = θ − nα and
b = L (k) − a; otherwise, continue with Step 5.

5. Set k = k + 1 and return to Step 3.

In calculating α-CVaR in importance sampling, similar to Equation 8.10, we can
compute it by

̂CVaRα = V̂aRα + 1

nα

n∑
j=1
max{−V̂aRα − X j

T , 0}L j .

With S0 = 50, r = 5%, q = 0%, n = 10, 000, dt = 1/360, and the local volatility
function specified in Equation 4.4, we repeat the simulation 50 times to calculate the
VaR and CVaR of European call options with different strikes. We first consider an
ATM call option with K = 50, and the results are presented in Table 8.7.
It can be seen that although normal simulation and importance sampling produce

a similar call option price, VaR, and CVaR, the standard deviation of the simulated
values is much smaller for the latter, which suggests the efficacy of this approach.
We can also see from these results that whether we employ interpolation to calculate
VaR is irrelevant because the two methods give nearly identical results.
For in-the-money (with K = 40) and out-of-the-money (with K = 60) call

options, the performance of importance sampling is similar to that in the ATM
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TABLE 8.7 Performance of Importance Sampling for an ATM Call Option

Normal simulation Mean Standard deviation

Price 6.05916 0.082873
95% VaR 15.2651 0.175508
95% CVaR 19.0993 0.213756

Importance sampling Mean Standard deviation

Price 6.06607 0.028360
95% VaR 15.2691 0.099851
95% VaR (with interpolation) 15.2708 0.100082
95% CVaR 19.1328 0.105419

case, and the results are presented in Tables 8.8 and 8.9, respectively. Note that we
calculate VaR and CVaR by shorting the call option, and thus the in-the-money call
gives the highest VaR and CVaR and the out-of-the-money call the lowest. For further
details, please refer to Ch8.7_Conditional_VaR_Local_Volatility.xls.

8.7 VaR BACK-TESTING

The Basel Accords permit banks to use their own internal rating-based approaches
to calculate their capital reserves, although that for market risk should be greater
than 8% of the estimated economic capital, where the economic capital is three times
the 10-day 99% VaR for an approved method. Overestimating VaR is fine with the
regulator, but is disadvantageous to the bank because an excessive capital reserve
reduces investment capital. However, underestimating VaR is not premitted by the
regulator, and thus banks should calculate their reserve capital using a standardized
approach. As a bank has no control over its capital reserve, the VaR method has
important implications for its investment strategy.
In this chapter, we have introduced many different ways to calculate the approxi-

mations of VaR. To ensure that a VaR approach works well, back-testing is essential
and is a central feature of the Basel Accords. Back-testing is a formal statistical
technique that verifies whether actual losses are in line with projected losses. VaR

TABLE 8.8 Performance of Importance Sampling for an In-the-Money Call Option

Normal simulation Mean Standard deviation

Price 13.07589 0.108326
95% VaR 18.29677 0.194798
95% CVaR 22.14008 0.214461

Importance sampling Mean Standard deviation

Price 13.01518 0.056723
95% VaR 18.34482 0.137871
95% VaR (with interpolation) 18.34592 0.137954
95% CVaR 22.21663 0.143620
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TABLE 8.9 Performance of Importance Sampling for an Out-of-the-Money Call Option

Normal simulation Mean Standard deviation

Price 1.817794 0.050934
95% VaR 9.581228 0.195291
95% CVaR 13.46969 0.228505

Importance sampling Mean Standard deviation

Price 1.808660 0.015583
95% VaR 9.551457 0.087970
95% VaR (with interpolation) 9.552682 0.088029
95% CVaR 13.40637 0.095607

back-testing involves systematic comparison of the history of VaR forecasts with
their associated portfolio returns.

8.7.1 Back-Testing of VaR Models

Model back-testing systematically compares historical VaR measures with subse-
quent returns. Because VaR is reported at a specified confidence level, say, 95%, we
would expect only 5% of observations to exceed the predicted VaR level. As this
percentage may deviate from 5% if the variation in observations is great, we have
to decide whether “to accept” or “to reject” the model, which consititutes typical
statistical hypothesis testing.
The simplest method for checking the validity of a VaR model is to calculate the

failure rate, that is, the number of times that the VaR is exceeded in a given sample.
Suppose that there are T trading days in a year and that the bank requires the VaR
to be based on a (1− α) confidence level (say α = 0.05). Let N be the number of
failure days in a year. Then, the failure rate is N

T , and the expected failure rate is
E[ N

T ] = α. Now, we have to deal with the following hypothesis testing problem.

H0 : E[
N

T
] = α againstH1 : E[

N

T
] �= α.

The setup of this test can be tackled with Bernoulli trials. Let X j be a Bernoulli
random variable for j = 1, . . . , T , that is,

X j =
{
1, for a failure day with probability α,

0, for not a failure day with probability 1− α.

Therefore, N = ∑T
j=1 X j follows a Binomial distribution with mean E[N ] = αT

and variance Var(N ) = α(1− α)T . By the Central Limit Theorem, the Binomial
distribution can be approximated by a normal distribution:

Z = N − αT√
α(1− α)T

L→ N (0, 1) as T → ∞.
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Hypothesis testing then becomes

H0 : E[Z ] = 0 against H1 : E[Z ] �= 0.

Using the Central Limit Theorem with a large sample size, Kupiec (1995) devel-
oped a method that approximates the 95% confidence regions for such a test using
likelihood ratio statistics. These regions are defined by the tail points of the log-
likelihood ratio:

LR = −2 log [
(1− α)(T −N )αN

] + 2 log
[(
1− N

T

)(T −N ) ( N

T

)N
]

∼ χ21 ,

that is, the log-likelihood ratio follows a chi-squared distribution with one degree of
freedom. We reject the model if LR > 3.84 with a 5% type-I error.
For example, a company wants to test for a VaR model with returns in the past

255 (T ) trading days (approximately 1 year). The company would like to determine
the rejection region based on the number of days (N ) that the model fails to forecast
the 99% VaR (α = 1%). Suppose further that the company can tolerate a type-I error
of 5% (p = 5%). Using the back-testing formula, we have

LR = −2 log [
0.99(255−N )0.01N

] + 2 log
[(
1− N

255

)(255−N ) ( N

255

)N
]

> 3.84.

Solving the above inequality numerically, we obtain N < 7, where N is an integer. It
means that the model is not rejected with a 5% type-I error if the number of failures
in a year is less than 7 days. This information then provides a guideline for selecting
a model with 99% VaR for 255 trading days.
One simple way to apply this result is to convert it into a tabular form as follows.

If we want to reject a c%VaRmodel (α = 1− c%) with a 5% (p = 5%) type-I error,
then the following Table 8.10 extracted from Jorion (2007) can be used to construct
the desired critical region.

TABLE 8.10 Critical Regions for VaR

Confidence intervals for p = 0.05

α T = 255 T = 510 T = 1000

0.01 N < 7 1 < N < 11 4 < N < 17
0.025 2 < N < 12 6 < N < 21 15 < N < 36
0.05 6 < N < 21 16 < N < 36 37 < N < 65
0.075 11 < N < 28 27 < N < 51 59 < N < 92
0.10 16 < N < 36 38 < N < 65 81 < N < 120



9
The Greeks

This chapter describes several applications of Greeks and their calculation in different
situations, including direct differentiation, the binomial tree, finite difference approx-
imation, pathwise derivative estimation, adjoint simulation, and the likelihood ratio
method. These methods may not be suitable for all types of options. For example,
the pathwise derivative method cannot be used to compute the Greeks of a digital
option. As an application example, we demonstrate the use of adjoint simulation in
the LIBOR market model.
Let V (t, S, K , r, q, σ, T ) be the value function of an option, where the current

underlying asset price is S, volatility is σ , the dividend yield is q, the strike price is
K , the time-to-expiration is T − t , and the risk-free interest rate is r . As the strike
price is fixed, we have six first-order derivatives of the option price with respect to
each of these variables. When calculating Greeks, we assume that everything remains
fixed except for the underlying variable under consideration. The following is a list
of some common Greeks.

� Delta: The rate of change of an option price with respect to the change in the
underlying asset price:

� = ∂V

∂S
.
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� Vega: The rate of change of an option price with respect to the change of the
underlying asset’s volatility:

ν = ∂V

∂σ
.

� Theta: The rate of change of an option price with respect to time, which is also
called the time decay of the option:

� = ∂V

∂t
.

� Rho: The rate of change of an option price with respect to the risk-free interest
rate:

ρ = ∂V

∂r
.

� Gamma: The rate of change of delta with respect to the underlying asset price,
which is also called curvature, as it measures the curvature of the option price
curve against the underlying asset price:

� = ∂2V

∂S2
.

For an exotic option, there can be multiple deltas or other Greeks. As an example,
consider a crack spread option in the commodity market whose payoff function is
max{S2(T )− S1(T )− K , 0}, where Si (T ) is the price at the expiration time T for
underlying assets i = 1 and i = 2. This option has two deltas, one for each of the
underlying assets:

�1 = ∂V

∂S1
and �2 = ∂V

∂S2
.

To allow general discussion, we also provide definitions for several uncommon
Greeks, all of which (except Psi) are higher-order derivatives of the option price with
respect to the common variables. They are given in Table 9.1.
TheGreek of a portfolio is simply the sumof suchGreeks of individual instruments

constituting the portfolio. Let 	 be the portfolio value, Vi be the value of the i th
instrument, and wi be the unit of holding in the i th instrument, for i = 1, . . . , n.
Then,

	 =
n∑

i=1
wi Vi .
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TABLE 9.1 Some Uncommon Greeks

Name Definition

Psi
∂V

∂q

Speed
∂3V

∂S3

Vanna
∂2V

∂S∂σ

Vomma
∂2V

∂σ 2

Thus,

∂	

∂θ
=

n∑
i=1

wi
∂Vi

∂θ
,

where θ is any of the common variables.
Greeks are useful in risk management, the most obvious being hedging. Delta

hedging is a hedging strategy that aims to eliminate the delta of a portfolio. After
application of the delta hedging strategy, the portfolio is called a delta-neutral port-
folio. In this way, a small change in an asset price will not cause a large change in the
overall portfolio value. However, option deltas change over time such that the hedger
must frequently rebalance the portfolio to ensure it remains delta-neutral. A long
position in a call option has a positive delta, whereas a short position has a negative
delta. The opposite is true for a put option. The delta of a stock is 1. Therefore, a port-
folio can be delta-hedged by buying or short-selling the stock dynamically. Although
this strategy sounds reasonable in theory, the transaction costs associated with buying
and selling the underlying asset could ruin the dynamic hedging portfolio.
Option elasticity, �, measures the percentage change in the option price relative

to that in the stock price. It is also referred to as effective gearing.

� =
∂V

V
∂S

S

= S

V
�.

The ratio S
V is called simple gearing.

A gamma-neutral strategy aims to eliminate the change in delta in order to reduce
the frequency of portfolio rebalancing. A large gamma implies that the delta will
change significantly when the stock price changes. In other words, delta hedging will
be less effective if the portfolio has a large gamma. As a result, a trader may need
to make the portfolio gamma-neutral. In practice, a trader first makes a derivative
position gamma-neutral by using derivatives in the market and then delta-neutral by
using the underlying asset. A delta–gamma neutral portfolio helps the trader market
the profit and loss of a derivative portfolio.
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TABLE 9.2 Closed-Form Greeks of European Call Options in
the BS Model

Greeks Call (long position)

Delta e−q(T −t)�(d1)

Gamma e−q(T −t)ψ(d1)
Sσ

√
(T −t)

Theta Sqe−q(T −t)�(d1)− r K e−r (T −t)�(d2)− σ Se−q(T −t)ψ(d1)
2
√

T −t

Vega S
√

T − te−q(T −t)ψ(d1)

Rho K (T − t)e−r (T −t)�(d2)

In theVaR discussion in Chapter 8, we noted that Greeks, such as the delta, gamma,
and vega, are possible candidates for improving VaR computation for a deriva-
tive position. This chapter concentrates on simulating Greeks in high-dimensional
problems.

9.1 BLACK–SCHOLES GREEKS

The closed-form solutions for the Greeks of European call and put options under
the Black–Scholes (BS) model are summarized in Tables 9.2 and 9.3. Note that the
gamma and vega are the same for call and put options. The Greeks in a short position
are the negative of the same Greeks in a long position.
Here, ψ(·) and �(·) are the pdf and cdf of the normal distribution, respectively.
In the following, we derive the remaining common Greeks of a European call

option in the BS model. Recall that if the underlying asset of a stock follows the
GBM under risk-neutral measure

d S(t)

S(t)
= (r − q) dt + σ dW (t),

then the call and put option prices are given by

c(S, K , t, r, q, σ, T ) = Se−q(T −t)�(d1)− K e−r (T −t)�(d2),

p(S, K , t, r, q, σ, T ) = K e−r (T −t)�(−d2)− Se−q(T −t)�(−d1),

TABLE 9.3 Closed-Form Greeks of European Put Options in the BS Model

Greeks Put (long position)

Delta e−q(T −t)(�(d1)− 1)

Gamma e−q(T −t)ψ(d1)
Sσ

√
T −t

Theta −Sqe−q(T −t)�(−d1)+ r K e−r (T −t)�(−d2)− σ Se−q(T −t)ψ(d1)
2
√

T −t

Vega S
√

T − te−q(T −t)ψ(d1)

Rho −K (T − t)e−r (T −t)�(−d2)
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with

d1 =
log S

K +
(

r − q + σ 2

2

)
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t,

where S is the current stock price, K is the strike price, t is the current time, r is the
risk-free interest rate, q is the dividend yield, σ is the volatility and T is the maturity.
The following relationship is useful.

Se−q(T −t)ψ(d1) = Kψ(d2)e
−r (T −t).

To see it, consider

ψ(d1) = ψ(d2 + σ
√

T − t)

= 1√
2π
exp

(
−d22
2

− d2σ
√

T − t − σ 2(T − t)

2

)

= ψ(d2) exp

(
−d2σ

√
T − t − σ 2(T − t)

2

)

= ψ(d2) exp

(
− log

(
S

K

)
− (r − q)(T − t)

)

= K

S
ψ(d2)e

−(r−q)(T −t).

In addition,

d1 − d2 = σ
√

T − t

and

∂d1
∂S

= ∂d2
∂S

= 1

Sσ
√

T − t
.

