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Preface
Electromagnetic (EM) energy is a basic force of nature, just like nuclear energy and 
gravity. This energy is utilized in various ways, though we still lack a full under-
standing of its fundamental properties. Many inventions of the late twentieth  century, 
 ranging from consumer products and services to medical equipment, are so important 
and advantageous that we wonder how we ever lived without them. These inventions 
have become an integral part of our modern life. Sure, they are useful; however, we 
need to know that they are safe!

OBJECTIVES

This book is distinguished by extensive descriptions of fundamental physical con-
cepts and principles of EM fi elds and radiation, and their relevance to human health 
and therapeutic applications. Refl ecting the transdisciplinary approach from several 
different intellectual streams involving physics, biology, epidemiology, medicine, 
environment, risk assessment, and various disciplines of engineering, this book is 
quite a venture into the battling studies to access research on bioeffects and thera-
peutic applications of EM energy. The book will permit a broad range of readers 
with reasonable backgrounds in the foundation of science to

Understand necessary EM theory in the context of its interaction with 
human body
Review many of cutting-edge research contributions regarding two major 
broad areas: EM health effects and EM therapy
Realize techniques that have been developed to ensure adequate EM and 
thermal dosimetry required for health effects and thermal therapy
Strengthen understanding of rapidly emerging areas of bioengineering and 
biomedical engineering

SCOPE

This book is divided into a two-chapter introduction and three self-contained parts. 
Chapter 1 provides an introduction to EM fi elds and radiation, while Chapter 2 
 discusses EM interaction mechanisms with biological systems. Part I (Chapters 3 
through 7) deals with the health effects of EM fi elds and radiation, including extremely 
low frequency (ELF) fi elds (Chapters 3 and 4) and radiofrequency radiation (RFR) 
(Chapters 5 and 6). Chapter 7 discusses issues related to EM health risk analysis. 
Part II (Chapters 8 through 10) deals with EM therapy, including an introduction to 
newcomers in the fi eld (Chapter 8), hyperthermia techniques (Chapter 9), and ablation 
techniques (Chapter 10). Part III is related to EM and thermal dosimetry (Chapter 11), 
and thermometry and imaging (Chapter 12).

•

•

•

•
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xviii Preface

AUDIENCE

In preparing the book as a learning resource for a wide range of audiences or as a 
reference for many courses in universities, the author strived to show that the subject 
matter is quite understandable to anyone interested in the details of the health effects 
and medical applications of EM energy. Because of its comprehensive coverage and 
the large number of detailed subjects, this book is useful as a primary reference vol-
ume for a course on the subject. The only prerequisite for understanding the material 
in this book is a basic knowledge of physics and biology.
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1

1 Fundamental Concepts 
in Electromagnetics

1.1 INTRODUCTION

The electromagnetic (EM) fi eld is a physical infl uence (a fi eld) that permeates 
through all of space. It arises from electrically charged objects and describes one 
of the four fundamental forces of nature, electromagnetism, which is found almost 
everywhere. All EM fi elds are force fi elds, carrying energy and capable of producing 
an action at a distance. These fi elds have characteristics of both waves and particles. 
This energy is utilized in various ways, though we still lack a full understanding of 
its fundamental properties. Many inventions of the late twentieth century, ranging 
from everyday home and offi ce appliances to satellite systems and mobile phones, 
are so important and so advantageous, we wonder how we ever lived without them. 
Table 1.1 shows a few examples of EM sources.

Electromagnetic fi elds at all frequencies are one of the most common environ-
mental issues, about which there is a growing concern and speculation. EM fi elds 
are present everywhere in our environment but are invisible to the human eye. All 
 populations are now exposed to varying degrees of EM fi elds, and the levels will con-
tinue to increase as technological inventions advance. These inventions have become 
an integral part of our modern life. We just need to know that they are safe.

The aim of this chapter is to introduce EM fi elds and radiation. This covers a 
frequency range from 0 Hz to about 10 GHz and above. The chapter is organized to 
provide the newcomer with basic scientifi c information and concludes by discussing 
the details of various EM exposure sources—the familiar reader may skip most of 
it. It is included in order to enable this book to stand on its own. Later in this book, 
health effects and medical applications are separated due to fi elds from some sources 
and due to radiation from other sources. The reader, however, needs to remember 
that the general phenomena is always considered, which is EM fi elds.

1.2 FIELDS

The word “fi eld” refers to any physical quantity whose value depends on its position 
in space. Examples of fi elds include the temperature in a room and temperature distri-
bution inside a human body. Field also represents an area around a source of electric 
or magnetic energy within which a force exists and can be measured. Fields may be 
static or time dependent. For example, the temperature fi elds described above are time 
dependent since the room or the human body is heated or cooled as a function of time. 
Under certain circumstances, fi elds produce waves that radiate from the source.

A fi eld quantity that has only magnitude and an algebraic sign is called a scalar, 
such as mass, time, and work, while a fi eld quantity that has magnitude as well as 
direction is called a vector, such as force, velocity, and acceleration. To  distinguish 
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2 Bioeffects and Therapeutic Applications of Electromagnetic Energy

vectors from scalars, it is advised to use bold letters for vectors. For example, 
A  represents a vector quantity while A represents a scalar quantity.

1.2.1 ELECTRIC FIELDS

Electromagnetic fi elds can be viewed as the combination of an electric fi eld and a 
magnetic fi eld. Electric fi eld E exists whenever electric charges are present, which 
means, whenever electricity is in operation or when positive and negative charges are 
separated. We defi ne E at any point in space as the electric force F per unit charge 
exerted on a small positive test charge q0 placed at that point.

 
E

F
�

q0  
(1.1)

This fi eld is caused by other electric charges distributed about the test charge. There-
fore, Equation 1.1 defi nes the fi eld due to this distribution of charge, not the fi eld 
caused by the test charge.

The basic unit for E fi eld is newtons per coulomb (N/C), which is dimen-
sionally equivalent to volts per meter (V/m). Electric fi elds could be represented 
graphically by two ways as shown in Figure 1.1. The fi rst way shows the E fi eld 
due to a single point charge where the arrows indicate the direction of the fi eld, and 
its magnitude is higher near the charge but decreases while going away from the 
charge (Figure 1.1a). The second way shows the E fi eld produced by two uniform 
sheets of charge representing a parallel-plate capacitor (Figure 1.1b). Several E-
fi eld lines originate from positive charges and terminate on negative charges. The 
E fi eld is uniform near the center of the conducting sheets and it bends (fringes) 
around the edges.

TABLE 1.1
Examples of EM Sources

EM Source Static Field ELF Fieldsa RFRb

Power lines, substations, home appliances x
Induction heating x x
Arc welding x x
RF sealers and microwave ovens x
Broadcasting stations x
Base transceiver stations and mobile phones x
RFID/EAS systemsc x x x
Diathermy and hyperthermia equipment x
MRI equipmentd x x x

a ELF: Extremely low frequency.
b RFR: Radiofrequency radiation.
c RFID: Radiofrequency identifi cation; electronic article surveillance (EAS).
d MRI: Magnetic resonance imaging.
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Fundamental Concepts in Electromagnetics 3

Electric fl ux density or electric displacement, denoted as D, is a measure of the 
E fi eld in terms of equivalent charge per unit area. The unit for D is coulombs per 
square meter (C/m2). D in a dielectric medium (e.g., biological tissues) is directly 
proportional to E, as represented by the following equation:

 D E� �  
(1.2)

where ε is the permittivity of the dielectric medium in farads per meter (F/m). The 
term permittivity refers to a fundamental property of the dielectric medium. It may 
be defi ned as the electric fl ux density per unit of electric fi eld intensity within the 
medium. Basically, dielectric material is an insulating material.

Generally, three different quantities describe the permittivity of the medium: 
ε, ε0, and a dimensionless quantity known as the relative permittivity εr or the dielec-
tric constant, which is defi ned as the permittivity relative to that of free space. The 
three quantities are related by the following equation:

 � � �� 0 r  (1.3)

The dielectric constant of free space is εr = 1. This value is assumed for air in most 
applications. Values of dielectric constant for most biological materials range from 
1 to about 80 or so.

D and E are vectors with the same direction. This is real for all isotropic media, 
i.e., media whose properties do not depend on direction. The quantities E and D estab-
lish one of two key pairs of EM fi elds. The other pair consists of magnetic fi elds.

1.2.2 MAGNETIC FIELDS

The E fi eld was explained by means of force between charges that act on a line 
between the charges. With the movement of charges, another kind of force is exerted  
on one another along the line between the charges. This force stands for the  magnetic 
fi eld intensity, denoted as H, which is a vector quantity created due to moving 
charges in free space or within conductors. Magnetic fi elds run  perpendicular to the 

(a) (b)

FIGURE 1.1 (a) Electric fi eld lines due to a single point charge. (b) Electric fi eld produced 
by two uniform sheets of charge.
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4 Bioeffects and Therapeutic Applications of Electromagnetic Energy

electric current. This means, while electric current runs in a straight line, magnetic 
fi elds surround the line in a circular fashion as shown in Figure 1.2. They control the 
motion of moving charges. The unit of magnetic fi eld is amperes per meter (A/m). If 
we have direct current (DC), the magnetic fi eld will be steady, like that of a perma-
nent magnet. If we have alternating current (AC), the magnetic fi eld will fl uctuate at 
the same frequency as the E fi eld; it becomes an EM fi eld, because it contains both 
E and H fi elds.

Signifi cant magnetic fi elds emanate from sources such as transmission and dis -
tri bution lines, substations, transformers, network protectors, feeders, switch gears, 
 distribution busways, electric panels, wiring systems, motors, and various electric appli-
ances. Magnetic fi elds may easily penetrate materials, including people, buildings, and 
most metals. They are not shielded by most common materials and pass easily through 
them. In general, magnetic fi elds are strongest close to the source and diminish with dis-
tance. People are not able to sense the presence of magnetic fi elds. However, high-level 
magnetic fi elds may cause a temporary visual fl ickering sensation called magnetophos-
phenes, which disappear when the source of the magnetic fi eld is removed.

When magnetic fi eld penetrates a cross-sectional area of a medium, it is con-
verted to magnetic fl ux density B. It is related to H via the vector relation

 B � �H  (1.4)

where µ is the permeability of the medium. The term permeability refers to the 
magnetic property of any material. It is a measure of the fl ux density produced by a 
magnetizing current. The full signifi cance of permeability will be discussed in Part I

(a)

(b)

FIGURE 1.2 Magnetic fi eld lines around a current-carrying conductor: (a) Less current 
fl ow. (b) Increased current fl ow.
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Fundamental Concepts in Electromagnetics 5

of this book. The basic unit of permeability is henries per meter (H/m). Three dif-
ferent quantities describe the permeability of the medium: µ, µ0, and a dimensionless 
quantity known as the relative permeability µr, which is defi ned as the permeability 
relative to that of free space. The three quantities are related by

 � � �� 0 r  (1.5)

The relative permeability of free space is µr = 1. A material is usually classifi ed 
as diamagnetic, paramagnetic, or ferromagnetic on the basis of the value of µr. 
The majority of common materials have µr values equal to that of free space or air 
(µr ≅ 1 for diamagnetic and paramagnetic substances), unlike their permittivity val-
ues. Only ferromagnetic materials such as iron, nickel, and cobalt are exceptional. 
They have higher values of µr.

The traditional unit of magnetic fl ux density B is webers per square meter 
(Wb/m2) (a weber is the same as a volt-second). It is usually measured in tesla (T), 
named after Nikola Tesla, or in gauss (G), named after Karl Friedrich Gauss, the 
nineteenth-century German pioneer in magnetism. In the United States, magnetic 
fi eld is generally measured in CGS units—oersted (Oe) and gauss (G). In most of 
the rest of the world, it is measured in tesla (T). Since most extremely low fre-
quency (ELF) environmental exposures involve magnetic fi eld intensities that are 
only a fraction of teslas or gauss, the commonly used units for measurements are 
either microteslas (µT) or milligauss (mG). The following conversions may assist 
when dealing with units:

 

1 10

10

0

10

4

3

 G  T

1 A/m 4  Oe

1 T 1 Wb/m

1 T 1 mG

1 T  mG

2

�

� �

�

�

�

−

−�

. �

� �� 0 8.  A/m 

The magnetic fl ux Ф (in webers) linking the surface S is defi ned as the total magnetic 
fl ux density passing through S. Figure 1.3 shows that B is perpendicular to the area 

Area (S )

B

FIGURE 1.3 Magnetic fl ux density B emerging from an area S.
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6 Bioeffects and Therapeutic Applications of Electromagnetic Energy

S and is constant over that area. Integration is needed to determine B if it varies over 
the surface area. This is defi ned as

 
� � B

s

ds∫
 

(1.6)

1.2.3 ELECTROMAGNETIC FIELDS

When the frequency increases, the electric and magnetic fi elds (EMF) cannot be 
separated from each other. If one of the fi elds exists, so does the other. They are 
linked to each other in every situation and this is described by Maxwell’s equations 
[1]. The English scientist James Clerk Maxwell (1831–1879) presented the laws of 
electromagnetics without writing the equations as we know them today. With the 
existence of Maxwell’s equations, EM wave propagation could be made possible. In 
addition, Maxwell brought together various laws of electrostatic and magnetic fi elds. 
While correlating them, he found that the result derived from Ampere’s law was 
inconsistent in the time-varying fi eld as it was based on stationary closed currents. 
To overcome this problem, Maxwell introduced a certain quantity called displace-
ment current, which is proportional to the time derivative of D.

The original set of Maxwell’s equations was written in terms of potentials with 
Cartesian coordinates and, therefore, was diffi cult to understand. Heaviside and 
Hertz wrote Maxwell’s equations in terms of fi eld quantities, while Lorentz added 
vector notation. This led to Maxwell’s fi rst-order equations, vector and scalar, in 
differential form:

 
�� �E

H−�
∂
∂t

(Faraday’s law)
 

(1.7)

 
∇ ∂

∂
� �H E

E
� �+

t
(Ampere’s law)

 
(1.8)

 �� �D � (Gauss’s law for electricity)  (1.9)

 �� �B 0 (Gauss’s law for magnetism) (1.10)

The quantity ∇ (pronounced “del”) is a vector operation; σ the conductivity of the 
medium, whose unit is siemens per meter (S/m); and ρ the volume charge density in 
coulombs per cubic meter (C/m3). When ∇ is combined with ×, the result (∇×) is 
referred to as the curl of the vector quantity that follows. When ∇ is combined with 
dot, the result (∇.) is referred to as the divergence of the vector that follows.

Maxwell’s equations may be thought of in various ways. Mathematically, they 
represent a set of partial differential equations. Physically, they are a set of equations 
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Fundamental Concepts in Electromagnetics 7

that summarize the relationships between electric and magnetic fi elds. Historically, 
they represent one of the major achievements in the area of physics.

Equation 1.7 presents a microscopic form of Faraday’s law. It states that a time-
varying magnetic fi eld induces an E fi eld. The magnitude and the direction of the 
E fi eld are determined from the curl operation.

Equation 1.8 represents a vector form of Ampere’s law. It states that an H 
fi eld can be created either by current fl owing in a conductor or by a time-varying 
E fi eld.

Equation 1.9 constitutes a microscopic form of Gauss’s law for electric fi elds. It 
shows that an E fi eld may begin or end on electric charge. It represents Gauss’s law 
for electric fi elds.

Equation 1.10 represents a microscopic form of Gauss’s law for magnetic fi elds. 
It indicates that magnetic fi elds have no point sources on which the fi eld lines could 
begin or end, meaning that magnetic fi elds are continuous [2].

1.2.4 ELECTROMAGNETIC WAVES

The most important outcome of Maxwell’s equations was the prediction of the 
 existence of EM waves, which can be generated by oscillating electric charges. 
 Maxwell proved that EM disturbances originated by one charged body would travel 
as a wave. Accordingly, Maxwell’s equations can be combined to yield the wave 
equation that anticipates the existence of EM waves propagating with the velocity of 
light. Maxwell’s equations are fi rst-order equations. Eliminating one of the fi elds in 
these equations yields a second-order equation for the other fi eld, which is called the 
wave equation or Helmholtz equation.

Based on Maxwell’s equations, around 1888, Hertz found, both theoretically and 
experimentally, that they included the notion of propagation of EM waves because 
of the specifi c coupling between the E and H due to the particular form of the vec-
tor equations [1]. For time-varying fi elds, E and H are coupled, but in the limit of 
unchanging fi elds they become independent. Practically, from 20–30 kHz and above 
E and H cannot be seen separately; they merge to form EM waves. Heinrich Hertz 
fi rst investigated the existence of EM waves, predicted by Maxwell’s equations. Such 
waves are no longer bound to a conductor, but can propagate freely in space and with 
losses through biological materials.

Analysis of Maxwell’s equations not only predicts the existence of EM waves, 
but also predicts the speed of propagation of the waves. The value predicted for the 
speed depends on the value of the constant ε0 found in Coulomb’s law and the value 
of µ0 found in Ampere’s law. The speed of an EM wave in space is defi ned as

 

c �
1

� �0 0  
(1.11)

EM waves at low frequencies are referred to as EM fi elds and at very high fre-
quencies (VHFs) are called EM radiation. The term EM fi eld is generally used rather 
than EM radiation whenever wavelengths greatly exceed distances from exposure 
sources. There are two fi elds in an EM wave, E and H, which are both perpendicular 
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8 Bioeffects and Therapeutic Applications of Electromagnetic Energy

to the direction of travel, as shown in Figure 1.4. They propagate together at very 
close to 300 million meters per second in air or vacuum (slower in other materials). 
The strength of E and H changes periodically.

Propagation has a precise mathematical defi nition: All the components of fi elds 
and associated physical quantities, such as current and charge densities, have a z depen-
dence expressed as the factor e−jkz in a cylindrical coordinate system or an r dependence 
expressed as the factor e−jkr in a spherical coordinate system. Such an ensemble of fi elds 
is called an EM wave. Hence, the words propagation and wave are closely related [3].

Assume now that the medium of propagation is lossless, i.e., a perfect dielectric. 
In this case, a mathematical solution of Maxwell’s equations yields a linear algebraic 
relationship between Ex and Hy. It is expressed as

 

E

H
x

y

� �
 

(1.12)

For a lossless dielectric medium, the intrinsic impedance for a plane wave is a 
real number given by

 
�

�
�

=
 

(1.13)

The quantity η is called the intrinsic impedance. Since the unit of Ex is volts/
meter and the unit of Hy is amperes/meter, there is a cancellation of meters in the 
ratio. Therefore, the unit of η is volts/amperes = ohms. When free-space plane 
wave propagation is considered, µ = µ0, ε = ε0, and the intrinsic impedance is 
denoted as η0.

E and H are functions of position and vary with time. This means the fi eld is 
 alternating from plus to minus (going from an extreme value in one direction to an 

H 

0 

E 

H 
y 

x 

z 

E 

λ

FIGURE 1.4 An electromagnetic wave propagating in the z-direction. 
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Fundamental Concepts in Electromagnetics 9

extreme value in the opposite direction) at a rate measured in Hz or cycles per second 
called frequency f. The fi eld may also be characterized by its wavelength. The wave-
length is the length of one cycle of a signal in meters. It is designated by the symbol λ. 
The wavelength in air is given by

 
� �

c

f  
(1.14)

As the frequency goes up, the wavelength becomes shorter and more energy is trans-
ferred to objects similar in size to the wavelength. Large divisions are commonly 
used to describe EM radiation as follows:

 

Kilohertz (kHz):1,000 cycles per second

Megahertz (MHz):1,000,0000 cycles per second

Gigahertz (GHz):1,000,000,000 cycles per seconnd  

Amplitude modulation (AM) broadcasting, for example, has a frequency of 
1 MHz and a wavelength of about 300 m. Meanwhile, microwave ovens use a 
 frequency of 2.45 GHz and a wavelength of only 12 cm. 

An EM wave consists of very small packets of energy called photons. The 
energy in each photon is proportional to the frequency of the wave. The higher the 
frequency, the larger the amount of energy in each photon. This is defi ned as

 eV � hf  (1.15)

where h is the Planck’s constant (h = 4.135667 × 10−15 eV). Electron volt (eV) is the 
change of potential energy experienced by an electron moving from a place where 
the potential has a value of V to a place where it has a value of V + 1 volt. The 
amount of energy a photon has makes it occasionally behave more like a wave and 
occasionally more like a particle. This is known as the wave–particle duality of 
light. Low-energy photons (such as radiofrequency radiation or RFR) behave more 
like waves, while higher-energy photons (such as x-rays) behave more like particles.

In the near-fi eld region (distance less than one wavelength from the source), 
magnetic fi elds are decoupled. When a transmission line is energized without a load, 
it creates an E fi eld and when the current fl ows, an H fi eld comes into existence. 
At the far-fi eld region (distance greater than one wavelength from the source), pri-
marily at high frequencies, both E and H are related with the assumption that the 
 characteristic impedance of the plane wave is 377 Ω.

The term EM radiation applies to the dispersal of EM energy. Once generated, 
EM fi elds radiate in all directions depending on how they have been converged. As 
the fi eld opens, the power spreads and the energy could be refl ected, transmitted, or 
absorbed as it comes into contact with different types of material. The term radiation 
should not be alarming as it does not imply radioactivity, which is the radiation of 
subatomic particles due to the spontaneous decay of an unstable substance.

If EM waves were radiated equally in all directions from a point source in 
free space, a spherical wavefront should result. A wavefront may be defi ned as a 
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10 Bioeffects and Therapeutic Applications of Electromagnetic Energy

plane joining all points of equal phase. The wave travels at the speed of light so 
that at some point in time the energy will reach the area indicated by wavefront 1 in 
Figure 1.5. The power density at wavefront 1 is inversely proportional to the square 
of its distance from its source r in meters, with respect to the originally transmitted 
power. If wavefront 2 in Figure 1.5 is twice the distance of wavefront 1 from the 
source, then its power density in watts per unit area is just one-fourth that of wave-
front 1. This is according to the inverse-square law, which states that power received 
is inversely proportional to the square of the distance from the source.

In living tissues, EM phenomena are usually slow when compared to the 
extremely broad variety of phenomena to be evaluated in physics and engineering. 
The shortest biological response time is on the order of 10−4 s, while most biological 
reactions are much slower. Hence, Maxwell’s equations are generally not used for 
evaluating biological effects in living systems [1]. 

1.3 ELECTROMAGNETIC INDUCTION

In 1831, Michael Faraday in London found that a magnetic fi eld could produce 
 current in a closed circuit when the magnetic fl ux linking the circuit keeps changing. 
This phenomenon is known as electromagnetic induction. Faraday concluded from 
his experiment that the induced current was proportional not to the magnetic fl ux 
itself, but to its rate of change.

Consider the closed wire loop shown in Figure 1.6. A magnetic fi eld with 
 magnetic fl ux density B is normal to the plane of the loop. If the direction of B is 
upward and decreasing in value, a current I will be generated in the upward direc-
tion. If B is directed upward but its value is increasing in magnitude, the direction 
of the current will be opposite. When B is decreasing, the current induced in the 
loop is in such a direction as to produce a fi eld which tends to increase B as shown 
in Figure 1.6a. However, when B is increasing, the current induced in the loop is in 
such a direction as to produce a fi eld opposing B as shown in Figure 1.6b. Therefore, 
the induced current in the loop is always in such a direction as to produce fl ux oppos-
ing the change in B. This phenomenon is called Lenz’s law. As the magnetic fi eld 

Wavefront 1 

Wavefront 2  

r 

FIGURE 1.5 Wavefronts at given instants of time.
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Fundamental Concepts in Electromagnetics 11

changes, it produces an E fi eld. Integrating E fi eld around a loop yields an electro-
motive force, or Vemf, measured in volts as follows:

 
V dlemf � E  .∫  

(1.16)

Vemf appears between the two terminals if the loop is an open circuit. This is the basis 
for the operation of an electric generator.

A quantitative relation between the EM force induced in a closed loop and the 
magnetic fi eld producing Vemf can be developed. This is represented by

 
V

d

dt
emf ��

�

 
(1.17)

where �� �� B . ds is the total fl ux in webers. Equation 1.17 may be written as

 
V

d

dt
dsemf �� B .∫∫  

(1.18)

where ds is a surface element measured in square meters (m2) and t time mea-
sured in seconds (s). Although Joseph Henry in Albany, New York, also discov-
ered the result shown in Equation 1.18, the credit is still attributed to Faraday. 
Both Faraday and Henry discovered the above fi nding independently at about the 
same time; however, it is known as Faraday’s law of induction. Faraday’s law is 
well known through its importance in motors, generators, transformers, induction 
heaters, and other similar devices. Also, Faraday’s law provides the foundation 
for the EM theory.

The total time derivative in Equation 1.18 operates on B, as well as the  differential 
surface area ds. Therefore, Vemf can be generated under three conditions: a time-
 varying magnetic fi eld linking a stationary loop, a moving loop with a time-varying 
area, and a moving loop in a time-varying magnetic fi eld. 

FIGURE 1.6 Induced currents due to magnetic fl ux density B.
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12 Bioeffects and Therapeutic Applications of Electromagnetic Energy

1.4 ELECTROMAGNETIC ENERGY

Power is the rate at which energy is consumed or produced. It is the product of 
 voltage and current, and is measured in watts (W). One watt is equal to one joule per 
second (J/s). However, power density, also called the power fl ux density, is a distribu-
tion of power over certain area. Power density is expressed in units of power per area, 
such as watts per square meter (W/m2).

Energy is the ability to do work and it exists in various forms. Energy can be 
stored as electrical energy. The unit of electrical energy is the same as the unit of 
mechanical energy. It is the joule (J), which is defi ned as the energy stored by a force 
of one newton (N) acting over a distance of one meter (m).

The fact that EM energy can travel easily through space without a conducting 
medium has made it one of the signifi cant tools of modern society. Numerous terms 
are used for concentrations of EM energy. For any wave with E and H fi elds, the term 
Poynting vector P is defi ned as

 P E H� �  (1.19)

The unit of P is (V/m) × (A/m) = (W/m2), and its direction is along the direction of 
the wave. P represents the instantaneous power density vector associated with EM 
fi elds at a given point. P is a function of time because both E and H are functions 
of time. Equation 1.19 indicates that the rate of energy fl ow per unit area in a wave 
is directed normal to the plane containing E and H. The integration of P over any 
closed surface gives the net power fl owing out of the surface. This is referred to as 
the Poynting theorem. The fi eld exposure depends on the shape of the source and on 
the reciprocal of the resulting volume factor.

We see from Equation 1.19 has the same form as P = V × I in circuit theory. In 
the same sense that the power in a resistance can be expressed as V2/R or I 2R, Equation 
1.19 may be expressed in terms of Ex or Hx by using the defi nition of intrinsic imped-
ance. Accordingly, two alternate expressions for the power density are obtained:

 
P

E
z

x�
2

�  
(1.20)

and

 P   H  z y� 2 �  (1.21)

1.5 ELECTROMAGNETIC SPECTRUM

The evolution of the EM frequency spectrum started from the discoveries of 
 Maxwell, Hertz, and Marconi. The EM spectrum under which devices and systems 
work extends from ELF fi elds and very low frequency (VLF) fi elds to RFR, infrared 
(IR) radiation, visible light, ultraviolet (UV), x-rays, and gamma-ray frequencies 
exceeding 1024 Hz (Figure 1.7) [2].

The EM spectrum is continuous and its division into frequency ranges, like ELF 
and radio frequency (RF), is based on physics and engineering criteria related to 
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FIGURE 1.7 EM frequency spectrum.
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14 Bioeffects and Therapeutic Applications of Electromagnetic Energy

instrumentation and physical descriptions of the energy, rather than biology. The 
divisions refl ect differences in absorption depth and fractional absorption/refl ection 
of all materials, due to changes in dielectric constant, and are specifi cally related to 
living tissues [4]. 

According to the frequency, EM radiation is classifi ed as either nonionizing or 
ionizing. Nonionizing radiation is a general term for that part of the EM spectrum 
with weak photon energy that cannot break atomic bonds in irradiated material, but 
still has a strong effect, which is heating. To understand this, consider the energy of a 
quantum of 50 Hz exposure, given by Planck’s constant h times the frequency (50 Hz), 
which is 2 × 10−13 eV. As the energy required for ionization by breaking a chemical 
bond is typically 1 eV, it is clear that low-frequency fi elds do not cause ionization. 

Ionizing and nonionizing radiation are separated on the EM spectrum. The 
division between them is generally accepted to be at wavelengths around 1 nm 
in the far-UV region. Above that frequency is ionizing radiation, which contains 
enough energy to physically alter the atoms it strikes and change them into charged 
 particles called ions. Below visible light is the nonionizing radiation. All types 
of EM radiation share the same physical properties of divergence, interference, 
 coherence, and polarization; however, they differ in terms of energy.

Ionizing radiation contains so much energy in its individual quanta of energy 
(e.g., 12 eV and above) that it is able to expel electrons from their orbits in the atom 
shells. This creates free radicals in living matter, increasing the risk of chromosomal 
damage and fatal abnormalities, which may lead to cancer. 

Atoms of all elements may be ionized. However, only gamma rays, x-rays, alpha 
particles, and beta particles have enough energy to create ions. Because ions are 
charged particles, they are chemically more active than their electrically neutral 
forms. Chemical changes that occur in biological systems may be cumulative and 
detrimental, or even fatal.

1.6 SOURCES OF ELECTRIC AND MAGNETIC FIELDS

Wherever electricity is generated, transmitted, distributed, or used, electric and 
magnetic fi elds are created, often at signifi cant intensities, due to the presence and 
motion of electric charges. Electric and magnetic fi elds are generally seen around 
electric transmission lines, distribution lines, substations, wiring and grounding 
systems, telecommunication facilities, consumer appliances, industrial and medical 
equipment, and other common sources. Fields also occur in nature, as in lightning, 
and in other phenomena such as the northern lights, caused by the interaction of solar 
wind and the Earth’s magnetic fi eld. Human exposure to ELF electric and magnetic 
fi elds is primarily associated with the generation, transmission, and use of electrical 
energy. Varieties of ELF sources are found in the community, home, and workplace. 
These sources are categorized into two main types: DC and AC.

1.6.1 DC SOURCES

A DC fi eld is sometimes referred to as a static fi eld or static electricity, which means 
not changing over time. DC lies at the far end of the EM spectrum, to a frequency 
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of zero and therefore its wavelength is infi nite. In such case, any circuit automati-
cally becomes a complete transmission line that conducts all and radiates  nothing. 
 Consequently, there will be only fi eld and no radiation. Since the fi eld is static, not 
changing with time, there is no excitement of nearby molecules and of course no 
heating. DC fi eld might be experienced as a tingling sensation when standing near a 
very high voltage source or as hair standing on end. Scooting the feet across a carpet 
may sometimes generate a static fi eld on the body. Lightning, which is a transient  
high-current discharge that occurs when an area of the atmosphere attains electric 
charges suffi cient to produce an electric fi eld strong enough to break down the insula-
tion provided by the air, certainly causes serious health problems due to conduction 
currents. 

1.6.1.1 Magnetosphere

The Earth is composed of four main layers: inner core, outer core, mantle, and 
crust. The inner core is solid and composed mostly of iron (Fe) and is so hot that the 
outer core is molten, with about 10% sulphur (S). Most of the Earth’s mass is in the 
mantle, which is composed of iron, magnesium (Mg), aluminum (Al), silicon (Si), 
and oxygen (O) silicate compounds at over 1000°C. The crust is relatively cold and 
thin, and is composed of the least dense calcium (Ca) and sodium (Na) aluminum 
silicate minerals.

Earth produces fi eld, which is largely static. The Earth’s static electric fi eld 
is about 120 V/m near ground level [5,6], while the Earth’s magnetic fi eld has a 
 magnitude of about 50 µT (0.5 G) over most of the world and is oriented toward the 
magnetic north [7]. Earth can be thought of as a dipole (2-pole) magnet, as shown in 
Figure 1.8. Magnetic fi eld lines emerge between Earth’s North and South poles just 
as they do between the poles of a bar magnet. Yet the Earth’s magnetic fi eld lines 
are not as symmetrical as those of the bar magnet. In the upper (northern) half of the 
Earth, the magnetic fi eld is directed toward the Earth; in the lower (southern) half, 
the fi eld is directed away from the Earth.

Imaginary dipole

Crust Inner core
Mantle

Outer core 

FIGURE 1.8 Earth may be thought of as a dipole magnet.
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16 Bioeffects and Therapeutic Applications of Electromagnetic Energy

Charged particles become trapped on these fi eld lines (just as iron fi lings are 
trapped on a piece of paper that is placed directly over a dipole bar magnet) form-
ing the magnetosphere, which is the region in space close to Earth, just above the 
 ionosphere. Earth’s magnetosphere is a dynamic belt of fl owing plasma guided by 
magnetic fi eld, which at times connects into the sun’s magnetic fi eld. The magneto-
sphere extends into the vacuum of space from approximately 80 to 60,000 km on the 
side toward the sun, and trails out more than 300,000 km away from the sun [8].

Within Earth’s magnetosphere are found cold plasma from the Earth’s  ionosphere, 
hot plasma from the sun’s outer atmosphere, and even hotter plasma accelerated to 
huge speeds, which can light up like a neon tube on Earth’s upper atmosphere, creat-
ing mysterious auroras in both the northern and southern hemispheres. The mag-
netosphere itself has several components, occasionally diverting the sunrays away 
from Earth and occasionally absorbing them. The geomagnetic intensifi cation effect 
implies that the so-called radiation cancers should be more common in industrial 
nations at high geomagnetic latitudes. 

The force of the solar wind pushes on the magnetosphere, squeezing in the sun-
ward side and stretching the night side into a long tail. This phenomenon is called 
magnetotail, which extends hundreds of thousands of kilometers into space. The 
impact of the solar wind causes the lines facing sunward to compress, while the fi eld 
lines facing away from the sun stream back [9]. The solar activity causes geomag-
netically induced currents (GICs), which may fl ow into and out of the electric power 
grid through various ground points. The driving force is the voltage induced in the 
transmission lines, both by the ionospheric current and by the earth current. The 
frequency of the GIC is very low (below 1 Hz); therefore, it can be categorized as a 
quasi-direct current. Currents have been measured in a single transformer neutral in 
excess of 184 A in North America and 200 A in Finland [10].

1.6.1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) has become a signifi cant diagnostic procedure 
because of its high resolution. MRI is an imaging technique used primarily in medical 
settings to produce high-quality images of the inside of the human body. Today, MRI 
systems may subject the human body to fi elds between 3 and 4 T for a short period of 
time, although 1.5 T systems were the state of the art for clinical imaging two decades 
ago. MRI produces no ionizing radiation. It is believed to be harmless for humans as 
long as its magnetic fi eld intensity is below the recommended safety limits.

1.6.1.3 DC Power Supply System

Though these days DC power supply systems are not common, except at a few 
 locations worldwide, some information about them will be of interest for the reader. 
The early DC system had a two-wire confi guration, with a positive and a negative 
conductor. The supply voltage varied between 110 and 250 V. As the need to transmit 
larger quantities of energy increased, a new system of distribution was adopted, the 
three-wire system. This consists of a generator and two conductors. A third conduc-
tor called neutral is grounded (zero volt reference for an electrical system through a 
connection to the ground).
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1.6.2 AC SOURCES

For a long time, the main electrical power supply was DC; however, gradually, as the 
advantages of AC became apparent, there was a changeover to AC. AC fi elds resulting 
from the transmission, distribution, and use of electric power allow a good deal of sim-
plifi cation as they vary rather slowly over time. The frequency of ELF fi elds depends 
on the source of exposure. Although the power frequency (50/60 Hz) is the predomi-
nant fundamental frequency, humans are mostly exposed to a mixture of frequencies, 
and much higher frequencies may arise. For example, frequencies from certain elec-
tronic equipment like televisions and video display terminals (VDTs) may extend up to 
50 kHz. In addition, switching events may generate abrupt spikes in voltage and cur-
rent waveforms, leading to high-frequency transients that might extend into RFR above 
several megahertz. Nonlinear characteristics in electrical devices generate harmonics at 
integer multiples of the fundamental frequency extending up to several kilohertz [5,11].

Electric and magnetic fi elds are the main components of EM fi elds. Electric fi elds 
are generated when electric appliances are plugged in but not necessarily turned on. 
They are relatively easy to shield or alter by most commonly available materials. 
However, current produces magnetic fi elds when appliances are turned on. Magnetic 
fi elds completely pass through earth, humans, and most building materials. They are 
diffi cult to magnetically shield with a conduit or enclosure using any material, includ-
ing highly permeable sheets or highly conductive copper and aluminum materials.

The magnetic fi eld strength from an ELF source decreases with distance from 
the source. For example, for a single current-carrying conductor source the magnetic 
fi eld strength is directly proportional to the inverse of the distance from the source 
(1/r). The fi eld levels close to these sources are relatively high. The magnetic fi eld 
strength varies inversely, as the square of the distance (1/r2) for a multiple conduc-
tor source and as the cube of the distance (1/r3) for a loop or coil. Such relationships 
are signifi cant when implementing magnetic fi eld mitigation schemes. For further 
details, we will consider the following four types of AC sources.

1.6.2.1 Single-Conductor Source

A straight single conductor of current is considered as a basic source of fi eld. It is 
possible to determine the magnetic fl ux density B at all points in a region about a long 
current-carrying conductor. Experiments show that for a homogeneous medium, B is 
related to the current I. Thus

 
B

I

r
H� �

�
�

�
2  

(1.22)

where r is the distance in meters from the source. The direction of the magnetic fi eld 
due to moving charges depends on the right-hand rule, which states that if the right 
thumb points in the direction of conventional current, the fi ngers of the right hand 
curl around the wire in the direction of the magnetic fi eld. Typical line sources are 
multiconductor cables; long-wire conductors; plumbing and net currents; and electri-
cally powered subway, rail, and trolley bus systems. Magnetic fi elds from a single 
conductor emanate circularly from the center, as shown in Figure 1.9. 
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18 Bioeffects and Therapeutic Applications of Electromagnetic Energy

1.6.2.2 Dual-Conductor Source

The magnetic fi eld for an opposing current pair of dual conductors separated by a 
small distance d relative to the distance from the pair r diminishes at a nonlinear 1/r2 
distance rate (because of the inverse-square law), as illustrated in Figure 1.9. This is 
defi ned as 

 
B

Id

r
�

2
2

 
(1.23)

Basically, by doubling the distance r for a fi xed spacing d and current I, the magnetic 
fl ux density reduces by a factor of four. Electrical appliance cord transmission and 
distribution lines commonly fall into this category.

1.6.2.3 Loop Source

A single loop can be considered as another typical source of magnetic fi eld as shown 
in Figure 1.10. It exists in AC motors, transformers, computers, power supplies, elec-
tric stoves, and microwave ovens. Using again the right-hand rule, a magnetic dipole 
has a dipole moment M whose direction is in the direction of the thumb as the fi ngers 
of the right hand follow the direction of the current. The magnitude is equal to the 
product of the loop current I and the enclosed loop area S, defi ned as

 M I S� �  (1.24)

The magnetic dipole produces magnetic fi eld that diminishes at (1/r3), as illustrated 
by Figure 1.10. This is 
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(1.25)

As seen from Equation 1.25, the radiation effect is sharply reduced by a slight 
increase in distance.

d

FIGURE 1.9 Magnetic fi eld for an opposing current pair of dual conductors.
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1.6.2.4 Three-Phase Source

Electric power is generated and distributed via three-phase AC transmission, distri-
bution, and service feeder lines to commercial and industrial buildings. Each of the 
three balanced phase voltages and currents are ideally represented as magnitude and 
angle 120° apart. The magnetic fi eld for balanced three-phase circuits of three hori-
zontally or vertically arrayed conductors separated by equal distances d diminishes 
at a nonlinear 1/r2 distance rate according to
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(1.26)

However, if the three-phase circuit is unbalanced or there are signifi cant net, ground, 
and plumbing currents on the service feeder neutral, then the dominant magnetic 
fi eld becomes
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(1.27)

where I is the sum of the net, ground, and plumbing currents. Furthermore, magnetic 
fi elds produced by three-phase lines are generally elliptically polarized. This means 
a rotating vector that traces an ellipse for every cycle of the conductor current can 
represent the magnetic fi eld. 

1.7 SOURCES OF RADIOFREQUENCY RADIATION

Radio was developed in 1909, when Italian-born British entrepreneur Guglielmo 
Marconi (1874–1937) put to use the innovations of his predecessors and sent the fi rst 
wireless signal across the Atlantic Ocean. He bridged the 3000 km distance between 
St. John’s (Newfoundland) and Poldhu (Cornwall), on the southwest tip of England. 
Later, wireless transmission came to be radio as we know it. Since then, radio has 
become an essential part of our everyday life. Today, radio technology leads one of 
the biggest businesses in the global market and the use of wireless devices, such as 
cellular phones, is increasing dramatically. 

+Q

−Q

Loop

Magnet

FIGURE 1.10 Magnetic fi eld of a loop.
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RF energy is essential for wireless communications, broadcasting, radars, and 
other industrial, scientifi c, and medical applications. RFR covers an important 
portion of the EM spectrum, extending from a few kilohertz (within the range of 
human hearing) to thousands of gigahertz. Microwave radiation is usually consid-
ered a subset of RFR, although an alternative convention treats RF and microwaves 
as two separate spectral regions. Microwaves occupy the spectral region between
300 GHz and 300 MHz, while RF includes 300 MHz to 3 kHz. Since they have 
 similar  characteristics, RF waves and microwaves are recognized together,
and referred to as RFR throughout Part I of this book, while separated in Part II
and Part III. Table 1.2 shows frequency ranges of RFR applications.

RF waves are slowed as they pass through media such as air, water, glass, bio-
logical tissues, etc. They radiate outward from their transmission source in energy 

TABLE 1.2
Frequency Ranges of RFR Applications

Application Frequency Range

RFR range 3 kHz to 300 GHz 

General
AM radio 535–1705 kHz 
FM radio 88–108 MHz
TV channels 54–88/174–220 MHz 
UHF television 470–806 MHz 
Commercial paging 35, 43, 152, 158, 454, 931 MHz 
Amateur radio 1.81–2.0/3.5–4.0/7.0–7.3/

10.1–10.15/14–14.35/
18.068–18.168/21.0–21.45/
24.89–24.99/28.0–29.7 MHz

Cellular Systems
Nordic Mobile Telephone (NMT) 450 453–457.5/463–467.5 MHz
NMT 900 890–915/935–960 MHz
AMPS 825–845/870–890 MHz
Total Access Telecommunication System (TACS) 890–915/935–960 MHz
E-TACS 872–905/917–950 MHz
GSM 900 890–915/935–960 MHz
DCS 1800 1710–1785/1805–1880 MHz

Cordless Systems
CT-2 864–868 MHz
DECT 1880–1900 MHz
Personal Handyphone System (PHS) 1895–1918 MHz
Personal Access Communications System (PACS) 1910–1930 MHz
Personal Communication Services (PCS) 1850–1990 MHz

Industrial, Scientifi c, and Medical
ISM 433, 915, and 2450 MHz 
RF heaters/sealers 13.56, 27.12, 40.68, and 100 MHz
Microwave ovens 2450 MHz
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packets that combine the characteristics of waves and particles. When generated, 
these waves of energy travel from their transmitter through space. They are refl ected 
from, refracted around, or absorbed by their receivers or any object in their path. RF 
system requires three basic elements in order to be functional. These elements are 
generator, transmission path, and antenna, as shown in Figure 1.11.  

1.7.1 GENERATORS

Radio sources, or generators, convert electrical power into radiation using technologies 
such as oscillators or magnetrons. The radiation requirements of the  system  determine 
the type of generator or RF source used. Important parameters are power output require-
ment, effi ciency, size, bandwidth, frequency, and modulation technique.

An oscillator is the most basic radio source. It consists of a tuned resonant 
circuit that is usually equipped with amplifi cation stages and positive feedback 
circuits. 

1.7.2 TRANSMISSION PATHS

1.7.2.1 Transmission Lines

Transmission lines are commonly used for high-bandwidth communication and 
power transfer. They come in a wide variety of geometries and sizes, and  operate 
over broad frequency ranges. When RF energy is generated and information is 
imparted to the signal through electronic stages, the next task is to guide the energy 
from the generator to the antenna. Using a two-conductor transmission line, coaxial 
cable, or waveguide may accomplish this.

The two-conductor (predominantly copper) line is one of the oldest types of 
communication channels. It was designed mainly for telephone systems. It repre-
sents the simplest type of geometry in that the two conductors are of equal size and 
are spaced apart by a constant separation.

The two-conductor line is usually twisted. The twist reduces the EM radia-
tion from the signal propagating over the wires as well as the pickup of unwanted 
 signals when EM fi elds surround the wire. In the past, paper was used as an insulator 
between the wires, but today polyethylene is more common. Two-conductor lines are 
usually used in telephone networks and their use is generally restricted to operation 
up to about 100 MHz.

The two-conductor transmission line is described in terms of its line parameters, 
which are its resistance per unit length R, inductance per unit length L, conductance 
per unit length G, and capacitance per unit length C, as shown in Figure 1.12. 

AntennaGenerator
Transmission 

path

FIGURE 1.11 The basic elements of a wireless communication system.
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1.7.2.2 Coaxial Cables

Coaxial cables are the most widely used transmission lines for high-frequency appli-
cations. The two conductors required for transmission of energy are the central 
conductor and an enclosing conducting shield, as shown in Figure 1.13. An insulat-
ing material separates the central conductor and the shield. Coaxial cables are used 
wherever there is a need for long distance, low attenuation, and ability to support 
high data transmission rates with high immunity to electrical interference. Coaxial 
cables are widely used in telephone networks and cable TV. 

1.7.2.3 Waveguides

Waveguides are found in several forms. They can have a circular or a rectangular 
cross section. They may have other shapes as well, if utilized and manufactured 
for specifi c applications. Waveguides normally consist of metallic hollow structures 
used to guide EM waves, as shown in Figure 1.14. They are used for transferring 
signals, where the wavelengths involved are so short that they are of the same size 
range (2  GHz and higher). Large waveguides would be required to transmit RF 
power at longer wavelengths. Waveguides are low loss, which means the wave trav-
els along the waveguide without greatly attenuating as it goes. Waveguides can be 

Series R and L

Shunt G and C

FIGURE 1.12 Distributed parameters for a two-conductor transmission line. 

Jacketing

Braid
Shielding

Dielectric
Conductor

FIGURE 1.13 The geometry of a coaxial cable.
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gently twisted without losing contact with the wave, without generating refl ections, 
and without incurring much additional loss.

1.7.3 ANTENNAS

The antenna is the last component in the wireless transmitting system. The antenna 
is a device that provides the transition from a guided EM wave on a transmission line 
to an EM wave propagating in free space. Also, the antenna may be considered as a 
transducer used in matching the transmission line or waveguide to the surrounding 
medium.

Most antennas are reciprocal devices, which means the antenna performs 
equally well as either transmitting antenna or receiving antenna. The purpose of the 
transmitting antenna is to radiate EM waves into free space (usually, but not neces-
sarily, air). Antennas are also used for reception to collect radiation from free space 
and deliver the energy contained in the propagating wave to a feeder and receiver. 

1.7.3.1 Antenna Properties

The design of an antenna is infl uenced by requirements such as size, frequency range, 
power output, directivity, gain, propagation technique, polarization, and electrical 
impedance. These requirements justify the wide range of antenna designs available 
for different applications. In general, the properties of antennas are the most impor-
tant aspect of radiation hazard evaluation. 

Bel:  This term was originally developed from the measurement of sound. It 
refl ects the fact that the human ear has a logarithmic response. The bel is 
a ratio of two powers, the output power P0 and the input power Pi.

Decibel: To deal with the wide range of numbers in a telecommunication system, 
it is convenient to use a logarithmic scale for comparing power levels. It 
is common to use a base-10 logarithm in such case. We also multiply the 
result by 10. The unit is decibel, but people usually say dB. In case of work 

(a) (b) 

FIGURE 1.14 (a) A rectangular waveguide. (b) A circular waveguide.
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in voltages or currents, multiply the result by 20. For an amplifi er, the gain 
can be written in dB as
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(1.28)

Directivity: This is the ability of an antenna to concentrate the radiation in the 
desired direction. Directivity is also the ratio of the radiation intensity in 
a given direction from the antenna to the radiation intensity averaged over 
all directions. This average radiation intensity is equal to the total power 
of the antenna divided by 4π. If the direction is not specifi ed, directivity 
refers to the direction of maximum radiation intensity.

Gain:  The gain of any antenna is the most important parameter in the design 
and performance of the antenna system. It is defi ned as the product of the 
antenna effi ciency and its directivity. The gain is obtained by  concentrating 
the radiated power into a narrow beam. The gain in any direction (θ, φ) is 
the power density radiated in the direction (θ, φ) divided by the power den-
sity which would have been radiated at (θ, φ) by an isotropic radiator having 
the same input power. A high gain is achieved by increasing the effective 
aperture area Ae of the antenna in square meters. We write the gain G as

 

G
A

�
4

2

�

�
e

 
(1.29)

  The gain is normally expressed in dBs by taking 10 log (G). The term dBi 
refers to antenna gain with respect to an isotropic antenna, while the term 
dBd is used to refer to the antenna gain with respect to a half-wave dipole 
antenna (0 dBd = 2.1 dBi).

Polarization: The polarization of an EM wave is the orientation of the electric 
fi eld intensity vector E relative to the surface of the Earth. The propagat-
ing wave has a transverse direction for the electric fi eld called the polar-
ization direction. This normally lies along the direction of the electric 
fi eld. There are two basic types of polarization—linear and elliptical. 
Linear polarization is divided into two classes, vertical and horizontal. 
Circular polarization is the more common form of elliptical polarization. 
Two classes of circular polarization exist, right-hand circular and left-
hand circular.

Effective area: The effective aperture area Ae of an antenna is related to the gain 
G and free space wavelength λ:

 
A Ge �

�
�

2

4  
(1.30)

Near-fi eld zone: This is a region generally in close proximity to the antenna 
or other radiating structure in which the electric and magnetic fi elds do 
not exhibit a plane-wave relationship, and the power does not decrease 
with the square of distance from the source but varies considerably from 
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point to point. The near-fi eld region is subdivided into the reactive near-
fi eld zone, which is closest to the radiating structure and contains most or 
nearly all of the stored energy, and the radiating near-fi eld zone, where 
the  radiating fi eld predominates over the reactive fi eld but lacks substan-
tial plane-wave character and is complicated in structure.

Far-fi eld zone: This is the region far enough from the antenna where the radi-
ated power per unit area decreases with the square of the distance from 
the source. In the far-fi eld environment, the EM fi eld propagates away 
from the source of radiation. The radiated energy is stored alternately in 
the electric and magnetic fi eld of the propagating EM wave. The electric 
fi eld vector and the magnetic fi eld vector are perpendicular to each other 
in a plane-wave condition. Both of these vectors are perpendicular to the 
power vector, which points in the direction of the radiation (each of these 
vectors is mutually perpendicular to the other two). In the far-fi eld zone, 
the ratio between E and H is equal to a constant known as the impedance 
of free space (Zo) and has a value of approximately 377 Ω. This value is 
derived from the permittivity and permeability of free space. The distance 
RNF from the antenna to the far-fi eld zone is defi ned as

 
R

D
NF � 2

2

�  
(1.31)

  where D is the greatest distance of the radiating structure in meters, and λ is 
the wavelength in meters. In the case of a circular dish, D is just the diameter 
while in the case of a rectangular horn, it is the diagonal distance across the 
mouth. At this point, the maximum phase difference of EM waves coming 
from various points on the antenna is 22.5° [7]. However, larger phase dif-
ference and therefore shorter distance to the far-fi eld zone could be marked 
when performing hazard assessment. The new distance is defi ned as

 
R

D
NF � 0 5

2

.
�  

(1.32)

Plane wave: This is an EM wave characterized by mutually orthogonal electric 
and magnetic fi elds that are related by the impedance of free space. For 
the plane waves P and E, the following relationship exists: P = E2/377.

1.7.3.2 Types of Antennas 

Antennas are made in different shapes and sizes (Figure 1.15). They are used in 
radio and TV broadcasting, radar systems, radio communications, cellular commu-
nications, and many other applications.

Isotropic antenna: This is a hypothetical source radiating power equally in all 
directions. It is used as a reference radiator when describing the radiation 
properties of real antennas.
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Wire antenna: Any wire acts like an antenna. The wire need not be straight. 
 Usually, wire antennas are designed to operate between 2 and 30 MHz. 
These are physically long since they operate at low frequencies.

Half-wave antenna: This is an antenna whose electrical length is half the wave-
length of the radio signal, or half the distance the radio wave travels  during 
one cycle.

Loop antenna: Basically, a loop antenna is used for AM broadcasting at the 
long wave band. There are two types of loop antennas; one is the ferrite 
bar (as in AM radio) and the other is wound on an air core form. The loop 
antenna is very directional and need not to be circular. There can be more 
than one turn also.

Aperture antenna: This is the part of a plane surface of a directional antenna, 
which is very near to the antenna and normal to the direction of maximum 
 radiant intensity through which the major part of the radiation passes. An 
example of aperture is the waveguide horn. 

Slot antenna: A radiating element (hole) created by a slot in a conducting sur-
face or in the wall of a waveguide or cavity.

Dish antenna: Parabolic dishes are used for the reception and transmission of radio 
waves to satellites and terrestrial links. They receive waves and focus them 
through the parabolic focal point where the receiving antenna is placed.

FIGURE 1.15 Various types of antennas.

Dipole Loop Log-periodic

Horn Parabolic reflector Microstrip

Helical Slot Panel

Yagi-Uda Array Phased array
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Helical antenna: This is a wire wound in the form of a helix. Helical anten-
nas can easily generate circular-polarized waves. They operate in a wide 
frequency bandwidth. When the helix circumference is one wavelength, 
maximum radiation is generated along the helix axis.

Microstrip antenna: The microstrip antenna is very low profi le and has mechan-
ical strength. Such antennas are becoming popular in microwave applica-
tions, as they are small and easily fabricated. To fabricate a microstrip 
antenna, an area of conductor is printed on the surface of a thin dielectric 
substrate with a ground plane (almost any shape is possible).

Antenna array: When several antennas are connected together, the combination 
is called an antenna array and the array as a whole behaves as if it is a 
single antenna. Active arrays have each element individually driven by its 
own feed, whereas passive arrays have a principal radiator passing energy 
to parasitic elements.

Yagi-Uda antenna: The Yagi-Uda antenna is familiar to everyone as it is com-
monly used for television reception. This is a passive array, with a single 
driven element, and the other elements are driven parasitically. It consists 
of a folded dipole-radiating element with a number of parasitic elements.

Log-periodic antenna: This is a wide-band antenna consisting of dipoles of suc-
cessively diminishing length connected in parallel across the feed. Only 
that dipole which is very close to a half-wavelength long loads the feed; 
the dipoles behind and in front act as refl ector and director to give the 
array a little gain. 

Line antenna: This is a leaky transmission line whose wave velocity is close 
to that of waves in free space. The resulting “phase matching” condition 
allows resonant transfer from the transmission line to the free space.

Whip antenna: This is cylindrical in shape. The size varies according to the fre-
quency and gain for which it is designed. The whip antenna is also called 
a stick or pipe antenna, and is usually omnidirectional.

Panel antenna: A panel antenna (also called directional) is an antenna or array of 
antennas designed to concentrate the radiation in a particular area. A panel 
antenna is typically a fl at, rectangular device used for cellular base stations 
in cities and suburban areas where greater customer capacity is needed.

Phased array antenna: Several antennas can be arrayed in space to make a 
desired directional pattern. By controlling the phase shift between succes-
sive elements in an array antenna, the direction can be steered electroni-
cally without physically moving the antenna structure. 
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2 Electromagnetic 
Interactions with 
Biological Systems

2.1 INTRODUCTION

The basics of electromagnetic (EM) interaction with materials were elucidated over 
a century ago and stated as the well-known Maxwell’s equations. The application of 
these basics to biological systems, however, is very diffi cult because of the extreme 
complexity and multiple levels of organization in living organisms, in addition to 
the wide range of electrical properties of biological tissues. The above diffi culty has 
slowed the progress of understanding the EM bioeffects. Yet knowledge of the inter-
action mechanisms could be utilized to identify appropriate dosimetry, to predict 
dose–response relationships, to design better experiments, and to assist in determin-
ing whether harmful effects are likely at specifi c levels of exposure.

The two most important health-related characteristics of EM fi elds are fi eld 
strength and frequency. Extremely low frequency (ELF) fi elds can cause the genera-
tion of electric currents in the human body, while radio frequency radiation (RFR) 
can lead to heating up of the body. The higher the frequency, the less deep the pen-
etration of energy into the body, and the more superfi cial the heating effect is.

A biological effect occurs when exposure to EM fi elds causes some noticeable or 
detectable physiological change in a living system. Such an effect may sometimes, but 
not always, lead to an adverse health effect, which means a physiological change that 
exceeds normal range for a brief period of time. It occurs when the biological effect is 
outside the normal range for the body to compensate, and therefore leads to some det-
rimental health condition. Health effects are often the result of biological effects that 
accumulate over time and depend on exposure dose. Therefore, detailed knowledge of 
the biological effects is important to understanding the generated health risks.

Let us consider the example of exposure to sunlight as one of the most familiar 
forms of nonionizing radiation. The sun delivers light and heat, which may lead to 
sunburn when the amount of exposure exceeds what can be protected against by the 
skin’s melanin (a pigment, which gives skin and hair its color and provides protec-
tion against UV and visible light). We control its effect on us with sunglasses, shades, 
hats, clothes, and sunscreens. Some effects due to sunlight exposure may be harmless, 
such as the body’s reaction of increasing blood fl ow in the skin in response to greater 
heating from the sun. Other effects may be advantageous, for instance, the feeling 
of warmth due to exposure to sun on a cool day. It may even lead to positive health 
effects where sunlight exposure assists the human body to produce vitamin D, which 
helps the body absorb calcium for stronger bones. However, extensive exposure to 
sunlight might lead to severe health effects, such as sunburn or even skin cancer.
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This chapter discusses the interaction mechanisms of EM fi elds with biological 
systems. It is clear from the discussion that the interaction relies on both the EM fi eld 
and the reaction of the living system. A variety of biological and health effects with 
an interest in tissues and cellular structures are included, such as those affecting the 
genetic material, melatonin, nervous system, and the brain.

2.2 INTERACTION MECHANISMS

Living organisms, including humans, are complex electromechanical systems that 
evolved over billions of years in a world of weak magnetic fi eld and with few EM 
emitters. As is characteristic of living organisms, they interacted with and adapted to 
this environment of electric and magnetic fi elds to regulate various critical cellular 
systems. One example of this adaptation is the visual system by developing fi ltering 
systems in the eye and the skin to protect themselves from the impact of EM energy 
in the bands of visible light and ultraviolet (UV) radiation of the EM frequency spec-
trum. Therefore, it is not surprising that the massive introduction of EM fi elds in an 
enormous range of new frequencies, modulation, and intensities in recent years has 
affected living organisms [1].

EM energy with biological tissues is very complicated. It can be considered at 
the molecular, subcellular, cellular, organ, and system level, as well as the entire 
body. The word interaction is important. It signals that end results depend not only 
on the action of the fi eld but are infl uenced by the reaction of the living system. 
Living systems have great capacity for compensating the effects induced by external 
infl uences, including EM sources [2].

2.2.1 MECHANISMS FOR ELECTRIC AND MAGNETIC FIELDS

There are several proposed mechanisms for the interaction of EM fi elds with living 
systems. They can be grouped into induced fi elds and currents, and other direct 
and indirect effects of fi elds [3]. Before discussing these mechanisms, one must 
understand the relationship between electric and magnetic fi elds outside and inside 
biological systems (a process called coupling), which varies greatly with fre-
quency. Electric fi elds are greatly diminished by many orders of magnitude inside 
biological tissues from their values in air external to the tissues. This is because 
boundary conditions on Maxwell’s equations require current density inside the 
biological system to approximately equal the displacement current density outside 
the system.

2.2.1.1 Induced Fields and Currents

Induced fi eld (or the related quantity, induced current) is an established mechanism 
that forms the basis for most exposure guidelines. The human body is a parasitic 
antenna in which electric fi elds and hence currents are induced when it is near 
sources of electric and magnetic fi elds such as power lines and electric appliances. 
An external electric fi eld is attenuated greatly inside the body, but the internal fi eld 
then drives a current in the body. Magnetic fi eld also induces an electric fi eld, which 
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will in turn drive a current in the conducting body. The pattern of fi elds and currents 
is affected by the conductivities of different tissues and cells.

Biological tissues are nonmagnetic materials, which means the magnetic fi eld 
inside the human body is the same as those outside it. Consider a case of a human body 
under electric fi eld exposure, as illustrated in Figure 2.1 [4]. Electrically, the coupling 
is too poor to the external fi eld. For example, an external fi eld of 1 kV/m may induce 
an electric fi eld within the body of about 1 mV/m. It is observed that electric fi elds 
induced inside the bodies of humans and animals are generally less than about 10−7 of 
the fi eld outside the body and rarely exceed about 10−4 of the external fi eld. This is the 
typical strength at ground level beneath a high-voltage power line. Also, those low-
level electric fi elds produce currents which are orders of magnitude weaker than the 
currents induced naturally from the function of heart, nerves, and muscle [5,6]. Mean-
while, the highest fi eld strength to which the human may be exposed (those associated 
with electrical appliances) might produce electric fi elds within a small region of the 
body that are comparable to or may be larger than the naturally occurring fi elds. Still, 
the magnitude of such large locally induced fi elds is not accurately known.

Over the years, scientists have attempted to prove the EM interaction theories. 
Although the photon energy at the ELF band of the spectrum is smaller than that 
needed to break even the weakest chemical bond, well-established mechanisms exist 
by which electric and magnetic fi elds could produce biological effects without break-
ing chemical bonds. Electric fi elds can apply forces on charged and uncharged mol-
ecules or cellular structures within living systems. These forces can cause movement 
of charged particles, orient or distort cellular structures, orient dipolar molecules, or 
induce voltages across cell membranes. Magnetic fi elds can also apply forces on cel-
lular structures, but since biological materials are largely nonmagnetic, these forces 
are usually very weak. Also, magnetic fi elds may induce electric fi elds in the body.

2.2.1.2 Thermal Noise

Any material including biological systems has fl uctuating electric fi elds and corre-
sponding movement of charges within it, due to random movement of the charged 

Eout = 1 k V/m Ein = 0.3 mV/m
50 Hz

Ein = 3 mV/m

Ein = 1 mV/m

Internal fields 
ECG: 1−10 V/m (heart) 

EEG: 1 V/m (brain) 
1 mV/m (scalp)

Ein = 10 mV/m 

FIGURE 2.1 Electric fi elds in a human model exposed to incident electric fi eld of 1 k V/m 
at 50 Hz.
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components. This phenomenon, which is called thermal noise (also known as Johnson 
noise), depends on the resistance of the element, the temperature, and the frequency 
range considered.

2.2.1.3 Shot Noise

Biological processes experience not only thermal noise but also shot noise. “Shot 
noise” is a term describing the random fl uctuations in a measurement signal due to 
the random arrival time of the signal carriers (electrons, photons, ions, etc.).

2.2.1.4 Endogenous Fields

The normal activity of the nerves and muscles in the body produces currents that 
extend outside the specifi c organ concerned, and it is reasonable to assume that the 
currents induced by external fi elds would have to be greater than these endogenous 
currents, as well as greater than the thermal noise, to produce biologically relevant 
effects. Estimates of such currents are 10–1000 mA/m2 in the frequency range 
10 Hz–1 kHz in the vicinity of the heart and 10–100 mA/m2 in the central nervous 
system (CNS) at frequency range of 1–100 Hz.

2.2.2 MECHANISMS FOR RADIO FREQUENCY RADIATION

Biological effects due to exposure to EM radiation are often referred to as being 
 thermal or nonthermal/athermal. However, this division is imprecise. Interaction with 
the EM fi eld always includes energy transfer and therewith usually a local tempera-
ture rise. However, some effects are specifi c for EM energy and cannot be achieved 
by means of conventional heat [7].

2.2.2.1 Thermal Mechanisms

Thermal mechanisms have been known since investigations into therapeutic applica-
tions of electricity were carried out based on studies in electromagnetics by Faraday, 
Ampere, Gauss, and Maxwell, and the development of AC sources by d’Arsonval 
and Tesla. Heating is the primary interaction of EM radiation at high frequencies, 
especially above about 1 MHz. Below about 1 MHz, the induction of currents in the 
body is the dominant action of EM fi elds [8].

Temperature is a macroscopic, average parameter of a system in mutual inter-
action and can be related to the average kinetic energy of the particles [7]. Heat is 
mainly associated with the absorption of EM energy resulting from the electrical 
conductivity of biological materials. The electrical conductivity is only partly due 
to the translational motion of charged particles—ions. The other main contribution 
arises from the hindered rotation of molecules, principally water. The water molecule 
has a large permanent dipole moment, which is randomly oriented in the absence of 
an applied electric fi eld E. The electric fi eld partially orients the dipole moments 
along the direction of the fi eld. Because of the viscosity of water, the fi eld has to do 
work to rotate the dipoles, resulting in energy transfer into the liquid—heat. This 
dissipation mechanism is most effective over a broad range of frequencies [9].

CRC_62840_Ch002.indd   32CRC_62840_Ch002.indd   32 9/30/2007   2:18:36 PM9/30/2007   2:18:36 PM



Electromagnetic Interactions with Biological Systems 33

A possible effect of EM fi elds at low frequencies on living systems has been 
theorized to involve the ability, through magnetic induction, to stimulate eddy cur-
rents at cell membranes and in tissue fl uids, which circulate in a closed loop that lies 
in a plane normal to the direction of the magnetic fi eld. However, secondary mag-
netic fi elds produced by such currents may be neglected. The above current can be 
calculated using only Faraday’s law and Laplace’s equations, without simultaneously 
solving Maxwell’s equations. Hence, both current and electric fi elds are induced 
inside living systems by external magnetic fi elds [10–12].

When EM radiation interacts with matter, it can be absorbed, transferring the 
energy to the medium. The absorption process is divided into certain categories that 
correspond to modes of molecular energy storage. These categories include thermal, 
vibrational, rotational, and electronic modes. The thermal mode of energy storage 
consists of translational movement modes, in which atoms move horizontally and 
vertically about their lattice points in a medium. This is commonly referred to as 
heat. The amount of energy that a material will absorb from radiation depends on 
the operating frequency, intensity of beam, and the duration of exposure. The most 
important of these parameters is the frequency. EM radiation can excite translational 
and vibrational modes and generate heat. The intensity of the beam is also a factor in 
determining how much energy is absorbed. The larger the intensity of the beam, the 
more energy is available to be transferred. Also, the longer the duration of exposure, 
the more energy will be absorbed. The rate of change of the energy transferred to the 
material is called the absorbed power. This power is also called power transferred, 
but from the bioelectromagnetics point of view, the term “specifi c absorption rate” 
(SAR) is the preferred one. SAR is a quantity properly averaged in time and space 
and expressed in watts per kilogram (W/kg). SAR values are of key importance 
when validating possible health hazards and setting safety standards [8].

Thermal effects of EM radiation depend on the SAR spatial distribution. For 
example, 1 W/kg yields an increase of 1°C in human body, taking thermal regula-
tion into consideration. SAR above 15 W/kg produces more than 5°C temperature 
increase [2]. Thermal effects imposed on the body by a given SAR level are strongly 
affected by ambient temperature, relative humidity, and airfl ow. The human body 
attempts to regulate temperature increase due to thermal effect through perspi-
ration and heat exchange via blood circulation. Certain areas with limited blood 
circulatory ability, such as the lens of the eye and the testes, run a particularly high 
risk of being damaged by the induction of cataracts and burns. Finally, it is worth 
mentioning that most adverse health effects due to EM radiation between 1 MHz 
and 10 GHz are consistent with responses to induced heating, resulting in raising 
tissue temperatures higher than 1°C.

2.2.2.2 Nonthermal/Athermal Interaction Mechanisms

Controversy surrounds two issues regarding biological effects of intermediate- and 
low-level EM radiation. The controversy may be not only scientifi c, but to a certain 
extent political and commercial. First, whether radiation at such low levels can cause 
harmful biological changes in the absence of demonstrable thermal effects. Second, 
whether effects can occur from EM radiation when thermoregulation  maintains the 
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body temperature at the normal level despite the EM energy deposition, or when 
thermoregulation is not challenged and there is no signifi cant temperature change. 
In response to the fi rst issue, investigations on the extremely low-level EM radiation 
have been conducted and some results confi rmed but knowledge is yet inconclusive. 
Regarding the second issue, there can be two meanings to the term “effect.” It may 
mean an effect when there is no evident change in temperature or when the exposure 
level is low enough not to trigger thermoregulation in the biological body under 
irradiation, suggesting that physiological mechanisms maintain the exposed body at 
a constant temperature. Such a case is related to nonthermal effect where the effect 
occurs through mechanisms other than those due to macroscopic heating. The sec-
ond meaning is that EM fi elds cause biological effects, without the involvement of 
heat. This is sometimes referred to as an “athermal effect.” In this case, the thermo-
regulatory system maintains the irradiated body at its normal  temperature. Mean-
while, the macroscopic behavior of the body emerges out of quantum dynamics, 
producing the physics of living matter to a point where biochemistry has to be 
considered [8].

A review of the literature on the effects of intermediate- and low-level EM radia-
tion shows that exposure at relatively low SAR (<2 W/kg) under certain conditions 
could affect the nervous system [13–16]. This includes effects on blood–brain bar-
rier (BBB), morphology, electrophysiology, neurotransmitter activity, and metabo-
lism. Also, EM radiation at such levels might affect the immune system, gene and 
chromosomal morphology, enzyme activity, neurological function, cell morphology, 
membrane ion permeability, intracellular ion concentration, mutation rates, tumor 
promotion, endocrine secretion rates, etc. A few of the above effects are contradicted 
by other research fi ndings, leaving our understanding unclear. In most cases the 
mechanisms of the effects are not understood.

2.3 ELECTRIC FIELD EFFECTS

The interaction of EM fi elds with biological materials is considered through either 
microscopic or macroscopic models. Considering the interaction on a microscopic 
level with charges in the material is practically diffi cult [17,18]. Therefore, we will 
describe it macroscopically through various ways.

2.3.1 POLARIZATION OF BOUND CHARGES

Bound charges are strongly constrained by restoring forces in a material that may 
move only very slightly. Without the application of an E fi eld, positive and nega-
tive bound charges in an atom or molecule are superimposed upon each other and 
 effectively cancel out. When an E fi eld is applied, the forces on the positive and 
negative charges are in opposite directions and the charges separate, resulting in 
induced electric dipole. A dipole is a combination of positive and negative charges 
separated by a small distance. Such a dipole is said to be an induced dipole because 
it is created by the induction of an E fi eld. The creation of an electric dipole by sepa-
ration of charge is called induced polarization. Materials mainly affected this way 
are dielectrics.
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2.3.2 ORIENTATION OF PERMANENT ELECTRIC DIPOLES

Permanent dipoles, which are randomly oriented in a material with no E fi eld 
applied, tend to align with an applied E fi eld as shown in Figure 2.2. Since the fi eld 
is reversing polarity, the molecules try to fl ip back and forth in order to maintain the 
minimum energy confi guration. The net alignment of permanent dipoles produces 
new fi elds. The drift of conduction charges in an applied E fi eld occurs because these 
charges are free to move substantial distances in response to E fi elds. The movement 
of conduction charges is called drift. A large drift means high conductivity.

2.3.3 DRIFT OF CONDUCTION CHARGES

The third effect of an applied E fi eld is illustrated in Figure 2.3. Some charges in 
biological material are free because they are loosely bound and can be moved by an 
applied E fi eld. These charges can move a short distance, collide with other particles, 
and then move in a different direction, resulting in a small macroscopic average veloc-
ity in the direction of the applied E fi eld. Conductors are usually affected this way.

2.3.4 PEARL-CHAIN EFFECTS AND ELECTROROTATION

Many biological particles immersed in liquid media will align themselves and form 
pearl chains under an applied electric fi eld as shown in Figure 2.4. The alignment 
is independent of the frequency of the applied fi eld, has a time delay, and can occur 
only when the fi eld strength is greater than a certain minimum value. Also, at certain 
frequencies the particles will turn 90° in space (turn-over phenomenon) [19]. Using 
pearl-chain formation as a model effect and experimentally demonstrating that its time 
constant varies inversely as the square of the electrical fi eld strength, Sher et al. [20]
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FIGURE 2.2 The orientation of 
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FIGURE 2.4 Pearl-chain effect.
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show that a pulsed fi eld has no greater ability than a continuous fi eld of equal root 
mean square (RMS) fi eld strength to produce a fi eld-induced force effect.

Saito et al. [21] considered another related phenomena: the rotation of a cell 
when placed in a circularly polarized electric fi eld. In fact, the pearl-chain effect is 
related to the real part of the induced dipole moment of the particles, whereas elec-
trorotation is related to the imaginary part.

2.4 MAGNETIC FIELD EFFECTS

Although electric and magnetic fi elds often occur together, most concerns when 
dealing with these fi elds have focused on the potential health effects of magnetic 
fi elds only. The argument is that magnetic fi elds are diffi cult to shield, and easily 
penetrate buildings and people, contrary to electric fi elds, which have very little 
 ability to penetrate buildings or even human skin.

EM interaction mechanisms have been proposed but are not well established. 
Valberg et al. [22] have reviewed several mechanisms by which electric and magnetic 
fi elds at 50/50 Hz might infl uence biology, e.g., energy transfer, force, resonance, 
and magnetic moments including signal averaging. Proposed mechanisms include 
induced electric currents, direct effect on magnetic biological materials, effects on 
free radicals, and excitation of cell membranes.

2.4.1 INDUCED CURRENTS

At ELF range, a biological material is regarded as a conducting medium. At the 
microscopic level, all tissues are composed of cells and extracellular fl uids. The 
cell has two distinct parts: the outer, insulating membrane and the inner cytoplasm 
and nucleus, which like the extracellular fl uid, have high conductivity. Because of 
the membrane, cells appear to be insulators and almost all the currents induced 
in tissues by low-frequency electric fi elds fl ow around the cells. The insulating 
membrane, which completely surrounds the conducting core, makes the cell itself 
a series combination of the membrane capacitance and the cytoplasmic resistance. 
The thickness of the insulating portion of the membrane is less than 10 nm. There-
fore, the membrane capacitance is very large. Usually, below 100 Hz, the impedance 
of biological materials is generally resistive. In most cases, the contribution of the 
capacitive component is on the order of 10%, but it increases with frequency.

A possible effect of EM fi elds on living systems has been theorized to involve 
the ability, through magnetic induction, to stimulate eddy currents at cell membranes 
and in tissue fl uids, which circulate in a closed loop that lies in a plane normal to the 
direction of the magnetic fi eld. However, secondary magnetic fi elds produced by such 
currents may be neglected. The above current can be calculated using only Faraday’s 
law and Laplace’s equations, without simultaneously solving Maxwell’s equations. 
Hence, both current and electric fi elds are induced inside living systems by external 
ELF magnetic fi elds [10–12]. Such induced current may cause a kind of effect in the 
biological system. In the ELF range, the variation in surface charge density is very 
slow so that the current and fi eld generated inside the object are very small.

Accurate calculation of the induced current in a human body is only possible 
using numerical simulations, but if the body has a homogeneous and isotropic 
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conductivity, the current distribution in different organs, e.g., the head, could be 
expressed analytically. The current density in a circular path perpendicular to a sinu-
soidal magnetic fi eld is derived from Faraday’s law of induction [23]:

 J rBf���  (2.1)

where J is the current density in amperes/meter2 (A/m2), σ the conductivity of the 
medium in siemens/meter (S/m), r the radius of the loop for induction of current in 
meters (m), B the magnetic fl ux density in teslas (T) or webers/meter2 (Wb/m2), and 
f the frequency in Hz.

If the properties of the biological system are constant, the induced current is 
directly proportional to the frequency of the applied fi eld. However, the value of 
current based on Equation 2.1 is limited. Currents usually interface between dif-
ferent layers in a heterogeneous object and are quite different from that predicted 
analytically.

Kaune and Gillis [24] numerically analyzed currents induced in a rat by linearly 
and circularly polarized magnetic fi elds of 50 Hz. Special focus was placed on the 
pineal gland and retina of rats since these organs were often associated with the 
changes of melatonin synthesis. Induced currents in two MRI-based rat models with 
resolutions of up to 0.125 mm3 were calculated by using the impedance method. 
Calculated  current densities were extremely small, i.e., <30 µA/m2 for both polar-
ized fi elds of 1.41 µT (peak). There were neither signifi cant differences in amplitude 
nor polarization of induced currents in the pineal gland between the linearly and the 
circularly polarized fi elds when the polarization was in a vertical plane. In contrast, 
magnetic fi elds rotating in the horizontal plane produced most circularly polarized 
currents both in the pineal gland and in the retina.

2.4.2 MAGNETIC BIOSUBSTANCES

All living organisms are essentially made of diamagnetic organic compounds, but 
some paramagnetic molecules (e.g., O2) and ferromagnetic microstructures (hemo-
globin core, magnetite) are also present. Biological magnetites are usually found in 
single domain units, covered with thin membranes called magnetosomes (Fe3O4). 
These microstructures behave like small magnets and are infl uenced by external 
fi elds changing their energy content. They are usually found in bacteria and other 
small biological elements. It is believed also that the human brain contains mag-
netosomes. Such bacteria and biological elements orient with the applied magnetic 
fi elds. Magnetosomes exist in the interior of cells bound to cell bodies through cyto-
skeleton. In such gathering, torque generated by the action of the magnetic fi eld 
acts to rotate the whole cell through forces on the individual magnetosomes that are 
magnetically lined up. The impedance of the surrounding environment restrains the 
movement of these composite systems, induced by fi elds. Magnetosomes, which are 
not rigidly bound to the whole cell structure, may rotate in the cell in such a way as 
to create biological effects. 

ELF fi elds might create biological effects by acting on such particles [12,25–28]. 
But the effect occurs only with strong magnetic fi elds. Calculations show that these 
effects require at least 2–5 µT [12,25,26].
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2.4.3 RADICAL PAIRS

Free radicals are atoms or molecules with at least one unpaired electron. Unpaired 
electrons are very unnatural, unstable, and hazardous because electrons normally 
come in pairs. These odd, unpaired electrons in free radicals cause them to collide 
with other molecules so they can steal electrons from them, which changes the struc-
ture of other molecules and causes them to also become free radicals. This can create 
a self-perpetuating chain reaction in which the structure of millions of molecules is 
altered in a matter of nanoseconds (ns), wreaking havoc with deoxyribonucleic acid 
(DNA), protein molecules, enzymes, and cells.

Free radicals are remarkably reactive. They just exist for very short periods 
( typically less than 1 ns), but their effect is extreme in terms of cell aging and 
 various kinds of cancer because of the damage they do to DNA, cells, and tissues. 
 Radical pairs exist in either singlet (reactive) or triplet (diffusive) states, depending 
on whether their unpaired spins are antiparallel or parallel to the applied fi eld. 

Static magnetic fi elds may infl uence the response rate of chemical reactions 
 involving free-radical pairs [29–33]. Since the lifetime of these free radicals is so 
short compared with the cycle time of the ELF fi elds in general and power frequency 
(50/50-Hz) fi elds in particular, the applied fi elds act like static fi elds during the time 
scale over which these reactions occur. Biological effects due to fi elds less than 50 µT 
are not signifi cant because any effect of fi eld would be additive with a 30–70-µT 
 geomagnetic fi eld.

2.4.4 CELL MEMBRANE AND THE CHEMICAL LINK

According to Foster [4], “low-frequency electric fi elds can excite membranes, caus-
ing shock or other effects. At power line frequencies, the threshold current density 
required to produce shock is around 10 A/m2, which corresponds to electric fi eld 
of 100 V/m in the tissue. However, electric fi elds can create pores in cell mem-
branes by inducing electric breakdown. This requires potential differences across 
the  membranes at levels between 0.1 and 1 V, which, in turn, requires electric fi eld 
in the medium surrounding the cell of at least 105 V/m.”

Many life scientists, through a series of fi ndings [34–39], believe the cell mem-
brane plays a principal role in the EM interaction mechanisms with biological sys-
tems. Indications point to cell membrane receptors as the probable site of initial 
tissue interactions with EM fi elds for many neurotransmitters, growth-regulating 
enzyme expressions, and cancer-promoting chemicals.

