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Preface

A material structure assembled from a layer or cluster of atoms with size of the
order of nanometers is called a nanostructure. A nanometer is about four atom
diameters or 1/50,000 of a human hair. (Our fingernails are growing about a
nanometer while reading this). What is so special about nanometer length scales
that create so much excitement the world over? To answer this, let us consider a
bulk piece of silicon having certain band gap, a feature that is a key property in
electronics. If this silicon piece is shrunk to 0.1 lm (100 nm) length, the band gap
will increase significantly causing silicon to emit visible light. In other words,
understanding the physics of a structure at the atomic scale can help us to
manipulate its properties in its bulk form. This can result in mind boggling
applications that were hitherto not thought of by our research community.

There are many events such as the discovery of scanning electron microscopy
that gave fillip to nanotechnology research. However, with the discovery of a new
allotrope of carbon in the late 1980s and early 1990s, namely the fullerene, carbon
nanotubes and graphene, a new chapter in nanotechnology research has emerged.
These have become the basic building blocks for many nanodevices such as
nanosensors, nano actuators, nano gyroscopes, etc. All of these devices are
packaged under Nano Electro Mechanical Systems (NEMS) or Nano Opto
Mechanical Systems (NOMS) devices. The key elements in these devices are the
nanobeams, nanorods, nanoplates and nanoshells, respectively. This book deals
with mathematical modelling of nanorods, nanobeams, nanoplates and nanoshell,
which make up for the bulk of NEMS or NOMS devices.

In the mathematical modelling of physical systems, it is necessary to represent
the physics of the system as accurately as possible. Understanding the physics of a
material system at nanoscale level is indeed a great challenge. Performing
experiments to understand its physics and formulate hypothesis is not an easy task
due to extremely small sizes of the nanoscale system. Most of the behaviour has to
be understood through mathematical modelling. Any modelling method should
account for small-scale effects associated with these nanoscale systems. There are
two different modelling methods, one based on atomistic assumptions, and the
other based on continuum assumptions. In the former, we consider a group of
connected atoms (typically of the order of thousands if not millions) and solve
Newton’s second law of motion on each atom considered. Here again, we should
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make some assumptions to get the interatomic interactions. This approach is
computationally prohibitive if we consider a large number of atoms in the mod-
elling. This book mainly deals with modelling using continuum assumptions,
wherein the small-scale effects are brought in through the use of non-local elas-
ticity theory. We adopt such a modelling scheme throughout this book to study the
wave propagation behaviour in nanostructures. Obviously, such modelling scheme
is computationally fast and in fact all the simulations performed in this book are
programmed in the general-purpose mathematical code MATLAB.

This book mainly addresses the topic of wave propagation in nanostructures.
Most of the nanostructures are subjected to heavy and sometimes violent vibra-
tions at the nanoscale, which sets up stress waves in these structures that propagate
and interact with boundaries and create new waves. These waves are in the range
of terahertz range and they exhibit band gap behaviour over certain frequency
bands. Unlike the bulk structures, these terahertz waves have tremendous energy
and their best utilization in the future generation nanodevices requires deep
understanding of wave propagation in these structures.

The material developed in this book is the result of sustained research done by
the senior author over the last 20 years in the area of wave propagation and the last
5 years in the area of nanostructures by both the authors. A book of this kind is an
effort toward filling the need for bringing out a comprehensive textbook on wave
propagation in nanostructures that will be helpful to scientists/researchers involved
both in basic and applied research in the area of nanoscience and technology.

The book is written in modular form consisting of 11 chapters. Chapters 1–4
present the introductory material on nanostructures, wave propagation, different
modelling schemes and a basic introduction to non-local elasticity. These topics
form the basis for all the chapters that follow. Chapter 5 deals with nanostructure
material property evaluation and small-scale effects parameter determination.
Chapters 6–11 deal with core wave propagation problems in different nano
waveguides such as nanorods, nanobeams, nanotubes carrying fluids, coupled nano
systems, multi-wall nanotubes and graphene structures. The material presented in
this book can be used to develop a graduate level course in the topic of wave
propagation in nanostructures. Also, this book can form as a reference material on
the course of wave propagation in complex mediums. While writing this book, we
have assumed that the reader has the basic engineering mechanics and graduate
level mathematics background.

The completion of this book would not be possible without the support of the
families of the authors. Dr. Gopalakrishnan deeply thanks his wife Anu and his
children Karthik and Keerthana for their continuous patience, understanding and
support, without which this book would not have been possible. Mr. Narendar
thanks his parents and brothers for their constant encouragement and support.

Bangalore, India, March 2013 Srinivasan Gopalakrishnan
Saggam Narendar
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Chapter 1
Introduction to Nanostructures

The word nano normally signifies one billionth or 10−9 part of an unit considered. In
terms of length scales, we use meters and hence a nanometer normally referred to as
1 nm is equal to 10−9 m or 10−3 µm or equal to 10 Å (Angstrom Unit). Nanostructures
refers to material system that are in the range of 1–100 nm. In a nanostructures, elec-
trons are normally confined in one of the dimensions while in the other dimensions
they are free to move in all directions. Depending upon the nature of confinement,
nanostructures can be classified as the following"

• Quantum Well: In this type of nanostructures, the electrons are confined in one
dimensions and free to move in the other two dimensions.

• Quantum Wires: Here, the electrons are confined in two dimensions while they are
free to move in the other dimension.

• Quantum Dots: In this type of nanostructure, the electrons are confined in all the
three dimensions.

Nanostructures have unique properties when compared to their individual atoms or
molecules or their bulk macroscopic properties. For example, bulk material such as
Copper wire, their intrinsic properties, say density or conductivity, are independent
of its size. That is, if a 1 m long Copper wire, when cut into few pieces, and for these
pieces, if the density or conductivity is measured, one will find they are same as the
original Copper wire. If the dividing process is done indefinitely, then the property
invariance will still remain. However, if the division is made at the electron, proton
or neutron levels, that is at the nanoscale levels, we can certainly expect significant
change in the property of the nanostructures. The properties of the nanoscale material
systems can get significantly affected by the following three phenomenon:

• Quantum Confinement: The confinement of electrons in the nanoscale dimensions
will result in the change in the energy and momentum of the nano material system,
which in turn significantly alters its properties.

• Quantum Coherence: This phenomenon relates to the phase relation of the wave
function in nano material system, that is preserved in the nanomaterial system.
The quantum coherence property is well maintained in atoms and molecules but
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not always in nanostructures due to inherent defects present in these structures.
This results in the change of properties in the nano scale and hence it is necessary
to consider both the quantum coherence and de-coherence effects while dealing
with nanostructures

• Surface Effects: Vast majority of the atoms in a nanostructures are located either
at the surfaces or interfaces. The properties of these surface atoms can be quite
different than that of those, which are located in the interior.

The above factors significantly alter the properties of the nanostructures as compared
to their bulk material. For a nanomaterial systems, both the crystalline state and
surface/interface state is very important. These materials are often in metastable
state. Their atomic configuration depends on the kinetic process in which they are
fabricated or grown. Therefore, the properties of nanostructures can be adjusted or
manipulated by changing its size, shape or the process by which it is made, which
can often lead to some rich and surprising outcomes.

The potential of nanostructures in various branches of science and engineering is
immense. In 1959, physicist and future Nobel Prize winner Richard Feynman gave
a lecture to the American Physical Society called "There’s plenty of Room at the
Bottom". The focus of his speech was about the field of miniaturization and how
he believed man would create increasingly smaller, powerful devices [1]. In 1986,
K. Eric Drexler wrote ’Engines of Creation’ and introduced the term nanotechnology.
Scientific research really expanded over the last decade. Inventors and corporations
aren’t far behind today. More than 13,000 patents registered with the U.S. Patent
Office have the word nano in them [2].

Nanotechnology is a vast field by itself spread across various disciples that
includes applied physics, materials science, interface and colloid science, device
physics, supramolecular chemistry (which refers to the area of chemistry that focuses
on the non-covalent bonding interactions of molecules), self-replicating machines
and robotics, chemical engineering, mechanical engineering, biological engineering,
and electrical engineering. As this is a multidisciplinary field, much speculation ex-
ists as to what may result from these lines of research. Can we imagine a thousand
machines being able to fit in an area the size of a pinhead, or a spaceship that can
repair itself mid-flight? All these are made possible by nanotechnology. Although
the research in nanotechnology are in the early stage, nanoscale intelligent materials
such as carbon nanotubes, compound nanotubes, nanobelts, and other nanoscale ma-
terials have produced great excitement in the research community. These materials
have found to have extraordinary mechanical and electrical properties, which have
potential for tailorability and it is these features of nanoscale materials that is the
cause of excitement among the research community. Currently, most of the focus is
on nanotube based nanoscale materials, which are found to have novel strain sensing
and force actuation properties. Although nanoscale materials, in particular Carbon
Nanotube (CNT) have extraordinary properties, utilizing the properties both at the
nano and the macro scale is major challenge that the scientists and engineers have to
address.
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This chapter deals with the background of the nanostructures and the their clas-
sification in detail and also the various modelling techniques available to study the
static and dynamic response of these materials.

1.1 Historical Perspectives

American physicist Richard Feyman in his talk at the American Physical Society
(APS) in the year December 1959 at California Institute of Technology on There’s
plenty of room at the bottom, where he predicted that how one can arrange the
atoms/molecules in a way that one wants to get a desired property to achieve some
unbelievable applications. This trigged the imagination of scientists and researchers
world over. The next major invention that contributed to the growth of nanotechnol-
ogy is the invention of Scanning Tunneling Microscope (STM) in the year 1981 by
Gerd Binnig and Heinrich Roher at the IBM Zurich Research Laboratory, for which
they received the Nobel Prize in the year 1989. The invention of this instrument en-
abled scientist to image the material at the atomic level. This led to the discovery of
CNT and Fullerenes some years later. Binnig, Calvin Quate and Christopher Gerber,
in the year 1986, invented the first Atomic Force Microscope (AFM). The word Nan-
otechnology was first used by Nario Taniguchi of the Tokio University of Science in
the year 1974, wherein he described the semi conductor processes such as film deposi-
tion and ion beam billing, which exhibit the characteristic of the order of nanometers,
as an atom-to-atom process. In the year 1991, the first Ph.D thesis in this area was from
K. Eric Drexler from the MIT Media Lab. His thesis was titled Molecular Machinery
and Manufacturing with Applications to Computation. The first real use of STM was
demonstrated by IBM researcher Don Eigler, wherein he was the first to manipulate
the 35 Xenon atoms.

The real take-off of nanostructures research and technological exploitation started
with the accidental discovery of Fullerenes by Richard Smalley and his co workers
Harry Kroto and Robert Curl in the year 1985. They received the Nobel prize in the
year 1996 for their work. They found strange results in mass spectra of evaporated
carbon samples. Fullerenes are large, closed-cage, carbon clusters and have several
special properties that were not found in any other compound before. Therefore,
fullerenes in general form an interesting class of compounds that surely will be used
in future technologies and applications. Before the first synthesis and detection of the
smaller fullerenes C60 and C70, it was generally accepted that these large spherical
molecules were unstable. However, some Russian scientists already had calculated
that C60 in the gas phase was found to be stable and it had a relatively large band gap.
With the stability of fullerenes in gas phase proven, the search for other fullerenes
started.

The discovery of carbon nanotubes (CNT) is mainly due to Sumio Iijima [3].
However, existence of CNT prior to 1991 is reported in the literature[4]. Iijima
initially discovered multi-wall carbon nano tubes (MWCNT) in the insoluble material
of arc-burned graphite rods. while Mintmire, Dunlap and White, independently found
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that single wall carbon nanotubes (SWCNT) can be mode and their initial experiments
showed that these exhibited remarkable conducting properties [5]. The works of these
two groups created lots of excitement among the research community in the area
of CNT’s. Subsequent works on SWCNT by Bethune et al. [6] and Iijima et al. [7]
greatly accelerated the nanotube research. These research have shown that the CNT’s
exist in large lengths (up to several microns) and small diameter (a few nanometers),
which result in CNT having a large aspect ratio. They can be seen as the nearly one-
dimensional form of fullerenes. Therefore, these materials are expected to possess
additional interesting electronic, mechanic and molecular properties. Especially in
the beginning, all theoretical studies on carbon nanotubes focused on the influence
of the nearly one-dimensional structure on molecular and electronic properties.

Today, the nanotechnology is spread across many disciplines. Many unbelievable
applications are conceptualized by the scientists and Engineers. For example, in the
New York Times article on Today’s Vision of Science of Tomorrow dated January
4, 2003, the article says that nanotechnology will lead to aerospace vehicles with
98 percent less structural mass. However, it is difficult to speculate the time that
aerospace companies will take to meet this prediction. We see that major aircraft and
engine companies such as Boeing, Airbus, General Electric and Pratt & Whitney are
heavily investing in nanotechnology.

1.2 Hybridization of Carbon Nanostructures

Carbon is a remarkable element that has a unique structures which make it amenable
to combine with other elements and compounds to get a new compound. It is said
that carbon has the ability for form close to 10 million different compounds. It is
present in the food we eat, the clothes we wear, the cosmetics we use and also in
the fuel that drives our cars. Carbon exists in four different allotropes, namely the
amorphous, the graphite, the diamond and the fullerene. The Amorphous carbon
structure is visually a highly disordered structure. It is for this reason that it lacks
structural integrity . This carbon structure forms at the edges or is the residue of other
elemental compounds. The disorder of this structure allows it to have many available
bonds and is responsible for building more complex carbon based molecules. Some
of the properties of the carbon are as follows:

• Atomic number is 6
• Atomic mass is 12.011
• Density is 2.267 g/cm3

• Wave velocity 18, 350 m/s.

Carbon has an atomic number of 6, which means it has 6 electrons out of which 4 of
them are on the valance of outer shell as shown in Fig. 1.1a. Out of these 4 electrons,
one is called the s electron while the other three are called the p electrons. The electron
configuration shown in Fig. 1.1a can be misleading. It gives the impression that the
electrons are circling the nucleus in orbits like planets around the sun. Actually it is



1.2 Hybridization of Carbon Nanostructures 5

(a) (b)

Fig. 1.1 a Structure of carbon atom. b Energy level graph

not possible to know exactly where the electrons are located . Alternatively, one can
view the carbon atom by looking at the energy level graph shown in Fig. 1.1b. In this
figure, all electrons are represented by arrows and the direction of the arrow represents
the direction of the electron spin. From this figure, we see that two electrons are found
in the 1s orbital close to the nucleus. The next two will go into the 2s orbital. The
remaining ones will be in two separate 2p orbitals. This is because the p orbitals have
the same energy and the electrons would rather be in separate orbitals. Hence, the
actual location of electrons in a carbon atom cannot be determined with certainty
and the electrons appear to be ‘smeared’ into orbitals . The above configuration can
be represented as 1s2 2s2 2p1

x 2p1
y 2p0

z . This configuration represents two half-filled
orbitals, which makes carbon bivalent. However, it is well known that carbon is
tetravalent. In order to account for this tetra valency, one electron from 2s orbital
jumps to 2pz orbital. Thus the electron configuration becomes 1s2 2s1 2p1

x 2p1
y

2p1
z . In addition, it has been observed that carbon atom forms two types of bonds,

three of one type (those formed from the three 2p orbitals) and 4th of another type
(formed from 2s orbitals), since s and p orbitals are different with respect to energy
and shape. However, it is a well-established fact that all the four valencies of carbon
are equivalent. Therefore, it has been suggested that all the four orbitals mix together
to form new orbitals of equivalent energy. This is the basic concept of hybridization.

Hence, Hybridization may be defined as the phenomenon of mixing of atomic
orbitals of nearly equivalent energy, involving redistribution of energy, to form new
orbitals of equal energy known as hybrid orbitals. The number of hybrid orbitals is
equal to the number of the orbitals hybridized. The properties of the hybrid orbitals
are in between the properties of the orbitals which are hybridized. The number of
p-orbitals that take part in the hybridization is called the hybridization Index, nor-
mally represented as "m" and it is related to the bond angle (α) as

cos(α) = −−1

m
(1.1)
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Based on hybridization index, we can classify hybridization into following three
categories.

1. sp3 or Tetrahedral Hybridization: In this hybridization, one 2s and three 2p or-
bitals take part resulting in the formation of sp3 hybridized orbitals. The direction
of the orbitals and also the center of mass are to be determined by the specific
contributions of the p-orbitals and the s-orbital. A combination of the hybrid
orbitals produces a tetrahedral assembly with the center of masses in the corners
as shown in Fig. 1.2a. The bond angle as per Eq. 1.1 is equal to −cos−1(1/3),
which is equal to 109.5◦. The assembly of many sp3 hybridized carbon atoms
leads to a diamond structure, where the binding strength of each atoms are same
and they are very strong. This structure exhibits large band gaps (close to 5 eV)
and hence their electrical conductivity is very low. The example compound that
came out of this hybridization is Methane C H4.

2. sp2 or Trigonal Hybridization: Here, one 2s orbital and two 2p orbitals, namely
px and py , take part in this hybridization. resulting in three sp2 orbital. They
contribute together to a planar assembly (see Fig. 1.2b) with a characteristic bond
angle of 120◦ ( α = −cos−1(1/2) between hybrid orbitals forming a σ -bond.
The additional pz-orbital is perpendicular to the sp2-hybrid orbitals and forms
a π -bond. A typical example of a sp2-hybridized crystal structure is graphite. It
consists of parallel carbon layers. Within a layer the planar sp2-hybrid orbitals
align themself to a structure with strong binding. Between the layers theπ -orbitals
give rise to weak Van-der-Waals-forces. As a result graphite is one of the softest
materials known and is used in pencils

(a) (b)

(c)

Fig. 1.2 Hybridization of carbon (a) sp3-Tetrahedral hybridization (b) sp2-Trigonal hybridization
(c) sp-Linear hybridization
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3. sp or Linear Hybridization: This hybridization is shown in Fig. 1.2c. Here, one
2s and one 2p or px orbital take part in hybridization, resulting in the formation
of two hybrid orbitals known as sp hybrid orbitals. The bond angle in this case
as per Eq. 1.1 is 180◦. The example compound that came from this hybridization
is Acetylene (C2 H2).

With this basic understanding of the carbon hybridization, we will explain the
structure of carbon nanotubes in the next subsection.

1.2.1 Nanotubes

There are many definitions to nanotubes. The simplest definition of nanotube is that
it is a nanometer scale structure that resembles a tube. There are both organic and
inorganic nanotubes. Organic nanotubes are the carbon nanotubes or CNT. With
respect to CNT, a nanotube can be defined as a long cylindrical carbon structure
consisting of hexagonal graphite molecules attached at the edges. Some nanotubes
have a single cylinder while others have two or more concentric cylinders. Nanotubes
have several characteristics, namely wall thickness, number of concentric cylinders,
cylinder radius, and cylinder length. Some nanotubes have a property called chirality,
an expression of longitudinal twisting.

It was mentioned earlier that crystal structure of a graphite is a layered structure
and the carbon atoms within a layer are strongly bonded to their neighbors at room
temperature. However, the layers are loosely coupled by van-der-Waals forces, which
makes graphite highly deformable substance in a particular direction, which is one of
the reasons why they are extensively used in pencils. A Single Wall CNT (SWCNT)
can be constructed by rolling up the graphite sheet as a tubular shell with carbon atoms
covalently bonded to its neighbors. The bonding mechanism in CNT is similar to
that of graphite, which is sp2 hybridization. The characteristic of sp2 hybridization
is the existence of σ -bonds and π -bonds. The σ -bonds are strong covalent bonds that
binds the atom in a plane, due to which CNT exhibits high stiffness and strengths. In
contrast, theπ -bonds is a very weak bond, which represents the inter-layer interaction
of atom pairs.

As mentioned earlier, there are also several non carbon nanotubes, which are
reported in the literature. The commonly mentioned non-carbon variety are made
from boron nitride, or from silicon. These noncarbon nanotubes are most often re-
ferred to as nanowires. The dimensions are variable (down to 0.4 nm in diameter)
and one can also get nanotubes within nanotubes, leading to a distinction between
multi-walled and single-walled nanotubes. Apart from remarkable tensile strength,
nanotubes exhibit varying electrical properties (depending on the way the graphite
structure spirals around the tube, and other factors, such as doping), and can be super-
conducting, insulating, semiconducting or conducting (metallic). Nanotubes can be
either electrically conductive or semi conductive, depending on their helicity, leading
to nanoscale wires and electrical components. These one-dimensional fibers exhibit
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electrical conductivity as high as copper, thermal conductivity as high as diamond,
strength 100 times greater than that of steel at one sixth its weight, and high strain
to failure. A nanotube’s chiral angle is the angle between the axis of its hexagonal
pattern and the axis of the tube, which determines whether the tube is metallic or
semiconducting.

1.2.2 Structure of Carbon Nanotubes

CNT is a cylindrical molecule composed of carbon atoms. Typical single-walled
carbon nanotube (SWCNT) structures are illustrated in Fig. 1.3. A major feature
of the structure is the hexagon pattern that repeats itself periodically in space. As
a result of the periodicity, each atom is bonded to three neighboring atoms. Such
structure is mainly due to the process of sp2 hybridization [8], which was explained
earlier. Based on the chirality [9], SWCNTs can have three different configurations.
They are armchair (see Fig. 1.3a), zigzag (see Fig. 1.3b) and chiral (see Fig. 1.3c)
configurations; denoted as (n, n), (n, 0) and (n,m), respectively [9], where n and m
represent the number of steps along the carbon bonds of the hexagonal lattice. The
Armchair and Zigzag CNTs are generally named as achiral nanotubes since they
exhibit a mirror symmetry plane, perpendicular to the tube axis [10].

As mentioned earlier, the bonding in carbon nanotubes is sp2, with each atom
joined to three neighbours, as in graphite. The tubes can therefore be considered
as rolled-up graphene sheets (see Fig. 1.4) [11]. The three distinct ways in which
a graphene sheet can be rolled into a tube was explained earlier. The armchair and
zig-zag CNT have a high degree of symmetry. The terms armchair and zigzag refer
to the arrangement of hexagons around the circumference. The third class of tube,
which in practice is the most common, is known as chiral, meaning that it can exist in
two mirror-related forms. The chiral vector C, also known as the roll-up vector, can
be described by equation C = na + mb, where the integers (n,m) are the number of
steps along the zigzag carbon bonds of the hexagonal lattice, a and b are unit vectors
[12]. The chiral angle determines the amount of twist in the tube.

The chiral angles are 0◦ and 30◦ for the two limiting cases which are referred to as
zigzag and armchair, respectively. In terms of the roll-up vector, the zigzag nanotube
is denoted by (n, 0) and the armchair nanotube as (n, n). The roll-up vector of the
nanotube also defines the nanotube diameter.

In the coming chapters, we will consider the wave propagation analysis armchair,
zig-zag and chiral type of CNTs (see Fig. 1.3). The hexagonal arrangement of car-
bons in these structures are shown in Fig. 1.4. The physical properties of carbon
nanotubes are sensitive to their diameter, length and chirality. In particular, tube
chirality is known to have strong influence on the electronic properties of carbon
nanotubes. Nanotubes can be either metallic or semiconducting, depending on tube
chirality. Single walled carbon nanotube can undergo enormous bending and believed
to behave elastically. The common type of CNT is the multi walled carbon nanotube
(MWCNT), which is composed of concentric graphitic cylinders and the spacing
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Fig. 1.3 a (10, 10) arm-
chair type of CNT of length
34.6717 nm, consists of 580
carbon atoms, b (10, 0) zig-
zag type of CNT of length
34.47 nm, consists of 340
carbon atoms, and c (10, 5)
chiral type of CNT of length
34.563 nm, consists of 450
carbon atoms

(a)

(b)

(c)

between each graphite layer is 0.34 nm. Both single walled and multi walled carbon
nanotubes are being used as key components in the production of high strength com-
posites and advanced sensors, electronic and optical devices, catalysts, batteries and
fuel cells. For the geometric relations of the structure of SWCNT see Refs. [15, 16].



10 1 Introduction to Nanostructures

Fig. 1.4 Definition of roll-up
vector as linear combinations
of base vectors (a) and (b)

1.2.3 Properties of Carbon Nanotubes

The strength of the sp2 carbon-carbon bonds gives carbon nanotubes amazing me-
chanical properties [15, 16]. The mechanical and electrical properties of carbon
nanotubes have been the subject of numerous studies ever since the discovery of
nanotubes, largely because of the wide recognition of carbon nanotubes as important
nanoscale systems and also because of various envisioned novel applications. Car-
bon nanotubes which are formed of seamless cylindrical grapheme layers represent
the ideal carbon fiber and should presumably exhibit the best mechanical properties.
This feature is probably the most promising for applications of nanotubes given the
importance of extremely strong lightweight composites. The mechanical stiffness
and strength of carbon nanotubes are expected to be very high.

It is remarkably difficult to directly measure the mechanical properties of single
nanotubes due to their small diameters and their tendency to form bundles. The stiff-
ness of carbon nanotubes was recently measured by a thermal vibration technique
and Young’s modulus was reported to be in the range of 1–5 TPa [17]. The Young’s
modulus of the best nanotubes can be as high as 1,000 GPa which is approximately
5 % higher than steel. The tensile strength, or breaking stress of nanotubes can be up
to 63 GPa, which is around 50 % higher than steel. These properties, coupled with
the lightness of carbon nanotubes, give them great potential in applications such
as aerospace. The electronic properties of carbon nanotubes are also extraordinary.
The unique physical and chemical properties of CNTs, such as structural rigidity
and flexibility continue to generate considerable interest. Additionally, CNTs are
extremely strong, about 100 times stronger (stress resistant) than steel at one-sixth
the weight [16]. CNTs can also act as either conductors or semiconductors depend-
ing on their chirality, possess an intrinsic superconductivity, they are ideal thermal
conductors, and they can also behave as field emitters. Currently, amazing properties
of this material enable us to foresee more than 60 potential applications of carbon
nanotubes, in various fields like electronic, aerospace, biomedical etc. (see Refs. [15,
16]). The properties of carbon nanotubes such as the elastic modulus, Poisson’s ratio
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Table 1.1 Young’s modulus and tensile strength of carbon nanotubes compared with some other
materials [13]

Material Young’s modulus (TPa) Tensile strength (GPa)

SWCNT ∼1 (from 1 to 5) 13–53
Armchair SWCNT 0.94 126.2
Zig-zag SWCNT 0.94 94.5
Chiral SWCNT 0.92 90
MWCNT 0.82–0.90 150
Stainless steel ∼0.2 ∼0.65–1
Kevlar ∼0.15 ∼0.35

and bulk modulus have been shown to exhibit strong dependence on their helicity
and diameter, which in turn influences the stiffness, flexibility and the strength of
carbon nanotubes. These aspects have motivated researchers world over to study the
fundamentals of this material and explore their applications in different fields. In
the next few paragraphs, we will list out the key properties (Mechanical, electrical,
thermal, optical etc) of CNT

1. Mechanical properties: Following are the key mechanical properties of CNT:

• 100 times stronger than steel (from stress point of view) and 6 times lighter.
• Unlike carbon fibers, CNTs have high flexibility.
• Expansion by charge injection.
• High Young’s modulus and tensile strength.
• Large current density and high aspect ratio.

The Young’s modulus and tensile strength of carbon nanotubes with the other
materials are shown in Table 1.1.

2. Electrical properties: Some of the key electrical properties of CNTs are listed
below:

• One can tailor the conducting behavior of CNT. That is, CNTs can be made
metallic or semiconductor behavior, according to chirality’s (way a graphene
sheet is rolled on itself). This means that one make CNT as conductive as
copper and as insulative as a ceramic. Curvature effects seem to have an effect
on its electrical properties.

• CNTs can be made as turnable field emission.

3. Thermal properties: The key thermal properties are the following:

• Theoretical work predicts a room-temperature thermal conductivity that is
larger than graphite or diamond. Measurements show a room-temperature
thermal conductivity over 200 W/m K for bulk samples of SWCNTs and over
3,000 W/m K for MWCNT.

• Addition of epoxy can double the thermal conductivity of CNTs.
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• CNTs are stable at very high temperature, which means it can be used for
applications such as thermal barrier coatings used in re-entry space vehicles.

• CNT’s are said to be good conductors along the tube axis and good insulators
laterally.

• Carbon nanotubes can resist strong acid effects, especially at high temperature
because of their perfect conjugated system. Acid and heat are often applied to
purify carbon nanotubes.

4. Physico-chemical properties: Some of the important physical and chemical
properties of CNTs are the following:

• CNTs high specific area, which means several hundreds of square meters per
gram of CNT.

• They have cavities enabling molecules storage inside the carbon nanotube.
• Chemical treatment on carbon nanotubes can be done for enabling to fix other

molecules of the carbon nanotubes.
• CNT’s have high thermal resistance (up to 1,500 ◦C under vacuum).

5. Field emission properties: CNTs have excellent materials properties which make
them have attractive field emission characteristics such as

• Large aspect ratio (>1,000)
• Atomically sharp tips
• High temperature and chemical stability
• High electrical and thermal conductivity.

In comparison to usual metallic emitters, the applied voltages needed for field
emission were are lower in CNT for a comparable emitted current. Carbon nan-
otubes can be used as electron sources in two different types of set-ups, namely
single and multiple electron beam devices. One possible application of a single
electron beam instrument is an electron microscope that uses a single nanotube
as a field emission electron gun to produce a highly coherent electron beam.
Conversely, flat panel displays are the most popular example of multiple beam
instruments where a continuous or patterned film of nanotubes provides a large
number of independent electron beams.

6. Optical Properties: Some of the key optical properties of CNTs are summarized
below:

• Optical properties of the CNT derive from the electronic transitions within
the 1-D density of states, which can be assessed by looking at the peaks in the
energy levels. These energy levels can be changed by modifying the nanotube
structure, which in turn changes the opto-electronic properties of the CNT.

• CNTs have good Luminescence property, which has applications in the single
molecule light emitters.

• Photoluminescence from SWCNT, as well as optical absorption and Raman
scattering, is linearly polarized along the tube axis. This allows monitoring of
the SWCNTs orientation without direct microscopic observation.
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• A material is said to be perfectly light absorbing material if its emissivity is
close to 1.0, which is very difficult to achieve. SWCNT forests also called
buckypaper is said to have emissivity close to 0.98–0.99 from ultra violet
wavelengths (200 nm) to infra red wavelengths (200 µm)

Here only few important properties is listed for the sake of completeness. As is
obvious, the amount of literature available on the various properties of CNTs are
plenty. For details on these, the reader is encouraged to see Refs. [15, 16].

1.3 Need for Wave Propagation Analysis in Nanostructures

Increasing emphasis of miniature devices have made the scientists to look for newer
and novel materials which can be handled at the atomistic scales. In this regard,
Nanoscale materials and structures with nano thicknesses have attracted consider-
able interest from the scientific community in the fields of microelectronics and
nanotechnology. More and more nanostructures, e.g. ultra-thin films, nanowires
and nanotubes, have been fabricated and served as the basic building blocks for
nano-electro-mechanical-systems (NEMS). For long-term stability and reliability of
various devices at nanoscale, researchers should possess a deep understanding and
knowledge of mechanical properties of nano-materials and -structures, especially the
time dependent or dynamic properties.

Among many techniques, high-frequency acoustic wave technique has been re-
garded as one of very efficient nondestructive methods to characterize elastic media
with nanostructures. Hernaandez et al. [18] used high-frequency laser-excited guided
acoustic waves to estimate the in-plane mechanical properties of silicon nitride mem-
branes. Mechanical properties and residual stresses in the membranes were evaluated
from measured acoustic dispersion curves. The mean values of the Youngs modu-
lus and density of three nanocrystalline diamond films and a free standing diamond
plate were determined by analyzing the dispersion of laser-generated surface waves
by Philip et al. [19].

Nanostructures such as CNTs can propagate waves of the order of terahertz (THz).
THz waves in nanoscale materials and nano-photonic or nano-phononic devices has
opened a new topic on the wave characteristics of nanomaterials [20–22]. They also
have applications in CNTs and other applications[23–25]. As dimensions of the ma-
terial become smaller, however, their resistance to deformation is increasingly deter-
mined by internal or external discontinuities (such as surfaces, grain boundary, strain
gradient, and dislocation). Although many sophisticated approaches for predicting
the mechanical properties of nanomaterials have been reported, few addressed the
challenges posed by interior nanostructures such as the surfaces, interfaces, struc-
tural discontinuities and deformation gradient of the nanomaterials under extreme
loading conditions. The use of atomistic simulation may be a potential solution in
the long run. However, it is well known that the capability of this approach is much
limited by its need of prohibitive computing time and an astronomical amount of data
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generated in the calculations. Wave propagation analysis using continuum models,
especially using non-local elasticity models can used to address the above problems.

Wave propagation studies mainly include the estimation of wavenumber and wave
speeds such as phase and group speeds. The concept of group velocity may be useful
in understanding the dynamics of carbon nanotubes, since it is related to the energy
transportation of wave propagation. The primary objective of this book is to study the
wave propagation in nanostructures, so as to examine the effect of length scales on
the wave dispersion from the viewpoint of group velocity or energy transportation. To
describe the effect of microstructures of a nanostructures on its mechanical properties,
it is assumed that the model of the nanostructure is made of a kind of non-local elastic
material, where the stress state at a given reference location depends not only on the
strain of this location but also on the higher order gradient of strain, so as to take
the influence of the microstructures into account. It is reported that both local elastic
models (where effects of nano scale is not considered) and non-local elastic models
(where the effect of scale is considered) can offer the correct prediction when the
wavenumber is lower. However, the results of the elastic model remarkably deviate
from those given by the non-local elastic model with an increase in the wavenumber.
As a result, the microstructures play an important role in the dispersion of waves in
nanoscale structures. Since terahertz physics of nanoscale materials and devices are
the main concerns in wave characteristics of CNTs, the small-scale effect must be
of significance in achieving accurate dispersion relations as the wavelength in the
frequency domain is in the order of nanometers.

In addition, recent progress in nanomaterials science has made it possible to
produce nanofibers of dielectric, ferroelectric, and other smart polymeric materials,
which are potential candidates for nanosensors and transducers and also can be di-
rectly integrated into polymeric matrix to form smart nanocomposites. In the case of
dynamic characterization and device design based on these functional nanofilamen-
tary materials, studies reported in the literature were mainly focused on their linearly
elastic behavior. However, in many cases, wave phenomena may happen in materials
with large prestretch. Without a doubt, examination of wave phenomena in polymer
nanofibers is a topic of interest in exploring their promising industrial applications.
It is expected that the dynamic response of polymer nanofibers may exhibit some
unique characteristics owing to their nanoscale geometries.

Since controlled experiments at the nanoscale are difficult, and with atomistic
simulation being computationally expensive, continuum modeling can prove to be
very valuable in the advancement of nanoscale structures but it needs further im-
provement and development. Continuum elastic beam models have been effectively
used to study vibrations and wave propagation in nanostructures. In view of growing
interest in terahertz vibrations and waves of nanoscale materials and devices, it is
relevant to systematically study terahertz wave propagation in individual nanostruc-
tures. Since terahertz physics of nanoscale materials and devices are major concerns
for nanostructure’s wave characteristics, small-scale effect needs be considered in
the mathematical models (especially the continuum models) as the wavelength is
normally of the order of nanometer. The main scope of this book is to apply nonlocal
continuum modelling to study wave characteristics of all type of nanostructures.
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1.4 Outline and Scope of the Book

The entire book is organized into 10 chapters. In Chap. 2, we first present a brief in-
troduction to concepts of wave propagation in structures and all the necessary tools
required for wave propagation studies. In particular, the spectral analysis, determina-
tion of general spectrum and dispersion relations are addressed for some important
waveguides. The available approaches to obtain the wavenumber and the wave ampli-
tudes are also presented in this chapter. In Chap. 3, the basic concepts of the nonlocal
elasticity theory are discussed. Various types of nonlocalness, properties of nonlocal
kernels and the constitutive relations in various coordinate systems are also briefly
outlined. In Chap. 4, an introduction to Molecular Dynamics (MD) simulations and
the application of MD simulations in studying the wave propagation characteristic
of nanostructures are presented. Chapter 5 addresses a self-consistent method of es-
timation of nonlocal scale parameter for armchair, zigzag and chiral type nanotubes
based on molecular structural mechanics and wave propagation methods. Nonlocal
scale effects on length dependent in-plane stiffness of nanotubes with various end
conditions are also given in this chapter. In Chap. 6, axial/longitudinal and torsional
wave propagation in nanorods is presented. Various nonlocal models are used for
formulating the governing equations for nanorods. Extraction of second and fourth
order strain gradient models from nonlocal stress gradient model is also presented.
Nonlocal spectral finite element formulation for studying the axial and torsional
wave propagation in nanoscale rods is also given in this chapter. Wave propagation
in nanobeams is discussed in Chap. 7. Nonlocal governing equations for Bernoulli-
Euler and Timoshenko beam models are also obtained. Generally encountered prob-
lems in nanoscience community, like rotating nanotubes, fluid carrying nanotubes,
magnetic field effects and surface effects on wave propagation are also presented
in detail. In Chap. 8, nonlocal scale and van-der-Waals effects on wave propagation
in multi-walled carbon nanotubes are presented with examples of single-, double-,
and triple-walled CNTs. In Chap. 9, wave dispersion characteristics of coupled one-
dimensional nanosystems are discussed. These coupled systems are formulated based
on basic axial rod model, Euler-Bernoulli and Timoshenko beam models. Chapter 10
addresses the two-dimensional wave propagation in nanoscale plate like structures
such as grapheme is presented. Problems involving substrate effects, temperature ef-
fects and surface effects are also formulated based on nonlocal elasticity theory and
discussed in detail. Three dimensional wave propagation in empty and fluid filled
nanoshells is presented in Chap. 11. The coupling among axial, flexural, shear and
contraction wave modes is also formulated and discussed.

1.5 Summary

In this chapter, the basic structure of CNT and the types of CNTs are discussed
briefly. The properties of CNTs along with their applications are discussed in this
chapter. The different hybridization of the carbon nanostructures is discussed next
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followed by a section on the need for wave propagation analysis. The chapter ends
with a outline and scope of this textbook
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Chapter 2
Introductory Concepts of Wave Propagation
Analysis in Structures

Wave propagation is a transient dynamic phenomenon resulting from short duration
loading. Such transient loadings have high frequency content. The main difference
between the structural dynamics and wave propagation in structures arises due to
high frequency excitations in the later case. Structures very often experience such
loadings in the forms of impact and blast loadings like gust, bird hit, tool drops etc.
Apart from these, the wave propagation studies are also important to understand the
dynamic characteristics of a structure at higher frequencies due to their various real-
world applications. Structural health monitoring or detection of damage is one such
important application. As wave propagation deals with higher frequencies, diagnostic
waves can be used to predict the presence of even minute defects, which occur at
initiation of damage and propagate them till the failure of the structure. In many
aircraft structures, the undesired vibration and noise transmit from the source to the
other parts in form of wave propagation and this requires control or reduction, which
is again an important application of wave propagation studies.

A structure, when subjected to dynamic loads, will experience stresses of varying
degree of severity depending upon the load magnitude and its duration. If the temporal
variation of load is of large duration (of the order of seconds), the intensity of the load
felt by the structure will usually be of lower severity and such problems fall under the
category of structural dynamics. For such problems, there are two parameters which
are of paramount importance in the determination of its response, namely the natural
frequency of the system and its normal modes (mode shapes). The total response of
structure is obtained by the superposition of first few normal modes. Large duration
of the load makes it low on the frequency content, and hence the load will make only
the first few modes to get excited. Hence, the structure could be idealized with fewer
unknowns (which we call as degrees of freedom). However, when the duration of
load is small (of the order of microseconds), the stress waves are set up, which starts
propagating in the medium with certain velocity. Hence, the response is necessarily
transient in nature and in the process, many normal modes will get excited. Hence,
the model sizes will be many orders bigger than what is required for the structural
dynamics problem. Such problems come under the category of wave propagation.

S. Gopalakrishnan and S. Narendar, Wave Propagation in Nanostructures, 19
NanoScience and Technology, DOI: 10.1007/978-3-319-01032-8_2,
© Springer International Publishing Switzerland 2013
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In Sect. 1.3, the need to study wave propagation in structures was highlighted. It
is quite well-known that nanostructures can propagate waves of the order of tera-
hertz. Propagation of waves in such structures can be studied using various modeling
techniques highlighted in Chap. 3. For example, modeling technique such as ab intio
atomistic modeling or molecular dynamics methods can be employed to study wave
propagation in such nanostructures. However, the main limitation of these meth-
ods is the computational time that these methods will take. Some researchers have
used finite element method coupled with molecular mechanics model to solve such
problems. However, if the frequency content of the problem is of the terahertz level,
then for FE modeling, one needs a FE mesh compatible with its wavelength, which
is extremal small at the terahertz frequency. These limitations can be overcomed
to some extent by using Spectral Finite Element Method (SFEM), which is the FE
method in the frequency domain. It uses the spectral analysis to understand the
physics of wave propagation, whose results will be directly used in the SFEM for-
mulation. This chapter mainly deals with the spectral analysis of motion, which will
tell about the nature of waves that is propagating in the medium and the speed with
which the waves are propagating.

2.1 Introduction to Wave Propagation

The key factor in the wave propagation is the propagating velocity, level of attenuation
of the response and its wavelengths. Hence, phase information of the response is
one of the important parameters, which is of no concern in the structural dynamic
problems [1].

The wave propagation is a multi-modal phenomenon, and hence the analysis
becomes quite complex when the problem is solved in the time domain. This is
because, the problem by its nature is a high frequency content problem. Hence, the
analysis methods based on the frequency domain is normally preferred for wave
propagation problems. That is, all the governing equations, boundary conditions,
and the variables are transformed into the frequency domain using any of the integral
transforms available. The most common transformation for transforming the problem
to the frequency domain is the Fourier Transforms. This transform has the discrete
representation and hence amenable for numerical implementation, which makes it
very attractive for its usage in the wave propagation problems. By transforming the
problem into frequency domain, the complexity of the governing partial differential
equation is reduced by removing the time variable out of picture, making the solution
simpler than the original equation. In wave propagation problems, we are concerned
about two parameters, namely the wavenumber and the speeds of the propagation
(normally referred to as group speeds).

There are many types of waves that can be generated in structure. Wavenumber
reveals the type of waves that are generated. Hence, in wave propagation problems,
two important relations are very important, namely the spectrum relations, which is
plot of the wavenumber with the frequency and the dispersion relations, which is a
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plot of wave velocity with the frequency. These relations reveal the characteristics
of different waves that are generated in a given structure.

2.2 Spectral Analysis

Spectral analysis determines the local wave behavior for different waveguides and
hence the wave characteristics, namely the spectrum and the dispersion relation.
These local characteristics are synthesized over large number of frequencies to get the
global wave behavior. Spectral analysis uses discrete Fourier transform to represent
a field variable (say displacement) as a finite series involving a set of coefficients,
which requires to be determined based on the boundary conditions of the problem
[1–3].

Spectral analysis enables the determination of two important wave parameters,
namely the wavenumbers and the group speeds (discussed in next section). These
parameters are not only required for spectral element formulation [1], but also to
understand the wave mechanics in a given waveguide. These parameters enable us
to know whether the wave mode is a propagating mode or a damping mode or a
combination of these two (propagation as well as wave amplitude attenuation). If
the wave is propagating, the wavenumber expression will let us know whether it is
nondispersive (that is, the wave retains its shape as it propagates) or dispersive (when
the wave changes its shape as it propagates). More details on spectral analysis and
applications to several problems can be found in Refs. [1, 4, 5]. In the next subsection,
we will define some of the commonly used wave propagation terminologies.

2.3 Wave Propagation Terminologies

1. Waveguide
Any structural element is called a waveguide as it guides the wave in a particular
manner. For example, a bulk or a nano rod essentially supports only the axial
motion and hence it is called axial or longitudinal waveguide. In the case of a
beam, only bending motion is possible and hence the beam is called the flexural
waveguide. In the case of shafts, the only possible motion is the twist and hence
they are called torsional waveguide. In case of laminated composite beam, due
to stiffness coupling both axial and flexural motions are possible. In general, if
there are n highly coupled governing partial differential equations, then such a
waveguide can support n different motions.

2. Wavenumber
This is a frequency-dependent parameter that determines the following:

• Whether the wave is propagating or nonpropagating or will propagate after
certain frequency.
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• It also determines the type of wave, namely dispersive or nondispersive wave.

Nondispersive waves are those that retain its shape as it propagates, while the
dispersive waves are those that completely change its shape as it propagates.
That is if the wavenumber (k) is expressed as a linear function of frequency (ω)
as k = c1ω, (c1 is a constant) then the waves will be nondispersive in nature.
Wavenumber in rods and in general for most second-order system, will be of this
form and hence the waves will be nondispersive in nature. However, if the wave
number is of the form k = c2ω

n , (c2 is a constant) the waves will essentially be
dispersive. Such a behavior can be seen in higher order systems such as beams
and plates. In such cases, the wave speeds will change with the frequencies.
The plot of wavenumber with the frequency is usually referred to as spectrum
relations.

3. Phase speed
These are the speeds of the individual particles that propagate in the structure.
They are related to the wavenumber through the relation

C p = ω

Real(k)
(2.1)

If the waves are nondispersive in nature (that is k = aω ), then the phase speeds
are constant and independent of frequency. Conversely, if the phase speeds are
constant, then such a system is nondispersive system. Phase speed is not asso-
ciated with transfer of any physical quantity (e.g., mass, momentum or energy)
in a waveguide.

4. Group speed
Group velocity is associated with the propagation of a group of waves of similar
frequency. During the propagation of waves, groups of particles, travel in bun-
dles. The speeds of each of these bundle are called the group speed of the wave.
They are mathematically expressed as

Cg = ∂ω

∂k
(2.2)

Again here, for nondispersive system, the group speeds are constant and inde-
pendent of frequency. Hence, the time of arrival of all waves will be based on
this frequency. The plot of phase/group speeds with the frequency is called the
dispersion relations. This is a velocity of the energy transportation and it must
be bounded. Monograph [1] derives the expression for the wavenumbers and
group speeds for some commonly used metallic and composite waveguides in
engineering.

5. Relation between group and phase speeds
Since from Eq. (2.1) we have

k = ω

C p
(2.3)
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Substituting Eq. (2.1) into Eq. (2.2) gives

Cg = dω

[
d

(
ω

C p

)]−1

= dω

[
dω

C p
− ω

dC p

C2
p

]−1

= C2
p

[
C p − ω

dC p

dω

]−1

(2.4)
Using ω = 2π f ,

Cg = C2
p

[
C p − ( f t)

dC p

d( f t)

]−1

(2.5)

where f t denotes the frequency times thickness.

• When the derivative of C p with respect to f t becomes zero, Cg = C p.
• As the derivative of C p with respect to f t approaches infinity (that is, cut-off

frequency), Cg approaches zero.

6. Cut-off Frequency
In some waveguides, some waves will start propagating only after certain fre-
quency called the cut-off frequency. The wavenumber and group speeds before
this frequency will be imaginary and zero, respectively. In the next section, we
will outline a procedure to compute the cut-off frequency for the second- and
fourth-order systems.

2.4 Spectrum and Dispersion Relations

Here, two important frequency-dependent wave characteristics, namely, spectrum
and dispersion relations, are obtained for a generalized system defined by the second-
and fourth-order partial differential equations (PDE). These relations are the fre-
quency variation of the wave parameters termed as wavenumbers and wave speeds,
respectively. These parameters are essential to understand the wave mechanics in
a given waveguide and are also required for SFEM formulation. These parameters
provide information like whether the wave mode is a propagating mode or a damp-
ing mode or a combination of these two (propagation as well as wave amplitude
attenuation). Next, for a propagating mode, the nature of frequency variation of
wavenumbers gives information whether the mode is nondispersive, i.e., the wave
retains its shape as it propagates or dispersive where the shape changes with propaga-
tion. In this section, these parameters are explained using the example of a generalized
one-dimensional second- and fourth-order systems.
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2.4.1 Second-Order PDE

The spectral analysis starts with the partial differential equation governing the
waveguide. Considering a generalized second-order partial differential equation
given by

p
∂2u

∂x2 + q
∂u

∂x
= r

∂2u

∂t2 (2.6)

where p, q, and r are known constants depending on the material properties and
geometry of the waveguide. u(x, t) is the field variable to be solved for with x being
the spatial dimension and t the temporal dimension. First, u(x, t) is transformed to
frequency domain using discrete Fourier transform (DFT) as

u(x, t) =
N−1∑
n=1

ûn(x, ωn)e jωn t (2.7)

where ωn is the discrete circular frequency in rad/sec and N is the total number of
frequency points used in the transformation. The ωn is related to the time window
by

ωn = nΔω = nω f

N
= n

NΔt
= n

T
(2.8)

where Δt is the time sampling rate and ω f is the highest frequency captured by Δt .
The frequency content of the load decides N and consideration of the wrap around
and aliasing problem decides Δω. More details and associated problems are given
in Ref. [1].

Here, ûn is the nth DFT coefficient and can also be referred to as the coefficient
at frequency ωn . ûn varies only with x . Substituting Eq. (2.7) into Eq. (2.6), we get

p
d2ûn

dx2 + q
dûn

dx
+ rω2

nûn = 0, n = 0, 1, . . . N − 1 (2.9)

Thus, through DFT, the governing PDE given by Eq. (2.6) is reduced to N ODE.
Equation (2.9) being constant coefficient ODEs, have a solution of the form ûn(x) =
Ane jkn x , where An are the unknown constants, which will be computed from the
boundary values and kn is called the wavenumbers corresponding to the frequency
ωn . Substituting the above solution into Eq. (2.9), we get the following characteristic
equation to determine kn ,

(
−pk2

n + jqkn + rω2
n

)
An = 0 (2.10)

The subscript n is dropped hereafter for simplified notations. The above equation is
quadratic in k and has two roots corresponding to the incident and reflected waves.
If the wavenumbers are real, then the wave is called propagating mode. On the
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other hand, if the wavenumbers are purely imaginary, then the wave damps out
as it propagates and hence is called evanescent mode. If wavenumbers are complex
having both the real and imaginary parts, then the wave with such a wavenumber will
attenuate as they propagate. These waves are normally referred to as inhomogeneous
waves. The set of the wavenumbers obtained by solving the characteristic Eq. (2.10)
is given as

k1 = j
q

2p
+

√
− q2

4p2 + rω2

p

k2 = j
q

2p
−

√
− q2

4p2 + rω2

p
(2.11)

Equation (2.11) is the generalized expression for the determination of the wavenum-
bers. Different wave behaviors are possible depending upon the values of the radical
rω2

p − q2

4p2 . As an example, for a case with q = 0, the wavenumbers are given as

k1 = ω

√
r

p

k2 = −ω

√
r

p
(2.12)

For such a case, the wavenumbers are real and hence the corresponding waves are
propagating. When rω2/p < q2/4p2, then the wavenumber is purely imaginary and
the system will not allow any way to propagate. However, when rω2/p > q2/4p2,
the wavenumber will be complex and in this case, the waves will attenuate as they
propagate.

Next, two other important wave parameters, namely, phase speed (C p) and group
speed (Cg), are briefly explained.

Let us consider the previous example where wavenumbers vary linearly with
frequency as given by Eq. (2.12). Correspondingly, the wave speeds are obtained as
follows:

C p = ω

k
=

√
p

r

Cg = dω

dk
=

√
p

r
(2.13)

We find that both group and phase speeds are constant and equal. Hence, when
wavenumbers vary linearly with frequency ω, the wave retains its shape as it prop-
agates. Such waves are called nondispersive waves. When wavenumbers have a
nonlinear variation with frequency, the phase and group speeds will not be constant
but will be function of frequency. As a result, each frequency component will travel
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with different speeds and the wave shape will not be preserved with wave propaga-
tion. Such waves are called dispersive waves. For nonzero values of p, q and r , the
expression for phase and group speeds become

C p = Re

⎛
⎝ ω√

rω2

p − q2

4p2

⎞
⎠

Cg = Re

⎛
⎝ p

√
rω2

p − q2

4p2

rω

⎞
⎠ (2.14)

Here “Re” represents real part of the expression. Thus, it can be seen that the wave
speeds C p and Cg are not the same and hence the waves are dispersive in nature. The
value of the radical, however, depends on frequency and there can be a frequency
after which the wavenumbers transit from being purely imaginary to complex or real
wavenumbers resulting in propagation of the wave mode. This transition frequency
is called the cut-off frequency (ωc) and can be derived by equating the radical to zero.
The expression for the cut-off frequency for this second-order system is given as

ωc = q

2
√

pr
(2.15)

Once the wavenumbers are determined the solution of the transformed ODEs given
by Eq. (2.9) can be written as

û(x, ω) = A1e− jk1x + A2e− jk2x (2.16)

The unknown constants A1 and A2 can be evaluated in terms of the physical boundary
conditions of the one-dimensional waveguide. This can be done in a formal manner
using the spectral finite element technique which will be explained in details later.
For q = 0 the above equation is of the form,

û(x, ω) = A1e− jkx + A2e jkx , k = ω

√
r

p
(2.17)

where A1 represent the incident wave coefficient while A2 stands for the reflected
wave coefficient.

2.4.2 Fourth Order PDE

Next, let us consider a fourth-order system and study its wave behavior. Consider
the following governing PDE



2.4 Spectrum and Dispersion Relations 27

p
∂4w

∂x4 + qw + r
∂2w

∂t2 = 0 (2.18)

where w(x, t) is the field variable and p, q, and r are arbitrary known constants
depending on the material and geometric properties of the waveguide as in the case
of the second-order system. The above equation is similar to the equation of motion
of a Euler–Bernoulli beam on elastic foundation. The DFT of w(x, t) can be written
in a similar form as Eq. (2.7),

w(x, t) =
N−1∑
n=1

ŵn(x, ωn)e jωn t (2.19)

Substituting Eq. (2.19) into the governing PDE given by Eq. (2.18) we get the reduced
ODEs as

p
d4ŵn

dx4 +
(

q − rω2
n

)
ŵn = 0 (2.20)

The above ODEs have constant coefficients and hence the solution will be of the form
ŵn(x) = Ane jkn x . Substituting this solution into Eq. (2.20) we get the characteristic
equation for solution of the wavenumbers. Again the subscript n is dropped hereafter
for simplified notations and all the following equations have to be derived for n
varying from 0 to N-1. The characteristic equation is of the form

pk4 + q − rω2 = 0 or k4 −
(

r

p
ω2 − q

p

)
= 0 (2.21)

This is a fourth-order equation and will give two sets of wavenumbers. The type of
wave is dependent upon the numerical value of r

p ω2 − q
p . For r

p ω2 >
q
p , the solution

of Eq. (2.21) will give the following wavenumbers,

k1 = +α, k2 = −α

k3 = + jα, k4 = − jα (2.22)

whereα =
(

r
p ω2 − q

p

)1/4
. In the above equation, k1 and k2 represent the propagating

wave modes while k3 and k4 are the damping or evanescent modes. From the above
equations, we find that the wavenumbers are nonlinear functions of the frequency,
and hence the corresponding waves are expected to be highly dispersive in nature.
Also, using the above expression we can find the phase and group speeds for the
propagating mode from Eq. (2.13).

Next, consider the case when r
p ω2 <

q
p . For such conditions, the wavenumbers

are given by
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k1 = +1 + j√
2

α, k2 = −1 + j√
2

α

k3 = +−1 + j√
2

α, k4 = −−1 + j√
2

α (2.23)

From the above equation, we see that the change of sign of r
p ω2 − q

p has completely
changed the wave behavior. Now, all the wavenumbers have both real and imaginary
parts. Hence, all the wave modes are propagating as well as attenuating. The initial
evanescent mode also becomes a propagating mode after the cut-off frequency ωc.

The expression for the cut-off frequency obtained by equating r
p ω2 − q

p to zero
is

ωc = q

r
(2.24)

Again, if q = 0, the cut-off frequency vanishes and the wave behavior is similar to
the first case, i.e., it will have propagating and damping modes. In all cases, however,
the waves will be highly dispersive in nature.

The solution of the fourth-order governing Eq. (2.20) can be written as

ŵ(x, ω) = A1e− jαx + B1e−αx + A2e jαx + B2eαx (2.25)

As in the previous case, A1, B1 are the incident wave coefficients and A2, B2 are the
reflected wave coefficients. These unknown constants can be determined in terms of
the physical boundary conditions of the beam.

From the above discussion, we see that the spectral analysis gives an insight
into the wave mechanics of a system defined by its governing differential equation.
Though spectral analysis can be done similarly using wavelet transform, it is not
as straightforward as Fourier transform-based analysis. This is because the wavelet
basis functions are bounded both in time and frequency unlike the basis for Fourier
transform which is unbounded in time. This has been explained in greater detail with
application to nanostructures in the other chapters.

In the last section, the parameters, wavenumber, and wave speed were explained
with the examples of generalized second- and fourth-order partial differential wave
equations. The wavenumbers k were obtained as a function of frequency by solving
second- and fourth-order polynomial equations, respectively. The computation of
wavenumbers is, however, not so straightforward for structures with higher com-
plexities (especially for the cases when the characteristic equation for solution of
wavenumbers is of the order greater than 3). For one-dimensional structures such
cases arise when the governing equation is a set of coupled PDEs and a couple of
such examples are Timoshenko beam and other higher order beams. In a Timoshenko
beam, the governing equations consist of two coupled PDEs with transverse and shear
displacements as the variables. Another common example of structure having a set
of coupled PDEs is the governing equations for a composite beam with asymmetric
ply lay-up resulting in elastic coupling. In addition to the different one-dimensional
structures, computation of wavenumbers for two-dimensional structures is also dif-
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ficult primarily, because the wavenumbers here are a function of both frequency and
wavenumber in the other direction.

In order to handle such problems, generalized and computationally implementable
methods have been proposed to calculate the wavenumbers and associated wave
amplitude. The two different approaches to solve the problem are based on singular
value decomposition (SVD) and polynomial eigenvalue problem (PEP) methods.
The methods are described briefly in refs. [1, 4, 5].

2.5 Summary

In this chapter, a brief introduction to wave propagation is given. First, the different
terminologies used in wave propagation are defined. This is followed by a brief
description of wave characteristics for systems defined by second- and fourth-order
PDEs. The wave behavior is described based on wavenumbers and group speeds.
Existence of cut-off frequencies in these two systems is also highlighted.

The PDEs that govern the nano waveguides described by nonlocal elasticity
(which is the focus of this book) are normally defined by either second- or fourth-
order PDEs. However, their form is entirely different than what is described in this
chapter. The concepts outlined in this chapter will be very important and necessary
for the reader to understand the wave propagation in different nano waveguides that
are outlined in the later chapters of the book.
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Chapter 3
Various Modeling Techniques
for Nanostructures

Mathematical modeling of structures at the micro and macroscales are quite well
known and the methods have been well established. The laws of physics, which
is fundamental to any modeling, is pretty well understood at these scales. At the
nanometer levels, we need to deal with atoms, molecules, and their interactions. The
laws of physics, at these scales, are not that well understood. The main difference lies
in representing the models in different scales. That is, the philosophy of modeling
at different scales are different. At the nanoscales, forces have no meaning, while
at the micro and macroscales, they are the main drivers. At the nanoscales, it is
the interatomic potentials [1], that plays an important part in understanding the
behavior of the nanostructures. A number of different interatomic potentials have
been propounded by many scientists for different conditions and the Ref. [1] gives
a good overview of these potentials. As mentioned earlier, one can modify the bulk
properties of the material by manipulating the atoms and molecules at the nanoscales.
That is, using the interatomic potentials and the laws of physics at the nanoscales,
one has to predict the bulk properties such as phase information, structural property
information, etc., as illustrated in Fig. 3.1.

The most common approach to materials modeling is based on the divide and con-
quer strategy wherein methods appropriate to particular lengths and timescales are
used to address aspects of materials phenomena that operate only over those scales.
This has led to several independent methodological streams, which can be broadly
categorized as ab initio density functional theory, molecular dynamics, statistical
methods based on Monte Carlo algorithms and continuum mechanics as shown in
Fig. 3.2. Each of these methods is computationally intensive in its own right, and
hence most of the initial efforts was directed in optimizing algorithms, potentials,
and parameters for each method individually, rather than generating information for
input into other methods. The Fig. 3.2 clearly show the length and timescales over
which these methods are valid. However, the expanding capabilities of computational
methods due to the increasing power of computers and continuing development of
efficient algorithms, together with advances in the synthesis, analysis, and visualiza-
tion of materials at increasingly finer spatial and temporal resolutions, has spawned a
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Fig. 3.1 Simulations as a bridge between microscopic and macroscopic

huge effort in the multiscale descriptions of materials phenomena. In this section, we
describe the building blocks of these methods. The following section will describe
how these are combined within multiscale modeling strategies.

3.1 First-Principles Methods (Atomistic Simulations)

With respect to theoretical tools of computational materials science, one can broadly
divide them into two groups; empirical methods and ab initio (first principles) meth-
ods. In empirical methods, one employs classical (such as pair potentials) or quantum
mechanical modeling (such as tight-binding) using various functional forms with
adjustable parameters fitted to experimental observations or accurate calculations.
Calculations based on empirical methods are generally quite fast from a computa-
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Fig. 3.2 The hierarchy of modeling methods for the range of length and timescales over which
they typically used

Fig. 3.3 Schematic representation of a pseudopotential (left, smooth curve) and a pseudowavefunc-
tion (right, smooth curve) along with the all-electron potential (with the 1/r tail) and wavefunction
(dotted curves). Notice that the all-electron and pseudofunctions are identical beyond the radial
cut-off rc and the pseudofunctions are smooth inside the core region
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tional point of view, but they may often lack the degree of accuracy and reliability
needed to examine individual microscopic material properties. In ab initio methods,
on the other hand, one uses quantum mechanical modeling with no adjustable para-
meters and few well-justified and tested approximations, and the atomic numbers of
the constituent atoms are the only input to the calculations. These methods offer a
level of accuracy one needs to understand most physical properties in a wide range
of materials. However, compared to empirical methods, the high degree of accuracy
and reliability of ab initio calculations is compensated by the large computational
demand that they impose. One important class of such methods that have been very
extensively used in the past two decades are the ab initio density functional methods.

The observable properties of solids are governed by quantum mechanics, as
expressed by solutions of a Schrödinger equation for the motion of the electrons
and the nuclei. However, because of the inherent difficulty of obtaining even grossly
approximate solutions of the full many-body Schrödinger equation, one typically
focuses on reduced descriptions that are believed to capture the essential energetics
of the problem of interest. Hohenberg, and Kohn [2], formulated a theory based on
the electron density, in terms of which the solution of the Schrödinger equation could
be given a sound mathematical basis. This method is based on two hypotheses, which
can be stated as:

1. The total energy of an electron system in an external potential is a unique func-
tional of the total electron density; and

2. The density that minimizes the energy is the ground-state density, and this min-
imum energy is the ground-state energy of the system.

3.1.1 Density Functional Theory

Density functional theory (DFT) provides a tractable way of solving the quantum
equations of motions for a system of interacting electrons under an external potential,
such as the electron-ion interaction potential vion in a solid. In 1964, Hohnenberg and
Kohn [2] proved a famous theorem, which states that the ground-state energy of an
electron gas with a nondegenerate ground state under an external potential is a unique
functional of the electron charge density ρ(r) and that this energy functional assumes
its minimum value (ground state energy) for the correct (ground state) ρ(r). A year
later, Kohn and Sham [3] expressed this charge density in terms of ortho-normal
single particle wave functions {ψn(r)} as

ρ(r) =
∑

n,occ.

|ψn(r)|2 (3.1)

where the sum is over occupied single particle orbitals. This allowed them to write
the ground-state energy of the electron gas as
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E[ρ(r)] = −1

2

∑
n

∫
ψ∗

n (r)∇2ψn(r)+
∫
ρ(r)vion(r)dr + 1

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| drdr′

+Exc[ρ(r)]
(3.2)

In this expression, the first term is the kinetic energy of a noninteracting electron
gas at the same density, the second term is the potential energy due to the electron-
ion interaction. The third term is the classical Hartree energy, and the last term is
the so-called exchange-correlation energy. Treating ψn(r) and ψ∗

n as the variational
parameters, one arrives at a single particle Schrödinger equation, given as

(
−1

2
∇2 + veff [r, ρ(r)]

)
ψn(r) = εnψn(r) (3.3)

where the effective potential veff [r, ρ(r)] is given as

veff [r, ρ(r)] = vion(r)+
∫

ρ(r)
|r − r′|dr + vxc[ρ(r)] (3.4)

where

vxc[ρ(r)] = δExc

δρ(r)
(3.5)

is the exchange-correlation potential. Due to the dependence of veff on ρ(r), which
depends on the solutions ψn(r) of the Schrödinger equation, Eqs. (3.1), (3.3), and
(3.4), known as the Kohn-Sham (KS) equations, have to be solved self-consistently.

In actual implementation of DFT for investigating material properties, there is a
large number of different approaches with respect to algorithms, basis functions, rep-
resentation of the electron-ion interaction, computational space, and approximation
to the exchange-correlation potential. Of all the different DFT methods, the ab initio
pseudopotential total energy method is perhaps the most widely used state-of-the-art
method of choice [4]. This method, which can be implemented in both momentum
and real space, has a very good track record for investigating structural, electronic,
and optical properties of a large variety of materials. In fact, an examination of major
breakthroughs in ab initio materials modeling over the past two decades shows that
pseudopotentials have played an invaluable role in this respect.

3.1.2 Ab initio Pseudopotentials

The pseudopotential method relies on the separation (in both energy and space) of
electrons into core and valence electrons and that most physical and chemical proper-
ties of materials are determined by valence electrons in the interstitial region. One can
therefore combine the full ionic potential with that of the core electrons’ to give an
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effective potential (called the pseudopotential), which acts on the valence electrons
only. On top of this, one can also remove the rapid oscillations of the valence wave-
functions inside the core region such that the resulting wavefunction and potential
are smooth. Figure 3.3 shows a schematic representation of a pseudopotential and a
pseudowavefunction along with the corresponding all-electron counterparts. Beyond
a chosen cut-off radius rc, the all-electron and pseudofunctions (potential and wave-
function) are identical, while inside the core region both the pseudopotential and
pseudowavefunction are smoothly varying. After the construction of these pseudo-
functions for a single atom and ensuring that their scattering properties are almost
identical to those of the all-electron functions, they can be used in any chemical
environment without any significant loss of transferability [5].

3.2 Molecular Dynamics

An introduction to classical molecular dynamics simulations especially for wave
propagation analysis in nanostructures is presented in this section. Quantum mole-
cular dynamics simulations are limited to system sizes of a few hundred atoms and
to elapsed real times of a few picoseconds. Accordingly, the first step in the coarse
graining of the full quantum mechanical description of a dynamical process is to
remove the electronic degrees of freedom from the problem. This is accomplished
by first using the BornOppenheimer approximation to separate the electronic and
nuclear coordinates. The total energy is then calculated for each set of N nuclear
positions Ri , for i = 1, 2, ..., N ; from this the forces exerted on each atom by all
other atoms can be determined. Interpolation between these points yields a potential
energy surface U ({Ri }). Regarding the atoms as classical particles moving on this
surface, the quantum mechanical motion governed by the Schrödinger equation is
replaced by Newton’s equation of classical mechanics:

Fi = mi
d2Ri

dt2 (3.6)

where mi is the mass of the i th atom and the force Fi acting on this atom is calculated
from the interatomic potential energy according to

Fi = −∇iU (3.7)

Thus, the classical Hamiltonian H of the system is

HMD = 1

2

∑
i

mi V2
i + U (3.8)
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where Vi is the velocity of the i th atom. These are the equations of the molecular
dynamics method [6, 7].

There are two primary aspects to the practical implementation of molecular
dynamics: (i) the numerical integration of the equations of motion together with
the boundary conditions and any constraints on the system; and (ii) the choice of
the potential. For a system of N particles, Eq. (3.6) represents a system of 3N
second-order differential equations. This system can be expressed as 6N first-order
differential equations by introducing the velocity as a separate variable:

dRi

dt
= Vi ,

dVi

dt
= dFi

mi
(3.9)

The systems of Eqs. ( 3.6) or (3.9) are solved numerically with finite difference
methods to obtain the trajectories of the atoms on the potential energy surface. The
most common integrators are based on the Verlet algorithm [8, 9] and its descendents,
and predictor corrector methods [10]. When applied to the system in Eq. (3.9), these
algorithms are used to iteratively update the forces, the velocities, and the positions
over the timescale of the simulation. Parallel computing with spatial decomposition
[11] has extended the system sizes that can be studied with molecular dynamics to
N ∼ 106 − 109 [12].

3.2.1 Potential Functions

A good account of various inter atomic potentials is given in ref. [1]. The choice
of potential for a molecular dynamics simulation is determined by factors such as
the bond type, the desired accuracy, transferability, and the available computational
resources. Potentials can be categorized broadly as

1. Pair potentials,
2. Empirical many-body potentials and
3. Quantum mechanical potentials.

Two-body, or pair, potentials, such as the Lennard-Jones [13] and Morse [14]
potentials, are used for large-scale simulations where computational efficiency is
paramount, and in addition, a generic description is sufficient, rather than detailed
comparisons with a particular materials system. For systems where multibody inter-
actions are important, the Stillinger−Weber [15], Tersoff [16], and Brenner [17]
potentials are often used for covalent materials, and embedded-atom [18], effective
medium [19] and Finnis−Sinclair potentials [20] are common choices for metals.
Such potentials are empirical in that they are parametrized by fitting either to a set of
experimental measurements or to quantum mechanical calculations of representative
atomic configurations. Typical properties used for such parametrizations are the lat-
tice constant, binding energy, elastic constants, and vacancy formation energies. The
basic assumption of this approach is that the fitting captures the essential features of
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the interatomic potential for the phenomenon of interest. However, large local depar-
tures from the coordination or bonding used for the parametrization can take such
potentials outside their domain of validity and lead to unreliable results. This has
fostered efforts at deriving interatomic potentials directly from quantum mechanical
principles. Foremost among these are potentials based on [21] and derived from [22]
tight binding theory and those based on the Kohn-Sham equations using generalized
pseudopotential theory [23].

The basic limitation of the molecular dynamics method is that the processes
such as atomic diffusion are inherently multiscale phenomena. The integration time
step must be small enough to capture the dynamics of the vibration modes of the
system, with frequencies of the order of 1013 s−1. This requires time steps in
the femtosecond range. However, the residence time of an atom between hops is
of the order of microseconds, and the interactions responsible for aggregation phe-
nomena occur over a timescale of milliseconds to minutes. This ‘time gap’ is evident
from the trajectories of atoms, which have their complex orbitals localized around
their initial sites with only rare excursions to neighbouring sites [24]. Several meth-
ods have been developed for accelerating molecular dynamics process with such
rare events based on stimulating the transitions to occur faster than in an ordinary
simulation [25]. In favorable circumstances, molecular dynamics simulations can be
extended to microseconds.

3.3 Molecular Dynamics for Wave Propagation in CNT

First we will review some of the relevant literature pertaining to molecular dynam-
ics applied to CNTs. In addition to continuum mechanics models, atomistic simu-
lations have been carried out to explore the vibration characteristics of CNTs. Li
and Chou [26] employed the molecular structural mechanics method and modeled
the SWCNT as an equivalent space frame-like structure to examine the feasibil-
ity of using SWCNT as a nanoresonator. The predicted fundamental frequencies
of clamped-free or clamped SWCNTs were sensitive to dimensions such as length,
diameter as well as boundary conditions, but the frequencies are relatively insensi-
tive to chirality of the tubes. Later, Li and Chou [27] extended their work to assess
the vibration behavior of MWCNTsCarbon nanotube!Multi-Wall by considering the
van-der-Waals interaction between the adjacent tubes. They observed that the fre-
quencies of SWCNTs and DWCNTs were not sensitive to vibration modes, which
are in contradiction with the results reported by Cao et al. [28]. By using the same
model, Li and Chou [29] assessed the SWCNTs as nanomechanical resonators in
the presence of the axial strain or pressure. It was reported that the fundamental
frequencies of the SWCNTs decreases with increasing tensile strain, a trend that
is in conflict with experimental results of Sazonova et al. [30]. The contradictory
results presented by Li and Chou [27, 29] may be due to the simplified molecular
structural mechanics model in which only the deformed positions of carbon atoms
are computed while neglecting the more important stretching energy term which
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accounts for the effects such as bond length and angle changes caused by the sur-
rounding atoms [28, 31]. A comprehensive molecular dynamics study based on the
COMPASS (Condensed phased Optimized Molecular Potential for Atomistic Sim-
ulation Studies) force field and continuum analysis was carried out by Cao et al.
[31] to investigate the fundamental frequency shift of deformed clamped-clamped
SWCNTs under axial loadings, bending and torsion. The results given by the beam
model or the cylindrical shell model are in good agreement with those obtained from
MD simulations, provided that the Young’s modulus and wall thickness are carefully
selected. Yao and Lordi [32] performed MD simulations using the universal force
field (UFF) to determine the Young’s modulus of various clamped-free SWCNTs
from their thermal vibration frequencies by using the frequency equations based on
the Euler beam theory. The atomistic studies performed on the vibration behaviors of
CNTs so far are limited. Most of the available continuum beam models for the free
transverse vibration of CNTs provide analytical natural frequencies of CNTs under
various boundary conditions but the accuracy of the results is questionable. More
experimental or atomistic simulations works are required to validate the applicability
of the continuum models. Zhang et. al. [33] provided the complete characteristics of
vibrating CNTs by performing MD simulations based on the well-known reactive
empirical bond-order (REBO) potential [34].

As mentioned earlier, molecular dynamics simulation is indeed a powerful tool
for the analysis of nanoscale systems. The basic concept of MD simulations is to
simulate the time evolution of a system of atoms. The atoms in the system are treated
as point-like masses that interact with one another according to an assumed potential
energy. The second-generation REBO potential [34] is adopted to simulate SWCNTs
by Zhang et. al. [33]. This potential can reproduce more accurately the realistic
chemical bond properties of hydrocarbon molecules. The second-generation REBO
potential relative to its earlier version [35] contains improved analytical functions and
an expanded database, which leads to a significantly better description of chemical
and mechanical properties for hydrocarbon molecules and diamond [36] that compare
reasonably well to first principles prediction.

The REBO potential is given by the sum of energy over the bonds, i.e.,

EB =
∑

i

∑
j>i

[VR(ri j )− bi j VA(ri j )] (3.10)

where VR denotes the inter-atomic repulsion (core-core, etc), VA the attraction from
the valence electrons, ri j is the distance between pairs of nearest-neighboring atoms
i and j , and bi j is the reactive empirical bond order depending on local bonding
environment. In the simulations, the bonding atomistic interaction in SWCNTs is
described by the REBO potential while the nonbonding interaction is neglected
to enhance the computational efficiency since it has been proven to have minimal
contribution to the total strain energy.

The successful application of continuum models into CNTs depends strongly on
the selected Young’s modulus E and effective thickness h. In order to determine the
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Young’s modulus, one needs to estimate the thickness first. However, the thickness
of SWCNTs with a single layer of atoms is ambiguous. Conventionally, the inter-
layer spacing of graphite h = 0.34 nm is taken as the CNT thickness. On the other
hand, considerable atomistic simulations in the literature have presented scattered
thicknesses for SWCNTs in the range of 0.066−0.34 nm. Huang et al. [37] bypassed
atomistic simulations and developed an analytical approach to explain the ambiguity.
It is found that the thickness, and therefore elastic moduli, depends on loading type,
interatomic potential, nanotube radius and chirality. This dependence explains why
the thickness obtained from prior atomistic simulations are scattered. Huane it et al.
[37] obtained the longitudinal wave velocity in nanotube as 1.91 × 103 m/s. Similar
value was also obtained by Zhang it et al. [33] from the REBO potential. They also
presented results of molecular dynamics on vibration characteristics of nanotubes.

The MD simulation technique (using NanoHive-1 software [38]) is used to simu-
late torsional wave propagation on (6,6) and (10,10) armchair nanotubes by Khade-
molhosseini et al. [39]. The simulations are based on the Adaptive Intermolecular
Reactive Empirical Bond Order (AIREBO) potential [40] which is widely used for
simulating CNTs. They estimated the wave group and phase speeds in (6,6) and
(10,10) CNTs using MD simulation and the results are compared with the nonlocal
continuum shell (nonlocal elasticity models are explained in Sect. 3.9 and in Chap. 4
in detail) results to estimate the nonlocal scale parameter. Their results are used in
the later chapters for comparison with the other nonlocal elasticity models. Taking
into account that the group velocity governs the flow of energy in a system, this error
could be a significant factor in the design of devices such as torsional oscillators or
electro-mechanical delay elements based on CNT torsion, and has to be accounted
for. The superiority of the nonlocal model over the classical model in predicting the
real dispersion behavior of torsional waves in CNTs is also established in the later
chapters.

Chen et al. [41] investigated the mechanical wave propagation in single-walled
carbon nanotubes induced by two oscillating tips, using molecular dynamics sim-
ulations. They found a mandatory correlation condition between the tip oscillation
frequency and magnitude in order to generate a quasi-steady-state standing wave
with a characteristic wavelength and frequency changing with the tube radius, but
independent of tip conditions. Their findings suggest the possibility of using SWC-
NTs as nanopumping systems for potential applications of fluid transport and drug
delivery.

Hu et al. [42] have shown that the molecular dynamics simulations for wave
dispersion prediction by the nonlocal elastic cylindrical shell theory are in good
agreement with that of the MD simulations in a wide frequency range upto the
terahertz region. The nonlocal elastic shell theory provides a better prediction of the
dispersion relationships than the classical shell theory when the wavenumber is large
enough for the carbon nanotube microstructure to have a significant influence on the
wave dispersion. The value of parameter e0 is estimated based on the MD result to
predict the dispersion of transverse wave in CNTs through the usage of nonlocal shell
models. The results of their study indicate that the nonlocal elastic cylindrical shell

http://dx.doi.org/10.1007/978-3-319-01032-8_4
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model is able to offer a better prediction for transverse and torsional wave dispersion
in CNTs than the local elastic shell model when the wavenumber is large enough.

Lin et al. [43] pursued the MD simulation to study the propagation and scattering
of longitudinal sinusoidal and humped waves in SWCNTs. Their research results
are summarized here. For SWCNTs with a smooth bend, the wave experiences no
barrier in propagation when the wave length is comparable or smaller than the radius
of the bending curvature. A different situation is encountered for buckled SWCNTs.
Reflection is observed for all bending angles.

3.4 Molecular Dynamics Simulation for Wave Propagation
in Graphene

Very few studies are available for wave propagation in graphene based on MD sim-
ulations. Recently, Wang et al. [44] developed a nonlocal elastic plate model that
accounts for the scale effects is for wave propagations in graphene sheets. Moreover,
a finite element model developed from the weak-form of the elastic plate model is
reported to fulfill a comprehensive wave study in the sheets and realize an application
of the sheets as gas sensors. The applicability of the finite element model is verified
by molecular dynamics simulations.