The delta of the call is computed as

∂c

∂S
= e−q(T −t)�(d1)+ Se−q(T −t) ∂�(d1)

∂S
− K e−r (T −t) ∂�(d2)

∂S

= e−q(T −t)�(d1)+ Se−q(T −t)ψ(d1)
∂d1
∂S

− K e−r (T −t)ψ(d2)
∂d2
∂S

= e−q(T −t)�(d1)+ ∂d1
∂S

(
Sψ(d1)e

−q(T −t) − Kψ(d2)e
−r (T −t))

= e−q(T −t)�(d1).
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Hence, the gamma of the call is

∂2c

∂S2
= ∂

∂S
(e−q(T −t)�(d1))

= e−q(T −t)ψ(d1)
∂d1
∂S

= e−q(T −t)ψ(d1)

Sσ
√

T − t
.

The call theta is then deduced from the BS equation. To derive the call vega, consider

∂c

∂σ
= Se−q(T −t)ψ(d1)

∂d1
∂σ

− K e−r (T −t)ψ(d2)
∂d2
∂σ

= Se−q(T −t)ψ(d1)

(
∂d1
∂σ

− ∂d2
∂σ

)

= S
√

T − te−q(T −t)ψ(d1).

Similarly, the rho of a call is calculated as

∂c

∂r
= Se−q(T −t)ψ(d1)

∂d1
∂r

+ K e−r (T −t)�(d2)− K e−r (T −t)ψ(d2)
∂d2
∂r

= Se−q(T −t)

(
∂d1
∂r

− ∂d2
∂r

)
+ K e−r (T −t)�(d2)

= K (T − t)e−r (T −t)�(d2).

9.2 GREEKS IN A BINOMIAL TREE

A binomial tree or binomial option pricing model is a discrete-time model that is
useful for pricing American and other exotic options. In this section, we briefly
introduce how the common Greeks are obtained in a binomial tree.
Consider a stock that pays dividends at rate q where S is the initial stock price.

In each period, the stock goes up by a factor u to Su or down by a factor d to
Sd . The corresponding option prices are cu and cd , and c0 is the option price when
stock price does not move. If the stock price goes up in one period and down in the
next one, then define that stock price as Sud and the corresponding option price to
be cud .

1. Delta The delta is essentially the number of shares of the stock that must be
bought to replicate the option. Recall that to replicate the option, we must buy
� shares of the stock and invest B dollars in a risk-free bond, with all dividends
reinvested to buy additional shares. To replicate the value of the option after
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one period, we require that

�eqδt Su + Berδt = cu,

�eqδt Sd + Berδt = cd .

Solving the equations, we have

� = e−qδt cu − cd

Su − Sd

= e−qδt change in option price

change in stock price
.

As δt tends to zero, we have

� = ∂c

∂S
.

2. Gamma Note that we cannot compute the gamma at time 0. Its estimate at time
δt is given by

�(Sδt , δt) = �(Su)− �(Sd )

Su − Sd
.

3. Theta If u = 1
d , then we can estimate the theta by

� = cud − c0
2δt

.

Otherwise, we can employ delta–gamma–theta approximation:

dc = � dS + � dt + 1

2
� (dS)2.

Rearranging terms, we have

� = 1

2δt

(
cud − c0 − �(Sud − S)− 1

2
�(Sud − S)2

)
.

4. Rho Rho calculation cannot be performed with a single tree. We have to con-
struct another tree with a small change in the interest rate to obtain a new option
price, holding all else the same. The rho estimate is

ρ = c∗
0 − c0
δr

,

where c∗
0 is calculated using the new interest rate r + δr .
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5. Vega The calculation of the vega is very similar to that of the rho. The vega
estimate is

σ = c∗
0 − c0
δσ

,

where c∗
0 is calculated using the new volatility σ + δσ .

9.3 FINITE DIFFERENCE APPROXIMATION

In addition to closed-form solutions, finite difference approximation can also be used.
Although it is the simplest method of calculating the Greeks of options, it produces
biased estimates.
To begin with, we define a “big O” and “little o” as follows.

Definition 9.1 (Big O) We say that

f (x) = O(g(x)) (x → ∞)

if and only if there exists a positive real number M and a real number x0 such that

| f (x) | ≤ M | g(x) |

for all x > x0.

Definition 9.2 (Little o) We say that

f (x) = o(g(x)) (x → x0)

if

lim
x→x0

f (x)

g(x)
= 0.

If x0 = 0, then we say informally that f (x) goes to zero at a faster speed than g(x)
as x goes to zero.
To approximate the first-order derivatives, we can use the forward difference,

backward difference, or central finite difference schemes. To approximate the second-
order derivatives, we must use the second-order central difference scheme. These
methods can be derived from Taylor series expansion.
Suppose that we are interested in finding the derivative of α(θ ) with respect to θ ,

where α(θ ) = E[Y (θ )]; α(θ ) is the option price, θ is the stock price, and Y (θ ) is the
discounted payoff function. As we assume that the other parameters do not change,
we write α(θ ) = E[Y (θ )].
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Consider the function α(θ ). By Taylor series expansion,

α(θ + h) = α(θ )+ hα′(θ )+ h2

2
α′′(θ )+ o(h2),

provided that α is twice-differentiable at θ . Rearranging the foregoing expression,
we have

α′(θ ) = α(θ + h)− α(θ )

h
− h

2
α′′(θ )− o(h).

Therefore, we can approximate α′(θ ) by

α′(θ ) = α(θ + h)− α(θ )

h

= E[Y (θ + h)]− E[Y (θ )]
h

.

This scheme is called the forward difference scheme.The forward difference estimator
is given by

�F = Y n(θ + h)− Y n(θ )

h
.

The bias of the forward difference estimator is

Bias(�F ) = E[�F ]− α′(θ )

= α(θ + h)− α(θ )

h
−

(
α(θ + h)− α(θ )

h
− h

2
α′′(θ )− o(h)

)

= h

2
α′′(θ )+ o(h).

Now, consider the central finite difference scheme. Again, by Taylor series expansion,
we have

α(θ + h) = α(θ )+ hα′(θ )+ h2

2
α′′(θ )+ h3

6
α′′′(θ )+ o(h3),

α(θ − h) = α(θ )− hα
′
(θ )+ h2

2
α′′(θ )− h3

6
α′′′(θ )+ o(h3),

given that α′′ is also differentiable at θ . Subtracting these equations, we have

α′(θ ) = α(θ + h)− α(θ − h)

2h
− h2

6
α′′′(θ )− o(h2).
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Similar to the forward difference estimator, we have the following central difference
estimator.

�C = Y n(θ + h)− Y n(θ − h)

2h
.

The bias of the central difference estimator is

Bias(�C ) = E[�C ]− α′(θ )

= α(θ + h)− α(θ − h)

2h
−

(
α(θ + h)− α(θ − h)

2h
− h2

6
α′′′(θ )− o(h2)

)

= h2

6
α′′′(θ )+ o(h2).

It can be seen that the central difference estimator has a smaller bias than the forward
difference estimator. However, the former requires the computation of both Y n(θ + h)
and Y n(θ − h), whereas the latter requires Y n(θ + h) alone (as Y n(θ ) is calculated in
the pricing process). In other words, the computational cost is doubled for the central
difference estimator.
For second-order derivatives, we employ the second-order central difference

scheme. The second-order central difference estimator can also be derived from
Taylor series expansion, giving us

�sc = Y n(θ + h)− 2Y n(θ )+ Y n(θ − h)

h2
.

We use this estimator to estimate the gamma of a call.

Example 9.1 Suppose that S(0) = 50, r = 0.02, σ = 40%, q = 0, τ = T − t = 1,
and K = 48. Calculate the delta and gamma of a European call option using a
closed-form solution, the forward difference estimator (for the delta only), and the
central difference estimator, and compare the results.

The algorithm used to calculate the forward difference estimator for the delta is as
follows.

1. Set i = 1.

2. Generate a standard normal random variable Zi .

3. Compute the call option price by

c(S0) = e−rT max

{
S(0) exp

((
r − q − σ 2

2

)
T + σ

√
T Zi

)
− K , 0

}
.
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TABLE 9.4 Finite Difference Estimates

Closed-form Forward difference Central difference

Delta 0.637601487 0.63712429 0.637032697
Variance − 9.86124E−06 9.87708E−06
Bias of Delta − −4.771970E−04 −5.687900E−04
Gamma 0.018748488 − 0.018318607
Variance − − −0.000429881
Bias of Gamma − − 1.83351E−05

4. Set S(0) = S(0)+ h, where h is a small number, say 0.01. Use the same normal
random variables to calculate the call price c(S(0)+ h), as in Step 3.

5. Set i = i + 1 and repeat Steps 2 to 4 until i = n.

6. Delta = cn(S(0)+ h)− cn(S(0))

h
.

7. Repeat the foregoing steps m times to obtain the mean and variance of the
estimate.

8. Bias =Mean of estimate − Closed-form solution.

The calculation results are summarized in Table 9.4. The variance is calculated using
100 estimates, and each estimate is calculated using n = 50, 000. The VBA code is
as follows.

Dim mnormal() As Double

Dim i&, n&, h#, j&

Dim call1() As Double, call2() As Double, call3() As Double

Dim S0#, r#, q#, sigma#, K#, T#

Dim deltaF(1 To 100) As Double, deltaC(1 To 100) As Double,

gammaC(1 To 100) As Double

Dim c1#, c2#, c3#

n = Cells(1, 2)

h = Cells(2, 2)

S0 = Cells(4, 2)

r = Cells(5, 2)

q = Cells(6, 2)

sigma = Cells(7, 2)

K = Cells(8, 2)

T = Cells(9, 2)

ReDim mnormal(1 To n)

ReDim call1(1 To n)

ReDim call2(1 To n)

ReDim call3(1 To n)
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For j = 1 To 100

For i = 1 To n

mnormal(i) = rGauss()

call1(i) = Exp(-r * T) * Max(S0 * Exp((r - q -

sigma ˆ 2 / 2) * T + _sigma * Sqr(T) * mnormal(i)) - K, 0)

call2(i) = Exp(-r * T) * Max((S0 + h) * Exp((r - q -

sigma ˆ 2 / 2) * T + _sigma * Sqr(T) * mnormal(i)) - K, 0)

call3(i) = Exp(-r * T) * Max((S0 - h) * Exp((r - q -

sigma ˆ 2 / 2) * T + _sigma * Sqr(T) * mnormal(i)) - K, 0)

Next i

c1 = Average(call1)

c2 = Average(call2)

c3 = Average(call3)

deltaF(j) = (c2 - c1) / h

deltaC(j) = (c2 - c3) / (2 * h)

gammaC(j) = (c2 - 2 * c1 + c3) / (h ˆ 2)

Next j

Cells(2, 7) = deltaF(1)

Cells(3, 7) = Application.Var(deltaF)

Cells(4, 7) = Average(deltaF) - Cells(2, 6)

Cells(2, 8) = deltaC(1)

Cells(3, 8) = Application.Var(deltaC)

Cells(4, 8) = Average(deltaC) - Cells(2, 6)

Cells(5, 8) = gammaC(1)

Cells(6, 8) = Application.Var(gammaC)

Cells(7, 8) = Average(gammaC) - Cells(5, 6)

For further details, please refer to Ch9.4_Finite_Difference.xls.
It is tempting to reduce h so as to reduce the bias. However, doing so will

increase the variance of the estimate. Take the forward difference estimator as an
example:

Var(�F ) = 1

h2
Var

(
Y n(θ + h)− Y n(θ )

)
.

From this equation, we can see that decreasing h increases the variance of the
estimator, which is also affected by the dependence between Y n(θ + h) and Y n(θ ).
For simplicity, assume that the pairs (Y (θ ), Y (θ + h)) and (Yi (θ ), Yi (θ + h)) are i.i.d.
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for i = 1, 2, . . . , n. Then,

Var(�F ) = 1

nh2
Var(Y (θ + h)− Y (θ )).

There are three scenarios for the order of Var(Y (θ + h)− Y (θ )), as follows.

Scenario 1. Var(Y (θ + h)− Y (θ )) = O(1). This scenario occurs when Y (θ + h) and
Y (θ ) are simulated independently, that is, using independent random numbers. In
fact,

Var(Y (θ + h)− Y (θ )) = Var(Y (θ + h))+ Var(Y (θ )) → 2Var(Y (θ )).

Scenario 2. Var(Y (θ + h)− Y (θ )) = O(h). This scenario occurs when Y (θ + h) and
Y (θ ) are simulated using common random numbers.

Scenario 3. Var(Y (θ + h)− Y (θ )) = O(h2). For this scenario to hold, not only do
we require that Y (θ + h) and Y (θ ) be simulated using common random numbers, but
also that, for (almost) all values of the random numbers, the output Y (·) is continuous
in the input θ .

It is for this reason that we use common random numbers to estimate the Greeks,
that is, so as to reduce the variance and increase the convergence rate. For more
details about the relationship between h and n, please refer to Glasserman (2004).

9.4 LIKELIHOOD RATIO METHOD

The pathwise method involves differentiation of the payoff function, which may be
discontinuous, and thus is not applicable to exotic options, such as barrier and digital
options. An alternative solution is the likelihood ratio method, which does not require
the continuity of the payoff function, but involves differentiation of the PDF.
Suppose that we have a discounted payoff Y , which can be expressed as a function

f (X1, . . . , Xm). The Xi ’s can be any values of the underlying asset that determine the
payoff function. The likelihood ratio method relies on the PDF gθ of X , which in turn
depends on the parameter of interest θ . Then the expected value of the discounted
payoff is

Egθ
[Y ] = E[ f (X1, . . . , Xm)] =

∫
Rm

f (x)g(x) dx .

Interchanging the order differentiation and expectation, we have

d

dθ
Egθ
[Y ] =

∫
Rm

f (x)
dg(x)

dθ
dx .
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Multiplying the integrand by g(x)
g(x) , we have

d

dθ
Egθ
[Y ] =

∫
Rm

f (x)
ġ(x)

g(x)
g(x) dx

= Egθ

[
f (X )

ġ(X )

g(X )

]
,

where ġ = dg
dθ . Here, Egθ

denotes the expectation computed with respect to gθ . The

likelihood ratio method estimator is f (X ) ġ(X )
g(X ) , which is unbiased. The expression

ġ(x)
g(x) is called the score function, and the random variable

ġ(X )
g(X ) is called the score.