Scientists theorizing this mechanism conclude that biological cells are bioelectro-
chemical structures, which interact with their environment in various ways, including 
physically, chemically, biochemically, and electrically. According to Dr. William Ross 
Adey at the University of California, Riverside [40], “the ions, especially calcium ions 
could play the role of a chemical link between EM fi elds and life processes. The elec-
trical properties and ion distribution around cells are perfect for establishing effects 
with external steady oscillating EM fi elds.” He presented a three-step model involving 
calcium ions, which could explain observed EM-induced bioeffects. Key to the model 
is the activation of intracellular messenger systems (adenylate cyclase and protein 
kinase) by calcium in a stimulus amplifi cation process across the cell membrane.
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The impact of ELF fi elds may also be understood in terms of amplifi cation and 
the cooperative sensing associated with simultaneous stimulation of all membrane 
receptors. Dr. Litovitz and his team at the Catholic University of America (CUA) 
[35] hypothesized that oscillating EM fi elds need to be steady for a certain period 
of time (approximately 1 s) for a biological response to occur. This allows cells to 
discriminate external fi elds from thermal noise fi elds, even though they might be 
smaller than the noise fi elds.

2.4.5 SUMMARY OF ELF INTERACTION MECHANISMS

It is concluded from the three biophysical mechanisms (induced electric currents, direct 
effect on magnetic biological materials, and effects on free radicals) that high fi eld 
strength is needed to produce noticeable biological effects in living systems. These 
strengths are usually much higher that the typical environmental exposures. However, 
to understand the bioelectrochemical mechanism, we need to emphasize how ELF 
fi elds affect life processes. Most life  scientists believe that only the chemical processes 
is involved in growth and healing in the living system. A clear distinction between this 
mechanism and the previous three biophysical mechanisms is summarized in Adair’s 
comment [36], “any biological effect of weak ELF fi elds on the cellular level must be 
found outside the scope of conventional physics.”

2.5 BIOLOGICAL AND HEALTH EFFECTS

EM fi elds and radiation can be envisaged as discrete quanta that are absorbed by 
matter. The amount of energy associated with a quantum is then decisive for the type 
of change that takes place initially. The quantum energies of EM waves are too low 
to break chemical bonds. However, there are structures in biological materials that 
may be affected by very low energy, e.g., hydrogen bonded structures in which very 
low energy may cause displacement of protons.

The debate on the potential health effects of EM energy, especially from mobile 
phones, has focused on possible cancer-enhancing effects on one side, and infl uence 
on the CNS on the other side. It seems that any cancer-related effects of EM waves 
cannot be based on direct genotoxic effects, since the energy level is not high enough 
to damage DNA. Instead, it has been investigated whether EM fi elds are cocarcino-
genic, i.e., whether they enhance the effects of other carcinogenic factors. Accord-
ingly, it is important to know some of the characteristics of cells, tissues, enzymes, 
and proteins in the human body to appreciate the associated interaction mechanisms. 
In this section, very little will be said about anatomical confi gurations—the interest 
here is primarily in tissues and cellular structures.

2.5.1 CELLS AND MEMBRANES

The smallest living unit in biology is a cell. Each human being is a collection of 
 billions of living cells, which group together as organs to perform essential func-
tions. Cells come in all sizes and shapes, and are commonly several microns in 
diameter. For example, muscle cells may be a few millimeters long and nerve cells 
over a meter long. The entire characteristics of a cell include a thin membrane that 
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holds the cell together, cytoplasm, which is a gel-like material within a membrane, 
and usually a nucleus. However, not all cells have a nucleus: some muscle cells have 
several, but red blood cells have none. Within the cytoplasm, there are several types 
of smaller structures called organelles, which perform certain metabolic functions. 
Vesicles partition the cell interior so that materials can be separated and compart-
mentalized for specifi c reactions. Organelle sizes vary from fractions of a micron up 
to a micron, and are therefore close in size to very short wavelengths.

Biological cells are entities with a highly specifi c intracellular chemical con-
tent, separated from the nonspecifi c extracellular solution by the cell membrane. The 
cell membrane acts as a selective barrier between the intracellular and extracellular 
milieu. The membrane selectively controls the transport of chemical species into and 
out of the cell [41].

Cells are complex structures rich with complicated charged surfaces. They are 
stuffed with highly charged atoms and molecules that can change their orientation 
and movement when exposed to force. A cell with distribution of charges is shown 
in Figure 2.5a, while the alignment of positive charges in the direction of the E fi eld 
is shown in Figure 2.5b [6].

EM interactions with biological systems may be realized through cells. They are 
categorized according to the cell structure [42]:

 1. Interactions with the cell membrane
 2. Interactions with the cytoplasm
 3. Interactions with the nucleus

The cell nucleus contains most of the body’s hereditary information in the chro-
mosomes and the genes arranged in strands along the chromosomes. Genes are 
usually composed of double strands of DNA arranged in a twisted helix. A cell 
reproducing itself uses a blueprint stored in genetic material in the nucleus. The 
genetic  material is encoded as a long sequence of different organic molecules that 

E

(a) (b)

FIGURE 2.5 (a) A resting cell. (b) A cell under the infl uence of an electric fi eld.
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bind together in DNA. The DNA controls most cellular activities by synthesizing 
protein. It uses single-strand ribonucleic acids (RNA) molecules, which the DNA 
synthesizes, to transfer information across the cell’s cytoplasm. There are various 
phases of RNA: the formation of messenger RNA from DNA, which is called tran-
scription; the synthesis of protein by messenger RNA, which is called translation; 
and the duplication of DNA, which is called replication.

Cells grow, change, and reproduce in a continuous process called mitosis. It 
starts in the nucleus through duplication and equal distribution of the chromosomes. 
Cells without nuclei, such as mammalian red blood cells, cannot divide, while other 
cells undergo mitosis often, for instance, the embryo. This is why exposure to EM 
fi elds is of special concern during pregnancy.

The process of mitosis has four phases: prophase, metaphase, anaphase, and 
telophase. The period between divisions is called the resting phase. In the prophase, 
chromosomes appear out of the DNA. The membrane around the nucleus disappears. 
In the metaphase, the chromosomes line up along the equatorial plate at midcenter. 
In the anaphase, the chromosomes separate. During the last stage, telophase, the cell 
pinches in until two daughter cells have formed. It is evident that there are several 
processes during mitosis that may be affected by being exposed to an external force, 
like EM fi elds. It is a potential area for research to study the effect of EM fi elds on 
various activities of the chromosomes during the four phases of mitosis.

Cells have voltage across their membranes and voltage-gated ion channels 
through their membranes. They use ions (e.g., Ca++) for many cell regulatory 
 processes including signal transduction and gap junction gate regulation. Altering 
the electric fi eld on the surface of cells changes the receptor effi ciency and interferes 
with the voltage-gated ion channels [43]. Intervention with membrane-mediated sig-
nal detection, transduction, or amplifi cation processes may cause various biological 
nonthermal effects. The movement of cellular calcium ion (Ca++) by EM fi elds is a 
signifi cant response in the order of cellular activities. According to Lednev [44]: “An 
ion inside a Ca++-binding protein is approximated by a charged oscillator. A shift in 
the probability of ion transition between different vibrational energy levels occurs 
when a combination of static and alternating magnetic fi elds is applied. This in turn 
affects the interaction of the ion with the surrounding ligands. The effect reaches 
its maximum when the frequency of the alternating fi eld is equal to the cyclotron 
frequency of this ion or to some of its harmonics or sub-harmonics.”

The attention of many research groups has focused on the infl uence of weak EM 
exposure on the Ca++ [45]. The site of interaction in the cell is unknown but the cell 
membrane [46,47] and the DNA [48] have been suggested. Other bioeffects that have 
been reported to result from EM exposure include changes in cell membrane func-
tion, metabolism, cellular signal communication, cell stress, and cell death.

2.5.2 TISSUES

Cells are grouped and combined with other materials to form several characteristic 
types of materials called tissues. There are four basic types of tissues: epithelial, 
connective, muscular, and nervous. Epithelial tissues consist of cells in single or 
multilayered membranes. They perform the functions of protection and regulation of 
secretion and absorption of materials.
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Connective tissues consist of cells and nonliving materials such as fi bers and 
gelatinous substances, which support and connect cellular tissues to the skeleton. 
Connective tissues comprise much of the intercellular substances that perform the 
important function of transporting materials between cells. Examples of such tissues 
are bone and cartilage. Subdermal connective tissues contain collagen and elastic 
fi bers, which give the skin its properties of toughness and elasticity.

Muscle tissues consist of cells that are 1–40 mm in length and up to 40 µm 
in diameter. Muscles contain an extensive blood supply, and are hence fi lled with 
blood vessels and capillaries with their attendant connective tissue. A large group of 
 muscle fi bers are commonly bound together in a sheath. Skeletal muscle has a regu-
lar internal striated fi ne structure due to an ordered array of protein fi laments.

Nervous tissues are used to sense, control, and govern body activity. Nervous 
 tissue is composed of two main cell types: neurons and glial cells. Neurons are 
 analogous to transmission lines. They are located in every protein of the body, send-
ing information to the CNS from different information receptors and from the CNS 
to muscles, organs, glands, etc. Glial cells are in direct contact with neurons and 
often surround them. Neurons have long projections called axons, which are analo-
gous to transmission lines.

2.5.3 CHANGES IN PROTEIN CONFORMATION

The signifi cance of this interaction mechanism lies in the fact that the effi ciency of 
the protein as an enzyme depends on its conformation. Protein consists of a sequence 
or chain of amino acids connected by peptide bonds. The chain can be a long straight 
thread but, more often, parts of the chain form loops or helices, and the whole is 
irregularly coiled and foiled into a globule. The way in which the chain in arranged 
is called conformation. The side chains of the amino acids are often polar. They 
attract or repel nearby side chains, so the conformations all have somewhat  different 
potential energies and dipole moments [9]. EM radiation may cause changes in pro-
tein conformation and accordingly generate biological effects. Bohr and Bohr [49] 
found that microwaves affect the kinetics of conformational changes of the protein 
β-lactoglobulin and accelerate conformational changes in the direction toward the 
equilibrium state. This applies both for the folding and the unfolding processes. 
Laurence et al. [50] proposed a model in which pulsed microwave radiation causes 
a triggering of the heat shock or stress response by altering the conformation of 
proteins through a transient heating of the protein and its close environment. This 
was supported by modeling using the heat-diffusion equation to show that pulsed 
exposure can lead to transient temperature excursions outside the normal range. The 
authors proposed that the power-window phenomenon in which biological effects 
are observed at low power levels may be caused by an incomplete triggering of the 
heat shock response.

2.5.4 CHANGES IN BINDING PROBABILITY

A mechanism that has been explored by Chiabrera et al. [51] concerns the possi-
ble effects of EM fi elds on cell reporters. The authors developed a comprehensive 
 quantum Zeeman–Stark model, which takes into account the energy losses of the 

CRC_62840_Ch002.indd   42CRC_62840_Ch002.indd   42 9/30/2007   2:18:38 PM9/30/2007   2:18:38 PM



Electromagnetic Interactions with Biological Systems 43

ligand ion (such as Ca2+) due to its collisions inside the receptor crevice, the attract-
ing nonlinear endogenous force due to the potential energy of the ion in the binding 
site, the out-of-equilibrium state of the ligand-receptor system due to the basal cell 
metabolism, and thermal noise. The biophysical output is the change of the ligand-
binding probability that, in some instances, may be affected by a suitable low-inten-
sity exogenous EM input exposure, e.g., if the depth of the potential energy well of 
a putative receptor protein matches the energy of the radiofrequency photon. These 
results point toward both the possibility of the EM control of biochemical processes 
and the need for a new database of safety standards.

Changes in the binding probability of Ca2+ have also been investigated by 
Thompson et al. [52] but using a different approach. They examined the effect of 
the conformation of its neighbors. If it were large, it would signifi cantly change the 
probability that Ca2+ would bind to its neighbors and so could lead to the formation 
of an ordered array of occupied sites rather than a random distribution.

2.5.5 ABSORPTION OF VIBRATIONAL STATES OF BIOLOGICAL COMPONENTS

In recent years, there has been further discussion of the role that might be played by 
resonant absorption of EM energy by the vibrational states of biological components 
such as microtubules [9]. Foster and Baish [53] noted that the main contribution to 
the width of a vibrational state in a biological component is likely to arise from the 
viscosity of the fl uid in which it is immersed. To estimate this effect, Foster and Baish 
[53] calculated the relaxation time of longitudinal oscillations of a cylinder immersed 
in water. For a cylinder with a diameter equal to that of a microtubule, the relaxation 
rate and hence the line width was around 1000 times larger than the frequency even 
at 10 MHz and would be even greater at higher frequencies. Similar results were 
obtained by Adair [54]. In addition, Adair [54] calculated the energy transferred to a 
vibrational state of a biological component from an EM fi eld. The interaction is weak 
and is forbidden by momentum conservation in the absence of damping.

2.5.6 GENETIC MATERIAL

The human genome, which is a chemical sequence that contains the basic information 
for building and running a human body, consists of tightly coiled threads of DNA 
and associated protein molecules. It is organized into structures called chromosomes. 
DNA is a double-stranded molecule held together by weak bonds between base pairs 
of nucleotides. Each strand is a linear arrangement of repeating similar units called 
nucleotides, which are each composed of one sugar, one phosphate, and a nitroge-
nous base. Weak bonds between the bases on each strand hold the two DNA strands 
together. Each time a cell divides into two daughter cells, its full genome is duplicated; 
for humans and other complex organisms, this duplication occurs in the nucleus.

Each DNA molecule contains many genes, the fundamental physical and 
 functional unit of heredity. A gene is an ordered sequence of nucleotides located 
in a certain position on a specifi c chromosome that encodes a particular functional 
product. We can think of genes as information in a computer; they are a bit like fi les. 
Genes are units of information in the DNA that are used to build proteins, among 
other things in the human body.
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The human genome is estimated to comprise at least 100,000 genes. The nucleus 
of most human cells contains two sets of chromosomes, one set given by each parent. 
Each set has 23 single chromosomes, 22 autosomes, and an X or Y sex chromosome 
(a normal female will have a pair of X chromosomes; a male will have an X and Y 
pair). Chromosomes contain roughly equal parts of protein and DNA.

Resulting effects of EM exposure, which have been reported in scientifi c litera-
ture, include DNA breaks and chromosome aberrations. The very low energy level in 
the ELF range is suffi cient to trigger gene expression. This suggests that EM interac-
tion with DNA can stimulate chain separation, at least in the segment of the chain 
needed to start the process. Destabilization of H-bonds when electrons oscillate in 
the EM fi eld is consistent with the low electron affi nity of nCTCTn bases in the 
EMREs needed for interaction with DNA. The force (in newtons) on an electron is

 F qvB�  (2.2)

where q = 1.5 × 10−19 coulombs, v  is the electron velocity in meters per second (m/s) 
and B is the  magnetic fl ux density [48].

2.5.7 CARCINOGENESIS

Transformation of healthy cells to malignant cells is a complex process, which 
includes at least three distinct stages driven by a series of injuries to the genetic 
material of cells. This process is referred to as the multistep carcinogenesis (cancer-
producing) model [55], as illustrated in Figure 2.6. This model may replace an earlier 

Normal cells

Conversion of some cells into precancer cells 

Conversion of some precancer cells into cancer

Development of tumor from cancer cells

FIGURE 2.6 The multistep carcinogenesis model.
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model, called the initiation-promotion model, which proposed that carcinogenesis 
was a two-step process, with the fi rst step being a genotoxic injury (initiation). This 
is an irreversible step in which some agent causes genetic mutations. The second 
step is a nongenotoxic process (promotion) that enhances the proliferation of already 
damaged cells.

Human cancer is the result of the accumulation of various genetic and  epigenetic 
changes in a given population of cells. Cancer is initiated by damage to the DNA. 
An agent causing such injury is called a genotoxin. It is extremely unlikely that a 
single genetic injury to the cell will result in cancer; rather it appears that a series 
of genetic injuries are required. The genotoxin may affect various types of cells, 
and may cause more than one kind of cancer. An epigenetic agent is something 
that increases the probability of causing cancer by a genotoxic agent. There are no 
standard assays for epigenetic activity and hence, there is no easy method to predict 
that an agent has such activity. Related to this question is a concern over the effect 
on health of prolonged or repeated exposure to low-level RFR. The literature review 
treats this subject extensively [56,57]. The reviewers believed that genetic changes 
observed in EM studies only occurred in the presence of a substantial  temperature 
rise. In general, these observations are consistent with the interpretation that RFR, 
because of the low amount of energy in photons, does not cause direct damage to 
the DNA.

Various health effects from EM fi elds have been discussed in the literature, but 
most of the attention has focused on the possible relationship with the initiation 
or promotion of cancer. Attention is partially derived from the concept of cancer 
as a dread disease. The rest of the attention is connected with the epidemiological 
data, which suggests a possible involvement of such weak fi elds in the incidences of 
leukemia and other types of cancer. This issue has raised signifi cant interest in the 
interactions of EM fi elds with living organisms.

2.5.8 HYPOTHESIS OF MELATONIN

One possible interaction hypothesis under investigation is that exposure to EM fi elds 
suppresses the production of melatonin, which is a hormone produced by the pineal 
gland, a small pinecone-shaped gland located deep near the center of the brain. 
 Melatonin is produced mainly at night and released into the blood stream to be 
dispersed throughout the body. It surges into almost every cell in the human body, 
destroying free radicals and helping cell division to take place with undamaged 
DNA. Melatonin also assists in regulating the female menstrual cycle and circa-
dian rhythms. Melatonin secretion decreases over a lifetime, peaking in childhood 
and gradually lessening after puberty. Usually, people over 60 secrete far less than 
they do when young. Also, melatonin regulates sleep, mood, behavior, and gene 
expression. It reduces secretion of tumor-promoting hormones. It has the ability to 
increase cytotoxicity of the immune system’s killer lymphocytes; therefore, its pro-
duction is essential for the immune system, which protects the body from infection 
and cancer cells. Various cancers might proliferate if melatonin is lowered in the 
body. Decreased melatonin levels have been implicated in breast cancer, prostate 
cancer, and ovarian malignancies. In brief, Figure 2.7 illustrates the consequences 
of melatonin reduction.
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It is known that melatonin is affected by light. This is evident from the fact that 
blind women typically have higher levels of it than do sighted women. Also, the 
incidence of breast cancer is much less in blind women. Frequencies other than those 
of light may have infl uence on the production of melatonin in humans and animals. 
Scientists are interested in melatonin because it could help explain results of some 
epidemiological studies.

2.5.9 CANCER MECHANISMS

Cancer is a term applied to describe at least 200 different diseases, all of which 
involve uncontrolled cell growth. Cancer is a case of uncontrolled mitosis in which 
cells randomly divide and grow after escaping the body’s normal control condition. 
As a primary disorder of cellular growth and differentiation, cancer is essentially a 
genetic disorder at the cellular level. With cancer, the fault is in the cell itself rather 
than in the overall body. Causes of most cases of cancer are unknown, but factors that 
infl uence the risk of cancer are many. Each of the known risk factors such as smoking, 
alcohol, diet, ionizing radiation, or others contributes to specifi c types of cancer.

Cancer risk is related to many causes. The risk with asbestos is related to fi ber 
length and toughness. The risk from particles in air pollution is related to their size and 
propensity to settle in the lung. Ionizing radiation has suffi cient energy to directly initi-
ate cancer. Visible light breaks bonds in the process of photosynthesis but is not usu-
ally suspected of causing cancer. Radiation of solar origin, like UV (especially UVB) 
is associated with skin cancer and malignant melanoma. However, the photon energy 
from EM fi elds (see Figure 1.7) is insuffi cient to directly break chemical bonds.

In general, cancers potentially associated with exposure to EM fi elds are leuke-
mia, brain, and breast cancers. Leukemia and lymphoma (lymphoma is a cancer that 
arises in the lymphoid tissues) are complexes of malignant diseases of the hemato-
poietic system. Figure 2.8 shows cancer mechanisms.
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FIGURE 2.7 Biological consequences of melatonin reduction.
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2.5.10 BRAIN AND NERVOUS SYSTEM

There are two major parts of the nervous system: the CNS and the peripheral  nervous 
system. The CNS consists of the brain and the spinal cord. Once messages leave 
the CNS, they are carried by the peripheral nervous system. The peripheral system 
includes the cranial nerves (nerves branching from the brain) and the spinal nerves 
(nerves branching from the spinal cord). These nerves convey sensory messages 
from receptor cells in the body to the CNS. They also transport motor impulses from 
the CNS out to the body, where muscles and glands can respond to the impulses.

The basic element of the nervous system is the nerve cell, or neuron. Humans 
have about 100 billion neurons in their brain alone! While variable in size and shape, 
all neurons have three parts: dendrites, which receive information from another cell 
and transmit the message to the cell body; cell body, which contains the nucleus, 
mitochondria, and other organelles typical of eukaryotic cells; and axon, which con-
ducts messages away from the cell body. Figure 2.9 shows a common neuron.

Neurons occur in three types: sensory neurons, which have a long dendrite and 
short axon, and carry messages from sensory receptors to the CNS; motor neurons 
with a long axon and short dendrites and transmit messages from the CNS to the 
muscles (or to glands); and interneurons, which are found only in the CNS, where 
they connect neuron to neuron.

The action of nerve cells is both electrical and chemical. The plasma membrane of 
neurons, like all other cells, has an unequal distribution of ions and electrical charges 
between the two sides of the membrane. The outside of the membrane has a positive 
charge, while the inside has a negative charge. Passage of ions across the cell membrane 
passes the electrical charge along the cell. This charge difference is a resting potential, 
which is equal to −55 mV. Resting potential results from differences between sodium 

Reduced melatonin

Genetic effects

Cell to cancerous cell

Defective immunity

Abnormal growth 

EM fields 

Cancer

FIGURE 2.8 Effects that may lead to cancer due to EM exposure.
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and potassium positively and negatively charged ions in the cytoplasm. Sodium ions 
are more concentrated outside the membrane, while potassium ions are more concen-
trated inside the membrane. This imbalance is maintained by the active transport of 
ions to reset the membrane, known as the sodium potassium pump, which maintains 
this imbalanced concentration by transporting ions against their concentration gradi-
ents. The above electrochemical events can be considered the language of the nervous 
system, by which information is transmitted from one part of the body to another.

2.5.10.1 Brain

The brain is the control center of the CNS. The brain lies within the skull and gov-
erns body functions by sending and receiving messages through the spinal cord. Pro-
tecting the brain and spinal cord are bones, layers of tissue, and cerebrospinal fl uid.

Growth of the head and brain happens primarily during the fi rst decade of life. 
For example, the circumference of the 1-year-old child’s head is 84% and that of a 
7-year-old child head is already 93–95% of the circumference of an adult’s head [58]. 
The growth is mainly in the skull and in the brain. The thickness of the cranial bones 
increases up to the age of about 18 but the increase is fastest in the fi rst decade, from 
an average of 1.4 mm at birth to 6.8 mm at 12 years of age [59]. From 5 to 20 years 
of age, the brain volume increases by about 10%, while the skull thickness increases 
by more than 70% [60].

Concerns regarding hazards of EM radiation from wireless equipment in  general 
and cellular phones in particular are receiving heightened attention due to the  hazards 
of energy absorption in the brain and other parts of the body. As to whether exposure 
to EM fi elds is associated with the development of neurological diseases, several 
studies indicated that EM fi elds infl uence the physiology of the human CNS [61–63]. 
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FIGURE 2.9 A common neuron.
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Resulting effects of EM exposure which have been reported in scientifi c literature 
include memory loss, learning impairment, headaches and fatigue, sleep disorders, 
cognitive functions, and neurodegenerative conditions.

2.5.10.2 Physiological Effects

When the nervous system or the brain is disturbed, e.g., by EM fi elds, morphological, 
electrophysiological, and chemical changes can occur. A signifi cant change in these 
functions will inevitably lead to a change in behavior. Neurological effects of EM 
fi elds reported in the literature include changes in BBB, morphology, electrophysiol-
ogy, neurotransmitter functions, cellular metabolism, calcium effl ux, responses to 
drugs that affect the nervous system, and behavior.

The BBB is an anatomic physiologic complex associated with the cerebral vascu-
lar system. It separates the brain and cerebral spinal fl uid of the CNS from the blood. 
It primarily consists of an essentially continuous layer of cells lining the blood vessels 
of the brain. It protects sensitive brain tissues from ordinary variations in the com-
position of blood while allowing transport of nutrients into the brain. But the BBB is 
not an absolute barrier between the blood and the brain; rather it retards the rate at 
which substances cross between the blood stream and the brain. Any disruption to 
the BBB has serious consequences on health. The BBB may break down following 
brain trauma or brain heating. The BBB breakdown is risky if it allows enough con-
centrations of blood-borne neurotoxins (such as urea) to enter the brain. Substances 
needed by the brain, i.e., glucose, cross the BBB either by passive transport or may be 
transported across in small bubbles of fl uids. EM effects on BBB have been reported 
in the literature for more than 30 years [8,64,65]. Most of the studies conclude that 
high-intensity EM fi eld is required to alter the permeability of the BBB.

In studies examining the physiological effects of EM fi elds upon brain, the most 
common technique used is electroencephalography (EEG). EEG is the neurophysio-
logic measurement of the electrical activity of the brain by recording from electrodes 
placed on the scalp or, in special cases, in the cerebral cortex, as shown in Figure 
2.10. Spontaneous activity is measured on the scalp or on the brain and is called the 
electroencephalogram. The amplitude of the EEG is about 100 µV when measured 
on the scalp, and about 1–2 mV when measured on the surface of the brain. The 
bandwidth of this signal is from under 1 Hz to about 50 Hz.

Electrode

FIGURE 2.10 Top view of human head with EEG electrodes placed on the scalp.
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Functional and metabolic imaging of the brain can be performed using a number 
of methods such as functional magnetic resonance imaging (fMRI, measuring brain 
blood fl ow), magnetic resonance spectroscopy (MRS, measuring neurotransmitter 
concentrations), positron emission tomography (PET, measuring brain blood fl ow, 
metabolism, and neuroreceptor occupancy), and single photon emission tomogra-
phy (SPECT, measuring blood fl ow and metabolism). The advantage of the imaging 
methods is their high spatial resolution (voxels of millimeter cube to centimeter cube 
in size) throughout the entire brain volume. However, these methods detect com-
paratively late events such as blood fl ow and metabolism, which occur seconds to 
minutes after the initiation of brain activity. This delay is related to both the limited 
temporal resolution of the brain imaging methods and also to a lag in time after the 
initial neuronal activity. Some studies have sought to overcome the limited temporal 
resolution of metabolic imaging by combining it with EM brain mapping for what is 
termed “multimodal” imaging [66–68].

EM brain-mapping methods have been used extensively in the investigation 
of EM exposure. These methods, as compared to the brain imaging methods, are 
entirely passive and hence can be more easily applied to volunteers; that is, there 
is no ionizing radiation and no strong magnetic fi elds. Interestingly, these meth-
ods have poorer spatial resolution than the imaging methods but superior tempo-
ral resolution (i.e., milliseconds (ms)). The main mapping technique used is EEG, 
which measures brain electrical activity. Depending on the number of channels used, 
sources of EEG signal can at best be estimated to within a few centimeters. State of 
the art EEG systems, now employing large numbers of electrodes (>256 channels), 
have improved the spatial resolution of the cerebral cortex, but signals from deeper 
structures remain diffi cult to detect reliably [68].

2.6 ENERGY AND FREQUENCY

2.6.1 EFFECT OF FREQUENCY

The fact that the same nonthermal mechanism is activated in ELF and RF ranges 
shows that the total energy of the fi eld is not critical, but rather the regular oscilla-
tions of the stimulating force. The energy associated with each wave (i.e., energy/
cycle) is probably more or less independent of the frequency. In the ELF range, a 
typical frequency is 102 cycles/s, and a cycle lasts 10−2 s. In the RF range, a typical 
frequency is 109 cycles/s and a cycle lasts 10−9 s. If the same energy is needed to 
reach threshold in RF, the effect in a single cycle must be the same as in ELF. If we 
assume the energy is approximately proportional to frequency (energy = Planck’s 
constant × frequency), the energy associated with an RF cycle is ∼107-fold greater 
than in the ELF range. Since durations are in the same ratio, the energy transferred 
in each cycle is about the same. However, because of many repetitions in the higher 
frequency range, the nonthermal threshold is reached in a shorter time [48].

2.6.2 LOW-FREQUENCY FIELDS FROM DEMODULATION

Depending on a limited number of experimental results, a hypothesis was 
 presented in the 1970s, suggesting that amplitude-modulated EM fi elds could 
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exert specifi c bioeffects occurring at very low fi eld intensities, based on certain 
unknown mechanisms other than tissue heating. This question has now been 
 activated again as a result of the introduction of digital communication systems 
such as the global system for mobile communication (GSM), which uses pulse-
modulated signals.

In view of public concern that pulsed signals from mobile phones might interact 
differently with biological components from continuous RF signals, it is surprising 
that there has been almost no discussion of how this might arise. It is well known 
that pulsed RF fi elds can result in acoustic effects, which is a thermal effect and is 
only detectable at high-level powers. So there would need to be another mechanism 
if, for example, biological effects of pulsing were to occur at the power levels of the 
GSM or TETRA handset [9].

The GSM standard employs a time division multiple access (TDMA) technique 
with eight time slots. This means that the transmitter is only ever switched on for an 
eighth of the time. Therefore, the maximum average power output is 0.25 W for a 
900 MHz GSM phone. Eight GSM phone users can share a pair of 200 kHz wide-
band channels, because each user is given access only to a single time slot of 575 
microsecond (µs) duration in a 4.5 ms frame that is repeated 217 times a second. This 
217-Hz cycle of power pulses for the GSM and 17.5 Hz for TETRA is in the range of 
the normal bioelectrical functions both in and between cells, so it may induce low-
frequency power surges causing biological effects [69].

In addition, demodulation of these signals would lead to the presence of electric 
fi elds at 217 or 17.5 Hz and their harmonics, as well as fi elds at frequencies relating 
to the digital stream (tens of kHz). Now, the ICNIRP public exposure guidelines for 
low-frequency electric fi elds (4–100 Hz) of 2 mV/m (for tissue of resistivity 1 Ωm) is 
less than the corresponding guideline at 1 GHz of around 100 V/m. Accordingly, even 
weak demodulation of mobile phone signals at these fi elds produces low-frequency 
electric fi elds above the protection guidelines [9].

2.7 CONCLUDING REMARKS

Living organisms are complex electrochemical systems that evolved over billions 
of years in a world with a reasonably weak magnetic fi eld and with few EM energy 
sources. As is characteristic of living systems, they interacted with and adapted to 
this environment of EM fi elds. In recent years there has been a massive introduc-
tion of equipment that emits EM fi elds in an enormous range of new frequencies, 
modulations, and intensities. The question of how these EM fi elds, static or low 
to high frequency interact with biological systems is a complicated subject and of 
great interest. Scientists with decades of practical experience are actively working to 
explain how EM fi elds interact with biological systems and cause biological effects. 
The explanation may go beyond the belief that EM properties of cells and tissues are 
prime pillars of EM interaction mechanisms by considering models for the scientifi c 
apprehension of life processes in biological systems. Collaboration among experts 
in biological sciences and engineering is required for reliable EM biological effects 
studies and successful medical applications.
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3 Guidelines and 
Measurement for Electric 
and Magnetic Fields

3.1 INTRODUCTION

Just as coal enabled the industrial revolution, electricity is the unseen fuel of modern 
life. The use of electricity results in the production of electric and magnetic fi elds 
(EMF). There are two types of EMF classifi ed according to the frequency range: 
ELF fi elds and VLF fi elds. ELF fi elds are defi ned as those having frequencies up to 
3 kHz while VLF fi elds cover the frequency range 3–30 kHz. Because of the quasi-
static nature of the EM fi elds at these frequencies, electric and magnetic fi elds act 
independently of one another and are measured separately. Electric fi elds created by 
voltage and measured in volts per meter are present whenever an electric appliance 
is plugged in. The appliance need not be turned on for electric fi elds to be detected. 
Magnetic fi elds, induced by alternating current and measured using the derived 
quantity magnetic fl ux density in Tesla or Gauss, are present when the appliance 
is turned on. The strength of EMF decreases as we move away from their sources. 
EMF exposure is commonly found in and around our homes and offi ces [1].

Electric and magnetic fi elds can occur separately or together, and accordingly it 
is possible for humans to be exposed to just one of these fi elds or both of them. For 
example, when a power cord is plugged into a socket outlet it creates an electric fi eld 
along the cord. When the lamp is turned on, the fl ow of current through the cord cre-
ates a magnetic fi eld; and the greater the current, the stronger the magnetic fi eld. In 
the meantime, the electric fi eld is still present.

It is possible for humans to be exposed to various levels of EMF. Power trans-
mission lines, for example, generate both strong electric and magnetic fi elds. How-
ever, distribution lines generate weak electric fi elds but can generate strong magnetic 
fi elds, depending on the number of houses they supply.

Although electric and magnetic fi elds often occur together, most of the concern 
has focused on the potential health effects of magnetic fi elds. The basis for this con-
cern is that magnetic fi elds are diffi cult to shield, and easily penetrate buildings and 
people, contrary to electric fi elds, which have very little ability to penetrate buildings 
or even human skin. Because the use of electricity is ubiquitous and plays a vital role 
in a society’s economic capability, the possibility of harm from EMF to electric util-
ity customers and workers deserves attention.

Whether or not there are health consequences associated with the EMF emanat-
ing from the generation, distribution, and utilization of electricity is a controversial 
issue, in which the tension between risks versus indispensable advantage comes into 
play. This is a common debate when complex environmental issues with considerable 
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health and economic outcomes are scientifi cally analyzed. There are also economic 
consequences; for example, electrical utilities sometimes have had to redirect high-
voltage power lines around populated areas and even stop their construction. The real 
estate industry is also increasingly concerned with issues related to EMF exposure. 
These include equipment interference, potential liability, property valuation, prem-
ises abandonment, and tenant concerns about potential health effects. Concerns about 
hazards have often pushed manufacturers to improve products by providing better 
shielding, which has a positive impact on the EM compatibility and performance of 
the product itself. The cost−benefi t ratio for making such improvements is always a 
concern, but at the same time it is useful to note that endangering public trust is very 
important too.

This chapter provides a review of potential health risks associated with exposure 
to EMF. The review considers exposure guidelines, dosimetry, and fi eld measure-
ment surveys.

3.2 EXPOSURE GUIDELINES

Several decades of research in the area of bioelectromagnetics have led to a scientifi c 
consensus on the safety of EM fi elds. Expert committees refl ect this consensus when 
developing exposure guidelines. For the purpose of this book, “safety standard” is 
a standard specifying measurable fi eld values that limit human exposure to levels 
below those deemed hazardous to human health [2]. These standards consist of regu-
lations, recommendations, and guidelines that would not endanger human health. 
The development of safety standards presupposes a few procedures, including (1) 
systematic review of the scientifi c literature, (2) identifi cation of the health hazards 
and risk assessment, and (3) selection of maximum permissible exposure (MPE) 
values that produce an environment free from hazard.

Hazard can be an object or a set of circumstances that could potentially harm a 
person’s health. Risk is the likelihood, or probability, that a person will be harmed 
by a particular hazard [3]. The more clearly the hazard is understood, the sooner a 
safety procedure can be established. In the end, safety is a social choice that people, 
governments, and organizations make. It assumes that the cost−benefi t ratio is favor-
able, and that an option for minimizing exposure exists.

In relation to EM human health effects, most scientifi c information obtained 
from cellular and animal studies provides the foundation for assessing potential risks 
to humans. Studies in humans provide direct information regarding health effects 
and help validate animal studies. Epidemiological studies are more likely to provide 
information regarding the nature of the effect rather than provide detailed exposure-
response or dose-response information. When extrapolating data from animals to 
develop exposure limits for humans, adjustments are usually needed to account for 
several potential limitations in the process [4].

The results from these studies permit the identifi cation of MPE values indicat-
ing that below a threshold, an EM fi eld level is safe according to available scientifi c 
knowledge. The permissible level is not an exact line between safety and hazard. 
However, no adverse effects exist below this defi ned limit and possible health risk 
increases with higher exposure level. Often, the MPE level is coupled with a “safety 
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or uncertainty factor.” This would imply that a safety limit in a standard is set just 
below the injury threshold (many times lower) for a sensitive individual. The incor-
poration of a suitable safety factor provides protection for both occupational and res-
idential environments. This is because people in occupational settings can carry out 
risk analysis and risk management more accurately, whereas the public environment 
is less controlled and usually individual members of the public are unaware of their 
exposure. Moreover, the public may be regularly exposed and may not adequately be 
expected to take precautions to reduce or avoid the exposure.

Many institutions and organizations throughout the world have recommended 
safety limits for EMF exposure. These include the Institute of Electrical and Elec-
tronic Engineers (IEEE) [5–8], the National Radiological Protection Board (NRPB) 
of the United Kingdom [9–11], the International Commission on Nonionizing Radia-
tion Protection (ICNIRP) [12–14], the Swedish Radiation Protection Institute [15], 
Health Canada [16], and the Australian Radiation Protection and Nuclear Safety 
Agency (ARPANSA) [17]. Table 3.1 shows various MPE values for EMF exposure 
[18–20].

Most of the exposure guidelines use a two-tier standard, indicating a basic 
restriction in terms of current density (J) and corresponding investigation levels or 
reference levels in terms of external fi eld strengths. The exposure limits range from 
a few microteslas up to 1600 µT. The levels for those occupationally involved in vari-
ous electrical industries are set higher than those for the general public.

3.2.1 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

The fi rst formal standards project was initiated in 1960 when the American Standards 
Association (now the American National Standards Institute, or ANSI) approved 
the Radiation Hazards Standards project. This project, under the cosponsorship of 

TABLE 3.1
Maximum Permissible Exposure Values for Electric and Magnetic Fields

Year: Standard Magnetic Field Safety Level

1992: ANSI/IEEE 205 µT
1993: NRPB 50 Hz, 1600 µT

60 Hz, 1330 µT
1998: ICNIRP General Public Occupational

83.3 µT 420 µT
1999: The Swedish Standard Video Display Terminals

ELF (5 Hz–2 kHz): ≤0.2 µT
VLF (2 kHz–400 kHz): ≤0.025 µT

1999: Safety Code 6 General Public Occupational
2.75 µT 6.15 µT

2002: ARPANSA General Public Occupational
3 kHz–100 kHz: 6.1 µT 3 kHz–100 kHz: 31.4 µT

Note: 0.1 µT = 1 mG.
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the Department of the Navy and the Institute of Radio Engineers (now the IEEE), 
included the establishment of Committee C95, which published its fi rst standard in 
1966 [21]; revisions of the standard were published in 1974 [22] and 1982 [23]. In 
1988, the C95 committee continued its work as Standards Coordinating Commit-
tee 28 (SCC28) under the sponsorship of the IEEE Standards Board (now the IEEE 
Standards Association Standards Board, or SASB) and established the ANSI/IEEE 
C95.1-1991 standard [5–8,24].

The ANSI/IEEE C95.1-1991 standard recommends that exposure averaged over 
any six-minute period and over a cross section of the human body should not exceed 
0.614 kV/m for the electric fi eld and 163 A/m (205 µT) for the magnetic fi eld. The 
ANSI/IEEE standard is designed to keep the induced current in human body at least 
a factor  of ten below the lowest reported stimulation thresholds for electrically excit-
able cells.

A document by the International Commission for Electromagnetic Safety (ICES) 
(IEEE C95.6-2002) [25] that covers human exposure to EMF (0–3 kHz) has been 
released. Recommendations are given to prevent harmful effects in human beings 
exposed to ELF fi elds. The recommendations are intended to apply to exposures of 
the general public, as well as to individuals in controlled environments. They are not 
intended to apply to the purposeful exposure of patients by or under the direction 
of practitioners of the healing arts and may not be protective with respect to the use 
of medical devices or implants. The basic restrictions and MPE values are derived 
to avoid (1) painful stimulation of sensory neurons, (2) muscle excitation that might 
lead to injuries while performing potentially hazardous activities, (3) excitation of 
neurons within the brain, (4) cardiac excitation that might lead to fi brillation, and
(5) magneto-hydrodynamic effects.

3.2.2 NATIONAL RADIOLOGICAL PROTECTION BOARD

The NRPB provides information and advice to offi cials in the United Kingdom respon-
sible for the protection from radiation hazards either in the population as a whole or 
within population subgroups. The recommended NRPB guidelines [9–11] are the same 
for occupational and public environments. The basic restriction specifi ed by the NRPB 
is an induced current density of 10 mA/m2 in the head and trunk while the investiga-
tion levels for EMF exposure at 50 Hz are 12 kV/m and 1600 µT, respectively [26].

3.2.3 INTERNATIONAL COMMISSION ON NONIONIZING RADIATION PROTECTION

The ICNIRP’s mission is to coordinate knowledge of protection against various 
nonionizing exposures in the development of internationally accepted recommenda-
tions. The ICNIRP guidelines [12–14] specify “basic restrictions” and “reference 
levels.” Basic restrictions on exposure to magnetic fi elds are based on established 
adverse health effects. For magnetic fi elds below 100 kHz, the physical quantity used 
to specify the basic restrictions is current density induced inside the body. Refer-
ence levels are values that are provided for practical exposure assessment purposes 
to determine whether the basic restrictions are likely to be exceeded. Compliance 
with the reference levels is designed to ensure compliance with the relevant basic 
restriction [14].
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In 1999, the Council of the European Union issued recommendations concerning 
exposure of the general public to EM fi elds. The restrictions are based on the ICNIRP 
guidelines [27] for the general public (with a basic restriction of 2 mA/m2). However, 
many European states have introduced lower precautionary-based exposure limits, 
such as Italy (2 µT) in 1998 and Switzerland (1 µT) in 1999. The above exposure limits 
are signifi cantly below those designed to protect against acute effects. 

3.2.4 SWEDISH STANDARDS

Sweden has been a leader in developing recommended visual ergonomic and EM 
emission standards for computer displays. Two prominent measurement and emis-
sion guidelines for monitors have emerged during the past few years. One, known as 
MPR-II, prescribes limits on EMF emissions in the ELF and VLF ranges, as well as 
electrostatic fi elds. Many major manufacturers of computer displays have embraced 
the Swedish guidelines. Nevertheless, the Swedish Confederation of Professional 
Employees (TCO), which represents over a million workers, requested more restric-
tive limits and test protocols. TCO published its own series of guidelines: TCO’90, 
TCO’92, TCO’95, and TCO’99, which in reality are a copy of MPR-II with some 
adjustments [15]. In addition, recent TCO guidelines include guidelines for energy 
consumption, screen fl icker, luminance, and keyboard use.

3.2.5 RESTRICTIONS

Most of the above exposure guidelines are based on recognized and reproducible 
interactions between EMF and the human body. The observed effects were all acute 
effects of EMF exposure on excitable tissue, such as nerve and muscle. The basic 
restriction in all exposure guidelines has, to date, been specifi ed in terms of induced 
current density as the principal measure of interaction of EMF with the body rather 
than the more directly relevant internal electric fi eld. The use of current density 
originated for the pragmatic reason that data were more readily available in terms of 
current density than electric fi eld. The data used in the early days to determine the 
thresholds for nerve and muscle tended to be investigated using injected currents, 
with the current density being calculated from the injected current on the basis of the 
geometry without requiring conductivity information [26]. Other investigators sug-
gested the use of internal electric fi eld as a basic restriction in future EMF exposure 
guidelines [28–30].

3.3 MEASUREMENT TECHNIQUES

To realize electric and magnetic fi elds, a common lamp is a good example for consid-
eration. Electric fi elds are present when the lamp is plugged in, while magnetic fi elds 
are created when the lamp is plugged in and turned on, as illustrated in Figure 3.1.

3.3.1 FREQUENCY AND OBJECT SIZE

Electric and magnetic fi elds near a source are characterized by frequency. Therefore, 
any measurement of ELF fi elds should likely be frequency weighted. This means it 
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should read the product of electric or magnetic fi eld strength times the frequency. 
This frequency weighting should extend up to about 1000 Hz and then sensitivity 
should decrease at higher frequencies. To understand this, consider an external 
electric fi eld of 20 kV/m at 50/60 Hz. This will produce high current inside the body. 
This current is proportional to fi eld strength times the frequency. At 100/120 Hz 
(twice the frequency), only half as much fi eld strength (10 kV/m) is necessary to 
produce the same current inside the body.

Another matter to be considered has to do with how magnetic fi elds (and not elec-
tric fi elds) induce current in the body. The current per area induced is proportional to 
fi eld strength, frequency, conductivity, and length of the body. That is why children 
exposed to magnetic fi elds experience less current per area than do adults, and lab 
rats experience about 1/10 as much. The multiplication by body length does not apply 
to electric fi elds; as a result, both children and adults would experience the same cur-
rent when exposed to them. A reasonably strong magnetic fi eld (about 500 mG) and 
electric fi eld (about 2 kV/m) exist in nature, but these fi elds are static (  f = 0); hence 
they produce no current inside the body.

As discussed in previous chapters, the nature of electric fi elds is different from 
that of magnetic fi elds. Therefore, different measuring procedures are necessary to 
assess emission levels for each type of fi eld. In fact, there are standard procedures that 
have already been fi xed for the measurement of both electric and magnetic fi elds.

3.3.2 ELECTRIC FIELD MEASUREMENTS

Electric fi elds exist between objects that are at different electric potentials, or volt-
ages. For example, if a 9 V battery is connected to two metal plates at a given dis-
tance apart, an electric fi eld will exist between them and is given by voltage divided 
by the distance, or 9 V/m. The measurement and calculation of such fi elds are quite 
complex. Although several techniques of measurement are available, the common 
one is the root-mean-square (RMS) average—taking the maximum fi eld strength 
reading in three planes and extracting the square root of the sum of the squares of the 
individual readings. If the fi eld is oscillating at a constant frequency, an electric fi eld 
meter can be set such that it has the maximum sensitivity at that frequency. How-
ever, if the fi eld is composed of different frequencies, as is the case of video display 
terminal (VDT) and other appliances, there will be a need for a limited number of 

FIGURE 3.1 (a) Lamp off. (b) Lamp on.

(a) (b)
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frequencies to be measured. The range of frequencies, which is allowed in the RMS 
average, is called the bandwidth of the instrument.

Electric fi eld measurements are performed with displacement current sensors 
that operate on the basis of measuring displacement current that fl ows between two 
closely spaced electrodes immersed inside the electric fi eld. The sensors are placed 
on a nonmetallic tripod to prevent the infl uence of the operator’s body on the mea-
sured fi eld value. Commercially available meters are suffi cient for measurement near 
power lines and other sources. They are not suitable for measurements in labora-
tories because of their size. Yet, smaller meters are also available [6]. To avoid the 
error of fi eld perturbation caused by the body of the person holding the meter during 
measurement, a horizontal distance of at least 2.5 m should be maintained between 
the person and the meter.

3.3.3 MAGNETIC FIELD MEASUREMENTS

Magnetic fi elds in the environment come from a number of sources. The level of 
these fi elds is called background level. The background level of schools, hospitals, 
homes, and workplaces is always increasing due to the rapid increase in the use of 
electricity. The background fi eld must be considered while measuring the magnetic 
fi eld from a particular source. Before any assessment of emissions from the source 
is possible, it is important to defi ne the background fi eld in the place. To do that, 
the source under measurement must be turned off and readings in the surrounding 
area must be taken. If the background fi eld is relatively high (i.e., above 5 mG), the 
contribution of the assigned appliance to the environment may be unmeasurable. 
Because of this fact, the Swedish specifi cation MPR-II requires the background 
levels to be no greater than 0.4 mG for the measurement to be valid.

Differences among magnetic fi eld meters are considerable. A good meter shows 
the strength of the fi eld, its direction, and polarization of the magnetic fi eld. The 
meter should measure fi elds in one direction at a time and display the maximum fi eld 
strength at that location. However, a person under the exposure of the fi eld is receiv-
ing the fi eld from all directions.

To determine the maximum magnetic fl ux density at a particular location, the 
meter should be rotated through all possible angles so that the fi eld can intersect 
with the sensor in such a way as to display the maximum reading. This means the 
maximum fl ux density in three orthogonal planes (Bx, By, and Bz) is measured and 
the resultant Br , which is equal to the square root of the sum of the squares of the 
individual reading, is extracted [31].

To measure the polarization of the magnetic fi eld, the user must adjust the orien-
tation of the meter until the reading reaches a maximum (Bmax). The fi eld is linearly 
polarized when Br = Bmax, and circularly polarized when Br = 1.41 Bmax. The degree 
of polarization Bd is expressed by the axial ratio between the major and minor axes 
of the fi eld ellipse. It is given by [1]

 B B Bd r� �( )max/ 2 1  (3.1)
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Meters must be calibrated before use. The calibration of these instruments must 
be traceable to a particular standard. Portable calibrators are usually available. 
Users must follow the recommendations of both the calibrator and the meter 
manufacturer.

3.3.4 SIMPLIFIED METERS

To eliminate concerns, homes and offi ces should be checked using a simplifi ed 
ELF-magnetic fi eld meter, available from several vendors at a low price. One 
such device is the Gauss meter. Gauss is a common unit of measurement of AC 
magnetic fi eld strength. Still, some engineers prefer Tesla as a unit of measure-
ment (e.g., 1 µT = 10 mG). Inside the Gauss meter there is a coil of thin wire, 
typically with thousands of turns. As the magnetic fi eld emanates through the 
coil it induces a current, which is amplifi ed by the electronic circuitry inside the 
Gauss meter. If the Gauss meter has an induction coil with approximately 40,000 
turns, a relatively low magnetic fi eld strength of 1 mG would induce enough cur-
rent to be read directly with a voltmeter. It is more practical, however, to build a 
Gauss meter with fewer turns and through operational amplifi cation circuitry to 
increase the voltage or current and then calibrate the meter to read either in Gauss 
or milligauss.

It is necessary to take three perpendicular readings, one for each axis. It is better 
to always take the readings in the same order. For example, take the fi rst reading in 
the x-axis direction. For the second reading, rotate the meter 90° and take the y-axis 
reading. For the third reading, rotate the meter 90° and take the z-axis reading. Once 
the readings are completed, it is possible to calculate a single combined reading by 
squaring the reading for each axis, adding the three squared numbers, and then tak-
ing the square root of the sum. For example, suppose the observed x, y, and z read-
ings from the Gauss meter are 5, 6, and 7 mG, respectively. To fi nd the combined 
fi eld strength, carry out the following calculation:

 Square root of total 25 36 49 10.488 mG� � � �  

It is not necessary to be so precise as to actually use the formula, especially if the 
highest reading on one axis is much stronger than the rest. For example, readings of 
3, 0.4, and 0.5 mG would result in combined fi eld strength of about 3.067 mG. Thus, 
just by using the dominant axis reading, the result is nearly the same as carrying out 
the calculation. In case the readings for each axis are close to each other, the com-
bined reading can be as much as 73% more than any one axis.

Niple et al. [32] developed a portable meter for measuring low frequency currents 
in the human body. Contact currents fl ow when the human body provides a conduc-
tive path between objects in the environment with different electrical potentials. 
The range of currents the meter detects is approximately 0.4–800 µA. Figure 3.2 
shows a contact current model with a meter. The meter measures the voltage 
between four different points on the human body. Ideally, these are the two wrists 
and two ankles, although almost any points can be chosen. With these voltages and 
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information on the impedance of the body between the points, calculations of 
currents can be made.

3.4 MEASUREMENT SURVEYS

Engineering contributions in the fi eld of EM risk have made it possible to assess the 
fi eld strength or power density due to exposure from an EM source and check its 
compliance with exposure guidelines. Theoretical calculations are adequate in some 
situations; but measurements often prove more conclusive and less expensive, partic-
ularly at multiple-source sites. Therefore, theoretical calculations, particularly com-
putational methods, are often not enough to assess compliance with safety limits. 
For this reason, EM measurements are usually performed to assure compliance with 
relevant guidelines to prevent overexposure conditions that could pose short- and 
long-term health problems. Measurements are also needed when the calculated fi elds 
are close to the threshold for overexposure or when fi elds are likely to be distorted by 
refl ection from various objects [1]. In addition, assessment of EMF exposure levels 
for the general public and those associated with particular occupations provides the 
required background information for epidemiological assessment of disease risk. 
Major diffi culties with respect to exposure assessment include the lack of knowledge 
about a relevant metric and the relevant induction period, the incomplete character-
ization of exposure sources, and the inability to combine exposures from different 
sources into one metric [33].

FIGURE 3.2 Contact current model.

MeterSource
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3.4.1 SOURCES OF EMF EXPOSURE

3.4.1.1 Residential Areas

Any residential or occupational site is subject to coincident exposure from many 
EMF sources external and internal to the site itself. External sources include 
high-voltage transmission lines, distribution lines, underground cables, substa-
tions, transformers, wiring and grounding systems, and transportation systems. 
In the workplace, sources of EMF include ground pathways, building wiring, and 
electrical devices such as computers, fax machines, copy machines, fl uorescent 
lights, printers, scanners, telephone switching systems, motors, induction heat-
ers, electronic article surveillance (EAS), demagnetizers, security systems, and 
metal detectors. In homes, there are two immediate sources of EMF. The fi rst 
type includes internal wiring, meters, service panels, subpanels, and grounding 
systems. The second type includes electrical appliances such as electric blankets, 
electric waterbed heaters, hair dryers, electric shavers, television (TV) sets, VDTs, 
stereo systems, air conditioners, fl uorescent lights, refrigerators, blenders, portable 
heaters, washers and dryers, coffee makers, vacuum cleaners, toasters, and other 
household appliances. 

EMF exposures within residences vary from over 150 µT and 200 V/m a few 
centimeters from certain appliances to less than 0.02 µT and 2 V/m in the center
of many rooms. Appliances that have the highest magnetic fi elds are those
with high currents or high-speed electric motors (e.g., vacuum cleaners,
microwave ovens, electric washing machines, dishwashers, blenders, can open-
ers, electric shavers) [34]. Background magnetic fi elds are in general between 0.1
and 0.3 µT. 

In residential areas, maintaining a distance from visible ELF–EMF sources may 
be relatively easy, but avoiding fi elds generated by concealed wiring is much more 
diffi cult. Furthermore, because concrete cannot block ELF–EMF and because the 
fl oor of one apartment serves as the ceiling of another, ELF–EMF from wiring in 
an apartment may reach the residents of adjacent apartments [35–37]. Apartment 
residents may therefore be at greater risk of exposure to ELF–EMF than residents of 
detached houses [38].

3.4.1.2 Power Lines and Cables

Underneath overhead power lines, the average magnetic fl ux density can be up to 
30 µT for multiconductor 765 kV lines and 10 µT for 380 kV lines. Around power 
plants, average fi elds may be as high as 40 µT. Certain occupational environments 
may encounter magnetic fi elds of up to 130 milliteslas (mT). Actual magnetic fi elds 
depend on distance, voltage, current, and wire arrangement. However, actual electric 
fi elds are affected only by distance, voltage, and wire arrangement. 

Exposures from arc welders and electrical cable splicers may exceed 100 µT and 
5000 V/m. Exposure to power-frequency EMF is poorly correlated in occupational 
settings. Electric trains can also be a major source of exposure, as magnetic fi elds at 
seat height in passenger cars can be as high as 60 µT [39]. 
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3.4.2 SITE SURVEYS

Safety regulations stipulate fi eld limits in occupational and public environments, 
and thus there is a need for fi eld measurement surveys. Such surveys are usually per-
formed for one or more of the following reasons: (1) to evaluate a space where elec-
trical devices are being greatly affected by electrical installation systems or other 
electromagnetic interference (EMI) sources, (2) to evaluate the impact of power 
lines or other electrical facilities and to provide guidance in the installation of fur-
ther structures, (3) to assess the exposure conditions in homes or offi ces to assure 
compliance with relevant safety standards, and (4) to prevent overexposure condi-
tions that may pose short- and long-term health problems.

A complete survey of any site requires measurements of personal exposure and 
background fi elds. Before any assessment of emissions from the EMF source is pos-
sible, it is important to defi ne the background fi eld. This is accomplished by turn-
ing off the source under measurement and taking readings from the surrounding 
area. If the background fi eld is relatively high (above 0.5 µT), the contribution of the 
assigned appliance to the environment may be undetectable.

The instruments used to measure EMF are well developed, especially those designed 
to measure magnetic fi elds. Besides simple handheld survey meters, there are now por-
table personal meters that are able to record and illustrate the various characteristics of 
fi eld exposure. There are three common types of fi eld survey: spot, contour, and dosi-
metric. A spot survey, suitable for residential and small commercial sites, collects data 
in spots such as the center of an area or other selected points and arranges these data 
in a table format, referenced to a layout of the surveyed area. A contour survey is suit-
able for most commercial applications and assessment of outdoor areas, especially near 
power lines. In that sense, the mapping wheel is a suitable tool to conduct this survey. A 
dosimetric survey collects fi eld data at a fi xed point in an area (residential or workplace) 
in timed increments over a defi ned period (hours or days). It is useful to monitor the 
variation of fi elds and record the peaks in certain areas over various periods of time.

An important step in the process of measurement is to classify the area under 
investigation either as occupational or public. Such distinction is necessary before 
measurements are carried out, to ensure that proper exposure levels are used for 
evaluation and comparison.

Various measurement surveys have been conducted in North America [40–44], 
Europe [45–55], and Japan [56] (Table 3.2). In North America, power systems 
operate at a frequency of 60 Hz. However, utilities in Europe, Asia, and other 
places in the world supply users with 50 Hz of electrical power. This means that 
North American systems are associated with higher currents and accordingly 
higher magnetic fi elds. Nevertheless, levels of EMF vary from location to location, 
country to country, or continent to continent due to the power system used as well 
as the type of appliances and wiring practices.

3.4.3 ELECTRIC APPLIANCES

Electric and magnetic fi elds from particular appliances may vary greatly, depending 
on the way they are designed and manufactured. Surveys were conducted to measure 
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fi elds from common appliances such as TV sets, hair dryers, stereo headsets, and 
sewing machines. Exposure levels were small compared to ambient levels [57]. Mea-
sured magnetic fi elds in proximity to the above electrical appliances were elevated 
over the ambient when these devices were in use [58]. Magnetic fi eld measurements 
are the highest from electrical appliances in occupational settings. Szabó et al. [54] 
characterized occupational 50 Hz magnetic fi eld personal exposure among female 
sewing machine operators. They measured the full shift of 51 seamstresses, who 
worked in two shifts (6–14 and 14–22 h) according to their normal work routine. The 
average duration of the measurement periods was 449 min. The average arithmetic 
mean exposure for all women was 0.76 µT while the average of maximum values 
was 4.30 µT. Women working with older sewing machines experienced higher expo-
sure than women working on newer sewing machines. They concluded that women 
working as sewing machine operators experience higher than average occupational 
magnetic fi eld exposure compared to other working women.

3.5 DOSIMETRY

The relationship between environmental exposures and electrical quantities induced 
in the body is often termed dosimetry [29]. A few research laboratories have con-
ducted extensive computations of induced electric fi eld and current density in hetero-
geneous models of the human body in uniform EMF [59–67].

Contact current may affect pluripotent progenitor cells in the bone marrow, the 
target cells for leukemia in adults and children. Small voltages present within the 
residence due to residential grounding practices drive the contact current. Children 
may have differential sensitivity because of their smaller body dimensions and car-
tilaginous growth plates at the ends of their bones, both of which produce increased 
current density (and thus electric fi elds) in bone marrow compared to adults. In addi-
tion, children have active marrow in their hands and feet, both locations with small 
cross sections [68–70].

Dawson et al. [63] created a model of a 5-year-old child by scaling the adult model 
purely for size but without adding voxels with marrow properties to the bones (such 
as the hand, wrist, and ankles) where children have red (blood-producing) marrow 
and adults do not. They noticed that electric fi elds in a model of child with anatomi-
cally correct marrow distribution would be higher, and the fi elds in an adult model 
exposed to 10 µA are roughly 25–50% of the values for the 5-year-old, depending 
on body location (the lower body impedance of an adult is more than offset by larger 
cross-sectional area).

Kowalski et al. [71] calculated current density threshold for exciting the motor 
cortex area of the brain by means of the fi nite element method (FEM). Their values 
were 6 and 2.5 A/m2 at 2.44 kHz and 50 Hz, respectively.

Kang and Gandhi [67] used the widely accepted three-dimensional (3D) 
impedance method to calculate the electric fi elds and current densities induced in a 
human model for an assumed but representative EAS device. It was shown that the 
two compliance testing methods give substantially different results for the induced 
1-cm2 averaged current densities as required by the ICNIRP guidelines [12–14] 
or the 5-mm cube averaged electric fi elds required for compliance testing against 
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the proposed IEEE guidelines [5–8]. The method of treating such exposures as 
multifrequency exposures gives induced current density or electric current that 
may be up to twice as large as compared to the approximate but simpler method 
of treating the highest of the pulses as a half sinusoid of the same duration and 
frequency. The authors suggest following the accurate method based on multifre-
quency analysis.

3.6 FIELD MANAGEMENT

The ultimate demand of the user is always to achieve fi eld management, which 
includes engineering changes to reduce, avoid, or eliminate certain fi elds or fi eld 
characteristics. The process of fi eld management requires techniques with tre-
mendous energetic extent. It involves the level of fi eld, which depends on the fi eld 
strength, frequency, direction, and type of fi eld source.

3.6.1 MITIGATION TECHNIQUES FOR POWER LINES

It is basically known, for example, that reduction of magnetic fi elds generated from 
power lines relies on many options, including allocating larger rights-of-way (ROW), 
using cancellation techniques, and replacing overhead power lines with underground 
cables.

3.6.1.1 Underground Cables

Underground power transmission lines combined with compaction may substantially 
reduce their exposure, especially electric fi elds. The reduction of magnetic fi eld is 
not due to the burying itself, but because underground power lines use plastic or oil 
for insulation rather than air. This allows the conductors to be placed closer together 
and therefore enables better phase cancellation. However, when high-voltage cables 
are buried in the ground, they must be kept at least 15–30 cm apart to limit mutual 
heating and they must be placed deep enough to provide clearance for activities on 
the ground surface (the depth increases with voltage). For cables operating at 33 kV 
and above, trenches wider than 1 m have to be excavated and the swathe of land 
required for a number of cables, necessarily spaced, can be as much as 30 m wide. 
Consequently, high-voltage underground cables over long distances are expensive 
and involve extensive work during installation and maintenance. For example, the 
capital cost of installing an underground cable is greater than that for an equally 
rated overhead power line. The ratio ranges from about 2:1 at 11 kV to 20:1 or more 
at 400 kV and above.

It should also be noted that magnetic fi elds at the center of an underground cable 
corridor might be much higher than those from overhead lines. This is due to the fact 
that ground-level magnetic fi elds from cables fall much more rapidly with distance 
than those from corresponding overhead power lines, but can actually be higher at 
small distances from the cable. According to Swanson and Renew [72], the magnetic 
fi elds under overhead lines on the ROW were about 24 µT and more than 100 µT for 
the buried line. At 30 m away, fi elds were about 4 µT for the overhead line and less 
than 1 µT for the buried line.
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Accordingly, using underground cables remains an unreal choice for power utili-
ties and the preferred choice by users. To realistically proceed with the advantages of 
this option, planned development to avoid hazards and pitfalls of existing power sys-
tems is required from the utilities. Offering guidance in new network construction 
may avoid much of the massive economic impact inevitable in mitigating suspected 
hazards associated with past and present technologies. 

3.6.1.2 Rights of Way

The term rights of way as used in this book covers use that will encumber real prop-
erty by granting a right to use and alter the landscape through construction of over-
head power and communication lines or buildings (power plant, substation, radio 
tower, etc.). Generally, such uses are for a relatively long period of time, i.e., 10 years 
or longer.

It is important to know that the highest magnetic fi eld strength from high-voltage 
power lines on the ROW during peak usage could be lower than the median measure-
ment of magnetic fi eld from many appliances. However, the duration of exposure 
from power lines is typically much longer than the duration of exposure to magnetic 
fi eld from appliances. Here indeed lies the reason for public concern. Because of 
this lasting exposure, there is a demand to enlarge the ROW, although such action 
involves fi nancial and land rights acquisition diffi culties. Authorities in many coun-
tries now require power utilities to have more land around overhead power lines. 
Another solution could be to increase the height of the towers, so that the height of 
conductors above the ground will reduce the fi eld intensity at the edge of the ROW.

3.6.1.3 Cancellation Techniques

It is well known that currents oscillating together at the same amplitude, frequency, 
and direction can add to each other. This fact is called in phase and it creates the 
highest magnetic fi elds. Likewise, fi elds that are precisely opposing each other 
achieve a signifi cant cancellation. This means the phase current in a given conduc-
tor is opposed by current fl owing in the opposite conductor. Such a case is called 
out of phase. This technique is workable for both single-phase systems and three-
phase systems. Cancellation techniques could be successful to a great extent if the 
phase currents are balanced, a state that is practically diffi cult, if not impossible, to 
achieve. In that sense, other procedures may be considered.

3.6.2 REDUCING THE LEVEL OF ELF EXPOSURE

Importantly for the user, there appear to be general procedures and suggestions to 
reduce the levels of electric and magnetic fi elds in homes and workplaces. Follow-
ing are a few suggestions to minimize the level of ELF fi elds, as a procedure before 
resorting to various shielding techniques, except when shielding is the most effective 
and least expensive alternative [73]:

 1. Determine sources of ELF fi elds. For example, a tri-axis Gauss meter could 
be used to determine the levels and locations of magnetic fi elds.

 2. Use bundled and twisted power cable drops to reduce fi eld generation.
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 3. Keep the drop, meter, service panels, and subpanels away from normally 
occupied rooms. 

 4. Fix up a thorough ground rod. Never provide a separate ground for subpan-
els. Affi x an insulated bushing at the water meter to keep current imbal-
ances from returning on the metal water pipes. Prevent metal-sheathed 
cabling from contacting water pipes, electrical conduits, or appliances by 
providing a separate ground path.

 5. Keep high-load wiring from the main panel to a subpanel or to high-current 
appliances away from frequently used spaces.

 6. Avoid separating hot and neutral wires, and ensure there is always a supply 
and return current in all wiring runs.

 7. Place high-load appliances such as electric dryers and electric hot water 
heaters away from bedrooms, kitchens, etc.

 8. Avoid using devices such as alarm clocks or electric blankets near the 
bed.

 9. As a last solution, use shielding techniques to reduce the level of fi elds. 
Shielding ELF fi elds requires either diverting the fi elds around the area 
considered sensitive to the magnetic fi elds or to contain fi elds within the 
source producing them. 

3.6.3 MITIGATION OF ELECTRIC FIELDS

As discussed in Chapter 1, if the charges exist in a medium that permits the charges 
to move, the medium is considered conductive and the fi eld can be adjusted in mag-
nitude and direction with the movement of the charges. At ELF fi elds, air has a 
conductivity of less than 10−9 siemens (S), while metals have conductivity greater 
than 107 S. The human body has a conductivity that ranges from 0.01 to 1.5 S [6]. 
Owing to the huge difference in conductivity, placing any grounded metallic surface 
between the electric fi eld source and user will eliminate the electric fi eld. The metal 
surface can be an inexpensive mesh chicken wire screen.

Cancellation techniques are applicable for electric fi elds. This can be achieved 
by placing together two conductors carrying charges to and from an electrical appli-
ance. For plug-in appliances, a switched-off appliance has a larger electric fi eld than 
a switched-on appliance. This is because most of the switches break only one of the 
conductor circuits.

Although cancellation techniques are the only practical electric fi eld management 
technique for specifi c cases, shielding is the usual and easier technique to apply. In 
this case, both the user and equipment can be shielded, simply by placing a metal 
shroud around the object. Therefore, management of electric fi elds is not that diffi cult 
a task compared to the management of magnetic fi elds. While both cancellation and 
shielding techniques are applicable to electric and magnetic fi elds, shielding could be 
the best solution.

3.6.4 MITIGATION OF MAGNETIC FIELDS

In general, there are two basic magnetic fi eld mitigation methods: passive and active. 
They may be used either separately or together as necessary.
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3.6.4.1 Passive Shielding Techniques

Passive magnetic shielding is divided into two basic types based upon the selec-
tion of the shielding material: ferromagnetic and conductive. A ferromagnetic mate-
rial shield is constructed with high-permeability (µ) material, especially annealed 
ferromagnetic Mumetal alloy (composed of 80% nickel and 15% iron, with the 
balance being copper, molybdenum, or chromium, depending on the recipe being 
used), which exhibits high magnetic conductivity. The relative permeability (µr) of 
Mumetal ranges between 350,000 and 500,000, depending on the composition and 
annealing process.

Mumetal either surrounds or separates the victims from the magnetic sources. 
All shielding materials work by diverting the magnetic fl ux to them, so although 
the fi eld from a magnet will be highly reduced by a shield plate, the shield plate 
will itself be attracted to the magnet. Closed shapes are most effective for magnetic 
shielding, such as cylinders with caps and boxes with covers. 

The electrical properties of ferromagnetic materials are complex functions of 
magnetic fi elds and frequencies. They have high saturation characteristics, which 
can be adjusted to achieve source shielding. Conducting material shields depend on 
the eddy current losses that occur within highly conductive materials (copper and 
aluminum). When a conductive material is subjected to an ELF fi eld, eddy currents 
are induced within the material that fl ow in closed circular paths perpendicular to 
the inducing fi eld. According to Lenz’s law, these eddy currents oppose changes 
in the inducing fi elds; hence the magnetic fi elds produced by the circulating eddy 
currents attempt to cancel the larger external fi elds near the conductive surface, 
thereby generating a shielding effect. It is often effective but expensive to shield with 
multiple layers composed of highly conductive aluminum/copper plates and highly 
permeable Mumetal sheets.

Practically, shielding design depends on the following factors:

 1. Maximum predicted worst-case magnetic fi eld intensity and the Earth’s 
geomagnetic (DC static) fi eld at that location.

 2. Type of material and properties such as conductivity, permeability, induc-
tion, and saturation, which are functions of material thickness.

 3. Number of shield layers and spacing between sheet materials and layers. 

Small, fully enclosed shields for VDTs, electronic equipment, and electrical feed-
ers follow simple formulas that guide the design engineer through the process to 
a functional, but not necessarily optimal, design. After assembling a prototype, 
the design engineer measures the shielding factor (SF) and modifi es the design by 
adding materials and layers to achieve the maximum shielding requirements. This 
is a very iterative design process, from the concept to fi nal product.

Shielding factor is the ratio between the unperturbed magnetic fi eld B0 and the 
shielded magnetic fi eld Bi. It is defi ned as 

 
SF �

B

Bi

0
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or
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(3.2)

For example, if the fi eld before shielding is 500 mG and the fi eld measured inside 
the shield is 10 mG, the SF is then 500/10 or 50 times. SF is usually expressed in 
decibels. The ratio in decibels for the above example is 34 dB.

Unfortunately, magnetic shielding is more of an art than a science, especially 
when shielding very large areas and rooms from multiple, high-level magnetic fi eld 
sources. Currently, there are no reliable design formulas or fi eld simulation programs 
that offer design engineers practical guidelines for shielding large exposed areas 
from multiple, high-level magnetic fi eld sources.

3.6.4.2 Active Shielding Techniques

The use of active cancellation loops involves a system that senses the magnetic fi eld 
in the region to be shielded and, through a feedback system, imposes a current on 
additional conductors such that it reduces the magnetic fi eld in the region. Active 
shielding is therefore a technique that works best for full-room shielding of affected 
instrumentation once strong local sources have been moved or passively shielded. 
Design changes for power line mitigation include opposite phasing (or revising 
conductor arrangements to reduce fi elds), creating balanced currents, or other engi-
neering design changes. For electrical equipment rooms, rearranging and moving 
electrical components is often the fi rst step to consider since it is more cost-effective 
than installing magnetic fi eld shields.

3.6.5 PROTECTION FROM VDTS

The source of electric fi elds in the VDT is the power supply and defl ection coils. 
These components can create a surface potential of several kilovolts, depending 
upon humidity, temperature, air velocity, and ion concentration in the air. Reduction 
of the electrostatic potential and the electric fi elds is usually achieved by placing a 
conductive surface coating on the screen, which is connected to the power ground, 
together with metallic shielding of the power supply. Sometimes, the cathode ray 
tube (CRT)-type VDT may include a metal cage around all the internal components 
or a metal foil on the inside of the cabinet to shield electric fi elds.

There have been public debates about whether exposure from VDTs poses health 
problems. As yet, there is no conclusive evidence to settle the matter once and for all. 
Some simple precautions could be followed to reduce the exposure:

 1. Use a low-emission VDT.
 2. Most fi elds do not extend from the front of the screen of the VDT but from 

the inductive components located near the inside rear or sides of the equip-
ment. Accordingly, avoid sitting or working at places where you expose 
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yourself to the emission from the backs and sides of other computers. If you 
fi nd you are close to any VDT (less than 120 cm), you should change your 
work environment to enhance your safety (Figure 3.3). 

 3. Keep the computer screen as far away from you as you can manage (at least 
70 cm) since magnetic fi eld strength diminishes rapidly the farther you 
move from the VDT.

 4. VDT users should be aware of ergonomic problems, which can be improved 
by the use of antiglare screens and proper eyeglasses (avoid wearing metal 
objects, which concentrate fi elds while using a computer).

 5. Do not place a bed on the other side of the wall from a computer, as build-
ing materials cannot shield magnetic fi elds.

 6. Before you use a new computer, leave it turned on for a few days in an 
empty ventilated room to allow for chemical outgassing. 

 7. Turn off the computer when it is not in use.
 8. A notebook with liquid crystal display (LCD), which requires much less 

power and a narrow range of frequencies, could be a substitute to the desk-
top computer. The notebook emits virtually no fi elds. However, it has been 
found that high fi elds emanate from the keyboard.
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4 Bioeffects of Electric 
and Magnetic Fields

4.1 INTRODUCTION

A biological effect occurs when exposure to EMF causes some noticeable or detect-
able physiological change in a living system. Such an effect may sometimes, but 
not always, lead to an adverse health effect, which means a physiological change that 
exceeds normal range for a brief period of time. It occurs when the biological effect is 
outside the normal range for the body to compensate, and therefore leads to some det-
rimental health condition. Health effects are often the result of biological effects that 
accumulate over time and depend on exposure dose. Determining actual health risks 
from EMF exposure is complex. Not all investigators agree about the risk. In its EMF 
assessment, the National Institute of Environmental Health Sciences (NIEHS), based 
on the report of its expert Working Group [1,2], stated that biological effects are plau-
sible at a tissue dose of 1 mV/m. According to Dawson et al. [3], contact current levels 
on the order of 10 µA or less, considerably below ICNIRP limits, can produce electric 
fi elds in some tissues that are well above the NIEHS’s 1 mV benchmark [4]. In addi-
tion, a growing number of studies in the literature suggest that there may be health 
risks at such EMF levels, possibly depending on many variables including duration of 
fi eld exposure, strength of the fi eld, person’s mass and age, general health, and prob-
ably genetic predisposition or vulnerability to cancer. Therefore, detailed knowledge 
of the biological effects is important to understand the generated health risks.

Public concern over human effects of exposure to EMF is largely based on a 
series of key epidemiological assessment studies. Such studies identify the associa-
tion between diseases and particular environmental characteristics. It may indicate a 
cause-and-effect relationship, depending upon the strength of the observed associa-
tion. Epidemiological studies correlate historical biological data for a large population 
of people. Any biological data are purely statistical in nature; however, people usually 
fi t a particular category based on location or occupation. The results may only show an 
association with a stimulus, since there are many factors involved with each person.

In addition to epidemiological studies, this chapter reviews a signifi cant number 
of studies that have been carried out to date to explore the relationship between 
exposure to EMF and illnesses including cancer. These studies describe various 
clinical and experimental investigations with humans, laboratory animals, tissue 
preparations, and cells. Detailed information and suggestions for future research on 
the bioeffects of EMF are also included.

4.2 EPIDEMIOLOGICAL STUDIES

The major objectives of most epidemiological studies are to determine whether a 
specifi c exposure or factor is likely to cause a given disease and to quantify the 
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strength of the relationship. The epidemiological studies correlate EMF exposure 
and health effects on human populations to establish quantitative dose–response 
relations. At best, the epidemiological fi ndings indicate a correlation between 
EMF exposure and a health effect, but not necessarily a causal relation. Two 
major types of studies are used to evaluate whether an exposure is linked with a 
given disease: the cohort and the case-control study designs. In a cohort study, 
exposed and unexposed populations are ascertained, then followed up to compare 
risks of developing particular disease outcomes. In an ideal case-control study, 
cases are those who have developed a particular disease in a specifi ed population 
during the study period, and control subjects are a random sample of those in the 
population who have not developed disease [5,6]. Most epidemiological studies 
are limited by the use of surrogate indicators rather than direct measurements of 
exposure. An epidemiological association, if found, might not be related directly 
to exposure; rather, it may be due to chance, confounding factors, or some unrec-
ognized factors related to the way the data have been collected.

Consideration of the extent to which epidemiological studies may be suc-
cessful in assessing EMF risk is essential when reviewing the literature. Most 
epidemiological studies reported in the literature have been criticized as hav-
ing signifi cant limitations including failure to consider variability in exposure 
intensity, transients, intensity spikes, harmonics of the fundamental frequency, 
historical exposures, and concomitant exposures to other agents experienced in 
occupational settings.

Milham and Ossiander [7] investigated the history of electrifi cation and its asso-
ciation to cancer. They hypothesized that electrifi cation of homes during last century 
caused peak leukemia mortality among children 2–4 years of age. This occurred as 
domestic, urban, and rural reticulation of electric power was extended. This new 
age-related peak occurred in the United Kingdom in 1920s, the United States in the 
1930s, and in other countries as they reticulated power. The same time delay concept 
was clear between the wealthier and poorer neighborhoods in the United States. The 
authors concluded that childhood acute lymphocytic leukemia (ALL) is attributable 
to residential electrifi cation.

Health outcomes of particular interest in this section are childhood and adult 
cancer, as well as noncancer health effects, including reproductive effects, neurode-
generative diseases, suicide and depression, and cardiovascular diseases.

4.2.1 PUBLIC ENVIRONMENTS

Public environments in which EMF exposures can occur include residences and 
schools, and transportation facilities. The primary sources of residential and school 
fi elds are power lines, distribution lines, substations, wiring, grounding systems, and 
various electrical appliances. Sources of fi elds in trains and cars are mainly from the 
power lines supplying energy to the trains.

Li et al. [8] investigated whether the age at cancer diagnosis was associated with 
residential exposure to magnetic fi elds. They compared average ages at diagnosis 
for cases of leukemia, brain tumor, or female breast cancer with elevated exposure 
(magnetic fl ux density 0.2 µT, or residential distance from major power lines 100 m) 
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to average ages at diagnosis for cancer cases with same diagnoses but with a back-
ground exposure (<0.2 µT or >100 m from major power lines). They noted an asso-
ciation between magnetic fi eld exposure and a greater mean age at diagnosis for 
brain tumors. The difference was greater for males than for females. No such phe-
nomenon at a signifi cant level was observed for leukemia, female breast cancer, or 
a random sample of general population. These phenomena suggest a delayed occur-
rence of brain tumors following a higher than background residential magnetic fi eld 
exposure and they deserve further investigation.

Numerous studies have shown that most high-level fi elds measured in houses 
are a result of proximity to power lines. Residential studies address the exposure 
of children and adults to EM fi elds as either population-based or case-control 
cases. A number of studies summarized here address the issue of residential EMF 
exposure.

4.2.1.1 Childhood Cancer and Leukemia

Leukemia is the most common cancer to affect children, accounting for approxi-
mately a third of all childhood cancers. As with most other cancers, the mecha-
nism by which leukemia arises is likely to involve gene–environment interactions. 
Accordingly, it is important to identify exposures that cause DNA damage and 
induce chromosome breaks, which are inadequately repaired, ultimately leading 
to initiation and disease progression [9]. Childhood exposure to EMF has been 
studied intensively for many decades. However, research into this area gained 
momentum in 1979, when one of the fi rst epidemiological studies [10] showed 
an association between exposure to EMF and cancer among children living near 
power lines. This study was followed by other studies of childhood cancer [11–20]. 
Although some studies have supported the fi ndings of Wertheimer and Leeper 
[10], more studies have failed to provide support for the hypothesis that EMF expo-
sure increases the risk of childhood cancer. These studies include three collabora-
tive population-based Nordic studies [13–15], a study in the United States [16], 
two Canadian studies [17,18], and a study in the UK [20]. One Canadian study [17] 
included 399 children with leukemia and 399 controls. The investigators found 
that EMF exposures actually provide a signifi cant protective effect against cancer 
for fairly raised fi eld levels but not signifi cantly protective for still higher fi elds. 
Feychting et al. [21] observed that children of fathers with occupational magnetic 
fi eld exposure had a higher incidence of leukemia than expected. No link was 
found for childhood leukemia and maternal occupational magnetic fi eld exposure. 
For maternal exposure, assessments were done both for exposure before pregnancy 
and exposure during pregnancy. Exposure assessment was based on actual mea-
surements made with people with the same job titles. However, Infante-Rivard and 
Deadman [22] reported that maternal occupational exposure to power-frequency 
fi elds during pregnancy was associated with an excess incidence of childhood leu-
kemia. Exposure assessment was based on actual measurements made with people 
with similar jobs.