The studies show that the nonlocal finite element plate model is indispensable in
predicting graphene phonon dispersion relations, especially at wavelengths <1 nm,
when the small-scale effect becomes dominant. Moreover, the nonlocal parameter
e0a, a key parameter in the nonlocal model, is calibrated through the verification
process. The dependence of the small-scale effect and the width of sheets on the
dispersion relation is also investigated, and simulation results show that the phase
velocity decreases to an asymptotic value with the width of sheets reaches a suffi-
ciently large size. These results are also verified with the nonlocal models presented
by the authors in the later chapters.

Conducting experiments are appropriate ways to analyze the behavior of the
nanostructures. However, it suffers from the drawback that controlling every parame-
ter in nanoscale is a difficult task. Further, employing the MD simulations requires
large time and high computational resources. Because of the above-mentioned lim-
itations in the mechanical analyses of nanostructures, theoretical and mathematical
modeling becomes an important issue concerning its nanoengineering applications.
Continuum models of nanostructures have thus received more attention and few
studies are available for wave propagation in graphene based on MD simulations.
Recently, Wang et al. [44] developed a nonlocal elastic plate model that accounts
for the scale effects is for wave propagations in graphene sheets. Moreover, a finite
element model developed from the weak-form of the elastic plate model is reported
to fulfill a comprehensive wave study in the sheets and realize an application of the
sheets as gas sensors. The applicability of the finite element model is verified by
molecular dynamics simulations.
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3.5 Monte Carlo Methods

The next step for coarse graining is to address the ‘time gap’ problem of molecular
dynamics. The basis of Monte Carlo methods [45] is that the deterministic Eq. (3.6)
of the molecular dynamics method are replaced by stochastic transitions for the
slow processes in the system. The name ‘Monte Carlo’ was coined by John von
Neumann [46] and refers to the random sampling of numbers, in analogy to gambling
in Monte Carlo, Monaco, a city renowned for its casinos. In their most general
form, Monte Carlo methods are stochastic algorithms for exploring phase space, but
their implementation for equilibrium and nonequilibrium calculations is somewhat
different. We first review the Metropolis algorithm, which is the basis of applications
to equilibrium systems.

3.5.1 The Metropolis Algorithms

Consider the thermodynamic average 〈y〉 of a variable with values yi in state i that
has energy Ei ,

〈y〉 =
∑

i yi pi∑
i pi

(3.11)

in which the probabilities is given by pi = e−Ei /kB T , where kB is Boltzmann’s
constant and T is the absolute temperature. If the system is initially in a state i ,
detailed balance requires that the rate of transitions Ti j from state i to state j satisfies
the equation

Ti j

Tji
= p j

pi
= e−(E j −Ei )/kB T (3.12)

The right-hand side of this equation is known, and hence to generate a set of states
with the distribution pi , the Ti j are chosen as

1. if p j > pi (E j < Ei ): Ti j = 1
2. if p j ≤ pi (E j ≥ Ei ): Ti j = e−(E j −Ei )/kB T

A random number r ∈ (0, 1) is then selected and the system is moved to state j only
if r < e−(E j −Ei )/kB T . This is the Metropolis algorithm [47].

3.5.2 Kinetic Monte Carlo Simulations

Suppose that the probability of finding a system in state σ at time t is P(σ, t) and
that the rate of transitions per unit time from σ to σ ′ is W (σ, σ ′). The equation of
motion for P is the master equation [48]:
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∂P

∂t
=

∑
σ ′

P(σ ′, t)W (σ ′, σ )−
∑
σ ′

P(σ, t)W (σ, σ ′) (3.13)

Kinetic Monte Carlo (KMC) methods are algorithms that solve the master equation by
accepting and rejecting transitions with probabilities that yield the correct evolution
of a nonequilibrium system.

The KMC method represents an additional level of abstraction beyond the mole-
cular dynamics method. The effect of fast dynamical events is taken into account by
using stochastic transition rates for slower events. These transition rates are often rep-
resented as the product of an attempt rate and the probability of success per attempt,
which is taken as an exponential involving the energy barrier to the process. Every
event i is assigned a rate ri :

ri = υi e
−Ei /kB T (3.14)

where υi is a frequency prefactor, typically of the order of a vibrational frequency
(1013 s−1) for surface processes [49], Ei is the free energy barrier for the process
and T is the absolute temperature. Although the details of the underlying mecha-
nism for kinetic processes are lost, the explicit calculation of atomic trajectories is
avoided. Hence, KMC simulations can be performed over real times, running into
seconds, hours, or days, as required. In essence, the factor υi in Eq. (3.14) represents
the timescale of the fastest process, which is computed explicitly in the molecular
dynamics method, but the exponential factor increases this timescale in the KMC
method to that of the actual transitions. The KMC method thereby offers consid-
erable advantages over the molecular dynamics method, both in terms of the real
time over which the simulation evolves, and the number of atoms included in the
simulation, because much of the computational overhead in molecular dynamics is
used to evolve the system between rare events.

The construction of a model for a KMC simulation can often benefit from a
related classical or quantum molecular dynamics simulation to identify the important
physical process and estimate the prefactors and kinetic barriers. The transition rates
are particular to the processes of interest and must be determined either by direct
calculation, from a first-principles calculation or a molecular dynamics simulation,
or inferred from experiment. The feasibility of performing detailed simulations over
experimental timescales allows various parametrizations to be tested and models
of kinetic phenomena to be validated. Such simulations play a key role in several
multiscale modeling strategies.

3.6 Continuum Modeling

Continuum equations, typically in the form of deterministic or stochastic partial
differential equations, are at the pinnacle of the coarse-graining hierarchy. The under-
lying atomic structure of matter is neglected altogether and is replaced with a con-
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tinuous and differentiable mass density. Analogous replacements are made for other
physical quantities such as energy and momentum. Differential equations are then
formulated either from basic physical principles, such as the conservation of energy
or momentum, or by invoking approximations within a particular regime. For exam-
ple, the standard equations of fluid mechanics are derived from conservation laws,
but are asymptotically valid only in the limit where the timescales of molecular
motion are much shorter than those of the fluid flow [50]. This can be justified for
simple fluids, but not for fluids composed of complex molecules such as polymers.
The rheology of complex fluids is modeled with constitutive relations that account
for the deformation history of the fluid and acknowledge the molecular origins of
deformation and flow.

There are many benefits of a continuum representation of materials phenomena.
Foremost among these is the ability to examine macroscopic regions in a space
over extended periods of time. This is facilitated by extensive libraries of numeri-
cal methods for integrating deterministic and stochastic differential equations. The
best known of these is the finite element method [51]. This is a general method
for solving differential equations whereby the region of interest is tessellated with
a uniform or nonuniform mesh determined by contiguous components called ‘ele-
ments’. The solution of the differential equation is discretized on the mesh points,
called nodes, and interpolated within the elements. A partial differential equation
is thereby replaced by a set of coupled ordinary (algebraic) equations and solved
numerically for the values of the solution at the nodal points. The main advantage
of the finite element method is the flexibility in modeling geometric complexity,
material inhomogeneities, and anisotropies, all within a computationally efficient
framework.

We will now briefly describe the finite element process. This is a well-established
numerical method and there are many classic texts that are available on the subject.
The main aim here is to provide a bird’s eye view of the method so that the reader can
understand as to where the finite element method stands as regards the modeling of
nanostructures. Consider the deformation of a material from a reference state r0 to
a deformed state r, which may vary with time. The displacement vector field u(r, t)
is defined in terms of these states as

u(r, t) = r(t)− r0 (3.15)

Within the framework of linear elasticity, the components εi j of the strain tensor are
given in terms of the components (u1, u2, u3) of u by

εi j = 0.5(∂ j ui + ∂i u j ) (3.16)

where

∂k = ∂

∂rk
(3.17)
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and (r1, r2, r3) are the components of r. The Hamiltonian H is expressed as the
sum of kinetic and potential energy contributions as

H = 1

2

∫
ρu̇2dr + 1

2

∫
εi j Ci jklεkldr (3.18)

where ρ is the mass density of the material, Ci jkl are the components of the elasticity
tensor and summation is implied over repeated indices.

The finite element representation of the displacement field is defined at the nodes
of the elements, and shape functions (sometimes called interpolation functions or
basis functions) are used to extend this field throughout each element. Denoting by
φi (r) the shape function for the i th node, the displacement field is

u(r, t) =
Nq∑

i=1

φi (r)ui (t) (3.19)

in which Nq is the number of nodes and ui (t) is the displacement at the i th node. This
relation implies two important properties of shape functions [51] : (i) a shape function
takes the value 0 or 1 at a nodal point r j : φi (r j ) = δi j , where δi j is the Kronecker
delta; and (ii) the sum of all shape functions at any point r is unity: �iφi (r) = 1.

A common choice for the shape function is linear interpolation, whereby the basis
function has the value unity at a given node and decreases to zero linearly at the nearest
neighbor nodes, and is zero elsewhere. This is also a convenient choice for coupling
to methods with atomic resolution because it permits a one-to-one correspondence
between nodes and atoms. Upon substitution of Eq. (3.19) into (3.18), we obtain the
finite element approximation to the elastic Hamiltonian:

HFE = 1

2

Nq∑
i, j=1

Ne∑
�=1

(
u̇�i M�

iju̇
�
j + u�i K�

iju
�
j

)
(3.20)

where Ne is the number of elements and M and K are the finite element mass and
stiffness matrices, respectively. For atomic-size elements, the mass can be collapsed
onto the nodes rather than being uniformly distributed, in which case the mass matrix
becomes diagonal: Mi j = miδi j . Equations of motion for the displacement at the
nodes, in the form of a set of coupled ordinary differential equations, can now be
obtained from the finite element Hamiltonian in terms of the forces from the sur-
rounding nodes. Complementing the numerical solution of partial differential equa-
tions is the vast analytic methodology for identifying asymptotic scaling regimes and
performing stability analyses.

Additionally, if a continuum equation can be systematically derived from atom-
istic principles, there is the possibility of discriminating between inherently atomistic
effects and those that find a natural expression in a coarse-grained framework. Con-
tinuum equations also provide the opportunity for examining the effect of apparently
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minor modifications to the description of atomistic processes on the coarse-grained
evolution of a system which, in turn, facilitates the systematic reduction of full models
to their essential components.

3.7 Methods of Multiscale Modeling

Each of the methods described in the preceding section is best suited to a particular
level of accuracy, as dictated by the successive elimination of the original degrees
of freedom. Density function methods provide a quantum mechanical description
of electrons and nuclei, which is appropriate for processes such as crack formation,
chemical reactions, and surface kinetics. In these cases, the chemical bonds deviate
appreciably from their equilibrium configurations and,especially in extreme cases,
such as fracture, break. Where deviations from equilibrium are small but atomistic
resolution is still necessary, molecular dynamics offers many computational advan-
tages over a full density functional calculation. Monte Carlo methods are especially
useful for obtaining statistical information about a system from the transition rates
between configurations, whether in equilibrium or driven away from equilibrium.
Finally, continuum equations provide a reduced description in terms of continuous
fields for the coarse-grained evolution of the system.

The fundamental tenet of multiscale modeling is that the information at each scale
is systematically incorporated in a manner that transcends the single-scale descrip-
tion. There are two basic strategies for accomplishing this: sequential and concurrent.
In the sequential approach, the information from a calculation over particular length
and timescales is used as input into a more coarse-grained method. This approach
presumes that the phenomenon of interest can be separated into processes that operate
at distinct length and timescales. In concurrent multiscale modeling, these disparate
scales are combined within a single hybrid scheme, typically involving atomistic
and continuum calculations. The main theoretical challenge is to merge the two
descriptions in a manner that avoids any spurious effects due to this heterogeneity.
This approach is well suited to the simulation of fracture, where the complex feed-
back between the atomic-scale interactions and the macroscopic stresses preempts a
clear-cut separation of scales.

Several methodologies have been implemented within the sequential and concur-
rent frameworks. In the next few sections, we will review the main approaches and
provide examples of each methodology. Methods of sequential multiscale model-
ing include sequential parametrization, interface propagation, and systematic coarse
graining. Concurrent strategies typically combine an atomistic method, such as an
ab initio density functional calculation or molecular dynamics simulation, with con-
tinuum equations that are solved with a finite element method or some other dis-
cretization. An introduction to several multiscale methods may be found in the ref-
erence [52].
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3.8 Overview on Length Scales

Single-scale methods such as ab initio quantum mechanical methods or molecular
dynamics (MD) will have difficulty in analyzing such hybrid structures due to the
limitations in terms of the time and length scales that each method is confined to.
Because of the availability of accurate interatomic potentials for a wide range of
materials, classical MD simulations have become prominent as a tool for elucidating
complex physical phenomena. However, the length and timescales that can be probed
using MD are still fairly limited.

For the study of nanoscale mechanics and materials, we must model up to a
scale of several microns, consisting of billions of atoms, which is too large for MD
simulations. Therefore, the need arises to couple atomistic methods with approaches
that operate at larger length scales and longer timescales.

Continuum methods have in contrast had much success in the macroscale model-
ing and simulation of structures. Finite element (FE) methods are now the standard
numerical analysis tool to study such diverse problems as the modeling of crash-
worthiness in automobiles, the fluid-structure interaction of submarines, plasticity
in manufacturing processes, and blast and impact simulations. Therefore, the logi-
cal approach taken by many researchers in the desire to create truly multiple scale
simulations that exist at disparate length and timescales has been to couple MD and
FE in some manner.

The major problem in multiscale simulations is that of pathological wave reflec-
tion, which occurs at the interface between the MD and FE regions. The issue is that
wavelengths emitted by the MD region are considerably smaller than that which can
be captured by the continuum FE region. Because of this and the fact that an energy
conserving formulation is typically used, the wave must go somewhere and is thus
reflected back into the MD domain. This leads to spurious reflections from the FE-
MD interface and spurious heat generation in the MD region, and a contamination
of the simulation. The retention of heat within the MD region can have extremely
deleterious effects, particularly in instances of plasticity where heat generated within
the MD region is trapped; in such an extreme situation, melting of the MD region
may eventually occur.

A separate, but related issue to effective multiscale modeling is that of extending
the timescale available to MD simulations. This issue still remains despite the efforts
of the current multiscale methods to limit the MD region to a small portion of the
computational domain. Despite the reduction in the MD system size, limits still exist
on the duration of time that the MD system can be simulated. Research has been
on-going in the physics community to prolong the MD simulation time, particularly
for infrequent events such as surface diffusion. Two excellent examples of the types
of methods currently under investigation can be found in the works of Voter et al.
[53, 54].

This size limit of computation is far short to reach the macroscale such that
molecular dynamics alone cannot predict the properties and response of macroscopic
materials directly from their nano- and microstructures. Other atomistic methods also
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have difficulties for large systems. For example, the widely used conjugate gradient
method in molecular mechanics , the computational effort is of the order−N 2 , where
N is the system size. It is therefore not suitable for large systems, nor for the rapid
simulation of nanoscale components that are up to a few hundred nanometers in size.

On the other hand, the conventional continuum methods such as the finite ele-
ment method (FEM) are not applicable to nanoscale components because they are
developed for macroscale problems. The macroscale material behaviors are incor-
porated in the conventional continuum FEM via the constitutive models of solids,
which are usually empirical and are determined from macroscale experiments such
as simple tension tests. These constitutive models represent the collective behavior
of many atoms, and cannot accurately predict the response of discrete atoms. For
example, for a uniform deformation on the macroscale (as in a simple tension test),
the atomic motion may not be uniform at the atomic scale even for a perfect atomic
structure without defects [55]. Furthermore, most atomistic interactions are multi-
body in nature, i.e., the energy in an atomic bond between a pair of atoms depends
on the positions of atoms both in and outside the pair (e.g., [56]). This ‘nonlocal’
dependence of energy is inconsistent with the macroscopic, local constitutive model
in the conventional FEM.

Since the atomistic simulations and continuum FEM have difficulties to scale up
and scale down, respectively, multiscale computation methods have emerged as a
viable means to study materials and systems across different length scales (e.g., [57–
60]). The basic idea is to combine the atomistic simulation methods which capture
the nanoscale physics laws with the continuum FEM, which represents the collective
behavior of atoms but significantly reduces the degrees of freedom. One approach is
to use the atomistic simulation methods for domains in which the discrete motion of
atoms is important and must be accounted for, and use the continuum FEM for the
rest where the response of materials and systems can be represented by the contin-
uum models. Such an approach involves artificially introduced interfaces between
domains of atomistic and continuum simulation methods. It requires the interface
conditions, which add significant computational efforts, and may lead to computa-
tion errors. Another approach in the atomistic continuum linkage is quasicontinuum
method [61–63]. The interatomic potential is directly incorporated into the contin-
uum FEM method via the Cauchy Born rule (e.g., [5]) to obtain the continuum strain
energy density from the energy stored in atomic bonds. The quasicontinuum method
involves both discrete atoms and continuum solids, and the method can also account
for the nonlocal effect [63], i.e., the multibody atomistic interactions. However, the
spurious or ghost force appears at the interface between the domains of (local) con-
tinuum and (nonlocal) atomistic simulations in the quasicontinuum method [61].
The quasicontinuum analysis uses the conjugate gradient method [62], which is an
order−N 2 method and is not suitable for large problems. Recently, Wagner and
Liu [60] coupled the atomistic and continuum simulations using a bridging scale
decomposition.
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3.9 Nonlocal Theories in Continuum Mechanics

In standard continuum mechanics, a solid body is decomposed into a set of idealized,
infinitesimal material volumes, each of which can be described independently as
far as the constitutive behavior is concerned. Of course, this does not mean that the
individual material points are completely isolated, but their interaction can take place
only on the level of balance equations, through the exchange of mass, momentum,
energy, and entropy.

Constructing a material model, one must select a certain resolution level below
which the microstructural details are not explicitly ‘visible’ to the model and need to
be taken into account approximately and indirectly, by an appropriate definition of
effective material properties. Also, one should specify the characteristic wavelength
of the imposed deformation fields that can be expected for the given type of geometry
and loading. Here, the notion of characteristic wavelength has to be understood in
a broad sense, not only as the spatial period of a dynamic phenomenon but also as
the length on which the value of strain changes substantially in static problems. If
the characteristic wavelength of the deformation field remains above the resolution
level of the material model, a conventional continuum description can be adequate.
On the other hand, if the deformation field is expected to have important components
with wavelengths below the resolution level, the model needs to be enriched so as to
capture the real processes more adequately. Instead of refining the explicit resolution
level, it is often more effective to use various forms of the so-called enriched or
generalized continuum formulations.

The enrichments are in general referred to as nonlocal, but this adjective must be
understood in the broad sense, covering both strongly nonlocal and weakly nonlocal
formulations. Precise mathematical definitions of strong and weak nonlocality were
given by Rogula [64] and are also explained in Bazant and Jirasek [65]. Here, we
only note that strongly nonlocal theories are exemplified by integral-type formula-
tions with weighted spatial averaging or by implicit gradient models, while weakly
nonlocal theories include for instance explicit gradient models. Entire concept of this
book is based on nonlocal elasticity, that is, we bring in the scale information in con-
tinuum formulation. The Chap. 3 deals with the formulations concerning nonlocal
elasticity equations.

Let us now explain how the nonlocal theory is different from the local or standard
continuum theory. In standard continuum elasticity it is assumed that the density of
elastic energy stored per unit volume, w, depends only on the strain tensor, which is
directly related to the deformation gradient, i.e., to the first gradient of the displace-
ment field. The elastic energy stored by the entire body, W , is then evaluated as the
spatial integral of the elastic energy density. In the one-dimensional setting, one can
write

W =
∫

L
w(u′(x))dx (3.21)

http://dx.doi.org/10.1007/978-3-319-01032-8_3
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where u′ = du/dx is the strain, further denoted as ε, and L is the interval representing
geometrically the one-dimensional body. In linear elasticity, the elastic energy density
is given by

w(ε) = 1

2
Eε2 (3.22)

is a quadratic function of strain.
In the standard continuum theory, propagation of waves in a homogeneous one-

dimensional linear elastic medium is described by the hyperbolic partial differential
equation

ρü − Eu
′′ = 0 (3.23)

where ρ is the mass density, E is the elastic modulus, u(x, t) is the displacement
and, as usual, over dots stand for derivatives with respect to time t and primes for
derivatives with respect to the spatial coordinate x . Since ρ and E are constant
coefficients, Eq. (3.23) admits solutions of the form

u(x, t) = ei(kx−ωt) (3.24)

where i is the imaginary unit, ω is the circular frequency, k is the wavenumber, and
c = ω/k is the wave velocity. In the next few subsections, we will discuss how
enrichments can be introduced to bring in ceratin scale parameter in the continuum
equations.

3.9.1 Strain-Gradient Elasticity

One class of enrichments is based on the incorporation of higher gradients (or deriva-
tives) of the displacement field. In general, the elastic energy density can be assumed
to depend on higher derivatives of displacements such as u

′′
, u

′′′
, uiv, etc. The sim-

plest strain-gradient theory of elasticity uses enrichment by the second displacement
gradient, u

′′
, which is equal to the strain gradient, ε′, further denoted as η. If we

consider one single material point only, the strain gradient is locally independent of
the strain value. In the linear case, the enriched elastic energy density potential is
written as

w(ε, η) = 1

2
Eε2 + 1

2
Cη2 (3.25)

where C is a higher order elastic modulus. The variation of elastic energy density is
given by

δw = ∂w

∂ε
δε + ∂w

∂η
δη = σδε + χδη (3.26)
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where σ = ∂w
∂ε

= Eε is the (Cauchy) stress andχ = ∂w
∂η

= Cη is the so-called double
stress. Based on the extended form of the principle of virtual work, it is possible to
derive the static equilibrium equation

(σ − χ ′)′ + b = 0 (3.27)

where b is the body force density. In dynamics, b is replaced by the inertial force
density, −ρü. Combining this with the constitutive equations σ = Eε and χ = Cη
and with the kinematic equations ε = u′ and η = u

′′
, we obtain the wave equation

of strain-gradient elasticity

ρü − Eu
′′ + Cuiv = 0 (3.28)

which differs from the standard wave Eq. (3.23) by the presence of a term with the
fourth spatial derivative of displacement.

When C = 0, the model reduces to standard elasticity. In strain-gradient elasticity
it is usually assumed that the higher order modulus C is positive. This assumption
leads to a convex energy potential and permits to generalize certain uniqueness
theorems known from standard elasticity. However, for C > 0, the phase veloc-
ity increases with increasing wavenumber. We know that the discrete mass-spring
model exhibits the opposite trend, and this is also confirmed by measurements of
dispersion curves in real crystals. Even for heterogeneous continua, the dispersion
curves (determined experimentally or by analytical solution of some simple cases)
typically have negative curvature. So the strain-gradient theory gives a reasonable
approximation of the dispersion effect only if the higher order modulus C is negative.
Convexity of the elastic potential is then lost and uniqueness cannot be guaranteed.

Indeed, if C = −E�2, where � is a model parameter with the dimension of
length, the phase velocity of a harmonic wave with wavenumber kcrit = 1/� vanishes.
This means that the equation of motion (3.28) is satisfied by a stationary wave of
wavelength 2π/kcrit = 2π�. A similar result was found for the discrete mass-spring
model, but in that case the stationary wave in reality represented a uniform translation,
because the values of the displacements had physical meaning only at discrete points
with spacing equal to the critical wavelength. In contrast to that, a stationary wave
in a continuous elastic medium is physically inadmissible [66].

3.9.2 Models with Mixed Spatial-Temporal Derivatives

Due to the unstable behavior of short waves, Eq. (3.28) is sometimes called the bad
Boussinesq problem. This equation can describe dispersion of waves with moderate
wavenumbers but leads to instabilities if waves shorter than the critical wavelength
2π� are involved. If the body of interest is discretized by finite elements, the minimum
wavelength that can be captured by the numerical approximation is proportional to
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the element size. Therefore, for meshes that are sufficiently coarse with respect to
the material length parameter �, the numerical solution leads to reasonable results.
However, upon mesh refinement, the solution becomes polluted by unstable modes
rapidly oscillating in space.

Several modifications of the bad Boussinesq problem were proposed in the liter-
ature. Fish et al. [67] replaced the term with the fourth spatial derivative, uiv, by a
term with a mixed derivative, ü

′′
. Their arguments can be rephrased and expanded

as follows: For small wavenumbers, the fourth-order term in Eq. ( 3.28) is negligible
with respect to the second-order terms, so we can write Eu

′′ ≈ ρü. Differentiating
this twice with respect to x , we obtain Euiv ≈ ρü

′′
. Finally, replacing in Eq. (3.28)

uiv by (ρ/E)ü
′′

and C by −E�2 yields a modified wave equation

ρü − Eu
′′ − ρ�2ü

′′ = 0 (3.29)

which was called by Fish et al. [67] as the good Boussinesq problem. This problem
can be expected to have similar solutions to the original bad Boussinesq problem at
low wavenumbers, however, we can expect a different asymptotic behavior for high
wavenumbers.

With a proper choice of parameters, the model can reasonably approximate disper-
sion and it does not suffer any unstable behavior at shorter wavelengths. Its disadvan-
tage is that the presence of the fourth derivative uiv requires either a C1-continuous
finite element approximation (which is hard to construct on general meshes in mul-
tiple dimensions) or a mixed approach with independent approximations of several
fields (e.g., the displacement field, stress field, the strain field, etc.). Also, nonstan-
dard higher order boundary conditions are needed on the physical boundary of the
investigated body.

3.9.3 Integral-Type Nonlocal Elasticity

Another class of enrichments is based on weighted spatial averaging. The simplest
model of this kind can be derived from the elastic potential

W = 1

2

∫
L

∫
L

E(x, ξ)ε(x)ε(ξ)dxdξ (3.30)

where E(x, ξ) is a function describing the generalized elastic modulus. The variation
of elastic energy is evaluated as

δW = 1

2

∫
L

∫
L

E(x, ξ)δε(x)ε(ξ)dxdξ + 1

2

∫
L

∫
L

E(x, ξ)ε(x)δε(ξ)dxdξ (3.31)

This implies
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δW = 1

2

∫
L

∫
L

[E(x, ξ)+ E(ξ, x)] ε(ξ)dξδε(x)dx (3.32)

This can be written in the usual form δW = ∫
L σ(x)δε(x)dx if the stress is defined

as

σ(x) =
∫

L
Es(x, ξ)ε(ξ)dξ (3.33)

where

Es(x, ξ) = 1

2
[E(x, ξ)+ E(ξ, x)] (3.34)

is the elastic modulus function symmetrized with respect to its arguments. The corre-
sponding equilibrium equations derived from the principle of virtual work by keeping
this in their standard form, σ ′ + b = 0. Consequently, the wave equation for this
model reads

ρ
∂2u(x, t)

∂t2 − ∂

∂x

∫
L

Es(x, ξ)
∂u(ξ, t)

∂ξ
dξ = 0 (3.35)

Since function Es(x, ξ) reflects the strength of long-distance interaction between
points x and ξ , its value can be expected to be negligible if the distance between x
and ξ is large compared to the internal length of the material (which corresponds to
the characteristic size and spacing of major heterogeneities). For functions Es with
a sufficiently fast decay, the integrals in Eqs. (3.33) and (3.35) make sense even if
the integration domain L is considered as the entire real axis. If the body is infinite
and macroscopically homogeneous, function Es(x, ξ) should depend only on the
distance between x and ξ . Bearing in mind these restrictive assumptions, we present
the modulus function in the form

Es(x, ξ) = E0α0(x − ξ) (3.36)

where E0 is a reference value of the elastic modulus and α0 is a dimensionless even
function, further called the nonlocal weight function.

Substituting the assumed harmonic form of an elastic wave into the transformed
wave equation

ρ
∂2u(x, t)

∂t2 − E0

∫ +∞

−∞
α0(x − ξ)

∂2u(ξ, t)

∂ξ2 dξ = 0 (3.37)

we obtain the dispersion equation

− ρω2 + E0k2α∗
0(k) = 0 (3.38)

in which

α∗
0(k) =

∫ +∞

−∞
α0(r)e

−ikr dr (3.39)
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is the Fourier image of the nonlocal weight function α0(r). Relation (3.38) shows
that there is a unique correspondence between the dispersion law and the Fourier
image of the nonlocal weight function.

The transformation of the model of Fish et al. [67] into a integral-type nonlocal
model can also be performed directly. At a fixed time instant, Eq. (3.29) can be
written as

ü − �2ü
′′ = E

ρ
u

′′
(3.40)

and interpreted as an ordinary differential equation for the unknown acceleration ü,
with the current displacement u considered as known. Equation (3.40) has the form
of the so-called Helmholtz equation, and its solution satisfying conditions of bound-
edness (which play the role of boundary conditions at plus and minus infinity) can
be expressed as

ü(x, ξ) = E

ρ

∫ +∞

−∞
G(x, ξ)u

′′
(ξ, �)dξ (3.41)

where G(x, ξ) is the Green function of the Helmholtz equation, formally obtained as
the solution of this equation with the Dirac distribution δ(ξ) on the right-hand side.
It turns out that the Green function in this case given by

G(x, ξ) = 1

2�
e− |x−ξ |

� (3.42)

and so Eq. (3.41) is in fact equivalent with Eq. (3.37) if the nonlocal weight function

α0 is selected according to formula α0(r) = 1
2�e− |r |

� .
The common denominator of all examples presented in the preceding sections is

that the characteristic wavelength of the deformation field becomes comparable to the
characteristic size of the internal material structure. Here, the notion of characteristic
wavelength has to be understood in a broad sense, not only as the spatial period of
a dynamic phenomenon, but also as the length on which the value of strain changes
substantially in static problems. Such a more general definition could be based, e.g.,
on a suitably normalized ratio between the maximum strain and the maximum strain
gradient (both in absolute values). Thus the characteristic wavelength is necessarily
close to the internal material length if the size of the specimen is not much larger than
the size and spacing of major heterogeneities, or if strain localizes due to softening.

The enrichment terms introduced by various generalized continuum theories have
a differential or integral character, but all of them can be considered as nonlocal, at
least in the weak sense. They always introduce a model parameter with the dimension
of length, which reflects the internal length scale of the material.

The nonlocal enrichments can be useful in a wide range of mechanical problems.
Unfortunately, so far there is no general and universally accepted theory covering
this entire range within one unified framework. Although the first nonlocal theories
were pioneered in the 1960s, there are many problems that still remains open and
many issues unresolved. Some of the most challenging questions include the correct
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formulation of boundary conditions, micro–mechanical justification of models with
nonlocal internal variables, or identification techniques for the internal length para-
meter and its possible evolution.

The limitation of the applicability of the classical or local continuum modeling,
such as beam and shell models, is partly due to the fact that the classical model-
ing does not admit intrinsic size dependence in elastic solutions of inclusions and
inhomogeneities. It is thus concluded that the applicability of classical continuum
modeling to revealing small scales is questionable, since the material microstructure
at small size, such as the lattice spacing between individual atoms, becomes increas-
ingly important and the discrete structure of the material can no longer be homoge-
nized into a continuum. Therefore, newly proposed continuum modeling rather than
the classical continuum modeling is expected to take into account the scale effect
while handling large-scale nanomaterial analysis. At nanometer scales, size effects
often become prominent, the cause of which needs to be explicitly addressed with
an increasing interest in the general area of nanotechnology. The modeling of such
a size-dependent phenomenon has become an interesting subject nowadays.

The scale effect was accounted for in elasticity theory by assuming the stress at a
reference point to be a functional of the strain field at every point in the body by the
nonlocal elasticity theory (it will be discussed in detail in the preceding chapters).
In this way, the scale effect could be considered in the constitutive equations simply
as a material parameter, while the classical elasticity theory cannot account for the
scale effect, since the stress state is dependent uniquely on the strain state at the same
point. Askes and Aifantis [68] present their discussion on the controversy regarding
dynamic nonlocal elasticity and static nonlocal elasticity.

Chapter 4 details the nonlocal elasticity theory in greater depth. A lot of emphasis
is given to this theory in this book since the focus of this is book is to bring in the
role played by the scale parameter in the wave propagation in CNTs and Graphene
structures.

3.10 Summary

This chapter gives a brief outline of all the available mathematical modeling methods
for nanostructures. The major part of the chapter deals with explanation of different
modeling schemes for nanostructures, where the atomistic, molecular dynamics, con-
tinuum modeling, and multiscale modeling schemes are described in detail. Among
the atomistic models, ab initio models and the models based on density functional
theory are reviewed in detail. Next, the molecular dynamics modeling procedure is
given. In particular, molecular dynamics models for wave propagation in CNTs and
Graphene are reviewed in detail. This is followed by a brief review of Monte Carlo
methods. Among the continuum modeling schemes, the nonlocal elasticity models,
which is primary focus of this book, is dealt in detail. Here, different enrichment
schemes, each of which introduces a scale parameter, are discussed in great detail in
this chapter

http://dx.doi.org/10.1007/978-3-319-01032-8_4
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Chapter 4
Theory of Nonlocal Elasticity

Continuum theories describe a system in terms of a few variables such as mass,
temperature, voltage, and stress, which are highly suited for direct measurements
of these variables. Their successes, expediency, and practicality, have been demon-
strated and tested throughout the history of science through explaining and predicting
diverse physical phenomena.

The physical world is composed of atoms moving under the influence of their
mutual interaction forces. These interactions at microscopic scale are the physical
origin of many macroscopic phenomena. Atomistic investigation helps to identify
macroscopic quantities and their correlations, and enhance our understanding of
various physical theories. To explain the fundamental departure of microcontinuum
theories from the classical continuum theories, the former is a continuum model
embedded with microstructures to describe the microscopic motion, or a nonlocal
model to describe the long-range material interaction. This extends the application
of the continuum model to microscopic space and short-time scales. Micromorphic
theory [1, 2] treats a material body as a continuous collection of a large number of de-
formable particles, with each particle possessing finite size and inner structure. Using
assumptions such as infinitesimal deformation and slow motion, micromorphic the-
ory can be reduced to Mindlin’s microstructure theory [3]. When the microstructure
of the material is considered rigid, it becomes the micropolar theory [1]. Assuming a
constant microinertia, micropolar theory is identical to the cosserat theory [4]. Elimi-
nating the distinction of macromotion of the particle and the micromotion of its inner
structure, it becomes couple stress theory [5, 6]. When the particle reduces to the
mass point, all the theories reduce to the classical or ordinary continuum mechanics.

4.1 Need for Nonlocal Elasticity for Nanostructures

The nanostructures length scales are often sufficiently small, and hence for the
applicability of classical continuum models, we need to consider the small length
scales such as lattice spacing between individual atoms, grain size, etc. Although
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solution through molecular dynamics (MD) simulation is a possibility for such prob-
lems, its large computational cost prohibits its use for a general analysis. The con-
ventional continuum models cannot handle scale effects. Hence the best alternative
is to use those methods which provide the simplicity of continuum models and at the
same time incorporate the effects of scale in such chosen continuum models.

The length scales associated with nanostructures like carbon nanotubes are such
that to apply any classical continuum techniques, we need to consider the small
length scales such as lattice spacing between individual atoms, grain size, etc. This
makes a consistent classical continuum model formulation very challenging. Hence,
the Eringen’s nonlocal elasticity theory [7–10] is useful tool in treating phenomena
whose origins lie in the regimes smaller than the classical continuum models. This
theory takes account of remote action forces between atoms. This causes the stresses
to depend on the strains not only at an individual point under consideration, but at
all points of the body. In this theory, the internal size or scale could be represented in
the constitutive equations simply as material parameters. Such a nonlocal continuum
mechanics has been widely accepted and has been applied to many problems in-
cluding wave propagation, dislocation, crack problems, etc. [11]. Recently, there has
been great interest in the application of nonlocal continuum mechanics for modeling
and analysis of nanostructures such as CNTs and graphene sheets. Application of
nonlocal continuum theory to nanotechnology problems was initially addressed by
Peddison et al. [11], in which the static deformation of a beam structures based on a
simplified nonlocal model was analyzed.

4.2 Introduction to Nonlocal Elasticity

Eringen’s nonlocal theory of elasticity accommodates an equivalent effect due to
nearest neighbor interaction and beyond the single lattice in the sense of lattice
average stress and strain. This theory assumes that the stress state at a reference
point x = (x1, x2, x3) in the body is regarded to be dependent not only on the strain
state at x but also on the strain states at all other points x′ of the body. This is in
accordance with atomic theory of lattice dynamics and experimental observations
on phonon dispersion. The most general form of the constitutive relation in the
nonlocal elasticity type representation involves an integral over the entire region of
interest. The integral contains a nonlocal kernel function, which describes the relative
influences of the strains at various locations on the stress at a given location. The
constitutive equations of linear, homogeneous, isotropic, and nonlocal elastic solid
with zero body forces are given by [8]

σkl ,k +ρ( fl − ül) = 0 (4.1)

σkl(x) =
∫

Ω

α(|x − x′|, ξ)σc
kl(x

′)dΩ(x′) (4.2)
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σc
kl(x

′) = λerr (x′)δkl + 2μekl(x′) (4.3)

ekl(x′) = 1

2

(
∂uk(x′)

∂x ′
l

+ ∂ul(x′)
∂x ′

k

)
(4.4)

Equation (4.1) is the equilibrium equation, whereσkl ,ρ, fl , and ul are the stress tensor,
mass density, body force density, and displacement vector at a reference point x in
the body, respectively, at time t . Equation (4.3) is the classical constitutive relation
where σc

kl(x
′) is the classical stress tensor at any point x′ in the body, which is related

to the linear strain tensor ekl(x′) at the same point through the lame constants λ and μ.
Equation (4.4) is the classical strain–displacement relationship. The only difference
between Eqs. (4.1)–(4.4) and the corresponding equations of classical elasticity is
the introduction of Eq. (4.2), which relates the global (or nonlocal) stress tensor
σkl to the classical stress tensor σc

kl(x
′) using the modulus of nonlocalness. The

modulus of nonlocalness or the nonlocal modulus α(|x − x′|, ξ) is the kernel of the
integral equation (4.2) and contain parameters which correspond to the nonlocalness
[12]. A dimensional analysis of Eq. (4.2) clearly shows that the nonlocal modulus
has dimensions of (length)−3 and so it depends on a characteristic length ratio a/�

where a is an internal characteristic length (lattice parameter, size of grain, or granular
distance) and � is an external characteristic length of the system (wavelength, crack
length, size, or dimensions of sample) [10], Ω is the region occupied by the body.
Therefore the nonlocal modulus can be written in the following form:

α = α(|x − x′|, ξ), ξ = e0a

�
(4.5)

where e0 is a constant appropriate to the material and has to be determined for each
material independently [10].

Making certain assumptions [10], the integro-partial differential equations of
nonlocal elasticity can be simplified to partial differential equations. For example,
Eq. (4.2) takes the following simple form:

(1 − ξ2�2∇2)σkl(x) = σc
kl(x) = Cklmnεmn(x) (4.6)

where Ci jkl is the elastic modulus tensor of classical isotropic elasticity and εi j is the
strain tensor. Where ∇2 denotes the second order spatial gradient applied on the stress
tensor σkl,k and ξ = e0a/�. The validity of Eq. (4.6) has been justified by comparing
the expressions for frequency of waves from the nonlocal model above with those
of the Born-Karman model of lattice dynamics [10]. Eringen reports a maximum
difference of 6 %, and a perfect match for nonlocal constant value of e0 = 0.39 [10].
To the best of authors knowledge, no experiments have been conducted on CNT
to determine the value of e0, which has been assumed as a constant appropriate to
each material in the published literature. In the upcoming sections, a summary of the
works done so far to estimate the nonlocal scale parameter is presented.
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Generally used kernel function α(|x − x′|, ξ) is given in [9] is of the form

α(|x|, ξ) = 1

2πξ2�2 K0

(√
x · x
ξ�

)
(4.7)

where K0 is the modified Bessel’s function.
As ξ → 0, α must revert to the Dirac delta measure so that classical elasticity

limit is included in the limit of vanishing internal characteristic length, that is,

lim
ξ→0

α(|x − x′|, ξ) = δ(|x − x′|) (4.8)

We therefore expect that α is a delta sequence.
In the theory of nonlocal elasticity, the stress at a reference point x is considered

to be a functional of the strain field at every point x′ in the body. For homogeneous
isotropic bodies, the linear theory leads to a set of integro-partial differential equations
for the displacement field, which are generally difficult to solve. For a spacial class of
kernels, these equations are reducible to a set of singular partial differential equations
for which the literature is extensive.

The selection of the appropriate class of kernels is not ad hoc but fairly general,
based on mathematical conditions of admissibility and physical conditions of verifia-
bility. For example, the dispersion curves available from lattice dynamics and phonon
dispersion experiments provide excellent testing on the success of these kernels. Ul-
timately, these kernels should be expressed in terms of interatomic force potentials
or correlation functions. Presently, several solutions obtained for various problems
support the theory advanced here. For example, the dispersion curve, obtained for
plane waves are in excellent agreement with those of the Born-Karman theory of
lattice dynamics. The dislocation core and cohesive (theoretical) stress predicted by
nonlocal theory are close to those known in the physics of solids. Moreover, nonlocal
theory reduces to classical (local theory) in the long wavelength limit and to atomic
lattice dynamics in the short wavelength limit. These and several other considerations
lead us to the exciting prospect that by means of nonlocal elasticity, excellent approx-
imation may be provided for a large class of physical phenomena with characteristic
lengths ranging from microscopic to macroscopic scales. This situation becomes spe-
cially promising in dealing with imperfect solids, dislocations, and fracture, since in
these cases, the internal (atomic) state of the body is difficult to characterize.

The solution of nonlocal elasticity problems are however difficult mathematically,
since little is known on the treatment of integro-partial differential equations, espe-
cially for mixed boundary value problems. Therefore, the treatment of these problems
by means of singular differential equations is promising. This is born out, at least,
with the treatment of two problems here, namely the screw dislocation and Rayleigh
surface waves. Results for both problems are gratifying in that they are supported by
atomic lattice dynamics and experiments.

For nonlocal elasticity, there exists a differential form for the stress–strain rela-
tion [8],
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(1 − ξ2�2∇2)σi j = Ci jklεkl (4.9)

where the operator ∇2 is the Laplacian operator. Notice that in the nonlocal elasticity,
the effect of small length scale is considered by incorporating the internal parame-
ter length into the constitutive equation. One may also see that when the internal
characteristic length a is neglected, i.e., the particles of a medium are considered
to be continuously distributed, then ξ = 0, and Eq. (4.9) reduces to the constitutive
equation of classical elasticity.

4.3 Types of Nonlocality

The local dependence of a physical quantity (the effect r ) at a point x of space at
time τ (r(x, y, z, τ )) on another physical quantity (the cause p) at the same point
x and at the same time τ (p(x, y, z, τ )) has the general form

r(x, y, z, τ ) = r(p(x, y, z, τ )) (4.10)

1. Spatial nonlocality
It means that the effect R at the point x at time τ depends on the causes at all
points x′ at the same instant of time:

R(x, y, z, τ ) =
∫

V
α

(|x − x′|, ξ
)

r(p(x ′, y′, z′, τ )) dx ′ dy′ dz′ (4.11)

2. Temporal nonlocality (materials with memory)
The effect R at the point x at time τ depends on the history of causes at the point
x over all preceding time and at the present instant:

R(x, y, z, τ ) =
∫ τ

−∞
β

(
τ − τ ′, ζ

)
r(p(x, y, z, τ ′)) dτ ′ (4.12)

3. Mixed nonlocality
It is the simultaneous effects of memory and spatial nonlocalness. For this case
we have an effect R at the point x at time τ that depends on the causes at all
spatial points x′ and at all times τ ′ ≤ τ :

R(x, y, z, τ ) =
∫ τ

−∞

∫
V

γ
(|x − x′|, τ − τ ′, ξ, ζ

)
r(p(x ′, y′, z′, τ ′)) dx ′ dy′ dz′ dτ ′

(4.13)
Here V is the volume occupied by the body.
The moduli of nonlocalness α

(|x − x′|, ξ
)
, β

(
τ − τ ′, ζ

)
, γ(|x − x′|,

τ − τ ′, ζ, ξ), the kernels of the integral relations Eqs. (4.11)–(4.13), contain
parameters that correspond to the nonlocalness:
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ξ = L int

Lext
(4.14)

ζ = Tint

Text
(4.15)

where L int is the internal characteristic length (the lattice parameter, or size
of grain), Lext is the external characteristic length (wavelength, or size of the
sample); Tint is the internal characteristic time (relaxation time, time for a signal
to travel between molecules), Text is the external characteristic time (the time of
application of the external action, period of vibration and so forth) [13].

If we consider the stress–strain state of a rigid body, the cause is the strain ε, and
the effect is the stress σ. The corresponding local and different types of nonlocal
linear equations of state have the following form:

• Local or Classical constitutive relation:

σi j (x, y, z, τ ) = Ci jkmεkm(x, y, z, τ ), (4.16)

• Spatial nonlocalness:

σi j (x, y, z, τ ) =
∫

V
αi jkm

(|x − x′|, ξ
)
εkm(x ′, y′, z′, τ ) dx ′ dy′ dz′,

(4.17)
• Temporal nonlocalness:

σi j (x, y, z, τ ) =
∫ τ

−∞
βi jkm

(
τ − τ ′, ζ

)
εkm(x, y, z, τ ′) dτ ′, (4.18)

• Mixed nonlocalness (both spatial and temporal):

σi j (x, y, z, τ ) =
∫ τ

−∞

∫
V

γi jkm
(|x − x′|, τ − τ ′, ξ, ζ

)
εkm(x ′, y′, z′, τ ′) dx ′ dy′ dz′ dτ ′.

(4.19)

It is obvious that the local elastic body is obtained from Eq. (4.17) by passing to the
limit as ξ → 0, since

lim
ξ→0

αi jkm(|x − x′|, ξ) = Ci jkmδ(|x − x′|) (4.20)

Hence in the long-wave limit the nonlocal theory of elasticity reduces to the classical
theory of elasticity, and in the short-wave limit it agrees with the theory of the atomic
lattice.
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4.3.1 Properties of the Kernels

We may express α in a more appropriate form as

α = α(|x − x′|, ξ), ξ = e0a

�

where e0 is a constant appropriate to the material.
The nonlocal modulus has the following interesting properties.

1. It acquires its maximum at x′ = x attenuating with |x − x′|
2. When ξ → 0, α must revert to the Dirac delta measure so that classical elasticity

limit is included in the limit of vanishing internal characteristic length

lim
ξ→0

α(|x − x′|, ξ) = δ(|x − x′|) (4.21)

We therefore expect that α is a delta sequence. That is, nonlocal dependence
becomes local in passage to the limit,

3. For small internal characteristic lengths, i.e., when ξ → 1, nonlocal theory
should approximate atomic lattice dynamics

4. By matching the dispersion curves of plane waves with those of atomic lattice
dynamics (or experiments), we can determine a for a given material. Several
different forms have been found (some of the most important forms are also
given in this section)

5. We observe that all nonlocal moduli given above are normalized so that their
integrals over the domain of integration (line, surface, or volume) give unity.
Moreover, they are all δ sequence, i.e., when ξ → 0 we obtain the Dirac delta
function, Because of this property, nonlocal elasticity in the limit ξ → 0 reverts
to classical elasticity as can be seen by letting ξ → 0 in Eq. (4.2), to obtain
Hooke’s law of classical elasticity.

6. We now exploit the above observation further by assuming the following: When
α takes on a Greens function of a linear differential operator L , i.e.,

L α(|x − x′|) = (|x − x′|) (4.22)

the nonlocal constitutive relation Eq. (4.2) is reduced to the differential equation

L σi j = σc
i j (4.23)

and the integro-partial differential equation (4.1) is correspondingly reduced to
the partial differential equation

σi j + L ( fi − ρüi ) = 0 (4.24)
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By matching the dispersion curves with lattice models, Eringen [8, 9] proposed
a nonlocal model with the linear differential operator L defined by

L = 1 − (e0a)2∇2 (4.25)

where a is an internal characteristic length (lattice parameter, granular size or
molecular diameters) and e0 is a constant appropriate to each material for adjust-
ing the model to match some reliable results by experiments or other theories.
Therefore, according to Eqs. (4.2), (4.3), (4.4), and (4.9), the constitutive rela-
tions may be simplified to

(
1 − (e0a)2∇2

)
σi j = σc

i j = Ci jklεkl (4.26)

For simplicity and to avoid solving integro-partial differential equations, the
nonlocal elasticity model, defined by the relations given by Eqs. (4.23)–(4.26),
has been widely adopted for tackling various problems of linear elasticity and
micro-/nanostructural mechanics.

Eringen [9] has studied the properties of the functions α
(|x − x′|, ξ

)
and pro-

posed some specific expressions for these kernels, which are in good agreement
with the results of the theory of crystal lattice. For example, the following are some
examples which have found applications:
One-Dimensional Moduli:

α(
∣∣x − x′|, ξ) = 1

�ξ

(
1 − |x − x′|

�ξ

)
, |x − x′| < �ξ

= 0, |x − x′| ≥ �ξ (4.27)

α
(|x − x′|, ξ

) = 1

2�ξ
exp

(
−|x − x′|

ξ

)
(4.28)

α
(|x − x′|, ξ

) = 1

�
√

πξ
exp

(
−|x − x′|2

�2ξ

)
(4.29)

Two-Dimensional Moduli:

α
(|x − x′|, ξ

) = 1

2π�2ξ2 K0

(√|x − x′|
�ξ

)
(4.30)

where K0 is the modified Bessel’s function.

α
(|x − x′|, ξ

) = 1

π�2ξ
exp

(
−|x − x′|2

�2ξ

)
(4.31)
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Three-Dimensional Moduli:

α
(|x − x′|, ξ

) = 1

4π�2ξ2 exp

(
−

√|x − x′|
�ξ

)
(4.32)

α
(|x − x′|, ξ

) = 1

8 (πη)3/2 exp

(
−|x − x′|2

4η

)
(4.33)

where η = a2
l /(4C2); al is the lattice parameter; C is the corresponding constant,

which can be determined either by experiment or by applying the results of the theory
of the atomic lattice.

4.4 Nonlocal Constitutive Relations

In this section, we will give the nonlocal constitutive relations for 1D, 2D, 3D, and
axisymmetric problems, which will be extensively used in the later chapters for
deriving the dispersion relations for different nano waveguides.

4.4.1 Nonlocal Constitutive Relation for 1D Problems

According to nonlocal elasticity, the constitutive relation of nonlocal elasticity for
1D problems is expressed as

σxx − (e0a)2 d2σxx

dx2 = Eεxx (4.34)

4.4.2 Nonlocal Constitutive Relations for 2D Problems

According to nonlocal elasticity, the constitutive relations of nonlocal elasticity for
2D problems are expressed as

σxx − (e0a)2
[
∂2σxx

∂x2 + ∂2σxx

∂y2

]
= E

1 − ν2 (εxx + νεyy) (4.35)

σyy − (e0a)2
[
∂2σyy

∂x2 + ∂2σyy

∂y2

]
= E

1 − ν2 (εyy + νεxx ) (4.36)
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τxy − (e0a)2
[
∂2τxy

∂x2 + ∂2τxy

∂y2

]
= E

2(1 + ν)
γxy (4.37)

4.4.3 Nonlocal Constitutive Relations for 3D Problems

According to nonlocal elasticity, the constitutive relations of nonlocal elasticity for
3D problems are expressed as

σxx − (e0a)2
[
∂2σxx

∂x2 + ∂2σxx

∂y2 + ∂2σxx

∂z2

]
= E

1 − ν2 (εxx + νεyy + νεzz) (4.38)

σyy − (e0a)2
[
∂2σyy

∂x2 + ∂2σyy

∂y2 + ∂2σyy

∂z2

]
= E

1 − ν2 (εyy + νεxx + νεzz) (4.39)

σzz − (e0a)2
[
∂2σzz

∂x2 + ∂2σzz

∂y2 + ∂2σzz

∂z2

]
= E

1 − ν2 (εzz + νεyy + νεxx ) (4.40)

τxy − (e0a)2
[
∂2τxy

∂x2 + ∂2τxy

∂y2 + ∂2τxy

∂z2

]
= E

2(1 + ν)
γxy (4.41)

τyz − (e0a)2
[
∂2τyz

∂x2 + ∂2τyz

∂y2 + ∂2τyz

∂z2

]
= E

2(1 + ν)
γyz (4.42)

τzx − (e0a)2
[
∂2τzx

∂x2 + ∂2τzx

∂y2 + ∂2τzx

∂z2

]
= E

2(1 + ν)
γzx (4.43)

where σxx , σyy, σzz are the normal stresses, τxy, τyz, τzx are the shear stresses,
εxx , εyy, εzz are the normal strains, γxy, γyz, γzx are the shear strains. E is the
Young’s modulus of the material, ν is the Poisson ratio, and the parameter e0a is the
scale coefficient that captures the small scale effect on the response of structures in
nano-size.

4.4.4 Nonlocal Constitutive Relations for Cylindrical Shell
Problems

Carbon nanotubes may be modeled by nonlocal cylindrical shells. Hence, for the case
of cylindrical shells, the nonlocal constitutive relations in polar coordinate system
(R, θ) are given by

σxx − (e0a)2
[
∂2σxx

∂x2 + 1

R2

∂2σxx

∂θ2

]
= E

1 − ν2 (εxx + νεθθ) (4.44)
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σθθ − (e0a)2
[
∂2σθθ

∂x2 + 1

R2

∂2σθθ

∂θ2

]
= E

1 − ν2 (εθθ + νεxx ) (4.45)

τxθ − (e0a)2
[
∂2τxθ

∂x2 + 1

R2

∂2τxθ

∂θ2

]
= E

2(1 + ν)
γxθ (4.46)

where R is the radius of the shell.

4.5 Summary

A brief introduction and the concepts of the nonlocal elasticity are presented in
this chapter. The fundamental governing equations of nonlocal elasticity are also
presented and the properties of the kernel functions are also discussed. The major
properties of the kernel are the following:

• α
(|x − x′|, ξ

)
has a maximum at |x − x′|,

• α
(|x − x′|, ξ

)
tends rapidly to zero as |x − x′| increases,

• α
(|x − x′|, ξ

)
is a continuous function of |x − x′|,

• α
(|x − x′|, ξ

)
is a delta sequence, tending to the Dirac delta function (δ) as ξ → 0:

• ∫
V α

(|x − x′|, ξ
)

dV (x′) = 1.

Finally, the simplified nonlocal constitutive relation is given in cartesian and cylin-
drical coordinate systems, which are useful for formulating the governing equations
of nanostructures. The nonlocal theory and the equations presented in this chapter
forms the basis for the study of wave propagation in nano waveguides, which are
presented in the following chapters of the book.
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Chapter 5
Material Property and Nonlocal Scale
Parameter Estimation for Carbon Nanotubes

The estimation of mechanical material properties such as Young’s modulus, shear
modulus, and Poisson’s ratio for CNTs has always been difficult to measure due to
their small sizes. Researchers have always used mathematical models to roughly esti-
mate these properties. In addition, the value of nonlocal parameters which introduces
the scale effects in continuum models, has been extensively reported in the literature
with different researchers reporting values of this parameter and they are found to
have a large scatter. In this chapter, we will outline a few modeling procedures to
determine the in-plane stiffness (Young’s modulus) and the nonlocal scale parameter.

Material properties of carbon nanotubes, such as the in-plane stiffness, shear
modulus, and bending rigidity, have been explored experimentally and numerically.
Krishnan et al. [1] estimated the Young’s modulus of SWCNTs to be 0.9 ∼ 1.7 TPa
by observing their freestanding room temperature vibrations in a transmission elec-
tron microscope. Salvetat et al. [2] used an atomic force microscope and a special
substrate to estimate the elastic and shear moduli of an SWCNT to be of the order
of 1 TPa and 1 GPa, respectively. The length-dependent in-plane stiffness and shear
modulus of chiral and achiral SWCNTs subjected to axial compression and torsion
were discovered via molecular simulations [3]. It is expected that nonlocal elasticity
can be applied to reveal the scale effect on the material properties of CNTs. Wang
et al. [4], estimated the length-dependent stiffness from the nonlocal elasticity and
verified through molecular simulation results and recommended that the nonlocal
parameter is about 0.7 nm for the application of the nonlocal theory in analysis of
carbon nanotubes. However, there is currently no consensus on the value of the non-
local parameter that should be used to model CNTs and this could be the subject of
further research.

This chapter presents the estimation of material property, length-dependent in-
plane stiffness, and the nonlocal scale parameter for armchair, zigzag, and chiral
nanotubes.

S. Gopalakrishnan and S. Narendar, Wave Propagation in Nanostructures, 71
NanoScience and Technology, DOI: 10.1007/978-3-319-01032-8_5,
© Springer International Publishing Switzerland 2013
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5.1 Length-Dependent In-plane Stiffness of Carbon Nanotubes

In this section, the length-dependent in-plane stiffness of SWCNTs is investigated via
Eringen’s theory of nonlocal elasticity. The SWCNT is modeled as an Euler-Bernoulli
beam subjected to axial compression. From the derived nonlocal governing equation,
a closed-form solution for the material property of SWCNT is obtained for various
boundary conditions.

5.1.1 Governing Equations for SWCNT

Consider a CNT shown in Fig. 5.1a and the corresponding hollow circular beam
idealization shown in Fig. 5.1b.

For the present analysis the CNT is modeled as a Euler-Bernoulli beam. Based
on the Euler-Bernoulli beam theory the displacement field is given as

u = −z
∂w

∂x
, ν = 0, w = w(x) (5.1)

where w is transverse displacements of the point (x, 0) on the middle plane (i.e.,
z = 0) of beam. The only nonzero strain of this beam theory is

εxx = −z
∂2w

∂x2 (5.2)

This is also called as bending strain. The equations of motion of the Euler-Bernoulli
beam theory are given by

Fig. 5.1 a A typical CNT
b Hollow circular beam ide-
laization of CNT subjected to
axial compression

(a)

(b)
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∂Q

∂x
= 0 (5.3)

∂2 M

∂x2 − ∂

∂x

(
P
∂w

∂x

)
= 0 (5.4)

where

Q =
∫

A
σxx d A, M =

∫
A

zσxx d A (5.5)

Here, Q, M , and P are the axial force, bending moment, and the axial compressive
load, respectively, and σxx is the axial stress on the yz−section in the direction of x .

Using the nonlocal constitutive relation, one can express stress resultants in terms
of strains. As opposed to the linear algebraic equations between the stress resultants
and strains in a local theory, the nonlocal constitutive relations lead to differential
relations involving the stress resultants and the strains. In the following, we present
these relations for homogeneous isotropic beams. The nonlocal constitutive relation
takes the following special form for one-dimensional case:

σxx − (e0a)2
∂2σxx

∂x2 = Eεxx (5.6)

where E is the Young’s modulus of the beam. Using Eqs. (5.5) and (5.6), we have

Q − (e0a)2
∂2 Q

∂x2 = E A
∂u

∂x
(5.7)

M − (e0a)2
∂2 M

∂x2 = E Iκe (5.8)

where I = ∫
A z2d A is moment of inertia of beam cross section and κe = − ∂2w

∂x2 is
bending strain of the beam.

With the help of nonlocal constitutive relation and equations of motion, the bend-
ing moment can be expressed in terms of the generalized displacements. By substi-
tuting Eq. (5.8) into Eq. (5.4), we get

M = −E I
∂2w

∂x2 + (e0a)2
∂

∂x

(
P
∂w

∂x

)
(5.9)

Substituting M from Eq. (5.9) into Eq. (5.4), we obtain the governing partial differ-
ential equation of motion of Euler-Bernoulli beam under axial compressive load (P)
as

− E I
∂4w

∂x4 + (e0a)2
∂2

∂x2

[
∂

∂x

(
P
∂w

∂x

)]
− ∂

∂x

(
P
∂w

∂x

)
= 0 (5.10)
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Assuming axial compressive load P = P̂ = constant and also constant material and
geometric properties, the governing equation can be rewritten as

− E I
∂4w

∂x4 + (e0a)2 P̂
∂4w

∂x4 − P̂
∂2w

∂x2 = 0 (5.11)

If we assume e0a = 0, the classical Euler-Bernoulli beam equation can be recovered.

5.1.2 Solution of Governing Equations

By integrating Eq. (5.11) twice with respect to x , one can obtain

− E I
d2w

dx2 + (e0a)2 P̂
d2w

dx2 − P̂w = T1x + T2 (5.12)

where T1 and T2 are constants of integration, determined from the boundary con-
ditions. The solution of this second-order ordinary differential equation consists of
a homogeneous solution and a particular solution. The homogeneous solution is
obtained from

d2w

dx2 + λ2w = 0 (5.13)

where

λ2 = P̂

E I − (e0a)2 P̂
(5.14)

The complete solution is

w(x) = S1 sin λx + S2 cos λx + 1

λ2 (T1x + T2) (5.15)

or
dw(x)

dx
= S1λ cos λx − S2λ sin λx + 1

λ2 T1 (5.16)

The four constants S1, S2, T1 and T2 are determined using the four boundary
conditions of the problem. For the present problem, once λ is known, the buckling
load can be determined using Eq. (5.14). Using the buckling load expression one can
easily obtain the length-dependent in-plane stiffness. Now we will solve the problem
for three different boundary configurations of CNT as shown below.
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5.1.3 In-plane Stiffness Ratio Estimation

In this section, the procedure to determine the in-plane stiffness of different SWC-
NTs is outlined. The procedure will be based on the solution to nonlocal elasticity
beam equations with in-plane axial loads. The procedure is outlined for beams with
three different boundary conditions, namely simply supported, clamped-clamped,
and clamped-free boundary conditions.

5.1.3.1 Simply Supported SWCNT

The boundary conditions for the simply supported problem are

w(x)|x=0 = 0, M(x) ≡
(
−E I d2w(x)

dx2 + (e0a)2 P d2w(x)
dx2

)∣∣∣
x=0

= 0,

w(x)|x=L = 0, M(x) ≡
(
−E I d2w(x)

dx2 + (e0a)2 P d2w(x)
dx2

)∣∣∣
x=L

= 0 (5.17)

Substitution of Eq. (5.15) in the above boundary conditions leads to

S1 sin λL = 0, S2 = 0, T1 = 0, T2 = 0 (5.18)

For nonzero deflection (w �= 0), we must have

S1 �= 0, sin λL = 0 (5.19)

which implies λ = nπ
L . Using Eq. (5.14), the buckling load for the simply supported

case is obtained as

P̂ = E I
( nπ

L

)2
1 + (e0a)2

( nπ
L

)2 (5.20)

The critical buckling load, i.e., the smallest value of P̂ at which the beam buckling
occurs is n = 1. Now the critical buckling load is obtained as

P̂cr = E I

L2

[
π2

1 + ( e0a
L

)2
π2

]
(5.21)

which shows the equivalent size-dependent Young’s modulus in the form of

E ′ = E

1 + [ e0a
L

]2
π2

(5.22)

This stiffness ratio (E ′/E) is purely a function of nonlocal scaling parameter and the
length of CNT.
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5.1.3.2 Clamped–Clamped SWCNT

Assume the case where both the ends of the beam are clamped and are subjected to
axial compressive load. The boundary conditions for this case are given as

w(x)|x=0 = 0,
dw(x)

dx

∣∣∣∣
x=0

= 0,

w(x)|x=L = 0,
dw(x)

dx

∣∣∣∣
x=L

= 0 (5.23)

Substitution of Eq. (5.15) in the above boundary conditions leads to the following
transcendental equation:

2(cos λL − 1)+ λL sin λL = 0 (5.24)

which can be solved by an iterative method (such as Newton’s method) for various
roots of the equation. The smallest root of this equation is λ = 2π , and the critical
buckling load becomes

P̂cr = E I

L2

⎡
⎣ 4π2

1 + 4
(
(e0a)2

L2

)
π2

⎤
⎦ (5.25)

which shows the equivalent size-dependent Young’s modulus in the form of

E ′ = E

1 + 4
[
(e0a)2

L2

]
π2

(5.26)

The stiffness ratio obtained for the clamped case is also a function of nonlocal scaling
parameter and the length of the CNT.

5.1.3.3 Cantilever SWCNT

The boundary conditions for this case are given as

w(x)|x=0 = 0,
dw(x)

dx

∣∣∣∣
x=0

= 0,

Q(x)|x=L = 0, M(x)|x=L = 0 (5.27)

Substituting Eq. (5.15) in the above four boundary conditions, we get

S1 = 0, S2 cos λL = 0, T1 = 0, T2 + S2λ
2 = 0 (5.28)
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For nonzero solution of w(x), we have

cos λL = 0 (5.29)

which gives

λ = (2n − 1)π

2L
(5.30)

and the critical buckling load becomes

P̂cr = E I

L2

⎡
⎣ π2

4 +
(
(e0a)2

L2

)
π2

⎤
⎦ (5.31)

which shows the equivalent size-dependent Young’s modulus in the form of

E ′ = E

1 + [ e0a
L

]2 π2

4

(5.32)

It can be seen from the above formulations that the stiffness ratio is purely a function
of the nonlocal scaling parameter and the length of the CNT.

5.1.4 Numerical Results and Discussion

In this section, the dependence of the in-plane stiffness ratio (E ′/E) on the length of
SWCNT for various nonlocal scaling parameters is analyzed. For the present analysis
the nonlocal scaling parameter values are assumed as 0.5, 1.0, 1.5 and 2.0 nm.
Various carbon nanotubes having lengths ranging from 2 to 20 nm are considered for
the analysis.

The length-dependent in-plane stiffness variation of simply supported SWCNT is
shown in Fig. 5.2. The figure shows that the stiffness ratio decreases as e0a increases.
It can also be seen that the stiffness ratio difference for different nonlocal scaling
parameters dips as the length of CNT increases. For very long CNTs the stiffness
ratio is almost equal to unity, so that the stiffness ratio will not vary with e0a for
very long CNTs. In other words, the impact of the nonlocal effect on the stiffness
ratio is negligible for CNTs of micrometer scale length. But when the length of
CNTs reaches the nanoscale, the nonlocal effect becomes important, especially for
the shorter CNTs.

Stiffness ratio variation of clamped–clamped SWCNT is shown in Fig. 5.3. As in
the case of simply supported SWCNT, the stiffness ratio is very high for e0a = 0.5 nm
and is small for e0a = 2.0 nm. The stiffness ratio difference for various nonlocal
scaling parameters is very high for short CNTs and very small for long CNTs (See
Fig. 5.3). Even for very long CNTs the stiffness ratio is not converging to unity for
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Fig. 5.2 In-plane stiffness
ratio of simply supported
single-walled carbon nan-
otubes with various lengths
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Fig. 5.3 In-plane stiffness
ratio of clamped clamped
single-walled carbon nan-
otubes with various lengths
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this case. As e0a increases the variation of the stiffness ratio with length of the CNT
is almost linear.

For cantilever SWCNT the stiffness variation with length of the CNT is different
from simply supported and clamped cases. Figure 5.4 shows that the stiffness ratio
difference for various e0a values is very small for long CNTs. As the length of the
CNT increases the stiffness ratio tends to unity and is independent of the nonlocal
scaling parameter.

A comparison of the in-plane stiffness ratio of SWCNTs with various boundary
conditions is shown in Fig. 5.5. This figure shows that, for a given e0a, the stiffness
ratio of the cantilever SWCNT is very high compared to the simply supported and
clamped SWCNTs. The clamped SWCNT has very low stiffness ratio compared to
the simply supported and cantilever cases. The variation of the ratio is observed again
from the figure, indicating the lower stiffness for shorter SWCNTs and an asymptotic
stiffness for longer CNTs. These results are also presented in [5].
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Fig. 5.4 In-plane stiffness
ratio of cantilever single-
walled carbon nanotubes with
various lengths
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Fig. 5.5 A Comparison of
in-plane stiffness ratio of
simply supported, clamped–
clamped, and cantilever type
of single-walled carbon nan-
otubes with various lengths
for nonlocal scaling parameter
e0a = 1.0 nm
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In the following section, these results are utilized to estimate the nonlocal scale
parameter for the analysis of carbon nanotubes.

5.2 Material Property Estimation: A Comparison with Nonlocal
Rod Model

Typical single-walled carbon nanotube structures are shown in Fig. 5.6. A major
feature of the structure is the hexagon pattern that repeats itself periodically in space.
As a result of the periodicity, each atom is bonded to three neighboring atoms. Such
structure is mainly due to the process of sp2 hybridization [6] (which is explained in
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Fig. 5.6 Single-walled car-
bon nanotubes under com-
pression: a armchair, b zigzag
and c chiral

(a) (b) (c)

Chap. 1) during which one s-orbital and two p-orbitals combine to form three hybrid
sp2-orbitals at 120◦ to each other within a plane. Based on the chirality [7], SWCNTs
can have three different configurations. They are armchair (see Fig. 5.6a), zigzag
(see Fig. 5.6b), and chiral (see Fig. 5.6c) configurations; denoted as (n, n), (n, 0) and
(n,m), respectively [7]. Armchair and zigzag CNTs are generally named as chiral
since they exhibit a mirror symmetry plane, perpendicular to the tube axis [8].

In the classical (local) elastic model, the stress state at a given point is regarded
as being determined uniquely by the strain state at that same point. In the nonlocal
model, on the other hand, the stress state at a given point is regarded as being deter-
mined by the strain states of all points in the body. This recognizes the finite range
of interatomic and intermolecular forces. While the constitutive equation of classical
elasticity is an algebraic relationship between the stress and strain tensors, that of
nonlocal elasticity involves spatial integrals which represent weighted averages of
the contributions of the strain tensors of all points in the body to the stress tensor at
the given point. Under certain conditions , these integral constitutive equations can
be converted into equivalent differential constitutive equations.

Material properties of CNTs, such as the in-plane stiffness, shear modulus, and
bending rigidity, have been explored experimentally and numerically [1–3]. It is
expected that nonlocal elasticity can be applied to reveal the scale effect on the ma-
terial properties of CNTs. Recently, Wang et al. [4] estimated the length-dependent
stiffness of carbon nanotubes based on the nonlocal rod theory and verified through
molecular simulation results and recommended the nonlocal parameter as 0.7 nm
for the application of the nonlocal theory in analysis of carbon nanotubes. However,

http://dx.doi.org/10.1007/978-3-319-01032-8_1
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there is currently no consensus on the value of the nonlocal parameter that should
be used to model CNTs and this could be the subject of further research. In the last
section, the length-dependent in-plane stiffness of SWCNTs was investigated based
on nonlocal Bernoulli-Euler beam theory. The value of nonlocal scale parameter
recommended by Wang et al. [4] will be applicable only for axial deformation of
nanostructures. Their model did not consider the transverse deformation due to axial
compression. Such effect is considered in the present problem to obtain the non-
local scale parameter by estimating the length-dependent in-plane stiffness. From
the present analysis, the value of the scale coefficient is recommended to be about
0.11 nm for the application of the nonlocal theory in analysis of carbon nanotubes.
Wang’s work is applicable only where the axial displacement of the nanostructures
is the main concern. It is not applicable to the structures undergoing flexural/lateral
deformation. In this section, the nonlocal parameter is estimated for the case of the
flexural deformation of nanotubes. Most of the modeling and analysis problems of
nanostructures, such as bending, buckling, vibration, etc., are based on the flexural
deflection of the nanotubes. For all modeling and analyses based on flexural dis-
placement, an accurate estimate of nonlocal scaling parameter is required. Such an
attempt is made in this work. Hence, the nonlocal parameter obtained in this work
is directly useful in the analysis and design of next-generation nanostructures.

Usually, the magnitude of the nonlocal parameter e0a (where a is carbon-carbon
bond length), determines the nonlocal effect in the analysis. The modeling and analy-
ses of nanostructures based on flexural displacement require an accurate estimate of
nonlocal scaling parameter. Such attempt is made in the present section.

In the previous section, the SWCNT is modeled as an elastic continuum beam
model incorporating the nonlocal effects to determine the in-plane stiffness prop-
erties. The governing equation for this CNT in nonlocal continuum is presented in
Eq. (5.10). In the previous section, for clamped–clamped SWCNT, the equivalent
size-dependent Young’s modulus has been shown in the form of

E ′ = E

1 + 4
[
(e0a)2

L2

]
π2

(5.33)

In the following section, this size-dependent Young’s modulus derived from the
nonlocal elastic beam theory will be verified from the molecular simulation results
given in [3], and an estimate of the scale coefficient is proposed for the application
of nonlocal elasticity for analysis of CNTs based on the verification.

5.2.1 Numerical Results and Discussions

In this section, the in-plane stiffness ratio (E ′/E) (see Eq. (5.33)) obtained from the
nonlocal elasticity theory is compared with molecular dynamic simulation results [3],
to obtain the nonlocal scaling parameter (e0a) for the analysis of nanotubes. Wang
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[3] conducted the molecular mechanics simulations via the commercial software
Materials Studio to study the in-plane stiffness of (8, 0), (8, 8), and (8, 4) SWCNTs
with various lengths, subjected to compression (see Fig. 5.6a, b and c, respectively,
for zigzag, armchair, and chiral SWCNTs under compression). The simulations were
carried out at a temperature of 1 ◦K to avoid the thermal effect. In view of the current
debate on the thickness of CNTs, the derivation of the in-plane stiffness, E × h,
rather than the modulus E , would avoid arguments on the values of the effective
thickness of CNTs [4]. In the simulations [3], the two ends of three SWCNTs of
various lengths were clamped through prohibiting any motions on all atoms on the
two edges. In compression motion of CNTs, the incremental displacement step was
chosen as 0.1 Å. The present simulations investigate the ratio of the length-dependent
in-plane stiffness obtained from the nonlocal elastic beam theory, which depend on
the length of CNT. In the simulations, the lengths of CNT are chosen as follows:

• Zigzag (8,0) SWCNT: L = 2.218, 4.159, 6.099, 8.041, 10.121, 11.993 nm
• Armchair (8,8) SWCNT: L = 2.656, 4.349, 6.283, 8.692, 11.574 nm
• Chiral (8,4) SWCNT: L = 2.204, 4.419, 6.628, 8.837, 10.109, 12.151 nm

The in-plane stiffness ratio of the zigzag (8,0) CNTs obtained from molecular
simulations is shown in Fig. 5.7 by the solid line. It was determined that the stiffness
increases from Eh = 354.001 J/m2 to Eh = 375.181 J/m2 from the shorter size,
L = 2.218 nm, to the larger size L = 11.993 nm. The asymptotic value is indepen-
dent of the size of the CNTs, and hence can be viewed as the in-plane stiffness of the
structure based on local/classical elastic beam theory. Therefore, the stiffness ratio
is calculated by the ratio of the in-plane stiffness of CNTs at every specific length
to the asymptotic value. Obvious scale effect on the in-plane stiffness is secured for
tubes shorter than 10 nm.

The stiffness ratio versus the length of zigzag CNTs is plotted in Fig. 5.7. It
has been shown that the values of in-plane stiffness of zigzag CNTs obtained from

Fig. 5.7 A comparison of in-
plane stiffness ratio of zigzag
(8, 0) single-walled carbon
nanotubes for various lengths
based on nonlocal rod and
beam theories with the molec-
ular dynamics simulations
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molecular mechanics simulations match with the nonlocal beam theory results at
nonlocal scale coefficient of e0a = 0.11 nm. The simulations are again compared
with the results obtained by Wang et al. [4]. They suggest that the scale coefficient
in the nonlocal theory is about 0.7 nm for the application of the nonlocal theory in
analysis of carbon nanotubes based on nonlocal rod theory. The in-plane stiffness
ratio results obtained from the present nonlocal beam theory (for e0a = 0.11 nm)
match exactly with the results obtained from nonlocal rod theory (for e0a = 0.7 nm)
and also with that of the molecular mechanics simulations. Hence, it is recommended
that the value of e0a should be 0.11 nm for the application of the nonlocal theory in
analysis of CNTs, where CNT is modeled as an elastic beam.

The variation of the in-plane stiffness ratio is clearly observed from the dotted
markers, and is qualitatively in agreement with the molecular simulation results. It
is shown that the ratio is less than a unit for shorter CNTs, but approaches to a unit
at larger sizes, showing a low stiffness of the material for shorter sizes. Overall,
the comparison of the ratio between the nonlocal theory and the molecular simula-
tion results first verifies the applicability of the nonlocal elastic beam theory in the
estimation of the length-dependent stiffness. Furthermore, the comparison results
provide a good estimate of the scale coefficient, in particular for the evaluation of
stiffness of CNTs. So far, there is no rigorous study made on estimating the scale
coefficient. It is concluded that the scale coefficient should be different for different
physical applications. The estimate of the value e0a = 0.11 nm in this section is only
recommended for the estimation of the stiffness of CNTs subjected to axial loading,
where CNTs are modeled as Bernoulli-Euler type of beam.

The stiffness ratio versus the length of armchair CNTs is plotted in Fig. 5.8.
Similarly, the stiffness ratio is calculated by the ratio of the in-plane stiffness of
CNTs at every specific length to the asymptotic value. The variation of the ratio is
observed again from Fig. 5.8, indicating the lower stiffness for shorter SWCNTs and
an asymptotic stiffness for longer CNTs. Again here, the values of in-plane stiffness

Fig. 5.8 A comparison of
in-plane stiffness ratio of
armchair (8, 8) single-walled
carbon nanotubes for various
lengths based on nonlocal rod
and beam theories with the
molecular dynamics simula-
tions
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Fig. 5.9 A comparison of in-
plane stiffness ratio of chiral
(8, 4) single-walled carbon
nanotubes for various lengths
based on nonlocal rod and
beam theories with the molec-
ular dynamics simulations
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of armchair CNTs obtained from molecular mechanics simulations match with the
nonlocal beam theory results at nonlocal scale coefficient of e0a = 0.11 nm.

The stiffness ratio versus the length of achiral CNTs is plotted in Fig. 5.9. The
length measurements of the chiral CNTs are more tedious than those of achiral
CNTs since the repeated units display themselves in a helical direction, and not a
straight longitudinal direction in achiral tubes. Therefore, the solid line represents the
molecular simulations result and is not as smooth as those for achiral tubes because
of the coarse length measurement for the chiral CNTs. From the comparison of the
stiffness ratio via the nonlocal elasticity and the molecular simulations, the length-
dependent stiffness for shorter CNTs is again examined. It has been shown that
the values of in-plane stiffness of achiral CNTs obtained from molecular mechanics
simulations match with the nonlocal beam theory results at nonlocal scale coefficient
of e0a = 0.11 nm . The simulations are again compared with the results obtained by
Wang et al. [4]. Hence, it can again be emphasized that the value of e0a should be
0.11 nm for the application of the nonlocal theory in analysis of achiral CNTs. The
present model can also be used for longer length nanotubes.