Note that the form of the estimator does not depend on the payoff function, and
thus the payoff function is irrelevant in the likelihood ratio method. If the underlying
path for two payoff functions are the same, then, once the score function is calculated,
the estimate can be obtained easily by multiplying the payoff function by the score.

Example 9.2 Estimate the delta and vega of a vanilla call option under the BS
model using the likelihood ratio method, where S(0) = 50, K = 60, r = 0.01, q = 0,
σ = 0.3, and T = 0.5.

In the BS model, the stock price is log-normally distributed. The density of S(T ) is
given by

g(x) = 1

xσ
√

T
ψ(h(x)),

where h(x) = log x
S(0)−(r− σ2

2 )T

σ
√

T
. The score function is calculated as

1

g(x)

dg(x)

dS(0)
=
log x

S(0) − (r − σ 2

2 )T

S(0)σ 2T
.

The unbiased estimator of the delta is given by

e−rT max{S(T )− K , 0}
log S(T )

S(0) − (r − σ 2

2 )T

S(0)σ 2T
= e−rT max{S(T )− K , 0} Z

S(0)σ
√

T
,

where S(T ) = S(0) exp
(
(r − σ 2

2 )T + σ
√

T Z
)
. The score function for the vega is

1

g(x)

dg(x)

dσ
= − 1

σ
− h(x)

log S(0)
x + (r + σ 2

2 )T

σ 2
√

T
.
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TABLE 9.5 Delta and Vega Estimation Using the Likelihood Ratio Method

Closed-form Likelihood ratio method estimator

Delta 0.232745274 0.232063993
Variance − 1.67959E−05
Bias of Delta − 0.000212538
Vega 10.80685572 10.73423919
Variance − 0.093406855
Bias of Vega − 0.026576296

The unbiased estimator of the vega is given by

e−rT max{S(T )− K , 0}
(

− 1
σ

− h(S(T ))
log S(0)

S(T ) + (r + σ 2

2 )T

σ 2
√

T

)

= e−rT max{S(T )− K , 0}
(

Z2 − 1
σ

− Z
√

T

)
,

where S(T ) = S(0) exp((r − σ 2

2 )T + σ
√

T Z ).
The calculation results are summarized in Table 9.5. The variance is calculated

using 100 estimates, and each estimate is calculated using n = 50, 000. The delta
and vega values obtained by the likelihood ratio method are close to those obtained
by the closed-form solutions.
The corresponding VBA code is as follows.

Dim S0#, ST#, K#, r#, q#, T#, sigma#, Z#, n&

Dim i As Long, j As Long

Dim delta() As Double

Dim vdelta() As Double

Dim vega() As Double

Dim vvega() As Double

S0 = Cells(1, 2)

K = Cells(2, 2)

r = Cells(3, 2)

q = Cells(4, 2)

sigma = Cells(5, 2)

T = Cells(6, 2)

n = Cells(7, 2)

ReDim delta(1 To n) As Double

ReDim vdelta(1 To 100) As Double

ReDim vega(1 To n) As Double

ReDim vvega(1 To 100) As Double
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For j = 1 To 100

For i = 1 To n

Z = rGauss()

ST = S0 * Exp((r - q - (sigma ˆ 2) / 2) * T + sigma *

Sqr(T) * Z)

delta(i) = Exp(-(r - q) * T) * Max(ST - K, 0) * Z / S0 /

sigma / Sqr(T)

vega(i) = Exp(-(r - q) * T) * Max(ST - K, 0) * ((Z ˆ 2 - 1) /

sigma - Z * Sqr(T))

Next i

vdelta(j) = Average(delta)

vvega(j) = Average(vega)

Next j

Cells(10, 2) = vdelta(1)

Cells(11, 2) = Application.Var(vdelta)

Cells(10, 5) = vvega(1)

Cells(11, 5) = Application.Var(vvega)

Cells(12, 2) = Average(vdelta) - Cells(9, 2)

Cells(12, 5) = Average(vvega) - Cells(9, 5)

For further details, please refer to Ch9.5_Likelihood_Ratio_Method_Vanilla.xls.
Note that this method can be used to estimate the delta of a digital option, which

is not possible using the pathwise method. Such estimation is achieved by replacing
the payoff function with the indicator function 1{S(T )>K }.

Example 9.3 A forward start option is an option that starts at some future time T1
and matures at time T2. The payoff function of a forward start option is max{S(T2)−
S(T1), 0}. Estimate the path-dependent vega of a forward start option using the
likelihood ratio method, where S(0) = 50, r = 0.01, q = 0, σ = 0.3, T1 = 0.2, and
T2 = 0.5.

The density of the path is

g(x1, x2) = g1(x1|S(0))g2(x2|x1)

= 1

x1σ
√

T1
ψ(h1(x1|x0)) 1

x2σ
√

T2 − T1
ψ(h2(x2|x1)),
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where hi (xi |xi−1) = log xi
xi−1 −(r− σ2

2 )τi

σ
√

τi
. Then the score function is given by

∂ log g(S(T1), S(T2))

∂σ
=

2∑
i=1

∂ log g(S(Ti )|S(Ti−1)
∂σ

= −
2∑

i=1

(
1

σ
+ hi (Si |Si−1)

log Si−1
Si

+ (r + σ 2

2 )τi

σ 2
√

τi

)
.

The unbiased estimator of the vega is equal to

e−rT max{S(T2)− S(T1), 0}
(

Z21 − 1
σ

− Z1
√

T1 + Z22 − 1
σ

− Z2
√

T2 − T1

)
,

where S(T1) = S(0) exp((r − σ 2

2 )T1 + σ
√

T1Z1) and S(T2) = S(T1) exp((r − σ 2

2 )
(T2 − T1)+ σ

√
T2 − T1Z2). After calculation, the vega is 10.62672,with the variance

of the estimate being 0.13308 using 100 estimates, where each estimate is calculated
using n = 50, 000. The corresponding VBA code is as follows.

Dim S0#, ST1#, ST2#, r#, q#, T1#, T2#, sigma#, Z1#, Z2#, n&

Dim i&, j&, score#

Dim vega() As Double

Dim vvega() As Double

S0 = Cells(1, 2)

r = Cells(2, 2)

q = Cells(3, 2)

sigma = Cells(4, 2)

T1 = Cells(5, 2)

T2 = Cells(6, 2)

n = Cells(7, 2)

ReDim vega(1 To n) As Double

ReDim vvega(1 To 100) As Double

For j = 1 To 100

For i = 1 To n

Z1 = rGauss()

Z2 = rGauss()

ST1 = S0 * Exp((r - q - (sigma ˆ 2) / 2) * T1 + sigma *

Sqr(T1) * Z1)

ST2 = ST1 * Exp((r - q - (sigma ˆ 2) / 2) * (T2 - T1) +

sigma * Sqr(T2 - T1) * Z2)
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score = ((Z1 ˆ 2 - 1) / sigma - Z1 * Sqr(T1) + (Z2 ˆ 2 - 1) /

sigma - Z2 * Sqr(T2 - T1))

vega(i) = Exp(-(r - q) * T) * Max(ST2 - ST1, 0) * score

Next i

vvega(j) = Average(vega)

Next j

Cells(9, 2) = vvega(1)

Cells(10, 2) = Application.Var(vvega)

For futher details, please refer to Ch9.5_Likelihood_Ratio_Method_Path_Vega.xls.
The pathwise method cannot be extended further to the estimation of higher-order

derivatives. However, the likelihood ratio method can be used to obtain higher-order
derivatives provided that the PDF is differentiable at a higher order. For example, the
estimator of the gamma is given by f (X ) g̈(X )

g(X ) , where g̈ = d2g
dS(0)2 .

The likelihood ratio method has two limitations, however. First, it requires knowl-
edge of the PDF. Second, it generally produces greater variance than the pathwise
method, a consequence of the failure of interchange between differentiation and
expectation. In practice, when estimating second- or higher-order derivatives, a mixed
estimator employing both the pathwise and likelihood ratio methods is used to reduce
the variance.

9.5 PATHWISE DERIVATIVE ESTIMATES

Better and faster estimation of derivatives can often be accomplished if more infor-
mation about the model dynamics in a Monte Carlo simulation is known. Pathwise
differentiation is one of the methods used in this regard. The key idea behind the path-
wise method is to differentiate the evolution of the underlying asset or the parameters
along the paths. Compared to the finite difference method, more model analysis and
computational skills are required. However, such additional effort is justified by the
concomitant improvement in the quality of the calculated Greeks.
The pathwise method encompasses the forward method and the adjoint method.

The difference between the two lies in the direction of the differentiation. In this
section, we focus primarily on the adjoint method, as it is computationally more
efficient than its forward counterpart.

9.5.1 Application to European Options

We begin our discussion by reviewing the one-dimensional diffusion process that
satisfies the Itô’s process:

dS(t) = a(S(t), t) dt + b(S(t), t) dW (t),
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where S(t) is the asset price process, W (t) is a one-dimensional standard Brownian
motion, a(·) is the drift term, and b(·) is the diffusion term.
In Monte Carlo simulation, the evolution of process S(t) is often approximated by

Euler discretization. We write S(n) for the approximation at time nh, and it evolves
according to

S(n + 1) = S(n)+ a(S(n))h + b(S(n))Z (n + 1)√h, (9.1)

where S(0) = S0 and Z (1), Z (2), . . . are i.i.d. standard normal random variables. If
the normal random variables are fixed, then Equation 9.1 can bewritten as a functional
transformation:

S(n + 1) = Fn(S(n)), (9.2)

where Fn is a transformation.
Consider a financial derivative with a discounted payoff function g(S(T )) that

depends on the terminal asset price, where N = T/h. To estimate its delta, consider
the partial derivative

∂

∂S(0)
E[g(S(T )].

The pathwise method estimates the delta by

∂

∂S(0)
g(S(T )), (9.3)

which is the sensitivity of the discounted payoff along the path. Suppose that the
differentiation and expectation can be interchanged, and the delta can be estimated
by

∂

∂S(0)
E [g(S(T )] = E

[
∂

∂S(0)
g(S(T )

]
.

Applying the chain rule to Equation 9.1, we obtain the following pathwise derivative

∂

∂S(0)
g(S(N )) = ∂g(S(N ))

∂S(N )

∂S(N )

∂S(N − 1) . . .
∂S(2)

∂S(1)

∂S(1)

∂S(0)
. (9.4)

Suppose that process S(t) follows the BS dynamics, with constant drift r and diffusion
coefficient σ . Equation 9.1 becomes

S(n + 1) = S(n)+ r S(n)h + σ S(n)Z (n + 1)√h.

Consider the case for a European call option. The discounted payoff function
g(S(T )) is given by e−rT max{S(T )− K , 0}, where r is the risk-free rate, T is the
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time to maturity, and K is the strike price. The corresponding partial derivatives are
as follows.

∂g(S(N ))

∂S(N )
=

{
e−rT , if S(N ) > K ,

0, otherwise,

∂S(n + 1)
∂S(n)

= 1+ rh + σ
√

h Z (n + 1) = S(n + 1)
S(n)

. (9.5)

With this information, Equation 9.4 can be written as

∂

∂S(0)
g(S(N )) = ∂g(S(N ))

∂S(N )

∂S(N )

∂S(N − 1) . . .
∂S(2)

∂S(1)

∂S(1)

∂S(0)

=
{
e−rT S(N )

S(N−1) . . .
S(N−1)
S(N−2)

S(1)
S(0) , if S(N ) > K ,

0, otherwise,

=
{
e−rT S(N )

S(0) , if S(N ) > K ,

0, otherwise.
(9.6)

Using these equations, we can construct the following simulation algorithm.

1. Generate an asset price path {S(0), . . . , S(N )}.
2. Calculate the differentiated payoff function by Equation 9.5.

3. Compute the delta stepwise backward by Equation 9.6.

4. Repeat Steps 1 to 3 M times, and average the estimate.

Now, suppose that we want to calculate other pathwise Greeks using the adjoint
method. Let θ denote parameter Fn in Equation 9.2. θ can be the volatility of an
individual asset, the risk-free rate, or the lifetime of the derivative. The pathwise
estimate of the sensitivity to θ is

∂g

∂θ
= ∂g

∂S(N )

∂S(N )

∂θ
.

Let �(n) be ∂S(n)
∂θ
. Then,

�(n + 1) = ∂ Fn

∂S(n)
(S(n), θ )�(n)+ ∂ Fn

∂θ
(S(n), θ )

= D(n)�(n)+ B(n).

If θ = σ , then we can calculate the vega of the derivatives, where

∂ Fn

∂S(n)
(S(n), σ ) = S(n + 1)

S(n)
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and

∂ Fn

∂σ
(S(n), σ ) = S(n)

√
h Z (n + 1).

The sensitivity to θ = σ is given by

∂g

∂σ
= ∂g

∂S(N )
�(N )

= ∂g

∂S(N )
(B(N − 1)+ D(N − 1)B(N − 2)+ · · ·

+ D(N − 1)D(N − 2) . . . D(1)B(0))

= ∂g

∂S(N )

(
S(N − 1)√h Z (N )+ S(N )

S(N − 1) S(N − 2)√h Z (N − 1)+ · · ·

+ S(N )

S(N − 1)
S(N − 1)
S(N − 2) . . . S(0)

√
h Z (1)

)

= ∂g

∂S(N )

(
S(N − 1)√h Z (N )+ S(N )

S(N − 1) S(N − 2)√h Z (N − 1)+ · · ·

+ S(N )

S(1)
S(0)

√
h Z (1)

)
.

These equations give us the following simulation algorithm.

1. Generate an asset price path {S(0), . . . , S(N )}.
2. Calculate the differentiated payoff function by Equation 9.5.

3. Compute �(N ) stepwise backward by the aforementioned equation.

4. Calculate the corresponding estimate of the vega.

5. Repeat Steps 1 to 4 M times, and average the estimate.

The corresponding VBA code is as follows.