Henshaw and Reiter [23] proposed that the melatonin hypothesis, in which 
power frequency magnetic fi elds suppress the nocturnal production of melatonin in 
the pineal gland, accounts for the observed increased risk of childhood leukemia. 
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Such melatonin disruption has been shown in animals, especially with exposure to 
electric and rapid on/off magnetic fi elds. Support for the hypothesis is found in the 
body of studies showing magnetic fi eld disruption of melatonin in related animal 
and human studies. Additional support comes from the observation that melatonin is 
highly protective of oxidative damage to the human hemopoietic system.

In children, a variety of distinct tumor types arise in the CNS but they are fre-
quently considered by epidemiologists as a single entity. CNS tumors are the sec-
ond most common childhood malignancy and occur more frequently in developed 
countries than developing nations. Approximately 50% of pediatric CNS tumors 
are gliomas, with astrocytomas of the piloctyic-type predominating. The causes of 
childhood CNS tumors are largely unknown; and although an estimated 5% or more 
may be explained by genetic predisposition, investigations of environmental etiology 
have not been fruitful. Exposure to ELF/EMF, at any level, has not been associated 
with childhood CNS tumors, but the current evidence base is inadequate for com-
plete evaluation. The rarity of childhood CNS tumors necessitates careful attention 
being paid to the design of future etiological studies [24].

Overall, the association between EMF exposure and childhood cancer remains 
inadequate and inconclusive (Table 4.1). Some studies have suggested a link between 
EMF and cancer, although the risks tend to be small by epidemiological standards, 
and were unable to exclude other environmental infl uences. While the level of epide-
miological evidence in support of this association is limited, further research in this 
area is needed to clarify this issue.

4.2.1.2 Breast Cancer

Breast cancer is the most commonly occurring malignancy among women; how-
ever, male breast cancer is rare. There are several established risk factors for breast 
cancer in females. The disease increases with age and is found most commonly 
among women of higher social class, women without children or with few children, 
and women who have their fi rst child at an older age [25]. Of the fi rst epidemio-
logical studies that have addressed the risk of breast cancer and residential expo-
sure to EMF is the study of Wertheimer and Leeper [26,27]. The authors found an 
association between high-current electric wiring confi guration and breast cancer 
in a case-control study conducted in Colorado. The study compared residence in 
homes among 1179 cases of adult cancers with the residences of matched controls. 
McDowall [28] followed approximately 8000 people (3861 women) from 1971 
through 1983 who were living within a 50 m radius of electrical transmission facili-
ties at the time of the 1971 census in East Anglia, England. Among this cohort the 
overall mortality was lower than expected and there was no evidence of increased 
risk for breast cancer.

Researchers hypothesize that EMF may be linked to breast cancer through the 
hormone melatonin. Feychting et al. [29] conducted a case-control study based on 
people who had lived within 300 m of 220- or 400-kV power lines in Sweden 
between 1960 and 1985. For calculated magnetic fi eld levels >0.2 µT closest in 
time before diagnosis, they estimated the risk ratio (RR) = 1.0 for women and 2.1 
for men. Women younger than 50 years of age at diagnosis had a RR = 1.8. For 
women with estrogen receptor-positive breast cancer, RR = 1.6, using the magnetic 
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exposure >0.1 µT. Among estrogen receptor-positive women younger than 50 years 
at diagnosis, RR increased to 7.4.

Gammon et al. [30] conducted a case-control study to investigate the effects 
of electric blanket use. There were 2199 case patients under age 55 years that had 
been newly diagnosed with breast cancer between 1990 and 1992. The 2009 
controls were frequency-matched to cases by 5-year age group and geographic 
area. A nonsignifi cant increased risk was observed in women who had ever used 
electrical appliances, especially blankets, mattress pads, or heated waterbeds. Similar 
fi ndings were observed by other investigators [31–38]. All the above studies provide 
evidence against a positive association between electric blanket or mattress cover use 
and breast cancer.

Erren [39] reviewed this topic in detail. The author concluded that no human 
health risk has been proven. At the same time, the data were inadequate to confi rm 
that a kind of effect could not exist.

An association between residential EMF exposure including the use of appli-
ances and breast cancer is far from being established. Nevertheless, interest in this 
subject will continue based on the melatonin hypothesis.

4.2.2 OCCUPATIONAL ENVIRONMENTS

Occupational exposure environments are studied in the context of specifi c indus-
tries and workplaces, particularly in the electric power-utility industry where high 
exposure to EMF is likely. Workers can be exposed to EMF from electrical systems 
in their building and the equipment they use. A variety of methods for exposure 
assessment are applied to studies in occupational environments. These methods 
range from job classifi cation to modeling techniques based on personal exposure 
measurements and occupational history. Occupational history is a collection of data 
for a study subject, which may contain information on jobs that the subject held dur-
ing their employment. Such information is obtained through many means such as 
interviews or through various employment records. The information contains indus-
try title, company name, description, and duration of the job. Medical records may 
also be obtained from clinics or disease registries.

Electrical appliances, tools, and power supplies in buildings are the main sources 
of EMF exposure that most people receive at work. People who work near trans-
formers, electrical closets, circuit boxes, or other high-current electrical equipment 
may have high-fi eld exposures. In offi ces, magnetic fi eld levels are often similar to 
those found at homes, typically 0.5–4.0 milligause (mG). However, these levels may 
increase dramatically near certain types of equipment. In general, the literature is 
rich with more occupational studies investigating exposure of workers to EMF at 
various places using different techniques of evaluation.

4.2.2.1 Adult Cancers

Occupational exposure was studied considering various health problems as well as 
adult cancers including brain tumors and leukemia [40–60], breast cancer among 
both men and women [61–66], lymphoma [49,56,67], lung cancer [48,49,54,66,67], 
and other cancers [49,67–69].
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Sahl et al. [41] studied utility workers at Southern California Edison. Compar-
isons in the cohort study focused on electrical versus nonelectrical workers, and 
exposure was characterized on the basis of job history. The authors noticed no differ-
ence in risk for brain cancer among electrical workers compared with the reference 
group. However, small but signifi cant increases in brain cancer risk were observed 
for electricians (RR = 1.6) and plant operators (RR = 1.6).

Researchers from Canada and France [42] conducted a study of 223,292 work-
ers at three large utilities, two in Canada (Hydro Québec and Ontario Hydro) and a 
national utility in France (Électricité de France). The result shows that workers with 
acute myeloid leukemia (AML) were about three times more likely to be in the half 
of the workforce with higher cumulative exposure to magnetic fi elds. In the analysis 
of median cumulative magnetic fi eld exposure, no signifi cant elevated risks were 
found for most types of cancer studied.

Floderus et al. [47] at the Swedish National Institute of Working Life reported an 
association between cancer and magnetic fi eld exposure in a broad range. The study 
included an assessment of EMF exposure at 1015 different workplaces in Sweden and 
involved over 1600 people in 169 different occupations. The researchers reported an 
association between estimated fi eld exposure and increased risk for chronic lympho-
cytic leukemia (CLL). In addition, an increased risk of brain tumors was reported 
for men under the age of 40 years whose work involved an average magnetic fi eld 
exposure of more than 2 mG.

Johansen and Olsen [51,52] conducted a study involving 32,006 men and women 
who had been employed at 99 electric utilities in Denmark with employment history 
dating back to 1909. Cancer incidence was obtained from the cancer registry over 
the same period. The authors predicted that utility workers would have a higher 
incidence of cancer compared with the general population. They reported that the 
workers had slightly more cancer than expected from general population statistics, 
but there was no excess of leukemia, brain cancer, or breast cancer.

Willett et al. [60] investigated whether the risk of acute leukemia among 764 
adults was associated with occupational exposure to EM fi elds during 1991–1996. 
Risks were assessed using conditional logistic regression for a matched analysis. 
This large population-based case-control study found little evidence to support 
an association between occupational exposure to EM fi elds and acute leukemia. 
While an excess of acute lymphoblastic leukemia among women was observed, it is 
unlikely that occupational exposure to electromagnetic fi elds was responsible, given 
that increased risks remained during periods when exposure above background lev-
els was improbable.

Most of the above studies concentrated on magnetic fi eld exposures, assuming 
that they are the more biologically active components of the EMF and thus more 
likely to cause cellular damage. However, there are studies that indicate that electric 
fi eld exposures may enhance cancer risk. Miller et al. [49] examined the cumulative 
effects of both magnetic and electric fi eld exposures on the cancer incidence, and 
reported a marked increase in leukemia risk. At the highest level of exposure to both 
magnetic and electric fi elds, odds ratio (OR) increased from 3.51 to 11.2 when the 
researchers included the interaction of the combined effects of EMF. These investi-
gators also reported an increase in the risk of all types of leukemia as well as some 
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of the highest leukemia risks ever reported in a study of EMF and cancer. They also 
found evidence a dose–response relationship, with the risk of leukemia increasing 
with cumulative exposure to electric fi elds (an effect noticeably absent with exposure 
to magnetic fi elds alone, both in this and in previous studies).

An elevated risk of leukemia was also seen among senior workers who spent 
the most time in electric fi elds above certain thresholds, in the range of 10–40 V/m 
[56]. In a recent Canadian population-based control study, Villeneuve et al. [57] con-
ducted a study among men in eight Canadian provinces, for 543 cases of brain cancer 
confi rmed histologically (no benign tumors included). Astrocytoma and glioblasto-
mas accounted for over 400 of these. Population-based controls (543) were selected 
to be of similar age. They reported a nonsignifi cant increased risk of brain cancer 
among men who had ever held a job with an average magnetic fi eld exposure >0.6 
µT relative to those with exposures <0.3 µT. A more pronounced risk was observed 
among men diagnosed with glioblastoma multiforme (the most malignant of neuro-
epithelial neoplasms) (OR = 5.36).

There are rather notable differences in adult cancer studies, with two kinds of 
results: (1) null association found in southern California Edison workers [41], study 
of Norwegian railway workers [44], study of electric utilities in Denmark [51,52], 
and (2) mixed but in general positive results from a few studies of power-frequency 
magnetic fi elds [42,45,50,54,58,66] and of electric fi eld exposure [49,56,57,67]. The 
relative risks in the upper exposure categories were above 2.0 and for the more 
highly exposed groups between 1.1–1.3. Relative risks of this magnitude are below 
the level at which a causal association between EMF exposure and cancer can be 
assessed.

4.2.2.2 Cardiovascular Diseases

Savitz et al. [53] investigated risk of cardiovascular disease in a cohort of 139,000 
male utility workers. Exposure was assessed according to the duration of employ-
ment in occupations with exposure to magnetic fi elds. Overall mortalities due to 
cardiovascular disease were low. Sahl et al. [70] found that men working longer in 
high-exposure occupations or working as electricians, linemen, or power plant oper-
ators had no increased risk of dying from either acute myocardial infarction (AMI) 
or chronic coronary heart disease (CCHD) compared with men who never worked in 
high-exposure occupations. Their study was based on cohort of 35,391 male workers 
at the Southern California Edison Company between 1960 and 1992. In addition, 
another study of electrical utility workers [71] found no evidence that exposure to 
power-frequency fi elds was associated with heart disease.

4.2.2.3 Neurodegenerative Diseases

There could be moderate support for an association between occupational exposure 
to elevated levels of EMF and Alzheimer’s disease (AD) and amyotrophic lateral 
sclerosis (ALS). A very large and detailed study conducted by van Wijngaarden 
et al. [72] at the University of North Carolina has uncovered what appears to be a 
distinct association between exposure to EMF and suicide among electric utility 
workers. A group of 138,905 male U.S. electric utility workers from fi ve companies 
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were considered in the study. Electricians faced twice the expected risk of suicide. 
Linemen faced 1.5 times the expected risk. Meanwhile, suicides among power plant 
operators occurred at a rate slightly lower than expected. Baris et al. [73] found no 
association between the suicide and exposure to EMF.

Ahlbom [74] conducted a systematic review of the literature on neurodegenera-
tive diseases and exposure to EMF. The author concluded, “For AD the combined 
data on an association with EMF are weaker than that for ALS. The association 
between suicide and EMF exposure was also weak. For depressive symptoms an 
assessment is more complex. For diseases such as Parkinson’s, there is not enough 
information for an assessment.”

Overall, currently available data suggest a weak association between EMF expo-
sure and noncancer health effects. More research, particularly from large epidemio-
logical studies, is needed.

4.2.2.4 Reproductive Toxic Effects

Wertheimer and Leeper [75] investigated the relationship between use of electrically 
heated waterbeds and electric blankets and pregnancy outcome, especially length 
of gestation, birth weight, congenital abnormalities, and fetal loss in Colorado. 
The study population consisted of 1806 (out of 4271) families in which a birth had 
occurred in two Denver-area hospitals in 1982. Seasonal patterns of occurrence of 
slow fetal development were observed among users of electric waterbeds and blan-
kets, suggesting that use of such appliances at the time of conception might cause 
adverse health effects.

Dlugosz et al. [76] investigated a possible relationship between the use of  electric 
bed heaters and birth defects. They asked mothers of children born with cleft palates 
or neural tube defects if they had used an electric bed heater during the 4 months 
around the estimated date of conception. A total of 663 case  mothers were matched 
with a similar number of control women who had given birth to children without 
birth defects. The comparison showed that mothers of children with birth defects 
were no more likely to have used an electric bed heater than other mothers.

Blaasaas et al. [77] found little evidence that residence near power lines 
affected the risk of birth defects. The authors observed decreased risks of cardiac 
and respiratory defects and an increased risk of esophageal defects. They inter-
preted that to the number of endpoints, the imprecision in the calculations of the 
distance from the residence to the power line, and the limited information on preg-
nant women’s change of residence. Blaasaas et al. [78] found that the total risk of 
birth defects was not associated with parental exposure to 50-Hz EMF. Feychting 
[79] summarized the evidence on adverse pregnancy outcomes in relation to ELF 
and RF exposures and briefl y discussed other potential health effects, excluding 
cancer, following childhood exposures to these fi elds. The author concluded, “Most 
studies of ELF exposures have not demonstrated any consistent risk increases for 
adverse pregnancy outcomes, but limitations in the exposure assessment methods 
and very limited power to study high exposure levels prevents any conclusions. 
Different types of symptoms and effects on cognitive function in relation to both 
ELF and RF fi elds have been reported in adults, but scientifi c studies have not 
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confi rmed that these symptoms are caused by the EM fi elds. No information is 
available for children.”

An exception to the lack of association of miscarriages and exposure to 50-Hz 
magnetic fi elds are three studies [80–82]. They reported that high peak power-
frequency exposures were associated with an increased risk of miscarriages in 
humans. The fi rst population-based prospective cohort study [80] was conducted 
among pregnant women within a large health maintenance organization. All 
women with a positive pregnancy test at less than 10 weeks of gestation and resid-
ing in the San Francisco area were contacted for participation in the study. All 
participants were also asked to wear a magnetic fi eld-measuring meter for 24 h and 
to keep a diary of their activities. Pregnancy outcomes were obtained for all par-
ticipants by searching the health maintenance organizations’ databases, reviewing 
medical charts, and telephone follow-up. A total of 969 subjects were included in 
the fi nal analysis. Miscarriage risk increased with an increasing level of maximum 
magnetic fi eld exposure with a threshold around 16 mG. The risk associated with 
magnetic fi eld exposure of 16 mG was 1.8. The risk remained elevated for levels 
of maximum magnetic fi eld exposure of 16 mG. The association was stronger for 
early miscarriages (<10 weeks of gestation) (RR = 2.2) and among “susceptible” 
women with multiple prior fetal losses or subfertility (RR = 3.1). The fi ndings 
provide strong prospective evidence that prenatal maximum magnetic fi eld expo-
sure above a certain level (possibly around 16 mG) may be associated with miscar-
riage risk.

The second case-control study [81] was conducted within a cohort of some 3400 
pregnant women who were participating in a prospective reproductive health study. 
A sample was drawn of 531 women, of whom 219 allowed their exposures to be 
measured when they were or would have been 12 weeks pregnant, including 18 who 
miscarried. Of these women, 176 (10 with miscarriages) agreed to a second expo-
sure measurement at 30 weeks pregnancy and they formed part of the study sample. 
The 328 women that were found to have miscarried (cases) and a random sample of 
806 of those who had not miscarried was selected to provide controls. Of the fi ve 
measures assumed to be associated with miscarriage, three were very weakly or not 
associated, while two were associated.

The third study [82] considered a cohort of 969 primiparous women who wore 
a meter for 24 h for not more than 15 weeks after they had become pregnant. They 
found signifi cantly higher risk of miscarriage for women exposed to magnetic fi elds 
of 1.6 µT or greater (RR > 2.2). Their fi ndings of increased miscarriages are consis-
tent with the fi ndings of Wertheimer and Leeper [75].

Following the publication of these two studies, Savitz [83] commented on the 
same issue: “Prior to this research, the evidence supporting an etiological (causal) 
relation between magnetic fi elds and miscarriage could have been summarized 
as ‘extremely limited.’ With publication of these reports, I believe the evidence 
in support of a causal association is raised only slightly. These two new studies 
provide fairly strong evidence against an association with time-weighted average 
(TWA) magnetic fi elds and moderately strong evidence for an association with other 
indices; both of these fi ndings may be due to an artifact resulting from a laudable 
effort to integrate behavior and environment.”
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4.2.3 SUMMARY OF EPIDEMIOLOGICAL STUDIES

The consistency of the epidemiological studies is puzzling, especially when we con-
sider that all the studies suffer from profound and diverse methodological limitations 
such as unknown and probable low accuracy of measurement, potential selection 
bias, potential confounding, or very small numbers of exposed cases. In addition, 
there are no accepted biophysical mechanisms that could explain how such low-level 
fi eld exposures could be carcinogenic [84], although it has been suggested that chil-
dren may be more sensitive to some or all parts of the EM spectrum. These problems 
have resulted in continued uncertainty as to the existence as well as size of the fi eld 
effect. The potential impact of fi elds on overall childhood leukemia incidence is 
further clouded by the low prevalence of exposures associated with elevated risk. In 
most data, no association is visible among average fi eld levels below 2 mG, where 
the vast majority of measurements lie, and an association is not consistently apparent 
until above 3 mG [85,86].

Though these epidemiologic outcomes are suggestive, the health impact of EMF 
is still uncertain. As has been the case with various environmental chemicals and 
physical agents, defi nitive conclusions as to the health risk of EMF are likely to 
require supporting evidence from whole animal studies along with a greater under-
standing of relevant biological mechanisms.

4.3 CELLULAR AND ANIMAL STUDIES

Laboratory studies provide another valuable source of information on the poten-
tial health risks of EMF. Laboratory studies on cells or on whole organisms play a 
key role in evaluating the response of different systems of the body. They lead to 
information about molecular mechanisms that can establish the scientifi c plausibility 
of effects under particular conditions. Laboratory studies are easier to control and 
provide the opportunity to check whether EMF exposure causes cancer or other ill-
nesses, something that is not possible with human volunteers. However, laboratory 
studies entail complications of their own. For example, how should results obtained 
in only one animal be relevant or extrapolated to humans?

Cellular and animal experiments have enhanced our understanding of the health 
consequences of EMF exposure. They generally examine the effects of EMF expo-
sure on cells and various systems of the body, in particular the immune, nervous, 
and endocrine systems. These systems are largely responsible for maintaining the 
internal environment of the body.

During the past 30 years, a number of experiments and major scientifi c reviews 
have been conducted to assess the biological effects of EMF. Considering the inter-
action mechanism of these fi elds with biological systems, the effect of magnetic 
fi elds has been the central point of research, focusing primarily on fi elds of the mag-
nitude encountered in everyday life (below 100 µT).

4.3.1 MELATONIN HYPOTHESIS

One area attracting attention as a likely potential mechanism for EMF intervention 
in living organisms is consideration of a cancer-promoting effect of EMF by altered 
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circadian rhythms of pineal activity and melatonin release. The “melatonin hypoth-
esis,” fi rst proposed many years ago, explained how EMF exposure is related to 
certain kinds of hormone-dependent cancers, particularly breast cancer.

Kato et al. [87], Wilson et al. [88], and Huuskonen et al. [89] reported that expo-
sure to magnetic fi elds between 1 and 130 µT caused a decrease in melatonin levels 
in rats and hamsters. However, other studies found no evidence of any effect on 
melatonin in baboons, rats, and mice at fi elds between 1 and 100 µT [90–97].

Karasek and Lerchl [98] reported the results of 60 independent assessments in 
animals of EMF exposure and nocturnal melatonin. Fifty-four percent reported no 
effect or inconsistent effects, 43% reported decreased melatonin, and 3% reported 
increased melatonin.

Juutilainen and Kumlin [99] reported that daytime occupational exposure to 
magnetic fi elds enhances the effects of nighttime light exposure on melatonin pro-
duction. Juutilainen and Kumlin reanalyzed data from a previously published study 
on 6-hydroxy melatonin sulfate (6-OHMS) secretion in 60 women occupationally 
exposed to ELF magnetic fi elds.

Altogether, there is still not enough evidence to support the hypothesis that EMF 
exposure suppresses melatonin or causes an increase in cancer.

4.3.2 GENOTOXICITY AND CARCINOGENICITY

The weight of any positive association between EMF exposure and cancer depends 
on the ability of exposure to interact with genetic material to damage it, therefore 
causing mutations, which may lead to cancer. There have been many studies that 
show EMF may affect DNA or induce mutations. Lai and Singh [100] at the Univer-
sity of Washington, Seattle, observed an increase in double-strand DNA breaks in 
brain cells of rats being exposed to a 60-Hz magnetic fi eld at fl ux densities of 0.25 
and 0.5 mT. In 2004, the same authors found an increase in DNA single-strand breaks 
after 2 h of exposure to magnetic fi eld at intensities of 0.1–0.5 mT [101]. Wu et al.
[102] reported carcinogenic effects for both 50-Hz and 15.6-kHz magnetic fi elds on 
DNA damage/repair in the normal human amniotic fetal liver (FL) cell. Ivancsits et al. 
[103] reported that a 1-mT fi eld caused DNA strand breaks if the exposure was inter-
mittent, but not if the exposure was continuous. McNamee et al. [104] investigated the 
effect of an acute 2-h exposure of a 1-mT, 60-Hz magnetic fi elds on DNA damage in the 
brains of immature (10-day-old) mice. DNA damage was observed at 0, 2, 4, and 24 h
after exposure. No supporting evidence of increased DNA damage was detected.

Other studies [105,106] suggested that environmental EMF exposures at 1–500 
µT fl ux densities are unlikely to cause DNA damage. However, the second study 
[106] did report that 7 mT caused DNA strand breaks when a strong oxidant was 
present. Williams et al. [107] reported that 14.6-mT ELF magnetic fi eld exposure 
does not cause DNA breaks in Salmonella test system.

A possible scenario for an effect of EMF on DNA is as follows: The two chains 
of DNA are held together by H-bonds joining the complementary bases of DNA. 
H-bonds are hydrogen (protons) that are bonded to both chains by electron pairs. 
They are relatively weak. If EMF forces displace electrons in H-bonds, this would 
lead to local charging and generate forces that overcome the H-bonds and initiate 
disaggregation of the chains [6].
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Khalil and Qassem [108] reported chromosomal aberrations by exposing human 
lymphocyte cultures to a pulsing EM fi eld (50 Hz, 1.05 mT) for various durations 
(24, 48, and 72 h). Suzuki et al. [109] reported chromosome damage in the bone mar-
row cells of mice after exposing them to a high-intensity magnetic fi eld (3–4.7 T) for 
24–72 h. However, other studies [105,110,111] were unable to induce chromosomal 
aberrations even under relatively strong magnetic fi eld exposure.

Stronati et al. [112] found that a short exposure (2 h) to ELF magnetic fi elds at the 
intensity of 1 mT is not able to exert any genotoxic effect on human blood cells.

DNA damage and chromosome aberrations are closely related to carcinogenesis 
or “cancer-causing” effects. Operationally, the carcinogenic process is a multistep pro-
cess involving genetic and epigenetic changes. The concern for possible carcinogenic 
effects of EMF exposure has been studied for some time. Environmental magnetic 
fi elds at 1–500 µT fl ux density were unlikely to induce carcinogenesis through a mech-
anism involving altered expression of the immediate early response genes [113].

It seems that the energy associated with EMF environmental exposure is not 
enough to cause direct damage to DNA; however, indirect effects are possible by 
changing cellular architecture and metabolic processes within cells that might lead 
to DNA damage. Together, there is negative evidence against DNA damage and 
chromosomal effects at the EMF environmental levels. Studies that do exhibit evi-
dence for genotoxicity reported a mix of positive and negative results. In addition, 
there have been problems with replication of these fi ndings.

4.3.3 CELL FUNCTIONS

The basic research studies on effects of EMF on cellular function have provided 
information about biological thresholds and mechanism that may be a basis for 
 possible health impact. The literature has numerous reports on the effects of EMF 
exposure on ion transport, cell proliferation and differentiation, stress responses, and 
enzyme activity.

4.3.3.1 Intracellular Calcium

The phenomenon of Ca++ effl ux (release of calcium ions from a sample into a sur-
rounding solution) from cells due to EM exposure is well known, especially in brain 
and lymphatic cells. Investigation has shown that EMF exposures at high-fl ux densi-
ties infl uence the calcium effl ux [114–121]. However, no change in calcium infl ux 
could be detected by other investigators [122,123]. Considerable attention has been 
given to explain the mechanisms for the effects of exposure to a time-varying mag-
netic fi eld on the intracellular signaling pathway [122].

4.3.3.2 Cell Proliferation

Altered proliferation of cells in vitro due to EMF exposure has been observed in a 
number of studies [124–127]. However, Aldinucci et al. [121] investigated whether 
static fi elds at a fl ux density of 4.75 T, generated by an nuclear magnetic resonance 
(NMR) apparatus, could promote movements of Ca++, cell proliferation, and the 
eventual production of proinfl ammatory cytokines in human peripheral blood mono-
nuclear cells (PBMC) as well as in Jurkat cells, after exposure to the fi eld for 1 h. 
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The results clearly demonstrate that static NMRF exposure has neither prolifera-
tive, nor activating, nor proinfl ammatory effects on either normal or PHA-activated 
PBMC. Similar fi ndings were observed by Supino et al. [128] but at lower magnetic 
fi eld densities (50 Hz; 20 or 500 µT) for different lengths of time (1–4 days).

4.3.3.3 Stress Response

Stress response is defi ned as a defense reaction of cells to damage that environmen-
tal forces infl ict on macromolecules [129]. It has been shown that EMF stimulates 
the cellular stress response, a reaction to potentially harmful stimuli in which cells 
start to synthesize stress proteins [130]. Protein synthesis occurs only when the two 
chains of DNA come apart and transfer the code for making a protein to mRNA. The 
stress response shows that EMF must cause the DNA to come apart even in the weak 
ELF range. These observations suggest that EMF stimuli could cause greater dam-
age to DNA at more intense and longer exposures [6]. On the other hand, Shi et al. [131] 
failed to detect any of a number of stress responses in human keratinocytes exposed 
to 100 µT EMF from 20 min to 24 h.

4.3.3.4 Ornithine Decarboxylase (ODC)

ODC is an enzyme that plays an important role in regulating cell growth through 
synthesis of polyamines necessary for protein and DNA synthesis. It is an enzyme 
activated during carcinogenesis. Studies were carried out to investigate whether 
there were effects on ODC due to EMF exposure. An in vitro study [132,133] found 
increased ODC activity in three cell lines in response to a sinusoidal 60-Hz electric 
fi eld (10 mV/cm) for only 10 s duration. Stimulation in the activity of ODC in cul-
tured cells by RFR with ELF modulation was also reported [134,135]. The results 
depended upon the type of modulation employed. These effects were noted only 
for certain modulations of the carrier wave, portraying the window effect (an effect 
that appears at certain frequency but not at higher or lower frequencies). In addition, 
changes in ODC have also been reported from EMF exposure in vivo [136]. It is clear 
from the literature that a variety of in vitro studies have demonstrated that EMF 
exposure affects ODC activity and cellular proliferation, while exposure to fi elds 
below 0.1 mT have not been convincingly associated with adverse health effects.

4.3.3.5 Immune System

In most studies, EMF exposure appears to have no effect on the immune system. 
House et al. [137] exposed mice and rats to 2, 200, and 1000 µT (60 Hz) continu-
ously. No signifi cant change in the distribution of lymphocyte subsets in the spleens 
of exposed mice was observed when compared with controls. They concluded that 
exposure of mice to linearly polarized, sinusoidal 60-Hz magnetic fi elds at strengths 
up to 1000 µT for up to 3 months did not signifi cantly affect a broad range of immune 
effect or functions. In a study of human white blood cells, Aldinucci et al. [120] 
found no effect of a 4275-mT fi eld on the infl ammatory response of normal or leuke-
mic cells. Onodera et al. [138] reported that exposure of immune system cells to 1-T 
fi eld caused the loss of some cell types if the cells had been stimulated to divide, but 
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no effect if the cells had not been stimulated into division. Ikeda et al. [139] reported 
that exposure of human immune system cells to 2–500 µT fi elds (50 and 60 Hz 
linearly, elliptically, and circularly polarized) could not fi nd any effects on 
the cytotoxic activities and the cytokines production of human PBMCs. However, 
Tremblay et al. [140] found that 60-Hz linearly polarized, sinusoidal, continuous-
wave magnetic fi elds (2, 20, 200, and 2000 mT) can induce immunological perturba-
tions on cells of both natural and adaptive immunity in a dose-dependent fashion.

4.3.4 ANIMAL CANCER STUDIES

There has been no absolute evidence in any study that low-level EMF alone can 
cause cancer in animals. This is supported by the fi ndings of many studies 
[141–148]. Meanwhile, a few other studies show infl uence; for example, Vallejo 
et al. [149] reported that exposure of mice for 15 or 52 weeks to a 50-Hz fi eld at 15 µT 
resulted in a signifi cant increase in leukemia.

Animal studies presented mixed results but no direct carcinogenic effects have 
been observed. Future research may focus on the role of EMF as a tumor promoter 
or copromoter. Only a limited number of in vivo studies suggest a positive relation-
ship between breast cancer in animals treated with carcinogens and magnetic-fi eld 
exposure at approximately 0.02−0.1 mT. According to Löscher [150], one area with 
some positive laboratory evidence of cancer incidence could involve animals treated 
with carcinogens during an extended period of tumor development.

4.3.5 NONCANCER ANIMAL STUDIES

A number of noncancer studies were investigated for possible adverse effects of 
EMF exposure.

4.3.5.1 Behavioral Effects

There is insuffi cient evidence that EMF exposure at environmental levels causes 
behavioral changes of animals. Coelho et al. [151] reported that exposure to electric 
fi elds at 30 kV/m (60 Hz) increased the occurrence of three out of ten categories of 
social behavior of baboons during a 6-week exposure, compared with equivalent 
rates observed in 6-week pre- and post-exposure periods. Trzeciak et al. [152] noted 
that exposure to magnetic fi elds (50 Hz, 18 mT) had no effect on open-fi eld behavior 
of 10–12 adult male and female Wistar rats. But the investigators recommended the 
need for further studies to fully determine conditions under which an effect can 
be observed. Meanwhile, Sienkiewicz et al. [153] reported that short-term, repeated 
exposure to intense magnetic fi elds might affect the behavior of mice. Mice were 
exposed each day to a 50-Hz magnetic fi eld before being tested in a radial arm maze, 
a standard behavioral test of the ability of mice to learn a procedure for seeking food. 
Recently, Houpt et al. [154] reported that exposure of rats to high-strength magnetic 
fi elds (7000 or 14,000 mT) caused behavioral changes within 5 min. Similar behav-
ioral effects were observed by Lockwood et al. [155] when mice were exposed to a 
14.1 T fi eld for 30 min. These effects, similar to the effects in rats [154], may be the 
result of a vestibular disturbance caused by the magnetic fi eld, Lockwood et al. said.
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4.3.5.2 Blood–Brain Barrier

The BBB is a physiologically complex system. It separates the brain and cerebral 
spinal fl uid of the CNS from the blood. It primarily consists of an essentially con-
tinuous layer of cells lining the blood vessels of the brain. It protects sensitive brain 
tissues from ordinary variations in the composition of blood while allowing trans-
port of nutrients into the brain. But the BBB is not an absolute barrier between the 
blood and the brain; rather it retards the rate at which substances cross between the 
blood stream and the brain. Any disruption to the BBB has serious consequences for 
health. The BBB may break down following brain trauma or brain heating. The BBB 
breakdown is risky if it allows enough concentrations of blood-borne neurotoxins 
(such as urea) to enter the brain.

Several investigations have indicated that ELF exposure has infl uence on the 
BBB permeability [156–158]. However, Öztas et al. [159] suggested that magnetic 
fi eld has no effect on the BBB permeability.

4.3.5.3 Reproductive and Development

There is no strong evidence of reproductive or developmental effects of exposure to 
magnetic fi elds in experimental animals. Studies using mice and rats have shown 
that exposure to magnetic fi elds results skeletal malformations [160,161], increase 
in placental resorptions [162], and fertility [163]. However, Ryan et al. [164] studied 
the effect of magnetic fi eld (2, 200, and 1000 µT continuous exposure and 1000 µT 
intermittent exposure) on fetal development and reproductive toxicity in the rodent. 
There was no evidence of any maternal or fetal toxicity or malformation. Elbetieha 
et al. [165] found that exposure of male and female mice to 50-Hz sinusoidal mag-
netic fi eld (25 µT) for 90 days before they were mated with unexposed counterparts 
had no adverse effects on fertility and reproduction in mice. Other studies also have 
reported no major effects on reproduction and development in mice [166–171].

Brent [172] reviewed in vivo animal studies and in vitro tests, as well as the 
biological plausibility of the allegations of reproductive risks and concluded, “The 
studies involving nonhuman mammalian organisms dealing with fetal growth, 
congenital malformations, embryonic loss, and neurobehavioral development were 
predominantly negative and are therefore not supportive of the hypothesis that low-
frequency EMF exposures result in reproductive toxicity.”

Juutilainen [173] reviewed experimental studies on the effects of RF, ELF, 
and intermediate frequency (IF) EM fi elds on animal development. The author 
concluded, “ELF electric fi elds up to 150 kV/m have been evaluated in several 
mammalian species. The results are rather consistent and do not suggest adverse 
developmental effects. The results of studies on ELF magnetic fi elds suggest effects 
on bird embryo development, but not consistently in all studies. Results from experi-
ments with other nonmammalian experimental models have also suggested subtle 
effects on developmental stability. In mammals, most studies have shown no effects 
of prenatal exposure to ELF or IF magnetic on gross external, visceral, or skeletal 
malformations. The only fi nding that shows some consistency is increase of minor 
skeleton alterations in several experiments. Taken as a whole, the results do not show 
robust adverse effects of ELF and IF fi elds on development.”
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4.4 CLINICAL STUDIES

Clinical studies carefully utilize screened volunteers who participate in double-blind 
studies, where appropriate, performed in a certifi ed exposure facility. These studies 
investigate effects of EMF exposure on various senses, hormones, and organs, such 
as hearing, the brain, the cardiovascular system, the immune system, melatonin, 
and the eyes. EMF effects might be studied safely and effectively in the laboratory 
with human volunteers in spite of limitations to the duration of exposure and types 
of tests that are performed. The focus in human studies is usually on the effects that 
occur within a time frame of minutes, hours, days, or perhaps weeks. Longer-term 
studies with controlled exposure are diffi cult, if not impossible, to carry out with 
human volunteers in laboratory settings. The selection of physiological mechanisms 
for study is also limited to those that can be measured by noninvasive or minimally 
invasive procedures.

Various health effects are claimed by people due to EMF exposure, including 
headache, cardiovascular changes, behavioral changes, confusion, depression, diffi -
culty in concentrating, sleep disturbances, decreased libido, and poor digestion. The 
main sources of information in this fi eld are surveys of people and workers living 
close to potential sources of EMF, laboratory tests, and epidemiological data.

4.4.1 PERCEPTION AND SENSITIVITY

Exposure to electric fi elds, especially at low frequency (up to 300 Hz), can result 
in fi eld perception as a result of alternating electric charge induced on the surface, 
causing body hair to vibrate. Electrically excitable cells in the retina can be affected 
by current densities of 10 mA/m2 or more, induced by low-frequency magnetic fi elds 
or directly applied electric currents but with no adverse health effects [174]. Most 
people can perceive electric fi elds greater than 20 kV/m, and a small percentage of 
people perceive fi eld strengths below 5 kV/m [175].

Humans experience fl ickering visual sensations caused by nonphotic stimu-
lation such as pressure on the eyes and mechanical shocks. They are caused by 
induced currents in the retina, where the threshold at 20 Hz (maximum sensitivity 
occurs between 20 and 30 Hz) is about 20 mA/m2. This is a level much higher than 
endogenous current densities in electrically excitable living tissues [176]. The effect 
observed in humans at the lowest magnetic fi eld is a kind of visual sensation called a 
“magnetophosphene,” where a fl ickering sensation is produced in surrounding vision 
by 50/60-Hz magnetic fi elds above about 10 mT. The effect is also connected to bio-
magnetic particles, which have been reported in the human brain [177].

A syndrome called “electrosensitivity” or electromagnetic hypersensitivity (EHS) 
initially appeared in Norway in the early 1980s among users of VDTs [178]. The syn-
drome has included various nonspecifi c health symptoms such as skin reaction, elec-
trophysiological changes in the CNS, respiratory, cardiovascular, and digestive effects. 
Mueller et al. [179] reported that some people appear able to detect weak (100 V/m
and 6 µT) EMF, but the ability to detect the fi elds is unrelated to whether the person 
is electrosensitive.

Leitgeb and Schröttner [180] considered an extended sample of the general 
population of 708 adults, including 349 men and 359 women aged between 17 and 
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60 years. Electrosensibility was investigated and characterized by perception thresh-
old and its standard deviation (SD). By analyzing the probability distributions of 
the perception threshold of electric 50 Hz currents, evidence could be found for the 
existence of a subgroup of people with signifi cantly increased hypersensibility who 
as a group could be differentiated from the general population. The presented data 
show that the variation of the electrosensibility among the general population is 
signifi cantly larger than has yet been estimated by nonionizing radiation protection 
bodies, but much smaller than claimed by hypersensitivity self-aid groups.

4.4.2 BRAIN AND BEHAVIOR

The CNS is a potential site of interaction with EMF because of the electrical sen-
sitivity of the tissues. Lyskov et al. [181,182] performed spectral analysis of EEG 
recorded from volunteers exposed to a 45-Hz, 1.26-mT magnetic fi eld. Signifi cant 
increases in the mean frequency and spectral power were observed in the α and β 
bands of the spectrum.

Studies conducted at 50 Hz on visual evoked potentials exhibited no effect on 
visual evoked potentials while using combined 60-Hz EMF up to 12 kV/m and 
0.03 mT [183]. However, Crasson et al. [184] indicated that a 50-Hz at 0.1-mT mag-
netic fi elds may have a slight infl uence on event-related potentials and reaction time 
under specifi c circumstances of sustained attention.

Magnetic or electric fi elds in the occupational environment (up to 5 mT or 20 kV/m) 
are generally reported to have no or minimal effects on neurophysiologic (EEG 
rhythms and evoked potentials) or cognitive responses of human subjects [184,185]. 
Preece et al. [186] reported small reductions in attention and mnemonic aspects of 
task performance when volunteers were exposed to a 50-Hz, 0.6-mT magnetic fi eld. 
An insignifi cant effect on memory function has also been reported at a magnetic 
fl ux density of 1 mT [187]. Podd et al. [188] failed to fi nd any effects of the fi eld on 
reaction time and accuracy in the visual discrimination task when using a 50-Hz, 
100-µT magnetic fi elds. Recently, Legros and Beuter [189] suggested that magnetic 
fi eld could have a subtle delayed effect on human behavior, which is clearly not 
pathological. The aim of the above study was to determine the effect of a 50-Hz, 
1000-µT magnetic fi eld centered at the level of the head on human index fi nger 
microdisplacements.

Cook et al. [190] reviewed the behavioral and physiological effects of EMF on 
humans and concluded, “The variability in results makes it extremely diffi cult to 
draw any conclusions with regard to functional relevance for possible health risks 
or therapeutic benefi ts.” For more details, please see a review on the recent studies 
(2001–2005) [191]. In their concluding remarks, the authors discussed a number of 
variables that are not often considered in human bioelectromagnetics studies, such 
as personality, individual differences, and the specifi c laterality of ELF magnetic 
fi eld and mobile phone exposure over the brain. They also considered the sensitivity 
of various physiological assays and performance measures in the study of biological 
effects of EM fi elds. 

Although the evidence for an association between EMF exposure at levels lower 
than MPE values and brain activity is inconclusive, research on brain functions due 
to prolonged exposure should be investigated in future research.
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4.4.3 CARDIOVASCULAR SYSTEM

Heart rate, blood pressure, and the performance of electrocardiogram (ECG) are 
commonly used to assess cardiovascular functions. Current densities of about 
0.1 A/m2 can stimulate excitable tissues, while current densities above about 1 A/m2 
interfere with the action of the heart by causing ventricular fi brillation, as well as 
producing heat. Korpinen et al. [192] found no fi eld-related changes in mean heart 
rate as a result of exposure to 50-Hz fi elds directly under power lines ranging from 
110 to 400 kV. However, Sastre et al. [193] and Sait et al. [194] reported that exposure 
of human volunteers to 60-Hz magnetic fi elds (15 and 20 µT, respectively) caused 
changes in heart rate. Kurokawa et al. [195] reported the absence of effects on heart 
rate in human volunteers exposed to 50- to 1000-Hz magnetic fi elds at 20–100 mT 
for 2 min to 12 h.

According to a review by Stuchly [196], exposure of healthy male volunteers 
to 20-µT EMF at 60 Hz has been linked to a statistically signifi cant slowing of the 
heart rate and to changes in a small fraction of the tested behavioral indicators. 
In another review, Jauchem [197] concludes that no obvious acute or long-term 
cardiovascular-related hazards have been demonstrated at levels below current 
exposure limits for EMF.

In a recent review of the literature involving the effects of magnetic fi elds on 
microcirculation and microvasculature, McKay et al. [198] indicates that nearly 
half of the cited experiments (10 of 27 studies) report either a vasodilatory effect 
due to magnetic fi eld exposure, increased blood fl ow, or increased blood pressure. 
Conversely, three of the 27 studies report a decrease in blood perfusion/pressure. 
Four studies report no effect. The remaining 10 studies found that magnetic fi eld 
exposure could trigger either vasodilation or vasoconstriction depending on the 
initial tone of the vessel.

4.4.4 MELATONIN IN HUMANS

Several studies examining the suppression of human melatonin due to exposure to 
EMF from VDTs [199] and electric utilities [34,200–203] have been reported. Many 
studies found no effect on melatonin levels among healthy volunteers exposed to 
fi elds at 1–200 µT [204–210].

Wood et al. [211] reported that the nighttime melatonin peak was delayed by expo-
sure to a 20-µT magnetic fi eld, but that overall melatonin levels were not affected. 
Juutilainen et al. [212] showed some ambiguous evidence for a decrease in nighttime 
melatonin production among female Finnish garment workers (who are exposed 
to power-frequency fi elds from sewing machines). Griefahn et al. [207] reported 
that the effect of magnetic fi elds on melatonin secretion will most likely occur after 
repetitive exposures to intermittent fi elds. This conclusion was obtained after con-
ducting a study on seven healthy young men aged between 16 and 22 years.

Liburdy et al. [213] indicated that melatonin reduces the growth rate of human 
breast cancer cells in culture, but a 1.2-µT (60 Hz) magnetic fi eld can block the 
ability of melatonin to inhibit breast cancer cell growth. Recently, Juutilainen and 
Kumlin [99] noted that daytime occupational exposure to magnetic fi elds enhances 
the effects of nighttime light exposure on melatonin production in middle-aged 
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women. However, the results were not conclusive because of several limitations of 
the data, such as imprecise light measurements and low number of subjects who 
were exposed to magnetic fi elds. According to the authors, the value of the fi ndings 
supports evidences from other studies and indicates that possible interaction with 
light should be considered in any further studies of magnetic fi elds and melatonin.

In a review, Karasek and Lerchl [98] concluded, “At present there are no con-
vincing data showing a distinct effect of magnetic fi elds on melatonin secretion in 
(human) adults.” It is also not clear whether the decreases in melatonin reported in 
the positive papers are related to the presence of EMF exposure or to other factors.

4.5 CONCLUDING REMARKS AND FUTURE RESEARCH

Since 1979, there has been a fl urry of scientifi c activity to evaluate the possibility 
that exposure to EMF from power lines and other sources may cause cancer. Overall, 
the currently available epidemiological and toxicological data do not provide clear 
evidence that EMF is associated with an increased risk of cancer, although there is 
some epidemiological evidence of linkages between EMF and childhood leukemia. 
There is also no convincing evidence from cellular and animal studies that EMF can 
directly damage DNA or promote tumor growth.

Current evidence from laboratory and epidemiological studies on the  association 
between EMF exposure and cancer or other harmful health outcomes is inconsistent 
and inconclusive. Whereas early studies focusing on residents living near high-volt-
age transmission lines provided some evidence of a link between the risk of leukemia 
and EMF as characterized by Wertheimer and Leeper [10], most of the subsequent 
studies using actual fi eld measurements failed to confi rm the initial fi ndings.

Investigations of weak EM fi eld (including ELF associated with cellular phones) 
effects on human physiology have yielded some evidence of effects in a number of 
different areas such as heart-rate variability, sleep disturbance, and melatonin sup-
pression [2,190,205]. The lack of consistent positive fi ndings in experimental studies 
weakens the argument that this association is actually due to EMF exposure only. 
Although experimental studies cannot be used to rule out the possibility of small 
risks, they can provide evidence of a positive association under certain exposure con-
ditions. In order to achieve possible proof, there is a need for better EMF exposure 
assessments (including transients), increased cellular and animal studies that better 
simulate the effect on humans, and increased human population studies that evaluate 
exposures with adverse health outcomes.

Most studies of adult cancers, particularly brain cancer, have been based on 
occupational groups, especially electrical workers with possibly high exposure. 
The few studies examining brain cancer and residential exposures found little or no 
 evidence of association.

Studies examining health outcomes other than cancer do not provide suffi cient 
evidence to support an association between EMF exposure and pregnancy outcomes, 
heart diseases, Alzheimer’s disease, depression, or symptoms attributed by some to 
sensitivity. However, a number of epidemiological and experimental studies suggest 
that relatively strong EMF can alter cardiac rhythm, which is not surprising in view 
of the electrical nature of the mechanisms controlling heart rate.
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In evaluation of all epidemiological studies, researchers were particularly con-
cerned with the methodological challenges, especially with respect to exposure 
control and assessment. The challenges include better knowledge about exposure 
metrics, periods of exposure, characterization of exposure sources, availability of 
population registry databases, and residential area measurements.

Laboratory research has given no consistent evidence that EMF at environmen-
tal levels for a substantial period can affect biological processes or cause cancer. It 
is generally considered that EMF exposure does not possess enough energy to dam-
age DNA directly, but there have been some reports in the literature of damage to 
DNA after exposure to EMF, and some of these reports are presented and discussed. 
Recent studies of disturbances in melatonin release in both animals and humans 
have been inconsistent. The NIEHS concluded that there was inadequate evidence 
for carcinogenicity in animals exposed to EMF exposure.

4.5.1 REVIEW STUDIES

Several major large-scale national and international programs and reviews have been 
undertaken recently [39,74,198,214–223]. In 1991, the National Research Council 
(NRC) convened an expert committee to review and evaluate the existing scientifi c 
information on the possible effects of EMF exposure on the incidence of cancer, 
on reproduction and developmental abnormalities, and on neurobiological response, 
as refl ected in learning and behavior. The committee concluded in its 1997 report 
that the evidence does not support the notion that EMF exposure is a human health 
hazard.

In the United States, the mandate of the NRC committee was restricted in its 
scope; however, the National Institute of Environmental Health Sciences (NIEHS) 
[1,2] was charged to prepare and submit a wider evaluation of the potential human 
health effects from EMF exposure. In addition, the World Health Organization 
(WHO) has completed extensive reviews of related studies. Details of the above 
reviews are summarized in reports, scientifi c journals, and conferences.

Evidence linking EMF to most cancers (except childhood and CLL, where 
the evidence has been characterized as suggestive or as “possibly carcinogenic” 
to humans) was deemed inadequate by NIEHS. WHO’s International EMF Proj-
ect reached similar conclusions [175]. The National Academy of Science concluded 
that there was no consistent evidence linking EMF and cancer [214]. Each of these 
reports noted a lack of studies properly designed to investigate this issue.

Childhood leukemia is the only cancer for which there is statistically consistent 
evidence of an association with exposure to EMF above 0.4 µT. The evidence for a 
causal relationship is still inconclusive. The NIEHS concluded that there was limited 
evidence for an association with EMF exposure. Specifi cally, investigators found 
some evidence of an increased risk of leukemia associated with increased EMF 
exposure [2]. Similar conclusions were made by the NRPB [215], the ICNIRP [174], 
the International Agency for Research on Cancer (IARC) [218], and the  California 
EMF Program [219]. The IARC has concluded that EMF exposures are possibly 
carcinogenic to humans, based on a consistent statistical association of high-level 
residential magnetic fi elds with an increased risk of childhood leukemia, by approxi-
mately a factor of 2.
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In most cases, the NIEHS concluded that there was no solid evidence to sug-
gest that EMF in the environmental levels affect cells or systems. Two exceptions 
involved reports of weak evidence that EMF exposures contribute to behavioral, 
pharmacological, physiological, and biochemical changes in the nervous sys-
tem and alter melatonin levels. EMF exposure, however, has been reported to 
enhance healing of damaged bones and is currently used in clinics for therapeutic 
purposes.

On behalf of the California Public Utilities Commission, three scientists who 
work for the California Department of Health Services (DHS) reviewed the studies 
about possible health risks from EMF exposure [219]. The reviewers are inclined to 
believe that EMF exposure can cause some degree of increased risk of childhood 
leukemia, adult brain cancer, and miscarriage. They believe that exposure to EMF is 
not a universal carcinogen and does not increase the risk of birth defects, low birth 
weight, depression, or heart disease.

4.5.2 FUTURE RESEARCH

Looking to the future, further studies are required to address the following issues: 
(1) elucidation of the biophysical interaction mechanisms that may explain how 
the  signal from a low-energy source could affect biological systems; (2) improved 
dosimetry to reduce uncertainties in exposure assessment; (3) in vitro and in vivo 
studies on genetic effects, melatonin secretion, and tumorigenesis (with particular 
emphasis on characterization of dose−response relationships under a range of expo-
sure conditions); (4) understanding the neurophysiologic implications of EMF; and 
(5) epidemiological studies to clarify the relationship between EMF and cancer in 
children, particularly leukemia.

A comprehensive research program that addresses these topics will require a 
transdisciplianry approach, involving specialists in EMF dosimetry, epidemiology, 
toxicology, and clinical research. This information will provide a fi rmer basis for 
assessing the potential health risks of EMF, and for both the updating and harmo-
nization of current protection guidelines. In addition, work is also needed to better 
understand public perception of EMF risks, which can inform the design of risk 
communication strategies related to the management of EMF health risks.
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5 Radio Frequency 
Standards and Dosimetry

5.1 INTRODUCTION

The use of RF equipment such as mobile phones, microwave ovens and RF heaters, 
base stations, radar installations, telecommunications, and broadcast facilities has 
led to widespread human exposure to RFR, along with concerns about possible asso-
ciations between RFR and adverse health outcomes, including cancer.

RF applications occupy a wide range of frequencies. For example, AM radio 
transmission uses 5–16 kHz, FM radio transmission uses 76–109 kHz, while 
58–132 kHz and 8.8–10.2 MHz are used throughout the world for EAS, radio fre-
quency identifi cation (RFID), and other security systems. Cellular and personal 
communications use frequencies between 800 MHz and 2 GHz. Emerging wire-
less network-connected products and services may utilize frequencies up to 5 
GHz. However, the 2.45 GHz frequency is reserved for ISM applications (mainly 
microwave cooking).

Scientists, engineers, technicians, and physicians have been apprehensive about 
the potential hazards of RFR since the Second World War. There have been repeated 
calls for measures and tools that reduce RF exposure. During the past few decades, 
people have been especially concerned about the safety of radar equipment in the 
workplace and microwave ovens at their homes. Currently, it is wireless communica-
tion equipment (mobile phones) cradled next to the heads of millions of users that are 
of greatest concern [1].

Recent advances in wireless communication technologies have focused attention 
on the possible health consequences of mobile phone use. To date, there is limited 
information on the health risks stemming from the use of wireless equipment. As 
more products and services are developed and used in everyday applications, the 
potential for human exposure to RFR will increase.

The interaction of RF fi elds with living systems can be considered at the molecu-
lar, sub-cellular, cellular, organ, or system level, as well as the entire body. Biologi-
cal effects due to exposure to RFR are differentiated into three levels: (1) high-level 
(thermal) effects, (2) intermediate-level (athermal) effects, and (3) low-level (non-
thermal) effects.

This chapter traces the development of major RF exposure guidelines includ-
ing some of the uncertainties in the science underlying these guidelines. Following 
a survey of RF sources and exposure scenarios, we provide safety assessment for 
whole body and head phantoms including those of adults and children. Future devel-
opments in the fi elds of safety standards harmonization, engineering requirements, 
and dosimetric information are also discussed.
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5.2 RF EXPOSURE GUIDELINES

Beginning in the eighteenth century, scientifi c organizations were formed not only 
to address societal needs and concerns but also to resolve scientifi c disagreements. 
In the second half of the nineteenth century and the fi rst half of the twentieth cen-
tury, a number of scientifi c and engineering organizations were formed to advise 
government agencies, industry, and others, with one of their primary tasks being the 
establishment of safety standards [2].

The development of protection guidelines is a complex process that starts from 
a comprehensive review of the scientifi c literature, including studies describing 
thermal and nonthermal effects, short- and long-term exposures, biological and 
health end points, and epidemiological and human studies. The next step is the 
identifi cation of the critical effect, that is, the established adverse health effects that 
occur at the lowest level of exposure [3]. The exposure levels that are harmful, or 
are considered likely to be harmful, to human health are determined. Such levels 
for human exposure to EM fi elds are generally called MPE values, or reference lev-
els. The frequency-dependent MPE is a suitable metric for exposure assessment and 
can be used in determining whether an exposure complies with the basic exposure 
restrictions. 

Various quantities are utilized to express MPE limits, including magnetic fl ux 
density (T) for static and VLF fi elds, current density (A/m2) for frequencies up to 
approximately 10 MHz, SAR for frequencies up to 10 GHz, and power density 
(W/m2) for frequencies between 10 and 300 GHz.

5.2.1 MAJOR GUIDELINES

Guidelines recommending the limitation of RF exposure have been continually 
developing for over a decade. MPE values from seven different organizations were 
compared. Many countries develop their guidelines by either adopting or adapting 
the recommendations of major organizations such as the IEEE [4–7], the NRPB 
[8–10], the Federal Communications Commission (FCC) of the United States [11], 
the ICNIRP [12–14], the Chinese National RF Exposure Standard GB8702-1988, 
Health Canada [15], and the ARPANSA [16].

The differences in RF safety standards are due to different philosophi-
cal approaches to public health standards development, different scientifi c 
approaches and interpretations of the scientifi c data, and different jurisdictions 
in various countries [17]. The most commonly used safety standards at present 
are the ANSI/IEEE C95.1 [4–7] and ICNIRP [12–14]. The basic restrictions for 
both these standards are in terms of induced current density (or electric fi elds) at 
lower frequencies of up to a few megahertz and SAR at higher frequencies of up 
to a few GHz [18].

The exposure guidelines compared in this book are generally related in scope. 
All the guidelines include separate exposure limits for various ranges of frequencies 
(although the defi ned limits for frequency groups differ). Each differentiates whole-
body from partial-body exposure, and considers exposure to multiple frequencies for 
comparison with the standard.
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5.2.2 IEEE GUIDELINES

The IEEE standard was developed by the SCC28 under the sponsorship of the IEEE 
Standards Board and was submitted to the ANSI for recognition as an American 
standard.

5.2.2.1 IEEE Standard C95.1

The safety standards most widely used in the Unites States are the ANSI C95.1 
guidelines. ANSI is a voluntary standards body which has served in its capacity 
as administrator and coordinator of the U.S. private sector voluntary standardiza-
tion system for more than 80 years. Founded in 1918 by fi ve engineering societies 
and three government agencies as the American Standards Association (ASA), ASA 
became the United States of America Standards Institute (USASI) in 1966. By 1974, 
USASI had become the American National Standards Institute.

The history of the C95.1 standards goes back to the 1940s and fear for the safety 
of military personnel working close to radars during World War II. In 1942, the U.S. 
Navy directed the Naval Research Laboratory to investigate the possible health effects 
of RFR. Other military agencies in the United States were also involved within a short 
period. Early results showed no reason to fear, but proposed that procedures should be 
put in place to avoid extensive exposure. No guidelines were endorsed. Immediately 
after the war, very little research was conducted on the bioeffects of RFR. In 1948 and 
the following years, a few researchers reported the formation of cataracts in dogs and 
other animals. During the 1950s, researchers reported concerns over other adverse 
health effects such as leukemia, brain tumors, heart problems, and headaches. 

The industry was more interested in setting up guidelines for its employees. 
For example, in 1953, the Central Safety Committee of Bell Telephone Laboratories 
issued a bulletin that recommended reduction of the power density 100 W/cm2 to a 
30-dB safety margin. This led to a recommendation of 10 mW/cm2. This fi gure was 
the fi rst safety standard decided for a human being under RF exposure. In 1954, 
General Electric recommended a stricter standard by a factor of 100, at 1 mW/cm2. 
In 1957, Bell Telephone developed a standard at 1 W/cm2 for continuous exposure. 
However, the Bell Telephone standard allows for the high-exposure levels for shorter 
periods of time. The Bell standard limits were based on certain biological effects 
(especially cataracts), which may occur at this level. In 1958, General Electric 
adopted a 10-mW/cm2 limit. However, the U.S. Air Force (USAF) adopted an upper 
limit of 10 mW/cm2 through its fi rst Tri-Service Conference held in 1957.

The IEEE C95.1 MPE limits are frequency- and time-dependent in controlled 
and uncontrolled environments, as shown in Table 5.1. The MPE limits were not 
intended to be fi nal guidelines, but only the beginning of long-term research and 
investigation. The intention was to provide some kind of protection until enough data 
were available to set up solid safety guidelines.

These guidelines were approved by the IEEE in 1991 and were subsequently 
adopted by ANSI in 1992 as a replacement for the previous ANSI C95.1-1982. In 
April 1993, the FCC proposed using the ANSI/IEEE C95.1-1992 for evaluating envi-
ronmental RF fi elds created by transmitters it licenses and authorizes. 
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The maximum time-averaged SAR for IEEE C95.1 guidelines is 8 W/kg for six 
or more minutes for controlled environments and a corresponding value at 1.6 W/kg 
for exposure in uncontrolled environments for 30 or more minutes. Higher local 
SARs are permitted for shorter exposure periods.

The IEEE C95.1 guidelines require averaging the power level over time periods 
ranging from 6 to 30 minutes for power density calculations, depending on the fre-
quency. The exposure limits for uncontrolled environments are lower than those for 
controlled environments. To compensate for that, the guidelines allow exposure lev-
els in those environments to be averaged over much longer time periods (30 minutes). 
Time averaging is based on the concept that the human body may bear a greater rate 
of body heating (that is, a higher level of RF energy) for a shorter time than for a 
longer period. However, time averaging may not be appropriate in considerations of 
nonthermal effects of RF energy.

5.2.2.2 IEEE Standard 1528

In December 2003, the IEEE Standard 1528 was published [6]. It specifi es protocols 
and test procedures for the measurement of the peak spatial-average SAR induced 

TABLE 5.1
Maximum Permissible Exposure Limits for IEEE Standard C95.1

Frequency Range 
(MHz)

Electric Field 
(E)

Magnetic Field 
(H) (V/m)

Power Density (P) 
(A/m)

Averaging Time (|E|2), 
S (mW/cm2) (min)

Controlled Environments
0.003–0.1 614 163 100; 1,000,000a 6
0.1–3.0 614 16.3/f 100; 10,000/f 2a 6
3–30 1824/f 16.3/f 900/f 2; 10,000/f 2 6
30–100 61.4 16.3/f 1.0; 10,000/f 2 6
100–300 61.4 0.163 1.0 6
300–3,000 — — f/300 6
3,000–15,000 — — 10 6
15,000–300,000 — — 10 616,000/f 1.2

Uncontrolled Environments
0.003–0.1 614 163 100; 1,000,000a 6
0.1–1.34 614 16.3/f 100; 10,000/f 2a 6
1.34–3.0 823.8/f 16.3/f 180/f 2; 10,000/f 2 f 2/3
3–30 823.8/f 16.3/f 180/f 2; 10,000/f 2 30
30–100 27.5 158.3/f 1.668 0.2; 940,000/f 3.336 30
100–300 27.5 0.0729 0.2 30
300–3,000 — —  f/1,500 30
3,000–15,000 — —  f/1,500 90,000/f 2

15,000–300,000 — — 10 616,000/f 1.2

Note: f is the frequency in MHz.
a Plane wave equivalent power density, not suitable for near-fi eld region but useful for comparing them 

with the power density limits for the higher frequency ranges.
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inside a simplifi ed model of the head of users of certain handheld radio transceivers. 
These transceivers are intended to be used for personal wireless communications 
services, operate in the 300 MHz–3 GHz frequency range, and are intended to be 
operated while held against the ear. The results obtained by following the protocols 
specifi ed in IEEE 1528 represent a conservative estimate of the peak spatial-average 
SAR induced in the head of a signifi cant majority of persons, subject to measurement 
and other uncertainties that are defi ned in this standard. The results are representa-
tive of those expected during conditions of normal use of a handheld wireless device. 
IEEE 1528 does not set specifi c limits for exposures of users of cellular phones and 
other personal communication devices, but helps wireless device manufacturers and 
regulators assess compliance with the requirements of the FCC and similar gov-
ernment agencies internationally that limit exposure from personal communication 
devices. 

5.2.2.3 IEEE C95.1-2005

This newly approved standard represents a complete revision of and replaces IEEE 
Standard C95.1-1991. This standard gives recommendations to prevent harmful 
effects in human beings exposed to EM fi elds in the frequency range from 3 kHz to 
300 GHz. The recommendations are intended to apply to exposures in uncontrolled, 
as well as controlled environments. They are not intended to apply to the purpose-
ful exposure of patients under the direction of practitioners of the healing arts. The 
induced and contact current limits of IEEE C95.1-1991 are modifi ed in this edition. 
In addition, fi eld strengths below which induced and contact currents do not have to 
be measured are specifi ed [7]. 

In the frequency range from 100 kHz to 3 GHz, the new IEEE standard of 
0.08 W/kg averaged over the whole body for the general public is based on restrict-
ing heating of the body during whole-body exposure. It is to be applied when an RF 
safety program is not available. The new basic restriction for localized exposure is 
2 W/kg for most parts of the body. A basic restriction SAR of 4 W/kg is fi xed for the 
extremities (arms and legs distal from the elbows and knees, respectively, including 
the fi ngers, toes, hands, and feet) and for pinnae. The value of SAR is obtained by 
averaging over some specifi ed time period (e.g., 6–30 min) and by averaging over 
any 10 g of tissue (described as a tissue volume in the shape of a cube). The new 
IEEE standard established segregation of the pinnae or the external ears by relax-
ation of the aforementioned basic SAR restriction from 2 W/kg to 4 W/kg. The SAR 
value for the basic restriction for localized exposure has been increased from 1.6 
W/kg averaged over any 1 g of tissue to 2 W/kg over any 10 g of tissue [19].

The new MPE in terms of power density is 2 W/m2, between 30 and 400 MHz. 
It moves up from 2 to 10 W/m2 between 400 and 2000 MHz. For frequencies greater 
than 2 GHz, the MPE is 10 W/m2.

The new IEEE standard contains some of the characteristics of the ICNIRP 
guidelines, with few differences. The main similarities are basic restrictions in terms 
of a 2 W/kg SAR averaged over 10 g of tissues in the head and trunk and the refer-
ence levels (2–10 W/m2) for certain frequency ranges. The major differences include 
the tissue mass and time period over which SAR values are to be averaged and the 
applicable frequency bands for the MPEs.
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5.2.3 ICNIRP GUIDELINES

In 1992, the ICNIRP was chartered as the successor to International Radiation 
Protection Association (IRPA)/International Non-Ionizing Radiation Committee 
(INIRC). The ICNIRP’s mission is to coordinate knowledge of protection against 
various nonionizing exposures in the development of internationally accepted 
recommendations.

In April 1998, the ICNIRP published guidelines (Table 5.2) for limiting RF 
exposure in the frequency range up to 300 GHz. Development of the guidelines 
was based on a quantitative relationship between exposure and adverse effects. Only 
established effects have been used as the basis for the recommended limitation of 
exposure.

The ICNIRP guidelines include a reduction factor of fi ve in maximum SAR for 
the general public as opposed to occupational environments. The reason for this 
approach is the possibility that some members of the general public might be excep-
tionally sensitive to RFR. However, no detailed scientifi c evidence to justify this 

TABLE 5.2 
ICNIRP Protection Guidelines

Frequency Range E-Field Strength
H-Field Strength 

(V/m) B-Field (A / m)
Power Density 
(µT) (W/m2)

Occupational Exposure
Up to 1 Hz 1.63 × 105 2 × 105 —
1–8 Hz 20,000 1.63 × 105/f 2 2 × 105/f 2 —
8–25 Hz 20,000 2 × 104/f 2.5 × 104/f —
25–820 Hz 500/f 20/f 25/f —
820 Hz–65 kHz 610 24.4 30.7 —
65 kHz–1 MHz 610 1.6/f 2/f —
1–10 MHz 610/f 1.6/f 2/f —
10–400 MHz 61 0.16 0.2 10
400 MHz–2 GHz 3 f 0.5 0.008 f 0.5 0.01 f 0.5 f/40 
2–300 GHz 137 0.36 0.45 50

General Public
Up to 1 Hz — 3.2 × 104 4 × 104 —
1–8 Hz 10,000 3.2 × 104/f 2 4 × 104/f 2 —
8–25 Hz 10,000 4000/f 5000/f —
25–800 Hz 250/f 4/f 5/f —
800 Hz–3 kHz 250/f 5 6.25 —
3–150 kHz 87 5 6.25 —
150 kHz–1MHz 87 0.73/f 0.92/f —
1–10 MHz 87/f 0.5 0.73/f 0.92/f —
10–400 MHz 28 0.073 0.092 2
400–2000 MHz 1.375 f 0.5 0.0037 f 0.5 0.0046 f 0.5 f/200
2–300 GHz 61 0.16 0.2 10
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additional safety factor is provided. The basic restriction for occupational exposure 
to EMF with frequencies up to 1 kHz is 10 mA/m2, and above that it is frequency 
dependent. The value of 10 mA/m2 was chosen as less than one-tenth of the value 
of the current density above. This is the same value recommended by NRPB in the 
United Kingdom.

For exposures received by the general public a reduction factor of fi ve is applied, 
resulting in a basic restriction of 2 mA/m2. In its clarifi cation, the ICNIRP notes that 
compliance with this basic restriction may permit higher current densities in body 
tissues other than the CNS under similar exposure conditions. 

The basic restriction for occupational exposure to EM fi elds with frequencies 
between 100 kHz and 10 GHz is 0.4 W/kg for whole-body SAR. Again, this is the 
same as the value recommended by the NRPB. For the general public, the reduction 
factor of fi ve results in a basic restriction on whole-body SAR of 0.08 W/kg. The fac-
tor of fi ve reduction also applies to the basic restriction on localized SAR (head and 
trunk), the values for those occupationally exposed and for the general public being 
10 W/kg and 2 W/kg, respectively, averaged over any 10-g tissue. However, localized 
SAR values at limbs for those occupationally exposed and for the general public are 
20 W/kg and 4 W/kg, respectively.

In 1999, the ICNIRP guidelines for the public were incorporated in a European 
Council Recommendation, which has been agreed in principle by all countries in the 
EU, including the United Kingdom. The ICNIRP standard is used in most European 
countries and is gaining acceptance in many other countries throughout the world 
outside of North America. These guidelines are recommended by the WHO and 
have been adopted by more than 35 countries.

5.2.3.1 CENELEC EN 50392:2004

In January 2004, the European Committee for Electrotechnical Standardization 
(CENELEC) released the European standard EN 50392:2004 to demonstrate the 
compliance of electronic and electrical apparatus with the basic restrictions related 
to human exposure to EM fi elds (0 Hz–300 GHz) [20]. This standard considers basic 
restrictions or reference levels on exposure of the general public related to electric, 
magnetic, and EM fi elds as well as induced and contact current. Generally, it contains: 
(1) compliance criteria, assessment methods, and reporting, (2) evaluation of com-
pliance to limits, (3) characteristics and parameters of apparatus to be considered, 
(4) sources of multiple frequencies, and (5) information to be supplied with the 
apparatus.

5.2.3.2 EC Directive 2004/40/EC

On April 29, 2004, the Council of the European Parliament published Directive 
2004/40/EC. This directive addresses the minimum health and safety requirements 
regarding the exposure of workers to the risks arising from EM fi elds. The directive 
follows the ICNIRP basic restrictions. It addresses risks due to known short-term 
adverse effects in the human body; however, it does not consider long-term effects. 
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The directive distinguishes between exposure limit values and action values. The 
exposure limit values (Table 5.3) must not be exceeded and are linked to physical 
variables that are directly related to effects on the body, such as current density in the 
CNS at low frequencies, the specifi c absorption rate of energy, and the power density 
at high frequencies. Because these variables are usually diffi cult to measure, the 
directive incorporates action values (Table 5.4) for easy-to-measure variables, such 
as the EMF outside the body. If the action values are not exceeded, then according 
to the directive it can be assumed that the exposure limit values will not be exceeded 
under normal circumstances. If the action values are exceeded, the employer must 
ensure that exposure values are reduced to below the action values or the employer 
must show that the exposure limit values are not exceeded. Exceeding limit values 
or action values does not necessarily result in an unsafe situation.

TABLE 5.3 
Exposure Limit Values in Directive 2004/40/EC

Frequency 
Range

Current 
Density (J) 
for Head
and Trunk 

(mA/m2) (rms)

Whole-Body 
Average 

SAR (W/kg)

Localized SAR 
(Head and 

Trunk) (W/kg)

Localized 
SAR (Limbs) 

(W/kg)

Power 
Density (S) 

(W/m2)

Up to 1 Hz 40 — — — —
1–4 Hz 40/f — — — —
4–1000 Hz 10 — — — —
1000 Hz–100 kHz f/100 — — — —
100 kHz–10 MHz f/100 0.4 10 20 —
10 MHz–10 GHz — 0.4 10 20 —
10–300 GHz — — — — 50

Note: No ceiling values for static magnetic fi elds. SAR values are 6 min time averages.

TABLE 5.4
Action Values in Directive 2004/40/EC

Frequency 
Range

Electric 
Field 

Strength E 
(V/m2)

Magnetic 
Field Strength 

H (A /m2)

Equivalent Plane 
Wave Power 

Density S 
(W/m2)

Contact 
Current 
Ic (mA)

Limb Induced 
Current 
IL (mA)

0.1–1 MHz 610 1.6/f — 40 —
1–10 MHz 610/f 1.6/f — 40 —
10–110 MHz 61 0.16 10 40 100
110–400 MHz 61 0.16 10 — —
400–2000 MHz 3 f 1/2 0.008 f 1/2 f/40 — —
2–300 GHz 137 0.36 50 — —
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Modifi cation of the directive may be proposed if new scientifi c information 
and collected data indicate that a change will not affect the level of protection of 
workers exposed to EM fi elds. The frequencies of interest published in the directive 
cover all eventualities, ranging from 0 Hz to 300 GHz, for static magnetic fi elds 
and EM fi elds. Compliance with this directive is mandatory from April 30, 2008. 
This directive will make it necessary for employers to introduce measures to protect 
workers from the risks associated with EM fi elds. The limits and action values are 
specifi ed for measurement purposes along with recommendations concerning risk 
management, health surveillance, and information and training for those working in 
exposed conditions.

5.2.4 SAFETY FACTORS

Historically, scientists fi xed a safety factor of 10, based on an exposure of 0.1 W/cm2. 
The above fi gure took into account an average male weighting 70 kg and having a 
surface area of 3000 cm2. Sometime later, Professor Herman Schwan, a pioneer 
researcher in the fi eld at the University of Pennsylvania, noticed that the absorbing 
surface of the body is closer to 20,000 cm2 rather than 3000 cm2. He fi gured out 
that the pure effect of absorbed radiation was 20 times greater than the body could 
resolve. Therefore, the standard was lowered to 10 mW/cm2, and this was the base for 
the C95.1 recommendations of 1966.

Currently, MPE values usually include a safety factor that results in permissible 
exposures at levels well below those where potentially hazardous effects may occur. 
The value of the safety factor refl ects the extent of uncertainty about the lowest 
exposure level that could be hazardous, coupled with a desire to remain conservative 
with respect to health and safety. Improved knowledge about thresholds for hazard-
ous effects may justify smaller safety factors [21]. Safety factors allow for extrapo-
lating from animal studies to humans, heat dissipation in the body, uncertainties 
in determining the precise threshold, and the hypothesis that some people may be 
more sensitive than others. Safety factor values between 10 and 1000 are often used. 
However, most of the known exposure standards have chosen a value of 50 for the 
public environment.

5.2.5 INCORPORATING SPECIFIC ABSORPTION RATE

SAR, as a most biologically effective quantity used in protection guidelines and 
in extrapolating across species, cannot be directly measured. The level of electric 
fi eld intensity E in volts per meter is calculated as a directly measurable exposure 
parameter that corresponds to basic exposure restrictions. SAR is the rate at which 
RF energy is absorbed by the tissue and thus is a good predictor of thermal effects. 
In the context of RF or microwaves, two alternatives are used, allowing the SAR 
evaluation from either the electric fi eld or temperature measurement. Accord-
ingly, SAR is defi ned as

 
SAR � �

�� �
�
E 2

c
dT

dt
 (5.1)
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where dT/dt is the time derivative of the temperature in kelvin per second (K/s), σ the 
electrical conductivity in siemens per meter (S/m), ρ the mass density in kilogram 
per cubic meter (kg/m3), and c the specifi c heat in joules per kilogram per kelvin 
(J/kg/K). The unit of SAR is watts per kilogram (W/kg). 

SAR calculations and estimates usually use many EM properties of biological 
tissues (e.g., complex dielectric constants and conductivity of different tissues) whose 
accuracy depends on their acquisition techniques, which are mostly in vivo. 

There are two major types of SAR: (1) a whole-body average SAR and (2) a local 
(spatial) peak SAR when the power absorption takes place in a confi ned body region, 
as in the case of a head exposed to a mobile phone. Whole-body SAR measure-
ments are signifi cant in estimating elevations of the core body temperature. As SAR 
increases, the possibility of heating and, therefore, tissue damage also rises. The 
whole-body SAR for a given organism will be highest within a certain resonant 
frequency range, which is dependent on the size of the organism and its orientation 
relative to the electric and magnetic fi eld vectors and the direction of wave propa-
gation. For an average human, the peak whole-body SAR occurs in a frequency 
range of 60–80 MHz while the resonant frequency for a laboratory rat is about 
600 MHz [22]. 

Both types of SAR are averaged over a specifi c period of time and tissue masses 
of 1 or 10 g (defi ned as a tissue volume in the shape of a cube). Averaging the absorp-
tion over a larger amount of body tissue gives a less reliable result. The 1-g SAR is a 
more precise representation of localized RF energy absorption and a better measure 
of SAR distribution. Local SAR is generally based on estimates from the whole-
body average SAR. It incorporates substantial safety factors (e.g., 20).

The accepted safe occupational exposure whole-body SAR level is 0.4 W/kg 
(power density/mass) and the public exposure level is 0.08 W/kg, based on a SAR of 
4 W/kg as the level at which adverse effects are said to be detected. A SAR of 4 W/kg 
can be compared to the measured threshold for stress protein synthesis in the ELF 
range, 2.6 × 10−7 J/m3 (energy density/volume) by fi rst converting to a per mass basis 
using an approximate tissue density of water, 103 kg/m3, the major constituent of 
cells. In these units, the threshold for stress protein synthesis is 2.6 × 10−10 J/kg [23].

There are two local SAR safety limits applicable to RFR: 1.6 W/kg averaged over 
1 g (SAR1g) in North America and 2 W/kg averaged over 10 g (SAR10g) developed 
by the ICNIRP and accepted for use in Europe, Australia, Japan, and other parts of 
the world. Whether 1.6 W/kg or 2 W/kg is a correct limit for RF exposure remains 
controversial. Table 5.5 shows SAR limits for various exposure guidelines.

Exposure to RFR from mobile phones is in the region close to the antenna, the 
near-fi eld. However, exposure from other sources such as base stations is in the far 
fi eld, which is often quantifi ed in terms of power density, and expressed in units of 
watts per square meter. At lower frequencies, from about 0.1 to 10 MHz, the energy 
absorbed is less important than current density and total current, which can affect 
the nervous system. There is an overlap region at the upper part of this range where 
either current density or energy absorption rate is the limiting quantity. The MPE 
values at the lower frequencies are concerned with preventing adverse effects on the 
CNS and electric shock [24]. Exposure limits at these lower frequencies also involve 
numerous technical issues as well, but are not the focus of this paper.
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5.3 MEASUREMENT SURVEYS

Dosimetry means measuring the dose of radiation emitted by a source. Dose mea-
sures that aspect of fi eld exposure that is directly linked to the biological activity of 
the fi eld, even though this aspect of the fi eld may not directly cause the changes [25]. 
Quantitative analysis of SAR in the human body under EM radiation, including the 
evaluation of incident and internal RF fi elds, is referred to as RF dosimetry [26]. RF 
fi elds are either measured or calculated, depending upon the type and shape of the 
object [27].

Measurement surveys provide procedures that are implemented in develop-
ing programs to protect workers and the public from exposure to RF energy above 
the allowable limits, as well as to protect utilities from litigation or possible penal-
ties. The fi rst and foremost step is to survey any utility-owned or leased sites that 
have transmitters, heat sealers, induction units, or any other devices that emit RF 
energy to determine if hazards are present. Taking an inventory of all site hazards 
is essential to follow the correct course of compliance action. During this surveil-
lance phase, it is not always possible to specify the safety of a site. The only expected 
result is to show whether the site is complying with the adopted exposure guideline. 
The aim of this phase is to identify the highest fi elds and the safety relief program 
required. In addition, periodic site surveys are needed when RF sources are replaced 
or changed—to identify the effects that these changes have on RF coverage. Once 
identifi ed, remedial action may be recommended to reestablish a state of optimal 
performance and ensure a safer environment.

TABLE 5.5 
SAR Limits for RFR

Standard
Frequency 

Range

Whole-Body SAR 
(W/kg)

Local SAR in Head 
(W/kg)

Local SAR in Limbs 
(W/kg)

Public Occupational Public Occupational Public Occupational

ARPANSA 100 kHz–
6 GHz

0.08 (6) 0.4 (6) 2 [10] (6) 10 [10] (6) 4 [10] (6) 20 [10] (6)

TTC/MPT 100 kHz–
6 GHz

0.04 (6) 0.4 (6) 2 [10] (6) 8 [10] (6) — —

Safety 
Code 6

100 kHz–
10 GHz

0.08 (6) 0.4 (6) 1.6 [1] (6) 8 [1] (6) 4 [10] (6) 20 [10] (6) 

ICNIRP 100 kHz–
6 GHz

0.08 (6) 0.4 (6) 2 [10] (6) 10 [10] (6) 4 [10] (6) 20 [10] (6)

FCC 100 kHz–
6 GHz

0.08 (30) 0.4 (6) 1.6 [1] 8 [1] (6) 4 [10]+ 20 [10] (6)+

NRPB 100 kHz–
6 GHz

0.4 (15) 10 [10] (6) 20 [100] (6)

ANSI/IEEE 100 kHz–
6 GHz

0.08 (30) 0.4 (6) 1.6 [1] (30) 8 [1] (6) 4 [10] (30)+ 20[10] (6)+

Note: ( ) Averaging time in minutes. [ ] Averaging mass in grams. + In hands, wrists, feet, and ankles.
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5.3.1 BASE TRANSCEIVER STATIONS

The rapid growth of mobile communication infrastructure has resulted in the instal-
lation of a large number of base transceiver stations (BTSs), which are mounted on 
freestanding towers, rooftops, or the sides of buildings. A BTS refers to the anten-
nas and their associated electronic equipment (equivalent to a radio station). A BTS 
may contain more than one transmitter, with the output of each transmitter fed to 
the antenna on top of the tower. BTSs usually transmit between less than a watt to 
as high as 500 W per transmitter depending on the location and type of the antenna 
used for communication. While a typical BTS could have as many as 60–90 chan-
nels, not all of the channels would be expected to operate simultaneously, therefore 
reducing overall radiation.