5.3 Prediction of Nonlocal Scale Parameter: A Molecular
Structural Mechanics and Nonlocal Elasticity Model

In this section, Eringen’s nonlocal elasticity theory’s [9] small-scale parameter is
obtained analytically. This theory assumes the stress at a reference point to be a
function of the strain field at every point in the body. It allows one to account for the
small-scale effect that becomes significant when dealing with micro and nanostruc-
tures, especially those effects due to atomic orbital interaction, quantum-mechanical
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tunneling, and electron-phonon interaction. Also, a method of identifying the small
scaling parameter e0 in the nonlocal theory is not yet known. Eringen proposed
e0 = 0.39 by matching the dispersion curves via nonlocal theory for plane wave
and Born-Karman model of lattice dynamics applied at the Brillouin zone bound-
ary

(
k = π

a

)
, where a is the distance between atoms and k is the wavenumber in

the phonon analysis [10]. On the other hand, Eringen proposed e0 = 0.31 in his
study [11] for Rayleigh surface wave via nonlocal continuum mechanics and lattice
dynamics. Sudak [12] proposed that e0 = 112.7. Also, no experiments have been
conducted to determine the value of e0 for CNT. Wang and Hu [13] proposed that
e0 = 1√

12
and used this value in a nonlocal beam model of SWCNT. Zhang et al.

[14] estimated that e0 ≈ 0.82 by matching the theoretical buckling strain obtained
by the nonlocal thin shell model of CNT obtained by Zhang et al. [15] to those from
the molecular mechanics simulations given by Sears and Batra [16]. Wang [17] esti-
mated that e0a < 2.0 nm (which give e0 = 14.08) for an SWCNT wave propagation
at frequencies greater than 10 THz.

A review of the above studies naturally force us to assume that the scale parameter
(e0) is actually a function of atomic structure, chirality, and frequency. This problem
of identification of the functional relation is what the present section will focus on.

In this section, we present a simple analytical molecular structural mechanics
model incorporating the modified Morse potential function [18] to estimate elastic
constants and stress–strain relationships of nanotubes under tensile and torsion load-
ings. The analytical model originated from [19] and was extended to model the torsion
behavior of carbon nanotubes. By incorporating the modified Morse potential, it is
possible to predict the the stress–strain relationships, hence, the strength and strain to
failure of nanotubes. Detailed derivations are presented and the predicted results are
demonstrated and discussed with a few computational examples. This study shows
that it is possible to develop analytical methodologies based on molecular mechanics
and nonlocal elasticity theory to quantify mechanical behavior of a nanotube.

For obtaining these nonlocal constitutive relations according to our formulation,
we elaborate them as

σxx − (exx
0 a)2∇2σxx = C11(εxx + νεθθ ) (5.34)

σθθ − (eθθ0 a)2∇2σθθ = C11(εθθ + νεxx ) (5.35)

τxθ − (exθ
0 a)2∇2τxθ = C66γxθ (5.36)

where ∇2 = ∂2

∂x2 + 1
R2

∂2

∂θ2 , R is the radius of carbon nanotube, C11 = E/(1 − ν2),
C66 = E/(2(1 + ν)). Here, we assume different values of nonlocal scale parameters
for different directions of the single-walled carbon nanotube. If we want to solve for
e0 using the above three equations, then we need to approximate the gradient term
(∇2). The stress field depends on the displacement field, so that for a harmonic wave
field in an SWCNT, the displacement field can be written in complex form as [20]:
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Fig. 5.10 A (10, 10) arm-
chair type of single-walled
carbon nanotubes of length
34.6717 nm, consists of 580
carbon atoms arranged in
hexagonal array fashion

u(x, t) = ûe− jk1x e− jk2θe− jωt (5.37)

Here û is the frequency amplitude of displacement field of SWCNT. k1 and k2 are the
wavenumbers in axial and circumferential directions, respectively, ω is the angular
frequency of the wave motion, and j = √−1.

The gradient term with the nonlocal scaling parameter e0 in nonlocalconstitutive
relation with τ = e0a/
 is supposed to capture the small-scale effect on the dynamic
mechanical response of the nanotube. In our study we consider a = 1.42 Å, and the
scaling parameter (e0) is derived using molecular mechanics and geometry of CNT.
In this section, the estimation of e0 is presented only for armchair (see Fig. 5.10) and
zigzag (see Fig. 5.11) type of SWCNTs. However, the procedure is general and can
be extended for all types of CNTs.

5.3.1 Armchair SWCNTs

The total potential energy (Et ) of an SWCNT subjected to small strains can be
expressed as the sum of energies (Uρ) and (Uθ ) associated with the variation of
bond length and bond angle, respectively [21] given by

Et = Uρ + Uθ =
∑

i

1

2
Kρ(Δri )

2 +
∑

j

1

2
Kθ (Δθ j )

2 (5.38)
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Fig. 5.11 A (10, 0) zigzag
type of single-walled carbon
nanotube of length 34.47 nm,
consists of 340 carbon atoms
arranged in hexagonal array
fashion

where Δri is the elongation of i th bond and Δθ j is the variation of j th bond angle
and Kρ and Kθ are the related force constants respectively.

We consider the stick-spiral model [19] and analyze the equilibrium of the local
structure of the SWCNT. In this model, an elastic stick with an axial stiffness of Kρ
and an infinite bending stiffness is used to model the force-stretch relationship of the
C–C bond, and a spiral spring with a stiffness of Kθ is used to model the twisting
moment resulting from an angular distortion of the bond angle [21].

Observe that the total potential energy of SWCNT in Eq. (5.38) is a function of the
change in the bond lengths and the bond angles. So we need to express these in terms
of strains (axial, circumferential, and shear strain) and then differentiate the total
potential energy expression with respect to these strains to get the respective stresses.
The stress relations obtained in this way can then be substituted in the assumed
nonlocal constitutive relations, which contains the nonlocal scaling parameter (e0).
With this, it would then be possible to determine e0, which is the main idea in this
section.

An armchair nanotube (n, n) subjected to a longitudinal tensile stress is studied
first. Figure 5.12a and b shows an equilibrium configuration of the tube and the
associated forces and moments in three chemical bonds a, b, b, and three bond
angles α, β, β resulting from a bond elongation Δa and two bond angle variances
Δα and Δβ. The relationship between stress and the bond stretch and bond angle
variation can be determined through equilibrium and geometry of the tube structure.
Similar to the idea of modeling the molecular structure as an effective stick-spiral
system by Chang and Gao [19], we use a stick with

F(Δr) = 2βDe(1 − e−βΔr )e−βΔr (5.39)
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Fig. 5.12 Schematic illus-
tration of an armchair carbon
nanotube a analytical model
for tension (F) and b analyti-
cal model for shear (τ ), α and
β are the bond angles, a, b and
c are the C–C bond lengths

(a)

(b)

Table 5.1 Parameters of Brenner potential

Parameter Value Units

De 0.6031 nN-nm
β 26.25 nm−1

Kθ 1.42 nN-nm/rad2

Kρ 0.754 rad4

to model the force-stretch relationship of the CC bond and a spiral spring with

M(Δθ) = KθΔθ
[
1 + 3Kρ(Δθ)

4
]

(5.40)

to model the angle bending moment resulting from an angular variation of bond
angle. The stick is assumed to have an infinite bending stiffness. The parameters
calibrated by Belytschko et al. [18] with the Brenner potential are given in Table 5.1.

The axial strain (εxx ), circumferential strain (εθθ ), and shear strain (γxθ ) of arm-
chair carbon nanotube can be calculated as [18, 19, 22]:
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εxx = Δb sin
(
α
2

)+ b
2 cos

(
α
2

)
Δα

b sin
(
α
2

) (5.41)

εθθ = Δb cos
(
α
2

)− b
2 sin

(
α
2

)
Δα

a + b cos
(
α
2

) (5.42)

γxθ = aΔβ +Δb sin
(
α
2

)
b(1 + cos

(
α
2

)
)

+ 2Δb cos
(
α
2

)
2b sin

(
α
2

) (5.43)

Solving for Δα and Δb from Eqs. (5.41) and (5.42) and Δβ from Eq. (5.43) as

Δb = b sin2
(α

2

)
εxx +

[
a + b cos

(α
2

)]
cos
(α

2

)
εθθ (5.44)

Δα = 2 cos
(α

2

)
sin
(α

2

)
εxx − 2

b

[
a + b cos

(α
2

)]
sin
(α

2

)
εθθ (5.45)

Δβ = b

a

[
1 + cos

(α
2

)]
γxθ−2

{
b

a
sin
(α

2

)
εxx + cos

(
α
2

)
a sin

(
α
2

) [a + b cos
(α

2

)]
εθθ

}

(5.46)

The armchair single-walled carbon nanotube are subjected to tension (see Fig. 5.12a)
and torsion (see Fig. 5.12b) loadings, only bond stretching and angle variation terms
are significant in the total system potential energy.

For an armchair carbon nanotube, the number of the hexagonal carbon ring units
along the circumferential direction is 2n. Assuming that the number of the hexagonal
carbon ring units along the axial direction is N , thus there are 2Nn hexagonal carbon
ring units, and 4Nn bonds b in an armchair carbon nanotube. In addition, there are
4Nn angles α and 8Nn angles β in an armchair carbon nanotube for a hexagonal
carbon ring unit composed of two angles α and four angles β. Based on the above
hypotheses, we can find that the length of a (n, n) carbon nanotube is, L = √

3Na.
Hence the total molecular potential energy of an armchair carbon nanotube is

UT P E = Ub + Uα + Uβ (5.47)

where

Ub = 4Nn

[
1

2
Kρ(Δb)2

]
(5.48)

Uα = 4Nn

[
1

2
Kθ (Δα)

2
]

(5.49)

Uβ = 8Nn

[
1

2
Kθ (Δβ)

2
]

(5.50)
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This implies

UT P E = 2NnKρ(Δb)2 + 2NnKθ (Δα)
2 + 4NnKθ (Δβ)

2 (5.51)

The axial, circumferential, and shear stresses are obtained by differentiating the above
total molecular structural potential energy with respect to the corresponding stresses
as

σxx = 4NnKρΔb

(
∂Δb

∂εxx

)
+ 4NnKθΔα

(
∂Δα

∂εxx

)
+ 8NnKθΔβ

(
∂Δβ

∂εxx

)
(5.52)

σθθ = 4NnKρΔb

(
∂Δb

∂εθθ

)
+ 4NnKθΔα

(
∂Δα

∂εθθ

)
+ 8NnKθΔβ

(
∂Δβ

∂εθθ

)
(5.53)

τxθ = 4NnKρΔb

(
∂Δb

∂γxθ

)
+ 4NnKθΔα

(
∂Δα

∂γxθ

)
+ 8NnKθΔβ

(
∂Δβ

∂γxθ

)
(5.54)

Simplifying the above-mentioned stresses and writing in matrix form as

{σ } = [Uam]{ε} (5.55)

Here the size of the matrices {σ }, [Uam] and {ε} are 3 × 1, 3 × 3 and 3 × 1, respec-
tively. The elements of the matrix [Uam] are (U (i j)

am , i, j = 1, 2, 3)

U (11)
am = 4nN

[
Kρb2 sin4

(α
2

)
+ 4Kθ cos2

(α
2

)
sin2

(α
2

)
+ 8Kθ

(
b

a

)2

sin2
(α

2

)]

(5.56)

U (12)
am = U (21)

am = 4nN
(

a + b cos
(α

2

))
[

Kρb cos
(α

2

)
sin2

(α
2

)
− 4

b
Kθ cos

(α
2

)
sin2

(α
2

)
+ 8Kθ

b

a2

]

(5.57)

U (13)
am = U (31)

am = 4nN

[
4Kθ

(
b

a

)2 (
1 + cos

(α
2

))
sin
(α

2

)]
(5.58)

U (22)
am = 4nN

(
a + b cos

(α
2

)2
)[

Kρ cos2
(α

2

)
+ 4

b2 Kθ sin2
(α

2

)
+ 8Kθ

b

a2 cos
(α

2

)]

(5.59)

U (23)
am = U (32)

am = 4nN

[
4Kθ

b cos
(
α
2

)
a2 sin

(
α
2

) (1 + cos
(α

2

)) (
a + b cos

(α
2

))]

(5.60)
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U (33)
am = 4nN

[
2Kθ

(
b

a

)2 (
1 + cos

(α
2

))2
]

(5.61)

It should be noted that the angle α and β of armchair nanotubes have been found
from ab initio calculations [23] where α ≈ 2π/3 and β = π − cos−1

[
0.5 cos

(
π
2n

)]
.

Based on the assumption of the displacement field (Eq. (5.37)), the nonlocal consti-
tutive relations (Eqs. (5.34)–(5.36)) become

[
1 + (exx

0 a)2
(

k2
1 + k2

2

R2

)]
σxx = C11(εxx + νεθθ ) (5.62)

[
1 + (eθθ0 a)2

(
k2

1 + k2
2

R2

)]
σθθ = C11(εθθ + νεxx ) (5.63)

[
1 + (exθ

0 a)2
(

k2
1 + k2

2

R2

)]
τxθ = C66γxθ (5.64)

Assuming that k1 = 2πξ/a and k2 = 2πη/a (ξ , η are integers) are wavenumbers
in axial and circumferential direction, R is the radius of the CNT and a is the C–C
bond-length (1.42 Å). Rewriting Eqs. (5.62)–(5.64) in matrix form as

[E0]{σ } = [C]{ε} (5.65)

where

[E0] = [I ] +
(

k2
1 + k2

2

R2

)
diag

[
(exx

0 a)2, (eθθ0 a)2, (exθ
0 a)2

]
(5.66)

[C] =
⎡
⎣ C11 νC11 0
νC11 C11 0

0 0 C66

⎤
⎦ (5.67)

where [I ] is a 3 × 3 identity matrix and diag represents diagonal matrix.
Substituting Eq. (5.55) into Eq. (5.65) leads to

[E0][Uam]{ε} = [C]{ε} (5.68)

This is an eigenvalue problem. We need to solve for the nonlocal scaling parameters
which are the eigenvalues of the system given by Eq. (5.68). Let us assume λ = e0a,
and solving the eigenvalue problem (Eq. (5.68)) as

|[C] − [E0][Uam]| = |[F5] − λ2[F6]| = 0 (5.69)
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where
[F5] = ([C] − [Uam]) (5.70)

[F6] =
(

k2
1 + k2

2

R2

)
[Uam] (5.71)

One can get three expressions for λ (eige values), which are exx
0 , eθθ0 and exθ

0 and are
obtained as:

exx
0 = 1

3aS1

(
S1/3

0

2
− 6S1S3 − 2S2

2

S1/3
0

− S2

)
(5.72)

eθθ0 = 1

3aS1

(
− S1/3

0

4
+ 3S1S3 − S2

2

S1/3
0

− S2 + j
√

3

2

[
S1/3

0

2
+ 6S1S3 − 2S2

2

S1/3
0

])

(5.73)

exθ
0 = 1

3aS1

(
− S1/3

0

4
+ 3S1S3 − S2

2

S1/3
0

− S2 − j
√

3

2

[
S1/3

0

2
+ 6S1S3 − 2S2

2

S1/3
0

])

(5.74)
where the parameters S0, S1, S2 and S3 are given below.

S0 = 36S1S2S3 − 108S2
1 S4 − 8S3

2 + 12
√

3S1

(
4S1S3

3 − S2
2 S2

3

−18S1S2S3S4 + 27S2
1 S2

4 + 4S3
2 S4

)1/2
(5.75)

S1 = − F11
6 F22

6 F33
6 + F11

6 F23
6 F32

6 + F21
6 F21

6 F33
6 − F21

6 F13
6 F32

6

− F12
6 F23

6 F31
6 + F13

6 F22
6 F31

6 (5.76)

S2 = F22
5 F11

6 F33
6 + F33

5 F11
6 F22

6 − F23
5 F11

6 F32
6 − F32

5 F11
6 F23

6 + F11
5 F22

6 F33
6

− F11
5 F23

6 F32
6 − F12

5 F21
6 F33

6 − F12
6 F21

6 F33
6 − F13

5 F21
6 F31

6 + F32
5 F13

6 F21
6

− F21
5 F12

6 F33
6 − F21

5 F32
6 F13

6 + F12
5 F23

6 F31
6 + F21

6 F23
6 F31

6 − F13
5 F22

6 F31
6

− F22
5 F13

6 F31
6 + F31

5 F23
6 F31

6 − F31
6 F13

6 F22
6 (5.77)
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S3 = − F22
5 F33

5 F11
6 + F23

5 F32
5 F11

6 − F11
5 F22

5 F33
6 − F11

5 F33
5 F22

6 + F11
5 F23

5 F32
6

+ F11
5 F32

5 F23
6 + F12

5 F33
5 F12

6 − F12
5 F21

5 F33
6 + F21

5 F33
5 F12

6 − F21
5 F33

5 F12
6

− F13
5 F21

5 F32
6 − F21

5 F32
5 F13

6 − F12
5 F23

5 F31
6 + F13

5 F22
5 F31

5 − F12
5 F31

5 F23
5

− F23
5 F31

5 F12
6 + F13

5 F31
5 F22

6 + F22
5 F31

5 F14
6 (5.78)

S4 = F12
5 F23

5 F31
5 − F13

5 F22
5 F31

5 + F13
5 F21

5 F32
5 + F11

5 F22
5 F33

5 − F11
5 F23

5 F32
5

− F12
5 F21

5 F33
5 (5.79)

F11
5 = C11 − U (11)

am , F12
5 = νC11 − U (21)

am , F13
5 = −U (31)

am ,

F21
5 = νC11 − U (12)

am , F22
5 = C11 − U (22)

am F23
5 = −U (32)

am ,

F31
5 = −U (13)

am , F32
5 = −U (23)

am , F33
5 = C66 − U (33)

am . (5.80)

F11
6 =

(
k2

1 + k2
2

R2

)
U (11)

am , F12
6 =

(
k2

1 + k2
2

R2

)
U (12)

am , F13
6 =

(
k2

1 + k2
2

R2

)
U (13)

am ,

F21
6 =

(
k2

1 + k2
2

R2

)
U (21)

am , F22
6 =

(
k2

1 + k2
2

R2

)
U (22)

am , F23
6 =

(
k2

1 + k2
2

R2

)
U (23)

am ,

F31
6 =

(
k2

1 + k2
2

R2

)
U (31)

am , F32
6 =

(
k2

1 + k2
2

R2

)
U (32)

am , F33
6 =

(
k2

1 + k2
2

R2

)
U (33)

am .

(5.81)

Here S0, S1, S2 and S3 are functions of chirality (n,m) of SWCNT and axial
and circumferential wavenumbers k1 = 2πξ/a and k2 = 2πη/a, respectively. The
variation of the nonlocal scaling parameters for armchair SWCNT are plotted in
Fig. 5.13, for various modes of wave propagation.

Let us now discuss the variation of e0 for an armchair CNT. The variation of the
nonlocal scaling parameter with respect to SWCNT diameter (or chirality) for arm-
chair type of SWCNTs is shown in Fig. 5.13, for various modes of wave propagation.
For (ξ = 1, η = 0)—first axial mode, (ξ = 0, η = 1)—first torsional mode, and
(ξ = 1, η = 1)—first coupled axial—torsional mode. This figure shows that for a
given wave branch, the variations in the nonlocal scaling parameters over the CNT
diameter are identical (see Fig. 5.13). This implies that exx

0 = eθθ0 = exθ
0 = e0. From

Fig. 5.13, one can observe the following phenomena for armchair type of CNTs.
(i) The value of e0 is almost constant for ξ = 1, η = 0, which means that there is

only axial mode of wave propagation in SWCNT. The value of e0 starts from a very
small value for smaller diameters of CNT and the value saturates at ≈ 0.3617.
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Fig. 5.13 Nonlocal scaling
parameter variation with CNT
diameter for armchair carbon
nanotube for the case of
longitudinal (ξ = 1, η = 0),
torsional (ξ = 0, η = 1)
and coupled (ξ = 1, η = 1)
modes of wave propagation,
kx and kθ are the axial and
circumferential wavenumbers
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(ii) The variation in e0 is linear with the SWCNT diameter for ξ = 0, η = 1, i.e.,
when there is only torsional type wave propagation in SWCNT.

(iii) Finally, when there is a coupled axial–torsional mode of wave propagation
in the SWCNT, i.e., (ξ = 1, η = 1), then the value of e0 approaches to the value of
e0 obtained in the case of purely axial mode of wave propagation for large diameters
and purely torsional mode of wave propagation for small diameters of the SWCNT.
This value saturates at ≈ 0.3458.

5.3.2 Zigzag SWCNTs

Consider a zigzag SWCNT (n, 0) with the stick-spiral model as shown in Fig. 5.14a
and b, subjected to tensile loading and torsional loading, respectively. Now, the axial
strain (εxx ), circumferential strain (εθθ ) and shear strain (γxθ ) of zigzag CNT can be
obtained from the geometrical deformation of the stick-spiral model as [18, 19, 22]:

εxx = Δb +Δa cos(π − α)+ a sin(π − α)Δα

b + a cos(π − α)
(5.82)

εθθ = Δa sin(π − α)− a cos(π − α)Δα

a sin(π − α)
(5.83)

γxθ = bΔα +Δa sin(π − α)

a (1 + cos(π − α))
+ 2Δa cos(π − α)

2a sin(π − α)
(5.84)

Solving Eqs. (5.82)–(5.84) for Δa, Δb and Δα as
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Fig. 5.14 Schematic illus-
tration of a zigzag carbon
nanotube a analytical model
for tension (F) and b analyt-
ical model for shear (τ ), α
and β are the bond angles,
a, b, and c are the C–C bond
lengths
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{Δ} = [Uzz1]{ε} (5.85)

where
{Δ} = {Δa Δb Δα}T (5.86)

{ε} = {εxx εθθ γxθ }T (5.87)

U (12)
zz1 = ab sin2(π − α)

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.88)

U (13)
zz1 = a2(1 + cos(π − α)) cos(π − α) sin(π − α)

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.89)

U (22)
zz1 = a sin2(π − α) (a + (a − b) cos(π − α))

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.90)

U (23)
zz1 = − a2 sin(π − α)(1 + cos(π − α))

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.91)

U (32)
zz1 = − a(1 + cos(π − α)) sin(π − α)

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.92)

U (33)
zz1 = a(1 + cos(π − α)) sin2(π − α)

(b + a cos(π − α)) sin2(π − α)+ a(1 + cos(π − α)) cos2(π − α)
(5.93)

U (21)
zz1 = b + a cos(π − α) (5.94)

U (11)
zz1 = U (31)

zz1 = 0 (5.95)

The relationship between the bond angles α and β is

Δβ = 2 cosα

cos
(
β
2

) cos
(π

n

)
Δα (5.96)
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For simplicity we express Eq. (5.96) as

Δβ = �Δα (5.97)

where

� = 2 cosα

cos
(
β
2

) cos
(π

n

)
(5.98)

For a zigzag carbon nanotube, the number of the hexagonal carbon ring units along
the circumferential direction is n. Assuming that the number of the hexagonal carbon
ring units along the axial direction is N , there are Nn hexagonal carbon ring units,
and 2Nn bonds b in a zigzag carbon nanotube. And there are 2Nn angles α and 4Nn
angles β in a zigzag carbon nanotube for a hexagonal carbon ring unit composed
of two angles α and four angles β. Hence, the total molecular potential energy of a
zigzag carbon nanotube is

UT P E = Ua + Ub + Uα + Uβ (5.99)

where

Ua = 2Nn

[
1

2
Kρ(Δa)2

]
(5.100)

Ub = 2Nn

[
1

2
Kρ(Δb)2

]
(5.101)

Uα = 2Nn

[
1

2
Kθ (Δα)

2
]

(5.102)

Uβ = 4Nn

[
1

2
Kθ (Δβ)

2
]

(5.103)

This implies that

UT P E = NnKρ(Δa)2 + NnKρ(Δb)2 + NnKθ (Δα)
2 + 2NnKθ (Δβ)

2 (5.104)

Simplifying the above equation as

UT P E = NnKρ
[
(Δa)2 + (Δb)2

]
+ NnKθ

[
1 + 2�2

]
(Δα)2 (5.105)

The axial, circumferential, and shear stresses are obtained by differentiating the above
total molecular structural potential energy with respect to the corresponding stresses
as
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σxx = ∂UT P E

∂εxx
= 2nN Kρ

[
Δa

∂Δa

∂εxx
+Δb

∂Δb

∂εxx

]
+ 2nN Kθ

(
1 + 2�2

)
Δα

∂Δα

∂εxx
(5.106)

σθθ = ∂UT P E

∂εθθ
= 2nN Kρ

[
Δa

∂Δa

∂εθθ
+Δb

∂Δb

∂εθθ

]
+ 2nN Kθ

(
1 + 2�2

)
Δα

∂Δα

∂εθθ
(5.107)

τxθ = ∂UT P E

∂γxθ
= 2nN Kρ

[
Δa

∂Δa

∂γxθ
+Δb

∂Δb

∂γxθ

]
+ 2nN Kθ

(
1 + 2�2

)
Δα

∂Δα

∂γxθ
(5.108)

Simplifying the above three equations and writing in matrix form as

{σ } = [Uzz2]{ε} (5.109)

where the elements of the matrix [Uzz2] are (U (i j)
zz2 , i, j = 1, 2, 3)

U (11)
zz2 = 2nN Kρ

(
U (21)

zz1

)2
(5.110)

U (12)
zz2 = U (21)

zz2 = 2nN KρU (21)
zz1 U (22)

zz1 (5.111)

U (13)
zz2 = U (31)

zz2 = −2nN KρU (21)
zz1 U (23)

zz1 (5.112)

U (22)
zz2 = 2nN

[
Kρ
(

U (11)
zz1

)2 + Kρ
(

U (22)
zz1

)2 + Kθ
(

1 + 2�2
) (

U (31)
zz1

)2
]

(5.113)

U (23)
zz2 = U (23)

zz2 = 2nN
[

KρU (11)
zz1 U (12)

zz1 − KρU (22)
zz1 U (23)

zz1 + Kθ
(

1 + 2�2
)

U (31)
zz1 U (32)

zz1

]
(5.114)

U (33)
zz2 = 2nN

[
Kρ
(

U (12)
zz1

)2 + Kρ
(

U (23)
zz1

)2 + Kθ
(

1 + 2�2
) (

U (32)
zz1

)2
]

(5.115)

Substituting Eq. (5.109) into Eq. (5.65) gives

[E0][Uzz2]{ε} = [C]{ε} (5.116)

This is an eigenvalue problem. We need to solve for the nonlocal scaling parameters
which are the eigenvalues of the system given by Eq. (5.116). Assuming λ = e0a,
and solving the eigenvalue problem (Eq. (5.116)) as

|[C] − [E0][Uzz2]| = |[F7] − λ2[F8]| = 0 (5.117)

where
[F7] = ([C] − [Uzz2]

)
(5.118)



5.3 Prediction of Nonlocal Scale Parameter 99

[F8] =
(

k2
1 + k2

2

R2

)
[Uzz2] (5.119)

One can get three expressions for λ (eigenvalues), corresponding to exx
0 , eθθ0 and exθ

0
and are obtained as:

exx
0 = 1

3aX1

(
X1/3

0

2
− 6X1 X3 − 2X2

2

X1/3
0

− X2

)
(5.120)

eθθ0 = 1

3aX1

(
− X1/3

0

4
+ 3X1 X3 − X2

2

X1/3
0

− X2 + j
√

3

2

[
X1/3

0

2
+ 6X1 X3 − 2X2

2

X1/3
0

])

(5.121)

exθ
0 = 1

3aX1

(
− X1/3

0

4
+ 3X1 X3 − X2

2

X1/3
0

− X2 − j
√

3

2

[
X1/3

0

2
+ 6X1 X3 − 2X2

2

X1/3
0

])

(5.122)
where the parameters X0, X1, X2 and X3 are given below.

X0 = 36X1 X2 X3 − 108X2
1 X4 − 8X3

2 + 12
√

3X1

(
4X1 X3

3 − X2
2 X2

3

−18X1 X2 X3 X4 + 27X2
1 X2

4 + 4X3
2 X4

)1/2
(5.123)

X1 = − F11
8 F22

8 F33
8 + F11

8 F23
8 F32

8 + F21
8 F21

8 F33
8 − F21

8 F13
8 F32

8

− F12
8 F23

8 F31
8 + F13

8 F22
8 F31

8 (5.124)

X2 = F22
7 F11

8 F33
8 + F33

7 F11
8 F22

8 − F23
7 F11

8 F32
8 − F32

7 F11
8 F23

8 + F11
7 F22

8 F33
8

− F11
7 F23

8 F32
8 − F12

7 F21
8 F33

8 − F12
8 F21

8 F33
8 − F13

7 F21
8 F31

8 + F32
7 F13

8 F21
8

− F21
7 F12

8 F33
8 − F21

7 F32
8 F13

8 + F12
7 F23

8 F31
8 + F21

8 F23
8 F31

8 − F13
7 F22

8 F31
8

− F22
7 F13

8 F31
8 + F31

7 F23
8 F31

8 − F31
8 F13

8 F22
8 (5.125)

X3 = − F22
7 F33

7 F11
8 + F23

7 F32
7 F11

8 − F11
7 F22

7 F33
8 − F11

7 F33
7 F22

8 + F11
7 F23

7 F32
8

+ F11
7 F32

7 F23
8 + F12

7 F33
7 F12

8 − F12
7 F21

7 F33
8 + F21

7 F33
7 F12

8 − F21
7 F33

7 F12
8

− F13
7 F21

7 F32
8 − F21

7 F32
7 F13

8 − F12
7 F23

7 F31
8 + F13

7 F22
7 F31

7 − F12
7 F31

7 F23
7

− F23
7 F31

7 F12
8 + F13

7 F31
7 F22

8 + F22
7 F31

7 F14
8 (5.126)
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X4 = F12
7 F23

7 F31
7 − F13

7 F22
7 F31

7 + F13
7 F21

7 F32
7 + F11

7 F22
7 F33

7 − F11
7 F23

7 F32
7

− F12
7 F21

7 F33
7 (5.127)

F11
7 = C11 − U (11)

zz2 , F12
7 = νC11 − U (21)

zz2 , F13
7 = −U (31)

zz2 ,

F21
7 = νC11 − U (12)

zz2 , F22
7 = C11 − U (22)

zz2 F23
7 = −U (32)

zz2 ,

F31
7 = −U (13)

zz2 , F32
7 = −U (23)

zz2 , F33
7 = C66 − U (33)

zz2 . (5.128)

F11
8 =

(
k2

1 + k2
2

R2

)
U (11)

zz2 , F12
8 =

(
k2

1 + k2
2

R2

)
U (12)

zz2 , F13
8 =

(
k2

1 + k2
2

R2

)
U (13)

zz2 ,

F21
6 =

(
k2

1 + k2
2

R2

)
U (21)

zz2 , F22
8 =

(
k2

1 + k2
2

R2

)
U (22)

zz2 , F23
8 =

(
k2

1 + k2
2

R2

)
U (23)

zz2 ,

F31
8 =

(
k2

1 + k2
2

R2

)
U (31)

zz2 , F32
8 =

(
k2

1 + k2
2

R2

)
U (32)

zz2 , F33
8 =

(
k2

1 + k2
2

R2

)
U (33)

zz2 .

(5.129)

Here, X0, X1, X2 and X3 are functions of chirality (n,m) of SWCNT and axial
and circumferential wavenumbers k1 = 2πξ/a and k2 = 2πη/a, respectively. The
variation of the nonlocal scaling parameters for armchair CNT is plotted in Fig. 5.15,
for various modes of wave propagation.

Let us next discuss the variation of e0 for zigzag CNTs. The variation of the
nonlocal scaling parameter with respect to SWCNT diameter (or chirality) for zigzag
type of SWCNTs is shown in Fig. 5.15, for various modes of wave propagation. For

Fig. 5.15 Nonlocal scaling
parameter variation with CNT
diameter for zigzag carbon
nanotube for the case of
longitudinal (ξ = 1, η = 0),
torsional (ξ = 0, η = 1),
and coupled (ξ = 1, η = 1)
modes of wave propagation,
k1 and k2 are the axial and
circumferential wavenumbers
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(ξ = 1, η = 0)—first axial mode, (ξ = 0, η = 1)—first torsional mode, and
(ξ = 1, η = 1)—first coupled axial—torsional mode. This figure shows that for a
given wave branch, the variations in the nonlocal scaling parameters over the CNT
diameter are identical (see Fig. 5.15). This implies that exx

0 = eθθ0 = exθ
0 = e0.

From Fig. 5.15, one can observe the following phenomena for zigzag type of
CNTs.

(i) The value of e0 is almost constant for ξ = 1, η = 0, which means that there is
only axial mode of wave propagation in SWCNT. The value of e0 starts from a very
small value for smaller diameters of CNT and the value saturates at ≈ 0.3617.

(ii) The variation in e0 is linear with the SWCNT diameter for ξ = 0, η = 1, i.e.,
when there is only torsional type wave propagation in SWCNT.

(iii) Finally, when there is a coupled axial–torsional mode of wave propagation
in the SWCNT, i.e., (ξ = 1, η = 1), then the value of e0 approaches to the value of
e0 obtained in the case of purely axial mode of wave propagation for large diameters
and purely torsional mode of wave propagation for small diameters of the SWCNT.
This value saturates at ≈ 0.3221.

The study performed in this and in the previous section helps one to use these
obtained values of e0 based on the CNT diameter (or chirality), to analyze the wave
dispersion behavior in CNTs via nonlocal continuum mechanics.

5.3.3 Chiral SWCNTs

The previous sections dealt with the estimation of nonlocal scale parameter for differ-
ent types of nanotubes separately. In this section, we formulate a generalized model
to estimate the nonlocal scale parameter for all types of nanotubes just by changing
the indices m and n. The present model results are also compared with the previous
sections’ results.

An SWCNT can be viewed as a hexagonal graphene sheet (see Fig. 5.16) rolled
into a seamless tube. The graphene sheet can be rolled up with various different
angles, which is quantified as a chiral angle. The CNTs obtained from graphene
sheet are one atom thick. The fundamental structure of SWCNTs can be classified
into three categories as zigzag, armchair, and chiral (see Figs. 5.16 and 5.17) in terms
of the chiral vector C and chiral angle φ. The chiral vector is defined as

C = nb1 + mb2. (5.130)

where b1 and b2 are unit vectors, the integer pairs (n,m) are the chiral parameters,
which describe the structure of the CNTs. The chiral angle is given by

φ = cos−1
(

2n + m

2
√

n2 + nm + n2

)
. (5.131)



102 5 Material Property and Nonlocal Scale Parameter Estimation for Carbon Nanotubes

Fig. 5.16 Schematic diagram
of graphene sheet of 40 Å ×
40 Å, consisting of 390 carbon
atoms arranged in hexagonal
array showing base vectors
(b1,b2). The schematic figure
also shows the three possible
types of chirality to form
the respective single-walled
carbon nanotubes

The symmetry groups of CNTs are denoted as zigzag CNT (n, 0) (φ = 0) and the
armchair CNT (n, n) (φ = π/6). If n �= m, the CNT is called chiral CNT (n,m)
(0 < φ < π/6). The modulus of the chiral vector represents the circumference of
the tube from which the tube diameter is obtained as

dnt =
√

3a

π

√
n2 + nm + m2, (5.132)

where a is the C–C bond length (for SWCNT, a ≈ 0.142 nm). The modulus of the
translation vector (T) represents the length of the tube (see Fig. 5.17).

The total potential energy (Et ) of a single-walled carbon nanotube (SWCNT),
see Fig. 5.18, subjected to small strains can be expressed as the sum of energies (Uρ)
and (Uθ ) associated with the variation of bond length and bond angle, respectively
(see Chang et al. [21]). In this discussion we will consider the SWCNT subjected to
axial force only, so that the other energies associated with inversion, torsion, van der
Waals, electrostatic interactions etc., are negligible. Now, the total potential energy
can be written as

Et = Uρ + Uθ =
∑

i

1

2
Kρ(Δri )

2 +
∑

j

1

2
Kθ (Δθ j )

2 (5.133)

where Δri is the elongation of i th bond and Δθ j is the variation of j th bond angle
and Kρ and Kθ are the related force constants respectively.

As before, we consider the ’stick-spiral’ model proposed by Chang and Gao [19]
and analyze the equilibrium situation of the local structure of the SWCNT. The
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Fig. 5.17 Schematic diagram
of graphene sheet (30 A0 ×
30 A0) consisting of 390
carbon atoms (generated in
MatLab), showing chiral
vector (C), chiral angle (φ),
translation vector (T) and base
vectors b1 = a, b2 = b to
define an SWCNT and n, m
are the chiral parameters

T

C

φ
nb

1
b

1

b
2

mb
2

Fig. 5.18 A schematic of
(10,5) chiral type of single-
walled carbon nanotube of
length 34.563 nm, consists of
450 carbon atoms arranged in
hexagonal fashion

procedure to determine the nonlocal parameter is similar to what was presented in
the previous section.
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(a) (b)

(c) (d)

Fig. 5.19 a Thickness coordinate and cross section of the single-walled carbon nanotube, b top
view of the local structure shows the torsion angles, c out-of plane rotations in the top view of the
local structure, and d schematic diagram show the nearest neighbor interaction (side view)

Let us consider an SWCNT with chirality (n,m) subjected to an axial force F , an
internal pressure P0, and an axial torque MT . First, we express the strains in terms of
the change in the bond lengths (Δri ) and the bond anglesΔθ j and chirality (n,m) of
the SWCNT. These equations are solved for the (Δri ) as a function of the three in-
plane strains. These axial, circumferential, and shear strains are calculated by Chang
et al. [21] with the geometric description of the lattice structure in the SWCNT (see
Fig. 5.19) as follows:

εxx = αΔ [(2n + m)r1 cosφ1 − (n − m)r2 cosφ2 − (2m + n)r3 cosφ3]

(5.134)

εθθ = βΔ [mr1 sin φ1 − (n + m)r2 sin φ2 + nr3 sin φ3] (5.135)

γxθ = αΔ [(2n + m)r1 sin φ1 − (n − m)r2 sin φ2 − (2m + n)r3 sin φ3]

(5.136)

ν = −εθθ /εxx (5.137)
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where (n,m) is the chirality of SWCNT and φ1, φ2, φ3 are the chiral angles defined
in Fig. 5.19d and ν is the Poisson’s ratio, and

α = 1

3a
√

n2 + nm + m2
, (5.138)

β = 1√
3a

√
n2 + nm + m2

(5.139)

The chiral angles (φi ) for an undeformed (n,m) SWCNT are given as

φ1 = cos−1
(

2n + m

2
√

n2 + nm + m2

)
(5.140)

φ2 = 4π

3
+ φ1 (5.141)

φ3 = 2π

3
+ φ1 (5.142)

Equations (5.134)–(5.136) are rewritten in matrix form as

{ε} = [T1]{Δφ} + [T2]{Δr} (5.143)

where

{ε} = {εxx εθθ γxθ }T (5.144)

{Δφ} = {Δφ1 Δφ2 Δφ3}T (5.145)

{Δr} = {Δr1 Δr2 Δr3}T (5.146)

[T1] =
⎡
⎣−α(2n + m)r1 sin φ1 α(n − m)r2 sin φ2 α(2m + n)r3 sin φ3

βmr1 cosφ1 −β(n + m)r2 cosφ2 βnr3 cosφ3
α(2n + m)r1 cosφ1 −α(n − m)r2 cosφ2 −α(2m + n)r3 cosφ3

⎤
⎦

(5.147)

[T2] =
⎡
⎣α(2n + m) cosφ1 −α(n − m) cosφ2 −α(2m + n) cosφ3

βm sin φ1 −β(n + m) sin φ2 βn sin φ3
α(2n + m) sin φ1 −α(n − m) sin φ2 −α(2m + n) sin φ3

⎤
⎦ (5.148)

It should be noted that Δφi is dependent on Δri geometrically. This geometrical
relationship is determined by using the equilibrium of lattice due to the force field
as expressed below.

We considered the (n,m) SWCNT as subjected to an axial force F , an internal
pressure P0, and an axial torque MT . The relationship between the external and
internal forces is
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F = (n + m) f1 + m f2 (5.149)

P0 = − 1

T R
[(n − m)s1 + (2n + m)s2] (5.150)

MT = [(n + m)s1 + ms2] × R (5.151)

where R is tube radius, T is the magnitude of the translation vector T and fi , and si are
forces on the C–C bonds along axial and circumferential directions (see Fig. 5.19),
respectively. Now the equilibrium of the local structure of the SWCNT needs

f1 + f2 + f3 = 0 (5.152)

s1 + s2 + s3 = 0 (5.153)

The force equilibrium and the moment equilibrium of the three C–C bonds can be
obtained as, respectively,

fi cosφi + si sin φi = KρΔri , i = 1, 2, 3 (5.154)

ri

2
( fi sin φi − si cosφi ) = Kθ

(
Δθ j cosΩi j +Δθk cosΩik

)
,

i, j, k = 1, 2, 3; i �= j �= k (5.155)

where Ωi j (can be seen clearly from the top view of the CNT) is the twist angle
between the plane through ri and parallel to the nanotube axis and the plane of θ j
(tangential to the tube) as shown in Fig. 5.19d. This twist angle Ωi j (Fig. 5.19c) is
obtained as

cosΩi j = (cosφi sin φk cosϕ j − sin φi cosφk)/ sin θ j , i, j, k = 1, 2, 3; i �= j �= k
(5.156)

The chiral angles φi , the out-of plane torsion angles ϕi (see Fig. 5.19b), and the bond
angles θi are defined in Fig. 5.19d. The geometry of the lattice of an SWCNT satisfies
the following relation:

cos θi = sin φ j sin φk cosϕi+cosφ j cosφk, i, j, k = 1, 2, 3; i �= j �= k (5.157)

From Eqs. (5.156) and (5.157), the change in bond angle (Δθi ) is obtained as

Δθi = −(Δφ j cosΩ j i +Δφk cosΩki ), i, j, k = 1, 2, 3; i �= j �= k (5.158)

Substituting Eq. (5.158) into Eq. (5.155), the moment equilibrium equation becomes

ri

2Kθ
( fi sin φi − si cosφi ) = AiiΔφi + Ai jΔφ j + AikΔφk,

i, j, k = 1, 2, 3; i �= j �= k (5.159)
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where

Aii = −(cos2Ωi j + cos2Ωik) (5.160)

Ai j = − cosΩik cosΩ jk (5.161)

Aik = − cosΩi j cosΩk j (5.162)

The cylindrical structure of an SWCNT is characterized by its chiral vector, the
dislocation between the head and the tail of the chiral vector, which should be zero
under stress-free condition. This feature actually gives compatible equations for a
stress-free SWCNT as follows:

Δ[mr1 cosφ1 − (n + m)r2 cosφ2 + nr3 cosφ3] = 0 (5.163)

Now, we introduce two series of internal forces pi and qi through Eqs. (5.154) and
(5.155), which are expressed as

fi cosφi + si sin φi = KρΔri ≡ pi , i = 1, 2, 3 (5.164)

ri

2Kθ
( fi sin φi − si cosφi ) = AiiΔφi + Ai jΔφ j + AikΔφk ≡ ri qi

2Kθ
,

i, j, k = 1, 2, 3; i �= j �= k (5.165)

This implies that the internal bond forces fi and si are given as

fi = pi cosφi + qi sin φi , i = 1, 2, 3 (5.166)

si = pi sin φi − qi cosφi , i = 1, 2, 3 (5.167)

Substituting Eqs. (5.166) and (5.167) into Eqs. (5.149)–(5.153), we get

F = (n + m)(p1 cosφ1 + q1 sin φ1)+ m(p2 cosφ2 + q2 sin φ2) (5.168)

P0 = − 1

T R
[(n − m)(p1 sin φ1 − q1 cosφ1)+ (2n + m)(p2 sin φ2 − q2 cosφ2)]

(5.169)

MT = R[(n + m)(p1 sin φ1 − q1 cosφ1)+ m(p2 sin φ2 − q2 cosφ2)] (5.170)

(p1 sin φ1 + p2 sin φ2 + p3 sin φ3)+ (q1 cosφ1 + q2 cosφ2 + q3 cosφ3) = 0

(5.171)

(p1 cosφ1 + p2 cosφ2 + p3 cosφ3)− (q1 sin φ1 + q2 sin φ2 + q3 sin φ3) = 0

(5.172)
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Once two of the external forces (P0 and MT ) are known, pi can be expressed as a
function of qi . We assume that the SWCNT is subjected only to an axial force F , thus
we have internal pressure P0 = 0 and axial torque MT = 0. Using this information
in Eqs. (6.27), (5.170) and (5.172) and rearranging in pi and qi , one has

⎧⎨
⎩

p1
p2
p3

⎫⎬
⎭ =

⎡
⎣ cot φ1 0 0

0 cot φ2 0
0 0 cot φ3

⎤
⎦
⎧⎨
⎩

q1
q2
q3

⎫⎬
⎭ = [M]{q} (5.173)

Combining Eqs. (5.163), (5.165)–(5.167) and (5.171) and eliminating fi , si , and pi ,
we get

B1Δφ1 + B2Δφ2 + B3Δφ3 + C1μa
q1

2Kθ
+ C2μa

q2

2Kθ
+ C3μa

q3

2Kθ
= 0 (5.174)

D1q1 + D2q2 + D3q3 = 0 (5.175)

where

{B1, B2, B3} = {m sin φ1, −(n + m) sin φ2, n sin φ3} (5.176)

{C1, C2, C3} = −2 {m cosφ1, −(n + m) cosφ2, n cosφ3} [M] (5.177)

{D1, D2, D3} = {cosφ1, cosφ2, cosφ3} [M] + {sin φ1, sin φ2, sin φ3}
(5.178)

Using Eq. (5.164), we have
Kρ{Δr} = {p} (5.179)

Substituting Eq. (5.173) into Eq. (5.179) we get

Kρ{Δr} = [M]{q} (5.180)

For undeformed SWCNT, r1 = r2 = r3 = a and from Eqs. (5.164), (5.174) and
(5.175), we obtain the following relations:

Δφi = ψiΔφ3 (5.181)

qi = 2μKρaQiΔφ3 (5.182)

where

http://dx.doi.org/10.1007/978-3-319-01032-8_6
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ψi = xi + yiμ

x3 + y3μ
(5.183)

Qi = zi

x3 + y3μ
(5.184)

μ = Kθ
Kρa2 (5.185)

xi = (Aik Di + A jk D j + Akk Dk)B j − (Ai j Di + A j j D j + Akj Dk)Bk (5.186)

yi = (Aik Di + A jk D j + Akk Dk)(Ai j Ci + A j j C j + Akj Ck)

−(Ai j Di + A j j D j + Akj Dk)(AikCi + A jkC j + AkkCk) (5.187)

zi = [Aik(Akj Dk + A j j D j )− Ai j (Akk Dk + A jk D j )]Bi + [Aii (Akk Dk

+A jk D j )− Aik(Aki Dk + A ji D j )]B j + [Ai j (Aki Dk + A ji D j )−
Aii (Akj Dk + A j j D j )]Bk (5.188)

with i, j, k are counted in clockwise direction. Using Eq. (5.182) in Eq. (5.180), we
get

{Δr} = 2μa[M]{Q}Δφ3 (5.189)

where
{Q} = {Q1 Q2 Q3}T (5.190)

and the parameters Qi and μ are defined in Eq. (5.184) and Eq. (5.185), respectively.
From Eq. (5.189), one can have three expressions for Δφ3 as given below:

Δφ3 = Δr1

2μaQ1 cot φ1
(5.191)

Δφ3 = Δr2

2μaQ2 cot φ2
(5.192)

Δφ3 = Δr3

2μaQ3 cot φ3
(5.193)

Combining Eqs. (5.181), (5.182), and Eqs. (5.191)–(5.193) we obtain the nontrivial
solution in Δφ j as

Δφ1 = ψ1Δφ3 = ψ1
Δr1

2μaQ1 cot φ1
(5.194)

Δφ2 = ψ2Δφ3 = ψ2
Δr2

2μaQ2 cot φ2
(5.195)

Substituting Eqs. (5.194) and (5.195) into Eq. (5.145), we get
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{Δφ} =
⎡
⎢⎣

Δψ1
2μaQ1 cot φ1

0 0

0 Δψ2
2μaQ2 cot φ2

0

0 0 Δψ3
2μaQ3 cot φ3

⎤
⎥⎦
⎧⎨
⎩
Δr1
Δr2
Δr3

⎫⎬
⎭ = [�]{Δr} (5.196)

Eliminating Δφ in Eq. (5.143) with the use of Eq. (5.196) and solving for {Δr} as

{Δr} = ([T1][�] + [T2]
)−1 {ε} = [J1]{ε} (5.197)

Having determined the relationship between the bond elongation {Δr} and continuum
strain {ε} from the original Eq. (5.143), the other variablesΔθ j are expressed also in
tems of {ε} as follows. The expression for the change in bond anglesΔθ j is given in
Eq. (5.158) and is written in matrix form as

{Δθ} =
⎡
⎣ 0 − cosΩ21 − cosΩ31

− cosΩ12 0 − cosΩ32
− cosΩ13 − cosΩ23 0

⎤
⎦ {Δφ} = [T3]{Δφ} (5.198)

Substituting Eqs. (5.196) and (5.197) into Eq. (5.198), we finally get

{Δθ} = [T3][�]{Δr} = [T3][�] ([T1][�] + [T2]
)−1 {ε} = [J2]{ε} (5.199)

To this end, Eqs. (5.197) and (5.199) map the atomistic variables ({Δr} and {Δθ})
into continuum variable {ε}.

From Eqs. (5.197) and (5.199), we have closed-form expressions for the change
in bond lengths and the change in bond angles as functions of the three in-plane
strains. Notice that these expressions are given for the assumed model of lattice
structure as shown in Fig. 5.19d. Substituting these two expressions for strain in the
atomic potential energy (see Eq. (5.133)) and differentiating with respect to the three
in-plane strains, we get the respective stresses (axial, circumferential, and shear) as

σxx = 1

V

∫
Ξ

∂Et

∂εxx
≡
∑

i

KρΔri
∂Δri

∂εxx
+
∑

j

KθΔθ j
∂Δθ j

∂εxx
(5.200)

σθθ = 1

V

∫
Ξ

∂Et

∂εθθ
≡
∑

i

KρΔri
∂Δri

∂εθθ
+
∑

j

KθΔθ j
∂Δθ j

∂εθθ
(5.201)

τxθ = 1

V

∫
Ξ

∂Et

∂γxθ
≡
∑

i

KρΔri
∂Δri

∂γxθ
+
∑

j

KθΔθ j
∂Δθ j

∂γxθ
(5.202)

where i, j = 1, 2, 3; Ξ is the domain of interest, V is the volume occupied by the
3-atom system, which can be obtained as V = A(r3 sinΩ31+2h), where A is the area
of the three atom system, 2h is the thickness of the SWCNT sheet (approximately
the s-orbital diameter of carbon atom), r3 is the bond length of the third atom, and
Ω31 is the twist angle as shown in Fig. 5.19c. The area of the three atom system is
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obtained as

A = 1

2

∣∣∣∣∣∣
r1 sin φ1 −r2 sin φ2 r3 sin φ3
r1 cosφ1 r2 cosφ2 −r3 cosφ3

1 1 1

∣∣∣∣∣∣ (5.203)

Equations (5.200)–(5.202) can be rewritten as

σxx = Kρ{Δr}T ∂

∂εxx
{Δr} + Kθ {Δθ}T ∂

∂εxx
{Δθ} (5.204)

σθθ = Kρ{Δr}T ∂

∂εθθ
{Δr} + Kθ {Δθ}T ∂

∂εθθ
{Δθ} (5.205)

τxθ = Kρ{Δr}T ∂

∂γxθ
{Δr} + Kθ {Δθ}T ∂

∂γxθ
{Δθ} (5.206)

Substituting Eqs. (5.197) and (5.199) into Eqs. (5.204)–(5.206), we get

σxx = Kρ{ε}T [J1]T [J1] ∂{ε}
∂εxx

+ Kθ {ε}T [J2]T [J2] ∂{ε}
∂εxx

(5.207)

σθθ = Kρ{ε}T [J1]T [J1] ∂{ε}
∂εθθ

+ Kθ {ε}T [J2]T [J2] ∂{ε}
∂εθθ

(5.208)

τxθ = Kρ{ε}T [J1]T [J1] ∂{ε}
∂εxθ

+ Kθ {ε}T [J2]T [J2] ∂{ε}
∂εxθ

(5.209)

Introducing [F1] = [J1]T [J1] and [F2] = [J2]T [J2], and then simplifying
Eqs. (5.207)–(5.209), we get the continuum equivalentconstitutive relation for the
lattice as

{σ } = [J3]{ε} (5.210)

where
{σ } = {σxx σθθ σxθ }T (5.211)

[J3] =
⎡
⎣ KρF11

1 + Kθ F11
2 KρF21

1 + Kθ F21
2 KρF31

1 + Kθ F31
2

KρF12
1 + Kθ F12

2 KρF22
1 + Kθ F22

2 KρF32
1 + Kθ F32

2
KρF13

1 + Kθ F13
2 KρF23

1 + Kθ F23
2 KρF33

1 + Kθ F33
2

⎤
⎦ (5.212)

Equation (5.210) is the stress–strain relation obtained from the molecular mechanics
model of an (n,m) chiral SWCNT. Our next step is to find the nonlocal scaling para-
meter (e0)which appears in the nonlocal constitutive equations. This nonlocal model
corresponds to the entire SWCNT as one-dimensional tubular structure. For obtain-
ing these nonlocal constitutive relations according to our formulation, we elaborate
nonlocal constitutive relations as
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σxx − (exx
0 a)2∇2σxx = C11(εxx + νεθθ ) (5.213)

σθθ − (eθθ0 a)2∇2σθθ = C11(εθθ + νεxx ) (5.214)

τxθ − (exθ
0 a)2∇2τxθ = C66γxθ (5.215)

where ∇2 = ∂2

∂x2 + 1
R2

∂2

∂θ2 (R = radius of the CNT), C11 = E
(1−ν2)

, C66 = E
2(1+ν) . If

we want to solve for e0 using the above three equations, we need to approximate the
gradient term (∇2). For a harmonic wave field in an SWCNT, the displacement field
can be written in complex form as (because stress field depends on the displacement
field), see Gopalakrishnan et al. [20]:

u(x, t) = ûe− jkx x e− jkθ θe− jωt (5.216)

where û is the frequency amplitudes displacement of SWCNT, kx and kθ are the
wavenumbers in axial and circumferential directions, respectively, ω is the angular
frequency of the wave motion, and j = √−1.

By substituting the displacement field (Eq. (5.216)) in the nonlocal constitutive
relations (Eqs. (5.213)–(5.215)), we get

[
1 + (exx

0 a)2
(

k2
x + k2

θ

R2

)]
σxx = C11(εxx + νεθθ ) (5.217)

[
1 + (eθθ0 a)2

(
k2

x + k2
θ

R2

)]
σθθ = C11(εθθ + νεxx ) (5.218)

[
1 + (exθ

0 a)2
(

k2
x + k2

θ

R2

)]
τxθ = C66γxθ (5.219)

where kx = 2πξ
a and kθ = 2πη

a (here ξ and η are integers) are wavenumbers in axial
and circumferential directions, respectively, R is the radius of the CNT, and a is the
carbon–carbon bond-length (∼ 1.42 Å) in SWCNT. Equations (5.217)–(5.219) are
rewritten in matrix form as

[E0]{σ } = [C]{ε} (5.220)

where

[E0] = [I ] +
(

k2
x + k2

θ

R2

)⎡
⎣ (e

xx
0 a)2 0 0
0 (eθθ0 a)2 0
0 0 (exθ

0 a)2

⎤
⎦ (5.221)

[C] =
⎡
⎣ C11 νC11 0
νC11 C11 0

0 0 C66

⎤
⎦ (5.222)
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where [I ] is a 3×3 identity matrix. Equation (5.220) describes the assumed nonlocal
constitutive relations. Substitution of Eq. (5.210) into Eq. (5.220) leads to

[E0][J3]{ε} = [C]{ε} (5.223)

This is an eigenvalue problem. We need to solve for the nonlocal scaling parameters
which are the eigenvalues of the system in Eq. (5.223). Introducing λ = (e0a)2 in
(Eq. (5.223)), one has

Det
[[C] − [E0][J3]

] = Det [[F3] − λ[F4]] = 0 (5.224)

where

[F3] = [C] − [J3] (5.225)

[F4] =
(

k2
x + k2

θ

R2

)
[J3] (5.226)

There are three eigenvalues for the system in Eq. (5.223), which can be written as

√
λ1 = exx

0 = ± 1

3aL1

(
L1/3

0

2
− 6L1L3 − 2L2

2

L1/3
0

− L2

)
(5.227)

√
λ2 = eθθ0 = ± 1

3aL1

(
− L1/3

0
4

+ 3L1L3 − L2
2

L1/3
0

− L2 + j
√

3

2

[
L1/3

0
2

+ 6L1L3 − 2L2
2

L1/3
0

])

(5.228)

√
λ3 = exθ

0 = ± 1

3aL1

(
− L1/3

0
4

+ 3L1L3 − L2
2

L1/3
0

− L2 − j
√

3

2

[
L1/3

0
2

+ 6L1L3 − 2L2
2

L1/3
0

])

(5.229)
where the parameters L0, L1, L2 and L3 are given below.

L0 = 36L1L2L3 − 108L2
1 L4 − 8L3

2 + 12
√

3L1

(
4L1L3

3 − L2
2L2

3

−18L1L2L3L4 + 27L2
1 L2

4 + 4L3
2 L4

)1/2
(5.230)

L1 = − F11
4 F22

4 F33
4 + F11

4 F23
4 F32

4 + F21
4 F21

4 F33
4 − F21

4 F13
4 F32

4

− F12
4 F23

4 F31
4 + F13

4 F22
4 F31

4 (5.231)
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L2 = F22
3 F11
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4 (5.232)

L3 = − F22
3 F33

3 F11
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3 F11
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3 F22
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3 F23

3 F32
4

+ F11
3 F32

3 F23
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4 − F12
3 F21

3 F33
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4 (5.233)

L4 = F12
3 F23

3 F31
3 − F13

3 F22
3 F31

3 + F13
3 F21

3 F32
3 + F11

3 F22
3 F33

3 − F11
3 F23

3 F32
3

− F12
3 F21

3 F33
3 (5.234)

F11
3 = C11 − KρF11

1 − Kθ F11
2 , F12

3 = νC11 − KρF21
1 − Kθ F21

2 ,

F13
3 = −KρF31

1 − Kθ F31
2 , F21

3 = νC11 − KρF12
1 − Kθ F12

2 ,

F22
3 = C11 − KρF22

1 − Kθ F22
2 F23

3 = −KρF32
1 − Kθ F32

2 ,

F31
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2 , F32
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1 − Kθ F23

2 ,

F33
3 = C66 − KρF33

1 − Kθ F33
2 . (5.235)
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θ
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(5.236)

Here L0, L1, L2 and L3 are functions of chirality (n,m) of SWCNT, and the axial
and circumferential wavenumbers are kx = 2πξ/a and kθ = 2πη/a, respectively.

The values used for the constants of SWCNTs are given in Table 5.2. The variation
of the nonlocal scaling parameters for chiral types of SWCNTs are shown in Fig. 5.20,
for various modes of wave propagation. For (ξ = 1, η = 0)—first axial mode,
(ξ = 0, η = 1)—first torsional mode, and (ξ = 1, η = 1)—first coupled axial–
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Table 5.2 Properties of SWCNTs used for the analysis

Property Value Units

Young’s modulus (E) 1.05 TPa
Density (ρ) 2700 kg/m3

Thickness (t) 0.34 nm
Axial stiffness of bond (Kρ) 742 nN/nm
Angular stiffness of bond (Kθ ) 1.42 nN nm

Fig. 5.20 Nonlocal parameter
variation for chiral type of
SWCNTs (n �= m) for the case
of longitudinal (ξ = 1,η = 0),
torsional (ξ = 0, η = 1), and
coupled (ξ = 1, η = 1)
modes of wave propagation,
kx and kθ are the axial and
circumferential wavenumbers
respectively. The result also
shows that the nonlocal scale
parameters are all equal, i.e.,
exx

0 = exθ
0 = exθ
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torsional mode. The figure shows that for a given wave branch, the variation in the
nonlocal scaling parameters over tube diameter are identical (see Fig. 5.20). This
implies that exx

0 = eθθ0 = exθ
0 = e0.

From Fig. 5.20, one can observe the following phenomena for chiral type of SW-
CNTs.

(i) The value of e0 is almost constant for ξ = 1, η = 0, which means that there
is only axial mode of wave propagation in SWCNT. The value of e0 = exx

0 = eθθ0 =
exθ

0 ≈ 0.314 − 0.318 for chiral type of SWCNTs.
(ii) The variation in e0 is linear with the SWCNT diameter for ξ = 0, η = 1, i.e.,

when there is only torsional type wave propagation in SWCNT.
(iii) Finally, when there is a coupled axial–torsional mode of wave propagation

in the SWCNT, i.e., (ξ = 1, η = 1), then the value of e0 approaches to the value of
e0 obtained in the case of purely axial mode of wave propagation for large diameters
and purely torsional mode of wave propagation for small diameters of the SWCNT.

These observations are similar to those observed for the armchair and zigzag type
of SWCNTs given in the previous section and these results are also given in [24].
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Fig. 5.21 Nonlocal parameter
variation for a armchair and
b Zigzag type of SWCNTs
for the case of longitudinal
or axial (ξ = 1, η = 0),
torsional (ξ = 0, η = 1)
and coupled (ξ = 1, η = 1)
modes of wave propagation,
kx and kθ are the axial and
circumferential wavenumbers
respectively. The result also
shows that the nonlocal scale
parameters are all equal, i.e.,
exx

0 = exθ
0 = exθ
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Next, if we use n = m and m = 0 in the present formulation, the variation
e0 can be obtained for armchair and zigzag type of SWCNTs, respectively. The
variation of the nonlocal scaling parameter with respect to SWCNT diameter (or
chirality) for armchair and zigzag type of SWCNTs are shown in Fig. 5.21a and
b, respectively, for various modes of wave propagation. The value of e0 is almost
constant for ξ = 1, η = 0, which means that there is only axial mode of wave
propagation in SWCNT. The value of e0 = exx

0 = eθθ0 = exθ
0 ≈ 0.3298 for armchair,

0.3906 for zigzag type of SWCNTs. The other observations are similar to that of
chiral type of SWCNTs.

The values of e0 for armchair and zigzag type of SWCNTs obtained from the
present formulation exactly match with those obtained by Narendar et al. [24]. Hence,
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the present formulation is a generalized one and can be easily applicable for all the
three types of SWCNTs.

5.4 Summary

This chapter investigated the application of nonlocal elastic beam theory in estimation
of length-dependent stiffness of SWCNTs. The results from the nonlocal elasticity
demonstrate that the length-dependent stiffness is small for shorter SWCNTs and
is large (maximum unity) for longer SWCNTs. It has been found that the clamped
SWCNT has very low stiffness and that of the cantilever SWCNT has very high
stiffness for a given nonlocal scaling parameter.

An approximate estimation of nonlocal scale parameter is also presented in this
chapter. The length-dependent stiffness is revealed from the nonlocal elasticity and
verified through molecular simulation results. From the analysis, the value of the
scale coefficient (e0a) in the nonlocal theory was recommended to be about 0.11 nm
for the application of the nonlocal elasticity theory in the analysis of single-walled
carbon nanotubes, where CNTs are modeled as beam. The modeling and analyses of
nanostructures, based on flexural displacement, require an accurate estimate of non-
local scaling parameter. Such attempt was made in this chapter. The presented value
of e0a can provide useful guidance for the study and design of the next generation
of nano devices that make use of the properties of single-walled carbon nanotubes.

Next, an expression for the nonlocal scaling parameter are derived as a function
of the geometric properties of the SWCNTs. Following that a self-consistent method
is developed for the linearization of the ultrasonic wave propagation in SWCNTs.
The obtained nonlocal parameters show that the general three-dimensional elastic
problem leads to a single nonlocal scaling parameter (e0). This value of e0 is almost
constant irrespective of the chirality of the CNT for an axial mode of wave prop-
agation and shows a linear variation with the chirality for torsional mode of wave
propagation. When there is a coupled axial–torsional mode of wave propagation
the value of e0 approaches to the value of e0 obtained in the case of purely axial
mode of wave propagation for large diameters, and a purely torsional mode of wave
propagation for small diameter of the SWCNTs.

At the end, an expression for the nonlocal scaling parameter was derived as a
function of the geometric properties of the chiral type (n �= m) of SWCNTs. Even in
this case, the obtained nonlocal parameters show that the general three-dimensional
elastic problem again leads to a single nonlocal scaling parameter (e0). This value
of e0 is almost constant irrespective of the chirality of the CNT for an axial mode
of wave propagation and shows a linear variation with the chirality for torsional
mode of wave propagation. When there is a coupled axial–torsional mode of wave
propagation, the value of e0 approaches to the value of e0 obtained in the case of
purely axial mode of wave propagation for large diameters, and a purely torsional
mode of wave propagation for small diameter of the SWCNTs. The values of e0 for
armchair and zigzag type of SWCNTs obtained from the present formulation exactly
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match with those available in the literature. This formulation was a generalized one
and can be easily applicable for all the three types of SWCNTs to calculate the
nonlocal scale parameter.

Because of the future promising exploration in nanotechnology, focus is being
put in the miniaturization of mechanical and electromechanical devices. Attention
is sought toward the development of nanodevices and nanomachines. The length
scales associated with such nanostructures are that to apply any classical continuum
techniques, we need to consider small length scales such as the lattice spacing be-
tween individual atoms, surface properties, grain size, etc. This makes a physically
consistent classical continuum model formulation very challenging. So, the next
chapter presents the application of nonlocal elasticity theories such as stress gradi-
ent, second- and fourth-order strain gradient theories to analyze the wave dispersion
behavior of one-dimensional nanostructures such as nanorods. Here, the subject of
interest is only the dispersion of the axial and torsional waves in nanorods. Next,
the spectral finite element (SFE) formulation of nanorods is also presented. The ex-
act frequency-dependent shape functions and the dynamic stiffness matrix for the
nanorod are obtained as functions of non-classical scale parameter.
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Chapter 6
Wave Propagation in 1D-Nanostructures:
Nanorods

A nanostructure is defined as a material system or object where at least one of the
dimensions lies below 100 nm. Nanostructures can be classified into three different
categories: zero-dimensional (0D); one-dimensional (1D); two-dimensional (2D).
0D nanostructures are materials in which all three dimensions are at the nanoscale.
A good example of these materials is buckminster fullerenes [1] and quantum dots [2].
1D nanostructures are materials that have two physical dimensions in the nanome-
ter range while the third dimension can be large, such as in the carbon nanotube
[3]. 2D nanostructures, or thin films, have one of their dimension in the nanometer
range and are used readily in the processing of complimentary metal-oxide semi-
conductor transistors [4] and micro-electro-mechanical systems (MEMS) [5]. The
focus of this chapter is on one-dimensional nanostructures. 1D nanostructures (here
we call them nanorods or nanoshafts) have stimulated a great deal of interest due to
their importance in fundamental scientific research and potential technological appli-
cations in nanoelectronic, nanooptoelectronic and nanoelectro-mechanical systems.
Rod-shaped viruses, such as tobacco mosaic viruses and M13 bacteriophage, have
been utilized as biological templates in the synthesis of semiconductor and metal-
lic nanowires [6]. They were also proposed as elements in the biologically inspired
nanoelectronic circuits. Vibrational and wave modes will affect the properties of the
inorganic-organic interface [6].

The length scales associated with nanostructures like carbon nanotubes,
nanofibers, nanowires, nanorods, graphene sheets are such that to apply any clas-
sical continuum techniques, we need to consider the small length scales such as
lattice spacing between individual atoms, surface properties, and grain size. This
makes a physically consistent classical continuum model formulation very challeng-
ing. The Eringen’s nonlocal elasticity theory [7] discussed in Chap. 4, is a useful tool
in treating phenomena whose origins lie in the regimes smaller than the classical
continuum models. In this theory, the internal size or scale could be represented in
the constitutive equations simply as material parameters. Such a nonlocal continuum
mechanics has been widely accepted and has been applied to many problems includ-
ing wave propagation, dislocation, crack problems, etc [8]. Recently, there has been
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great interest in the application of nonlocal continuum mechanics for modeling and
analysis of nanostructures.

In this chapter, the nonlocal elasticity theory has been incorporated into classical
rod/bar model to capture unique features of the nanorods under the umbrella of
continuum mechanics theory. The nonlocal behavior will be brought out through
nonlocal stress and strain gradient models. We will call these models as NLSGM
for NonLocal Stress Gradient Models and NLStGM for NonLocal Strain Gradient
Models. Two variants of NLStGM will be discussed, one based on second-order
gradient models and the second one will be based on fourth-order gradient models.
Some of the stability issues of the second-order gradient models will be discussed in
depth. The effect of lateral inertia on the strain gradient models and their stabilizing
effect is discussed in this chapter. The analysis will then be extended to study torsional
wave propagation in nanoshafts. The chapter ends with a brief introduction to spectral
finite element(SFE) and its application to nanorods.

6.1 Axial Wave Propagation in NLSGM Nanorod

In Chap. 3 and Sect. 3.9.1, we had introduced both the stress and strain gradient
nonlocal models. In this chapter, we dwell on these models in more detail. In this
section, we will study the axial wave propagation behavior in a nanorod, which is
modeled using nonlocal stress gradient models.

6.1.1 Governing Equations for NLSGM Nanorods

For one-dimensional nonlocal elasticity, there exists a differential form for the stress–
strain relation as

(1 − ξ2�2∇2)σi j = Ci jklεkl (6.1)

where the operator ∇2 is the Laplacian operator. Notice that in the nonlocal elasticity,
the effect of small length scale is considered by incorporating the internal parame-
ter length into the constitutive equation. One may also see that when the internal
characteristic length a is neglected, i.e., the particles of a medium are considered
to be continuously distributed, then ξ = e0a/� = 0, and Eq. (6.1) reduces to the
constitutive equation of classical elasticity.

Figure 6.1 schematically describes a nanorod under discussion and serves to intro-
duce the axial coordinate x , the axial displacement u = u(x, t), the length L , the
Young’s modulus E , and the density ρ. The displacement field and strain for this
nanorod are given by

http://dx.doi.org/10.1007/978-3-319-01032-8_3
http://dx.doi.org/10.1007/978-3-319-01032-8_3
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Fig. 6.1 A Nanorod, showing
length L , Young’s modulus E ,
density ρ, cross-sectional area
A and longitudinal displace-
ment u

u = u(x, t) (6.2)

εxx = ∂u

∂x
(6.3)

For thin rods Eq. (6.1) can be written in the following one dimensional form

σxx − (e0a)2
∂2σxx

∂x2 = Eεxx = E
∂u

∂x
(6.4)

where E is the modulus of elasticity, σxx and εxx are the local stress and strain
components in the x direction, respectively. The equation of motion for an axial rod
can be obtained as

∂N

∂x
= ρA

∂2u

∂t2 (6.5)

where N is the axial force per unit length for local or classical elasticity and is defined
by

N =
∫

A
σxx dA (6.6)

Using Eqs. (6.4 and 6.6), we have

N − (e0a)2
∂2 N

∂x2 = E A
∂u

∂x
(6.7)

Substitution of the first derivative of N from Eq. (6.5) into Eq. (6.7), we obtain

N = E A
∂u

∂x
+ (e0a)2ρA

∂3u

∂x∂t2 (6.8)

Substituting N from Eq. (6.8) into the equation of motion (6.5), we obtain

E A
∂2u

∂x2 + (e0a)2ρA
∂4u

∂x2∂t2 = ρA
∂2u

∂t2 (6.9)

Equation (6.9) is the consistent fundamental governing equation of motion for non-
local rod model. When e0a = 0, it is reduced to the equation of classical rod model.
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6.1.2 Wave Characteristics in NLSGM Nanorods

In this section, using the wave propagation concepts highlighted in Chap. 2, we
will determine two important wave parameters, namely the wavenumber and the
two different wave speeds (phase speeds and group speeds). We will also study the
special features that nonlocal scale parameter will introduce in these variables and
their implications in the wave propagation.

The axial wavenumber in a nanorod is computed as follows. For analyzing the
ultrasonic wave dispersion characteristics in nanorods, we assume that a harmonic
type of wave solution for the displacement field u(x, t) and it can be expressed in
complex form as [9, 10]

u (x, t) =
P−1∑
p=0

Q−1∑
q=0

û
(
x, ωq

)
e− j(kp x−ωq t) (6.10)

where P and Q are the number of time sampling points and number spatial sampling
points respectively. ωq is the circular frequency at the qth time sample. Similarly, kp

is the axial wavenumber at the pth spatial sample point. Substituting Eq. (6.10) into
the governing partial differential equation Eq. (6.9), we get the dispersion relation
as follows. Hereafter the subscripts p and q in Eq. (6.10) are dropped for simplified
notations. Here j = √−1.

− k2 + (e0a)2η2ω2k2 + η2ω2 = 0 (6.11)

where η =
√
ρ
E . This dispersion relation is solved for the wavenumbers as

k1,2 = ±
√

η2ω2

1 − (e0a)2η2ω2 (6.12)

The wave frequency is a function of wavenumber k, the nonlocal scaling parameter
e0a, and the material properties (E & ρ) of the nanorod. If e0a = 0, the wavenumber
is directly proportional to wave frequency, which will give a nondispersive wave
behavior (for more details refer to Chap. 2). The cut-off frequency of this nanorod
is obtained by setting k = 0 in the dispersion relation Eq. (6.11). For the present
case, the cut-off frequency is zero, that is, the axial wave starts propagating from
zero frequency.

The spectrum relation plot as a function of nonlocal scale parameter e0a is shown
in Fig. 6.2. From this figure, one can observe that at certain frequencies, the wavenum-
ber is tending to infinity and value of this frequency, which is called the escape fre-
quency, decreases with increase in the scale parameter. Its value can be analytically
determined by looking at the wavenumber expression Eq. (6.12) and setting k → ∞.
Which is given as

http://dx.doi.org/10.1007/978-3-319-01032-8_2
http://dx.doi.org/10.1007/978-3-319-01032-8_2
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Fig. 6.2 A comparison of the
wavenumber (thick lines-real;
thin lines-imaginary) disper-
sion in a nanorod obtained
from local (e0a = 0 nm) and
nonlocal (e0a = 0.5 nm and
e0a = 1.0 nm) elasticity theo-
ries
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The escape frequency is inversely proportional to the nonlocal scaling parameter and
is independent of the diameter of the nanorod. The variation of the escape frequency
with nonlocal scaling parameter is shown in Fig. 6.3.

Next, we will compute the two different wave speeds, namely the phase speeds
and the group speeds , whose expressions are given by

Fig. 6.3 Escape frequency
variation of the axial wave in a
nanorod with nonlocal scaling
parameter
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C phase = ω

k
= 1

η

[
1 − (e0a)2η2ω2

]1/2
(6.14)

Cgroup = ∂ω

∂k
= 1

η

[
1 − (e0a)2η2ω2

]3/2
(6.15)

These wave speeds also depend on the nonlocal scaling parameter. When e0a = 0,
both the wave speeds are equal (i.e., C phase = Cgroup = 1/η = √

E/ρ), which is
already proved for local or classical bars/rods [10]. The phase speed and group speed
dispersion curves with wave frequency are shown in Figs. 6.4 and 6.5 respectively.

Next, based on the equations derived above, we will generate wavenumber and
dispersion plots as a function of scale parameter e0 for NLSGM model. For the
present analysis, a SWCNT is assumed as a nanorod. The values of the radius,
thickness, Young’s modulus, and density are assumed as 3.5 nm, 0.35 nm, 1.03 TPa,
and 2300 kg/m3, respectively.

Figure 6.2 shows the real and imaginary parts of the axial wavenumber of a
nanorod. The thick lines represent the real part and the thin lines show the imag-
inary part of the wavenumbers. From Fig. 6.2, for a nanorod, it can be seen that
there is only one mode of wave propagation, i.e., axial or longitudinal. For local or
classical model, the wavenumbers for the axial mode have a linear variation with
the frequency which is in the THz range. The linear variation of the wavenumbers
denotes that the waves will propagate nondispersively, i.e, the waves do not change
their shapes as they propagate. On the other hand, the wavenumbers obtained from
nonlocal elasticity have a nonlinear variation with the frequency, which indicates that
the waves are dispersive in nature. However, the wavenumbers of this wave mode
have a substantial real part starting from the zero frequency. This implies that the
mode starts propagating at any excitation frequency and does not have a cut-off fre-
quency. At the escape frequency, which was defined earlier, the wavenumbers tend
to infinity as shown in Fig. 6.2. Hence, the nonlocal elasticity model shows that the
wave will propagate only up to certain frequencies and after that the wave will not
propagate.

The escape frequencies are purely a function of the nonlocal scaling parameter.
The variation of the escape frequency with nonlocal parameter is shown in Fig. 6.3.
It shows that, as e0a increases the escape frequency decreases, such variation can
also observed from Fig. 6.2. For very small values of e0a, the escape frequencies are
very large, and at higher values of e0a the escape frequencies are very small and
approach to a constant value.

Figures 6.4 and 6.5, plot the wave speeds for the nanorod obtained from both local
and nonlocal models. Because of the linear variation of wavenumber with wave
frequency from local elasticity, the phase speed

(
C p = Real

(
ω
k

))
and group speed(

Cg = Real
( dω

dk

))
for the axial mode has a constant value for all the frequencies,

and hence the wave does not change its shape as it propagate. It can also be observed
that the axial wave speed is similar for local and nonlocal cases at zero frequency.
In nonlocal elasticity, at escape frequency, the wavenumber tends to infinity, and
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Fig. 6.4 A comparison of
the phase speed dispersion
in a nanorod obtained from
local (e0a = 0 nm) and
nonlocal (e0a = 0.5 nm and
e0a = 1.0 nm) elasticity
theories
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Fig. 6.5 A comparison of
the group speed dispersion
in a nanorod obtained from
local (e0a = 0 nm) and
nonlocal (e0a = 0.5 nm and
e0a = 1.0 nm) elasticity
theories
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hence the phase and group speeds tend to zero, indicating localization and stationary
behavior.

It can be concluded that the wave dispersion characteristics in a nanorod is drasti-
cally different for local and nonlocal models. The local model predicts that the wave
will propagate at all frequencies, while the nonlocal model shows that the wave will
propagate up to certain frequencies only depending on the nonlocal scaling parame-
ter [11]. The results presented in this section can provide useful guidance for the
study and design of the next generation of nanodevices that make use of the wave
propagation properties of carbon nanotubes.
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6.2 Axial Wave Propagation NLStGM Nanorods

Strain-gradient elasticity is widely used as a suitable alternative to size-independent
classical continuum elasticity to, at least partially, capture elastic size effects at the
nanoscale. The strain-gradient elasticity may be of practical importance for materials
possessing a nonhomogeneous microstructure like amorphous silica and polymers.
In other words, it is believed that nonlocal, and in particular, strain-gradient elasticity
is largely irrelevant for most material systems except at impossibly small sizes. As
evident, polymers and amorphous materials appear to be the exceptions. Covalent
semiconductors like Silicon, however, possess higher nonlocal length scales com-
pared to metals which may be attributed to the short-ranged nature of inter-atomic
forces in metal.