Public Sub EC_Adj_Greek(A As BS_PathType, K As Double, _

ByRef Value As Variant, ByRef Delta As Variant, ByRef Vega

As Variant)

Dim i As Long, j As Long

ReDim S(1 To A.n, 0 To A.m) As Double

ReDim S_b(1 To A.n, 0 To A.m) As Double

ReDim S_b_v(1 To A.n, 0 To A.m) As Double

ReDim z(1 To A.m) As Double

ReDim Value(1 To A.n) As Double

ReDim Delta(1 To A.n) As Double

ReDim Vega(1 To A.n) As Double
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For i = 1 To A.n

S(i, 0) = A.S0

For j = 1 To A.m

z(j) = rGauss()

S(i, j) = S(i, j - 1) * (1 + A.rf * A.dt + A.sigma *

Sqr(A.dt) * z(j))

Next j

Value(i) = Exp(-A.rf * A.T) * Max(S(i, A.m) - K, 0)

S_b(i, A.m) = 0

S_b_v(i, A.m) = 0

If Value(i) > 0 Then

S_b(i, A.m) = Exp(-A.rf * A.T)

S_b_v(i, A.m) = Exp(-A.rf * A.T)

For j = A.m - 1 To 0 Step -1

S_b(i, j) = S_b(i, j + 1) * S(i, j + 1) / S(i, j)

S_b_v(i, j) = S(i, j) * Sqr(A.dt) * z(j + 1) *

S(i, A.m) / S(i, j + 1)

If j <> A.m - 1 Then

S_b_v(i, j) = S_b_v(i, j) + S_b_v(i, j + 1)

End If

Next j

End If

Delta(i) = S_b(i, 1)

Vega(i) = S_b_v(i, 1) * S_b_v(i, A.m)

Next i

End Sub

If we assume S(0) = 10, K = 12, T = 1, r = 5%, and σ = 40% and generate 50,000
paths, then the exact price from the BS model is 1.08059, the exact delta is 0.447965,
and the exact vega is 3.95544. The results using different simulation methods are
presented in Table 9.6, which shows that the likelihood ratio method is the fastest
method, but produces the largest variance in estimation. The finite difference method

TABLE 9.6 Comparison of the Greeks of a European Call Option Calculated by Different
Methods

Adjoint method Adjoint method
Likelihood ratio Finite difference (stepwise) (one-shoot)

Value 1.075269457 1.069390328 1.095131811 1.067705506
Delta 0.4422509 0.448835501 0.450734632 0.44613116
sd(Delta) 1.406276012 0.712750935 0.714223855 0.712890081
Vega 3.796132405 3.942509866 3.973986098 3.913102811
sd(Vega) 25.71505033 9.527871248 9.428493464 9.597380255
Time (s) 0.1875 6.203125 5.0078125 0.2265625
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produces a fairly accurate estimation, but its speed is the slowest. Finally, the estima-
tion of adjoint method with one-shoot simulation is as accurate as that of the finite
difference method, and its speed is the same as that of the likelihood method. For
more details, please refer to Ch9.6_Adjoint_European_Option.xls.

9.5.2 Application to Multi-Asset Derivatives

We now consider a multi-asset call option with the following discounted payoff
function g.

g(S(T )) = e−rT max

{
n∑

i=1
wi Si (T )− K , 0

}
,

where Si (T ) is the terminal value of the i th asset and wi is the corresponding weight.
The process Si (t) follows the multidimensional stochastic differential equation,

dSi (t) = r Si (t) dt + σi Si (t) dWi (t),

for i = 1, 2, . . . , n, where the Wi ’s are correlated Wiener processes.
Using the analysis in the previous section, we calculate the partial derivatives with

respect to the individual asset prices. Let B = ∑n
i=1 wi Si (T ) and

∂g

∂Si (0)
=

{
e−rT wi

Si (T )
Si (0)

, if B > K ,

0, otherwise.
(9.7)

If we calculate the sensitivity to r , then we have to compute

∂g

∂r
=

{−T e−rT (B − K ), if B > K ,

0, otherwise.
(9.8)

The simulation algorithm is as follows.

1. Generate a multi-asset path for S(0) to S(N ).
2. Calculate the payoff of the derivative.

3. Calculate the differentiated payoff function by Equations 9.7 and 9.8.

4. Delta = ∂g
∂Si (0)

and rho = ∂g
∂r .

5. Repeat Steps 1 to 4 M times, and average the estimates.

The corresponding VBA code is as follows.

Public Sub BasketOption_Adj_Greek(A() As BS_PathType, VCmatrix

As Variant, K As Double,_W() As Double, ByRef value As

Variant, ByRef delta As Variant, ByRef rho As Variant)

Dim i As Long, j As Long, m As Long
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Dim B As Double, B_b As Double

Dim l As Variant

m = UBound(VCmatrix, 1)

ReDim ST(1 To m) As Double

ReDim z(1 To A(1).n) As Double

ReDim value(1 To A(1).n) As Double

ReDim delta(1 To m, 1 To A(1).n) As Double

ReDim rho(1 To A(1).n) As Double

l = CDecom(VCmatrix)

For i = 1 To A(1).n

z = rCGauss(l)

For j = 1 To m

ST(j) = A(j).S0 * Exp((A(j).rf - 1 / 2 * A(j).sigma ˆ 2) *

A(j).T + _A(j).sigma * Sqr(A(j).T) * z(j))

Next j

B = 0

For j = 1 To m

B = B + W(j) * ST(j)

Next j

value(i) = Exp(-A(1).rf * A(1).T) * Max(B - K, 0)

B_b = 0

rho(i) = 0

If value(i) > 0 Then

B_b = Exp(-A(1).rf * A(1).T)

rho(i) = -A(1).T * value(i)

End If

For j = 1 To m

delta(j, i) = W(j) * B_b * ST(j) / A(j).S0

Next j

Next i

End Sub

Consider the example of a basket option with four underlying assets with ini-
tial price S1(0) = 1.3, S2(0) = 1, S3(0) = 1.2, S4(0) = 1.5, w1 = 0.1, w2 = 0.3,
w3 = 0.5, w4 = 0.1, K = 1, T = 1, and r = 5%, and generate 50,000 paths. The
delta and rho results produced using the adjoint and finite difference methods
are presented in Table 9.7. When the option is based on more underlying assets,
the difference in computational speed between the two methods becomes more
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TABLE 9.7 Comparison of the Greeks of a European Call Option Calculated
Using the Adjoint and Finite Difference Methods

Adjoint method Finite difference

Value 0.195921838 0.196188286
DeltaS1 0.088683732 0.088859997
DeltaS2 0.268484838 0.26838605
DeltaS3 0.452728308 0.453596083
DeltaS4 0.090740029 0.09080874
Rho −0.195921838 −0.196178477
Time (s) 0.828125 1.5625

significant for higher dimensional cases. The adjoint and finite difference meth-
ods provide similar estimations, although the former is much faster, taking about
half the computational time needed for the latter. For more details, please refer to
Ch9.6_Adjoint_Basket_Option.xls.

9.5.3 Application to Interest Rate Derivatives in LIBOR Market Model

Recall the m-factor LIBOR market model, the forward rate dynamics of which are
described by the following SDE.

d fi (t)

fi (t)
= μi (t) dt +

m∑
k=1

σik(t) dWk(t),

where i = 1, . . . , m and Wk(t) for k = 1, . . . , m are independent standard Brownian
motions, and

μi (t) =
i∑

j=η(t)

σi jτ j f j (t)

1+ τ j f j (t)
,

η(t) denotes the index of the next nearest maturity date after time t , Tη(t)−1 ≤ t < Tη(t)

and τi = Ti+1 − Ti .
Consider again the general setting of Equation 9.4, and write ∂g

∂ f (0) for the row

vector of the derivatives of g( f (N )) with respect to the elements of f (0), where
f (0) = ( f1(0), . . . , fm(0)):

∂g

∂ f (0)
= ∂g

∂ f (N )
∂ f (N )

∂ f (N − 1) . . .
∂ f (2)
∂ f (1)

∂ f (1)
∂ f (0)

= ∂g

∂ f (N )
D(N − 1)D(N − 2) . . . D(0)�(0)

≡ V (0)T �(0),
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where �(n) is an m × m matrix with �i j (n) = ∂ fi (n)
∂ f j (0)

, and D(n) is an m × m matrix
with

Dik(n) = δik + ∂μi

∂ fk
τi +

d∑
l=1

∂σil

∂ fk
dWl ,

δik is 1 if i = k and 0 otherwise. V (0) can be calculated recursively by

V (n) = D(n)T V (n + 1),where V (N ) =
(

∂g

∂ f (N )

)T

. (9.9)

Consider a simple example of a caplet for the interval [Tm, Tm+1) with strike price
K . Its discounted payoff is

(
m∏

i=0

1

1+ τi fi (Ti )

)
τm max{ fm(Tm)− K , 0}.

The contract-dependent derivatives for this caplet are calculated as

∂g( f (Tm))

∂ f j (Tj )
= τm

m∏
i=0

1

1+ τi fi (Ti )

(
1{ fm (Tm )>K } − ( fm(Tm)− K )+

τ j

1+ τ j f j (Tj )

)
,

(9.10)

where 1{·} is the indicator function. Note that Vi (n) = Vi (n + 1) for i < η(nh),
whereas, for i ≥ η(nh),

Vi (n) = fi (n + 1)Vi (n + 1)
fi (n)

+ τi h

(1+ τi fi (n))2

m∑
j=i

f j (n + 1)Vj (n + 1)σi j .

(9.11)

The simulation algorithm proceeds as follows.

1. Generate a forward rate path { f (0), . . . , f (N )}.
2. Initialize V (N ) according to Equation 9.10.
3. Calculate Vi (n) backward according to Equation 9.11 for n = 0, 1, . . . , N − 1.
4. Calculate the corresponding delta with respect to the individual forward rate
by Equation 9.9.

5. Repeat Steps 1 to 4 M times, and average the estimates.
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The corresponding VBA code is as follows.

Public Sub Caplet_delta_adjoint(f As Variant, Strike As

Double, Re As Long, _ByRef Value As Variant, ByRef v_b

As Variant)

Dim i As Long, j As Long, k As Long, w As Long

Dim S As Double

Dim nSim As Long, nPath As Long

nSim = UBound(f, 1)

nPath = UBound(f, 2)

ReDim Value(1 To nPath) As Double

ReDim v(0 To nSim, 1 To nPath, 0 To nFwd) As Double

ReDim v_b(1 To nPath, 0 To nFwd) As Double

For j = 1 To nPath

Value(j) = tau * Max(f(Re, j, Re) - Strike, 0)

For i = 0 To Re

If f(Re, j, Re) > Strike Then

If i = Re Then

v(Re, j, Re) = (1 + tau * Strike) / (1 + tau *

f(Re, j, Re)) * tau

Else

v(Re, j, i) = -tau ˆ 2 * (f(Re, j, Re) - Strike) _

/ (1 + tau * f(Re, j, Re))

End If

Else

v(Re, j, Re) = 0

End If

Value(j) = Value(j) / (1 + f(Re, j, i) * tau)

For k = 0 To i

v(Re, j, i) = v(Re, j, i) / (1 + tau * f(Re, j, k))

Next k

Next i

For i = 0 To nFwd

For w = Re - 1 To 0 Step -1

If i >= w And i <> 0 Then

S = 0

For k = i To nFwd

S = S + f(w + 1, j, k) * v(w + 1, j, k) *

Cij(i, k, w)

Next k

v(w, j, i) = f(w + 1, j, i) / f(w, j, i) *



370 THE GREEKS

v(w + 1, j, i) + _tau / (1 + tau *

f(w, j, i)) ˆ 2 * S

Else

v(w, j, i) = v(w + 1, j, i)

End If

Next w

Next i

Next j

For j = 1 To nPath

For k = 0 To nFwd

v_b(j, k) = v(0, j, k)

Next k

Next j

End Sub

For further details, please refer to Ch9.6_Adjoint_LIBOR_Simulation_Caplet.xls.
In general, computing the exact derivatives of the payoff function with respect to

the terminal interest rate is not an easy task particularly in the case of exotic interest
rate derivatives, such as interest rate range accrual notes and callable swaptions. In
practice, we have to apply the finite difference method to bypass the calculation of
exact differentiation, but by doing so we face the extra finite difference error.
To illustrate the difficulty, consider a cap with eight tenors, each of which is 0.25

years. The strike price of the cap is 3%. The VBA code using the finite difference
rather than the exact differentiated payoff is as follows.

For j = 1 To nPath

Value(j) = tau * Max(f(Re, j, Re) - Strike, 0)

For i = 0 To Re

Value(j) = Value(j) / (1 + f(Re, j, i) * tau)

Next i

For i = 0 To Re

If f(Re, j, Re) > Strike Then

If i = Re Then

Value_h(j) = Value(j) * (Max((f(Re, j, Re) + h) -

Strike, 0) * _(1 + f(Re, j, i) * tau)) /

(Max(f(Re, j, Re) - Strike, 0) _ * (1 + (f(Re, j, i) +

h) * tau))

Else

Value_h(j) = Value(j) * (1 + f(Re, j, i) * tau) _

/ (1 + (f(Re, j, i) + h) * tau)

End If

v(Re, j, i) = (Value_h(j) - Value(j)) / h
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TABLE 9.8 Delta Comparison of a Cap Calculated Using Exact
Differentiation and the Finite Difference Method

Exact differentiation Finite difference approximation

f0(0) −0.00937839 −0.00872843
f1(0) 0.235526592 0.228843513
f2(0) 0.232990617 0.221264612
f3(0) 0.229441883 0.212970823
f4(0) 0.226454488 0.204999233
f5(0) 0.224218084 0.197635372
f6(0) 0.22245076 0.190627645
f7(0) 0.220802498 0.183897312
f8(0) 0.219548602 0.177411106

Else

v(Re, j, Re) = 0

End If

Value(j) = Value(j) / (1 + f(Re, j, i) * tau)

For k = 0 To i

v(Re, j, i) = v(Re, j, i) / (1 + tau * f(Re, j, k))

Next k

Next i

' The remaining part is the same as above

For further details, please refer to Ch9.6_Adjoint_LIBOR_Simulation_Caplet_
Finite_Difference.xls.
The differences in the results are highlighted in Table 9.8, which shows that the

estimated values obtained using finite difference approximation are generally smaller
than those obtained using exact differentiation, particularly those for the forward
rates of longer terms.
For the case of a European swaption, we only need to introduce minor modifica-

tions to the payoff function. Recall that the payoff of a European swaption is

π (tα) = Aα,β (tα)max{Sα,β(tα)− K , 0},

where

Aα,β (t) =
β∑

j=α+1
τ j−1P(t, t j ),

Sα,β (tα) = 1− P(tα, tβ )

Aα,β (tα)
,

P(tα, tk) =
k−1∏
p=α

1

1+ f p(tα)τ
.