The installation of BTS antennas frequently raises concerns about their human 
health impacts and safety, mostly for people who live in the vicinity of these sites. 
There might be circumstances where people could be exposed to fi elds greater than 
the MPE values. Power density in the radiation beam from the antenna decreases 
with increasing distance. However, actual radiation level at a given site is a func-
tion of several factors, such as output power of the antenna, direction of transmis-
sion, attenuation due to obstacles or walls, and scattering from buildings and trees. 
Because of building attenuation, levels of power density inside buildings at corre-
sponding distances from the BTS antenna would be from 10 to 20 times smaller than 
the outside. It is only in specifi c areas on the rooftop, depending on the proximity to 
the antenna, that the exposure levels are higher than those allowed by the RF protec-
tion guidelines. Accordingly, access to such locations should be restricted. Therefore, 
measurements in rooms exactly below roof-mounted antennas show power density 
levels lower than those of the rooftop locations. This depends on the construction 
material. The level of power densities behind sector antennas is hundreds of times 
less than in front. Therefore, levels are too low in rooms located behind sector anten-
nas. Figure 5.1 illustrates the conditions of RFR around a BTS.

5.3.1.1 Shielding

To shield base station antennas, resistive plates based on the utilization of resistive 
material [28,29] are designed and installed on both sides of the antenna horizontally 

High RFR Main beam, loss ≈ 0−3 dB

First side lobe, loss >12 dB

Loss > 16 dB

Low RFR 

FIGURE 5.1 Conditions of RFR around a BTS.
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to act as refl ecting surfaces. These plates refl ect the energy of the far end part of the 
main lobe and the side lobes from the overlapping regions to the angular regions that 
require more energy. The advantages of the resistive plates are that the edges are 
treated with resistive material and edge diffractions, and their associated multipath 
signals can be minimized. Hsiao et al. [30] experimentally implemented the resis-
tive plates. All the side lobes and part of the main lobe that covers beyond the des-
ignated regions will be reduced and will therefore reduce the coverage overlapping 
between adjacent sectors. Figure 5.2a shows a resistive plate while Figure 5.2b shows 
its implantation to enhance the performance of the BTS antenna.

5.3.1.2 Exposure Levels

The exposure situation around a typical BTS can be computed easily. The fi eld 
strength data can then be analyzed with respect to possible confl icts with the avail-
able guidelines for limiting RF exposure. In general, the maximum exposure levels 
near the base of a typical BTS antenna are, really, lower than all recommended 
safety limits. These maximum exposure levels may occur only at limited distances 
close to the base of the BTS antenna. Typical safety distances for BTS range from 
1 to 5 m for one RF carrier in the direction of the main beam of the antenna. It is 
diffi cult to specify a typical BTS since the confi guration (i.e., service, power output, 
frequencies, antenna confi guration, etc.) may vary considerably [31].

Measurements near typical BTSs have mostly shown that radiation levels in 
publicly accessible areas are well below the widely promulgated guidelines [32–39]. 
Nevertheless, residents living close to BTSs are especially concerned that this radiation 
might be harmful [40]. Bernardi et al. [34] indicated that the highest exposure could 
occur on nearby buildings in the direct path of the antenna’s main path. However, there 
may be circumstances where workers could be exposed to RF energy higher than the 
MPE values, generally on rooftops and close to antennas. The study provided theoreti-
cal evidence to suggest that the presence of refl ecting and scattering structures, such 
as building walls, can have a profound infl uence on both the exposure and the power 

Perfect conductor

Resistive card 

Resistive plates 

Antenna 

(a) (b)

FIGURE 5.2 (a) Resistive plate. (b) Implementation of resistive plates around a BTS antenna.
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deposition inside the human body. For example, a subject standing on a rooftop at a 
distance of 8 m from the base of an antenna, operating with 21 channels at a radiated 
power of 7.5 watts per channel, would be exposed to spatial average and maximum 
incident power density of 0.6 and 1.3 W/m2. If the human subject (1.8 m in height, with 
shoes), is facing the BTS antenna, a maximum SAR of 28 mW/kg, averaged over 1 g, 
would be found in the head. A corresponding average SAR of 0.63 mW/kg would be 
obtained for the whole body. If the same subject stands 2 m away from the building 
wall, on a balcony located 30 m away, facing the antenna on the building next door, the 
maximum SAR in the head would be 69 mW/kg, and the SAR would be 2.4 mW/kg for 
the whole-body average. This means an increase of more than twofold in SAR.

Radon et al. [41] investigated the feasibility and reliability of personal dosimetry. 
Twenty-four hour exposure assessment was carried out in 42 children, 57 adoles-
cents, and 64 adults using the Maschek dosimeter prototype. Self-reported exposure 
to mobile phone frequencies were compared with the dosimetry results. In addition, 
dosimetry readings of the Maschek device and those of the Antennessa DSP-090 
were compared in 40 subjects. Self-reported exposures were not associated with 
dosimetry readings. The measurement results of the two dosimeters were in moder-
ate agreement. The authors concluded: “Personal dosimetry for exposure to mobile 
phone base station might be feasible in epidemiologic studies. However, the consis-
tency seems to be moderate.”

A report by the Advisory Group on Nonionizing Radiation of the NRPB [42] 
gives advice on possible health effects of TETRA. The report concluded that 
“although areas of uncertainty remain about the biological effects of low level RF 
radiation in general, including modulated signals, current evidence suggests that it is 
unlikely that the special features of the signals from TETRA mobile terminals and 
repeaters pose a hazard to health.”

5.3.2 BROADCAST STATIONS

Broadcast stations are usually located near densely populated areas so that large 
audiences can receive the signals. The radiation patterns from broadcast antennas 
are not as highly collimated as those from other RF sources such as dish antennas 
used for satellite earth stations. Therefore, exposure to main-beam radiation intensi-
ties near the broadcast antenna is possible, especially if individuals are at eye level 
with the antenna bays (e.g., residents of high-rise buildings). Measurements near 
broadcast stations have shown signifi cant differences in readings indoors and out-
doors, as well as at home and away. Exposures encountered by the public were well 
below the recommended MPE values [43,44].

5.3.3 TRAFFIC RADAR DEVICES

Radiation levels associated with traffi c radar devices vary according to the particular 
make and model of the radar gun. Usually radiation intensity drops to safe levels at dis-
tances of several meters from the antenna. Exposure to radiation from radar above the 
safety limits is most likely in the immediate vicinity of the antenna when it is station-
ary. A number of studies have been conducted concerning potential operator exposure 
to RFR emitted by traffi c radars. Most of these studies measured some features of the 
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emitted radiation intensity, and some of them measured levels of exposure at other 
locations away from the aperture of the antenna [45–50].

5.3.4 RF HEATERS AND SEALERS

RF ovens, dryers, sealers, and heaters provide the fl exibility and speed to heat, dry, 
and cure a vast spectrum of products with demonstrated increase in productivity at 
lower costs. Such devices have been among the major sources of employee RF over-
exposure. RF operators experience an almost whole-body exposure where, depend-
ing on the machine and the task, different parts of the body (hands, head, and chest) 
will obtain the highest exposure. Several studies [51–55] show that safe limits for RF 
energy from such devices are often exceeded for operators. In the frequency range of 
such equipment, fi elds may penetrate the human body and cause heating of internal 
tissues. Workers nearby may be unaware of their exposure to RF fi elds, because the 
fi elds can penetrate deeply into the human body without activating the heat sensors 
located in the skin.

5.3.5 MICROWAVE OVENS

Given the popularity of microwave ovens, care must be taken to avoid exposure to 
the microwaves that heat and cook food. The main concern is leakage from the oven 
door. Surveys carried out to evaluate RF leakage levels from used microwave ovens 
[56–58] found that no models emitted microwave radiation in excess of the maxi-
mum allowed leakage (5 mW/cm2). The levels of leakage were all well below the 
requirements of the regulations.

5.3.6 RF ENVIRONMENTAL LEVELS

In the 1970s, the U.S. Environmental Protection Agency (EPA) measured environ-
mental fi eld intensities at chosen locations in 15 U.S. cities. RFR levels were mea-
sured at sites near to single or multiple RF emitters, for example, at the bases of 
transmitter towers and at the upper stories (including the roof) of tall buildings or 
hospital complexes in the vicinity of transmitter towers. Janes et al. [59] and Tell and 
Mantiply [60] presented the results for those cities (a total of 486 sites). Those results 
were also summarized in Hankin [61] and EPA [62]. The exposure levels for all 
cities were largely below the MPE values. The major contributions to those exposure 
values were from FM radio and TV stations. This data is still used today as there 
have been no further measurements of RFR levels.

Hondou [63] found that when hundreds of mobile phones emit radiation, their total 
power is comparable to a microwave oven or a satellite broadcasting station and this 
level can reach the reference level for general public exposure (ICNIRP guideline) in 
daily life. This is caused by the fundamental properties of EM fi elds, namely, refl ec-
tion and additivity. However, Toropainen [64] applied radio-engineering principles 
to estimate the power density and SAR levels versus the number of mobile phones in 
screened environments occupied by humans. The author concluded that it is unlikely 
that exposure levels are exceeding the safe limits recommended by the ICNIRP due to 
multiple mobile phones users in trains, elevators, cars, or similar environments.
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5.3.7 MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY SYSTEMS

Magnetic resonance imaging and spectroscopy systems are used in diagnostic medi-
cine and display images in a format similar to computed tomography (CT). Images 
of the body may be acquired and viewed with submillimeter resolution in the axial, 
coronal, or other planes. Applications of MRI are emerging in the areas of cardiol-
ogy, neuroscience, image-guided surgery, and other minimally invasive procedures. 
Many safety issues, however, remain as possible concerns. 

The proliferation of high fi eld (1–3 T), very high fi eld (3–7 T), and ultra high 
fi eld (above 7 T) whole-body MRIs calls for a review of the safety literature that can 
guide future studies of critical health related issues [65]. A number of computational 
reports have predicted the possibility of high SAR levels at high frequencies and for-
mation of regions of high RF intensity (hot spots) at higher fi eld strengths [66–68].

5.4 PERSONAL SAFETY ASSESSMENT

Determination of SAR or induced electric fi elds or current densities at lower fre-
quencies is very cumbersome for use in the fi eld for real-life exposure situations [18]. 
Of particular interest at the present time are two sources of exposure: wireless base 
stations, especially in metropolitan and urban settings, and mobile phones. The esti-
mation of SAR or electric fi elds may be carried out theoretically or experimentally.

5.4.1 WHOLE-BODY PHANTOMS

Dosimetry can be studied by evaluating devices with a dummy model called phan-
tom. A phantom is a device that simulates the size, contours, and electrical charac-
teristics of human tissue at normal body temperature. It is composed of a mannequin 
(solid shell) cut in half and fi lled with tissue-equivalent synthetic material solution, 
which has electrical properties of tissues. The phantom is typically set up in relation 
to other SAR measurement equipment. Measured pieces of equipment for this set 
up include a robot arm and miniature isotropic electric fi eld probe. A device is posi-
tioned against the mannequin operating at full power while the computer-controlled 
probe inserted into the tissue maps the electric fi elds inside. Computer algorithms 
determine the maximum electric fi eld and then calculate a 1-g or 10-g average over 
a body to give a SAR value.

Whole-body phantoms made of plastic human-shaped bags [69] fi lled with 
homogenous gels representing the average of electrical properties of human tissues 
(dielectric constants and conductivities) are not very portable and certainly are inca-
pable of providing full information on SAR distributions [18]. Several investiga-
tions were performed to estimate the RF fi elds to which human subjects were to 
be exposed [69–72]. Allen et al. [73] reported the dosimetry performed to support 
an experiment that measured physiological responses of volunteer human subjects 
exposed to the resonant frequency for a seated human adult at 100 MHz. The dosim-
etry plan required measurement of transmitter harmonics, stationary probe drift, 
fi eld strengths as a function of distance, electric and magnetic fi eld maps at 200, 225, 
and 250 cm from the dipole antenna, and SAR measurements using a human phan-
tom. Whole body averaged SARs of 0.26, 0.39, and 0.52 W/kg result for the 4, 6, and 
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8 mW/cm2 exposures. SAR values are just under, at, and just over the IEEE/ANSI 
C95.1 exposure standard [4–7] of 0.4 W/kg. The authors also presented theoretical 
predictions of SAR using the fi nite difference time domain (FDTD) method. The 
FDTD results predicted higher localized SAR in the head, spinal column, and the 
highest SAR in the ankle.

Nagaoka et al. [74] developed realistic high-resolution whole-body voxel models 
for Japanese adult males and females of average height and weight. The developed 
models consist of cubic voxels of 2 mm on each side; the models are segmented 
into 51 anatomic regions. The adult female model was the fi rst of its kind in the 
world and both are the fi rst Asian voxel models (representing average Japanese) that 
enable numerical evaluation of EM dosimetry at high frequencies of up to 3 GHz. 
The authors described and calculated the basic SAR characteristics of the developed 
models for the VHF/UHF bands using the FDTD method.

5.4.2 IN-HEAD ASSESSMENTS

RFR is signifi cant from mobile handsets because of the presence of the phone-
transmitting antenna close to the head, neck, and hand of the user. The extent of 
exposure to RF energy from a mobile phone depends on the power of the signal 
the device transmits. Usually mobile phones transmit power in the range of 0.2 W to 
0.6 W. Such power is limited by the cellular system (number of cells) and manufac-
turer specifi cations (design of the cellular phones casing, chassis length, electronic 
circuitry, channel access technique, antenna geometry, etc. [75]). The second-
generation (2G) systems employ the TDMA technique. Under TDMA, subscribers 
share the radio spectrum in time domain, in which each user has full power during 
a defi ned time slot. The GSM standard employs the TDMA technique with eight 
time slots. This means that the transmitter is only switched on for an eighth of the 
time. Therefore, the maximum average power output is 0.25 W for a 900 MHz GSM 
phone. Eight GSM phone users can share a pair of 200 kHz wideband channels, 
because each user is given access only to a single time slot of 576 microsecond (µs) 
duration in a 4.6 millisecond (ms) frame that is repeated 217 times a second (s). This 
217-Hz cycle of power pulses is in the range of the normal bioelectrical functions 
both in and between cells, so it may induce low-frequency power surges causing 
health problems. The 900-MHz RF carrier, with its lower average power output, 
likely does not cause health problems. Third-generation (G3) systems make use of 
code division multiple access (CDMA) technique, in which all data are continuously 
transported at the same time, with a special code attached so that only the intended 
receivers can decode the messages.

High dosimetric precision requires the application of numerical and experimen-
tal methods. Anatomical human head models based on MRI or other techniques 
must be used for numerical evaluation. High resolutions (<1 mm) are essential to 
resolve functional subregions of the brain, e.g., the thalamus. Experimental methods 
are required to verify the simulations and to identify the possible shortcomings of 
the numerical model [76].

Mobile phones yield numerically modeled brain SARs, which often exceed the 
1.6 W/kg or 2 W/kg limits. This amount of power is less than the body’s normal 
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 resting metabolic output power [77]. However, manufacturers should always be 
interested in reducing brain SAR as much as possible, not only because of possible 
health effects, but also to increase the battery lifetime (the energy deposited in the 
brain drains the battery without any functional communication task). 

Dosimetry of mobile phones targets SAR generated in the human head due to 
RFR, or the temperature rise due to SAR as a heat source. The energy absorbed in 
the head is mainly due to electric fi elds induced by the magnetic fi elds generated by 
currents fl owing through the feed point, along the antenna and the body of the phone. 
The RF energy is scattered and attenuated as it propagates through the tissues of 
the head, and maximum energy absorption is expected in the more absorptive high-
water-content tissues near the surface of the head. 

The local peak SARs differ depending on many factors, such as the antenna 
type, antenna radiation effi ciency, antenna inclination with the head, distance of 
antenna from head, effect of the hand holding the handset, and the structural accu-
racy and resolution of the head model. Therefore, values of SARs are a function 
of various conditions set by each investigator. In other words, SAR is a result of a 
complex physical phenomenon of reactive coupling of the whole radiating structure 
with the human tissue. A signifi cant contributor to the uncertainty in estimating 
SAR is the absence of a standard tissue averaging technique of the local SAR values 
over 1 or 10 g.

Experimental dosimetry for cellular telephones held against models of the head 
is more advanced, and automated SAR measurement systems have been set up for 
determination of the 1- and 10-g peak SARs needed for compliance testing of per-
sonal wireless devices [78–80].

5.4.2.1 Adult Size Heads

During the past few years, a considerable number of dosimetrical studies have 
been performed for calculating or measuring power absorbed in phantoms simulat-
ing human heads exposed to RFR (Table 5.6). It is evident that many SAR values 
exceeded the MPE values [78,81–89]. However, the temperature rise is far too small 
to have any lasting effects. Temperature measurements are signifi cant only in case of 
high SARs. Increases in temperature (0.03–0.19°C) are much lower than the thresh-
old temperature for neuron damage (4.5°C for more than 30 min), cataract induction 
(3–5°C), and physiological effects (1–2°C) [82,86,87,90]. Therefore, the temperature 
rise caused by mobile phone exposure has no effect on the temperature-controlling 
functions of the human brain. In fact, the thermostabilizing effect of brain perfusion 
often prevents temperature increase.

Moneda et al. [91] verifi ed by means of numerical calculation that the higher the 
frequency the more superfi cial is the absorption. The numerical application mani-
fests that the eyes, despite their small volume, absorb a considerable amount of the 
incident RFR, especially when the antenna is in front of the head, which is the most 
typical confi guration related to use of 3G mobile phones. Another important issue 
raised by the authors is the enhancement of the hot spot near the center of the brain 
as the size of the head is reduced, which points to potential hazards to children using 
mobile phones.
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Bahr et al. [92] designed an exposure system for investigation of volunteers 
during simulated GSM and wide code division multiple access (WCDMA) mobile 
phones. It was shown that the SAR distribution of the antenna exhibited similar 
characteristics to mobile phones with an integrated antenna. The 10 g averaged 
localized SAR, normalized to an antenna input power of 1 W and measured in 
the fl at phantom area, amounted to 7.82 mW/g (900 MHz) and 10.98 mW/g (1966 
MHz). The simulated SAR10g in the visible human head model agreed with mea-
sured values to within 20%. A variation of the antenna rotation angle results in 
an SAR10g change below 17%. The increase of the antenna distance by 2 mm with 
respect to the human head leads to a SAR10g change of 9%.

5.4.2.2 Child Size Heads

There have been a limited number of studies that address the issue of a possible 
difference in sensitivity between adults and children [93]. Only model studies have 
been conducted into how EM waves propagate in children’s size heads, relative 
to those of adults [94,95]. Gandhi et al. [94] reported that the deposition of EM 
energy in children’s heads is higher than that in adults. However, Schonborn et 
al. [95] demonstrated Gandhi’s conclusion to be incorrect. They calculated SAR 
for three different models of the head, namely for an adult, a 3-year-old, and a 
7-year-old child. These models were obtained from actual MRI scans. The authors 
showed that no difference exists between their three models in terms of absorp-
tion of EM fi elds. However, these calculations use the same dielectric parameters 
for all ages. The effect of using an age-dependent magnitude for these parameters 
is unknown, assuming that they undergo signifi cant changes between the age of 
3 and adulthood. Moreover, it has been known that these model  calculations are 
associated with uncertainties of up to 30% for 10-g average SAR values [96]. It is 
expected that effects of age-related changes in dielectric parameters, if any, fall 
within this uncertainty.

Based on Japanese children’s statistical data on external shapes of heads, Wang 
and Osamu [97] developed two kinds of children’s models from a Japanese adult 
head model. Using the children’s head models, they calculated the local peak SAR 
under the same conditions as those previously employed by Gandhi et al. [94] and 
Schonborn et al. [95]. Compared to the local peak SAR in the adult head model, 
they found a considerable increase in the children’s heads when they fi xed the output 
power of the monopole-type antenna, but no signifi cant differences when they fi xed 
the effective current of the dipole-type antenna. This fi nding suggests that the con-
tradictory conclusions drawn by the above two groups may be due to the different 
conditions in their numerical peak SAR calculations.

Bit-Babik et al. [98] tested several human head models and found that penetra-
tion depths for children and adults are about the same. This fi nding is consistent 
with other recent publications [99–102]. However, De Salles et al. [103] found that 
1-g-SAR calculated for children is higher than that for the adults. When using a 
10-year-old child model, SAR values more than 60% higher than those for adults 
were obtained.
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5.4.2.3 Shielding for Mobile Antennas

It is known that magnetic materials are good for shielding structures because the 
magnetic near-fi eld is the major cause of SAR [30]. Monopole antennas that are 
widely used in mobile phones are shielded by a fi nite and cylindrical shielding struc-
ture of magnetic material, as shown in Figure 5.3. The fi nite cylindrical sheet cen-
tered at the antenna position has a properly determined spreading angle so that only 
the near-fi eld on the side of the human brain can be reduced, and the SAR is also 
reduced correspondingly.

5.5 FUTURE DEVELOPMENT

The level of safety is the domain of regulators and others who derive their author-
ity from a number of laws and statutes. The scientifi c community, the media, and 
ultimately the general public are often presented with contradictory information on 
the validity of standards originating from a variety of governmental and advisory 
organizations [2]. When scientists have considerable evidence of the health risks at 
high-intensity levels, yet minimal evidence of health risks at low levels, they have 
diffi culty defi ning the safe levels. Current exposure guidelines are based on a scien-
tifi c assessment of the relevant literature and may offer protection against the estab-
lished health hazards of RF energy, which are thermal in nature. However, many 
research investigations of low-power exposure have shown some biological effects 
which may lead to serious health consequences, including neurological, cardiologi-
cal and hormonal disorders, breakdown of the BBB, DNA damage, cancers, diabe-
tes, and asthma. Children, who are subject to such exposure through mobile phones 

Spreading angle 

Shielding structure 

Antenna 

FIGURE 5.3 Shielding structures for mobile antennas.
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and wireless base stations, have brains and nervous systems that are still developing; 
they might be vulnerable.

5.5.1 HARMONIZATION OF SAFETY STANDARDS

Most of the RF standards reviewed have similar basic restrictions and almost similar 
MPE values. These similarities are related, in part, to the various dosimetric models 
used to relate fi eld strengths to the basic restrictions. A comprehensive set of safety 
standards for all kinds of exposure to all frequency bands of RFR is not practical or 
probable. There are still many questions related to (1) main parameters such as SAR 
levels, duration of exposure, pulse effects, exposure geometry, modulation tech-
nique, and type of effect (thermal or nonthermal); (2) differences in absorption of RF 
energy by humans of different sizes and orientations; (3) complexity of measuring 
exposures, models, and statistical methods employed; and (4) incomplete discussion 
of research concerning possible long-term health effects. Although laboratory and 
epidemiological studies are available to address the likelihood of long-term effects, 
these data are not clearly described or specifi ed in the standards. These questions 
require answers to defi ne levels at which harmful effects can occur. 

Do these exposure guidelines need to be reconsidered? It might be necessary 
because the guidelines are still intended basically to deal with thermal effects, not with 
energy at lower levels. However, during the past few years there have been around 200 
studies that suggest there may be health risks of RFR even at levels too low to cause 
heating of body tissue [104,105]. There is not widespread acceptance of this fact in the 
scientifi c community, although many such studies were included in the ICNIRP review. 
The reason is attributed to the fact that the literature on nonthermal effects is complex 
and the validity of the reported effects is poorly established. One reviewer [106] con-
cludes: “Many reported effects fi nd conventional explanation or simply disappear when 
follow-up studies are conducted under better controlled conditions.” Nevertheless, the 
existence of health effects at low-level RFR should not be entirely ignored until more 
decisive information is provided through current and future research programs.

In addition, the guidelines were developed based on research studies conducted 
during and prior to the 1980s when many of the current-day sources of RF energy 
(such as mobile phones) were not widely available. For example, the IEEE/ANSI 
C95.1-1992 standard did not include any studies published after the 1980s. However, 
the most recent review of literature for the purpose of formulating exposure guide-
lines has been undertaken by the ICNIRP [12–14].

Another important issue is international harmonization, which refers to an inter-
national attempt to get various standard-setting bodies, health agencies, national gov-
ernments, and international organizations to coordinate on health and safety standards 
for RFR. This does not necessarily mean that the world will have only one accepted 
RF standard, but it does mean that the basis for the differences is known. While 
the new IEEE (IEEE C95.1-2005) standard and the current ICNIRP exposure guide-
lines  possess some similarities as a step toward harmonization, they are still far from 
 harmonized. International harmonization of exposure guidelines would be a desirable 
goal. This process should be accomplished through better techniques for SAR estima-
tion, less uncertainty in exposure assessment, and greater reliability in biological and 
epidemiological results. In this regard, Osepchuk and Petersen [107] state: “The trend 
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toward international harmonization of standards, at the moment, faces barriers posed 
by the regulations and rationales inherited from the Russian era. Many international 
meetings and the spread of electronic communication technologies will help eventu-
ally reach into Eastern Europe and the former communist countries. This will help in 
the movement toward international harmonization of standards.”

5.5.2 ENGINEERING REQUIREMENTS AND DOSIMETRIC INFORMATION

Many published studies suffer from inappropriate engineering implementations and a 
lack of dosimetric information. Therefore, basic engineering and dosimetric require-
ments to conduct scientifi cally sound experiments investigating biological effects 
or health consequences should be implemented. Negovetic et al. [108] outlines spe-
cifi c recommendations from a four-day workshop dedicated to an interdisciplinary 
exploration of engineering requirements and quality assurance in the main fi eld of 
bioelectromagnetics. Consensus on the following points was reached:

Since effects are expected to be small, the likelihood of evoking effects should 
be maximized; that is, maximum exposure levels close to the thermal thresh-
old, minimum noise level, optimized modulation, etc. should be adopted.
The setup must be designed in such a way as to enable the intended experi-
ments according to standard protocol, meeting all dosimetric needs and 
avoiding any EMI/EMC issues. Since protocols differ from end point to end 
point, setups cannot be standardized.
Blinding of the exposure is a plus for any setup but mandatory for human 
provocation studies. Regarding in vitro and in vivo experiments, at least 
evaluation should be blinded.
True sham exposure is mandatory. Incubator controls and positive controls 
will depend on the experiment.
In general, close collaboration between biological/medical and engineering 
parties is required throughout the design phase of exposure setups. The 
dosimetry characterization of the exposure should include the distribu-
tion of SAR in space and time, including the distribution of temperature 
increase or at least the maximum temperature increase if it is negligibly 
small from a biological point of view. The minimum requirements regard-
ing SAR information should include whole-body average, spatial peak aver-
aged over appropriate masses, and organ average. A two-step procedure 
is appropriate, that is, (1) characterization of the fi eld distribution on the 
macro level (macrodosimetry) from which (2) microdosimetry data (i.e., at 
the cellular or subcellular levels) can then be derived.
An important part of dosimetry is the analysis of uncertainty and variation. 
Uncertainty describes the uncertainty of the determined mean value of the 
exposure distribution (e.g., cell and time or animal and time). Variation 
describes the variations from the mean as a function of change during the 
exposure (e.g., position, different dielectric parameters, etc.). Uncertainties 
and variations should be provided for whole-body, spatial peak, as well as 
tissue-specifi c SAR values.

•

•

•

•

•

•
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Dosimetry should be based on numerical dosimetry. In general, numerical 
dosimetry must be verifi ed by experimental measurements, the agreement 
between which must be within the combined uncertainty of both techniques. 
Numerical dosimetry also constitutes an essential part in the development 
and optimization of exposure setups. 
The current commercially available numerical tools are suffi cient for dosi-
metric studies. Since most dosimetric evaluation involves greatly nonho-
mogenous structures, FDTD was defi ned as the most suitable technique.

Further dosimetric studies are required, especially in areas related to numerical 
modeling of the energy absorbed in models of the human head, measurement of 
electrical properties of various head tissues, and modeling the relationship between 
SAR and temperature elevation to predict potential hazards associated with specifi c 
RF exposure conditions.
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6 Bioeffects and Health 
Implications of 
Radiofrequency Radiation

6.1 INTRODUCTION

Signifi cant concern has been raised about possible health effects from exposure to 
RFR, especially after the rapid introduction of mobile phones. Parents are especially 
concerned with the possibility that RFR emissions from mobile phones and base sta-
tions erected in or near homes and schools might have health impact on children.

While mobile communications are advancing, the idea of health effects from 
cellular phones is quickly becoming the focus of much research. There have been 
few scientifi c studies of this new service and there is limited information on whether 
the radiation emitted by cellular equipment poses a risk to human health. For many 
researchers, the fi ndings are confi rming the observations made over the years of the 
effects of low-level energy on living systems: They believe that small amounts of 
energy when delivered in the right way can have the same effect as a massive dose of 
chemicals. Others just do not see the threat.

It is important to distinguish between biological and physiological effects and 
health effects. A biological effect occurs when exposure to EM fi elds causes some 
noticeable or detectable physiological change in a living system. Such an effect may 
sometimes, but not always, lead to an adverse health effect, which means a physi-
ological change that exceeds normal range for a brief period of time. It occurs when 
the biological effect is outside the normal range for the body to compensate, and 
therefore leads to some detrimental health condition. Health effects are often the 
result of biological effects that accumulate over time and depend on exposure dose. 
For example, if an effect of EM exposure has been noticed on cultured cells, this 
does not necessarily mean that the exposure will lead to adverse effect for the health 
of the organism as a whole. In general, the number of cellular and animal studies in 
the literature is large due to the large number of cellular processes and systems that 
may possibly be affected by RFR [1].

The permanent problem in the controversy of health risk is the limited knowledge 
about the fact that very specifi c fi elds interacting with our bodies can have critical effects 
on our health. These effects vary throughout populations as some are affected to a 
greater degree than others. This is related to our physical and biochemical differences.

The potential for exposure to RFR resulting in adverse health outcomes has been 
the subject of intensive investigation. In this chapter, we examine epidemiological, 
cellular and animal, and human evidences on possible health effects associated with 
RFR. Important areas of research that need further investigation including risk for 
children are also highlighted.
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6.2 EPIDEMIOLOGICAL STUDIES

During the past 30 years, there have been a number of epidemiological studies 
analyzing health effects of RF exposure. Epidemiological studies are of primary 
importance in health risk assessment. There have been a number of epidemiologi-
cal studies analyzing health effects of RF exposure. With the increased interest in 
wireless networks and the safety concerns of this emerging technology, it can be 
expected that there will be more studies in the future.

6.2.1 OCCUPATIONAL EXPOSURE STUDIES

Occupational or controlled environments represent areas in which people are exposed 
to RFR as a result of their employment. The various health risks, including cancers, 
have been examined in occupational RF exposure studies. These include investiga-
tions involving radar and military personnel [2–5], police offi cers using traffi c radar 
devices [6,7], amateur radio operators [8,9], and telephone operators [10,11]. A few 
epidemiological studies [12,13] have been performed with operators in industrial 
settings to assess specifi c problems that may arise such as RF burns and burns from 
contact with thermally hot surfaces; numbness in hands and fi ngers; disturbed or 
altered tactile sensitivity; eye irritation; and warming and leg discomfort.

While some positive results have been reported in occupational studies of RFR, 
these studies provide no consistent evidence of an association between RFR and 
adverse health effects.

6.2.1.1 Navy Personnel and Military Workers

Robinette et al. [14] conducted a study of mortality results on males who had served 
in the U.S. Navy during the Korean War. They selected 19,965 equipment-repair men 
who had occupational exposure to RFR. They also chose 20,726 naval  equipment-
operation men who, by their titles, had lower occupational exposure to RFR as a 
control group. The researchers studied mortality records for 1955–1974, in-service 
morbidity for 1950–1959, and morbidity for 1963–1976 in Veterans Administration 
hospitals. Although exposures in the high-exposure group were assumed as 1 mW/cm2,
the three high-exposure categories included occasions of exposure in excess of
10 mW/cm2. As a result, there were 619 deaths (3.1%) from all causes in the exposed 
group versus 579 deaths (2.8%) in the age-specifi c general white male population. 
The death rate from trauma was higher in the exposed than the control group, 295 
(1.5%) versus 247 (1.2%). No difference in cancer mortality or morbidity was seen 
among the high- and low-exposure groups.

Szmigielski [3] showed strong association between RF exposure and several 
types of cancer (including brain cancer and cancer of the alimentary canal) in a 
cohort of about 120,000 Polish military personnel, of whom 3% had worked with 
RF heat sealers. Exposure was determined from assessments of fi eld levels at various 
locations. The study did not consider the length of time at the location, the nature of 
the job, or the number of cases observed.
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Groves et al. [15] have reported the outcome of a 40-year follow-up of mortal-
ity due to cancer and other causes in the same group of Navy personnel during the 
Korean War. The results were similar to those of Robinette et al. [14] confi rming that 
radar exposure had little effect on mortality.

6.2.1.2 Traffi c Radar Devices

Davis and Mostofi  [6], in a brief communication, reported six cases of testicular can-
cer in police who used handheld radars between 1979 and 1991 among a cohort of 
340 police offi cers employed at two police departments within contiguous counties 
in the north-central United States. The six cases had been employed as police offi -
cers as their primary lifetime occupation, and all had been exposed to traffi c radar 
on a routine basis. The mean length of service prior to testicular-cancer diagnosis 
was 14.7 years, the mean age at diagnosis was 39 years, and all had used radar at 
least 4.5 years before the diagnosis.

Finkelstein [7] presented the results of a retrospective cohort cancer study among 
22,197 offi cers employed by 83 Ontario police departments. The standardized inci-
dence ratio (SIR) for all tumor sites was 0.90. There was an increased incidence of 
testicular cancer (SIR = 1.3) and melanoma skin cancer (SIR = 1.45). No informa-
tion about individual exposures to radar devices was provided.

6.2.1.3  RF Heat Sealers

Lagorio et al. [12] reported higher cancer mortality among Italian plasticware work-
ers exposed to RFR generated by dielectric heat sealers for the period 1962−1992. 
Six types of cancers were found in the exposed group. The standardized mortality 
ratio (SMR) analysis was applied to a small cohort of 481 women workers, represent-
ing 78% of the total person-years at risk. Mortality from malignant neoplasms was 
slightly elevated, and increased risk of leukemia was detected. The all-cancer SMR 
was higher among women employed in the sealing. Exposure assessment was based 
on the time assigned on jobs. Exposure to RFR was based on a previous survey, 
which showed that the radiation exceeded 1 mW/cm2. The work area also included 
exposure to chemicals associated with cancer (solvents and vinyl chloride), which 
may have an impact on the result.

6.2.1.4 Telecom Operators

In Norway, Tynes et al. [10] studied breast cancer incidence in female radio and tele-
graph operators with potential exposure to light at night, RFR (405 kHz to 25 MHz), 
and ELF fi elds (50 Hz). The researchers linked the Norwegian Telecom cohort of 
female radio and telegraph operators working at sea to the Cancer Registry of 
Norway to conduct their study. The cohort consisted of 2619 women who were cer-
tifi ed to work as radio and telegraph operators. The incidences of all cancers were 
not signifi cant, but an excess risk was seen for breast cancer. They noted that these 
women were exposed to light at night, which is known to decrease melatonin levels, 
an expected risk factor for breast cancer.
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6.2.2 PUBLIC EXPOSURE STUDIES

Studies of public exposure to RFR have focused on two common RF fi eld sources: 
radio and TV transmitters and mobile phone use.

6.2.2.1 Radio and TV Transmitters

Populations residing near telecommunications broadcasting installations tend to 
have the highest nonoccupational RF exposures [16]. An association between prox-
imity of residences to TV towers and increased incidence of childhood leukemia 
was found in an Australian study conducted by Hocking et al. [17]. The researchers 
studied the leukemia incidence among people living close to TV towers (exposed 
group) and compared this to the incidence among those living further out from 
the towers (unexposed or control group). People were assigned to one of the two 
groups based on data from the New South Wales Cancer Registry and their accom-
panying address. The Hocking study concluded that there was a 95% increase in 
childhood leukemia associated with proximity to TV towers. No such association 
was found between RFR emitted by the TV towers and adult leukemia. McKenzie 
et al. [18] repeated the Hocking study, using more accurate estimates of RFR at the 
same area and at the same time period. They found increased childhood leukemia 
in one area near the TV antennas, but not in other similar areas near the same TV 
antennas. They found no signifi cant correlation between RF exposure and the rate of 
childhood leukemia. They also found that much of the “excess childhood leukemia” 
reported by the Hocking study occurred before high-power 24-hour TV broadcast-
ing had started.

In Italy, Michelozzi et al. [19,20] conducted a small area study to investigate a 
cluster of leukemia near a high-power radio transmitter in a peripheral area of Rome. 
The leukemia mortality within 3.5 km (5863 inhabitants) was higher than expected. 
The excess was due to a signifi cantly higher mortality among men (seven cases were 
observed). Also, the results showed a signifi cant decline in risk with distance from 
the transmitter, only among men, but no association for women, and a nonsignifi cant 
decrease in risk for both sexes combined. For childhood leukemia, based on eight 
cases, there was a signifi cant trend of risk decreasing with distance.

Burch et al. [16] study demonstrated the feasibility of using global positioning 
system (GPS) and geographic information system (GIS) technologies to improve 
RF exposure assessment and reduce exposure misclassifi cation. They found that 
proximity, elevation, line of sight, alternate sources, and temporal variability each 
contributed to RF exposure and should be evaluated in future investigations of the 
potential health effects of RF broadcasting in human populations.

6.2.2.2 Mobile and Cordless Phones

Most of the mobile phone studies (Table 6.1) show no increased incidences of brain 
tumors among mobile phone users (analog or digital). Furthermore, there was no rela-
tionship between brain tumor incidences and duration of mobile phone use. Hardell 
et al. [21–23] studied more than 200 brain tumor patients aged 20–80 years in two 
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regions in Sweden. In the fi rst study, Hardell et al. [21] conducted a case- control 
study (1994–1996) using patients diagnosed with brain tumors who were alive at 
the time the study commenced. Mobile phone usage and the type of phone (analog 
or digital) were determined by questionnaire. Dose–response assessment provided 
no evidence of an association between RFR and brain cancer. However, the small 
number of cases and the short period of exposure to RFR from mobile phones limit 
the opportunity to identify an increased risk. The second and third studies [22,23] 
were similar in design to the previous study and covered a wide range of exposures 
from other RF sources in addition to mobile phones. An association between the 
use of analog phones and benign brain tumors for >1 year (OR = 1.3), for >5 years 
(OR = 1.4), and >10 years (OR = 1.8) was reported. A multivariate analysis revealed 
no statistical signifi cance and lower risk for the >5 years (OR = 1.1) latencies.

Hardell et al. [24] conducted another case-control study of patients with malig-
nant or benign cranial tumors diagnosed in Sweden from 1997 to 2000. They used 
a postal questionnaire supplemented by phone interviews. Information on mobile 
phones was divided into analog (450 or 900 MHz), digital, and cordless phones. 
The analysis assessed type of phone, duration of use, time since fi rst use, and site, 
history, and laterality of tumor. A small, but statistically signifi cant, increased risk 
of any type of brain tumor was seen with the use of analog phones (OR = 1.3, 95% 
CI = 1.02–1.6), increasing to 1.4 with more than 5 years latency and 1.8 with over
10 years latency. For digital phones, there was no increased risk. For cordless phones, 
there was no association in general (OR = 1.0, 0.8–1.2). The highest risk was for 
acoustic neurinoma (OR = 3.5, 95% CI = 1.8–6.8) with the use of analog phones. In 
a following paper [25] based on modifi ed analysis of the data for malignant tumors 
already presented in the previous paper [24], the authors concluded that a signifi -
cantly increased risk was seen with ipsilateral use of analog phones. Data on acoustic 
neuroma, and benign and malignant brain tumors from the previous studies [24,25] 
were reported [26,27] with different analysis. The results show increased incidence 
of acoustic neuroma compared to other brain tumors in the Swedish Cancer Registry 
between 1980 and 1998.

Recently, Hardell et al. [28] found for all studied phone types an increased risk 
for brain tumors, mainly acoustic neuroma and malignant brain tumors. Contrary to 
the previous studies, Hardell et al. [29] did not fi nd evidence that the use of cellular 
or cordless phones increases the risk of testicular cancer.

A question that is urgent to address is the potential for greater biological effects 
from RF fi elds in young age groups. Hardell et al. [30–32] have found some indica-
tion for higher risk of brain tumors in persons with fi rst use of cellular or cordless 
phones before the age of 20 years compared with older ages.

Adaptive power control (APC) gives a difference in power output from mobile 
phones between urban and rural areas due to regulations of the emissions by the dis-
tance to the base stations. Using Statistics Sweden, Hardell et al. [33] divided place of 
residence into groups based on population density. A clear effect was seen for digital 
phone users with highest risk in rural areas, OR = 3.2, 95% CI = 1.2–8.4, compared 
with in urban areas, OR = 0.9, 95% CI = 0.6–1.4, using >5 year latency period. The 
power output is highest in rural areas, so the results indicate a dose–response effect.
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Other studies have failed to fi nd a relationship between phone use and the loca-
tion and incidence of brain tumors [34,35–43]. Two studies examining association 
between uveal melanoma (a rare form of cancer of the eye) and exposure to RFR 
have found no relationship between this cancer and mobile phone use [37,44].

Overall, the results indicate that mobile phone use does not increase the risk of 
brain cancer. Only Hardell’s group in Sweden [21–33] has reported an association 
between analog phone use and brain tumors. Their results have found no support in 
the investigation of other researchers. It is also doubtful whether results for analog 
phone users can be extrapolated to digital phone users.

6.2.3 SUMMARY OF EPIDEMIOLOGICAL STUDIES

Most of epidemiological studies have many methodological shortcomings, includ-
ing defi ciencies in size, design, analysis, bias, multiple comparisons, exposure con-
trol and assessments, and consistency of results. Based on the above criteria, more 
weight may be given to the few epidemiological studies with acceptable design and 
analysis, large number of cases, and minimized potential bias [8,9,34,36,45,46] and 
longer follow-up time [14]. Most of these studies do not show statistically signifi -
cant association between RFR and cancer. Further studies are underway to evaluate 
potential carcinogenic effects of exposure from long-term usage of mobile phones 
and other RF sources.

Elwood [47] reviewed epidemiological studies of RFR and cancer. He concludes, 
“The epidemiological results fall short of the strength and consistency of evidence 
that is required to come to a conclusion that RF emissions are a cause of human 
cancer. Although the epidemiological evidence in total suggests no increased risk of 
cancer, the results cannot be unequivocally interpreted in terms of cause and effect. 
The results are inconsistent, and most studies are limited by lack of detail on actual 
exposures, short follow-up periods, and the limited ability to deal with other relevant 
factors. In some studies, there may be substantial biases in the data used.”

Schuz et al. [48] investigated cancer risk among Danish cellular phone users who 
were followed for up to 21 years (1982–2002). The authors found no evidence for an 
association between tumor risk and cellular phone use among either short-term or 
long-term users.

In summary, the epidemiologic evidence is not strong enough to the level required 
to conclude that RFR are a likely cause of one or more types of human cancer. This 
is attributed to weak design of the studies, lack of detail on actual exposures, limita-
tions of the ability of studies to deal with other likely factors, and in some cases there 
might be biases in the data used. The current epidemiologic evidence justifi es further 
research to clarify the situation. Moreover, since there are only a few epidemiologi-
cal studies that examine the health risks associated with exposure to RFR, research 
at the cellular and animal level is needed to better understand this relationship.

6.3 CELLULAR AND ANIMAL STUDIES

Cellular studies play a supporting task in health risk assessment. Cellular model 
systems are good candidates for testing the plausibility of mechanistic hypotheses 
and investigating the ability of RFR to have synergistic effects with agents of known 
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biological activity. They are signifi cant to the optimal design of animal and epide-
miological studies. On the other hand, animal studies are used when it is unethical or 
impossible to perform studies on humans and have the advantage that experimental 
conditions can be thoroughly controlled.

6.3.1 GENETIC TOXICOLOGY

Genotoxicity does not have a clear cancer endpoint or any other adverse health 
 outcome; however, there is the possibility that genotoxic effects on cells might lead 
to adverse health effects such as cancer or other diseases. Studies in this regard 
have been performed at a variety of levels including damage to DNA in vitro or
in vivo, damage to chromosomes, induction of sister chromatid exchange (SCE), and 
 induction of phenotypic mutations. A good number of laboratory experiments have 
been conducted to assess possible genotoxic effects of broad range of RF  frequencies 
at a variety of levels of biological complexity. Many of the studies found no evidence 
for any direct genotoxic or mutagenic effects of RFR at different power densities 
[49–68]. However, investigations at the University of Washington, Seattle [69–71], 
reported an increase in DNA single- and double-stranded breaks in rat brain cells at 
whole-body SAR levels of 0.6 and 1.2 W/kg, which are lower than the MPE  values. 
Their observations aroused signifi cant interest because of the possible implications 
with respect to carcinogenesis. Based on these data, two more studies [72] were per-
formed on human glioblastoma cells and rat brains using the same SAR levels. How-
ever, there was no increased DNA damage. Moreover, Hossmann and Hermann [73] 
suggest that the experiments by Lai and Singh used peak power that was much higher 
than the mean power, which may have accounted for the observed DNA damage.

Tice et al. [74], as a part of a comprehensive investigation of the potential geno-
toxicity of RF signals emitted by mobile phones, demonstrated that, under extended 
exposure conditions, RFR from mobile phones at an average SAR of at least 5 W/kg 
is capable of inducing chromosomal damage in human lymphocytes.

Similar fi ndings were reported by d’Ambrosio et al. [75] when radiating human 
cells to 1748 MHz at 5 W/kg, and Mashevich et al. [76] when radiating human lym-
phocytes to continuous 830 MHz RF energy at SAR in the range 1.6–8.8 W/kg for 
72 h. These results demonstrate that RFR has a genotoxic effect.

In a review, Verschaeve and Maes [77] concluded that: “According to a great 
majority of papers, RF fi elds, and mobile telephone frequencies in particular, are 
not genotoxic: they do not induce genetic effects in vitro and in vivo, at least under 
nonthermal conditions, and do not seem to be teratogenic (cause birth defects) or to 
induce cancer.” 

The Royal Society of Canada Expert Panel Report [78,79] reviewed the subject and 
concluded that: “A large number of laboratory studies of the potential health effects of 
RF fi elds have focused on genotoxicity, including studies of tumorigenesis, promotion, 
progression, altered cell proliferation, and DNA damage. The great majority of these 
studies have failed to demonstrate genotoxic effects due to exposure to RF fi elds.”

The UK Independent Expert Group on Mobile Phones (IEGMP) [80] sum-
marized the situation as follows: “The balance of evidence, from both in vitro and 
in vivo experiments, indicates that neither acute nor chronic exposure to RF fi elds 
increased mutation or chromosomal aberration frequencies when temperatures are 

CRC_62840_Ch006.indd   157CRC_62840_Ch006.indd   157 8/21/2007   06:48:178/21/2007   06:48:17



158 Bioeffects and Therapeutic Applications of Electromagnetic Energy

maintained within physiological limits. This suggests that RF exposure is unlikely 
to act as a tumor initiator.”

Meltz [81] reviewed the in vitro literature pertinent to the issue of the possible 
induction of toxicity, genotoxicity, and transformation of mammalian cells due to RF 
exposure. The author concludes, “The weight of evidence available indicates that, for 
a variety of frequencies and modulations with both short and long exposure times, at 
exposure levels that do not (or in some instances do) heat the biological sample such 
that there is a measurable increase in temperature, RF exposure does not induce 
(a) DNA strand breaks, (b) chromosome aberrations, (c) sister chromatid exchange 
(SCEs), (d) DNA repair synthesis, (e) phenotypic mutation, or (f) transformation 
(cancer-like changes).” The author further concludes, “While there is limited experi-
mental evidence that RF exposure induces micronuclei formation, there is abundant 
evidence that it does not. There is some evidence that RF exposure does not induce 
DNA excision repair, suggesting the absence of base damage.”

Overall, it may be clear at the moment that low levels of exposure to RF fi elds do 
not cause genotoxic damage.

6.3.2 CELL FUNCTION

6.3.2.1 Cell Proliferation

Disturbance of the normal cell cycle is a possible sign of uncontrolled cell growth, 
or  cancer. Czerska et al. [82] reported an increased proliferation of cells exposed to 
2.45-GHz RFR at SAR of 1 W/kg when the radiation was pulsed. CW RFR increased 
proliferation only when absorbed energy was high enough to induce heating. Other 
investigators reported increased and decreased cell proliferation rates after applying 
RFR of various SARs [83–85]. In contrast, d’Ambrosio et al. [75] found no signifi cant 
changes in cell distribution or cell proliferation in cells exposed to 1748 MHz, either CW
or phase only modulated wave gaussian minimum shift keying (GMSK), for 15 min.

6.3.2.2 Intracellular Calcium

Granfi eld et al. [86] studied whether exposure to simulated GSM mobile phone 
 signals infl uences the concentration of calcium or calcium signaling patterns in 
single cells. The authors estimated the intracellular calcium concentration ([Ca2+]i) 
in the human lymphocyte cell line, Jurkat, exposed to 915-MHz, 2-W/kg RFR. The 
results indicated that there is no clear indication that RFR from mobile phones is 
associated with any changes in calcium levels or calcium signaling in lymphocytes, 
although an alteration in the frequency of calcium oscillations was noted in acti-
vated cells exposed to pulsed wave (PW) RFR. However, Guisasola et al. [87] found 
that 64-MHz RFR, associated with turbo spin echo MRI, resulted in a signifi cant 
increase in [Ca2+]i in human embryonic lung cells, L-132. Exposure to MRI related 
static and gradient fi elds showed no effect on [Ca2+]i.

6.3.2.3 Ornithine Decarboxylase

ODC is an important enzyme for the role it plays in regulating cell growth through 
synthesis of polyamines necessary for protein and DNA synthesis. ODC is an 
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enzyme activated during carcinogenesis. Increased ODC activity is an indication for 
cancer. It is believed that low-level modulated RFR can affect intracellular activi-
ties of enzymes. Byus et al. [88] reported evidence of RFR effects on the activ-
ity of ODC, as well as on ODC messenger RNA levels and polyamine export in 
a number of cultured cell lines after exposure to 450 MHz modulated at 16-Hz 
(1 mW/cm2) RFR. The effect was noted for certain modulations of the carrier wave 
illustrating the window effect (an effect that occurs at some combination of expo-
sure conditions, but not at a nearby slightly different set of conditions). Penafi el 
et al. [89] reported an increase in ODC activity in L929 cells after irradiation to 
835-MHz RFR at SAR of approximately 2.5 W/kg. The results depended upon the 
type of modulation employed. Amplitude-modulated frequencies of 16 and 60 Hz 
produced a transient increase in ODC activity that reached a peak at 8 h of exposure 
and returned to control levels after 24 h of exposure. Paulraj and Behari [85] also 
reported increased ODC levels after exposure for 2 h/day for 35 days to 2.45-GHz 
RFR at SAR of 0.1 W/kg.

6.3.3 HORMONAL SECRETION

An area attracting attention as a likely potential mechanism for RFR intervention 
in living organisms is consideration of a cancer-promoting effect of RFR by altered 
circadian rhythms of pineal activity and melatonin release. Several investigations 
examined to what extent hormonal secretion is infl uenced by RFR. Exposure at 
up to 0.3 W/kg did not disturb the normal circadian profi le of melatonin of the 
hypothalamo–pituitary–adrenal axis [90,91]. However, Stark et al. [92] conducted a 
pilot study to investigate the infl uence of RFR at 3–30 MHz on salivary melatonin 
concentration in dairy cattle. Two commercial dairy herds at two farms were com-
pared, one located at a distance of 500 m (exposed), the other at a distance of 4 km 
(unexposed) from a RF transmitter. A chronic melatonin reduction effect seemed 
unlikely. On the fi rst night of reexposure after the transmitter had been off for three 
days, the difference in salivary melatonin concentration between the two farms was 
statistically signifi cant, indicating a two- to sevenfold increase of melatonin concen-
tration in the exposed cows.

6.3.4 ANIMAL CANCER EXPERIMENTS

As RF exposure is not considered to be directly carcinogenic, research should be 
aimed particularly toward its possible promotional and co-promotional effects. Dif-
ferent animal studies have been reported whose designs are suitable for describing 
brain carcinogenesis or brain tumor promoting effects of RF energy. It is evident 
from the literature that only a few studies [93–95] suggest an increased incidence 
of tumors as a result of exposure to high-level SAR. However, Utteridge et al. [96] 
could not replicate the increase in lymphoma in either normal mice or in the same 
lymphoma-prone mice reported in Repacholi et al. [94]. Other studies using SARs 
at modest levels have shown no increase in cancer induction or tumor development 
rates [97–111]. 

Heynick et al. [112] reviewed studies on cancer and related effects from exposure 
to EM fi elds in the nominal frequency range of 3 kHz to 300 GHz. They concluded 
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that: “The preponderance of published epidemiologic and experimental fi ndings 
does not support the supposition that in vivo or in vitro exposures to such fi elds are 
carcinogenic.”

Overall, there is little evidence to suggest that RFR is carcinogenic. However, 
the few positive results, including those reported by Repacholi et al. [94], merit fur-
ther investigation.

6.3.5 NONCANCER ANIMAL STUDIES

6.3.5.1 Morphological and Physiological Effects

While most experimental studies focus on carcinogenesis, tumor promotion, and 
mutagenic effects, noncancer effects also need to be considered. RFR may induce 
other effects. These include morphological and physiological changes [113–115]. 
According to Adey [113] and Adey et al. [114], RF carriers sinusoidally modulated at 
ELF fi elds can induce changes to the CNS. However, Tsurita et al. [116] found no sig-
nifi cant morphological changes of the brain in group of rats exposed for 2–4 weeks 
to a 1439-MHz (2 W/kg) TDMA signal. The exposure period was 2 or 4 weeks. 

6.3.5.2 Testicular Function and Development

Bol’shakov et al. [117] studied the combined effect of 460-MHz RFR and increased 
(up to 40°C) temperature on Drosophila embryos of defi nite age. The results of 
the study indicated that RFR did not produce any effect on development of the 
Drosophila. In addition, Dasdag et al. [118] found no evidence suggesting an adverse 
effect of mobile phone exposure on measures of testicular function or structure in 
rats confi ned in plexiglass cages when mobile phones were placed 0.5 cm under the 
cages. Mobile phones were activated 20 min per day (7 days a week) for 1 month.

6.3.5.3 Cataracts

RFR can induce cataracts if the exposure intensity and the duration are suffi cient. 
Lesions in the cornea, degenerative changes in cells of the iris and retina, and 
changed visual functions were reported by Kues and Monahan [119] and Kues et al. 
[120] in nonhuman primates after frequent exposures to RFR (CW 2.45 GHz at SAR 
of 0.26 W/kg) and at 60 GHz and power density of 10 mW/cm2 [121]. However, many 
studies on the ocular effect of RFR on animals have reported no effects, despite the 
fact that most studies employed exposure levels greatly in excess of those seen with 
mobile phones [122–125].

6.3.5.4 Behavioral Effects

Changes in learning behavior occurred after RF exposure at SAR of 1.2 W/kg [126] 
and 2.5 W/kg [127]. Lai et al. [128] observed retarded learning of a task in rats 
exposed to 2.45 GHz. Bornhausen and Scheingraber [129] found that exposure
in utero to the GSM (900 MHz, 217 Hz pulse-modulated RFR; 17.5 and 75 mW/kg) 
fi eld did not induce any measurable cognitive defi cits in exposed Wistar rats during 
pregnancy. Dubreuil et al. [130] noted that head-only exposure of rats to 900 MHz 
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pulsed RFR (SAR of 1 or 3.5 W/kg) for 45 min had no effect on learning. Also, 
Yamaguchi et al. [131] suggest that the exposure to a pulsed 1439-MHz TDMA fi eld 
at levels about four times stronger than emitted by mobile phones (SAR of 7.5 W/kg 
or 25 W/kg for either 1 h daily for 4 days or for 4 weeks) does not affect the learning 
and memory processes in rats when there are no thermal effects.

6.3.5.5 Blood–Brain Barrier

RFR-induced breakdown of the BBB has been studied either alone or in combina-
tion with magnetic fi elds. Many authors agree that exposure to RFR increases BBB 
disruption in vivo [132–137]. However, other studies have not found RFR-induced 
disruption of the BBB [138–141]. Most of the studies conclude that high-intensity 
RFR is required to alter the permeability of the BBB. Salford et al. [142] have shown 
that extremely low doses of GSM radiation can cause brain damage in rats. The 
authors report nerve damage following a single 2-h exposure at a SAR of 2 mW/kg. 
They showed that RFR can impair the BBB, but they add that the chemicals that leak 
through the BBB probably damage neurons in the cortex, the hippocampus, and the 
basal ganglia of the brain. The cortex is close to the surface of the skull, while the 
basal ganglia are much deeper.

For more details, see the review on this subject by D’Andrea et al. [143]. The 
authors concluded, “Effects of RF exposure on the BBB have been generally accepted 
for exposures that are thermalizing. Low level exposures that report alterations of 
the BBB remain controversial. Exposure to high levels of RF energy can damage 
the structure and function of the nervous system. Much research has focused on the 
neurochemistry of the brain and the reported effects of RF exposure. Research with 
isolated brain tissue has provided new results that do not seem to rely on thermal 
mechanisms.”

6.4 CLINICAL STUDIES

Human laboratory studies allow RF effects to be studied on humans with control of 
experimental parameters.

6.4.1 PERCEPTION AND AUDITORY RESPONSE

In 1960, based on a series of human and animal studies, Frey [144] concluded that 
very low-level microwave pulses trigger the auditory nerve, resulting in the subject 
hearing buzzes or clicks when the head was exposed to short (less than 70 µs) micro-
wave pulses of various repetition rates. This has been called auditory phenomena or 
RF hearing. These sounds, e.g., buzzes, clicks, tones, vary as a function of the modu-
lation. Many studies have been published over the years, especially those conducted 
by Dr. Chou and his colleagues investigating RF hearing [145,146]. They originally 
presented the RF-induced auditory phenomena as an example of RF interaction that 
has been widely accepted as a weak fi eld effect. Although the hypothesis of direct 
nervous system stimulation was proposed, the alternative is that RF auditory or hear-
ing effect does not occur from an interaction of RFR with the auditory nerves or 
neurons. Instead, the RF pulse, upon absorption by soft tissues in the head, launches 
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a thermoelastic wave of acoustic pressure that travels by bone conduction to the inner 
ear and activates the cochlear receptors via the same mechanism as normal hearing.

Kellenyi et al. [147] found that a 15-min exposure to GSM phone radiation caused 
an increase in auditory brainstem response in the exposed side of human subjects. 
However, Hietanen et al. [148] indicated that none of the individuals tested with ana-
logue Nordic mobile Telephony (NMT) phone (900 MHz) or GSM phones (900 and 
1800 MHz) could distinguish real RF exposure from sham exposure.

Microwave hearing is a proven low-level microwave effect (at the threshold level, 
the temperature rise from each microwave pulse is a millionth of a degree Celsius). 
Although the temperature rise is very small, the mechanism is still thermal in nature. 
Since hearing microwave pulses is similar to hearing very weak acoustic sound, the 
response is not considered adverse to human health [149]. For more details on this 
subject, see the review by Elder and Chou [150]. The authors concluded, “The audi-
tory response has been shown to be dependent upon the energy in a single pulse and 
not on average power density. The weight of evidence of the results of human, ani-
mal, and modeling studies supports the thermoelastic expansion theory as the expla-
nation for the RF hearing phenomenon. RF-induced sounds involve the perception 
via bone conduction of thermally generated sound transients, that is, audible sounds 
are produced by rapid thermal expansion resulting from a calculated temperature 
rise of only 5 × 10−6°C in tissue at the threshold level due to absorption of the energy 
in the RF pulse. The hearing of RF-induced sounds at exposure levels many orders 
of magnitude greater than the hearing threshold is considered to be a biological 
effect without an accompanying health effect.”

6.4.2 THERMOREGULATORY RESPONSES

Thermoregulation, or the maintenance of a fairly steady body temperature even 
under a variety of external conditions, is important to humans because each body 
has a preferred temperature at which functioning is optimal. These external condi-
tions can include changes in temperature, vapor pressure, air velocity, exposure to 
radiation including RFR, and insulation among other factors that affect the tem-
perature of the skin. Adair et al. [151] exposed two different groups of volunteers 
to 2450 MHz CW (two females, fi ve males) and PW (65 s pulse width, 104 pps; 
three females, three males) RF fi elds. They measured thermophysiological responses 
of heat production and heat loss under a standardized protocol (30 min baseline, 
45 min RF or sham exposure, 10 min baseline), conducted in three ambient tem-
peratures (24, 28, and 31°C). At each temperature average power density studied 
was 0, 27, and 35 mW/cm2 (SAR = 0, 5.94, and 7.7 W/kg). Mean data for each group 
showed minimal changes in core temperature and metabolic heat production for all 
test conditions and no reliable differences between CW and PW exposure. Local 
skin temperatures showed similar trends for CW and PW exposure that were power 
density-dependent; only the skin temperature of the upper back (facing the antenna) 
showed a reliably greater increase during PW exposure than during CW exposure. 
Local sweat rate and skin blood fl ow were both temperature and power density-
dependent and showed greater variability than other measures between CW and PW 
exposures; this variability was attributable primarily to the characteristics of the two 
subject groups.
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Adair and Black [152] reviewed the literature concerned with physiological 
thermoregulatory responses of humans and laboratory animals in the presence of 
RF fi elds. They stated, “The conclusion is inescapable that humans demonstrate far 
superior thermoregulatory ability over other tested organisms during RF exposure 
at, or even above current human exposure guidelines.”

6.4.3 OCULAR EFFECTS

The cornea and lens are the parts of the eye most exposed to RFR at high levels by 
their surface location and because heat produced by RFR is more effectively removed 
from other eye regions by blood circulation. Early investigations of RFR effects on 
the eye focused on the parameters of power density and duration of exposure required 
to produce cataracts in the lens of the eye. Hirsch and Parker [153] reported the 
fi rst RFR-induced human cataract. However, Cleary and Pasternak [154] found more 
subclinical lens changes in a group of 736 microwave workers than in 559 controls, 
but no cataracts or decrease in visual acuity were noted. The exact conditions under 
which these changes may occur in humans are a subject of argument [155,156].

One related modeling study of the human eye by Hirata et al. [157] showed that 
5 mW/cm2, the MPE value for occupational environments [158], caused a tempera-
ture change in the lens less than 0.3°C at frequencies from 0.6 to 6 GHz. This small 
temperature change is overestimated because the eye model was thermally isolated 
from the head and did not consider the effect of blood fl ow. Therefore, RFR much in 
excess of currently allowable exposure limits would be required to produce cataracts 
in human beings and exposures below the cataractogenic level would be expected to 
cause other effects in other parts of the eye and face.

Reviews of the literature of RFR-induced cataracts [159–162] have concluded 
that clinically signifi cant ocular effects, including cataracts, have not been confi rmed 
in human populations exposed for long periods of time to low-level RFR.

6.4.4 BRAIN FUNCTION

The close placement of RFR sources such as mobile phones to the user’s head has 
elevated possibilities of interference with brain activities. While many studies have 
addressed this issue, they have only investigated the short-term effects of RF expo-
sure. The studies that have considered the effects of RFR on numerous brain func-
tions include slow brain potentials (SP) [163–166], cognitive function in humans 
including shortening of reaction times after exposure to RF signal [167–172], sleep 
and sleep encephalograms [173–175], brain function, especially in tasks requiring 
attention and manipulation of information in working memory [168,169,176,177], 
electroencephalogram (EEG) activity [165,169,178–182], brain potential and activ-
ity [183,184], and attentional capacity [185–189]. The above studies have demon-
strated mixed results. The fi ndings suggest that some aspects of cognitive functions 
and measures of brain physiology may be affected without offering a uniform view. 
These include changes in memory tasks, response patterns, normal sleeping EEG 
patterns, and other brain functional changes. Several studies have demonstrated 
improved cognitive functions in volunteers exposed to RFR in the frequency range 
of mobile phones.
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Subjective symptoms such as dizziness, disorientation, nausea, headache, and 
other unpleasant feelings such as a burning sensation or a faint pain might be a 
direct result of RFR, although such symptoms are very general and may have many 
other causes. Wilén et al. [190] made use of the information about prevalence of 
symptoms, calling time per day, and number of calls per day from a previous epi-
demiological study [191] and combined it with measurements of the SAR of the 
specifi c mobile phone used by each person included in the above study. Two new 
exposure parameters have been devised: specifi c absorption per day (SAD) and spe-
cifi c absorption per call (SAC). The results indicated that SAR values >0.5 W/kg 
may be an important factor for the prevalence of some of the subjective symptoms, 
especially in combination with long calling times per day.

Hamblin and Wood [192] compared the fi ndings of the main studies that have 
examined the effects of GSM mobile phone RF emissions on human brain activity 
and sleep variables. They concluded, “Although, in general, outcomes have been 
inconsistent and comparison between individual studies is diffi cult, enhanced elec-
troencephalogram alpha-band power has been noted in several of the studies, a phe-
nomenon also observed in some animal studies.”

In another review of the literature, Hossmann and Hermann [73] concluded, “At 
present, there is little evidence that pulsed or continuous microwave exposure at 
power and frequencies related to mobile communication could interfere with the 
functional and structural integrity of the brain. Under experimental conditions, most 
of the positive results so far could be attributed to thermal effects. Such effects are 
unlikely to occur during regular use of mobile telephones because the total emitted 
power is far too low to raise whole body temperature, and because local elevations 
of brain temperature, if present, would be prevented by the thermostabilizing effect 
of the circulating blood.”

D’Andrea et al. [193] reviewed the literature concerning RF exposure and behav-
ioral and cognitive effects. They concluded, “Reports of change of cognitive func-
tion (memory and learning) in humans and laboratory animals are in the scientifi c 
literature. Mostly, these are thermally mediated effects, but other low level effects 
are not so easily explained by thermal mechanisms. The phenomenon of behavioral 
disruption by microwave exposure, an operationally defi ned rate decrease (or rate 
increase), has served as the basis for human exposure guidelines since the early 1980s 
and still appears to be a very sensitive RF bioeffect. Nearly all evidence relates this 
phenomenon to the generation of heat in the tissues and reinforces the conclusion 
that behavioral changes observed in RF exposed animals are thermally mediated. 
Such behavioral alteration has been demonstrated in a variety of animal species 
and under several different conditions of RF exposure. Thermally based effects can 
clearly be hazardous to the organism and continue to be the best predictor of hazard 
for Homo sapiens. Nevertheless, similar research with man has not been conducted. 
Although some studies on human perception of RF exist, these should be expanded 
to include a variety of RF parameters.”

Despite the absence of serious outcomes, a priority may be given for further 
research to study the effect of RFR on brain functions. As yet, human studies of cog-
nitive performance and EEG focused on the consequences of short-term exposure. 
Following a group of new mobile phone users over time could be a right approach to 
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address the issue of long-term exposure. Special attention should be directed toward 
children because their developing nervous systems are more sensitive to RFR.

6.4.5 CARDIOVASCULAR DISEASES

Both acute and long-term effects have been investigated. One author reported that 
most studies showed no acute effect on blood pressure, heart rate, or ECG waveform; 
others reported subtle effects on the heart rate.

Braune et al. [194] reported that exposure of human volunteers to RFR of mobile 
phones (GSM 900-MHz, 2-W, 217-Hz frame repetition rate) increased the sympa-
thetic efferent activity, with increases in the resting blood pressure between 5 and 
10 mm Hg. However, Braune et al. [195] repeated their study and summarized 
that RFR had no effect on the outcomes. They claimed that their 1998 fi nding of 
increased blood pressure in mobile phone users was due to an artifact in the design 
of the original study.

Mann et al. [196] did not fi nd any effect on the autonomic control of heart rate by 
applying weak-pulsed RFR emitted by digital mobile phones during sleep in healthy 
humans. However, Parazzini et al. [197] observed weak interaction between some 
heart rate variability parameters and RF exposure from a 900 MHz mobile phones 
at the maximum allowed power. This effect seems to be gathered around the sympa-
thetic response to stand.

Black and Heynick [198] reviewed the subject and concluded, “Cardiovascu-
lar tissue is not directly affected adversely in the absence of signifi cant radiofre-
quency electromagnetic fi elds (RFEMF) heating or electric currents. The regulation 
of blood pressure is not infl uenced by ultra high frequency (UHF) RFEMF at levels 
commonly encountered in the use of mobile communication devices.”

6.4.6 MELATONIN

RFR effect on melatonin has been studied in a few human studies. Wang [199] found 
that workers who were highly exposed to RFR had a dose–response increase in sero-
tonin, and hence indicates a reduction in melatonin. According to Burch et al. [200], 
frequent mobile phone use may be associated with reduced daytime melatonin pro-
duction. Also, Burch et al. [201] reported that mobile phone use of <25 min per day 
was associated with a drop in melatonin. In contrast, de Seze et al. [90,91], Radon 
et al. [202], and Bortkiewicz et al. [203] found no evidence of RFR-related effects 
on melatonin secretion.

The interpretation of the available data from all types of studies suffers from dif-
ferences in exposure parameters. Also, there is little evidence that RFR from mobile 
phones promotes carcinogenesis by depressing melatonin.

6.5 CONCLUDING REMARKS AND FUTURE RESEARCH

A signifi cant uncertainty exists in the interpretation of most of the studies. The cur-
rent evidence from epidemiological, laboratory, and clinical research indicates that 
environmental RFR does not cause cancer or other diseases. But there is now some 
evidence that effects on biological functions, including those of the brain, may be 
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induced by RFR at levels comparable to those associated with the use of mobile 
phones. There is, as yet, no evidence that these biological effects lead to health haz-
ards but currently only limited data are available [1].

Two large reviews [77,204] concluded that RFR below the existing MPE values 
is not directly genotoxic. In the review of cancer studies, the IEGMP [80] of the 
UK concluded, “Some individual experimental studies have suggested that RFR can 
initiate tumor formation, enhance the effects of known carcinogens or promote the 
growth of transplanted tumors. However, in some of these studies, the intensity was 
high enough to produce thermal effects. The balance of evidence, both in vitro and 
in vivo experiments, indicates that neither acute nor chronic exposure to RFR 
increases mutation or chromosomal aberration frequencies when temperatures are 
maintained within physiological limits.”

The Swedish Radiation Protection Authority supports the commonly accepted 
view that RF energy, at least under levels of power emitted by mobile phones, is not 
genotoxic and cannot directly damage DNA, and is thus unlikely to be an initiator. 
Hence the risk of cancer from a thermal or nonthermal mechanism would be one 
that, if anything, promotes tumor growth. Nevertheless, there is no convincing evi-
dence from animal experiments or epidemiologic research that RF signals can pro-
mote tumor growth or induce genetic effects [205]. However, there might be effects 
under extended exposure conditions or at high-level SARs.

It is important to note that modulated or pulsed RFR seems to be more effec-
tive in producing an effect. It can also elicit a different effect, especially on brain 
function, when compared with CW RFR of the same characteristics. Many studies 
supporting this fact have been summarized throughout this Chapter. Juutilainen and 
de Seze [206] reviewed this matter extensively.

Experimental investigations of weak ELF fi eld (including RFR-ELF fi eld associ-
ated with mobile phones) effects on human physiology have yielded some evidence 
of an effect in a number of different areas, such as heart rate variability, sleep distur-
bance, and melatonin suppression [207]. In general, there have been inconsistencies 
in results between experiments due to various experimental protocols and exposure 
characteristics. Adair [208] reviewed this subject and by using biophysical crite-
ria, demonstrated that it is unlikely that low-intensity fi elds can generate signifi cant 
physiological consequences.

6.5.1 RISK FOR CHILDREN

An important area of research that needs further investigation is health risk associ-
ated with children’s use of mobile phones. Following recommendations from the 
IEGMP [80], the UK government published a brochure recommending that chil-
dren up to the age of about 16 years should minimize the use of mobile phones. 
The IEGMP notes that the head and nervous system continue to develop until about 
16 years of age. The density of synapses reaches adult level around puberty and 
skull thickness and brain size reach adult levels around ages 14–15 years. Because 
of higher tissue conductivity (higher water content and ion concentrations), children 
may absorb more energy from a given mobile phone than do adults.

Health Council of the Netherlands [209] advocates against the IEGRP recom-
mendation. The Council feels there is no reason to recommend the children should 

CRC_62840_Ch006.indd   166CRC_62840_Ch006.indd   166 8/21/2007   06:48:198/21/2007   06:48:19



Bioeffects and Health Implications of Radiofrequency Radiation 167

restrict the use of mobile phones as much as possible. In this regard, we feel that 
children’s use of mobile phones is a critical area of research that needs further dosi-
metrical and laboratory investigations.

A WHO conference concluded that: “There was a consensus that, from present 
knowledge, the ICNIRP (1998) guidelines appear to incorporate suffi cient safety 
factors in their general public limits to be protective of children. However, given the 
uncertainty about effects in children, the use of measures that reduce their exposure, 
in addition to the adoption of international standards, seems appropriate” [210].

6.5.2 RESEARCH

At this point, it appears that RFR may pose a human health risk only at moderately 
high levels of exposure. Most environmental exposures to RFR, such as those from 
mobile phones, are relatively low, although measurable. The detection of biologi-
cal responses at such low-exposure levels will require either large-scale population 
based studies with the sensitivity to identify small risks, should they exist, or sophis-
ticated assays employing sensitive biomarkers of exposure and biological effects.

Although there is already a large body of literature on health risks of RFR, 
below we list some areas likely to prove fruitful in enhancing our knowledge of the 
above subject. Additional research into both the risk of RFR exposure and long-term 
epidemiology studies to further our understanding of the health effects of RFR is 
encouraged. Among other research, the following areas of inquiry would be useful: 
(1) changing patterns of wireless communication usage and exposure of different 
parts of the human body, (2) biophysical interaction mechanisms to explain observed 
in vitro and in vivo effects at fi eld levels to which the public is exposed, (3) improved 
dosimetric models of RF energy deposition in children of different ages and preg-
nant women with appropriate models of the human thermoregulatory responses (e.g., 
inner ear, head, eye, trunk, embryo, and foetus), (4) in vitro and in vivo research to 
obtain reproducible results on previously reported genetic and carcinogenic effects, 
(5) experimental studies to clarify possible effects related to circulating melatonin, 
sleep disruption, heart rate, learning, and memory, (6) clinical studies focusing 
on cognitive, behavioral, and physiological effects on the CNS (especially in children, 
whose nervous systems remain under development), (7) epidemiological studies to 
investigate the highest exposure levels encountered and to individual exposure ver-
sus time, incorporating reliable dosimetry in the design. Collectively, this informa-
tion will strengthen the scientifi c basis on which a more complete assessment of RFR 
health risks can be made [1].

Because risk assessment has advanced greatly since many of the standards for 
both occupational and population exposures were developed, reexamination of those 
standards by the related organizations would be helpful. Additionally, efforts are 
needed to better understand public perception of RFR risks, which may assist setting 
up risk communication strategies that lead to the management of health risks (see 
Chapter 7).

In conclusion, the use of RF equipment and services is likely to expand greatly 
over the coming years. It is therefore important to continue research to further our 
knowledge of any potential health risks that might result from different levels and 
pathways of exposure.
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7 Electromagnetic 
Risk Analysis

7.1 INTRODUCTION

Modern technology offers powerful tools to stimulate a range of benefi ts for society, 
in addition to economic development. However, technological progress in the broad-
est sense has always been associated with hazards and risks [1]. Traditionally, risk 
has been defi ned from a technical perspective, namely the product of the probabil-
ity and consequences of an adverse event. In this case, the adverse event would be 
exposure to EM fi elds. These technical assessments are portrayed as representing the 
actual risks. However, this approach ignores essential social, economic, and cultural 
dimensions of risk assessment and management. A broader set of criteria must be 
used to obtain an accurate representation of risk.

EM fi elds, including both EMF and RFR, have become a driving force of our 
civilization through their numerous applications in the workplace, home, and exter-
nal environment. Most public exposure to EM fi elds comes from electrical power 
generation, distribution, and use; transportation and telecommunication systems; 
scientifi c, medical, and industrial equipment; radar devices; radio and television 
broadcast facilities; and mobile phones and their base stations [2].

EM fi elds may have a biological effect on human cells that may disrupt cellular 
processes, which could in turn lead to adverse health consequences. As the reliance 
on technologies involving EM fi elds has increased, so has the public’s concern over 
possible related health risks. This is due to our lack of understanding of the health 
consequences of increasing levels of exposure of the population to EM fi elds. How-
ever, there are several organizations that have initiated research programs to study 
this issue and thus improve our understanding of the health risks and our ability to 
manage them.

Risk analysis is implicitly or explicitly used as the foundation of a large num-
ber of standards, including those related to environmental protection, occupational 
safety and health, food safety, medical devices, drugs, and others [3]. The risk analy-
sis process can be logically divided into three clear and distinct categories: (1) risk 
assessment, (2) risk management, and (3) risk communication [4].

In recent years it has become widely recognized that a number of determinants 
(including social and behavioral factors, environmental and occupational exposures, 
biology and genetic endowment, and health services) affect individual health status 
and that the health status of individuals and of entire populations is linked. At the 
same time, risk science has emerged as an important new discipline for the assess-
ment and management of health risks [5].

Concerning the controversial issue of EM health hazard, there exist three main 
uncertainties: (1) whether EM exposure poses a health hazard or not, (2) what com-
ponents of the exposure contribute to the health effects (e.g., time-weighted average 
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or exposures above certain thresholds), and (3) how serious the health effects are. 
Expert opinions regarding these three uncertainties vary widely. They range from a 
fi rm belief, based on physical reasoning, that EM exposure cannot possibly pose 
a health hazard to a conviction, based on epidemiological fi ndings, that they pose 
a serious health hazard that might double or triple certain cancer rates. Given this 
broad range of opinions, it seems futile to conduct a formal risk analysis [6].

To effectively address potential health risks associated with EM exposure, it is 
important to have (1) a clear understanding of the biological and health effects of 
EM fi eld exposure; (2) a risk management plan highlighting the possible undesir-
able consequences of EM fi eld exposure, incorporating the key elements of both risk 
assessment and risk perception; and (3) effective communication of the biological 
and health effects of EM exposure and the risk management plan to the public. 

The goal of this chapter is to provide biomedical researchers with an overview of 
EM exposure-health risk assessment. The main issue is whether the existing expo-
sure limits, which have been discussed in Chapters 3 and 5, are suffi cient to protect 
public health. An evaluation of the literature has been provided to develop a sound 
risk assessment and risk perception. Particular attention is paid to measured and 
perceived risk as part of a thorough risk management agenda. 

7.2 RISK ASSESSMENT

Risk assessment is an organized process used to describe and estimate the likelihood 
of adverse health outcomes. Quantitative risk assessment estimates the hazard for an 
exposure or situation that cannot be measured directly. This process involves several 
steps: (1) hazard identifi cation (situations that threaten human health), (2) exposure 
assessment (exposure to hazard is quantifi ed), (3) dose response analysis (amount of 
exposure that causes harm), and (4) risk characterization (combination of above). For 
a particular hazard, exposure is combined with dose response to predict the risk for 
an individual or population. 

Prior to an established interaction mechanism or known effect, health risk assess-
ment studies should start with a null hypothesis, i.e., the objective of the exposure 
regime and study design is to provide maximized signifi cance for negative fi ndings 
with respect to the technology. In other words, the likelihood of evoking effects 
should be maximized. Therefore, worst case values should be applied for various 
parameters including exposed tissues, exposure strength, and signal characteristics. 
If positive effects are detected, the parameters causing effects should be subsequently 
evaluated to assess the actual health risk [7].