Although the strain-gradient elasticity is irrelevant for most crystalline metals
and ceramics, we wish to point out that under certain circumstances, strain-gradient
elasticity is quite useful even in materials exhibiting small nonlocal characteristic
length scales such as, in analysis of defects. In this regard, the reader is advised
to see the recent work of Zhang et al. [12] who have shown the utility of using
nonlocal elasticity for the analysis of defects in graphene. In addition, materials
with a microstructure such as foams or composites may be fruitfully modeled using
strain-gradient elasticity.

Classical continuum theories assume that the stresses in a material point depend
only on the first-order derivative of the displacements, that is on the strains, and not
on higher order displacement derivatives. As a consequence of this limitation on the
kinematic field, a classical continuum is not always capable of adequately describing
heterogeneous phenomena. For instance, unrealistic singularities in the stress and/or
strain field may occur nearby imperfections. Furthermore, severe problems in the
simulation of localization phenomena with classical continua have been encountered,
such as loss of well posedness in the mathematical description. To avoid these types
of deficiencies, it has been proposed to include higher order strain gradients into
the constitutive equations, so that the defects of the classical continuum may be
successfully overcome [13, 14]. The second-order strain gradients that are normally
used for these purposes, introduce accessory material parameters that reflect the
microstructural properties of the material. These were earlier discussed in Sect. 3.9.1.

The higher order gradients can improve the performance of the classical contin-
uum in the sense that the dispersive behavior of the discrete model is reproduced
with a higher accuracy, [15–17]. This is a direct consequence of the procedure that
is commonly used to enhance the classical continuum with higher order gradients.
Homogenization of the discrete medium may lead to higher order gradients in a
direct and straightforward manner. If regularization of singularities or discontinu-
ities is required, higher order gradients are used for smoothing the nonuniformity or
singularities in the strain field. On the other hand, if a more accurate representation of
the discrete microstructure is desired, the higher order gradients are used to introduce
a nonuniformity in the strain field.

http://dx.doi.org/10.1007/978-3-319-01032-8_3
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Expansion of the general integral constitutive equation of nonlocal elasticity (see
[7]) for e0a/L << 1, retention of only the first two terms, and simplification to the
case of uniaxial stress produces

σ(x) = E

(
ε(x)+ (e0a)2

d2ε(x)

dx2

)
(6.16)

This is a second-order strain gradient model with nonlocal scale effects.
In the same way, retention of only the first three terms, and simplification to the

case of uniaxial stress produces

σ(x) = E

(
ε(x)+ (e0a)2

d2ε(x)

dx2 + (e0a)4
d4ε(x)

dx4

)
(6.17)

This is a fourth-order strain gradient model with nonlocal scale effects. Next, we will
derive the governing equation of motion for nanorod based on the above mentioned
two constitutive relations Eqs. (6.16 and 6.17).

6.2.1 Governing Equations for Second and Fourth-Order NLStGM
Nanorods

We will first derive the governing differentional equation for second-order NLStGM
nanorod. Figure 6.1 schematically describes a nanorod under discussion and serves
to introduce the axial coordinate x , the axial displacement u = u(x, t), the rod length
L , the rod Young’s modulus E , and the density ρ. The displacement field and strain
for this nanorod are given by

u = u(x, t) (6.18)

ε = ∂u

∂x
(6.19)

First, we derive the governing differential equations for the nanorod using second-
order strain gradient model (see Eq. (6.16)). The potential (Π ) and kinetic (Γ ) ener-
gies of the nanorod are

Π s = 1

2

∫
V
σ(x)ε(x)dV = 1

2

∫
V

(
ε(x)+ (e0a)2

∂2ε(x)

∂x2

)
ε(x)dV (6.20)

Γ s = 1

2

∫
V
ρ

(
∂u(x, t)

∂t

)2

dV (6.21)

Here superscript s represents for the second-order strain gradient model. Assuming
a uniform nanorod, Eqs. (6.20 and 6.21) rewritten as
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Π s = 1

2
A
∫ L

0

(
ε(x)+ (e0a)2

∂2ε(x)

∂x2

)
ε(x)dx (6.22)

Γ s = 1

2
ρA
∫ L

0

(
∂u(x, t)

∂t

)2

dx (6.23)

Applying Hamilton’s principle

δ

∫ t2

t1
Lsdt = δ

∫ t2

t1
(Γ s −Π s)dt = 0 (6.24)

Expanding this, and integrating by parts, we obtain the nonlocal governing partial
differential equation for the nanorod obtained from the second-order strain gradient
model as

E A(e0a)2
∂4u(x, t)

∂x4 + E A
∂2u(x, t)

∂x2 − ρA
∂2u(x, t)

∂t2 = 0 (6.25)

This is a fourth-order governing differential equation for nanorod based on nonlo-
cal second-order strain gradient model. One can substitute e0a = 0 in Eq. (6.25),
to recover the local or classical rod equation, which is a second-order differential
equation.

Next, we will derive the governing differential equation for fourth-order NLStGM
nanorods. Now assuming the same displacement field and strain-displacement rela-
tions (given in Eqs. (6.18 and 6.50)) and using the fourth-order strain gradient model
(see Eq. (6.17)), the kinetic and potential energies can be expressed as

Π f = 1

2

∫
V
σ(x)ε(x)dV = 1

2

∫
V

(
ε(x)+ (e0a)2

d2ε(x)

dx2 + (e0a)4
d4ε(x)

dx4

)
ε(x)dV

(6.26)

Γ f = 1

2

∫
V
ρ

(
∂u(x, t)

∂t

)2
dV (6.27)

Here superscript f represents the fourth-order strain gradient model. For a uniform
nanorod, Eqs. (6.26, 6.27) rewritten as

Π f = 1

2
A
∫ L

0

(
ε(x)+ (e0a)2

d2ε(x)

dx2 + (e0a)4
d4ε(x)

dx4

)
ε(x)dx (6.28)

Γ f = 1

2
ρA
∫ L

0

(
∂u(x, t)

∂t

)2

dx (6.29)

Applying the Hamilton’s principle,

δ

∫ t2

t1
L f dt = δ

∫ t2

t1
(Γ f −Π f )dt = 0 (6.30)
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and integrating by parts, the nonlocal governing differential equation for the nanorod
from fourth-order strain gradient model is derived as

E A(e0a)4
∂6u(x, t)

∂x6 + E A(e0a)2
∂4u(x, t)

∂x4 + E A
∂2u(x, t)

∂x2 − ρA
∂2u(x, t)

∂t2 = 0

(6.31)
This is a sixth-order governing differential equation for nanorod based on fourth-
order strain gradient model, and again we observe that when e0a = 0, local/classical
rod equation can be recovered.

6.2.2 Uniqueness and Stability of Second-Order NLStGM
Nanorods

Strain gradients can be used to introduce heterogeneity into the continuum. As a
result, the dispersive character of waves observed in experiments, and hence the dis-
crete material models can be simulated with a higher accuracy [17, 18]. By homoge-
nizing a discrete medium, a second-gradient model of the type given in Eq. (6.16) can
be derived. To derive the uniquness of the model, we need to first establish the analyt-
ical solution of second-order constitutive strain gradient model given by Eq. (6.16).
This is done by combining the constitutive equation with the uniaxial equilibrium
equation ∂σ

∂x = 0 (no body forces are considered) and the kinematic relation Eq. (6.3).
The use of Eq. (6.16) leads to an analytical solution for u of the form

u = C1 + C2x + C3 sin

(
x

e0a

)
+ C4 cos

(
x

e0a

)
(6.32)

where Ci are constants that have to be determined according to the boundary condi-
tions. The response of the classical continuum is given by the constants C1 and C2
only.

We will next examine the uniqueness of the obtained analytical solution following
[19], the uniqueness of the static analytical solution is investigated next. To this end,
it is assumed that two different solutions u1 and u2 exist that satisfy the equilibrium
equation and the nonhomogeneous boundary conditions. For a proof of uniqueness,
the difference between these two solutions Δu = u1 − u2 should vanish. This dif-
ference solution should then satisfy the equilibrium equation and the homogeneous
boundary conditions. A specimen of length L is considered, and the boundary condi-
tions for the difference solution are taken asΔu = 0 and ∂Δu

∂x = 0 both at x = 0 and
at x = L . The four boundary conditions lead to the following system of equations:
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⎡
⎢⎢⎢⎢⎣

1 0 0 1

1 L sin
(

L
e0a

)
cos
(

L
e0a

)
0 1 1

L 0

0 1 1
L cos

(
L

e0a

)
− 1

L sin
(

L
e0a

)

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

C1
C2
C3
C4

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

(6.33)

By eliminating C1 and C2, a reduced coefficient matrix for C3 and C4 according
to Eq. (6.16) can be determined. For finding a nontrivial solution for Δu (which
corresponds to nonuniqueness) the determinant of this reduced coefficient matrix
should vanish, i.e.,

∣∣∣∣∣∣
sin
(

L
e0a

)
− L

e0a cos
(

L
e0a

)
− 1

cos
(

L
e0a

)
− 1 − sin

(
L

e0a

)
∣∣∣∣∣∣ = 0 (6.34)

that implies
L

e0a
sin

(
L

e0a

)
+ 2 cos

(
L

e0a

)
− 2 = 0 (6.35)

which is satisfied when L
e0a = 2πα with α an arbitrary integer. Thus, uniqueness

cannot be guaranteed for the model of Eq. (6.16) in the case L
e0a = 2πα.

In the above procedure, the higher order boundary conditions are taken as pre-
scribed values for the first derivative of the displacement. The use of different higher
order boundary conditions leads to different considerations with respect to unique-
ness. Taking prescribed second-order derivatives of the displacement can also lead
to nonunique solutions with the model of Eq. (6.32). Although not shown here, in
this case, the values of L

e0a for which nonunique solutions are obtained coincide with
those obtained via Eq. (6.35).

Next, we have to establish the stability of the second-order NLStGM. The stability
of the second-order strain gradient model of Eq. (6.16) is studied by means of the
potential energy density �, given by

� =
∫
ε

σdε (6.36)

Substitution of the constitutive equation Eq. (6.16), integrating the higher order terms
by parts, and carrying out the integration results in the following equation.

� = 1

2
E

[
ε2 − (e0a)2

(
∂ε

∂x

)2
]

(6.37)

In the derivation procedure above, the boundary integrals are assumed to vanish. This
has severe implications for the stability of the model: positive terms have a stabilizing
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effect on the overall response, while negative terms are destabilizing. Thus, the model
according to Eq. (6.16) may become unstable.

In summary, the second-order strain gradient model can become unstable and
uniqueness is not guaranteed. This model bears the closest relation with the dis-
crete model (a positive sign in front of the higher order term). However, the use
of this model in engineering practice is limited due to the possible emergence of
nonuniqueness and instability, which may have a devastating effect on its response
[20].

6.2.3 Wave Characteristics of Second-Order NLStGM Nanorods

For analyzing the ultrasonic wave dispersion characteristics in nanorods, we assume
that a harmonic type of wave solution for the displacement field u(x, t) and it can be
expressed in complex form as [9, 10]:

u (x, t) = û (x, ω) e− j(kx−ωt) (6.38)

where û(x, ω) is the frequency domain amplitude of the longitudinal displacement, k
is the wavenumber andω is the angular frequency of the wave motion and j = √−1.
Substituting Eq. (6.38) in the nonlocal governing equation of nanorod obtained from
the second-order strain gradient model Eq. (6.25) gives the following dispersion
relation,

(e0a)2k4 − k2 + η2ω2 = 0 (6.39)

where η =
√
ρ
E . This dispersion relation is solved for the wave frequency as

ωs = k

η

√
1 − (e0a)2k2 (6.40)

The wave frequency is a function of wavenumber k, the nonlocal scaling parameter
e0a and the material properties (E & ρ) of the nanorod. For the present analysis,
we are considering both wave speeds (phase and group speeds) of the wave and are
given by

Cs
p = ωs

k
= 1

η

√
1 − (e0a)2k2 (6.41)

Cs
g = ∂ωs

∂k
= 1 − 2(e0a)2k2

η
[
1 − (e0a)2k2

] (6.42)

These wave speeds also depend on the nonlocal scaling parameter. When e0a = 0,
both the wave speeds are equal (i.e., Cs

p = Cs
g = 1/η = √

E/ρ), which is already
proved for local or classical bars/rods [10].
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We will next compute some of the important features of second-order NLStGM.
First, we will compute the critical wavenumber. We call crtical wavenumber as a
wavenumber at zero frequency. From the dispersion relation Eq. (6.39), by setting
the wave frequency (ω) to zero, gives the critical wavenumber as

kcr = ± 1√
e0a

(6.43)

The critical wavenumber is purely a function of internal length scale only.
Next, we can compute the number of waves along the nanorod. The number of

wavelengths (N ) along the nanorod is defined as N = L/λ, where L is the length of
the nanorod andλ is the wavelength. The wavelength is related to wavenumber asλ =
2π/k, here the wavenumber is critical Eq. (6.43). Thus the number of wavelengths
along the nanorod is given by

N = L

2π
√

e0a
(6.44)

6.2.4 Wave Characteristics of Fourth-Order NLStGM Nanorods

As in the case of second-order models, we will compute the wavenumber, phase
speed and group speeds for this case. Substituting Eq. (6.38) in the nonlocal governing
partial differential equation of nanorod obtained from the fourth-order strain gradient
model Eq. (6.31) gives the following dispersion relation,

− (e0a)4k6 + (e0a)2k4 − k2 + η2ω2 = 0 (6.45)

Solving this dispersion relation for wave frequency as

ω f = k

η

√
1 − (e0a)2k2 + (e0a)4k4 (6.46)

The phase and the group speeds of an ultrasonic wave in nanorod are given as

C f
p = ω f

k
= 1

η

√
1 − (e0a)2k2 + (e0a)4k4 (6.47)

C f
g = ∂ω f

∂k
= 1 − 2(e0a)2k2

[
1 − (e0a)2k2

]
η
{
1 − (e0a)2k2

[
1 − (e0a)2k2

]} (6.48)

On substitution of e0a = 0 in Eqs. (6.47 and 6.48), gives C f
p = C f

g = 1/η = √
E/ρ.
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6.2.5 Numerical Results and Discussion

For the present analysis, a SWCNT is assumed as a nanorod. The values of the
diameter (d), Young’s modulus (E) and density (ρ) are assumed as 5 nm, 1.06 TPa,
and 2270 kg/m3, respectively.

The spectrum and dispersion curves for nanorod obtained from both strain gradient
models (assuming e0a = 0.02 nm. as length increases e0a/L << 1) are shown in
Fig. 6.6. The results obtained from classical continuum model are also shown in those
figures for comparison.

The spectrum and dispersion relations obtained from the classical continuum
model show that the waves in nanorod are nondispersive, i.e., the wavenumber has
a linear relation with the wave frequency or the phase or group speeds are constant
(see Figs. 6.6–6.9). Both the strain gradient models show that the waves in nanorod
are dispersive in nature. It can also be seen that the fourth-order strain gradient
model give improved approximation over the second-order strain gradient model, as
compared to the classical continuum model. And also the results are compared with
the Born–Karman model [21], and the stress gradient model [22].

The instability of the second-order strain gradient model can be seen developing
in Fig. 6.6 for wavenumbers larger than 1√

e0a , where the angular frequency and the
phase velocity become imaginary. This means that waves with larger wavenumbers
(or, equivalently, with smaller wavelengths) cannot propagate through this medium.
Instead, the imaginary frequency and velocity imply that the response occurs every-
where in the medium instantaneously. This is physically unrealistic. Therefore, these
smaller wavelengths should not be considered. Filtering shorter waves occurs auto-
matically in a discrete medium, where wavelengths smaller than two times the particle
size cannot be monitored. However, in a continuous medium, all wavelengths can
in principle be present. Especially when shock waves are investigated, waves with

Fig. 6.6 Wavenumber dis-
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tinuum model, second and
fourth-order strain gradient
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all wavelengths are triggered by the loading. The imaginary angular frequency (or
phase velocity) of these high-frequency waves prohibits a proper wave propagation
simulation with this model. The cut-off value for the wavenumber occurs at k = 1√

e0a
(see Fig. 6.6). In the response of the fourth-order strain gradient model, the effect of
these high frequency waves is of minor importance. In summary, the wave behavior
in second and fourth-order NLStGM is quite different and in addition, instability in
the second-order model can be clearly seen.

The effect of e0a on the wave behavior in nanorods is shown in Figs. 6.7–6.9.
Figure 6.7 shows the effect of e0a on wavenumber dispersion in nanorod obtained
from different models. As e0a increase, the wavenumbers obtained from both strain
gradient models will decrease with wave frequency. And the corresponding wave
speeds will decrease (as e0a increases) as shown in Figs. 6.8 and 6.9. The phase
speeds obtained from the second-order strain gradient model are zero at a particular
wave frequency (i.e., at critical wavenumber) and this critical wavenumber is also
decreases with increase in e0a (see Fig. 6.8). A similar type of phenomena is also
observed for group speed variation as shown in Fig. 6.9.

As shown in Fig. 6.6, for the case of the second-order strain gradient model, the
wave frequency is zero at zero wavenumber and also at the value of 2.02 nm−1. The
wavenumber at which the wave frequency is zero is called as critical wavenumber kcr

(see Eq. (6.43)). This critical wavenumber is purely a function of the nonlocal scaling
parameter (e0a). As e0a increases, the critical wavenumber decreases as shown in
Fig. 6.10. It is found that, for second-order strain gradient model, for wavenumbers
higher than kcr , the waves cannot propagate through this medium.

The effect of the nonlocal scaling parameter on the number of waves (N ) along the
nanorod is shown in Fig. 6.11, for rod lengths of 10, 50 and 100 nm. A relation among
the number of wave N , nonlocal scaling parameter e0a, and the length of the rod L is
shown in Eq. (6.44). This relation is obtained from the second-order strain gradient

Fig. 6.7 Effect of nonlocal
scaling parameter (e0a) on
wavenumber dispersion in
nanorod
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Fig. 6.8 Effect of nonlocal
scaling parameter (e0a) on
phase speed dispersion in
nanorod
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Fig. 6.9 Effect of nonlocal
scaling parameter (e0a) on
Group dispersion in nanorod
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model only. For number of waves along the nanorod are directly proportional to the
length of the nanorod. The number of waves along the nanorod will decrease as e0a
increases (see Fig. 6.11). For very small values of e0a, the number of waves along
the nanorod are very high, for long length nanorods. For e0a > 0.1 nm, the number
of waves along the rod is almost constant and this constant number is different for
different lengths of nanorod.

Finally, the wave dispersion behavior of nanorods, incorporating a constitutive
law that includes a length scale, can be analyzed using a direct Newtonian approach
(stress gradient model) and a variational approach (strain gradient model). The latter
approach provides the governing field equations and the variationally consistent sets
of boundary conditions. Incorporation of small length scale effects is found to signif-
icantly affect the wave dispersion behavior in nanorods. Strain-gradient elasticity is
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Fig. 6.10 Critical wavenum-
ber (obtained from second-
order strain gradient model)
variation with nonlocal scal-
ing parameter
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Fig. 6.11 Relation between
the number of waves along
the nanorod and the nonlocal
scaling parameter obtained
from second-order strain
gradient model, L is the
length of the nanorod
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quite useful even in materials exhibiting small nonlocal characteristic length scales.
More details on these concepts can also be found in [23].

Noting the significant computational costs of MD simulations, other approaches
such as the present one have emerged for the modeling of CNTs. The present model’s
computational costs is negligible compared to the MD calculations and provide for
efficient parametric studies. The presented nanorod wave propagation solutions based
on nonlocal stress model should be useful to engineers who are designing micro- and
nanoelectromechanical devices. Moreover, the higher order strain gradient solutions
serve as benchmarks for reference, convergence, and accuracy of numerical solutions
for static and dynamic analysis of nanostrucutres obtained from other mathematical
and computational approaches such as molecular dynamics simulations.
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6.3 Axial Wave Propagation in Nanorods with Lateral Inertia

The dynamic testing of materials and components often involves predicting the prop-
agation of stress waves in slender rods. Time-domain analysis of wave propagation
in nanorods has received less attention. However, the nonlocal scale effect has been
incorporated in the one-dimensional wave equation, which is valid within a certain
frequency range. For elastic bars, the effect of lateral inertia was predicted by Love
[24] a century ago. Love defined the kinetic and strain energy in an elastic rod and
derived an equation that incorporated the effect of lateral motion on axial waves
using the calculus of variations (see [24, 25]). It is not possible to repeat this analy-
sis for a nonlocal nanomaterial as the necessary expressions for strain energy are
not derivable. An alternative derivation is presented here. Due to the Poisson’s ratio
effect, there is kinetic energy in lateral as well as in the axial direction. This kinetic
energy is used to define a new concept called the effective density, which is related
to the density via a differential operator.Thereafter, expressing Newton’s second law
in terms of the effective density results in a fifth-order partial differential equation
(PDE), which represents longitudinal waves in a nolocal bar.

6.3.1 NLSGM-Based Governing Equations for Nanorods
with Lateral Inertia

Figure 6.12 schematically describes a nanorod under, which has a axial coordinate x,
lateral coordinate y, the axial displacement u = u(x, t), the Young’s modulus E, the
density ρ, the Poisson’s ratio ν, and cross sectional area A. The displacement field
(X−direction), strain, strain rate, and particle velocity associated with the displace-
ment field in X−direction for this nanorod are given by

u = u(x, t) (6.49)

εxx = ∂u

∂x
(6.50)

ε̇xx = ∂εxx

∂t
= ∂2u

∂x∂t
(6.51)

V = u̇ = ∂u

∂t
(6.52)

Due to Poisson’s ratio ν, there are displacement fields v and w in Y - and Z -
directions, respectively. For example, the strain and the derivative of the displacement
with time in the Y - direction are, respectively,

εyy = −vεxx (6.53)

v̇ = −vyε̇xx (6.54)
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Fig. 6.12 A nanorod, showing Young’s modulus E , density ρ, Poisson’s ratio ν, diameter d, cross-
sectional area A, longitudinal displacement u = u(x, t), strain along X - direction εx and strain
along Y - direction εy

The kinetic energy of the infinitesimal length Δx of the rod (see Fig. 6.12) is

ΔΠe = 1

2
ρAΔx

(
V 2 + ν2ζ 2ε̇2

xx

)
(6.55)

where ρ is the density, A is the cross-sectional area and ζ is the radius of gyration
of the solid circular cross-section. Lagrange’s equation of the second kind is used
here to derive an equation of motion of the system. The behavior of the system is
analogous to that of a completely plastic in-line collision of two unequal masses,
that is, the rigid falling mass and the effective mass of the two plates. The effective
mass of the plates consists of two terms. These two terms represent the longitudinal
and transverse inertia of the actual specimen. Here, an effective density is used to
incorporate the effect of lateral inertia in a one-dimensional wave equation. The
mathematical rigor of the derivation of the effective mass in [26] is not attempted.
Rather, it is postulated that the effect of lateral inertia effect can be incorporated in
a wave model using the concept of effective density. The validity of the approach is
supported by comparison with two other wave theories. It is then shown that the new
wave equation is equivalent to Love’s equation for stress waves in elastic bars when
rate dependency is removed from the material model.

Hence, an effective density is used to incorporate the effect of lateral inertia in a
one-dimensional nonlocal wave equation. An effective densityρe f f is now introduced
such that the kinetic energy of the element Δx is ΔΠe

e f f , where
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ΔΠe
e f f = 1

2
ρe f f AΔxV 2 (6.56)

Using Newton’s second law, the net longitudinal force acting on the elementΔx (see
Fig. 6.12) is

Δσxx × A = ρe f f A
∂2u

∂t2 ×Δx (6.57)

In the limiting case as Δx → 0, Eq. (6.57) can be written as

∂σxx

∂x
= ρe f f

∂2u

∂t2 (6.58)

To find the relationship between ρe f f and ρ, a functional
⋃

e is defined as the kinetic
energy error when using the effective density, i.e.,

⋃
e

=
∫ ∫ [

ΔΠe −ΔΠe
e f f

]
dx dt

=
∫ ∫ [

1

2
ρA
(

V 2 + ν2ζ 2ε̇2
xx

)
−
(

1

2
ρe f f AV 2

)]
dx dt (6.59)

substituting for strain rate and particle velocity in Eq. (6.59), the minimization of
⋃

e
requires minimization of the following functional:

⋂
e

=
∫ ∫ {[

ρV 2 + ρν2ζ 2
(
∂V

∂x

)2

− ρe f f V 2

]}
dx dt (6.60)

The functional in Eq. (6.60) can be written interms of the displacement u as

⋂
e

=
∫ ∫ {(

ρ − ρe f f
) [∂u

∂t

]2

+ ρν2ζ 2
[
∂2u

∂x∂t

]2
}

dx dt (6.61)

The integrand of the functional
⋂

e is

f

(
∂u

∂t
,
∂2u

∂x∂t

)
= (ρ − ρe f f

) [∂u

∂t

]2

+ ρν2ζ 2
[
∂2u

∂x∂t

]2

(6.62)

In order to minimize
⋂

e in Eq. (6.61), the integrand f
(
∂u
∂t ,

∂2u
∂x∂t

)
should satisfy the

following equation:

∂2

∂x∂t

⎡
⎣∂ f

(
∂u
∂t ,

∂2u
∂x∂t

)

∂ ∂
2u

∂x∂t

⎤
⎦− ∂

∂t

⎡
⎣∂ f

(
∂u
∂t ,

∂2u
∂x∂t

)
∂ ∂u
∂t

⎤
⎦ = 0 (6.63)
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Therefore, Eq. (6.63) is identical to the following partial differential equation:

ρe f f
∂2u

∂t2 = ρ
∂2u

∂t2 − ρν2ζ 2 ∂4u

∂x2∂t2 (6.64)

Equation (6.64) gives the relationship between the effective density and the density
that minimizes the effective density error,

⋃
e, defined in Eq. (6.59), over the length

of the nanorod and the time of motion. Substituting this expression in Eq. (6.58)
gives

∂σxx

∂x
= ρ

∂2u

∂t2 − ρν2ζ 2 ∂4u

∂x2∂t2 (6.65)

The constitutive model employed here is that obtained from the theory of nonlo-
cal/nonclassical continuum mechanics. For thin rods Eq. (6.1) can be written in the
following one-dimensional form

σxx − α2 ∂
2σxx

∂x2 = Eεxx = E
∂u

∂x
(6.66)

where E is the modulus of elasticity, σxx and εxx are the local stress and strain
components in the x direction, respectively and α = e0a, nonlocal scaling parameter.
Differentiating the Eq. (6.66) with respect to x on both sides, gives

∂σxx

∂x
− (e0a)2

∂3σxx

∂x3 = E
∂εxx

∂x
= E

∂2u

∂x2 (6.67)

Substituting Eq. (6.65) in Eq. (6.67) leads to

E
∂2u

∂x2 = ρ
∂2u

∂t2 − ρν2ζ 2 ∂4u

∂x2∂t2 − α2ρ
∂4u

∂x2∂t2 + α2ρν2ζ 2 ∂6u

∂x4∂t2 (6.68)

Equation (6.68) is the consistent fundamental governing equation of motion for non-
local rod model including the effect of lateral inertia/Poisson’s ratio effect [27]. When
α = e0a = 0 and ν = 0, it is reduced to the equation of local or classical rod model.

6.3.2 Wave Characteristics of Nanorods with Lateral Inertia

For analyzing the ultrasonic/terahertz wave dispersionterahertz wave dispersion char-
acteristics in nanorods, we assume that a harmonic type of wave solution for the
displacement field u(x, t) and it can be expressed in complex form as:

u (x, t) =
P−1∑
p=0

Q−1∑
q=0

û
(
x, ωq

)
e− j(kp x−ωq t) (6.69)
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where P and Q are the number of time sampling points and number spatial sam-
pling points respectively and j = √−1. ωq is the circular frequency at the qth time
sample. Similarly, kp is the axial wavenumber at the pth spatial sample point. Sub-
stituting Eq. (6.69) into the governing partial differential equation Eq. (6.68), we get
the characteristic equation (dispersion relation).

− k2 + η2α2ω2k2 + η2ω2 + η2ν2ζ 2α2ω2k4 + η2ν2ζ 2ω2k2 = 0 (6.70)

where η =
√
ρ
E . The dispersion relation is solved for the wavenumbers or wave

frequencies as

k1,2,3,4 = ±
√

−T2 ± √
T2 − 4T4T0

2T4
(6.71)

where T4 = η2ν2ζ 2α2ω2, T2 = η2α2ω2 + η2ν2ζ 2ω2 − 1 and T0 = η2ω2. The wave
frequency is a function of wavenumber k, the nonlocal scaling parameter α = e0a
and the material properties (E , ν & ρ) of the nanorod. This shows a nonlinear rela-
tion between wavenumber and wave frequency, i.e., the obtained axial waves in
nanorod are dispersive in nature. The present results are compared with the results
obtained from classical continuum model, second & fourth-order strain gradient
models, stress gradient model and Born–Karman model. If α = 0 &ν = 0, the
wavenumber is directly proportional to wave frequency, which will give a nondis-
persive wave behavior (more details are given in ref. [9, 10]).

We will now generate some numerical results and compare the results obtained by
the present lateral inertia model with all the other formulated models. This will bring
out the effects that lateral inertia has on the wave parameters, namely the wavenumber
and the group speeds. For the present analysis, a single-walled carbon nanotube is
assumed as a nanorod. The values of the radius, thickness, Young’s modulus and
density are assumed as 3.5 nm, 0.35 nm, 1.03 TPa, and 2300 kg/m3, respectively.

The present results are compared with the results obtained from the following
models, whose summary of equations are as follows :

1. Classical/Local Continuum Model

a. Constitutive relation:
σ(x) = Eε(x) (6.72)

b. Governing differential equation:

∂2u

∂x2 = ρ

E

∂2u

∂t2 (6.73)

c. Dispersion relation:

k2 − ρ

E
ω2 = 0 (6.74)
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2. Second-Order NLStGM (See Sect. 6.2)

a. Constitutive relation:

σ(x) = E

[
ε(x)+ α2 ∂

2ε(x)

∂2x

]
(6.75)

b. Governing differential equation:

α2 ∂
4u

∂x4 + ∂2u

∂x2 = ρ

E

∂2u

∂t2 (6.76)

c. Dispersion relation:

α2k4 − k2 + ρ

E
ω2 = 0 (6.77)

3. Fourth-Order NLStGM (See Sect. 6.2)

a. Constitutive relation:

σ(x) = E

[
ε(x)+ α2 ∂

2ε(x)

∂x2 + α4 ∂
4ε(x)

∂x4

]
(6.78)

b. Governing differential equation:

α4 ∂
6u

∂x6 + α2 ∂
4u

∂x4 + ∂2u

∂x2 = ρ

E

∂2u

∂t2 (6.79)

c. Dispersion relation:

− α4k6 + α2k4 − k2 + ρ

E
ω2 = 0 (6.80)

4. NLSGM (See Sect. 6.1)

a. Constitutive relation:

σ(x)− α2 ∂
2σ(x)

∂x2 = Eε(x) (6.81)

b. Governing differential equation:

∂2u

∂x2 + ρ

E
α2 ∂4u

∂x2∂t2 = ρ

E

∂2u

∂t2 (6.82)

c. Dispersion relation:

− k2 + ρ

E
α2ω2k2 + ρ

E
ω2 = 0 (6.83)
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5. Born–K ármán model (Based on Lattice Dynamics) [12]

a. Dispersion relation:

ω = 2

a

√
E

ρ
sin

(
k × a

2

)
. (6.84)

Figure 6.13 shows the variation of axial wavenumber of a nanorod with wave
frequency. From Fig. 6.13, for a nanorod, it can be seen that there is only one mode
of wave propagation, i.e., axial or longitudinal. For local or classical models, the
wavenumbers for the axial mode have a linear variation with the frequency which is
in the tera-hertz (THz) range. The linear variation of the wavenumbers denoted that
the waves will propagate nondispersively, i.e, the waves do not change their shapes
as they propagate. On the other hand, the wavenumbers obtained from strain gradi-
ent/nonlocal stress gradient models have a nonlinear variation with the frequency,
which indicates that the waves are dispersive in nature. However, the wavenumbers
of this wave mode have a substantial real part starting from the zero frequency. This
implies that the mode starts propagating at any excitation frequency and does not
have a cut-off frequency (refer Fig. 6.13).

The spectrum curves for nanorod obtained from both second and fourth-order
strain gradient models are also shown in Fig. 6.13, for comparison. Both the strain
gradient models exhibit dispersive nature of waves. It can also be seen that the fourth-
order strain gradient model give improved approximation over the second-order strain
gradient model, as compared to the classical continuum model (such observations

Fig. 6.13 A comparison of
the wavenumber dispersion
with wave frequency in a
nanorod obtained from classi-
cal/local and nonlocal theories
suggested in the literature with
the present result, to show the
effect of lateral inertia
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are also made in Ref. [9]). Also, the results are compared with the Born–Karman
model, as well as the nonlocal stress gradient model. It can be concluded that the
instability of the second-order strain gradient model can be overcome by considering
the inertia gradients used in the fourth-order NLStGM.

The effect of the scaling parameter on the wave dispersion relation in nanorod
is shown in Fig. 6.14. As the nonlocal scaling parameter (α = e0a) increases, the
frequency of the wave will decrease with an increase in wavenumber. Here α values
are assumed from 0.0 to 1.0 nm. As α tends to larger value, the wave frequency
becomes very small at higher values of wavenumber as shown in Fig. 6.14. It can
be seen that while dealing with the nonlocal elasticity theory including the effect
of lateral inertia, one should not neglect the scaling parameter. Hence, the scaling
parameter plays an important role while dealing with the dynamics of nanostructures.

The effect of radius of nanorod, on the wave dispersion relation based on the
present formulation, is shown in Fig. 6.15. For the present analysis, we consider
three different radii of nanorods i.e., 1.0 , 2.0 and 5.0 nm. For comparison, the results
obtained from local/classical elasticity are also shown in the same figure. As the
radius of the nanorod increases, the wave frequency becomes almost constant for
wavenumbers larger than 5.0 1/nm. The effect of the lateral inertia shows that as
the radius of the nanorod increases, the wavenumber decreases and will not become
constant irrespective of the wavenumber.

It can be concluded that the wave dispersion characteristics in a nanorod is drasti-
cally different for local and nonlocal models. The local model predicts that the wave
will propagate at all frequencies, but the nonlocal model shows that the wave will
propagate only up to certain frequencies depending on the nonlocal scaling parame-
ter. It has also been shown that the unstable second-order strain gradient model can
be replaced by considering the inertia gradient terms in the formulations.

Fig. 6.14 Wavenumber dis-
persion (including the effect
of lateral inertia) with wave
frequency in a nanorod for
various values of the nonlocal
scaling parameter (α)
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Fig. 6.15 Wavenumber dis-
persion (including the effect of
lateral inertia) with wave fre-
quency in a nanorod obtained
from both the local and nonlo-
cal formulations for different
radii of nanorods
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6.4 Torsional Wave Propagation in NLSGM Nanoshafts

The majority of the literature on nonlocal elasticity exists pertaining to the free trans-
verse and longitudinal vibration of micro/nanobeams (CNTs), nanoplates (graphene
sheets), and nanoshells (carbon nanotubes). This is because the transverse modes are
more prone to get excited by common types of external excitations. On the contrary,
only limited works on nonlocal elasticity have been devoted to the torsional vibration
and wave propagation of nanostructures. Nanorods when used as electromechani-
cal resonator can be externally excited and they exhibit both axial and torsional
vibrations. Therefore, there is a strong scientific need to gain an understanding of
the torsional wave propagation of complex nanoshafts system and the mathematical
modeling of such phenomena.

Torsional wave propagation of CNTs is important to the design of different CNT-
based torsional devices including but not limited to sensors, oscillators, gyroscopes,
and torsional pendulums. It is therefore necessary to have a clear understanding of
CNT behavior under torsional vibrations. In this section, a study of the dynamic
torsional properties of CNTs is presented and dispersion relations of torsional waves
are derived using a nonlocal shaft model and compared with those of classical models
and results from molecular dynamics simulations.

Will will first derive the governing differential equation. For this, let us consider a
nanoshafts as shown in Fig. 6.16. The nanorod is assumed to be of length L . General
physical model to represent carbon nanotube include the nonlocal shell, nonlocal
beam, or nonlocal shaft model. Here we will consider a simple one-dimensional
nonlocal shaft model. The present work can also be extended to nonlocal beam and
shell models. The nonlocal constitutive relation for shear stress in one-dimensional
differential form can be simplified as
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Fig. 6.16 A nanoshaft, show-
ing length L , shear modulus
G, density ρ, polar moment
of inertia Ip , and torsional
displacement θ(x, t)

L σS = GεS (6.85)

where L = 1−(e0a)2∇2, G is the shear modulus, εS is the shear strain and σS is the
shear stress of nanorod. The stress resultant due to shear stress is QS = ∫

A σS d A
and the torque relation is TS = ∫

A σSz d A. Now using these shear stress resultant
and the torque can be written as follows using Eq. (6.85)

L QS = QS − (e0a)2
∂2 QS

∂x2 = G AεS, (6.86)

L TS = TS − (e0a)2
∂2TS

∂x2 = G IP
∂θ

∂x
(6.87)

where θ is the angular displacement and IP is the polar moment of inertia of the cross-
sections of the nanoshaft. Now considering an element of nanoshaft, the equation of
motion can be written as

(
TS + ∂TS

∂x
dx

)
− TS + TE XT dx = ρ IP

∂2θ

∂t2 dx (6.88)

where TS and TE XT are the induced torque and the external torque per unit length,
respectively. The term ρ IP

∂2θ
∂t2 dx on the right hand side of Eq. (6.88) represents the

inertia torque acting on the element of nanoshaft. The symbols ρ and t are the density
of nanoshaft and time, respectively. Using Eqs. (6.87 and 6.88), we have

TS = G IP
∂θ

∂x
+ ρ IP (e0a)2

∂3θ

∂x∂t2 − (e0a)2
∂TE XT

∂x
(6.89)

Using Eqs. (6.87 and 6.89) ignoring the external torque we get the nonlocal gov-
erning equation of motion for torsional wave propagation in nanoshafts as

G IP
∂2θ

∂x2 − ρ IP
∂2θ

∂t2 + ρ IP (e0a)2
∂4θ

∂x2∂t2 = 0 (6.90)

when we neglect the nonlocal small-scale effect (i.e., e0a = 0), we get the conven-
tional scale-free equation for torsional wave propagation in shafts.

Next, we will compute the wave numbers, group speeds and the escape velocities
for the present model. For analyzing the ultrasonic wave dispersion characteristics
in nanorods, we assume that a harmonic type of wave solution for the displacement
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field u(x, t) and it can be expressed in complex form as [10],

θ (x, t) =
N−1∑
n=0

θ̂ (x, ωn) e− j(kθ x−ωn t) (6.91)

where, N is the number of time sampling points. ωn is the circular frequency at the
nth time sample and j = √−1. Substituting Eq. (6.91) into the governing partial
differential equation Eq. (6.90), we get the dispersion relation as follows. Hereafter,
the subscript n in Eq. (6.91) is dropped for simplified notations.

− k2
θ + (e0a)2η2ω2k2

θ + η2ω2 = 0 (6.92)

where η =
√
ρ IP
G IP

. This dispersion relation is solved for the wavenumbers as

kθ1,2 = ±
√

η2ω2

1 − (e0a)2η2ω2 (6.93)

The torsional wavenumber kθ is a function of the wave frequency ω, the nonlo-
cal scaling parameter e0a and the material properties (G & ρ) of the nanoshaft. If
e0a = 0, we get the local wave behavior. Rest of the behavior for this model is very
similar to the axial wave propagation of the NLSGM nanorods.

Figure 6.17 shows the spectrum relation plot as a function of nonlocal scale para-
meter e0a. From the figure, we see that at certain frequencies, the wavenumber is
tending to infinity and this frequency value decreases with increase in the scale
parameter. Its value can be analytically determined by looking at the wavenumber
expression Eq. (6.93) and setting kθ → ∞. Which is given as

Fig. 6.17 Wavenumber dis-
persion (spectrum relation)
for a nanoshaft obtained from
both local and nonlocal elas-
ticity models
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ωescape = 1

(e0a)η
= 1

e0a

√
G

ρ
(6.94)

The escape frequency is inversely proportional to the nonlocal scaling parameter and
is independent of the diameter of the nanoshaft. The variation of the escape frequency
with nonlocal scaling parameter is shown in Fig. 6.18.

Wave velocities can be computed as before. That is,

C phase = ω

kθ
= 1

η

[
1 − (e0a)2η2ω2

]1/2
(6.95)

Cgroup = ∂ω

∂kθ
= 1

η

[
1 − (e0a)2η2ω2

]3/2
(6.96)

These wave speeds also depend on the nonlocal scaling parameter. When e0a = 0,
both the wave speeds are equal (i.e., C phase = Cgroup = 1/η = √

G/ρ), which is
already proved for local or classical bars/rods [10]. The phase speed and group speed
dispersion curves with wave frequency are shown in Fig. 6.19a, b, respectively.

6.4.1 Numerical Results and Discussion

For the present analysis, a single-walled carbon nanotube is assumed as a nanoshaft.
The values of the radius, thickness, Young’s modulus, Poisson’s ratio, and density
are assumed as 2.0 nm, 0.1 nm, 3.03 TPa, 0.19 and 2300 kg/m3 [28], respectively.

Figure 6.17 shows the real and imaginary parts of the torsional wavenumber of a
nanoshaft. The thick lines represent the real part and the thin lines show the imaginary

Fig. 6.18 Escape frequency
variation with nonlocal scaling
parameter of the axial and
torsional waves in nanorod
and nanoshaft
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Fig. 6.19 Torsional and axial wave velocities in nanorod and nanoshaft (a) Phase velocity and (b)
Group velocity

part of the wavenumbers. From Fig. 6.17, for a nanoshaft, it can be seen that there
is only one mode of wave propagation, that is the torsional mode. For local or
classical models, the wavenumbers for the torsional mode have a linear variation
with the frequency which is in the THz range. As in the case of NLSGM nanorods,
the wavenumbers obtained from nonlocal elasticity have a nonlinear variation with
the frequency, which indicates that the waves are dispersive in nature. At escape
frequency, as in the case of other nanorod models discussed earlier, the wavenumbers
tend to infinity as shown in Fig. 6.17, beyond which no propagation occurs. For
comparison, the axial wavenumbers in nanorod are also shown in Fig. 6.17. It can
be observed that the axial wavenumbers in nanorod are higher than the torsional
wavenumbers.

One important outcome of the nonlocal elasticity is the realistic prediction of
the dispersion curve that is, frequency-wavenumber/wavevector relation. As shown
in Eringen [29], the dispersion relation ω

C1k = (
1 + (e0a)2k2

)−1/2
, the nonlo-

cal scale parameter e0a, closely matches with the Born–Karman model disper-
sion ωa

C1
= 2 sin

( ka
2

)
when e0 = 0.39 is considered. However, among the two

natural conditions at the mid-point and end of the first Brillouin zone , we have,
dω
dk

∣∣
k=0 = C1; dω

dk

∣∣
k= π

a
= 0 and among these relations, only first one is satisfied.

It was suggested that two-parameter approximation of the kernel function will give
better results. This is reiterated by Lazar et al. [30] that one parameter (only e0a)
nonlocal kernel function will never be able to model the lattice dynamics relation and
it is necessary to use the Bi-Helmholtz type equation with two different coefficients
of nonlocality to satisfy all the boundary conditions. It is to be noted that the simple
forms of the group and phase velocities that exist for isotropic materials permitted
to tune the nonlocality parameters, so that the lattice dispersion relation is matched.
Further, by virtue of the Helmholtz decomposition, only one-dimensional Brillouin
zone needs to be handled. Although the general form of the boundary conditions,
i.e., group speed is equal to phase speed (at k = 0) or zero (at k = π/a), is still
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applicable, the expressions are difficult to handle. This is because, the Brillouin zone
is really a two-dimensional region where four boundary conditions are involved.

The escape frequencies are purely a function of the nonlocal scaling parameter.
The variation of the escape frequency with nonlocal parameter is shown in Fig. 6.18.
It can also be observed that, the escape frequencies of axial waves in nanorod are
higher than the torsional waves. It shows that, as e0a increases the escape frequency
decreases, such variation can also observed from Fig. 6.17. For very small values of
e0a, the escape frequencies are very large, and at higher values of e0a the escape
frequencies are very small and approach to a constant value.

Figure 6.19, plots the wave speeds (i.e., both phase and group) for the nanoshaft
obtained from both local and nonlocal models. It is now well-known that in nonlocal
elasticity, the wavenumber tends to infinity at escape frequencies, so that the phase
speeds (see Fig. 6.19a) and group speeds (see Fig. 6.19b) are tending to zero at those
frequencies, indicating localization and stationary behavior. Both the wave speeds
are higher in axial wave case as compared to the torsional wave case in the nanorod.
These predictions are similar to other nonlocal models.

6.5 Spectral Finite Element Formulation

A structure can be thought of as a system of connected waveguides that transmits
different types of waves in a system. As we have seen in this chapter, wave propagation
analysis is always based on the governing elastodynamic equations. This is best
accomplished by performing spectral analysis, which gives the wavenumbers and
wave speeds, as was shown in this chapter. The solution of wave equation can be
expressed as a combination of different waves, and these are expressed in terms of
complex exponentials containing the wavenumbers. Using the variational approach
in the frequency domain, by using the exact solution to the wave equation as in
interpolation function, we can derive a dynamic stiffness matrix for each waveguide
segment. Thus, the response of each and every structural member is described by
a stiffness matrix in the frequency space, which is appropriately called a spectral
finite element. The classical static stiffness matrix is actually obtained from the
spectral stiffness matrix in a zero-frequency limit. By connecting all the elements (or
waveguides) according to the spatial geometry, a global stiffness matrix is constructed
and a global response due to a specified impulse is studied first by going over all
the frequencies and then by transforming to the time domain, which is conveniently
done by the fast Fourier transform (FFT). The details of this method are given in
[9, 10, 31].

Application of the finite element method (FEM) for wave propagation requires
a very fine mesh to capture the mass distribution accurately. The mesh size should
be comparable to the wavelengths, which are very small at high frequencies. Hence,
the problem size increases enormously. Many applications in smart structure appli-
cations, such as structural health monitoring or active wave control in composite
structures, require wave-based modeling since one has to use high-frequency inter-
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rogating signals. If one needs online diagnostic tools in structures, wave-based mod-
eling is an absolute one. For such problems, the FEM by itself cannot be used as a
modeling tool as it is very expensive from the computational viewpoint. Hence, one
needs an alternate formulation wherein the frequency content of the exciting signal
is not an issue. That is, we need a modeling tool that can give a smaller problem
size for high-frequency loading, at the same time retaining the matrix structure of
the FEM. Such a technique is feasible through the spectral finite element (SFEM)
technique [9, 10].

It is not enough to have the expressions of the wavenumbers or phase speeds
with matched dispersion relation. To visualize the manifestation of these speeds, it
is necessary to develop a tool for analyzing the nonlocal media subjected to high
frequency loading. The convolution integral form of the nonlocal theory of elasticity
naturally suggests that integral transform-based method of solving partial differential
equation will enjoy superiority as compared to the conventional FEM. One such
method is the SFEM.

The SFEM, popularized by the senior author of this book [10], is an integral
transform-based method with the matrix structure of FEM. The SFEM is the FEM
formulated in the frequency domain and wavenumber space. That is, these elements
will have interpolating functions that are complex exponentials or Bessel functions.
These interpolating functions are also functions of the wavenumbers. For example, a
governing partial 1-D wave equation, when transformed into the frequency domain
using DFT, removes the time derivative and reduces the PDE to a set of ODEs, which
have complex exponentials as solutions. In the SFEM, we use these exact solutions as
the interpolating functions. As a result, the mass is distributed exactly and hence, one
single element is sufficient between any two discontinuities to get an exact response,
irrespective of the frequency content of the exciting pulse. That is, one SFEM can
replace hundreds of FEMs normally required for wave propagation analysis. Hence,
the SFEM is an ideal candidate for developing online health monitoring software. In
addition to smaller system sizes, other major advantages of the SFEM include the
following:

• Since the formulation is based on the frequency domain, system transfer functions
are the direct byproduct of the approach. As a result, one can perform inverse
problems such as force identification/system identification in a straightforward
manner.

• The approach gives the dynamic stiffness matrix as a function of frequency, directly
from the formulation. Hence, we have to deal with only one element of dynamic
stiffness as opposed to two matrices in the FEM (stiffness and mass matrices).

• Since different normal modes have different amounts of damping at various fre-
quencies, by formulating the elements in the frequency domain one can treat the
complex damping mechanisms more realistically.

• The SFEM lets you formulate two sets of elements, one is the finite length element
and the other is the infinite element or throw-off element. This throw-off element
acts as a conduit of energy out of the system. There are various uses of this infinite
throw-off element, such as adding maximum damping, obtaining good resolution
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of the responses in the time domains and also in modeling large lengths, which
are computationally very expensive to model in the FEM.

• The SFEM is probably the only technique that gives you responses in both the
time and frequency domains in a single analysis.

The SFEM can be formulated in a similar manner to the FEM by writing the
‘weak form’ of the governing differential equation and substituting the assumed
functions for displacements and integrating the resulting expression. Since the func-
tions involved are much more complex, integration of these functions in the ‘closed
form’ takes a longer time. In addition, by this approach we cannot obtain the dynamic
stiffness matrix of the ‘throw-off element’, as the latter is normally complex. Hence,
we adopt an equilibrium approach of element formulation, which eliminates integra-
tion of the complex functions. In this chapter, we show this formulation for a simple
isotropic rod element, while the procedure remains the same for other elements.

Formulation of the spectral elements requires determination of the spectrum rela-
tion (wavenumber vs. frequency). The SFEM begins with transformation of the
governing equation into the frequency domain by using a discrete Fourier transform.
The solution of this transformed equation becomes the interpolating function for the
spectral element formulation. The procedure of formulating the SFEM for a simple
1-D nanorod is illustrated below.

Figure 6.20 shows a rod subjected to dynamic forces at two ends. The fundamental
equation on the longitudinal wave in a nanorod element is obtained first.

6.5.1 Frequency Dependent Shape Functions

The nonlocal elastodynamic equation governing the axial response of a nanorod
(assuming zero external forcing) is given in Eq. (6.9). This time-domain equation is
transformed into frequency domain using Discrete Fourier Transform (DFT). Here
the main variable that needs transformation is the axial deformation u(x, t) and its
DFT can be written as

u(x, t) =
∑

n

ûn(x, ωn)e
iωn t = û(x, ω)eiωt (6.97)

j where ωn are the circular frequencies and ûn are the spatially dependent Fourier
coefficients, often named the spectral components of axial displacement. For short-

Fig. 6.20 Nodal Loads and
degree of freedom for the
longitudinal spectral element
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hand, the summation and subscript n will be omitted in the following, as shown in
the last part of Eq. (6.97).

Substituting Eqs. (6.97) into Eq. (6.9) will yield the Helmholtz equation corre-
sponding to the 1-D wave Eq. (6.9) set up over the domain X of size L ,

d2û

dx2 +
(

ω2

η − (e0a)2ω2

)
û = 0, (6.98)

where η = √
ρ/E . Then, the spectral matrix expresses a connection between the

kinematic and the dynamic quantities, i.e., {û1, û2} with {F̂1, F̂2} at both ends of
the rod: 1 and 2. The hat signifies that the quantities are in the frequency space. The
derivation of the spectral stiffness matrix is carried out as follows.

The wave solution of Eq. (6.98) for a finite nanorod element with length L can be
obtained as

û(x, ω) = C1e−ik1x + C2e−ik1(L−x) =
[
e−ikx e−ik(L−x)

] {C1
C2

}
(6.99)

where k1 is the wavenumber of the nanorod defined in Eq. (6.93) with boundary
conditions u(x = 0) = û1, u(x = L) = û2,. The coefficients C1 and C2 can be
represented in terms of the nodal displacements û1 and û2 defined at two end nodes
1 and 2 of the rod element, as follows

{
C1
C2

}
= 1

1 − e−i2kL

[
1 −e−ikL

−e−ikL 1

]{
û1
û2

}
(6.100)

The spectral displacement û(x) of Eq. (6.99) can be rewritten in terms of the nodal
displacements û1 and û2 by substituting Eq. (6.100) into Eq. (6.99). That is

û(x, ω) = Ĝ1(x)û1 + Ĝ2(x)û2 (6.101)

where

Ĝ1(x) = e−ikx − e−ik(2L−x)

1 − e−i2kL
(6.102)

Ĝ2(x) = −e−ik(L+x) + e−ik(L−x)

1 − e−i2kL
(6.103)

Functions Ĝ1(x) and Ĝ2(x) are the frequency dependent rod shape functions or
exact shape functions. The significance of these shape functions is that the complete
description of the element is captured in the two nodal degree of freedom û1 and û2.
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6.5.2 Dynamic Stiffness Matrix

Since the spectral element can be very long then the ability to compute the response
between nodes is necessary. This can be done conveniently using the shape function
and the nodal values. Thus, the displacements and membrane forces are obtained
simply as

û(x, ω) = Ĝ1(x)û1 + Ĝ2(x)û2 (6.104)

N̂ (x, ω) = (E A − ρA(e0a)2ω2)
dû(x)

dx
= (E A − ρA(e0a)2ω2)

[
dĜ1(x)

dx
û1 + dĜ2(x)

dx
û2

]

(6.105)

The member loads at each end of the rod are related to the displacements by (see
Fig. 6.16)

N̂1 = −N̂ (x = 0) = −(E A − ρA(e0a)2ω2)

[
dĜ1(x)

dx

∣∣∣∣∣
x=0

û1 + dĜ2(x)

dx

∣∣∣∣∣
x=0

û2

]

(6.106)

N̂2 = +N̂ (x = L) = +(E A − ρA(e0a)2ω2)

[
dĜ1(x)

dx

∣∣∣∣∣
x=L

û1 + dĜ2(x)

dx

∣∣∣∣∣
x=L

û2

]

(6.107)

The dynamic stiffness of the two-noded element can now be written in matrix form
from Eqs. (6.106, 6.107),

{
N̂1

N̂2

}
= (E A − ρA(e0a)2ω2)

⎡
⎣− dĜ1(x)

dx

∣∣∣
x=0

− dĜ2(x)
dx

∣∣∣
x=0

dĜ1(x)
dx

∣∣∣
x=L

dĜ2(x)
dx

∣∣∣
x=L

⎤
⎦
{

û1
û2

}
(6.108)

Here, the frequency-dependent dynamic element stiffness matrix for the nanorod is

[K̂dyn]SF E M = (E A − ρA(e0a)2ω2)

⎡
⎢⎢⎣

− dĜ1(x)
dx

∣∣∣∣
x=0

− dĜ2(x)
dx

∣∣∣∣
x=0

dĜ1(x)
dx

∣∣∣∣
x=L

dĜ2(x)
dx

∣∣∣∣
x=L

⎤
⎥⎥⎦ =

[
K11 K12
K21 K22

]

(6.109)
The simplified dynamic stiffness matrix can be obtained by using Eqs. (6.102
and 6.103), which gives a symmetric matrix. The elements of the dynamic stiff-
ness matrix are function of the nonlocal scaling parameter. In general, the dynamic
stiffness is complex but in special case of a simple rod with no damping, the matrix
is real only. This is discussed more detail in the next subsection. For comparison,
we write the dynamic stiffness of a conventional finite element for a local elasticity
model is given by
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[K̂dyn]F E M = [K ] − ω2[M] = E A

L

[
1 −1

−1 1

]
− ω2 ρAL

6

[
1 1
1 2

]
(6.110)

6.5.3 Numerical Results and Discussion

The frequency-dependent exact shape functions (Ĝ1(x) and Ĝ2(x)) of the nanorod
obtained from local and nonlocal elasticities are shown in Figs. 6.21 and 6.22 for
various frequencies [32]. The Ĝ1(x)variation with nondimensional length of nanorod
(x/L) is shown for 1, 5, 10,and 15 THz frequencies. These functions occur in pairs,
where one member of the pair is the mirror image of the other. It has been observed
that the shape functions are also affected by the nonlocal scale at higher frequencies
(see Figs. 6.21 and 6.22). For e0a = 0 and e0a = 0.5 nm, the difference between
shape function variation at various frequencies is negligible. At e0a = 1.0 nm, the
difference is not negligible especially at higher frequencies. The effect of e0a on
the frequency-dependent shape functions is considerable at higher frequencies,i.e.,
for > 10 THz. This effect is same for both the functions,i.e., Ĝ1(x) and Ĝ2(x).
Such effects are helpful in analyzing the wave behavior and the vibration behavior
in nanoscale structures very accurately using spectral finite element method. Hence,
both the frequency-dependent shape functions and the dynamic stiffness matrix are
considerably altered due to scale parameter e0.

A special characteristic of two-noded spectral elements is that they have a infinite
frequency. That is, all the vibrational modal information is contained in the 2 × 2
spectral stiffness matrix given by Eq. (6.109). Figure 6.23 gives a comparison of some
stiffness coefficients of the SFEM and FEM at very low and medium frequencies. We
see that at low frequencies they practically match each other. At medium frequencies,
we see that the stiffness coefficients differ substantially. We can make the FEM
stiffness match the spectral stiffness if we use many elements to model the rod. This
is one of the reasons why the model sizes of the SFEM are very small.

The conventional stiffness is monotonic in frequency and K̂11, for example, goes
through zero only once. The spectral dynamic stiffness, on the other hand, has many
zeros as seen from broader frequency plot of Figs. 6.24b and 6.25b. The SFEM
computer code has many resemblances to the FEM code. That is, as in the FEM, the
element dynamic stiffness matrix is generated, assembled,and solved. However, all of
these operations have to be performed for each frequency. Since the system sizes are
small, these do not pose a major computational problem. The significant difference,
from a practical point of view, between the two formulations is that the number
of rod segments in the present formulation need only coincide with the number of
discontinuities. Thus, only one element needs to be used per uniform segment. This
can result in an enormous reduction in the size of the matrices to be solved.

The frequency-dependent dynamic element stiffness is plotted against lower and
higher frequencies in Figs. 6.24 and 6.25 for local and nonlocal elasticity theories. It
has been observed that there is a perfect matching of the dynamic stiffness elements
(K̂11 and K̂12) for frequencies <∼1 THz (clearly seen from Figs. 6.24a and 6.25a),
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Fig. 6.21 Frequency-
ependent exact shape func-
tion Ĝ1(x) of the nanorod
for (a) local elasticity
e0a = 0, (b) nonlocal elas-
ticity e0a = 0.5 nm and (c)
e0a = 1.0 nm
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Fig. 6.22 Frequency-
dependent exact shape func-
tion Ĝ2(x) of the nanorod
for (a) local elasticity
e0a = 0, (b) nonlocal elas-
ticity e0a = 0.5 nm and (c)
e0a = 1.0 nm
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Fig. 6.23 Dynamic stiffness comparison between spectral finite element method (SFEM) and
conventional finite element method (FEM)
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Fig. 6.24 Dynamic stiffness (k̂11) behavior at (a) Lower frequencies and (b) Higher frequencies
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Fig. 6.25 Dynamic stiffness (k̂12) behavior at (a) Lower frequencies and (b) Higher frequencies
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for e0a = 0, 0.5 and 1.0 nm. For higher frequencies the effect of e0a on dynamic
stiffness of nanorod is quite considerable. In Fig. 6.24b, it can be seen that the relation
between dynamic stiffness and frequency can be seen upto certain frequencies only
depending on the values of nonlocal small-scale parameter. Such frequencies are
called as escape frequencies. For e0a = 0, the escape frequency occurs at infinite
frequency. For e0a = 0.5 nm and 1.0 nm, the escape frequencies are 6.803 THz and
3.338 THz, respectively. Such behavior can also observed from Fig. 6.25b.

Spectral FEM approach is limited to only those waveguides whose governing par-
tial differential equation is exactly solvable. For many complicated nonlocal models,
the governing equations are difficult to solve. In such cases, the matrix methodology
of the present method enables the coupling of the SFE and the conventional finite
element as was done in [33] to model cracks and holes in a macro waveguide with
discontinuities.

The governing equation for nonlocal torsional wave propagation is very similar to
that of the axial wave propagation model. Hence, the form of the dynamic stiffness for
torsional wave propagation in nanoshafts is very similar to the axial wave propagation
model Eq. (6.109). That is, the same matrix can be used to perform the torsional wave
propagation studies in nanoshafts with the following substitution:

1. u(x, t) replaced by θ(x, t) in Eq. (6.97)
2. η = √

ρ/E in Eq. (6.98) be replaced by η = √
ρ/G (for more details see [34]).

6.6 Summary

The nonlocal elasticity theory has been incorporated into classical rod model to
capture unique features of the nanorods. The strong effect of the nonlocal scale para-
meter has been obtained, which leads to substantially different axial wave behav-
iors of nanorods from those of classical rods. Explicit expressions are derived for
wavenumbers and wave speeds of nanorods. The studies also show that the nonlocal
scale parameter introduces certain band gap region (without any periodicity) in axial
wave mode where no wave propagation occurs. This is manifested in the spectrum
curves as the region where the wavenumber tends to infinite (or wave speed tends to
zero).

Next, the ultrasonic wave dispersion characteristics of a nanorod are analyzed
using nonlocal second and fourth-order strain gradient models. It is shown that the
second-order strain gradient model can become unstable and uniqueness is not guar-
anteed. The wave analysis in nanorod shows that the fourth-order strain gradient
model gives prediction that is better than the second-order strain gradient model.
The second-order strain gradient model gives a critical wavenumber at certain wave
frequency, where the wave speed is zero. The ultrasonic wave characteristics of
the nanorod obtained from the nonlocal strain gradient models are compared with
the classical continuum model. A relation among the number of waves along the
nanorod, the nonlocal scaling parameter, and the length of the nanorod is obtained
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from the nonlocal second-order strain gradient model. The effect of nonlocal scaling
parameter and the length of the nanorod on the number of waves along the nanorod
are also captured in this work. Finally, the dynamic response behavior of nanorods
is explained from both the strain gradient models. After this, the nonlocal elastic-
ity theory has been incorporated into classical rod model by considering the lateral
inertia effect to capture unique features of the nanorods. It is shown that the unstable
second-order strain gradient model presented in the literature can be made stable by
considering the inertia gradient terms in the formulations. The effect of the nonlocal
small-scale parameter and the size of the nanorod on the wavenumber dispersion
relation are also investigated in the present chapter.

Toward the end, the SFE formulation of nanorods is presented. The exact shape
functions (frequency dependent) and dynamic stiffness matrix are obtained as func-
tion of nonlocal scale parameter. It is found that the small scale parameter, consid-
erably alters the exact shape functions and the elements of the dynamic stiffness
matrix.

In the next chapter, we will discuss the the flexural wave propagation in one-
dimensional nanostructures such as nanobeams as a logical extension of this chapter.
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Chapter 7
Wave Propagation in 1D-Nanostructures:
Nanobeams

Nanobeams are those which undergo flexural or transverse motion in lateral
directions. The cross-sections of such nanostructures could be rectangular or circular.
Some of the nano thin films, which find applications in Nano Electro Mechanical
Systems (NEMS) is normally idealized as nanobeam with rectangular cross-section,
while SWCNT undergoing transverse vibration, are normally idealized as nanobeams
with circular cross-section. There are two different theories that describe the motion
of beams. The first is the Euler–Bernoulli beam theory, which is also called the ele-
mentary beam theory. In this theory, rotation of the cross-section is derived from the
transverse motion and the plane sections are assumed plane before and after bend-
ing. The second theory is called the Timoshenko beam theory, which is also called
the First-order shear deformation Theory (FSDT). In this theory, the rotation of the
cross-section is considered as independent motion and not derived from transverse
deformation. Due to shear deformation effects, the plane sections do not remain plane
after the bending of the section. The main aim of this chapter is to study the effect
of nonlocal scale parameter on the transverse wave propagation in nanobeams. As
before, we will use spectral analysis, outlined in Chap. 2, to perform this study. Some
of the analysis performed in this chapter are the following:

• Wave propagation in general 1D nanobeams using NLSGM,
• Wave propagation in rotating nanobeams,
• Wave propagation in SWCNT carrying fluids,
• Wave propagation in nanobeams subjected to magnetic field, and
• Surface effects on flexural wave propagation in nanobeams.

7.1 NLSM for Euler–Bernoulli Nanobeams

Nanobeams such as carbon nanotubes are central elements to new devices. Let us
consider a nanobeam under the action of stress resultants shown in Fig. 7.1.
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Fig. 7.1 A nanobeam under the action of its stress resultants

Considering the elementary Euler–Bernoulli theory of beams, the axial and trans-
verse displacement fields of a rotating beam can be represented [1]

u(x, z, t) = u0 − z
∂w

∂x
(7.1)

w(x, z, t) = w(x, t) (7.2)

where w is transverse displacements of the point (x, 0) on the middle plane (i.e.,
z = 0) of the beam. The only nonzero strain of the Euler–Bernoulli beam theory,
accounting for the strain is the axial strain given by

εxx = ∂u

∂x
= ∂u0

∂x
− z

∂2w

∂x2 (7.3)

This is also called as bending strain. The equations of motion of the Euler–Bernoulli
beam theory in terms of stress resultants are given by

∂Q

∂x
= ρA

∂2u0

∂t2 (7.4)

∂2 M

∂x2 = ρA
∂2w

∂t2 (7.5)

where

Q =
∫

A
σxx dA, M =

∫
A

zσxx dA (7.6)

and σxx is the axial stress on the yz-section in the direction of x , Q is the axial force
and M is the bending moment.
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Using the nonlocal constitutive relation, we can express stress resultants of Euler–
Bernoulli beam theory in terms of the strains. As opposed to the linear algebraic
equations between the stress resultants and strains in a local theory, the nonlocal
constitutive relations lead to differential relations involving the stress resultants and
the strains. In the following, we assume the nanobeam to be homogeneous and
isotropic. The nonlocal constitutive relation take the following special form for one-
dimensional beams:

σ(xx) − (e0a)2
∂2σxx

∂x2 = Eεxx (7.7)

where E is the Young’s modulus of the beam. Using Eqs. (7.6) and (7.7), we have

Q − (e0a)2
∂2 Qxx

∂x2 = E A
∂u0

∂x
(7.8)

M − (e0a)2
∂2 Mxx

∂x2 = E Iκe (7.9)

where I = ∫
A z2dA is the moment of inertia of the beam cross-section and κe =

− ∂2w
∂x2 is the bending strain of the beam.
With the help of the nonlocal constitutive relations and the equations of motion

presented, the moment can be expressed in terms of the generalized displacements
as, by substituting Eq. (7.9) into Eq. (7.5), we get

M = −E I
∂2w

∂x2 + (e0a)2ρA
∂2w

∂t2 (7.10)

Substituting M from Eq. (7.10) into Eq. (7.5), we obtain the equation of motion of
nonlocal Euler beam as

E I
∂4w

∂x4 + ρA
∂2w

∂t2 − ρA(e0a)2
∂4w

∂x2∂t2 = 0 (7.11)

where w = w(x, t) is the flexural deflection, ρ is the mass density, A is the cross-
sectional area, E I is the bending rigidity of the beam structure, and e0a is the nonlocal
scaling parameter. It is observed that if the internal length scale a is identically zero,
then the local Euler–Bernoulli beam model is recovered.

7.1.1 Wave Dispersion Characteristics

Next, we will compute the parameters that describe the wave characterestics of
the nanobeams, namely wavenumbers and wave speeds. The time variable can be
eliminated from the governing partial differential equation of the nonlocal beam
Eq. (7.11) by using the Fourier transformation [1, 2], for transverse displacement
given by
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w (x, t) =
N∑

n=1

Ŵ (x, ωn)e
iωn t (7.12)

where ωn the circular frequency of the nth sampling point and N is the Nyquist
frequency. The sampling rate and the number of sampling points (N1) should be
sufficiently large to have relatively good resolution of response both at high and low
frequencies. Substitution of Eq. (7.12) into Eq.( 7.11), we get

N∑
n=1

[
E I

d4Ŵ

dx4 − ρAω2
nŴ + ρAω2

n(e0a)2
d2Ŵ

dx2

]
eiωn t = 0 (7.13)

This equation must be satisfied for each n and hence can be written as the ordinary
differential equation (ODE) in single variable x .

E I
d4Ŵ

dx4 − ρAω2
(

Ŵ − (e0a)2
d2Ŵ

dx2

)
= 0 (7.14)

where Ŵ is the amplitude of the wave motion is, k is the wavenumber, and ω is the
frequency of the wave motion. Now using the complete solution of this ODE is [1]:

Ŵ (x) = W̃ e−ikn x (7.15)

Substitution of Eq. (7.15) into Eq. (7.14) yields

{
E I k4

n − ρAω2 (e0a)2 k2
n − ρAω2

}
W̃ = 0 (7.16)

For nontrivial solution of the amplitude W̃ , this implies that

E I k4 − ρAω2 (e0a)2 k2 − ρAω2 = 0 (7.17)

this is known as the dispersion or characteristic equation for the assumed nonlocal
Euler–Bernoulli beam. The wavenumbers are obtained by solving the characteristic
Eq. (7.17) as

k1,2,3,4 = ±

√√√√ρAω2(e0a)2 ±
√
ρAω2

(
4E I + ρAω2(e0a)4

)
2E I

(7.18)

These wavenumbers are functions of the nonlocal scaling parameter, wave frequency,
and other material parameters of the beam. Out of these four wavenumbers two are
purely real and the other two are purely imaginary. The real part gives rise to the
propagating component while the imaginary part gives rise to the spatially damped
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mode. From Eq. (7.14) it is obvious that, there is no possibility for a cut off frequency,
above which the spatially damped mode turns to be propagative.

The phase speed which is defined as C p = Real
(
ωn
kn

)
is different for different

ωn , which is not the case for a local elasticity nanorod model. In addition, it should
be noted that the phase speed is defined with respect to real kn , since the real part
represents the propagative component of the wave. As a result, the speeds change
with frequencies, which makes the wave highly dispersive.

The group speeds can be evaluated using the expression Cg = Real
(
∂ωn
∂kn

)
. This is

the speed one has to use for calculating the arrival of reflections. The group velocities
of waves in nonlocal beams are derived as

Cgα = 2E I k3
α + ρAω2 (e0a)2 kα

ρAω
(
1 + (e0a)2 k2

α

) (7.19)

where α = 1, 2, 3, 4, corresponding to four wave modes . From this expression we
can have the dispersion relation, which is a plot of group velocity and wave frequency.
This plot will give full description of the wave propagation in beams. Both the speeds
are also a function of nonlocal scaling parameter and wave circular frequency.

Next, we will discuss the wave dispersion characteristics of the beams (of cross-
section b × h) using the nonlocal Euler–Bernoulli model. The spectrum curves
(wavenumber vs. frequency) and dispersion curves (group speed vs. frequency) are
shown for both local and nonlocal continuum models in Fig. 7.2a, b.

There is no existance of cut-off frequency as is clear from Eq. (7.14). In local
elasticity (e0a = 0 nm) solution, the wavenumbers for the flexural mode has a non-
linear variation with the frequency which is in the THz range. The nonlinear variation
of the wavenumbers denotes that the waves will propagate dispersively, that is, the
waves change their shapes as they propagate. However, the wavenumbers of this
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Fig. 7.2 a Spectrum curves (wavenumber dispersion), for a nonlocal beam obtained from both
local and nonlocal Euler–Bernoulli beam theories. b Dispersion curves (group speed dispersion),
for a nonlocal beam obtained from both local and nonlocal Euler–Bernoulli beam theories
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flexural wave mode have a substantial real part starting from the zero frequency.
This implies that the mode starts propagating at any excitation frequency and does
not have a cut-off frequency. In nonlocal elasticity (e0a = 0.5 nm) solution, the
wavenumbers behave pretty much the same way as local elasticity solution. How-
ever, the slopes of the two solutions are quite different indicating the changes in the
group speeds. The wavenumbers obtained from nonlocal elasticity calculations are
higher as compared to the local elasticity solution. As the nonlocal scale coefficient
increases, the wavenumber also increases. At low frequencies, that is, below 1 THz
the increasing rate of wavenumber with frequency is very small. However, at higher
frequencies the, wavenumber increases at a faster rate compared to wavenumbers at
lower frequencies as shown in Fig. 7.2a.

The group speed variation for both local and nonlocal Euler–Bernoulli beam
theories is shown in Fig. 7.2b. Slope changes in the wavenumber manifests in the
changes in the group speeds. The crucial difference is that the nonlocal speeds are
numerically small compared to the speeds computed from the local models and it
attains a constant value at higher frequencies.

7.2 NLSGM for Timoshenko Nanobeam

Next, we present the wave characterestics of the nonlocal stress gradient Timoshenko
nanobeam model. As stated earlier, these models are also refereed to as FSDT models.
These models can be used either to model nanothin films (of rectangular crosss
section) or SWCNT (of hollow circular cross section). For the nonlocal Timoshenko
beam theory, the Hook’s law of CNT can be expressed as the following partial
differential forms:

σxx − (e0a)2
∂2σxx

∂x2 = Eεxx (7.20)

τxz − (e0a)2
∂2τxz

∂x2 = Gγxz (7.21)

where σxx is the axial stress, τxz the shear stress, εxx the axial strain, γxz the shear
strain, E the Young’s modulus, and G the shear modulus.

Based on the Timoshenko beam theory, the displacement field at any point can be
written as

U1(x, z, t) = u0(x, t)− zψ(x, t) (7.22)

U2(x, z, t) = 0 (7.23)

U3(x, t) = w(x, t) (7.24)

where x is the longitude coordinate, z the coordinate measured from the mid-plane
of the CNT and ψ(x, t) the rotation of the cross-section. The terms u0(x, t) and
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w(x, t) are the axial and transverse displacements, respectively, of the point (x, 0)
on the mid-plane (i.e., z = 0) of the CNT. The nonzero strains are expressed as

εxx = ∂U1

∂x
= ∂u0

∂x
− z

∂ψ

∂x
(7.25)

εyy = ∂U2

∂y
= 0 (7.26)

γxz = ∂U1

∂z
+ ∂U3

∂x
= ∂w

∂x
− ψ (7.27)

For establishing the dynamic equations of the SWCNT, the bending moment M and
the shear force Q are used as

M =
∫

A
zσxx dA (7.28)

Q =
∫

A
τxzdA (7.29)

where σxx is the normal stress, τxz is the transverse shear stress, and Ac is the cross-
sectional area of the CNT. Using Eqs. (7.20), (7.21) and (7.25)–(7.29) one can obtain
the nonlocal constitutive relations for Timoshenko beam as

M − (e0a)2
∂2 M

∂x2 = E Ic
∂ψ

∂x
(7.30)

Q − (e0a)2
∂2 Q

∂x2 = G Acκ

(
∂w

∂x
− ψ

)
(7.31)

where κ is the shear correction factor used to compensate for the error due to constant
shear stress assumption. This value varies with the cross-section [3]. A value of
κ = 0.877 was used by Reddy and Pang [4] for analysis of CNTs. Ic represents the
moment of area of the cross-section. Note that the bending moment and shear force
given in Eqs. (7.30) and (7.31) reduce to that of the local Timoshenko model when
the characteristic length is set to zero.

Now consider a small beam element of length dx . The dynamic equations for the
beam element subjected to nonlocal bending moment and shear force are given as

∂Q

∂x
dx − ρc Ac

∂2w

∂t2 dx = 0 (7.32)

∂M

∂x
dx − Qdx − ρc Ic

∂2ψ

∂t2 dx = 0 (7.33)

Here ρc is the density of the CNT. The bending moment M and shear force Q in
the Timoshenko beam theory are related to the bending displacements w and ψ by
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(from Eqs. (7.30) to (7.33))

M = E Ic
∂ψ

∂x
+ ρc Ac(e0a)2

∂2w

∂t2 + ρc Ic(e0a)2
∂3w

∂x∂t2 (7.34)

Q = G Acκ

(
∂w

∂x
− ψ

)
+ ρc Ac(e0a)2

∂3w

∂x∂t2 (7.35)

Substitution of Eqs. (7.34) and (7.35) into Eqs. (7.32) and (7.33) leads to the following
nonlocal governing equations of motion for SWCNT as:

G Acκ

(
∂ψ

∂x
− ∂2w

∂x2

)
+ ρc Ac

∂2w

∂t2 − ρc Ac(e0a)2
∂4w

∂x2∂t2 = 0 (7.36)

E Ic
∂2ψ

∂x2 + G Acκ

(
∂w

∂x
− ψ

)
− ρc Ic

(
∂2ψ

∂t2 − (e0a)2
∂4ψ

∂x2∂t2

)
= 0 (7.37)

where G = E
2(1+ν) is shear modulus of the beam, ν is the Poisson’s ratio, κ is the

shear adjustment coefficient, vary with the cross-section of the beam [3], Ic is the
moment of inertia of the cross-section of the beam, Ac is the cross-sectional area,
and ρc is the mass density of the beam. It is observed that if the internal length scale
a is identically zero, then the local Timoshenko beam model is recovered.