372 THE GREEKS

We then compute the discounted payoff at time t0:

π (t0) = π (tα)
α−1∏
p=0

1

1+ f p(tp)τ
.

The derivative of the discounted payoff function is given by

α−1∏
p=0

1

1+ f p(tN )

(
1{ j≥α,Sα,β (tα )≥K }τ j − τ j (Sα,β(tα)− K )+ Aα,β (tα)

1+ f j (tβ)

)
. (9.12)

The following is the VBA code representing the initialization.

For i = 0 To matTime - 1

If payoff(ni) > 0 Then

If i >= expTime Then

v(matTime - 1, ni, i) = tau * (1 - (SwapVal -

Strike * nt)) _ / (1 + tau * f(matTime - 1, ni, i))

Else

v(matTime - 1, ni, i) = -tau * (SwapVal -

Strike * nt) _ / (1 + tau * f(matTime - 1, ni, i))

End If

Else

v(matTime - 1, ni, i) = 0

End If

payoff(ni) = payoff(ni) / (1 + f(expTime, ni, i) * tau)

For k = 0 To expTime - 1

v(matTime - 1, ni, i) = v(matTime - 1, ni, i) _

/ (1 + tau * f(matTime - 1, ni, k))

Next k

Next i

For more details, please refer to Ch9.6_Adjoint_LIBOR_Simulation_Swaption.xls.
For Bermudan swaptions, the general framework can also be used. As Bermudan

swaptions have similar features to American options, we need to determine the
optimal exercise time. We can employ the Longstaff and Schwartz algorithm to
determine the optimal exercise date and then work with the derivatives of the net
present value of the remaining coupons at the exercise date in the adjoint simulation.
Calculation of the delta of a Bermudan swaption is performed using the following

algorithm.
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1. Generate M forward rate paths under the spot measure.

2. For each path, use the Longstaff–Schwartz algorithm to determine the optimal
exercise time Tr (ω).

3. For each path, initialize V (N ) according to Equation 9.12.

4. For n from M − 2 to r (ω), calculate V (m) backward fromm = n + 1 tom = n
by the recursive Equation 9.11.

5. Compute V (m) backward from m = r (ω) to m = 0 by the recursive Equa-
tion 9.11.

6. Calculate the corresponding delta with respect to the individual forward rate
by Equation 9.9.

7. Average the results over all M paths.

The VBA code for the initialization is as follows.

For i = 0 To matTime - 1

If payoff(ni) > 0 Then

If i >= strTime + r(ni) Then 'Note r(ni) is the

exercise time

v(matTime - 1, ni, i) = tau * (1 - nt

* (bS(r(ni), ni) - Strike)) _ / (1 + tau

* f(matTime - 1, ni, i))

'bS(r(ni),ni) is the swap rate at r(ni)

Else

v(matTime - 1, ni, i) = -tau * nt * (bS(r(ni), ni)

- Strike) _ / (1 + tau * f(matTime - 1, ni, i))

End If

Else

v(matTime - 1, ni, i) = 0

End If

For k = 0 To strTime + r(ni)

v(matTime - 1, ni, i) = v(matTime - 1, ni, i) _

/ (1 + tau * f(matTime - 1, ni, k))

Next k

Next i

For further details, please refer to Ch9.6_Adjoint_LIBOR_Simulation_Bermudan
_Swaption.xls.

9.5.4 Problem with the Adjoint Method

The pathwise method provides a fast and accurate approach to computing the Greeks
of derivatives. However, it breaks down if the payoff function of the derivative
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is not differentiable, as in the case of a digital option. A first-order differentiable
payoff function is not sufficient. We cannot compute the second-order Greeks unless
the payoff function is second-order differentiable. The practicality of the adjoint
method is also highly dependent on the nature of the payoff function. To circumvent
this difficulty, we can apply the likelihood ratio method or Malliavin calculus. The
payoff function can also be approximated by a continuous and differentiated form
for analysis, and the “vibrato” Monte Carlo method introduced in the next section is
another viable solution to the problem.

9.6 GREEK CALCULATION WITH DISCONTINUOUS PAYOFFS

In most cases, the payoff functions of derivatives are discontinuous and not dif-
ferentiable. A simple case is the digital call option. There is a jump at the strike
price in the payoff function at maturity, and this jump causes discontinuity and
non-differentiability for the payoff function. The payoff of a digital option is

f (S(T )) =
{
1, if S(T ) > K ,

0, otherwise.

In this case, we can apply the “vibrato” Monte Carlo method, which can easily deal
with a discontinuous payoff function. Also, the generalization to multidimensional
cases is straightforward.

9.6.1 Functional Approximation for Digital Options

Recall the case of a digital option. Because the payoff function f (S(T )) takes the
form of a heaviside step function, it can be approximated by

f (S(T )) ≈ 1

2
+ 1

2
tanh

(
1

2
u(S(T )− K )

)
= 1

1+ e−u(S(T )−K )
, (9.13)

where u is the shape parameter of the approximation and K is the strike price of
the digital option. A larger u means a sharper transition at K . Differentiating the
approximated payoff function f (S(T )) with respect to the terminal asset price S(T ),
we have

∂ f (S(T ))

∂S(T )
≈ ue−u(S(T )−K )

(1+ e−u(S(T )−K ))2
.

Suppose that the asset price process S(T ) follows the GBM such that S(T ) can be
written as

S(T ) = S(0) exp

((
r − σ 2

2

)
T + σ

√
T Z

)
,
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where r is the risk-free rate, σ is the volatility, T is the time to maturity, and Z is a
standard normal random variable. Using the analysis in the adjoint method, we can
show that

Delta = ∂ f (S(T ))

∂S(0)
= ∂ f (S(T ))

∂S(T )

∂S(T )

∂S(0)
= ue−u(S(T )−K )

(1+ e−u(S(T )−K ))2
S(T )

S(0)
, (9.14)

Vega = ∂ f (S(T ))

∂σ
= ∂ f (S(T ))

∂S(T )

∂S(T )

∂σ
= ue−u(S(T )−K )

(1+ e−u(S(T )−K ))2

(
−σ T +

√
T Z

)
.

(9.15)

We compute the delta and vega using the foregoing equations, and the procedure is
as follows.

1. Generate a one-shoot asset path from S(0) to S(T ).

2. Compute the payoff by the approximated functional form in Equation 9.13.

3. Compute the delta and vega by Equations 9.14 and 9.15.

4. Repeat Steps 1 to 3 M times, and average the estimates.

The VBA code is as follows.

Public Sub Digital_Adj_Greek_Fd(A As BS_PathType, K As Double,

ByRef Value As Variant, _ByRef Delta As Variant, ByRef Vega

As Variant, Optional u As Double = 1)

Dim i As Long, j As Long, z As Double

ReDim S(1 To A.n) As Double

ReDim Value(1 To A.n) As Double

ReDim Delta(1 To A.n) As Double

ReDim Vega(1 To A.n) As Double

For i = 1 To A.n

z = rGauss()

S(i) = A.S0 * Exp((A.rf - 1 / 2 * A.sigma ˆ 2) * A.T +

A.sigma * Sqr(A.T) * z)

Value(i) = 1 / (1 + Exp(-u * (S(i) - K))) * Exp(-A.rf

* A.T)

Delta(i) = u * Exp(-u * (S(i) - K)) / (1 + Exp(-u

* (S(i) - K))) ˆ 2 _ * S(i) / A.S0 * Exp(-A.rf * A.T)

Vega(i) = u * Exp(-u * (S(i) - K)) / (1 + Exp(-u

* (S(i) - K))) ˆ 2 _ * S(i) * (-A.sigma * A.T + Sqr(A.T)

* z) * Exp(-A.rf * A.T)

Next i

End Sub
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9.6.2 Vibrato Method for Digital Options

“Vibrato” means a “rapid slight variation in pitch in singing or playing a musical
instrument.” Giles (2009) illustrated its analogy to Monte Carlo simulation: a path
in Monte Carlo simulation produces an output value that has a sharp probability
distribution.
The vibrato Monte Carlo method can thus be viewed as a hybrid of the likelihood

ratio method and adjoint simulation. We illustrate the method for a digital option with
a discontinuous payoff function.
Consider a path simulation for a stochastic process for the first N − 1 steps. On

the final step, we consider the full distribution of possible values for �WN instead
of just one realization. Doing so produces a normal distribution for SN at time T ,
conditional on the value of SN−1 at time T − h. The pdf is

pS(SN ) = 1√
2πσ 2W

exp

(
− (SN − μW )2

2σ 2W

)
,

where

μW = SN−1 + a(SN−1, T − h)h (9.16)

σW = b(SN−1, T − h)
√

h, (9.17)

and a(S, t) and b(S, t) are the drift and diffusion terms of the stochastic differential
equation of process S(t).
The main idea behind vibrato Monte Carlo simulation is simple: it adopts the

conditional expectation approach. We compute the conditional normal distribution
pS(SN |W ), given the set of Wiener increments W = {�W1,�W2, . . . ,�WN−1}.
Then,

SN (W, Z ) = μW + σW Z ,

where Z is a standard normal random variable. The expected payoff can then be
written as

V = EW [EZ [ f (SN )|W ]] =
∫ (∫

f (SN )pS(SN |W ) d SN

)
pW (W ) dW.

In computing the sensitivity to parameter θ , the first step is to apply the pathwise
sensitivity approach to obtain ∂μW

∂θ
and ∂σW

∂θ
. Thenwe apply the likelihood ratiomethod

to the inner expectation to obtain

∂V

∂θ
= EW

[
∂

∂θ
EZ [ f (SN )|W ]

]
= EW

[
EZ

[
f (SN )

∂ log pS

∂θ

∣∣∣∣ W

]]
, (9.18)
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and

∂ log pS

∂θ
= ∂ log pS

∂μW

∂μW

∂θ
+ ∂ log pS

∂σW

∂σW

∂θ
. (9.19)

Note that

log ps = − log σW − (SN − μW )2

2σ 2W
− 1

2
log 2π.

Equation 9.19 becomes

∂ log pS

∂θ
= Z

σW

∂μW

∂θ
+ Z2 − 1

σW

∂σW

∂θ
.

To increase simulation accuracy, observe

EZ

[
f (SN )

∂ log pS

∂θ

∣∣∣∣W
]

= ∂μW

∂θ
EZ

[
f (SN )

∂ log pS

∂μW

∣∣∣∣W
]

+∂σW

∂θ
EZ

[
f (SN )

∂ log pS

∂σW

∣∣∣∣W
]

.

Transform the first expectation on the right-hand side into

EZ

[
f (SN )

∂ log pS

∂μW

∣∣∣∣W
]

= EZ

[
Z

σW
f (μW + σW Z )

]

= EZ

[
Z

2σW
( f (μW + σW Z )− f (μW − σW Z ))

]
.

Similarly, using the result that EZ [Z2 − 1] = 0, we have

EZ

[
f (SN )

∂ log pS

∂σW

∣∣∣∣W
]

= EZ

[
Z2 − 1

σW
f (μW + σW Z )

]

= EZ

[
Z2 − 1
2σW

( f (μW + σW Z )− 2 f (μW )+ f (μW − σW Z ))

]
.

Combining the two foregoing derivations, Yθ becomes

Yθ = ∂μW

∂θ
Yμ + ∂σW

∂θ
Yσ , (9.20)

where

Yμ = Z

2σW
( f (μW + σW Z )− f (μW − σW Z ))
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and

Yσ = Z2 − 1
2σW

( f (μW + σW Z )− 2 f (μW )+ f (μW − σW Z )) .

The following algorithm is used to compute the delta of a digital call option with
strike price K .

1. Generate an asset path for {S(0), . . . , S(N − 1)}.
2. Generate S(N ) from S(N − 1) in one step.
3. Calculate μ and σ by Equations 9.16 and 9.17.

4. Calculate the delta by Equation 9.18.

5. Repeat Steps 1 to 4 M times, and average the estimate.

To achieve accurate simulation, we modify Step 4 by using Equation 9.20. The
corresponding VBA code is as follows.

Public Sub Digital_Adj_Greek(A As BS_PathType, K As Double,

ByRef Value As Variant, _ByRef Delta As Variant, ByRef Vega

As Variant, Optional Efficient As Boolean = False)

Dim i As Long, h As Double, W As Double, z As Double

Dim mu As Double, sig As Double, Y_mu As Double, Y_sig As

Double

Dim fh As Double, f As Double, fd As Double

Dim S_N_minus As Double, T_N_minus As Double

ReDim S(1 To A.n) As Double

ReDim Value(1 To A.n) As Double

ReDim Delta(1 To A.n) As Double

ReDim Vega(1 To A.n) As Double

h = 0.01

T_N_minus = A.T - h

For i = 1 To A.n

W = rGauss()

S_N_minus = A.S0 * Exp((A.rf - 1 / 2 * A.sigma ˆ 2) * A.T

+ _A.sigma * Sqr(T_N_minus) * W)

z = rGauss()

S(i) = S_N_minus * Exp((A.rf - 1 / 2 * A.sigma ˆ 2) * h + _

A.sigma * Sqr(h) * z)

mu = S_N_minus * (1 + A.rf * h)

sig = S_N_minus * A.sigma * Sqr(h)

Value(i) = 0

Delta(i) = 0

Vega(i) = 0
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If Efficient = False Then

If S(i) > K Then

Value(i) = Exp(-A.rf * A.T)

Delta(i) = Exp(-A.rf * A.T) * (z / sig * mu / A.S0 +

(z ˆ 2 - 1) / A.S0)

Vega(i) = Exp(-A.rf * A.T) * (z / sig * mu * (-A.sigma

* A.T + Sqr(A.T) * W) + _(z ˆ 2 - 1) * ((-A.sigma * A.T

+ Sqr(A.T) * W) + sig / A.sigma))

End If

Else

Value(i) = 0

If S(i) > K Then

Value(i) = Exp(-A.rf * A.T)

End If

fh = 0

If mu + sig * z > K Then fh = Exp(-A.rf * A.T)

f = 0

If mu > K Then f = Exp(-A.rf * A.T)

fd = 0

If mu - sig * z > K Then fd = Exp(-A.rf * A.T)

Y_mu = z / 2 / sig * (fh - fd)

Y_sig = (z ˆ 2 - 1) / 2 / sig * (fh - 2 * f + fd)

Delta(i) = mu / A.S0 * Y_mu + sig / A.S0 * Y_sig

Vega(i) = mu * (-A.sigma * A.T + Sqr(A.T) * W) * Y_mu + _

(sig * (-A.sigma * A.T + Sqr(A.T) * W) + sig / A.sigma)

* Y_sig

End If

Next i

End Sub

Table 9.9 illustrates the estimation of the delta and vega of a digital option with
S0 = 10, K = 12, T = 1, r = 0.05, and σ = 0.4 with 1,000,000 sample paths. We
can see that the use of functional approximation and vibrato Monte Carlo simula-
tion with variance reduction produces accurate estimations, but note that functional
approximation produces error in mimicking the original function. For futher details,
please refer to Ch9.7_Digital_Option.xls.