7.2.1 SCIENTIFIC EVIDENCE

Risk assessment is a scientifi c process [8] and, ideally, entirely free of nonscientifi c 
parameters. As currently performed, much of the scientifi c information upon which 
risk assessment is based falls in the category of scientifi c extrapolation and scientifi c 
judgment [3]. Guidance for EM policy has come primarily from epidemiology stud-
ies of health risks associated with power lines in the case of EMF and cell phones in 
the case of RF. In both frequency ranges, the refi ning of epidemiological studies over 
the years has helped to clarify the factors involved in health risk [9].
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Laboratory studies have provided the background for all related studies and par-
ticularly for realizing the interaction mechanisms that highlight health risk. In this 
regard, explicit distinctions should be made between the concepts of EM interaction 
mechanisms, biological effects, and health hazards, consistent with the criteria used 
by international bodies when making health assessments [10]. Biological effects 
occur when EM fi elds interact to produce cellular responses that may or may not be 
perceived by people. Deciding whether biological changes have health consequences 
depends, in part, on whether they are reversible, are within the range for which the 
body has effective compensation mechanisms, or are likely to lead to unfavorable 
changes in health.

Two major research programs were launched during the 1990s. The NIEHS and 
the Department of Energy (DOE) were commissioned by the U.S. Congress in 1992 
to develop a comprehensive research program and together they formed the Electric 
and Magnetic Fields Research and Public Information Dissemination (EMF RAPID) 
program. This fi ve-year program was supported through federal and private funds 
and focused on health effects, education, and assessment of health risks [11]. In 1996, 
the WHO established the International EMF project. The mandate of these programs 
is to conduct targeted research that will permit improved health risk assessments to 
be made and identify any environmental impacts of EM exposure.

WHO defi nes health as the state of complete physical, mental, and social well-
being, and not merely the absence of disease or infi rmity. Not all biological effects 
are hazardous. Some may be innocuously within the normal range of biological 
variation and physiological compensation, while others may be benefi cial under 
certain conditions, and the health implications of yet others may be simply indeter-
minate. Health hazard is generally defi ned to be a biological effect of EM exposure 
outside the normal range of physiological compensation and adverse to a person’s 
well-being [12].

A distinction must be made between the biological effects of EM fi elds and dam-
age to health due to such fi elds. This distinction is indeed central to risk assessment, 
since any effect is relevant for risk assessment only insofar as this effect can be con-
sidered to be damaging (potentially) to health [13]. While there is a general under-
standing of the biological effects of EM energy, there is still much to be learned 
about its long-term health consequences. EMF exposure induces circulating currents 
inside the human body, while RFR causes thermal effects. Nearly all regular elec-
trical appliances and wireless equipment produce EM fi elds far weaker than those 
required for inducing currents or producing heat [14–18].

Studies have shown that weak EM fi elds can affect a few biological processes. 
On their own, these effects do not appear to comprise a serious health risk. How-
ever, their long-term impact is unknown. The level of association between EM expo-
sure and adverse health effects, although limited, has a considerable public impact. 
Limitations are partly attributed to a gap in knowledge. Further research is needed 
in many areas to better assess the health risk. These include laboratory studies of 
cells and animals, clinical studies of humans, computer simulations, and human 
population (epidemiological) studies. No single study or class of study provides the 
entire answer. Often the results of studies are inconsistent or they have not investi-
gated the characteristics of the dose–response relationship (fi eld strength, threshold,
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and exposure duration), and sometimes have found responses only in exposure 
“ windows,” ranges above and below which no effects are seen [12].

Unlike clinical studies, animal studies investigate the response of nonhuman 
species to EM exposures under laboratory conditions. Animal studies are unable 
to address many human exposure factors that are sociologically or geographically 
based, such as personal use of appliances. There is also some uncertainty about 
the ability to extrapolate evidence from animal studies across species. However, it 
is widely accepted that the demonstration of an effect in one species increases the 
plausibility of a similar effect in another species. 

 Cellular studies provide an understanding of the potential physiological altera-
tions at the basic cellular level and are necessary in the assessment of the human 
health effects of chronic or long-term EM exposure. In assessing the signifi cant 
amount of data assembled and wide range of cases studied, the general conclusion 
seems to be that the current studies indicate no evident pattern of increased health 
risk associated with EM fi elds. However, there might be rational grounds for possible 
suspicion of health risks with long-term exposure to EM fi elds. To clarify this matter, 
further research is required. The inconsistency between laboratory data, human data, 
and interaction mechanisms severely complicates the interpretation of the research 
outcomes. Given the complexity of living organisms, it is diffi cult to apply and cor-
relate knowledge from these sources [2].

As progress in technology continues and human beings are enjoying an increased 
quality of life, it is essential for scientists to ensure that safety is not compromised. 
Scientists must conduct well-designed studies and report the results in a clear and 
detailed manner, so other independent investigators can repeat the studies or explore 
further. Mistakes must be minimized and stopped at the fi rst level of  scientifi c 
research [19].

7.2.2 SETTING STANDARDS

Standards-setting bodies for safety are faced with confl icting pressures. One is 
to protect the worker and the public against risks of injury, and health problems. 
Another is to make useful technology available to the public. How these possibly 
confl icting requirements are met depends on many factors, including how well the 
hazards are understood by the public, regulators, the value of the technology, and 
public view of the kind of potential damage the technology may do to their health 
and their degree of control over exposure to it [20]. The main issue is whether the 
existing EM safety standards, which have been discussed in Chapters 3 and 5, are 
suffi cient to protect public health. These standards are based on the scientifi c evi-
dence about thermal (i.e., heating) effects of EM exposure. Whether exposure below 
the safety standard levels might cause detrimental health effects is scientifi cally con-
troversial [13]. The scientifi c literature suggests that there is no solid evidence for a 
link between EM fi elds above these levels and adverse health effects. In addition, a 
number of recent reports have evaluated the scientifi c evidence on potential health 
risks from EM exposure below the exposure limits [11,15–18,21–29]. Most of these 
reports agree that there is no scientifi c proof of health risk below the EM exposure 
limits. However, the reports show differences with regard to the extent and signifi -
cance of uncertainties in the scientifi c knowledge about this matter. Importantly, 
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the health consequences may not become apparent until years of exposure have 
accumulated. With chronic diseases such as cancer, it is impossible to establish any 
“proof of risk” or “proof of safety,” which can be sustained “beyond all reasonable 
doubt,” in just a few years. This refl ects the dilemma of risk assessment. 

It is evident that the evaluation of the existing evidence leaves space for differing 
assessments and allows compelling new evidence that challenges any judgments. 
Under these circumstances, one must consider the subset of possible health risks 
of EM exposure in our daily life that is subject to scientifi c uncertainty. The perva-
sive and complex character of EM fi elds in our environment makes it impossible to 
ignore even the most remote suggestion of such a risk. 

7.2.3 STRUCTURED RISK ASSESSMENT

Risk management is a systematic approach to setting the best course of action 
under uncertainty by identifying, assessing, acting on, and communicating risk 
issues. A major development in the fi eld of EM health risk would be the introduc-
tion of structured risk assessment tools. These tools may be of two main types: 
(1) structured guidelines, which only specify the relevant risk factors to consider, 
and (2) implementation measures, which identify items to consider as well as how to 
combine these items into a comprehensive evaluation agenda. These approaches to 
risk assessment are far from perfect, but they are more accurate than the unguided 
judgment used to assess the risk of EM fi elds. For organizing and structuring the risk 
assessment process, further investigation should be done to (1) determine whether 
any health effect can be substantiated and related to EM fi elds and (2) clarify the 
relevance of research results. Attention should be paid to the impact of bias (selec-
tion, reporting, publication, sponsorship, and pro-industry conclusions) on the exis-
tence of health risk. To achieve that, a risk assessment requires the establishment of 
scientifi c discussion by different scientifi c experts related to the fi eld of EM health 
risk such as biology, epidemiology, biophysics, dosimetry, medicine, environment, 
etc., to exchange views and facts. However, one problem associated with incorporat-
ing a variety of viewpoints into a risk management plan is that it can lead to differ-
ences in the evaluation of risk.

In the meantime, standard-setting groups need to decide what to do, taking into 
account both the results of research showing biological effects at low levels of expo-
sure and the large number of studies that do not. In addition, they need to take into 
account the benefi t of having EM technology services that are used to enhance the 
standard of living for the public. With these together, the scientifi c community will 
be able to develop rules for categorizing scientifi c evidence, provide more thorough 
analyses of health risk, and share the information with the public and authorities.

7.3 PERCEPTION OF RISK

In trying to understand people’s perception of risk, it is important to distinguish 
between a health hazard and a health risk. A hazard can be an object or a set of cir-
cumstances that could potentially harm a person’s health. Risk is the likelihood, or 
probability, that a person will be harmed by a particular hazard [1].

CRC_62840_Ch007.indd   183CRC_62840_Ch007.indd   183 8/21/2007   12:41:50 PM8/21/2007   12:41:50 PM



184 Bioeffects and Therapeutic Applications of Electromagnetic Energy

7.3.1 PUBLIC PERCEPTION OF RISK

The perception of health risk is quite different between scientists and the public. 
Such divergence is crucial in the debates and controversies about EM fi elds; it is 
signifi cant that the International EMF project of WHO (www.who.int/emf) includes, 
along with traditional research areas, studies on the mechanisms of risk perception 
and communication [30]. The public will likely consider other factors in addition to 
the technical ones considered for a scientifi c assessment. While they may include 
probability of harm in their view of risk, they will also incorporate the social, politi-
cal, economic, and cultural consequences. The psychometric approach [31] expands 
upon the technical approach and attempts to identify the cognitive, emotional, and 
social–demographic aspects of public perceptions of risk. This broader and more 
meaningful approach to risk evaluation (termed risk perception) enables an assess-
ment of why public assessment of risk differs from the technical assessment, and can 
help explain the public outrage often associated with new technologies.

Risk assessment and risk perception both provide valuable insights into risk 
management. Traditionally, risk assessment has played a greater role in this process 
because committees established to deal with this issue are made up of scientifi c 
experts. However, poor communication of these risks to the general public has led 
to a call for the development of a new model for risk management. Approaches to 
risk differ considerably between technical experts and the general public. Technical 
experts focus on the quantifi able level of risk and view reasonable risk-taking and 
technological innovation as necessary aspects of social progress. The general public 
focuses on the safety issues surrounding a particular project and any associated com-
munity health risks. 

Major causes of different perception are undoubtedly the limited ability of 
experts to communicate risks to the public, and an attitude of the media to privilege 
sensationalism rather than a correct transfer of information. However, diffi culties in 
scientifi c communication have objective causes in the quality of data that are still 
controversial, sometimes contradictory, and in any case diffi cult to read and inter-
pret. Therefore, risk assessment faces two main problems: on one side, the correct 
analysis of scientifi c data, on the other the understanding of mechanisms of risk 
communication and perception [30].

Regardless of how much scientifi c evidence there is, authorities need to consider 
the degree of public concern, even if low, about possible risk of EM exposure and 
how that compares with expert assessment. The challenge of risk analysis will not 
be resolved by scientifi c knowledge only. Reaching beyond a technical assessment 
of risk and moving towards a more psychometric approach is necessary if the legiti-
mate concerns of the public are to be recognized.

7.3.2 FACTORS RELEVANT TO ELECTROMAGNETIC FIELDS

There are many factors that shape an individual’s perception of risks, including age, 
sex, and cultural and educational backgrounds. In addition, specifi c characteristics 
of the risk such as familiarity with the agent, understanding of the mechanism, 
voluntarity of exposure, fairness, controllability of risk, uncertainty of knowledge, 
effect on children, effect on future generations, trust in institutions, attention of 
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media, previous accidents, clarity of benefi ts, and scientifi c evidence can infl uence 
risk perception.

Most of the above factors are of special importance for EM fi elds. Emotional 
impact of risks for children is probably the most relevant, but involuntarity, uncertainty 
in knowledge, and limited understanding of interaction mechanisms are likely to play 
a signifi cant role. Other factors specifi c to EM exposure must be added, including 
imperceptibility, visual impact of power lines and antennas, and use of the term “non-
ionizing radiation” that may lead to erroneous analogies and extrapolations [30].

Exposure to EM fi elds can be considered voluntary among cell phone users and 
involuntary among nonusers. As a result, cell phone users will likely perceive the 
exposure risk from base stations as lower than nonusers. In addition, the nonus-
ers will consider EM exposure as unfair and this will also alter their perception. 
The risk will also be perceived as higher by the public if power lines or base sta-
tions are installed in their community without prior discussion or consultation. EM 
technology is new, diffi cult to understand, and the potential health effects are not 
well defi ned. This unfamiliarity of EM technology serves to increase the perceived 
risk. Consideration of these factors may explain local concerns, possible biases, or 
assumptions about the technology. Careful attention to the nontechnical risk dimen-
sions of any project allows policy makers and managers to make informed decisions 
as part of a thorough risk management program [1].

Perceptions of EM fi elds risk associated with high-voltage transmission lines 
and other sources of EM fi elds have been examined in several studies [32–35]. Read 
and Morgan [34] confi rmed an earlier fi nding that most people believe that any 
high-voltage power line they can see is exposing them to strong fi elds. The authors 
explored a number of strategies that might be used in risk communications to correct 
this misperception.

7.3.3 HEALTH CONSEQUENCES OF RISK PERCEPTION

One of the most perplexing problems in risk analysis is why some relatively minor 
risks or risk events, as assessed by technical experts, often elicit strong public con-
cerns and result in substantial impacts upon society and economy. The main reason 
is that hazards interact with psychological, social, institutional, and cultural pro-
cesses in ways that may amplify or attenuate public responses to the risk or risk 
event [36]. A distorted perception of risks is not just a social issue. It strongly affects 
the psychological attitude of nonexperts toward EM fi elds. This aspect was made 
clear in the fi nal report [37] of a study group set up by the European Commission 
to investigate subjective symptoms (i.e., psychological and neurovegetative distur-
bances) attributed to EM fi eld exposure. Several medical reports were reviewed for 
symptoms such as headache, asthenia, weakness, and irritability that patients or phy-
sicians attributed to EM fi elds. The study group concluded that most symptoms, if 
not all, were of psychosomatic origin. In controlled tests, the symptoms turned out 
to be statistically correlated to the degree of worry of patients, while no signifi cant 
association with exposure was found. The suffering of these patients is true and 
sometimes even intolerable. This confi rms a hypothesis put forward by several social 
scientists and medical doctors: a distorted perception of risk may cause excessive or 
unjustifi ed worries, which in turn may lead to real health effects [30].
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7.4 RISK MANAGEMENT

Today, risk assessment methods are widely applied in industrial and government 
regulatory applications involving new and existing technologies. These contribute to 
the development of risk management policies and strategies focusing on technologi-
cal change [5]. 

Risk management is fundamentally a societal decision [4]. It includes not only 
the outcome of risk assessment expressed in characterized risk, but also numerous 
other parameters, such as cost–benefi t and risk–benefi t analyses, views of stakehold-
ers, sociopolitical factors, and other nonscientifi c judgments [38,39].

7.4.1 INVOLVING THE PUBLIC

Love et al. [40] have classifi ed the public, including stakeholders, into several cat-
egories: (1) personally impacted, (2) administratively impacted (regulators, permit 
writers, elected offi cials), (3) generally concerned (interest based on ideological, 
 philosophical, moral, religious, and other beliefs) stakeholders, (4) process- concerned 
stakeholders, consisting of those who are concerned over the appropriate role of 
stakeholders in the decision process, and (5) uninvolved public. The authors rec-
ommend an affi rmative outreach to ensure the participation of personally impacted 
stakeholders in the risk management process. They suggest that the next priority 
should be given to the inclusion of administratively impacted stakeholders. The 
generally concerned and process-concerned stakeholders should be accommodated 
after the other two categories have been heard.

Two suggested risk management models stress the importance of involvement 
in risk management. The NRC 1983 model incorporates analysis (traditional risk 
assessment) along with deliberation (communication, discussion, and debate) [41]. 
The advantage of this framework is that it requires input from both scientists and 
stakeholders. The second framework is the U.S. Presidential/Congressional Com-
mission of Risk Assessment and Risk Management’s Framework for Environmental 
Health Risk Management (FEHRM). It views risk management as a six-stage cycle 
with stakeholder collaboration at the center, linking and interacting with all the other 
stages of risk assessment and management [42].

It is important to involve the public in risk management decisions. Experts 
should listen to the public because in a democratic society these stakeholders have a 
right to be heard; their views will refl ect values about risks. This is currently lacking 
in the risk assessment approach. Allowing stakeholders to voice their opinion will 
also enhance communication. While this is initially time consuming, in the long run 
it will produce a more sound management plan. Finally, incorporating more diverse 
points of view will only enrich the fi nal discussion and debate [41].

Public risk perception should be taken into account in decisions about risk man-
agement. When the public is concerned about a risk, risk managers should address 
these concerns by invoking additional protective measures. Further, risk manage-
ment underlines that societal values and public willingness to accept a risk are key 
factors in determining a society’s level of protection [43].

Even if the risk associated with a perceived hazard is low, the affected public 
will view it as unacceptable if industry offi cials have not shared information and 
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allowed public involvement in project planning. Public participation in risk manage-
ment offers many advantages to industry. It will provide an opportunity to defuse 
public anxiety associated with the technology, enhance public trust, improve indus-
try credibility, create a positive working relationship between industry and the pub-
lic, facilitate cooperation, and ultimately help the organization acquire regulatory 
approval. While this seems to be a logical step in project planning, it is not included 
in many management plans.

7.4.2 PUBLIC MEETINGS

While public meetings can provide a powerful forum for individuals and groups to 
voice their concerns, they are not encouraged for a number of reasons. For example, 
the majority of individuals may not have an opportunity to express their views, rep-
resentation may be biased in terms of  demographics, issues are often oversimplifi ed, 
and there is not always time to properly convey ideas.

Citizen advocacy councils remedy some of these problems. They are a better 
medium for input of ideas and permit better communication, information exchange, 
and interaction between individuals. However, they require a large commitment of 
time and the councils may not represent the prevailing viewpoints. The success of 
these councils is also contingent upon the offending industry.

It is essential to have the full support of the industry. There are a number of 
ways that industry can improve the success of the process. They can hold pub-
lic meetings early on and supplement public meetings with group discussions. 
Meetings should be held in neutral areas to enhance the comfort of all involved. 
It is important to evaluate the success of public participation and look for ways to 
improve the process. Industry representatives can assess the relationship between 
stakeholders— reviewing cooperation and confl ict between the parties and how it 
was handled. This feedback will be helpful in managing future interactions between 
stakeholders.

7.4.3 PRECAUTIONARY APPROACHES

There has been an increasing movement to consider precautionary approaches 
within a structured methodology for the management of risk in the face of scientifi c 
uncertainty. These approaches include both prudent avoidance and the precaution-
ary principle. Prudent avoidance became an attractive option because it serves to 
minimize exposure to the perceived problem with minimal costs. For instance, no 
radical changes to power lines or wireless base stations should be implemented until 
science shows clear evidence that there is a health risk. By acting prudently, manage-
ment can embrace a wide range of sensible actions that take into account the research 
results and community concerns.

The precautionary principle is another process that emerged in the 1970s in 
response to concerns about the extent to which complex and uncertain risks could 
be addressed within existing science and policy structures. Under this principle, any 
claim that an action might pose a risk to the environment or to people’s health, how-
ever unjustifi ed, seeks the initiator to prove that the action will do no harm before  
being allowed to act. One form of the principle dictates inaction when action may 
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pose a risk. It can also involve choosing less risky alternatives when they are avail-
able and taking responsibility for potential risks. 

The precautionary principle alters environmental policy-making by markedly 
changing the balance in the contest between opposing views on where to set the 
balance point when science is uncertain and the environment and human health 
are at stake [44]. This principle is an extremely conservative decision that leads 
to prudent actions in the face of uncertainty. It refl ects the need to take action at 
reasonable expense and with reasonable consequences for a potentially serious risk 
without awaiting the results of scientifi c research. The precautionary principle has 
been incorporated into numerous international treaties and declarations throughout 
Europe and several other countries. In fact, Italy, Switzerland, and New Zealand 
have adopted it to help set precautionary limits for EM exposure.

7.4.4 PUBLIC UNDERSTANDING OF PRECAUTIONARY ACTIONS

There is currently little empirical work that has addressed the question of if, under 
what circumstances, and how the introduction of precautionary actions and advice 
affects public appreciations of risks, and of those managing those risks [45]. An 
extensive exploration of this issue has been provided by Burgess [46], who maintains 
that precautionary actions and advice do not reduce concern but rather exacerbate it, 
acting to increase protest activity and intensify media presentation of risk. Burgess 
argues in relation to mobile telecommunications: “While the data supporting mobile 
phone risk is illusory, our commitment to risk is quite real. The evidence has only 
a walk on part in a drama that is being propelled by feelings and beliefs derived 
from experience of society. Mobile phone risk derives authority not from science, 
but from the widespread expectation of destruction facing humanity and the wider 
precautionary climate surrounding human action. The call for additional research, 
therefore, is naive, at best. No study can ever hope to provide the defi nitive negative 
proof, and the necessary qualifi cations of any future work will only add uncertainty 
and fuel skepticism that something must be dangerous.”

Whether public risk perception should be a stimulus for invoking precaution-
ary measures in risk management is a sensitive question [47]. Opponents of this 
approach stress the point that risk management should be based on sound science 
using the best available scientifi c evidence. They assume that perceived risk differs 
from assessed risk in that it may more readily be manipulated. In addition, they fear 
that precautionary measures may undermine the scientifi c basis for the established 
exposure limits. In their view, precautionary measures for EMF should be adopted 
only with great care [43].

7.5 RISK COMMUNICATION

In today’s world, technological change and uncertainty are constants. With increased 
demand by the public for greater transparency, it is essential that any communication 
involve a comprehensive discussion of the EM health risks as well as the technol-
ogy itself. Key technological questions that must be answered in a concise manner 
are (1) How does EM technology function? (2) What power levels are used with EM 
sources? (3) What is the difference between thermal and nonthermal effects of EM 
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fi elds? (4) What is the difference between EMF and RFR, and how do they differ 
with respect to their effects? When answering these questions, the experts should 
ensure that they classify questions and problems in terms of their importance to the 
communication partner and provide assistance in understanding. 

Clear and effective discussions about EM technology will serve to facilitate 
further communication about the risks associated with EM fi elds. The next step 
involves the planning and organization of the stakeholder discussion. Clarifi ca-
tion of the discussion’s goals at the outset will enhance the process. These goals 
could include: (1) fair distribution of risks, (2) legitimizing risk-taking expectations,
(3) awareness of the EM issue, and (4) knowledge of the interests, concerns, fears, 
and attitudes of other group members.

Effective communication demands a clear set of rules. It is essential that all 
members have the opportunity to express their viewpoint, discuss the views of 
 others, respond to criticisms, and ask questions.

Since communication about EM technology will form an essential part of this 
process, it is important that the explanations provided are clear and unambiguous. 
Once this background has been fi rmly established, it will be easier to discuss the 
risks associated with EM technology [2].

7.5.1 ROLE OF COMMUNICATION IN RISK ASSESSMENT

When assessing the health risks of EM fi elds, scientists need to follow certain 
guidelines. This will ensure that the process is based on solid scientifi c princi-
ples and not infl uenced by any of the stakeholder groups. An exhaustive review 
of available data is necessary to ensure an accurate and comprehensive assess-
ment. It would also be useful to document the procedures used to prepare the risk 
assessment, thereby allowing an evaluation of the entire process. Bailey also rec-
ommends a transparent evaluation to permit further scrutiny and evaluation by 
a broader audience. This will serve to strengthen the risk assessment. To further 
ease stakeholder apprehension, Bailey suggests that scientists acknowledge the 
uncertainties surrounding their claims and prepare their assessment using clear 
and unambiguous language. 

7.5.2 ROLE OF COMMUNICATION IN RISK MANAGEMENT

Incorporating risk communication into models of risk management may appear to 
be more time consuming than simply relying on risk assessment. However, greater 
emphasis on communication in the long term can simplify matters.

Diffi cult situations are likely to arise and dealing with these in the early discus-
sion or planning stages will only serve to enhance the overall risk management plan. 
Properly planned discussions will enhance credibility and provide greater under-
standing between the individuals within the group. It is essential to evaluate the 
effectiveness of the communication and note where improvements can be made.

For risk managers and risk communicators who seek to foster a low level of 
public concern until all answers are in, brochures and similar materials are unlikely 
to achieve that goal. The EM problem may be with us for a long time before
science is able to provide the answers that risk managers and policy makers need 
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to implement technical changes that will alter the public’s exposure to EM fi elds. 
If the public is to become an effective partner in the future decisions about EM 
health and safety issues, they will need to become informed and aware of the state 
of the science. Though initial awareness of the science associated with EM health 
and safety research may bring an elevation of concern, that concern may leave in 
its wake a public better prepared to deal with uncertainties about EM exposure and 
consequences [48].

While society has become increasingly informed and educated about environ-
mental issues and more demanding about consumer information access, people are 
still anxious about scientifi c and technological innovation. Genetically modifi ed 
foods, cloning, bovine somatotrophin, and EM fi elds represent several of the recent 
advances that have the potential to create uneasiness amongst the general public 
simply because of poor communication.

The EM background environment must be carefully assessed. Because of more 
assertive consumer activism, there is widespread skepticism and uncertainty due to 
risk mismanagement. For instance, the public has not always been properly informed 
of the health risks associated with asbestos, tobacco, and silicone breast implants. 
All of these were initially believed to be safe.

The bovine spongiform encephalopathy (BSE or mad cow disease) scare in 
 Britain has led to uneasiness among the public about things as basic as their own 
food and food-processing standards. In this milieu, it is easy to see how the alleged 
health effects of EM fi elds are equated with tobacco and BSE.

7.5.3 MEDIA COVERAGE

Confl icting safety reports from the experts and the sensationalistic media coverage 
frequently add to anxiety. Media reports often lack the scientifi c/industrial knowl-
edge necessary to accurately assess the facts. Also, due to time and space constraints 
and the fact that sensationalism sells, there is often a biased presentation of the 
information.

Communicating with media is important. Currently, media reports are rarely 
reviewed by the source, unlike the peer review process in scientifi c publication. 
Media reports are mostly on the spotlight stories instead of those that weigh sci-
entifi c evidence. In my opinion, accumulated misinformation from the media is 
the source of electrophobia in the general public. It is the responsibility and moral 
obligation of scientists to bring “verifi ed” information to the public through the 
media [49].

Media coverage must also be carefully monitored. It is often irresponsible, using 
scare tactics to enhance arguments. Sensational headlines such as “my mobile gave 
me cancer” do little to dispel the myths of EM dangers. They fail to quantify the 
risks associated with EM fi elds, and their coverage often focuses on nontechnical 
issues. Reports often have an anti-industry tone. This is likely due to their infor-
mation sources, rather than industrial experts. Scientists have an important role in 
shaping public perception because they are generally viewed as having greater cred-
ibility. It is the responsibility of scientists to provide accurate information to the 
media and balance the information fl ow between the media and activists [2].
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7.5.4 ROLE OF INDUSTRY

A critical issue for industry and government is how to communicate with the public 
about EM exposure and its potential health risk. What models of risk can be used 
as a basis for risk communication, and how will the public react to new informa-
tion about EM exposure [48]. Industry infl uences public perception, but not always 
in a positive way. The safety of new technology has not been properly addressed by 
industry; as a consequence, fears among the public are widespread. Industry is urged 
to take a more active role in public education to improve its failing credibility and 
avoid costly  commercial consequences.

Industry should think carefully when communicating with the public. It is impor-
tant to ensure the person or organization is experienced, listens to public concerns, 
has integrity, and communicates in simple language (not very technical or defen-
sive). The communicator must be more responsible when reporting risks associated 
with EM technology. There is often uncertainty and disagreement among industry 
experts concerning the level of risk. 

The importance of good risk communication between the industry and concerned 
residents is essential when one considers the problems encountered with mobile 
phones, base stations, and power lines. Base stations, for instance, continue to be 
a public concern even though cellular phones expose users to 1000 times stronger 
fi elds than the actual base stations [22]. People who do not use cellular phones will 
likely oppose the towers because they are exposed to some level of risk without any 
perceived benefi ts. While these stations are not constructed in residential areas, the 
public is still outraged because of poor relations with the service providers. Phone 
companies as yet do not recognize the merit of a monitoring service to ease public 
concern, particularly because it is too expensive. As a result, the public continues to 
protest and the construction of new phone towers has been halted.

The WHO EMF program has been instrumental in bridging the gap between 
the media, industry, scientists, and the general public. WHO’s publications have pro-
vided valuable and readily accessible information to the concerned parties.

7.5.5 ROLE OF THE INTERNET

One way to effectively communicate EM risk to the public is through the Internet. 
The Internet can be used to gather resources, ask questions, and provide an oppor-
tunity for the public to become skilled interveners. It facilitates exchanges between 
experts and the stakeholders and forces industry to be open and accountable. Despite 
its many advantages, the public must exercise caution when reviewing Internet 
resources. Not all information is peer reviewed and some may be simply anecdotal in 
nature. Since activists maintain many of the sites, the information may be biased.

7.5.6 COMMUNICATION WITH CHILDREN

There is a wealth of research on potential health hazards of EM fi elds, but very 
little is targeted specifi cally at children. Not a lot of information is available 
with regard to specifi c EM fi eld communication to adolescents and children [50].
Few websites have been identifi ed that are more or less oriented to inform  adolescents. 
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These include three websites from: Belgium [51], Switzerland [52], and Canada [53]. 
Information on EM fi elds needs to be converted in material suitable for different age 
groups. An EM communication strategy and material for children and adolescents 
are scarce and need to be further developed.

7.6 TRENDS AND FUTURE RESEARCH

In spite of a vast array of studies investigating the association between EM fi elds 
and human health, a number of unresolved issues still remain. The unresolved issues 
continue to raise public concern that there could be some degree of risk from EM 
exposure. These concerns infl uence risk management and public acceptance of sci-
entifi c health risk assessments. Reasonable risk management should build on evi-
dence stemming from both risk assessments and insights from social studies that 
investigate this concern through well-organized research.

7.6.1 CHALLENGES AND IMPLICATIONS

At the scientifi c level, characterization of potential adverse health effects associated with 
exposure to EM fi elds has been diffi cult. Science has been under fi re for not addressing 
the key issues surrounding this risk. However, we should learn that scientifi c research 
on possible hazards and risk assessment process should start from the very beginning of 
every new technological development. Following extensive efforts by the scientifi c com-
munity, including well-funded broad-based research programs coordinated by national 
and international organizations, epidemiological and toxicological studies conducted to 
date have provided ambiguous evidence of human health hazards.

The management of EM risks is complicated not only by scientifi c uncertainty 
about the level of potential risk, but also by public perceptions of risk. Public con-
cern is heightened by a lack of understanding of EM fi elds, which cannot be seen or 
sensed, but are ubiquitous in our environment. Public concerns may also be height-
ened by media reports on EM fi elds, which are generally not based on a compre-
hensive evaluation of the weight of scientifi c evidence in support of a documented 
population health risk, but rather on reports of individual studies that might attract 
the attention of the public.

What is needed is greater public involvement in the risk-management decision-
making process, including both individuals and stakeholder groups. Participation 
in the development of an appropriate risk management strategy can go a long way 
toward the achievement of consensus solutions that enjoy the support of interested 
and affected parties, even if all participants do not fully understand all of the sci-
entifi c complexities involved in the evaluation of risk. With technologically based 
risks, such as those that may be associated with EM fi elds, industry has a particular 
responsibility to take a leadership role in open participatory discussions on risk man-
agement strategies. As risk management options are debated, consideration will need 
to be given to the level of risk that might be associated with exposure to EM fi elds 
and the attendant scientifi c uncertainty about EM risks. In addition to considering 
risk, social values and economic costs and benefi ts will require consideration [2].

The evaluation and management of potential human health risks from EM fi elds 
presents many challenges. When the scientifi c database is ambiguous, as is the case 
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with EM fi elds, expert judgment of the overall weight of scientifi c evidence becomes 
particularly important. Because of this uncertainty about EM risks, the public is 
more likely to experience diffi culty in evaluating the available information and rely 
more on perceptions than facts when drawing conclusions. Effective risk communi-
cation techniques assume even greater importance in issues such as EM fi elds than 
in cases where risks are more clearly delineated and the need for risk mitigation 
actions more obvious. However, since even the most effective risk communication 
techniques are not likely to clarify all of the subtleties surrounding EM fi elds as a 
population health issue, it is important that all stakeholders in this issue participate 
in developing consensus solutions. 

7.6.2 RESEARCH AND POLICY

Risk assessment research is one of the costs of bringing new technologies into soci-
ety. The present response of society is ponderous and often features a barely hidden 
contest involving manufacturers, government, and the public. Manufacturers face 
confl ict in trying to establish the safety of a product but avoid the taint of hazard 
that can come just by doing the research. Parties in government or the public may 
be poised to believe there is hazard and to be suspicious of biases introduced by the 
manufacturer’s self-interest. In the present system, these confl icts often produce a 
protracted tug-of-war before research can begin [44].

The results of Chapters 3, 4, 5, and 6 have revealed that there is no conclusive 
and  consistent evidence to suggest exposure to EM fi elds at levels below the recom-
mended safe limits can cause cancer and other adverse health effects. However, in 
recognition of widespread debate and confl icting views— particularly in the contexts 
of public health and environmental  protection—government, scientists, and indus-
try should take effective research and policy actions to address the concerns about 
potential health risks of EM energy. These actions may include: 

Independent and unbiased research to further our understanding of the 
potential EM health risks.
Transparency and full divulgence of data on EM emissions from various 
sources.
Public access to the most up-to-date research on biological and health 
effects associated with EM fi elds.
Scientifi c risk assessment that goes beyond technical issues and identifi es 
a need for psychometric approach—including cognitive, emotional, and 
social demographic determinants of risk.
Thorough risk assessment and research projects with a potential to discover 
even the smallest of health risks with aims and results to be well communi-
cated to all stakeholders.
Public participation in risk management actions taken in response to con-
cerns about the potential health risks of EM fi elds.
Assessment of the impact of precautionary measures on public concern and 
the adoption of voluntary or mandatory policies.
Adequate communication with individuals and groups on the various levels 
of scientifi c uncertainty.

•

•

•

•

•

•

•

•
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7.6.3 CONCLUDING REMARKS

As the development of science and technology advances and as we are enjoying a 
better quality of life, it is required from scientists to ensure that safety is not com-
promised. Scientists must be very careful in reporting their fi ndings. Mistakes must 
be minimized and stopped at the fi rst level of scientifi c research.

In closing, I would like to summarize Part I of this book and make a good rea-
son to start Part II with this conclusion made by Chou C-K [49]: “After more than 
50 years of studies looking for EMF bioeffects, it is time for the bioelectromagnetics 
research community to clarify the identifi ed gaps in knowledge on EM bioeffects as 
listed in the WHO research agenda and move on to study what EM fi elds can do for 
people. Dr. d’Arsonval would have been pleased to learn that what he started in the 
late 19th century on medical applications of EM fi elds holds promise for much fruit 
in the 21st Century.”
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8 Electromagnetic Therapy

8.1 INTRODUCTION

Advances in electronics and electromagnetic theory have set the stage for an unprec-
edented drive towards the development of medical devices with various diagnostic 
and therapeutic applications. RF (hundreds of kilohertz to a few megahertz) and 
microwaves (hundreds of megahertz to approximately 10 gigahertz) are forms of 
nonionizing radiation, unlike much higher frequencies (above visible light) in the 
EM spectrum, which are ionizing. Therapies using EM sources at RF and microwave 
frequencies have been called thermal therapy. These therapies have been applied in 
a number of frequency regions along the EM spectrum, as shown in Figure 8.1. 
Included among these thermotherapies are hyperthermia and thermal ablation.

Thermotherapy, or thermal therapy, encompasses all therapeutic treatments based 
on the transfer of thermal energy into or out of the body. In clinical settings, the major 
objective of thermal therapy is to achieve effi cacious treatment outcome without dam-
aging normal tissues. The extent of initial tissue necrosis is predominantly determined 
by the thermal power and energy applied to the tissue before charring [1]. The use of 
heat alone or in combination with radiotherapy or chemotherapy to increase direct 
ablation of tumors is the subject of Part II of this book.

In recent years, a range of medical applications based on various sources of 
energy, especially EM power, have been widely investigated [2–4]. Owing to the 
wide range of possible therapeutic effects, thermal therapy is practiced with consid-
erably large variations in methodology based on geography as well as subdisciplines 
within the medical community [5]. Several books, handbooks, and review papers 
providing good background information on thermal therapy have been published 
over the years. Michaelson and Lin [6] reviewed biological effects and health impli-
cations of RF radiation. Thuery [7] described the ISM applications of microwaves. 
Rosen and Rosen [8] discussed a number of topics related to microwave therapeutic 
medicine. Polk and Postow [9] reviewed biological effects of EM fi elds. Habash [10] 
discussed human bioeffects and safety consideration related to EM fi elds. Rosen 
et al. [3] highlighted medical applications of RF/microwaves with emphasis on 
emerging diagnostic and therapeutic applications, such as microwave breast can-
cer detection and treatment with localized high power used in ablation of the heart 
and liver, benign prostate hypertrophy, angioplasty, and others. Habash et al. [11] 
reviewed and evaluated the literature on acute and long-term health risks associ-
ated with RF radiation. Dewhirst et al. [12] presented an overview on the carcino-
genic effects of hyperthermia alone or combined with known carcinogens, such as 
ionizing radiation and chemical carcinogens. Stauffer and Goldberg [5] introduced 
thermal ablation therapy, covering a range of ablation articles included in a special 
issue on the same subject published by the International Journal of Hyperthermia. 

CRC_62840_Ch008.indd   199CRC_62840_Ch008.indd   199 10/4/2007   10:38:2610/4/2007   10:38:26



200 Bioeffects and Therapeutic Applications of Electromagnetic Energy

FIGURE 8.1 Thermal therapy applications along the EM spectrum.
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Haveman et al. [13] overviewed the current knowledge about effects of hyperthermia 
at temperatures used in clinical oncology on the peripheral nervous system. Stauffer 
[14] reviewed the technology used for thermal therapy of cancer, with emphasis on 
the evolution of equipment from basic single-element devices of the early 1980s to 
adjustable multielement heating devices in use or in the fi nal stage of development. 
Vander Vorst et al. [4] addressed the needs of today’s engineering community with 
an interest in the use of RF and microwave energy in public health and in  medicine. 
The authors devoted one chapter of their book to thermal therapy and another chapter 
to delivery systems for therapeutic applications. Ayrapetyan and Markov [15] edited 
a book covering a very broad range of frequencies and amplitudes in 24 articles 
arranged in four chapters: Mechanisms of EM Interactions with Biological Systems, 
EM Therapy, EM Dosimetry, and Epidemiology and Policy.

In general, thermal therapy is categorized into three different modalities accord-
ing to the temperature level and time duration.

 1. Diathermia. Heating up to 41°C with applications in physiotherapy for the 
treatment of rheumatic diseases.

 2. Hyperthermia. The temperature of a part of the body or of the whole body 
can be raised to a higher than normal level (41–45°C), which may allow 
other types of cancer treatments (radiation therapy or chemotherapy) to 
work better. This type of hyperthermia has applications in oncology for 
cancer treatment and will be investigated in Chapter 9.

 3. Thermal ablation. Very high temperature (above 45°C) can be used to destroy 
cells within a localized section of a tumor. This is commonly used in oncol-
ogy for cancer treatment, in urology for benign prostatic hyperplasia (BPH) 
treatment, and in cardiology for heart stimulations and other areas. Thermal 
ablation using RF and microwave techniques are discussed in Chapter 10.

8.2 HISTORY OF ELECTROMAGNETIC THERAPY

The use of thermal energy for a therapeutic purpose dates back thousands of years. 
In the splendor of the Roman Empire, thermal baths constituted a habit, often with 
complete facilities for the treatment of diseases involving the use of humid and dry 
heat in local or general applications. Probably the oldest report related to thermal 
therapy was found in the Egyptian Edwin Smith surgical papyrus, dated around 
3000 BC. Researchers like to cite Hippocrates (460–370 BC) in particular, although 

the method he describes in one of his aphorisms, i.e., hot irons, involves higher 
 temperatures, such as those used in cauterization. In the nineteenth and twentieth 
centuries, fever therapy has been used as a method to increase temperature, while 
other investigators started to apply RF techniques in medicine [16].

The modern discipline of thermal therapy emerged from a number of radiation-
biology-oriented laboratories in the mid-to-late 1970s [17]. Studies on cell cultures 
and experimentally induced tumors in vivo provided convincing justifi cation for the 
clinical application of heat. The rationale is based on a direct cell-killing effect at 
temperatures above 41–42°C [18]. At higher temperatures, equivalent levels of kill-
ing can be achieved with shorter exposure times.
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Two key papers, published in the mid-1980s, attracted attention to the opportu-
nity to assess the effi cacy of cell killing with heat [19,20]. These papers established 
the fi rst concepts for thermal dosimetry and indicated that signifi cant cell killing 
could occur if cells or tissues were heated to more than 42°C for 1 h or more. The 
application of heat has continued to increase in sophistication. Initially, treatments 
were limited to very cold (ice) or very hot (cautery) temperatures that could not 
be controlled but were maintained for a suffi cient time to obtain visually obvious 
effects on surface tissues. Over time, there has been renewed interest in therapeutic 
applications of hot and cold temperature, primarily due to limitations of conventional 
therapeutic modalities (surgery, chemotherapy, and radiotherapy) and improvements 
in devices and techniques used to deliver and monitor the effect of energy [5,21,22]. 

Overall, enthusiasm for thermal therapy waned signifi cantly in the mid-to-late 
1990s, partly as a result of the perceived diffi culties in achieving adequate treatment 
as defi ned by the need to kill cells directly by heating [23]. The problem that was 
faced by the thermal therapy community at that juncture was unrealistic thermal 
goals because of the lack of adequate equipment for delivering thermal treatment 
and inability to measure the treatment delivered. A combination of the above dif-
fi culties is still a challenge to the design and implementation of successful clinical 
trials [24].

8.3 MECHANISM OF THERMAL INJURY

Tissue injury caused by heat occurs in two distinct phases. The initial phase is direct 
heat injury that is predominantly determined by the total energy applied to the tumor, 
tumor biology, and tumor microenvironment [1]. The mechanisms of direct thermal 
injury and thermosensitivity involve complex interactions within tumor tissue at cel-
lular and subcellular levels. The cell membrane appears to be the cellular component 
most vulnerable to heat injury. 

The signifi cance of Joule heating as a mode of injury can be estimated by 
fi rst determining the tissue temperature as a function of time. Tropea and Lee 
[25] simulated the Joule heating dynamics using a numerical method to solve the 
bioheat equation [26]. Joule heating density is the product of the electrical con-
ductivity and the time average square of the electric fi eld. In vitro [27] and in vivo 
[28] studies demonstrate that tumor cells are destroyed at lower temperatures than 
normal cells.

The second phase is indirect injury after focal hyperthermia application that 
produces a progression in tissue damage. This progressive injury may involve a 
balance of several factors including microvascular damage, ischemia-reperfusion 
injury, induction of apoptosis, Kupffer cell activation, altered cytokine expression, 
and modulation of the immune response [29]. The effects of heat depend on the tis-
sue temperatures attained, determined by the total thermal energy applied, rate of 
removal of heat, and the specifi c thermal sensitivity of the tissue (Table 8.1) [29].

Classical hyperthermia relies on a temperature of 42–45°C for periods of 30–60 
min to cause irreversible cellular damage [30]. As the tissue temperature rises to 
60°C the time required to achieve irreversible cellular damage decreases exponentially. 
Protein denaturation occurs between 60 and 140°C and leads to immediate cell 
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death. Vaporization of tissue water is superimposed on this process between 100 
and 300°C. In addition, carbonization, charring, and smoke generation occurs at 
300–1000°C [31].

The underlying physical principles and engineering aspects of heating mecha-
nisms have been described in a number of review articles [1,12,22,32–39] and books 
[1,4,16,29,40–42]. In a comprehensive review of the literature, Dewhirst et al. [38] 
summarized the basic principles that govern the relationships between thermal 
 exposure (temperature and time of exposure) and thermal damage, with an emphasis 
on normal tissue effects. Methods for converting one time– temperature combination 
to a time at a standardized temperature are provided as well as a detailed discussion 
about the underlying assumptions that go into these calculations. This review makes 
it clear that much more work needs to be done to clarify what the thresholds for 
thermal damage are in humans.

8.4 THERMAL THERAPY TREATMENT PROTOCOL

Thermal therapy is currently implemented as a minimally invasive alternative to 
traditional surgery in the treatment of benign disease and cancer, as well as repair of 
sport injuries and tissue reshaping or modifi cation [17]. Thermal ablation, thermal 
coagulation, hyperthermia, and thermotherapy are terms often used to describe the 
use of heat to directly modify or destroy tissues [14]. Figure 8.2 shows the schematic 
range for thermal therapies.

TABLE 8.1
Effect of Temperature on Biological Tissues

Temperature 
Range (°C)

Time 
Requirements Physical Effects Biological Effects

<−50 >10 min Freezing Complete cellular destruction
0–25 Decreased permeability Decreased blood perfusion; 

decreased cellular metabolism; 
hypothermic killing

30–39 No time limit No change Growth
40–46 30–60 min Changes in the optical 

properties of tissue
Increased perfusion; 
thermotolerance induction; 
hyperthermic killing

47–50 >10 min Necrosis, coagulation Protein denaturation; no subtle 
effects

<50 After ∼2 min Necrosis, coagulation Cell death
60–140 Seconds Coagulation, ablation Protein denaturation; membrane 

rupture; cell shrinkage
100–300 Seconds Vaporization Cell shrinkage and extracellular 

steam vacuole
<300 Fraction of a 

 second
Carbonization, smoke 
generation

Carbonization
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Throughout Part II, we will use the following protocols that describe thermal 
therapy:

 1. Cryoablation [temperature (T) <−50°C for time (t) >10 min]
 2. Hyperthermia:

a. Long-term low-temperature hyperthermia (40–41°C for 6–72 h)
b. Moderate-temperature hyperthermia (42–45°C for 15–60 min)

 3. High-temperature hyperthermia or thermal ablation (>50°C for >4–6 min)

It is important to stress that thermal ablation and moderate-temperature hyperther-
mia should be viewed as complementary forms of thermal therapy. Based on realistic 
limitations of each approach, neither form of therapy is likely to replace the other. The 
uniqueness of thermal ablation is the ability to treat a tumor with a defi ned volume in 
sites where surgery itself is diffi cult (e.g., liver) or where organ function preservation is 
needed or desired (e.g., prostate, uterus). However, this form of therapy will fi nd little 
use for large bulky tumors such as colorectal cancer primaries, soft tissue sarcomas, 
head and neck nodules, and superfi cial disease involving the skin. Whether a conse-
quence of tumor size or infi ltrative disease with borders that are diffi cult to defi ne, 
there are applications that require more subtle moderate-temperature hyperthermia as 
opposed to complete ablation to preserve surrounding critical normal tissue structures 
[5]. Figure 8.3 shows the challenges to the development of thermal therapy.

8.5  POSSIBLE SIDE EFFECTS OF ELECTROMAGNETIC 
ENERGY AND HEAT

It has been known for some time that high intensities of nonionizing radiation can 
be harmful due to the ability of its energy to heat biological tissue rapidly. This 
is the principle by which microwave ovens cook food, and exposure to high EM 
power densities, i.e., on the order of 100 mW/cm2 or more, can result in heating of 

FIGURE 8.2 Schematic range of thermal therapies.
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the human body. Tissue damage can result primarily because of the body’s inability 
to cope with or dissipate the excessive heat. The amount of damage in tissue as a 
result of heating is dependent upon both temperature and time. On a different note, 
Osepchuk and Petersen [43] have noted that millions of people experienced strong 
EM exposures via clinical diathermy during the last century with only benefi cial 
consequences.

8.5.1 TISSUE PHYSIOLOGY AND RESPONSE TO HEAT

Heat causes numerous subtle changes in tissue physiology, such as increased blood 
perfusion, vascular permeability, and metabolic activity. The most important physi-
ological parameter in this context is blood fl ow. When any tissue is heated, various 
physiological changes occur—the majority of which are secondary to changes in 
blood fl ow [44–46]. Blood fl ow is also one of the major vehicles by which heat is 
dissipated from tissues; thus the tissue blood supply will have a signifi cant infl uence 
on the ability to heat tissues [47]. The lower the rate of blood fl ow, the easier it is 
to heat. Although solid tumors can have blood fl ow values that can be greater than 
those of certain normal tissues, when compared to normal tissues the tumor blood 
supply is generally primitive and chaotic in nature, which can result in areas that are 
nutrient-deprived, low in oxygen, and highly acidic; cells that exist in these adverse 
conditions are generally more sensitive to the cytotoxic effect of heat [46].

Toxicity of heat generated during thermal therapy in general is low. Burns rep-
resent typical thermal therapy associated toxicity with low incidence [48], which can 
be avoided via correct heating techniques. The primary hazards of thermal therapy 
are due to either increased body core temperature or increased temperature in spe-
cifi c organs. Regulation of body core is critical in humans because numerous cellular 
structures and metabolic pathways are affected by changes in temperature. Body core 
temperatures range from 36 to 38°C, but may increase during, for example, exercise 
or humid weather. Normally, in healthy persons such excursions seldom exceed 39°C. 
Compared with other species, humans are especially adept at dissipating heat through 

FIGURE 8.3 Challenges to the development of thermal therapy.
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increased blood fl ow and increased sweating over most of the body surface [49]. 
Most healthy people can tolerate body core temperature excursions up to 40°C when 
adequately hydrated. At higher temperatures (42–43°C), cellular death begins.

The molecular-biological mechanisms of health effects are still under investi-
gation. Increases in temperature result in increases in molecular motion in cells, 
tissues, and organs. The increased molecular motion in turn increases chemical reac-
tion rates. If reaction rates within steps of a metabolic process become unbalanced, 
metabolism may be altered. The activation energies of metabolic reactions are low, 
of the order of 3–20 kcal/mol. For short duration heat exposures, it was thought that 
unbalanced metabolism would be transitory and, therefore, unlikely to cause per-
manent damage. Long periods of unbalanced metabolism could cause permanent, 
irreversible damage, but there is currently no scientifi c evidence for this hypothesis 
[49]. Because EM exposure may produce hyperthermia, it is necessary to delineate 
whether any observed effects are specifi c to EM exposure or if they were simply a 

result of the hyperthermia attendant on EM exposure [50].

8.5.2 CELLULAR RESPONSES

Various targets in the cell affected by rises in temperature have been found, such 
as cell activity, growth rate, membranes, the cytoskeleton, synthesis of macromol-
ecules, the cell cycle, regulating molecular functions such as apoptosis, and DNA 
repair [51–54].

The cell growth rate increases with increasing temperature to some maximum 
temperature above which growth is sharply inhibited [55–57]. In the hyperthermic 
region above the maximum growth temperature, there are three signifi cant cellular 
responses for thermal therapy: cytotoxicity, radiosensitization, and thermotolerance 
[58,59]. These changes at the cellular level must be due to temperature-induced alter-
ations in molecular pathways. These usually involve inhibition of DNA, RNA, and 
protein synthesis [58]. While protein synthesis is inhibited during heating at higher 
temperatures, at milder temperatures and after return to normal growth temperature 
the induction of heat-shock protein (HSP) occurs [60]. This is an inducing event 
and closely associated with the induction of thermotolerance. The role of these pro-
teins in neurodegenerative disease and in suppression of neuronal apoptosis led to a 
strongly enhanced interest in these proteins [61,62].

Hyperthermia may induce both regional and systemic production of cytokines 
through activation of infl ammatory cells. The release of tumor necrosis factor (TNF) 
is well described after whole-body hyperthermia (WBH) [63]. Increased levels of 
TNF have direct cytotoxic effects, can induce tumor endothelial injury, and sensitize 
tumor cells to heat-induced damage [64,65].

A number of studies have documented the adverse effects of hyperthermia on 
the normal adult testis in several species, including mouse [66], rat [67], and human 
[68,69]. The reported effects include a temporary reduction in relative testis weight 
accompanied by a temporary period of partial or complete infertility [70,71]. Sperm 
quality has also been shown to suffer, with a reduction in progressive sperm motility 
and a signifi cantly lower in vitro fertilization rate of oocytes by sperm from heat-
shocked males [70,72].
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Studies have shown heat-dependent immunological reactions of human leuko-
cytes [73] and effects on natural killer cells and cytokine depletion [74].

8.5.3 IMMUNOLOGICAL EFFECTS

The possibility of hyperthermia-induced inhibition of the host immune system must 
be considered when heat is used clinically for cancer treatment [75]. WBH appears 
to enhance the synergistic and antiproliferative activities of gamma-interferon, lead-
ing to an upgrading of immune surveillance [76,77]. However, this effect is reversed 
at temperatures greater than 42°C [78]. Whether some of the changes described in 
WBH occur with focal hyperthermia remains unknown [1].

Heat-shock proteins are the most abundant and ubiquitous soluble  intracellular 
proteins. They are recognized as signifi cant participants in immune reactions. 
Hyperthermia induces overexpression of HSP at the expense of inhibiting the 
 synthesis of many other proteins, including cytosketetal and regulatory proteins 
that may be crucial for normal cellular functions. For example, heat may alter 
the normal body immuno-response by altering thymocyte [79] and leukocyte 
[76] production as well as inducing T-lymphocyte propagation [80]. Ito et al. [81] 
 suggested that HSP70 is an important modulator of tumor cell immunogenic-
ity and that hyperthermic treatment of tumor cells can induce the host antitu-
mor immunity via the expression of HSP70. These results may benefi t further 
efforts on  developing novel cancer immunotherapies based on hyperthermia. 
Other  studies demonstrated a dual role of thermotolerance and immune stimula-
tion of HSPs [82,83]. Ivarsson et al. [84] used an implantation model of colorectal 
liver  metastases to identify increased expression and change in the localization of 
HSP70 at 10–15 h after laser ablation. It is postulated that increased HSP tumor 
petite complexes following focal hyperthermia are involved in tumor antigen 
 presentation to  macrophages and other antigen presenting cells. The  immunological 
properties of HSPs enable them to be used in new  immunotherapies of cancers 
and infections [85,86].

Milani and Noessner [87] reviewed the topic and concluded: “We emphasize that 
the response to thermal stress is not a one-time point event, but rather a time period 
starting with the heat exposure and extending over several days of recovery. In addi-
tion, the response of tumor cells and their susceptibility to immune effector cells is 
strongly dependent on the model system, the magnitude and duration of the thermal 
stress, and the time of recovery after heat exposure. Consideration of these aspects 
might help to explain some of the confl icting results that are reported in the fi eld of 
thermal stress response.”

8.5.4 CARDIOVASCULAR RESPONSES

Cardiovascular strain and heat-related disorders are quite common, especially 
in people unaccustomed to heat. Some people are particularly susceptible to the 
adverse effects of heat, especially the elderly, who are at increased risk of  coronary 
 thrombosis in these circumstances, and infants and people with certain medical 
 conditions or taking certain medications [49].
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When body temperature rises, heat balance of the body is normally restored by 
increased blood fl ow to the skin and by sweating. These responses increase the work 
of the heart and cause loss of salt and water from the body. They impair working 
effi ciency and can overload the heart and cause hemoconcentration, which can lead to 
coronary and cerebral thrombosis, particularly in elderly people with atheromatous 
arteries. These adverse effects of thermoregulatory adjustments occur with even mild 
heat loads and account for the great majority of heat-related illness and death. 
Donaldson et al. [88] reviewed the basic thermoregulatory physiology of healthy 
people in relation to hazards from external heat stress and internal heat loads gener-
ated by physical exercise or RF radiation. The authors concluded that exposure to RF 
exposure levels currently recommended as safe for the general population, equivalent 
to heat loads of about one-tenth basal metabolic rate, could continue to be regarded 
as trivial in this context, but that prolonged exposures of the general population to RF 
exposure levels higher than that could not be regarded as safe in all circumstances.

Gong et al. [89] found that WBH promotes cardiac protection against ischemia/
reperfusion injury, in part by up-regulation of HSP. Their experiments on rats subject 
to WBH at 42°C for 15 min showed that sublethal heat stress can lead to up-regulation 
of both vascular endothelial growth factor (VEGF) and HSP70 in cardiac tissue, and 
promote focal endothelial proliferation in the heart. The above fi nding is supported 
by a previous study [90].

Compared with animals, humans are exceptionally well adapted to dissipate 
excess heat; in addition to a well-developed ability to sweat, which in humans can 
be produced over most of the body surface, the dynamic range of blood fl ow rates in 
the skin is much higher than in other species [91]. Most deaths caused by heat are not 
due to hyperthermia, but to loss of water and salt in sweat, leading to hemoconcen-
tration. This makes the blood more prone to clot and so leads to increased incidence 
of coronary and cerebral artery thrombosis in elderly people. The importance of this 
is that any degree of heat exposure suffi cient to cause sweating, from any source, will 
carry a risk to humans [49]. 

8.5.5 NERVOUS SYSTEM RESPONSES

The nervous tissues appear critically sensitive to heat, with a possibility of  damage 
and changes in nerve morphology for nerve conduction and nerve function [13]. Most 
studies on the effects of hyperthermia on nervous system have focused on the heat-
shock response, characterized by the transient induction of HSPs, which play a role 
in repair and protective mechanisms [92]. Although interspecies variations may play 
a role, the data indicate that the maximum heat dose without obvious complications 
after localized hyperthermia in regions of the CNS lies in the range of 40–60 min at 
42–42.5°C or 10–30 min at 43°C [93].

A review of the literature on the effects of intermediate- and low-level EM radia-
tion shows that exposure at relatively low SAR (less than 2 W/kg) under certain 
conditions could affect the nervous system [94–97]. This includes effects on BBB, 
morphology, electrophysiology, neurotransmitter activity, and metabolism.

Takahashi et al. [98] induced WBH in dogs by extracorporeal heating of blood, to 
determine the effects 7 days after hyperthermia on the canine brain and spinal cord. 
The thermal dose resulted in neither microscopic damage to the CNS nor neurological 
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symptoms, as determined by comparison of microscopic and neurological fi ndings 
with those of dogs whose brain and spinal cord temperatures were maintained at 37°C 
for 60 min. The fi ndings suggest that, for medical purposes, WBH appears promising 
for application at a thermal dose of up to 42°C for 60 min.

Histopathological data show that the myelin sheath, which is important for nerve 
conduction, is the most vulnerable part of the nerve fi ber. Hoogenveen et al. [99] 
observed many demyelinated axons 1 week after heat treatment for 30 min at 44°C. 
Sasaki and Ide [100] observed demyelinated axons after heating a part of the rat 
spinal cord.

Studies on nerve conduction 1 h after 30-min [101] or 60-min [102] treatment at 
45°C showed a signifi cant decrease in amplitudes and conduction velocities, possibly 
because of edema and early demyelination. Hogenveen et al. [103] showed that nerve 
function remained normal for the fi rst few hours after treatment for 30 min at 45°C.

For the CNS, irreversible damage was found after treatment at 42–42.5°C for 
longer than 40–60 min [104]. Exposure of rats at 38°C for 4 h results in cellular dam-
age in several parts of the brain [49]. Effects of whole-body and localized heating on 
the CNS are discussed by Sharma and Hoopes [105].

Clinically, Bull et al. [106] studied nerve conduction in four patients with neu-
ropathy after WBH and observed a pattern of scattered demyelination. Haveman 
et al. [93] indicated in an overview that there are no clear experimental data pointing 
out an increase in adverse effects specifi c to the CNS after localized or WBH as a 
result of combined treatment with chemotherapy.

8.5.6 CARCINOGENIC EFFECTS

With respect to the behavioral effects of heat in humans, it has been shown that 
cognitive performance is affected well before the physiological tolerance lim-
its are reached. Data from laboratory animals describe the disruption of ongoing 
vigilance behavior by imposed EM fi elds [49]. D’Andrea et al. [107] reviewed the 
literature concerning EM exposure and behavioral and cognitive effects. They con-
clude: “Reports of change of cognitive function (memory and learning) in humans 
and laboratory animals are in the scientifi c literature. Mostly, these are thermally 
mediated effects, but other low-level effects are not so easily explained by thermal 
mechanisms. The phenomenon of behavioral disruption by microwave exposure, an 
operationally defi ned rate decrease (or rate increase), has served as the basis for 
human exposure guidelines since the early 1980s and still appears to be a very sensi-
tive EM bioeffect.”

Prior to discussing the problems associated with thermal therapy, it should be 
pointed out that unlike ionizing radiation and toxic drug therapy, nonionizing radia-
tion such as EM fi elds has not been found to have a mutagenic effect [108,109]. It is 
now widely agreed that cancer is initiated by alterations in the genetic material (DNA) 
in the cell (geotaxis effects), although some nongeotaxis chemicals and processes 
(called epigamic carcinogens) have been recognized. Alterations in genetic material 
can occur if there is breakage in the DNA, leading to a single- or double-stranded 
breaks. Studies to investigate whether EM radiation produce genetic effects have 
been performed on various animal cells and tissue cultures. The results of the studies 
did not yield any reliable or systematic evidence that RF or microwaves can induce 
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any mutation in living systems other than through induction of heat; it is known that 
the rate of induction of mutations increases with increasing temperature.

Carcinogenesis is known to follow a multistep process that can be categorized 
into four main steps: initiation, promotion, malignant conversion, and tumor pro-
gression [12,110]. Although hyperthermia alone is not carcinogenic, it may enhance 
the development of tumors induced by ionizing radiation [111–113]. However, several 
investigators have examined whether or not hyperthermia alone can cause cancer by 
causing chromosomal aberrations [114–117], DNA double-strand breaks [118–120], 
and mutation [121–124].

The controversy over whether EM radiation might initiate or promote cancer 

continues to receive a great deal of attention, both in the popular press and in the 
biomedical literature [125] Confl icting reports appear in the literature, suggesting 
that hyperthermia treatment (via a water bath) can either serve as an antipromoter 
[126,127] or as a promoter [128], depending on the treatment regimen.

Studies of possible genotoxic effects of EM exposure, enhanced cell prolifera-
tion, and inappropriate gene expression have been carried out at the cellular level. 
In addition, there have been a number of long-term studies of cancer induction in 
animals, including tests of epigenetic interaction with known carcinogens [129]. 
Along the years, several studies have investigated potential carcinogenic effects of 
EM exposure on mammary cancer [130,131], liver cancer [132], lymphoma [133], 
and brain cancer [134].

8.6 CONCLUDING REMARKS

The primary goal of this chapter was to introduce current concepts of thermal ther-
apy as generally as possible, with a collection of topics that will further expand the 
usefulness of this therapy and translate thermal technology into clinical practice. It 
is necessary, however, to provide a superfi cial covering for the topics while leaving 
in-depth discussions to subsequent chapters.

8.6.1 RISK ASSESSMENT

Thermal therapy techniques are becoming more acceptable as a minimally invasive 
alternative for the treatment of some cancers and other forms of benign diseases 
[17]. However, evaluation of human exposure risk to EM sources or the correspond-
ing heat, especially in patients and personnel working in this fi eld, is a diffi cult task 
because it involves many physical, biological, and chemical variables. In this chapter, 
we were largely concerned with the thermal effects of EM exposure.  Thermal effects 
are produced by energy transfer from radiation to tissues, varying with frequency 
of operation, mostly governed by dielectric loss—the loss that is proportional to 
the intensity of radiation. In general, elevated temperatures have obvious effects on 
humans such as cataracts (opacity), increased blood pressure, dizziness, weakness, 
disorientation, nausea, or a faint pain. Heating the human body, either the whole or 
part of the body, may affect physiology, particularly the heart and  circulatory  system. 
It may induce other thermoregulatory responses, such as sweating, or  various heat-
related disorders, such as heat stroke.
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It should be mentioned that based on the long history of EM exposure in humans, 
it is reasonably certain that exposures below MPE values have no credible reported 
adverse health effects and are medically safe [11,135]. Some epidemiological stud-
ies addressing possible links between EM exposure and excess risk of cancer have 
reported positive fi ndings for leukemia and brain tumors. However, in some of these 
studies there are signifi cant diffi culties in assessing the relationship between disease 
incidence and EM exposure, and with potential confounding factors such as ELF 
fi elds and chemical exposure [12].

When considering the impact of EM-induced heating on carcinogenesis, the 
problem is that there are few or no data from studies using high EM exposures 
to produce thermal responses, particularly with respect to the initiation, pro-
motion or copromotion of cancer. Studies involving higher thermal exposures 
from heat alone do suggest modulation of both initiating and promoting events 
in carcinogenesis. However, the issue is complex [128]. How such data affect 
the establishment of standards for EM exposure is a challenge [12]. The ther-
mogenic effects of EM energy have been well documented and summarized as 
follows [136,137]:

 1. Biological effects due to thermoregulatory response occur when a living 
body is thermally loaded at a rate equal to its basal metabolic rate (BMR).

 2. Numerous behavioral and endocrine effects, and cardiac and respiratory 
changes for SARs below the BMR, are manifestations of physiological 
responses to mild thermal stress.

 3. Thermal stress resulting from about twice the BMR, when maintained over 
long periods of time, leads to signifi cant physiological effects.

 4. Responses to thermal load from pulsed fi elds appear to be the same as the 
responses to continuous fi elds of the same average power.

 5. It is also important to mention that heat may cause a positive as well as 
negative effect in the integrated body system.

8.6.2 TRENDS IN EQUIPMENT DEVELOPMENT

While thermal therapy requires investment in equipment and personnel training, 
the same is true for other types of therapies. In spite of the required investments, 
the economic evaluation of thermal therapy can be within an acceptable range. The 
most important technical areas of thermal therapy development can be specifi ed as 
follows [137]:

 1. Optimization of new heating devices for more effective local, intracavitary, 
and regional treatment.

 2. Integration of noninvasive monitoring capabilities and treatment plan-
ning for thermal therapy with the evolving heating systems to dramatically 
improve clinical effi cacy.

 3. Utilization of existing technology in clinical settings and encouragement of 
equipment developers to produce devices for new clinical applications.
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 4. Acceleration of training programs for physicians and physics staff to make 
effi cient use of the available technology. 

 5. Further development of fast and dynamic imaging techniques for guidance 
and monitoring in clinical treatment.

8.6.3 FUTURE RESEARCH DIRECTIONS

Future research should examine, in addition to the above technical advancements, 
various efforts, including among others [5,12,49,137]:

 1. Mechanisms of how cells react to changes in their thermal environment 
and clarifi cation of thresholds for thermal damage in humans.

 2. Accurate EM and thermal dosimetry including further investigations in 
the following fi elds: (a) modeling power deposition and estimation of EM 
energy absorbed by tissues exposed to EM radiation, (b) electrical-thermal 
modeling for thermal therapy with various models of heat transfer in living 
tissues, and (c) models of EM energy deposition in humans combined with 
appropriate models of the human thermoregulatory responses to predict the 
potential hazards associated with specifi c EM exposure conditions.

 3. Human and animal studies on (a) CNS changes in heat-related illnesses using 
quantitative immunopathological techniques at the cellular and ultrastruc-
tural levels, (b) effect of EM exposure on cognitive performance, (c) effect 
of prolonged or chronic exposure at ambient temperatures (<41°C), and 
(d) carcinogenic risk of heat, especially for low-temperature hyperthermia.
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9 Electromagnetic 
Hyperthermia

9.1 INTRODUCTION

The term hyperthermia broadly refers to either an abnormally high fever or the 
treatment of a disease by the induction of fever, as by the injection of a foreign 
protein or the application of heat [1]. Hyperthermia as a method of treating cancer 
has a long history. Many Greek and Roman physicians thought that if they could 
simply control body temperature they could cure all diseases. This included can-
cer, because the pathology of tumor development had been described in the Greek 
literature [2].

Hyperthermia may be defi ned more precisely as raising the temperature of a 
part of or the whole body above normal for a defi ned period of time. The amount 
of temperature elevation is on the order of a few degrees above normal temperature 
(41–45°C). The effect of hyperthermia depends on the temperature and exposure 
time. First, there is the curative, physiologically based therapy (physiological hyper-
thermia), which treats aches, pains, strains, and sprains. This is applied in multiple 
sessions, uses low temperature (e.g., below 41°C) for approximately an hour, has a 
reparative goal of accelerated tissue healing, and uses physiological mechanisms of 
increasing blood fl ow and metabolic rates [3]. At temperatures above 42.5–43°C, 
the exposure time can be halved with each 1°C temperature increase to give an 
equivalent cell kill [4]. Most normal tissues are undamaged by treatment for 1 h 
at a temperature of up to 44°C [5]. The main mechanism for cell death is probably 
protein denaturation, observed at temperatures >40°C, which leads to, among other 
things, alterations in multimolecular structures like cytoskeleton and membranes, 
and changes in enzyme complexes for DNA synthesis and repair [6].

The fi rst paper on hyperthermia was published in 1886 [7]. According to the 
author, the sarcoma that occurred on the face of a 43-year-old lady was cured when 
fever was caused by erysipelas. Westermark [8] tried to circulate high- temperature 
water for the treatment of an inoperable cancer of the uterine cervix and the effec-
tiveness was confi rmed. In the early twentieth century, applied research was carried 
out together with basic research; however, since the heating method and temperature-
measuring technology, for example, had not developed suffi ciently at that time, the 
positive clinical application of hyperthermia treatment was not carried out. There-
fore, surgeries, radiotherapy, chemotherapy, and so on, were dominant as therapy 
of tumors [9]. Worldwide interest in hyperthermia was initiated by the fi rst inter-
national congress on hyperthermic oncology in Washington in 1975. In the United 
States, a hyperthermia group was formed in 1981, while the European Hyperthermia 
Institute was formed in 1983. In Japan, hyperthermia research started in 1978 and 
the Japanese Society of Hyperthermia Oncology was established in 1984.

CRC_62840_Ch009.indd   221CRC_62840_Ch009.indd   221 10/1/2007   08:56:1610/1/2007   08:56:16



222 Bioeffects and Therapeutic Applications of Electromagnetic Energy 

This interest has followed a course that is usual for a new type of treatment. In 
the fi rst decade there was a growing enthusiasm, refl ected by an exponential increase 
in the number of papers and participants at meetings. Thereafter, the interest waned, 
due to disappointing clinical results from some of the fi rst randomized studies, 
accompanied by reluctance among sponsoring authorities and hospital boards to 
support further research. Nowadays, there appears to be a renewed interest, thanks 

to several investigations demonstrating that the improvements in treatment outcome 
by adjuvant hyperthermia can be very substantial, provided that adequate heating 
procedures are used [10].

In the past decade, extensive studies have been performed in the fi eld of hyper-
thermia, ranging from the mechanisms of thermal cell kill to clinical trials and treat-
ments. A book series was initiated to summarize and pass on the many experimental 
and clinical studies in the fi eld of hyperthermia [11–14]. Other books describing 
hyperthermia and its clinical applications have been authored or edited [9,15–20]. 
Several book chapters also focused on hyperthermia [21–25]. There is an increas-
ing number of relevant published periodicals as well as a large number of scientifi c 
articles published in high-ranked journals that review physical background and tech-
nical realization of hyperthermia [26–49]. A large body of scientifi c and clinical 
literature demonstrating the effectiveness of hyperthermia, either alone or combined 
with radiotherapy or chemotherapy has been published during the past few years 
[50–68]. The increasing number of applications and clinical trials at universities, 
clinics, hospitals, and institutes prove the feasibility and applicability of clinical 
hyperthermia in cancer therapies [49].

The objective of this chapter is to outline and discuss the means by which elec-
tromagnetic (EM) energy and other techniques can provide elevation of temperature 
within the human body. Clinical hyperthermia falls under three major categories: 
localized, regional, and WBH. Because of the individual characteristic of each type 
of treatment, different types of heating systems have evolved. Hyperthermia may be 
applied alone or jointly with other modalities such as radiotherapy, chemotherapy, 
surgical treatment, immunotherapy, and so on. The chapter concludes with a discus-
sion of challenges and opportunities for the future.

9.2 BIOLOGICAL RATIONALE

The clinical exploitation of hyperthermia was and still is hampered by technical 
limitations and the high degree of interdependency between technology, physiology, 
and biology [69,70]. Extensive biologic research has shown that there are sound bio-
logical reasons for using hyperthermia in the treatment of malignant diseases [35]. 
The biological rationale for the treatment of malignant disease by heat is mediated 
by various specifi c facts, including:

 1. The survival of cells depends on the temperature and duration of heating 
in a predictable and repeatable way. For example, when the temperature 
increases, the survival rate of the cell becomes lower.

 2. Tumor cell environment, such as hypoxia, poor nutrition, and low pH, while 
detrimental to cell kill by ionizing radiation, is benefi cial to heat therapy.
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 3. Cells may develop resistance to subsequent heat following previous heat 
treatment. This condition is known as thermotolerance.

 4. The differential sensitivity of normal and tumor cells to heat is dependent 
on cell type and environmental conditions.

 5. Heat treatment enhances biological effect of both radiation and chemother-
apy agents [9,34].

9.2.1 HEAT ALONE

The biological rationale is based on a direct cell-killing effect at temperatures above 
41–42°C [6]. However, the thermal-dose response relation varies among cell lines 
and depends, furthermore, on microenvironmental factors such as pH [71]. Protein 
damage is the main molecular event underlying the biological effects of hyperther-
mia in the clinically relevant temperature range (39–45°C). The activation energies 
for protein denaturation and heat-induced cell death are within the same range [6]. 
Cellular and tissue level studies, both in vitro and in vivo, indicate that protein dena-
turation is the most likely thermal effect causing permanent irreversible damage 
[72]. Biophysical approaches [73–75] as well as work with model proteins [76,77] 
have directly shown that substantial protein denaturation occurs in the clinically 
relevant temperature range. As a result of denaturation, proteins are prone to aggre-
gation. Without chaperones, these aggregates can have destructive consequences for 
many macromolecular structures and their functions [66].

The responses of tumors to hyperthermia involve both cellular and host-related 
factors. Experimentally, frequently it is not easy to separate these. When cells are 
exposed to elevated temperatures, they are inactivated in a time- and temperature-
dependent fashion. Inactivation starts at 40–41°C, at least, for murine cells and tumors. 
At these low temperatures, cell inactivation continues for only a few hours; beyond 
that time, the surviving cells appear resistant to further exposure to such tempera-
tures. Studies have shown that this is not a selection of heat-resistant subpopulations 
but that it results from the induction of a temporary resistance to heat. This transient 
phenomenon is referred to as thermotolerance. However, very prolonged heating at 
mild temperatures (41–42°C) overcomes this transient thermotolerance [78]. Above 
43°C, for most rodent lines, inactivation is exponential with time and thus resembles 
cell inactivation by ionizing radiation. Human cells tend to be more resistant, and in 
some human tumor cell lines this temperature threshold is as high as 44.5°C. Hence, 
thermotolerance can develop during treatment of human lesions, since tumor tempera-
tures only rarely exceed 44°C. At even higher temperatures, thermotolerance does not 
develop, but if the cells are returned to 37°C, within a few hours the surviving cells do 
become resistant. At temperatures between 41 and 42°C, human tumor cell lines may 
be more sensitive than rodent tumor cells, and a potential therapeutic advantage may 
be achieved with prolonged heating at these milder temperatures [79].

The development of thermotolerance is accompanied by the preferential synthe-
sis (or de novo synthesis) of a series of proteins referred to as HSP. These molecules 
are the subject of intense study because of their importance in normal cell func-
tion and in various disease states [80]. Thermotolerance can also greatly modify the 
cells’ response to some drugs, heat, and x-irradiation, but it does not seem to have 
much effect on the cells’ response to x-irradiation alone [81].
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In addition to thermotolerance, there is great variability in genetically deter-
mined heat sensitivity of tumor cells. Heat-resistant variants of B16 melanoma cells 
and of a radiation-induced fi brosarcoma (RIF-1) have been isolated and character-
ized. Very likely, many human neoplasms also contain subpopulations of resistant 
cells. The frequency of occurrence of such cells appears to be very low; however, 
there is no evidence of cross-resistance between heat sensitivity and x-irradiation or 
most anticancer drugs. Hence, genetically heat-resistant cells may be of little impor-
tance during combination treatments with heat and radiation or chemotherapy.

9.2.2 HEAT AND RADIATION

Aggregation of nuclear protein damage is thought to be the central event by which 
heat makes cells more sensitive to radiation [74,82]. The synergy between heat and 
radiation, often expressed as thermal enhancement ratios (TER), is highest when the 
two modalities are given simultaneously. When heat precedes radiation, the synergy 
is lost when the time interval between the two modalities increases and this loss of 
TER nicely parallels the decline in protein aggregation [83]. 

Heat enhances the cytotoxicity of x-rays, in both a super additive and a comple-
mentary fashion. Super additivity means an increased cytotoxicity observed over 
what would be expected on the basis of additivity of the two treatments and it is 
maximum when these are given simultaneously. It decays with time when the treat-
ments are separated by more than 1–2 h, even less in some systems [15,35].

9.2.3 HEAT AND DRUGS

A lot of physiology-related features make a combination of heat and drugs very 
attractive. Moreover, heat can cause more than additive killing when combined with 
alkylating agents, nitrosureas, platinum drugs, and some antibiotics [84], although 
for some drugs only additive effects or even less than additive effects on cell death 
are found [66]. Most impressive are data for heat and cisplatin treatments. Synergistic 
cell killing has already been found at rather mild heat treatments [85].

When cells are exposed at elevated temperatures to drugs, their response is fre-
quently very different from that seen at 37°C. Drugs whose rate-limiting reaction is 
primarily chemical (i.e., not involving enzymes) would, on thermodynamic grounds, be 
expected to be more effi cient at higher temperatures. The rates of alkylation of DNA, 
or of conversion of a nonreactive species to a reactive one, can be expected to increase 
as the temperature increases. Tissue culture studies have shown this to be true for the 
nitrosoureas and cisplatin. For other drugs, there appears to be a threshold at or near 
43°C. Below that temperature, drug activity is only mildly enhanced. At higher tem-
peratures, however, cell killing proceeds at a greatly enhanced rate. The combination of 
chemotherapy with hyperthermia still deserves attention and has high potential [66].

9.3 TYPES OF HYPERTHERMIA

Hyperthermia is mostly applied within a department of radiation oncology under the 
authority of a radiation oncologist and a medical physicist. Hyperthermia is always 
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implemented as part of a multimodal, oncological strategy, i.e., in combination with 
radiotherapy or chemotherapy [69]. The effectiveness of hyperthermia treatment is 
related to the temperature achieved during the treatment, as well as the length of 
treatment and cell and tissue characteristics [10,86]. To ensure that the desired tem-
perature is reached, but not exceeded, the temperature of the tumor and surrounding 
tissues is monitored throughout the hyperthermia procedure [59,60]. The majority of 
the hyperthermia treatments are applied using external devices, employing energy 
transfer to tissues by EM technologies [87,88].

9.3.1 LOCAL HYPERTHERMIA

The success of hyperthermia as a treatment modality lies in the localization of the 
heat inside the cancerous tumor without causing thermal damage to surrounding 
normal tissues. In local hyperthermia, the aim is to increase mainly the tumor tem-
perature while sparing surrounding normal tissue, using either external or interstitial 
modalities. Heat is applied to a small area, such as a tumor, using various techniques 
that can deliver energy to heat the tumor. Local hyperthermia treatment is a well-
established cancer treatment method with a simple basic principle: If a rise in tem-
perature to 42°C can be obtained for 1 h within a cancer tumor, the cancer cells will 
be destroyed. Primary malignant tumors have poor blood circulation, which makes 
them more sensitive to changes in temperature.

Local hyperthermia is performed with superfi cial applicators (RF, microwave, 
or ultrasound) of different kinds (waveguide, spiral, current sheet, etc.) placed on the 
surface of superfi cial tumors with a contacting medium (bolus). The resulting SAR 
distribution is subject to strong physical curtailment resulting in a therapeutic depth 
of only a few centimeters. The penetration depth depends on the frequency and size 
of the applicator, and typically the clinical range is not more than 3–4 cm. A system 
for local hyperthermia consisting of a generator, control computer applicator, and a 
scheme to measure temperature in the tumor is shown in Figure 9.1. The power is 
increased until the desired temperature is achieved.

The volume that can be heated depends on the physical characteristics of the 

energy source and on the type of applicator [89]. During local hyperthermia, the 
tumor temperatures are increased to levels that are as high as possible, as long as 
the tolerance limits of the surrounding normal tissues are not exceeded [10].