7.2.1 Wave Dispersion Characteristics

Next, we perform spectral analysis to determine the wave characteristics of this
model. As in the case of nanorods, we will first transform the governing PDE
Eqs. (7.36) and (7.37) to a set of ODE through DFT, which is given by

w (x, t) =
N∑

n=1

Ŵ (x, ωn)e
iωn t (7.38)

ψ (x, t) =
N∑

n=1


̂(x, ωn)e
iωn t (7.39)

Substituting the solutions Eqs. (7.38) and (7.39) into Eqs. (7.36) and (7.37), leads to

N∑
n=1

[
G Acκ

(
∂
̂

∂x
− ∂2Ŵ

∂x2

)
− ρc Acω

2
n

(
Ŵ − (e0a)2

∂2Ŵ

∂x2

)]
eiωn t = 0 (7.40)
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N∑
n=1

[
E Ic

∂2


∂x2 + G Acκ

(
∂Ŵ

∂x
− 
̂

)
+ ρc Icω

2
n

(

̂ − (e0a)2

∂2
̂

∂x2

)]
eiωn t = 0

(7.41)

These two equations must be satisfied for each n and hence can be written as
the ordinary differential equations in single variable x as (note that subscript n is
dropped from expressions)

G Acκ

(
d
̂

dx
− d2Ŵ

dx2

)
− ρc Acω

2
(

Ŵ − (e0a)2
d2Ŵ

dx2

)
= 0 (7.42)

E Ic
d2


dx2 + G Acκ

(
dŴ

dx
− 
̂

)
+ ρc Icω

2
(

̂ − (e0a)2

d2
̂

dx2

)
= 0 (7.43)

The complete solutions of these ODEs are of the form

Ŵ (x) = W̃ e−ikx (7.44)


̂ (x) = 
̃e−ikx (7.45)

where W̃ is the amplitude of deflection of the beam, and 
̃ is the amplitude
of the slope of the beam due to bending deformation alone. By substituting the
solutions Eqs. (7.44) and (7.45) into Eqs. (7.42) and (7.43), leads to two algebraic
equations in Ŵ and 
̂, and rewriting them in matrix form as

⎡
⎣ G Acκk2 − ρc Acω

2
(

1 + (e0a)2 k2
)

iG Acκk

−iG Acκk − i (e0a)2 k3 ρc Icω
2
(

1 + (e0a)2 k2
)

− G Acκ − E Ick2

⎤
⎦

{
W̃

̃

}
=

{
0
0

}

(7.46)

By assuming the nontrivial solution for the amplitudes Ŵ and 
̂, Eq. (7.46) can be
rewritten as

S2k2 + S1k + S0 = 0 (7.47)

where

S2 =
[−G Acκ − ρc Ac(e0a)2ω2 0

0 −E Ic + ρc Ic(e0a)2ω2

]
(7.48)

S1 =
[

0 iG Acκ

−iG Acκ 0

]
(7.49)

S0 =
[−ρc Acω

2 0
0 −G Acκ + ρc Icω

2

]
(7.50)

The wavenumbers and hence the group speeds are solved from Eq. (7.47) by using
Polynomial Eigenvalue Problem (PEP) [1]. Equating the determinant of matrix in
Eq. (7.46) to zero (for the nontrivial solution of Ŵ , and 
̂) will give the charac-
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teristic polynomial in terms of wavenumber k of the order 4, solution of which is
quite difficult. PEP converts the characteristic polynomial equation into a matrix of
size 2 × 2, whose eigen values form the solution of the equation. After obtaining
the wavenumbers, group speeds are extracted. This form is amenable to solution of
wavenumbers through PEP. From Eq. (7.47), we can clearly see the dependence of
nonlocal scale parameter e0a on wavenumber.

Looking at the matrix S0 in Eq. (7.50), we can clearly see the existance of a cut-
off frequency. The cut-off frequencies of this nonlocal beams are obtained by setting
k = 0 in the dispersion relation (Eq. (7.47)) that is, for the present case of PEP, one
can set |S0| = 0, for the cut-off frequencies as

ωflexural
c = 0, ωshear

c =
√

G Acκ

ρc Ic
(7.51)

We have seen in Chap. 6 that for the case of nanorods, the nonlocality introduced
certain band gaps in the group speed plots at certain frequency, beyond which the
group speed goes to zero. We called this frequency as escape f requency. In other
words, at the escape frequency, the wavenumber tends to infinity. Its value can be
analytically determined by looking at the wavenumber expression (Eq. (7.47)) and
setting k → ∞. This amounts to setting the |S2| = 0, which gives

ωflexural
e = 1

(e0a)

√
G Acκ

ρc Ac
, ωshear

e = 1

(e0a)

√
E Ic

ρc Ic
(7.52)

whereωflexural
e andωshear

e are called “escape frequencies” in flexural and shear modes,
respectively. Next, we will derive the expressions for the wave speeds. Differentiat-
ing the Eq. (7.47) with respect to the wave frequency (ω), one can obtain the group
speeds as

2ρcω(1 + (e0a)2k2)HCg + (2kS2 + S1) = 0 (7.53)

H =
[−Ac 0

0 Ic

]
(7.54)

where Cg = (∂ω/∂k) is the group speed of a wave in the beam and the matrices S1
and S2 are given in Eqs. (7.48) and (7.49). This is again a PEP in terms of Cg and one
can solve it for group speeds of respective modes (That is, for flexural and shear),
which is again a function of nonlocal scale parameter. These are discussed next.

The spectrum and dispersion curves obtained from local and nonlocal Timo-
shenko beam theories are shown in Fig. 7.3a, b. Figure 7.3a shows the variation of
the wavenumbers with the wave frequency for both local (or classical) and nonlocal
elasticities. This figure shows two modes namely, flexural and shear. Flexural wave
mode starts from zero wave frequency and shear wave mode propagates only after
shear cut-off frequency, the frequency at which the imaginary part of wavenumber
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Fig. 7.3 a Spectrum curves (wavenumber variation: Real wavenumbers—thick lines; Imaginary
wavenumbers—thin lines). b Dispersion curves (group speed variation)

becomes real. The values of the cut-off frequency are calculated from Eq. (7.51). In
the present study for a rectangular thin film of area 1 × 2 nm beam, we have shear
cut-off frequency at 3.25 THz. It can be observed from Eq. (7.51) that these frequen-
cies are independent of the nonlocal scaling parameter, and hence same frequencies
are obtained from both local and nonlocal theories (see Fig. 7.3a).

For e0a = 0, which is the case of local theory of elasticity solution, wavenumbers
increase monotonically with the increase in frequency, which is shown in Fig. 7.3a
and correspondingly, the group speeds, shown in Fig. 7.3b increases with increase in
wave frequency. However, at higher frequencies, they attain a constant value, which
is typical of Timoshenko beam solution. However, with the introduction of nonlocal
scale effects, the wave behavior is altered drastically. Both the flexural and shear
wave modes escape to infinity at escape frequency, beyond this frequency there is
no wave propagation. The value of escape frequency decreases with increase in the
scale parameter e0a, for both wave modes. Equation (7.52) gives the expression for
escape frequencies in nonlocal FSDT beam. From this expression it is clear that,
escape frequencies are independent of slenderness ratio of the beam (ratio of the
width to thickness of the beam), for both wave modes. However, the group speed
amplitudes may change. Figure 7.4 shows the variation of escape frequencies of
flexural and shear wave modes with the nonlocal scaling parameter. It shows that
as e0a increases, the escape frequency decreases. At higher values of e0a, escape
frequencies approach to very small values. The detailed variation in escape frequency
for these beams as a function of nonlocal scale parameter is shown in Fig. 7.5 for
e0a = 0.5 nm, 1.0 nm and 2.0 nm, respectively. It shows the effect of b/h and the
nonlocal scaling parameter (e0a) on the escape frequencies of the flexural and shear
wave modes, more clearly. The escape frequencies for both flexural and shear modes
are constant with various sizes of the beams. The values of escape frequency are
decreasing with increase in the nonlocal scale coefficient (see Fig. 7.5) and are still
constant with b/h.
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Fig. 7.4 Escape frequency
variation of nonlocal beams
with nonlocal scaling parame-
ter (e0a)
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Fig. 7.5 Escape frequency
variation of nonlocal beams
with slenderness ratio of the
beam
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The shear cut-off frequency variation with slenderness ratio of the beam (b/h)
is shown in Fig. 7.6. This figure shows that, as the slenderness ratio of the beam
increases, the shear cut-off frequency increases and at lower values of b/h, the shear
cut-off frequency approaches to very small values. Hence, it can be concluded that
for large values of scale parameter, shear deformation on the beam has negligible
effect and beam behaves more like elementary beam.

We have limited ourselves with few parametric studies, especially with respect to
those Timoshenko beam of rectangular cross-section. Some more studies using this
theory is performed in the next chapter, which will address the wave propagation in
MWCNT, where in the cross-section will be modeled as hollow circular sections.
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Fig. 7.6 Shear cut-off fre-
quency variation of nonlocal
beams with slenderness ratio
of the beam
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7.3 Rotating Nanotubes: An Introduction

Because of future promising exploration of nanotechnology, focus is being put in the
miniaturization of mechanical and electromechanical devices. Attention is sought
toward the development of nanodevices and nanomachines [5]. Nanomachines are
systems in the nanometer realm with moving parts [6]. Nanostructures undergoing
rotation include nanoturbines, nanoscale molecular bearings, shaft and gear, and
multiple gear systems. These nanostructure machines are expected to receive con-
siderable attention in the near future. Researchers have thus reported the feasibility
of nanoscale rotating structures. Examples include the study of molecular gears [5],
fullerene gears [7], and carbon nanotubes gears [8, 9]. Srivastava [10] has reported the
rotational dynamics of carbon nanotubes and carbon nanotubes gears under a single
applied laser field. A typical carbon nanotubes gear is shown in Fig. 7.7. Lohrasebi
and Tabar [11] carried out computational modeling of rotating nanomotor. Dynamics
of the rotary nanomotor was simulated using stochastic molecular dynamics method.
Zhang et al. [12] carried out atomistic simulations of double-walled carbon nanotubes
as rotational bearings. Recently, Fennimore et al. [13] reported the feasibility of ro-
tating nanostructures. They showed the construction and successful operation of a
nanoscale electromechanical actuator. The rotating nanostructural system consists
of a rotatable metal plate, with a multi-walled carbon nanotube serving as the key
motion-enabling element. For efficient design of these rotating nanomachines, proper
understanding of its mechanical behavior such as bending, vibration, and buckling
is required. The development of simplified models for the dynamics of complex
nano-technological systems is thus necessary. This is because for many cases, fully
atomistic simulations would be computationally expensive and prohibitive.

Recently, there has been great work done on vibration analysis of CNTs under
rotation. Pradhan and Murmu [14] developed a single nonlocal beam model and
applied to investigate the flap wise bending-vibration characteristics of a rotating
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Fig. 7.7 Carbon nanotube gears: A molecular diagram

nanocantilever. Differential quadrature method (DQM) was utilized and nondimen-
sional nonlocal frequencies were obtained. They also discussed the effects of the
nonlocal small scale, angular velocity, and hub radius on vibration characteristics
of the nanocantilever. Murmu and Adhikari [15] investigated the nonlocal effects in
bending vibration of an initially prestressed single-walled carbon nanotube via nonlo-
cal elasticity. The carbon nanotube was assumed to be attached to a molecular hub and
was undergoing rotation. They also utilized the differential quadrature method and
the nonlocal bending frequencies of the rotating system were determined. The effects
of the initial preload on vibration characteristics of rotating carbon nanotube were
examined. Further, influence of nonlocal effects, angular velocities, hub radii, and
higher mode frequencies were also studied. Hence, it is worth looking in to the wave
dispersion characteristics of the nanotubes under rotation, which are found as blades
of a nanoturbine and also important for practical development of nanomachines.

In the present section, the wave dispersion characteristics of a rotating nanotube
modeled as SWCNT are studied using the spectral analysis. The rotating SWCNT is
modeled as a Euler–Bernoulli beam. The governing partial differential equation for
a uniform rotating beam is derived incorporating the nonlocal scale effects and the
variable coefficient for the centrifugal term is replaced by the maximum centrifugal
force. The rotating beam problem is now transformed to a case of beam subjected to
an axial force. Even though this averaging seems to be a crude approximation, one
can use this as a powerful model for analyzing the wave dispersion characteristics
of the rotating CNT.

7.3.1 Governing Equations for Rotating Nanotube

Nanotubes are central to new rotating devices such as miniature motor. A rotating
CNT can be represented as a cantilever beam (see Fig. 7.8a) having displacements
perpendicular to the plane of rotation. The detailed coordinate system on this rotat-
ing beam is shown in Fig. 7.8b. Considering the elementary Euler–Bernoulli theory
of beams, the axial and transverse displacement fields of a rotating beam can be
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Fig. 7.8 a A schematic of rotating carbon nanotube system with mathematical idealization to
rotating nanobeam and b Coordinate system and degree of freedom

represented

u(x, y, z, t) = u0 − z
∂w

∂x
(7.55)

w(x, y, z, t) = w(x, t) (7.56)

where w is transverse displacements of the point (x, 0) on the middle plane (i.e.,
z = 0) of the beam. The only nonzero strain of the Euler–Bernoulli beam theory,
accounting for the von Kármán strain is given by

εxx = ∂u

∂x
= ∂u0

∂x
− z

∂2w

∂x2 (7.57)

This is also called as bending strain (or curvature).
The equations of motion of the Euler–Bernoulli beam theory are given by

∂Q

∂x
= ρA

∂2u0

∂t2 (7.58)

∂2 M

∂x2 + ∂

∂x

(
T (x)

∂w

∂x

)
= ρA

∂2w

∂t2 (7.59)

where

Q =
∫

A
σxx dA, M =

∫
A

zσxx dA (7.60)

and σxx is the axial stress in the direction of x , Q is the axial force, M is the bending
moment and T (x) is the axial force due to centrifugal stiffening due to rotation and
is given as
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T (x) =
L∫

x

ρAΩ2xdx (7.61)

Here, ρ is the mass density, A is the beam cross-section area and Ω is the rotation
speed. The nonlocal constitutive relations take the following special form for beams:

σxx − (e0a)2
∂2σxx

∂x2 = Eεxx (7.62)

where E is the Young’s modulus of the beam. Using Eq. (7.60) in (7.62), we have

Q − (e0a)2
∂2 Q

∂x2 = E A
∂u

∂x
(7.63)

M − (e0a)2
∂2 M

∂x2 = E Iκe (7.64)

where I = ∫
A z2dA is the moment of inertia of the beam cross-section and κe =

− ∂2w
∂x2 is the bending strain of the beam. With the help of the nonlocal constitutive

relations and the equations of motion, the moment can be expressed in terms of the
generalized displacements as, by substituting Eq. (7.64) into Eq. (7.59), we get

M = −E I
∂2w

∂x2 + (e0a)2
[
ρA

∂2w

∂t2 − ∂

∂x

(
T (x)

∂w

∂x

)]
(7.65)

Substituting M from Eq. (7.65) into Eq. (7.59), we obtain the equation of motion of
rotating nonlocal Euler beams as

−E I
∂4w

∂x4 +(e0a)2
∂2

∂x2

[
ρA

∂2w

∂t2 − ∂

∂x

(
T (x)

∂w

∂x

)]
+ ∂

∂x

(
T (x)

∂w

∂x

)
= ρA

∂2w

∂t2

(7.66)

If we assume a uniform rotating beam, then T (x) can be replaced by the maximum
force (at the root, i.e., at x = 0) given by

Tmax =
L∫

0

ρAΩ2xdx = ρAΩ2 L2

2
(7.67)

This allows us to represent the governing equation as a constant coefficient nonlocal
partial differential equation. Finally, the nonlocal governing differential equation for
transverse displacement (w(x, t)) of a rotating cantilever beam is derived as

E I
∂4w

∂x4 − Tmax
∂2w

∂x2 + Tmax(e0a)2
∂4w

∂x4 + ρA
∂2w

∂t2 − ρA(e0a)2
∂4w

∂t2x2 = 0 (7.68)
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7.3.2 Wave Dispersion Analysis

For analyzing the dispersion characteristics of waves in nanotubes, the primary vari-
able in the analysis (w(x, t), the transverse deformation) is transformed into fre-
quency domain using DFT and it is given by [1]

w (x, t) =
N∑

n=1

ŵ (x, ωn) e− j(kx−ωn t) (7.69)

where ŵ (x, ωn) is the frequency domain amplitude of the flexural deformation of
CNTs, k is the wavenumber and ωn is the angular frequency of the wave motion at
nth sampling point, N is the number of samples and j = √−1. Eliminating the time
variable from Eq. (7.68) using the above spectral approximation of the displacement
gives,

N∑
n=1

[
E I
∂4ŵ (x, ωn)

∂x4 − Tmax
∂2ŵ (x, ωn)

∂x2 + Tmax(e0a)2
∂4ŵ (x, ωn)

∂x4 − ρAω2ŵ (x, ωn)

+ρA(e0a)2ω2 ∂
2ŵ (x, ωn)

∂x2

]
e jωn t = 0 (7.70)

Equation (7.70) must be satisfied for each n and hence can be written as

E I
d4ŵ

dx4 − Tmax
d2ŵ

dx2 + Tmax(e0a)2
d4ŵ

dx4 − ρAω2ŵ + ρA(e0a)2ω2 d2ŵ

dx2 = 0 (7.71)

For the sake of simplicity in the analysis, we express this equation in a nondimen-
sional form. Now define new variables as

x̃ = x

L
; w̃ = ŵ

L
;

dŵ

dx
= dw̃

dx̃
; L

d2ŵ

dx2 = d2w̃

d x̃2 ; L2 d3ŵ

dx3 = d3w̃

d x̃3 ; L3 d4ŵ

dx4 = d4w̃

d x̃4 ;
τ = e0a

L
(7.72)

The nondimensional form of the Eq. (7.71) is

E I
1

L3
d4w̃

∂ x̃4 − Tmax
1

L

d2w̃

∂ x̃2 + Tmax(e0a)2
1

L3
d4w̃

d x̃4 − ρAω2 Lw̃ + ρA(e0a)2ω2 1

L

d2w̃

d x̃2 = 0

(7.73)
Rearranging and defining a new variable
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ωstr = 1

L2

√
E I

ρA
(7.74)

Equation (7.73) changes to

[
1 + τ 2 1

2

(
Ω

ωstr

)2
]

d4w̃

d x̃4 − 1

2

(
Ω

ωstr

)2 d2w̃

d x̃2 + τ 2
(
ω

ωstr

)2 d2w̃

d x̃2 −
(
ω

ωstr

)2

w̃ = 0

(7.75)
Since the differential equation is a constant coefficient one, it has the solution

of the form w̃ = W̃ e− jkx . On substituting this solution in Eq. (7.75), we get (for
W̃ �= 0),

[
1 + τ 2 1

2

(
Ω

ωstr

)2
]

k4 +
[

1

2

(
Ω

ωstr

)2

− τ 2
(
ω

ωstr

)2
]

k2 −
(
ω

ωstr

)2

= 0 (7.76)

where k is the wavenumber. This is the dispersion/characteristic equation of the
rotating uniform beams. One can solve for the wavenumbers as

k = ±

√√√√√√√√
−

[
1
2

(
Ω
ωstr

)2 − τ 2
(
ω
ωstr

)2
]

±
√[

1
2

(
Ω
ωstr

)2 − τ 2
(
ω
ωstr

)2
]2

+ 4

[
1 + τ 2 1

2

(
Ω
ωstr

)2
] (

ω
ωstr

)2

2

[
1 + τ 2 1

2

(
Ω
ωstr

)2
]

(7.77)
The wavenumbers are mainly a function of the nonlocal scaling parameter (e0a),
rotational speed of the beam (Ω), and the wave circular frequency. The corre-
sponding wave speeds, namely, Phase speed (C p = Real(ωk )) and Group speed
(Cg = Real( ∂ω

∂k )), are obtained from Eq. (7.77). A detail discussion on these para-
meters is presented next.

For Numerical Experiments, a nanobeam is assumed as a (5, 5) SWCNT and
the diameter of the SWCNT is d = 0.675 nm, length L = 10d, Young’s modulus
E = 5.5 TPa, and the density ρ = 2, 300 kg/m3.

The spectrum curves (that is, nondimensional wavenumber (k × h), h are the
thickness of the nanotube versus nondimensional wave frequency (ω/ωstr)) for the
rotating SWCNT are shown in Fig. 7.9 for different values of the nondimensional
rotational speed Ω/ωstr for τ = e0a/L = 0 (i.e., local elasticity calculation). It can
be seen that for nonrotating CNT (that is, Ω/ωstr = 0), the nondimensional flexural
wavenumber shows a nonlinear variation with wave frequency, i.e., the waves will
change their shape as they propagate. As the rotational speed of the CNT increases,
the nondimensional wavenumbers tend to become nondispersive in nature as shown
in Fig. 7.9. It means that the waves will not change their shape as they propagate in
the medium. Also, the wavenumber shows an inverse dependence on rotation speed.
For a nonrotating CNT, the spectrum relation is dispersive in nature. However, for a
rotating beam, at higher speeds, the above nonlinear relation shifts to a linear nature
due to the relatively negligible contribution from the ω term, especially for lower
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Fig. 7.9 Wavenumber disper-
sion in rotating nanotube for
τ = e0a/L = 0 for different
values of Ω/ωstr
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values of ω . That is, the variation of k is dominated by the centrifugal force term at
high Ω/ωstr.

Figure 7.10 shows the spectrum curves for rotating and nonrotating CNTs for var-
ious values of the nonlocal scaling parameter. Figure 7.10a shows that as we move
from local elasticity to nonlocal elasticity solution, the spectrum curve becomes lin-
ear at higher values of the wave frequency. The wavenumbers also increase as the
nonlocal scaling parameter increases. The matching of local and nonlocal solutions is
limited only upto< 0.2 THz frequency. After this frequency, the difference between
the wavenumbers predicted is very large. If the rotational speed of the CNT increases
from Ω/ωstr = 0 to Ω/ωstr = 10 (Fig. 7.10b), the spectrum curve is slightly non-
linear as compared to nonrotating case. The wavenumbers obtained from local and
nonlocal cases are same upto 0.45 THz frequency. The wavenumbers are showing an
increasing tendency as the nonlocal parameter increases. If the rotational speed of
the CNT increases to very high values like Ω/ωstr = 30, 50 and 100, the local and
nonlocal calculations are almost similar upto 1 THz, 1.6 THz and 2.5 THz frequen-
cies, respectively (see Fig. 7.10c–e). As the rotational speed of the CNT increases
to very high values, the nonlocal scaling parameter effect on the spectrum curves is
negligible. It means that if the CNT rotates at very high speeds, the local elasticity
and nonlocal elasticity calculations give almost similar spectrum relations. It can
also be observed that as the rotational speed of the CNT increases, the wavenumbers
become very small and the dispersive nature changes to nondispersive nature (see
Fig. 7.10).

The nondimensional phase speed (C p/C0) and nondimensional group speed
(Cg/C0), where C0 = √

E/ρ, dispersions of the rotating CNT are shown in Fig. 7.11,
obtained from the local elasticity calculations (i.e., τ = e0a/L = 0). Thick lines
represent the phase speed variation and the thin lines show the group speed variation.
It can be seen that the phase speed of the rotating CNTs is higher than the group
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Fig. 7.10 Wave dispersion in rotating nanotube for various values of nonlocal scale τ =
0, 0.1, 0.2, 0.3, 0.5. For (a) Ω

ωstr
= 0; (b) Ω

ωstr
= 10; (c) Ω

ωstr
= 30; (d) Ω

ωstr
= 50; (e)

Ω
ωstr

= 100

speed. Because of the nonlinear relation of the wavenumber with wave frequency,
for nonrotating CNT, the phase and group speeds also show a nonlinear variation
with frequency. As the rotational speed of the CNT increase to higher values, both
the speeds will saturate to a constant velocity, because of the linear variation of
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Fig. 7.11 Phase speed (Thick
lines) and Group speed (Thin
lines) dispersion in rotating
nanotube for τ = e0a

L = 0 for
different values of Ω
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the wavenumber with wave frequency. The difference between the phase and group
speeds of the rotating CNTs is negligible at higher rotational speeds as shown in
Fig. 7.11, which is a characteristic of any nondispersive system. In the limiting case,
we can say that they become equal and constant for all wave frequencies. For a non-
rotating beam, both phase and group speeds are dispersive and show that the speeds
approach infinity for very high frequencies. This unreasonable limit is due to the
limitation of Euler–Bernoulli beam theory.

Figure 7.12 shows the nondimensional phase speed and nondimensional group
speed variation with both the wave frequency and the nonlocal scaling parameter for
rotations and nonrotating CNTs. Figure 7.12a shows that, for nonrotating CNT, the
phase and group speeds will decrease as the nonlocal scaling parameter increases,
because the wavenumbers are increasing with increase in τ (see Fig. 7.10). Also, the
difference between the phase and group speeds dips at higher values of τ . As the
rotational speed of the CNT increases, both phase and group speeds will also increase
as shown in Fig. 7.12b–e. For small rotational speeds, and large values of τ , both
speeds show a decrease in nature at smaller frequencies and they become constant
at higher wave frequencies. Such difference will also vanish at higher rotational
speeds as shown in Fig. 7.12e. On the other hand, one more interesting feature of the
nonlocality is that the difference between both the wave speeds is considerable at
smaller rotational speeds and τ as well as at the higher rotational speeds and τ and
this aspect can be clearly seen from Fig. 7.12.

The wave propagation analysis procedure illustrated here can be extended to study
the wave propagation analysis of rotating graphene sheets. This would be helpful in
understanding the wave dispersion characteristics of future rotating nanomachines.
One such nanomachine is the nanoturbine. For efficient designing of these nanoma-
chines, proper understanding of its mechanical behavior is required. The nanotur-
bine is characterized by a rotating blades modeled as a rotating nanotube. Rotating
nanocantilever rotates at an angular velocity about the hub axis. The performances
of these nanoturbines are extremely dependent on dynamic properties of their beam-
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Fig. 7.12 Phase speed (Thick lines) and Group speed (Thin lines) dispersion in rotating nanotube for
different values of Ω

ωstr
. Here (a) Ω
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= 50; (e) Ω
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= 100

like elements. In summary, this study would be useful in understanding the scale
effects in rotating nanostructures.
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7.4 Fluid Carrying SWCNTs

Currently, the study of the CNT filled with fluids is of great interest and is a chal-
lenging topic for researchers. This is because CNT promise many new applications
in nanobiological devices and nanomechanical systems such as fluid conveyance and
drug delivery because of their excellent mechanical properties, chemical and thermal
stability, and hollow geometry [16, 17]. Numerous studies of mechanical properties
of CNT are available in the literature [18–20], while only a limited amount of work
is concerned with the aspect of conveying fluid due to involving of a complicated
wave behavior.

The interaction of water with SWCNT is experimentally studied by Babu et al.
[21] and demonstrated that the CNT can be used for fabricating nanofluidic devices
that involve transport of aqueous fluids. Storage and transport of fluids (or gases)
inside CNTs have been the subject of several studies [22–24]. For more details on
the topic of fluid inside CNTs, the interested reader is referred to the recent review
articles reported by Whitby and Quirke [25] and Mattia and Gogotsi [26]. However,
the literature concerning on the study of CNT conveying fluids are relatively scarce.

A few studies are reported on wave propagation in CNTs, especially in fluid-filled
CNTs with consideration of nonlocal scale effects. Therefore, it is very significant to
study the wave propagation of CNTs conveying fluid. The present section presents
a theoretical approach to investigate the wave propagation of SWCNTs conveying
fluids. The SWCNT is modeled as a Nonlocal Timoshenko beam stress gradient
model. The fluid inside the CNT is assumed as water. Using the proposed method,
the influence of fluid properties on the wave propagation in CNTs conveying fluid
is analyzed the same problem can be modeled differently. That is, the SWCNT can
be modeled as long hollow cylindrical shell and to this the fluid loading can be
introduced. The wave propagation study of such a model is reported in Chap. 11 of
this book.

7.4.1 Nonlocal Governing Equations of Motion

Consider the uniform flow of an inviscid fluid through SWCNT regarded as an elastic
hollow cylinder, as shown in Fig. 7.13. The SWCNT has an equivalent Young’s
modulus E , shear modulus G, Poisson’s ratio ν, cross-sectional area A, length L
inner radius R, and thick ness t . Let its transverse displacement be w = w(x, t),
where time t and the spatial coordinate x .

The Timoshenko beam theory is considered here, and this theory incorporates
the effects of rotary inertia and transverse shear deformation on the terahertz wave
propagation characteristics of the fluid-conveying SWCNT. In this study, we neglect
the gravity effect of the fluid and assume that the SWCNTs are not subjected to an
axial load. According to the force and moment balances to a differential element
of a CNT and using the procedure adopted in Sect. 7.2, the governing differential

http://dx.doi.org/10.1007/978-3-319-01032-8_11
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Fig. 7.13 A fluid carrying
SWCNT of length L , x and
z are the axial and transverse
directions, respectively. Co-
ordinate system shown for a
(10, 10) SWCNT of 8.147 nm
length and consisting of 1340
carbon atoms

 L

 Fluid OUT

 Fluid IN

 Z
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equation of motion for CNTs conveying fluid using nonlocal elasticity theory can be
written as

G Aκ

(
∂ψ

∂x
− ∂2w

∂x2

)
+ MFU 2

F
∂2w

∂x2 + 2MFUF
∂2w

∂x∂t
+ (MC + MF )

∂2w

∂t2

− MC (e0a)2
∂4w

∂t2∂x2 = 0 (7.78)

E I
∂2ψ

∂x2 − G Aκ

(
ψ − ∂w

∂x

)
− (JC + JF )

∂2ψ

∂t2 + JC (e0a)2
∂4ψ

∂t2∂x2 = 0 (7.79)

where I is the second moment of inertia of the SWCNT.ψ(x, t) is the rotation angle
of the cross-section perpendicular to the longitudinal axis. MC and MF are the mass
per unit axial length for SWCNT and fluid, respectively. JC and JF are the mass
moment of inertia for SWCNT and fluid, respectively. UF is the uniform mean flow
velocity of conveying fluid. κ is the shear correction factor of the SWCNT.

Next, we will perform the wave dispersion analysis. For this we will undertake
spectral analysis on Eqs. (7.78) and (7.79) and obtain the relavant equations for
wavenumbers and group speeds. For analyzing the dispersion characteristics of waves
at terahertz level frequency in fluid filled SWCNT, we assume that a harmonic type
of wave solution for the displacement field w(x, t) and ψ(x, t), and they can be
expressed in complex form as [1, 2].

w (x, t) = ŵ (x, ω) e− j(kx−ωt) (7.80)

ψ (x, t) = ψ̂ (x, ω) e− j(kx−ωt) (7.81)

where ŵ (x, ω), ψ̂ (x, ω) are the frequency domain amplitudes of the flexural and
the slope of the beam due to bending deformation of CNTs, respectively. k is the
wavenumber and ω is the angular frequency of the wave motion and j = √−1.

Substituting Eqs. (7.80) and (7.81) into Eqs. (7.78) and (7.79) yields two homo-
geneous equations in terms of ŵ and ψ̂ as
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[
Q11 Q12
Q21 Q22

] {
ŵ
ψ̂

}
= {0} (7.82)

where

Q11 = G Aκk2 − MFU 2
F k2 + 2MFUF kω − (MC + MF )ω

2 − MC (e0a)2k2ω2,
Q12 = −Q21 = − jG Aκk,
Q22 = −E I k2 − G Aκ + (JC + JF )ω

2 + JC (e0a)2ω2k2.

The wavenumbers and hence the wave speeds (phase and group speeds) are solved
from Eq. (7.82) by using Polynomial Eigenvalue Problem (PEP) [1]. Equating the
determinant of matrix [Qab] (a, b = 1, 2) to zero (for the nontrivial solution of ŵ,
and ψ̂) will give the characteristic polynomial in terms of wavenumber k of the order
4, solution of which is quite difficult. PEP converts the characteristic polynomial
equation into a matrix of size 2 × 2, whose eigenvalues form the solution of the
equation. After obtaining the wavenumbers, wave speeds are extracted. The details
of computation of wavenumbers using PEP for this SWCNT are given below.

The resultant equation (Eq. (7.82)) can be written in matrix form as

S2k2 + S1k + S0 = 0 (7.83)

where

S2 =
[

G Aκ − MC (e0a)2ω2 − MFU 2
F 0

0 −E I1 + JC (e0a)2ω2

]
(7.84)

S1 =
[

2MFUFω − jG Aκ
jG Aκ 0

]
(7.85)

S0 =
[−(MC + MF )ω

2 0
0 −G Aκ + (JC + JF )ω

2

]
(7.86)

Equation (7.83) is the PEP in k for the present problem. This form is amenable
to solution of wavenumbers through PEP. From Eq. (7.83), we can clearly see the
dependence of nonlocal scale parameter e0a on wavenumber.

It is well-known that Timoshenko beam model always exhibit cut-off frequency
beyond which shear mode starts propagating. The cut-off frequencies of this SWC-
NTs are obtained by setting k = 0 in the dispersion relation (Eq. (7.83)), i.e., for the
present case of PEP one can set |S0| = 0, for the cut-off frequencies as

ωflexural
c = 0, ωshear

c =
√

G Aκ

JC + JF
(7.87)

The shear cut-off frequency is a function of the mass moment inertial of the fluid,
that is, mass density of the fluid. It will also depend on the SWCNT cross-sectional
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properties. Observe that it is independent of the nonlocal scaling parameter. Next,
we will investigate the presence of band gaps or in other words the existance of
escape frequencies in the group speed plots. The value of escape frequency can
be analytically determined by looking at the wavenumber expression and setting
k → ∞. This amounts to setting the |S2| = 0 in Eq. (7.83), which gives

ωflexural
e = 1

(e0a)

√
E I

JC
, ωshear

e = 1

(e0a)

√
G Aκ − MFU 2

F

MC
(7.88)

where ωflexural
e and ωshear

e are the escape frequencies in flexural and shear wave
mode, respectively. The escape frequencies are inversely related to nonlocal scaling
parameter. These frequencies are again a function of the fluid velocity (UF ) in the
SWCNT.

The next important parameter in wave dispersion analysis is determination of wave
speeds. By definition, phase speed is given as Cphase = Real(ωk ). Differentiating the
Eq. (7.83) with respect to the wave frequency (ω), one can obtain the group speeds
(Cgroup = ∂ω

∂k ) as

[
k2 ∂S2

∂ω
+ ∂S0

∂ω

]
Cgroup + 2kS2 + S1 = 0 (7.89)

where the matrices S2, S1 and S0 are given in Eqs. (7.84) and (7.86). This is again
a PEP in terms of Cgroup and one can solve it for group speeds of respective modes
(i.e., for flexural and shear), which is again a function of nonlocal scale parameter.

Next, studies on the effect of nonlocal scaling parameter and the fluid density on
the terahertz wave propagation in fluid-carrying SWCNT is performed. The radius
of the SWCNT is assumed as R = 3.5 nm, thickness t = 0.34 nm, density ρC = 2,300
kg/m3 and Young’s modulus E = 1.03 TPa. In order to know the effect of nonlocal
scaling parameter on the wave characteristics of the SWCNT, we assumed that the
flow liquid in the SWCNT is water (density ρW = 1,000 kg/m3).

The spectrum and dispersion curves of the fluid-filled SWCNTs (the uniform
velocity of the fluid in SWCNT is assumed as UF = 1,000 m/s) with and without
nonlocal effects are shown in Figs. 7.14 and 7.15. Figure 7.14a shows the effect of
fluid in SWCNT on the variation of the wavenumbers with the wave frequency
for local elasticity. This figure shows the two fundamental modes namely, flexural
and shear. Flexural wave mode starts from zero frequency and shear wave mode
propagates only after shear cut-off frequency, the frequency at which the imaginary
part of wavenumber becomes real. The values of the cut-off frequency are calculated
from Eq. (7.87). In the present study for a 3.5 nm radius SWCNT, we have shear cut-
off frequency at 0.6256 THz, without fluid and 0.5493 THz, with fluid (water). It can
be observed from Eq. (7.87) that these frequencies are independent of the nonlocal
scaling parameter, and hence same frequencies are obtained from both local and
nonlocal theories (see Fig. 7.14).
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Fig. 7.14 Wavenumber dispersion in SWCNT with and without fluid effect obtained from (a) local
elasticity (e0a = 0 nm) and (b) nonlocal elasticity (e0a = 0.5 nm)
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Fig. 7.15 Phase speed dispersion in SWCNT with and without fluid effect obtained from (a) local
elasticity (e0a = 0 nm) and (b) nonlocal elasticity (e0a = 0.5 nm)

For e0a = 0, which is the case of local theory of elasticity solution, flexural
wavenumbers have a nearly linear variation with frequency, especially at higher
frequencies, which is shown in Fig. 7.14a and correspondingly, the phase speeds,
shown in Fig. 7.15a, show constant variation. When the fluid loading is considered
in the CNT, the wavenumbers increases and the corresponding wave speeds are
decreased. Because of the fluid, the shear cut-off frequency also decreased as shown
in the inset of Fig. 7.14a.

However, with the introduction of nonlocal scale effects, the wave behavior is
altered drastically. Both the flexural and shear wave modes escape to infinity at escape
frequency, a phenomenon we are seeing for most of the nonlocal elasticity models.
The spectrum and dispersion curves shown in Figs. 7.14b and 7.15b are plotted for
e0a = 0.5 nm. The effect of the presence of fluid in SWCNT from nonlocal elasticity
is same as the local elasticity. From Figs. 7.14b and 7.15b, it can be observed that the
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Fig. 7.16 Wavenumber dispersion in SWCNT for different fluids (i.e., different densities) obtained
from (a) local elasticity and (b) nonlocal elasticity
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Fig. 7.17 Phase speed dispersion in SWCNT for different fluids (i.e., different densities) obtained
from (a) local elasticity and (b) nonlocal elasticity

escape frequencies of the flexural and shear wave mode are not affected by the fluid
in SWCNT. The escape frequencies of the flexural and shear wave modes (with and
without fluid in SWCNT) are 3.159 and 6.729 THz, for e0a = 0.5 nm, respectively.

The effect of the fluid density on the spectrum and dispersion curves of the SW-
CNT is shown in Figs. 7.16 and 7.17. Here, for observing the effect of nonlocal scale
parameter on the terahertz wave propagation in SWCNT, three different types of fluid
are used with densities ρ f = 500, 1,000 and 2,000 kg/m3, respectively. As the fluid
becomes denser, the wavenumbers of the flexural and shear wavemodes are increas-
ing and the corresponding wave velocities are decreasing (see Figs. 7.16 and 7.17).
It is clearly seen that from Fig. 7.16 that as the fluid in SWCNT becomes denser,
the shear cut-off frequency slightly decreases. The escape frequencies of the flexural
and shear wavemodes are not affected by the fluid density as shown in Figs. 7.16b
and 7.17b (here e0a = 0.5 nm). It can be seen that the escape frequencies of the
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shear wavemode are function of fluid density and the fluid velocity in SWCNT (see
Eq. (7.88)). It is observed that the effect of the fluid velocity and the density are neg-
ligibly small on escape frequencies. The observations made in Figs. 7.14 and 7.15
for e0a = 0 and e0a = 0.5 nm are still valid for Figs. 7.16 and 7.17.

The variation of the shear cut-off frequency with the radius of the SWCNT is
shown in Fig. 7.18. We have already discussed that the shear cut-off frequency is
affected by the presence of the fluid. Figure 7.18a shows that the shear cut-off fre-
quencies are smaller with the presence of the fluid as compared to the empty SWCNT.
For R < 1 nm, the difference between the shear cut-off frequencies is negligible. As
the radius of the SWCNT increases the shear cut-off frequency decreases as shown
in Fig. 7.18a. The effect of the fluid density on the shear cut-off frequency is shown in
Fig. 7.18b. As the fluid becomes denser and at higher values of the SWCNT radius,
the shear cut-off frequency decreases. We also observe that, as the fluid becomes
denser, the shear cut-off frequencies are almost same for R < 1 nm. Figure 7.18a
shows that, as the radius of the nanotube increases, the shear cut-off frequency de-
creases and at higher values of R, the cut-off frequency approaches to very small
values.

The escape frequency variation with nonlocal scaling parameter e0a for flexural
and shear waves is shown in Fig. 7.19. The value of escape frequency decreases
with increase in e0a, for both wave modes. For very small values of e0a, the escape
frequencies are very high. The escape frequencies of both wave modes are not affected
by fluid density and the uniform fluid velocity in CNT. From Eq. (7.88), it is observed
that G Aκ � MFU 2

F . Obviously, ωflexural
e < ωshear

e (see Fig. 7.19).
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Fig. 7.18 Shear cut-off frequency variation with SWCNT radius (a) with and without fluid effect
and (b) for different densities of fluids
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Fig. 7.19 Escape frequency
variation of flexural and shear
waves with SWCNT radius
(with and without fluid effect)
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7.5 Magnetic Field Effects on SWCNT

Recently, growing interest in terahertz physics of nanoscale materials and devices has
drawn more attention to CNTs phonon dispersion relation, especially in the terahertz
frequency range. In recent years, the microwave absorbing effect and electromag-
netic characteristics of CNTs has also attracted considerable interest for theoretical
and practical importance in fundamental science and application [27, 28]. Hence,
understanding the effect of magnetic field on the characteristics of wave propagation
in CNTs is essential and may give a useful help in applications for nanoengineering.
Wang et al. [29] studied the effect of magnetic field on wave propagation in CNTs
embedded in elastic matrix. In some applications of nanoengineering, the investi-
gation on dynamic characteristic of CNTs under magnetic field is useful. Slepyan
and Maksimenko [30] studied the electromagnetic wave propagation in CNTs. They
reported the discrete relation of wave propagation in CNTs by using molecular dy-
namics theories. Li and Wang [31] studied the different wave modes coupled in
longitudinal or transverse magnetic field. More recently, authors [32] published a
work on the vibration analysis of nonlocal Flügge shell model for SWCNTs un-
der the longitudinal magnetic field based on wave propagation approach. This work
covers axial, circumferential, and radial degree of freedom in the formulations. The
analysis here shows that vibration frequencies of CNTs drop dramatically in the
presence of the magnetic field for various circumferential wavenumbers. Such effect
is also observed for various boundary conditions of the CNT. Through this work,
it is observed that the effect of longitudinal magnetic field on ultrasonic vibration
of CNTs are useful in the design of nanodrive device, nano-oscillator and actuators
and nanoelectron technology, where carbon nanotubes act as basic elements. Except
for the above works, the effect of magnetic field on wave propagation in embedded
SWCNTs using nonlocal elasticity theory is studied sparsely in the open literature.
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The next section studies the effect of longitudinal magnetic field on wave prop-
agation in carbon nanotubes based on nonlocal continuum mechanics theory. The
SWCNT is assumed to be embedded in Pasternak type of elastic medium, which is
different from the Winkler foundation model. In the former, the foundation considers
both the shear and transverse constraints, while in the latter, the shear constraints are
not considered. Wave propagation equations in CNTs are derived by considering the
Lorentz magnetic forces applied on CNTs induced by a longitudinal magnetic field
through Maxwell equations. The wavenumber characteristic curves of CNTs under
a longitudinal magnetic field are obtained by solving the governing equation. The
effects of longitudinal magnetic field and the elastic matrix on wave propagation in
CNTs are discussed through numerical results. The present work mainly focus on
the flexural wave properties of the SWCNTs under longitudinal magnetic field using
the nonlocal scale effects.

7.5.1 Maxwell’s Relations

Let the current density (J), strength vectors of electric field (e), disturbing vectors
of magnetic field (h), the vector of displacement (U), then, the Maxwell equations
[33] are given by

J = ∇ × h (7.90)

∇ × e = −η∂h
∂t

(7.91)

∇ • h = 0 (7.92)

e = −η
(
∂U
∂t

× H
)

(7.93)

h = ∇ × (U × H) (7.94)

where the Hamilton arithmetic operator is∇ = ∂
∂x î + ∂

∂y ĵ + ∂
∂z k̂ andη is the magnetic

permeability. For simplifying the analysis, we apply a longitudinal magnetic field
vector H = (Hx , 0, 0) exerted on the carbon nanotube. Let the displacement vector
U = (u, v,w), then

h = ∇ × (U × H) = −Hx

(
∂v

∂y
+ ∂w

∂z

)
î + Hx

∂v

∂x
ĵ + Hx

∂w

∂x
k̂ (7.95)

J = ∇ × h = Hx

(
− ∂2v

∂x∂z
+ ∂2w

∂x∂y

)
î − Hx

(
∂2v

∂y∂z
+ ∂2w

∂x2 + ∂2w

∂z2

)
ĵ

+ Hx

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2w

∂y∂z

)
k̂ (7.96)
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The Lorentz force (f) induced by the longitudinal magnetic field is

f = fx î + fy ĵ + fz k̂ = η(J × H)

= η

[
0î + H2

x

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2w

∂y∂z

)
ĵ + H2

x

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2v

∂y∂z

)
k̂
]

(7.97)

Therefore, Lorentz force along the x , y, and z directions are

fx = 0 (7.98)

fy = ηH2
x

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2w

∂y∂z

)
(7.99)

fz = ηH2
x

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2v

∂y∂z

)
(7.100)

For the present wave propagation analysis in SWCNT, we assume that w = w(x, t)
only, so that the Lorentz force in z−direction is written as

fz = ηH2
x
∂2w

∂x2 (7.101)

Here fz denotes the body force.

7.5.2 Nonlocal Governing Equations of Motion Including
Magnetic Field Effects

In the present work, ultrasonic wave dispersion characteristics of single-walled car-
bon nanotubes embedded in elastic medium are presented. The chemical bonds are
assumed to be formed between the carbon nanotube and the elastic medium (see
Fig. 7.20). The elastic matrix is described by a Pasternak foundation model, which
accounts for both normal pressure and the transverse shear deformation of the sur-
rounding elastic medium. When the shear effects are neglected, the model reduces
to Winkler foundation model. The normal pressure or Winkler elastic foundation
parameter is approximated as a series of closely spaced, mutually independent, ver-
tical linear elastic springs where the foundation modulus is assumed equivalent to
stiffness of the springs. The normal pressure and the incompressible layer that resists
transverse shear deformation by Pasternak foundation model is expressed as

p(x) = −KW w + KS
∂2w

∂x2 (7.102)
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Fig. 7.20 Schematic of single-walled carbon nanotube embedded in Pasternak type elastic medium
(consists of both shear layer with stiffness KS and Winkler layer with stiffness KW ) under the
longitudinal magnetic field. Here CP represents the wave propagation velocity

where the first parameter KW is the Winkler foundation modulus, the second para-
meter KS is the stiffness of the shearing layer. The values of KW and KS are per unit
area.

A slender SWCNT can be modeled using Euler–Bernoulli beam theory. Con-
sidering the elementary Euler–Bernoulli theory of beams, the axial and transverse
displacement fields can be represented as

u(x, y, z, t) = u0 − z
∂w

∂x
(7.103)

w(x, y, z, t) = w(x, t) (7.104)

where w is transverse displacement of a point (x, 0) on the middle plane (i.e., z = 0)
of the beam. The only nonzero strain of the Euler–Bernoulli beam theory is

εxx = ∂u

∂x
= ∂u0

∂x
− z

∂2w

∂x2 (7.105)

The equations of motion of the Euler–Bernoulli beam theory are given by

∂Q

∂x
− ρA

∂2u0

∂t2 = 0 (7.106)

∂2 M

∂x2 − ρA
∂2w

∂t2 + f (x)− p(x) = 0 (7.107)
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where

Q =
∫

A
σxx dA, M =

∫
A

zσxx dA (7.108)

and p(x) is force exerted by the elastic matrix per unit area, σxx is the axial stress
in the direction of x , Q is the axial force, M is the bending moment and f (x) is
a function of space to incorporate the longitudinal magnetic force, ρ is the mass
density, and A is the beam cross-section area.

The nonlocal constitutive relation takes the following form for beams:

σxx − (e0a)2
∂2σxx

∂x2 = Eεxx (7.109)

where E is the Young’s modulus of the beam material. Using Eqs. (7.108) and (7.109),
we have

Q − (e0a)2
∂2 Q

∂x2 = E A
∂u

∂x
(7.110)

M − (e0a)2
∂2 M

∂x2 = E Iκe (7.111)

where I = ∫
A z2dA is the moment of inertia of the beam cross-section and κe =

− ∂2w
∂x2 is the curvature of the beam.
With the help of the nonlocal constitutive relations and the equations of motion

presented, the moment can be expressed in terms of the generalized displacement as,
by substituting Eq. (7.111) into Eq. (7.107), we get

M = −E I
∂2w

∂x2 + (e0a)2
[
ρA

∂2w

∂t2 − f (x)+ p(x)

]
(7.112)

Substituting M from Eq. (7.112) into Eq. (7.107), we obtain the equation of motion
of nonlocal Euler–Bernoulli beams as

− E I
∂4w

∂x4 + (e0a)2
∂2

∂x2

[
ρA

∂2w

∂t2 − f (x)+ p(x)

]
+ f (x)− p(x)− ρA

∂2w

∂t2 = 0

(7.113)

The present problem assumes a longitudinal magnetic field in SWCNT. Here
f (x) �= fz , since fz is a body force and f (x) denotes the force per length. Hence,
f (x) can be written as

f (x) = fz × A = ηAH2
x
∂2w

∂x2 (7.114)

This allows us to represent the Eq. (7.113) as a constant coefficient nonlocal par-
tial differential equation. Finally, the nonlocal governing differential equation for
transverse displacement (w(x, t)) of a beam is derived as
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E I
∂4w

∂x4 − ηAH2
x
∂2w

∂x2 + ηAH2
x (e0a)2

∂4w

∂x4 + KW w − KS
∂2w

∂x2 − KW (e0a)2
∂2w

∂x2

+KS(e0a)2
∂4w

∂x4 + ρA
∂2w

∂t2 − ρA(e0a)2
∂4w

∂t2∂x2 = 0 (7.115)

Using the derived governing differential equation (Eq. (7.115)), a spectral analysis
needs to be performed to determine the effect of nonlocal parameter and magnetic
field on wave dispersion. Equation (7.115) can be transformed into frequency domain
using Fourier transform [1],

w (x, t) =
N∑

n=1

ŵ(x)eiωn t (7.116)

where ŵ is the amplitude of the wave motion, ωn the circular frequency of the nth
sampling point and N is the Nyquist frequency. The sampling rate and the number of
sampling points should be sufficiently large to have relatively good resolution of both
high and low frequencies, respectively. Substitution of Eq. (7.116) into Eq. (7.115),
we get

N∑
n=1

[
E I

d4ŵ

dx4 − ηAH2
x

d2ŵ

dx2 + ηAH2
x (e0a)2

d4ŵ

dx4 + KW ŵ − KS
d2ŵ

dx2 − KW (e0a)2
d2ŵ

dx2

+KS(e0a)2
d4ŵ

dx4 − ρAω2
nŵ + ρA(e0a)2ω2

n
d2ŵ

dx2

]
eiωn t = 0 (7.117)

This equation must be satisfied for each n and hence can be written as the ordinary
differential equation in single variable x as

E I
d4ŵ

dx4 − ηAH2
x

d2ŵ

dx2 + ηAH2
x (e0a)2

d4ŵ

dx4 + KW ŵ − KS
d2ŵ

dx2 − KW (e0a)2
d2ŵ

dx2

+KS(e0a)2
d4ŵ

dx4 − ρAω2ŵ + ρA(e0a)2ω2 d2ŵ

dx2 = 0 (7.118)

where k is the wavenumber, and ω is the frequency of the wave motion. Substituting
ŵ(x) = w̃e−ikn x into Eq. (7.118) yields

[
E I k4

n + ηAH2
x k2

n + ηAH2
x (e0a)2k4

n + KW + KSk2
n + KW (e0a)2k2

n + KS(e0a)2k4
n

−ρAω2 − ρAω2(e0a)2k2
n

]
w̃ = 0 (7.119)

For nontrivial solution of the wave amplitude w̃, this implies that

[
E I + ηAH2

x (e0a)2 + KS(e0a)2
]

k4
n +

[
ηAH2

x + KS + KW (e0a)2 − ρAω2(e0a)2
]

k2
n

+KW − ρAω2 = 0 (7.120)
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this is the dispersion or characteristic equation for an equivalent continuum structure
(ECS) of an embedded SWCNT. The wavenumbers are obtained by solving the
characteristic equation (7.120) as

kn = ±

√√√√−1

2

α2

α4
±

√
1

4

(
α2

α4

)2

− α0

α4
(7.121)

where α4 = E I + ηAH2
x (e0a)2 + KS(e0a)2, α2 = ηAH2

x + KS + KW (e0a)2 −
ρAω2(e0a)2 and α0 = KW − ρAω2. Note that the above wavenumber can also be
obtained by rewriting the above equation in PEP form and solving it. These wavenum-
bers are functions of the nonlocal scaling parameter, wave frequency, longitudinal
magnetic field strength, stiffness of elastic medium, and other material parameters
of the beam. Out of these four wavenumbers two are real and the other two are imag-
inary. The real and imaginary parts correspond to propagating and spatially damped
modes, respectively. From Eq. (7.121) if KW = 0, there is no possibility for a cut-
off frequency, above which the spatially damped mode becomes propagation mode.
From Eq. (7.120), by equating the constant term to zero or substituting k = 0, we
can get that the cut-off frequency ωc as

ωc =
√

KW

ρA
(7.122)

The flexural wave cut-off frequency is a function of Winkler foundation parameter
KW and the geometrical properties of the CNT. It is also independent of the strength
of the magnetic field.

The phase speed is defined as

C p = Re

(
ωn

kn

)
(7.123)

It is different for different ωn . Again, group speeds can be obtained as before, where
Cg = dω/dk.

Based on the formulations obtained above with the nonlocal Euler–Bernoulli
beam model, the wave dispersion characteristics of embedded SWCNT under the
influence of the longitudinal magnetic field are investigated and discussed here. The
discrete model of the SWCNT with the coordinate system is shown in Fig. 7.20. In
example calculations, the effective radius of SWCNT re = 3.5 nm the wall thick-
ness of SWCNT h = 0.34 nm(Eh = 360 J/m2), and the mass density of SW-
CNT, ρ = 2, 300 Kg/m3, are assumed. The properties of the elastic matrix such
as Winkler modulus KW = 1.13 × 1018 Pa/m and polymer matrix shear modulus
KS = 1.13 Pa/m are taken from Ref. [34].

The wave speed variation, with frequency for the SWCNT under longitudinal
magnetic field without elastic matrix, obtained from both local and nonlocal theories
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is shown in magnet 1. The local elasticity calculation shows that the wave speed
dispersion is nonlinear with frequency at higher frequencies. The nonlocal elasticity
calculation shows that the wave speeds are almost constant at higher frequencies as
shown in Fig. 7.21b, c. Also wave speeds obtained from the nonlocal elasticity are
small as compared to those obtained from the local elasticity calculations. The applied
longitudinal magnetic field changes the dynamic characteristic of wave propagation
in SWCNT at lower and higher frequency regions (see Fig. 7.21). Such changes are
captured in both local and nonlocal elasticity calculations. Over the frequency region
studied here, the wave velocity increases with an increase in longitudinal magnetic
field strength. However, the longitudinal magnetic field has little influence on wave
velocity when its magnitude is very small (< 2.0 A/m) over the entire frequency
range. With the increase in the nonlocal parameter, the wave velocity is found to
be decreasing as shown in Fig. 7.21. For e0a = 2.0 nm, the magnitude of wave
velocity is almost constant for all wave frequencies at higher magnetic filed strength
(Fig. 7.21c). It means that the application of magnetic field makes the SWCNT stiffer.

For two values of Hx ; 0 and 2 A/m, the effect of the elastic medium (Pasternak
foundation) is shown in Fig 7.22 for e0a = 0. The effect of elastic matrix shows that
the wave will have a cut-off frequency (see Fig. 7.22a, b). In the presence of the elastic
medium, the flexural wave modes are having a frequency band gap region. Within
this frequency band gap, the corresponding wavenumbers are imaginary. Thus, the
flexural modes are attenuated at frequencies lying within this band. Hence, these
wavenumbers have a substantial imaginary part along with the real part, thus these
waves attenuate as they propagate. It is found that the presence of the magnetic
filed will not alter the frequency band gap; however, it will change the shape and
magnitude of the wave dispersion curve as shown in Fig. 7.22b. For Hx = 0, the
dispersion relation is nonlinear whereas it is almost linear for Hx = 2 A/m. The
effect of the elastic medium for e0a = 2.0 nm is shown in Fig. 7.23 with and without
the presence of the longitudinal magnetic field. The presence of magnetic field,
the wave dispersion relations is almost constant for higher frequencies. The band
gap region is also not affected by the nonlocality (see Fig. 7.23a, b). The cut-off
frequency is found to be inversely proportional to the radius of ECS of the SWCNT.
So, the cut-off frequency decreases, as the radius of CNT increases. In accordance
with Eq. (7.122), the cut-off frequency increases with the stiffness of the Winker
foundation parameter.

7.6 Surface Effects on Flexural Wave Propagation
in Nanobeams

Surface effects are significant to nanostructure materials and can influence the physi-
cal and chemical properties of nanomaterials due to the increase in surface-to-volume
ratio. Therefore, many studies have been performed to investigate the surface effects
on nanostructures [35–37]. For example, He and Lilley [35] studied the surface effects
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Fig. 7.21 Wave speed dis-
persion with wave frequency
in a single-walled carbon
nanotube under the influ-
ence of longitudinal magnetic
field effect obtained from
(a) local/classical elasticity
(e0a = 0 nm), (b) nonlocal
elasticity (e0a = 1.0 nm)
and (c) nonlocal elasticity
(e0a = 2.0 nm). In this sim-
ulations, the elastic matrix is
not considered, i.e., KW = 0
and KS = 0
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Fig. 7.22 Wave speed dispersion with wave frequency in a single-walled carbon nanotube embed-
ded in Pasternak type elastic medium obtained form local or classical elasticity (e0a = 0 nm) for
the longitudinal magnetic field strengths of (a) Hx = 0 A/m and (b) Hx = 2.0 A/m
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Fig. 7.23 Wave speed dispersion with wave frequency in a single-walled carbon nanotube
embedded in Pasternak type elastic medium obtained form nonlocal elasticity (e0a = 2.0 nm)
for the longitudinal magnetic field strengths of (a) Hx = 0 A/m and (b) Hx = 2.0 A/m

on the elastic behavior of static bending nanowires using the Euler–Bernoulli beam
theory. Wang and Feng [36] examined the surface effects on axial buckling and the
transverse vibration of nanowires using the Timoshenko beam theory. They found
that the surface effects with positive surface constants tend to increase the critical
axial force and the natural frequency and shear deformation tends to decrease the
critical axial compression force and the natural frequency.

Furthermore, classical theories can also be generalized to be able to properly
describe the mechanical behavior of thin films at nanoscale [38, 39]. Lu et al. [40] fol-
lowed this approach to derive the generalized differential equations of static, dynamic,
and stability of ultra thin films including surface effects. Assadi et al. [41] modified
the laminated plate theory to include the effects of surface properties and tempera-
ture on the dynamic behavior of rectangular nanoplates. Farshi et al. [37] studied the
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size-dependent flexural vibration of nanotubes with consideration of surface effects
using a modified beam theory. Lim and He [39] studied size-dependent nonlinear
vibration of thin films based on classical plate theory. Gurtin and Murdokh [42]
predicted the presence of surface additional properties for elastic solids based on
equilibrium equations. Zhou and Huang [43] demonstrated that the surface excess
elasticity can be positive or negative for different materials and their crystal orien-
tations. Molecular dynamics and atomistic calculation methods are frequently used
to obtain the magnitudes of surface stresses and surface elasticity effects for differ-
ent materials. Lee and Chang [44], studied the surface and small-scale effects on
vibration analysis of a nonuniform nanocantilever beam.

In the next section, nonlocal beam theory is employed to describe the wave prop-
agation analysis of nanotubes including the surface effects.

7.6.1 Governing Equation of Motion Including Surface
Residual Stress

Consider a SWCNT with a cross-section shown in Fig. 7.24. The nonlocal constitutive
relations for one-dimensionalcase (Eq. (7.7)), for moment given in Eq. (7.6) can be
rewritten as

M − g2 ∂
2 M

∂x2 = −�∂
2w

∂x2 (7.124)

where w = w(x, t) is the transverse displacement, which depends on the spatial
coordinate along the longitudinal axis X , M the resultant bending moment, � the
effective flexural rigidity, which includes the surface bending elasticity on the beam
and its flexural rigidity, and g = e0a is the nonlocal scale parameter, which is used to
modify the classical elasticity theory and is limited to application on a device on the
nanometer scale. Here a is an internal characteristic length, e.g., length of C–C bond
(0.142 nm), granular distance etc., and e0 is a nonlocal scaling parameter, which has
been assumed as a constant appropriate to each material.

In addition, based on the Euler beam theory, the equation of transverse vibrations
for a beam is expressed by

∂ Q̃

∂x
= ρnt Ant

∂2w

∂t2 − H0
∂2w

∂x2 (7.125)

Q̃ = ∂M

∂x
(7.126)

where Q̃ is the resultant shear force on the cross-section A, H0 the surface parameter,
which is determined by the residual surface tension, and ρ the density of the beam.
Here, the parameters � and H0 are defined as
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Fig. 7.24 A alumina nanotube with inner and outer thin surface layers and the cross-section of the
nanotube

� = Ent Int + πEs

(
Ri

nt
3 + Ro

nt
3
)

(7.127)

H0 = 4τ0

(
Ri

nt + Ro
nt

)
(7.128)

In the above equation, Ent is the Young’s modulus of CNT, Es is the Young’s modulus
of the surface film, Int is the area moment of inertia of the CNT, Ri

nt is the inner
radius of the CNT, Ro

nt is the outre radius of the CNT, and τ0 is the thickness of the
CNT. Using Eqs. (7.124)–(7.126), the nonlocal bending moment M can be expressed
as
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M = −�∂
2w

∂x2 + g2
(
ρnt Ant

∂2w

∂t2 − H0
∂2w

∂x2

)
(7.129)

Therefore, substituting Eq. (7.129) into Eq. (7.124), the governing equation of trans-
verse wave propagation for the CNT with consideration of both surface and nonlocal
effects can be expressed as

�
∂4w

∂x4 + ρnt Ant
∂2w

∂t2 − ρnt Ant g
2 ∂4w

∂t2∂x2 − H0
∂2w

∂x2 + H0g2 ∂
4w

∂x4 = 0 (7.130)

If the nonlocal scaling parameter g is zero, and the surface layer properties are
neglected then the above governing differential equation of motion becomes classical
governing equation for an Euler–Bernoulli beam.

7.6.2 Wave Propagation Analysis

As before, we first transform the governing differential equation (Eq. (7.130)) to the
frequency domain using DFT, which is given by

w (x, t) =
P−1∑
p=0

Q−1∑
q=0

ŵ
(
x, ωq

)
e− j(kp x−ωq t) (7.131)

where ŵ is the amplitude of the wave motion, P and Q are the number of time
sampling points and number spatial sampling points respectively. ωq is the circular
frequency at the qth time sample. Similarly, kp is the wavenumber at the pth spatial
sample point and j = √−1. Substituting Eq. (7.131) into the governing partial dif-
ferential equation (Eq. (7.130)), we get the dispersion relation as follows. Hereafter,
the subscripts p and q in Eq. (7.131) are dropped for simplified notations.

(
� + g2 H0

)
k4 +

(
H0 − ρnt Antω

2
)

k2 − ρnt Antω
2 = 0 (7.132)

This dispersion relation is solved for the wavenumbers. These wavenumbers are
functions of the nonlocal scaling parameter, wave frequency, and other material pa-
rameters of the CNT and surface layers. Out of the four wavenumbers, two are purely
real and the other two are purely imaginary. The real part gives rise to the propa-
gating component while the imaginary part gives rise to the spatially damped mode.
From Eq. (7.132) it is obvious that, there is no possibility for a cut-off frequency,
above which the spatially damped mode turns to be propagative. From Eq. (7.132),
by equating the constant term to zero or substituting k = 0, we can get that the cut-off
frequency ωc, which is zero for the present formulation.

In order to know the effect of relative parameters on the wave propagation analysis
of nanotubes, we consider the material properties of an anodic alumina nanotube
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with crystallographic of 〈111〉 direction (obtained from Ref. [37]) as follows: Ent =
70 GPa, ρnt = 2, 700 kg/m3, Es = 5.1882 N/m, τ0 = 0.9108 N/m.

The surface effects on wavenumber dispersion with wave frequency are shown
in Fig. 7.25, obtained form both local/classical and nonlocal calculations. From
Fig. 7.25, it can be found that the flexural wavenumbers with surface effects are
high as compared to that without surface effects. It can also be observed that, with
consideration of surface effects, the flexural wavenumbers are showing a compres-
sive nature. If we consider the small scale effects (nonlocal), the wavenumbers show
an increasing tendency (see Fig. 7.25a–c). At higher frequencies, the difference in
wavenumbers, obtained by considering with and without the surface effects, increases
with the increase of the nonlocal small-scale parameter. With surface effects, the zero
wavenumber bands are 0 < k < 5.104 × 108 m−1, 0 < k < 5.278 × 108 m−1 and
0 < k < 5.935 × 108 m−1, respectively, for small-scale parameters of g = 0.0 m,
0.5 × 10−9 m and 1.0 × 10−9 m, respectively. As a result, if one employs the wave
dispersion relation to determine the nanotube’s material properties ignoring surface
effects (Es = 0; τ0 = 0), their values may be significantly underestimated or
overestimated. It should be mentioned that the wavenumber size dependence can be
different if different material and surface properties are used.

Figure 7.26 shows the surface effects on the wave frequency variation with the
nonlocal small-scale parameter for different values of the wavenumber. It can be
observed that the wave frequency will decrease with an increase in nonlocal small
scale parameter. For k = 0.5 × 109 m−1, the surface properties have no effect on the
wave frequency for a given small scale parameters (see Fig. 7.26a). As the wavenum-
ber increases, the flexural wave stop band can be observed in the nanotube that
has substantial surface effect. For k = 1.0 × 109 m−1 and k = 2.0 × 109 m−1,
the flexural wave propagation region is within the 0 < g < 1.724 × 10−9 m and
0 < g < 1.931 × 10−9 m scale range, respectively. For scale parameters larger than
the above-mentioned range, the angular frequency become imaginary. This means
that waves with larger wavenumbers (or, equivalently, with smaller wavelengths)
cannot propagate through this medium. Instead, the imaginary frequency implies
that the response occurs everywhere in the medium instantaneously. This is phys-
ically unrealistic. Therefore, these smaller wavelengths should not be considered.
Filtering shorter waves occurs automatically in a discrete medium, where wave-
lengths smaller than two times the particle size cannot be monitored. However, in
a continuous medium, all wavelengths can in principle be present. Especially when
shock waves are investigated, all wavelengths are triggered by the loading. From
Fig. 7.26a, the most notable feature is that the scale effect is not obvious for smaller
wavenumbers and the influence becomes prominent with the wavenumber increasing
in Fig. 7.26b–c. Moreover, all of the wave frequencies become smaller with the scale
coefficient increasing.

Figure 7.27 shows size-dependent effects on flexural wave propagation in the nan-
otube with radius of the nanotubes being Ro

nt = h and Ro
nt = 2h. For comparison,

the curve for nanotube without the surface effects is also included in Fig. 7.27. Com-
paring the results with those in Fig. 7.26, similar size and surface effects upon the
flexural wave propagation can be observed. It can be observed that as the size of the
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Fig. 7.25 The surface ef-
fects on spectrum curves
(wavenumber dispersion), for
a nanotube obtained from
(a) local/classical elasticity
g = 0 m, (b) nonlocal elas-
ticity g = 0.5 × 10−9 m
and (c) nonlocal elasticity
g = 1.0 × 10−9 m
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Fig. 7.26 The surface ef-
fects on wave frequency
dispersion with nonlocal
scaling parameter, for a nan-
otube with wavenumbers (a)
k = 0.5 × 109 m−1, (b)
k = 1.0 × 109 m−1 and (c)
k = 2.0 × 109 m−1
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Fig. 7.27 The surface effects
on wave frequency dispersion
with nonlocal scaling para-
meter, for different radii of
nanotubes with wavenumbers
(a) k = 0.5 × 109 m−1, (b)
k = 1.0 × 109 m−1 and (c)
k = 2.0 × 109 m−1
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CNT increase, the wave frequency as well as the scale coefficient range also increase
(see Fig. 7.27a–c). It means that when the wavenumber increases or the wavelength
decreases, the small-scale effects will be obvious.

7.7 Summary

In the present chapter, the strong effect of nonlocal small scale on wave characteristics
of nonlocal beams was studied using both nonlocal Euler–Bernoulli and nonlocal
Timoshenko beam models. The governing equations were given for both the beam
models and the wave dispersion analysis was performed using spectral analysis. The
study shows that, for nonlocal Timoshenko beams, the scale parameter introduces
certain band gap region in both flexural and shear wave modes where no wave
propagation occurs. This is manifested in the wavenumber plots as the region where
the wavenumber tends to infinite and the corresponding group speed tends to be zero.
The bandgap region occurs for both flexural and shear wave modes. The strength of
the band gap region decreases as the nonlocal small-scale increases. It means that,
as we consider very high scale the structure behaves more or like classical behavior.
The estimation of the bandgap region can provide useful guidance for the study and
design of the next generation of nanodevices that make use of the wave propagation
properties of carbon nanotubes.

Next, the wave dispersion characteristics of a rotating nanotube (such as SWCNT)
were studied using the spectral analysis and nonlocal scale theory. The rotating nan-
otube was modeled as a Euler–Bernoulli beam. The governing partial differential
equation for a uniform rotating beam was derived incorporating the nonlocal scale
effects and a powerful model was derived in analyzing the wave dispersion character-
istics of the rotating nanotube. Some of the interesting features of the wave behavior
in rotating nanotubes were observed. It has been shown that the dispersive flexural
wave tends to behave nondispersively at very high rotation speeds. Understanding
the dynamic behavior of rotating nanostructures is important for practical develop-
ment of nanomachines. At the nanoscale, the nonlocal effects often become more
prominent. Such observations are helpful in designing the nanomotors and the other
CNT-based rotational nanodevices where CNT acts as a basic element.

The effect of nonlocal scaling parameter on the terahertz wave propagation in
fluid-filled single-walled carbon nanotubes (SWCNTs) was also studied in this chap-
ter. The SWCNT was modeled as a Timoshenko beam, including rotary inertia and
transverse shear deformation by considering the nonlocal scale effects. The analysis
shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves
will increase and the corresponding wave speeds will decrease as compared to an
empty SWCNT. The nonlocal scale parameter introduces certain band gap region in
both flexural and shear wave modes where no wave propagation occurs. The effect of
fluid density on the terahertz wave propagation in SWCNT was also studied and the
analysis shows that as the fluid becomes denser, the wave speeds will decrease. The
escape frequency decreases with the increase in nonlocal scaling parameter, for both
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wave modes. We also show that the effect of fluid density and velocity is negligible
on the escape frequencies of flexural and shear wave modes.

Next, the effect of longitudinal magnetic field on ultrasonic or terahertz wave dis-
persion characteristics of an equivalent continuum structure of single-walled carbon
nanotubes embedded in elastic medium was studied. Nonlocal governing equation
of motion for an ECS of SWCNT under a longitudinal magnetic field was derived by
considering the Lorentz magnetic force obtained from Maxwell’s relations. The re-
sults show that the velocity of flexural waves in SWCNTs increases with the increase
in the strength of the longitudinal magnetic field for all frequency bands studied in
that particular section. The effect of the magnetic field strength, elastic matrix stiff-
ness, and nonlocal parameter on the ultrasonic wave dispersion properties of SWCNT
was also investigated.

Lastly, small-scale/size-dependent wave propagation properties of nanotubes un-
der the effect of surface properties were also investigated. Nonlocal elasticity theory
was used to derive the general differential equation based on equilibrium approach
to include those scale effects. Scale and surface property-dependent wave charac-
teristic equations were obtained via spectral analysis. It was observed that the effect
of surface properties on the flexural waves of nanotubes is more significant. It can
be found that the flexural wavenumbers with surface effects were high as compared
to that without surface effects. It has been shown that with consideration of surface
effects, the flexural wavenumbers were showing a compressive nature. The effect of
the small scale and the size of the nanotube on wave dispersion prosperities was also
captured in the present chapter.
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Chapter 8
Wave Propagation in Multi-Walled Carbon
Nanotubes

Multi-walled carbon nanotubesconsist of multiple layers of graphite rolled in on
themselves to form a tube shape. There are two models which can be used to
describe the structures of MWCNT. In the Russian Doll model, sheets of graphite
are arranged in concentric cylinders, for example, a (0,8) SWCNT within a larger
(0,10) single-walled nanotube. In the Parchment model, a single sheet of graphite
is rolled in around itself, resembling a scroll of parchment or a rolled newspaper.
The interlayer distance in multi-walled nanotubes is close to the distance between
graphene layers in graphite, approximately 3.3 Å (330 pm). While SWCNT can be
metallic or semiconductor depending upon its chirality (or diameter), MWCNT is
mostly metallic in character. The walls in a MWCNT are held together by van der
Waals force. A typical MWCNT is shown in Fig. 8.1.

Application of nonlocal continuum theory to nanotechnology problems was ini-
tially addressed by Peddison et al. [1], in which the static deformation of a beam
structures based on a simplified nonlocal model was analyzed. Ru [2] has presented
a work related to the linearized column buckling of a multiple-column model of MW-
CNT. Yoon et al. [3] presented a work on vibration of MWCNTs, which focused on
the resonant frequencies and the associated vibrational modes. Yoon et al. [4] also
studied the effects of rotary inertia and shear deformation on transverse wave propa-
gation in individual carbon nanotubes. Chakraborty et al. [5] modeled a MWCNT as
an assemblage of cylindrical shell elements connected throughout their lengths by
distributed springs to investigate the elastic waves of very high frequency in carbon
nanotubes and to give the dispersion relation between the group velocity and the
wavenumber. These studies have shown that both elastic models of a beam and a
cylindrical shell are valid to describe the vibration or wave propagation of carbon
nanotubes in a relatively low-frequency range. Chakraborty et al. [6] have devel-
oped spectral element-based model of wave propagation in MWCNTs. Their studies
show that a N -walled MWNCT exhibits N − 1 cut-off frequencies corresponding
to shearing modes which appear at Tera-Hertz scale. Mitra and Gopalakrishnan [7]
have studied the characteristics of wave dispersion in MWCNTs using Flugge’s shell
theory.

S. Gopalakrishnan and S. Narendar, Wave Propagation in Nanostructures, 215
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Fig. 8.1 A (10, 10) @ (20, 20) @ (30, 30)multi-walled carbon nanotube (MWCNT) of 10.043 nm
length consisting of 1660 @ 3320 @ 4980 carbon atoms (generated in MATLAB)

Several researchers have used non-local elastic models with the second-order
gradient of stress to study the vibration and wave propagation of both single- and
multi-walled carbon nanotubes in a higher frequency range. These studies have shown
that the nonlocal continuum model work as efficiently as molecular dynamics models
at high frequencies. From these studies, it is clear that most wave propagation studies
performed by various researchers using nonlocal continuum models were limited to
SWCNT. The previous wave propagation studies using local continuum models have
shown that the wave behavior in a SWCNT is drastically different compared to the
behavior of MWCNT. Hence, the main objective of this chapter is to bring out the
main effects that the nonlocal scale parameter to the flexural wave propagation in
MWCNTs.

In this chapter, a nonlocal multiple Timoshenko beam model is used for analyzing
the wave propagation in MWCNTs. Each carbon nanotube in MWCNT is modeled
as a Timoshenko beam and the van der Waals interaction is assumed as a distributed
spring system. The effect of nonlocal scaling parameter (e0a) on the wave propaga-
tion in MWCNTs and also the variation of the escape and cut-off frequencies with
nanotube radius and e0a is studied in detail. Here e0a = 0.5, 1.0 and 2.0 nm are used
in simulation, where a = 0.142 nm (C–C bond length).
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8.1 van der Waals Forces

Modeling van der Waals forces between the concentric nanotubes is a key component
in this study. The principle of modeling this force in the form of distributed springs
all along the circumference of each adjacent concentric nanotube is shown in Fig. 8.2.
If the interaction pressure per unit area exerted on nth tube by the (n + 1)th tube is
denoted by p(n)(n+1) and is given by [2]

p(n)(n+1) = c(n)(n+1)(wn+1 − wn) (8.1)

where wn is the inward transverse deflection of the nth tube, van der Waals interaction
coefficient c(n)(n+1) is given as [8]

c(n)(n+1) = 320(2Rn)

0.16d2 erg/cm2 (8.2)

where d = 1.42 Å (the length of carbon–carbon (C–C) bond), n = 1, 2, . . . , N − 1,
Rn is the center line radius of the i th tube.

Let p(n+1)(n) stands for the pressure on (n + 1)th tube due to (n)th tube, we have

p(n+1)(n) = − Rn

Rn+1
p(n)(n+1) n = 1, 2, ..., N − 1 (8.3)

Fig. 8.2 A MWCNT model showing the van der Waals interaction
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where Rn is the radius of the nth tube. In the mathematical model for MWCNT
discussed in next section, the van der Waals interaction is modeled as distributed
springs as shown in Fig. 8.2.

8.2 Governing Equations for NLSGM MWCNT

We consider the modeling of MWCNTs using the Timoshenko beam model for wave
propagation analysis.

The consistent basic equations of the nonlocal Timoshenko beam model based on
the nonlocal constitutive relations for a single SWCNT are given as (see Sect. 7.2)
for derivation of these equations)

G Aκ

(
∂2w

∂x2 − ∂ψ

∂x

)
+ ρA

∂2

∂t2

(
w − (e0a)2

∂2w

∂x2

)
= 0 (8.4)

G Aκ

(
∂w

∂x
− ψ

)
+ E I

∂2ψ

∂x2 − ρ I
∂2

∂t2

(
ψ − (e0a)2

∂2ψ

∂x2

)
= 0 (8.5)

where x is the longitudinal coordinate measured from the left end of the beam, w is
the transverse displacement, ψ is the total section rotation measured on the mean-
line of the beam, A is the cross-sectional area of the tube and I is the moment of
inertia of the tube. It is assumed that all tubes share the same Young’s modulus E ,
shear modulus G, and Poissons ratio ν. κ is shear correction factor that accounts for
the difference in the constant state of shear stress in the Timoshenko beam theory
and the parabolic variation of the actual shear stress through the depth of the cross
section.

As mentioned earlier, van der Waals interaction between the concentric tubes is
modeled as distributed springs as shown in Fig. 8.2. Equations (8.4) and (8.5) will get
modified with the introduction of van der Waals pressure pn(n+1), n = 1, 2, . . . , N ,
given by Eqs. (8.1)–(8.3). Note that the van der Waals interaction springs couples the
displacements of itself and its immediate neighbor. Equations (8.4) and (8.5) can be
extended to N -walled MWCNTs as

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)

+
[

c12(w2 − w1)− (e0a)2
∂2

∂x2 c12(w2 − w1)

]
= 0 (8.6)

G A1κ

(
∂w1

∂x
− ψ

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (8.7)
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G A2κ

(
∂2w2

∂x2 − ∂ψ2

∂x

)
+ ρA2

∂2

∂t2

(
w2 − (e0a)2

∂2w2

∂x2

)

+
[

c23(w3 − w2)− c12(w2 − w1)− (e0a)2
∂2

∂x2 (c23(w3 − w2)− c12(w2 − w1))

]
= 0

(8.8)

G A2κ

(
∂w2

∂x
− ψ2

)
+ E I2

∂2ψ

∂x2 − ρ I2
∂2

∂t2

(
ψ2 − (e0a)2

∂2ψ2

∂x2

)
= 0 (8.9)

.

.

.

.