9.6.3 Multivariate Generalization

The vibrato method can easily be generalized to multiple assets with multivariate
random variables. If μW is a column vector and then �W is the variance-covariance
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TABLE 9.9 Comparison of the Greeks of a Digital Option Calculated Using Different Methods

Functional approximation Vibrato MC Vibrato MC (variance reduction) Finite difference

Value 0.283486406 0.282671141 0.282205038 0.282404796
Delta 0.082405209 0.081597283 0.081830986 0.083898435
sd(Delta) 0.267619182 1.312399494 0.385493992 2.82376257
Vega 0.104526637 0.091732555 0.105778604 0.103398638
sd(Vega) 0.373565919 12.09929708 0.623442127 3.134469856
Time (s) 4.37890625 4.33984375 5.359375 3.71875

matrix, then SW can be written as

SN (W, Z ) = μW + CW Z,

where Z is a vector of independent standard normal random variables and CW is the
matrix from Cholesky decomposition, such that �W = CW CT

W . The joint pdf of S is
given by

log pS = −1
2
log |�W | − 1

2
(SN − μW )

T �−1
W (SN − μW )−

1

2
d log 2π,

where d is the dimension of Z. Differentiating the foregoing equation, we obtain

∂ log pS
∂μW

= �−1
W (SN − μW )

= C−T
W Z,

where C−T
W = ((CW )−1)T , and

∂ log pS
∂�W

= −1
2
�−1

W + 1

2
�−1

W (SN − μW )(SN − μW )
T �−1

W

= 1

2
C−T

W (ZZT − I)C−1
W .

For a given W ,

EZ

[
f (SN )

∂ log pS
∂θ

∣∣∣∣W
]

=
(

∂μW

∂θ

)T

EZ

[
f (SN )

∂ log pS
∂μW

∣∣∣∣W
]

+ tr
(

∂�W

∂θ
EZ

[
f (SN )

∂ log pS
∂�W

∣∣∣∣W
])

,

where tr(·) is the trace of a square matrix.
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Treasury & Structured Products – Equity 
Fixed Coupon Equity-Linked Note on HSBC Holdings PLC  

(REF: ENHKBAFC0981-V1)
Indicative terms & conditions

11 Sep 2008

Please note that the Notes are not principal protected and the Notes may be redeemed by delivery of shares 
which may be worth substantially less than the principal amount of the Notes. Also, if an investor elects to 
redeem the Notes or the Notes are otherwise early redeemed prior to the Maturity Date, they may not receive 
100% of the amount invested. 

Issuer Barclays Bank PLC 

Issuer’s rating AA / Aa1 (S&P /Moody’s) 

Aggregate Principal Amount HKD 50,000,000. 

Denomination HKD 100,000.  

Integral multiples of Notes for 
transfer  

Minimum transfer of 5 Note and 1  Note thereafter 

Trade Date Thu 11 Sep 2008  

Strike Date Thu 11 Sep 2008, which shall be deemed to be a Valuation Date and subject 

to the “Rights of the Issuer in the event of a Disrupted Day or Disruption 

Event” provisions. 

Issue Date Thu 25 Sep 2008 

Maturity Date The later of : (i) Thu 26 Mar 2009 and (ii) 3 Business Days after the Final 

Valuation Date.  

Issue Price 100% of par 

Share  Hsbc Holdings Plc (RIC: 0005.HK) 

Exchange Stock Exchange of Hong Kong 

Related Exchange All Relevant Stock Exchanges 

Initial Price  HKD 122.9 (being the price of the Share as of the Valuation Time on the 

Strike Date)

Strike Price HKD 112.4535 (91.5% of Initial Price)  

Barrier Price  HKD 0 (0% of Initial Price) 

Trigger Price  HKD 121.671 (99% of Initial Price)

Coupon: 

Coupon Amounts On each Coupon Payment Datet, the Issuer shall pay to the Noteholder in 
respect of each Note  an amount in HKD equal to: 

 Denomination * Coupon Ratet

Where “t ” represents a number from 1 to 3 and each iteration of “t ” 
represents an Observation Period and the corresponding Coupon Payment 
Date and Coupon Rate  

Coupon Ratet Subject to the Trigger Event provisions below, means: 

(i)  in respect of the first Coupon Payment Date1:

 Coupon Rate1 =  1.3333% 

(ii)  in respect of subsequent Coupon Payment Datest (where t = a number 

from 2 to 3):  

  Coupon Ratet =  1.3333% 
t

t
N
n

*

Figure A.1 Term sheet for the CRAN, page 1.



APPENDIX 383

Treasury & Structured Products – Equity 
Fixed Coupon Equity-Linked Note on HSBC Holdings PLC 

(REF: ENHKBAFC0981-V1)
Where: 

t“n ”  means, in respect of Coupon Payment Datet , the number of

Valuation Dates during the Observation Period corresponding to such 

Coupon Payment Datet in respect of which the closing price of the Share as

of the Valuation Time on a Valuation Date is at or above the Barrier Price. 

“ tN ” means, in respect of Coupon Payment Datet , the number of days in

the Observation Period corresponding to such Coupon Payment Datet that is 

both (i) a Scheduled Trading Day and (ii) a Business Day. The expected 

number of tN  in the relevant Observation Period is specified in the

“Observation Period” provision below. 

For the avoidance of doubt, the Period Start Dates and Period End Dates

(each as defined below) of an Observation Period shall not be adjusted 

notwithstanding the postponement of a Valuation Date following the 

occurrence of a Disrupted Day for the purpose of determining   “n .”t

Observation Periodt In respect of a Coupon Payment Date, each Observation Period from the 
relevant Period Start Date to the relevant Period End Date (both dates 
inclusive), without adjustment, as set out in the table below.

For the purpose of determining Coupon Ratet (where t = a number from 2 to

3), the first Observation Period shall not be applicable. 
t (From and including) Period 

Start Date 
(To and including) Period End 

Date
Expected N Coupon Payment Dates 

1 Not applicable Fri 21-Nov-2008 Not applicable Wed 26-Nov-2008

2 Mon 24-Nov-2008 Wed 21-Jan-2009 40 Thu 29-Jan-2009

3 Thu 22-Jan-2009 Mon 23-Mar-09 (The "Final
Valuation Date") 

40 Thu 26-Mar-09 (The "Maturity
Date") 

Valuation Date Means, in respect of an Observation Period, each Scheduled Trading Day 
during such period. 

Valuation Time Means, in respect of a date, the Scheduled Closing Time on the Exchange on 
such date.

Coupon Payment Datest As set out in the table in the “Observation Period” provision.  

Provided that if a scheduled Valuation Date is postponed in accordance with
the terms of the Base Prospectus dated 28 March 2008, as amended and/or 
supplemented (the “Base Prospectus”)  relating to the Issuer’s Structured 
Securities Programme (the “Programme”) following the occurrence of a 
Disrupted Day, the relevant Coupon Payment Date shall be adjusted to 3 
Business Days after the Valuation Date. 

Trigger Event provisions: 

Trigger Event A Trigger Event is deemed to have occurred if the price of the Share as of the 
Valuation Time on any Period End Date other than the Final Valuation Date is 
at or above the Trigger Price.  For the purpose of this Trigger Event provision, 
a Period End Date is deemed to be a Valuation Date and subject to 
postponement on the occurrence of a Disrupted Day in accordance with the 
terms of the Base Prospectus. 

In such case, the Determination Agent shall promptly notify the Noteholders of 
the occurrence of a Trigger Event and the Notes will be redeemed early in full 
by the Issuer on the Trigger Event Settlement Date at the Trigger Event 
Settlement Amount.

Figure A.2 Term sheet for the equity-linked notes, page 2.
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Following the payment of the Trigger Event Settlement Amount, the Issuer shall 
have no further obligations under the Notes.  

For the avoidance of doubt, the failure by the Determination Agent in notifying 
the Noteholders of the occurrence of a Trigger Event shall not however 
prejudice or invalidate the occurrence or effect of such event. 

Trigger Event Settlement Date The Coupon Payment Date corresponding to the Period End Date in respect of 
which a Trigger Event is deemed to have occurred. 

Trigger Event Settlement 
Amount 

In respect of each Note, an amount in HKD equal to: 

Denomination  * 100% + the Relevant Coupon Amount 

“Relevant Coupon Amount” means the Coupon Amount which would have 
been paid by the Issuer on the Coupon Payment Date corresponding to the 
Period End Date in respect of which a Trigger Event is deemed to have 
occurred but for the occurrence of the Trigger Event.  

Redemption at Maturity: 

Redemption Amount At maturity, the Issuer shall redeem each Note as follows: 

(i) Cash Settlement: if the Final Price of the Share is at or above the Strike 
Price, the Issuer shall redeem each Note by the payment of the 
Redemption Amount on the Maturity Date determined as: 

Denomination  * 100% ;  or 

(ii) Physical Settlement: if the Final Price of the Share is below the Strike 
Price, the Issuer shall redeem the Notes by the delivery of the Reference 
Assets on the Physical Delivery Date.  

Final Price Means the closing price of the Share as of the Valuation Time on the Final
Valuation Date. 

Reference Assets Such number of Shares determined as follows: 

Denomination * 
K
1

“K ” means the Strike Price. 

No fraction of Shares will be delivered and a Noteholder will be entitled to
receive an amount in cash calculated on the basis of the Final Price  as 
determined by the Determination Agent, rounded down to the nearest whole 
unit of currency in lieu of such fraction. 

Redemption Expenses and 
Taxes 

As provided in the Base Prospectus save that stamp duty payable in
connection with the transfer of the Reference Assets shall be borne equally by
the Issuer and the Noteholder. 

General Terms: 

Business Days London and Hong Kong 

Business Day Convention Following

Settlement Type Cash, and if applicable, physical 

Listing None 

Clearing Euroclear / Clearstream, Luxembourg 

Determination Agent Barclays Capital Securities Limited 

Secondary Market 
Transactions

Under normal market conditions, Barclays Capital Securities Limited may 
purchase the Notes in the secondary market and, upon request by a 
Noteholder, will, within a reasonable time, provide secondary market prices
during the term of the Notes. Such prices may be subject to change by the time 
of the transaction. The minimum transaction size for a secondary market 

Figure A.3 Term sheet for the equity-linked notes, page 3.
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transaction is 5 Note. Notes cannot be partially sold. 

Market Disruption Events: A Market Disruption Event shall have occurred if any of the following occurs: (i) 
Trading Disruption; (ii) Exchange Disruption; or (iii) Early Closure. 

Early Redemptions On the occurrence of an Issuer Tax Event and/or Change in Law and/or 
Hedging Disruption and/or Increased Cost of Hedging, the Issuer may redeem 
the Notes in whole and not in part on the Early Redemption Date by giving a 
Special Redemption Notice to the Noteholders at the Early Redemption 
Amount which shall be an amount determined by the Determination Agent
acting in a reasonable manner.  

Early Redemption Date The third Business Day after the Special Redemption Notice is given by or on 
behalf of the Issuer to the Noteholders. 

Selling Restrictions Applicable, as set out in the Base Prospectus. 

SUBJECT TO CERTAIN EXCEPTIONS, AS DETAILED IN "PURCHASE AND 
SALE" IN THE  BASE PROSPECTUS, THE NOTES MAY NOT BE OFFERED 
OR SOLD WITHIN THE UNITED STATES OR TO, OR FOR THE ACCOUNT 
OR BENEFIT OF, US PERSONS (AS DEFINED IN REGULATIONS UNDER 
THE US SECURITIES ACT OF 1933).

Documentation The proposed Notes would be issued by the Issuer under the Programme. The 
full terms and conditions of the Notes will be set out in the Final Terms, to be
dated the Issue Date of the Notes, relating to the Notes, and in the Base 
Prospectus. A copy of the Base Prospectus should be obtained from the
Issuer if the investor does not already have a copy. 

Governing Law English 

Risk Warning :  It is not an offer to the public. The contents of this document have not been reviewed by any regulatory

authority in Hong Kong. You are advised to exercise caution in relation to the offer. If you are in any doubt about any of

the contents of this document, you should obtain independent professional advice.

Figure A.4 Term sheet for the equity-linked notes, page 4.
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Risk Disclosure Statements 
The followings are the standard risk disclosure statements of Fubon Bank (Hong Kong)
Limited (“the Bank”) covering equity-linked instruments/equity-linked notes/equity-linked 
certificates (“Equity-linked Product”). You are advised to read and fully understand all the 
relevant risk disclosure statements herein and to obtain independent legal advice, if
necessary.

General Disclosure : Users of the information contained in this Term Sheet are advised to make their own independent 
judgment or obtain advice from their professional advisers with respect to the information, legal 
implications and any other matters contained herein. 
Any notice or other communication from Fubon Bank (Hong Kong) Limited (the “Bank”) to you shall be 
deemed to be received (a) if given or made by post, the following Business Day after the date of 
despatch; and (b) if given or made by fax or email, when despatched, regardless of whether you have 
actually received it.  
The Bank shall have no payment obligation to you under this Term Sheet unless and until it has been 
paid by the Issuer, the payment agent or the calculation agent (as the case may be).
The Bank shall have no obligation to make payment and/or give notice to the investors on Hong Kong
non-business days. If any day within any specified notice period falls on a Hong Kong non-business day 
or if any corresponding notice from the Issuer, the payment agent or the calculation agent (as the case
may be) is received by the Bank outside its normal office hours, the length of such notice period will be 
abridged accordingly. Thus, the Bank may give notice to the investors after the relevant notified event or 
incident has taken place. 
The Bank may (but is not obliged to) give notice to the investors by phone. If such phone notice is given
to the investors, it shall be deemed to be valid and effective and will be followed by a written notice sent 
out by personal delivery, post, fax or email. Any failure or delay in delivery of the written notice will not 
affect the validity and effectiveness of the phone notice. 