Candidates for local hyperthermia include chest wall recurrences, superfi cial 
malignant melanoma lesions, and lymph node metastases of head and neck tumors. 
Advancement in the delivery of local hyperthermia requires development of addi-
tional techniques for heating, expansion the tumor locations that can be treated ade-
quately, and improvement of the existing systems [90–92].

9.3.1.1 External Local Hyperthermia

Heating of small areas (usually up to 50 cm2) to treat tumors that are in or just below 
the skin (up to 4 cm) may be achieved quite easily today. External local hyperthermia 
therapy may be used alone or in combination with radiation therapy for the treatment 
of patients with primary or metastatic cutaneous or subcutaneous superfi cial tumors 
(e.g., superfi cial recurrent melanoma, chest wall recurrence of breast cancer, and 
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cervical lymph node metastases from head and neck cancer). Heat is usually applied 
using high-frequency energy waves generated from a source outside the body (such 
as a microwave or ultrasound source).

9.3.1.2 Intraluminal Local Hyperthermia

Intraluminal or endocavitary methods may be used to treat tumors within or near 
body cavities. Endocavitary antennas are inserted in natural openings of hollow 
organs. These include: (1) gastrointestinal (esophagus, rectum), (2) gynecological 
(vagina, cervix, and uterus), (3) genitourinary (prostate, bladder), and (4) pulmonary 
(trachea, bronchus) [51]. Very localized heating is possible with this technique by 
inserting an endotract electrode into lumens of the human body to deliver energy and 
heat the area directly. Various types of electrodes are available depending on the size 
of the lumen and the site of the lesion.

To improve the treatment results of locally advanced esophageal carcinoma, 
Sugimachi et al. [93–95], Kitamura et al. [96], and Saeki et al. [97] used intralumi-
nal RF hyperthermia in addition to external irradiation and chemotherapy to treat 
inoperable cases and reported good therapeutic results. Fuwa et al. [98] developed an 
applicator enabling simultaneous intraluminal radiotherapy and intraluminal hyper-
thermia delivery to improve the treatment results for locally advanced esophageal 

Tumor 
Thermistor 

Temperature measurement

Computer

Applicator 

Bolus

Generator

FIGURE 9.1 A diagram for local hyperthermia.
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carcinoma. Hyperthermia was delivered by a RF current thermotherapy instrument 
for 30 min at an output that raised the esophageal mucosal surface temperature to 
42–43°C. Intraluminal radiotherapy was delivered to a submucosal depth of 5 mm 
after the fi rst 15 min of hyperthermia. Four cases out of eight achieved complete 
response, with all demonstrating local control. Partial response was obtained in four 
cases and three of these patients died of local recurrence. There were no signifi cant 
adverse side effects apart from a fi stula in one case. The above work is a further 
improvement over previous work [99] involving a treatment by an applicator that 
simultaneously delivered an intraluminal high dose of iridium irradiation and intra-
luminal RF hyperthermia.

Recently, Freudenberg et al. [100] measured the effect of hyperthermia applied 
through a heatable stent in the esophagus to investigate whether this procedure offers 
a therapeutic option for tumor treatment. The maximal heating temperature tolerated 
in the esophagi without transmural necrosis was 46.5°C, when applied twice for 
60 min with a pause of 48 h. With this procedure, a tumor-damaging temperature of 
42.5°C was achieved at a maximum distance of 12 mm surrounding the stent.

9.3.1.3 Interstitial Local Hyperthermia

Interstitial techniques are used to treat tumors deep within the body, such as brain 
tumors. Many types of interstitial hyperthermia equipment are used. These include 
local current fi eld techniques utilizing RF energy (at frequency of 0.5 MHz); micro-
wave techniques utilizing small microwave antennas inserted into hollow tubings 
with frequencies between 300 and 2450 MHz; ferromagnetic seed implants for 
delivering thermal energy to deep-seated tumors; hot water tubes; and laser fi bers. 
Interstitial heating allows the tumor to be heated to higher temperatures than exter-
nal techniques. Other advantages of this technique include better control of heat dis-
tributions within the tumor as compared with external hyperthermia, and the sparing 
of normal tissues, especially the overlaying skin. However, the disadvantages are 
invasiveness, diffi culty in repeated treatment, and limitation of applicable sites.

Under anesthesia, probes or small needles (thin antennas) are inserted into the 
body to produce localized deposition of EM energy in subcutaneous and deep-seated 
tumors. For treatment regions that are large compared to the fi eld penetration depth of 
frequency used, the required SAR uniformity throughout a tumor volume cannot be 
achieved with a single antenna, and arrays of antennas are then employed [101,102]. 
Imaging techniques, such as ultrasound, may be used to ensure that the probe is prop-
erly positioned within the tumor.

9.3.2 REGIONAL HYPERTHERMIA

Regional heating is indicated for patients with locally advanced deep-seated tumors 
such as those in the pelvis or abdomen. The application of regional hyperthermia is, 
however, more complex than local heating, particularly because of wide variation in 
physical and physiological properties. It requires more sophisticated planning, ther-
mometry, and quality assurance. Since regional heating techniques apply energy to 
the adjacent deep-seated tumors in a focused manner, energy is also delivered to the 
adjacent normal tissues. Under such conditions, selective heating of tumors is only 
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possible when heat dissipation by blood fl ow in normal tissue is greater than that in 
tumor tissue. Most clinical trials on regional hyperthermia have used the approach 
as an adjunct to radiotherapy [60]. Locally advanced or recurrent tumors of the pel-
vis are the major indications for regional hyperthermia, including rectal carcinoma, 
cervical carcinoma, bladder carcinoma, prostate carcinoma, or soft tissue sarcoma. 
Some of these indications were validated in prospective studies.

9.3.2.1 Deep Regional Hyperthermia

Heat delivery to deep-seated tumors is the most diffi cult problem and major efforts 
have been devoted to the development of external deep-heating equipment. The ideal 
heating device should be capable of raising the whole tumor volume to a therapeutic 
temperature without overheating adjacent normal tissues [41]. Treatments of deep-
seated tumors are diffi cult because EM energy is rapidly absorbed by human tissue 
[103]. External applicators are positioned around the body cavity or organ to be 
treated, and EM energy is focused on the area to raise its temperature. Deep regional 
hyperthermia is usually performed using arrays of multiple applicators [104]. For 
example, annular phased-array systems delivering EM energy and RF capacitive 
heating apparatus are examples of regional heating devices. This system has the 
advantage that subcutaneous fat is not excessively heated and, thus, it is suitable for 
obese patients. However, this method causes systemic symptoms such as tachycardia 
and malaise, which result from the use of large-sized applicators [41]. Model calcula-
tions show signifi cant improvements in control of power distribution by increasing 
the antenna number with the assumption of optimum adjustment of phases and ampli-
tudes [105]. The Sigma-60 applicator is a widely spread applicator, which consists of 
four dipole antenna pairs arranged in a ring around the patient [60]. The Sigma-Eye 
applicator is one of the next generation of commercially available applicators, con-
sisting of three shorter rings, each with four fl at dipole-antenna pairs [106].

9.3.2.2 Regional Perfusion Hyperthermia

Regional perfusion techniques can be used to treat cancers in the arms and legs, such 
as melanoma, or cancer in some organs such as the liver or lung. In this procedure, 
some of the patient’s blood is removed, heated, and then pumped (perfused) back 
into the limb or organ. Anticancer drugs are commonly given during this treatment. 
Regional hyperthermia is usually applied by perfusion of a limb, organ, or body cav-
ity with heated fl uids [107,108].

Much experience with hyperthermic chemoperfusion has been gained since 
1970. In contrast to external heating methods, hyperthermic perfusion techniques 
carry the risk of severe and persisting adverse effects (e.g., neuropathy and amputa-
tion of limbs). However, both hyperthermic isolated limb perfusion and hyperther-
mic intraperitoneal perfusion at different temperatures achieve high response rates 
in comparison with historical control groups receiving systemic chemotherapy. This 
success is due to both the homogeneous and well-controlled heat application and the 
much higher (more than tenfold) drug concentration possible [60].

Hyperthermic isolated limb perfusion has been used mostly as a melphalan-based 
induction therapy in advanced stages of nonresectable melanomas and soft-tissue 
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 sarcomas (limited to one limb). Trials showed further improvement in response rates 
with the addition of high doses of TNF, whereas application of additional drugs (espe-
cially cisplatin) is not benefi cial. Because of these high response rates, no prospective 
randomized trials on induction therapy with hyperthermic isolated limb perfusion 
have yet been done [109–111].

9.3.2.3 Other Regional Hyperthermic Techniques

Other hyperthermia approaches of clinical interest are under investigation for pros-
tate cancer [112], preirradiated rectal cancer and, particularly, use of part-body 
hyperthermia for peritoneal carcinosis (for ovarian cancer) in conjunction with che-
motherapy (liposomal doxorubicin) [60]. Continuous hyperthermic peritoneal perfu-
sion is another technique used to treat cancers within the peritoneal cavity (the space 
within the abdomen that contains the intestines, stomach, and liver), including pri-
mary peritoneal mesothelioma and stomach cancer. During surgery, heated antican-
cer drugs fl ow from a warming device through the peritoneal cavity. The peritoneal 
cavity temperature reaches 41–42°C.

9.3.3 WHOLE-BODY HYPERTHERMIA

Early attempts at WBH go back to the 1890s [113]. WBH (to a limit of 42°C) is a 
distinctive and complex pathophysiological condition that has tremendous impact on 
tissue metabolism, blood fl ow, organ function, and tissue repair. For example, the 
basal metabolic rate of a patient weighing about 70 kg is 85 W at 37°C and double 
that at 42°C; this in itself is enough to raise the body temperature within 180 min 
from 37.5°C to 42°C, if thermal isolation is perfect [60]. WBH has been investi-
gated since the 1970s as an adjuvant with conventional chemo- or radiotherapy for 
the treatment of various malignant diseases [114]. It is used to treat metastatic can-
cer that has spread throughout the body. To ensure that the desired temperature is 
reached, but not exceeded, the temperature of the tumor and surrounding tissue is 
monitored throughout hyperthermia treatment. 

Three major methods are now available to achieve reproducible, controlled 
WBH—thermal conduction (surface heating), extracorporeal induction (blood is 
pumped out of the patient’s body, heated to 42°C or more, then put back in the body 
while still hot), and radiant or EM induction [115–117]. The tolerance of liver and 
brain tissue limits the maximum temperature for using WBH from 41.8 to 42.0°C, 
but this temperature may be maintained for several hours. Heating can be accom-
plished with thermal conduction heat sources such as immersion in heated fl uids 
[118], heated air [119], wrapping the patient in heated blankets [120], or using ther-
mal chambers (similar to large incubators). WBH hyperthermia may also be used to 
treat AIDS. Extracorporeal hyperthermia treatment of bone followed by its reim-
plantation may be an optional treatment of bone tumors [121].

EM techniques are available that use radiant heat, microwave radiation, infra-
red radiation, or combinations of these to induce WBH with steady-state tem-
peratures of 41–42°C. Although the power absorption patterns are nonuniform, 
redistribution of the thermal energy is rapid via the circulatory system. WBH can 
be combined with chemotherapy to increase tumor cell death without increasing 
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bone marrow suppression [122]. A newer approach is to increase the temperature 
to ∼40°C for a longer period, which, in combination with cytokines and cytotoxic 
drugs, is expected to lead to a greater therapeutic index than WBH at the maximum 
tolerated level [123].

WBH can be applied only to patients in a good general condition, and when com-
bined with drugs the fi rst step must evidently be to demonstrate its safety [10]. The 
toxicities associated with WBH may be signifi cant; therefore, careful patient selec-
tion and supportive care are essential. Sedation or general anesthesia must be used 
and continuous monitoring of vital signs, core body temperature, cardiac functions 
(using ECG), and urine output is necessary.

9.3.4 EXTRACELLULAR HYPERTHERMIA

The classical hyperthermia effect is based on well-focused energy absorption tar-
geting the malignant tissue. The treatment temperature has been considered as the 
main technical parameter. There are discussions about the mechanism and control 
of the process because of some doubts about the micromechanisms. The main idea 
of extracellular hyperthermia (electro-hyperthermia or oncothermia) is to heat up 
the targeted tissue by means of electric fi eld, keeping the energy absorption in the 
extracellular liquid [124]. Extracellular hyperthermia is devoted to enhancing the 
effi ciency of conventional hyperthermia by additional, nonequilibrium thermal 
effects with the aim of suppressing the existing disadvantages of classical thermal 
treatments. Although this new technique recognizes the benefi ts of increased tis-
sue temperature and its biological consequences, it also argues that nonequilibrium 
thermal effects are partially responsible for the observed clinical deviations from 
the purely temperature-based treatment theory [49].

Extracellular hyperthermia is based on a capacitively coupled energy transfer 
applied at a frequency that is primarily absorbed in the extracellular matrix due to 
its inability to penetrate the cell membrane [125]. The energy absorption for these 
effects is more signifi cant than the temperature, so it is important to characterize the 
hyperthermia by thermal dose and not by temperature. Thermal dose changes many 
energetic processes in the tissue and in their physiology. Most of the desired changes 
(structural and chemical) involve energy consumption [49].

9.4 HYPERTHERMIA HEATING DEVICES

Most clinical hyperthermia systems operate by causing a target volume of tissue to 
be exposed to EM fi elds or ultrasound radiation. A structure is needed that is capable 
of transferring energy into biological tissue and getting the best approximation of 
the area to be treated by 3D distribution of SAR. The majority of the hyperthermia 
treatments are applied using external devices (applicators) employing energy transfer 
to the tissue [87,88,126]. User needs require that the system be effective, safe, and 
robust. For a heating system to be effective, it must be able to produce fi nal time and 
temperature histories that include a set of tumor temperatures that can be maintained 
for long enough times to result in clinically effective thermal doses without also 
producing unacceptable normal tissue temperatures [3].
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9.4.1 TECHNIQUES

Facilitated by the enormous progression in computational power, the last decade has 
brought signifi cant advances and innovations in the technology needed to develop 
RF, microwave, and ultrasound applicators. Applicators are positioned around or 
near the appropriate region, and energy is focused on the tumor to raise its tempera-
ture. Currently, hyperthermia systems can be interfaced with MRI systems, allowing 
noninvasive temperature monitoring of the treatment.

9.4.1.1 Ultrasound

Sound is vibration. Ultrasound waves involve the propagation of sound waves at a 
frequency of 2–20 MHz through soft tissues. Absorption of ultrasound waves results 
in heating of the medium. In terms of basic physics, ultrasound has the best com-
bination of small wavelengths and corresponding attenuation coeffi cient that allow 
penetration to deep sites with the ability to focus power into regions of small size. 
The primary limitation of such systems is their inability to penetrate air and the dif-
fi culty in penetrating bone.

Early ultrasound systems used single-transducer applicators that showed 
increased tumor temperatures compared with microwave systems. Multiple elements 
and frequencies can be used to increase the energy focus while maintaining good 
penetration depth, thus making SAR shaping by either phasing or mechanical scan-
ning clinically feasible for superfi cial sites [3]. Over the years, ultrasound devices 
capable of improved heating uniformity and controlled depth of penetration, mostly 
by using multiple applicators with phasing and power steering, have been designed 
[127–133].

9.4.1.2 Radiofrequency

The initial investigation of the use of RF waves in the body is credited to d’Arsonval 
in 1891, who showed that RF waves that pass through living tissue cause an eleva-
tion in tissue temperature without causing neuromuscular excitation. These observa-
tions eventually led to the development in the early to mid-1900s of electrocautery 
and medical diathermy [134–137]. To heat large tumors at depth, RF fi elds in the 
range of 10–120 MHz are generally used with wavelengths that are long compared to 
body dimensions and, thus, deposit energy over a sizeable region [64]. Schematically, 
a closed-loop circuit is created by placing a generator, a large dispersive electrode 
(ground pad), a patient, and a needle electrode in series. Both the dispersive elec-
trode and needle electrode are active, while the patient acts as a resistor. Thus, an 
alternating electric fi eld is created within the tissue of the patient. Given the relatively 
high electrical resistance of tissue in comparison with the metal electrodes, there is 
marked agitation of the ions present in the tumor tissue that immediately surrounds 
the electrode. This ionic agitation creates frictional heating within the body, which 
can be tightly controlled through modulation of the amount of RF energy deposited 
[138–140]. The tissue’s resistance to current fl ow results in thermal lesions. The des-
iccated and coagulated tissue raises the resistance to current fl ow, impeding effective 
tissue heating and limiting the size of RF-induced lesions. Studies have shown that 
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RF-induced lesions increase rapidly in size during the initial period of power appli-
cation, and then the rate of increase diminishes rapidly as the resistance rises at the 
electrode–tissue interface and the current fl ow falls [141,142].

9.4.1.3 Microwaves

One of the more promising hyperthermia techniques is the use of microwaves. 
Microwave hyperthermia has been used on thousands of patients suffering from 
prostate or breast cancer. Microwave-generated heat is used to shrink or destroy 
cancerous tumors. Microwave hyperthermia has generally utilized single-waveguide 
microwave antennas working at 434, 915, and 2450 MHz. A hyperthermia system 
includes the antenna and a noncontacting temperature sensor that scan a prede-
termined path over the surface of the tissue to be treated. The temperature sensor 
senses the temperature of the tissue and a controller closes a feedback loop, which 
adjusts the microwave power applied to the antenna in a manner which raises the 
temperature of the tissue uniformly. Microwave hyperthermia is frequently used in 
conjunction with other cancer therapies, such as radiation therapy. It can increase 
tumor blood fl ow, thereby helping to oxygenate poorly oxygenated malignant cells.

The early systems have had the heating disadvantage of having lateral SAR 
contours that are signifi cantly smaller than the applicator dimensions, thus causing 
underheating problems in early trials, when investigators used applicators that cov-
ered the tumors visually but heated only their central region. Also, at the frequency 
of operation these systems have relatively long wavelengths, limiting their ability to 
focus on tumors. To overcome these limitations, improved antenna-based systems 
and multiple-applicator systems have been used clinically for large tumors and phas-
ing in of such systems is a possibility [3].

9.4.2 EXTERNAL RF APPLICATORS

9.4.2.1 Capacitive Heating

An RF approach that has been used clinically is a capacitively coupled system. This 
name is due to the applicator shape, which is similar to a two-plate capacitor excited 
by an electric potential between the plates, as shown in Figure 9.2. Capacitor-plate 
applicators are typical electric fi eld (E-type) applicators. These applicators are usu-
ally operated at either 13.56 or 27.12 MHz, two of the frequencies assigned to ISM 
use (ISM frequencies). Capacitive hyperthermia equipment generally consists of an 
RF generator, an RF power meter, an impedance matching network, a set of elec-
trode applicators, a temperature control system for the applicators, a set of connect-
ing cables, and a patient support assembly. The RF energy is transmitted from the 
generator via coaxial cables to electrodes placed on opposite sides of the body and 
the power is distributed locally or regionally through interaction of electric fi elds 
produced between the parallel-opposed electrodes. The adjustable positions of the 
electrodes permit heating at different angles and treatment sites.

RF-capacitive devices are convenient to apply to various anatomical sites. 
Tissues can be heated by displacement currents generated between the two capacitor 
plates. However, they are not robust in terms of positioning, because currents tend 
to concentrate around the closer electrode tips when they are nonparallel. Another 
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 disadvantage is the excessive heating of subcutaneous fat. This is because the electric 
fi elds generated are normal to the skin surface and currents must pass through the 
high-resistance, low-blood-fl ow superfi cial fatty layers, causing substantial superfi cial 
heating. It has been shown that a patient with subcutaneous fat of more than 1.5–2 cm 
in thickness is diffi cult to heat with this heating modality, whose related pain levels 
are frequently treatment limiting, even when skin precooling is applied [3,143,144].

With multiple capacitor confi gurations [145], internal heating patterns can be 
adjusted by changing the relative voltages applied to various plates. Ring capaci-
tors can produce deep internal heating without overheating the surface if a proper 
gap is maintained between the rings and the body surface. A number of researchers 
indicate the ability of RF-capacitive systems to achieve a good regional deep heating 
[144,146–159]. Results of a Japanese seven-institution trial employing the Thermo-
tron RF-8 capacitive heating device (Yamamoto Vinyter, Osaka, Japan) are notewor-
thy. Treatment given to 177 patients with deep-seated tumors used hyperthermia in 
combination with radiation therapy alone (96 patients) or with radiochemotherapy 
(81 patients). Maximum intratumor or intracavitary temperatures greater than 42°C 
were obtained in 77 and 74% of the tumors, respectively. Response rates and symp-
tomatic improvement were felt to be higher than expected for historical controls 
treated with radiation therapy or chemotherapy alone [149].

9.4.2.2 Inductive Heating

Inductive heating by coupled energy transfer from a coil carrying AC surrounding a 
biological object through air is used to achieve deeper hyperthermia (e.g., more than 
5 cm). Magnetic fi elds in RF induction heating can penetrate tissues, such as sub-
cutaneous fat, without excessive heating. Such magnetic fi elds induce eddy currents 
inside the tissues. Since the induced electric fi elds are parallel to the tissue interface, 
heating is maximized in muscle rather than in fat. However, the heating pattern is 
generally toroidal in shape with a null at the center of the coil.

The simplest inductive applicator is a single coaxial current loop [160]. Since the 
coaxial current loop produces eddy current type electric fi elds that circulate around 
the axis of the loop, heating in the center of the body is minimal. In general,  inductive 

Electric field
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FIGURE 9.2 Capacitive heating system.
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applicators seem not to couple as strongly to the body as capacitive applicators, and 
relatively high currents are usually needed to get adequate heating. Subsequent use 
of these devices shows that they still heat a large amount of normal tissue. These 
applicators are usually operated at ISM frequencies of 13.56, 27.12, and 40 MHz, with 
the depth of penetration being a few centimeters.

Induction hyperthermia equipment generally consists of an RF power generator, 
an RF power meter, an impedance matching network, one or more induction coil 
applicators, a set of connecting cables, and a patient support assembly. An inductive 
applicator for hyperthermia is shown in Figure 9.3. A pair of cylindrical ferrite cores 
is used for the applicator. The distance between the pair of ferrite cores is adjustable 
depending on the size of the region to be heated. The target is placed between or 
under the pair of ferrite cores. The time-varying magnetic fi eld penetrating the body 
causes an eddy current. As a result, Joule’s heat is produced. To effectively control 
the heating position vertically or horizontally, conductive plates to shield the mag-
netic fi eld are introduced [161].

In response to demand for clinical use, various inductive heating applicator systems 
have been developed and used in the long history of hyperthermia [156,160–163].

9.4.2.3 Hybrid Heating Systems

A heating system combining a pair of capacitively coupled electrodes and induction-
aperture-type applicators is also called a hybrid heating system. Figure 9.4 shows 
schematically the inductive heating system. In this case, the currents produced by 
the electrodes and applicators are substantially additive in the central region of the 
phantom, but are substantially opposed in the superfi cial regions beneath the aper-
tures of the applicators [164].

9.4.3 EXTERNAL RADIATIVE EM DEVICES

One of the major problems of high-frequency EM devices is the limited depth of 
penetration due to the EM principle of skin-depth. Only tumors located 2–3 cm 
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FIGURE 9.3 Inductive applicator for hyperthermia.
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from the skin surface can, therefore, be heated with conventional surface applicators 
[165]. Different types of antennas can be used as applicators, including waveguides 
and horns [166–169], and microstrip patches [170–173]. To attain deeper localized 
heating, metal-plate lens applicators are used. These applicators can converge micro-
wave energy in a lossy medium, such as human muscle of up to 6 cm [174].

9.4.3.1 Single Applicators

Early hyperthermia trials were conducted with single-aperture devices having no 
ability to steer or focus energy other than shifting patient position relative to the 
applicator. These trials included 27 MHz ridged waveguide [166], 82 MHz helix 
[175], 70 MHz coaxial TEM applicator [167–169], and 27–70 MHz evanescent-mode 
waveguide excited below cutoff frequency by entering resonant circuit (lumped 
capacity and inductance) with wave impedance build up band pass fi lter for the oper-
ating frequency [126,176]. Most of the microwave equipment includes a water bolus 
for surface cooling. Low-profi le, lightweight microstrip applicators, which are easier 
to use clinically, are also used. The type of applicator selected depends on the pro-
duction of suffi cient thermal fi eld distributions at different depths of the tumor in a 
variety of anatomical sites. Single-element applicators can safely deliver optimum 
thermal doses to relatively small superfi cial tumors. Over the years, several types of 
applicators for external local hyperthermia have been investigated by many research-
ers based on the principle of dielectric fi lled waveguide or horn antenna [177–185].

9.4.3.2 Multielement Array Applicators

To increase the value of SAR at a depth relative to the surface SAR in hyperthermia 
therapy, we must geometrically focus energy deposition from multiple electric fi elds 
generated by an array of applicators [186]. A basic array for external deep heating 
will likely consist of an annular ring of radiating apertures as shown in Figure 9.5. 
The parameters of interest are external electric fi elds within an array at the surface 
of the patient’s body, the SAR pattern within the target volume, and the radiation 
leakage levels of the scattered fi elds around the applicator.

Several different RF electrode arrays have been investigated. Manning et al. [187] 
examined two arrays of needle electrodes arranged in two planes, with a bipolar RF 
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FIGURE 9.4 Capacitive and inductive heating system.

CRC_62840_Ch009.indd   235CRC_62840_Ch009.indd   235 10/1/2007   08:56:1910/1/2007   08:56:19



236 Bioeffects and Therapeutic Applications of Electromagnetic Energy 

current between the arrays. In the bipolar system, RF current is passed between two 
electrodes instead of between a single electrode and a ground path, so two electrodes 
heat the tissue instead of one, resulting in a larger ablation zone. Other groups inves-
tigated different array confi gurations [188,189] and segmented needle electrodes 
have been suggested to allow for better control of tissue heating [190].

An array of applicators with variations in phase, frequency, amplitude, and ori-
entation of the applied fi elds can add more dimensions to controlling the heating pat-
terns during hyperthermia cancer therapy [51]. Because of constructive interference 
of electric fi elds at the intended focus and destructive interference of electric fi elds 
away from the focus, multichannel coherent phased-array applicators can theoreti-
cally provide deeper tissue penetration and improved localization of the absorbed 
energy in deep-seated tumor regions without overheating the skin and superfi cial 
healthy tissues compared to single or incoherent array applicators.

Comparing array applicators with single applicators, array applicators provide 
deeper tissue penetration, reduce undesired heating of normal surrounding tissues 
between the applicator and tumor, and improve local control of the tumor tem-
perature distribution. Heat generated by RF devices is delivered regionally across 
a much larger area. However, microwave array systems require target compres-
sion because of the shallow penetration of the higher microwave frequencies. RF 
array applicators surrounding the body are used in attempting to heat deep tumors. 
However, studies in external RF array thermotherapy have shown the diffi culty of 
localizing RF energy in malignant tissue deep within the human body without dam-
aging superfi cial healthy tissue due to hot spots. Improvements in RF energy deposi-
tion are achieved when the RF phased array is controlled by an adaptive algorithm 
to focus the RF energy in the tumor and tumor margins, while the superfi cial RF 
fi elds are nullifi ed.

FIGURE 9.5 A  ring of radiating elements.
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Clinically, the use of phased arrays as heating applicators has several advantages. 
Phased arrays can easily compensate for the effects of inhomogeneities of the treat-
ment volume (which includes the tumor and the surrounding tissues). The heating 
pattern can be controlled electronically, thus eliminating the need for mechanical 
movement of the applicator head. This simplifi es the machine–patient interface and 
allows for better use of the available power. Also, electronic switching can be per-
formed rapidly, thus enabling swift response to changes in the tumor environment. 
However, clinicians cannot always accurately predetermine or manually adjust the 
optimum settings for output power and phase of each antenna to focus heat reliably 
into deep-seated tumors [186,191]. 

Two outstanding challenges in EM phased-array hyperthermia are (1) to 
selectively elevate the temperature in the cancerous tissue without excessively 
elevating the temperature of the surrounding healthy tissues in the presence of 
electrical and thermodynamic inhomogeneities, and (2) to react to unexpected 
changes in patient positioning and physiology (such as sudden change in blood 
fl ow in the tumor) that can signifi cantly impact the quality of the delivered treat-
ment [192,193].

Signifi cant research progress has been obtained recently in heating devices 
appropriate for deep hyperthermia, including ultrasonic arrays [194–208], RF arrays 
[209–216], and microwave arrays [217–239]. 

Petrovich et al. [240] have reported the results of a 14-institution trial conducted 
in the United States that employed the annular phased-array system for regional 
hyperthermia production in 353 patients with advanced, recurrent, or persistent 
deep-seated tumors. Hyperthermia was used alone or in conjunction with radiation 
therapy or chemotherapy, chemotherapy, and radiation therapy in 4, 12, 13, and 69% 
of the patients, respectively. Complete responses (10%) and partial responses (17%) 
were obtained, with the highest complete response rates noted in patients receiving 
radiation therapy in conjunction with hyperthermia (12 versus 2%).

Better understanding of array applicators is always a requirement, not only in 
the design of single antenna in the near-fi eld range (matching, symmetrization, effi -
ciency) but also in combining these antennas in an array. The coupling between the 
antennas is the most essential and critical feature, which has to be as low as possible 
in a well-controllable array. Transforming networks are needed to link the amplifi er 
system and antennas. A kind of feedback control must be established between the 
amplifi er system (e.g., the single generators) and a patient-adapted power distribu-
tion [60].

9.4.4 INTERSTITIAL AND INTRACAVITARY DEVICES

As early as 1976, it was suggested that RF currents applied between groups of 
stainless-steel electrodes could be used to induce elevated temperatures in deep-
seated (depth ≥3 cm) tumors [241]. The application of an alternating voltage of 
suffi cient magnitude across planes comprising multiple pairs of such electrodes is 
capable of generating electrical currents through the tumor, leading to an increase of 
the tissue temperature. The simplicity of the basic concept accounts for increasing 
acceptance of interstitial probes by hyperthermia research groups, and its applica-
tion to various anatomical tumor-bearing sites.
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Interstitial hyperthermia is an invasive procedure in which a single or an array of 
interstitial antennas or electrodes is implanted in accessible tumors, which might be 
located in deep or superfi cial tissues. The invasiveness gives interstitial systems the 
clear advantage of being potentially effective, therefore potentially maximizing the 
tumor temperature while minimizing thermal damage to normal tissue. In addition 
to electrodes, the interstitial hyperthermia system includes a generator controlled 
with an automatic tuning system and temperature limitation system. Temperature 
measurements must be performed at the antennas and between them. In most sys-
tems, every single antenna is controlled by its own generator. Dedicated systems 
have in addition two or more segments per antenna or electrode controlled in phase 
or amplitude. One limitation of the interstitial heating approach is the inability of the 
system to vary the power deposition along the radial direction.

Although often compared to interstitial systems, intracavitary systems are really 
interior versions of superfi cial systems that, by using the appropriate body cavities, 
minimize both the amount of intervening normal tissue between the applicator and 
the tumor (compared with using a superfi cial system for the same tumor) and the 
amount of tissue trauma (compared with the more invasive interstitial system). Intra-
cavitary systems are quite promising for a few important sites such as the prostate 
and the esophagus. More advances systems have been developed recently, including 
multiple applicators in a segmented, phased-array ultrasound system [3].

Accurate models of the power deposition patterns of specifi c applicators and the 
bioheat response of the tissue to these procedures are continually being developed 
and improved upon. These models have been important in developing treatment 
strategies and in the implementation of treatment planning [242]. Some examples of 
model development specifi c to interstitial applicator design and treatment planning 
include those for ultrasound [243–249], RF current sources [190,221,250–255], and 
microwave [256–261].

Clinically, interstitial hyperthermia has been applied for prostate carcinoma, 
recurrent breast cancer, and malignant brain tumors [101,102,190,261–266]. The 
development of partially insulated electrodes is helping signifi cantly to reduce the 
temperatures in surrounding normal tissues, therefore improving the therapeutic 
gain. Multiple electrode multiplexing also provides added fl exibility and the means 
for dynamic control of power deposition during treatments.

9.4.5 NANOTECHNOLOGY-BASED SOURCES

The major problem of actually applying hyperthermia treatments is to achieve a 
homogenous heat distribution in the treated tissue. The currently available modali-
ties of hyperthermia are often limited by their inability to selectively target tumor 
tissue and, hence, they carry a high risk of collateral organ damage or they deposit 
heat in a much localized manner which can result in under-treatment of a tumor. 
Nanotechnology-based cancer therapy is a special form of interstitial thermotherapy 
with the advantage of selective heat deposition to the tumor cells. This new therapy 
is one of the fi rst applications of nanotechnology in medicine and based on heating 
of ferric oxide nanoparticles in an AC magnetic fi eld. The method is also known as 
magnetic fl uid hyperthermia (MFH) or nanocancer therapy. This technique meets 
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the requirement of maximal deposition of heat within the targeted region under max-
imal protection of the surrounding healthy tissue at the same time.

Deep local inductive heating can be achieved by using an implant material, 
which generates heat by its interaction with the magnetic fi eld. However, since eddy 
currents are predominantly induced near the surface of the human body, the result 
is that both the implanted region and the superfi cial normal tissues are being heated. 
Eddy current absorbers consisting of silicon rubber that contains a fi ne carbon pow-
der are used.

The concept of application of biocompatible magnetic nanoparticles (in the 
form of ferrofl uids) with diagnosis and therapeutic purposes is being considered by 
a growing number of researchers in biomedical areas. Their applications in biol-
ogy and medicine include: separation of biological materials using magnetically 
labeled beads [267]; drug delivery and medicine [45]; cell sorting, based on the 
fact that high magnetic fl ux density attracts magnetically labeled cells [268,269]; 
and hyperthermia [270–274]. Hyperthermia with magnetic nanoparticles enables 
the physician to select between different treatment temperatures for the fi rst time, 
after only a single injection of the nanoparticles. The process involved in magnetic 
hyperthermia, which is based on the known hyper-sensibility of tumor cells to 
heating, is related to energy dissipation when a ferromagnetic material is placed 
in an external alternating magnetic fi eld. The technique consists of the localiza-
tion of magnetic particles or seeds within tumor tissue followed by exposure to an 
externally applied magnetic fi eld to cause them to heat [44]. If particles are local-
ized into the tumor tissues in the bone, it will be easy to heat the tumor because 
heat quenching by the blood fl ow is ignored and a high hyperthermic effect will 
be expected [274]. The success of such approach depends critically on the ability 
to specifi cally attach a given particle on certain types of cells, the ones that are to 
be killed. This is a very complex biochemical and biomedical subject. Other issues 
to be resolved (depending on the kind of organs to be treated) are: transporta-
tion to the target, neutralizing the body’s immune system, minimizing the mass of 
magnetic material, and detection of possible accumulation of magnetic material in 
other organs.

Magnetically mediated hyperthermia using magnetic particles has been used 
against brain tumor, tongue cancer, kidney cancer, malignant melanoma, and a 
hamster osteosarcoma [274]. The physician may either choose hyperthermia con-
ditions (up to 45°C) to intensify conventional therapies like radiation or chemo-
therapy, or thermoablation by using higher temperatures, up to 70°C. Clinically this 
technique may provide the potential to address many shortcomings of other delivery 
systems.

For clinical applications, magnetic materials should present low levels of toxic-
ity, as well as a high saturation magnetic moment to minimize the doses required for 
temperature increase. Currently, magnetite (Fe3O4) is used in this process because it 
presents a high Curie temperature, high saturation magnetic moment (90–98 emu/g 
or ∼450–500 emu/cm3), and has shown the lowest toxicity index in pre-clinical tests. 
However, it should be carefully investigated whether long-term deposits of magnetite 
affects patient health, that is, whether they show acute or chronic toxicity by excess 
absorption of Fe ions, e.g., hemochromatosis [275].
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9.5 HYPERTHERMIA WITH OTHER MODALITIES

Hyperthermia has been used for the treatment of resistant tumors of many kinds, but 
still with unsatisfactory results. Hyperthermia can be used by itself and results in 
shrinkage, sometimes even complete eradication, of tumors. However, these results 
may not last and the tumors regrow. Most tumor sites are unreachable with the pres-
ent interstitial, superfi cial, and regional hyperthermia techniques, while for those 
limited sites which are heatable, all dosimetry studies indicate that the tempera-
ture distributions reached are highly inhomogeneous and that it is almost impos-
sible to obtain the protocol temperature goals [242,276–280]. Accordingly, the most 
benefi cial contribution of hyperthermia for oncological treatments will be based on 
enhancing the effectiveness of other treatment modalities (radiotherapy, chemother-
apy, radiochemotherapy, gene therapy, immune therapy, etc.).

The biological rationale for hyperthermia applied in combination with radio-
therapy or chemotherapy is well-established and extremely promising; in particular, 
the sensitivity of hypoxic cells to heating makes hyperthermia an ideal additive to 
standard radiotherapy [281]. Hyperthermia produces direct injury by damaging the 
entire cellular machinery, including nucleic acids, cytoskeleton, and cell membranes. 
Radiotherapy and many chemotherapeutic agents have similar mechanisms of action. 
There are reports of synergistic effects of regional or WBH for cancer treatments that 
include radiotherapy, bleomycin, mitomycin C, Adriamycin, 5-fl urourical, cisplatin, 
and carboplatin [282,283].

Falk and Issels [59] conducted an extensive review on state-of-the-art hyperther-
mia in the year 2000, describing the effect of hyperthermia combined with radiother-
apy, chemotherapy, or both. All the considered studies but two show a statistically 
signifi cant higher (up to a doubling) tumor control or cure rate for the combined 
treatment modality. The positive results of most of the studies explain the renewed 
enthusiasm for hyperthermia, which is refl ected in the growing number of institutes 
interested in the application of hyperthermia [57,69,283].

9.5.1 HYPERTHERMIA AND RADIATION

The synergistic effects of hyperthermia combined with radiation have been 
investigated and reported to yield higher complete and durable responses than 
radiation alone in superfi cial tumors. Several mechanisms are responsible for the 
supra-additive effect of the combination of radiotherapy and hyperthermia. The 
additive complementary effect comes from the sensitivity of cells in the hypoxic, 
low pH areas, and the cells in S-phase, which are both relatively radioresistant 
[4]. Hyperthermia may cause an increased blood fl ow, which may result in an 
improvement in tissue oxygenation, which then results in a temporally increased 

radiosensitivity [284]. Clinical data and experiments in vivo show hyperthermia 
at mild temperatures, easily achievable with the use of presently available clini-
cal hyperthermia devices, increases perfusion in the tumor region, leading to a 
higher oxygen concentration. Higher perfusion can increase drug delivery and 
reoxygenation. Most human tumors have increased blood fl ow under hyperther-
mia, even hours later. Only a few cases of human tumors have shown vascular 
breakdown [285,286].
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Biologically, hyperthermia has two different types of interactions with radiation. 
Firstly, heat has a radiosensitizing effect. This is most prominent with simultaneous 
application, but is of the same magnitude in both tumor and normal tissue and will 
not improve the therapeutic ratio unless the tumor is heated to a higher temperature 
than the normal tissue. Secondly, hyperthermia exhibits a direct cytotoxic effect, 
and a moderate heat treatment alone can almost selectively destroy tumor cells in a 
nutritionally deprived, chronically hypoxic and acidic environment. Because such 
cells are the most radioresistant, a smaller radiation dose is needed to control the 
remaining more radiosensitive cells. Clinically, heating of superfi cial tumors (e.g., 
breast, neck nodes, and malignant melanoma) has confi rmed the biological rationale 
for using hyperthermia as an adjuvant to radiotherapy [287].

Combined hyperthermia and radiation offers potential clinical advantages for the 
treatment of tumors. Importantly, the synergy between radiation and heat is highly 
dependent on the application and highest when given simultaneously. It has been 
reported by many clinical trials that hyperthermia therapy has been shown to sub-
stantially improve local control of cancer, tumor clinical response, and survival rates 
when added to radiation treatments. It yields considerable therapeutic gain compared 
to radiation alone in treating various cancerous tumors  [54,56,154,159,186,288–305]. 
However, not all studies have shown increased survival in patients receiving the com-
bined treatments [2,59,60,306].

A disadvantage intrinsically associated with hyperthermia is that one heat treat-
ment can cause a transient resistance against a subsequent treatment (thermotoler-
ance). In radiotherapy, a standard treatment regimen consists of a 6-week course of 
 radiation doses. If one would like to apply hyperthermia with each of these radiation 
treatments, this thermotolerance would certainly negatively interfere with the effec-
tiveness of the treatment. Therefore, the mechanisms underlying thermotolerance 
are being extensively explored to fi nd ways to minimize its development.

9.5.2 HYPERTHERMIA AND CHEMOTHERAPY

In clinical practice, it is diffi cult to deliver therapeutic amounts of infused chemo-
therapy to solid tumors deep in the body without incurring toxic effects in healthy 
body organs. Limited amounts of free chemotherapy infused into the bloodstream 
reach the tumor due to damaged vasculature in the vicinity of the tumor and due 
to tumor cell pressure that blocks the chemotherapy from passing through the cell 
membrane. A number of clinical studies have established that elevated cell tissue 
temperature, induced by EM energy absorption, signifi cantly enhances the effec-
tiveness of chemotherapy in the treatment of malignant tumors in the human body 
without increasing the infused amount of drug [59,95,307].

For the combination of hyperthermia and chemotherapy, spatial cooperation can 
again explain the additive effects. Drug concentration will be less in the insuffi ciently 
perfused tumor regions. When it comes to chemotherapy, there are indications that 
some chemotherapy can be potentiated by hyperthermia. This can, in some agents, 
increase toxicities and the incidence of damage associated with them at the usual 
doses, or it can be taken advantage of in the sense of getting the same results with 
lower doses of the drug. The important mechanisms for an interactive effect are an 
increased intracellular drug uptake, enhanced DNA damage, and higher intratumor 
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drug concentrations, resulting from an increase in blood fl ow. An interactive effect 
was observed for virtually all cell lines treated at temperatures above 40°C for alkyl-
ating agents, nitrosureas, and platin analogues, with enhancement ratios depending 

on temperature and exposure time. The effect of these drugs can be enhanced by a 
factor of between 1.2 and 10, and an extremely high thermal enhancement ratio of 
23 was even observed for in vitro application of melphalan to drug-resistant cells at 
44°C  [308]. In combination with chemotherapy, the type of drug, dose, temperature, 
and time of administration all play a role.

Improvement of local control by hyperthermia combined with systemic che-
motherapy has been observed by many researchers [309–319]. There is insuffi cient 
information to make conclusions regarding the use of WBH as an adjunct to either 
radiation or chemotherapy, and inadequate data regarding the use of local hyper-
thermia in conjunction with chemotherapy alone. The policy is based, in part, on an 
initial body of evidence consisting of phase I and II clinical studies describing the 
technical feasibility of WBH [318,320–324]. Extensive reviews on the combination 
of hyperthermia with chemotherapy have been published [59,84].

9.5.3 HYPERTHERMIA AND RADIOCHEMOTHERAPY

Radiochemotherapy is a widely used means of treatment for patients suffering from 
primary, locally advanced, or recurrent rectal cancer. The effi cacy of treatment 
can be enhanced by additional application of regional hyperthermia to this con-
ventional therapy regime. Many researchers have conducted investigations on the 
 effectiveness of hyperthermia combined with radiochemotherapy in the treatment of 
cancer [96,286,325–333]. An extensive review on the combination of hyperthermia 
with radiochemotherapy was published in 2001 [59].

9.5.4 HYPERTHERMIA AND GENE THERAPY

Gene therapy may be defi ned as the treatment in which genetic material is introduced 
in a cell to add or modify its function. This results in the manufacture of protein(s) 
which are either directly therapeutic or interact with other substances to exert a thera-
peutic effect. To treat cancer effectively, the genetic material must exert its effect 
only on tumor or tumor-associated cells, not on normal cells, and must not eliminate 
the body’s immune response that is so critical in fi ghting cancer. To achieve these 
goals, an approach must be developed which combines fever-range WBH with a gene 
that only affects tumor cells spliced with additional genetic material designed to 
cause the suicide gene to be expressed predominantly in tumor cells. The hyperther-
mia is expected to help in opening up the pores of tumor blood vessels so that more 
liposomes reach the tumors and deliver their DNA content to tumor cells. It also 
increases the amount of protein created by the incorporated DNA and boosts the 
immune system so that it sends specialized cells into the tumors to help kill them. 

Gene-infected cells were found to be more sensitive to hyperthermia
[334–336]. In a murine system, intratumorally injected viral gene therapy encoding 
for  interleukin-12, controlled with a heat shock promoter and followed by hyper-
thermia, was shown to be feasible and therapeutically effective, with no apparent 

systemic toxicity [337].
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9.6 STATUS AND TRENDS

Hyperthermia is an emerging therapy method in oncology. It has been an effective 
modality of cancer treatment, showing signifi cant improvements in clinical responses 
for many patients when used alone or in combination with other treatment methods, 
such as surgery, chemotherapy, radiation therapy, and gene therapy [49]. The clinical 
exploitation of hyperthermia was and is still hampered by various challenges includ-
ing the high degree of interdependency between physiology and biology, technical 
and clinical limitations, and standardization.

9.6.1 BIOLOGICAL AND PHYSIOLOGICAL MECHANISMS

An important unresolved factor involves the biological and physiological mech-
anisms by which hyperthermia works [3]. Although hyperthermic cell killing 
has been demonstrated in many in vitro studies, the mechanisms underlying 
cell damage and death have not been fully elucidated. Further work is required 
toward this end and information from research studies on the effects of hyper-
thermia on tumors in vivo will be valuable. Until the underlying mechanisms 
by which positive clinical results have been obtained are understood, and the 
spatial and temporal distributions of the important biological and physiological 
variables are known, it will remain impossible to set precise engineering design 
goals [3,338].

9.6.2 TECHNICAL AND CLINICAL CHALLENGES

Realization of the potential of hyperthermia as a primary therapy depends on the 
advance that must be made in EM heating techniques and thermometry [34]. Many 
major technical advances have been applied in biological and clinical research; the 
resulting improvements in instrumentation have helped in conducting more accu-
rate and elegant experiments to produce heat for hyperthermia treatment, includ-
ing ultrasound, RF, and microwaves. Table 9.1 compares the major hyperthermia 
method [338].

Recent developments in hyperthermia have expanded the treatment options of 
patients with certain types of cancer. The effectiveness of hyperthermia treatment 
is related to the temperature achieved during the treatment, as well as the length 
of treatment and cell and tissue characteristics. Control of the heating  process as a 
major part of hyperthermia should be improved to ensure that increased  temperature 
levels can be properly maintained, delivered, and localized within the tumor region. 
To effectively control heating distribution will require (a) sophisticated controllers 
that can properly steer the power deposition to achieve close-to-optimal tempera-
tures and (b) accurate measurements of the spatial and temporal distributions of 
temperature during the treatment. The theoretical evaluations and simulations of 
such controllers have been evolving from single-point controllers to more complex 
model-based controllers [192,193,339] that can control the complete temperature in 
the heated region.

The lack of necessary engineering tools can be viewed as a major stumbling block 
to hyperthermia’s effective clinical implementation. Developing clinically effective 
systems will be diffi cult, however, because (a) it requires solving several complex 
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engineering problems, for which (b) setting appropriate design and  evaluation goals 
is currently diffi cult owing to a lack of critical biological, physiological, and clinical 
knowledge, two tasks which must (c) be accomplished within a complicated social/
political structure [3].

While hyperthermia requires investments in equipment and personnel training, 
the same is true for other types of cancer treatment modalities. Another obstacle for 
the acceptance of hyperthermia may be that it lacks public awareness. Most of the 
clinical studies are on its combination with radiotherapy. However, experimental and 
the few clinical results with combined chemotherapy and hyperthermia make clear 
that this combination is also worth further testing [10]. Carefully conducted phase III 
trials with rigorous quality assurance must employ prospective thermal dosimetry to 
validate the role of hyperthermia in multimodality therapy [68].

TABLE 9.1 
Comparison of Major Hyperthermia Techniques

Heating Approach Advantages Disadvantages Application

Ultrasound Good focus performance 
in tissue. No hot spots in 
fatty tissues. Heating 
possible to 5–10 cm 
depth with single 
transducer and up to 20 
cm depth with multiple 
transducers. Temperature 
is easy to measure and 
control.

Heating area is small. No 
penetration of tissue–air 
interfaces.

Treatment of 
superfi cial and 
deep regional 
tumors. Examples 
include surface 
lesions, head and 
neck, and lesions 
in extremities.

Radiofrequency Simple instrumentation. 
No shield required. 
Large treatment area. 
Electrodes not limited in 
size and insulation can 
be accomplished.

Diffi cult to control electric 
fi elds. Only areas where fat is 
thin can be treated by 
capacitive systems. Heating 
regional, with external 
applicators.

Treatment for large 
and superfi cial 
tumors in neck, 
limb, chest, brain, 
abdomen, etc.

Microwaves Technology very 
advanced. Heating large 
volumes is possible. 
Specialized antennas for 
heating from body 
cavities have been 
developed. Multiple 
applicators, coherent or 
incoherent, can be used. 
Can avoid hot spots in 
the fatty tissues.

Heating not localized at depth, 
limited penetration at high 
frequencies. Temperature 
measurement is diffi cult and 
thermometry requires 
noninteracting probes. 
Possible health effects on 
personnel. Shielding of 
treatment rooms required, 
except at medically 
reserved frequencies (e.g., 
915 MHz). 

For treatment of 
superfi cial tumors 
in breast, limb, 
prostate, brain, 
etc.
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9.6.3 STANDARDIZATION

A number of challenges must be overcome before hyperthermia can be considered a 
standard treatment for cancer [2,10,60,68]. Hyperthermia suffers from a lack of dos-
ing and treatment standardization and scientifi c consensus about its effects on malig-
nant and healthy tissues. For hyperthermia to gain widespread approval and clinical 
use, the technique requires further research and standardization [49]. Standardiza-
tion of equipment between centers must be achieved before large-scale trials can be 
realized [34]. Two major factors make hyperthermia diffi cult. First, there is no clear 
clinical thermal dose–effect relationship, which is coupled with the inability to pro-
duce consistently a uniform pattern of heat distribution throughout the tumor mass. 
Thermal dosimetry is the second major issue—the inability to predict or measure 
accurately the temperature throughout the tumor mass and the surrounding healthy 
tissues. Thermal dose formulations that have taken into account both the tempera-
ture distribution and time at various temperatures have shown good correlations with 
complete response rates [276] and duration of local tumor control [338,340]. These 
need to be confi rmed in future clinical trials.

9.6.4 FUTURE RESEARCH

In conclusion, hyperthermia is not yet a fully developed modality; there are still 
problems with its routine clinical application and there is room for further techno-
logical improvements. Therefore, we believe that the development of hyperthermia 
is an example of a successful research program which is clearly important and from 
which physicians and patients will benefi t.
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10 Radio Frequency and 
Microwave Ablation

10.1 INTRODUCTION

The term “ablation” is defi ned as the direct application of chemical or thermal thera-
pies to a specifi c tumor (or tumors) in an attempt to achieve eradication or substantial 
tumor destruction. The methods of ablation most commonly used in current prac-
tice are divided into two main categories: chemical ablation and thermal ablation. 
Chemical ablation includes therapies, which are classifi ed on the basis of universally 
accepted chemical nomenclature of the agent(s), such as ethanol and acetic acid that 
induce coagulation necrosis and cause tumor ablation [1,2]. Thermal ablation is per-
formed by interventional radiologists and is much less invasive than open surgery. 
Recent developments in thermal ablation have expanded the treatment options for 
certain oncology patients. Minimally invasive, image-guided therapy may now pro-
vide effective local treatment of isolated or localized neoplastic disease, and may 
also be used as an adjunct to conventional surgery, systemic chemotherapy, or radia-
tion. Thermal ablation can be an alternative to risky surgery, and sometimes it can 
change a patient from having an inoperable tumor to being a candidate for surgery.

Ablation using RF or microwave techniques is gaining rapid clinical acceptance 
as a treatment modality enabling tissue heating and ablation for numerous applica-
tions. Such treatments are usually carried out with the patient either fully conscious, 
lightly sedated or under light general anaesthesia. Given the wide-ranging applicabil-
ity of RF and microwave energy, numerous devices have been designed to optimize 
application-specifi c treatment delivery. Their principle of operation is described in 
this chapter, alongside an overview of the physical mechanisms governing energy 
propagation and induced heating.

This chapter discusses the engineering principles and biological responses by 
which RF and microwave ablation techniques can provide the desired changes in 
temperature in organs within the human body. Aspect of each ablation technique 
including mechanisms of action, equipment, patient selections, treatment approaches 
and outcomes, limitations and complications are presented, along with a discussion 
of future research directions.

10.2 THERMAL ABLATION THERAPY

The main aim of thermal tumor ablation is to destroy an entire tumor by using heat to 
kill the malignant cells in a minimally invasive fashion without damaging adjacent 
vital structures. Heat from various sources can be used with equal effectiveness to 
destroy tumor cells. As long as adequate heat can be generated throughout the tumor 
volume, it is possible to eradicate the tumor [3]. Multiple energy sources can be used 
to provide the heat necessary to induce coagulation of malignant  tissue by  causing 
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direct cell destruction. The bioheat equation describing induced heat  transfer through 
tissue, previously expressed by Pennes et al. [4], and described in Chapter 11, has 

been further simplifi ed by Goldberg et al. [5] to

coagulation necrosis energy deposited local tissue interaction� � ss�heat loss  (10.1)

Based on this, much attention has centered on increasing coagulation volume with 
use of multiple probes simultaneously to increase overall energy deposition [6–8], 

but this approach by itself may not produce the desired outcome of increased tumor 
destruction, given biologic limitations to energy deposition and tissue physiology 
(such as blood fl ow and poor thermal conductivity) that limit the effectiveness of 
increased energy deposition for in vivo coagulation [9,10].

10.2.1 MINIMALLY INVASIVE PROCEDURES

Some authors have referred to the procedures of thermal ablation as “minimally 
invasive” or “percutaneous” therapies; however, these terms should be used only 
where appropriate. Minimally invasive therapies refer to all therapeutic procedures 
that are less invasive than conventional open surgery. All percutaneous procedures 
are therefore minimally invasive; however, not all minimally invasive therapies are 
performed or applied percutaneously. Indeed, the term “minimally invasive” is often 
used by surgeons to refer to procedures performed with minilaparotomy or laparos-
copy [11]. Although less invasive than open surgery, these procedures are clearly 
more invasive than are percutaneous image-guided tumor ablation procedures. 
 Inclusion of the term “percutaneous” as a prefi x to “image-guided tumor ablation” is 
often too limiting because it does not refl ect the fact that tumor ablation procedures 
can also be performed by laparoscopy, endoscopy, or surgery [12,13]. The choice of 
the approach for ablation is usually dictated by the training of the physician who is 
going to perform the ablation and suitability of the approach for patients.

Whenever possible, ablation is performed percutaneously. Percutaneous treat-
ment has several advantages over other approaches. The percutaneous approach is 
the least invasive, produces minimal morbidity, can be performed on an outpatient 
basis, requires only conscious sedation, is relatively inexpensive, and can be repeated 
as necessary to treat recurrent tumor. However, advocates of laparoscopic thermal 

ablation claim that the laparoscopic approach provides some distinct advantages over 
the percutaneous approach [14]. General anesthesia is required for laparoscopy or 
open surgical treatment. However, conscious sedation is usually suffi cient for a per-
cutaneous approach.

Traditionally, local tumor removal has required major surgery. Recently, 
improvements in imaging technologies have enabled the development of minimally 
invasive tumor therapies, which rely on imaging guidance for the accurate percutane-
ous placement of needle-like applicators [5,15]. The potential benefi ts of minimally 
invasive, image-guided ablation of focal neoplasms, as compared with conventional 
surgical options, include (a) the ability to ablate or palliate tumors in nonsurgical 

candidates; (b) reduced morbidity and costs and improved quality of life; and (c) the 
ability to perform these procedures on an outpatient basis [16].
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10.2.2 ABLATION TECHNIQUES

Ablation strategies, including cryoablation and the use of RF, microwaves, lasers, 
and high-intensity focused ultrasound (HIFU), are gaining increasing attention as 
an alternative to standard surgical therapies. Williams et al. [17] reviewed the above 
techniques to facilitate the creation of electrically isolated lesions within the atria. 
Although each of these techniques works slightly differently, the goal of all thermal 
sources is to heat tissue to a temperature (50°C) above which irreversible electrical 
isolation occurs. 

Although ablation devices are often referred to as “needles” or other nonspe-
cifi c terms, they do not always conform to these precise classifi cations. Hence, the 
term “applicator” should be used generally to describe all devices. For specifi c-
ity, RF applicators are electrodes, microwave applicators are antennas, and laser 
applicators are fi bers. On the basis of convention and consensus, cryoprobes are 
used to freeze tissue during cryoablation. For reporting completeness, a reference 
describing the appropriate applicator(s) should be cited unless the report describes 
a new prototype device, in which case an appropriate fi gure or schematic should be 
provided [1].

A thermal ablation device generally consists of an applicator that is introduced 
into the tumor under imaging guidance. Energy deposited by this applicator results 
in heating of the surrounding tissue. The SAR is only signifi cantly very close (within 
a few millimeter) to the applicator and, contrary to many hyperthermia devices, 
most of the tissue is heated mainly by thermal conduction from the hot region near 
the applicator [18]. Catheters are commonly used to insert devices such as angio-
plasty balloons, through blood vessels into various sites within the body [19]. In 
some cases, a catheter with multiple needle electrodes is designed [20].

Typically, thermal ablation is applied by surgeons, gastro-oncologists or radiolo-
gists using minimally invasive procedures (laparoscopy or percutaneously) under 
accurate monitoring systems (magnetic resonance [MR], CT, thermal mapping, etc.) 
used to guide the percutaneous placement of applicators into the selected target 
[21,22]. Because in most cases adequate lesion conspicuity and visualization of the 
applicator can be achieved with any of these methods, the choice of imaging tech-
nique is often dictated by personal preference or research interests [5].

Efforts to generate specifi c interactions with tissue in a safe and reproducible 
manner have been restricted by the availability of controllable energy sources, 
accurate monitoring systems, and complications unique to treating each specifi c 
organ [23].

10.2.3 CLINICAL APPLICATIONS

Thermal ablation has been most commonly employed for the treatment of liver 
tumors; however, interest is growing for treatment of tumors in the kidney, lung, 
rectum, breast, prostate and muscculosketal system. Thermal ablation is also being 
investigated for several other malignancies including carcinoma of the thyroid, pri-
mary breast tumors and adrenal neoplasms [18]. A major advantage of thermal abla-
tion is the ability to treat a tumor with a defi ned volume in sites where surgery itself 
is diffi cult (e.g., liver) or where organ function preservation is needed or desired 
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(e.g., prostate, uterus). However, this form of therapy may fi nd little use for large 
bulky tumors such as bone [24,25], colorectal cancer primaries, soft tissue sarco-
mas, head and neck nodules, and superfi cial disease involving the skin.

The clinical application of thermal ablation usually includes the following steps: 
preoperative evaluation; choice of approach—percutaneous, laparoscopy, or lapa-
rotomy; anesthesia and medications; applicator placement and treatment strategy; 

and follow-up. The preoperative evaluation begins with a review of the pertinent 

imaging studies. Good-quality imaging is the fundamental imaging examination on 
which the candidacy of a patient for thermal ablation is based. These preoperative 

imaging studies are used to determine the number and size of tumors and their rela-
tionship to surrounding structures such as blood vessels, bile ducts, gallbladder, dia-
phragm, and bowel. Patients are considered potential candidates if they have fewer 

than fi ve tumors, each less than 5 cm in diameter, and no evidence of extrahepatic 
tumor [26].

Given the large number of potential energy sources to achieve thermal therapy 
and different strategies for applying them, important questions have emerged as to 
which modalities and modifi cations are most appropriate for given clinical scenarios. 
In this section, we provide a brief overview of the use of thermal ablation and other 
clinical modalities in the treatment of organ systems to date.

10.2.3.1 Liver

Cancerous (malignant) tumors in the liver have either originated in the liver ( primary 
liver cancer) or spread from cancer sites elsewhere in the body (metastatic liver can-
cer). Most cancerous tumors in the liver are metastatic. While there are other types 
of liver cancer, the most common form in adults is called hepatocellular carcinoma 
(HCC). It begins in the hepatocytes, the main type of liver cell. About 3 out of
4 primary liver cancers are of this type. HCC is the fourth most common cause 
of cancer-related deaths worldwide and approximately one million new cases are 
reported annually [27]. Mortality is essentially 100% when these tumors are not 
treated.  Surgical resection is currently the standard treatment of choice because 
it has been shown to provide survival benefi ts, while systemic chemotherapy and 
radiotherapy are largely ineffective. However, only 5–15% of patients with HCC 
or hepatic metastasis are candidates for curative surgery due to a variety of criteria 
such as multifocal disease, tumor size, too many tumors, location of tumor in rela-
tion to key vessels, and underlying medical problems that increase the surgical risk. 
Other treatment options include intraarterial chemotherapy, transcatheter arterial 
chemoembolization, percutaneous ethanol injection, cryotherapy, thermotherapy, 
proton therapy, or a wide range of their possible combinations [28–32]. There is 
also signifi cant perioperative morbidity and mortality. The average 5-year survival 
rate after successful resection for both HCC and metastasis is only 20–40% [30]. A 
considerable number of patients will develop recurrence of tumor, which is usually 
fatal [33].

Today, there is a demand for minimally invasive techniques for treating hepatic 
malignancies with an increasing number of relevant scientifi c articles in high-ranked 
journals that provide a good review on treatment of primary and secondary malig-
nant hepatic tumors by thermal ablation [3,15,34–43].
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10.2.3.2 Lung

The lung is the most common site for primary cancer worldwide as well as being a 
common site of metastases for various malignancies [44]. The majority of patients 
with primary and secondary lung malignancies are not candidates for surgery owing 
to poor cardiorespiratory reserve. Conventional treatments for such patients typi-
cally include external-beam radiation therapy, with or without systemic chemother-
apy [45]. One of the most promising alternatives to surgical removal of lung tumors 
is eliminating the tumor cells using heat, especially through EM energy. Thermal 
ablation is a useful alternative treatment for patients with small, early-stage lung 
cancer who wish to avoid conventional surgery or are considered not fi t to undergo 
surgery. The same applies to patients who have a small number of metastases in their 
lungs, which are tumors that have spread from a cancer somewhere else in the body, 
such as the kidney, intestine, or breast. Thermal ablation may be used to debulk a 
lung tumor that is too large to remove surgically. Thus, the tumor is reduced in size 
so that the remaining tumor cells are more easily eliminated by chemotherapy or 
radiation therapy.

10.2.3.3 Prostate

The prostate is a walnut-sized gland that forms part of the male reproductive system. 
The gland is made of two regions, enclosed by an outer layer of tissue. It is located 
in front of the rectum and just below the bladder. It is common for the prostate gland 
to become enlarged as a man ages, a condition referred to as benign prostatic hyper-
plasia (BPH). The pathological evidence of BPH is seen in more than 80% of the 
population aged 75 or older [46]. The conventional treatment of prostate diseases can 
be associated with signifi cant side effects and complications, and less invasive treat-
ment alternative has always been searched for. Because of the anatomical location 
and easy accessibility of the prostate, many newer treatment modalities using ther-
mal ablation have been applied to the organ. These include not only heating of the 
pathological tissue but also freezing. Some of such treatment techniques have been 
shown to be effective and safe and been widely used clinically [47]. The current con-
cept of thermal therapy for BPH is to destroy the hypertrophic tissue in the preure-
thral area (transition zone) by increasing tissue temperature to more than 45°C.

10.2.3.4 Kidney

The kidneys are each fi lled with tiny tubules that clean and fi lter the blood to remove 
waste and make urine. Renal cell cancer is a malignancy involving these tubules of 
the kidney. Renal tumor ablation is considered to be an effective, safe procedure for 
treating renal cell cancer. Indications include a prior partial or total nephrectomy, 
preexisting renal insuffi ciency, various comorbidities making the patient a high sur-
gical risk, or syndromes with multiple tumors. The retroperitoneal location mini-
mizes the risk of major bleeding, while the exophytic (peripheral) location of many 
renal tumors decreases the chance of injury to the central collecting system [18]. 
Solid renal masses have been traditionally removed surgically with either total or, 
if possible, partial nephrectomy. Many patients who present with small incidental 
solid renal masses are in their later stages of life. These masses are often exophytic, 
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slowly growing renal cell carcinomas that will not often affect patient longevity [48]. 
Although resection currently remains the standard of care for renal carcinoma, the 
search for less invasive treatments has led to alternative surgical approaches. Even 
less invasive, and appropriate for many groups of patients, is percutaneous thermal 
ablation, which induces tumor necrosis via lethal hyperthermia [49].

There are a number of relevant scientifi c articles that provide a good review of var-
ious ablation techniques as they apply to the management of renal tumors [50,51].

10.2.3.5 Breast

At least 10% of the women in the Western world face the prospect of developing breast 
cancer. The tendency in modern treatment of these tumors is toward less invasive 
local treatment. Today breast-conserving surgery (BCS) has become more common 
than mastectomy in many countries. BCS and mastectomy combined with radiation 
are associated with satisfactory long-term outcome. The survival rates after BCS 
of ductal carcinoma in situ is approximately 98%, whereas approximately 100% of 
these patients are cancer free after mastectomy [52,53]. However, multiple treatments 
and additional adjuvant care are needed in up to 50% of the BCS cases, resulting in 
higher associated costs compared with mastectomy alone. Recently, approaches other 
than traditional surgery have been explored to satisfy these demands [54–56]. These 
techniques include cryosurgery, laser ablation, focused ultrasound, and RF ablation. 
Potential benefi ts with these techniques are reduced morbidity rates, reduced treat-
ment duration, and the ability to perform therapy for patients in poor medical condi-
tion on an outpatient basis [57].

10.2.3.6 Bone

Surgical treatment of bone tumors often requires a generous resection of bone, leav-
ing defects that are diffi cult to span. Within the musculoskeletal system, tumor abla-
tion has become a common treatment for osteomas (small benign tumors that are 
often painful and usually occur in the extremities of children and young adults) and 
to relieve symptoms from painful bone metastases [58,59]. With thermal ablation, 
painful bone tumors like osteoid osteoma and metastases in vertebrae can be treated 
effectively. The procedure is performed under local anesthesia/conscious sedation 
as there may be some bone drilling required.

10.2.3.7 Cardiac Diseases

There are a variety of clinical conditions that can cause cardiac arrhythmia (abnor-
mal heart rate or rhythm) [60]; however, all arrhythmias have at their root an 
abnormal focus of electrical activity or an abnormal conducting pathway within the 
heart. They all prevent the heart from pumping blood into the circulatory system 
at a rate suffi cient to meet the body’s needs [61–62]. The most common sources for 
this abnormality lie above the atrioventricular (AV) node and are, therefore, referred 
to as supraventricular tachyarrhythmias (SVTs) [63]. Atrial fi brillation (AF) is the 
most commonly encountered sustained arrhythmia in men. It is associated with a 
twofold mortality risk and an increased cost for health care providers. The relative 
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 ineffi cacy and the risks of pharmacologic approaches to AF therapy have contributed 
to increasing efforts to address AF with curative ablative strategies.

Until recently, the treatment of patients with cardiac arrhythmias was mostly 
 palliative, involving lifelong dependence on medication. However, in a signifi -
cant portion (10–15%) of these patients, available drug therapy has been found 
 unsatisfactory because of a lack of meaningful response or unacceptable side effects. 
Surgical intervention has been the principal method of treatment in these cases [61]. 
In the last decade, minimally invasive thermal ablation has revolutionized the treat-
ment of patients with cardiac diseases. The success of this therapy depends upon 
two factors: cardiac mapping and lesion formation. In cardiac ablation, energy is 
delivered to the myocardium via a catheter to create thermal lesions, in order to dis-
rupt or  eliminate conduction pathways supporting the arrhythmia, instead of using a 
 surgical blade [64,65]. Ablation approaches for AF focus on two alternate strategies: 
ablation of the substrate for initiation and ablation of the substrate for maintenance 
of AF [66].

There is an increasing number of published articles that provide a good review 
on thermal ablation for cardiac treatments [17,64,66–75].

10.3 RF ABLATION

The use of RF energy to produce thermal tissue destruction has been the focus of 
increasing research and practice for the past several years [14,76]. The term “RF 
ablation” applies to coagulation induction from all EM energy sources with frequen-
cies less than 30 MHz, although most currently available devices function in the 
375–500 kHz range [48].

RF is the most commonly used technique for ablation in the United States [77], 
with an increasing number of worldwide relevant scientifi c articles reviewing physical 
background, technical realization, and clinical trials of this technique [33,78–89].

10.3.1 TECHNICAL CONSIDERATIONS

RF ablation is an electrosurgical technique that uses a high-frequency alternating 
current to heat tissues to the point of desiccation (thermal coagulation) [10].

10.3.1.1 Mechanisms

The RF generators approved for clinical catheter ablation are limited to around 200 W
output (although there are investigational 150 W units). While in hyperthermia lit-
erature different frequencies in the kilohertz–megahertz range have been used, all 
recent studies on RF ablation use RF in the range of 460–480 kHz [90]. The abil-
ity of RF applicators to cause ablation depends on the conduction of localized RF 
energy and heat convection by blood [91]. RF energy is capable of creating therapeu-
tic tissue ablation by achieving higher temperatures (>60°C) over a shorter duration 
(3–5 min) when compared with other thermal modalities. This offers an advantage 
over other systems, especially when compared with the conventional 30–60 min 
of treatment needed for tissue effect in hyperthermia (40–44°C) and for low-range 
microwave thermal therapy (in the range of 45–55°C) [92].

CRC_62840_Ch010.indd   271CRC_62840_Ch010.indd   271 8/21/2007   2:35:06 PM8/21/2007   2:35:06 PM



272 Bioeffects and Therapeutic Applications of Electromagnetic Energy

With RF ablation, relatively small probes are placed into the tumor and RF 
energy deposited. The RF energy causes the tissue around the tip of the probe to 
heat up to a high temperature above which cells break apart and die. Since RF energy 
kills both tumor and nontumor cells, the goal is to place the probes so that they 
destroy the entire tumor plus an adequate “rim” of nontumorous tissue around it. 
This procedure is usually performed by placing one or more probes through small 
(less than 1 cm) incisions in the skin and using either ultrasound or a CT scanner to 
guide the tip into the tumor. For those tumors diffi cult to visualize, this procedure 
can also be performed in the operating room using a standard and much larger upper 
abdominal incision.

An effective approach to increase the effi cacy of RF ablation is to modulate the 
biologic environment of treated tissues [5]. Along these lines, several investigators 
have demonstrated the possibility of increasing RF tissue heating and coagulation 

during RF ablation by altering electrical or thermal conduction by injecting concen-
trated NaCl solution into the tissues during RF application [93,94].

In two animal studies alone [95,96], vascular occlusion combined with RF abla-
tion increased the volume of necrosis in a short period of time, created a more spher-
ical lesion, and increased the time tissue is exposed to lethal temperatures when 
compared with RF. This technique could therefore be applied to humans to destroy 
large tumor nodules.

10.3.1.2 Electrodes and Approaches

The fi rst generation of monopolar electrodes was introduced in 1990 by McGahan 
et al. [97]. They showed that RF electrocautery could ablate hepatic lesions up to 
10 mm in diameter. However, larger lesions could not be coagulated with a single 
probe because of charring, which limits the effectiveness of the probe by preventing 
a thermal destruction of liver parenchyma beyond the region of ablation. Technical
developments of probes aim to maintain high probe-tip temperatures (around 90°C), 
without loss of contact caused by tissue desiccation or increased impedance resulting 
from passage of current through charred tissue.

Today, RF ablation can be performed through percutaneous, laparoscopic, tho-
racoscopic, and open approaches. The percutaneous approach is the least invasive 
route for RF ablation [40]. The probe placement can be guided by use of CT, MRI, or 
ultrasonography. Commercially available RF probes have an insulated shaft with the 
high- temperature component confi ned to the tip. The insulated shaft of the RF probe 
broadens the applicability of the technique for use in percutaneous and laparoscopic 
procedures. Early expandable electrodes had few prongs, no saline infusion, and 
low power (i.e., 50 W) generators [83]. The increase in RF power is in response to 
the small irregular lesions created with less powerful devices that led to a high local 
recurrence rate and the need for multiple, overlapping ablations, even when treating 
small tumors. This problem is exacerbated when attempting to ablate lesions near 

major blood vessels.
Several innovations, such as pulsed energy deposition [98], umbrella-shaped 

or multiprong electrodes [5], saline infusion [99], bipolar electrodes [100–104], 
multipolar systems [105–107], internally cooled electrodes and an expandable elec-
trode [108], and multiple probes [109], have been introduced. The aim of the above 
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innovations is to improve the effectiveness of RF ablation devices and enable the 
creation of larger lesions and therefore expand the potential clinical applications of 
RF ablation.

10.3.1.3 Multiple Applicators

Both RF ablation and microwave ablation necessitate multiple applications or mul-
tiple applicators to treat tumors greater than 2 cm, including a 1 cm ablation margin. 
For example, adequate treatment of a 3 cm tumor would require creation of a 5 cm 
zone of ablation, assuming perfect placement of the probes. Since current clinically 
used RF devices can drive only a single applicator (electrode) at a time, large tumors 
have to be treated by multiple sequential applications [110]. Larger tumors can, thus, 
be treated by either sequential application or simultaneous application. Three dis-
tinct methods have been investigated by different groups that allow the simultaneous 
employment of multiple electrodes during RF ablation: bipolar RF, simultaneous RF, 
and rapidly switched RF, as shown in Figure 10.1 [90]. Laeseke et al. [111] developed 
a multiple-electrode RF system based on rapid switching between electrodes that 
allows for the simultaneous use of as many as three electrically independent elec-
trodes. This system would allow physicians to simultaneously treat multiple tumors, 
substantially reducing procedure time and anesthesia risk.

Effective local ablation of different sizes of tumors with RF energy has been 
made possible by recent advancements in biomedical engineering. An RF interstitial 
tumor ablation (RITA) system has been applied to various tumors such as hepatoma 
or renal cell carcinoma [12,112,113]. This system consists of a small needle with 
multiple antennas extending from the tip of the needle, once the needle is inserted in 
the tissue. The energy heats the tissues surrounding the multihook antenna to 100°C, 
resulting in thermal damage and subsequent necrosis of spherical shape tissue 2 cm 
in diameter. Multiple needles can be inserted in the tissue to achieve a larger area 
of necrosis [47]. If multiple needle units become clinically available, large or irregu-
larly shaped lesions could be treated more effectively than with conventional single 

RF ablation

Electrodes

RF ablation

(a)

(b)

FIGURE 10.1 (a) Setup for simultaneous power application method. (b) Setup for rapidly 
switched power application method.
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probe units, and multiple tumors could be ablated simultaneously, thus potentially 
decreasing procedure time and anesthetic complications [108].

10.3.1.4 Localization

The most diffi cult aspect of RF catheter ablation is localization of the correct  ablation 
site. A method known as “entrainment mapping” can be employed for localization 
of reentrant pathways for hemodynamically stable reentrant arrhythmias. In this 
technique, the target tachyarrhythmia is fi rst induced using stimulation approaches. 
Next, the ablation catheter is repeatedly repositioned within the suspected region 
of the heart. Trains of low-energy stimuli are then delivered at various sites while 
the arrhythmia continues, at a rate slightly faster (10–50 ms) than the intrinsic rate 
of the tachyarrhythmia. Certain criteria must be met before the catheter location is 
achieved. Pace mapping is another localization method that may be used for either 
focal or reentrant arrhythmias. In this technique, trains of low-energy stimuli are 
also delivered from multiple catheter positions within the suspected target region. 
The location in which the observed surface electrocardiogram is morphologically 
identical to that of the targeted tachyarrhythmia is considered to be at, or in very 
close proximity to, the site of initiation of the arrhythmia. Electroanatomical map-
ping, analogous to the use of a GPS, represents another localization method. This 
technique combines electrophysiological and spatial information and allows visu-
alization of atrial activation in a 3D anatomical reconstruction of the atria. A cath-
eter with a localization sensor on its top is repeatedly repositioned within the heart. 
Electrophysiological recordings from each site are recorded and associated with a 
specifi c spatial location relative to a system of localization  sensors located under the 
patient [62,114].

10.3.1.5 Thermal–Electrical Modeling

To investigate and develop new techniques, and also to improve those currently 
employed, theoretical models and computer simulations are a powerful tool since 
they provide vital information on the electrical and thermal behavior of ablation 
rapidly and at low cost. In the future they could even help to plan individual treat-
ment for each patient [115]. Temperature is a frequently used parameter to describe 
the predicted size of lesions computed by computational models. In many cases, 
however, temperature correlates poorly with lesion size [116]. Many computational 
studies have been reported in the literature to predict the growth of lesion size during 
ablation [117–119]. However, the majority of these models do not directly calculate 
lesion size. Surrogate endpoints such as temperature [94,98] are calculated and are 
interpreted as being equivalent to lesion size. In many cases, these surrogate end-
points do not correlate well with clinical outcome and vary considerably. Many com-
putational studies justify these surrogate endpoints by showing a high correlation 
between temperature isotherms and lesion size. However, temperature isotherms and 
lesion size have never actually been shown to be equivalent. On the other hand, there 
have been many FEM studies of cardiac RF ablation [120–122]. Fewer FEM model-
ing studies were conducted on hepatic ablation [123], blood, myocardium, and torso 
tissues [124].
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Gopalakrishnan [125] proposed a theoretical model for epicardial RF ablation. 
However, this model does not consider a dry ablation, but an irrigated electrode 
similar to the “pen electrode” introduced by Medtronics, Inc. (Minneapolis, MN) 
for endocardial ablation [126]. Results from a computer implementation of the model 
using a FEM suggest that transmural ablation lesions can be made in 4-mm-thick 
tissue. Effects of parameters such as tissue and saline layer thickness, irrigation rate, 
blood fl ow rate, and applied power are investigated. Saline is found to irrigate as 
well as ablate. Rise in saline temperature and consequent ablation by saline is more 
pronounced as saline layer becomes thicker. Electrode-tip temperatures as much as 
40°C lower than maximum tissue temperature were found in simulations.

10.3.2 CLINICAL ADVANTAGES AND APPLICATIONS

RF ablation remains the most widely accepted thermoablative technique worldwide, 
presumably because of its ability to create a well-controlled focal thermal injury 
and its superior relation between probe diameter and size of ablated tissue. It is cur-
rently receiving the greatest clinical attention in Italy and the Far East, where HCC 
is more prevalent [3,48,127]. RF ablation is especially useful for patients who are 
not ideal surgical candidates, cannot undergo surgery, have recurrent tumors, or do 
not respond to conventional therapies. RF ablation may be reserved for patients at 
high risk for anesthesia, those with recurrent or progressive lesions, and those with 
smaller lesions suffi ciently isolated from adjacent organs [20].

Potential advantages of RF ablation include low complication rates (0–12%), 
reduced morbidity and mortality rates compared with standard surgical resection, 
and the ability to treat nonsurgical patients [37,82]. RF ablation may be performed as 
an open [128], laparoscopic [129], or percutaneous [130] procedure.

10.3.2.1 Cancer Treatment

RF ablation is an effective technique for treating tumors localized to certain organs 
such as the liver, lung, kidney, prostate, and other cancer tumors.

Liver
RF ablation has gained enthusiasm in modern management of unresectable malig-
nant liver tumors [40]. It was fi rst proposed in 1990 for liver tumors [41]. Although 
surgery and liver transplant are considered the only curative treatment for HCC, few 
patients are eligible for RF ablation [131]. Eligibility criteria tend to vary by institu-
tion and physician. Contraindications include multiple tumors, decreased liver func-
tion, or multiple medical problems.

Percutaneous RF ablation of liver tumors is used in patients who have fewer 
than fi ve hepatic tumors, each measuring <5 cm, all of which are visible by sonog-
raphy (or CT scan) with a safe and acceptable route of access. RF ablation by lapa-
roscopy or laparotomy is reserved for patients with tumors that are not accessible 
by percutaneous RF ablation, tumors >5 cm, and tumors in direct contact with the 
bowel. The laparoscopy approach offers the advantages of a quick recovery com-
bined with the advantages of a surgical approach. The procedure requires experi-
ence in laparoscopic ultrasound as well as laparoscopic, ultrasound-guided needle 
placement [13,132].
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There are several groups of patients who may derive benefi t from RF ablation of 
liver tumors, such as cirrhotic patients with early-stage HCC. Patients with bilobar, 
otherwise unresectable colorectal carcinoma liver metastases, unresectable colorec-
tal carcinoma liver metastases who are treated on protocol with adjuvant hepatic 
artery infusion chemotherapy, patients with symptomatic neuroendocrine tumor 
liver metastases may also benefi t from this technique, along with selected patients 
with otherwise unresectable, nonneuroendocrine liver metastases with disease con-
fi ned to the liver [132].