G ANκ

(
∂2wN

∂x2 − ∂ψN

∂x

)
+ ρAN

∂2

∂t2

(
wN − (e0a)2

∂2wN

∂x2

)

−
[

c(N−1)N (wN − wN−1)− (e0a)2
∂2

∂x2 c(N−1)N (wN − wN−1)

]
= 0 (8.10)

G ANκ

(
∂wN

∂x
− ψN

)
+E IN

∂2ψN

∂x2 −ρ IN
∂2

∂t2

(
ψN − (e0a)2

∂2ψN

∂x2

)
= 0 (8.11)

It is worth pointing out that when the van der Waals interaction coefficients are
infinitely large, all the differences of the deflections between any adjacent tubes
should be infinitely small to make the interaction terms bounded in Eqs. (8.6)–(8.11).
This indicates that all the deflections are equal to each other and then wn = w
for n = 1, 2, . . . , N . For this extreme case, the deflection of MWCNTs can be
described by a single deflection curve and therefore a single beam model can be
used for MWCNTs instead of a multibeam one. One can substitute e0 = 0 in the
Eqs. (8.6)–(8.11), to recover the local or classical Timoshenko beam model for the
MWCNTs.

8.2.1 Generalized Wave Dispersion Analysis in MWCNTs

For analyzing the dispersion characteristics of waves in MWCNTs, we assume that
a harmonic type of wave solution for the displacement field wn(x, t) and ψn(x, t)
(n = 1, 2, ..., N ), and they can be expressed in complex form as

wn (x, t) =
N∑

n=1

ŵn (x, ω) e−i(kx−ωt), n = 1, 2, ..., N , (8.12)
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ψn (x, t) =
N∑

n=1

ψ̂n (x, ω) e−i(kx−ωt), n = 1, 2, ..., N . (8.13)

where ŵn (x, ω), ψ̂n (x, ω) are the frequency domain amplitudes of the flexural and
the slope of the beam duo to bending deformation of CNTs, respectively. k is the
wavenumber and ω is the angular frequency of the wave motion and i = √−1.

Substituting Eqs. (8.12) and (8.13) in Eqs. (8.6)–(8.11) yields 2N homogeneous
equations in terms of ŵn and ψ̂n (n = 1, 2, ..., N ) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 ... ... Q1N

Q21 Q22 ... ... Q2N

Q31 Q32 ... ... Q3N

. . ... ... .

. . ... ... .

Q2N−2,1 Q2N−2,2 ... ... Q2N−2,2N−2
Q2N−1,1 Q2N−1,2 ... ... Q2N−1,2N−1
Q2N ,1 Q2N ,2 ... ... Q2N ,2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2N×2N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵ1

ψ̂1
ŵ2
.

.

ψ̂N−1
ŵN

ψ̂N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2N×1

= {0}2N×1

(8.14)

where the detailed expressions for Qab (a = 1, 2, ..., 2N ; b = 1, 2, ..., 2N ) are
shown below for single, double, and three-walled CNTs.
(a) For single-walled carbon nanotubes: (Note this was studied in Chap. 7)

Q11 = −G A1κk2 + ρA1ω
2
(

1 + (e0a)3k2
)
, (8.15)

Q12 = −Q21 = iG A1κ, (8.16)

Q22 = −E I1k2 + ρ I1ω
2
(

1 + (e0a)3k2
)

− G A1κ. (8.17)

(b) For double-walled carbon nanotubes:

Q11 = −G A1κk2 − c12

(
1 + (e0a)2k2

)
+ ρA1ω

2
(

1 + (e0a)2k2
)
, (8.18)

Q12 = −Q21 = iG A1κk, (8.19)

Q13 = Q31 = c12

(
1 + (e0a)2k2

)
, (8.20)

Q22 = −E I1k2 + ρ I1ω
2
(

1 + (e0a)2k2
)

− G A1κ, (8.21)

Q33 = −G A2κk2 − c12

(
1 + (e0a)2k2

)
+ ρA2ω

2
(

1 + (e0a)2k2
)
, (8.22)

Q34 = −Q43 = iG A2κk, (8.23)

Q44 = −E I2k2 + ρ I2ω
2
(

1 + (e0a)2k2
)

− G A2κ, (8.24)

Q14 = Q23 = Q24 = Q32 = Q41 = Q42 = 0.

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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(c) For three-walled carbon nanotube:

Q11 = −G A1κk2 − c12

(
1 + (e0a)2k2

)
+ ρA1ω

2
(

1 + (e0a)2k2
)
, (8.25)

Q12 = −Q21 = iG A1κk, (8.26)

Q13 = Q31 = c12

(
1 + (e0a)2k2

)
, (8.27)

Q22 = −E I1k2 + ρ I1ω
2
(

1 + (e0a)2k2
)

− G A1κ, (8.28)

Q33 = −G A2κk2 − c12

(
1 + (e0a)2k2

)
+ ρA2ω

2
(

1 + (e0a)2k2
)
, (8.29)

Q34 = −Q43 = iG A2κk, (8.30)

Q35 = Q53 = c23

(
1 + (e0a)2k2

)
, (8.31)

Q44 = −E I2k2 + ρ I2ω
2
(

1 + (e0a)2k2
)

− G A2κ, (8.32)

Q55 = −G A3κk2 − c23

(
1 + (e0a)2k2

)
+ ρA3ω

2
(

1 + (e0a)2k2
)
, (8.33)

Q56 = −Q65 = iG A3κk, (8.34)

Q66 = −E I3k2 + ρ I3ω
2
(

1 + (e0a)2k2
)

− G A3κ, (8.35)

Q14 = Q15 = Q16 = Q23 = Q24 = Q25 = Q26 = Q32 = Q36 = Q41 =
Q42 = Q45 = Q46 = Q51 = Q52 = Q54 = Q61 = Q62 = Q63 = Q64 = 0.

(8.36)

The wavenumbers and hence the group speeds are solved from Eq. (8.14) by using
Polynomial Eigenvalue Problem (PEP) [6, 9]. Equating the determinant of matrix
[Qab] to zero (for the non-trivial solution of ŵn , and ψ̂n) will give the characteristic
polynomial in terms of wavenumber k of the order 2N , solution of which is quite
difficult. PEP converts the characteristic polynomial equation into a matrix of size
2N × 2N , whose Eigen values form the solution of the equation. After obtaining the
wavenumbers, group speeds are extracted. The details of computation of wavenum-
bers using PEP for single, double, and three- walled CNT is shown in the later part
of this section.

In the later part of this section, some numerical examples are given to observe
the effect nonlocal scaling parameter (e0) on wave propagation in MWCNTs. We
consider double-walled carbon nanotubes (DWCNT) and triple-walled carbon nan-
otubes (TWCNTs) in the next section to analyze the wave behavior with respect to
the nonlocal scaling parameter. The properties of the CNTs assumed for the for the
present analysis are shown in Table 8.1.
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Table 8.1 Properties of
CNTs used in this chapter

Property Value

Young’s modulus (E) 1.03 TPa
Density (ρ) 2700 kg/m3

Inner tube radius (Rin) 3.5 nm
Thickness (t) 0.35 nm
Poisson ratio (ν) 0.25
Shear correction factor (κ) 0.8
Shear modulus (G) 0.4 TPa

8.2.2 Wave Dispersion in SWCNTs

We studied Timoshenko beam theory in the context of 1-D nanobeams of rectangular
cross section in Sect. 7.2. Its adaptation for SWCNT is straight forward by replacing
the area of cross section of area moment of inertia in all its expression with the
hollow circular area and area moment of inertia of SWCNT. In this chapter, we
will deduce the SWCNT equations from MWCNT equations (Eqs. (8.6)–(8.11)).
The main difference here in this chapter is that we will perform parametric studies
on wave characteristics pertaining to SWCNT. By setting N = 1 in the nonlocal
governing partial differential equations (Eqs. (8.6)–(8.11)) of MWCNTs , one can
derive the nonlocal governing equations for SWCNTs as

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)
= 0 (8.37)

G A1κ

(
∂w1

∂x
− ψ1

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (8.38)

where w1 = w1 (x, t) and ψ1 = ψ1 (x, t) are the flexural deflection and the slope of
the bending deformation of the beam, A1 and I1 are the cross-sectional area and the
moment of inertia of the SWCNT. Equations (8.37) and (8.38) are transformed into
frequency domain by assuming the displacement field to be harmonic (see Eqs. (8.12)
and (8.13)). Substituting Eqs. (8.12) and (8.13) into Eqs. (8.37) and (8.38) and rear-
ranging, the resultant equations can be written in matrix form as

S2k2 + S1k + S0 = 0 (8.39)

where S2, S1 and S0 are given by Eqs. (7.48)–(7.50), respectively.
This form is amenable to solution of wavenumbers through PEP. From Eq. (8.39),

we can clearly see the dependence of nonlocal scale parameter e0a on wavenumber.
The expressions for cut-off frequency, the escape frequencies and wave speeds were
already derived in Chap. 7 (see Eqs. (7.51)–(7.53)) and hence not repeated here.

http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
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Fig. 8.3 a Spectrum curves (Real wavenumbers—thick lines; Imaginary wavenumbers—thin
lines), b Dispersion curves for SWCNTs for various nonlocal scaling parameters for Rin = 3.5 nm
(wall-1) and c Dispersion curves for SWCNTs for various inner tube radii (e0a = 0.5 nm)

Here, we will study some key observation that were not highlighted in Sect. 7.2
is presented. The spectrum and dispersion curves of the SWCNTs with nonlocal
effects are shown in Fig. 8.3. Figure 8.3a shows the variation of the wavenumbers
with the wave frequency for both local (or classical) and nonlocal elasticity. This
figure clearly shows the two modes namely, flexural and shear. Flexural wave mode
starts from zero wave frequency and shear wave mode propagates only after shear
cut-off frequency, the frequency at which the imaginary part of wavenumber becomes
real. The values of the cut-off frequency are calculated from Eq. (7.51). In the present
study for a 3.5 nm radius SWCNT (other properties of CNT are given in Table 8.1),
we have shear cut-off frequency at 0.7585 THz. It can be observed from Eq. (7.51)
that these frequencies are independent of the nonlocal scaling parameter, and hence
same frequencies are obtained from both local and nonlocal theories.

http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
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Fig. 8.4 a Escape (or asymptotic) frequency variation of SWCNTs with nonlocal scaling parameter
(e0a). b Cut-off frequency variation of SWCNTs with nanotube radius

For e0a = 0, which is the case of local theory of elasticity solution, wavenumbers
increase monotonically with the increase in frequency, which is shown in Fig. 8.3a
and correspondingly, the group speeds, shown in Fig. 8.3b increases with increase
in wave frequency. However, at higher frequencies, they attain a constant value,
which is typical of Timoshenko beam solution. These results are similar to what
is presented in Sect. 7.2. However, with the introduction of scale effects, the wave
behavior is altered drastically. Both the flexural and shear wave modes escapes to
infinity at escape frequency, beyond this frequency there is no wave propagation. The
value of escape frequency decreases with increase in the scale parameter e0a, for
both wave modes. The spectrum and dispersion curves shown in Fig. 8.3 are plotted
for e0a = 0, 0.5, and 1.0 nm, for a 3.5 nm radius SWCNT.

Equation (7.52) gives the expression for escape frequencies in SWCNT. From
this expression it is clear that, escape frequency values are independent of SWCNT
diameter, for both wave modes. However, the group speed amplitudes may change.
Figure 8.3c shows the group speed plots for e0a = 0.5 nm for different radii of
SWCNT. From this figure, one can see that the increase in radius yields higher wave
speeds. Figure 8.4a shows the variation of escape frequencies of flexural and shear
wave modes with the nonlocal parameter. It shows that as e0a increases, the escape
frequency decreases. At higher values of e0a, escape frequencies approach to very
small values. The shear cut-off frequency variation with radius (R) of SWCNT is
shown in Fig. 8.4b. This figure shows that, as the radius of the nanotube increases,
the shear cut-off frequency decreases and at higher values of R, the cut-off frequency
approaches to very small values. Hence, it can be concluded that for large values of
scale parameter, shear deformation on CNT has negligible effect and beam behaves
like more like elementary beam. Although the wave behavior of SWCNT is similar
to the to wave behavior of 1-D nanobeams presented in Chap 7, the occurrence of
band gap or escape frequencies in these two cases are quite different.

http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_7
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8.2.3 Wave Dispersion in DWCNTs

When we substitute N = 2 in the nonlocal governing partial differential equations
of MWCNTs (Eqs. (8.6)–(8.11)), one can get the nonlocal governing differential
equation of motion for double-walled carbon nanotubes as

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)

+
[

c12(w2 − w1)− (e0a)2
∂2

∂x2 c12(w2 − w1)

]
= 0 (8.40)

G A1κ

(
∂w1

∂x
− ψ1

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (8.41)

G A2κ

(
∂2w2

∂x2 − ∂ψ2

∂x

)
+ ρA2

∂2

∂t2

(
w2 − (e0a)2

∂2w2

∂x2

)
+

[
−c12(w2 − w1)− (e0a)2

∂2

∂x2 (−c12(w2 − w1))

]
= 0 (8.42)

G A2κ

(
∂w2

∂x
− ψ2

)
+ E I2

∂2ψ2

∂x2 − ρ I2
∂2

∂t2

(
ψ2 − (e0a)2

∂2ψ2

∂x2

)
= 0 (8.43)

where the subscripts 1 and 2 in Eqs. (8.40)–(8.43) represents for wall-1 (inner) and
wall-2 (outer) of the DWCNT (see Fig. 8.2), respectively. Here w1 = w1(x, t), ψ1 =
ψ1(x, t) and w2 = w2(x, t),ψ2 = ψ2(x, t) are the flexural deflections, cross-section
rotations of the inner and the outer walls, respectively and c12 is the van der Waals
interaction coefficient between wall-1 and wall-2 a of DWCNT (calculated from
Eq. (8.2). A1, A2 and I1, I2 are the cross-sectional area and moment of inertia of the
wall-1 and wall-2, respectively.

For analyzing the wave behavior in DWCNTs, we again assume that the harmonic
type of wave solution for the displacement field as

wp (x, t) =
N∑

n=1

ŵp (x, ω) e−i(kx−ωt), p = 1, 2, (8.44)

ψp (x, t) =
N∑

n=1

ψ̂p (x, ω) e−i(kx−ωt), p = 1, 2. (8.45)

where ŵp (x, ω) (p = 1, 2) and ψ̂ p (x, ω) (p = 1, 2) are the frequency domain
amplitudes of deflection of the beam and the slope of the beam due to bending defor-
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mation, respectively. Substitution of the displacement field (Eqs. (8.44) and (8.45))
in the nonlocal governing differential equation of motion of DWCNTs (Eqs. (8.40)–
(8.43)) leads to the following polynomial eigenvalue problem

D2k2 + D1k + D0 = 0 (8.46)

where

D2 =

⎡
⎢⎢⎢⎣

D(11)
2 0 c12(e0a)2 0
0 D(22)

2 0 0
c12(e0a)2 0 D(33)

2 0
0 0 0 D(44)

2

⎤
⎥⎥⎥⎦ (8.47)

D1 =

⎡
⎢⎢⎣

0 iG A1κ 0 0
−iG A1κ 0 0 0

0 0 0 iG A2κ

0 0 −iG A2κ 0

⎤
⎥⎥⎦ (8.48)

D0 =

⎡
⎢⎢⎢⎣

D(11)
0 0 c12 0
0 D(22)

0 0 0
c12 0 D(33)

0 0
0 0 0 D(44)

0

⎤
⎥⎥⎥⎦ (8.49)

The diagonal elements of the matrices D2 and D0 are given below.

D(11)
2 = −G A1κ + (−c12 + ρA1ω

2)(e0a)2, (8.50)

D(22)
2 = −E I1 + ρ I1(e0a)2ω2, (8.51)

D(33)
2 = −G A2κ + (−c12 + ρA2ω

2)(e0a)2, (8.52)

D(44)
2 = −E I2 + ρ I2(e0a)2ω2. (8.53)

D(11)
0 = −c12 + ρA1ω

2, (8.54)

D(22)
0 = −G A1κ + ρ I1ω

2, (8.55)

D(33)
0 = −c12 + ρA2ω

2, (8.56)

D(44)
0 = −G A2κ + ρ I2ω

2. (8.57)

This dispersion relation, which is also in the form of PEP (Eq. (8.46)) is solved for
wavenumbers, which is a function of material properties of the CNTs and the nonlocal
parameter (e0a). For a DWCNT, the nonlocal Timoshenko beam model gives four cut-
off frequencies and four escape frequencies in wave dispersion analysis. These cut-off
frequencies are obtained by substituting k = 0 in the dispersion relation of DWCNTs
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(Eq. (8.46)) or by solving |D0(ω)| = 0, which gives four cut-off frequencies as

ωc1 = 0, ωc2 =
√

G A1κ

ρ I1
, ωc3 =

√
G A2κ

ρ I2
, ωc4 =

√
c12(A1 + A2)

ρA1 A2
(8.58)

One can observe that these cut-off frequencies are independent of the nonlocal scaling
parameter (e0a). The escape (or asymptotic) frequencies are obtained by substituting
k → ∞ in the dispersion relation (Eq. (8.46)), that implies |D2(ω)| = 0, which gives

ωE1 = 1

e0a

√
E I1

ρ I1
, ωE2 = 1

e0a

√
E I2

ρ I2
(8.59)

ωE3 = 1√
2A∗(e0a)

√
A∗(2H1 + H2)+

√
(2H2

1 + H2
2 )+ (H3 − H4) (8.60)

ωE4 = 1√
2A∗(e0a)

√
A∗(2H1 + H2)−

√
(2H2

1 + H2
2 )+ (H3 − H4) (8.61)

where the parameters A∗ and Hp (p = 1, 2, 3, 4) are given below.

H1 = GρκA∗, (8.62)

H2 = c12ρA+(e0a2), (8.63)

H3 = 2Gκρ2c12(e0a)2 A∗ A−, (8.64)

H4 = 2Gκρ2 A∗(GκA∗ + c12(e0a)2 A−), (8.65)

A∗ = A1 A2, (8.66)

A+ = A1 + A2, (8.67)

A− = A2 − A1. (8.68)

These escape frequencies are function of the material properties of CNTs and are
inversely proportional to the nonlocal scaling parameter. Differentiating the disper-
sion relation of DWCNTs (Eq. (8.46)) with respect to the wave frequency (ω), we
get the PEP for group speeds as

[
k2 ∂D2

∂ω
+ ∂D0

∂ω

]
Cg2 + 2kD2 + D1 = 0 (8.69)

where Cg2 = (∂ω/∂k)2 is the group speed of a wave in DWCNTs and the matrices
D2, D1 and D0 are given in Eqs. (8.47)–(8.49).

The spectrum and dispersion plots for DWCNTs are shown in Fig. 8.5. In the case
of DWCNT, most of the observations made for the SWCNT are still valid, That is, as
expected, scale parameter introduces the escape frequency where the wavenumber
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Fig. 8.5 a Spectrum curves (Real wavenumbers—thick lines; Imaginary wavenumbers—thin
lines), b Dispersion curves for DWCNTs for various nonlocal scaling parameters for wall-1 radius
Rin = 3.5 nm and c Dispersion curves for DWCNTs for various radii of wall-1 (for e0a = 0.5 nm)

k tends to infinity and the group speed tends to zero and the values of the escape
frequencies decreases with the increase in scale parameter. In addition, when e0a = 0
nm, the flexural speeds of the second wall slightly decreases at low frequencies and
slightly increases and attains the speeds of the first wall. This phenomenon is clearly
shown in Fig. 8.5b. The value of the cut-off frequency does not change appreciably
with the increase in scale parameter. For e0a = 0 the shear mode group speeds at
high frequencies remain almost constant.

Figure 8.5c shows the dispersion plots for various inner radii of the CNTs for a
given scale parameter (e0a = 0.5 nm). From the figure, it is clear that the escape
frequencies for various modes does not change with the increase in the inner radius.
The only change in escape frequency is observed in the shear wave mode of the wall 1.
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Fig. 8.6 Variation of escape (or asymptotic) frequency with wall-1 radius for (a) e0a = 0.5 nm
and (b) e0a = 2.0 nm

The detailed variation in escape frequency for both the walls as a function of
nonlocal scale parameter is shown in Fig. 8.6 for e0a = 0.5 and 2.0 nm. It shows
the effect of the radius of the nanotube (wall-1) and nonlocal scaling parameter (e0)
on the escape frequency of DWCNTs more clearly. The escape frequencies for both
flexural and shear modes of the wall-2 are same and are constant with respect to the
radius of the tube. These values of escape frequency are decreasing with the nonlocal
scale coefficient e0a (see Fig. 8.6a, b). As in the wall-2, the escape frequencies of the
flexural modes of wall-1 are constant with nanotube radius and they also decrease
with increase in nonlocal scaling parameter. The escape frequencies of the shear
wave modes of the wall-1 are deceasing with the increase in radius of the tube and
also with the increase in nonlocal scaling parameter (see Fig. 8.6).

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Non−Local parameter e
0
a (nm)

E
sc

ap
e 

F
re

qu
en

cy
  (

T
P

a)

R
inner tube

 = 3.5 nm

Flexural mode: wall 1
Shear mode: wall 1
Flexural mode: wall 2
Shear mode: wall 2

(a)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Inner nanotube Radius (nm)

C
ut

−
of

f F
re

qu
en

cy
  (

T
P

a) Shear mode: wall 1
Flexural mode: wall 2
Shear mode: wall 2

(b)

Fig. 8.7 a Escape (or asymptotic) frequency variation of DWCNTs with nonlocal scaling parameter
(e0a), b Cut-off frequency variation of DWCNTs with inner nanotube (wall-1) radius
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Fig. 8.8 a Spectrum curves (Real wavenumbers—thick lines; Imaginary wavenumbers—thin
lines), b Dispersion curves for a DWCNT of wall-1 radius Rin = 3.5 nm and two SWCNTs of
radii 3.5 and 3.85 nm, to observe the van der Waals interaction in DWCNTs, for e0a = 0.5 nm

The variation of escape frequency (for all modes of both walls) with nonlocal
scaling parameter (for wall-1 radius of 3.5 nm) is shown in Fig. 8.7a. It shows that the
escape frequencies of the flexural and shear wave modes of both walls are decreasing
with increase in e0a. At small values of e0a (<∼0.5), the escape frequencies are
very high and are saturating to smaller values of frequency at large values of e0a
(see Fig. 8.7a). The cut-off frequency variation with inner nanotube (wall-1) radius
is shown in Fig. 8.7b, where the cut-off frequencies are decreasing with the increase
in nanotube radius. For higher values of tube radius, the cut-off frequencies of the
shear mode of wall-2 and that of the flexural mode of wall-1 are almost same (see
Fig. 8.7b).

The spectrum and dispersion curves for a DWCNT of inner wall radius of Rin =
3.5 nm and two SWCNTs of radii equal to the inner and outer wall radius of the
DWCNT (that is, SWCNT1: R1 = 3.5 nm and SWCNT2: R2 = 3.85 nm), are shown
in Fig. 8.8. Here these curves are shown for e0a = 0.5 nm. Here, the flexural and
shear wavenumbers of the wall-1 of the DWCNT are in between the values of the
SWCNT1 and SWCNT2. SWCNT2 has higher wavenumbers and lower wave group
speeds as compared to the wall-1 of DWCNT and SWCNT−1. This variation is
clearly shown in the insets of Fig. 8.8a, b. The vdW interaction in DWCNT, will be
there only on the outer wall (wall-2) wave modes (both flexural and shear). The outer
wall wave modes of the DWCNT are not affected by the two individual SWCNTs as
mentioned above.
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8.2.4 Wave Dispersion in TWCNTs

Substituting N = 3 in the nonlocal governing differential equations of TWCNTs
(Eqs. (8.6) to (8.11)) one can obtain the nonlocal governing differential equations of
motion for the TWCNTs as

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)

+
[

c12(w2 − w1)− (e0a)2
∂2

∂x2 c12(w2 − w1)

]
= 0 (8.70)

G A1κ

(
∂w1

∂x
− ψ

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (8.71)

G A2κ

(
∂2w2

∂x2 − ∂ψ2

∂x

)
+ ρA2

∂2

∂t2

(
w2 − (e0a)2

∂2w2

∂x2

)

+
[

c23(w3 − w2)− c12(w2 − w1)− (e0a)2
∂2

∂x2 (c23(w3 − w2)− c12(w2 − w1))

]
= 0

(8.72)

G A2κ

(
∂w2

∂x
− ψ2

)
+ E I2

∂2ψ

∂x2 − ρ I2
∂2

∂t2

(
ψ2 − (e0a)2

∂2ψ2

∂x2

)
= 0 (8.73)

G A3κ

(
∂2w3

∂x2 − ∂ψ3

∂x

)
+ ρA3

∂2

∂t2

(
w3 − (e0a)2

∂2w3

∂x2

)

+
[
−c23(w3 − w2)− (e0a)2

∂2

∂x2 (−c23(w3 − w2))

]
= 0 (8.74)

G A3κ

(
∂w3

∂x
− ψ3

)
+ E I3

∂2ψ3

∂x2 − ρ I3
∂2

∂t2

(
ψ3 − (e0a)2

∂2ψ3

∂x2

)
= 0 (8.75)

where the subscripts 1, 2 and 3 in Eqs. (8.70)–(8.75) represents for wall-1 (inner),
wall-2, and wall-3 (outer) of the TWCNT (see Figs. 8.1 and 8.2), respectively. Here
wp = wp(x, t), ψp = ψp(x, t) (p = 1, 2, 3) are the flexural deflections and cross-
section rotations of the three walls (1, 2, and 3), respectively. c12 and c23 are the van
der Waals interaction coefficients between the walls 1-2 and 2-3, respectively, and
are calculated from Eq. (8.2). Ap and Ip (p = 1, 2, 3) are the cross-sectional areas
and the moment of inertias of three walls, respectively.

For analyzing the wave dispersion in TWCNTs, we assume a harmonic type of
wave solution for the displacement field in complex form as
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wp (x, t) =
N∑

n=1

ŵp (x, ω) e−i(kx−ωt), p = 1, 2, 3, (8.76)

ψp (x, t) =
N∑

n=1

ψ̂p (x, ω) e−i(kx−ωt), p = 1, 2, 3. (8.77)

where ŵp (x, ω) (p = 1, 2, 3) and ψ̂ p (x, ω) (p = 1, 2, 3) are the frequency domain
amplitudes of deflection and the slope of the beam for the three walls, respectively.
Substitution of the displacement field (Eqs. (8.76) and (8.77)) in the nonlocal gov-
erning differential equation of motion of TWCNTs (Eqs.(8.70)–(8.75)) leads to the
following polynomial eigenvalue problem

T2k2 + T1k + T0 = 0 (8.78)

where

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T (11)
2 0 c12(e0a)2 0 0 0
0 T (22)

2 0 0 0 0
c12(e0a)2 0 T (33)

2 0 c23(e0a)2 0
0 0 0 T (44)

2 0 0
0 0 c23(e0a)2 0 T (55)

2 0
0 0 0 0 0 T (66)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.79)

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 iG A1κ 0 0 0 0
−iG A1κ 0 0 0 0 0

0 0 0 iG A2κ 0 0
0 0 −iG A2κ 0 0 0
0 0 0 0 0 iG A3κ

0 0 0 0 −iG A3κ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.80)

T0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T (11)
0 0 c12 0 0 0
0 T (22)

0 0 0 0 0
c12 0 T (33)

0 0 c23 0
0 0 0 T (44)

0 0 0
0 0 c23 0 T (55)

0 0
0 0 0 0 0 T (66)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.81)

where the diagonal elements of the matrices T2 and T0 are given below.

T (11)
2 = −G A1κ + (−c12 + ρA1ω

2)(e0a)2, (8.82)

T (22)
2 = −E I1 + ρ I1(e0a)2ω2, (8.83)
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T (33)
2 = −G A2κ + (−c12 + ρA2ω

2)(e0a)2, (8.84)

T (44)
2 = −E I2 + ρ I2(e0a)2ω2, (8.85)

T (55)
2 = −G A3κ + (−c23 + ρA3ω

2)(e0a)2, (8.86)

T (66)
2 = −E I3 + ρ I3(e0a)2ω2. (8.87)

T (11)
0 = −c12 + ρA1ω

2, (8.88)

T (22)
0 = −G A1κ + ρ I1ω

2, (8.89)

T (33)
0 = −c12 + ρA2ω

2, (8.90)

T (44)
0 = −G A2κ + ρ I2ω

2, (8.91)

T (55)
0 = −c23 + ρA3ω

2, (8.92)

T (66)
0 = −G A3κ + ρ I3ω

2. (8.93)

This polynomial eigenvalue problem is solved for the wavenumbers. As before,
the cut-off frequencies are obtained by setting k = 0 in the dispersion relation
(Eq. (8.78)). In the present case one can get the cut-off frequencies by solving
|T0(ω)| = 0. The closed form expressions of cut-off frequency are very big, so
we are not elaborating those expressions here. One can derive those expressions by
solving |T0(ω)| = 0. The escape frequencies can be obtained by setting k → ∞ in
Eq. (8.78) or by solving the |T2(ω)| = 0.

Differentiating the dispersion relation (Eq. (8.78)) with respect to the wave fre-
quency (ω) for obtaining group speeds as

[
k2 ∂T2

∂ω
+ ∂T0

∂ω

]
Cg3 + 2kT2 + T1 = 0 (8.94)

where Cg3 = (∂ω/∂k)3 is the group speed of a waves in TWCNTs and the matrices
T2, T1 and T0 are given in Eqs. (8.79)–(8.81). This is also a PEP, one can solve it
for group speeds of respective modes (that is, for flexural and shear) of all the three
walls.

The spectrum and dispersion curves for TWCNTs are shown in Fig. 8.9a, b,
respectively. The wave behavior is similar to DWCNT case and all the observations
made are also valid here. For a given nonlocal parameter (say e0a = 0.5 nm) the
group speed dispersion curves are shown for various radii of the CNTs in Fig. 8.9c.
The escape frequency variation of the flexural and shear modes of the three walls
can be clearly seen from Figs. 8.9c and 8.10. The escape frequencies are inversely
proportional to the nonlocal parameter, so as the nonlocal parameter increases the
escape frequencies decrease as shown in Fig. 8.10a, b. The escape frequencies of the
flexural and shear modes of the wall-3 for a given nonlocal parameter are constant
for all radii of the CNT. The similar phenomena is observed for the flexural modes



234 8 Wave Propagation in Multi-Walled Carbon Nanotubes

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

Frequency (THz)

G
ro

up
 s

pe
ed

 (
K

m
/s

)

e
0
a = 0 nm

e
0
a = 0.5 nm

e
0
a = 1.0 nm

R
in

 = 3.5 nm

Shear

Flexural

0 2 4 6 8 10
0

5

10

15

20

25

Frequency (THz)

G
ro

up
 s

pe
ed

 (
K

m
/s

)

 2.0 nm

 5.0 nm

R
in

 = 8.0 nm

e
0
a = 0.5 nm

Flexural and Shear wave
    modes of wall 3

Flexural and Shear wave
    modes of walls 1 & 2

(c)

(a) (b)

Fig. 8.9 a Spectrum curves (Real wavenumbers—thick lines; Imaginary wavenumbers—thin
lines), b Dispersion curves for TWCNTs for various nonlocal scaling parameters for wall-1 radius
Rin = 3.5 nm, and c Dispersion curves for TWCNTs for various inner tube (wall-1) radii (for
e0a = 0.5 nm)

of wall-1 and wall-2 (see Fig. 8.10). The only escape frequencies of the shear wave
modes of the walls-1 and 2 are decreasing with the wall radii.

As in the cases of SWCNTs and DWCNTs, the escape frequencies of flexural
and shear wave modes of the three walls are decreasing with the nonlocal scaling
parameter.

The variation of the cut-off frequencies of all modes of TWCNTs are plotted in
Fig. 8.11. These cut-off frequencies are independent of the nonlocal scaling para-
meter. As the radius of the CNTs increases the cut-off frequencies show a decrease
in nature. For higher values of the tube radius the cut-off frequencies of the shear
mode of wall-1 and the flexural modes of walls 2 and 3 are almost same as shown in
Fig. 8.11.
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Fig. 8.10 Variation of escape (or asymptotic) frequency with inner nanotube radius for (a) e0a =
0.5 nm and (b) e0a = 2.0 nm

Fig. 8.11 Cut-off frequency
variation of TWCNTs with
nanotube radius
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According to the spectrum and dispersion results of the SWCNTs, DWCNTs and
TWCNTs, one can generalize the effect of nonlocal scaling parameter on wave prop-
agation in MWCNTs as explained below. When we consider the wave propagation in
N -walled CNT (modeled as N -layered Timoshenko beams connected by distributed
sprigs) with nonlocal scale effects, based the study performed sofar, it leads to the
following conclusions.

1. For a given nonlocal parameter (e0a) the flexural and shear the wave modes of
N th wall of the N -walled CNT have same escape frequencies, which are constant
for all the radii of the CNT, and decreases with the increase in nonlocal scaling
parameter.

2. The flexural wave modes of the remaining N −1 walls (1, 2, . . . , N −1) will also
have a fixed escape frequency for different radii of the tubes. As e0a increases
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this frequency decreases. For a given e0a this frequency is smaller than that of
the N th wall.

3. The escape frequencies, for a given e0a, of the shear wave modes of these N − 1
walls have different frequencies for different nanotube radii. As the tube radius
and/or e0a increases these escape frequencies decreases.

4. Because of the van der Waals interaction among the tubes, nonlocal effect is found
only on the escape frequencies of the shear wave modes of the N − 1 walls.

5. For a N -walled CNT, the cut-off frequencies of flexural and shear wave modes
are independent of the nonlocal scaling parameter.

8.3 Summary

In this chapter, a nonlocal Timoshenko beam model was developed for a multi-
walled carbon nanotube by modeling the van der Waals interaction between the
tubes as the distributed spring system. Effect of nonlocal elasticity on the wave
dispersion in multi-walled carbon nanotubes (MWCNTs) was studied using single,
double and three walled CNTs, and the results were generalized for MWCNTs. We
have shown that the escape frequencies of the flexural and shear wave modes of the
N th wall of a N -walled CNT were constant with increase in radius of the CNT. These
frequencies decreases with the nonlocal scaling parameter. The flexural wave modes
of the remaining N − 1 walls were also having a constant escape frequency and it
will not vary with the radius of CNT and also deceases with increase in e0a. The
shear wave modes of the N − 1 walls show different escape frequencies and they
decreases with the increase in radius of CNT and also nonlocal scaling parameter.
This variation is because of the van der Waals interaction between the tubes. The
significant influence of nonlocal effects were observed only on the shear wave modes
of the N − 1 walls. We also show that the cut-off frequencies of the N -walled CNTs
are independent of e0a.

All the problems studied in this chapter will provide the reader a clear methodology
of using spectral analysis to obtain wave behavior in MWCNT. In the next chapter, we
will extend the spectral analysis method to study the wave dispersion characteristics
of coupled one-dimensional nanosystems based on nonlocal continuum mechanics
theory.
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Chapter 9
Wave Propagation in Coupled 1D-Nanosystems

The wave propagation in 1-D nanorods was studied in detail in Chap. 6, while 1-D
nanobeams (both Euler-Bernoulli and Timoshenko beam models) were discussed
in Chap. 7. In Chap. 8, the wave propagation in connected 1-D beams was studied
(MWCNT), where the connection is along the circumference of multiple nanotube
walls through van der Walls forces . In this chapter, we will study the wave prop-
agation in 1-D nanorods/nanobeams, which are explicitly connected elastically all
along the length through a series of distributed springs. Such structures are prevalent
in nano electro mechanical systems (NEMS) , nano opto-mechanical systems , nano
oscillators etc. Again, we will use non local elasticity formulation and the main ob-
jective here is to study the effect of non local scale parameter and coupling stiffness
on the wave behavior of such nano systems. It should be said here that the literature
available on this important topic is not large. There are a few works reported on
coupled nano rod systems. Murmu and Adhikari [1], studied the longitudinal vibra-
tion of a double-nanorod system (DNRS) based on nonlocal elasticity theory. Their
study highlights that the nonlocal effect considerably influences the axial vibration
of DNRS. Zhang and Sharma [2], studied the size dependency of strain in arbitrary
shaped anisotropic embedded quantum dots due to nonlocal dispersive effects. The
size dependency of strain in lattice-mismatched embedded quantum dots based on
the mechanism of nonlocal interactions (included in the form of higher-order strain
gradients). They concluded that, qualitatively, their nonlocal solutions exhibit strain
profiles that are more physical than those obtained from classical elasticity, that is,
discontinuities across interfaces are smoothed out and singularities in the cases of
corners in polyhedral shapes are eliminated. Although there are a number of works
on the dynamics of couple continuum beams, the works reported on the vibration
and wave propagation in a doubly coupled nano beam (DNBS) is quite scarce. Some
of these are reviewed under the section dealing with double nanobeam system.
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9.1 Governing Equations of Motion for Double Nanorod System

In the present section, the small-scale effects on the DNRS are investigated by
employing nonlocal continuum mechanics. The effect of nonlocal scaling parame-
ter (e0a) on the wave propagation in DNRS and also the variation of the escape
frequency with e0a is studied in detail in this section. Here, e0a = 1.0 nm and 2.0
nm are used, where a = 0.142 nm (C–C bond length). Wave propagation analysis
in DNRS is also carried out after deriving the nonlocal governing equations. The
explicit expressions for the wavenumbers as a function of wave frequency for the
coupled nanorod system are derived. Also the relation between the escape frequency
and nonlocal scaling parameter is derived. Important numerical results are presented
on the wave dispersion in DNRS.

Figure 9.1 schematically describes a double nanorod system coupled by springs
under discussion and serves to introduce the axial coordinate x , the axial displacement
u = u(x, t), the length L , the Young’s modulus E , and the density ρ. This topic was
discussed in detail in Chap. 6. The governing differential equation for a single nano
rod system is given by

Fig. 9.1 A Coupled single walled carbon nanotube system modeled as a coupled nanorod system:
a Discrete model b Equivalent continuum model, here Kcs denote the stiffness of coupled spring,
Young’s modulus E , density ρ, cross-sectional area A, and longitudinal displacement u = u(x, t)
along X−direction

http://dx.doi.org/10.1007/978-3-319-01032-8_6
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E A
∂2u

∂x2 + g2ρA
∂4u

∂x2∂t2 − ρA
∂2u

∂t2 + f − g2 ∂
2 f

∂x2 = 0 (9.1)

We will use Eq. (9.1) for the development of coupled double-nanorod system.
Consider a double-nanorod system (DNRS) as shown in Fig. 9.1. Here we

assumed that the coupled SWCNT (see Fig. 9.1a) as double-nanorod. Both nanorods
are separated by axially distributed springs. The springs are used to substitute the
effect of elastic medium forces due to nano-optomechanical effect or van der Waals
forces (vdW) between the two nanorods. The coupled springs are assumed to have
a stiffness Kcs . In general, the two nanorods have different Young’s modulus, cross
sectional area, and density. These parameters are assumed to be constant along each
nanorod.

The longitudinal displacements over the two nanorods are denoted by u1(x, t)
and u2(x, t) (see Fig. 9.1b). Based on Eq. (9.1), the governing equations of motion
for the axial wave propagation of DNRS can be expressed as

E1 A1
∂2u1

∂x2 + g2ρ1 A1
∂4u1

∂x2∂t2 − ρ1 A1
∂2u1

∂t2 + f1 − g2 ∂
2 f1

∂x2 = 0 (9.2)

E2 A2
∂2u2

∂x2 + g2ρ2 A2
∂4u2

∂x2∂t2 − ρ2 A2
∂2u2

∂t2 + f2 − g2 ∂
2 f2

∂x2 = 0 (9.3)

Here the distributed forces on nanorod-1 and nanorod-2 are given as

f1 = Kcs (u2 − u1) (9.4)

f2 = Kcs (u1 − u2) (9.5)

substituting f1 and f2 in Eqs. (9.2) and (9.3) gives

E1 A1
∂2u1

∂x2 + g2ρ1 A1
∂4u1

∂x2∂t2 − ρ1 A1
∂2u1

∂t2 + Kcs (u2 − u1)

−g2 Kcs

(
∂2u2

∂x2 − ∂2u1

∂x2

)
= 0 (9.6)

E2 A2
∂2u2

∂x2 + g2ρ2 A2
∂4u2

∂x2∂t2 − ρ2 A2
∂2u2

∂t2 − Kcs (u2 − u1)

+g2 Kcs

(
∂2u2

∂x2 − ∂2u1

∂x2

)
= 0 (9.7)

The above equations revert to the equations of classical rod theory [3], if nonlocal
scale coefficient is ignored, that is, g = 0.
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9.1.1 Wave Propagation Analysis in DNRS

For analyzing the ultrasonic wave dispersion characteristics in nanorods, we will
perform spectral analysis. That is, we assume that a harmonic type of wave solution
for the displacement fields u1(x, t) and u2(x, t) it can be expressed in complex form
as [3]

u1 (x, t) =
M−1∑
m=0

N−1∑
n=0

û1 (x, ωn) e− j(km x−ωn t) (9.8)

u2 (x, t) =
M−1∑
m=0

N−1∑
n=0

û2 (x, ωn) e− j(km x−ωn t) (9.9)

where, M and N are the number of time sampling points and number spatial sampling
points, respectively.ωn is the circular frequency at the nth time sample. Similarly, km

is the axial wavenumber at the mth spatial sample point and j = √−1. Substituting
Eqs. (9.8) and (9.9) into the governing partial differential Eqs. (9.6) and (9.7), we get
the dispersion relation as follows. Hereafter, the subscripts m and n are dropped for
simplified notations. That is,

[
Z11 Z12
Z21 Z22

] {
û1
û2

}
=

{
0
0

}
(9.10)

where,

Z11 = −E1 A1k2 + ρ1 A1ω
2(1 + g2k2)− Kcs(1 + g2k2),

Z12 = Z21 = Kcs(1 + g2k2),

Z22 = −E2 A2k2 + ρ2 A2ω
2(1 + g2k2)− Kcs(1 + g2k2). (9.11)

Assuming nontrivial solution for û1 and û2, one can solve the following equation for
wavenumbers ∣∣∣∣ Z11 Z12

Z21 Z22

∣∣∣∣ = 0 (9.12)

Solving Eq. (9.12), we get an algebraic equation in wavenumber (known as dispersion
relation) as

(C1C5 − C2
3 )k

4 + (C1C6 + C2C5 − 2C3C4)k
2 + C2C6 − C2

4 = 0 (9.13)

where
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C1 = −E1 A1 + ρ1 A1g2ω2 − Kcs g2,

C2 = ρ1 A1ω
2 − Kcs,

C3 = Kcs g2,

C4 = Kcs,

C5 = −E2 A2 + ρ2 A2g2ω2 − Kcs g2,

C6 = ρ2 A2ω
2 − Kcs . (9.14)

The wavenumber is a function of wave frequency, the nonlocal scaling parameter
g, and the material and geometrical properties of the nanorod.

For the present analysis, we are considering the phase speeds of the wave and as
before. its expression is given by

CP = ω

k
(9.15)

This wave speed also depends on the nonlocal scaling parameter. When g = 0, the
wave speed is equal (i.e., CP = √

E/ρ), which is already proved for local or classical
bars/rods (for more details refer [3]).

From Eq. (9.13), we can clearly see the existence of cut-off frequency. The
expression for frequency band gap is obtained by setting k = 0 in dispersion relation
(Eq. 9.13). For the present problem, one can solve the dispersion relation (Eq. 9.13)
by setting k = 0, i.e., solving C2C6 − C2

4 = 0, we get the cut-off frequency as

ωcut =
√

Kcs

[
1

ρ1 A1
+ 1

ρ2 A2

]
(9.16)

The frequency band gap (0 − ωcut , cut-off frequency) for axial wave mode depends
on the material properties of the nanorods and also the coupling spring stiffness.

Figure 9.2a shows the spectrum relation plot as a function of nonlocal scale para-
meter e0a. From the figure, we can cleary see the existance of escape frequency and
this frequency value decreases with increase in the scale parameter. Its value can be
analytically determined by looking at the dispersion relation (Eq. 9.13) and setting
k → ∞ (that is, we get C1C5 − C2

3 = 0), which gives escape frequency as

ωescape =

√√√√−H2 ±
√

H2
2 − 4H4 H0

2H4
(9.17)

where

H4 = ρ1ρ2 A1 A2g4,

H2 = −E1 A1ρ2 A2g2 − E2 A2ρ1 A1g2 − Kcs g4(ρ1 A1 + ρ2 A2),

H0 = E1 E2 A1 A2 + Kcs g2(E1 A1 + E2 A2). (9.18)
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The only solution giving positive value of the escape frequency is admissible We
will discuss more on escape frequency next.

For the present study, we consider the properties of the nanorod (SWCNT) [4]. An
armchair SWCNT with chirality (5, 5) is considered. The radius of each individual
nanorod (SWCNT) is assumed as R = 0.34 nm. Young’s modulus, E , is considered
as 0.971 T Pa. The stiffness of the coupling springs is assumed to be in between the
low and high stiffness values, that is, Kcs = 8 N/nm and 80 N/nm, respectively.
Here the term DNRS would denote the case of double-carbon-nanotube-rod system.
Here, we also assume that both the nanorods/SWCNTs have same properties as
mentioned above.

We have assumed the unit of coupling stiffness as N/nm. Hence, all the dimensions
in the Eqs. (9.6) and (9.7) as well as Eqs. (9.10)–(9.17) will not match. Generally,
It is assumed that the system under consideration is composed of two parallel, and
homogeneous rods continuously joined by a Winkler type of elastic layer. This elastic
layer stiffness has the units of N/nm2, which means that the stiffness Kcs is N/nm per
unit nm thickness of the Winkler layer. Here, in the present formulation, the rods are
joined by the distributed springs, so that the stiffness is Kcs N/nm per nm thickness of
the layer (hence the units of Kcs should be read as N/nm2). In the present calculation,
the thickness of this layer is neglected.

Figure 9.2a shows the real and imaginary parts of the axial wavenumber of a
nanorod obtained form both local (g = 0) and nonlocal elasticity (g = 1.0×10−9 m
and g = 2.0 × 10−9 m) theories for Kcs = 0. The thick lines represent the real part
and the thin lines show the imaginary part of the wavenumbers. From Fig. 9.2a, for
a nanorod, it can be seen that there is only one mode of wave propagation i.e., axial
or longitudinal. For local or classical model, the wavenumbers for the axial mode
has a linear variation with the frequency which is in the T H z range. The linear
variation of the wavenumbers denote that the waves will propagate nondispersively,
that is, the waves do not change their shapes as they propagate. On the other hand,
the wavenumbers obtained from nonlocal elasticity have a nonlinear variation with
the frequency, which indicates that the waves are dispersive in nature. However, the
wavenumbers of this wave mode have a substantial real part starting from the zero
frequency. This implies that the mode starts propagating at any excitation frequency
and does not have a cut-off frequency. From Fig. 9.2, we can clearly see the existance
of escape frequency).

For a given coupling stiffness (say Kcs = 8 N/nm), the spectrum curve is plot-
ted in Fig. 9.2b. However, the wavenumbers of axial wave mode does not have a
substantial real part starting from the zero frequency. This implies that the mode
starts propagating only after the cut-off frequency, where the imaginary part of the
wavenumber becomes real as shown in Fig. 9.2b. The behavior of the axial wave
obtained from local and nonlocal theories is same as observed for the case of Kcs = 0.
The enlarged portion at the cut-off frequency is also shown in Fig. 9.2b. Now, we
increase the coupled spring stiffness further to Kcs = 25 N/nm. The resulting
spectrum curves are shown in Fig. 9.2c. It can be seen the the cut-off frequency is
increased from 1.282 THz to 2.274 THz as Kcs increases from 8 N/nm to 25 N/nm,
respectively. This is a significance difference and one has to consider this variation
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Fig. 9.2 Wavenumber dis-
persion in a double nanorod
system a Kcs = 0 N/nm
b Kcs = 8 N/nm c
Kcs = 25 N/nm
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Fig. 9.3 Phase velocity dispersion in a double nanorod system a Kcs = 0 N/nm b Kcs = 8 N/nm
c Kcs = 25 N/nm

at small scales. However, there is no significant change in escape frequency as the
stiffness of the coupled spring increase. It can be seen that the frequency band gap
increases with the stiffness of the coupled spring between nanorods.

Figure 9.3a plots the wave speed for the nanorod obtained from both local and
nonlocal models for K = 0. Because of the linear variation of wavenumber with wave
frequency from local elasticity (see Fig. 9.2a), the phase speed

(
C p = Real

(
ω
k

))
for

the axial mode has a constant value for all the frequencies and hence, the wave does
not change its shape as it propagate. It can also be observed, that the axial wave
speed behavior is similar for local and nonlocal cases at zero frequency. In nonlocal
elasticity, the wavenumber tends to infinity at escape frequencies (see Fig. 9.2a),
which results in phase speed tending to zero at these frequencies.

The phase speed variations are shown with respect to wave frequency in Fig. 9.3b, c,
respectively for coupling stiffness values of 8 N/nm and 25 N/nm. It can be seen
that the cut-off frequency increases as the stiffness of the coupled spring increases.
The spring stiffness has no effect on escape frequency of the axial wave mode. The



9.1 Governing Equations of Motion for Double Nanorod System 247

0 0.5 1 1.5 2

x 10−9

0

5

10

15

20

25

30

35

Nonlocal Small Scale Parameter (m)

E
sc

ap
e 

F
re

qu
en

cy
 (

T
H

z)

Kcs = 0

Kcs = 8×109 N/m

Kcs = 25×109 N/m
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phase speeds are tending to zero at the escape frequencies. It can be also stated that,
as in the case of single nanorod, the wave dispersion characteristics in a coupled
nanorod system is drastically different for local and nonlocal models. Where local
model predicts that the wave will propagate at all frequencies, but the nonlocal model
shows that the wave will propagate up to certain frequencies only depending on the
nonlocal scaling parameter (refer Fig. 9.3a–c).

The escape frequencies are purely a function of the nonlocal scaling parameter
and the stiffness of the coupled spring. The variation of the escape frequency with
nonlocal scaling parameter (g) is shown in Fig. 9.4. It shows that, as g increases the
escape frequency decreases, such variation can also be observed from Fig. 9.2. For
very small values of g, the escape frequencies are very large, and at higher values of
g the escape frequencies are very small and approach to a constant value. We also
see that the coupled spring stiffness has very little influence on the escape frequency.
Such effect is also observed in Fig. 9.2a–c.

The cut-off frequency of the axial wave mode is a function of the stiffness of the
coupled spring and the material and geometrical properties of the nanorod. This cut-
off frequency is independent of the nonlocal scaling parameter (see Eq. 9.16). Such
variation is also observed in spectrum and dispersion curves. The variation of the
cut-off frequency with various sizes of the nanorod is shown in Fig. 9.5 for different
values of the coupled spring stiffness. As the diameter of the nanorod increases, the
cut-off frequency decreases. For smaller diameter of nanorod, the cut-off frequency
is higher and for larger diameters, the cut-off frequency is very small. For diameters
higher than 5 nm, the cut-off frequency is almost constant. For high stiffness of the
coupled spring and small diameter of nanorod, the cut-off frequency is very high and
will decrease drastically for larger diameter nanorods (see Fig. 9.5). The present study
may bring in helpful insights while investigating multiple-nanorod-system-models
for future NOMS applications.
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9.2 Coupled Nano-Beam System

An important technological extension of the concept of the single beam is that of
the complex coupled-beam systems. One such simple coupled beam system is the
double-beam system. The double-beam system is a continuous system consisting of
two one-dimensional beams joined by an elastic medium represented by distributed
vertical springs. Employing beam theories, several important works on vibration and
buckling of elastically connected double-beam systems are reported. Vu et al. [5]
studied the vibration of homogenous double-beam system subjected to harmonic
excitation. Erol and Gurgoz [6] extended the analysis of [5] to axially vibrating
double-rod system coupled by translational springs and dampers. Oniszczuk [7] stud-
ied the free vibrations of two parallel simply supported beams continuously joined
by a Winkler elastic layer. Undamped forced transverse vibrations of an elastically
connected simply supported double-beam system were analyzed. Free and forced
vibration of double-string complex system was also investigated by Oniszczuk [8,
9]. Hilal [10] investigated the dynamic response of a double Euler-Bernoulli beam
due to moving constant load. The effects of the speed of the moving load, the damp-
ing and the elasticity of the coupling viscoelastic layer on the dynamic responses of
the beam system were presented. Vibration analysis of double-beam systems inter-
connected only at discrete points was reported by Hamada et al. [11] and Gurgoz
and Erol [12]. Buckling and the effect of a compressive load on the free and forced
vibration on double-beam systems were reported by Zhang et al. [13, 14]. Kelly
and Srinivas [15] carried out vibrations of elastically connected stretched beam sys-
tems. Analyses of double-beam systems by numerical techniques were also reported.
Rosa and Lippiello [16] presented non-classical boundary conditions and differential
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quadrature method for vibrating double beams. Li and Hua [17] presented spectral
finite element analysis of elastically connected double-beam systems.

From the above discussion, it can be observed that the vibration theory of
double-beam systems is well developed and studied in details. However, there
are only few contributions dealing with the vibrations of beam-systems which are
scale-dependent. As mentioned earlier, the understanding of dynamics of single-
nanobeam (carbon nanotubes, nanowires) is important. The vibration characteristics
of nanobeams can be employed for NEMS/MEMS applications. Parallel to vibration
of single nanobeam, the study of vibrating multiple-nanobeam system is also relevant
for nanosensors and nanoresonators applications. The recent development of nano-
optomechanical systems (NOMS) necessitates the use of vibrating double-nanobeam
systems.

Frank et al. [18] presented a dynamically reconfigurable photonic crystal nanobeam
cavity. Their work involved two closely situated parallel vibrating clamped double-
nanobeam systems. Eichenfield et al. [19] described the design, fabrication, and
measurement of a cavity nano-optomechanical system (NOMS). The NOMS con-
sisting of two closely separated coupled nanobeams. The researchers fabricated
the low dimension double-beam system by depositing stoichiometric silicon nitride
using low-pressure-chemical-vapor-deposition on a silicon wafer. Deotare et al. [20]
studied the coupled photonic crystal nanobeam cavities consisting of two parallel
suspended nanobeams separated by a small gap. The use of vibration properties
in double-nanobeam system has also been reported by Lin et al. [21]. The authors
studied the coherent mixing of mechanical excitations in nano-optomechanical struc-
tures. Most of the works reported here are experimental works. It is understood that
controlling every parameter in experiments at nanoscale is difficult. Further, since
molecular dynamics simulations are computationally expensive, analysis of nanos-
tructures had been carried out by classical continuum theory. Extensive research over
the past decade has shown that classical continuum models are able to predict the
performance of ‘large’ nanostructures reasonably well. Classical continuum models
are scale-free theory and it lacks the accountability of the effects arising from the
size effects.

Experimental studies [22–25] and atomistic simulations [26] have shown a signifi-
cant ’size-effect’ in the mechanical properties when the dimensions of the nanostruc-
tures become small. Size effects are related to atoms and molecules that constitute
the materials. As mentioned earlier, nonlocal elasticity accounts for the small-scale
effects arising at the nanoscale level. For double-nanobeam system, Murmu and
Adhikari [27] studied the nonlocal effects in the longitudinal vibration of double-
nanorod systems. Further, using nonlocal elasticity Murmu and Adhikari [28] have
proposed nonlocal transverse vibration analysis of coupled double-nanobeam sys-
tems. Author’s work on coupled nanorod systems is reported in [29].

Therefore, there is a strong motivation to gain an understanding of the entire
subject of vibration of complex-nanobeam system and the mathematical modeling
of such phenomena. In this chapter, an investigation is carried out to understand the
small-scale effects in the wave propagation of nonlocal double-nanobeam system.
Here, for analyzing single beam, both Euler-Bernoulli beam and Timoshenko beam
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models are considered and the wave characteristics based on these two models are
studied in the following sections.

9.2.1 Wave Propagation in Double Euler-Bernoulli Nanobeam
System

We will first derive the governing differential equation for the coupled nanobeam
system. The one-dimensional equation of motion of a nonlocal Euler-Bernoulli beam
(Eq. 7.11) with consideration of distributed transverse load (q(x)) can be written as

E I
∂4w(x, t)

∂x4 + ρA
∂2w(x, t)

∂t2 − ρA(e0a)2
∂4w(x, t)

∂x2∂t2 − q(x)+ (e0a)2
∂4q(x)

∂x4 = 0

(9.19)
where w denotes the deflection of the beam. The terms E , I , and ρA are the Young’s
modulus, second moment of inertia, and mass of the nonlocal beam, respectively.

Consider a nonlocal double-nanobeam system (DNBS) as shown in Fig. 9.6. The
two nanobeams are denoted as nanobeam-I and nanobeam-II. Vertically distributed
springs attach the two nanobeams. The stiffness of the springs is equivalent to the
Winkler constant in a Winkler foundation model [7]. The springs can be used to
substitute elastic medium forces due to nano-optomechanical effects (see [19–21])
or van der Waals forces between the two nanobeams. These forces arise when the
dimension of system approaches nanoscale. Generating a potential difference directly
across the nanobeams an attractive electrostatic force can be induced between the
two nanobeams [18]. The spring stiffness can be varied between the nanobeams.
The springs are considered to have stiffness, Kcs . The two nanobeams are different
where the length, mass per unit length, and bending rigidity of the i th beam are Li ,
mi = ρi Ai , and Ei Ii (i = 1, 2), respectively. These parameters are assumed to be
constant along each nanobeam.

The bending displacements over the two nanobeams are denoted by w1(x, t) and
w2(x, t), respectively (Fig. 9.6). Based on Eq. (9.19), the governing equations of
motion for the flexural wave propagation of DNBS can be expressed as

Fig. 9.6 Schematic diagram of elastically connected double-nanobeam system

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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E1 I1
∂4w1

∂x4 + ρ1 A1
∂2w1

∂t2 − ρ1 A1(e0a)2
∂4w1

∂x2∂t2 − q1 + (e0a)2
∂4q1

∂x4 = 0 (9.20)

E2 I2
∂4w2

∂x4 + ρ2 A2
∂2w2

∂t2 − ρ2 A2(e0a)2
∂4w2

∂x2∂t2 − q2 + (e0a)2
∂4q2

∂x4 = 0 (9.21)

Here the distributed forces on nanobeam-I and nanobeam-II are given as

q1 = Kcs (w2 − w1) (9.22)

q2 = Kcs (w1 − w2) (9.23)

substituting q1 and q2 in Eqs. (9.20) and (9.21), gives

E1 I1
∂4w1

∂x4 + ρ1 A1
∂2w1

∂t2 − ρ1 A1(e0a)2
∂4w1

∂x2∂t2 + Kcs (w1 − w2)

+ Kcs(e0a)2
(
∂4w2

∂x4 − ∂4w1

∂x4

)
= 0 (9.24)

E2 I2
∂4w2

∂x4 + ρ2 A2
∂2w2

∂t2 − ρ2 A2(e0a)2
∂4w2

∂x2∂t2 + Kcs (w2 − w1)

+ Kcs(e0a)2
(
∂4w1

∂x4 − ∂4w2

∂x4

)
= 0 (9.25)

The above equations revert to the equations of classical beam theory [3], if nonlocal
scale coefficient is ignored, i.e., e0a = 0.

For analyzing the ultrasonic wave dispersion characteristics in coupled nanobeam
system, we assume that a harmonic type of wave solution for the displacement field
w1(x, t) and w2(x, t) it can be expressed in complex form as [3]

w1 (x, t) =
M−1∑
m=0

N−1∑
n=0

ŵ1 (x, ωn) e− j(km x−ωn t) (9.26)

w2 (x, t) =
M−1∑
m=0

N−1∑
n=0

ŵ2 (x, ωn) e− j(km x−ωn t) (9.27)

where, M and N are the number of time sampling points and number of spatial
sampling points, respectively. ωn is the circular frequency at the nth time sample.
Similarly, km is the wavenumber at the mth spatial sample point and j = √−1.
Substituting Eqs. (9.26) and (9.27) into the governing partial differential Eqs. (9.24)
and (9.25), we get the dispersion relation as follows. Hereafter the subscript m and
n are dropped for simplified notations.
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[
P4k4 + P2k2 + P0

]
d = 0 (9.28)

where,

P4 =
[

E1 I1 0
0 E2 I2

]
(9.29)

P2 =
[−ρ1 A1(e0a)2ω2 + Kcs(e0a)2 −Kcs(e0a)2

−Kcs(e0a)2 −ρ2 A2(e0a)2ω2 + Kcs(e0a)2

]
(9.30)

P0 =
[−ρ1 A1ω

2 + Kcs −Kcs

−Kcs −ρ2 A2ω
2 + Kcs

]
(9.31)

d =
{

ŵ1
ŵ2

}
(9.32)

Assuming nontrivial solution for the wave amplitude vector d, the Eq. (9.28) becomes

P4k4 + P2k2 + P0 = 0 (9.33)

The above equation is the dispersion relation for double nanobeam system in polyno-
mial eigenvalue form in wavenumbers. Solving Eq. (9.33), we get wavenumbers. The
wavenumbers are as a function of wave frequency, the nonlocal scaling parameter
e0a, and the material and geometrical properties of the nanobeams.

Next, we will evaluate the phase and group speeds of the wave and are defined as

CP = real

(
ω

k(ω)

)
(9.34)

This wave speed is also depend on the nonlocal scaling parameter. The group speed
of the wave can be computed from the following PEP

∂P0

∂ω
Cg + ∂P2

∂ω
k2 + 2P2k + 4P4k3 = 0 (9.35)

where Cg is defined as

Cg = real

(
∂ω

∂k

)
(9.36)

A more detail discussion on the variation of these two wave speeds in coupled-
nanobeam system is discussed in the upcoming sections.

In the wavenumber dispersion curves, the frequency at which the imaginary part
of the wavenumber becomes real is called as the frequency band gap region (0 − ωc).
The expression for frequency band gap is obtained by setting k = 0 in dispersion
relation (Eq. 9.33). For the present problem, one can solve the dispersion relation
(Eq. 9.33) by setting k = 0, i.e., solving |P0| = 0, we get the cut-off frequency as
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Fig. 9.7 Wavenumber dispersion in a double nanobeam system a Kcs = 0 N/nm b Kcs = 8 N/nm
c Kcs = 25 N/nm

ωc =
√

Kcs

[
1

ρ1 A1
+ 1

ρ2 A2

]
(9.37)

The frequency band gap (0 −ωc, cut-off frequency) for flexural wave mode depends
on the material properties of the nanobeams and also the coupling spring stiffness
between the nanobeams.The expression is indeed the same for the cutt-off frequency
for the coupled nanorod systems obtained earlier in Eq. (9.16).

The spectrum curves for coupled Euler-Bernoulli beam system are plotted in
Fig. 9.7a–c, respectively for coupled spring stiffness of 0, 8, and 25 N/nm, respec-
tively. Wavenumber dispersion is similar to that observed in Chap. 7. Here our main
aim is to study the effect of coupled spring on the spectrum and dispersion curves of
DNBS. Each nanobeam is assumed as a single walled carbon nanotube.

The wavenumber dispersion with frequency shown in Fig. 9.7a is for zero coupled
spring stiffness. In this case, wavenumbers of nanobeam-I are small as compared to
the nanobeam-II. Also, the wavenumbers obtained from classical or local elasticity
are smaller than that of the nonlocal elasticity. The flexural wavenumber shows a
nonlinear variation with wave frequency, that is, the waves will change their shape

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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as they propagate. If we consider a coupled nanobeam system with coupled spring
stiffness of 8 N/nm, the wavenumber dispersion looks as shown in Fig. 9.7b. It can
be observed that the variation is still nonlinear and a cut-off frequency is observed in
wavenumber dispersion of nanobeam-I. Flexural wave mode of nanobeam-II starts
from zero wave frequency and flexural wave mode of nanobeam-I propagates only
after cut-off frequency, the frequency at which the imaginary part of wavenumber
becomes real. The values of the cut-off frequency are calculated from Eq. (9.37).
This cut-off frequency purely depends on the coupled spring stiffness. At cut-off
frequency, the wavenumber dispersion of nanobeam-II is slightly affected due to the
coupled spring effect (see Fig. 9.7b). As the stiffness of the coupled spring increases,
the cut-off frequency also increases. This effect is captured in Fig. 9.7c. Also it can be
directly observed for Eq. (9.37) as ωc ∝ √

Kcs . It can also be observed that at higher
frequencies the wavenumbers in nonlocal calculations are approximately linear with
the wave frequency. Such observation also appears in Fig. 9.7a– c.

The wave speed (both phase and group speed) dispersion with frequency for vari-
ous spring stiffness are shown in Figs. 9.8a–c and 9.9a–c. The phase speed variation
obtained from both local and nonlocal theories are shown in Fig. 9.8a–c for spring
stiffness of 0, 8, and 25 N/nm, respectively. The local elasticity calculation shows that
the wavenumber is nonlinear with frequency even at higher frequencies and so are the
phase and group speed variation with frequency. The nonlocal elasticity calculation
shows that the phase speeds are almost constant at higher wave frequencies because
of the linear variation of the wavenumber at higher frequencies. Similar observations
are made in group speed variation as shown in Fig. 9.9a–c.

9.2.2 Wave Propagation in Coupled Timoshenko Nanobeam System

The consistent basic equations of the nonlocal Timoshenko beam model based on
the nonlocal constitutive relations for a SWCNT were derived in Chaps. 7and 8 are
given by

G Aκ

(
∂2w

∂x2 − ∂ψ

∂x

)
+ ρA

∂2

∂t2

(
w − (e0a)2

∂2w

∂x2

)
= 0 (9.38)

G Aκ

(
∂w

∂x
− ψ

)
+ E I

∂2ψ

∂x2 − ρ I
∂2

∂t2

(
ψ − (e0a)2

∂2ψ

∂x2

)
= 0 (9.39)

where x is the longitudinal coordinate measured from the left end of the beam, w is
the transverse displacement,ψ is the total section rotation measured on the mean-line
of the beam, A is the cross-sectional area of the tube, and I is the moment of inertia
of the tube. It is assumed that all tubes share the same Youngs modulus E , shear
modulus G, and Poissons ratio ν. κ is shear correction factor that accounts for the
difference in the constant state of shear stress in the Timoshenko beam theory and the
parabolic variation of the actual shear stress through the depth of the cross section.

http://dx.doi.org/10.1007/978-3-319-01032-8_7
http://dx.doi.org/10.1007/978-3-319-01032-8_8
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Fig. 9.8 Phase speed disper-
sion in a double nanobeam
system a Kcs = 0 N/nm
b Kcs = 8 N/nm c
Kcs = 25 N/nm
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Fig. 9.9 Group speed disper-
sion in a double nanobeam
system a Kcs = 0 N/nm
b Kcs = 8 N/nm
c Kcs = 25 N/nm
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Consider a nonlocal Timoshenko DNBS. As before, the two nanobeams are
denoted as nanobeam-I and nanobeam-II. Vertically distributed springs attach the
two nanobeams. The stiffness of the springs is equivalent to the Winkler constant in
a Winkler foundation model. The springs can be used to substitute elastic medium
forces due to nano-optomechanical effects or van der Waals forces between the two
nanobeams. These forces arise when the dimension of system approaches nanoscale.
Generating a potential difference directly across the nanobeams, an attractive elec-
trostatic force can be induced between the two nanobeams [18]. As in the Euler-
Bernoulli beam case, the spring stiffness can be varied between the nanobeams. The
springs are considered to have stiffness, Kcs . The two nanobeams are different where
the length, shear modulus, mass per unit length, and bending rigidity of the i th beam
are Li , Gi , ρi Ai , ρi Ii , and Ei Ii (i = 1, 2), respectively. These parameters are
assumed to be constant along each nanobeam.

The bending and shear displacements over the two nanobeams are denoted by
w1(x, t), ψ1(x, t), and w2(x, t), ψ2(x, t), respectively. Based on Eqs. (9.38) and
(9.39), the governing equations of motion for the wave propagation of Timoshenko
double nanobeam system can be expressed as

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)
− q1 + (e0a)2

∂2q1

∂x2 = 0

(9.40)

G A1κ

(
∂w1

∂x
− ψ1

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (9.41)

G A2κ

(
∂2w2

∂x2 − ∂ψ2

∂x

)
+ ρA2

∂2

∂t2

(
w2 − (e0a)2

∂2w2

∂x2

)
− q2 + (e0a)2

∂2q2

∂x2 = 0

(9.42)

G A2κ

(
∂w2

∂x
− ψ2

)
+ E I2

∂2ψ

∂x2 − ρ I2
∂2

∂t2

(
ψ2 − (e0a)2

∂2ψ2

∂x2

)
= 0 (9.43)

In the above equations, the distributed forces on nanobeam-I and nanobeam-II are
given as

q1 = Kcs (w2 − w1) (9.44)

q2 = Kcs (w1 − w2) (9.45)

substituting q1 and q2 in Eqs. (9.38) and (9.39) gives

G A1κ

(
∂2w1

∂x2 − ∂ψ1

∂x

)
+ ρA1

∂2

∂t2

(
w1 − (e0a)2

∂2w1

∂x2

)
+ Kcs (w1 − w2)
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+ (e0a)2 Kcs

(
∂2w2

∂x2 − ∂2w1

∂x2

)
= 0 (9.46)

G A1κ

(
∂w1

∂x
− ψ1

)
+ E I1

∂2ψ1

∂x2 − ρ I1
∂2

∂t2

(
ψ1 − (e0a)2

∂2ψ1

∂x2

)
= 0 (9.47)

G A2κ

(
∂2w2

∂x2 − ∂ψ2

∂x

)
+ ρA2

∂2

∂t2

(
w2 − (e0a)2

∂2w2

∂x2

)
+ Kcs (w2 − w1)

+ (e0a)2 Kcs

(
∂2w1

∂x2 − ∂2w2

∂x2

)
= 0 (9.48)

G A2κ

(
∂w2

∂x
− ψ2

)
+ E I2

∂2ψ

∂x2 − ρ I2
∂2

∂t2

(
ψ2 − (e0a)2

∂2ψ2

∂x2

)
= 0 (9.49)

The above equations completely describe a nonlocal coupled Timoshenko nanobeam
system.

For analyzing the ultrasonic wave dispersion characteristics in coupled Timo-
shenko nanobeam system, we will need to perform spectral analysis by transforming
the field variables to frequency domain. That is,

w1 (x, t) =
M−1∑
m=0

N−1∑
n=0

ŵ1 (x, ωn) e− j(km x−ωn t) (9.50)

ψ1 (x, t) =
M−1∑
m=0

N−1∑
n=0

ψ̂1 (x, ωn) e− j(km x−ωn t) (9.51)

w2 (x, t) =
M−1∑
m=0

N−1∑
n=0

ŵ2 (x, ωn) e− j(km x−ωn t) (9.52)

ψ2 (x, t) =
M−1∑
m=0

N−1∑
n=0

ψ̂2 (x, ωn) e− j(km x−ωn t) (9.53)

Substituting Eqs. (9.50) and (9.53) into the governing partial differential Eqs. (9.46)
and (9.49), we get the dispersion relation as follows. Hereafter the subscript m and
n are dropped for simplified notations, leads to the following polynomial eigenvalue
problem

Z2k2 + Z1k + Z0 = 0 (9.54)

where
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Z2 =

⎡
⎢⎢⎣

−G A1κ + (−Kcs + ρA1ω
2)(e0a)2 0

0 −E I1 + ρ I1(e0a)2ω2

−Kcs(e0a)2 0
0 0

Kcs(e0a)2 0
0 0

−G A2κ + (Kcs + ρA2ω
2)(e0a)2 0

0 −E I2 + ρ I2(e0a)2ω2

⎤
⎥⎥⎦ (9.55)

Z1 =

⎡
⎢⎢⎣

0 iG A1κ 0 0
−iG A1κ 0 0 0

0 0 0 iG A2κ

0 0 −iG A2κ 0

⎤
⎥⎥⎦ (9.56)

Z0 =

⎡
⎢⎢⎣

Kcs + ρA1ω
2 0 −Kcs 0

0 −G A1κ + ρ I1ω
2 0 0

−Kcs 0 Kcs + ρA2ω
2 0

0 0 0 −G A2κ + ρ I2ω
2

⎤
⎥⎥⎦

(9.57)

This dispersion relation, which is in the form of PEP (Eq. 9.54) is solved for
wavenumbers, which is a function of material properties of the CNTs and the non-
local parameter (e0a). For a coupled nanobeam system, the nonlocal Timoshenko
beam model gives four cut-off frequencies and four escape frequencies in wave dis-
persion analysis. These cut-off frequencies are obtained by substituting k = 0 in the
dispersion relation (Eq. 9.54) or by solving |Z0(ω)| = 0, which gives four cut-off
frequencies as

ωc1 = 0, ωc2 =
√

G A1κ

ρ I1
, ωc3 =

√
G A2κ

ρ I2
, ωc4 =

√
Kcs

ρ

√
1

A1
+ 1

A2
(9.58)

One can observe that these cut-off frequencies are independent of the nonlocal scaling
parameter (e0a). The escape (or asymptotic) frequencies are obtained by substituting
k → ∞ in the dispersion relation (Eq. 9.54), that implies |Z2(ω)| = 0, which gives

ωe1, e2 = 1

e0a

√
E

ρ
, ωe3, e4 = Gκ

√
2A1 A2

e0a
(9.59)

These escape frequencies are function of the material properties of CNTs and are
inversely proportional to the nonlocal scaling parameter.

Differentiating the dispersion relation of DNBS (Eq. 9.54) with respect to the
wave frequency (ω), we get the PEP for group speeds as
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[
k2 ∂Z2

∂ω
+ ∂Z0

∂ω

]
Cg + 2kZ2 + Z1 = 0 (9.60)

where Cg = (dω/dk) is the group speed of a wave in DNBS and the matrices Z2,
Z1 and Z0 are given in Eqs. (9.55)–(9.57).

The spectrum and dispersion plots for coupled double Timoshenko nanobeam
system are shown in Figs. 9.10–9.12. In the case of Timoshenko beam, most of the
observations made for the SWCNT in Chap. 7 are still valid, that is, scale parameter
introduces the escape frequency where the wavenumber k tends to infinite and the
group/phase speed tends to zero and the values of the escape frequencies decreases
with the increase in scale parameter.

Figure 9.10 shows the variation of the wavenumbers with the wave frequency for
both local (or classical) and nonlocal elasticity. This figure shows only two modes
namely, flexural and shear for both the nanobeams. Flexural wave mode starts from
zero wave frequency and shear wave mode propagates only after shear cut-off fre-
quency, the frequency at which the imaginary part of wavenumber becomes real.
The values of the shear cut-off frequency are calculated from Eq. (9.58). It can be
observed from Eq. (9.58) that these frequencies are independent of the nonlocal
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Fig. 9.10 Wavenumber dispersion with wave frequency for a coupled Timoshenko nanobeam
system obtained from local and nonlocal elasticity theories for coupled spring stiffness of Kcs =
0 N/nm
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Fig. 9.11 Wavenumber
dispersion with wave fre-
quency for a coupled Tim-
oshenko nanobeam system
obtained from local and non-
local elasticity theories for
coupled spring stiffness of
Kcs = 8 N/nm
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scaling parameter, and hence same frequencies are obtained from both local and
nonlocal theories for all the cases (see Figs. 9.10–9.12). It can also be noted that
the shear cut-off frequency of nanobeam-I is higher than that of the nanobeam-II.
However, with the introduction of nonlocal scale effects, the wave behavior is altered
drastically. Both the flexural and shear wave modes escape to infinity at a particular
frequency called the escape frequency, beyond this frequency there is no wave propa-
gation. The value of escape frequency decreases with increase in the scale parameter
e0a, for both wave modes. Equation (9.59) gives the expression for escape frequen-
cies in coupled nanobeams. From this expression it is clear that, escape frequencies
are purely function of nonlocal scale parameter.

Due to the coupling effect, it has been observed that a new cut-off frequency in
the flexural wave mode of nanobeam-I (see Figs. 9.11 and 9.12) can be seen. It is
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Fig. 9.12 Wavenumber
dispersion with wave fre-
quency for a coupled Tim-
oshenko nanobeam system
obtained from local and non-
local elasticity theories for
coupled spring stiffness of
Kcs = 25 N/nm
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clear that the cut-off frequency of the flexural mode of nanobeam-I depends on the
coupled spring stiffness (see Eq. 9.58, where, ωc4 is the cut-off frequency of flexural
mode of nanobeam-I). Escape frequencies of all the wavemodes remain constant. As
the magnitude of coupled spring stiffness increases, the flexural wave mode cut-off
frequency of nanobeam-I increases and all other variable is constant (refer Fig. 9.12).

The wave speed variation with frequency is plotted in Figs. 9.13a–c and 9.14a–c.
The observations in these plots directly depend on the discussions of the previous
section. For all the wave modes, due to nonlocality, wave speeds are tending to zero
at escape frequencies. As the magnitude of the coupled spring increases, the cut-off
frequency of the flexural mode of nanobeam-I increases. The effect of the coupled
spring stiffness on cut-off frequencies is plotted in Fig. 9.15. This figure shows that,
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Fig. 9.13 Phase speed dis-
persion with in a coupled
Timoshenko nanobeam sys-
tem a Kcs = 0 N/nm
b Kcs = 8 N/nm
c Kcs = 25 N/nm
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Fig. 9.14 Group speed dis-
persion with in a coupled
Timoshenko nanobeam sys-
tem a Kcs = 0 N/nm
b Kcs = 8 N/nm
c Kcs = 25 N/nm
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Fig. 9.15 Cut-off frequency variation with various diameters in a coupled Timoshenko nanobeam
system a Kcs = 0 N/nm b Kcs = 8 N/nm c Kcs = 25 N/nm

as the diameter of the nanobeam increases, the shear cut-off frequency increases
and at small values of diameter, the shear cut-off frequency approaches to very small
values (Fig. 9.15a). Hence, it can be concluded that for large values of scale parameter,
shear deformation on the beam has negligible effect and beam behaves like more like
elementary beam. With the consideration of the coupled spring stiffness, one more
cut-off frequency variation is observed in Fig. 9.15b. This cut-off frequency is for
flexural wavemode of nanobeam-I. As the value of the spring stiffness increases, the
magnitude of this cut-off frequency increases.