Investment Suitability : The risk of loss in investing the Equity-linked Product can be substantial. Investor should therefore firstly,
study and understand the structure of the Equity-linked Product before he/she places an order and 
secondly, carefully consider whether the Equity-linked Product is suitable in light of his/her financial 
position and investment objectives. If the investor provides irrevocable instructions to the Issuer he/she
does so at his/her risk and has not relied on the Bank’s advice and recommendation.

Credit Risk : Investors of the Equity-linked Product are exposed to the credit risk of the Issuer, whose Moody’s and 
Standard & Poor’s ratings (if applicable) are set out respectively in the Term Sheet attached herewith. 
The aforesaid ratings reflect the independent opinion of the relevant rating agencies as to the safety of 
payments of principal and interest. These ratings are not a guarantee of credit quality. These ratings do
not take into consideration any risks associated with fluctuations in the market value of the Equity-linked 
Product, or where factors other than the Issuer’s credit quality determine the level of principal and interest
payments.    

Currency Risk : The profit or loss in the Equity-linked Product will be affected by fluctuations in currency exchange rates 
where there is a need to convert from the currency denomination of the Equity-linked Product to another 
denomination. Any fall in the currency denomination of the Equity-linked Product will reduce the amount
the investor may receive when a conversion is made. 

Hedging Risk : The market price of the underlying share may depend upon the hedging transactions of the Issuer or any 
of its affiliates which in turn will depend upon market conditions at the time of such hedging. The market
may be affected by such hedging.

Potential Conflict of 
Interest 

: The Issuer or any of its affiliates may from time to time engage in transaction involving the security or 
securities underlying the Equity-linked Product for their proprietary accounts and for other accounts under 
their management. Such trading may influence the value of the underlying stock or stocks and therefore
the value of the Equity-linked Product. 

Liquidity Risk : The investor shall not be entitled to withdraw all or part of the Equity-linked Product during the tenor 
without the Bank's prior consent (which, if granted, may be subject to such conditions and terms as the 
Bank may require). The Bank may at its absolute discretion refuse to give such consent, or impose such 
conditions as the Bank may determine for the conversion or withdrawal of the Equity-linked Product at the 
investor's request, such conditions to include (without limitation) the deduction of such breakage costs as 
the Bank shall determine conclusively acting in good faith. Such breakage costs shall include the costs,
expenses, liabilities or losses incurred or suffered by the Bank as a consequence of breaking its hedge, 
or funding from other sources in respect of the Equity-linked Product. Therefore, the total amount repaid 
on an early withdrawal of the Equity-linked Product at the investor's request may be less than the
Principal Amount.

Figure A.5 Term sheet for the equity-linked notes, page 5.
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Secondary Market : Equity-linked Products are not a trading instrument. There will not be a liquid secondary market for the

Equity-linked Products. On request the Issuer may but is not obliged to purchase the Equity-linked
Product from the holder at a price determined by the Issuer by reference to current market conditions. 
Prior to maturity, the value of an option is influenced by various factors including, but not limited to: 
volatility, interest rates, dividends and time remaining to maturity. 

Corporate Actions : Other risks may impact on the value of an Equity-linked Product, for example corporate actions in relation 
to the underlying stock(s) may occur and have a dilutive effect on the value of the underlying stocks. In
certain circumstances the Issuer has discretion as to the adjustments that it makes, if any, following
corporate events. 

Risks of Investing 
In  Equity-linked 
Product 

: The price of the underlying stock may go down as well as up. For customers investing in Equity-linked
Products, their end-investment may therefore be the underlying stock. There is an inherent risk that
losses may be incurred rather than profits made as a result of buying and selling stocks. Stocks may 
even be valueless. Equity-linked Product is suitable only for those investors who can afford the risks 
involved and are conversant in the stock market in which the underlying stock is traded. Investors should 
also consider whether the investment strategy or Equity-linked Product is suitable for them in light of their 
own financial position and investment objectives. 

The contents of this document have not been reviewed by any regulatory authority in Hong Kong. You 
are advised to exercise caution in relation to the offer. If you are in any doubt about any of the contents of 
this document, you should obtain independent professional advice. 

Figure A.6 Term sheet for the equity-linked notes, page 6.
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The Product is for yield enhancement purpose. 

REQUESTED BY ISSUER REFERENCE 

* Please delete as appropriate. 

Handling  AO : Notional Amount / 

Number of 

Certificates 

:

Principal AO : 

Customer Investment 

Objective 
:

 Yield Enhancement         Hedging             Cost Reduction

I / We understand that my / our Investment Objective is same as / different from* that of Product 

Objective and I / We fully understand all the inherent risk(s). 

Customer Signature :  Customer Name : 

Trade Date and Time :  Checked by : 

Settlement Account # :  Cus Reg # : 

Securities Account # :  
HKMA R.I. 

Registration # 
:

Date and Time Phone 

Confirmed with 

Customer

:
Location of Tape 

Recording: 
:

Bank Use Only 

Customer Risk Rating : G       B       C        RA       E Product Risk Rating : H        M        L       VL 

Customer Investment 

Risk Questionnaire 

(CIRQ) signed 

: YES            NO              N/A Verified by : 

Elderly Declaration 

Signed
: YES            NO              N/A Verified by : 

Declaration of 

Deviation Signed
: YES            NO              N/A Verified by : 

W8- Ben Signed : YES            NO              N/A Verified by : 

Professional Investor 

(PI)
: YES            NO              N/A Verified by : 

HF :

Y

W: Approved by ___________________________________________________________

Figure A.7 Term sheet for the equity-linked notes, page 7.
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Daily Knock Out

Indicative terms & conditions
6 Sep 2007

Issuer: UBS AG acting through its London branch 

Issuer Credit Rating (long 

term): 

AA+ Standard & Poor’s /Aa2 Moody’s. For the avoidance of doubt, 

this is the long term credit rating of the Issuer and the Note are not 

rated.

Instrument: Structured Notes

Structure: 2-Year HKD 34.00% (annualized basis) Periodic Daily Knock Out

Variable Maturity Range Accrual Equity-Linked Notes with 5.6667%

Fixed Coupon after the first 2 months and Variable Coupon payable 2

mos thereafter, subject to Mandatory Early Redemption Provision.

Trade Date: September 6, 2007 

Settlement Date: September 20, 2007 

Scheduled Fixing Date: September 21, 2009 

Maturity Date: Scheduled Fixing Date, provided that in respect of each Share, if such 

date is not a Scheduled Trading Day then the next following Scheduled 

Trading Day, subject to the provisions under “Effects of Disrupted 

Day” 

Redemption Date: Maturity Date + 5 Business Days if cash settlement (which is currently 

expected to be September 28, 2009.) Maturity Date + 5 Scheduled 

Trading Days if physical settlement (which is currently expected to be 

September 28, 2009)

Issue size: HKD 14,000,000 

Denomination of Notes: HKD 50,000

Minimum Transfer Amount: HKD 500,000

Issue Price: 100% 

Basket: A basket composed of Shares as indicated below: 

Issuer of Shares (with Reuters 
Code)

Initial Price 

(So )
Conversion

Price# and 

Lower Range 

Band# (Xn = 
80.00% × So )

Callable Price#

(92.00% × So )

Number of Shares 

per

Note if physical 

delivery at Maturity 

(Nl )
China Communications 

Construction Co Ltd-H 

(1800.HK)

HKD 18.02 HKD 14.416 HKD 16.5784 HKD50,000 / Xn

Datang Intl Power Gen Co-H 

(0991.HK)

HKD 7.8 HKD 6.24 HKD 7.176 HKD50,000 / Xn

# rounded to the nearest HKD0.0001, HKD0.00005 being rounded upward 

Figure A.8 Term sheet for the multi-asset structured notes, page 1.
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Daily Knock Out

Exchange: The Stock Exchange of Hong Kong Limited 

Related Exchange: In respect of a Share means the principal exchange (if any) on which 

options or futures contracts relating to the Share are traded or quoted,

as determined by the Calculation Agent. 

Periodic Coupon 

Determination Dates: 

On each 2- month anniversary of the Settlement Date up to and 

including the Scheduled Fixing Date, which are expected to be 

November 20, 2007; January 21, 2008; March 20, 2008; May 20, 2008;

July 21, 2008; September 22, 2008; November 20, 2008; January 20, 

2009; March 20, 2009; May 20, 2009; July 20, 2009; and September 21, 

2009 provided that if any such date is not a Scheduled Trading Day

then the next following Scheduled Trading Day, subject to the 

provisions under “Effects of Disrupted Day.” 

Periodic Coupon Payment 

Dates:

5 Business Days after each Periodic Coupon Determination Date, 

provided that if Mandatory Early Redemption has occurred and the 

Mandatory Early Redemption Date is earlier than such Periodic

Coupon Determination Date, 5 Business Days after such Mandatory

Early Redemption Date. 

Periodic Coupon: On each Periodic Coupon Payment Date, a coupon (calculated to 4 

decimal places, with 0.00005 being rounded upwards) in HKD will be 

payable by the Issuer in accordance with the provisions below: 

Figure A.9 Term sheet for the multi-asset structured notes, page 2.
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Coupon Details: 

Coupon Period and Type Start Date (Sdtx) End Date (Edtx) Coupon* 

1st Periodic Fixed Coupon September 21, 2007 November 20, 2007 5.6667% × Denomination of the 

Notes, with no adjustment. 

2nd Periodic Variable Coupon November 21, 2007 January 21, 2008 Coupon(x) 

3rd Periodic Variable Coupon January 22, 2008 March 20, 2008 Coupon(x) 

4th Periodic Variable Coupon March 21, 2008 May 20, 2008 Coupon(x) 

5th Periodic Variable Coupon May 21, 2008 July 21, 2008 Coupon(x) 

6th Periodic Variable Coupon July 22, 2008 September 22, 2008 Coupon(x) 

7th Periodic Variable Coupon September 23, 2008 November 20, 2008 Coupon(x) 

8th Periodic Variable Coupon November 21, 2008 January 20, 2009 Coupon(x) 

9th Periodic Variable Coupon January 21, 2009 March 20, 2009 Coupon(x) 

10th Periodic Variable Coupon March 21, 2009 May 20, 2009 Coupon(x) 

11th Periodic Variable Coupon May 21, 2009 July 20, 2009 Coupon(x) 

12th Periodic Variable Coupon July 21, 2009 September 21, 2009 Coupon(x) 

* Coupon will be calculated as follow: 
Coupon(x) = Accrual Factor x (nx/Nx) x Denomination of Notes 
Where:  Accrual Factor = 5.6667%,  and 

x = 2nd to12th
nx = the number of Exchange Business Days in the xth Periodic Variable Coupon period (from Start Date 

(Sdtx) to the earlier of (i) End Date (Edt) and (ii) the Mandatory Early Redemption Date (if any),
both inclusive) on which the Closing Price of all the Shares in the Basket are greater than or equal to 
the respective Lower Range Band 

Nx = the number of Exchange Business Days in the xth Periodic Variable Coupon period (from Start Date 
(Sdtx) to End Date (Edtx), both inclusive) 

Observation Date: Each Scheduled Trading Day during the period from and including the

first Periodic Fixed Coupon End Date to but excluding the Maturity 

Date, subject to the provisions under “Effects of Disrupted Day.” 

Mandatory Early Redemption 

Provision:

If the Closing Price of the Laggard Share on an Observation Date is at 

or above its Callable Price, a Mandatory Early Redemption Event is 

deemed to have occurred on the Scheduled Observation Date relating 

to such Observation Date (the “Mandatory Early Redemption Date”) 

and each Note will be mandatorily early redeemed on the 5th Business 

Day after the last occurring Observation Date in respect of the 

Scheduled Observation Date (the “Mandatory Early Redemption 

Payment Date”) at HKD 50,000 (the “Mandatory Early Redemption 

Amount”), together with payment of the Periodic Coupon (if any). 

Figure A.10 Term sheet for the multi-asset structured notes, page 3.
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Redemption at Maturity: Depending on the Closing Prices of the Shares in the Basket on the

Maturity Date, each ELN shall be redeemed according to either (1) or 

(2) below:

(1) If Snl is quoted at or above its Xnl on the Maturity Date, each 

ELN will give a return of HKD 50,000.

(2) If Snl is quoted below Xnl on the Maturity Date, each ELN will

be converted into the Nl number of Laggard Shares. 

Where

Snl is the Closing Price of the Laggard Share on the Maturity 

Date.

Laggard Share means, in respect of a Mandatory Early Redemption

Date or the Maturity Date (as the case may be), the Share with the 

lowest value of 
o

n

s
s

by comparison of 
o

n

s
s

of all the Shares

comprising the Basket on such Mandatory Early Redemption Date

or the Maturity Date (as the case may be), provided that if more

than one Share has such lowest value, the Calculation Agent shall

in its sole discretion determine which of such Shares shall be the 

Laggard Share for such Mandatory Early Redemption Date or the

Maturity Date (as the case may be).

Xnl is the Conversion Price of the Laggard Share. 

is the Closing Price of a Share comprising the Basket on a

Mandatory Early Redemption Date or the Maturity Date (as the 

case may be)

nS

is the Initial Price of a Share on Trade Date. oS

“Closing Price” means, in respect of a Share and a Scheduled Trading 

Day, the official closing price of such Share as published by the 

relevant Exchange for that day, subject to the provisions under “Effects 

of Disrupted Day”, or if such price is not published for whatever

reason other than as a result of the occurrence of Disrupted Day, the 

value of a Share as of the actual closing time of the relevant Exchange 

on that Scheduled Trading Day in the good faith estimation of the 

Calculation Agent. 

Investors should note that, where the Notes are to be physically

redeemed, the number of Laggard Shares to be delivered will be 

rounded down to the nearest whole number of Laggard Shares (on a

Figure A.11 Term sheet for the multi-asset structured notes, page 4.
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per Note basis), and the cash amount in respect of the amount rounded 

off will be paid to the Holder, being the quantity of Laggard Shares 

rounded off times the Closing Price of the Laggard Shares as of the 

Maturity Date converted into the prevailing exchange rate, as 

determined by the Calculation Agent. 