Although many clinical investigations and trials have suggested that RF ablation 
could represent a viable and safe treatment option for nonsurgical patients with HCC 
or colorectal hepatic metastases [13,76,77,133–150], the technique did not achieve 
general consensus until recently, given the paucity of studies reporting long-term 
outcomes of treated patients. Shiina et al. [138], who reported the largest single 
series study in Japan, recommended RF ablation to be used as the fi rst line nonsur-
gical treatment of choice because it requires fewer treatment sessions and a shorter 
hospital stay to achieve complete necrosis of tumor.

Allgaier et al. [151], Mulier et al. [152,153], and Lencioni [42] reviewed the status 
of RF thermal ablation as a new minimally invasive and discussed techniques for the 
nonsurgical treatment of HCCs. They indicated that preliminary short-term results 
are promising; however, studies are underway to evaluate the long-term effi cacy of 
RF ablation for liver tumors. Ng and Poon [40] reviewed the subject and focused on 
the role of RF ablation for liver malignancies, with special attention to the indication, 
approaches, complications, survival benefi ts, combination therapies, and compari-
son with other treatment modalities.

In the Netherlands, single-center reports suggest that RF ablation may be used 
successfully to control HCC in those patients awaiting liver transplantation. RF abla-
tion is being increasingly used for colorectal liver metastases (CLM) as an adjunct to 
surgical resection in case of unresectable lesions. However, to date, there are still no 
data showing that such an approach is benefi cial. For this reason, in the Netherlands, 
RF ablation for unresectable CLM is mainly used within a clinical trial. Within the 
multimodality treatment of neuroendocrine metastases, RF ablation may deserve 
a place for either intention to cure (rare) or debulking with the aim of reduction of 
symptoms or prolongation of life [146].

In addition to the low complication rate, most, if not all, percutaneous ablation 

procedures can be performed in the outpatient setting under conscious sedation. 
However, optimal sedation regimens are required to minimize patient discomfort. 
The early clinical studies are very promising and it is clear that RF ablation is and 
will be a major therapeutic intervention in the treatment of liver neoplasms for local 
cure [48].

Rhim [39] reviewed the Asian experience in the fi eld of tumor ablation. Based on 
the survey data from Asian physicians who are currently performing image-guided 
tumor ablation, thermal ablation has been mainly performed for patients with unre-
sectable liver tumors. RF ablation has replaced many other local ablation techniques 
such as microwave or ethanol ablation in treating small focal hepatic tumors for the 
last few years.
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Lung
Success in treating liver malignancies with a percutaneous approach has created 
interest in active ongoing research on the ablation of tumors outside of the liver. 
Lung tumors are well suited to RF ablation because the surrounding air in adja-
cent normal lung parenchyma provides an insulating effect and concentrates the RF 
energy within the tumor tissue [5]. Hence, less RF energy deposition is required to 
achieve adequate tumor heating than with intrahepatic pathology.

In patients with nonsmall cell lung malignancy that are not candidates for surgery 
owing to poor cardiorespiratory reserve, RF ablation alone or followed by conven-
tional radiation therapy with or without chemotherapy may prove to be a treatment 
option. In patients with metastatic disease, RF ablation may be suitable for treatment 
of a small tumor burden or for palliation of larger tumors that cause symptoms such 
as cough, hemoptysis, or pain. Patients with chest wall or osseous metastatic tumors 
in whom other therapies have failed may benefi t from RF ablation as an alternative 
to radiation therapy [80].

Several hundred treatments of lung tumors have been performed worldwide, a 
suffi cient number to develop reasonable safety profi le with negligible mortality, little 
morbidity, short hospital stay, and enhanced quality of life [44,88,154–165].

Kidney
RF ablation is also being studied as a minimally invasive treatment for patients 
with kidney cancer. An effective, minimally invasive therapy could postpone kid-
ney failure and prolong kidney function in patients with multiple or hereditary 
kidney cancer such as von Hippel–Lindau disease, which causes multiple, recur-
rent, and diffuse tumors. RF ablation may also provide a useful option for patients 
who are not operative candidates or have solitary kidneys, multiple medical prob-
lems, or unresectable tumors. Indications for RF ablation include renal cell car-
cinoma in patients with comorbidities that preclude surgery, a solitary kidney, or 
a minimally functioning of contralateral kidney or comorbidities that preclude 
surgery. Since the kidney is surrounded by fat, which has limited blood supply for 
cooling, the effectiveness of RF ablation for exophytic tumors is high. Since its 
fi rst application in 1977 [166], many investigators have suggested that RF ablation 
could represent a promising, safe, and well-tolerated treatment for renal tumors 
[49,113,167,168].

Breast
RF ablation is considered to be the most promising treatment for breast cancer 
because of its effective destruction of cancer cells and having a low complication 
rate [169,170]. One feasibility series on RF ablation for breast cancer in fi ve patients 
suggests that it might play a role in select patient populations, although this is experi-
mental. It is too early to say that RF ablation is the therapy of choice for breast 
cancer. It is most likely that different techniques are necessary for different patients. 
Each of these techniques holds tremendous potential, and continued research is cru-
cial. Currently, most of the ongoing trials consist of in situ ablation followed by 
standard surgical resection. The barrier to the widespread use of RF ablation in the 
breast at present is the lack of surgical excision data whereby the tumors are graded 
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 histologically and the margins are analyzed [79]. Finally, Bansal [171] described a 
successful clinical trial of RF ablation for breast cancer treatment.

Other Cancers
RF ablation may provide a safer option for removing abnormal prostate tissue [172], 
as well as predictably destroying the entire gland with a low complication rate to the 
adjacent rectum, sphincter, bladder base, and urethra [78,173].

RF ablation can be the treatment of choice for the majority of patients suffering 
with a benign but painful bone tumor known as osteoid osteoma [25,59,174]. Osteoid 
osteomas predominantly occur in the pediatric age group and arise within the cortex 
of long bones [48].

Ablation of nerve and nerve ganglia continues to be used safely and effectively 
in the treatment of multiple pain syndromes, including trigeminal neuralgia, cluster 
headaches, chronic segmental thoracic pain, cervicobrachialgia, and plantar fasciitis 
[175–179].

Patients with functional or tumorous disorders of the brain, such as Parkinson’s 
disease, and benign or malignant lesions may also be candidates for RF ablation 
[180]. Recently, therapeutic effi cacy of RF thermal ablation on primary pleural syno-
vial sarcoma has been reported [181].

A venue in which RF ablation may hold promise is the treatment of recurrent head 
and neck tumors. Many patients may not be surgical candidates for tumor resection 
because of the location and extent of tumor, concomitant debilitating medical condi-
tions, or a history of multiple surgeries. These patients may be safely treated with 
RF ablation because the procedure is performed almost exclusively in the outpatient 
setting with local anesthesia and intravenous conscious sedation [48].

10.3.2.2 Cardiac Diseases

RF ablation is increasingly being used for intraoperative treatment for arrhythmias 
such as AF, AV nodal reentrant tachycardia, and Wolf Parkinson White syndrome.
A major drawback of these procedures, especially those that necessitate ablation 
close to the atriocentriclar node, is the risk of inadvertent AV block. In the cardiac 
ablation literature, 47°C is generally accepted as the onset of tissue damage [155].

McRury and Haines [67] discussed the role of electrical ablation, especially RF 
ablation, as a treatment for SVTs and reviewed the engineering principles and bio-
logical responses to ablation. The authors stated that RF catheter ablation is a suc-
cessful technique in clinical arrhythmia management, with reported success rates of 
greater than 95% in many series. The indications for clinical RF catheter ablation 
continue to broaden.

Different electrode designs for cardiac RF ablation, such as handheld probes 
[182–185], catheters [186–188], and irrigated-tip probes [126,189] have been experi-
mentally and clinically used. Several models of percutaneous RF cardiac ablation 
have been proposed and a few experimentally validated [190,191].

Intensive research is currently ongoing in this area in both animal models and 
in clinical trials. The literature shows that RF ablation as an adjunctive procedure 
is a feasible, safe, time-sparing, and effective means to cure cardiac diseases with 
negligible technical and time requirements [183,192–204].
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Early reports of RF ablation for AF suggested that a limited right atrial linear abla-
tion procedure might be able to terminate and prevent its recurrence [187,205,206]. 
However, right atrial ablation is not uniformly effective in preventing recurrence of 
AF. Accordingly, additional studies have been done combining right and left atrial 
linear ablation [186].

Most electrophysiology laboratories working on catheter ablation for paroxys-
mal AF target pulmonary veins using a transseptal approach. The aim of the pro-
cedure is to achieve complete disconnection of the pulmonary veins, demonstrated 

by the disappearance or dissociation of their potentials. This is clearly facilitated 
by the use of a circular catheter dedicated to the mapping of the pulmonary vein 
ostia, which allows the identifi cation of the connections from the atrium to the 
vein. Using this approach in targeting all four pulmonary veins, 70% of patients 
are cured without the need for antiarrhythmic drugs. However, some complications 
have been described, including tamponade, embolic events, and pulmonary vein 
stenosis [207].

10.3.2.3 Snoring and Obstructive Sleep Apnea (OSA)

Snoring is a common affl iction affecting persons of all ages but particularly middle-
aged and elderly men and women who are overweight. OSA is a disorder in which 
the sufferer’s upper airway becomes intermittently blocked during sleep, creating an 
interruption in normal breathing. Although not all snorers have sleep apnea, snor-
ing is a cardinal symptom of OSA and may by this mechanism be associated with 
increased morbidity [208]. Treatment of snoring and OSA is directed at the upper 
airway and the therapeutic approach depends upon the frequency and severity of the 
symptoms. Dental appliances and ventilators have both been effective at maintain-
ing airway patency. However, these therapies are uncomfortable and suffer from low 
patient compliance rates (40–70%). Cure rates using surgical interventions have been 
between 30 and 75% [209].

RF ablation of the soft palate aims to reduce the volume of the palate tissue and 
to improve the texture of the remaining palate for snoring so that it becomes more 
dynamically stable. It is usually an outpatient procedure, which involves the use of a 
topical local anesthetic [210]. RF systems (somnoplasty) that used needle electrodes 
to create precise regions of submucosal tissue coagulation have been developed. 
Therefore, both the tissue volume and its resulting airway obstruction are reduced. 
Applicator probes have been developed to target specifi c tissues, including the base 
of the tongue [63].

The National Institute for Clinical Excellence (NICE) [210] presented an over-
view of the subject based on medical literature and specialist opinion: 6 studies,
1 randomized controlled study, 2 comparative studies, and 3 case studies. This 
overview was prepared to assist members of the Interventional Procedures Advi-
sory Committee in making recommendations about the safety and effi cacy of this 
interventional procedure. No existing systematic reviews or guidelines on this topic
were identifi ed during the literature search. The overview concluded that most  studies 
use a carefully selected patient population, whose snoring has been determined to 
be attributable to the soft palate. Also, RF ablation was found to be less painful than 
other invasive alternatives.
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10.3.3 LIMITATIONS

The limitation of the RF method can be traced to the physics of its operation. In par-
ticular, current fl ow away from the electrode is virtually omnidirectional, creating 
a time-average power deposition decay rate P ∼ 1/r 4, where r is the radial distance 
from the electrode [211]. A fundamental understanding of RF principles is necessary 
to ensure maximum performance safety when performing this procedure in clinical 

practice.
RF ablation is a highly complex procedure that mandates appropriate and ade-

quate training, operator skill, and dedicated clinical resources. Accordingly, the 
safety (and effi cacy) of the RF ablation procedure will be highly dependent on the 
degree of operator experience and familiarity with RF ablation procedures [48].

One of the major limitations of RF ablation is the extent of induced necrosis. The 

size of potentially treatable tumors is limited because the volume of active heating 
caused by this technique is limited to a few millimeters from the active element, 
with the remainder of tissue being heated by thermal conduction [212]. In addition, 
the diameter of the ablation zone usually does not exceed 4 cm unless the ablation 
probe is repositioned for a second ablation to obtain complete tumor necrosis [213]. 
Often tumor cells survive, which leads to high recurrence rates [77,133,214]. Several 
techniques have been investigated for increasing lesion size and improving effi cacy, 
including cooled probes [6], pulsed RF [98], and saline-enhanced RF [94,101].

Unpredictable electrical current paths between the ablation electrode and the 
grounding pad may lead to heterogeneous energy deposition and, thus, to eccentric 
ablation zones or even collateral damage. Skin burns at the grounding pad have been 
reported in a few instances [215]. Criticism of RF ablation has focused on the poten-
tial for incomplete ablation near blood vessels because of the heat-sink effect of local 
blood fl ow [216]. If a tumor is near large vessels (for example, >1–2 mm, or the vessels 
are visible by CT), it is unlikely that all the malignant cells adjacent to the vessel will 
be completely eradicated as a result of the previously described perfusion-mediated
tissue cooling [10]. That does not mean such areas cannot undergo repeat treatment; 
a single RF ablation session is unlikely to adequately treat these lesions [48].

Strategies are being pursued to improve RF ablation effi cacy by altering the 
physiologic characteristics of the tumor, including tissue ionic conductivity and 
blood fl ow. Several investigators have been able to increase RF-induced necrosis by 
occluding blood fl ow to the liver during ablation procedures [136,167,217,218].

10.3.4 COMPLICATIONS

RF ablation has a low complication rate (0–12%) [87,219]. Like all other ablation 
procedures, RF ablation involves some element of risk. The main criticisms of RF 
ablation have focused on (1) high local recurrence rates, particularly in the treat-
ment of masses larger than 3 cm in diameter, (2) potential for incomplete tumor 
ablation near blood vessels because of the heat sink effect of local blood fl ow, (3) 
diffi culty in imaging of RF lesions, and (4) evidence of surveying tumor cells even 
within RF lesions [45]. Varying degrees of complications can be expected, depend-
ing on factors such as the organ site and the aggressiveness of the procedure [220]. 
These complications range from reversible problems such as bleeding, damage to 
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the arteries or veins and blood clots, to potentially life-threatening complications 
such as cardiac perforation, valve trauma, and stroke. In addition to well-known 
complications [221], two broad categories of complications specifi c to methods of 
thermal ablation therapy, grounding pad burns [222] and thermal damage to adjacent 
organs [223], need to be fully addressed. The use of high-current RF technique has 
increased the risk of one signifi cant potential complication: burns at the grounding 

pad site. Deleterious heating has been encountered at grounding pad sites in sev-
eral cases in which high-current RF has been used [223]. Goldberg et al. [222] have 
recently determined which factors promote inappropriate thermal deposition at the 
grounding pad site during RF ablation. Temperatures were found not to be uniform 
underneath the entire grounding pad surface, with the greatest heating at the edges of 
the pad. Third-degree burns were observed when inappropriate grounding was used. 
Grounding pad construction was also found to infl uence the formation of skin burns, 
with lower temperatures achieved with use of foil pads than with mesh pads.

Initial reported success with RF ablation in liver tumors is coupled with its very 
low complication rate [134,135,223]. The most common reported complications in 
liver tumor ablation are focal pain, pleural effusion, and regional hemorrhage, with 

most requiring no surgical intervention. Mulier et al. [152] reported 10 treatment-
related deaths in their review of 1931 patients treated with RF ablation. Major com-
plications occurred in 137 patients (7%) and the most common complications were 
impairment of hepatic function, hemorrhage, and infection [83].

According to the multicenter (1139 patients in 11 institutions) survey data of 
the Korean Study Group of Radiofrequency Ablation, a spectrum of complications 
occurred after RF ablation of hepatic tumors. The prevalence of major complications 
was 2.43%. The most common complications were hepatic abscess (0.66%), perito-
neal hemorrhage (0.46%), biloma (0.20%), ground pad burn (0.20%), pneumothorax 
(0.20%), and vasovagal refl ex (0.13%). Other complications were biliary stricture, 
diaphragmatic injury, gastric ulcer, hemothorax, hepatic failure, hepatic infarction, 

renal infarction, sepsis, and transient ischemic attack. One procedure-related death 
(0.09%) occurred (due to peritoneal hemorrhage) [224].

Buscarini and Buscarini [225] conducted a study to describe type and rate of 
complications in a series of patients with liver tumors treated by the RF ablation.
A total of 166 patients, 114 with HCC and 52 with liver metastasis, were treated by 
the percutaneous RF expandable system. Among 151 patients followed, there were 
7 (4.6%) early major complications, severe pain with session interruption in 3 cases, 
capsular necrosis in 1 case, 1 abdominal wall necrosis, 1 dorsal burning, 1 peritoneal 
hemorrhage, and 3 (1.9%) delayed major complications: sterile fl uid collection at the 
site of the treated tumor in 2 cases and coetaneous seeding in 1 case. There were 
49 (32.5%) minor complications. The complication rate is similar to that observed 
after percutaneous alcohol injection.

A team from the Netherlands evaluated the complication rates encountered in 
122 patients after treatment of 143 liver tumors with RF ablation between June 1999 
and November 2003. Death occurred in two cases. In both, RF ablation was com-
bined with partial hepatectomy. The team found 19 major complications, including 
biliary tract damage, liver failure, hepatic abscess, peritoneal infection, intrahe-
patic hematoma, hepatic artery aneurysm, and pulmonary embolism, and 24 minor 
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 complications related to concomitant partial hepatectomy or laparotomy. The overall 
complication rate was 20.3%, and the rate of complications related directly to RF 
ablation was 9.8%. The team recommended that RF ablation be performed only by 
an experienced team comprising a hepatobiliary surgeon, gastroenterologist, hepa-
tologist, and interventional radiologist [226].

A Japanese research team detailed the types of complications found over
5 years of experience performing RF ablation for the treatment of unresectable 
HCC.  Complications are classifi ed in three groups: vascular (e.g., portal vein throm-
bosis, hepatic vein thrombosis with partial hepatic congestion, hepatic infarction, 
and subcapsular hematoma), biliary (e.g., bile duct stenosis and biloma, abscess,
and hemobilia), and extrahepatic (e.g., injury to the gastrointestinal tract, injury 
to the gallbladder, pneumothorax and hemothorax, and tumor seeding). The team 
concluded that most complications can be managed with conservative treatment, 
 percutaneous or endoscopic drainage, or surgical repair [227].

While controlled, long-term studies of RF ablation have not been done, survival 
rates are likely to be similar to those of patients undergoing surgery [127,134,135,223]. 
Sutherland et al. [43] conducted a systematic review of RF ablation for treating liver 
tumors. They compared RF ablation with other therapies for 13 cases of HCC and
13 cases for CLM. There did not seem to be any distinct differences in the complica-
tion rates between RF ablation and any of the other procedures for treatment of HCC.

Finally, three important strategies for decreasing the rate of complications are 
prevention, early detection, and proper management. A physician who performs RF 
ablation of hepatic malignancies should be aware of the broad spectrum of major 

complications so that these strategies can be used [224].

10.4 MICROWAVE ABLATION

Microwave ablation is the most recent development in the fi eld of tumor ablation. 
The technique allows for fl exible approaches to treatment, including percutaneous, 
laparoscopic, and open surgical access [45]. RF heating techniques use frequencies 
in the RF band where a quasi-static condition applies. In the microwave frequency 
range, energy is coupled into tissues through waveguides or antennas (applicators) 
that emit microwaves (typically 915 MHz or 2.45 GHz). The shorter wavelengths of 
microwaves, as compared to RF, provide the capability to direct and focus the energy 
into tissues by direct radiation from a small applicator.

There is an increasing number of relevant scientifi c articles published in high-
ranked journals that provide a good review on physical background, technical real-
ization, and clinical trials of RF ablation [45,228–231].

10.4.1 TECHNICAL CONSIDERATIONS

10.4.1.1 Mechanisms

Microwave energy is known for its potential for creating larger and more effective 
lesions (up to 2.6 cm in diameter) at greater depth, resulting in shorter application 
times (typically 1–5 min) than RF devices [128]. Compared with RF, microwaves 
have a much broader fi eld of power density (up to 2 cm surrounding the antenna), 
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with a correspondingly larger zone of active heating [232]. This may allow for more 
uniform tumor kill both within a targeted zone and next to vessels. Since microwave 
power deposition inside tissues decays with distance following a second power law 
as compared to the fourth-power dependence of RF ablation, deeper lesions can be 
obtained [233]. Unlike RF ablation, the volume heating due to microwave energy is 
dielectric, not resistive. Heating by microwave energy is determined by the permit-
tivity of tissue. Microwave produces EM radiation, which stimulates oscillation of 
dipoles such as water molecules, resulting in kinetic energy (heat). Also in con-
trast to RF ablation, increasing the applied microwave power results in a signifi cant 
increase in the volume of lesions, without causing charring [234]. The lesion dimen-
sions are proportional to the power and duration of energy delivery. Poor dielectric 
properties and improper impedance matching result in power refl ection and energy 
dissipation within the catheter transmission line and antenna, and inadequate lesion 
formation. Hines-Peralta et al. [235] characterized the relationship between applied 
power and treatment duration in their effect on extent of coagulation produced with a 
2.45-GHz microwave applicator in both an ex vivo and a perfused in vivo liver model. 
Large zones of ablation were achieved. For higher-power ablations, larger zones of 
coagulation were achieved for in vivo liver than for ex vivo liver with short energy 
applications.

Currently, RF ablation devices are more technically advanced than microwave 
ablation devices, likely because they of their effectiveness, safety in both percuta-
neous and surgical settings, and relative ease of use. However, RF ablation is fun-
damentally restricted by the need to conduct electric energy into the body [236]. 
Microwave ablation devices, while not yet commercially available in the United 
States, have the potential to become the superior treatment modality if they receive 
more attention from the research community. These devices still use comparatively 
simple control algorithms (i.e., constant power) without any sort of feedback to 
adjust power according to requirements, compared with temperature or impedance 
feedback used in RF devices [90].

According to Simon et al. [45], the main advantages of microwave technology, 
when compared with existing thermoablative technologies, include consistently 
higher intratumoral temperatures, larger tumor ablation volumes, faster ablation 
times, and an improved convection profi le.

10.4.1.2 Antenna Designs

Microwave antennas are the critical elements in the microwave ablation procedure, 
as the generation of continuous linear transmural lesions depends on the control of 
radiation characteristics of the antrenna [237]. Most ablation antennas are fed by 
coaxial lines, which have an unbalanced design that allows return current fl ow on the 
outer conductor. These currents restrict impedance matching. If the antenna’s input 
impedance is not matched to the feed line, too much of the applied power is refl ected 
from the antenna and, hence, not deposited in the tissue [212]. Poor dielectric and 
impedance matching results in power refl ection and energy dissipation within the 
transmission line and antenna, and accordingly leads to improper lesion formation. 
Recent engineering advances have allowed the design of microwave antennae that 
are tuned to the dielectric properties of tissues, reducing feedback and increasing the 

CRC_62840_Ch010.indd   283CRC_62840_Ch010.indd   283 8/21/2007   2:35:08 PM8/21/2007   2:35:08 PM



284 Bioeffects and Therapeutic Applications of Electromagnetic Energy

amount of energy deposited into the surrounding tissue. This new microwave abla-
tion system (Vivant Medical, Inc., Mountain View, CA) has the potential to create 
larger, hotter lesions than previously possible. Additionally, the prototype microwave 
generator has the capacity to drive up to eight antennas at one time [238].

Numerous antenna designs have been presented in the literature for microwave 
ablation [17,111,211,212,235,237,239–250]. Several of the designs are targeted for 
cancer treatment and others for cardiac ablation. Antennas are grouped into three 
categories: the monopolar antennas, dipole antennas, and helical coil antennas. With 
the exception of the split-tip dipole, each type radiates in the normal mode, with 
waves propagating perpendicular to the axis of the helix [234]. In general, micro-
wave catheter antennas can broadly be categorized into two types: those antennas 
that are designed to produce radiation mainly around the antenna tip [241–243] and 
those that produce radiation normal to the antenna axis [211,242].

Nevels et al. [211] observed that coating the catheter with a Tefl on sheath pre-
vents a radiation “hot spot” at the feed line/antenna junction and antenna tip. It was 
shown that a disk placed at the end of the antenna probe forces the radiated power 
forward, toward the probe tip, which is the part of the antenna in closest contact with 
the heart tissue. The terminating disk provides an additional benefi t by halving the 
length of the antenna at the 2.45 GHz frequency, which is an advantage in the con-
fi ned space of the heart cavity. Gu et al. [243] reported on a wide aperture microwave 
spiral antenna for cardiac ablation, which created lesions that are too wide for abla-
tion in the atrium, where the available cardiac tissue is limited. The antenna reported 
by Pisa et al. [244] has shown increased radiation along the antenna length as well 
as around the tip. The enhanced radiation around the tip of the antenna can be prob-
lematic when the antenna is placed near the valves as it may cause unintentional val-
vular damage due to EM radiation. Chiu et al. [237] proposed a novel expanded tip 
wire (ETW) catheter antenna for the treatment of atrial fi brillation. The antenna is 
designed as an integral part of coaxial cable so that it can be inserted via a catheter. 
Both numerical modeling and in vitro experimentation show that the proposed ETW 
antenna produces a well-defi ned electric fi eld distribution that provides continuous 
long and linear lesions for the treatment of AF. Rappaport [19] described a novel 
catheter-based unfurling wide aperture antenna. This antenna consists of the center 
conductor of a coaxial line, shaped into a spiral and insulated from blood and tissue 
by a nonconductive fl uid-fi lled balloon. Initially stretched straight inside a catheter 
for transluminal guiding, once in place at the cardiac target, the coiled spiral antenna 
is advanced into the infl ated balloon. Power is applied in the range of 50–150 W at 
the reserved ISM frequency of 915 MHz for 30–90 s to create an irreversible lesion. 
Yang et al. [250] reported a novel coaxial antenna operating at 2.45 GHz for hepatic 
microwave ablation. This device uses a fl oating sleeve, that is, a metal conductor 
electrically isolated from the outer connector of the antenna coaxial body, to achieve 
a highly localized SAR that is independent of insertion length.

10.4.1.3 Multiple Insertions and Multiple Antennas

Similar to current clinical practice in RF ablation, multiple sequential insertions 
are typically used to treat large tumors by microwave ablation [251,252]. Due to 
the limited size of the ablation zone, this practice can require a large number of 
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applications. For example, Sato et al. [128] used 46 antenna insertions for treatment 
of HCC. Three different methods have been described in the literature that allow 
simultaneous use of multiple microwave antennas: coherent, incoherent, and phase 
modulated [90]. Wright et al. [238] found that simultaneous three-probe micro-
wave ablation lesions were three times larger than sequential lesions and nearly 
six times greater in volume than single-probe lesions. Additionally, simultaneous 
multiple-probe ablation resulted in qualitatively better lesions, with more uniform 
coagulation and better performance near blood vessels. The investigators found 
also that simultaneous multiple-probe ablation may decrease inadequate treat-
ment of large tumors and decrease recurrence rates after tumor ablation. Yu et al. 
[249] evaluated the clinical implementation of triangular and spherical designs for 
simultaneous multiple-antenna ablation of human HCC with a recently engineered 
microwave coagulation system. The triple-loop confi guration yielded the most uni-
formly round ablation shape. Simultaneous activation of multiple straight or loop 

antennae is a potentially promising technique for rapid and effective treatment of 
large HCCs.

Using a different microwave system, Sato et al. [253] described their experi-
ence with multiple-probe microwave ablation in a small clinical series. Using a disk-
shaped introducer to guide placement of seven antennae, they were able to create 
lesions from 5 to 6 cm in diameter, successfully treating 3 of 6 tumors. However, 
in this instance, the multiple antenna system was activated sequentially, rather than 
simultaneously. Similarly, Lu et al. [252] used sequential multiple-probe ablation to 
treat tumors >2 cm in 61 patients with a 92% technical success rate and 8% recur-
rence after a mean 18-month follow-up.

With continuing technical advances in microwave medical technology, mini-
mally invasive treatments have emerged to treat common medical conditions. One 
such advance is the transurethral microwave thermotherapy (TUMT) to treat BPH 
or the enlarged prostate. TUMT uses a catheter with microwave antenna built in just 
below the balloon. The balloon at the tip localizes the antenna at the correct position 
in the object area. Thermosensors on the catheter and in the surrounding area auto-
regulate power output to optimally heat the object. Different types of microwave 
antennas are used for TUMT including helical, dipole, and whip designs [70].

10.4.2 CLINICAL ADVANTAGES AND APPLICATIONS

10.4.2.1 Treating Cancer

Clinical applications of microwave ablation include treatment of liver tumors, lung 
tumors, renal and adrenal disease, and bone metastases. In several clinical studies, 
microwave tissue coagulation has been performed by using both percutaneous and 
laparoscopic techniques. The technology is still in its infancy, and future devel-
opments and clinical implementation will help improve the care of patients with 
cancer [45].

Clinical use of microwave ablation has been most prevalent in Asia to date, 
where a number of case series have shown it to be effective in local control of both 
HCC and metastatic colorectal carcinoma [39,254–257]. Currently, there are no FDA 
approved commercial microwave ablation devices available in the USA [90].
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Liver
The fi rst clinical report of microwave therapy in Asia was made by Seki et al. [258]. 
They evaluated the effi cacy of this technique in 18 patients with single unresectable 
HCCs, all of which were 2 cm in diameter or smaller. Microwaves at 60 W for 120 s
were used to irradiate the tumor and surrounding area. They used a 1450-MHz gen-
erator and a 15 gauge coaxial electrode. No recurrences were noted at the treated 
sites during 11–33 months of follow-up. Three patients developed new tumors in 
sites remote from the treated sites. No serious complications were encountered. The 
investigators treated a total of 650 patients from 1992. Five-year survival rates were 
70% in tumors <2 cm and 52% in tumors measuring 2–3 cm. More promising clini-
cal results for the treatment of liver tumors were reported in the following years with 
low complication rates [107,129,130,252,254,259–266].

Prostate
One of the most prolifi c areas of development of microwave ablation technology 
is for treating disease of the prostate. To date, few examples of clinical trials have 
demonstrated durability and effi cacy [267–269].

Other Tumors
A new therapeutic modality called electrochemotherapy is starting to be used to 
treat a variety of cutaneous tumors, including head and neck tumors, superfi cial 
breast cancer lesions, etc. In this therapy, the resistance of malignant cells to penetra-
tion by certain chemotherapeutic agents is temporarily lowered by creating tempo-
rary pores in the membranes of the malignant cells by the application of short DC 
pulses that generate electric fi elds of several kilovolts per centimeter. Once the cells 
are porated, the chemotherapeutic agents can enter the malignant cells and destroy 
them.  Electrochemotherapy can not only increase the effi cacy of certain chemo-
therapeutic agents, but also can reduce side effects because malignant cells can be 
destroyed with much lower doses of chemotherapeutic agents than with conventional 
chemotherapy [228].

Furukawa et al. [270] evaluated the use of microwave coagulation therapy, which 
has been used successfully for coagulation of hepatic tumors, in normal canine lung 
tissue to evaluate its effi cacy and safety. Measurements of thermal response and 
coagulation area and histological examinations after microwave coagulation were 
performed in normal canine lung tissue. The temperature in normal canine lung 
tissue increased to 90–100°C at 5 mm from the electrode after 60 s and 70–80°C at 
10 mm after 90 s at 40 or 60 W. The coagulation area was approximately 20 mm in 
diameter at 40 W and 60 W. Histological analysis demonstrated thickening of col-
lagen fi ber shortly after coagulation, stromal edema and granulation of tissue after
3 months, and, fi nally, scar tissue was seen after 6 months.

10.4.2.2 Cardiac Diseases

Microwave Balloon Angioplasty (MBA)
New approaches are steadily emerging in the fast-paced progress of treating cardiac 
diseases using microwave energy. For example, balloon angioplasty is a surgical 
repair of a blood vessel by inserting a balloon-tipped catheter to unblock it.  Balloons 
can be produced with diameters from 0.5 to 50 mm or more, in any working length, 
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with very thin walls. They can be custom designed with varying diameters. The 
process employs a narrow balloon catheter that is advanced to the site of arterial 
stenosis through an incision in the neck or leg and fed through blood vessels. Fluid 
is then pumped into the balloon, infl ating it to several times its normal diameter. The 
enlarged tip quickly compresses the layer of plaque which is clogging the artery, 
leaving a much wider opening for blood fl ow. The balloon is then defl ated and it 
is withdrawn with the catheter. The procedure avoids cardiac bypass surgery. An 
alternative process to deposit power is microwave irradiation. MBA takes advantage 
of the volume heating property of microwave irradiation. MBA devices were fi rst 
reported by Rosen et al. [231] and clinically tested by Smith et al. [271] and Nardone 
et al. [272]. These devices used a variety of narrow antennas incorporated within and 
surrounding a catheter balloon. The design of the antenna is the key to the  success 
of the MBA. A cable-antenna assembly is threaded through the catheter, with the 
antenna centered in the balloon portion of the catheter. The fi rst MBA devices 
employed dipoles and small helical antennas. Although the healthy tissue may still 
be heated less than the inner plaque surface, it is important to avoid overheating the 
artery wall, if possible [273]. Figure 10.2 shows a schematic view of an MBA.

Microwave Ablation Catheter
Another application of microwaves is the treatment of abnormal heart rhythm or some 
cardiac arrhythmias such as AV node reentrant tachycardias, accessory pathways, 
ventricular tachycardias, SVTs, AF, and atrial fl utter. Cardiac ablation reached a suc-
cessful rate of about 75–95% depending on the heart rhythm disorders [64,69,274]. 
The procedure involves having catheters threaded through veins or arteries to the 
site of the abnormal electrical pathway responsible for the arrhythmia. Catheter abla-
tion is usually performed in conjunction with an invasive diagnostic electrophysiol-
ogy study, which will identify the origin of abnormal impulse formation. RF ablation 
operating at frequencies between 100 kHz and 10 MHz has a high success rate in 
treating a wide range of cardiac arrhythmias. An electric current is applied between 
the catheter electrode (∼2.6 mm in diameter) in contact with the endocardium and a 
rectangular (∼15 cm × 9 cm) dispersive electrode attached at the back of the patient. 
Microwave power is also used to treat abnormal heart rhythm, especially ventricular 
tachycardia. Microwave power can ablate tissues at greater depth and across a larger 

AntennaCoaxial cable Blood
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FIGURE 10.2 A schematic view of a MBA.
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volume heating than RF ablation by using monopole and helical antennas [273]. 
 Figure 10.3 shows a schematic view of a microwave ablation catheter.

In the literature, several investigators confi rm that microwave ablation is a satis-
factory and safe method of cardiac ablation and it can be added to surgical procedures 
without undue risk to the patient [275–280]. The use of microwave energy for cardiac 
ablation was also successfully examined in open-chest dogs [281] and domestic pigs 
[282]. Rappaport [19] reviewed the recent state of the art in microwave cardiac abla-
tion and described a novel catheter-based unfurling wide aperture antenna.

10.4.2.3 Microwave Endometrial Ablation (MEA)

MEA is an effective treatment for dysfunctional uterine bleeding. Patients with leio-
myomata, including submucosal leiomyomata up to 3 cm, may also be treated with 
microwave endometrial ablation. Goldberg et al. [1] conducted a microwave endome-
trial ablation on a 46-year-old woman with multiple leiomyomata and menometror-
rhagia. Two months after microwave endometrial ablation, she developed signs of 
peritoneal irritation. A negative laparoscopy excluded a thermal bowel injury. Imaging
and clinical examination ultimately determined that her symptoms were due to 
leiomyoma degeneration. A 38-year-old woman with menometrorrhagia and leio-
myomata underwent microwave endometrial ablation. Fifteen days after microwave 
endometrial ablation, she developed signs of peritoneal irritation. With a presump-
tive clinical diagnosis of microwave endometrial ablation degeneration, the patient 
was expectantly managed with pain medications and observation.

Jack and Cooper [283] reviewed the scientifi c basis, clinical research, safety, and 
clinical applications of endometrial ablative technique. The investigators concluded 
that this technology is suitable for the majority of women who present with the com-
plaint of excessive menstrual bleeding. The treatment is effective and acceptable to 
patients giving high levels of reported satisfaction. Randomized evidence supports 
its use in a variety of clinical situations using general or local anesthesia, with or 
without drug preparation, in theater or outpatient environment, without loss of clini-
cal or economic effectiveness.

In 2002, the NICE requested that the effectiveness of MEA and thermal bal-
loon endometrial ablation (TBEA) be systematically reviewed. MEA and TBEA 
were identifi ed as the most commonly used second generation techniques in the 
UK. Garside et al. [229] reviewed two randomized controlled trials of MEA and 
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FIGURE 10.3 A schematic view of a microwave ablation catheter.
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eight trials (six randomized controlled trials) of TBEA. Both techniques had signif-
icantly shorter operating and theatre times than fi rst generation techniques (trans-
cervical resection, rollerball ablation and laser ablation). Adverse effects were few 
with all techniques, but there were fewer postoperative adverse effects with the 
second generation techniques. The investigators concluded that MEA and TBEA 
are effective alternatives in the surgical treatment of women with heavy menstrual 
bleeding.

Downes and O’Donovan [284] described the status of microwave endometrial 
ablation, its clinical effi cacy, its safety profi le, and future development. According to 
Jameel et al. [285], MEA is regarded as an effective nonsurgical option for managing 
dysfunctional uterine bleeding. It is believed to be safe, quick, and easy to perform. 
According to the investigators, there has been only one reported case of a serious 
complication of a bowel injury during MEA.

10.4.3 LIMITATIONS

Microwave ablation offers many of the benefi ts of RF but has several theoretical 
advantages that may result in improved performance, especially near blood vessels. 
During RF ablation, the zone of active tissue heating is limited to a few millime-
ters surrounding the active electrode, with the remainder of the ablation zone being 
heated via thermal conduction [232]. Due to the much broader fi eld of power density 
(up to 2 cm surrounding the antenna), microwave ablation results in a much larger 
zone of active heating [286]. This larger heating zone has the potential to allow for a 
more uniform tumor kill in the ablation zone, but within the targeted zone and next 
to blood vessels.

In spite of signifi cant success in the clinical application of microwave ablation, 
as with other thermal-based therapies, tumor size continues to limit overall complete 
response rates. Perfusion-mediated vascular cooling appears to produce a heat-sink 
effect that prevents greater volumes of coagulation. In addition, the application of 
microwave energy by means of single electrode insertions results in necrosis measur-
ing 2.5 cm in diameter. Although the use of multisession or multiple electrodes to 
achieve greater coagulation has been attempted, limitations with this practice center 
on the impracticality of multiple puncture wounds within a small area in the tumor. 
There is also reduced penetration with microwave energy compared with several 
other thermoablative strategies, which makes this particular thermal ablative strat-
egy less suitable for deeply placed tumors.

Practical problems remain to be solved before microwaves can become a use-
ful energy source. These problems include (1) power loss in the coaxial cable;
(2) resultant heating of the coaxial cable during power delivery that may lead to break-
down in the dielectric and catheter material; (3) lack of a unidirectional antenna that 
can radiate energy into tissue and not the circulating blood pool, a condition which 
prevents proper catheter operation over the range of dielectric properties of human 
blood and heart tissue [63,211]. An important limitation of microwave ablation is the 
complexity of microwave antenna design, which limits the antenna to specifi c lengths 
corresponding to the microwave generator waveform. This differs from RF and laser 
ablation, in which a more variable length of tissue can be subject to treatment. Even 
greater limitations in lesion geometry are imposed when microwave arrays are used 

CRC_62840_Ch010.indd   289CRC_62840_Ch010.indd   289 8/21/2007   2:35:09 PM8/21/2007   2:35:09 PM



290 Bioeffects and Therapeutic Applications of Electromagnetic Energy

[287]. So far, microwave antenna designs have not achieved effi cient energy trans-
fer into the object. Poor dielectric and impedance matching have resulted in power 
refl ection and energy dissipation within the catheter transmission line and antenna, 
and inadequate lesion formation [67].

10.4.4 COMPLICATIONS

Although complication rates for microwave ablation are lower than those for surgical 
resection, clinical studies in which microwave ablation has been used to treat HCC 
have reported relatively higher complication rates compared with other thermal abla-
tion strategies.

Murakami et al. [259] reported clinical results of microwave ablation in nine 
patients with HCCs greater than 3 cm in diameter. Three to twelve ablations were 
performed per tumor. Four of nine patients developed recurrent tumors within
6 months of the treatment. No major complications were noted. Matsukawa et 
al. [251] examined postprocedural complications in 20 patients with HCC. Their 
patients experienced slight pain (24%), fever (20%), and subcutaneous hematomas 
(8%) after microwave ablation sessions. Beppu et al. [260] reported a 12% compli-
cation rate when using microwave ablation to treat 84 patients with HCC. Shimada 
et al. [254] reported a 14.2% complication rate in 42 patients with HCC. Compli-
cations included abscesses, a biloma, bleeding, hepatic failure, and tumor seeding 
in the microwave needle track. Signifi cantly higher complication rates were seen in 
patients with higher clinical stages of disease and larger tumor size (diameter greater 
than 4.0 cm). Although abscesses and bleeding were treated without incident, other 

serious complications were unsuccessfully treated after they developed. The authors 
recommended several prophylactic measures to reduce the incidence of complica-
tions, including transcatheter cooling of the intrahepatic bile duct and administra-
tion of an anticancer agent in the abdominal cavity to prevent bilomas and tumor 
dissemination. Shibata et al. [266] evaluated the effectiveness of percutaneous RF 
ablation and microwave ablation for treatment of HCC in 72 patients with 94 HCC 
nodules. Complete therapeutic effect was achieved in 46 (96%) of 48 nodules treated 
with RF ablation and 41 (89%) of 46 nodules treated with microwave ablation. Major 
complications occurred in one patient treated with RF ablation and in four patients 
treated with microwave ablation.

10.5 TRENDS AND FUTURE RESEARCH

The most important issues regarding thermal ablation are the safety, true effi cacy, 
and survival benefi ts of the ablation techniques. None of the fi ve thermal ablative 
techniques discussed in this article are directly comparable, since the patient popula-
tions, extent of disease, and other factors are relatively different. In addition, so far 
there have been no prospective comparative studies in this regard.

10.5.1 IMPROVED TECHNIQUES

Thermal ablation is relatively a new technique and the technology has evolved rap-
idly. There certainly will be a room for continued developments so that ablation may 
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be created more rapidly, of a large volume of tumors, and with precise monitoring 
when suffi cient cell kill with adequate margins has been obtained. Currently, many 
ablation devices are being studied with multiple commercial devices now becoming 
available. Given the rapid pace of evolution in the state of the art for ablation technol-
ogies, we cannot confi dently predict which method, if any, will prove dominant for 
any given clinical application. Competitive technologies must be able to ablate the 
desired volume of tissue in a reproducible and predictable fashion. However, other 
factors, including ease of clinical use and cost, will play a role in determining which 
of these technologies will receive the greatest attention. Table 10.1 compares the fi ve 
ablation techniques considered in this article.

Among EM ablation techniques, RF ablation devices are more technically 
advanced than microwave devices, in part because they have received more atten-
tion. Microwave ablation devices, while not yet commercially available in the United 
States, have the potential to become the superior treatment modality if they receive 
more attention from the research community. Microwaves provide deeper tissue 
heating compared with RF and multiple antenna arrays provide the advantage of 
constructive interference in between antennas. This may eventually enable more 
rapid creation of large ablation zones and more effective treatment of tumors located 
close to vessels [90].

10.5.2 ABLATION IN CLINICAL PRACTICE

Currently, there is more enthusiasm for RF ablation. The low complication (0–12%) 
and mortality rate (0–1%), and the ability of RF ablation to ablate large tumors are 
the main advantages [37]. Microwave ablation, however, has a low complication rate 
too (11–14%), as reported in many studies [254,263].

The relative risks and benefi ts of ablation must be measured rigorously to bet-
ter defi ne its role in clinical practice. Future improvements in patient survival will 
require multidisciplinary treatment approaches that include cytoxic and novel agents 

TABLE 10.1
Comparison of Radiofrequency and Microwave Ablation Techniques

Type of Ablation Mechanism Advantages Disadvantages

Radiofrequency Resistive heating 
by RF current

Simple system design,
proven effective, and 
worldwide availability

The complication profi le is 
acceptable

Limited extent of induced 
necrosis

Ablation zones do not exceed 4 cm 
unless the ablation probe is 
repositioned for a second ablation

Ability to treat different
tumor types

Necrosis incomplete in ablation 
near blood vessels

Microwaves Heating by 
propagating EM 
waves

High temperature available 
Limited use (Asia)
Larger zone of active heating 
compared to RF ablation

Complications include pleural 
effusion, hemorrhage, and 
abscess
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to prevent tumor recurrence. Well-designed and controlled multicenter clinical trials 
are required to fi nd out and measure the extent of benefi t provided by ablation tech-
niques for any given indication. The results from single-center or retrospective stud-
ies vary signifi cantly from report to report. Therefore, good communication between 
centers will be required to assist the rapid diffusion of the many new ways in which 
thermal ablation is being used to help individual patients, especially the approach 
in which the role of thermal ablation will likely be developed to include additional 

organ sites.
Given the high likelihood of incomplete treatment by heat-based techniques 

alone, the case for combining thermal ablation with other therapies such as radio-
therapy, chemotherapy, or chemoembolization cannot be overstated. A similar multi-
disciplinary approach including surgery, radiation, and chemotherapy is used for the 
treatment of most solid tumors.

10.5.3 FUTURE RESEARCH

The ultimate goal of current research on ablation techniques is to develop tech-
nologies to increase induced coagulation volume while reducing the treatment time 
associated with the ablation technique. However, clinical research focuses on the 
implementation of ablation in clinical practice and patient outcomes. The desired 
advances include improvements in image guidance for targeting tumors to be 
ablated, better detection of residual disease, and making the therapy more straight-
forward by reducing device complexity and the overall time required to ablate a 
given tumor.

Research should be based on developing rational and reasonably sized lesions 
that do not require inordinate amounts of time to create. However, bigger is not 
always better, because injury to surrounding tissues and organs may be more likely 
[132]. The use of multiple applicators is one way to reach this target, which may 
help decrease the number of local tumor progressions that result when treating a 
large tumor with overlapping sequential ablations. In addition, multiple tumors could 
be treated simultaneously with multiple applicator devices and treatment time, and 
anesthetic complications and costs could potentially be decreased [90].

Over the next several years, we expect more substantial research efforts combin-
ing various ablation techniques with adjunctive therapies such as chemotherapy to 
improve overall tumor destruction [132]. To study, investigate, and develop new tech-
niques and to improve those currently employed, research can make use of clinical 
and experimental studies, phantoms, and theoretical models. The latter are a power-
ful tool in this kind of investigation, since they rapidly and economically provide 
an understanding of the electrical and thermal behavior involved in ablation [115]. 
Much of the future success will be based on (1) accurate modeling of the electrical 
and thermal characteristics of biological tissues, (2) realistic modeling of the cooling 
effect of large and medium blood vessels, (3) determining the parameters (frequency 
factor and energy) of the thermal damage function for different types of tissues 
(hepatic, breast, cardiac, etc.), (4) technological advances in electrode and generator 
design, (5) better understanding of methods to ensure adequacy of tumor necrosis, 
and (6) conducting research on new histological markers of thermal injury.
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Furthermore, successful ablation of all tumors may be improved in the future 
using fast computer simulation and accurate imaging and mapping techniques such 
as real-time MRI, thermal mapping, or ultrasonographic contrast agents to deter-
mine the adequacy of complete thermal coagulation.
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11 Electromagnetic and 
Thermal Dosimetry

11.1 INTRODUCTION

EM dosimetry, i.e., measurement or calculation of the EM radiation absorbed by 
humans in radiation fi elds, has become increasingly important as the use of EM 
devices in our society has increased. Additionally, dosimetry considers the measure-
ment or determination by calculation of induced current density, specifi c absorption 
(SA), or SAR distributions in objects like models (phantoms), animals, humans, or 
even parts of human body exposed to EM fi elds [1,2]. At lower frequencies (below 
∼100 kHz), many biological effects are quantifi ed in terms of the current density in 
tissue, and this parameter is most often used as a dosimetric quantity. At higher fre-
quencies, many (but not all) interactions are due to the rate of energy deposition per unit 
mass. This is why SAR is used as the dosimetric measure at those frequencies [3].

EM and thermal dosimetry, either theoretical or experimental, is based on mod-
eling of the human body, which presents obvious differences between individuals. 
The variations are related to the size and shape of the body, to the distribution of bio-
logical tissues, and the various characteristics of each tissue [4]. In thermal therapy, 
the accuracy of dosimetry determines the precision of treatment and its role in treat-
ment planning for patients.

In the literature, important techniques and areas of research in EM dosimetry 
[1,5–8], thermal dosimetry [6,9–16], and treatment planning [17] have been reviewed. 
The purpose of this chapter is to outline and discuss techniques which have been 
developed to ensure adequate EM and thermal dosimetry. Various models of heat 
transfer in living tissues with emphasis on Pennes’ equation have been discussed. 
Knowledge about the temperature distributions achieved can be obtained through 
simulation of treatment process during thermal therapy by computer predictions and 
planning of patient therapy. This process is called thermal therapy planning system 
(TTPS), which is a large and complex system that has also been discussed.

11.2 EM INTERACTION WITH BIOLOGICAL MATERIALS

Interaction of EM energy with a biological material can be studied at two distinct 
levels:

 1. Macroscopic level: objects and whole body
 2. Microscopic level: cells, membranes, and molecules

Interaction phenomena at the two levels, however, cannot be regarded independently. 
One has to take into account the energy distribution that occurs within an object 
when placed under an EM fi eld. The macroscopic level of interaction gives a short 
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discussion of energy penetration and dissipation phenomena. The microscopic level 
is to study interaction mechanisms at smaller scales [18].

The effect of interaction of EM waves with biological tissues can be considered 
as the result of three phenomena [3]:

 1. The penetration of EM waves into the living system and their propagation 
into it.

 2. The primary interaction of the waves with biological tissues.
 3. The possible secondary effects induced by the primary interaction.

It is clear from the above that the term interaction stresses the fact that end results 
not only depend on the action of the fi eld but are also infl uenced by the reaction of 
the living system. 

Electromagnetic waves propagate within tissues with reduced velocities and are 
refracted, diffracted, and refl ected when encountering inhomogeneities. The specifi c 
electrical properties of each tissue govern the reduction of velocity, refraction, and 
diffraction. These properties, as well as the geometry of the inhomogeneities, deter-
mine the fraction of energy absorbed by tissues. The main parameters that describe 
EM waves are the frequency of oscillation, amplitude of the electric or magnetic 
fi eld, and phase angle, which defi nes the instantaneous state of the oscillation.

It is very diffi cult to entirely characterize the propagation of EM fi elds in the 
human body, keeping in mind the complexity and nonhomogeneous character of 
biological tissues [1,2]. However, with the advent of computers, it is now possible 
to conduct highly accurate evaluations of dosimetry for the human body or part of 
the body. An EM wave involves both a varying electric fi eld and a varying magnetic 
fi eld. The propagation of EM is described by the differential form of the complex 
time- harmonic steady-state Maxwell’s equations:
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using the constitutive relationships
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where E is the electric fi eld in volts per meter, H the magnetic fi eld in amperes per 
meter, J the current density in amperes per square meter (A/m2), B the magnetic fl ux 
density in webers per square meter, D the electric displacement in coulombs per square 
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meter, µ the permeability in henries per meter, ε the permittivity in farads per meter 
(F/m), and σ the conductivity in Ω−1m−1.

Generally, three different quantities describe the permittivity of the medium:
ε, ε0, and a dimensionless quantity known as the relative permittivity εr or the 
 dielectric constant, which is defi ned as the permittivity relative to that of free space 
(ε0 = 8.854 × 10−12 F/m). The three quantities are related by 

 � � �� 0 r  (11.3)

The dielectric constant of free space is 1. This value is assumed for air in most appli-
cations. Values of the dielectric constant for most biological materials range from 1 
(as for vacuum) to about 80 or so.

The term permeability refers to the magnetic property of any material. It is 
a measure of the fl ux density produced by a magnetizing current. The basic unit 
of permeability is henries/meter. Three different quantities describe the perme-
ability of the medium: µ, µ0, and a dimensionless quantity known as the relative 
permeability µr, which is defi ned as the permeability relative to that of free space 
(µ0 = 4π × 10−3 H/m). The three quantities are related by

 � � �� 0 r  (11.4)

In the special case of thermal therapy problems µ is constant, ∂/∂t is the equivalent of 
jω where ω is the angular frequency (rad/s) at which the power is excited, ρ is zero, 
and j is �1 .

For isotropic, linear, and nonmagnetic media, Maxwell’s equations in the steady-
state form can be written in terms of Faraday’s law

 �� ��E B j� (Faraday’s law)  (11.5)

and Ampere’s law with displacement current
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B
J E

�
��j (Ampere’s law)  (11.6)

Equations 11.5 and 11.6 allow the EM present in the biological system to be pre-
dicted. It is quite common to assume the constitutive parameters to be independent 
of the temperature, allowing the electric fi eld to be predicted without knowledge of 
the temperature fi eld. In ablation therapies, where temperatures may exceed 100ºC, 
this assumption is no longer valid and the thermal and EM prediction problems 
become coupled [19].

To obtain the simplest solution for the EM, we fi rst consider wave propagation 
in free space, i.e., no electric charges (ρ = 0) and no current (J = 0). The solution is 
(arbitrarily) restricted to only one electric fi eld component Ex spatially varying with 
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z only. By combining the set of four relations in Equation 11.1, a simplifi ed form of 
the wave equation is obtained
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where the phase constant k = ω(µ0 ε0)1/2 = 2π/λ0 (λ0 = wavelength in free space and 
ω = angular frequency). Solutions of this second-order differential equation corre-
spond to plane traveling waves of the form:

 E z t E ex x
j t kz( , ) ( )� ��  (11.8)

where Ex is the magnitude of the wave in the x direction and t the time. For propaga-
tion in a homogeneous dielectric medium, the plane wave expressions for E and H 
will include a complex propagation constant replacing a real-phase constant:

 k j* [ ( )] /� �� � � �� � � � � � �0 0
1 2 j  (11.9)

where α is the attenuation constant and β the phase constant for a uniform plane 
wave. Expressions for α and β are
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where ε″/ε′ is the loss tangent. Th e value of α decides the depth of penetration δ in 
tissues, which is the depth by which the electric fi eld amplitude is reduced by e–1 of 
its original amplitude and can be calculated as

 



�
�

1
 (11.12)

Depth of penetration is important for radiative methods of heating.

11.3 MODELING POWER DEPOSITION

Living systems have a large capacity for compensating for the effects induced by exter-
nal infl uences, in particular EM sources. This is very often overlooked and it is one 
more reason that conclusions derived from models have to be taken with precautions. 
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Physiological compensation means that the strain imposed by external factors is fully 
compensated and the organism is able to perform normally. Pathological compensation 
means that the imposed strain leads to the appearance of disturbances within the func-
tions of the organism and even structural alterations may result. The borderline between 
these two types of compensation is obviously not always easy to determine [3].

11.3.1 TECHNIQUES FOR LOW FREQUENCIES

Several techniques have been developed for exposure from low-frequency sources 
such as power lines at 50/60 Hz, induction heaters, and other devices operating up to 
a few megahertz. These techniques include admittance and impedance methods, the 
FEM, the scalar potential fi nite difference (SPFD) method, and the FDTD method 
with frequency scaling. The impedance method has been found to be highly effi cient 
as a numerical procedure for calculations of induced current densities and electric 
fi eld for exposure to low-frequency EM fi elds [20]. Gandhi et al. [21] illustrated the 
use of the impedance method to calculate the electric fi elds and current densities 
induced in millimeter resolution anatomic models of the human body, namely an 
adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fi elds 
typical of two assumed but representative electronic article surveillance (EAS) 
devices at 1 and 30 kHz, respectively.

11.3.2 TECHNIQUES FOR RADIOFREQUENCY RADIATION

To obtain the solution for the equations of EM deposition inside biological systems, 
it is required to choose a calculation method. Sometimes, the geometry of the model 
is simple enough (e.g., in one-dimensional models) and the equations can be solved 
by analytical methods. However, most models have a complex geometry (especially 
those based on a very realistic anatomy), with regions of different characteristics, 
and a numerical method has to be employed.

11.3.2.1 Analytical Techniques

Analytical techniques may be used to predict EM fi elds deposited inside modeled 
tissues by solving Maxwell’s equations for general source confi gurations of canoni-
cal homogeneous bodies. However, for inhomogeneous bodies, one must resort to 
numerical analysis. Several early analytical studies have been carried out employ-
ing the plane wave transmission-line model approach to evaluate the EM fi elds and 
determine the energy deposited in a lossy, semi-infi nite, and homogeneous target 
(man and animals) at high-frequency EM radiation [22,23]. Other models have also 
been employed, such as spheres [24], prolate spheroids [1,25,26], ellipsoids [27,28], 
and multilayer elliptic cylinders [29,30]. Values of fi eld, absorbed energy in human 
body, and effect of layering on energy deposition have also been obtained [31–34].

11.3.2.2 Numerical Techniques

The use of numerical modeling techniques has improved the understanding of power 
deposition by EM energy in human bodies. Several numerical techniques have been 
investigated over the past several years. The FDTD method is extremely versatile for 
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bioelectromagnetic problems. It has been used for modeling whole- or partial-body EM 
exposures. In this method, the time-dependent Maxwell’s equations (Equation 11.1)
are implemented for a lattice of subvolumes or Yee space cells that may be cubical or 
parallelepiped with different dimensions ∆x, ∆y, and ∆z in the x, y, and z directions, 
respectively. The components of E and H are positioned about each of the cells at 
half-cell intervals and calculated alternately with half-time steps, ∆t/2. The details 
of the FDTD and its implementation for bioelectromagnetic problems are available 
in several publications [35–51].

Another numerical technique that is usually applied to bioelectromagnetic prob-
lems is the FEM. It requires the complete volume of the confi guration to be meshed, 
as opposed to surface integral techniques, which only require surfaces to be meshed. 
Each mesh element can have different material properties from those of neighboring 
elements. The corners of the elements are called nodes. The aim of the FEM analysis 
is to determine the fi eld quantities at the nodes. The drawback of this method is that for 
complicated bodies it will be very diffi cult and sometimes impossible to carry out the 
integration procedure over the entire body. The details of the FEM and its implemen-
tation for bioelectromagnetic problems are available in several publications [52–64].

11.4 SPECIFIC ABSORPTION RATE MODELING

When considering EM interaction with biological systems, it is important to dis-
tinguish between levels of fi elds outside the body (the exposure) and fi eld levels or 
absorbed energy within body tissues (the dose). The exposure is measured in terms 
of the E or H fi eld strength, or power density incident on the body. The dose depends 
on the exposure, as well as on body geometry, size, its orientation with respect to 
the fi eld, and other factors [65]. The central issue concerning the dosimetric assess-
ment of the absorption of EM energy by biological bodies is how much is absorbed 
and where it is deposited [66]. This is usually quantifi ed SAR, which is the mass-
 normalized rate at which EM energy is absorbed by the object at a specifi c location 
and thus is a good predictor of thermal effects. Mathematically, SAR is defi ned as

 
SAR

E 2

� �
�� �

�
c

dT

dt
 (11.13)

where dT/dt is the time derivative of the temperature in kelvin per second, σ the elec-
trical conductivity in siemens per meter, ρ the mass density in kilogram per cubic 
meter, and c the specifi c heat in joules per kilogram per kelvin. The unit of SAR is 
watts per kilogram (W/kg).

It is clear from Equation 8.13 that the localized SAR is directly related to the 
internal electric fi eld. Calculation of the internal fi eld is, however, diffi cult to achieve 
because it is strongly dependent on many factors. These include the nature (near- or 
far-fi eld zone) and frequency of the incident fi eld, shape and dimension of the object, 
dielectric properties of the object, and whether or not the object is insulated from 
Earth [66]. SAR is a good dosimetric quantity between approximately 100 kHz and 
10 GHz. At frequencies below 100 kHz, a more useful measure of dose is often the 
electric fi eld strength in tissue, in units of volts per meter.

CRC_62840_Ch011.indd   316CRC_62840_Ch011.indd   316 8/29/2007   1:30:46 PM8/29/2007   1:30:46 PM



Electromagnetic and Thermal Dosimetry 317

There are two major types of SAR: (1) whole-body average SAR and (2) local 
(spatial) peak SAR when the power absorption takes place in a confi ned body region, 
as in the case of a head exposed to a mobile phone. Whole-body SAR measurements 
are useful for estimating elevations of the core body temperature. As SAR increases, 
the possibility for heating and, therefore, tissue damage also rises. The whole-body 
SAR for a given organism will be highest within a certain resonant frequency range, 
which is dependent on the size of the organism and its orientation relative to the 
EMF vectors and the direction of wave propagation. For an average human the peak 
whole-body SAR occurs in a frequency range of 60–80 MHz, while the resonant 
frequency for a laboratory rat is about 600 MHz [67].

Both types of SAR are averaged over a specifi c period of time and tissue 
masses of 1 or 10 g (defi ned as a tissue volume in the shape of a cube). Averag-
ing the absorption over a larger amount of body tissue gives a less reliable result. 
The 1-g SAR is a more precise representation of localized RF energy absorp-
tion and a better measure of SAR distribution. Local SAR is generally based on 
estimates from the whole-body average SAR. It incorporates substantial safety 
factors (e.g., 20).

11.4.1 THERMAL DOSE

A serious problem in thermal therapy is the defi nition of clinically meaningful dose. 
Thermal dose may be defi ned as what part of the body had which temperature for 
how long during a treatment. The actual temperature/heat-dose distribution in the 
tissue is one of the most important factors which determine the effectiveness of 
hyperthermic treatment [68]. Deposition of energy, usually stated in terms of SAR, 
although useful for quality control and cross-comparison of equipment, is not neces-
sarily related to tissue temperature and, therefore, cytotoxicity.

Two key papers, published in the mid-1980s, attracted attention to the opportu-
nity to assess effi cacy of cell killing with heat [69,70]. These papers established the 
fi rst concepts for thermal dosimetry and indicated that signifi cant cell killing could 
occur if cells or tissues were heated to more than 42°C for 1 h or more. The effect of 
nonuniform temperature distributions on cytotoxicity is amplifi ed by the tempera-
ture threshold effect, which may vary from tumor to tumor and from normal tissue 
to tissue.

The thermal dose is typically presented in equivalent minutes to 43°C. It is 
assumed that 43°C represents the so-called “break” point in the Arrhenius plot 
[71,72]. Every increase of temperature by 1°C above 43°C doubles the time in min-
utes equivalent to 43°C. Conversely, every decrease of temperature by 1°C below 
43°C results in a reduction of equivalent time by a factor of ∼4 (range from 2 to 6). 
These rules are consistent with laboratory data, proven for a variety of cell lines with 
a wide range of temperature sensitivities [16].

Thermal dosimetry is complicated by temperature heterogeneity within tumors 
and biologic variations and development of thermotolerance. This heterogeneity 
results from heterogeneous energy deposition and also from perfusion-related con-
ductive cooling [70,73–75]. Moreover, the temperature heterogeneity is temporally 
dynamic [76] and heat effects are time dependent [77]. These issues have made 
development of a thermal dosimetry challenging.
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Thermal dose formulations that have taken into account both the temperature 
distribution and time at various temperatures have shown good correlations with 
complete response rates [69,78] and duration of local tumor control [79,80].

11.4.2 THERMAL MEASUREMENTS

Thermal measurements are important, in particular on human beings. A compre-
hensive database is available on effects of a thermal nature, but it mainly concerns 
animal studies and in vitro studies. Several methods of biological effect determina-
tion are based on thermal measurements:

 1. Calorimetric methods particularly suited for in vitro measurements, in 
which heating and cooling data can be analyzed to estimate the energy 
absorbed by an exposed sample.

 2. Thermometric methods used to measure the temperature due to micro-
waves with particular types of nonperturbing thermometers, with only a 
few commercially available.

 3. Thermographic techniques used to measure temperature with particular 
thermographic cameras.

The rate of temperature change in the subcutaneous tissue in vitro exposed to EM 
radiation is related to SAR as
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where ∆T is the temperature increase, ∆t the exposure duration, Pm the metabolic 
heating rate, Pc the rate of heat loss per unit volume due to thermal conduction, Pb the 
rate of heat loss per unit volume due to blood fl ow, and C the specifi c heat. If before 
the exposure a steady-state condition exists such as Pm = Pc + Pb, then during the 
initial period of exposure we have
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and accordingly SAR can be determined from measurements of an increase in the 
tissue temperature over a short period of time following the exposure. For tissue 
phantoms and tissues in vitro, Equation 11.14 may be used as long as the thermal 
conductivity can be neglected, that is, for a short period of time. Several methods of 
SAR determination are based on thermal measurements and utilization of Equations 
11.14 and 11.15. More generally, from a macroscopic point of view, thermal effects 
resulting from the absorption of EM waves inside biological materials are described 
in terms of bioheat equation [3].
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11.5 BIOHEAT EQUATION

The temperature elevation within a biological system depends on the spatial distribu-
tion of the EM fi elds, the thermal constitutive parameters of the biological system, 
and the governing thermodynamics [81]. Knowledge of heat transfer in biological 
bodies has many therapeutic applications involving either raising or lowering of tem-
perature and often requires precise monitoring of the spatial distribution of thermal 
histories that are produced during a treatment protocol [82]. Unlike the prediction 
of the electric fi eld, for which an appropriate continuum physical model may exist, 
no clear compromise exists for a suitable mathematical model to predict heating pat-
terns in biological objects [81].

Successful thermal treatment of tumors requires understanding the attendant 
thermal processes in both diseased and healthy tissue. Accordingly, it is essential for 
developers and users of thermal therapy equipment to predict, measure, and interpret 
correctly the tissue thermal and vascular response to heating. Modeling of heat trans-
fer in living tissues is a means towards this end. Owing to the complex morphology 
of living tissues, such modeling is a diffi cult task and some simplifying assumptions 
are needed [83]. Modeling of the bioheat transfer requires as a fi rst step mathematical 
techniques for solving Maxwell’s equations for reasonably accurate representations 
of the actual objects. Because of the mathematical diffi culties encountered in the 
process of calculation, a combination of techniques is used for the computation of 
the absorbed EM power distribution in the tissue. Each technique gives information 
over a limited range of parameters, depending on the chosen model. Such model-
ing is essential because it allows optimal source confi gurations and provides results 
that will serve as input data for developing thermal models. Various models such 
as blocks, spheroids, ellipsoids, and cylinders with suitable EM and thermal char-
acteristics have been used in many studies [27,29,30,84–87] to represent different 
parts of the human body such as the head and limbs. Recently, MRI-based anatomi-
cally accurate models have been used in conjunction with FDTD-based solutions of 
Maxwell’s equations [88–91].

11.5.1 PENNES MODEL

An extremely important study in the modeling of bioheat transfer was reported over 
half a century ago by Pennes [92]. Pennes developed a cylindrical model of a human 
limb to simulate fi rst the human forearm but later generalized it to any limb. The 
model considered all the properties essential for the conduction, thermal storage, 
and environmental exchange terms for the tissue when he referred to the blood prop-
erties in the blood perfusion system. Pennes suggested a model in which the net heat 
transfer from blood to tissue was proportional to the temperature difference between 
the arterial blood entering the tissue and the venous blood leaving the tissue. Pennes’ 
principal theoretical contribution was his suggestion that the rate of heat transfer 
between blood and tissue is proportional to the product of the volumetric perfu-
sion rate and the difference between the arterial blood temperature and the local tis-
sue temperature. When most researchers apply Pennes model, they assume that the 
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 temperature of venous blood is in equilibrium with the local tissue temperature, and 
that the arterial blood temperature Ta is constant. The Pennes model describes blood 
perfusion with acceptable accuracy, if no large vessels are nearby [83].

11.5.1.1 Bioheat Equation

Following Pennes’ suggestion, the thermal energy balance for perfused tissue is 
expressed in the following form:
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where T = T(x, y, z, t) is the temperature elevation (°C), ρ the physical density of the 
tissue (kg/m3), c the specifi c heat of the tissue (J/kg/°C), k the tissue thermal con-
ductivity (W/m°C), ωb the blood volumetric perfusion rate (kg/m3/s), cb the specifi c 
heat of blood (J/kg/°C), and Ta = Ta(x, y, z, t) the average temperature elevation of 
the arteries (°C). Qm is the mechanism for modeling physiological heat generation 
(W/m3) and Qr the regional heat delivered by the source (W/m3).

The term ωbcb(Ta − T), which is the perfusion heat loss (W/m3), is always con-
sidered in case of tissues with a high degree of perfusion, such as liver. Regarding 
RF cardiac ablation, the perfusion heat loss is incorporated in some models, but is 
generally ignored since its effect is negligible for cardiac ablation [93]. In general, 
ωb is assumed to be uniform throughout the tissue. However, its value may increase 
with heating time because of vasodilation and capillary recruitment.

At the frequencies employed in RF ablation (300 kHz–1 MHz) and within the 
area of interest (it is known that the electrical power is deposited within a small 
radius around the active electrode), the tissues can be considered purely resistive 
because the displacement currents are negligible. For this reason, a quasi-static 
approach is usually employed to resolve the electrical problem. Then, Qr may be 
given by

 Q JEr �  (11. 17)

where J is the current density (A/m2) and E the electric fi eld intensity (V/m). Equa-
tions 11.16 and 11.17 provide the solution of an electrical–thermal coupled problem, 
which generally represents adequately the ablation of biological tissues.

To build the complete theoretical model, the values of four physical characteris-
tics have to be set for all the material of the model: mass density (ρ), specifi c heat (c), 
thermal conductivity (k), and electrical conductivity (σ). All the characteristics are 
normally considered to be isotropic. It is diffi cult to measure tissue thermal proper-
ties because they are spatially, temporally, and even thermally dependent [94]. The 
actual values of these physical properties are shown in Table 11.1 [95,96].

Computers are used to solve Equation 11.16 to obtain the temperature T(x, y, z, t) 
time dependence and space distribution. Analytical solution of the three- dimensional 
(3D) Pennes equation is presented in Liu [97] using the multidimensional Green 
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 function. Numerical techniques for solving the one-dimensional Pennes’ equation 
are discussed in Zhao et al. [98].

11.5.1.2 Limitations

One advantage of Pennes’ bioheat equation is its simplicity. Given the relevant prop-
erties and perfusion rates, it becomes fairly easy to solve for tissue temperature as 
a function of spatial location and time. It is well known that the Pennes perfusion 
source term overestimates the actual blood perfusion effect in tissue in two ways. 
The fi rst limitation is, it considers that all the heat leaving the artery is absorbed by 
the local tissue and there is no venous rewarming [99]. Brinck and Werner [100] and 
Wissler [101] suggested a correction coeffi cient that is less than unity and accounts 
for venous rewarming that should multiply the perfusion term. A correction coef-
fi cient that is close to zero implies a signifi cant countercurrent rewarming of the 
paired vein and a coeffi cient of unity implies no rewarming. Weinbaum et al. [102] 
showed that for most muscle tissues, the “correction coeffi cient” varies between 
0.6 and 0.8. A second limitation of the Pennes perfusion source term is that the arte-
rial temperature is assumed to be equal to the body core temperature. The alternative 
to the Pennes equation is to employ a decidedly more complex model that explicitly 
describes heat exchange between vessel pairs. Keller and Seiler [103] proposed such 
a model, which includes both countercurrent heat exchange between vessel pairs and 
thermal equilibration in the capillary bed.

Pennes’ equation was further simplifi ed to a fi rst approximation by Goldberg 
et al. [104], who described the basic relationship guiding thermal ablation–induced 

coagulation necrosis as follows: coagulation necrosis = energy deposited × local 
tissue interactions − heat loss. On the basis of this equation, several strategies have 
been pursued to increase the amount of coagulation necrosis by improving tissue–
energy interactions during thermal ablation, including increasing energy deposition 
or modulating tissue interactions or blood fl ow [105].

11.5.1.3 Analysis Based on Pennes’ Equation

To better understand the heating performance of a heating probe on living tissues, 
analysis on the temperature response based on Pennes’ equation may be necessary. 
For simplicity, the shape of the heating probe tip can be approximated as a sphere 

TABLE 11.1
Approximate Value of Biological Tissue Constants

Properties Value

Arterial temperature Ta (°C) 37
Thermal conductivity of tissue k (W/mK) 0.488
Mass density of tissue ρ (kg/m3) 1000
Specifi c heat capacity of tissue c (J/kg/K) 3590
Specifi c heat capacity of blood cb (J/kg/K) 3840
Blood perfusion rate ωb (kg/m3s) 0.5
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and the heat transfer geometry for the living tissues can be as shown in Figure 11.1. 
Equation 11.16 can be transformed as
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Considering the clinical situation, several assumptions may be made. First, the ini-
tial tissue temperature is treated as uniform at 37°C. Second, the heating area is n 
times the radius of the probe. Outside this range, the tissue temperature will not be 
affected by the heating and stays at a constant value of 37°C. Third, the tempera-
ture at the tip of the probe will be kept constant at the desired heating value, for 
example, at 100°C. Based on these assumptions, the boundary and initial conditions 
for  Equation 11.18 can be expressed as [106]
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where Ro is the probe sphere radium and r the radial position.

11.5.2 WISSLER MODEL

An important feature of Pennes’ approach is that his microscopic thermal energy 
balance for perfused tissue is linear, which means that the equation is amenable to 
analysis by various methods commonly used to solve the heat-conduction equation. 
Therefore, it has been adopted by many researchers who have developed mathemati-
cal models of heat transfer in the human body [107]. Wissler [108,109] modifi ed the 
model of Pennes to obtain a model of the entire human body. This model subdivided 

FIGURE 11.1 Geometry of the heating area of the tissue.
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the body into six elements: head, torso, two arms, and two legs. Each of these ele-
ments was assumed to have the following characteristics: (1) a uniformly distributed 
metabolic heat generation, (2) a uniformly distributed blood supply, (3) a compo-
sition of homogeneous materials, and (4) a geometry of isotropic cylinders. This 
model has been upgraded for active physiological factors in thermoregulation, such 
as regional perfusion rates [110].

11.5.3 STOLWIJIK MODEL

The entire human body was modeled by Stolwijik and associates at the John B. 
Pierce Foundation Laboratory [111]. The model was composed of three cylindri-
cal segments, one each for the head, trunk, and extremities. The trunk was divided 
into three concentric layers: skin, muscle, and core. The head and extremities were 
divided into only two concentric layers: skin and core. For thermal modeling pur-
poses, the authors suggested the concept of the body being composed of a controlled 
system and a controlling system. The controlled system can be modeled by a tran-
sient heat conduction model with internal heat generation (metabolism) and heat 
dissipation. The controlling system provides physiologically relevant thermal bound-
ary conditions to maintain homeothermy. The heat transfer equation simulating this 
model is
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where Qs represents the evaporative heat dissipation in the skin and Qres is the respi-
ratory heat loss in the lungs. The model consists of 15 cylindrical segments and a 
sphere for the head, with each segment divided into four concentric layers: core, 
muscle, fat, and skin. This model was later expanded by Stolwijik and Cunningham 
[112] and Stolwijik [113,114] to include six parts of the human body: head, trunk, 
arms, hands, legs, and feet.

11.5.4 WEINBAUM–JIJI MODEL

Weinbaum and Jiji [73] utilized the hypothesis that small arteries and veins are 
 parallel and the fl ow direction is countercurrent, resulting in counterbalanced heat-
ing and cooling effects. This kind of tissue vascularization caused the isotropic 
blood perfusion term in the Pennes equation to be negligible and it causes the tissue 
to behave as an anisotropic heat transfer medium. Therefore, Weinbaum and Jiji [73] 
modifi ed the thermal conductivity of the Pennes equation by means of an effective 
conductivity related quadratically to blood perfusion rate, which is affected by the 
dimensions and the directions of the vessels. The work of Weinbaum and Jiji [73] was 
utilized assuming a linear relation between the effective thermal conductivity and 
the blood perfusion rate to determine the increase in the thermal conductivity in a 
perfused tissue. They reported an 8% increase in the thermal conductivity. They sug-
gested that in addition to a “temperature map,” a “perfusion map” within the heated 
volume should be monitored routinely throughout the thermal therapy  process since 
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the local value of perfusion can vary substantially within a few centimeters. Song 
et al. [115] demonstrated that a tissue which exhibits only a small increase in thermal 
conductivity due to countercurrent convection in its vasoconstricted state (narrowing 
of the blood vessels) can exhibit more than a fi vefold increase in thermal conductiv-
ity in its vasodilated state (during relaxation of the muscle).

Weinbaum et al. [102] developed a new model for muscle tissue heat transfer using 
Myrhage and Eriksson’s [116] description of a muscle tissue cylinder surrounding 
secondary vessels as the basic heat transfer unit. This model provides a rational theory 
for the venous return temperature for the perfusion source term in a modifi ed Pennes 
bioheat equation, and greatly simplifi es the anatomical description of the microvascu-
lar architecture required in the Weinbaum–Jiji (W–J) model. An easy-to-use closed-
form analytic expression has been derived for the difference between the inlet artery 
and venous return temperatures using a model for the countercurrent heat exchange 
in the individual muscle tissue cylinders. The perfusion source term calculated from 
this model is found to be similar in form to the Pennes source term except that there is 
a correction factor or effi ciency coeffi cient multiplying the Pennes term, which rigor-
ously accounts for the thermal equilibration of the returning vein. This coeffi cient is a 
function of the vascular cross-sectional geometry of the muscle tissue cylinder.

Wissler [117] pointed that the W–J model assumes the mean temperature in the 
neighborhood of an artery–vein to be the arithmetic mean of the arterial and venous 
blood at the point of entry and that the temperature of blood draining into veins from 
capillaries and small veins is equal to the temperature of venous blood at the point 
of entry, assuming there is very little heat transfer between thermally signifi cant 
artery–vein pairs and the tissue. Wissler [117] indicated that these assumptions are 
questionable and the model suggested by Weinbaum and Jiji [73] was derived for a 
subcutaneous region (tissues under the skin). Wissler [117] noted that the muscle and 
skin are rather different and a formulation appropriate for one may not be applicable 
for another biological tissue.

11.5.5 BAISH MODEL

Baish [118] presented a new bioheat transfer model for the perfused tissue. He consid-
ered simulation of a realistic vascular tree containing all thermally signifi cant vessels 
in a tissue using a physiologically based algorithm. Baish’s model is based on solving 
the convection of the blood coupled to the 3D conduction in the extravascular tissue 
while accounting for a statistical interpretation of the calculated temperature fi eld. This 
model illustrates the dependence of the temperature distribution on the fl ow rate and the 
vascular geometry. Baish [118] also illustrates that the Pennes formulation accurately 
predicts the mean tissue temperature except when the arteries and veins are in closely 
spaced pairs. Baish’s model is useful for fundamental studies of tissue heat transport.

11.5.6 APPLICATIONS OF BIOHEAT TRANSFER MODELS

Biomedical engineers have attempted to accurately model bioheat transfer in tissues 
since it is the basis for human thermotherapy [119] and the thermoregulation system 
[120]. The transfer of thermal energy in living tissues is a complex process involving 
multiple phenomenological mechanisms including blood perfusion, metabolic heat 
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generation, conduction, convection, radiation, evaporation, and external interactions 
such as EM radiation from other sources. Table 11.2 summarizes the characteristics 
of the above bioheat transfer models.

Lang et al. [121] described an optimization process specially designed for regional 
hyperthermia of deep-seated tumors to achieve the desired steady-state temperature 
distributions. A nonlinear 3D heat transfer model based on temperature-dependent 
blood perfusion was applied to predict the temperature. Using linearly implicit 
methods in time and adaptive multilevel fi nite elements in space, the investigators 
were able to integrate effi ciently the instationary nonlinear heat equation with high 
accuracy. Temperature distributions for two individual patients calculated on coarse 
and fi ne spatial grids and present numerical results of optimizations for a Sigma 
60 Applicator of the BSD 2000 hyperthermia system were compared.