Finally, Fig. 9.16 shows the variation of escape frequencies of flexural and shear
wave modes with the nonlocal scaling parameter. It shows that as e0a increases, the
escape frequency decreases. At higher values of e0a, escape frequencies approach
to very small values.
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Fig. 9.16 Variation of escape
frequency of flexural and
shear wave modes with the
nonlocal scale parameter
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9.3 Summary

The present chapter deals with axial, flexural, and shear wave propagation in dou-
ble nanorod/nanobeam system with consideration of small scale properties. The
nonlocal elasticity theory has been incorporated into classical rod/Euler-Bernoulli
beam/Timoshenko beam model to capture unique features of the double nanorods
or nanobeams. The strong effect of the nonlocal scale has been obtained, which
leads to substantially different wave behaviors of nanorods/nanobeams from those
of macroscopic rods. The analysis shows that the wave characteristics are highly
over estimated by the classical rod/beam model, which ignores the effect of small-
length scale. The studies also show that the nonlocal scale parameter introduces
certain band gap region in axial/flexural/shear wave modes where no wave prop-
agation occurs. This is manifested in the spectrum curves as the region where the
wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled
spring stiffness on the wave propagation behavior is well captured in the present
analysis. It has been also shown that the cut-off frequency increases as the stiffness
of the coupled spring increases and the spring stiffness has no effect on escape fre-
quency of the axial/flexural/shear wave mode. The present study may bring in helpful
insights while investigating multiple-nanorod/nanobeam system models for future
nano-optomechanical systems (NOMS) applications.
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Chapter 10
Wave Propagation in 2D-Nanostructures

The discovery of a new material brings with it some of the most exciting and fruitful
periods of scientific and technological research. With a new material come new
opportunities to reexamine old problems as well as pose new ones. The discovery of
graphene, atomically thin layers of graphite, brought such a period [1]. Graphenes are
2-D nanostructures and as the name suggest, these structures, unlike CNTs, exhibit
behavior in the two coordinate directions. That is, a load in the direction of one of the
coordinates will give rise to deformations in both the coordinate directions. In wave
propagation terminology, an incident wave in one of the coordinate directions will
cause circularly crested waves that can be resolved in two coordinate directions. This
means, we will have two different wavenumbers corresponding to two coordinate
directions and the corresponding phase or group speeds.

Although the existence of graphene in different forms was known, there was
difficulty in extracting its pristine form. For the first time, it was possible to isolate
single two-dimensional atomic layers of atoms [1]. These are among the thinnest
objects imaginable. The strongest bond in nature, the C–C bond covalently locks
these atoms in place giving them remarkable mechanical properties. A single layer
of graphene is one of the stiffest known materials characterized by a remarkably
high Young’s modulus of ∼1 TPa [2]. Graphene is a new class of two-dimensional
carbon nanostructure, which holds great promise for the vast applications in many
technological fields. After graphene sheets are reported to be successfully extracted
from graphite, the researchers have realized the volume of potential applications. It
would be one of the prominent new materials for the next generation nanoelectronic
devices. Reports related to its applications as strain sensor, mass and pressure sensors,
atomic dust detectors, and enhancer of surface image resolution are observed. In
addition, graphene structures find application such as atomic-force microscopes,
composite nanofibers, nanobearings, and nanoactuators, etc. Consequently, interest
is drawn toward research of graphene in the field of physics, material science, and
engineering [3]. Therefore, the importance of these structures is realized, and both
theoretical and experimental works are carried out by various researchers all over the
world. With the difficulty for the controlled experiments at the nanometer scale, the
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numerical simulation has been performed widely to understand the behavior of these
structures. In this chapter, we will use continuum modeling using nonlocal elasticity
to model these 2-D nanostructures to understand the wave propagation behavior in
these structures.

In contrast to the investigations on CNTs, it is surprising to find that very few stud-
ies have been reported on the theoretical modeling of graphene structures (GS) in
the literature. Recently, Behfar and Naghdabadi [4] investigated the nanoscale vibra-
tion of a multilayered graphene sheet embedded in an elastic medium, in which
the natural frequencies as well as the associated modes were determined using
a continuum- based model. The influence of carbon–carbon and carbon-polymer
van-der-Waals forces are considered in their work. They [5] further studied the
bending modulus of a MLGS using a geometrically based analytical approach. The
bending energy in their analysis is based on the vdW interactions of atoms belonging
to two neighboring sheets. Their calculations are performed for a double-layered
GS, but the derived bending modulus is generalized to a MLGS composed of many
double-layered GSs along its thickness, in which the double-layered GSs are alter-
nately the same in configuration. In addition, it should be mentioned that graphite is
composed of multilayered sheets, but it was recently reported [6] that single-layered
sheet are detectable in carbon nanofilms. Sakhaee et al. [7], have studied the free
vibrational behavior of the single layered graphene sheets (SLGS) while considering
the effects of chirality and aspect ratio as well as boundary conditions, and have
developed predictive models for computing natural frequencies. The potential appli-
cations of the SLGSs as mass sensors and atomistic dust detectors have further been
investigated [8]. Also, the promising usage of the SLGS as strain sensor has been
examined [9]. The importance of size effects and need for nonlocal theories need not
be elaborated or emphasized again here and it is implicit that these effects are again
important in the context of modeling 2-D nanostructures.

Most of the studies on vibration and buckling of nanoplates are carried out on
single-layered graphene sheets (SLGS) and multilayered graphene sheets (MLGS).
Some vibration studies on graphene nanosheets are reported recently [10, 11]. How-
ever, studies on wave propagation aspect of graphene sheets are minuscule in num-
bers. GSs can have interesting waveguide properties at very high frequencies in the
order of Tera-Hertz (THz). At such high frequencies, continuum model-based finite
element type methods cannot be adopted due to their limitation of the element size
with respect to the wavelength, which is very small at such frequencies.

In this chapter, the first paper suggesting shell-model for nanotubes [12] is cited
here. Yakobson et al. [12] demonstrated that elastic shell theory matches molecular
dynamics (MD) simulations if the elastic constants are chosen such that E = 5.5 TPa,
ν = 0.19, and t = 0.066 nm, where E is Young’s modulus, ν is the Poisson ratio,
and t is the shell thickness.This chapter mainly focus on the flexural wave properties
of the graphene sheet using the nonlocal scale effects.
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10.1 Flexural Wave Propagation in Monolayer Graphene Sheets

Wave propagation in graphene sheets has been a topic of great interest in nanome-
chanics , where the equivalent continuum models are widely used. In this section, we
will examine this issue by incorporating the nonlocal theory into the classical plate
theory model.

10.1.1 Governing Equations for Graphene Structures

Figure 10.1a shows a rectangular graphene sheet and Fig. 10.1b shows its equivalent
continuum model. Liew et al . [11] considered graphene as isotropic material in their
continuum model. Here, such continuum plate model is assumed. The coordinate
system used for the graphene sheet is shown in the same figure. Here, z coordinate is
taken along the thickness of the plate. The displacement field according to classical
plate theory (CLPT) can be written as

u1(x, y, z, t) = u(x, y, t)− z
∂w(x, y, t)

∂x
(10.1)

u2(x, y, z, t) = v(x, y, t)− z
∂w(x, y, t)

∂y
(10.2)

u3(x, y, z, t) = w(x, y, t) (10.3)

Here u, v and w denote displacement along x , y and z directions, respectively (see
Fig. 10.1).

The strains can be calculated as

Y, v

X, uZ, w

(a) (b)

Fig. 10.1 Single-layered graphene sheet: a Discrete model (a monolayer graphene of 40 Å×40 Å,
consists of 680 carbon atoms arranged in hexagonal array). b Equivalent continuum model
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εxx = ∂u1

∂x
= ∂u

∂x
− z

∂2w

∂x2 (10.4)

εyy = ∂u2

∂y
= ∂v

∂y
− z

∂2w

∂y2 (10.5)

γxy = ∂u1

∂y
+ ∂u2

∂x
= ∂u

∂y
+ ∂v

∂x
− 2z

∂2w

∂x∂y
(10.6)

εzz = 0, γxz = 0, γyz = 0 (10.7)

It can be noted that nonlocal behavior enters through the constitutive relations. Prin-
ciple of virtual work is independent of constitutive relations. Hence, this can be
applied to derive the equilibrium equations of the nonlocal plates.

Using this principle, following equilibrium equation expressed in terms of stress
resultants and transverse displacement w(x, y, t) can be obtained as [13]

∂2 Mxx

∂x2 + 2
∂2 Mxy

∂x∂y
+ ∂2 Myy

∂y2 = J0
∂2w

∂t2 − J2

(
∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)
(10.8)

where J0 and J2 are mass moments of inertia and are defined as follows

J0 =
∫ + h

2

− h
2

ρzdz, (10.9)

J2 =
∫ + h

2

− h
2

ρz2dz (10.10)

Here h denotes the thickness of the plate and the moment resultants are given by

Mxx =
∫ + t

2

− t
2

zσxx dz (10.11)

Mxy =
∫ + t

2

− t
2

zτxydz (10.12)

Myy =
∫ + t

2

− t
2

zσyydz (10.13)

The plane stress constitutive relation of a nonlocal plate becomes

⎧⎨
⎩
σxx

σyy

τxy

⎫⎬
⎭ − (e0a)2

[
∂2

∂x2 + ∂2

∂y2

]⎧⎨
⎩
σxx

σyy

τxy

⎫⎬
⎭ =

⎡
⎣C11 C12 0

C21 C22 0
0 0 C66

⎤
⎦

⎧⎨
⎩
εxx

εyy

γxy

⎫⎬
⎭ (10.14)

where, σxx and σyy are the normal stresses in x and y directions respectively and τxy

is the in-plane shear stress. For the case of an isotropic plate, the expressions for Ci j
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in terms of Young’s modulus E and Poisson’s ratio ν are given as C11 = C22 = E
1−ν2 ,

C12 = C21 = νE
1−ν2 and C66 = E

2(1+ν) .
Using strain displacement relationship Eq. (10.7), stress-strain relationship

Eq. (10.14) and stress resultants definition Eq. (10.13), we can express stress resul-
tants in terms of displacements as follows

Mxx − (e0a)2
(
∂2 Mxx

∂x2 + ∂2 Mxx

∂y2

)
= −C11 I2

∂2w

∂x2 − C12 I2
∂2w

∂y2 (10.15)

Mxy − (e0a)2
(
∂2 Mxy

∂x2 + ∂2 Mxy

∂y2

)
= −2C66 I2

∂2w

∂x∂y
(10.16)

Myy − (e0a)2
(
∂2 Myy

∂x2 + ∂2 Myy

∂y2

)
= −C21 I2

∂2w

∂x2 − C22 I2
∂2w

∂y2 (10.17)

where

I2 =
∫ + t

2

− t
2

z2dz (10.18)

Using Eqs. (10.8) and (10.15–10.17) we get the following nonlocal governing partial
differential equation in terms of flexural displacement w

C11 I2
∂4w

∂x4 + 2(C12 + 2C66)I2
∂4w

∂x2∂y2 + C22 I2
∂4w

∂y4 − J0(e0a)2
(

∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)

+J2(e0a)2
(

∂6w

∂x4∂t2 + 2
∂6w

∂x2∂y2∂t2 + ∂6w

∂y4∂t2

)
+ J0

∂2w

∂t2 − J2

(
∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)
= 0

(10.19)

It can be seen that corresponding local elasticity equation [13] can be recovered by
putting e0a = 0 in the above equation.

10.1.2 Wave Dispersion Analysis

The wave dispersion formulation begins by assuming a solution of the displacement
field. In particular, time harmonic waves are sought, and it is assumed that the model
is unbounded in Y−direction (although bounded in X−direction). Thus, the assumed
form is a combination of Fourier transform in Y−direction and Fourier transform in
time, which is written as

w(x, y, t) =
N∑

n=1

M∑
m=1

ŵ(x)e− jηm ye jωn t , (10.20)
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Theωn and the ηm are the circular frequency at nth sampling point and the wavenum-
ber in y−direction at the mth sampling point, respectively. The N is the index cor-
responding to the Nyquist frequency in fast Fourier transform (FFT), which is used
for computer implementation of the Fourier transform and j = √−1.

Substituting Eq. (10.20) in Eq. (10.19), an ordinary differential equation is
obtained for the unknown ŵ(x) as

H4
d4ŵ

dx4 + H2
d2ŵ

dx2 + H0ŵ = 0 (10.21)

where

H4 = C11 I2 − J2(e0a)2ω2
n, (10.22)

H2 = −2(C12 + 2C66)I2η
2
m + J0(e0a)2ω2

n − 2J2(e0a)2η2
mω

2
n + J2ω

2
n, (10.23)

H0 = C22 I2η
2
m − J0(e0a)2ω2

nη
2
m − J2(e0a)2ω2

nη
2
m − J0ω

2
n − J2ω

2
nη

2
m . (10.24)

Since this ODE is having constant coefficients, its solution can be written as ŵ(x) =
w̃e jkx , where k is the wavenumber in x−direction, yet to be determined and w̃ is an
unknown constant. Substituting this assumed form of ŵ in the ODE gives for w̃ �= 0)

H4k4 + H2k2 + H0 = 0 (10.25)

which is a quatric equation in k and can be solved for wavenumbers as

k = ±

√√√√−H2 ±
√

H2
2 − 4H4 H0

2H4
(10.26)

We can see clearly that the dependence of nonlocal scale parameter e0a on wavenum-
ber. The group speed of the flexural wave (Cg = dω/dk) is obtained as

Cg = − 4H4k3 + 2H2k

G4k4 + G2k2 + G0
(10.27)

where

G4 = −2J2(e0a)2ωn, (10.28)

G2 = 2J0(e0a)2ωn − 4J2(e0a)2η2
mωn + 2J2ωn, (10.29)

G0 = −2J0(e0a)2ωnη
2
m − 2J2(e0a)2ωnη

2
m − 2J0ωn − 2J2ωnη

2
m . (10.30)

The group speed of the wave is also a function of the nonlocal scaling parameter and
the y−directional wavenumber.
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In the spectrum relations curve, the frequency at which the imaginary part of
wavenumber becomes real is called as cut-off frequency. Looking at Eq. (10.26), the
term H0 indicates the possibility of a waveguide having cut-off frequencies. This is
obtained by setting k = 0 in the dispersion relation Eq. (10.25), i.e., for the present
case one can set H0 = 0, which gives the cut-off frequency expression as

ω
f lexural
c =

√
C22 I2η4

m

(J0 + J2η2
m)(1 + (e0a)2η2

m)
(10.31)

The cut-off frequency is directly proportional to the y−directional wavenumber (ηm)
and also depends on the nonlocal scaling parameter. For ηm = 0, the wavenumbers of
the flexural wave mode have a substantial real part starting from the zero frequency,
which implies that the mode starts propagating at any excitation frequency and does
not have a cut-off frequency. For ηm �= 0, the flexural wave mode, however, has
a certain frequency band within which the corresponding wavenumbers are purely
imaginary. Thus, the wave mode does not propagate at frequencies lying within this
band. These wavenumbers have a substantial imaginary part along with the real part,
thus these waves attenuate as they propagate.

In this case, the term H4 in Eq. (10.26) indicates the possibility of a waveguide
having escape frequencies. Its value can be analytically determined by looking at the
wavenumber expression and setting k → ∞. This accounts to setting the H4 = 0,
which gives

ω
f lexural
e = 1

e0a

√
C11 I2

J2
(10.32)

where ωe is called escape frequency of the flexural mode.
Next, we will investigate the relations derived above and investigate the wave

behavior in the monolayer graphene sheet. For the present wave propagation analysis,
the material properties of the graphene are assumed as: Young’s modulus E =
1.06 TPa and density ρ = 2300 kg/m3. The choice of effective wall thickness t of
nanostructures such as CNT, graphene, etc., is a longstanding issue in nanomechanics.
One of the best approaches to estimate the thickness of CNT (i.e., rolled graphene
sheet) is to model single-wall CNTs as linear elastic thin shells [14]. The shell
thickness t is determined by fitting the atomistic simulation results of tensile rigidity
and bending rigidity of single-wall CNTs. Such an approach gives the CNT thickness
t much smaller than the graphite inter-layer spacing 0.34 nm, ranging from 0.06 to
0.09 nm. The scattered CNT thickness 0.06 − 0.09 nm depends on the interatomic
potential as well as simulation details. We have chosen the thickness of the graphene
as t = 0.089 nm, obtained by Kudin et al. [14] via Ab inito computations. They

defined the effective thickness of graphene or CNTs as t =
√

12×Bending Rigidi t y
T ension Rigidi t y .

The flexural wavenumber dispersion with wave frequency in the graphene is
shown in Figs. 10.2a, b, respectively, obtained from both local and nonlocal elas-
ticity theories. For the present analysis, the nonlocal scaling parameter is assumed as
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Fig. 10.2 Wavenumber dispersion in monolayer graphene sheets (a) local elasticity (e0a = 0 nm)
(b) nonlocal elasticity (e0a = 0.5 nm). Wavenumber variation at lower frequencies is shown sepa-
rately for clear visibility

e0a = 0.5 nm. The spectrum curves shown in Fig. 10.2a is for ηm = 0 (represents 1D
wave propagation), 3, 5, 10 nm−1. The local elasticity calculation shows that the
flexural wavenumber follow a nonlinear variation at low values of wave frequency;
and at higher frequencies it varies linearly as shown in Fig. 10.2a. This nonlinear
variation indicates that the waves are dispersive in nature, that is, the waves will
change their shape as they propagate. The linear variation indicates that the waves
are in nondispersive nature. For ηm = 0, the wavenumbers of the flexural wave mode
does not have a cut-off frequency. As ηm increases all the waves are still dispersive
in nature as shown in Fig. 10.2a. As the y−directional wavenumber increases from
0 to 10 nm−1, the wave modes are having a frequency band gap region. The fre-
quency band within which the corresponding wavenumbers are purely imaginary.
Thus, the flexural mode does not propagate at frequencies lying within this band.
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Hence, these wavenumbers have a substantial imaginary part along with the real part,
thus these waves attenuate as they propagate. It can also be seen that from Fig. 10.2a,
the frequency band also increases with increase in ηm .

The wavenumber dispersion with frequency obtained from nonlocal elasticity
(e0a = 0.5 nm) is shown in Fig. 10.2b. The observations made in local elasticity
are still valid in nonlocal elasticity also. The only difference is that, because of
nonlocal elasticity, the wavenumbers of the flexural wave become highly nonlinear
and tends to infinity at escape frequency or asymptotic frequency. It can be seen
that the wavenumbers before escape frequency are real and after that imaginary (see
Fig. 10.2b). The cut-off frequency of the flexural wave for ηm = 3, 5 and 10 nm−1,
respectively, ocuurs at 0.8087, 2.2280, and 8.6820 THz in local/classical elasticity,
and at 0.4578, 0.8392, and 1.7090 THz in nonlocal elasticity (e0a = 0.5 nm). The
nonlocal scale highly affects the frequency band gap of the flexural waves in graphene
sheet. The escape frequency of this flexural wave is 6.9580 THz for e0a = 0.5 nm.
It has also been observed that the escape frequencies are independent of ηm from
Fig. 10.2b.

The local/classical elasticity calculation shows that, the wave will propagate even
at higher frequencies. However, nonlocal elasticity predicts that the waves can propa-
gate only up to escape frequency and this behavior, we also saw in 1-D nanostructures.

The phase speed and group speed dispersions with the wave frequency are shown
in Figs. 10.3, 10.4, obtained from local and nonlocal elasticity. Figure 10.3a shows
that the flexural wave speeds are increasing from low frequency to higher values of
wave frequency (local elasticity calculation, e0a = 0). As ηm increases from 0 to 10
nm−1, the wave speeds tends to a constant value at higher values of wave frequency.
As we move to nonlocality (e0a �= 0), the flexural wave stops propagating at certain
escape frequency as shown in Fig. 10.3b, which is due to the imaginary part of the
wavenumber after the escape frequency. For any value of theηm , the escape frequency
of all flexural waves is same. The group speed dispersion in graphene is shown in
Fig. 10.4a, b, respectively obtained from local and nonlocal elasticity theories. The
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Fig. 10.3 Phase speed dispersion in monolayer graphene sheets (a) local elasticity (e0a = 0 nm)
(b) nonlocal elasticity (e0a = 0.5 nm)
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Fig. 10.4 Group speed dispersion in monolayer graphene sheets (a) local elasticity (e0a = 0 nm)
(b) nonlocal elasticity (e0a = 0.5 nm)

group speed of the flexural wave is almost constant at higher values of the wave
frequencies. The local elasticity calculation shows that the group speed of the wave
will be nonzero even at higher values of the frequency (Fig. 10.4a), and that is zero
at escape frequency (Fig. 10.4b) in nonlocal elasticity. The magnitude of the group
speed is decreasing with an increase in the ηm .

The variation of the cut-off frequency of flexural wave with nonlocal scaling para-
meter and y−directional wavenumber (ηm) are shown in Fig. 10.5a, b, respectively.
The cut-off frequency variation shown in Fig. 10.5a is for ηm = 2, 5 and 8 nm−1.
It shows that for a given ηm , as we increase the nonlocal scaling parameter, the
cut-off frequency of flexural wave mode decreases. It has been found that at higher
values of the nonlocal scaling parameter, the cut-off frequencies of the flexural wave
will depend on the y−directional wavenumber, such difference is clearly seen from
Fig. 10.5a inset. The cut-off frequency variation of flexural wave with ηm is shown in
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Fig. 10.5 Cut-off frequency variation in monolayer graphene sheets (a) For different nonlocal scale
parameter (b) For different y directional wavenumber ηm
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Fig. 10.6 Escape frequency variation of flexural wave of a monolayer graphene sheet with nonlocal
scaling parameter

Fig. 10.5b. For a given e0a, the cut-off frequency will increase as with increase in ηm .
As the nonlocal scaling parameter decreases, the cut-off frequency also decreases
with ηm (see Fig. 10.5b).

The escape frequency variation with nonlocal scaling parameter is shown in
Fig. 10.6. It shows that as e0a increases, the escape frequency decreases. At higher
values of e0a, escape frequencies approach to very small value.

Toward this end, it would be appropriate to discuss about some physics of graphene
related to the nonlocal elasticity. Good example is the recent study of ballistic ther-
mal transport of graphene ribbons by Munoz et al. [15]. The authors of this paper
presented an elastic shell-based theory for calculating the thermal conductance of
graphene ribbons of arbitrary width b. Their analysis of vibrational modes of a con-
tinuum thin plate lead to a general equation for ballistic conductance ρ. At low
temperature, it yielded a power law ρ ∼ T β , where the exponent β varied with the
ribbon width b from β = 1 for a narrow ribbon (ρ ∼ T , as a four-channel quan-

tum wire) to β = 3
2

(
ρ = bT

3
2

)
in the limit of wider graphene sheets [15]. They

augmented the ballistic results by the phenomenological value of a phonon mean
free path to account for scattering and it agreed well with the reported experimental
observations. If one introduces nonlocality into the continuum elastic shell model of
the graphene, referring to Fig. 10.1 of Ref. [15], the first and second lowest branches
are displayed for transverse acoustic mode, longitudinal acoustic mode, and bending
mode, plus a single branch for torsion mode. As compared to the calculations of
nonlocality, the branches obtained from classical elastic shell model of the graphene
were smaller than that of the nonlocal calculations (refer Figs. 10.2, 10.3 of this arti-
cle). Also the cut-off frequencies of all the vibrational modes of the dispersion curves
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of graphene sheet obtained from classical elasticity calculations are higher than the
nonlocal elasticity calculations.

Incorporating the nonlocal elasticity theory in the graphene elastic shell model,
one can also estimate the thermal conductance of the graphene sheet. Here one
can also obtain the exact values of the nonlocal scale parameter (e0a) by matching
the nonlocal elasticity calculations of thermal conductivity of graphene sheet at
room temperature as a function of length with the molecular dynamics (MD) results
presented in [16, 17].

10.2 Modeling of Graphene Layer on Silicon Substrate

Graphene is a two-dimensional monolayer of carbon atoms bonded together like a
honeycomb fashion and is of one atom thick in size. These bonds are hybridized into
a sp2 configuration. There are three in-plane (σ ) bonds per atom. These bonds are
extremely strong and form the rigid backbone of the hexagonal structure. It is the
partially filled pz orbitals (π orbitals) perpendicular to the plane that are responsible
for electron conduction. Due to the out-of-plane π orbitals, interactions between
graphene and a substrate or between graphene layers influence the electronic structure
of graphene [18]. The hexagonal honeycomb crystal lattice in graphene contains
two atoms per unit cell. A single parameter characterizes this structure, that is, the
distance a between two equivalent atoms in the lattice (which is also the distance
between the atom and its second nearest neighbor). In this section, we consider
a monolayer graphene resting on silicon substrate. This hybrid system consists of
a single hexagonal cell of graphene and a cell of silicon structure. These two are
separated vertically by distance rh . Here the graphene cell is resting over the silicon
cell as shown in Fig. 10.7 (top view).

Fig. 10.7 Hybrid system: A
single graphene hexagonal
cell consisting of six carbon
atoms and a single cell in
silicon structure interaction,
aC−C and aSi−Si are the bond
lengths of C − C and Si − Si ,
(• - Carbon atoms and o - Si
atoms in figure)
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10.2.1 Potential Energy, Equilibrium and Force Constants

For a system of N particles, in general, the total potential energy may be expanded
as [19]

Γ = γ2 + γ3 + ... (10.33)

γ2 = 1

2!
N∑
i

N∑
i, i �= j

U (ri, rj) (10.34)

γ3 = 1

3!
N∑
i

N∑
i, i �= j �=k

N∑
k

U (ri, rj, rk) (10.35)

where U (ri, rj) and U (ri, rj, rk) represent the two- and three-body interactions,
respectively. The position of the i th particle is denoted by ri. In this study, the two-
body part is represented by a Mie-type potential [20] as

U (ri j ) = ε

m − n

[
n

(
r0

ri j

)m

− m

(
r0

ri j

)n]
(10.36)

where ri j = |ri − r j |, r0 represents the equilibrium distance and ε denotes the
two body energy at ri j = r0. The exponents m and n account for the repulsive and
attractive terms, respectively. In order for the potential energy given by Eqs. (10.33–
10.35) to be used in calculation for a specific system, the parameters ε and r0 must
be first evaluated. In accordance with [20], on the stability of the diamond cubic
structure, the values of the exponents m and n were taken as 12 and 6, respectively.
The evaluation process is basically a simple fitting procedure, however, due to the
nonlinear nature of the potential function, it often becomes quite cumbersome. The
parameters in the Mie-type potential are given for Si −Si , C −C , and Si −C systems
in Table 10.1, which are obtained from [20]. Substituting m = 12 and n = 6 in the
potential energy expression given in Eq. (10.36), one has

U (ri j ) = U (r) = ε

[(r0

r

)12 − 2
(r0

r

)6
]

(10.37)

This two-body interaction energy variation with the interatomic distance is shown
in Fig. 10.8a. The modified Mie potential for the present hybrid lattice is shown in

Table 10.1 Potential energy
parameters for two-body
system (Mie-type potential)

Two-body parameters ε (eV) r0 (A0)

Si–Si 2.187 2.2951
C–C 5.437 1.4806
Si–C 3.895 1.74
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Fig. 10.8 Inter-atomic Energy, Force and Force constant obtained from (a) Mie potential and (b)
Hybrid lattice

Fig. 10.7 and this is obtained from the following relation:

U hybrid(rh) = ε

[(
r0

f (rh)

)12

− 2

(
r0

f (rh)

)6
]

(10.38)

where f (rh) =
√

r2
h + a2

C−C + 0.5a2
Si−Si − aC−C aSi−Si . Here rh is the vertical

distance between the graphene layer and the silicon substrate and aC−C , aSi−Si are
the bond lengths of C − C and Si − Si , respectively.

The minimum potential energy requires that,

dU hybrid(rh)

drh
= 0 (10.39)

This gives re
h = 1.7359 Å as the equilibrium distance for the hybrid lattice. The bond

force is obtained by differentiating the potential energy with respect to the eqilibrium
distance rh as

F(rh) = −dU hybrid(rh)

drh
= 12εrh

r2
0

[(
r0

f (rh)

)14

−
(

r0

f (rh)

)8
]

(10.40)

The bond force constant is the second derivative of the potential with respect to rh
or the first derivative of the bond force F with respect to rh and is written as

K sub(rh) = d2U hybrid (rh)

dr2
h

= d F(rh)

drh
= −12εr2

h

r4
0

[
14

(
r0

f (rh)

)16
− 8

(
r0

f (rh)

)10
]

(10.41)
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The nonlinear variation of the potential energy, interatomic force, and force constants
of the present graphene-silicon hybrid lattice arrangement are shown in Fig. 10.8b.

Now we need to obtain a closed form expression for the force constant of the
C–Si bond. Let us consider a single cell in graphene and a single cell in pure silicon
substrate as shown in Fig. 10.7. The vertical distance between the graphene cell and
the silicon cell is rh . First consider that carbon atom−I and this is connected to silicon
atoms A, B, and E as shown in Fig. 10.7. The bonds between I and A, B, E are
labeled as b2, b2, and b1, respectively. The sum of the total vertical components of
the bond forces is

F (I )hybrid = F1 sin θ1 + 2F2 sin θ2 (10.42)

where F1 is the force between carbon atom I and Si-atom E , and F2 is the force
between carbon atom I and Si-atom E , and also similar force between atoms I and
B. Now consider a corner carbon atom I I and this is connected to Si-atoms B, E
and C . These bonds are labeled as b3, b1, and b4, respectively as shown in Fig. 10.7.
The sum of the total vertical components of these bond forces is

F (I I )
hybrid = F2 sin θ2 + F3 sin θ3 + F4 sin θ4 (10.43)

where F2, F3, and F4 are the bond forces between atoms I I & B; I I & E and I I &
C , respectively and the bond angles are defined as

θ1 = tan−1
(

rh

D1

)
(10.44)

θ2 = tan−1
(

rh

D2

)
(10.45)

θ3 = tan−1
(

rh

D3

)
(10.46)

θ4 = tan−1
(

rh

D4

)
(10.47)

θ5 = tan−1
(

rh

D5

)
(10.48)

where

D1 = D3 = aC−C (10.49)

D2 = 1

2

√
(2aC−C − aSi−Si )

2 + (aSi−Si )
2 (10.50)

D4 = 1

2

√(√
3aC−C − aSi−Si

)2 + (aSi−Si − aC−C )
2 (10.51)

D4 = 1

2

√(√
3aC−C − aSi−Si

)2 + (aSi−Si + aC−C )
2 (10.52)
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In the above expressions aC−C and aSi−Si are the bond lengths of carbon in graphene
and silicon in pure Si-substrate, respectively. The total bond force is expressed as the
sum of the bond forces F (I )hybrid and F (I I )

hybrid :

Ftotal
hybrid = 2F (I )hybrid + 4F (I I )

hybrid (10.53)

The total bond force constant is expressed as

K sub(rh) = 1

rh

(
2K (I )(rh)+ 4K (I I )(rh)

)
, (10.54)

where
K (I )(rh) = K1(rh)D1 sin θ1 + 2K2(rh)D2 sin θ2, (10.55)

K (I I )(rh) = K2(rh)D2 sin θ2 + K3(rh)D3 sin θ3 + K4(rh)D4 sin θ4. (10.56)

Here Ki is the force constant of the bond i and Di is the corresponding bond length.
The total bond force constant of the bond between the graphene and silicon substrate
at equilibrium distance re

h is obtained as K sub(re
h) = K sub(rh)

∣∣
rh=re

h
= 6.3584×104

N/m. This value should be multiplied by the number of atoms per unit area, which
is equal to the ratio of the total number of atoms in a graphene sheet to the area of
the sheet. This value is expected to be independent of the size of the sheet.

10.3 Wave Propagation in Single Graphene Layer on Silicon
Substrate

We will first outline a detail derivation of the nonlocal governing differential equa-
tions of motion for the graphene-silicon system. This system is modeled as a one
atom thick nanoplate on linearly distributed vertical springs.

The displacement field for this nanoplate is assumed as [21]

u(x, y, z, t) = uo(x, y, t)− z
∂w

∂x

v(x, y, z, t) = vo(x, y, t)− z
∂w

∂y

w(x, y, z, t) = w(x, y, t) (10.57)

where, uo(x, y, t), vo(x, y, t), and w(x, y, t) are the axial (inplane-longitudinal and
lateral) and transverse displacements, respectively along the mid-plane as shown in
Fig. 10.9. The mid-plane of the plate is at z = 0. The associated nonzero strains are
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Fig. 10.9 A single layer of
graphene on a crystalline
substrate

⎧⎨
⎩
εxx

εyy

εxy

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

∂uo

∂x
∂vo

∂y
∂uo

∂y + ∂vo

∂x

⎫⎪⎬
⎪⎭ +

⎧⎪⎪⎨
⎪⎪⎩

− ∂2w
∂x2

− ∂2w
∂y2

−2 ∂2w
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

(10.58)

where, εxx and εyy are the normal strains in x and y directions respectively, while,
εxy is the in-plane shear strain.

The nonlocal constitutive relation for isotropic materials is given as

(
1 − (e0a)2

[
∂2

∂x2 + ∂2

∂y2

])⎧⎨
⎩
σxx

σyy

σxy

⎫⎬
⎭ =

⎡
⎣ C11 νC11 0
νC22 C22 0

0 0 C66

⎤
⎦

⎧⎨
⎩
εxx

εyy

εxy

⎫⎬
⎭ (10.59)

where, σxx and σyy are the normal stresses in x and y directions respectively and
σxy is the in-plane shear stress. For the case of an isotropic plate, the expressions
for material constants Ci j in terms of Young’s modulus E and Poisson’s ratio ν are
given as C11 = C22 = E/(1 − ν2) and C66 = E/(2(1 + ν)).

The total strain energy (Π ) and kinetic energy (Γ ) of the present graphene-silicon
system are expressed as
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Π = 1

2

∫ +h/2

−h/2

∫
A

(
σxxεxx + σyyεyy + σxyεxy + K subw2

)
dz d A (10.60)

Γ = 1

2

∫ +h/2

−h/2

∫
A
ρ
(

u̇2 + v̇2 + ẇ2
)

dz d A (10.61)

The governing equations are derived based on Hamilton’s principle . The Hamilton’s
principle is stated as ∫ t2

t1
(δΠ − δΓ ) dt = 0 (10.62)

Substituting Eqs. (10.60) and (10.61) into Eq. (10.62), we obtain

1

2

∫ t2

t1

∫ +h/2

−h/2

∫
A

(
δσxxεxx + σxxδεxx + δσyyεyy + σyyδεyy + δσxyεxy

+σxyδεxy + 2K subwδw − 2ρ{u̇δu̇ + v̇δv̇ + ẇδẇ}
)

d A dz dt = 0 (10.63)

The minimization of this functional with respect to the three degrees of freedom
(uo, vo, w)will give three nonlocal governing partial differential equations of motion
for the assumed system (graphene on Si-substrate) as

δuo : −J0
∂2uo

∂t2 + J0(e0a)2
(
∂4uo

∂x2∂t2 + ∂4uo

∂y2∂t2

)
− I0

(
C11

∂2uo

∂x2 + C66
∂2uo

∂y2

)
+

I0 (C12 + C66)
∂2vo

∂x∂y
+ J1

∂3w

∂x∂t2 − J1(e0a)2
(

∂5w

∂x3∂t2 + ∂5w

∂x∂y2∂t2

)
−

C11 I1
∂3w

∂x3 − I1 (C12 + 2C66)
∂3w

∂x∂y2 = 0

(10.64)

δvo : −J0
∂2vo

∂t2 + J0(e0a)2
(
∂4vo

∂x2∂t2 + ∂4vo

∂y2∂t2

)
− I0

(
C22

∂2vo

∂y2 + C66
∂2vo

∂x2

)
+

I0 (C12 + C66)
∂2uo

∂x∂y
+ J1

∂3w

∂y∂t2 − J1(e0a)2
(

∂5w

∂x2∂y∂t2 + ∂5w

∂y3∂t2

)
−

C22 I1
∂3w

∂y3 − I1 (C12 + 2C66)
∂3w

∂x2∂y
= 0

(10.65)
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δw : −J0
∂2w

∂t2 + J2

(
∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)
+ J0(e0a)2

(
∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)
−

J2(e0a)2
(

∂6w

∂x4∂t2 + 2
∂6w

∂x2∂y2∂t2 + ∂6w

∂y4∂t2

)
+ K sub(e0a)2

(
∂2w

∂x2 + ∂2w

∂y2

)
−

K subw − I2

(
C11

∂4w

∂x4 + C22
∂4w

∂y4

)
− 2I2 (C11 + 2C66)

∂4w

∂x2∂y2 − J1
∂3uo

∂x∂t2 +

J1(e0a)2
(
∂5uo

∂x3∂t2 + ∂5uo

∂x∂y2∂t2

)
+ C11 I1

∂3uo

∂x3 + I1 (C12 + 2C66)
∂3uo

∂x∂y2 −

J1
∂3vo

∂y∂t2 + J1(e0a)2
(

∂5vo

∂x2∂y∂t2 + ∂5vo

∂y3∂t2

)
+ I1 (C12 + 2C66)

∂3vo

∂x2∂y
+ C22 I1

∂3vo

∂y3 = 0

(10.66)

where K sub is the force constant of the bonds between the graphene sheet and the
Si substrate and the parameters Ip and Jp are defined as follows:

Ip =
∫ h/2

−h/2
z pdz, Jp =

∫ h/2

−h/2
ρz pdz, p = 0, 1, 2. (10.67)

It should be observed that when the nonlocal scaling parameter e0a is set to zero, the
classical governing equations of motion for the plate are recovered.

10.3.1 Wave Dispersion Analysis

For harmonic wave propagation in graphene sheet, the displacement field can be
expressed in complex form as [22, 23]

uo(x, t) =
N∑

n=1

M∑
m=1

ˆumne− jkn x e− jηm ye jωt , (10.68)

vo(x, t) =
N∑

n=1

M∑
m=1

ˆvmne− jkn x e− jηm ye jωt , (10.69)

wo(x, t) =
N∑

n=1

M∑
m=1

ˆwmne− jkn x e− jηm ye jωt (10.70)

where ˆumn, ˆvmn, ˆwmn are the frequency amplitudes, kn and ηm are the wavenumbers
in x− and y−directions, respectively, ω is the frequency of the wave motion and
j = √−1. In the equations that follow, we will drop the subscripts m and n and for
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more brevity, we will denote the x direction wavenumber kn = kx and the y direction
wavenumber ηm = ky .

The nonlocal governing equations for the graphene and Si-substrate model are
given in Eqs. (10.64–10.66). Our next step is to analyze the ultrasonic type of wave
propagation in this system. Substituting the displacement Eqs. (10.68–10.70) in the
nonlocal governing equations of the graphene-Si system and after simplifying, the
resultant equations expressed in matrix form as:

S4k4
x + S3k3

x + S2k2
x + S1kx + S0 = 0 (10.71)

where

S4 =
⎡
⎣0 0 0

0 0 0
0 0 J2(e0a)2ω2 − C11 I2

⎤
⎦ (10.72)

S3 =
⎡
⎣ 0 0 j J1ω

2(e0a)2 − jC11 I1
0 0 0

− j J1ω
2(e0a)2 + jC11 I1 0 0

⎤
⎦ (10.73)

S2 =
⎡
⎣ J0ω

2(e0a)2 − C11 I0 0 0
0 J0ω

2(e0a)2 − C66 I0 S(23)
2

0 S(32)
2 S(33)

2

⎤
⎦ (10.74)

S1 =
⎡
⎣ 0 − (C11 + C66) I0ky S(13)

1− (C11 + C66) I0ky 0 0
S(31)

1 0 0

⎤
⎦ (10.75)

S0 =
⎡
⎢⎣

S(11)
0 0 0
0 S(22)

0 S(23)
0

0 S(32)
0 S(33)

0

⎤
⎥⎦ (10.76)

where the elements S(pq)
r (p, q = 1, 2, 3, and r = 0, 1, 2) are given below.

S(23)
2 = j J1ky(e0a)2ω2 − j (C11 + 2C66) I1ky, (10.77)

S(32)
2 = − j J1ky(e0a)2ω2 + j (C11 + 2C66) I1ky, (10.78)

S(33)
2 = J2ω

2
(

1 + (e0a)2k2
y

)
− J0ω

2(e0a)2 − (C11 + 2C66) I2k2
y − K sub(e0a)2,

(10.79)

S(13)
1 = j J1ω

2
(

1 + (e0a)2k2
y

)
− j (C11 + 2C66) I1k2

y, (10.80)

S(31)
1 = − j J1ω

2
(

1 + (e0a)2k2
y

)
+ j (C11 + 2C66) I1k2

y, (10.81)
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S(11)
0 = J0ω

2
(

1 + (e0a)2k2
y

)
− C66 I0k2

y, (10.82)

S(22)
0 = J0ω

2
(

1 + (e0a)2k2
y

)
− C22 I0k2

y, (10.83)

S(23)
0 = j J1kyω

2
(

1 + (e0a)2k2
y

)
− jC22 I1k3

y, (10.84)

S(32)
0 = − j J1kyω

2
(

1 + (e0a)2k2
y

)
+ jC22 I1k3

y, (10.85)

S(33)
0 = J2ω

2k2
y

(
1 + (e0a)2k2

y

)
+ J0ω

2
(

1 + (e0a)2k2
y

)
− C22 I2k4

y

− K sub
(

1 + (e0a)2k2
y

)
. (10.86)

The Eq. (10.71) is in the form of polynomial eigenvalue problem in wavenum-
ber kx , which can be solved to obtain the dispersion relations. The dispersion of
the wavenumbers with wave frequency is shown in Figs. 10.10, 10.11, respectively
calculated based on local and nonlocal elasticity theories. The figure also shows the
effect of silicon substrate on ultrasonic wave characteristics of graphene at ky = 0, 2
and 5 nm−1.

In the previous section, we had shown in the analysis of monolayer graphene sheets
that the cut-off frequency shifting happens when the values of horizontal wavenumber
is varied. We will examine this here for the case of monolayer graphene on silicon
substrate. Note that, unlike the previous case, here the in-plane and out-of-plane
waves are coupled and hence cut-off frequency can exist for both these waves. The
expressions for frequency band gap are obtained by setting kx = 0 in dispersion
relation Eq. (10.71). For the present case of PEP, one can solve |S0| = 0 to obtain the
cut-off frequencies of all the fundamental wave modes in the graphene-Si system as

ω
inplane
c = ky

√√√√ I0C66

J0

(
1 + (e0a)2k2

y

) , (10.87)

ω
f lexural
c =

√
1

2H0

√
H1 + H2 (10.88)

where H0, H1 and H2 are given as

H0 = (J0 J2 − J 2
1 )k

4
y(e0a)2 + J 2

0 (1 + (e0a)2k2
y)+ (J0 J2 − J 2

1 )k
2
y (10.89)

H1 = J0 K sub(1 + (e0a)2k2
y)+ (J0 + J2)C22 I2k4

y + (I0 J0 − 2I1 J2)C22k4
y

(10.90)

H2 =[J 2
0 (e0a)4k4

y + 2J 2
0 (e0a)2k2

y + J 2
0 ]K sub2+ (10.91)

[(2J 2
0 I2 − 2J0 I0 J2 − 4J0 J1 I1 + 4J 2

1 I0)C22(e0a)2k6
y−

(2J 2
0 (e0a)2 I0 + 2J 2

0 I2 − 2J0 I0 J2 − 4J0 J1 I1 + 4J 2
1 I0)C22k4

y − 2C22 I0 J 2
0 k2

y]K sub+
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[J 2
0 I 2

2 + I 2
0 J 2

2 − 4J0 I2 J1 I1 − 2J0 I2 I0 J2 − 4J1 I1 I0 J2 + 4J0 J2 I 2
1 + 4J 2

1 I0 I2]C2
22k8

y+
[4J 2

0 I 2
1 − 2J 2

0 I2 I0 − 4I0 J0 J1 I1 + 2I 2
0 J0 J2]C2

22k6
y + I 2

0 J 2
0 C2

22k4
y .

The above two expressions for the frequency band gap reveals that, for all the
fundamental wave modes (longitudinal, lateral, and flexural) the cut-off frequen-
cies are mainly function of y−direction wavenumber (ky) and the nonlocal scaling
parameter (e0a) only. The wave speeds (phase speed C p = ω/kx , and group speed
Cg = dω/dkx ) can be computed from the dispersion relation that is, Eq. (10.71)
This is done by differentiating the PEP in wavenumber (kx ) with respect to wave
frequency as:

G1Cg + G0 = 0 (10.92)

where

G1 =
[

k4
x
∂S4

∂ω
+ k3

x
∂S3

∂ω
+ k2

x
∂S2

∂ω
+ kx

∂S1

∂ω
+ ∂S0

∂ω

]
(10.93)

G0 = 4S4k3
x + 3S3k2

x + 2S2kx + S1 (10.94)

where Cg = (∂ω/∂kx ) is the group speed of a waves in graphene and the matrices
S4, S3, S2, S1 and S0 are given in Eqs. (10.72–10.76) , respectively. The Eq. (10.92)
is also a PEP in group speed, one can solve it for group speeds (as a function of
wave frequency, wavenumbers and nonlocal scaling parameter) of respective modes
(that is, for axial-u, v, and flexural-w) of the graphene-Si system. The group speed
dispersion in graphene-Si system with wave frequency is shown in Figs. 10.12, 10.13,
calculated based on local and nonlocal elasticity theories, respectively. The effect of
the silicon substrate on group speed dispersion can also be clearly seen from these
plots for y−directional wavenumber ky = 0, 2, and 5 nm−1.

In this section, the effect of the substrate as well as the nonlocal scale on the wave
dispersion properties of the graphene are presented through numerical simulations.
For the sake of analysis, the material properties of the graphene are assumed as:
Young’s modulus E = 1.06 TPa and density ρ = 2300 kg/m3. As mentioned earlier,
the choice of effective wall thickness t of nanostructures such as CNT, graphene,
etc., is a longstanding issue in nanomechanics. We have chosen the thickness of the
graphene as t = 0.089 nm, obtained by Kudin et al. [14] via Ab inito computations.

The wavenumber dispersion with wave frequency in the graphene-Si system is
shown in Figs. 10.10, 10.11, obtained from local and nonlocal elasticity theories,
respectively. The Fig. 10.10 shows the wavenumber dispersion obtained from local
elasticity theory, where e0 = 0 nm. The Fig. 10.10a, b are plotted for ky = 0
(represents 1D wave propagation); Fig. 10.10c, d are plotted for ky = 2 nm−1 and
Fig. 10.10e, f are plotted for ky = 5 nm−1. The frequency band gap of the flexural
waves is small as compared to that of the longitudinal and lateral (in-plane) waves for
the case of without substrate effect. As the y-directional wavenumber ky increases
the frequency band gap of all the three fundamental modes increases. If we consider
the substrate effect, then the flexural wave starts propagating after a large frequency
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Fig. 10.10 Wavenumber (kx ) dispersion with wave frequency of graphene on Si-substrate obtained
by using local elasticity theory (e0 = 0). Figures (a), (c) and (e) are without substrate and (b), (d)
and (f) are with substrate, Here y-direction wavenumber is assumed as ky = 0, 2, and 5 nm−1

band gap as compared to that of the inplane waves. The local elasticity shows that
a linear variation of the axial wavenumbers with frequency for ky = 0, that is, the
longitudinal and lateral wavenumbers are nondispersive in nature. For ky = 0, the
flexural wavenumber shows a nonlinear variation at low values of wave frequency
and at higher values of wave frequency it varies linearly as shown in Fig. 10.10. As
ky increases, all the wavenumbers are dispersive in nature. According to Fig. 10.10b,
d, and f, one can observe that the substrate effect on flexural waves.

The wavenumber dispersion with frequency for nonlocal elasticity (e0 = 0.39)
is shown in Fig. 10.11. The observations made in local elasticity are still valid in
nonlocal elasticity also. The only difference is that, because of nonlocal elasticity,
the wavenumbers (for both in-plane and flexural) becomes highly nonlinear at higher
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Fig. 10.11 Wavenumber (kx ) dispersion with wave frequency (shown up to nonlocality limit) of
graphene on Si-substrate obtained by using nonlocal elasticity theory (e0 = 0.39). Figures (a), (c)
and (e) are without substrate (b), (d) and (f) are with substrate, Here y-direction wavenumber is
assumed as ky = 0, 2, and 5 nm−1. Here ω1 = 10, ω2 = 25 and ω3 =35 THz

wave frequencies as shown in Fig. 10.11. The frequency band gap variation is same
as we move from local to nonlocal elasticity with and without substrate effects.

Local elasticity shows that, the wave will propagate even at higher frequencies.
However, nonlocal elasticity predicts that the waves can propagate up to certain
frequencies only, after that it will stand, that is, no propagation. The wavenumber
dispersion curves obtained from nonlocal elasticity are shown upto the nonlocal limit
only. The phenomena discussed in the beginning of this paragraph, occurs above the
nonlocal limit.

The group speed dispersion with the wave frequency is shown in Figs. 10.12 and
10.13 for local and nonlocal elasticity, respectively. Figure 10.12a, b shows that (for
ky = 0), the in-plane (u, v) wave speeds are constant with wave frequency and
the flexural wave speeds are increasing from low frequency and after that they are
constant at higher values of wave frequency. The magnitude of the flexural group
speeds are higher compared to the axial wave group speeds. As ky increases from 0
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Fig. 10.12 Group speed dispersion of graphene on Si-substrate obtained from local elasticity
theory (e0 = 0). Figures (a), (c) and (e) are without substrate (b), (d) and (f) are with substrate.
Here y-direction wavenumber is assumed as ky = 0, 2, and 5 nm−1

to 5 nm−1, the axial wave group speeds also shows dispersive nature. We can also
clearly observe the effect of substrate on the flexural wave group speeds.

In the nonlocal case, the group speeds of the in-plane and flexural waves stop
propagating at certain frequencies as shown in Fig. 10.13. The group speeds of the
in-plane waves are same for with and without substrate effect. The effect is observed
only on the flexural wave speeds. There are two cut-off frequencies for the flexural
waves with substrate effect. As ky increases, the flexural wave group speeds retain
the shape as shown in local elasticity and the extra frequency band gap also vanishes.
From these results, we can observe that only flexural waves are affected by the
substrate whether it is local or nonlocal elasticity.
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Fig. 10.13 Group speed dispersion of graphene on Si-substrate obtained from nonlocal elasticity
theory (e0 = 0.39). Figures (a), (c) and (e) are without substrate (b), (d) and (f) are with substrate.
Here y-direction wavenumber assumed as ky = 0, 2, and 5 nm−1

The variation of the cut-off frequencies of in-plane and flexural waves are shown
in Fig. 10.14a, b, without and with substrate effect respectively. Local elasticity (solid
lines) shows a linear variation of the cut-off frequencies with wavenumber ky with
and without substrate effects. Nonlocal elasticity (dash lines) predicts smaller values
of cut-off frequencies at high values of ky as compared to local elasticity. Because
of the substrate effect at ky = 0, the flexural wave has nonzero cut-off frequency,
axial waves have zero cut-off frequency as shown in Fig. 10.14a.

The deformed wave modes of the graphene with and without substrate effect are
shown in Figs. 10.15–10.17 at the wave frequencies ω1, ω2 and ω3 as marked in



10.3 Wave Propagation in Single Graphene Layer on Silicon Substrate 295

Fig. 10.14 Variation of cut-
off frequency (edge of fre-
quency ban gap) for varying
wavenumber ky , kx = 0. Indi-
vidual branches correspond
to inplane modes (u, v) and
flexural (w) modes are shown.
Both local and nonlocal fre-
quency band gap variations
are shown a Without silicon
substrate b With silicon sub-
strate
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Fig. 10.11. These figures clearly shows the nature of wave propagation in graphene
(see Figs. 10.15–10.17). The deformed wave modes is shown for ky = 5.0 nm−1.

The contours of ky versus kx are shown in Figs. 10.18, 10.19 for local and nonlocal
elasticity, respectively, for ω1, ω2 and ω3. Because of substrate effect, the flexural
wavenumbers are showing a different phenomena for both from local and nonlocal
case.

10.4 Temperature Effects on Wave Propagation in Nanoplates

We have seen from the last section that the mono layer graphene, modeled as covlan-
etly bonded honeycomb carbon atoms nanoplates, exhibited some very interesting
waveguide properties at very high frequencies in the order of terahertz. In this section,
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Fig. 10.15 Deformed wave modes in x-direction (u) for a ω1 = 10 THz, b ω2 = 25 THz and c
ω3 = 35 THz, as indicated in Fig. 10.11. Blue circles are the initial positions of atoms and the red
faced dots are the displaced positions of atoms

we will study the effect of temperature on the wave behavior of a nanoplate. As said
before, the work regarding this topic that is reported in the literature is minimal.

Lately, some researches indicated that the thermal effects on the mechanical
behaviors of the carbon nanotubes are obvious. Jiang et al. [24] developed a method
to determine the thermal expansion coefficient for the nanotubes. In their research,
it is concluded that the thermal expansion coefficient is negative for the low or room
temperature but positive for the high temperature. Then some works on the mechan-
ical characteristics of the carbon nanotubes with thermal effects are reported in the
literature [25, 26]. Recently, Wang et al. [27], studied the thermal effects on the
vibration properties of the double-layered nanoplates. They have shown that the
vibration properties can be obviously tuned by the thermal effects and the influences
on the vibration behaviors are usually different for different modes.

Due to the lack of the study on the ultrasonic wave dispersion properties of the
nanoplates, this section is motivated on the use of nonlocal continuum mechanics to
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Fig. 10.16 Deformed wave modes in y-direction (v) for a ω1 = 10 THz, b ω2 = 25 THz and c
ω3 = 35 THz, as indicated in Fig. 10.11. Blue circles are the initial positions of atoms and the red
faced dots are the displaced positions of atoms

study the wave dispersion properties of the nanoplates due to the axial stress caused
by thermal effects. The thermal effects and the nonlocal scale influences on the wave
dispersion properties are discussed in detail.

10.4.1 Governing Equations of Motion Including Thermal Effects

We have said earlier that the constitutive relation for any nonlocal elastic solid may
be simplified to (

1 − g2∇2
)

ti j = ci jklεkl (10.95)

where g = e0a is the nonlocal scale parameter.
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Fig. 10.17 Deformed wave modes in z-direction (flexural - w) for a ω1 = 10 THz, b ω2 = 25 THz
and c ω3 = 35 THz, as indicated in Fig. 10.11. Blue circles are the initial positions of atoms and
the red faced dots are the displaced positions of atoms

Fig. 10.18 Wavenumber (kx vs. ky) contours obtained from local elasticity at wave frequencies
of (i) ω1 = 10 THz (blue o), (ii) ω2 = 25 THz (red +) and (iii) ω3 = 35 THz (magenta �) for (a)
without substrate and (b) with substrate

Expanding the terms in the Eq. (10.95), the two-dimensional nonlocal constitutive
equation with the partial differential form will be

σxx − g2
(
∂2txx

∂x2 + ∂2txx

∂y2

)
= C11εxx + C12εyy (10.96)

σyy − g2
(
∂2tyy

∂x2 + ∂2tyy

∂y2

)
= C21εxx + C22εyy (10.97)



10.4 Temperature Effects on Wave Propagation in Nanoplates 299

Fig. 10.19 Wavenumber (kx vs. ky) contours obtained from nonlocal local elasticity at wave fre-
quencies of (i) ω1 = 10 THz (blue o), (ii) ω2 = 25 THz (red +) and (iii) ω3 = 35 THz (magenta �)
for (a) without substrate and (b) with substrate

τxy − g2
(
∂2txy

∂x2 + ∂2txy

∂y2

)
= C66γxy (10.98)

where, σxx and σyy are the normal stresses in x and y directions respectively and τxy

is the in-plane shear stress. For the case of an isotropic plate, the expressions for Ci j

in terms of Young’s modulus E and Poisson’s ratio ν are given as C11 = C22 = E
1−ν2 ,

C12 = C21 = νE
1−ν2 and C66 = E

2(1+ν) .
The above constitution relations with consideration of thermal effects will be

written as

σxx − g2
(
∂2txx

∂x2 + ∂2txx

∂y2

)
= C11εxx + C12εyy − EαT

1 − ν
(10.99)

σyy − g2
(
∂2tyy

∂x2 + ∂2tyy

∂y2

)
= C21εxx + C22εyy − EαT

1 − ν
(10.100)

τxy − g2
(
∂2txy

∂x2 + ∂2txy

∂y2

)
= C66γxy (10.101)

where α is the thermal conductivity of the nanoplate and T is the temperature. The
vibration equation for the nanoplates is expressed as [28, 29]

∂2 Mxx

∂x2 + 2
∂2 Mxy

∂x∂y
+ ∂2 Myy

∂y2 + NT H

(
∂2w

∂x2 + 2
∂2w

∂x∂y
+ ∂2w

∂y2

)
= ρh

∂2w

∂t2

(10.102)
where w is the deflection, NT H is the thermal stress due to the temperature change,
ρ is the mass density, h is the thickness of nanoplate and t is the time.

The bending moment in Eq. (10.102) (i.e. Mxx , Myy and Mxy) can be given as
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Mxx =
∫ + h

2

− h
2

ztxx dz, (10.103)

Mxy =
∫ + h

2

− h
2

ztxydz, (10.104)

Myy =
∫ + h

2

− h
2

ztyydz (10.105)

Based on Eqs. (10.99–10.101) and (10.103–10.105), the bending moments are given
as the following form:

Mxx − g2
(
∂2 Mxx

∂x2 + ∂2 Mxx

∂y2

)
= −D

(
∂2w

∂x2 + ν
∂2w

∂y2

)
− MT H

1 − ν
(10.106)

Mxy − g2
(
∂2 Mxy

∂x2 + ∂2 Mxy

∂y2

)
= −D(1 − ν)

∂2w

∂x∂y
− MT H

1 − ν
(10.107)

Myy − g2
(
∂2 Myy

∂x2 + ∂2 Myy

∂y2

)
= −D

(
∂2w

∂y2 + ν
∂2w

∂x2

)
(10.108)

where D = Eh3/[12(1 − ν2)] is the bending stiffness of the nanoplate and MT H =∫ +h/2
−h/2 EαT zdz. Furthermore, the thermal stress can be expressed as

NT H = − EαT

1 − ν
× h (10.109)

where α is the thermal expansion coefficient and T the temperature change.
According to Eqs. (10.102), (10.108), and (10.109), we can obtain the nonlocal

governing equation for the nanoplate with thermal effects as

D

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
− NT H

(
∂2w

∂x2 + ∂2w

∂y2

)

+ NT H g2

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
+ ρh

∂2w

∂t2 − ρhg2

(
∂4w

∂x2∂t2 + ∂4w

∂y2∂t2

)
= 0

(10.110)

10.4.2 Thermo-Elastic Flexural Wave Dispersion Analysis

The wave dispersion formulation begins by assuming a solution of the displacement
field. In particular, time harmonic waves are sought and it is assumed that the model
is unbounded in Y−direction (although bounded in x−direction). Thus, the assumed
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form is a combination of Fourier transform in Y−direction and Fourier transform in
time

w(x, y, t) =
N∑

n=1

M∑
m=1

ŵ(x)e jηm ye− jωn t , (10.111)

Theωn and the ηm are the circular frequency at nth sampling point and the wavenum-
ber in y−direction at the mth sampling point, respectively. The N is the index cor-
responding to the Nyquist frequency in fast Fourier transform (FFT), which is used
for computer implementation of the Fourier transform and j = √−1. Substituting
Eq. (10.111) in Eq. (10.110), an ordinary differential equation is obtained for the
unknown ŵ(x).

Since the governing equation is having constant coefficients, its solution can be
written as ŵ(x) = w̃e jkx , where k is the wavenumber in x−direction, yet to be
determined and w̃ is an unknown constant. Substituting this assumed form of ŵ in
the ODE gives for w̃ �= 0)

T1λ
2 + T2λ+ T3 = 0 (10.112)

where T1 = D + g2 NT H , T2 = 2η2
m(D + g2 NT H ) − ρhω2g2 + NT H , T3 =

η4
m(D + g2 NT H )−ρhω2(1 + g2η2

m)+ NT Hη
2
m and λ = k2. We can see clearly that

the dependence of nonlocal scale parameter g on wavenumber.
The phase speed of the flexural wave is obtained as

C p = Real

(
ω√
λ

)
(10.113)

The phase speed of the wave will also a function of the nonlocal scaling parameter
and the y−directional wavenumber.

The cut-off frequencies of flexural wave mode is obtained by setting
√
λ = 0 in

the dispersion relation Eq. (10.112) that is, for the present case one can set T3 = 0.
The cut-off frequency is obtained as

ωc =
√

1

ρh

(
Dη2

m

1 + (e0a)2η2
m

+ NT Hη2
m

)
(10.114)

The cut-off frequency is directly proportional to the y−directional wavenumber (ηm)
and also depends on the nonlocal scaling parameter. For ηm = 0, the wavenumbers of
the flexural wave mode have a substantial real part starting from the zero frequency.
This implies that the mode starts propagating at any excitation frequency and does not
have a cut-off frequency. For ηm �= 0, the flexural wave mode, however, has a certain
frequency band within which the corresponding wavenumbers are purely imaginary,
where the wave does not propagate. These wavenumbers have a substantial imaginary
part along with the real part, thus these waves attenuate as they propagate.

Next, using the derived dispersion Eq. (10.112), the thermal as well as the nonlo-
cal scale effects on the ultrasonic wave dispersion properties of the nanoplates are
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Fig. 10.20 Ultrasonic wave dispersion characteristics of nanoplate: Wavenumber dispersion with
frequency obtained from a local elasticity (for ηm = 0), b nonlocal elasticity (for ηm = 0), c local
elasticity (for ηm = 2 nm−1) and b nonlocal elasticity (for ηm = 2 nm−1). Here ηm is the axial half
wavenumber in y−direction

studied. The material constants for the nanoplate assumed are the Young’s modulus
E = 1.06 TPa, the mass density ρ = 2250 kg/m3 and the Poisson’s ratio ν = 0.25.
The room or low temperature (i.e., thermal conductivity α = −1.6 × 10−6 K−1)
and high temperature (i.e., thermal conductivity α = 1.1 × 10−6 K−1) used for the
nanostructures are considered [30, 31]. The temperature change is assumed in the
range of T = 0 to 90 K.

The flexural wavenumber dispersion with wave frequency is shown in Fig. 10.20,
obtained from both local and nonlocal elasticity theories. The figure also shows the
effects of the low and high temperature on the flexural wavenumber in nanoplate. For
the present analysis, the nonlocal scaling parameter is assumed as e0a = 0, 0.5 nm.
The spectrum curves shown in Fig. 10.20a, b are for ηm = 0 (represents 1D wave
propagation), Fig. 10.20c, d are for ηm = 2 nm−1. The local elasticity calculation
shows that the flexural wavenumber follow a nonlinear variation at lower values of
wave frequency; and at higher frequencies it varies linearly as shown in Fig. 10.20.
For ηm = 0, the wavenumbers of the flexural wave mode have a substantial real part
starting from the zero frequency. As ηm increases, all the waves are still dispersive in
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Fig. 10.21 Ultrasonic wave dispersion characteristics of nanoplate: Phase speed dispersion with
frequency obtained from a local elasticity (for ηm = 0), b nonlocal elasticity (for ηm = 0), c local
elasticity (for ηm = 2 nm−1) and b nonlocal elasticity (for ηm = 2 nm−1). Here ηm is the axial half
wavenumber in y−direction

nature as shown in Fig. 10.20c, d. As the y−directional wavenumber increases from
0 to 2 nm−1, the wave modes exhibit a frequency band gap region. The frequency
band within which the corresponding wavenumbers are purely imaginary. Thus,
the flexural mode does not propagate at frequencies lying within this band. Hence,
these wavenumbers have a substantial imaginary part along with the real part, thus
these waves attenuate as they propagate. It can also be seen that from Fig. 10.21, the
frequency band also increases with increase in ηm .

The effect of temperature on the flexural waves in nanoplate are also significant
(see Fig. 10.20). The magnitude of the flexural wavenumber will be higher in the case
of higher temperature as compared to the low or room temperature. The temperature
plays an important on the frequency band gap of the flexural wave mode. As the
temperature increases for lower values to higher, the magnitude of the frequency band
gap of the flexural waves decreases as shown in Fig. 10.20c, d. Due to nonlocality,
the flexural wavenumber variation become highly linear over a range of frequencies
as shown in Fig. 10.20b, d. The linear variation of the wavenumber with frequency is
mainly due to the consideration of atom–atom interaction at nanoscale level based on
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nonlocal elasticity. The local elasticity calculations show that, at higher frequencies
the effect of temperature on the wavenumbers is not significant (see Fig. 10.20a,
c). However, nonlocal elasticity calculations show that, the temperature effect will
be more significant on the wavenumber at higher frequencies (see Fig. 10.20b, d).
Hence, the results show that one has to consider the effect of temperature at higher
frequency analysis.

The effect of the nonlocal scale parameter and the lower and higher temperatures
on the wave speed are captured in Fig. 10.21. It shows that the flexural wave speeds
are increasing from low frequency to higher values of wave frequency (local elasticity
calculation, e0a = 0). As we move to nonlocality (e0a �= 0), the flexural wave speed
becomes constant at higher values of frequency as shown in Fig. 10.21b, d, which is
due to the linear variation of the wavenumber with frequency. It can also be observed
that, the magnitude of phase speed is higher for the case of low temperature as
compared to the higher temperatures. Over a given frequency range, the magnitude
of the wave speed predicted by the nonlocal elasticity is small as compared to the
local elasticity calculations.

The variation of cut-off frequency with respect to y−directional wavenumber is
shown in Fig. 10.22. The effect of nonlocal scale parameter on the cut-off frequency
is shown in Fig. 10.22a, for zero temperature case. It can seen that as the nonlocal
scale parameter increases, the cut-off frequency decreases over the given range of the
y−directional wavenumber. It means that, the classical elasticity predicts the over
estimated values for the cut-off frequency. The effect of the lower and higher temper-
atures on the cut-off frequency are shown in Fig. 10.22b. For high temperature case,
the cut-off frequencies are smaller and this become significant as the nonlocal scale
coefficient increases. The cut-off frequency difference between low and high tem-
perature will increase as the y−directional wavenumber increases (see Fig. 10.22b).
At higher modenumbers, the temperature effect on the cut-off frequency is very sig-
nificant and cannot be omitted. The effect of various temperatures on the flexural
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Fig. 10.22 Cut-off frequency variation with axial half wavenumber in y−direction for various
nonlocal scaling parameters: a the effect of zero temperature and b the effect of low and high
temperature
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Fig. 10.23 Cut-off frequency variation with axial half wavenumber in y−direction for various
temperatures obtained from (a) local/classical elasticity theory and (b) nonlocal elasticity theory

wave cut-off frequency are shown in Fig. 10.22. Here temperature range is assumed
between 0 − 90 K. The local/classical elasticity calculations show that, the cut-off
frequency will not change with temperature (Fig. 10.23a). The nonlocal calculations
show that, the magnitude of the cut-off frequency will decrease with the increase
in temperature (Fig. 10.23b). Over a given wavenumber range, the cut-off frequency
predicted by the nonlocal elasticity are smaller than that of the classical elasticity.

10.5 Surface Effects on Wave Propagation in Nanoplates

We have seen in the previous chapter on nanobeams, the surface effects had pro-
nounced effect on the wave dispersion. In this section, we will explore its effects on
the ultrasonic wave behavior in nanoplates. In macroscopic and even microscopic
structural elements, such as beams and plates, surface effects can be neglected and
classical theories [32] are sufficient. As the structural size decreases toward the
nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must
be taken into account. It is a well-known fact that the classical continuum theory does
not take into account the so-called size effect.

Some of the work reported on surface effects are summarized below. Gurtin and
Murdoch [33] developed a mathematical framework for elastic material surfaces
for calculation of surface parameters of nanomaterials. In another work, Shenoy
[34] used an atomistic calculation approach based on crystals lattice energies to
characterize the nanosurface effects. Many other attempts have also been made to
describe both static and dynamic behavior of nanoscale structure with consideration
of surface effects [35–37].

Propagation of surface and bulk waves in the presence of surface elasticity has
profound importance in the area of thin film applications, for example, microelec-
tronic and micro-electro-mechanical systems. The widespread application of micro
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and nanostructured thin film materials has resulted in the need for advanced measure-
ment techniques to characterize their mechanical properties. Both bulk waves and
Lamb waves can be used for this purpose [38]. However, the excitation frequency in
these applications is on the order of GHz-THz and as a result the wavelengths are
comparable to the film thickness or even smaller.

An important area of nanotechnology where surface effects are very important, and
that has received increasing interests in recent years is the design and fabrication of
nanomechanical and nanoelectromechanical systems . These are devices integrating
electrical and mechanical functionality at nanoscale. In this regime, NEMS offer a
number of unique attributes such as small size, low mass, high mechanical resonance
frequencies, and high sensitivity. Application of NEMS includes actuators, sensors,
machines and electronics at nanoscales [39]. NEMS can be used to measure extremely
small displacements and forces that lead to new developments for applications in
medicine, computers, communications, etc. The principal components of NEMS
are mechanical elements that either deflect or vibrate in response to the external
excitations, and a transducer that can convert mechanical energy to electrical or
optical signals. Nanostructures such as nanobeams, nanoplates, and nanomembranes
are the common components of NEMS mechanical parts, while the electrical parts are
accounted through the surface effects. Structural integrity, reliability, and durability
of NEMS are important issues in practical applications. Therefore, understanding
the mechanical properties, response, and stability of NEMS structural elements is
crucial to the exploitation of NEMS technology.

Due to the surface energy effects at nanoscale, the investigation of the mechanical
behavior of nanostructures with surface energy effects remains a topic of substantial
interest. Lagowski et al. [40]carried out an experiment to measure the natural fre-
quencies of GaAs wafers in the configuration of cantilever beams within a small-scale
region. They found that the natural frequencies substantially depend on the surface
stress, which cannot be explained by classical theory of vibration. To investigate this
experimental phenomenon, Gurtin et al. [41] developed a simple one-dimensional
beam model to illustrate that the beam resonant frequency is independent of the
surface stress and therefore the experimental results require a different explanation.
Wang and Feng [42] developed a sandwich-beam model to study the effects of sur-
face elasticity and surface tension on the natural frequencies of micro or nanosized
beams and revealed that when the thickness of beams reduces to microns or nanome-
ters, both the surface elasticity and surface tension have significant effects on its
vibration frequency. Yang et al. [43] and Ekinci and Roukes [44] have fabricated
nanometer scale electromechanical beam resonators and examined their response
experimentally. Wang et al. [45] studied the surface buckling of a microbeam due to
surface energy effects. Sadeghian et al. [46] studied the effects of surface stress on
resonance frequency of nanocantilevers. Recently, Lachut and Sader [47] proposed
a three-dimensional model to examine the surface stress effects on the stiffness of
cantilever plates. Lim and He [48] analyzed the deformations of nanofilms under
bending by incorporating the surface elasticity effects into Von Karman plate theory.
Lu et al. [49] complemented Lim and He’s model [50] by considering the normal
stress variation along the thickness direction and presented a general model for static
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and dynamic analysis of thin film structures. He and Lilley [51], [52] studied the
surface energy effects on static bending and bending resonance of nanowires with
different boundary conditions.

Based on the above introduction and literature survey, it can be seen that under-
standing the size-dependent behavior of beam-like structures at nanoscale is essential
for effective NEMS design. The nonlocal continuum modeling approach account-
ing for surface energy effects is considered to be attractive due to its simplicity and
computational efficiency. In this section, we study the surface effects on the wave
behavior of nanoplates . Again using the spectral analysis, several interesting wave
propagation properties are captured in this study.

10.6 Mathematical Modeling of Nanoplate with the Surface
Effects

The present surface effect model of a nanoplate is the extension of the beam model
presented in Chap. 7. That is, the surface effect model consists of a heterogeneous
nanoplate composed of three layers: a bulk layer (middle) and two finite thickness
surface layers (upper and lower). The geometry of the nanoplate with degree of
freedom and its elastic properties (E , ρ and ν) are illustrated in Fig. 10.24. The
elastic properties of the bulk part are E, ν, ρ which are, respectively, its elasticity
modulus, Poisson’s ratio, and mass density. To simulate the upper and lower surface
effects, two thin layers with surface elasticity modulus of Eu , El , respectively are
considered. Thickness of the surface layers are taken as hu and hl for upper and lower
layers. Surface residual stress is shown by τ0 while Q̃(x) indicates the transverse
distributed loading induced by the residual surface tension. In order to deal with
the problem of zero thickness of surface layers, the model is idealized to possess the
property of Euhu and Elhl of a constant magnitude equal to Es as a material property.
Surface residual stress effects, which act due to transverse loads can be calculated
by Laplace Young equations. Stress jump across each surface [53] is related to the
curvature tensor by

〈σ+
i j − σ−

i j 〉ni n j = σ s
αβκαβ (10.115)

Fig. 10.24 Configuration of
nanoplate (material proper-
ties: Young’s modulus E ,
Poisson’s ratio ν and density
ρ) with two thin surface layers
of surface elasticity modulus
Es and surface residual stress
τ0

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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where κ is the surface curvature describing both the singly- and doubly-curved sur-
faces. In addition, σ s

αβ stands for surface stresses (α, β = 1, 2) with ni being the
components of the surface unit normal vector where i = 1, 2, 3. Thus, Laplace-
Young equation below describes the transverse load on the plate undergoing lateral
displacement

Q̃(x1, x2) = 2τ0∇2u3 (10.116)

In the above equations, u3 = u3(x1, x2) represents transverse displacement along x3
axis. As mentioned earlier in this investigation, Kirchhoff plate theory is modified to
include surface effect parameters. To derive the fundamental equation of motion of
nanoplates, principle of virtual work is applied. As the first step, the surface potential
energy Π S

pe can be expressed as

Π S
pe = Q̃(x1, x2)× u3(x1, x2) = 2τ0u3∇2u3 (10.117)

The constitutive relation is obtained from nonlocal elasticity to capture the nanoscale
size effects. The nonlocal constitutive relation is written as

(
1 − ϑ2∇2

)
ti j = ci jklεkl (10.118)

where ϑ = e0a, which is same as g used in the earlier chapters and a is an internal
characteristic length (lattice parameter, granular size, or molecular diameters) and
e0 is a constant appropriate to each material for adjusting the model to match some
reliable results by experiments or other theories.

Using all the appropriate assumptions and nonlocal constitutive relation, the non-
local governing differential equation of wave propagation of the nanoplate with
consideration of scale effects is given by

z1∇4u3 + z2ü3 − z2ϑ
2∇2ü3 − z3∇2ü3 + z3ϑ

2∇4ü3 − Q̃ +ϑ2∇2 Q̃ = 0 (10.119)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 . The parameters involved in the above governing
equation are described as follows

z1 = Esh2

2(1 − ν2)
+ Eh3

12(1 − ν2)
= D

(
1 + 6

h

Es

E

)
, (10.120)

z2 = ρh, (10.121)

z3 = ρh3

12
(10.122)

where D is the flexural rigidity of the nanoplate.
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10.6.1 Dispersion Characteristics

For a harmonic wave propagation in a nanoplate, the displacement field can be written
in complex form as

u3(x1, x2, t) =
N∑

n=1

M∑
m=1

û3(x1)e
− jk2m x2 e jωn t , (10.123)

Theωn and the k2m are the circular frequency at nth sampling point and the wavenum-
ber in x2−direction at the mth sampling point, respectively.

Substituting Eq. (10.123) in Eq. (10.119), an ordinary differential equation is
obtained for the unknown û3(x1). Since this ODE will have constant coefficients,
its solution can be written as û3(x1) = ũ3e jk1x1 , where k1 is the wavenumber in
x1−direction, yet to be determined and ũ3 is an unknown constant. Substituting this
assumed form of û3 in the ODE and assuming ũ3 �= 0 gives

H4k4
1 + H2k2

1 + H0 = 0 (10.124)

where

H4 = z1 + 2τ0ϑ
2 − z3ϑ

2ω2, (10.125)

H2 = 2z1k2
2 + (2τ0 − z3ω

2)(1 + 2ϑ2k2
2)− z22τ0ω

2, (10.126)

H0 = z1k4
2 + (2τ0k2

2 − z2ω
2 − z3ω

2k2
2)(1 + ϑ2k2

2). (10.127)

Note that the subscript m is dropped from the y directional wave number for con-
venient naotation. The wavenumber is a function of wave frequency, the nonlocal
scaling parameter g, the x2−directional wavenumber, and the material properties
(E & ρ) of the nanorod as well as the surface properties. Equation (10.124) is solved
to obtain x directional wavenumber as a function of nonlocal scale parameter g,
surface effect parameter τ0, and the y directional wavenumber ηm .

Next, we will compute the wave speeds, namely the phase and group speeds, with
the usual expressions These wave speeds, it will be seen, also depend on the nonlocal
scaling parameter, the x2−directional wavenumber and material properties of the
surface layer and nanoplate. These expressions are quite long and hence the explicit
expressions are not given here. These can be easily computed from the wavenumber
equation Eq. (10.124).

The cut-off frequencies of flexural wave mode is obtained by setting k1 = 0 in
the dispersion relation Eq. (10.124) that is, for the present case one can set H0 = 0.
The cut-off frequency is obtained as
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ωcut = k2

√√√√√
z1k2

2
1+ϑ2k2

2
+ 2τ0

z2 + z3k2
2

(10.128)

The cut-off frequency is directly proportional to the x2−directional wavenumber
(k2) and also depends on the nonlocal scaling parameter and material properties of
the surface layer and nanoplate. For k2 = 0, the wavenumbers of the flexural wave
mode have a substantial real part starting from the zero frequency.

Next, we will examine the existance of escape frequency, which is one of the
fundamental property of the system modeled by nonlocal elasticity. Its value can
be analytically determined by looking at the wavenumber expression and setting
k1 → ∞. This amounts to setting the H4 = 0, which gives

ωescape = 1

ϑ

√
z1 + 2τ0ϑ2

z3
(10.129)

It can be seen that the escape frequency of the flexural wavemode is highly dependent
on both the nonlocal scale parameter and the surface stress.

Next, the scale-dependent wave propagation characteristics of a nanoplate is stud-
ied through illustrative plots. We consider the material properties of an anodic alu-
mina with crystallographic orientation in 〈111〉 direction (obtained from Ref. [54,
55]) as follows: E = 70 GPa,ρ = 2700 kg/m3, Es = 5.1882 N/m, τ0 = 0.9108 N/m.

A comparison of dispersion relations of a graphene sheet (nanoplate) with a size
of 3.62 nm × 15.03 nm obtained from molecular dynamics (MD) simulations [56],
the nonlocal finite element plate model [56], and the present nonlocal model is shown
in Fig. 10.25. All these simulations are done without considering the surface effects.
It can be seen that the present model results matches with the MD simulation results
for a nonlocal scale parameter values of 0.15 nm. It can be observed that the phase
speed increases with the wavenumber in this nanoplate.

The effect of the surface properties on the flexural wavenumber dispersion with
wave frequency in the nanoplate is shown in Fig. 10.26, obtained from both local and
nonlocal elasticity theories. For the present analysis, the nonlocal scaling parameter is
assumed asϑ = 0.5×10−9 m. The spectrum curves shown in Fig. 10.26 is plotted for
the case of k2 = 0 (represents 1D wave propagation). The local elasticity calculation
(Fig. 10.26a) shows that the flexural wavenumber follows a nonlinear variation at
low values of wave frequency; and at higher frequencies it varies linearly. It is clear
that, in the presence of the surface effects, the wavenumber will decrease compared
to the surface stress-free case. It means that the surface properties are significant at
nanoscale and cannot be neglected. For k2 = 0, the wavenumbers of the flexural
wave mode have a substantial real part starting from the zero frequency.