Notwithstanding (2) above, please also note that the Issuer is entitled to 

cash settle all or any of the Laggard Shares as more particularly set out 

in the terms and conditions of the Global Security. 

Settlement: Cash settlement in HKD or physical delivery of Underlying Shares 

through CCASS 

Scheduled Trading Day: In respect of a Share, a day on which each relevant Exchange and each 

relevant Related Exchange are scheduled to be open for their respective 

regular trading sessions. 

Scheduled Closing Time: means, in respect of an Exchange or Related Exchange and a 

Scheduled Trading Day, the scheduled weekday closing time of such 

Exchange or Related Exchange on such Scheduled Trading Day, 

without regard to after hours or any other trading outside of the regular

trading session hours. 

Exchange Business Day: Any Scheduled Trading Day on which each Exchange and each Related 

Exchange are open for trading during their respective regular trading 

sessions, notwithstanding any such Exchange or Related Exchange 

closing prior to its Scheduled Closing Time PROVIDED THAT for the 

purposes of determining the Periodic Variable Coupons the definition 

of “Exchange Business Day” shall be modified to exclude a day on 

which it is a Disrupted Day. 

Business Day: A day (excluding a Saturday and Sunday) on which banks and foreign 

exchange markets are open for business in Hong Kong.

Adjustments and 

Extraordinary Events: 

If the Calculation Agent determines that an event has occurred which 

has a diluting, concentrative or any other effect on the Shares, then 

following each such event, the Calculation Agent shall determine any 

corresponding adjustments to the conditions (including, without

limitation, adjusting the Initial Price, Conversion Price, Callable Price,

and Lower Range Band, replacing a Share with another share and/or

other securities and/or assets, Nl number of Shares per Note if physical 

delivery at maturity, the Periodic Variable Coupon, or the Redemption 

Amount or Mandatory Early Redemption Amount), which in the sole 

Figure A.12 Term sheet for the multi-asset structured notes, page 5.
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discretion of the Calculation Agent is appropriate to account for the 

diluting, concentrative or other effect of the relevant event and which 

adjustments shall be effective as of the date determined by the Issuer. 

Disrupted Day: means in respect of a Share, a Scheduled Trading Day on which the 

relevant Exchange or Related Exchange fails to open for trading during

its regular trading session or on which there is, during 1 h

prior to the actual closing time of the relevant Exchange or Related

Exchange, material trading or exchange disruption or there is an early 

closure of the relevant Exchange or Related Exchange with less than 

1 h (which shall exclude, where relevant, any time period when 

the Exchange or Related Exchange is closed between the end of the 

morning trading session and the start of the afternoon trading session) 

notice (till the actual time of closure or the deadline for inputting 

orders to execute trades at the closing time of the relevant Exchange or 

Related Exchange), all as set out in the 2002 ISDA Equity Derivatives 

Definitions.

Effects of Disrupted Day: If the Maturity Date, an Observation Date or a Periodic Coupon 

Determination Date is a Disrupted Day for a Share, then the Maturity

Date, such Observation Date or such Periodic Coupon Determination 

Date shall be the first succeeding Scheduled Trading Day which is not

a Disrupted Day, unless each of the 8 Scheduled Trading Days 

immediately following the day originally scheduled to be the Maturity 

Date, such Observation Date or such Periodic Coupon Determination 

Date is a Disrupted Day, in which case that 8th Scheduled Trading Day 

shall be the Maturity Date, such Observation Date or such Periodic 

Coupon Determination Date, notwithstanding the fact that it is a 

Disrupted Day, and the Calculation Agent shall determine the Closing 

Price of the affected Share as of that based on its good faith estimate of

the value of that Share as of the closing time of the relevant Exchange 

on that 8th Scheduled Trading Day. For the avoidance of doubt, 

(a) for the purposes of determining the Laggard Share as of the 

Maturity Date or an Observation Date (as the case may be), the Closing

Price of the unaffected Share shall be determined on the Scheduled 

Maturity Date or the Scheduled Observation Date relating to such 

Observation Date (as the case may be) and the Closing Price of the 

affected Share shall be determined on the Maturity Date or such 

Observation Date (as the case may be) as postponed in accordance with 

the provisions under this paragraph “Effects of Disrupted Day”; and 

(b) the Redemption Date is determined by reference to the last

occurring Maturity Date and in the event that no Mandatory Early 

Redemption Event occurs, in respect of a Scheduled Periodic Coupon

Determination Date, the Periodic Coupon Payment Date is determined

Figure A.13 Term sheet for the multi-asset structured notes, page 6.
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The Notes are not listed, traded, or publicly quoted on any stock 

by reference to the last occurring Periodic Coupon Determination Date. 

The Mandatory Early Redemption Payment Date is determined by 

reference to the last occurring Observation Date in respect of the 

Mandatory Early Redemption Date. 

Scheduled Maturity Date: any original date that, but for the occurrence of an event causing a 

Disrupted Day, would have been a Maturity Date. 

Scheduled Observation Date: Means any original date that, but for the occurrence of an event 

causing a Disrupted Day, would have been an Observation Date. 

Scheduled Periodic Coupon 

Determination Date: 

any original date that, but for the occurrence of an event causing a 

Disrupted Day, would have been a Periodic Coupon Determination 

Date.

Limited Recourse Provisions: The parties acknowledge and agree that to the extent the Issuer (or its
affiliates) enter into securities or futures or derivatives transaction(s) 
(“Hedge Transactions”) with any party in the local jurisdiction, 
including, without limitation, an entity affiliated, related to or 
controlled by the Issuer (“Hedge Counterparty”) to hedge these Notes 
and the Hedge Counterparty for such transactions fails or delays for 
any reason (including a default by the local exchange or clearinghouse)
to make any payment, delivery, or distribution with respect to a Hedge 
Transaction, then the Issuer’s obligation to pay any amounts due
hereunder shall be reduced and/or delayed accordingly. 

Clearing Systems: Euroclear and Clearstream

Listing: None

Form: The Notes will be issued as registered notes in permanent global form, 
with the Global Security representing the Notes deposited with a 
common depositary of the Clearing Systems.  Copies of the form of the 
Global Security containing the Terms and Conditions of the Notes are 
available on request from UBS AG, Hong Kong Branch. 

Further Issue: The Issuer may, from time to time without the consent of the Holder, 

issue further securities having the same terms and conditions as the 

Notes so as to form a single series and be fungible with the Notes. 

Market Making: 

Figure A.14 Term sheet for the multi-asset structured notes, page 7.
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exchange or quotation system. The Issuer or its affiliates may from 

time to time, whether upon request or otherwise, offer to purchase 

Notes from existing holders or to sell Notes, at such price and in such 

quantity as determined in the absolute discretion of the offeror. The 

Issuer or its affiliates are under no obligation to make such offer to sell

or purchase, and if made, may be withdrawn at any time without 

notice. Any offer to sell or purchase by the Issuer or its affiliates or 

actual sales and purchases made pursuant to the offers do not assure 

the existence or continuance of a liquid secondary market for the 

Notes, and the Issuer or its affiliates may discontinue such activities at

any time. 

Governing Law: English law 

Calculation Agent: UBS AG, London Branch 

Figure A.15 Term sheet for the multi-asset structured notes, page 8.
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Risk Disclosure Statements
The followings are the standard risk disclosure statements of Fubon Bank (Hong Kong) Limited (“the 

Bank”) covering equity-linked instruments/equity-linked notes/equity-linked certificates (“Equity-

linked Product”). You are advised to read and fully understand all the relevant risk disclosure 

statements herein and to obtain independent legal advice, if necessary.

General Disclosure : Users of the information contained in this Term Sheet are advised to make their own independent 
judgment or obtain advice from their professional advisers with respect to the information, legal 
implications and any other matters contained herein. 
Any notice or other communication from Fubon Bank (Hong Kong) Limited (the “Bank”) to you shall be 
deemed to be received (a) if given or made by post, the following Business Day after the date of 
despatch; and (b) if given or made by fax or email, when despatched, regardless of whether you have 
actually received it.  
The Bank shall have no payment obligation to you under this Term Sheet unless and until it has been 
paid by the Issuer, the payment agent, or the calculation agent (as the case may be).
The Bank shall have no obligation to make payment and/or give notice to the investors on Hong Kong
non-business days. If any day within any specified notice period falls on a Hong Kong non-business day 
or if any corresponding notice from the Issuer, the payment agent or the calculation agent (as the case
may be) is received by the Bank outside its normal office hours, the length of such notice period will be 
abridged accordingly. Thus, the Bank may give notice to the investors after the relevant notified event or 
incident has taken place. 
The Bank may (but is not obliged to) give notice to the investors by phone. If such phone notice is given
to the investors, it shall be deemed to be valid and effective and will be followed by a written notice sent 
out by personal delivery, post, fax, or email. Any failure or delay in delivery of the written notice will not 
affect the validity and effectiveness of the phone notice. 

Investment Suitability : The risk of loss in investing the Equity-linked Product can be substantial. Investor should therefore firstly,
study and understand the structure of the Equity-linked Product before he/she places an order and 
secondly, carefully consider whether the Equity-linked Product is suitable in light of his/her financial 
position and investment objectives. If the investor provides irrevocable instructions to the Issuer he/she
does so at his/her risk and has not relied on the Bank’s advice and recommendation.

Credit Risk : Investors of the Equity-linked Product are exposed to the credit risk of the Issuer, whose Moody’s and 
Standard & Poor’s ratings (if applicable) are set out respectively in the Term Sheet attached herewith. 
The aforesaid ratings reflect the independent opinion of the relevant rating agencies as to the safety of 
payments of principal and interest. These ratings are not a guarantee of credit quality. These ratings do
not take into consideration any risks associated with fluctuations in the market value of the Equity-linked 
Product, or where factors other than the Issuer’s credit quality determine the level of principal and interest
payments.    

Currency Risk : The profit or loss in the Equity-linked Product will be affected by fluctuations in currency exchange rates 
where there is a need to convert from the currency denomination of the Equity-linked Product to another 
denomination. Any fall in the currency denomination of the Equity-linked Product will reduce the amount
the investor may receive when a conversion is made. 

Hedging Risk : The market price of the underlying share may depend upon the hedging transactions of the Issuer or any 
of its affiliates which in turn will depend upon market conditions at the time of such hedging. The market
may be affected by such hedging.

Potential Conflict of 
Interest 

: The Issuer or any of its affiliates may from time to time engage in transaction involving the security or 
securities underlying the Equity-linked Product for their proprietary accounts and for other accounts under 
their management. Such trading may influence the value of the underlying stock or stocks and therefore
the value of the Equity-linked Product. 

Liquidity Risk : The investor shall not be entitled to withdraw all or part of the Equity-linked Product during the tenor 
without the Bank's prior consent (which, if granted, may be subject to such conditions and terms as the 
Bank may require). The Bank may at its absolute discretion refuse to give such consent, or impose such 
conditions as the Bank may determine for the conversion or withdrawal of the Equity-linked Product at the 
investor's request, such conditions to include (without limitation) the deduction of such breakage costs as 
the Bank shall determine conclusively acting in good faith. Such breakage costs shall include the costs,
expenses, liabilities, or losses incurred or suffered by the Bank as a consequence of breaking its hedge, 
or funding from other sources in respect of the Equity-linked Product. Therefore, the total amount repaid 
on an early withdrawal of the Equity-linked Product at the investor's request may be less than the

Figure A.16 Term sheet for the multi-asset structured notes, page 9.



398 APPENDIX

Treasury & Structured Products – Equity 

Linked Notes (redemption linked to the ordinary/H-shares of China Communications Construction Co Ltd-H 

and Datang Intl Power Gen Co-H)
(REF: ENHKCRAN0462-V1)

2-Year HKD 34.00% (annualized basis) Periodic Variable Maturity Range Accrual Equity- Daily Knock Out

Principal Amount.

Secondary Market : Equity-linked Products are not a trading instrument. There will not be a liquid secondary market for the
Equity-linked Products. On request the Issuer may but is not obliged to purchase the Equity-linked
Product from the holder at a price determined by the Issuer by reference to current market conditions. 
Prior to maturity, the value of an option is influenced by various factors including, but not limited to: 
volatility, interest rates, dividends, and time remaining to maturity. 

Corporate Actions : Other risks may impact on the value of an Equity-linked Product, for example, corporate actions in relation 
to the underlying stock(s) may occur and have a dilutive effect on the value of the underlying stocks. In 
certain circumstances the Issuer has discretion as to the adjustments that it makes, if any, following
corporate events. 

Risks of Investing 
in  Equity-linked 
Product

: The price of the underlying stock may go down as well as up. For customers investing in Equity-linked
Products, their end-investment may therefore be the underlying stock. There is an inherent risk that
losses may be incurred rather than profits made as a result of buying and selling stocks. Stocks may 
even be valueless. Equity-linked Product is suitable only for those investors who can afford the risks 
involved and are conversant in the stock market in which the underlying stock is traded. Investors should 
also consider whether the investment strategy or Equity-linked Product is suitable for them in light of their 
own financial position and investment objectives. 

The contents of this document have not been reviewed by any regulatory authority in Hong Kong. You 
are advised to exercise caution in relation to the offer. If you are in any doubt about any of the contents of 
this document, you should obtain independent professional advice. 

Figure A.17 Term sheet for the multi-asset structured notes, page 10.
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REQUESTED BY ISSUER REFERENCE 

Notional Amount / 

Number of Certificates
:

Handling

AO
:

Customer Signature :
Principal

AO
:

Customer Name :
Professional

Investor
: YES   NO

Trade Date and Time : Checked by :

Settlement Account # : Cus Reg # 

Securities Account # :
HKMA

R.I.  Registration # 
:

Date and Time Phone

Confirmed with 

Customer

:
Location of Tape

Recording:
:

Customer Risk Rating : G B  C   RA E Product Risk Rating : H M  L   VL 

Cus Investment Risk

Questionnaire Signed
: YES  NO  N/A Verified by :

Elderly Declaration

Signed:
: YES  NO  N/A Verified by :

Declaration of Deviation

Signed
: YES  NO  N/A Verified by :

W8- Ben Signed : YES  NO  N/A Verified by :
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