Liu et al. [122] used Pennes’ bioheat transfer equation to model the transient 
heat transfer inside canine prostate during transurethral microwave thermal therapy. 
Incorporating the SAR of microwave energy in tissue, a closed-form analytical solu-
tion was obtained. Good agreement was found between the theoretical predictions 
and in vivo experimental results. Effects of blood perfusion and the cooling at the 
urethral wall on the temperature rise were investigated within the prostate during heat-
ing. The peak intraprostatic temperatures attained by application of 5, 10, or 15 W 
microwave power were predicted to be 38, 41, and 44°C. Zhu and Diao [123] used 
the Pennes equation to simulate the steady-state temperature distribution within the 
brain after head injury. Also, Deng and Liu [82] used the equation to study analyti-
cally the effect of pulsative blood perfusion on the tissue temperature. Wainwright 
[124] applied Pennes’ thermal model and found the fi nal steady-state temperature 
rise in the brain for a 0.25 W antenna at frequencies of 900 and 8100 MHz to be as 
high as 0.1°C. However, other EM devices could produce greater heating and there is 
the possibility that nonuniform heating could produce local higher temperature rises.

11.6 THERMAL THERAPY PLANNING SYSTEM

The accuracy of thermal therapy treatment simulation determines its role in 
 prospective treatment planning and dosimetry for the individual patient. Today, a 
major limitation of thermal therapies is the lack of detailed thermal information 

TABLE 11.2
Summary of Bioheat Transfer Models

Bioheat Transfer Model Characteristics

Pennes Simple; based on uniform perfusion; not valid for all tissues
Weinbaum and Jiji It is good when arteries and veins are close, leading to negligible 

blood perfusion; utilizes an effective conductivity as a function of 
the perfusion rate

Wissler Avoids assumptions of the W–J model
Baish Statistics-based model; considers simulation of a realistic vascular 

tree containing all thermally signifi cant vessels
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available to guide the therapy [125–127]. Inadequate thermal doses received by the 
diseased tissue can cause failures in hyperthermic treatments. To compare different 
treatments and correlate the treatment data with the clinical results, it is mandatory 
to know what temperatures are reached in the target volume [68].

Because of limited thermometry, knowledge about the temperature distributions 
achieved can be obtained through simulation of treatment by computer predictions 
and planning of individual patient therapy. This process is called TTPS, which is a 
large and complex system that provides a complete 3D SAR and temperature distri-
bution in the treatment area. The TTPS has to deal with a complex relation among 
the heating system, perfusion, discrete vasculature, and anatomy [128].

11.6.1 OBJECTIVES AND REQUIREMENTS

The aim of TTPS is to determine control parameters in such a way that a favorable 
temperature distribution is achieved. Such a distribution can be characterized by 
the requirements that the heating should be concentrated in the tumor and hot spots 
should be avoided in healthy tissues. Both the high-resolution FDTD code and the 
integral methods using FEM act as a core of absorbed power computations needed 
in the TTPS [129].

TTPS will ultimately provide information about the actual temperature distri-
butions obtained and thus the tumor control probabilities to be expected. This will 
improve understanding of the clinical results of thermal therapy and will greatly help 
in both optimizing clinical heating technology and designing optimal clinical trials 
[128]. While a great deal of effort is applied toward solving the technical problems 
associated with modeling clinical thermal therapy treatments, especially in estimat-
ing the power deposition, effort should also be applied toward using the modeled 
power depositions as inputs to estimate the thermal therapy–induced 3D temperature 
distributions [130]. The type of treatment planning programs that have already been 
developed for radiotherapy must be developed for more complex requirements of 
both prospective and retrospective study of thermal dosimetry in clinical thermal 
therapy [6].

As a comprehensive process, treatment planning includes (1) methods for the 
determination of the target volume (target defi nition); (2) segmenting medical 
image data, generating 3D models of the target and normal tissue structures; (3) 
calculating the absorbed power distribution; (4) assigning tissue thermal properties;
(5) virtually placing heat sources into the 3D structure; (6) measuring SAR patterns; 
(7) calculating heat transfer from the solution of bioheat equations during treatment 
from the power deposition to provide temperature distribution as a function of time; 
and (8) fi nally estimating 3D dose calculation [17,119,128]. An important feature of 
a thermal model must be its capability to describe the complex heat transfer related 
to the vasculature [128,131].

Based on the results of temperature calculation, optimal applicator parameters 
are determined, i.e., amplitudes and phases of the signals sent to the antennas. In 
case of the nonlinear bioheat equation, temperature calculation and optimization are 
coupled via a fi xed-point iteration. An extensive set of visualization and evaluation 
tools must complete a treatment planning system [132]. For treatment planning or 
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posttreatment evaluation of completed therapy, a more detailed study of the dielec-
tric parameters, anatomical structures, and blood perfusion mechanism is necessary. 
Monitoring and control of temperatures during treatment requires advanced thermal 
imaging.

11.6.2 DEVELOPMENTS IN TTPS

The development of the fi rst 2D TTPS to most advanced 3D models, having dynamic 
nonuniform grid generation and a conformal 3D FDTD scheme supporting high-
 resolution models at critical structures, is expected to allow a priori selection of 
the optimal energy deposition or temperature distribution [133]. Several treatment 
planning systems based on 3D patient anatomy have been developed for thermal 
therapy. Das et al. [134] and Paulsen et al. [135] have developed FEM-based treat-
ment planning systems, while Nadobny et al. [136], Gellermann et al. [137], Van 
De Kamer et al. [138], and Van den Berg et al. [139] have developed FDTD-based 
system for predicting the SAR produced by the Sigma 60 applicator in the pelvic 
region of patient model.

Clegg et al. [130] presented a case report of a patient treated with thermal therapy 
at the Duke University Medical Center, where numerical modeling of the EM power 
deposition was used to prospectively plan the treatment. The modeled power was 
used as input to retrospectively reconstruct the transient 3D temperature distribu-
tion. The modeled power deposition indicated the existence of an undesirable region 
of high power in the normal tissue. Using the computed 3D transient temperature 
distribution, the thermal therapy thermal dose was computed.

Treatment planning systems for superfi cial thermal therapy are still lagging 
behind those for deep regional heating, although superfi cial thermal therapy is easier 
to control than deep heating due to the proximity of the heating applicator to the 
treatment object. Kumaradas and Sherar [62] presented a new numerical model of 
microwave heating, which is designed to aid in the development of new applicators 
for superfi cial heating. The model, which is based on FEM, was successfully verifi ed 
against previously published measurements of heating from a modifi ed water bolus 
attached to a conventional waveguide applicator.

Lagendijk [131] briefl y described the state of the art in thermal therapy technol-
ogy, followed by an overview of developments in TTPS. The review highlights the 
signifi cant problems encountered with heating realistic tissue volumes and shows 
how treatment planning can help in designing better heating.

11.6.3 THERMAL MONITORING

Although treatment planning can be used to prescribe the location of the heat source 
(electrode, antenna, etc.), it is unlikely to replace the need for active monitoring 
of thermal dose delivery during treatment. Deviations from predicted temperatures 
could be caused by a number of factors, including unpredictable or changing blood 
fl ow or changes in the electrical or thermal properties of tissue during coagulation, 
where these changes are not fully accounted for in the treatment plan [17]. Full 3D 
online thermal dosimetry would be the ideal; and of particular promise in this regard 
is the use of magnetic resonance thermometry [140].
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11.7 STATUS AND TRENDS

Theoretical dosimetry offers several undeniable advantages over the experimental 
approach. Accordingly, it has become an essential tool to complement experimen-
tal studies on biomedical engineering. Not only it is less expensive and faster than 
experimental work, but it also allocates the time evolution and spatial distribution of 
physical variables to be analyzed. The objective of EM and thermal dosimetry is to 
advance the calculation to a level of sophistication where high-resolution SAR dis-
tributions and temperature profi les, generated graphically using computers, can be 
obtained and displayed with anatomical features for any part of the human body.

In response to radiation, rapid and reliable EM and thermal distribution esti-
mates are crucial for risk assessment, and also for clinical planning of the treatment. 
Many clinical trials are being conducted to evaluate the effectiveness of thermal 
therapy. Despite positive outcomes, application of thermal therapy remains limited. 
This may partially relate to the lack of rigorous EM and thermal dosimetric data. 
The basic premise underlying the need for dosimetry is the ability to write a verifi -
able prescription for thermal therapy. As in any form of therapy, a sound dosimetric 
basis leads to unambiguous treatment, data reporting, and  quality assurance [125].

Clinically, dosimetry offers valuable support in explaining the biophysical phe-
nomena involved in the EM heating of biological tissues. For this reason, procedures 
are to be developed to allow modeling of the realistic treatment conditions due to 
EM energy. Effects will also be directed at improving thermal models of organs 
under treatment so that expected temperature distributions due to EM energy can be 
predicted and displayed graphically.

Much of the future success in dosimetry will be based on (1) accurate model-
ing of the electrical and thermal characteristics of biological tissues, (2) reliable 
techniques to quantify the thermal effect of the blood circulating in arteries and 
veins, and (3) development of fast computer simulation to develop better comparative 
thermal dosimetry that provides comparative evaluation of the potentials of different 
heating modes and confi gurations.

Although not all aspects of dosimetry are covered, the fi ndings of this chapter 
give a rather comprehensive overview of the fi eld. It is the strong belief of the author 
that a periodic review of this type is of benefi t not only to the researchers but also to 
all workers in this fi eld.
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12 Thermometry 
and Imaging

12.1 INTRODUCTION

Guidance and monitoring of therapy is, in fact, very important for general clinical 
acceptance. Accurate targeting allows precise delivery of a therapeutic dose to the 
diseased tissue while avoiding exposure to the adjacent normal tissue. Monitoring 
allows one to assess the tissue response to the dose. Therefore, a practical guidance 
and monitoring system will contain the following features: (1) pretreatment imag-
ing of the site and surrounding tissue to identify and target the exact location of the 
abnormal tissue, (2) imaging of the treatment site during therapy to provide dynamic 
localization of the abnormal tissue, and (3) post treatment imaging to map the treated 
region for follow-up and or continued therapy [1].

Doctors have imaged human body using x-rays since the early years of the 1900s. 
However, x-ray has many disadvantages, including the exposure of the subject to 
ionizing radiation [2]. Given this fact and probably other issues related to the quality 
of x-ray images, the idea of thermal detection had obvious appeal. The fi rst report of 
the use of temperature measurements to diagnose cancer was apparently published 
by Lawson [3].

In thermal therapy, the temperature at the treatment location must be controlled 
at certain levels depending on the type of therapy technique [4]. Accordingly, high   
quality thermometry is needed to (1) ensure safe delivery of adequate therapy and (2) 
provide the quantitative information needed to develop prognostic parameters which 
will aid research in planning and dosimetry [5].

Temperature measurement methods in the intraorganism are generally classifi ed 
into invasive methods and noninvasive methods. Temperatures are routinely mea-
sured invasively, but only sparse measurements can be made. The limited number of 
measurements may result in less information than is necessary to produce satisfac-
tory temperature distributions in order to assess thermal dosi metry properly [6,7]. 
This information in real time would considerably improve the ability to deliver 
consistently effective temperature distributions [8–11]. As an effi cient thermometry 
method in thermal therapy, noninvasive methods for temperature measurement with-
out inserting the sensor into the human body are more desirable. However, currently, 
technological means of measuring temperature accurately by noninvasive methods 
have not been well established [4].

The purpose of this chapter is to discuss invasive and noninvasive thermom-
etry and imaging techniques necessary for clinical guidance and monitoring of the 
treatment. Various systems and their operations are described and future trends are 
speculated.
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12.2 DEVELOPMENT OF THERMOMETRY

Temperature refers to a certain standard of reference. The use of hands to estimate 
heat emanating from the body remained well into the sixteenth and seventeenth cen-
turies. Temperature is measured with thermometers that may be calibrated to a vari-
ety of temperature scales. A thermometer is a device with a measurable output that 
changes with temperature in a reproducible manner.

Thermometry developed slowly from Galileo’s experiments. There were Floren-
tine and Venetian glassblowers in Italy who made sealed glass containers of various 
shapes, which were tied onto the body surface. The rising or falling of small leads 
or seeds within the fl uid inside the container assessed the temperature of an object. 
Such measurement was without a scale. It was the work of Huygens, Roemer, and 
Fahrenheit that proposed the need for a calibrated scale in the seventeenth and early 
eighteenth centuries. Celsius proposed a centigrade scale based on ice and boiling 
water. He suggested that on his scale boiling water should be zero, and melting ice 
should be 100. However, the Danish biologist Linnaeus in 1750 proposed the reversal 
of this scale, as it is known today [12].

Prof. Carl Wunderlich of Leipzig in 1868 advanced the use of thermometry 
in medicine with the fi rst set of temperature charts on individual patients with a 
wide range of diseases. Clinical experience with this type of thermometer exceeds 
130 years. This thermometer has a limited scale around the normal internal body 
temperature of 37°C or 98.4°C [12,13]. The 37°C was considered to be normal based 
on a study of axillary temperatures in adults, incorporating over 25,000 readings 
undertaken using mercury-in-glass thermometers in 1868 [14]. The advantages of 
using mercury-in-glass thermometers are that accuracy is verifi ed by calibration, 
they do not rely on battery power, and they are capable of providing reliable clinical 
readings regardless of the environmental conditions, providing the clinical measure-
ment technique is carefully implemented. The disadvantages of these thermo-
meters are their long reading times, and they cannot be used orally in uncooperative 
patients or young children [13].

The use of liquid crystals became another technique of displaying skin temper-
ature. Cholesteric esters can have the property of changing color with temperature, 
and this was established by Lehmann in 1877. The practical application involved 
the use of elaborate panels that encapsulated the crystals and were applied to the 
surface of the skin, but due to a large area of contact, they affected the temperature 
of the skin. 

A major development in the early 1940s was the fi rst electronic sensor for IR 
radiation that could be used for thermal imaging. This was made from indium 
antimonide, and was mounted at the base of a small Dewar vessel to allow cool-
ing with liquid nitrogen. The fi rst medical images taken with a British prototype 
system, the Pyroscan, were made at Middlesex Hospital in London and the Royal 
National Hospital for Rheumatic Diseases in Bath in 1959–1961 [12]. The basis 
for the above discovery was laid by the astronomer, Sir William Herschel, in Bath, 
who discovered the existence of IR radiation by trying to measure the heat of 
the separate colors of the rainbow spectrum cast on a table in a darkened room.
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He found the highest temperature to fall beyond the red end, which he reported 
to the Royal Society as Dark Heat in 1800. His son, Sir John Herschel, who was 
interested in photography, recorded the heating rays on the IR side of red by creat-
ing an evaporograph image using a carbon suspension in alcohol. This image was 
named the thermogram.

Recently, there has been a move away from glass thermometers in many coun-
tries, giving rise to more disposable sterile thermocouples and radiometers for middle 
ear temperature [12].

12.3 INVASIVE TECHNIQUES

Clinical thermometry can be performed (minimally) invasively and noninvasively. 
Invasive thermometry methods require implantation of catheters in tissues. This 
ensures good thermal contact with tissues, but these methods were questioned over 
the years. The low acceptance by patients and physicians was a limiting factor, 
when large patient numbers were to be heated according to randomized studies. 
Problems encountered included time-consuming invasive placement of the cath-
eters with the risk of hemorrhage or neurological complaints in the form of acute 
side effects. Additional toxicity such as infections and a variety of discomforts 
were observed [15].

The temperature meters used for invasive thermometry are characterized by 
high accuracy and high temporal and spatial resolution. However, to obtain high-
quality thermometry the temperature probes must be placed at the critical locations 
[16,17]. Traditionally, invasive thermometry has been used to measure temperatures 
in target regions. However, it is time-consuming, uncomfortable, and risky for the 
patient [17]. Invasive thermometry can be accomplished generally by three types 
of electrodes: thermocouple sensors, thermistors, and optical fi ber thermometers 
[4]. For hyperthermia, international guidelines recommend invasive intratumoral 
temperature measurements, ideally along two to three orthogonal scanning lines 
[18,19]. It is recommended to register temperature position scans every 5–10 min. 
Either index temperatures averaged over time or thermal dose parameters accu-
mulated over time are derived from these data [15]. These intratumoral measure-
ments have been successfully correlated with clinical endpoints, in particular with 
response [20–22].

12.3.1 THERMOELECTRIC THERMOMETRY

A thermocouple is a sensor that measures temperature. It consists of two different 
types of metals, joined together at one end. When the junction of the two metals is 
heated or cooled, a voltage is created that can be correlated back to the tempera-
ture. Thermocouples are normally made from special thermocouple alloy wire that 
is joined at one end by a weld or other mechanical connection. The thermocouple 
has been used widely to measure temperature in various applications. This thermo-
metry principle is based on the Seebeck effect, discovered by Thomas Johann 
Seebeck in 1821.
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Thermocouples are most useful where low mass or differential temperature mea-
surements are required. They must be calibrated in situ because the entire length 
of the wire contributes to the output voltage if it traverses a temperature gradient. 
Variations in wire composition, homogeneity, or even mechanical strain can affect 
the temperature reading [23].

There are two types of thermocouples: a sheath type and a protected-tube 
type. Sheathed thermocouple probes are available with one of three junction types: 
grounded, ungrounded, or exposed. At the tip of a grounded junction probe, the 
thermocouple wires are physically attached to the inside of the probe wall. This 
results in good heat transfer from the outside, through the probe wall to the ther-
mocouple junction. In an ungrounded probe, the thermocouple junction is detached 
from the probe wall. Response time is slower than with the grounded style, but the 
ungrounded offers electrical isolation. The thermocouple in the exposed junction 
style protrudes out of the tip of the sheath and is exposed to the surrounding environ-
ment. This type offers the best response time, but is limited in use to dry, noncor-
rosive, and nonpressurized applications.

The thermocouple of the protected-tube type consists of a protected tube, a ter-
minal box, and a glass that insulates the thermocouple wire. The outside dimension 
is on the order of 3–30 mm. In general, the sheath type has rapid response with 
respect to temperature change because the sheath diameter is relatively narrow and 
the inside of the sheath is fi lled with inorganic insulation material when compared 
with the protected-tube type [4].

An advantage of thermocouples is the possibility of combining multiple sensors 
in one probe. A disadvantage of thermocouples is their susceptibility to EM distur-
bances. Thermocouples are very diffi cult to use as low-temperature thermometers 
in the presence of magnetic fi elds, as the thermoelectric power depends on both the 
temperature and the magnetic fi eld [23,24].

12.3.2 THERMISTOR

The most popular and widely available temperature sensor for low temperature is 
a resistor. A temperature sensor called a thermistor is a thermally sensitive resis-
tor that exhibits a change in electrical resistance with a change in its temperature. 
There are two main resistor classifi cations: positive temperature coeffi cient (PTC) 
and negative temperature coeffi cient (NTC). PTC resistors are typically a pure metal 
such as platinum, copper, or nickel, or a pure metal with small impurities such as 
rhodium–iron or platinum–cobalt. Semiconductors such as germanium have NTC 
behavior [23]. Thermistors typically work over a relatively small temperature range, 
compared with other temperature sensors, and can be very accurate and precise 
within that range [25]. 

Commonly the resistance falls exponentially with increasing the temperature, so 
they are very sensitive to changes over a short temperature range. Electronic circuitry 
is therefore essential both for measuring the resistance and using stored calibration 
data, describing the nonlinear changes of resistance with temperature, to convert this 
into a displayed temperature reading [13].
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12.3.3 OPTICAL FIBER THERMOMETER

Sometimes, it is better to use noninductive optical fi ber to measure temperature in 
a strong EM fi eld environment such as for thermal therapy treatments. In 1987, the 
fi rst laser-based emissivity measuring IR thermometer was introduced. This instru-
ment is currently in worldwide use in industrial and research applications. In 1990 
a fi ber optic sensor version was developed; this provided broader temperature mea-
surement ranges, smaller target sizes, lower cost, and most importantly fl exibility of 
sensor head size, shape, and materials. The optical fi ber thermometer has a simple 
thermosensor attached to the tip of an optical fi ber, which is composed of a phosphor 
capable of excitation by a light-emitting diode (LED). The tip of the optical fi ber is 
attached to the measured object and a pulse of the IR excitation light at a wavelength 
of 940 nm is applied. This applied pulse is converted into visible light, at a wave-
length of 550 nm, while at the same time it is modulated by the temperature. After 
the IR pulse is applied, there is an afterglow for a while, even if the exciting light is 
cut off. There is a temperature dependency of this afterglow quantity. Therefore, the 
temperature is measured by the variation of afterglow. By carrying out the sequen-
tial sampling of this afterglow quantity in a time series and summing it, after the 
search of the afterglow integral luminance, the temperature is calculated [4].

12.3.4 APPLICATIONS AND COMPARISON

Currently, temperature sensors placed on the skin surface and inside invasively placed 
catheters within the treatment volume are the only reliable means available for acquir-
ing detailed thermometry data. Manual mapping of various types of temperature sen-
sors through phantoms, animal, and human tissues has been employed to characterize 
temperature distributions during treatments and to determine applicator SAR patterns 
[5,26]. Commercially available thermometry equipment is inadequate in terms of its 
ability to provide, at a reasonable cost, the thermometry information needed to prop-
erly control these applicators. One method of increasing the amount of accessible tem-
perature data is by spatially multiplexing the available thermometry by automatically 
scanning the sensors through catheters placed within the treatment fi eld. Several inves-
tigators have used invasive techniques to measure temperature elevation during thermal 
therapy [17,24]. A list of invasive temperature measuring devices is given in Table 12.1.

TABLE 12.1
Invasive Thermometry Methods

Type Description

Thermistors Strong interaction with EM fi elds. Accurate when not used in 
EM fi elds.

Fiber optics No interaction with EM fi elds. Frequent calibration required.
Thermocouples Multiple junction probes possible. Filtering and shielding required. 

Microjunction preferable. Multiple junction probes possible.
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12.4 NONINVASIVE TECHNIQUES

Noninvasive measurement of the temperature distribution within the body is an 
attractive concept with the potential to visualize the 3D temperature distribution 
during thermal therapy. Some techniques are currently in clinical use, while others 
are still in the preclinical or experimental stage [27]. Thermal imaging is classifi ed 
into two main types: active and passive. Active methods for thermal imaging expose 
the region of interest to energy. The energy is modulated by the tissue temperature 
and analyzed to retrieve information on the temperature within the body. Passive 
methods estimate the temperature within the body by analyzing the spontaneously 
radiated energy from the human body [28].

In general, noninvasive thermometry in clinical thermal therapy remains a dis-
tant goal, although developments in microwave radiometry may lead to systems 
with suitable spatial, temporal, and temperature resolutions for use in superfi cial 
treatments. Today, noninvasive thermometry can be achieved using several differ-
ent physical approaches: impedance tomography [29], active and passive microwave 
imaging [30], CT, laser, IR, ultrasound, and MR techniques [31,32].

Table 12.2 summarizes the noninvasive thermometry and imaging techniques. 
Of all these different techniques, ultrasound and MRI are the most advanced tech-
nologies for acquiring functional information and are widely used clinically, mainly 
in experimental settings for thermal therapy. However, morphological information is 
widely acquired by using x-ray imaging and MRI. Therefore, each modality has its 
own characteristics as regards the information acquired. As a result, these modalities 
nowadays compete and complement each other.

The ultimate goal for the thermometry engineer working in clinical thermal 
therapy is to develop a noninvasive 3D method with a spatial resolution of 5–10 mm3, 
temperature accuracy and resolution of 0.1–0.2°C, and a temporal resolution of less 
than 1 s [33–35]. This goal remains elusive, although progress is being made so far. 

TABLE 12.2
Noninvasive Thermometry and Imaging Techniques

Type Description

Ultrasound Depth limited by refl ection at tissue–air interfaces. Good spatial 
distribution. Velocity sensitive to tissue composition.

MRI Able to visualize temperature changes dynamically. Expensive, 
nonportable, and uncomfortable for patients.

Microwaves Measurement depth restricted to 2 or 3 cm in muscle. Improved 
spatial resolution with multi-frequency or correlation 
techniques. Good for imaging superfi cial tissues.

Terahertz Able to image inside most dielectric materials. The system is 
expensive and large.

Computer tomography High image quality. Diffi cult to interface with heating systems.
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12.4.1 ULTRASOUND

The history of ultrasound imaging is much more recent than that of x-ray imaging. 
After the pioneering work of Wild and Reid in the 1950s [36], the image quality 
of medical ultrasound has advanced slowly from low-resolution, bistable images to 
images with much greater detail. Currently, ultrasound image quality is suffi cient to 
make it an important and often indispensable imaging modality in disease diagnosis 
and in obstetrics [37]. Ultrasound imaging is now a mature technology, to the extent 
that it has a well-established place in clinical practice, as confi rmed by the fact that 
it currently accounts for about one in four of all imaging procedures worldwide. 
However, this does not mean that the pace of development, either of the understand-
ing of the physics of the interaction between ultrasound and tissue or of innovation 
in techniques, has slowed down. Indeed, the opposite is true [38].

12.4.1.1 Apparatus

Methods for using ultrasound as a noninvasive thermometer fall into three catego-
ries: (1) those based on echo-shifts due to changes in tissue thermal expansion and 
speed of sound (SOS), (2) those that use the measurement of the acoustic attenuation 
coeffi cient, and (3) those that exploit the change in backscattered energy (CBE) from 
tissue inhomogeneities [39].

Ultrasound uses a nonionizing pressure wave generated by acoustic transducers 
usually placed on the skin of the patient to transmit sound into the body. This repre-
sents a convenient and inexpensive modality with relatively simple signal processing 
requirements. During its transit through the body, the pressure wave loses energy due 
to both scattering and absorption. Sound scattered out of the main beam may be used 
to form images; absorbed energy gives rise to tissue heating. Accordingly, ultrasound 
applications in medicine fall into two principal classes, diagnostic imaging and ther-
apy, which differ in the power, intensity, and duration of the ultrasound. Medical ultra-
sound is perhaps best known for its diagnostic use in obstetrics. An ultrasound scan 
is now routinely offered to women early in pregnancy. Ultrasound imaging is used in 
many other fi elds of medicine, because it gives effective diagnostic information from a 
number of anatomical sites. Figure 12.1 shows an ultrasound imaging plane.

Imaging probe

Imaging plane

FIGURE 12.1 Ultrasound imaging plane.
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The transducer is the most critical component in any ultrasonic imaging sys-
tem. The trend for many years has been toward broader bandwidth transducers 
with more elements, since these will provide superior resolution at multiple depths 
by allowing the best possible compromise between penetration/resolution and 
attenuation to be made [40]. Nowadays, the transducers that are in clinical use 
almost exclusively use a piezoelectric material, of which the artifi cial ferroelectric 
ceramic, lead zirconate titanate (PZT), is the most common. The ideal transducer 
for ultrasonic imaging would have characteristic acoustic impedance perfectly 
matched to that of the human body, and have high effi ciency as a transmitter and 
high sensitivity as a receiver, a wide dynamic range, and a wide frequency response 
for pulse operation [38].

Temperature dependence of ultrasonic tissue parameters has been reported 
extensively from in vitro analyses of ultrasonic tissue characteristics [41–44]. These 
early investigators looked at changes in tissue characteristics with temperature in 
order to evaluate thermal errors in tissue characterization.

12.4.1.2 Advantages and Limitations

Benefi ts claimed for ultrasound include the real-time visualization of applicator 
placement, portability of the technology, nearly universal availability, improved 
image quality, low cost, and ability to target and guide therapy with intracavitary 

endoluminal transducers (for transrectal or transgastric energy application to the 
prostate and abdominal organs). Because of its ability to obtain blood fl ow and per-
fusion information via the Doppler effect, ultrasound is progressively achieving a 
broader role in radiology, cardiology, and image-guided surgery and therapy.

Ultrasound’s limitations come mainly from its rapid attenuation by both bone 
and gas at the frequencies used, commonly 1–20 MHz. Other limitations of ultra-
sound include occasional poor lesion visualization as a result of overlying bone- or 
gas-containing structures [45]. These attributes make it an attractive method to use 
for temperature estimation, if an ultrasonic parameter, which is dependent on tem-
perature, can be found, measured, and calibrated.

12.4.1.3 Two- to Three-Dimensional Ultrasonography

For more than a decade one major goal in transducer development has been the 
construction of a fully electronic 2D array, which would allow for complete beam 
steering in 3D space (axial, lateral, and azimuthal) [46]. Ultrasound systems that 
use 2D arrays keep the transducer stationary and use electronic scanning to sweep 
the ultrasound beam over the volume of interest to produce 3D images in real time. 
Investigators have described a number of 2D-array designs, but the one developed 
at Duke University for real-time 3D echocardiography is the most advanced and has 
been used for clinical imaging [47]. The transducer is composed of a 2D phased 
array of elements that are used to transmit a broad beam of ultrasound that diverges 
away from the array and sweeps out pyramidal volumes. The returned echoes are 
detected by the 2D array and then processed to display, in real time, multiple planes 
from the volume. These planes can be chosen interactively to allow the user to view 
the desired region under investigation.
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In conventional 2D ultrasonography, an experienced diagnostician manipulates 
the ultrasound transducer and mentally transforms the 2D images into a 3D com-
prehension of the lesion or anatomical volume necessary for the diagnosis or the 
interventional procedure. An alternative to the use of 2D arrays is the use of a 1D 
array, which is manipulated mechanically or manually to sweep out the desired vol-
ume of interest. As the transducer is moved over the anatomy, a series of 2D images 
is recorded rapidly and then reconstructed into a 3D image. If mechanical means are 
used to move the conventional transducer in a precise predefi ned manner, the relative 
position and angulation of each 2D image can be accurately determined. The angular 
or spatial interval between the digitized 2D images is usually made adjustable to 
minimize the scanning time while optimally sampling the volume.

Over the past two decades, many investigators have focused their efforts on the 
development of various types of 3D imaging techniques by taking advantage of ultra-
sound positioning fl exibility and data acquisition speed [37]. These approaches have 
focused on reconstructing a 3D image by integrating transducer position information 
with the 2D ultrasound image. Because of the enormous demands on the computers 
needed to produce nearly real-time and low-cost systems, most attempts have not 
succeeded. It is only in the last few years that computer technology and visualization 
techniques have progressed suffi ciently to make 3D ultrasound imaging viable. 

It is now recognized that 3D ultrasound imaging has an important role to play 
in ultrasound-guided therapies such as prostate cryosurgery and brachytherapy, in 
addition to other clinical applications such as in diagnosing facial abnormalities and 
assessment of blood fl ow in various organs. Its role could be greatly expanded if a 
number of advances were achieved in coupling the 3D image acquisition and display 
to therapy planning and monitoring [37,40].

12.4.2 MAGNETIC RESONANCE IMAGING

MRI is a relatively new imaging technique that offers several advantages. It pro-
duces no ionizing radiation and provides superior tissue discrimination, lesion 
defi nition, an improved anatomic context for surrounding vessels and nerves, 
and excellent spatial resolution at close to or in real time. MRI also provides the 
capability of characterizing functional and physiological parameters of tissues, 
including diffusion, perfusion, fl ow, and temperature. However, high costs are 
associated with MRI; it also requires a special environment that can hinder patient 
 accessibility [1].

MRI is based on the principles of NMR, a spectroscopic technique used by 
scientists to obtain microscopic chemical and physical information about mole-
cules. The technique was called magnetic resonance imaging rather than NMR 
imaging (NMRI) because of the negative connotations associated with the word 
nuclear in the late 1970s. MRI started out as a tomographic imaging technique; 
that is, it produced an image of the NMR signal in a thin slice through the human 
body. MRI has advanced beyond a tomographic imaging technique to a volume 
imaging technique. In 2003, there were approximately 10,000 MRI units world-
wide, and approximately 75 million MRI scans per year performed. As the fi eld of 
MRI continues to grow, so do the opportunities in MRI [48].
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12.4.2.1 Operation

MR thermometry has been in use since the 1990s for controlling interventional ther-
moablative procedures [49]. MRI relies on the relaxation properties of excited hydro-
gen nuclei in tissue water. The object to be examined is positioned in a static external 
magnetic fi eld, whereupon the spins of the protons align in one of two opposite 
directions: parallel or antiparallel. The protons process with a frequency determined 
by the strength of the magnetic fi eld and the gyromagnetic ratio. The object is then 
exposed to EM pulses with a frequency identical to the precession frequency in a 
plane perpendicular to the external magnetic fi eld. For a 1-Tesla (T) scanner, a pulse 
frequency of 42.58 MHz is used. The pulses cause some of the magnetically aligned 
hydrogen nuclei to assume a temporary nonaligned high-energy state. As the nuclei 
realign, they emit energy, which can be detected by a receiver coil [27]. Figure 12.2 
shows the main components of a magnetic resonance imaging system.

The mechanical integration of any applicator for thermotherapy with MR tomo-
graphs is generally easy to realize. Conversely, interfaces with other methods for non-
invasive thermometry (e.g., ultrasound or microwave imaging) are problematic [50]. 
A particular advantage of MRI is that it not only allows temperature mapping, but it 
can be used as well for target defi nition and may provide an early evaluation of thera-
peutic effi cacy [51]. A promising technique for noninvasive thermometry using NMR 
with CT has been proposed and studied by Kamimura and Amemiya [52].

Implementing noninvasive monitoring for RF/microwave thermal therapy using 
MR technique must solve the problem of EM compatibility: the interference between 
MR tomography (typically receiving and analyzing low-power signals of microwatts 
at 63.9 MHz) and thermal therapy RF applicator (transmitting power signals at 
therapeutic levels of kilowatts at hundreds of hertz). Both of these systems must be 
operated simultaneously and without any interaction. In particular, the MR measure-
ments must not be disturbed by any radiation from the thermal therapy system [53].

Much of the current research in MRI guidance is directed toward thermal dosim-
etry. The high correlation of lesion formation with temperature provides a means 

Ultrasound source

Patient

Magnet

Water
RF source

FIGURE 12.2 Magnetic resonance imaging.
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to measure the treatment volume and quantify tissue damage. Several investigators 
have used MRI to measure temperature elevation during thermal therapy [53–61].

12.4.2.2 Advantages

MRI is attractive in clinical medicine because it provides images with exquisite soft 
tissue contrast and it is completely noninvasive [62]. MRI has demonstrated advan-
tages over other imaging modalities in localizing tissue abnormalities and determin-
ing apparent tumor margins. It is therefore ideal for guiding various biopsies and 
tumor resections. Noninvasive MRI during thermal therapy treatments provides the 
capability to monitor changes in perfusion, temperature, necrosis, and chemistry. 
It is unique as an imaging modality in its ability to visualize temperature changes 
dynamically, therefore providing a mechanism through which thermal therapy can be 
monitored and controlled. Using the MRI in conjunction with thermal therapy allows 
the surgeon to view the deposition of energy within the tissues while proceeding with 
therapy [63,64]. However, high costs are associated with MRI; it also requires a spe-
cial environment that can hinder patient accessibility; and minimal use of metal parts 
in the therapy assembly is necessary to prevent distortion of the MRI trends [1].

Major current topics of study include the improvement of image quality in fast 
imaging, improvement of the accuracy of fMRI, clinical applications of diffusion/
perfusion imaging, and the development of ultrahigh magnetic fi eld devices with 
magnetic fi eld intensities above 10 T [65].

12.4.3 MICROWAVE RADIOMETRIC IMAGING

Biomedical imaging techniques for the human body using microwave technology 
have been of interest for many years. Microwave images are maps of the electrical 
property distributions in the body. The electrical properties of various tissues may 
be related to their physiological state [66]. Because EM radiation can be detected 
over distance, microwave thermometry can be used to estimate a temperature at 
depth even if the surface temperature is low. Near-fi eld microwave radiometry and 
radiometric imaging are noninvasive techniques that are able to provide temperature 
information at a depth of up to several centimeters in subcutaneous tissues. They are 
based on the measurement of microwave thermal noise [67]. The principal behind the 
use of the microwave radiometer as a tool for biomedical imaging is the possibility of 
monitoring a thermal noise produced by objects with temperatures above absolute 
zero. Figure 12.3 shows the principle of imaging by microwave radiometer.

The advantage of the microwave radiometer is the ability to see the tempera-
ture increase under the surface of human body. Its main attraction is the innocuous 
nature of this type of energy at low levels, the relatively low cost of even complex 
microwave systems compared with the computer-assisted tomography (CAT) and 
MRI, and the distinctly different permittivity of tumor tissue compared with normal 
tissue [68,69]. Excellent reviews of the subject are those of Foster and Cheever [70] 
and Rosen et al. [69]. 

Since the 1970s, several research groups have carried out clinical evaluations with 
microwave radiometry (passive, hybrid, and active approaches) for noninvasive ther-
mo metry [68,71–90]. The most important work was done by Barret et al. [73] in the 
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fi eld of breast cancer screening. One thousand patients were examined at the Faulkner 
Hospital in Boston with microwave radiometry (operating at 1.3, 3.3, and 6 GHz) and 
IR thermography. Breast cancer was confi rmed by both methods for 39 patients. 
Microwave imaging has been explored as a new modality for breast cancer diagnosis 
since tissue physical properties are unique to the microwave spectrum, namely, the 
translucent nature of normal breast tissues and the signifi cant contrast in the dielectric 
properties of normal tissue and malignant tumors [91,92]. Although the specifi c con-
trasts vary with frequency and among the results from different groups, there is now a 
general belief that these contrasts are substantial, especially near 800 MHz [66,91–96].

Other clinical evaluations were made with radiometers for measuring changes 
in lung water [75], cerebral temperatures [76], measurement of blood fl ow [78], and 
infl ammatory arthritis [81].

Current microwave imaging systems image biomedical objects of various sizes, 
sometimes even the full body. However, despite its unique capabilities, microwave 
radiometry has so far received only limited acceptance by the medical community, 
and little commercial success. The chief reasons, we suggest, are the shallow depth 
of sensing and the diffi culty of extracting imaging information from radiometry 
signals emitted by electrically heterogeneous media. A secondary factor has been 
the diffi culty of validating many proposed clinical applications for the method—in 
particular, cancer detection. The implementation of a clinically viable microwave 
imaging system is a technically daunting task since high-resolution imaging requires 
a sophisticated scanned antenna array. On the signal processing side, it should be 
noted that the classical projection-type tomography algorithms are not applicable at 
microwave frequencies [70,97]. Microwave radiometry is a viable method of thermal 
sensing, but its successful applications are likely to be quite different than those that 
were originally conceived for the technique [70].

12.4.4 TERAHERTZ TECHNOLOGY

Terahertz (THz) radiation, which falls between microwaves and IR light of the EM 
spectrum, occupies the region between approximately 0.3 and 20 THz. This region 

Tissue

Tumor

Applicator

To radiometer

FIGURE 12.3 Principle of imaging by microwave radiometer.
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of the EM spectrum is sometimes called the “THz-gap” [98]. It is one of the least 
explored ranges of the EM spectrum. Radiation at these wavelengths is nonion-
izing and subject to far less Rayleigh scatter than visible or IR wavelengths, mak-
ing it suitable for medical applications. THz technology is gaining attention from 
researchers because it shows great promise for applications to the life sciences, 
including medical imaging or even clinical treatment and chemical sensing. The 
energy levels of this band are very low (1–12 meV); therefore, damage to cells or 
tissue would be limited to generalized thermal effects, i.e., strong resonant absorp-
tion seems unlikely [99–101].

12.4.4.1 Characteristics of THz Radiation

THz-ray imaging has several advantages when compared to other sensing and 
imaging techniques. While microwave and x-ray imaging modalities produce 
density pictures, THz-ray imaging also provides spectroscopic information within 
the THz range. The unique rotational, vibrational, and translational responses of 
materials (molecular, radicals, and ions) within the THz range provide informa-
tion that is generally absent in optical, x-ray and NMR images [102]. THz-ray 
can also easily penetrate and image inside most dielectric materials, which may 
be opaque to visible light and low contrast to x-ray, making THz-rays a useful 
and complementary imaging source in this context. The distinctive rotational and 
vibrational responses of biological tissues within the THz range provide infor-
mation that cannot be offered by optical, x-ray, or MRI techniques. THz-rays 
can also easily penetrate and image inside most dielectric materials, which are 
opaque to visible light and low contrast to x-ray, making THz-ray a practical 
imaging source in the context.

One of the hopes for THz applications in the medical area is in the detection 
and early characterization of disease. The fi rst use of this technology in this area 
has been in the identifi cation of dental caries [103] and in the examination of skin to 
assess the magnitude and depth of burns [104]. Recently, THz imaging was used to 
detect the extent of subdermal carcinomas [101].

The excitement about THz imaging stems in part from its degree of pen-
etration. Unlike x-rays, THz radiation is nonionizing. Unlike ultrasound, THz 
waves can image without contact, and they can go deeper than IR radiation. THz 
radiation puts much less energy into biological tissue than the above techniques, 
which are inade quate. In addition, x-rays raise safety concerns due to the use 
of ionizing radiation in regular screening. One advantage of THz is the ability 
to perform spectroscopic measurements at each pixel in an image. This would 
allow, for example, the use of spectroscopy of tissue to identify regions of dis-
ease. THz medical imaging systems can be tuned to highlight specifi c types of 
tissue such as skin cancers. Because THz waves can penetrate plastic and cloth, 
they can be used to detect concealed objects. THz radiation is also capable of 
detecting chemicals such as toxic gases and explosives. Among the challenges 
to making THz sensing and imaging applications more practical is fi nding ways 
to direct the waves to specifi c targets. Researchers are working to develop THz 
waveguiding devices that are similar to the waveguides used to channel micro-
waves and light waves.
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12.4.4.2 THz-Ray System

Until relatively recently, it was diffi cult to effi ciently generate and detect THz radia-
tion. At frequencies up to approximately 0.5 THz, EM radiation may be generated 
by electronic devices including resonant tunneling diodes, Gunn devices, and fi eld 
effect or bipolar transistors. A second approach is to use lasers to produce THz radia-
tion [98]. Most THz sources are either low-brightness emitters with power output 
inversely related to the square of the frequency, or cumbersome, single-frequency 
molecular vapor lasers with limited operation [99,100,105].

Detection usually relies on bolometers cooled by liquid helium, which require 
cryogenic operation and generally provide low sensitivity due to background radia-
tion. These devices measure only the intensity of the radiation and do not provide 
any phase information. For these reasons, direct and coherent measurement of the 
THz electric fi eld in the time domain is preferred [98].

The challenges in THz imaging appear to lie primarily in the diffi culties of fabri-
cating solid-state THz sources. Researchers have focused attention on all-optical tech-
niques of producing THz radiation employing visible/near-IR lasers. Currently, most 
systems produce THz emissions either by frequency upconversion from the radio wave 
regime or by frequency downconversion from optical wavelengths. Common down-
conversion methods include photomixing, notably using semiconductor lasers typical 
for telecom applications, operating around 1.5 µm. An alternative is to irradiate a semi-
conductor microantenna with the IR output, typically from a titanium-doped sapphire 
(Ti: Sapphire) laser with the output wavelength centered around 800 nm [98,99,105].

The fi rst THz imaging systems were based on CW THz radiation. The setup 
is less expensive than conventional time-domain imaging systems that comprise 
femtosecond lasers. CW imaging affords a compact, simple, fast, and relatively low-
cost system. The system uses a two-color external-cavity laser diode. Hence it is 
much more compact as compared with systems based on optically pumped solid-
state lasers. The coherent detection scheme is phase sensitive and operates at room 
temperature. These low-cost, compact systems have image capture rates comparable 
with those from state-of-the-art pulsed THz systems.

Terahertz time-domain spectroscopy (THz-TDS) based on femtosecond lasers is 
one of the fi rst and most interesting techniques to generate and detect THz radiation, 
which is based on frequency conversion using nonlinear optics (Figure 12.4). Using 
THz-TDS, the phase and amplitude of the THz pulse at each frequency can be deter-
mined. Like radar, THz-TDS also provides time information that allows us to develop 
various 3D THz tomographic imaging modalities. The key components of a THz-
TDS system are a femtosecond laser and a pair of specially designed transducers. By 
gating these transducers with ultrafast optical pulses, one can generate bursts of THz 
radiation and subsequently detect them with high signal-to-noise ratio (SNR). These 
THz transients consist of only one or two cycles of EM fi eld, and they span a very 
broad bandwidth. Bandwidths extending from 100 GHz to 5 THz can be obtained. By 
placing an object at the focus of the THz beam, it is possible to measure the waveform 
that has traversed through the object. By translating the object, and measuring the 
transmitted THz waveform for each position of the object, one can build an image 
pixel by pixel. To form images in a reasonable time, the waveforms must be digitized 
and the desired information extracted on the fl y. This can be accomplished using a 
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commercial digital signal processor in a computer, which synchronizes the motion of 
the object through the focal spot with the waveform acquisition [99,106].

12.4.4.3 Challenges

The THz region of the EM spectrum was very diffi cult to explore until recent advances 
made the generation and detection of the radiation possible [98]. Sensing and imaging 
with THz frequency for biomedical applications faces many challenges. These chal-
lenges include SNR, high absorption rate of water, scattering, acquisition rate and res-
olution, and the need for a spectroscopic database for biological tissues. Solutions to 
the problem of SNR are sought in improving the THz-ray hardware. THz sources have 
very low average output power and THz sensors have relatively low sensitivity com-
pared with sources and sensors operating in the optical range. Both of these aspects of 
THz-ray systems are foci of current research and continue to improve [102].

Scattering is a common problem for many imaging modalities. THz-rays exhibit 
signifi cantly reduced scattering in human tissue compared with near-IR optical fre-
quencies due to the increased wavelength. Pearce and Mittleman [107] investigated 
this issue using Tefl on spheres and scattering-related dispersion. This may allow the 
scattering process to be accurately modeled to aid the future development of diffu-
sion imaging algorithms, such as those adopted for near-IR imaging.

Perhaps one of the most restrictive challenges facing THz imaging in biomedi-
cal engineering is the high absorption rate of water and other polar liquids. This 
strong absorption limits the sensing and imaging in water-rich samples and prohibits 
 transmission-mode imaging through a thick tissue. For this reason, current biomedi-
cal THz research has primarily focused on skin conditions [102,108].

Other disadvantages of THz systems are the size and cost. Current THz-ray 
imaging systems require areas of a few square meters, most of which is dominated by 
the ultrafast laser. In addition, the high cost of ultrafast laser ($100,000–$200,000) 
may impede THz imaging in a number of application settings [102].

Femtosecond laser
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A/D converter and 

DSP
Current 

preamplifier

Detector

Scanning 
optical

Transmitter

FIGURE 12.4 Schematic diagram of a THz system.
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12.4.5 X-RAY COMPUTED TOMOGRAPHY

A CT scan, also known as “CAT scanning” (computer-assisted tomography), was 
developed in the early to mid-1970s and is now available throughout the world. The 
now ubiquitous CT uses x-rays to make detailed pictures of structures inside of the 
body. CT is fast; patient friendly; and has the unique ability to image a combination 
of soft tissue, bone, and blood vessels. X-ray CT provides cross-sectional images 
of the chest, including the heart and great vessels. A CT scan can be used to study 
many parts of your body such as the chest, belly, pelvis, or an arm or leg. It also can 
take pictures of body organs such as the liver, pancreas, intestines, kidneys, adrenal 
glands, lungs, and heart. It also can study blood vessels, bones, and the spinal cord.

By spinning the x-ray source and the sensor/detectors around the patient, data are 
collected from multiple angles. A computer then processes this information to cre-
ate an image on the video screen. These images are called sections or cuts because 
they appear to resemble cross-sections of the body. This technique eliminates 
the problem of conventional x-rays, where all the shadows overlap. Because it does 
use x-rays to form the image, this computerized technique has some limitations that 
are similar to those for plain fi lm radiographs.

The fi rst successful CT images were produces at the Atkinson Morley Hospital in 
London in 1972, based on the achievement of the English engineer G. N. Hounsfi eld, 
who is now generally recognized as the inventor of CT [109]. In 1979 Hounsfi eld and 
Allan M. Cormack, an engineer and a physicist, were awarded the Nobel Prize for 
Medicine in recognition of their outstanding achievements [110]. Three main types 
of CT scanners are currently used in routine clinical practice. These include conven-
tional, spiral, and multislice scanners.

12.4.5.1 Conventional CT Scanners

In fi rst generation (conventional) scanners, the tube produces a narrow beam of 
x-rays that passes through the patient and is picked up by a row of detectors on the 
other side. The tube and detectors are positioned on opposite sides of a ring that 
rotates around the patient. After each rotation the scanner must stop and rotate in 
the opposite direction. Each rotation acquires an axial image, typically with a slice 
thickness of 1 cm, taking approximately 1 s per rotation. The table moves the patient 
a set distance through the scanner between each slice. Conventional scanners have 
some limitations; for example, the fi rst clinical scanners were slow, allowing for the 
acquisition of single images in 300 s. Such scanners are prone to artifacts caused 
by movement or breathing. They have a poor ability to reformat in different planes, 
studies of dynamic contrast are impossible, and small lesions between slices may be 

missed [110,111].

12.4.5.2 Spiral (Helical) CT Scanners

The basics for modern CT and its success are the fact that the increase in speed does 
apply not only to the acquisition of single images, but also to the acquisition of image 
data complete volumes [110]. The incorporation of slip ring technology into the design 
of scanners in the late 1980s removed the need for a rigid mechanical linkage between 
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the power cables and the x-ray tube. This “simple” development, by enabling the 
tube to rotate in one direction indefi nitely, has reestablished CT at the forefront 
of imaging. While the tube is rotating, the table supporting the patient also moves 
continuously so that a volume of tissue rather than individual slices is scanned. The 

data are then reformatted automatically to display the images as axial slices. High-
quality reconstructed (reformatted) images in coronal, sagittal, and oblique planes 
can be readily acquired on a workstation. Spiral scanning has several advantages. 
Closely spaced scans are readily obtained, allowing good quality reconstructions 

in different planes. Lesions can be evaluated during different phases of contrast 
enhancement. Spiral CT is a powerful diagnostic tool. A spiral scanner is not as fast 
as a multislice scanner but is considerably cheaper [111]. The fi rst clinical trials of 
spiral CT scanner were already completed in 1989; however, it took about 3 years 
for this scanner to receive wider acceptance. Spiral CT scanners provide scan times 
down to 2 s [110].

12.4.5.3 Multislice CT Scanners

Since 1992, an amazing technical development has been observed, providing huge 
increases in x-ray power, computer capacities, and further technical improvements. 
But it was not only technical parameters and increased scan speed; it was the improve-
ment of image quality: the potential for improved 3D resolution and lesion detection. 
These potentials became clinical reality with the introduction of the multislice CT 
system and rotation times of 0.5 s in the year 1998 [110]. A multislice (multidetec-
tor) CT scanner can be considered as a “turbocharged” spiral scanner. Conventional 
and spiral scanners use a single row of  detectors to pick up the x-ray beam after it 
has passed through the patient. Multislice scanners currently have up to eight active 
rows of detectors, and scanners under development will use direct digital detectors 
on fl at panels. The increased number of detectors and tube rotation times that take a 
fraction of a second combine to give faster coverage of a given volume of tissue [111]. 
The fi rst years of the new millennium showed direct continuation of the development 
trends of the previous decade. Image quality has reached a very high level, which 
can be guaranteed even at the shorter examination times. Coronary angiography, for 
example, can be performed easily and noninvasively with 64-slice CT and with scan 
times of less than 10 s with impressive results [110].

12.4.6 THZ-RAY CT

THz CT is based on geometrical optics and inspired by x-ray CT. Like radar, based 
on the phase and amplitude of the THz pulse at each frequency, THz waves provide 
temporal and spectroscopic information that allows us to develop various 3D THz 
tomographic imaging modalities. The hardware is a relatively simple extension of 
modern transmission-mode THz imaging systems. THz-ray CT extends THz imag-
ing to enable the mapping of 3D objects. It provides sectional images of objects in a 
manner analogous to conventional CT techniques such as x-ray CT. The interaction 
between a coherent THz pulse and an object provides rich information about the 
object under study; therefore, 3D THz imaging is a very useful tool to inspect or 
characterize dielectric and semiconductor objects.
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THz pulse imaging is used to obtain images of the target at multiple projection 
angles, and the fi ltered back-projection algorithm enables the reconstruction of the 
object’s frequency-dependent refractive index. THz-ray CT directly measures the 
transmitted amplitude and phase of broadband pulses of THz radiation at multiple 
projection angles. The fi ltered back-projection algorithm then allows a wealth of 
information to be extracted from the target object, including both its 3D structure 
and its frequency-dependent far-IR dielectric properties.

The applicability of the THz-ray CT technique is limited by two important restric-
tions: the THz power available and approximations made by the reconstruction algo-
rithm. As THz-ray CT operates in transmission mode, it is only suitable for objects 
that do not attenuate or scatter the THz radiation too severely. This is a particular 
limitation for biomedical applications where the absorption of moist tissue is prohibi-
tive. In addition, the current simple reconstruction algorithm does not describe the full 
interaction of THz radiation with complex structures, and more sophisticated methods 
are required before strongly diffracting objects can be imaged accurately [112].

12.5 STATUS AND TRENDS

The last four decades have witnessed an innovative development in the fi eld of ther-
mometry and diagnostic imaging. Related techniques and modalities, which were 
only in the experimental research phase in the early 1970s and 1980s, have now 
become worldwide-accepted clinical procedures. They include CT, MRI-based 
thermometry, ultrasound-based thermometry, microwave-based thermometry, THz 
imaging, etc.

The choice of the modality should be based on robust evidence that it fi ts the 
purpose with regard to the accuracy and reliability of the temperature reading in the 
clinical setting for which it is intended [13]. The consistent measurement of the tem-
perature distribution inside living tissue is still the primary problem of thermometry, 
although the measurement of other parameters, such as tissue properties, blood per-
fusion, or heat fl ux, is also of enormous importance. Important developments in this 
fi eld are those on noninvasive thermometry. This thermometry is used to visualize 
full 3D temperature distribution, a tool that contributes to an easier and better-con-
trolled application of thermal therapy [113]. Commonly, temperature measurement 
techniques require the insertion of several temperature monitoring probes into the 
tumor and normal surrounding tissues. Currently, invasive thermometry is an abso-
lute necessity to determine the temperature distributions achieved [114]. This inva-
sive thermometry is, besides the problems with the extremely limited information 
about highly inhomogeneous thermal dose distributions, a major clinical problem in 
the acceptance of thermal therapy [16]. Efforts to establish noninvasive thermom-
etry techniques with thermal therapy have been conducted in recent years [24,115]. 
However, there are two issues that must be solved to implement noninvasive ther-
mometry effi ciently. First, the EM compatibility problem of interference between 
thermometry device, such as MR tomography and thermal therapy applicators must 
be solved. Second, the acquisition process for a particular method of thermography 
must be carefully validated at fi rst in a phantom under experimental conditions rep-
resentative of a clinical setting [24,53].
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MRI could become the most widely used medical imaging modality if several 
development variables such as reducing the actual cost of an exam and designing 
smaller MRI systems come to realization.

Potential biomedical applications in THz imaging have emerged recently, span-
ning fi elds as diverse as contraband detection and tumor recognition. It provides 
spectroscopic information about the chemical composition as well as the shape and 
location of the targets they pass through or scatter from. THz rays are nonionizing, 
since they have low photon energies; for example, typical x-ray photon energy is in 
the range of keV, which is one million times higher than that of a THz-ray photon. 
Biologically, this means THz radiation is noncarcinogenic. However, there remains 
a critical need for new initiatives and advanced technology development in the THz 
band, especially the development of solid-state sources and detectors. The relatively 
unexplored THz band must remain a focus for future research. 

Techniques for noninvasive thermometry and imaging have been discussed in 
detail. Results presented in the literature have shown MRI, x-ray CT, and ultra-
sonic imaging to be adequate thermometry modalities. Other modalities includ-
ing microwave and THz-based imaging have a promising future. Speaking for 
all thermometry and imaging techniques, the future is exciting and challenging 
for biomedical engineering; the prospects are certainly brighter than ever before. 
Future research will indicate whether the promise evolves into reliable clinical 
techniques.
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Acronyms and Abbreviations
1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
1G fi rst generation
2G second generation
3G third generation

AC alternating current
AD Alzheimer’s Disease
AF atrial fi brillation
ALL acute lymphocytic leukemia
ALS amyotrophic lateral sclerosis
AM amplitude modulation
AML acute myeloid leukemia
ANSI American National Standards Institute
APC adaptive power control
ARPANSA Australian Radiation Protection and Nuclear Safety Agency
ASA American Standard Association
AV atrioventricular

BBB blood–brain barrier
BCS breast-conserving surgery
BMR basal metabolic rate
BPH benign prostatic hyperplasia
BTS base transceiver station

CAT computer-assisted tomography
CENELEC European Committee for Electrotechnical Standardization
CDMA code division multiple access
CGS centimeter-gram second
CLL chronic lymphocytic leukemia
CLM colorectal liver metastases
CNS central nervous system
CRT cathode ray tube
CT computed tomography
CUA Catholic University of America 
CW continuous wave

dB decibel
DCS Digital Communication Services
DECT Digital European Cordless Telephone
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362 Acronyms and Abbreviations

DNA deoxyribonucleic acid
DOE Department of Energy

EAS electronic article surveillance
ECG electrocardiogram
EEG electroencephalography
ELF extremely low frequency
EM electromagnetic fi elds
EMC electromagnetic compatibility
EMF electric and magnetic fi eld
EMF RAPID  Electric and Magnetic Fields Research and Public Information 

Dissemination
ETW expanded tip wire
EMI electromagnetic inference
EMIT electromagnetic interference toolbox
ENU eurocarcinogen ethylnitrosoura
EPA Environmental Protection Agency
ES electrical sensitivity
ETSI European Telecommunications Standards Institute
EU European Union
eV electron volt

FCC Federal Communications Commission
FDTD fi nite difference time domain
FDA Food and Drug Administration 
FEM fi nite element method
FEHRM Framework for Environmental Health Risk Management
FM frequency modulation
fMRI functional magnetic resonance imaging

GM geometric mean
GFD generalized fi nite difference
GICs geomagnetically induced currents
GPS global positioning system
GSM global system for mobile communication

HAPS high altitude atmosphere platform station
HCC hepatocellular carcinoma
HF high frequency
HIFU high-intensity focused ultrasound
HSP heat-shock protein
Hz Hertz, originally cycles per second

ICES International Commission for Electromagnetic Safety
IEBCM iterative extended boundary condition method
IEEE Institute of Electrical and Electronics Engineers
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IEGMP Independent Expert Group on Mobile Phones
ICNIRP International Commissions on Non-Ionizing Radiation Protection
INIRC International Nonionizing Radiation Committee
IR infrared
IRPA International Radiation Protection Association
ISM industrial, scientifi c, and medical
ITS intelligent transport systems

LCD liquid crystal display
LED light-emitting diode
LF low frequency

MBA microwave balloon angioplasty
MEA microwave endometrial ablation
MFH magnetic fl uid hyperthermia
MPE maximum permissible exposure
MPT Ministry of Posts and Telecommunications (Japan)
MR magnetic resonance
MRI magnetic resonance imaging
MRI/MRS magnetic resonance imaging and spectroscopy
MRS magnetic resonance spectroscopy

NICE National Institute for Clinical Excellence
NIEHS National Institute of Environmental Health Sciences
NMR nuclear magnetic resonance
NMT Nordic Mobile Telephone
NRC National Research Council
NRPB National Radiological Protection Board
NTC negative temperature coeffi cient

ODC ornithine decarboxylase
Oe oersted
OR odds ratio
OSA obstructive sleep apnea

PACS Personal Access Communications System
PCS Personal Communication Services
PHS Personal Handyphone System
PTC positive temperature coeffi cient
PZT lead zirconate titanate

RF radiofrequency
RFID radiofrequency identifi cation
RFR radiofrequency radiation
RIF radiation-induced fi brosarcoma
RITA RF interstitial tumor ablation
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364 Acronyms and Abbreviations

RMS root mean square
RNA ribonucleic acids
ROW rights-of-way

SAD specifi c absorption per day
SAR specifi c absorption rate
SCE sister chromatid exchange
SD standard deviation
SF shielding factor
SIR standardized incidence ratio
SMR standardized mortality ratio
SNR signal-to-noise ratio
SP slow brain potentials
SPFD scalar potential fi nite difference
SPECT single photon emission tomography

TACS Total Access Telecommunication System 
TDMA time division multiple access
TER thermal enhancement ratios
TETRA Terrestrial Trunked Radio
TNF tumor necrosis factor
TTPS thermal therapy planning system
TUMT transurethral microwave thermotherapy
TV television
TWA time-weighted average 

UHF ultra high frequency
UK United Kingdom 
US United States 
USAF U.S. Air Force
USASI United States of America Standard Institute
UV ultraviolet 

VDT video display terminal
VEGF vascular endothelial growth factor
VHF very high frequency
VLF very low frequency

WBH whole-body hyperthermia
WCDMA wide code division multiple access
WHO World Health Organization
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365

A
ablation therapies. See radiofrequency 

ablation; thermal ablation; specifi c 
therapies, e.g. microwave ablation

absorption limits, terahertz radiation, 
noninvasive thermometry, 351

acoustic attenuation coeffi cient, noninvasive 
ultrasound thermometry, 343–345

action values, radiofrequency exposure, 126
active shielding techniques, magnetic 

fi eld mitigation, 77
acute myeloid leukemia (AML), electromagnetic 

fi eld exposure and, 90–91
adaptive power control (APC) measurements, 

radiofrequency radiation exposure, 
mobile and cordless phones, 153–156

adult head size, radiofrequency exposure, 
in-head assessment, 136–137

alternating current (AC) sources, electric and 
magnetic fi elds, 17

Alzheimer’s disease (AD), electromagnetic 
fi eld exposure and, 91–92

Ampere’s law
biological-EM interactions, 313
electromagnetic fi elds, 6–7
electromagnetic waves, 7

analytical modeling, power deposition, 
biological-EM interactions, 315

animal studies
electromagnetic fi eld effects, 94–99

cancer studies, 98
noncancer studies, 98–99

radiofrequency radiation exposure
cancer experiments, 159–160
noncancer studies, 160–161

antennas
basic properties, 27
microwave ablation therapy 

and design of, 283–284
multiple antennas, 284–285

radiofrequency transmission, 22–27
aperture antenna, basic properties, 26
array applicators, hyperthermia 

heating systems, 235–237
atrial fi brillation (AF)

microwave ablation catheter and, 287–288
radiofrequency ablation therapy, 279
thermal ablation therapy, 270–271

auditory response, radiofrequency radiation 
exposure effects on, 161–162

B
background levels, magnetic fi eld 

measurements, 65–66
backscattered energy change, noninvasive 

ultrasound thermometry, 343–345
Baish bioheat model, basic principles, 324
bandwidth, electric fi eld measurements, 64–65
basal metabolic rate (BMR), whole-body 

hyperthermia and, 211
base transceiver stations (BTS), radiofrequency 

exposure, 130–132
behavioral effects

electromagnetic fi eld exposure, 98, 101
radiofrequency radiation exposure, 

animal studies, 160–161
bel, defi ned, 23
benign hyperstatic hyperplasia (BPH)

thermal ablation therapy, 269
transurethral microwave 

thermotherapy (TUMT), 285
bioheat equation, 319–325

applications, 324–325
Baish model, 324
Pennes model, 319–322
Stolwijik model, 323
Weinbaum-Jiji model, 323–324
Wissler model, 322–323

biological effects. See also health effects
electromagnetic fi eld interactions

adult cancer, 87, 90–91
animal cancer studies, 98
animal noncancer studies, 98
basic principles, 29–30
behavioral effects, 98, 101
binding probability, 42–43
biological and health effects, 39–50
blood-brain barrier, 99
brain and nervous system 

effects, 47–49, 101
breast cancer, 86–87
cancer mechanisms, 46
carcinogenesis, 44–45, 95–96
cardiovascular system, 91, 102
cell and membrane effects, 39–41
cell functions, 96–98
cell proliferation, 96–97
cellular and animal 

studies, 94–98
childhood cancer 

and leukemia, 85–86

Index
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366 Index

biological effects (contd.)
clinical studies, 100–103
electric and magnetic fi eld 

mechanisms, 30–32
electric fi eld effects, 34–36
endogenous fi elds, 32
epidemiological studies, 83–94
frequency effects, 50–51
future research issues, 103–105
genetic effects, 43–44, 95–96
immune system effects, 97–98
induced fi elds and currents, 30–31
intracellular calcium effl ux, 96
macroscopic/microscopic 

levels, 311–314
magnetic fi eld effects, 36–39
melatonin hypothesis, 45–46, 94–95, 

102–103
neurodegenerative disease, 91–92
nonthermal/athermal 

mechanisms, 33–34
occupational environments, 

87, 90–93
ornithine decarboxylase (OCD) 

production, 97
perception and sensitivity, 100–101
physiological effects, 49–50
power deposition models, 314–316
protein conformation changes, 42
public environments, 84–85
radiofrequency radiation 

mechanisms, 32–34
reproductive system effects, 92–93, 99
restrictions and guidelines for, 63
review studies, 104–105
risk perception and, 185
shot noise, 32
stress response, 97
thermal mechanisms, 32–33
thermal noise, 31–32
tissue effects, 41–42
vibrational absorption, 43

electromagnetic therapy, thermal injury 
mechanisms, 202–203

heat therapy, 204–210
carcinogenic effects, 209–210
cardiovascular response, 207–208
cellular responses, 206–207
immunological effects, 207
nervous system response, 208–209
tissue physiology, 205–206

hypertherapy, 243
hyperthermia, 222–224
radiofrequency radiation, 29, 

32–34, 149–167
cellular and animal 

studies, 156–161
clinical studies, 161–165

epidemiological studies, 150–156
future research issues, 165–167

risk analysis, electromagnetic 
fi eld exposure

assessment protocols, 180–183
communication of risk, 188–192
future research issues, 192–194
health effects, 185
management protocols, 186–188
overview, 179–180
public risk perception, 184
scientifi c evidence, 180–182
socioeconomic factors, 184–185
standards, 182–183
structured risk assessment, 183

blood-brain-barrier (BBB)
electromagnetic fi eld exposure, 49–50

animal studies, 99
radiofrequency radiation exposure, 

animal studies, 161
whole-body hyperthermia effects on, 

208–209
blood perfusion rate

Baish bioheat equation, 324
current technology and future 

research on, 328
Pennes bioheat equation, 319–322
Weinbaum-Jiji bioheat equation, 323–324

bolometers, terahertz (THz) radiation, 
noninvasive thermometry, 350–351

bone tumors
radiofrequency ablation therapy, 278
thermal ablation therapy, 270

brain
electromagnetic fi eld effects on, 47–49, 101
radiofrequency radiation exposure 

effects on, 163–165
“break point,” thermal dose measurements, 

317–318
breast cancer

electromagnetic fi eld exposure and, 86–87
microwave radiometric imaging, 347–348
radiofrequency ablation therapy, 277–278
thermal ablation therapy, 270

breast-conserving surgery (BCS), thermal 
ablation therapy with, 270

broadcast stations, radiofrequency 
exposure, 132

burn injuries, heat therapy, tissue physiology 
and, 205–206

C
calcium channels

electromagnetic fi eld effects, 96
radiofrequency radiation exposure and, 158

calorimetry, thermal measurements, 318

CRC_62840_SUBJECTIND.indd   366CRC_62840_SUBJECTIND.indd   366 9/29/2007   1:55:29 PM9/29/2007   1:55:29 PM



Index 367

cancellation techniques
electric fi eld mitigation, 75
electromagnetic fi eld mitigation, 74

cancer
electrical-biological interactions and, 46–47
electromagnetic fi eld exposure and, 87, 90
microwave ablation therapy, 285–286
radiofrequency ablation therapy, 275–278
radiofrequency radiation exposure and

animal studies, 159–160
hormonal secretion mechanisms and, 159
mobile and cordless phones, 152–156

thermal ablation therapies, 267–270
capacitive heating devices, hyperthermia 

systems, 232–233, 235
carcinogenesis

electromagnetic fi eld effects, 95–96
animal studies, 98

whole-body hyperthermia and, 209–210
cardiovascular disease

electromagnetic fi eld exposure and, 
91, 102

hyperthermia therapy, 207–208
microwave ablation therapy, 286–288
radiofrequency ablation therapy, 278–279
radiofrequency radiation exposure and, 165
thermal ablation therapy, 270–271

cataract formation, radiofrequency radiation 
exposure, animal studies, 160

cathode ray tube (CRT)-type VDT, 
protection from, 77–78

cell function
electromagnetic fi eld effects, 96–98
hyperthermia, 206–207, 223–224
radiofrequency radiation, 158–159

cell membranes
electrical-biological interactions, 39–41
electromagnetic-biological interactions, 

38–39
cell proliferation

electromagnetic fi eld effects, 96–97
radiofrequency radiation exposure 

and, 158
cellular studies

electromagnetic fi eld effects, 94–99
radiofrequency radiation exposure, 156–161

central nervous system (CNS)
electrical-biological interactions and, 47–49
electromagnetic fi eld exposure and, 85–86
whole-body hyperthermia effects on, 

208–209
CGS units, magnetic fi eld, 5
chemical ablation

defi ned, 265
future research in, 292–293

chemotherapy
hyperthermia and, 224, 241–242
hyperthermic chemoperfusion, 228–229

childhood cancer
electromagnetic fi eld exposure and, 85–86, 

88–89
radiofrequency radiation exposure, mobile 

and cordless phones, 166–167
children, electromagnetic fi eld exposure, risk 

communication with, 191–192
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carcinogenic effects, 209–210
cardiovascular response, 207–208
cellular responses, 206–207
immunological effects, 207
nervous system response, 208–209
tissue physiology, 205–206

single radiative applicators, 235
standardization, 245
status and trends, 243–245
technical and clinical challenges, 243–244
techniques, 231–232
treatment protocols, 203–204, 224–230
ultrasound techniques, 231
whole-body regimens, 229–230

carcinogenic effects, 209–210
cardiovascular effects, 207–208
cellular responses, 206–207
immune system effects, 207
nervous system effects, 208–209

hyperthermic chemoperfusion, basic principles, 
228–229

hyperthermic isolated limb perfusion, basic 
principles, 228–229

I
IEEE Standard 1528, radiofrequency 

exposure, 122–123
IEEE Standard C95.1, radiofrequency 

exposure, 121
IEEE Standard C95.1-2005, 

radiofrequency exposure, 123

imaging techniques, for noninvasive 
thermometry, 342–354

magnetic resonance imaging, 345–347
microwave radiometric imaging, 347–348
terahertz-ray computed tomography, 

353–354
terahertz technology, 348–351
ultrasound, 343–345
x-ray computed tomography, 352–353

immune system
electromagnetic fi eld effects, 97–98
hyperthermia effects on, 207

impedance model, biological-EM 
interactions, 314

induced fi elds and currents, biological 
interaction mechanisms, 
30–31, 36–37

inductive heating, hyperthermia systems, 233–235
industrial risk management, electromagnetic 

fi eld exposure and, 191
in-head assessment, radiofrequency exposure, 

135–139
initiation-promotion carcinogenesis model, 

electrical-biological interactions, 
44–45

in phase techniques, electromagnetic fi eld 
mitigation, 74

Institute of Electrical and Electronics Engineers 
(IEEE). See also specifi c IEEE 
standards

electromagnetic fi eld exposure guidelines, 
61–62

radiofrequency exposure guidelines, 
121–123

intermediate frequency (IF) fi elds, biological 
effects, animal studies, 99

International Commission on Nonionizing 
Radiation (ICNIR)

electromagnetic fi eld exposure guidelines, 62
radiofrequency exposure guidelines, 

124–125
internet, risk management for electromagnetic 

fi eld exposure and, 191
interstitial local hyperthermia

basic principles, 227
heating devices, 237–238

intracavitary hyperthermia, heating devices, 
237–238

intracellular calcium
electromagnetic fi eld effects, 96
radiofrequency radiation exposure and, 158

intraluminal local hyperthermia, basic 
principles, 226–227

intrinsic impedance, electromagnetic waves, 8
inverse-square law, electromagnetic waves, 10
ionizing radiation, electromagnetic 

spectrum, 14
isotropic antenna, defi ned, 25

CRC_62840_SUBJECTIND.indd   371CRC_62840_SUBJECTIND.indd   371 9/29/2007   1:55:30 PM9/29/2007   1:55:30 PM



372 Index

J
Joule heating, thermal injury, 202–203

K
kidney cancer

radiofrequency ablation therapy, 277
thermal ablation therapy, 269–270

kilohertz, electromagnetic waves, 9

L
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risk assessment, whole-body hyperthermia, 

210–211
root-mean-square (RMS) average, electric fi eld 

measurements, 64–65

S
safety assessments. See also risk analysis

radiofrequency exposure, 127, 134–140
harmonization of standards, 141–142
in-head assessments, 135–139
mobile antenna shielding, 140
whole-body phantoms, 134–135

scalar potential fi nite difference (SPFD) method, 
power deposition, biological-EM 
interactions, 314
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scattering phenomena, terahertz radiation, 
noninvasive thermometry, 351

scientifi c evidence, risk assessment, 
electromagnetic fi eld 
exposure, 180–182

sensitivity, electromagnetic fi eld 
effects on, 100–101

sheath-type thermocouple, thermoelectric 
thermometry, 340

shielding factor (SF)
magnetic fi eld mitigation, 76–77
radiofrequency exposure, base 

transceiver stations (BTS), 130–132
shot noise, biological interaction 

mechanisms, 32
Sigma-60/Sigma-Eye applicators, deep 

regional hyperthermia, 228
signal-to-noise ratio (SNR), terahertz 

radiation, noninvasive 
thermometry, 351

single-conductor source, electric and magnetic 
fi elds, 17

single-element applicators, hyperthermia 
heating systems, 235

site surveys, of electromagnetic fi eld 
sources, 69–72

slot antenna, basic properties, 26
snoring, radiofrequency 

ablation therapy, 279
sodium potassium pump, electrical-biological 

interactions and, 48
spatial multiplexing of data, minimally 

invasive thermometry, 341
specifi c absorption rate (SAR)

biological-EM interaction modeling, 
316–318

dosimentric measurements and, 311
hyperthermia heating systems

microwaves, 232
multielement array applicators, 235–237

interstitial local hyperthermia, 227
local hyperthermia, 225
mobile antennas, shielding devices, 140
modeling, 316–318
radiofrequency exposure, 127–129

animal studies, 159–160
exposure guidelines and, 122–127
whole-body phantoms, 134–135

radiofrequency radiation, genetic toxicology 
and, 157–158

thermal ablation therapies, 267
thermal measurement techniques, 318
thermal mechanisms, biological-

electromagnetic interaction, 33
spectroscopy systems, radiofrequency 

exposure, 134
spiral (helical) computed tomography scanners, 

noninvasive thermometry, 352–353

standardization
hyperthermia therapy, 245
radiofrequency radiation exposure, 121–123, 

141–142
risk assessments, 182–183

Stolwijik bioheat equation, basic 
principles, 323

stress response, electromagnetic fi eld effects, 97
structured risk assessment, electromagnetic fi eld 

exposure, 183
supraventricular tachyarrhythmias (SVTs)

microwave ablation catheter and, 287–288
thermal ablation therapy, 270–271

Swedish exposure guidelines, electromagnetic 
fi eld, 63

T
telecom operators, radiofrequency exposure 

in, 151
temperature measurement. See thermometric 

methods
terahertz (THz) radiation

future research issues, 355
noninvasive thermometry, 348–351

terahertz (THz)-ray computed tomography, 
noninvasive thermometry, 353–354

terahertz time-domain spectroscopy 
(THz-TDS), noninvasive 
thermometry, 350–351

thermistors, thermometric applications, 340
tesla units, magnetic fi eld, 5
testicular function, radiofrequency radiation 

exposure, animal studies, 160
thermal ablation therapy

bone cancer, 270
breast cancer, 270
cardiac diseaes, 270–271
clinical applications, 267–268
defi ned, 265
future research issues, 290–293
liver cancer, 268
lung cancer, 269
minimally invasive procedures, 266
prostate cancer, 269
renal cancer, 269–270
techniques, 267

thermal balloon endometrial ablation (TBEA), 
basic principles, 288–289

thermal conduction, whole-body hyperthermia, 
229–230

thermal dose measurements, biological-EM 
interaction modeling, 317–318

thermal-dose response relation, hyperthermia, 
222–223

thermal-electric modeling, radiofrequency 
ablation, 274–275
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thermal energy balance, Pennes bioheat 
equation, 320

thermal enhancement ratios (TER), 
hyperthermia and radiation, 224

thermal injury, electromagnetic therapy, 
mechanisms, 202–203

thermal measurements, methods for, 318
thermal mechanisms

biological-electromagnetic 
interaction, 32–33

radiofrequency radiation exposure 
effects on, 162–163

thermal monitoring
overview of, 337
thermal therapy planning system, 327

thermal noise, biological interaction 
mechanisms, 31–32

thermal therapy planning system (TTPS), 
325–327

thermocoupling technology, thermoelectric 
thermometry, 339–340

thermoelectric thermometry, basic principles, 
339–340

thermographic techniques, thermal 
measurements, 318

thermometric methods
basic principles, 337
current status and future research 

issues, 354–355
development of, 338–339
invasive techniques, 339–342

applications and comparison, 341
optical fi ber thermometer, 341
thermistors, 340
thermoelectric thermometry, 339–340

noninvasive techniques, 342–354
magnetic resonance imaging, 345–347
microwave radiometric 

imaging, 347–348
terahertz-ray computed 

tomography, 353–354
terahertz technology, 348–351
ultrasound, 343–345
x-ray computed tomography, 352–353

thermal measurements, 318
thermotolerance mechanisms, 

hyperthermia, 223–224
Thermotron RF-8 capacitive heating device, 

hyperthermia systems, 233
three-dimensional impedance method, 

electromagnetic fi eld 
dosimetry, 72–73

three-dimensional ultrasonography, 
thermometric measurement, 344–345

three-phase source, electric and magnetic 
fi elds, 19

time division multiple access (TDMA), 
electrical-biological interactions, 51

tissues
biological-EM interactions

macroscopic/microscopic effects, 
312–314

Pennes bioheat equation, 319–322
Weinbaum-Jiji bioheat equation, 

323–324
electrical-biological interactions and, 41–42
heat response and physiology, 205–206
ultrasound thermometry in, 344–345

traffi c radar devices, radiofrequency exposure, 
132–133

occupational exposure studies, 151
transcription, electrical-biological 

interactions, 41
translation (DNA), electrical-biological 

interactions, 41
transmission lines, radiofrequencies, 20–21
transmission paths, radiofrequencies, 20–22
transurethral microwave thermotherapy 

(TUMT)
bioheat transfer models, 325
development of, 285

tumor necrosis factor (TNF)
hyperthermia and release of, 206–207
hyperthermic isolated limb perfusion, 229

tumor size, ablation therapy limitations and, 289
two-conductor transmission line, 

radiofrequencies, 20–21
two-dimensional thermal therapy planning 

system, development of, 327
two-dimensional ultrasonography, thermometric 

measurement, 344–345

U
ultrasound

hyperthermia heating systems, 231
noninvasive thermometry and, 343–345

underground cable, electromagnetic fi eld 
mitigation, 73–74

V
vascular endothelial growth factor (VEGF), 

whole-body hyperthermia 
effects, 208

vector operations, electromagnetic fi elds, 6–7
very high frequencies (VHF), electromagnetic 

waves, 7–8
vibrational states, electrical-biological 

absorption, 43
video display terminals (VDTs)

electromagnetic hypersensitivity (EHS) 
syndrome, 100–101

protection from, 77–78
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voltage-gated ion channels, electrical-biological 
interactions, 41

von Hippel-Lindau disease, radiofrequency 
ablation therapy, 277

W
wave equations, electromagnetic waves, 7
wavefront, electromagnetic waves, 9–10
waveguides, radiofrequency 

transmission, 21–22
wavelength, electromagnetic waves, 9
wave-particle duality, electromagnetic 

waves, 9
wave propagation, electromagnetic-biological 

interactions, 312–314
Webers per square meter (Wb/M2), magnetic 

fi eld, 5
Weinbaum-Jiji bioheat equation, basic 

principles, 323–324
whip antenna, basic properties, 27
whole-body average specifi c absorption rate

biological-EM interaction 
modeling, 317–318

microwave radiometric imaging, 348
radiofrequency exposure, 128–129, 134–135
Stolwijik model, 323
Wissler bioheat equation, 322–323

whole-body hyperthermia (WBH)
basic principles, 229–230
carcinogenic effects, 209–210
cardiovascular effects, 207–208
cellular responses, 206–207
chemotherapy and, 241–242
combined treatment regimens, 240
immune system effects, 207
nervous system effects, 208–209
thermal therapy planning 

system, 326–327
wire antenna, basic properties, 26
Wissler bioheat equation, 322–323
Wolf-Parkinson-White syndrome, 

radiofrequency ablation 
therapy, 278–279

X
x-rays

computed tomography, noninvasive 
thermometry, 352–354

hyperthermia and toxicity enhancement 
of, 224

Y
Yagi-Uda antenna, basic properties, 27
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