The wavenumber dispersion with frequency obtained from nonlocal elasticity
(ϑ = 0.5×10−9 m) is shown in Fig. 10.27b. The observations made in local elasticity
are also valid for nonlocal elasticity case. The only difference is that, because of
nonlocal elasticity, the wavenumbers of the flexural wave become highly nonlinear
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Fig. 10.25 Comparison of dispersion relations of a graphene sheet as nanoplate with a size of 3.62
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Fig. 10.26 The effect of surface effects on wavenumber dispersion with wave frequency in
nanoplate obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 0

and tend to infinity at escape frequency. It can be seen that the wavenumbers before
escape frequency are real and after that it is imaginary (see Fig. 10.27b). In the
presence of surface effects, the escape frequencies are higher. This means that, in the
presence of surface effects, the flexural wave will propagate to higher frequencies as
compared to stress-free surface case (see Fig. 10.27b).

The effect of surface properties on corresponding phase speed and group speed
dispersions with the wave frequency are shown in Figs. 10.28 and 10.29, respectively,
obtained from local and nonlocal elasticity. Figure 10.28 shows that the flexural wave
speeds are increasing from lower frequency to higher values of wave frequency
(local elasticity calculation, ϑ = 0). The surface stress will increase the flexural
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Fig. 10.27 The effect of surface effects on phase speed variation with wave frequency in nanoplate
obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 0
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Fig. 10.28 The effect of surface effects on group speed variation with wave frequency in nanoplate
obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 0

wave phase and group velocities (see Fig. 10.28, 10.29). As we move to nonlocality
(ϑ �= 0), the flexural wave stops propagating as before at escape frequency as shown
in Figs. 10.28a and 10.29a, The local elasticity calculation shows that the phase
and group speed of the wave will be nonzero even at higher values of the frequency
(Figs. 10.28a and 10.29a), and it is zero at escape frequency (Figs. 10.28b and 10.29b)
in the nonlocal elasticity case. The magnitude of the phase and group speed will
increase in the presence of the surface effects.

The effect of the surface properties and the x2 direction half wavenumber k2 on
the wave propagation properties of the nanoplate are shown in Figs. 10.30, 10.31, and
10.32. For the present analysis k2 is assumed as 2×109 m−1. As k2 increases from 0
to 2×109 m−1, the flexural waves are still dispersive in nature as shown in Fig. 10.30.
As the x2−directional wavenumber increases, the wave modes are having a frequency
band gap region. The frequency band within which the corresponding wavenumbers
are purely imaginary. Thus, the flexural mode does not propagate at frequencies lying
within this band. It can also be seen that from Fig. 10.30, the frequency band also
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Fig. 10.29 The effect of surface effects on wavenumber dispersion with wave frequency in
nanoplate obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 2 × 109 1/m

increase with increase in k2. The effects observed in Fig. 10.27 are still valid for
this case also. The surface effects will increase the cut-off and escape frequencies of
the flexural wave as shown in Fig. 10.30a, b. It can also be observed that the cut-off
frequencies will decrease with an increase in scale parameter (observe inset figures
of Fig. 10.30). It means that, the nonlocal scale highly affects the frequency band
gap of the flexural waves in nanoplate. It has also been observed that the escape
frequencies are independent of k2 from Figs. 10.30 to 10.32.
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Fig. 10.30 The effect of surface effects on phase speed variation with wave frequency in nanoplate
obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 2 × 109 1/m
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Fig. 10.31 The effect of surface effects on group speed variation with wave frequency in nanoplate
obtained from (a) local elasticity and (b) nonlocal elasticity, for k2 = 2 × 109 1/m

As we move to nonlocality (ϑ �= 0), the flexural wave stops propagating at escape
frequency as shown in Figs. 10.30 and 10.31. For any value of the k2, the escape
frequency of all flexural waves is same. The local elasticity calculation shows that
the wave speeds of the flexural wave will be nonzero even at higher values of the
frequency (Figs. 10.30a and 10.31a), and it is zero at escape frequency (Figs. 10.30b
and 10.31b) in the nonlocal elasticity case. The magnitude of the group speed is
decreasing with an increase in the k2 (see Figs. 10.29 and 10.32 a). In the presence of
the surface effects, the wave speeds increase drastically. The local/classical elasticity
calculation shows that, the wave will propagate even at higher frequencies.

The variation of the cut-off frequency of flexural wave with nonlocal scaling
parameter and x2−directional wavenumber (k2) are shown in Figs. 10.32, 10.33,
respectively. The cut-off frequency variation shown in Fig. 10.32b is for k2 = 1 ×
109, 2 × 109 and 3 × 109 m−1. It shows that for a given k2, as we increase the
nonlocal scaling parameter the cut-off frequency of flexural wave mode decreases.
The surface effects increase the cut-off frequencies of the flexural wave drastically
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and this effect is more prominent for smaller values of the nonlocal scale coefficients.
It has been found that at higher values of the nonlocal scaling parameter, the cut-off
frequencies of the flexural wave will depend on the x2−directional wavenumber,
such difference is clearly seen from Fig. 10.32b. With the consideration of surface
effects, it can be observed that, there is a significant of difference in the cut-off
frequency variation at higher values of the nonlocal scaling parameter. As small-
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Fig. 10.33 Surface effects on cut-off frequency variation of flexural wave mode with wavenumbers
for various surface stresses a ϑ = 0, b ϑ = 1 nm and c ϑ = 2 nm

scale parameter increases, the cut-off frequencies tend to approach a smaller value
and this effect can be overcome by considering the surface layers over the nanoplate.
The cut-off frequency variation of flexural wave with k2 is shown in Fig. 10.33. For a
given ϑ , the cut-off frequency will increase as with increase in k2. For a given k2, the
local elasticity gives higher values of cut-off frequencies than the nonlocal elasticity.
The surface effects tend to decrease in cut-off frequency. In the nonlocal case, the
relation between the cut-off frequency and the k2 is almost linear (see Fig. 10.33).

The effect of different values surface residual stresses (τ0) on the cut-off frequency
variation is shown in Fig. 10.34a. Here τ0 is assumed as 0 N/m, 0.5 N/m and 1.0 N/m.
The effect of the small-scale parameter is also shown in Fig. 10.33. For ϑ = 0, as
the surface residual stress τ0 increases, the cut-off frequency also increases nonlin-
early with k2 (Fig. 10.33a). For ν = 1.0 × 10−9 m and ν = 2.0 × 10−9 m, the cut-ff
frequency variation with k2 is shown in Fig. 10.33b, c, respectively. The difference
between the cut-off frequency variation for τ0 = 0 and τ0 �= 0 will increase drasti-
cally as we move from local to nonlocal elasticity. This variation is more prominent
for higher values of the wavenumber k2. If there is a small variation in the surface
stress, then the cut-off frequency difference is very small and can be neglected for
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Fig. 10.34 Surface effects on escape frequency of flexural wave mode (a) variation with nonlocal
scaling parameter (b) Variation with surface stresses

ϑ = 0. As ϑ increases, this difference is more and cannot be neglected. It means
that the surface stress is more effective for small-scale nanoplate.

The escape frequency variation with nonlocal scaling parameter is shown in
Fig. 10.34b. It shows that as ϑ increases, the escape frequency decreases. For surface
stress-free nanoplate, at higher values of ϑ , escape frequencies approach to very
small value. If surface effects are considered, the escape frequency will increase for
given ϑ . As ϑ increase, the escape frequency decreases but will not approach to
smaller value, and it becomes constant with ϑ (see Fig. 10.34b). The effect of the
various surface residual stresses on the escape frequency of the flexural wave is cap-
tured in Fig. 10.34b. As τ0 increase, the escape frequency will also increase and this
effect is more pronounced for smaller values of ϑ . For τ0 = 0, the escape frequency
decreases drastically with ϑ and approaches to very small value. For τ0 �= 0, the
escape frequency decreases and approaches to a constant value and it will not have
effect on the variation of scale parameter

10.7 Summary

Wave propagation in graphene sheets (GSs) has been a topic of great interest in
nanomechanics, where the equivalent continuum models are widely used. In this
chapter, we examined this issue by incorporating the nonlocal theory into the classical
plate model. The influence of the nonlocal effects has been thoroughly investigated in
detail for wave propagation behavior. The results are qualitatively different from those
obtained based on the local plate theory and thus, are important for the development
of GS-based nanodevices such as strain sensor, mass and pressure sensors, atomic
dust detectors, enhancer of surface image resolution, etc.

In this chapter, an ultrasonic type of flexural wave propagation model is derived
for a single layer graphene sheet. The nonlocal scale parameter introduces certain
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band gap region in flexural wave mode where no wave propagation occurs. This is
manifested in the wavenumber plots as the region where the wavenumber tends to
infinite or wave speed tends to zero. It has been shown that the cut-off frequency
is a function of nonlocal scaling parameter and the y−directional wavenumber, the
escape frequency is purely a function of nonlocal scaling parameter only.

In addition, the ultrasonic wave propagation in graphene on silicon substrate,
is studied using both local and nonlocal elasticity theories. In our formulation, the
graphene sheet is modeled as an isotropic plate of one-atom thick (h) and the silicon
(Si) substrate is modeled as distributed springs. The nonlocal governing differential
equations are derived for this system from minimization of total potential energy.
An expression for the force constant of C-Si bond is derived as a function of the
distance between graphene and substrate by modifying the Mie-type potential for
hybrid system. After that an ultrasonic type of wave propagation model is also derived
and the results of the wave dispersion analysis are shown for both local and nonlocal
elasticity. From this analysis, we show that the substrate affects the flexural wave
mode only and the frequency band gap of flexural mode is significantly affected
by the substrate. We also show that the cut-off frequencies of inplane (longitudinal
and lateral) and flexural waves depends not only on the y-direction wavenumber,
material properties of graphene and substrate but also on nonlocal scaling parameter.
The frequency band gap of all the fundamental wave modes considered in this chapter
are decreases at higher values of y directional wavenumber in nonlocal elasticity.

Next, an ultrasonic analysis of flexural wave propagation model is derived for a
nanoplate with the consideration of thermal effects. The nanoplate is modeled as an
isotropic plate of one atom thick. For this model, the nonlocal governing differential
equation of motion is derived from the minimization of the total potential energy.
The effect of the nonlocal scale and the low/high temperature effects on the wave
propagation in nanoplates are captured and discussed in detail.

Lastly, the terahertz wave dispersion characteristics of a nanoplate are studied with
consideration of the surface effecters as well as the nonlocal small-scale effects. Non-
local elasticity theory of plate is used to derive the general differential equation based
on equilibrium approach to include those scale effects. Scale and surface property-
dependent wave characteristic equations are obtained via spectral analysis. For the
present study, the material properties of an anodic alumina with crystallographic of
〈111〉 direction are considered. The present analysis shows that the effect of surface
properties on the flexural waves of nanoplates are more significant. It can be found
that the flexural wavenumbers with surface effects are high as compared to that with-
out surface effects. The scale effects shows that, the wavenumbers of the flexural
wave become highly nonlinear and tend to infinite at certain frequency. After that
frequency, the wave will not propagate and the corresponding wave velocities tend
to zero at that frequency (escape frequency). The effects of surface stresses on the
terahertz wave propagation properties of nanoplate are also captured in this chapter.
At the end of this chapter, reader can clearly see the difference in the wave behavior
due to surface effects between the 2-D nanostructure (studied in this Chapter) and
the 1-D nanostructure (studied in Chap. 7).

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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Chapter 11
Wave Propagation in Nanoshells

Wave propagation analysis of nanoshells such as CNTs are relevant due to their
various applications, which include sensing superconductivity, transport and optical
phenomena. Both atomistic models as well as continuum models have been reported
in the literature and applied to such applications. The CNTs can have interesting
waveguide properties at very high frequencies in the order of up to terahertz. This
we have seen in earlier chapters. At such high frequencies, continuum model-based
finite element type methods cannot be adopted due to their limitation of the element
size with respect to the wavelength, which is very small at such frequencies. Lattice
dynamics for direct observation of phonons and spectral finite element type method
are more efficient and consistent to analyze such situation. With these theories and
method of analysis, this chapter brings out several interesting features of high fre-
quency ultrasonic wave propagation in CNTs modeled as cylindrical shells, using
nonlocal elasticity theory, which are not observed in macroscale structures.

The analysis here is one order complex than what was presented in Chap. 10, that
is, we bring in all the three motion in the analysis, although the problem can still be
construed as 2-D. In this chapter, we will perform analysis in polar coordinates since
it is natural for shell-type geometry.

Wang and Varadan [1] studied the wave propagation in CNTs based on the pro-
posed nonlocal elastic shell theory. The applicability of the proposed nonlocal elastic
shell theory was especially explored and analyzed based on the differences between
the wave solutions from local and nonlocal theories in numerical simulations. It
was found that the newly proposed nonlocal shell theory is indispensable in pre-
dicting CNT phonon dispersion relations at larger longitudinal and circumferen-
tial wavenumbers and smaller wavelength in the circumferential direction when the
small-scale effect becomes dominant. They have not captured the wave properties of
SWCNT at all frequencies.
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11.1 Wave Propagation in Circular Cylindrical Nanoshells

In this section, the carbon nanotubes are modeled as nonlocal cylindrical shells. So,
for the case of cylindrical shells, the nonlocal constitutive relations are expressed in
polar coordinate systems (R, θ) and are given by

(
1 − (e0a)2

[
∂2

∂x2 + 1

R2

∂2

∂θ2

])
{σ } = [C] {ε} (11.1)

where
{σ } = {σxx , σθθ , τxθ , τθx }T (11.2)

{ε} = {εxx , εθθ , γxθ , γθx }T (11.3)

and
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1−ν2

νE
1−ν2 0 0

νE
1−ν2

E
1−ν2 0 0

0 0 E
2(1+ν) 0

0 0 0 E
2(1+ν)

⎤
⎥⎥⎥⎦ (11.4)

where σxx , σθθ are the normal stresses, τxθ , τθx are the shear stresses, εxx , εθθ
are the normal strains, γxθ , γθx are the shear strains, R is the radius measured
from the mid-plane of the cross section in the following CNT analysis, E is the
Young’s modulus of the material, ν is the Poisson ratio, and the parameter e0a is the
scale coefficient that captures the small scale or nonlocal effect on the response of
structures in nano-size.

The polar coordinate system employed for analysis is shown in Fig. 11.1, with θ as
the coordinate in the circumferential direction and v as the corresponding displace-
ment variable. In the nonlocal elastic shell theory, the stress and moment resultants
are defined based on the stress components in Eq. (11.1), and thus can be expressed
as follows by referencing the kinematic relations in Flügge’s shell theory [2, 3]:

Fig. 11.1 Degree of freedom
defined on a (10,10) single-
walled carbon nanotube (with
8.147 nm length and consist-
ing of 1,340 carbon atoms)

z, w

x, u

θ, v

R

L
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The stress resultants are given as

{N } =
∫ +h/2

−h/2
{σ }[H ]dz (11.5)

{M} = −
∫ +h/2

−h/2
{σ }[H ]zdz (11.6)

where
{N } = {Nxx , Nθθ , Nxθ , Nθx }T (11.7)

{M} = {Mxx , Mθθ , Mxθ , Mθx }T (11.8)

and

[H ] =

⎡
⎢⎢⎣

1 + z
R 0 0 0

0 1 + z
R 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (11.9)

Substituting Eq. (11.1) in Eqs. (11.5) and (11.6), we get

(
1 − (e0a)2

[
∂2

∂x2 + 1

R2

∂2

∂θ2

])
{N } = [Z1] {d} + [Z2] {d} (11.10)

(
1 − (e0a)2

[
∂2

∂x2 + 1

R2

∂2

∂θ2

])
{M} = [Z3] {d} (11.11)

where

[Z1] =

⎡
⎢⎢⎣

hC(1, 1) ∂
∂x

h
R C(1, 2) ∂

∂θ
− h

R C(1, 2)
−hC(2, 1) ∂

∂x
h
R C(2, 2) ∂

∂θ
− h

R C(2, 2)
h
R C(3, 3) ∂

∂θ
h
R

( 1−ν
2

)
C(1, 2) ∂

∂x 0
h
R C(3, 3) ∂

∂θ
h
R

( 1−ν
2

)
C(1, 2) ∂

∂x 0

⎤
⎥⎥⎦ (11.12)

[Z2] =

⎡
⎢⎢⎢⎢⎣

0 0 h3

12R C(1, 1) ∂
2

∂x2

0 0 − h3

12R3 C(2, 2)
(

1 + ∂2

∂θ2

)
0 h3

12R2

( 1−ν
2

)
C(1, 1) ∂

∂x
h3

12R2

( 1−ν
2

)
C(1, 1) ∂2

∂x∂θ
h3

12R2

( 1−ν
2

)
C(2, 2) ∂

∂x 0 − h3

12R2

( 1−ν
2

)
C(2, 2) ∂2

∂x∂θ

⎤
⎥⎥⎥⎥⎦

(11.13)
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[Z3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− h3

12R
C(1, 1)

∂

∂x
+ h3

12R2 C(1, 2)
∂

∂θ
− h3

12R2 C(1, 2)
∂2

∂θ2 − hC(1, 1)
∂2

∂x2

0 0 − h3

12R2 C(2, 2)

(
1 + ∂2

∂θ2

)
− hC(2, 1)

∂2

∂x2

0 − h3

12R2 (1 − ν)C(1, 1)
∂

∂x
− h3

12R2 (1 − ν)C(1, 1)
∂2

∂x∂θ
h3

24R2 (1 − ν)C(2, 2)
∂

∂θ
− h3

24R
(1 − ν)C(2, 2)

∂

∂x
− h3

12R
(1 − ν)C(2, 2)

∂2

∂x∂θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.14)
and

{d} = {u, v, w}T (11.15)

where C(i, j) (i, j = 1, 2, 3) are the elements of the matrix [C]. Here u, v,
and w are the axial, circumferential and radial displacements of the SWCNT wall
respectively (see Fig. 11.1). These displacements are function of x, θ , and t . R is the
centerline radius of the SWCNT and h is the thickness of the CNT wall, as shown
in Fig. 11.1.

The dynamic equilibrium equations of stress resultant {N } and moment resultant
{M} are given as [3]

[Z4]{N } + [Z5] {M} = [Z6] {d} (11.16)

where

[Z4] =
⎡
⎣ R ∂

∂x 0 ∂
∂θ

0
0 R ∂

∂θ
R2 ∂

∂x 0
0 R 0 0

⎤
⎦ (11.17)

[Z5] =
⎡
⎢⎣

0 0 0 0
0 − ∂

∂θ
−R ∂

∂x 0

R2 ∂2

∂x2
∂2

∂θ2 R ∂2

∂x∂θ R ∂2

∂x∂θ

⎤
⎥⎦ (11.18)

[Z6] = ρh R2

⎡
⎢⎣

∂2

∂t2 0 0

0 ∂2

∂t2 0

0 0 ∂2

∂t2

⎤
⎥⎦ (11.19)

Substituting Eqs. (11.10) and (11.11) into Eq. (11.16) leads to following governing
partial differential equations including the nonlocal effects for SWCNT

∂2u

∂x2 + (1 − ν)

2R2

∂2u

∂θ2 + (1 + ν)

2R

∂2v

∂x∂θ
+ ν

R

∂w

∂x

+

[
(1 − ν)

2R2

∂2u

∂θ2 − R
∂3w

∂x3 + (1 − ν)

2R

∂3w

∂x∂θ2

]

= Γ

[
∂2u

∂t2 − (e0a)2
∂4u

∂t2∂x2 − 1

R2 (e0a)2
∂4u

∂t2∂θ2

]
(11.20)
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(1 + ν)

2R

∂2u

∂x∂θ
+ (1 − ν)

2

∂2v

∂x2 + 1

R2

∂2v

∂θ2 + 1

R2

∂w

∂θ

+

[

3(1 − ν)

2

∂2v

∂x2 − (3 − ν)

2

∂3w

∂x2∂θ

]

= Γ

[
∂2v

∂t2 − (e0a)2
∂4v

∂t2∂x2 − 1

R2 (e0a)2
∂4v

∂t2∂θ2

]
(11.21)

ν

R

∂u

∂x
+ 1

R2

∂v

∂θ
− w

R2 +


[
R2 ∂

4w

∂x4 + 2
∂4w

∂x2∂θ2 + 1

R2

∂4w

∂θ4

−R
∂3u

∂x3 + (1 − ν)

2R

∂3u

∂x∂θ2 − (3 − ν)

2

∂3v

∂x2∂θ
− 2

R2

∂2w

∂θ2 − w

R2

]

= Γ

[
∂2w

∂t2 − (e0a)2
∂4w

∂t2∂x2 − 1

R2 (e0a)2
∂4w

∂t2∂θ2

]
(11.22)

where
 = (1−ν2)D
Eh R2 , Γ = ρh(1−ν2)

Eh ; E, ρ, ν and D are the Young’s modulus, mass
density, Poisson’s ratio, and the effective bending stiffness, respectively.

11.1.1 Wave Dispersion Analysis

The displacements u, v, and w for the SWCNT wall is approximated as general
solution form of the wave propagation can be given by [4, 5],

u(x, θ, t) =
M−1∑
m=0

N−1∑
n=0

Û cos (kθ)e− j (ξm x−ωn t) (11.23)

v(x, θ, t) =
M−1∑
m=0

N−1∑
n=0

V̂ sin (kθ)e− j (ξm x−ωn t) (11.24)

w(x, θ, t) =
M−1∑
m=0

N−1∑
n=0

Ŵ cos (kθ)e− j (ξm x−ωn t) (11.25)

where Û , V̂ , and Ŵ represent the longitudinal, circumferential and radial ampli-
tudes of displacements of the SWCNT, respectively. ωn is the circular frequency at
the nth time sample, ξm is the axial wavenumber at mth spatial sample point and k is
the circumferential wavenumber. Substituting Eqs. (11.23)–(11.25) into the govern-
ing wave equations (Eqs. (11.20)–(11.22)), we get the reduced equations as follows
(Hereafter the subscript n and m are dropped for simplified notations). Writing them
in matrix form, we get the Polynomial Eigenvalue Problem as
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A4k4 + A3k3 + A2k2 + A1k + A0 = 0 (11.26)

where

A4 =
⎡
⎣ 0 0 0

0 0 0
0 0 


R2

⎤
⎦ (11.27)

A3 =
⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ (11.28)

A2 =
⎡
⎣− (1+
)(1−ν)

2R + Γ (e0a)2ω2 0
0 −1 + Γ (e0a)2ω2

j
ξ(1−ν)
2R 0

j
ξ(1−ν)
2R
0

2
ξ2 − 2 

R2 + Γ (e0a)2ω2

⎤
⎦ (11.29)

A1 =
⎡
⎢⎣

0 − ξ(1+ν)
2R 0

− ξ(1+ν)
2R 0 j
ξ2(3−ν)

2 + j

0 − j
ξ2(3−ν)
2 − j 0

⎤
⎥⎦ (11.30)

A0 =
⎡
⎢⎣

−ξ2 + Γ ω2(1 + (e0a)2ξ2) 0

0 − ξ2(3
+1)(1−ν)
2 + Γ ω2(1 + (e0a)2ξ2)

− j
ξ3 R − jξν
R 0

− j
ξ3 R − jξν
R

0

ξ4 R2 − j
ξ3 R + (1 −
)+ Γ (1 + (e0a)2ξ2)ω2

⎤
⎦ (11.31)

The wavenumbers can be computed by solving the PEP (Eq. (11.26)). The so-
lution is done for the wavenumbers in circumferential direction k. As said ear-
lier, these wavenumbers are function of frequency, nonlocal scaling parameter, and
axial wavenumber. The corresponding wave speed or phase speed is calculated as
C p = Real

(
ω
k

)
. It should be mentioned here that, to obtain the wavenumbers in

axial direction, the Fourier transform should be performed in the circumferential
direction.
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As before, the cut-off frequencies of the SWCNTs are obtained by setting k = 0
in the dispersion relation (Eq. (11.26)) that is, for the present case of PEP, one can set
|A0| = 0, for the cut-off frequencies of the fundamental wave modes are obtained as

ω1
c = ξ

R

√
(ν − 1)(1 + 3
)

2Γ (1 + (e0a)2ξ2)
(11.32)

ω2
c = 1

R

√
1 + ξ2(1 +
)+ √

χ

2Γ (1 + (e0a)2ξ2)
(11.33)

ω3
c = 1

R

√
1 + ξ2(1 +
)− √

χ

2Γ (1 + (e0a)2ξ2)
(11.34)

where χ = 1 − 2ξ2(1 − 2ν2)+ ξ4(1 + 2
+ 8ν
)− 2
ξ6(1 − 2
)+
2ξ8. Here
suffix ′c′ stands for cut-off. These cut-off frequencies are dependent on the nonlocal
scaling parameter and the axial wavenumber. It has been shown that the nonlocal
scale effects does not change the cut-off frequencies of all the wave modes where as
the axial wavenumber shows a significant variation in cut-off frequencies.

As already mentioned, k is obtained for a given value of ξ . Hence, here unknown
value is ξ . After solving |A0| = 0, the cut-off frequencies are obtained as function
of ξ , e0a and material properties of the structure. The local elasticity theory, which
does not consider the internal length scale, the dispersion behavior will be markedly
different compared to the results of nonlocal elasticity case.

The escape frequency value can be analytically determined by looking at the
wavenumber expression and setting k → ∞ in Eq. (11.26), which gives

ω1
e = 1

(e0a)
√
Γ

(11.35)

ω2
e = 1

(e0a)

√
(1 +
)(ν − 1)

2Γ
(11.36)

Here suffix ′e′ stands for escape. These escape frequencies are inversely proportional
to the nonlocal scaling parameter and are also a function of the material properties
of the SWCNT. These frequencies are independent of the axial wavenumbers (ξ ).
The nonlocal scale coefficient introduced significant variation in escape frequencies
of all the fundamental wavemodes.

Next, numerical experiments are presented to analyze the effect of nonlocal elas-
ticity on ultrasonic wave properties of SWCNTs modeled as nanoshell. A major
difference in modeling SWCNT as a Beam (in Chap. 7) and nanoshell is that in
the later, the breathing wave modes or optical modes can be effectively captured.
The material properties of SWCNT assumed for the present analysis are as follows,

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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Young’s modulus, Eh = 360 J/m2, mass density, ρ = 2700 kg/m3 and Poisson’s
ratio, ν = 0.27. The SWCNT wall thickness h = 0.34 nm. The effective bending
stiffness, D is taken as D = 2 eV (1 eV = 1.6021 × 10−19 N/m2). The diameter of
SWCNT is assumed as 2.0 nm. The nonlocal scale coefficient (e0a) is taken as 0 and
0.3 nm, for the present analysis.

The developed SWCNT shell model is validated by comparing the simulated
results with those available in the literature. In Fig. 11.2, the acoustic phonon dis-
persion relation of a (10,10) SWCNT with R = 0.678 nm and h = 0.045 nm are
presented.

The present results are compared with the corresponding results (for first mode)
obtained from ab initio [6] and 3-D elastodynamic continuum [7] models. In the
figure (Fig. 11.2), the frequencies in optical unit are presented for varying axial
wavenumber k normalized as k × (R − h) (Note: In this work, the Young’s modulus
(assumed as constant) is considered to be independent of the radius. The radius R of
(N , N ) SWCNT is calculated as R = 3NaC−C

2π , where aC−C is carbon bond length
and equal to 0.142 nm. In the Fig. 11.2, the frequencies are expressed in optical units
cm−1, where the conversion is given as, 1 H z = 3.336 × 10−11 cm−1). It can be
seen, that the acoustic phonon dispersion relation predicted by the present model is
in good agreement with that obtained from references [6, 7].

The derived polynomial eigenvalue problem for the present SWCNT shell is given
in Eq. (11.26). This PEP is obtained by substituting the spectral form of displacement
field (Eqs. (11.23)–(11.25)) into the governing differential equations (Eqs. (11.20)–
(11.22). The PEP is solved for the eigenvalues. Once assuming {Û �= 0, V̂ =
0, Ŵ = 0}, we obtain eigenvalues (i.e., wavenumbers) of the longitudinal/axial
wave mode. Likewise we obtain for the remaining wave modes. Once these are
identified, we solve for the entire PEP for all the eigenvalues/wavenumbers. This is
the easiest way to identify the type of wave in a given structures.

Figure 11.3a shows the real and imaginary parts of the circumferential wavenum-
ber of a SWCNT obtained from both local/classical and nonlocal shell theories for

Fig. 11.2 A Comparison
of acoustic phonon disper-
sion relation for a (10,10)
single-walled carbon nan-
otube (R = 0.678 nm and
h = 0.045 nm) obtained
from ab initio results and
3D-elastodynamic continuum
models with the present con-
tinuum shell model
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Fig. 11.3 Dispersion relations for a SWCNT obtained from both local and nonlocal Flügge shell
theories for axial wavenumber ξ R = 0 (a) Wavenumber variation (b) Phase speed variation

zero axial wavenumber. These wavenumbers are obtained assuming variation only
in the circumferential direction. Thick lines represent the real part and the thin lines
show the imaginary part of the wavenumbers. From Fig. 11.3a, for SWCNT, for local
elasticity solution, it can be seen that there are three modes of wave propagation,
namely, axial circumferential and radial. The wavenumbers for the axial mode has a
linear variation with the frequency, which is in the THz range. On the other hand, the
circumferential wavenumbers have a nonlinear variation with the frequency, which
indicates that the waves are dispersive in nature. However, the wavenumbers of this
circumferential wave mode have a substantial real part starting from the zero fre-
quency. The radial mode, however, has a certain frequency band within which the
corresponding wavenumbers are purely imaginary. Thus, the radial mode does not
propagate at frequencies lying within this band. Both the circumferential and radial
wavenumbers have a substantial imaginary part and hence, these waves attenuate as
they propagate.

Figure 11.3a also shows the wavenumber dispersion obtained from nonlocal elas-
ticity. It can be seen that because of nonlocality, as in the most nonlocal models,
the wavenumber tends to reach infinity at escape frequencies and the correspond-
ingly, the wave velocity tends to zero at these frequencies indicating localization and
stationary behavior (shown in Fig. 11.3b). Observe that the circumferential waves
are not following the nonlocal elasticity behavior that is, the wavenumbers are not
tending to infinity and the corresponding wave speeds are not zero. It shows that
the circumferential waves will propagate at any frequencies whereas the axial and
radial waves will propagate up to the respective escape frequencies only. The non-
local elasticity does not affect the cut-off frequencies of these waves. Figure 11.3b
clearly shows the nonlocal elastic effects on wave velocities in SWCNT. The local
elasticity calculation shows that all the three wave will propagate at any frequencies.
The nonlocal elasticity calculation shows that the axial and radial waves will stop
propagating at their respective escape frequencies where as the circumferential wave
will propagates dispersively at higher frequencies. The magnitudes of wave veloci-
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Fig. 11.4 Dispersion relations for a SWCNT obtained from both local and nonlocal Flügge shell
theories for axial wavenumber ξ R = 1 (a) Wavenumber variation (b) Phase speed variation

ties of circumferential waves are smaller in nonlocal elasticity as compared to local
elasticity (see Fig. 11.3b).

Figure 11.4a shows the variation of circumferential wavenumbers obtained from
both local and nonlocal elastic shell models, for an axial wavenumber of ξ R = 1.
Here, coupling exists between the axial, circumferential, and radial wave modes. It
can be seen that the axial mode has a nonlinear variation with frequency unlike of
what is shown in Fig. 11.3a. This nonlinear variation occur due to the coupling arising
from the coupled displacement fields. Thus, here, the axial modes are dispersive in
nature. Next, the real part of the wavenumbers for the axial mode exists after cut-
off frequency. This implies that the mode start propagating only after the cut-off
frequency. In Fig. 11.3a, where ξ R = 0, such cut-off frequency does not exist for
the axial mode. The radial mode, however, shows similar pattern as in Fig. 11.3a and
has a frequency band within which the waves do not propagate. The circumferential
mode also shows similar pattern as in Fig. 11.3a and does not have a frequency band.
The importance of this figure is to check the effect of axial wavenumber on the wave
behavior in SWCNT. For ξ R �= 0, the wavenumbers for the axial mode exists after
a certain frequency band. The phase speed variation obtained from both local and
nonlocal elastic models for ξ R = 1 is shown in Fig. 11.4b.

Equations (11.35) and (11.36) gives the expression for escape frequencies of radial
and axial wave modes, respectively. From these expressions, it is clear that escape
frequency values are independent of SWCNT diameter, for both wave modes. How-
ever, the phase speed amplitudes may change. Figure 11.5 shows the variation of
escape frequencies of axial and radial wave modes with the nonlocal scaling pa-
rameter. It shows that as e0a increases, the escape frequency decreases. At higher
values of e0a, escape frequencies approach to very small values. Figure 11.6 shows
the dependence of the escape frequency on the CNT radius and the nonlocal scaling
parameter. From this figure, it is clear that the escape frequency does not vary with
the radius of SWCNT. As the nonlocal scaling parameter increases the magnitude of
the escape frequency decreases for both the wave modes as shown in Fig. 11.6a–d.
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Fig. 11.5 Escape frequency variation of SWCNTs with nonlocal scaling parameter (e0a)
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Fig. 11.6 Effect of radius of SWCNT and nonlocal scaling parameter on the escape frequencies
of axial and radial wave modes



334 11 Wave Propagation in Nanoshells

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Radius of SWCNTc (R) [nm]

C
ut

−
of

f F
re

qu
en

cy
 [T

H
z]

Axial Wave Mode
Radial Wave Mode
Circumferential Wave Mode

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Radius of SWCNTc (R) [nm]

C
ut

−
of

f F
re

qu
en

cy
 [T

H
z]

Axial Wave Mode
Radial Wave Mode
Circumferential Wave Mode

(b)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Radius of SWCNT (Rc) [nm]

C
ut

−
of

f F
re

qu
en

cy
 [T

H
z]

Axial Wave Mode
Radial Wave Mode
Circumferential Wave Mode

(c)

Fig. 11.7 Cut-off frequency variation with radius of carbon nanotube for (a) ξ R = 0, (b) ξ R = 1
and (c) ξ R = 5 (For any value of nonlocal-scaling parameter)

The cut-off frequency variation with radius (R) of SWCNT is shown in Fig. 11.7.
Figure 11.7a, b, and c are shown for ξ R = 0, 1 and 5, respectively. When ξ R = 0,
the cut-off frequencies exists for only radial wavemodes. As the radius of the nanotube
increases, the cut-off frequency decreases and at higher values of R the cut-off
frequency approaches to very small values. The cut-off frequency of the radial wave
for different values of nonlocal scaling parameter is given in Table 11.1. It has been
found that the cut-off frequency will not vary with the nonlocal scaling parameter.
Figure 11.7b, c (when ξ R �= 0), shows that the cut-off frequencies exists for both
the axial and radial wave modes. As the radius of the nanotube increases, the cut-off
frequencies of axial and radial waves will decrease and at higher values of R the
cut-off frequencies approach to very small values. These cut-off frequencies will
also not vary with the nonlocal scaling parameter as given in Tables 11.2 and 11.3.
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Table 11.1 Radial wave cut-off frequencies (ωR
c ) in THz for ξ R = 0

Rcnt (nm) ωR
c @ e0a = 0.0 nm ωR

c @ e0a = 1.0 nm ωR
c @ e0a = 10.0 nm

0.5000 6.4335 6.4335 6.4335
1.5556 2.0679 2.0679 2.0679
2.6111 1.2319 1.2319 1.2319
3.6667 0.8773 0.8773 0.8773
4.7222 0.8773 0.8773 0.8773
5.7778 0.5567 0.5567 0.5567
6.8333 0.4707 0.4707 0.4707
7.8889 0.4078 0.4078 0.4078
8.9444 0.3596 0.3596 0.3596
10.0000 0.3217 0.3217 0.3217

Table 11.2 Radial wave cut-off frequencies (ωR
c ) in THz for ξ R = 1

Radius of CNT (nm) ωR
c @ e0a = 0.0 nm ωR

c @ e0a = 1.0 nm ωR
c @ e0a = 10.0 nm

0.5000 7.0626 7.0626 7.0626
1.5556 2.2658 2.2658 2.2658
2.6111 1.3496 1.3496 1.3496
3.6667 0.9611 0.9611 0.9611
4.7222 0.7462 0.7462 0.7462
5.7778 0.6099 0.6099 0.6099
6.8333 0.5157 0.5157 0.5157
7.8889 0.4467 0.4467 0.4467
8.9444 0.3940 0.3940 0.3940
10.0000 0.3524 0.3524 0.3524

Table 11.3 Axial wave cut-off frequencies (ωA
c ) in THz for ξ R = 1

Radius of CNT (nm) ωA
c @ e0a = 0.0 nm ωA

c @ e0a = 1.0 nm ωA
c @ e0a = 10.0 nm

0.5000 5.7481 5.7481 5.7481
1.5556 1.8494 1.8494 1.8494
2.6111 1.1018 1.1018 1.1018
3.6667 0.7847 0.7847 0.7847
4.7222 0.6093 0.6093 0.6093
5.7778 0.4980 0.4980 0.4980
6.8333 0.4210 0.4210 0.4210
7.8889 0.3647 0.3647 0.3647
8.9444 0.3217 0.3217 0.3217
10.0000 0.2877 0.2877 0.2877
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11.2 Fluid-Filled Nanoshells

Fluid-filled nanotubes modeled as hollow SWCNT beam using both local and non-
local theory was presented in Chap. 7. It was shown that the fluid loading on the
walls of the nanobeam had significantly influenced the dispersion characteristics
of the nanobeam. In this chapter, we will model the same problem, wherein the
SWCNT will be modeled as a nanoshell containing the fluid. The major feature of
such modeling is that in addition to the regular axial and transverse modes (acoustic
phonon modes), we will be able to capture the cross-sectional breathing modes
(optical modes). Analysis based on both local and nonlocal elasticity models will
be presented and in particular, the effect of fluid on the circumferential or breathing
modes will be investigated in detail. The modeling of SWCNT will again be based
on Flügge’s thin shell theory [3] . The three degree of freedom nanoshell is shown in
Fig. (11.1). The governing differential equations including the nonlocal effects for
the fluid-filled SWCNT are given as

∂2u

∂x2 + (1 − ν)

2R2

∂2u
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where 
 = (1−ν2)D
Eh R2 , Γ = ρh(1−ν2)

Eh

http://dx.doi.org/10.1007/978-3-319-01032-8_7
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where u, v, and w are the axial, circumferential and radial displacements of the
SWCNT wall, respectively. These displacements are function of x, θ , and t . R is
the centerline radius of the SWCNT and h is the thickness of the wall. E, ρ, ν and
D are the Young’s modulus, mass density, Poisson’s ratio, and the effective bending
stiffness, respectively. The equation of motion of fluid in the cylindrical shell is given
by [8]

1

R

∂

∂R

[
R
∂p f

∂R

]
+ 1

R2

[
∂2 p f

∂θ2

]
+ ∂2 p f

∂x2 = 1

C2
f

∂2 p f

∂t2 (11.40)

where p f is the acoustic pressure and C f is the sound speed of the fluid.

11.2.1 Wave Dispersion Analysis

The displacements u, v, and w for the SWCNT wall is approximated as general
solution form of the wave propagation can be given by,

u(x, θ, t) = Û exp{− j (ka x − ωt)} cos (kcθ) (11.41)

v(x, θ, t) = V̂ exp{− j (ka x − ωt)} sin (kcθ) (11.42)

w(x, θ, t) = Ŵ exp{− j (ka x − ωt)} cos (kcθ) (11.43)

where Û , V̂ , and Ŵ represent the longitudinal, circumferential, and radial ampli-
tudes of displacements of the SWCNT, respectively. ω is the circular frequency,
ka and kc are the axial and circumferential wavenumbers, respectively. Substituting
Eqs. (11.41)–(11.43) into the governing wave equations (see Eqs. (11.37)–(11.39)),
we get the reduced equations as follows. Writing it in matrix form, we get the
Polynomial Eigenvalue Problem as,

A4kc4 + A3kc3 + A2kc2 + A1kc + A0 = 0 (11.44)

where,

A4 =
⎡
⎣ 0 0 0

0 0 0
0 0 


R2

⎤
⎦ A3 =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ (11.45)
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)(1−ν)
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j
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2R 0
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⎤
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where χ = 1 + (e0a)2ka2
. The wavenumbers can be computed by solving the PEP

(Eq. 11.44). The phase speed is calculated from the definition of phase speed as
C p = Real[ω/kc].

Based on the displacement modes (Eqs. (11.41)–(11.43)) of dynamic response
to a fluid-filled SWCNTs, the pressure caused by a fluid liquid in the CNT should
satisfy the acoustic wave equation (Eq. (11.40)) in cylindrical co-ordinates, which
can be expressed as

p f = Pa
0 Zn(k

r R) exp{− j (ka x − ωt)} cos (kcθ) (11.49)

where

Pa
0 = ρ f ω

2

kr Z ′
n(k

r R)
Ŵ , kr = ±

[
ω2

C2
f

− ka2

]1/2

(11.50)

where ρ f is the density of the fluid, where Zn denotes a Bessel function Jn of order n

when kr2
> 0, and the modified Bessel function In when kr2

< 0. Here kr represent
the radial wavenumber.

Next, numerical experiments are presented to analyze the ultrasonic wave prop-
erties of fluid-filled SWCNTs including nonlocal scale effects.

The material properties of SWCNT are as follows, Young’s modulus, Eh =
360 J/m2, mass density, ρ = 2700 kg/m3 and Poisson’s ratio, ν = 0.27. The
SWCNT wall thickness h = 0.34 nm. The effective bending stiffness, D is taken as
D = 2 eV (1eV = 1.6021 × 10−19 N/m2). The SWNTs have a diameter of 2.0 nm.
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Fig. 11.8 Wavenumber [thin lines-imaginary; thick lines-real] and phase speed dispersion in fluid-
filled SWCNTs: (a) & (b) local elasticity, (c) & (d) nonlocal elasticity

The property of water fluid has the density of 1000 kg/m3 and the free wave speed
of 1500 m/s.

Figure 11.8a and c show the real and imaginary parts of the circumferential
wavenumber of fluid-filled SWCNT for local elasticity and nonlocal elasticity,
respectively. These wavenumbers are obtained by assuming variation only in the
circumferential direction. The thick lines represent the real part and the thin lines
show the imaginary part of the wavenumbers. From Fig. 11.8a, it can be seen that
there are three modes of wave propagation, namely, axial, circumferential, and radial.
The wavenumbers for the axial mode has a linear variation with the frequency. The
linear variation of the wavenumbers denote that the waves will propagate nondis-
persively (see Fig. 11.8b). On the other hand, the circumferential wavenumbers are
dispersive in nature. However, the wavenumbers of this circumferential wave mode
have a substantial real part starting from the zero frequency. The radial mode, how-
ever, has a certain frequency band within which the corresponding wavenumbers
are purely imaginary. Thus, the radial mode does not propagate at frequencies lying
within this frequency band. The presence of fluid (water) in SWCNT alters the ul-
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trasonic wave dispersion behavior. The wavenumber and wave velocity are smaller
in the presence of fluid as compared to the empty SWCNT as shown in Fig. 11.8.

Figure 11.8b shows the wavenumber dispersion obtained from nonlocal elastic-
ity. It can be seen that because of nonlocality, the wavenumber tends to reach the
continuum limit at escape frequencies. Observe that the circumferential waves are
not following the nonlocal elasticity behavior, that is, the wavenumbers do not tend
to infinity and the corresponding wave speeds are not zero. It shows that the circum-
ferential waves will propagate at any frequencies.

Figure 11.9 shows the variation of circumferential wavenumbers with and without
fluid in SWCNT for an axial wavenumber of ka = 5 nm−1. Here, coupling exists
between the axial, circumferential and radial wave modes. It can be seen that the
axial mode has a nonlinear variation with frequency unlike that shown in Fig. 11.8a.
This nonlinear variation occur due to the coupling of degrees of freedom. Thus,
here, the axial modes are dispersive in nature. Next, the real part of the wavenumbers
for the circumferential mode exists after a certain frequency referred as the cut-
off frequency. This implies that the mode start propagating only after the cut-off
frequency. In Fig. 11.8a and c, where ka = 0, such cut-off frequency does not exist
for the circumferential mode. The radial mode, however, shows similar pattern as in
Fig. 11.8 and has a frequency band within which the waves do not propagate.

Figure 11.10 shows the effect of fluid density on ultrasonic wave propagation
in fluid-filled SWCNTs. It has been observed that the wavenumber of all the three
modes will increase as the fluid in CNT becomes denser (see Fig. 11.10a) and the
corresponding wave speeds will decrease (see Fig. 11.10b). The other observation is
that the cut-off frequencies of the radial waves will decrease as the fluid becomes
denser. That implies the cut-off frequencies of the radial waves will depend on the
density of the fluid in SWCNT.

The effect of the axial wavenumber (ka) on the ultrasonic wave behavior in fluid -
filled SWCNTs is also observed in Fig. 11.11. The effect of axial wavenumber on total

Fig. 11.9 Wavenumber [thin
lines-imaginary; thick lines-
real] dispersion in fluid-
filled SWCNTs for axial
wavenumber ka = 5 nm−1
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Fig. 11.10 Variation of (a) wavenumber [thin lines-imaginary; thick lines-real] and (b) phase speed
dispersion in fluid-filled SWCNTs for different fluid densities (ρ f )
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Fig. 11.11 Variation of wavenumber [only real part is shown] and phase speed dispersion in water-
filled SWCNTs for different axial wavenumbers of ka = 3, 5 and 7 nm−1

ultrasonic wave behavior on SWCNTs is already explained in Fig. 11.9. Similar type
of behavior is also observed in Fig. 11.11. As we increase ka , the cut-off frequencies
of the radial and circumferential modes will also increase. The axial waves in this
case are dispersive in nature as shown in Fig. 11.11a. The effect of ka on the wave
velocity of fluid-filled SWCNTs is shown in Fig. 11.11b. For smaller frequencies,
the wave velocities decrease as ka increase, and at higher frequencies the velocities
are almost constant (see Fig. 11.11b).

11.3 Wave Propagation in Higher Order Nanoshells

In this section, first order shear deformation theory (FSDT) is used, that includes
the contribution of stiffness and inertial coupling for studying the characteristic
wave propagation in carbon nanotubes is presented. The model uses lateral con-
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traction caused by Poisson’s ratio effect . Appearance of higher order Lamb wave
modes above certain cut-off frequencies have been studied for bulk metallic beams
by Mindlin and Harrmann [9], Doyle [4] and Gopalakrishnan [10] and for laminated
composite plates by Karim it et al. [11]. In this section, the contribution of a contrac-
tional mode along with shear mode is studied for their effects on the wave behavior
of cylinrical SWCNTs. Expression of cut-off frequencies and escape frequencies in
shear mode and contractional mode are also derived.

11.3.1 Governing Nanoshell Equations Including Shear
and Contraction Effects

The displacement field for axial and transverse motion based on FSDT and thickness
contraction is given by

u(x, y, z, t) = u0(x, t)− zφ(x, t) (11.51)

w(x, y, z, t) = w0(x, t)+ zψ(x, t) (11.52)

where u and w are the axial and transverse displacements, respectively, at a material
point. u0 is the beam axial displacement along the reference plane, w0 is the transverse
displacement on the reference plane, φ is the curvature- independent rotation of the
beam cross-section about Y -axis and ψ = εzz is the contraction/elongation parallel
to Z -axis (shown in Fig. 11.12).

The strains are obtained as

εxx = ∂u0(x, t)

∂x
− z

∂φ(x, t)

∂x
(11.53)

εzz = ψ(x, t) (11.54)

εxz = −φ(x, t)+ ∂w0(x, t)

∂x
+ z

∂ψ(x, t)

∂x
(11.55)

The nonlocal constitutive relation for isotropic materials is given as

⎧⎨
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σxx

σzz

τxz

⎫⎬
⎭ − (e0a)2
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⎭ =

⎡
⎣ C11 νC12 0
νC12 C22 0

0 0 C66

⎤
⎦

⎧⎨
⎩
εxx

εzz

γxz

⎫⎬
⎭ (11.56)

where, σxx and σzz are the normal stresses in x and z directions respectively and
τxz is the in-plane shear stress. For the case of an isotropic plate, the expressions for
Ci j in terms of Young’s modulus E and Poisson’s ratio ν are given as C11 = C12 =
C22 = E/(1 − ν2) and C66 = E/(2(1 + ν)).
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Fig. 11.12 Mathematical and structural idealization of the single-walled carbon nanotube (SW-
CNT) showing the degree of freedom defined on both the discrete structure and its equivalent
continuum structure

The potential and kinetic energies are given as

Π E = 1

2

∫
V
(σxxεxx + σzzεzz + τxzγxz) dV

= 1

2

∫ L

0

∫
A
(σxxεxx + σzzεzz + τxzγxz) dxd A (11.57)
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2
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(
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)
dxd A (11.58)

assuming constant cross-sectional area of SWCNT,

Π E = 1

2
A

∫ L

0
(σxxεxx + σzzεzz + τxzγxz) dx (11.59)
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2
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)
dx (11.60)
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Using Hamilton’s principle,

∫ t2

t1
δ£E dt =

∫ t2

t1

(
δΓ E − δΠ E

)
dt = 0 (11.61)

and Eqs. (11.53)–(11.55) and (11.56), and the fundamental lemma of calculus of
variations, the nonlocal governing equations of motion are derived as:
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where

Jp =
∫ 2π

0

∫ R+h

R−h
z prdrdθ, (11.66)

Ip =
∫ 2π

0

∫ R+h

R−h
ρz prdrdθ (11.67)

Here z = r sin θ and p = 0, 1, 2. One can substitute e0a = 0 in the Eqs. (11.62)–
(11.65), to recover the local or classical coupled equations for the SWCNTs.



11.3 Wave Propagation in Higher Order Nanoshells 345

11.3.2 Wave Dispersion Analysis

Using discrete Fourier transformation (DFT) for the temporal field, the spectral
solution for primary displacement field variables can be expressed as

d (x, t) = d̂ (x, ω) e− j(kx−ωt) (11.68)

where d = {u0 ψ w0 φ}T is the generic displacement vector as a function of (x, t)
and d̂ = {û0 ψ̂ ŵ0 φ̂}T represents the the spectral amplitude vector corresponding
to generic displacement vector as a function of (x, ω). k is the wavenumber and ω
is the angular frequency of the wave motion and j = √−1.

Substituting Eqs. (11.68) in the governing equations of motion of SWCNT (see
Eqs. (11.62)–(11.65)) yields four homogeneous equations in terms of û, ψ̂ , ŵ and φ̂
as ⎡

⎢⎢⎣
Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

û0

ψ̂

ŵ0

φ̂

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

(11.69)

where

Q11 = −C11 J0k2 + I0ω
2 + I0ω

2(e0a)2k2;
Q12 = −Q21 = − jC12 J0k;
Q13 = Q31 = 0;
Q14 = Q41 = C11 J1k2 − I1ω

2 − I1(e0a)2ω2k2;

Q22 = −C55 J2k2 − C12 J0 + I2ω
2 + I2ω

2(e0a)2k2;
Q23 = Q32 = −C55 J1k2 + I1ω

2 + I1ω
2(e0a)2k2;

Q24 = −Q42 = j (C55 − C12)J1k;
Q33 = −C55 J0k2 + I0ω

2 + I0ω
2(e0a)2k2;

Q34 = −Q43 = jC55 J0k;
Q44 = −C11 J2k2 − C55 J0 + I2ω

2 + I2ω
2(e0a)2k2. (11.70)

The wavenumbers and hence the wave speeds (i.e., phase and group speeds)
are solved from Eq. (11.69) by using Polynomial Eigenvalue Problem . Equating
the determinant of matrix [Qab] to zero (for the nontrivial solution of d̂ will give
the characteristic polynomial in terms of wavenumber k of the order 8, solution of
which is quite difficult. PEP converts the characteristic polynomial equation into a
matrix of size 4 × 4, whose eigen values form the solution of the equation. After
obtaining the wavenumbers, the wave speeds are extracted. The details of compu-
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tation of wavenumbers using PEP are as follows. We write characterestic equation
(Eq. (11.69)) of the form given by

[S2]k2 + [S1]k + [S0] = 0 (11.71)

where

[S2] =

⎡
⎢⎢⎢⎣

S(11)
2 0 0 S(14)

2

0 S(22)
2 S(23)

2 0
0 S(32)

2 S(33)
2 0

S(41)
2 0 0 S(44)

2

⎤
⎥⎥⎥⎦ (11.72)

[S1] =

⎡
⎢⎢⎣

0 − jC12 J0 0 0
jC12 J0 0 0 − j (C12 − C66)J1

0 0 0 jC66 J0
0 j (C12 − C66)J1 − jC66 J0 0

⎤
⎥⎥⎦ (11.73)

[S0] =

⎡
⎢⎢⎣

I0ω
2 0 0 −I1ω

2

0 −C22 J0 + I2ω
2 I1ω

2 0
0 I1ω

2 I0ω
2 0

−I1ω
2 0 0 −C66 J0 + I2ω

2

⎤
⎥⎥⎦ (11.74)

Here

S(11)
2 = −C11 J0 + I0ω

2(e0a)2

S(14)
2 = S(41)

2 = C11 J1 − I1(e0a)2ω2

S(22)
2 = −C66 J2 + I2ω

2(e0a)2

S(23)
2 = S(32)

2 = −C66 J1 + I1ω
2(e0a)2

S(33)
2 = −C66 J0 + I0ω

2(e0a)2

S(44)
2 = −C11 J2 + I2ω

2(e0a)2 (11.75)

This form is amenable to solution of wavenumbers through PEP. From Eq. (11.71),
we can clearly see the dependence of nonlocal scale parameter e0a on wavenumber.
The cut-off frequencies of this SWCNTs are obtained by setting Det ([S0]) = 0,
which gives

ωaxial
c = 0, ω f lexural

c = 0 (11.76)

ωcontraction
c =

√
C22 I0 J0

I0 I2 − I 2
1

, ωshear
c =

√
C66 I0 J0

I0 I2 − I 2
1

(11.77)
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Next, we will set Det[S2] = 0 and determine the escape frequencies, which are
given by

ωaxial
e = 1/e0a

√
C66[

2(I0 I2 − I 2
1 )

√
X2 − 4I1 J1 X1 + 4X0 − 2I0 I2 J0 J2 + X1 − 2I1 J1

]1/2

(11.78)

ω
f lexural
e =

√
C66

e0a

[√
X2 − 4I1 J1 X1 + 4X0 − 2I0 I2 J0 J2 − X1 + 2I1 J1

2(I 2
1 − I0 I2)

]1/2

(11.79)

ωshear
e = 1/e0a

√
C11[

2(I0 I2 − I 2
1 )

√
X2 − 4I1 J1 X1 + 4X0 − 2I0 I2 J0 J2 + X1 − 2I1 J1

]1/2

(11.80)

ωcontraction
e =

√
C11

e0a

[√
X2 − 4I1 J1 X1 + 4X0 − 2I0 I2 J0 J2 − X1 + 2I1 J1

2(I 2
1 − I0 I2)

]1/2

(11.81)
where
X2 = I 2

0 J 2
2 + I 2

2 J 2
0 ; X1 = I0 J2 + I2 J0; X0 = I0 I2 J 2

1 + I 2
1 J0 J2. Here ωe is the

escape frequency or sometimes called the asymptotic frequency. Differentiating the
Eq. (11.71) with respect to the wave frequency (ω), one can obtain the group speeds
as

2ω
(
(e0a)2k2 + 1

)
[H]Cg + 2k[S2] + [S1] = 0 (11.82)

Here

[H] =

⎡
⎢⎢⎣

I0 0 0 −I1
0 I2 I1 0
0 I1 I0 0

−I1 0 0 I2

⎤
⎥⎥⎦ (11.83)

where Cg = (∂ω/∂k) is the group speed of a wave in SWCNT and the matrices
[S2], and [S1] are given in Eqs. (11.72) and (11.73), respectively. This is again a PEP
in terms of Cg and one can solve it for group speeds of respective modes (i.e., for
axial, flexural, shear, and contraction), which is again a function of nonlocal scale
parameter.

The phase speed is next calculated from the usual definition as

C p = Re
(ω

k

)
(11.84)

The detail effect of the nonlocality on wave speeds of single-walled carbon nanotubes
will be discussed in the later part of this section.

We will now present the numerical results for the wave properties of higher order
SWCNTs. First, the wavenumber, phase and group speeds are obtained for SWCNT
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Fig. 11.13 Dispersion Analysis of Fluid-Filled Higher order SWCNT (Both local and nonlocal
models (a) Wavenumber variation (b) Phase speed variation (c) Group speed variation

from local and nonlocal elastic theories. Following Wang [12], the nonlocal parameter
e0a should be less than 2.0 nm, hence, here in the simulation procedure, we choose
e0a = 0 nm and 0.5 nm, respectively.

Figure 11.13a shows the real and imaginary parts of the wavenumber of SWCNT
obtained from both local and nonlocal models. These wavenumbers are obtained
by solving the PEP given in Eq. (11.71). Thick lines represent the real part and the
thin lines show the imaginary part of the wavenumbers. From Fig. 11.13a, it can be
seen that there are four modes of wave propagation, namely, axial, flexural, shear,
and contractional. For local/classical elasticity (e0a = 0), the wavenumbers for the
axial mode has a linear variation with the frequency which is in the tera hertz (THz)
range. On the other hand, the flexural wavenumbers have a nonlinear variation with
the frequency at low frequencies, while at high frequencies, the flexural waves show
a linear variation with frequency. The shear and contractional wave modes, however,
have certain frequency band within which the corresponding wavenumbers are purely
imaginary. Thus, these modes do not propagate at frequencies lying within this band.
Both the shear and contraction wavenumbers have a substantial imaginary part along
with the real part, thus these waves attenuate as they propagate. In the present study
for a 3.5 nm radius SWCNT, we have shear cut-off frequency at 0.8545 THz and
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contraction cut-off frequency at 1.404 THz. The values of the cut-off frequency are
calculated from Eq. (11.77). It can be observed from Eq. (11.77) that these frequencies
are independent of the nonlocal scaling parameter, and hence same frequencies are
obtained from both local and nonlocal theories.

For e0a = 0, which is the case of local theory of elasticity solution, wavenumbers
increase monotonically with the increase in frequency, which is shown in Fig. 11.13a
and correspondingly, the wave speeds, shown in Figs. 11.13b and c increases with
increase in wave frequency. However, at higher frequencies, they attain a constant
value. However, with the introduction of scale effects (for present analysis e0a =
0.5 nm), the wave behavior is altered drastically. All the wave modes escapes to
infinity (as shown in Fig. 11.13a), at escape frequency, and beyond this frequency
there is no wave propagation. These are shown in Figs. 11.13b and c.

Effect of nonlocal scaling parameter and radius of SWCNT on the escape frequen-
cies of axial, flexural, shear, and contraction wave modes as shown in Figs. 11.14
and 11.15 a-d, respectively.

Figure 11.14 shows the variation of escape frequencies of flexural and shear wave
modes with the nonlocal parameter. The value of escape frequency decreases with
increase in the scale parameter e0a, for all the wave modes. The escape frequencies
of the axial and flexural waves are same and that of the shear and contraction waves
are also same. It shows that as e0a increases, the escape frequency decreases. At
higher values of e0a, escape frequencies approach to very small values as shown in
Fig. 11.14. Equations (11.78)–(11.81) gives the expressions for escape frequencies
of all waves in SWCNT. From these expressions it is clear that escape frequency
values are independent of SWCNT diameter (see Fig. 11.3.2), for all wave modes.
The detailed variation in escape frequency for SWCNTs as a function of nonlocal
scale parameter is shown in Figs. 6.8a-d for e0a = 0.5 nm, 1.0 nm, 1.5 nm and
2.0 nm, respectively. It shows the effect of the radius of the nanotube and nonlo-

Fig. 11.14 Effect of small-
scale parameter on the escape
frequencies of axial, flexural,
shear, and contractional waves
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Fig. 11.15 Escape frequency variation with radius of SWCNT

Fig. 11.16 Cut-off frequency
variation of the shear and
contraction wave modes
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Fig. 11.17 (a) Axial, (b) contraction, (c) flexural and (d) shear wave modes (at 10.067-THz wave
frequency) for a (30,30) SWCNT of length 15.282 nm consisting of 7,500 carbon atoms

cal scaling parameter (e0) on the escape frequency of SWCNTs more clearly. The
escape frequencies for both axial and flexural modes are same that of the shear and
contraction waves is also same and these are constant with respect to the radius of
the CNT. These values of escape frequency are decreasing with the nonlocal scale
coefficient e0a (see Fig. 11.15a–d) and are still constant with radius of CNT.

The variation of the cut-off frequencies of shear contraction wavemodes with
radius (R) of SWCNT are shown in Fig. 11.16. This figure shows that, as the radius
of the nanotube increases, the cut-off frequencies decrease and at higher values of R,
the cut-off frequencies approach to a very small values. Hence, it can be concluded
that for large values of scale parameter, shear deformation on CNT has negligible
effect and CNT behaves like more like elementary beam (for more details see Refs.
[13–16]).

Figure 11.17 shows the wave modes at 10.067-THz wave frequency of a (30,30)
SWCNT of length 15.282 nm consisting of 7,500 carbon atoms. Figure 11.17a is for
axial wave mode case, Fig. 11.17b is for contraction, Fig. 11.17c is for flexural and
Fig. 11.17d is for shear wave modes of this SWCNT. From these figures, one can
clearly visualize the type of wave mode and its effect on the CNT.
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11.4 Summary

This chapter began with a study of the ultrasonic wave propagation analysis in SW-
CNT using nonlocal elasticity theory via nonlocal Flügge’s shell theory . Nonlocal
governing equations for this system are derived and wave propagation analysis is also
carried out. The nonlocal elasticity calculation shows that the wavenumber tends to
infinity at escape frequency and the corresponding wave velocity tends to zero at
those frequencies indicating localization and stationary behavior. This behavior is
observed only for axial and radial waves in SWCNT. It has been shown that the
circumferential waves will propagate dispersively at higher frequencies in nonlocal
elasticity. We also show that the cut-off frequencies depend on the axial wavenumber
and not on the nonlocal scaling parameter.

Next, the ultrasonic wave characteristics of fluid-filled SWCNTs are studied by
modeling it as a thin shell based on Flügge’s shell theory incorporating nonlocal scale
effects. The ultrasonic wave propagation analysis is also carried out. The presence of
fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and
wave velocity are smaller in the presence of fluid as compared to the empty SWCNT.
The nonlocal elasticity calculation shows that the wavenumber tends to reach the
continuum limit at certain frequencies and the corresponding wave velocity tends to
zero at those frequencies indicating localization and stationary behavior. The effect
of density and axial wavenumber on the ultrasonic wave behavior in SWCNTs filled
with water is also discussed in this section.

Finally, the effect of nonlocal scaling parameter on the coupled (axial, flexural,
shear, and contraction) wave propagation in SWCNTs is studied. The axial and
transverse motion of SWCNT is modeled based on FSDT and thickness contraction.
The governing equations are derived based on nonlocal constitutive relations and the
wave dispersion analysis is also carried out. The nonlocal elasticity calculation shows
that the wavenumber tends to infinite at certain frequencies and the corresponding
wave velocity tends to zero at those frequencies indicating localization and station-
ary behavior. A polynomial eigenvalue problem in wavenumbers is obtained as a
function of wave frequency, nonlocal scale parameter, and the material properties
of the SWCNT. Explicit expressions are derived for cut-off and escape frequencies
of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and
contraction mode are independent of the nonlocal scale parameter.

At the end of this book, the reader will now be in a position to understand the
effects of various nanostructure parameters on its wave propagation. Some of the
observations may be same for some cases discussed in this book (such as existence
of escape frequencies for all cases of nonlocal elasticity waveguides), while many
new phenomenon are seen in certain nonlocal waveguides. This book has shown
the complex nature of wave propagation in many different nanostructures and it has
unified the whole wave propagation analysis concepts under one major analysis tool,
that is the spectral analysis of motion.



References 353

References

1. Q. Wang, V.K. Varadan, Application of nonlocal elastic shell theory in wave propagation
analysis of carbon nanotubes. Smart Mater. Struct. 16, 178–190 (2007)

2. S. Markus, The Mechanics of Vibration of Cylindrical Shells (Elsevier, Amsterdam, 1988)
3. W. Flugge, Stresses in Shells (Springer, Berlin/Heidelberg, 1960)
4. J.F. Doyle, Wave Propagation in Structures (Springer-Verlag Inc., New York, 1997)
5. S. Gopalakrishnan, A. Chakraborty, D. Roy Mahapatra, Spectral Finite Element Method

(Springer-Verlag Landon Ltd, Roy Mahapatra, Spectral Finite Element Method, 2008)
6. L.H. Ye, B.G. Liu, D.S. Wang, R. Han, Ab initio phonon dispersions of single-wall carbon

nanotubes. Phys. Rev. B 69, 235409 (2004)
7. L. Chico, R. Perez-Alvarez, C. Cabrillo, Low-frequency phonons in carbon nanotubes: a con-

tinuum approach. Phys. Rev. B 73, 075425 (2006)
8. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1969)
9. R.D. Mindlin, G. Harrmann, A one dimensional theory of compressional waves in an elastic

rod. In: Proceedings of First US National Congress of Applied Mechanics, 187–191 (1950)
10. S. Gopalakrishnan, A deep rod finite element for structural dynamics and wave propagation

problems. Int. J. Numer. Meth. Eng. 48, 731–744 (2000)
11. M.R. Karim, M.A. Awal, T. Kundu, Elastic wave scattering by cracks and inclusions in plates:

in-plane case. Int. J. Solids Struct. 29(19), 2355–2367 (1992)
12. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal

of Applied Physics 98, 124301 (2005)
13. S. Narendar, S. S. Gupta, S. Gopalakrishnan, Longitudinal magnetic field effect on nonlocal

ultrasonic vibration analysis of single-walled carbon nanotubes based on wave propagation
approach. Adv. Sci. Let. 4(11/12), 3382–3389 (2011)

14. S. Narendar, S. Gopalakrishnan, A revisit to capture the entire behavior of ultrasonic wave
dispersion characteristics of single walled carbon nanotubes based on nonlocal elasticity theory
and Flugge shell model. J. Comput. Theor. Nanos. 8(10), 1933–1944 (2011)

15. S. Narendar, S. Gopalakrishnan, Ultrasonic wave dispersion characteristics of fluid-filled
single-walled carbon nanotubes based on nonclassical shell model. Adv. Sci. Let. 4(11/12),
3480–3485 (2011)

16. S. Narendar, S. Gopalakrishnan, Nonlocal continuum mechanics formulation for axial, flexural,
shear and contraction coupled wave propagation in single walled carbon nanotubes. Lat. Am.
J. Sol. Struct. 4, 421–437 (2012)



Index

A
Ab initio pseudopotentials, 35
Acoustic phonon dispersion, 330, 336
Acoustic pressure, 337
Anodic alumina, 206
Armchair CNT

chirality, 93
Asymptotic stiffness, 83

B
Band gap, 174, 190, 201, 211, 243, 252,

290, 303
Bessel function, 338
Bi-Helmholtz equation, 151
Born-Karman model, 61, 85, 143, 151
Boussinesq problem, 51
Breathing modes, 336
Brillouin zone, 85, 151, 152
Buckling load, 74, 76
Bulk waves, 305

C
Carbon nanotube, 3

armchair, 8, 71, 80, 86
chiral, 8, 71, 80, 101
chiral angle, 8
chirality, 40
in plane stiffness, 72
material property extimation, 71
multi-Wall, 3, 8
nanoresonator, 38
properties, 10
roll-up vector, 8
rotating, 177

single-wall, 4, 7, 38
structure, 8
zigzag, 8, 71, 80, 94

Centrifugal stiffening, 179
Circumferential displacement, 326, 337
Circumferential wavenumber, 327, 331, 339
Classical elasticity theory, 123, 143,

205, 314
constitutive relation, 143

Classical plate theory, 271
COMPASS, 39
Contractional wave mode, 348
Coupling stiffness, 239, 262
Critical wavenumber, 134, 136
Crystal lattice, 66, 280
Crystallographic direction, 206, 310
Current density, 195
Cut-off frequency, 23, 28, 294

DNBS, 252
DNRS, 243, 246, 247
DWCNT, 226
fluid carrying SWCNT, 193
fluid filled nanoshell, 340
graphene, 275, 277, 278
graphene on silicon substrate, 289
higher order nanoshell, 346
magnetic filed effects, 200
nanoplate with surface effects, 309, 314
nanoplate with temperature

effects, 301, 304
nanoshell, 329, 331, 332
SWCNT Timoshenko beam, 223
Timoshenko DNBS, 259, 261
Timoshenko nanobeam, 174
TWCNT, 233

Cylindrical nanoshell, 324

S. Gopalakrishnan and S. Narendar, Wave Propagation in Nanostructures,
NanoScience and Technology, DOI: 10.1007/978-3-319-01032-8
� Springer International Publishing Switzerland 2013

355



D
Density functional theory, 34
Dispersion relation

DNBS, 251
DWCNT, 225
fluid filled nanoshell, 337
fourth order PDE, 26
graphene, 273
graphene on silicon substrate, 287
higher order nanoshell, 345
lateral inertia effects, 142
MWCNT, 219
nanoplate with surface effects, 309
nanoplate with temperature effects, 300
nanoshell, 327
NLSGM nanorod, 124
NLStGM nanorods, 135
second order PDE, 24
SWCNT, 222
TWCNT, 231

DNBS
Euler-Bernoulli beam theory, 250
governing equations, 257
Timoshenko beam theory, 254

Double nanobeam system, 239, 248
governing equations, 250

Double nanorod system, 239
governing equations, 240

DWCNT, 220, 221
governing equation, 225

Dynamic stiffness, 153

E
Effective density, 139
Eigenvalue problem, 92, 98, 113
Electric field, 195
Equivalent continuum structure, 200
Escape frequency

DNRS, 243, 247
DWCNT, 227, 228
fluid carrying SWCNT, 193
fluid carrying SWCNT, 190
graphene, 275, 277
higher order nanoshell, 347, 349
nanoplate with surface effects, 310, 312,

317
nanoshaft, 149, 151, 152
nanoshell, 329, 332
NLGSM rod, 126
NLSGM nanorods, 124
SWCNT Timoshenko beam, 224
Timoshenko beam theory, 174
Timoshenko DNBS, 259, 261

Timoshenko nanobeam, 174, 175
TWCNT, 233, 234

Euler-Bernoulli beam theory, 72, 81, 165, 185,
203, 211, 239, 248, 249, 266

dispersion relation, 167

F
First order shear deformation theory, 341
Flügge’s shell theory, 324, 336, 352
Flexural wave

graphene on silicon substrate, 290
nanoplate with surface effects, 312
Timoshenko DNBS, 260

Fluid carrying SWCNT, 187, 189
dispersion relation, 188
effect of fluid density, 192
governing equations, 187
Timoshenko beam theory, 189

Fluid filled nanoshell
governing equations, 336

Fourier transform, 20, 168, 273
DFT, 21, 24, 153, 154, 172, 181, 199, 206,

274, 301, 345
FFT, 152, 274, 301

G
Graphene, 60, 121, 269, 270, 289, 317

elastic shell model, 280
governing equations, 271, 273

Graphene on silicon substrate, 280
equilibrium & force constants, 281
force constant, 282, 287
governing equations, 284, 286

Graphite, 8
Green’s function, 65
Group speeds, 22

DNBS, 252, 254
DWCNT, 227
fluid carrying SWCNT, 190
graphene, 274, 277
graphene on silicon substrate, 290, 292
higher order nanoshell, 347
magnetic field effects, 200
nanoplate with surface effects, 309, 312
nanorods, 125
nanoshaft, 150, 152
NLGSM nanobeams, 169
NLStGM nanorods, 134
rotating nanotubes, 185
second order NLStGM nanorods, 133
Timoshenko beam theory, 174
TWCNT, 233

356 Index



H
Hamilton’s principle, 130, 286
Helmholtz decomposition, 151
Hexagonal lattice, 8
Higher order nanoshell

governing equations, 342
Hybrid lattice, 282

bond force, 282
Hyperbolic partial differential equation, 50
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In-plane stiffness, 71, 74, 77, 83
Integro-partial differential equations, 62
Inter-atomic repulsion, 39
Interatomic potentials, 31

AIREBO, 40
Mie, 281
Morse, 85
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Interpolation functions, 45
Inviscid fluid, 187

K
Kirchhoff plate theory, 308

L
Lagrange’s equation, 140
Lamb waves, 306, 342
Laplace Young equation, 307
Laplacian operator, 122
Lattice dynamics, 62, 65, 85, 145, 323

dispersion relation, 145
Lattice parameter, 67
Length scales, 47, 60, 121
Lorentz force, 196
Love’s equation, 140

M
Magnetic field, 195
Magnetic field effects, 199

Euler-Bernoulli beam theory, 197
governing equation, 196
SWCNT, 194

Maxwell’s relations, 195
MEMS, 121, 249
Metropolis algorithms, 42
Microcontinuum, 59
Micropolar theory, 59
Modeling

ab initio methods, 32, 290, 330

continuum modeling, 43, 60
3-D elastodynamic continuum model, 330
finite element method, 44, 47, 152,

157, 310
integral type non local elasticity, 52
kinetic Monte Carlo simulations, 42
mixed spatial-temporal derivatives, 51
molecular dynamics, 36, 280
Monte Carlo methods, 42
multiscale modeling, 46
non local continuum mechanics, 49

Molecular dynamics simulations, 82, 270, 310
Molecular mechanics model, 84
Multi-layered graphene sheets, 270
MWCNT, 215, 239

N
Nanoplate, 284

surface effect, 305
Nanoplate with surface effects

governing equations, 307
Nanoplate with temperature effects

governing equations, 297
Nanorods

dynamic stiffness, 156
Nanoshaft

governing equation, 147
torsional wavenumber, 148

Nanoshell
governing equations, 326

Nanostructures, 41, 81, 121, 201, 249
fullerenes, 3, 121
hybridization, 4
hybridization index, 5
linear hybridization, 7
modeling
nanofiber, 121
nanotube, 7, 40, 121
nanowire, 7, 121, 203
one-dimensional, 121
tertrahedral hybridization, 6
tridiagonal hybridization, 6
two-dimensional, 121, 280
wave propagation, 13
zero-dimensional, 121

Nanotechnology, 2
NEMS, 13, 165, 239, 249, 306
NLSGM, 122
NLSGM MWCNT

governing equations, 218
NLSGM nanobeam

constitutive relation, 170
dispersion relation, 172
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Euler Bernoulli beam theory, 165, 169
flexural wave, 170
Timoshenko beam theory, 170

NLSGM nanorod, 137, 143
constitutive relation, 144
dispersion relation, 144
effect of lateral innertia, 139
governing equation, 122, 124

NLSGM SWCNT
governing equations, 218

NLStGM, 122, 129
NLStGM fourth order nanorod, 144

constitutive relation, 144
dispersion relation, 144
governing equation, 144

NLStGM nanorod, 137
constitutive relation, 129
fourth order, 143
fourth order nanorods, 134
governing equation, 129
second order nanorods, 133
uniqueness and stability, 131

NLStGM second order nanorod, 144
constitutive relation, 144
dispersion relation, 144
governing equation, 144
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Non local theory
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Kernel function, 69
mixed nonlocality, 63
need, 59
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nonlocal scale parameter, 71
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scale parameter estimation, 84
spatial nonlocality, 63
temporal nonlocality, 63
three dimensional modulus, 67
two dimensional modulus, 66
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Nonlocal continuum mechanics, 85, 101
Nyquist frequency, 168, 274, 299

P
Pasternak foundation model, 196, 201
Phase speed, 22

DNBS, 252, 254

DNRS, 243, 246
fluid carrying SWCNT, 190
fluid filled nanoshell, 338
graphene, 277
graphene on silicon substrate, 290
higher order nanoshell, 347
magnetic field effects, 200
nanoplate with surface effects, 309, 312
nanoplate with temperature effects, 301
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nanoshaft, 150, 152
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Polynomial eigenvalue problem, 29, 174, 189,

190, 200, 221, 226, 232, 233, 252, 258,
259, 289, 290, 327, 330, 337, 345

Potential functions, 37
Principle of virtual work, 308

Q
Quantum

coherence, 1
confinement, 1
dots, 121
mechanical potentials, 37
surface effects, 2

R
Radial displacement, 326, 337
Residual surface tension, 307
Rotating nanomotor, 177
Rotating nanotubes

dispersion relation, 181
Euler-Bernoulli theory, 179
governing equations, 178

S
Scale effect, 41
Schrödinger equation, 34, 36
Shape functions, 154, 155, 157
Shear wave mode, 349
Single-layered graphene sheets, 270
Singular value decomposition, 28
Sound speed, 337
Spectral analysis, 21
Spectral finite element, 20, 152, 156, 161,
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Strain-gradient elasticity, 50
Structural dynamics, 19
Surface effects in nanobeam, 201

governing equations, 205
Surface residual stress, 316
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bond length, 86, 110
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in plane stiffness estimation, 75
material property estimation, 79
nanobeam, 170
properties, 115
shell model, 330
solution of equations, 74
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Thermal expansion coefficient, 300
Thermal stress, 297
Three-body interaction, 281
Throw-off element, 153
Timoshenko beam theory, 165, 203, 211, 216,

218, 222, 236, 239, 250, 254, 259, 266
fluid carrying SWCNT, 187
governing equations, 254

Translation vector, 102
Transverse inertia, 140
TWCNT, 221

governing equations, 231

U
Universal force field, 39

V
Van der Waals force, 102, 215–219, 239, 241,

250, 257, 270

W
Wave propagation

coupled systems, 239
2-D nanostructures, 269
DNBS, 248
DNRS, 242
double nanobeam system, 251
fluid filled nanoshell, 336
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graphene on silicon substrate, 284
higher order nanoshell, 341
introduction, 19, 20
molecular dynamics for CNT, 38
molecular dynamics for graphene, 41
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nanoshaft, 147
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Waveguide, 21
Wavenumber, 21, 86

characteristic equation, 24
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DNRS, 242, 244
DWCNT, 226
evanescent mode, 27
fluid carrying SWCNT, 189
fluid filled nanoshell, 337
fourth order NLStGM nanorod, 134
graphene, 274, 275
graphene on silicon substrate, 287, 289
higher order nanoshell, 345, 346, 348
magnetic field effects, 199
nanobeam with surface effects, 206
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nanoplate with temperature
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nanoshell, 327, 330
NLGSM nanobeams, 168
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NLStGM nanorod, 133, 134
propagating mode, 28
rotating nanotubes, 185
SWCNT Timoshenko beam, 222
Timoshenko DNBS, 258
Timoshenko beam theory, 173
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Weak form of the governing equation, 154
Winkler foundation model, 196, 250, 257
Winkler foundation parameter, 200, 244
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Zigzag CNT
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